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Preface

The nature of conceptual thinking constitutes a central topic in a variety of
scientific disciplines. Since 1993, the International Conference on Conceptual
Structures (ICCS) has served as a platform that brings together researchers and
practioners in information and computer sciences as well as social science to
explore novel ways of representing and analyzing conceptual knowledge. Origi-
nally centered around research on knowledge representation and reasoning with
conceptual graphs, over the years ICCS has broadened its scope to include inno-
vations from a wider range of theories and related practices, among them other
forms of graph-based formalisms like RDF or existential graphs, formal concept
analysis, Semantic Web technologies, ontologies, concept mapping and more.
Today, ICCS draws inspiration from areas as diverse as artificial intelligence,
knowledge representation and reasoning, applied mathematics and lattice the-
ory, computational linguistics, conceptual modeling and design, diagrammatic
reasoning and logic, intelligent systems and knowledge management.

In addition to vivid conferences, the vibrancy of the field is documented
by two recently published books (Hitzler, Schärfe (Eds): Conceptual Structures
in Practice and Chein, Mugnier: Graph-based Knowledge Representation: Com-
putational Foundations of Conceptual Graphs) as well as by an ISO standard
(“Common Logic”, ISO/ IEC 24707) which orginated in this community.

This volume contains the proceedings of ICCS 2009, the 17th International
Conference on Conceptual Structures (ICCS) held in Moscow. The theme of
ICCS 2009, “leveraging semantic technologies,” hints at the large overlap of the
research fields of semantic technologies and conceptual structures, and empha-
sizes the goal of closer connecting these two areas. We are confident that fostering
the exchange of ideas will lead to cross-fertilization and mutual benefit. We are
proud that we could welcome seven renowned researchers who elaborated on the
relationship between conceptual structures and semantic technologies from dif-
ferent perspectives. Five of the seven speakers submitted accompanying papers
which were peer reviewed and included in this volume.

Roughly 50 papers were submitted to ICCS 2009 for peer review. All submis-
sions were assessed by at least three referees one of whom was an Editorial Board
member, who managed any neccessary revisions. The top-ranked 18 papers were
selected for this volume, amounting to an acceptance rate of about 35%. Another
nine papers were published in a supplementary volume as CEUR workshop pro-
ceedings. The thorough selection process would not have been possible without
the help of the numerous reviewers to whom we express our thanks.

Last but not least, we would also like to thank the local organizing team and
the administration of the State University Higher School of Economics (Moscow)
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who – with genuine Russian hospitality – took care of all the arrangements to
make this conference pleasant and enjoyable.

July 2009 Sebastian Rudolph
Frithjof Dau

Sergei O. Kuznetsov
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The Maturing Semantic Web: Lessons in
Web-Scale Knowledge Representation

Mark Greaves

Vulcan Inc.
MarkG@vulcan.com

Abstract. This paper is an extended abstract of the talk given at
ICCS’09. Rules have long been considered as an essential component
of knowledge-based systems. We focus here on conceptual graph rules
and on the semantically equivalent knowledge constructs in logic and
databases, namely rules with existential variables and tuple-generating
dependencies. The aim of this presentation is to synthesize main de-
cidability, complexity and algorithmic results obtained on this kind of
rules. We emphasize the fact that the graph vision of rules has led to
new results.
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Concept Formation in Linguistic Ontologies 

Natalia Loukachevitch 

Research Computing Center of M.V. Lomonosov Moscow State University  
(NIVC MGU) 

Leninskiye Gory 1, building 4, NIVC MGU,  Moscow 119991, Russia 
louk@mail.cir.ru 

Abstract. Problems of conceptualization in linguistic ontologies are discussed 
We show that it is necessary to form concepts of a linguistic ontology as close 
as possible to the meanings of linguistic units, because excessive generalization 
and clustering of meanings necessarily lead to distortions in the system of rela-
tions, excessive problems in a specific subject field, or an application. At the 
same time it is important to ensure that concepts can be distinguished from su-
perconcepts and sibling concepts. The usage of really existing multiword ex-
pressions helps us mitigate these contradictory requirements. The introduction 
of concepts on the basis of multiword expressions does not change the essence 
of a linguistic ontology, but also makes the distinction between the concepts 
much clearer. 

Keywords: thesaurus, linguistic ontology, conceptualization. 

1   Introduction 

An ontology is often considered to be independent of a natural language [1,2,3]. 
D. Lenat [4] emphasizes that taking the meaning of words into account can only  
confuse (“words are often red herrings”), the meanings of words divide the world 
ambiguously, and the division lines come from a variety of reasons: historical, 
physiological, etc. 

From another point of view an ontology can not be fully independent of natural lan-
guage. Names of the concepts in ontologies are often formulated in natural language – 
this is a standard practice that has been used in knowledge representation systems in 
artificial intelligence [2,5]. Breuster et.al [6] stress that people manipulate concepts 
through words. In all known ontologies the words are used to represent concepts. There-
fore, phenomena that are not verbalized, can not be modelled. The  Breuster et.al char-
acterize this phenomenon as the Ontological Whorf-Sapir hypothesis, i.e. “that which 
can not be captured by words cannot be represented in an ontology.” Y. Wilks [2,5] 
asserts that the symbols in representation languages are fundamentally based on the 
natural language, that a representation language is a means of human communication 
with the inherent dynamics, polysemy and possibility of extended interpretation.  

Moreover, in ontological resources developed for specific domains most ontology 
concepts are related to the meanings of domain terms. So J. Tsujii and S. Ananiadou [7] 
stress that “in many fields of application, knowledge to be shared and integrated is  
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presented mostly in text”. Many ontologies in biology, such as GO (Gene Ontology) [8], 
actually represent the information-retrieval thesauri (controlled vocabularies), and they 
by nature differ from ontologies, required within the formal ontological approach to 
knowledge description. 

As a result a paradoxical notion of  linguistic ontology  emerges, i.e. an ontology, 
concepts of which are considerably related to the meanings of linguistic units, the 
terms of the subject field [9, 10]. Linguistic ontologies cover most of the words of the 
language or the subject field, and at the same time they have an ontological structure 
represented in relations between the concepts. Therefore, a linguistic ontology can be 
considered as a special kind of a lexical database and a special type of an ontology. 
Linguistic ontologies are relatively weakly formalized, i.e. they belong to the “termi-
nological” ontologies according to J. Sowa [11]. The role of the “linguistic ontolo-
gies” increases greatly in applications related to natural language processing. 

Examples of linguistic ontologies are the Princeton WordNet [12] and wordnets of 
other languages. Information retrieval thesauri can also be considered as linguistic 
ontologies.One of the serious problems in the linguistic ontology development con-
sists in formulation of the principles for the concepts formation, since the relations 
between the concepts and lexical meanings are quite complex. Understanding these 
issues is important for developers of any types of ontologies, because creation of any 
ontology deals more or less with lexical or terminological meanings. 

In this paper we will describe problems of concept formation in linguistic ontolo-
gies. We will consider principles for introducing a new concept in such linguistic 
ontologies as Princeton WordNet, MikroKosmos ontology [2], information-retrieval 
thesauri. Finally, we present our approach to description of concepts in Thesaurus of 
Russian language - RuThes, which we also consider to be a linguistic ontology [13].  

RuThes is used in information-retrieval applications, such as conceptual indexing; 
automatic text categorization, document clustering, automatic text summarization, 
question-answering. At present it includes more than 50 thousand concepts and more 
than 140 thousand Russian words and multiword expressions. It was translated into 
English and comprises almost 130 thousand English words and expressions. 

2   Principles of Concept Introduction and Lexical Senses 

The general recommendations on the ontology concepts formation are usually de-
scribed as follows [3,14,15]. One needs to distinguish the concept and its name, i.e. 
synonyms of the same concept do not represent different classes, synonyms are just 
different names of the concepts.  

A child concept should be distinctly different from the parent one. This difference 
can be expressed in the form of a distinctive property that the child concept bears, in 
limitations on slot fillers that are distinct from limitations of other classes; or in the 
existence of additional relationships with other concepts. A concept must be clearly 
distinguished from the concepts at the same level (sibling concepts).  

These recommendations are not easy to realize if the developed ontology is based 
on the existing linguistic meanings. First of all, it is not easy to distinguish a concept 
and its names, working with linguistic meanings. Secondly, a critical challenge  
for resources designed for the natural language processing is the presentation of  
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ambiguous words, especially if the meanings are closely related to each other. More-
over, a serious problem is caused by the words with similar meanings, or near-
synonyms, the meanings of which can differ in several features (conceptual content, 
speaker’s attitude, collocations, etc.), and be dependent on the context.  

In the following sections we will discuss the way these problems are solved in spe-
cific linguistic ontologies. We will use the following notation: CONCEPT, term or 
word, ‘meaning’, ‘transcription of Russian words’. 

3   Confusion of a Concept and Its Name in Linguistic Ontologies 

3.1   Confusion of a Concept and Its Name in WordNet 

Initially, WordNet was considered to be a lexical rather than an ontological resource. 
However, over time, the growing importance of the ontological research, as well as 
the similarity of the WordNet nouns hierarchy with an ontology became appar-
ent [16]. At the same time there exist a lot of deficiencies of WordNet descriptions 
from ontological point of view [17]. 

Numerous examples of confusion between concept and its name can be found in 
WordNet. This is due to the fact that the basic relation in WordNet is the synonymy. 
Sets of synonyms – synsets – are the main structural elements of WordNet. Defini-
tions of synonyms in synsets are based on the principle of substitution of one for an-
other in sentences [12]. This basic principle of the WordNet construction leads to the 
situation when different synsets are introduced for different ways of naming same 
entities. 

There are several types of confusion of concepts and their names in wordnet-like 
resources.  

First of all, the confusion of concepts and their names shows itself in the support of 
different hierarchies for different parts of speech. Indeed, if, for example, the  PRI-
VATIZATION  concept  (privatize, privatization)  is mentioned in a text using what-
ever parts of speech – it is always a reference to the same concept with the help of 
different lexical means, the parts of speech changing should not affect the relations 
between this concept and other concepts. 

The first Wordnet followers (EuroWordNet project) considered the integration of 
all parts of speech–derivatives in a single synset, since such division is contrary to the 
principles of the development of ontological resources. However, the decision to 
connect parts of speech in the same hierarchy was not made [18]. 

The second type of confusion of a concept and its name in WordNet is the usage of 
different synsets to describe the old and new names, the names of concepts in differ-
ent dialects of the language, in different text genres, etc. 

According to ontological principles of the distinction of an entity and its name, all 
these different names should not produce new units of representation or concepts; 
they should remain to be textual expressions of the same concept. To differentiate the 
features of their linguistic use, they can be provided with extra labeling. 

Thus, in the Princeton WordNet, one can find numerous examples of synsets, 
which appeared due to different characteristics of the use of words. For example, for 
describing slang synonyms of the word “nose”, a special synset is introduced. This 
synset is presented as hyponym of nose synset.  
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beak, honker, hooter, nozzle, snoot, snout, schnozzle, 
schnoz -- (informal terms for the nose) 

Informal words related to money are also collected in a separate synset: 

boodle, bread, cabbage, clams, dinero, dough, gelt, 
kale, lettuce, lolly, lucre, loot, moolah, pelf, 
scratch, shekels, simoleons, sugar, wampum -- (informal 
terms for money) 

Several synsets fix specific features of English dialects, as a special synset for  
domestic ass in British English: 

Moke 1 -- (British informal) 

domestic ass, donkey, Equus asinus -- (domestic beast 
of burden descended from the African wild ass; patient 
but stubborn) 

Next example of confusion of a concept and its names consists in description of  
monetary units with the same name used in different countries such as franc or  
centime: 

franc -- (the basic monetary unit in many countries; 
equal to 100 centimes) 

centime -- (a fractional monetary unit of several  
countries: France and Algeria and Belgium and Burkina 
Faso and Burundi and Cameroon and Chad and the Congo and 
Gabon and Haiti and the Ivory Coast and Luxembourg and 
Mali and Morocco and Niger and Rwanda and Senegal and 
Switzerland and Togo) 

From the ontological point of view such synsets are not valid, because similarity 
between different monetary units is only their names, they are different in value . 
Therefore concepts should be introduced for such entities as Swiss franc, French 
franc, American dollar, Canadian dollar, and so on. 

3.2   Differentiation of Ontology and Lexicon in the MikroKosmos Ontology 

The authors of the MikroKosmos [3] ontology make a clear distinction between an 
ontology and a lexicon. The concepts of the ontology are described as frames – sets of 
slots. The system’s lexicon describes the meaning of words and phrases, by establish-
ing links from them to the ontology concepts. This division mainly prevents confusion 
of a concept and its name. 

The MikroKosmos ontology is relatively small; it contains about 6 thousand con-
cepts. The lexicon contains tens of thousand linguistic expressions. A lexicon entry 
can have a simple structure - a reference to an ontology concept, or a rather complex 
structure, containing both a reference to an ontology concept and features of a particu-
lar lexical unit.  The names of a concept in the ontology can look like English words 
or phrases, but their semantics is expressed by a set of well-defined relations between 
concepts. 

The authors declare the independence of ontology from a specific natural language 
that manifests itself in two aspects: 
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1) the ontology contains no units specific to a language such as English or 
Spanish, although the names of concepts are given in English for the sake of 
convenience. 

2) the concepts of ontology do not have one-to-one mapping to word senses in 
natural languages. Many concepts may not be mapped to any word in the 
language; other concepts may correspond to several words in the same 
language and vice versa. 

The main stages of the ontology development include: 

• assessment whether the meaning of a word gives a sufficient ground for the 
introduction of a new concept; 

• location of the concept in the ontology, identification of existing concepts 
which can be described as generic concepts for the new one; 

• description of the new concept features that should differ from the properties 
of superconcepts and subconcepts. These features are given not just by slots 
filling, but also in a more informative way, e.g., in the availability of other 
properties or relations to other concepts. 

Thus, the proclaimed linguistic independence should not be misleading. At its core, 
the MikroKosmos ontology is certainly a linguistic ontology, because, the basic prin-
ciple, which justifies the introduction of new concepts, is the existence of words with 
the same meaning in many languages.  

At the same time, the principle of linguistic independence of this ontology stresses 
that in the construction of a linguistic ontology it is not necessary to follow the system 
of meanings of a specific language. A linguistic ontology can take into account the 
system of meanings of a particular language or an aggregate of languages, and in 
doing so adhere to the ontological principles of the concepts introduction. 

3.3   Concepts and Terms in Information Retrieval Thesauri 

Information retrieval thesauri are usually considered as a kind of ontological re-
sources [19]. In addition, thesauri are based on the terms of a subject field, so they can 
also be considered as linguistic ontologies. Conventional information-retrieval 
thesauri regulated by national and international standards [20, 21] are intended to be 
used in manual indexing by human indexers. 

The basic thesauri units are terms that are divided into descriptors (= authorized 
terms) and non-descriptors (= ascriptors).  Most standards for information-retrieval 
thesauri highlight the connection between the terms and concepts of a subject field. 
The American standard points out that a term is one or more words referring to a 
concept. The ISO standard [20] emphasizes that an indexing term is a concept presen-
tation, preferably in the form of a noun or a noun phrase. A concept is considered as a 
unit of a thought, mentally formed to reflect some or all of the properties of a concrete 
or an abstract, real or mental object. Concepts exist as abstract entities, regardless of 
the terms that express them.  

It should be noted that not all thesauri developers distinguished concepts and 
terms. Thus, developers of AGROVOC thesaurus characterize their resource as  
term-oriented; it is manifested in the fact that a term cannot be complemented with 
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synonyms. This feature of the thesaurus is considered by the authors as a disadvan-
tage that must be corrected [22].  

An important property of a descriptor is that it should be formulated explicitly, its 
implied meaning in the thesaurus should be clear to the user. If an unambiguous and 
clear descriptor cannot be found, the term, taken as a descriptor is supplied with a 
“relator” (a brief note) or a comment. 

American standard Z39.19 [21] recommends to use relators for descriptors’ names, 
even when a descriptor sounds uniquely within a given subject field, but has different 
meanings in the general language, or other domains. This makes it easier to search 
through multiple databases and to compare descriptors of various subject fields. For 
example, it is proposed to introduce Shells (structures) descriptor for the engineering 
subject field, since the word shell has a lot of meanings in English. 

4   Similar Meanings of Ambiguous Words 

The existence of  closely related meanings of ambiguous words presents major diffi-
culties for developers of linguistic ontologies. The difficulty of automatic disambigua-
tion of ambiguous words requires to formulate principles for the description of such 
sets of related meanings as concepts of a linguistic ontology. 

4.1   Similar Meanings of Ambiguous Words in WordNet 

Many authors admit that the differences of meanings in WordNet are too fine-grained 
for such applications as machine translation, information retrieval, text classification, 
question-answering systems, etc. In [23] it was indicated that the average number of 
senses in WordNet is larger than in traditional lexicographical dictionaries.  

The number of senses of certain lexical items may vary in different lexical re-
sources, dictionaries. However, a large number of meanings in WordNet causes diffi-
culties in applications related to natural language processing and brings about the 
question of how and what senses can be combined (“clustered”) [24, 25] to use them 
in the applications.  

Gonzalo [26] pointed out that the experiments on sense clustering led to a conclu-
sion that the typology of the relations between different senses of ambiguous words is 
more useful than the formation of sense clusters, because sense proximity  depends on 
the application. For example, metaphoric senses belong to different semantic fields 
therefore distinction of such senses is very important for information retrieval applica-
tions and question-answering systems. However, for machine translation applications, 
this distinction may be unimportant, as the metaphorical transfer may be similar in 
different languages.  

Fellbaum and Miller [27] review attempts to cluster senses of WordNet. They em-
phasize that the sense clustering can be based on a variety of alternative criteria (se-
mantic, syntactical, domain-oriented), which apparently confirms the significance of 
different sense clusters for natural language applications.The problem of automatic 
selection of WordNet senses in practical applications can be mitigated through the use 
of semantically-marked, according to WordNet meanings, corpus SemCor [28]. 
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The OntoNotes project proposed its own way of integrating lexical meanings of an 
ambiguous word and concepts formation [29], which is based on the consideration of 
the use of an ambiguous word in a corpus, representing the majority of its senses. All 
examples of use are analyzed and divided into groups of senses most distant from 
each other, a branch node in the tree is created, and then for each node the process 
should be iterated. 

The development of the ontology of word senses depends on the explanatory need 
or application requirements. A standard termination condition for the ontology devel-
opment process is the absence of an obvious way of splitting the remaining group of 
senses into subgroups, or the existence of equally reasonable ways of splitting it into 
subgroups according to different reasons. The work also highlights the usefulness of a 
multilingual consideration for the appropriate separation of the meanings and  
concepts. 

Consider an example of the verb  drive, for which WordNet provides 22 individual 
senses. In OntoNotes project two independent experts defined 7 most important 
groups of meanings of this verb. The most frequent group of senses comprises seven 
senses from WordNet and can be called “Operating or traveling by means of a  
vehicle”: 

WN1: Can you drive a truck?  

WN2: drive to school,  

WN3: drive her to school,  

WN12: this truck drives well,  

WN13: He drives taxi,  

WN14: The car drove around the corner,  

WN16: Drive the turnpike to work. 

It should be stressed that, e.g. from the viewpoint of a Russian native speaker this 
group of senses is not very evident because these senses correspond to 5 different 
(non-synonymous) Russian words: ‘vodit’ (WN1, WN13), ‘ehat’ (WN2, WN12), 
‘vezti’ (WN3), ‘povernut’ (WN14), ’proehat’ (WN16). 

4.2   Similar Meanings of Ambiguous Words in the MikroKosmos Ontology 

The basic rule, proclaimed for dealing with similar meanings of ambiguous words in 
the MikroKosmos ontology, is the reduction of polysemy rule [3]: it is necessary to 
decide how many dictionary meanings a particular lexical sense can represent, and to 
unite as many meanings as possible, so there will be as few different senses as  
possible. 

The principles of distinguishing meanings are as follows: 

• A candidate meaning must be clearly distinguishable from the already  
described meanings. 

• It is necessary to check whether the meaning needs further clarification, if it 
is used in a short sentence. If one needs additional context to figure out what 
meaning is used, the meaning should not be introduced, but must be attrib-
uted to one of the existing meanings. 
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• It is necessary to check whether there is a property in the description of the 
meaning, which is filled with too small number of fillers. If so, the meaning 
must also be assigned to one of the more common meanings, or described as 
a multiword expression. 

Seemingly, this procedure should reduce the problem of sense disambiguation, but 
on the other hand, it leads to violations of the ontology structure. Thus, N. Guarino 
[17] criticizes several existing ontologies, including the MikroKosmos ontology, for 
the polysemy of ontological nodes, e.g., for the treatment of the  WINDOW  concept 
as an artifact and as a place at the same time. 

The problem resides in the fact that window in different contexts may denote an 
opening  (A man looked out of the window)  and an artifact  (The workers mounted a 
window), and these entities  WINDOW (OPENING)  and  WINDOW (ARTIFACT)  are 
very closely linked to each other. This criticism relates to the fact that, in Guarino 
opinion, the polysemy in ontological nodes should not be permitted in any form. To 
conform to the principle of forbidding polysemy nodes, the ontology should have 
different nodes at different locations for such concepts as  WINDOW (ARTIFACT)  
and  WINDOW (OPENING). 

To reply to N. Guarino, the authors of the ontology [3, p. 129] explain that the fact 
of the English word  window  having two meanings is not crucial for the ontology 
development, since it is not considered that the relations between the meanings of the 
natural language (or, more precisely, the meanings of all known languages) and the 
ontology concepts should have a unique correspondence. 

As a justification for their position the authors argue that they do not know such a 
natural language, in which the word for the  WINDOW  concept does not realize two 
meanings: the meaning of an opening and the meaning of an artifact. This semantic 
genericity is the strongest argument in favour of the fact that people can combine 
these two concepts. The authors of the ontology also emphasize that “an effort to split 
ontological concepts into ever smaller unambiguous units leads to a sharp increase in 
polysemy and, therefore, makes the task of disambiguation so much more difficult... 
So if the ontology is made less ambiguous, it only means that the ambiguity will have 
to be treated increasingly elsewhere” [3, p. 132].  

However, we need to agree with N. Guarino that violations of the ontological 
structure is also a serious problem because, if it is required to use the described rela-
tionships between the concepts for the logical inference, then at first it will be neces-
sary to determine if these relationships could be applied in current context, which 
means that the problem of choosing the right meaning of an ambiguous word simply 
shifted to another stage of text processing. 

4.3   Lack of Similar Meanings of Ambiguous Words in Information Retrieval 
Thesauri 

Recently terms were considered to be unambiguous, context-independent linguistic 
units, now it is known that the terms have many features of the common language 
units, in particular, the terms can also be ambiguous, and their meanings can be very 
similar, for example,  industrial production  (the process and the outcome).  
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However, as the traditional information retrieval thesauri are not intended for the 
automatic processing of texts, usually only one of related term meanings is presented 
in an information-retrieval thesaurus. 

5   Near-Synonyms in Linguistic Ontologies 

The problem with near-synonyms, i.e. different words with similar meanings, is that 
they can differ in many features: denotative content, language register, evaluation, 
dialect, collocations, etc. This justifies the existence of a special genre of “dictionaries 
of synonyms”, which explain in detail the specificity of using synonyms.  

For many of these sets of near-synonyms it is extremely difficult to establish a 
unique correspondence in other languages, because in another language the corre-
sponding set of near-synonyms is characterized by its own system of parametric  
differences and, accordingly, its own specificities. 

Although the linguistic ontology takes into account the existing lexical meanings, 
nevertheless it should remain to be an ontology. According to general principles of 
ontological hierarchy (see Section 2) its main elements – the concepts -- should have 
clear, context-independent differences from the related concepts. 

G. Hirst [30] explains that for the description of the words with similar meanings 
in the linguistic ontologies, it is necessary to implement one more level of representa-
tion, a conceptual-semantic level. This  level should specify a relatively coarse  
conceptual hierarchical system, which is based on denotative, context-independent 
properties of words. Each concept is linked to a set of near-synonyms, and their  
features (stylistic, evaluation, connotations, etc.) are described in additional  
intra-conceptual structures.  

However, the denotative component of the meaning is often very difficult to sepa-
rate from other components. For example, consider the problem of determining the 
optimal number of concepts (and principles of it) to be associated with the following 
set of words with the meaning ‘error’: error, fault, omission, oversight, blunder,  
mistake, miss, screw-up, dereliction, defect.  

The authors of work [31] point out that it is often very difficult to determine the 
words with similar meaning that should better be described as a part of the internal 
structure of concept, and which should belong to different concepts. On the one hand, 
linguist’s intuition can help. On the other hand, a look at the conceptual structure in 
terms of another language can really help to better delimit the boundaries of the  
concepts. 

5.1   Near-Synonyms in WordNet 

To describe the relationship between meanings according to the principles of the 
possibility of synonymous substitutions in same sentences, as it was made during the 
creation of Princeton WordNet, means that near-synonyms should be classified on 
several grounds, as the synonymous substitution of the word must take into account 
conceptual, stylistic, attitudinal and other components of the meaning. It is clear that 
the development of a hierarchy on such grounds is impossible; the whole construction 
becomes very volatile during the transition from language to language. 
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Therefore, WordNet has a large number of synsets that are difficult to distinguish 
from one another; this violates the ontological principles of descriptions of the con-
cepts. For example, there are four different synsets denoting  likeness, similarity, each 
next synset is a hyponym of the previous, which is hardly distinguishable from its 
hyperonym: 

sameness -- (the quality of being alike) 

similarity -- (the quality of being similar) 

likeness, alikeness, similitude -- (similarity in  
appearance or character or nature between persons or 
things)  

resemblance -- (similarity in appearance or external or 
superficial details) 

5.2   Near-Synonyms in MikroKosmos Ontology 

In the MikroKosmos ontology large sets of near-synonyms are related to the same 
concept of ontology, their specific features are described in the lexicon [3].  

The authors provide an example: all the ‘change’ verbs are assigned to the same 
concept of  CHANGE-EVENT. The features of the words are described in lexicon 
entries, for example, for the verb to increase it is pointed out that the  THEME  se-
mantic role of the verb should be presented by a  SCALAR_VALUE  (for example, 
price or height) and the value of this quantity is changed to a larger one. The meaning 
of the word  Zionist  is represented in the dictionary as a  POLITICAL_ROLE, which 
is an  AGENT_OF  a  SUPPORT_EVENT, the theme of which is Israel. The meaning 
of the word  to asphalt  is described as a  COVER_EVENT, an instrument of which is 
the  ASPHALT  concept.  

Using the Web site of the ontology (http://ilit.umbc.edu), we can see that the situa-
tion with the implementation of the principles is quite complicated. The concept  
CHANGE_EVENT  is associated to a long list of words in the lexicon. In the list there 
are such words as  acclimatization, commerzialization, contamination, damage, dete-
riorate, improve, and many others – there are no separate concepts for these words. 

At the same time, the following concepts can be seen lower in the hierarchy:  AD-
JUST, CORRECT-EVENT, DIVIDE, INTEGRATE, RESTRUCTURE, etc. It is not 
clear why separate concepts were introduced for some of the words, but were not 
introduced for the others. Why the meaning of word acclimatization does not deserve 
an independent concept, although there are important relations to climate, biological 
processes, but the meaning of  adjust  has received a concept? 

In addition to questions of consistency/inconsistency in the description, there are 
clear consequences for the natural language processing applications. Thus, it is diffi-
cult to establish what words from a larger list of lexical entries to the concept of  
CHANGE-EVENT  can be regarded as synonyms, and what are the relations between 
other words. Besides, one cannot specify the relations between, e.g., the  asphalting 
and road works. 

In addition, in domain-specific applications the relatively small size of the ontol-
ogy leads to the introduction of additional concepts even for words that are already 
included in the lexicon. 
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Thus, we believe that in MikroKosmos ontology the problem of near-synonyms is 
being solved by overgeneralization, which can lead to problems in real subject do-
mains. In our opinion, it is necessary to implement an additional level of concepts, 
which would help to divide the words more clearly, not dumping them into large 
chunks. 

5.3   Near-Synonyms in Information Retrieval Thesauri 

In information-retrieval thesauri, each descriptor, which most often corresponds to a 
concept, combines several ascriptors that are considered as equivalent. Ascriptors are 
of three sub-types [20,21]: 

• actual synonyms; 
• lexical variations, 
• quasi-synonyms.  

Lexical variants differ from synonyms in that they represent some modification of 
the same expression, for example, different spelling, abbreviations, etc.  

Quasi-synonyms are terms, the meanings of which generally differ, but are re-
garded as equivalents for the purposes of the thesaurus, for example, antonyms are 
often regarded as quasi-synonyms (nuclear danger – nuclear safety). Other frequent 
type of quasi-synonyms is the case where some integrating type is considered as a 
descriptor, and its subspecies are described as ascriptors.  

For example, in the thesaurus LIV of Research Service of the U.S. Congress [32] 
descriptor Transplantation of organs, tissues etc. contains such ascriptors as medical 
transplantation, organ transplantation, skin grafting, surgical transplantation, tissue 
transplantation, some of which could be considered as subordinate concepts (Skin 
grafting). 

In the same thesaurus, the term deflation is included as an ascriptor in the thesaurus 
entry of the descriptor inflation, because the developers believe that these are different 
manifestations of a more general concept. Typically, thesauri authors prefer introduc-
ing more quasi-synonyms for concepts, regarded as peripheral to the basic domain of 
the developed thesaurus. 

In addition, standards and guidelines for the creation of information-retrieval 
thesauri often recommend not to include some kinds of terms into a thesaurus. 

Relatively low frequency terms can be removed from the list of candidate terms, or 
represented as ascriptors for more common or more frequent concepts. Too specific 
terms may also be excluded from the list, since it is believed that if a thesaurus  
contains too many hierarchy levels, it is difficult to manage. In particular indexing 
subjectivity increases, since indexers can use descriptors of different levels for docu-
ments indexing [21]. If several terms with similar meanings were revealed, it is neces-
sary to choose the most representative one; the remaining terms can be partially  
removed and transferred to ascriptors. 

Thus, in traditional information retrieval thesauri some near-synonyms are excluded 
from consideration, other near-synonyms are introduced as ascriptors. The exclusion of 
near-synonyms from a thesaurus, made for the sake of convenience and reduction of the 
subjectivity of manual indexing, results in decline of search quality if the information 
retrieval thesaurus is used in automatic modes of document processing. 

Table 1 summarizes above-mentioned distinctions in concept formation approaches. 
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Table 1. Specific features of concept formation approaches in linguistic ontologies 

Problems of 
concept  
formation 

WordNet MikroKosmos Information-
retrieval thesauri 

Confusion of 
concepts and 
their names 

Concept and 
names are often 
confused 

Concept and names 
are rarely confused 

Concept and names 
are rarely confused 

Representation 
of related senses 
of ambiguous 
words 

Very detailed 
description of 
senses  

Related senses of 
ambiguous words 
are rarely described  

No related senses 

Relations  
between related 
senses 

There are no 
relations be-
tween related 
senses 

Related senses are 
generalized to the 
same concept 

- 

Near-synonyms Sets of near-
synonyms are 
arbitrarily split 
to synsets 

Near-synonyms are 
generalized to the 
same concept 

Near-synonyms are 
absent or presented as 
ascriptors to the same 
descriptor 

6   Concepts and Senses in Thesaurus of Russian Language RuThes 

RuThes Thesaurus of Russian language [13] can be called a linguistic ontology for the 
automatic text processing, i.e. an ontology, where the majority of concepts are intro-
duced on the basis of actual linguistic expressions. 

RuThes is a hierarchical network of concepts. Each concept has a name, relations 
with other concepts, a set of linguistic expressions, i.e., text entries (words, phrases, 
terms), the meanings of which correspond to the concept.  

In construction of the Thesaurus we combined three different methodologies [12, 
20, 21, 15, 17]: 

• the methods of construction of information-retrieval thesauri (information-
retrieval context, analysis of terminology, terminology-based concepts, a 
small set of relation types) 

• the development of wordnets for various languages (word-based concepts, 
detailed sets of synonyms, description of ambiguous text expressions) 

• ontology and formal ontology research (concepts as main units, strictness of 
relations description, necessity of many-step inference). 

The main types of relations are taxonomic relations and a specific set of conceptual 
relations based on ontological dependence relations [33, 34]. This set of relations was 
experimentally confirmed to be effective in information-retrieval applications [35, 
36].  

In the following sections we will present the principles of concept description in 
RuThes. 
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6.1   Scope of Concepts in Thesaurus RuThes 

Most concepts in RuThes are associated with the meanings of linguistic expressions.  
Linguistic expressions that may give rise to an independent concept in the Thesau-

rus RuThes belong not only to the general vocabulary, but also can be terms of spe-
cific subject domains within the scope of social life (economy, law, international 
relations, politics), and of the infrastructure (transport, banks, etc.), so-called socio-
political domain (Fig.1). This is due to the fact that many professional concepts, 
terms, and slang of these domains penetrate easily into the general language, and can 
become widely discussed in mass media [37].  

Socio-Political Domain

Le
ve
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 o

f 
H
ie
ra

rc
hy Law

Accounting

Taxation

Banking

 
Fig. 1. Specific domains vs. Socio-political domain 

Multiword expressions are also actively used as concept sources in RuThes. The 
basic principle of introducing this kind of concepts is the need to record some addi-
tional information that cannot be described on the basis of component word concepts. 

6.2   Concept of Ontology Is Not a Synset 

In RuThes, a unit is presented not by a set of similar words or terms, as it is done in 
the WordNet thesaurus, but by a concept – as a unit of thought, which can be associ-
ated with several synonymic language expressions. 

Words and phrases, the meanings of which are represented as references to the same 
concepts of the thesaurus, are called text entries. Text entries of a concept can be: 

• words that belong to different parts of speech (stabilization, stabilize,  
stabilized); 

• linguistic expressions relating to different linguistic styles, genres;  
• single words, idioms, free multiword expressions, the meanings of which 

correspond to this concept. 

Concepts often have more than 10 text entries including single nouns, verbs, adjec-
tives and noun or verb groups. For example, a set of English text entries of concept  
JUDICIAL COURT  looks as follows:  
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court, court authorities, court instance, court of  
judiciary, court of jurisdiction, court of justice, court 
of law, judicature, judicial bodies, judicial court,  
judicial organ, judicial tribunal, law court, tribunal. 

NATURE PROTECTION  concept comprises such English expressions as:  

conservancy, conservation of nature, to conserve  
nature, to conserve natural environment, defense of  
nature, maintenance of nature, nature conservation,  
nature conservative, to protect nature, protection of 
nature  

and others. 

6.3   Concept Name 

To work with concepts, to analyse the results of automatic text processing, each con-
cept should have a clear, univocal and concise name. From this point of view, the 
synonymic sets are not very convenient to use as concept names. Moreover, a synset 
can consist only of a single ambiguous word and needs additional explication. 

Therefore, in the RuThes ontology, each concept has an assigned name.  
Name of a concept can be: 

• one of unambiguous synonyms; 
• an unambiguous multiword expression; 
• a pair of synonyms that uniquely identifies the concept; 
• an ambiguous word with a relator similar to those used in traditional infor-

mation retrieval thesauri. 

If necessary, a concept may have a comment, which is not a part of the concept 
name. This is the usual practice in the development of traditional information retrieval 
thesauri. 

6.4   Closely Related Senses in RuThes 

The problem of similar meanings of ambiguous words, which may be very hard for 
compilers of explanatory dictionaries, often become even more complicated for de-
velopers of computational linguistic resources. It is often assumed that the integration 
of similar senses would help reducing the complexity of this problem in computa-
tional vocabularies. 

However, such clustering may cause other problems. 
First of all, as it was already noted, the integration of similar senses may be differ-

ent depending on an intended application, e.g., machine translation, information  
extraction, or information retrieval.  

Secondly, if we look at the example with word  window, the problem of confusion 
of the name of the concept and the actual concept itself reappears. For example,  
WINDOW (OPENING)  and  WINDOW (ARTIFACT)  are distinctly different entities, 
which arose and existed for some time independent of each other. Integration of dif-
ferent entities because of their similar names presents an example of such confusion. 
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As we have stated in Section 4.2 the integration of two different entities results in 
confusion of their relations with other concepts, which eventually may affect the logi-
cal inference. 

Fig. 2. Set of concepts corresponding to ambiguous words window and door 

Finally, each of these independent entities can be expressed precisely and unambi-
guously: WINDOW (OPENING)  can be expressed as  window opening  (351,000 
pages in Google), a  WINDOW (ARTIFACT)  can be expressed as  window pane  
(697,000 pages in Google). As a result of integration of the initial concepts,  window 
opening  has become a synonym of  window pane. 

Thus, in our opinion, if there are distinctly different entities with their own sets of re-
lations and text entries, then they need to be represented by different concepts, even if 
these individual entities are closely related, and there is a word that can refer to both 
entities. However, since such entities as  WINDOW (OPENING)  and  WINDOW (AR-
TIFACT)  are closely related, there should be a relation between respective concepts. 

Note that these relations should not be relations of metaphor, metonymy, ho-
monymy, as discussed in [26] (see Section 4.1), because these are linguistic relations 
between the characters, not between the concepts.  
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In RuThes, one usually employs the part-whole and external dependence [33, 34, 
35] relations to describe the relation between closely related entities, which may be 
named by same ambiguous words. In particular, the concept  WINDOW (ARTIFACT)  
is externally dependent on concept  WINDOW (OPENING), since to define concept  
WINDOW (ARTIFACT)  one should have concept  WINDOW (OPENING)  already 
defined (Fig.2).  

The existence of relations between the related entities simplifies disambiguation of 
words like  window, since it is possible to give a default meaning and to choose it in 
complex cases. 

6.5   Near-Synonyms in RuThes 

To describe a set of related meanings of near-synonyms through a set of concepts of a 
linguistic ontology, the following procedure is applied in RuThes. 

The first step is to identify components of the meaning that either always (regard-
less of the context of use) exist for at least one word of a near-synonyms set, or may 
occur in certain contexts for several words of a set. In a set of words that are close to 
the word  similarity  (see respective WordNet synsets in Section 5.1), this element of 
the meaning is, for example, the  similarity of the external characteristics:  

Likeness, alikeness, similitude – (similarity in  
appearance or character or nature between persons or 
things)  

Resemblance – (similarity in appearance or external or 
superficial details). 

The notation suggests that ‘similarity in appearance’ meaning is significant for 
people, and this fact should be reflected in the respective concept.  

The second step is to find a suitable name for such a concept. In the case of near-
synonyms to the word similarity, the name of such a concept could be  SIMILARITY 
IN APPEARANCE  (34,700 pages in the Google). The concept is introduced in the 
thesaurus with the chosen name. 

The next step is to find different ways of expressing the same concept in the form 
of phrases and single words, e.g.,  resemblance in appearance,  similarity of appear-
ance,  external resemblance,  etc. All these variants are added as text entries to the 
concept description. 

To reflect the meaning of the words that often express this concept in particular, 
but can also be used to express the  similarity  in whole, e.g.,  resemblance, this word 
is referred to as a text entry to the concept  SIMILARITY IN APPEARANCE, and as a 
text entry to the general concept  SIMILARITY. 

Fig. 3 presents the resultant set of concepts and their text entries. Such words 
as resemblance and likeness are described as text entries for two different con-
cepts because of their vague meaning. Thus, we are trying to create context-
independent, distinguishable concepts, which are as close as possible to the  
linguistic meanings. 
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SIMILARITY
resemblance, likeness

SIMILARITY IN APPEARANCE
resemblance in appearance, similarity of appearance,

external resemblance, resemblance,  likeness, alikeness

MUTUAL RESEMBLANCE
symmetrical resemblance

SPLITTING IMAGE

MIRROR IMAGE
reflection, reflexion, mirror
reflection, mirror symmetry,

reflection symmetry

 

Fig. 3. Formation of distinguishable concepts for near-synonyms of word similarity 

The analysis of word meanings is similar to feature-based analysis that is often ac-
complished with Formal Concept Analysis methods [38]. But we try to introduce 
additional taxonomic categories on the basis of existing language expressions. 

In the analysis above it was not necessary to use representations of similar mean-
ings in other natural languages. However, taking into account the examples from 
another language may be very helpful for recognition of poorly distinguishable  
concepts.  

7   Recommendations for Developers of Formal Ontologies 

As we argue that concepts of an ontology cannot be fully separated from natural lan-
guage meanings we can formulate several recommendations that follow from our 
consideration of concept-meaning interactions in linguistic ontologies. 

In applying Formal Concept Analysis to ontology development one encounters 
the problem of huge number of taxonomic categories (formal concepts) automati-
cally obtained from a formal context [39, 40]. An additional condition of choosing 
the most important concepts can be based on existence of words or multiword ex-
pressions with corresponding meanings. For example, in the lattice from [39]  
(Fig. 4), at least four of six intermediate concepts can be named using existing 
phrases:  BRAIN SIGNAL (39),  MOUSE BRAIN (38),  SIGNAL PATHWAY (77),  
VERTEBRATE BRAIN (36). 

Developers of an ontology can deal with related entities named by same ambiguous 
word and, therefore, it can be difficult to distinguish these entities. In these case it can 
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Fig. 4. Some of intermediate concepts in the example from [38 ] have linguistic names 

be helpful to find multiword expressions including the same word (or derivative 
words) and synonymous to this ambiguous word, which can clarify these meanings. 
We described this procedure for word window in Section 6.4 and used such expres-
sions as  window pane  and  window opening.  

Another example is ambiguous word “nation”. This word can denote both political 
nation, which means  ‘state, country’, and  ethnic nation, which means ‘ethnicity’. So 
we can see different entities behind this word and the procedure does not require 
professional linguistic competence. 

At last if an entity seems to have unstable attributes which appear or disappear in 
different contexts it is possible that the language ambiguity takes place. In such cases 
it is helpful to use more stable concepts fixing the attributes. We used this procedure 
in Section 6.5 introducing concept SIMILARITY IN APPEARANCE. And again we use 
a multiword expression to reveal and fix this concept. 

8   Conclusion 

Ontology developers can hardly avoid the influence of linguistic meanings, linguistic 
polysemy, since the names of concepts and relations in ontologies have mnemonic 
names, the knowledge in many subject fields is hidden in texts. 

Therefore, it is important for ontology developers to understand the problems re-
lated to the formation of concepts on the basis of linguistic meanings, namely: 

• The problem of distinguishing the concept and its name. 
• The problem of presenting closely related meanings of ambiguous words. 
• The problem of splitting meanings of near-synonyms into concepts. 

In developing the RuThes as a linguistic ontology we are trying to adhere to two, 
generally speaking, contradictory criteria. 

On the one hand, we form concepts of the thesaurus as close as possible to the 
meanings of linguistic units. As practice has shown, the excessive generalization and 
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clustering of meanings necessarily lead to distortions in the system of relations, to 
problems in a specific subject field, or an application. 

On the other hand, we try to ensure that a concept is still a concept, i.e. it is, at 
least, distinguishable from the superordinate concept and the sibling concepts. 

Exploitation of really existing multiword expressions helps us mitigate these con-
tradictory requirements. The introduction of concepts on the basis of multiword ex-
pressions does not only change the essence of a linguistic ontology, but also makes 
the distinction between the concepts much clearer. 

For the concept of ontology, which is clearly distinguishable from other concepts, 
it is much easier to find equivalents in another language in the form of single words or 
multiword expressions. So distinguishable concepts do a linguistic ontology more 
language-independent.  

Taking into account the examples from other language(s) is very useful for recog-
nition of poorly distinguishable concepts. 
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Abstract. This paper is an extended abstract of the talk given at
ICCS’09. Rules have long been considered as an essential component
of knowledge-based systems. We focus here on conceptual graph rules
and on the semantically equivalent knowledge constructs in logic and
databases, namely rules with existential variables and tuple-generating
dependencies. The aim of this presentation is to synthesize main de-
cidability, complexity and algorithmic results obtained on this kind of
rules. We emphasize the fact that the graph vision of rules has led to
new results.

1 Introduction

Rules have long been considered as an essential component of knowledge-based
systems. In this talk, we focus on rules in conceptual graphs (CG) and on the
equivalent knowledge constructs in logic and databases. For precise definitions
of all conceptual graph notions used in this presentation, we refer to [CM08].

A conceptual graph rule (in short R : H → C) can be seen as a pair (H, C)
of basic conceptual graphs, provided with a one to one correspondence between
a subset of generic nodes in H and a subset of generic nodes in C. H and C
are respectively called the hypothesis and the conclusion of the rule. The distin-
guished nodes in H and C are called connection nodes. Figure 1 shows a CG rule
(pictured with Cogui1). The correspondence between connection nodes is visu-
alized by dotted lines. The logical translation of this rule is ∀x∀y(Person(x) ∧
Person(y) ∧ siblingOf(x, y) → ∃z(Person(z) ∧ Parent(z, x) ∧ Parent(z, y)).
This kind of logical rule is more general than the (positive) rules usually con-
sidered in logic programming or deductive databases. Indeed, there might be
variables in the conclusion which are existentially quantified, hence the name
∀∃-rule given to this kind of formula in [BLMS09].

A ∀∃-rule has the same form as a very general kind of dependency studied in
databases called tuple-generating dependency (TGD) [AHV95]. It can also be
seen as an abstraction for ontological knowledge expressed in specific knowledge
representation languages, f.i. the RDFS rules [Hay04], constraints in F-logic-
Lite [CK06][CGK08], as well as some kinds of inclusions in description logics
[BCM+03].
1 http://www.lirmm.fr/cogui
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Fig. 1. A conceptual graph rule

Let us point out that, in conceptual graphs, concept types and relations are
ordered by a specialization relation, and that the processing of this order is di-
rectly integrated in conceptual graph mechanisms. This feature does not add
expressivity with respect to ∀∃-rules, since specialization orders can be trans-
lated into simple rules of form ∀x1...xk(t1(x1...xk) → t2(x1...xk)), where t1 is a
specialization of t2, k = 1 if t1 and t2 are concept types, otherwise k is the arity of
the relations. However, the specialization orders are managed with simple label
comparisons, which leads to more efficient knowledge processing mechanisms.

The aim of this presentation is to synthesize theoretical and algorithmic
results obtained on conceptual graph rules, as well as on the semantically equiv-
alent knowledge constructs in logic and databases, namely ∀∃-rules and tuple-
generating dependencies. We emphasize the fact that the graph vision of rules
has led to new results.

2 Deduction with CG Rules

A conceptual graph vocabulary, also called support, contains finite ordered sets
of concept types and of relations (as well as a set of individual markers, relation
signatures, assertions of disjointness between concept types, ...). It can be seen
as a very basic ontology. Basic conceptual graphs (BG) are used to express facts
and queries. They are logically translated into existentially closed conjunctions
of atoms. A BG itself can express a boolean database conjunctive query (i.e. with
a yes/no answer) and, when generic concept nodes are distinguished to represent
the answer part of the query, it is equivalent to a general conjunctive query. Let
us consider conceptual graph knowledge bases (KBs) composed of a vocabulary,
a set of facts (which can also be seen as a single fact) and a set of rules. Several
fundamental problems on these KBs are computationally equivalent, namely fact
deduction (is a fact deducible from a KB?), rule deduction (is a rule deducible
from a KB?) and boolean conjunctive query answering in presence of incomplete
knowledge (is a boolean conjunctive query deducible from a KB ?). Very simple
polynomial reductions allow to go from one problem to another. Since a fact can
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be seen as a rule with an empty hypothesis, fact deduction is a particular case
of rule deduction. In turn, rule deduction can be reduced to fact deduction. The
following transformation comes from [BV84] (and was applied to TGDs). Let K
be the KB and R be the rule for which we want to know if it is deducible from
the KB. Let R′ : H ′ → C′ be obtained from R by replacing, in each pair of
corresponding connection nodes, the generic marker by a new individual marker
that does not appear in K nor R. Let K ′ be obtained from K by adding the
new fact H ′. Then, R is deducible from K if and only if the fact C′ is deducible
from K ′. Since a fact has the same form as a boolean conjunctive query, the
equivalence of fact deduction and boolean query answering is immediate. From
now on, we focus on fact deduction, which we simply call Deduction (and all
results concerning this problem can be immediately recast in terms of the other
problems).

There are two classical ways of processing rules. Forward chaining starts from
the facts and applies rules to facts to produce new facts. A derivation is a
sequence of rule applications leading from an initial fact to an enriched fact.
Backward chaining starts from a question, usually called a goal, and tries to
build a derivation leading to an answer to this goal in a backward manner. We
assume that the reader is familiar with both paradigms.

Conceptual graph rules are provided with sound and complete forward and
backward chaining mechanisms, which operate directly on their graph form. For
forward chaining, the basic notion is the BG homomorphism, classically called
projection in the CG community (however, we do prefer to use the term homo-
morphism because it relates this notion to relational algebra and graph theory;
moreover, the CG projection may be confused with the projection operator in re-
lational algebra). The fundamental property is that BG homomorphism is sound
and complete with respect to logical deduction [CM92]: given two BGs G and
H built on a vocabulary V , there is a homomorphism from G to H if and only if
Φ(G) can be deduced from Φ(H) and Φ(V) (for the completeness part, either H
has to be in a normal form, or a variant of homomorphism can be used to avoid
this normality condition [CM04]). Homomorphism checking is NP-complete. A
rule R : H → C can be applied to a fact F if there is a homomorphism h from
H to F . Applying R to F according to h consists of “adding” C to F in a way
defined by h (each connection node in C is merged with the image by h of the
corresponding connection node in H). This yields a sound and complete mech-
anism: given a KB K composed of a vocabulary V , a fact F and set of rules
R, and a query Q (also built on V), there is a derivation from F to a fact F ′

using rules of R, and a homomorphism from Q to F ′, if and only if Φ(Q) can be
deduced from Φ(K) (i.e. Φ(V) ∪ Φ(R) ∪ {Φ(F )}) [SM96].

Backward chaining relies on a unification operation, between part of a cur-
rent goal and a rule conclusion. In logic programming, the conclusion of a rule
consists of a single atom, thus unification involves one atom of the goal and the
atom of a conclusion. [GW95] proposed a sound and complete backward mech-
anism for conceptual graph rules very similar to this mechanism. The goal is
split into trivial subgraphs composed of a relation node and its neighbors. Then,
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unification involves a trivial subgraph of the goal and an atom of the conclu-
sion. In [SM96], a more complex unification operation is defined, which aims
at exploiting the complex structure of a conceptual graph rule: it allows one to
process conclusions and goals without decomposing them into trivial subgraphs.
This mechanism will be detailed in section 4.

It is easily checked that forward chaining may not halt, even with criteria avoid-
ing redundant applications of rules. Backward chaining may not halt either. The
fundamental reason is that Deduction is not decidable, but only semi-decidable.
This has been first proven for TGDs in [BV84]. Two other proofs for CGs can be
found in [Bag01] (with a reduction from the halting problem of a Turing machine,
which proves that Deduction with rules is a computation model) and in [BM02]
(with a reduction from the word problem in a semi-thue system). It thus important
to define large and meaningful cases in which the problem is decidable. Decidable
cases may be defined by an abstract property which guarantees decidability. How-
ever, such an abstract property is generally not provided with a finite procedure
allowing to determine whether a given set of rules has the property or not. The next
step is thus to exhibit concrete cases, which fulfill the abstract property and can
be recognized by a finite procedure. The conditions defining concrete cases may be
relative to each rule independently or to a set of rules.

Obviously, if the forward chaining is guaranteed to halt with a kind of rules,
then Deduction is decidable in this particular case. This leads to the following
abstract property: a set of rules is called a finite expansion set if it is guaranteed,
for any fact, that after a finite number of rule applications, all further rule
applications will become redundant, i.e. will produce facts equivalent to the
current fact; Deduction is decidable for finite expansion sets of rules [BM02].
Two concrete cases of finite expansion sets of rules are range-restricted rules
and disconnected rules. A range-restricted rule is such that all concept nodes of
the conclusion are either connection nodes or nodes with an individual marker
(in logical terms: it is a ∀∃-rule without existentially quantified variable in the
conclusion, which corresponds to a range-restricted rule in positive Datalog).
A disconnected rule has no connection nodes. Deduction with a set of range-
restricted rules or a set of disconnected rules is NP-complete (assuming that the
arity of relations is bounded), thus is in the same complexity as Deduction
with facts only, which involves a simple homomorphism test.

In [BLMS09], a similar abstract property is exhibited in relation with back-
ward chaining. Given a goal Q and a rule R, a rewriting of Q with R is a graph
obtained by a unification of Q with the conclusion of R. A set of rules R is called
a finite unification set if it is guaranteed, for any goal, that there is a finite set
Q of rewritings of Q with rules in R, such that any other possible rewriting of
Q is more specific than an element of Q. Two concrete cases of finite unification
sets are exhibited in [BLMS09]: atomic hypothesis rules and domain restricted
rules. In an atomic hypothesis rule, the hypothesis contains a single atom. These
rules are particularly well adapted to express necessary properties of concepts
or relations in ontological languages, without any restriction on the form of the
conclusion (i.e. rules of form C(x) → P or r(x1 . . . xk) → P , where C is a concept
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type, r a k-ary relation and P any set of atoms). The second kind of rules does
not put any restriction on the form of the hypothesis but constrains the form of
the conclusion: in a domain restricted rule, each atom of the conclusion contains
all or none of the variables in the hypothesis. The complexity of Deduction for
these particular kinds of rules has not been studied yet.

Other decidable cases are not based on individual properties of rules but on
interactions between rules and will be presented in the next sections.

3 Equivalent Problems in Databases

Tuple-generating dependencies (TGDs) are a very general class of dependencies,
encoding most dependencies in databases [AHV95]. They have exactly the same
logical form as ∀∃-rules. If a TGD is not satisfied by a database instance, it is
possible to repair the database instance by extending it with new atoms. The
procedure that enforces the validity of a set of TGDs is called the chase: it
is equivalent to forward chaining. The chase was first introduced for the TGD
implication problem: given a set of TGDs T , and a TGD t, is t implied by T ? (this
problem is the same as the above rule deduction problem). A related problem is
the query containment problem under a set of TGDs: given a set of TGDs T , and
two conjunctive queries q1 and q2, is the the set of answers to q1 included in the
set of answers to q2 for any database satisfying T (i.e. satisfying each TGD in
T ) ? A problem more recently introduced is query answering on incomplete data
[CLR03]: given a set of TGDs T , a database instance D, that may not satisfy T ,
a conjunctive query q and a tuple of values t, is t an answer to q in a database
instance obtained from D by enforcing T ? All these problems can be proven
equivalent to Deduction.

Interestingly, very recent results have exhibited classes of TGDs for which
the problem is decidable even if the chase does not halt [CGK08]. The abstract
property is that when all facts generated by a set of rules have a “bounded
treewidth” then Deduction is decidable. Note that this class of rules includes
finite expansion sets, but not finite unification sets. Concrete cases of rules sat-
isfying this abstract property are the guarded TGDs, and their generalization
to weakly guarded TGDs. A TGD is guarded if its body (i.e. hypothesis) in-
cludes an atom, called guard, that contains all variables occurring in the body.
Weakly guarded TGDs are an extension of guarded TGDs that requires guards
to contain only some variables in the body (see [CGK08] for a precise defini-
tion). This property cannot be checked independently on each rule, but requires
to consider the whole set of rules. It is shown that the problem is EXPTIME-
complete (with the assumption of bounded predicate arities) for weakly guarded
TGDs, and even for guarded TGDs. It becomes NP-complete when, moreover,
the number of predicates appearing in the TGDs is bounded.

4 Graph Rules: The Added Value

In this section, we focus on backward chaining and on how the graph structure
allows to obtain new results. Graphs are a natural construct for representing
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complex structures. In previously cited results on TGDs, conclusions of rules
are restricted to one atom, as it is usually the case in logic programming. This
restriction does not lead to a loss of expressivity since any set of rules can
be rewritten (in linear time) as a set of rules with one atom in conclusion.
Indeed, a rule H → C can be equivalently encoded by a set of rules {H →
R(t1, ..., tk), (R(t1, ..., tk) → Ac)Ac∈C)}, where R is a new predicate assigned
to the rule and t1...tk are the terms occurring in C. However, beside loss in
readability, this rewriting leads to a loss in efficiency and weaker decidability
results [BLMS09].

The sound and complete backward chaining outlined in this section is based
on the notions of a piece and the associated piece-based unification [SM96]. Let us
mention that these notions have been defined for conceptual graph rules obeying
two constraints. First, two corresponding connection nodes have the same type.
Secondly, an individual marker always occurs with the same concept type. As a
consequence of these restrictions, a rule application to a fact F never restricts
labels of existing nodes in F . It only adds new nodes to F . These restrictions
do not lead to a loss in expressivity in the sense that concept types can be
equivalently represented as unary relations. However, to work directly on general
conceptual graph rules, the notions of piece and piece-based unification presented
hereafter would need to be extended. These restrictions do not apply in a logical
setting, since there is no distinction between concept types and relations, which
are all predicates.

A cutpoint of a rule is either a connection node or a node with an individual
marker. A piece of a rule is a (non empty) subgraph of its conclusion, in which
any two nodes are connected by a path that does not go through a cutpoint
(however, a cutpoint can be an extremity of such a path), and to which no more
nodes can be added while preserving this property. A way of understanding
pieces is as follows: assume that all cutpoints of the rule conclusion are deleted;
each connected component obtained after this deletion belongs to a separate
piece; each piece itself is obtained from such a connected component by adding
again the cutpoints linked to its nodes (if any) as well as the associated edges.
For instance, the rule in Figure 1 has two cutpoints and a single piece. These
graph notions can be translated into logical notions in a straightforward way
(see [BLMS09]). For instance, the rule R = ∀x∀y(p(x, y) → ∃z∃t∃u(p(x, z) ∧
p(z, t) ∧ p(t, x) ∧ p(x, u))) has one cutpoint, which is x, and two pieces defined
by the sets of atoms {p(x, z), p(z, t), p(t, x)} and {p(x, u)}.

The idea behind piece is that a piece can be seen as a “unit” of knowledge
brought by a rule application in forward chaining. Indeed, a rule R can be
decomposed into an equivalent set of rules with the same hypothesis and exactly
one piece in conclusion. More precisely, any rule R : H → C, such that C
contains k pieces C1, . . . , Ck, is equivalent to the set of rules {H → Ci}1≤i≤k.
Moreover, the conclusions of these rules cannot be further decomposed while
keeping a set of conceptual graph rules with the same semantics as R (provided
of course that H is not modified, otherwise see the above decomposition).
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We do not recall the definition of piece-based unification, which would require
more technical developments (see [SM96] [CM08] in the CG framework, and
[BLMS09] for ∀∃-rules). The important point for the backward chaining mech-
anism is that piece-based unification allows it to be guided by the structure
of rules and goals. An experimental comparison between piece-based backward
chaining and Prolog resolution was led in [CS98].

Another important point is that it allows to characterize exactly the notion of
dependency between rules. Generally speaking, compiling a knowledge base con-
sists in preprocessing it off-line, so that the compiled form obtained can be used
on-line to accelerate reasoning tasks (e.g. query answering). Concerning rules, a
classical compilation technique consists in precomputing a graph encoding de-
pendencies between rules. This technique allows us to improve the efficiency of
forward and backward chaining mechanisms.

Given rules R1 and R2, R2 is said to depend on R1 if the application of R1 on
a fact may trigger a new application of R2, i.e. if there exists a fact F to which
R1 can be applied leading to a fact F ′, such that there is a homomorphism from
the hypothesis of R2 to F ′, that is not a homomorphism from the hypothesis
of R2 to F . It is easy to define necessary conditions for a rule to depend from
another: f.i. if R2 depends on R1 then there is an atom in H2 that can be
unified (in the logical classical meaning) with an atom in C. Characterizing
dependency by effectively computable necessary and sufficient conditions is less
obvious.

Piece-based unification yields such an effective characterization: R2 depends
on R1 if and only if there is a piece-based unification of H2 with R1 (see [Bag04])
for an equivalent characterization restricted to rules without constants, [BS06]
for this result on conceptual graph rules, and [BLMS09] for this result in a logical
framework).

Given a set of rules R, the graph of rule dependencies (GRD) of R is the
directed graph with node set R, and such that there is a (directed) edge from
R1 to R2 if and only if R2 depends on R1 (“an application of R1 may trig-
ger a new application of R2”). As far as we know, piece unification yields the
first effective characterization of this graph. Very recently, in the context of
databases, [DNR08] defined a notion equivalent to the GRD on TGDs (“the
chase graph”), but no constructive characterization of this graph was provided
in this paper.

The GRD has two interests. It allows to speed up forward or backward chain-
ing and it leads to new decidability results. About the first point, a simple use of
the GRD is the following. Assume that the set of facts is considered as a single
graph, say F , and classified in the GRD as a rule with an empty hypothesis. F is
necessarily a source (node without ingoing edge) in the GRD. The query or goal,
say Q, can also be classified in the GRD as a rule with an empty conclusion. Q
is necessarily a sink (node without outgoing edge) in the GRD. Then, to answer
a given Q, the only rules to consider are the rules corresponding to nodes in the
GRD on a path from F to Q. Let us consider a basic forward chaining algo-
rithm, that proceeds in a breadth-first way, i.e. at each step it computes all new
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(and non redundant) rule applications w.r.t the current fact, then applies them
producing a new fact. The rules to consider in the first step are the successors
of F in the GRD. Then, the rules to consider at a given step i, i > 1, are the
rules successors of rules applied at step i − 1. For further improvements of the
forward and backward chaining mechanisms, see [Bag04] (forward chaining) and
[BS06] (both mechanisms).

Concerning decidability results, the structure of the GRD provides informa-
tion of how the rules interact with each other. It can be easily checked that
if the GRD has no circuit (including no loop), then Deduction is decidable.
This result can be extended to a GRD in which each strongly connected com-
ponent2 is a finite expansion set of rules, i.e. circuits inside a finite expansion
set of rules are allowed [Bag04]. A similar result holds for a GRD in which
each strongly connected component is a finite unification set of rules [BLMS09].
Note that Deduction may not be decidable in a GRD where each strongly
connected component is either a finite expansion set or a finite unification set.
However, there is a way of combining both notions that guarantees a finite pro-
cedure [BLMS09]: assume that the set of rules R can be partitioned into two
sets, R1 and R2, such that R1 is a finite expansion set, R2 is a finite unifica-
tion set, and there is no edge from a rule in R2 to a rule in R1 in the GRD;
in this case, one can first use forward chaining on F with R1, which leads to
a fact F ′; then, backward chaining is used on F ′ and R2 to compute a set of
rewritings of Q and check if there is a homomorphism from a rewriting in this
set to F ′; the mechanism obtained halts in all cases, and is sound and com-
plete [BLMS09]. This result can be extended by combining it with the results
in [CGK08]: see [BLMS09], which also provides a map of all known decidable
cases.

Let us end by emphasizing the role of the piece notion in these results, which
is a natural notion when rules are considered in their graph form because it
relies on the path notion. Of course, it can be translated into a logical setting
(see [BLMS09]) but it does not rely on logical notions.

5 Conclusion

In this presentation, we have synthesized main decidability and complexity re-
sults obtained on a kind of rules which takes several forms in the literature,
namely conceptual graph rules, ∀∃-rules and TGDs. We have shown that the
graph vision of rules can lead to new notions and results. Some of the decidabil-
ity results for concrete cases still have to be completed by complexity results.
Further work also includes the design of forward and backward chaining algo-
rithms exploiting as much as possible the graph of rule dependencies.

2 Two nodes x and y are in the same strongly connected component if there is a path
from x to y and a path from y to x; strongly connected components in the GRD
represent maximal sets of rules that mutually depend, directly or indirectly, on each
other.
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Abstract. During the past half century, the field of artificial intelligence has 
developed a large number of theories, paradigms, technologies, and tools. Many 
AI systems are based on one dominant paradigm with a few subsidiary modules 
for handling exceptions or special cases. Some systems are built from compo-
nents that perform different tasks, but each component is based on a single 
paradigm. Since people freely switch from one method of thinking or reasoning 
to another, some cognitive scientists believe that the ability to integrate multiple 
methods of reasoning is key to human-like flexibility. In his book The Society 
of Mind, Minsky (1986) presented an architecture for intelligence based on a 
society of heterogeneous agents that use different reasoning methods to solve 
different problems or different aspects of the same problem. That idea is in-
triguing, but it raises many serious issues:  how to coordinate multiple agents, 
distribute tasks among them, evaluate their results, encourage agents that con-
sistently produce good results, inhibit agents that produce misleading, irrele-
vant, or unfruitful results, and integrate all the results into a coherent response. 
The most difficult problem is to enable multiple heterogeneous agents, acting 
independently, to produce the effect of a single mind with a unified personality 
that can pursue and accomplish coherent goals. This article discusses ways of 
organizing a society of heterogeneous agents as an integrated system with 
flexible methods of reasoning, learning, and language processing.  

Keywords: agents, conceptual graphs, paradigms, reasoning, NLP. 

1   Architectures for Intelligent Systems 

An In the years since its founding conference in 1956, the field of artificial  
intelligence has generated an impressive collection of valuable components, but no 
comparably successful architecture for assembling them into intelligent systems. The 
following list illustrates the range of AI components that were designed and  
implemented in the 1950s and ’60s:   

Parsers, theorem provers, inference engines, search engines, learning 
programs, classification tools, statistical tools, neural networks, pattern 
matchers, analogy finders, problem solvers, planning systems, game-
playing programs, question-answering systems, dialog managers, ma-
chine-translation systems, knowledge acquisition tools, modeling tools, 
and robot guidance systems.  
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During the past forty years, all these systems have spawned extensions, combina-
tions, and variations. A recent handbook covered two dozen systems of logic and 
knowledge representation, each with multiple versions of techniques that tend to be 
mutually exclusive (Harmelen et al. 2008). Various AI systems use different tech-
niques, but few, if any, take advantage of the full range of options.  

Most large systems are designed around a single paradigm, such as formal deduc-
tion, statistical language processing, or case-based reasoning. As an example, the 
largest knowledge-based system, Cyc (Lenat 1995), has millions of axioms, grouped 
in several thousand contexts or microtheories. To solve different kinds of problems, 
Cyc uses a few dozen specialized inference engines, but all of them are based on 
some form of deduction. Partisans of different paradigms have debated their virtues as 
if they were mutually exclusive, yet most of them have complementary strengths and 
weaknesses. There should be some way to take advantage of the best features of any 
or all of them when appropriate.  

One way to support divergent methods within a common framework is to partition 
them among independent processes that run in separate modules. Any such partition 
would require some way to control the modules and transfer information among them. 
The fields of AI, computer science, and automata theory have developed several  
techniques:  

Lambda calculus, abstract machines, subroutines, coroutines, object-
oriented protocols, message passing, associative blackboards, Petri nets, 
π calculus.  

Of these, message passing is the most general method for information transfer, and 
π calculus (Milner 1999) is the most general method for combining control and mes-
sage passing. Petri nets, for example, can represent single-threaded flow charts, the 
parallelism of coroutines, object-oriented protocols, and a wide range of asynchro-
nous control mechanisms. Milner showed that π calculus can simulate the mecha-
nisms of both Petri nets and lambda calculus. But π calculus goes beyond the fixed 
graphs of Petri nets by allowing new links to be dynamically created and destroyed. 
The Linda method of passing messages and control through associatively accessed 
blackboards (Gelernter 1985) can support π calculus by its ability to create and  
destroy links.  

The Flexible Modular Framework™ (FMF) proposed by Sowa (2002, 2004) is an 
architecture for intelligent systems inspired by The Society of Mind (Minsky 1986), 
the Elephant 2000 language (McCarthy 1989), and the message-passing protocols of 
computer science. As in Minsky’s society, each FMF module is an autonomous agent 
that communicates with other agents by passing messages. As in McCarthy’s Ele-
phant, messages can be expressed in logic, but a marker for the speech act indicates 
the sender’s intention. An agent that knows a recipient’s identity can send it a mes-
sage directly, but an agent can find new recipients that can handle a certain kind of 
message by posting it to a Linda blackboard. The FMF message format has six fields:  

1. Language.  An identifier of the language used in the message. It could be a 
natural language, a version of logic, or any computer-oriented format.  

2. Source.  An identifier of the module or agent that sent the message.  
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3. Message ID.  An identifier generated by the sender.  

4. Destination.  An identifier of the intended receiver, if known. For messages 
sent to an associative blackboard, this field is null; any module that responds 
to the message would create a new link.  

5. Speech act.  An identifier of the purpose of the message:  command, ques-
tion, response, assertion, estimate, diagnosis, request, promise, contract, or 
any other intention.  

6. Message.  Any sentence or list of sentences in the language specified by field 
#1.  

Most message formats include most of these fields. The two characteristic features 
of the FMF are the null option in field #4 for an associative blackboard and the speech 
act in field #5, which supports an open-ended variety of interaction modes. Without 
those fields, the FMF can support useful subsets, such as dataflow graphs or Petri 
nets. With associative blackboards, the FMF can dynamically create and destroy links 
among agents. With speech acts, FMF agents can express a wider range of intentions 
than an ordinary command or query. These two fields enable the agents to discover 
and take advantage of an expanding and evolving range of services created by the 
system. They also enable agents to look for alternatives if their familiar collaborators 
are unable to solve an unusual kind of problem.  

These formats enable the FMF to accommodate arbitrary modules, even legacy 
systems, by enclosing them in a wrapper that maps their inputs and outputs to FMF 
messages. Several variations of the FMF have been implemented, and they use a 
lightweight protocol that can be implemented in 8K bytes per agent. Thousands of 
agents can run simultaneously on a laptop computer, but they can communicate 
with other agents anywhere across the Internet. The messages to and from any user 
interface have the same six fields as all other messages in the FMF. Therefore, any 
user interface can be replaced, revised, or enhanced dynamically just by rerouting 
the messages to a different module. A version of the FMF can be implemented in 
any language that supports communication among multithreaded processes. At Vi-
voMind Intelligence, Inc., several versions of the FMF were implemented in Java 
and a multithreaded version of Prolog. But an FMF module can send messages 
across the Internet to FMF modules implemented in any combination of hardware 
and software.  

Experience in implementing and using FMF systems has shown that an architec-
ture based on message passing among heterogeneous agents has several advantages 
over more conventional implementations:  flexibility of adding new modules with-
out disrupting operations by the old modules; reduction or elimination of systemic 
errors caused by biases in any single algorithm or paradigm; performance advan-
tages of a lightweight protocol that can take advantage of multiple CPUs; and fail-
soft redundancy, which allows most of the agents devoted to a function to continue 
even if one or more of them fail. Section 2 of this paper describes Minsky’s propos-
als for a society of agents and ways of implementing them. Section 3 describes an 
organization of FMF agents in a managerial hierarchy that presents a unified per-
sonality to the external world. Section 4 describes the use of FMF societies for  
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language analysis. The concluding Section 5 relates the multiple paradigms to 
Peirce’s semiotics and the logic of pragmatism.  

2   The Society of Mind 

Systems of multiple agents have been proposed and implemented since the early days 
of artificial intelligence. But the problems of organizing multiple autonomous agents, 
allocating resources among them, getting them to focus on the relevant goals, and 
integrating many partial contributions into a unified result have been challenging:  

• Pandemonium.  Selfridge (1959) designed a system of agents called de-
mons. Each demon could observe aspects of the current situation or work-
space, perform some computation, and put its results back into the  
workspace. In effect, Pandemonium was a parallel forward-chaining rea-
soner. Its major drawback was that the demons generated large volumes of 
mostly irrelevant data that overflowed storage. A great deal of research has 
been devoted to measures of relevance, methods for motivating agents to 
produce relevant results, and ways of allocating resources to those that con-
sistently produce the best results.  

• Rational agents.  At the opposite extreme from simple demons are rational 
agents that simulate a human-like level of beliefs, desires, intentions, and the 
ability to reason about them. Van der Hoek and Wooldridge (2008) surveyed 
versions of logic designed to represent groups or coalitions of such agents. 
Such logics may be useful for analyzing or simulating the behavior of a 
group of intelligent agents. But a system with human-like intelligence re-
quires heterogeneous modules specialized for different functions, not a coali-
tion of reasoners that all use the same logic.  

• Reactive agents.  For designing robots, Brooks (1991) noted that the major 
challenge was not in deliberative planning and reasoning, but in the seem-
ingly simpler insect-like functions of perception, locomotion, and goal seek-
ing. That observation stimulated work on reactive agents whose intelligence 
is at the level of ants. A society of such agents can cooperate in defending 
the colony, searching for food, and caring for the eggs and larvae. But no one 
has shown how a colony of ants could understand language or do complex 
reasoning and planning.  

Complex rational agents and simpler reactive agents operate at different extremes 
of intelligence. But most systems consist of one kind or the other, not a combination 
of heterogeneous agents. After many years of examining different ways of designing 
and implementing intelligent systems, Minsky (1986) argued that no single mecha-
nism, by itself, can adequately support the full range of functions required for a  
human level of intelligence:  

What magical trick makes us intelligent? The trick is that there is no 
trick. The power of intelligence stems from our vast diversity, not from 
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any single, perfect principle. Our species has evolved many effective al-
though imperfect methods, and each of us individually develops more 
on our own. Eventually, very few of our actions and decisions come to 
depend on any single mechanism. Instead, they emerge from conflicts 
and negotiations among societies of processes that constantly challenge 
one another. (Section 30.8)  

In a review and critique of AI systems, Minsky (1991) emphasized that each of the 
many paradigms had made valuable contributions, but that the goal of a homogeneous 
system built around a single, ideal paradigm was too narrow to support the full range 
of human intelligence:  

The functions performed by the brain are the products of the work of 
thousands of different, specialized sub-systems, the intricate product of 
hundreds of millions of years of biological evolution. We cannot hope 
to understand such an organization by emulating the techniques of those 
particle physicists who search for the simplest possible unifying con-
ceptions. Constructing a mind is simply a different kind of problem — 
of how to synthesize organizational systems that can support a large 
enough diversity of different schemes, yet enable them to work together 
to exploit one another’s abilities.  

In an earlier paper, Minsky (1980) proposed an administrative organization popu-
lated by “mental managers” that employ and direct other agents that perform tasks at 
varying levels of complexity:  

To develop this idea, we will imagine first that this Mental Society 
works much like any human administrative organization. On the largest 
scale are gross “Divisions” that specialize in such areas as sensory 
processing, language, long-range planning, and so forth. Within each 
Division are multitudes of subspecialists — call them “agents” — that 
embody smaller elements of an individual’s knowledge, skills, and 
methods. No single one of these little agents knows very much by itself, 
but each recognizes certain configurations of a few associates and  
responds by altering its state.  

As an example of the diversity of modules, Figure 1 shows the interconnections 
among the kinds of modules proposed by linguists. The large box at the bottom would 
contain an much larger collection of modules for all the aspects of cognition and be-
havior that provide the subject matter and the goals for language and reasoning.  

The diversity of modules that process language is a subset of the even greater di-
versity in all aspects of cognition and behavior. The integration of language with 
every aspect of human perception, behavior, and social interaction suggests that the 
language modules are interconnected with other cognitive modules in dynamically 
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Fig. 1. Interconnections among language modules 

changing ways. Whatever the organization, the number of modules is undoubtedly far 
greater than the eight boxes of Figure 1. Perhaps there is no limit to the number of 
modules, and every language game and mode of behavior has its own module or even 
a group of interacting modules. That organization is radically different from a homo-
geneous system based on a logic that cannot tolerate a single inconsistency. Minsky’s 
goal was to build a flexible, fault-tolerant system out of imperfect, fallible compo-
nents. Such a system could support logic, just as the flexible, fault-tolerant, and falli-
ble human brain supports logic, mathematics, and every branch of science, business, 
and the arts. More recently, Minsky (2006) emphasized the role of emotions in driv-
ing an engine composed of multiple agents. Without emotions to set the goals, a 
logic-based theorem prover would have no reason to do anything.  

As the underlying mechanism for implementing agents, Minsky continued his 
long-term research on neural networks. His newer proposals are based on knowledge 
lines or K-lines that pass information and control to activate agents or even a cascade 
of agents. In a review of Minsky’s theories, Singh (2003) compared the Society of 
Mind to the Soar architecture for a “unified theory of cognition” (Newell 1990):  

To the developers of Soar, the interesting question is what are the least 
set of basic mechanisms needed to support the widest range of cognitive 
processes. The opposing argument of the Society of Mind theory is that 
the space of cognitive processes is so broad that no particular set of 
mechanisms has any special advantage; there will always be some 
things that are easy to implement in your cognitive architecture and 
other things that are hard. Perhaps the question we should be asking is 
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not so much how do you unify all of AI into one cognitive architecture, 
but rather, how do you get several cognitive architectures to work  
together?  

That question is the central theme of Minsky’s book, but Singh concluded that the 
complexity of the ideas and the lack of detail has discouraged implementers:  “While 
Soar has seen a series of implementations, the Society of Mind theory has not. Min-
sky chose to discuss many aspects of the theory but left many of the details for others 
to fill in. This, however, has been slow to happen.”  

The lack of detail plagues many proposed models of the mind. In the book What is 
Thinking? Baum (2004) surveys attempts to simulate thinking and includes a dozen 
citations to Minsky’s Society of Mind. Following Minsky, he assumes “the computa-
tion of the mind is rich, with modules connected to modules, flowing in complex flow 
patterns” (p. 35). He views Minsky’s mental managers and administrative organiza-
tions as participants in an economy guided by Adam Smith’s “invisible hand” (p. 
241):  

The agents in the economy will be computer programs, initially random 
computer programs. They will be rewarded by the economy, and the 
ones that go broke will be removed. New entrepreneurs will enter. 
Hopefully, if we get the economic structure right so that the individuals 
are rewarded appropriately, the system will evolve to solve hard prob-
lems... Now, we want to look at what’s going on in an economy re-
garded as an evolutionary system consisting of a bunch of agents, each 
evolving to pursue its own interest, each evolving purely to increase its 
pay-in. We want to ensure that this evolution nonetheless promotes the 
overall functioning of the whole system.  

Starting evolution from random computer programs would take a long time, but us-
ing economic rewards as a management tool seems promising. In fact, the economists 
Monderer et al. (2001) propose game theory for devising reward strategies that could 
motivate AI agents. A working system, however, requires much more attention to 
implementation detail.  

3   A Hierarchy of Managers and Employees 

The modules of the Flexible Modular Framework can be organized in an open-ended 
number of ways, and various strategies have been implemented and tested. One of the 
first had a graphic interface that allowed a software designer to drag and drop agents 
on a screen and connect them in a graph that resembles a Petri net. That was a useful 
tool for rapidly assembling modules, but it did not have a graphic way of showing the 
links found by means of associative blackboards. Another application replaced  
the fixed programs of an interactive game with FMF agents. The game graphics and 
the types of characters and machines were unchanged, but the FMF agents gave them 
more flexible ways of interacting, behaving, and communicating. The most general 
version implemented at VivoMind exploits Minsky’s idea of a hierarchy of managers 
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and employees. The chief executive officer (CEO) gives the organization a coherent 
“personality” for external interactions. Beneath the CEO are vice presidents in charge 
of major divisions, directors of important functions, lower-level managers, and spe-
cialists that perform an open-ended variety of cognitive tasks. As an example, 
 Figure 2 shows the upper levels of a hierarchy designed to analyze and interpret  
natural language texts.  

 
Fig. 2. A management hierarchy of language processing agents 

At the top of Figure 2, the CEO of language understanding is responsible for all 
functions from the analysis of individual words (morphology) to the construction of a 
“mental model” of the meaning of an entire text, which could be a sentence, a para-
graph, a conversation, a report, or a book. Reporting to the CEO are vice presidents in 
charge of the divisions of morphology, syntax, semantics, pragmatics, and model 
building. Beneath the vice presidents are directors in charge of functions such as 
spelling correction in the morphology division and parsing in the syntax division. The 
semantics division has directors of domain ontologies for the detailed axioms of the 
subject matter and directors of lexical resources, such as WordNet, Roget’s Thesau-
rus, and VerbNet. For the current implementation, a formal ontology for the upper 
levels has not been helpful. Detailed reasoning is done with specialized ontologies for 
the subject matter, and the lexical resources have been adequate for mappings be-
tween English text and the specialized domain ontologies. The hierarchy shown in 
Figure 2 is a composite that shows the typical functions performed by the agents. 
Most of the implementations have more levels for middle managers, first-level man-
agers, and specialist employees.  

As in Minsky’s administrative organizations, management control flows down 
from the CEO at the top, many messages flow up and down the hierarchy, but mes-
sages can also flow sideways across the hierarchy. In a review of the SOAR architec-
ture, Minsky (1993) observed that the chunking mechanism of SOAR corresponds to 
the production of K-lines in the Society of Mind. For the VivoMind implementations, 
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the basic knowledge representation is conceptual graphs (Sowa 2008) represented in 
the Conceptual Graph Interchange Format (CGIF). Chunking in conceptual graphs is 
implemented by defining a new concept or relation type by a lambda abstraction — 
an arbitrarily large CG in which one or more concept nodes are identified as formal 
parameters. A instance chunk can be defined by assigning a name to an entity de-
scribed by a conceptual graph. These mechanisms can encode frequently occurring 
patterns of graphs in single concept or relation nodes. The names or type labels corre-
spond to K-lines that link all occurrences of that chunk.  

Minsky maintained that a system of heterogeneous agents should allow agents to 
use a multiplicity of languages tailored for their purposes. The language field in an 
FMF message supports an open-ended variety of languages, but conceptual graphs are 
the lingua franca for detailed reasoning and natural language processing. Two agents 
implemented in the same language, such as Prolog, can also exchange the equivalent 
information in their native language form. An untranslated input language can be rep-
resented by a concept node whose referent is an uninterpreted character string:  

[EnglishSentence: "This is an example of an English sentence."] 

Minsky (1991) claimed that an AI system should support “neat” methods based on 
formal logics as well as “scruffy” methods based on informal heuristics. With current 
technology, any translation from an unrestricted natural language is at best a useful, 
but scruffy approximation. Some FMF applications also use a version of Common 
Logic Controlled English (CLCE), which has an unambiguous mapping to conceptual 
graphs whose semantics are defined by the Common Logic standard (ISO/IEC 
24707). Anyone who can read English can read a CLCE statement, but some training 
in logic is necessary to write syntactically correct CLCE. With a clarification dialog, a 
person who is not a trained CLCE author can work with a help facility to convert an 
informal English sentence to a CLCE statement that both the human and the computer 
can accept. For many applications, however, a scruffy translation from ordinary Eng-
lish can be valuable (Majumdar et al. 2008).  

Singh (2003) noted the pitfalls of relying on blackboards as the primary method of 
communication among agents:  “While the blackboard metaphor may work when 
there are only a few agents using the blackboard, by the time there are hundreds of 
agents, let alone thousands or millions, the image of them huddled around a black-
board is no longer reasonable, and in fact no one has built a blackboard system of this 
scale.” For that reason, most FMF messages are sent to a known recipient, but an 
FMF system can have an open-ended number of blackboards, which may be used in 
various ways:  

1. Newsletter.  Any agent that manages other agents may set up a blackboard 
for notes that members of the department may post to any or all members of 
the group. The CEO might use global newsletters to announce information 
that could be accessed by any agents in the hierarchy, or even by unem-
ployed “freelance” agents.  

2. Agenda.  A blackboard may serve as a queue of tasks to be done, and any 
available agent that can handle a task could remove it from the queue and do 
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it. Some kinds of jobs could be performed by multiple agents, and a manager 
might let more than one perform the job and select the best results.  

3. Want ads.  Sometimes a manager might post a job description to a global 
blackboard that could be accessed by freelance agents that might offer their 
services.  

4. Classified advertising.  Freelance agents might offer to sell data or hypothe-
ses on blackboards that are specialized for a variety of purposes.  

5. Committees.  Blackboards used for collaborative reasoning would normally 
be restricted to a small group of agents that resemble a committee. Such a 
group would fit the metaphor of collaborators “huddled around a black-
board.” Committees provide a collaborative environment for agents to evalu-
ate options, vote for their preferences, or negotiate to combine them.  

Variations of these five uses for FMF blackboards have been implemented in sys-
tems for processing natural language (Majumdar et al. 2008) and in a game-playing 
system for knowledge capture (Majumdar et al. 2007).  

At VivoMind, the authors have developed a learning technique called Market-
Driven Learning™ (MDL), which rewards agents with resources:  computer space 
and time to perform their services. A hierarchy that reports to a CEO can earn re-
sources by providing services to external users or systems. The CEO distributes  
resources as rewards to the vice presidents, who distribute their allotment to the man-
agers that report to them. The managers can use their resources to hire employees, 
reward employees for good performance, or buy data and hypotheses from freelance 
agents or from other managers. The managers may combine the data and hypotheses 
themselves or assign their employees the task of doing the combination. Managers 
can also serve on committees to negotiate for resources or to produce committee re-
ports to be sent up the hierarchy. Managers at each level of the hierarchy receive re-
wards from higher levels, they reward their employees for what they produce, they 
can hire new employees or fire unproductive employees, and they can buy or sell data 
and services by sideways transfers to other managers.  

An MDL society learns by reorganizing itself to produce improved results, which 
humans or other agents are willing to buy. The reward system addresses the basic 
problems faced by Pandemonium:  increasing resources for the most productive 
agents; reducing resources for the less productive agents; and reorganizing the hierar-
chy by growing the more productive branches and shrinking the less productive 
branches. The rewards pass through the management hierarchy to create an effect 
similar to the backward propagation learning of a neural network. But unlike the 
simple switches and numeric functions of a neural network, MDL agents can be arbi-
trarily complex programs or reasoning systems, they can hire or fire other agents, and 
the messages can be propositions or even large documents stated in some version of 
logic. If the messages are stated in a dialect of Common Logic, they could be trans-
lated to CLCE in order to provide humanly readable explanations or an “audit trail” 
about the way the FMF system derived its data, hypotheses, and reports. These op-
tions are not possible with the numeric weighting schemes of most neural networks. 
(Note, however, that individual agents in an FMF system could use any computing 
mechanism internally, including neural networks. But such agents would communi-
cate with other FMF agents by the usual FMF message formats.)  
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4   Interpreting Natural Languages 

A system that interprets natural language must take into account all the aspects of 
language covered by the eight boxes in Figure 1. As that diagram suggests, every as-
pect is related, directly or indirectly, to every other aspect. Psycholinguistic studies 
indicate that people process all those aspects simultaneously, and brain scans indicate 
that different aspects seem to be processed in different parts of the brain. None of the 
psychological or neurological studies, however, are sufficiently detailed to show the 
internal data formats or the kinds of operations performed on that data. As a working 
hypothesis, many linguists and computational linguists have assumed that the under-
lying conceptual structures can be conveniently represented by labeled graphs,  
possibly with nested graphs within graphs. That assumption is very general, since it 
includes most of the alternatives as special cases:  strings, trees, feature structures, 
and various notations for logic. Conceptual graphs are a semantic representation in-
fluenced by the research in linguistics, logic, psycholinguistics, and computational 
linguistics (Sowa 1984, 2008). They can represent ISO standard Common Logic as a 
proper subset, but they can also be processed by scruffy heuristics.  

For the VivoMind implementations, conceptual graphs are generated in the seman-
tics division in the center of Figure 2, and they are further elaborated in the pragmat-
ics and model-building divisions at the right. For any input text, the morphology and 
syntax divisions at the left usually begin the processing, but the VP agents that man-
age the other divisions run concurrently. Therefore, they can begin to make partial 
contributions to the analysis before the morphology and syntax agents have finished 
the sentence. As an example, the following sentence appeared in a text about oil and 
gas exploration:  

The Diana field is situated in the western Gulf of Mexico  
260 km (160 mi) south of Galveston  
in approximately 1430 m (4700 ft) of water.  

If the sentence had ended with the word Mexico, the syntax would be unambig-
uous. But the measures in the next two lines, the parenthetical expressions, and the 
points of attachment of phrases create multiple ambiguities. Is Diana field or the Gulf 
of Mexico south of Galveston? What is in the water? Diana field, the Gulf of Mexico, 
or Galveston? After a devastating hurricane, Galveston was under water, but the  
ontology should indicate that cities are not expected to be under water.  

Agents that process lexical information, context, heuristics, and domain knowledge 
contribute to the interpretation. A morphology agent expands “ft” to “feet”. An ontol-
ogy for the geoscience domain indicates that Diana field is a reservoir, which consists 
of rocks that trap hydrocarbons; such a reservoir is underground; and the ground may 
be under water. Parenthesized expressions are usually idiosyncratic and ad hoc. One 
agent detected measures that were approximately equal, but stated in different units. 
Therefore, it made the hypothesis that the parenthesized expressions were intended to 
express equality. During the parsing process, the agents can create multiple links as 
tentative hypotheses. A manager in charge of those agents evaluates the evidence for 
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each alternative and prunes away the unlikely options. The remaining links indicate 
that Diana field is south of Galveston and in the water.  

Many different syntactic parsers have been used to generate conceptual graphs. But 
theories that focus on the connections between words, such as dependency grammars 
and link grammars, are convenient because their links map directly to the nodes and 
arcs of CGs. Several different parsers have been implemented at VivoMind, and the 
ones based on link grammar (Sleator & Temperley 1993) have been the easiest to 
combine with the graph operations for semantics. The most recent VivoMind parser is 
still based on link grammar, but it has been influenced by ParseTalk, a distributed, 
concurrent, parser. Hahn et al. (1994, 2000) noted that ParseTalk replaces “the static 
global-control paradigm” of conventional parsers with “a dynamic, local-control 
model” that supports “a balanced treatment of both declarative and procedural con-
structs within a single formal framework.” The ParseTalk control structure is based on 
actors implemented in an object-oriented language (Smalltalk). Bröker (1999) added 
semantic actors to the original syntactic actors of the ParseTalk system. He showed 
that the control structure based on concurrent actors made it easy to support actors for 
multiple knowledge sources.  

The ParseTalk actors and the FMF agents have similar advantages, but the object-
oriented actors are more tightly coupled than the heterogeneous FMF agents. As the 
developers said, ParseTalk has “a single formal framework.” For the FMF agents, the 
only thing that is common to all of them is the message format with six fields. Differ-
ent agents can use different languages, different paradigms, and even different hard-
ware located on different continents. The loose coupling of the FMF agents makes it 
easy to add new agents with new capability without disrupting any of the older func-
tions; it also enables the system to continue if some agent or agents fail. In some ap-
plications, one or more FMF agents failed, but the system continued to run without 
their input. Eventually, the manager of the agents restarted them.  

5   Reasoning with Multiple Paradigms 

Deduction is the most common method of reasoning used with logic-based systems. 
But deduction is precise, predictable, and brittle. If everything is perfect, deduction is 
perfect. Such perfection is only achievable in mathematics. For normal, imperfect 
computer applications, deduction can magnify and propagate any imperfec-tion to the 
point of a total collapse. When people reason, they employ some safe-guards. They 
seldom carry out long chains of deductions. When a conclusion seems odd, a prudent 
individual would check the facts, ask for advice, and perform a “sanity check” by 
using an alternative method of reasoning. People don’t expect every message to be 
completely understood. They ask questions, give explanations, negotiate, and com-
promise. In short, they use multiple paradigms to cross-check their results and avoid 
the biases that tend to occur with just a single paradigm.   

Frege and Peirce were pioneers in logic, who independently discovered equivalent 
representations for full first-order logic. But they had different goals for logic. Frege 
applied his logic to mathematics, for which deduction is the primary method of rea-
soning. But Peirce used logic in a much broader range of applications, including sci-
entific discovery, philosophical analysis, and the definition of words in linguistics and 
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Fig. 3. Peirce’s cycle of pragmatism  

lexicography. In addition to deduction, Peirce emphasized the use of induction in 
generalizing from examples and abduction in forming hypotheses or educated 
guesses. Unlike many logicians who viewed metaphors and analogies with suspicion, 
Peirce (1902) included analogy as one of the four ways of reasoning:  “Besides these 
three types of reasoning there is a fourth, analogy, which combines the characters of 
the three, yet cannot be adequately represented as composite.” Figure 3 is a diagram 
of Peirce’s cycle of reasoning in his “logic of pragmatism.”  

Note that deduction is only 25% of the cycle. By itself, deduction can only derive 
the consequences of already familiar assumptions. Induction is necessary for forming 
generalizations from new data, abduction is necessary for guessing or hypothesis for-
mation, and testing is necessary to keep reasoning in touch with reality. Analogy 
combines aspects of the other three methods of reasoning, and it can be used by itself 
as the primary method for informal reasoning. The brain in Figure 3, labeled cognitive 
memory, represents an open-ended associative store of all the knowledge and data 
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acquired by a system, natural or artificial. In capital letters, Cognitive Memory™ is a 
high-performance associative memory developed by VivoMind.  

A critical component of any intelligent reasoner is a high-speed associative mem-
ory for finding relevant chunks, K-lines, schemata, or other patterns of knowledge. 
For conceptual graphs, that would require a high-speed method for indexing and find-
ing relevant graphs and subgraphs. Some of the most advanced research on processing 
graphs has been done by chemists, who need to classify and search for millions of 
graphs of organic molecules. An application of chemical algorithms to conceptual 
graphs led to the first high-speed method for classifying and finding conceptual 
graphs (Levinson & Ellis 1992); one implementation of that method was used in the 
web site of a large online retailer (Sarraf & Ellis 2006). More recent work on chemi-
cal graphs has produced algorithms for encoding both the graph structure and the la-
bels in numeric vectors, indexing the encodings, and finding all graphs within a small 
semantic distance of a given query graph (Rhodes et al. 2007); those algorithms are 
being used to index and search a database of over four million chemical graphs. Those 
techniques resemble the methods for indexing conceptual graphs and finding analo-
gous graphs in logarithmic time (Sowa & Majumdar 2003):  

• Convert each graph to a unique linear representation. For a chemical graph, 
the conversion is based on its International Chemical Identifier (InChI). 
Similar conversions can be applied to labeled graphs of any kind.  

• Map the linear form to numeric vectors that encode both the graph structure 
and the ontology (labels) on the nodes and arcs.  

• Use a measure of semantic distance between the vectors. For conceptual 
graphs, that measure takes into account both the structure (ordering, connec-
tivity, and cycles) and the ontology (type labels and hierarchy). For chemical 
graphs, similar structural properties are used, but the ontology is based on the 
properties of atoms and chemical bonds.  

• Use the semantic distance measure to index the graphs and find graphs 
within a given distance (threshold).  

For conceptual graphs, the time to build the index is proportional to (N log N), 
where N is the number of graphs. The time to find graphs that are similar to a given 
query graph is proportional to (log N). If more than one graph is found within a given 
threshold, structure-mapping algorithms can be used (Falkenhainer et al. 1989), but 
it’s often faster to distinguish graphs by applying additional semantic operations to 
the encodings.  

The Flexible Modular Framework with multiple heterogeneous agents has proved 
to be a flexible, robust, and efficient system for learning, reasoning, and language 
processing. The six-field message format together with associative blackboards has 
the computational power of the π-calculus. The Cognitive Memory system provides a 
high-speed resource for analogy finding, case-based reasoning, and associative access 
to knowledge and information of any kind. The Market Driven Learning methods 
with the rewards of resources for good performance extend the π-calculus to a version 
of the $-calculus or cost-calculus by Eberbach et al. (2004). A cost measure based on 
space and time requirements can constrain the excesses of systems like Pandemonium 
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and focus agents toward promising directions. Following Turing (1939), who showed 
that a Turing machine that could access arbitrary information from the environment 
(or oracle) was strictly more powerful than a Turing machine in isolation, Eberbach et 
al. claimed that the ability to access information from outside sources served the same 
purpose as an oracle. Whatever the theoretical power, the FMF with these additions 
has served as a flexible tool for rapidly building intelligent systems.  
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Abstract. Semantic search attempts to go beyond the current state of the art in
information access by addressing information needs on the semantic level, i.e.
considering the meaning of users’ queries and the available resources. In recent
years, there have been significant advances in developing and applying seman-
tic technologies to the problem of semantic search. To collate these various ap-
proaches and to try to better understand what the concept of semantic search
entails, we describe semantic search from a process perspective. We argue that
semantics can be exploited in all steps of this process. We describe the elements
involved in the process using graph-structured, semantic models and present our
existing work on semantic search in terms of this process.

1 Introduction

The availability of structured information on the Semantic Web enables new opportu-
nities for information access. Search is no longer limited to matching keywords against
documents, but instead complex information needs can be expressed in a structured
way, with precise and structured answers as results [1–3]. We refer to this kind of infor-
mation access, in which information needs are addressed by considering the meaning
of the user queries and available resources, as semantic search.

In recent years, there have been significant advances in developing and applying
semantic technologies to the problem of semantic search. To collate these various ap-
proaches and to try to better understand what the concept of semantic search entails,
we describe semantic search from a process perspective, i.e. as an information access
process. We argue that semantics can be exploited in all steps of this process, begin-
ning with the interpretation of the user information needs, continuing with the actual
processing of the queries, over the presentation of results, to the exploitation of user
feedback. We describe the elements involved in the process using graph-structured,
semantic models of the resource -, schema -, query -, and answer space.

We further describe our existing work on semantic search in terms of this process.
In this sense, this paper can be seen as survey of our current work that compiles the
individual pieces to construct a whole picture of the entire process of semantic search.

The paper is organized as follows: In Section 2 we introduce the semantic search
process, followed by the formalization of the elements involved in this process in Sec-
tion 3. In the subsequent sections, we describe our work covering the individual steps of
the search process, with the translation of user queries in Section 4, query processing in
Section 5, and result presentation and query refinement in Section 6. After a discussion
of related work in Section 7, we conclude in Section 8.
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2 Semantic Search – A Process View on Information Access

In this section, we describe our approach to semantic search. The term semantic search
has been used in various contexts. There exist many different conceptions and defini-
tions for semantic search [1, 4, 5]. In this paper, search is regarded as a process. The
starting point for this process is some information need. This information need might
arise from a concrete task the user aims to accomplish. In this case, the need is very
concrete such that the user exactly knows what to look for. In other cases, the informa-
tion need might be vague initially, but might become more concrete during the process.
The main objective of our approach is to cater for these different scenarios and to assist
the user throughout the search process.

In Fig. 1, we illustrate the different steps involved in this process. Hereby, offline
tasks can be distinguished from processing steps that have to be carried out online.
Resources that can help in addressing the user information need are either information
about real world resources, or documents of various types and formats. At first, these
resources need to be represented and indexed in order to make them available for search.
These steps are referred to as knowledge representation (in the case of resources) or
document representation (in the case of documents) and indexing.

Given the information need, the first task to be performed by the user is to formulate
this need as a query (query construction). The query is then processed against the in-
dices to obtain the relevant resources (query processing). The results are then presented
to the user (result presentation). They might exactly match the user need such that the
process would end here. In many cases, especially when the initial query is only a vague
or incomplete representation of the user need, further steps are required. The user may
browse the intermediate results and navigate to more relevant resources. Alternatively,
the user might want to reformulate or refine the initial query posed against the system
(query refinement). These steps might be performed iteratively until the information
need is completely satisfied.

In practice, a system is called a semantic search system if semantic technologies are
involved in some stages of this process. A distinctive characteristic of such a system
shall be the explicit use of semantics. In this regard, semantics is concerned with the
meaning of the resources made available for search. Meaning is established through
a semantic model, which essentially captures interrelationships between syntactic ele-
ments and their interpretations. Various semantic models have been proposed and used
in different research communities. There are linguistic models such as thesauri that cap-
ture relations between words. In the database community, conceptual models and Entity
Relationship diagrams are used to capture relations between data elements [6]. In the se-
mantic web community, ontologies have received widespread acceptance. The notion of
ontologies employed by this community is very general. Ontologies constitute rather a
family of models, which might differ in the degree of expressivity and formality, rang-
ing from simple taxonomies and lightweight ontologies (e.g. represented in RDF(S))
to formal theories (e.g. represented in Description Logics) where interpretations of
symbols and relationships are precise and computable [7].

In this paper, the meaning of the underlying resources is captured through seman-
tic models, which essentially, represent classes of entities and relations between them.
With respect to the categories mentioned above, these models correspond to lightweight
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ontologies represented in RDF(S). We elaborate on these models in detail in the next
and subsequent sections. Now, we briefly summarize the different steps we have im-
plemented to support the general semantic process introduced previously. In particular,
we discuss how semantics represented through our models is exploited throughout this
process:

Fig. 1. Using semantic models for the search process

– Specification of keyword inputs. In our approach, users articulate their information
needs using keyword queries. We believe this is the most adequate form, as keyword
interfaces have been widely adopted, and users are familiar with them both due to
their simplicity and their presence in today’s systems. For searching, the users do
not need to know about the query syntax, the schema and even the labels of the data
elements. They can simply use their own words to express their information needs.

– Keyword interpretation for computing query graphs. The meaning of the keywords
is computed subsequently. This follows a procedure called keyword translation
where different interpretations of the keywords are derived. More precisely, the key-
words are transformed into more expressive structured conjunctive queries, which
contain elements matching the meaning of the keywords, as well as additional el-
ements that add meaning to the query. For this, we make use of a semantic model
to represent the structure and semantics of the query space. We apply a graph ex-
ploration algorithm to identify different interpretations of the keywords within this
query space, i.e. compute query graphs.

– Presentation of query graphs to user. In traditional search, users issue a query,
obtain (a set of) results, and – if the results do not fulfill the information need – start
over with issuing a new query. We introduce an additional step, in which different
possible interpretations of the user information need are computed and presented to
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the user. Instead of presenting the results directly, which might actually belong to
many distinct queries (representing different information needs), we allow the user
to select the correct interpretation of the inputs.

We have designed a query ranking scheme that is based on the structure- and
semantics-related features of the query space. According to this scheme, the com-
puted interpretations, i.e. structured queries, are sorted and presented to the user.
The queries are not presented using a formal syntax, but using an intuitive, graph-
based representation. Additionally, we also present snippets of the query results
to help the user in understanding the meaning of the query. In certain cases, these
snippets may already be the answers to the information need such that the following
steps may not be needed.

– Processing query graphs. The query graph selected by the user has to be matched
against the representation of the system resources to obtain final answers. Similar
to the concept of a query space, we employ an answer space, a semantic model that
more compactly encodes the search space that has to be explored for computing an-
swers. Instead of matching the query against the system resource, we first process
the query against the more concise answer space. This results in a set of candidates
that are known to satisfy the structural constraints of the query. In the second step,
these candidates are further refined to verify that they also match the concrete enti-
ties mentioned in the queries (i.e. constants and distinguished variables). The main
advantages of using the answer space are reduction in I/O costs and reduction in
the number of joins and unions, i.e. reduced space and time complexity.

– Presentation of results. The answers to the selected query are presented to the user.
The conjunctive queries we focus on can be classified into three main types: entity
queries, factual queries and general conjunctive queries. The query type ultimately
determines the structure of query result, and thus, the way it should be presented to
the user. We have designed different templates for query results of these different
types. In the case of general conjunctive queries for instance, results are sets of tu-
ples that satisfy the conjunctive query. They are presented to the user in a structured,
tabular form.

– Facet-based query refinements. Refinements to the query may be needed for several
reasons. The computed interpretations may not exactly match the information need.
Also, the user may start out with a vague information need, not knowing exactly
what he is searching for. For these cases, we make use of a semantic model called
schema space that describes the different types, relations and attributes exhibited
by the underlying resources. This semantic information acts as facets describing
the resources currently presented to the user. Based on these facets, we provide
means for the user to narrow down or expand the resources of interest according
to their information need in an interactive way. In particular, the user can add,
remove or edit the facets. These operations are transparently converted to changes
on the conjunctive query. The query refined this way is immediately evaluated,
and new results are presented without the user having to explicitly issue a new
query.
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3 Data and Semantic Model

We will begin with the most fundamental model of our approach, i.e. the resource space,
a graph-based model of the underlying resources we make available for search:

Definition 1. A resource space SR is a set of resource graphs gR(V, L, E) where

– V is a finite set of vertices. Thereby, V is conceived as the disjoint union VE � VV

with E-vertices VE (representing entities) and V-vertices VV (data values),
– L is a finite set of edge labels, subdivided by L = LR �LA, where LR are relation

labels and LA are attribute labels.
– E is a finite set of edges of the form e(v1, v2) with v1, v2 ∈ V and e ∈ L. Moreover,

the following types are distinguished:
• e ∈ LA (A-edge) if and only if v1 ∈ VE and v2 ∈ VV ,
• e ∈ LR (R-edge) if and only if v1, v2 ∈ VE ,
• and type, a predefined edge label that denotes the class membership of an

entity.

Example 1. An example resource graph describing relationships between persons, uni-
versities and articles is depicted in Fig. 2.

Fig. 2. An example resource graph

As discussed in the last section, searchable resources might be documents and real
world entities. Note that in our model, they are commonly represented as entities, i.e. E-
vertices of a graph-structured resource space. Documents represent a class of entities,
which might have relation to other entities such as author and publisher and special
attributes such as title and abstract. They are indexed and retrieved in the same way like
other types of resources. In other words, the retrieval of documents and data amounts
to the same, namely entity retrieval.

In the resource space, we do not distinguish between different types of E-vertices
in vE , i.e. classes and instances. Intuitively, a class denotes a group of instances. In-
stances in the same class might exhibit similar types of relations and attributes. This
semantics about classes and their relations can be explicitly defined in the schema
space.

Definition 2. A schema space SS is a set of schema graphs gS(V, L, E) where

– V is a finite set of vertices. Here, V is conceived as the disjoint union VC � VR �
VA � VD with C-vertices VC (classes), R-vertices VR (relations), A-vertices VA

(attributes), and D-vertices VD (data types).
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– L comprises the pre-defined edge labels subclassof , domain , range.
– E is a finite set of edges of the form e(v1, v2) with v1, v2 ∈ V and e ∈ L, where

• e = domain if and only if v1 ∈ VA ∪ VR and v2 ∈ VC ,
• e = range if and only if v1 ∈ VA, v2 ∈ VD or v1 ∈ VR, v2 ∈ VC , and
• e = subclassof if and only if v1, v2 ∈ VC .

Example 2. Fig. 3a) illustrates an example schema. While this one comprises of rela-
tions between classes only, a typical schema also contains attributes and data types.

Note that with respect to the different types of semantic models discussed in the previ-
ous section, the schema graph corresponds to a lightweight ontology. Alternatively, it
might also be given as a formal model that is backed by a logical theory (e.g. an OWL
ontology). Such a model would allow for reasoning, e.g. to infer additional knowledge
that is implicitly captured in the representation of the underling resources. While this
inference capability clearly can help in satisfying the information need of the user, it
comes at the cost of higher computational complexity. In this paper, we focus on the
use of lightweight semantics, i.e. compact descriptions of structures exhibited by the
underlying resources. We show how these lightweight semantic models can be used for
the interpretation of the user keywords, for guiding the process of query answering, and
for helping the user in refining the query and answers.

Note that a schema essentially describes structural relationships exhibited by the un-
derlying data. Such a description might be given explicitly, e.g. in the form of Entity
Relationship diagrams or RDF(S) ontologies1. However, in many cases, a structural
description may be incomplete or may not exist for a given resource space. Also, differ-
ent tasks require descriptions at different “levels of granularity”. For query refinement
and query interpretation, it suffices to know which relationships might exist between
classes of entities, i.e. we can use the schema space for these tasks. However, for query
processing, we need a more precise description which guarantees that there exist some
particular relationships. In the following sections, we will elaborate on the different se-
mantic models we use for the semantic search process and also, we will discuss how
they can be derived automatically from the structural properties found in the data.

4 Query Space – Enabling Query Construction Using Keywords

In this section, we describe the computation of possible interpretations of the user key-
words. These interpretations are presented to the user in the form of query graphs. The
computation of query graphs from keywords basically involves three tasks: 1) construc-
tion of the query space, 2) top-k query graph exploration, and 3) query graph ranking.
The algorithms employed for these tasks have been described in [8]. Here, we focus our
discussion on the underlying semantic model, i.e. the query space.

Typically, the search space employed for keyword search is the resource graph [9]
[10]. It is used for the exploration of substructures that connect keyword elements. Such

1 Note that the schema graph is close to a RDF(S) ontology. The intuitive mapping from RDF(S)
to the schema graph is: resources correspond to entities, classes to classes, properties to either
relations or attributes and literals to data values.
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an exploration might be very expensive when the resource graph is large. While these
approaches focus on computing answers, we are interested in interpreting queries, i.e.
we want to derive the query structure from the edges and the constants and variables
from the vertices of the resource graph. For this, we employ a more compact represen-
tation of the resource graph to keep the search space minimal. We introduce the query
space model which aims to capture only information that is necessary for the com-
putation of possible interpretations. Essentially, it consists of two parts: 1) the graph
elements that match the user keywords (to identify the query constants) and 2) possible
relations between classes of entities (to derive the query predicates):

Definition 3. A query space SQ(SS , NK) comprises of keyword matching elements
NK computed for a query q which when not already contained, are connected with
elements of a special schema space SS consisting of the graphs gS(V, L, E) where

– V is conceived as the disjoint union VC � VR,
– L comprises of the pre-defined edge labels subclassof , domain , range ,
– E is a finite set of edges of the form e(v1, v2) with v1, v2 ∈ V and e ∈ L.

To compute NK , keywords of q are matched against the labels of elements of the re-
source space. The second part is simply the schema without attributes and data types.
For query interpretation, we navigate through different paths of the query space to con-
nect elements in NK . Note that paths on the schema space end at a datatype vertex.
Thus, edges of the form attribute − data type represent dead ends. Navigating along
such edges do not help in finding further connections. Therefore, they are not consid-
ered during the construction of the query space.

In cases where there is no schema information available, the special schema we need
can be derived from the resource space by deleting all V-vertices and A-edges, and by
the subsequent and exhaustive application of the following clustering rules:

1. Every E-vertex ve is clustered to a C-vertex vc if there is an edge type(ve, vc). If
there is no such C-vertex, ve is clustered to Thing, a special C-vertex denoting the
most general class of entities. Here, clustering means that ve is deleted from the
graph and every vc inherits all the edges from ve except type.

2. Note that the application of the previous rule results in edges of the form e(vci , vcj ).
Two edges ei(vc1, vc2) and ej(vc3, vc4) are then clustered to one if ei = ej , vc1 =
vc3, and vc2 = vc4. Here, clustering simply means either to delete ei or ej .

Example 3. Fig. 3a) illustrates the schema that is derived from our example resource
graph in Example 1. Fig. 3b) shows the query space constructed for the example query
qex “Article Stanford Turing Award”. The keyword elements obtained through match-
ing the user keywords against resource labels are Article, Stanford University and Tur-
ing Award. Article is already contained by the schema. Stanford University and Turing
Award are connected to the respective vertices of the schema to obtain the search space
for qex.

Given the query space, query interpretation amounts to searching for the minimal query
graphs, defined as follows:
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Fig. 3. a) Special schema graph computed from the resource graph in Example 1 b) a query space
obtained through connecting keyword-matching elements with elements of the schema

Definition 4. Let SQ = (SS , NK) be the query space, K = {k1, . . . , kn} be a set
of keywords, and let f : K → 2VK∪EK be a function that maps keywords to sets of
corresponding graph elements (where VK , EK ⊆ NK). A query graph is a matching
subgraph gq = (Vq, Lq, Eq) with Vq, Lq and Eq being elements of SS and

– for every k ∈ K , f(k)∩ (Vq ∪Eq) �= ∅, i.e. gq contains at least one representative
keyword matching element for every keyword from K , and

– gq is connected, i.e. there exists a path from every graph element to every other
graph element.

A matching graph gqi is minimal if there exists no other gqj of g such that Score(gqj ) <
Score(gqi), where score : gq → [0, 1].

We employ a top-k procedure to find such query graphs. It starts from the keyword el-
ements NK and iteratively explores the query space SQ for all distinct paths beginning
from these elements. During this procedure, the path with the highest score so far is
selected for further exploration. For scoring paths we incorporate 1) the popularity of
graph elements (e.g. computed via PageRank), 2) the matching score of keyword ele-
ments (obtained via the imprecise matching of keywords to element labels), and 3) the
length of the path. At some point, an element might be discovered to be a connecting
element, i.e. there is a path from that element to at least one keyword element, for every
keyword in K . The paths between the keyword elements and the connecting element are
merged to form a query graph. The graphs explored this way are added to the candidate
list. The process continues until the upper bound score for the query graphs yet to be
explored is lower than the score of the k-ranked query graph in the candidate list, i.e. no
candidates can beat the k-ranked result. More algorithmic details can be found in [8].

Example 4. Fig. 4a shows an example query space containing elements associated with
some scores. Based on these scores, the path score is updated at every step, which is
then used to prioritize the “direction” of the exploration. The exploration starts from
the keyword elements “Stanford University”, “Article” and “Turing Award”, as shown
in Fig. 4a (labels of “non-keyword elements” are omitted due to lack of space). The
three different paths starting from these elements that have been iteratively explored
during the top-k procedure are also shown. For the first time, these three paths meet
at the vertex with the EF-IDF score = 0.0002, i.e. this vertex is a connecting element.
These paths are merged to form the query graph shown in Fig. 4b.
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Fig. 4. a) Three paths through the query space and their scores b) A resulting query graph

Note that the semantic model employed here is essentially about entities denoted
by keywords (keyword matching elements) and their possible relations. It models the
space of possible interpretations of the keywords. Using this model, query computation
operates on a more concise representation of the query search space. In experiments
presented in [8], substantial performance increase is possible compared to state-of-the-
art on keyword search.

5 Answer Space – Enabling Efficient Query Processing

In this section, we discuss another semantic model called the answer space. It repre-
sents a more compact representation of the answer search space, which is employed
for more efficient query processing. In particular, we are concerned with the match-
ing of query graphs (i.e. the ones resulting from keyword interpretation as shown in
Fig. 4b. These graphs represent conjunctive queries, an important fragment of widely
used query languages (such as SQL, SPARQL2) Here, we focus our discussion on the
model and refer the interested reader to [11] for algorithmic details and proofs.

An answer space is essentially a collection of answer graphs, where vertices denote
extensions, i.e. a set of elements. In particular, every such extension contains elements
of the resource space, which exhibit the same structure, i.e. have same (incoming and
outgoing) paths. Intuitively speaking, an answer space is a compact representation of
the different structures exhibited by elements of the Resource Graph.

Example 5. Fig. 5 shows an extended example for the resource space. Its associated
answer space is shown in Fig. 6a. The extension E4 in Fig. 6a for instance, comprises
of uni1 and uni2, which as illustrated in the resource space in Fig. 5, are similar in
structure.

We formalize the concept of an answer space by the notion of a bisimulation originating
from the theoretical analysis of state-based dynamic systems. Essentially, graph nodes
are considered bisimilar in this sense if they cannot be distinguished by means of “edge
trees” starting from them. Moreover, we parameterize our notion of bisimularity by two
sets (forward and backward) of edge labels. We now define our notion of parameterized
bisimilarity.

Definition 5. Given a resource graph gR = (V, L, E) and two edge label sets L1, L2 ⊆
L, a (L1-forward-L2-backward) bisimulation on G is a binary relation R ⊆ V × V on
the vertices of G such that for v, w ∈ V , l1 ∈ L1 and l2 ∈ L2:

2 SPARQL is a query language for RDF data recommended by the W3C.
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Fig. 5. a) An extended example of a resource space

– vRw and l1(v, v′) ∈ E implies there is a w′ ∈ V with l1(w, w′) ∈ E and v′Rw′,
– vRw and l1(w, w′) ∈ E implies there is a v′ ∈ V with l1(v, v′) ∈ E and v′Rw′,
– vRw and l2(v′, v) ∈ E implies there is a w′ ∈ V with l2(w′, w) ∈ E and v′Rw′,
– vRw and l2(w′, w) ∈ E implies there is a v′ ∈ V with l2(v′, v) ∈ E and v′Rw′.

Two vertices v, w are called bisimilar (written v ∼ w), if there exists a bisimulation R
with vRw.

Our notion of L1-forward-L2-backward bisimulation captures as special cases forward
bisimulation (L1 = L, L2 = ∅), backward bisimulation (L1 = ∅, L2 = L) as well
as back-and-forth bisimulation (L1 = L2 = L). Note that ∼ is an equivalence rela-
tion, and is itself a L1-forward-L2-backward bisimulation. In fact, it is the greatest (i.e.
most general) one as it subsumes all possible bisimulations R. In the following, we will
represent this bisimilarity equivalence by the set of its equivalence classes called exten-
sions: {[v]∼ | v ∈ V } with [v]∼ := {w ∈ V | v ∼ w}. Recall that these equivalence
classes form a partition of V , i.e. a family P∼ of pairwise disjoint sets whose union is
V . We use these classes to define the answer graph of gR.

Definition 6. For a given resource graph gR = (V, L, E) with greatest bisimulation
∼, the associated answer graph g∼R = (V ∼, L, E∼) is defined as follows:

– The vertices of the answer graph g∼R are exactly gR’s ∼-equivalence classes :
V ∼ = {[v]∼ | v ∈ V },

– The labels of g∼R are exactly the labels of gR, and
– An edge with a certain label e is established between two equivalence classes [v]∼

and [w]∼ exactly if there are two vertices v∗ ∈ [v]∼ and w∗ ∈ [w]∼ s.t. there is an
edge e(v∗, w∗) in the resource graph:3 E∼ := {e([v∗]∼, [w∗]∼) | e(v∗, w∗) ∈ E}.

We will now characterize the properties of the answer graph which justify its usage for
query processing.

Proposition 1. Let gR be a resource graph with associated answer graph g∼R and let
g′R be another resource graph such that there is a homomorphism h from g′R into gR.
Then h∼ with h∼(v) := [h(v)]∼ is a homomorphism from g′R into g∼R .

3 Note that from ∼ being an equivalence relation follows [v]∼ = [v∗]∼ and [w]∼ = [w∗]∼.
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Roughly speaking, this proposition ensures that, whenever there is a match of a query
graph on a resource graph, the query also matches on the answer graph. Moreover,
the equivalence classes part of the answer graph match will contain the vertices of the
resource graph match. Thus, we can use the more compact answer graph for query
processing:

– In the first step, the query is matched against the answer graph, resulting in a set
of answer graph matches. They contain data elements that satisfy the structural
constraints captured by the query.

– In the second step, we need to verify that these data elements also match the con-
crete entities mentioned in the query, i.e. constants and distinguished variables, and
relations among them. For this, we retrieve data elements contained in the answer
graph matches, and join them along the query edges.

Example 6. Fig. 6b depicts a query, which asks for authors y working at Stanford
University that have won a Turing Award. Further, y should supervise some u that
is author of some v. The matching of the query graph in Fig. 6b on the answer graph in
Fig. 6a results in one single match h = {x �→ E1, y �→ E4, z �→ E7, u �→ E3, v �→
E5, Stanford University �→ E6, Turing Award �→ E8}. Through this structural
matching, we know that elements in E4 work at some places x, have won some prizes
z and supervise u. Further, we also know that u is author of some v. Next, we have to
check whether elements in E4 match the concrete entities mentioned in the query, i.e.
really work at Stanford University, and have won a Turing Award. For this, we
retrieve data contained in the extensions E6, E1, E4, E7 and E8 and join them along
the edges 〈y employment x〉, 〈x name Stanford University〉, 〈y prize z〉, 〈z label
Turing Award〉.

Note that through structural matching, we retrieve and join data only for a certain part
of the query, i.e. the rest of the query can be pruned away after processing step one.
We will give another proposition that more precisely defines the part that can be pruned
away. We will call a graph g with a distinguished node r called root (L1-forward-L2-
backward) tree-shaped if its edges interpreted as undirected edges form an undirected

Fig. 6. a) The answer space for the resource space shown in Fig. 5 and b) an extended example of
a query graph
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tree and from the root node r, every path from this root to the leaves traverses forward
only L1-labeled edges and backward only L2-labeled edges.4

Proposition 2. Let gR be a resource graph with associated answer graph g∼R (where∼
is a L1-forward-L2-backward bisimulation) and let g′R be a L1-forward-L2-backward
tree-shaped resource graph with root r. Let h′ be a homomorphism from g′R to g∼R . Then
for every node v ∈ h′(r), there is a homomorphism h from g′R to gR with h(r) = v.

Informally, this proposition ensures the following: Suppose there is an accordingly tree-
shaped query graph g′R where all nodes except possibly the root r are non-distinguished
variables, corresponding to a query posed against the data graph gR. The proposition
now states that for any match h′ of g′R against the answer graph g∼R , every data element
v of the extension(s) assigned to r – namely h′(r) – represents a binding to r. In other
words, for this special type of tree-like query parts, no verification step will be neces-
sary. Data elements need to be accessed only for the root node of the query g′R, while
the rest of g′R can be pruned away.

Example 7. Continuing with our previous example, we can see that there are two tree-
like parts that contain no distinguished variables, i.e. the paths 〈x employment u〉 〈v
author u〉 and 〈y supervises u〉 〈v author u〉. These parts can be pruned away after
step one as all data elements contained in answer graph matches are already known to
satisfy these structural constraints, i.e. elements in E4 are already known to supervise
some u that are authors of v, and elements in E1 are known to employ some u that are
authors of v respectively.

Compared to state-of-the-art approaches, the main advantages of using the answer space
for query processing are the following:

– Further Reduction of I/O Costs: Typically, a single index lookup is sufficient for
processing a query atom that involves at least one constant. Given a query atom
which contains variables only, the entire table needs to be fetched from disk. In our
approach, we retrieve only data elements that are known to satisfy the structural
constraints of the query. Thus, the amount of data that have to be retrieved from disk
might be smaller in both cases. For instance, the entire table created for the property
employment has to be fetched to obtain data matching the pattern 〈x employment
u〉. We retrieve only those bindings to x that match other constraints of the query,
i.e. have some names and employ some y. Similar arguments apply when the query
atom involves constants, e.g. 〈x name Stanford University〉: there might be
many elements in the resource space with the name Stanford University while
the number of those exhibiting the structure specified in the query should be far
less.

4 Equivalently but more formally, this can be inductively defined: every edgeless single-vertex
rooted graph (g, r) with g = ({r}, L, ∅) is L1-forward-L2-backward tree-shaped. Moreover
let (g1, r1) and (g2, r2) with g1 = (V1, L, E1) and g2 = (V2, L, E2) be two L1-forward-L2-
backward tree-shaped graphs with disjoint vertex sets. Let v ∈ V1 and let e ∈ {l(v, r2) | l ∈
L1} ∪ {l(r2, v) | l ∈ L2}. Then the rooted graph (g3, r1) with g3 = (V1 ∪ V2, L, E1 ∪ E2 ∪
{e}) is L1-forward-L2-backward tree shaped.
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– Further Reduction of Unions and Joins: While state-of-the-art approaches makes
join processing more efficient, it does not directly solve the proliferation of joins
and unions. Like in [12] and [13], we also sort values to enable fast merge joins.
Additionally, we can largely reduce the number of joins. As noted, joins are only
needed to verify the relations between concrete entities mentioned in the query
(denoted by constants and distinguished variables). Through pruning the two paths
in our example, the number of joins rendered unnecessary makes up almost 50
percent of the total number of joins that would be needed. In the extreme cases
where no answer graph matches can be found, we can skip the entire second step
to avoid data access and joins completely.

Note that the semantic model employed here is about extensions of entities that ex-
hibit similar structures. These extensions are not much different from the classes, i.e.
C-vertices, that can be found in the schema space or query space. However, whereas en-
tities of the same class might have similar properties and attributes (i.e. similar w.r.t the
outgoing edges), entities of the same extension are guaranteed to have similar structures
(i.e. similar w.r.t incoming and outgoing paths). An answer space thus can be regarded
as a more fine-granular version of the schema space. It more compactly encodes the
space of possible answers. Using this model, query processing operates on a more con-
cise representation of the answer search space. In experiments with large-scale datasets
using queries of different shapes and complexities, we have shown that this approach is
5-6 times faster than the state-of-the-art [11].

6 Presentation and Refinement

In this section, we elaborate on the use of our semantic models for query presentation,
answer presentation and query refinement. These concepts have been implemented in
the context of data web search [14] and semantic wiki search [15]. Based on our se-
mantic wiki search implementation, we will now discuss the main ideas and refer the
interested readers to [14] and [15] for more algorithmic and implementation details.

6.1 Query and Result Presentation

Since our search aims at lay end users, both intermediate and final results have to be
presented to the user in an intuitively understandable way. We have developed a concept
for visualizing query graphs along with results. We choose a table layout as it is a
general pattern that can accommodate queries and results of different structures and
complexities. As shown in Fig. 7, the table is divided horizontally into two sections
from top to bottom: a query view and a result view.

The query graph selected by the user is presented in the query view. There is one col-
umn for every variable of the query. The column labels denote classes or data types and
arrows between them represent relations or attributes respectively. This information is
encoded in the query space. In particular, labels for columns and arrows can be derived
from the labels of elements contained in query graph. The result view shows variable
bindings, i.e. entities (or data values) that satisfy the constraints specified in the query.

This table-based presentation template is sufficiently general for dealing with
different structures, the following three types of queries in particular:
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1. Entity Queries ask for specific entities like searching a person, e.g. someone with
the name “Thanh Tran”. For this, one single column is needed to display the class
of the entity in question.

2. Fact Queries ask for a concrete relation (an attribute) of a particular entity like the
mail address of “Thanh Tran”. Two columns are needed, one for the class of the
entity in question and another for displaying the requested data value (or entity).

3. General Graph-structured Queries ask for n-ary tuple sets. Several columns and
arrows are needed to show the classes, data types, relations and attributes mentioned
in the query.

6.2 Facet-Based Query Modifications

When an interpretation is chosen, the facets view is shown to the user. This view is de-
picted on the right side of the screenshot in Fig. 7. Using this view, facets are displayed
for the different entity classes mentioned in the query. In particular, the facets view
contains windows for every class shown in the query view. These windows display the
possible facets, which are relations or attributes that can be derived from the schema
space, i.e. outgoing edges of the C-vertex denoting the selected class.

Using this facets view, query modifications are supported by adding or deleting
facets. For example, in Fig. 7 the user can drill down and refine the search result by
adding the facet “submission deadline” to the class “Conference”. The user can more

Fig. 7. Screenshot of our semantic wiki search implementation, which exploits semantic models
throughout the search process. In the center of the screenshot, the selected query “Abstract dead-
lines of conferences located in Greece” along with the results are shown. On the right side is the
menu providing the facet-based refinement capabilities.
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precisely define this facet by entering a concrete value for “submission deadline”. The
new query is immediately evaluated and the results are presented to the user. Instead of
adding facets, the user can also expand the search results by removing the facet “has
located country”. He would then get all conferences and their abstract deadlines with-
out the constraint that they are located in Greece. Furthermore, the user can remove a
query variable and all facets bound to it by pressing the “x” button in the head line of
the respective facet window (on the right of Fig. 7).

According to the user study we have presented in [15], the majority of 14 users
found the presentation of the results understandable. Unlike keyword search, faceted
search seems to be not a commonly used paradigm. Three participants stated that they
did not know how to do it. However, the ones who used it found the feature helpful.
Interestingly, the use of facets was particularly effective for the more complex tasks.

Note the same principle that has been applied throughout the many steps of the se-
mantic search process. Semantics has been used to enable a more focussed exploration
of query interpretation and to enable a more guided matching of query graphs respec-
tively. In this section, semantics is used to guide the user through the process. Based
on the query space, the query and answers are presented according to their structures
to facilitate user comprehension. The schema space represents a compact view over the
answer space. It is used to derive facets that help the user in modifying and refining the
answer space.

7 Related Work

There exist many different conceptions and definitions for semantic search [1, 4, 5]. A
state-of-the-art analysis can be found in [3], which provides a review of different se-
mantic search tools and focuses on different modes of user interaction. In this paper, we
regard search as a process. We have discussed how semantics can be exploited through-
out the process. With respect to existing concepts, we offer a novel, process-centric
perspective on sematic search.

The other dimensions of related work concern with the steps involved in the search
process, which we will briefly discuss in the following.

Query Construction. Much work has been carried out in order to facilitate query con-
struction. This daunting task is mainly addressed in approaches on relaxed-structured
query models [16–19] and the structure free keywords-based query model. For the
keywords-based search, native approaches can be distinguished from the ones that ex-
tend existing databases with keyword search support. Native approaches operate directly
on the data (i.e. on the resource graph), and thus have the advantage of being schema-
agnostic [20–22]. Database extensions require a schema, but can leverage the infrastruc-
ture provided by an underlying database. Example systems implemented as database
extensions are DBXplorer [23] and Discover [24]. These systems translate keywords to
candidate networks, which are essentially join expressions constructed using informa-
tion given in the schema. Thus, instead of using the resource graph, the exploration for
join expressions (i.e. queries) operate on a smaller search space based on the schema. Our
approach for query interpretation combines the advantages of these two approaches: in
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line with native approaches, it is also schema agnostic in that a schema space is automat-
ically derived from the resource space. Unlike the natives approaches, the exploration
does not operate directly on the resource space, but on the schema space.

Query Processing. The answer space used in our approach is similar to a structure
index, a concept that has been widely used for semi-structured and XML data [25–29].
In particular, dataguide [30] is a well-known concept that has been proposed for rooted
graphs, i.e. graphs having one distinguished root node. A strong dataguide is established
by grouping together nodes sharing edge label sequences of incoming paths starting
from the root. As opposed to our answer space, the resulting grouping is not a partition,
i.e. one vertex may be assigned to several blocks. Thus, the size of the dataguide can get
exponentially larger than that of the original data graph. The 1-Indices [25, 26] prevent
this worst-case exponential blow-up.Instead of backward bisimulation only, both back-
and forward bisimulation is employed for the construction of a covering index for XML
branch queries [27].

The main difference is that while we can derive an answer space from general graph-
structured data, the construction techniques used for the indexes mentioned above rely
on the resource graph being rooted thereby imposing a structural constraint on the re-
sources that is hard to realize. Particularly in the Semantic Web context, the graph-
structured model (i.e. RDF) has been explicitly designed for representing information
from diverse sources, which might have to be integrated in a non-hierarchical way.

Result Presentation and Query Refinement. For the presentation of structured results
and the refinement of queries, faceted browsing is increasingly used in search applica-
tions. Many websites already feature some sort of faceted search to improve the pre-
cision of their search results. A crucial aspect of faceted search is the design of a user
interface. This has been studied by [31, 32] and applied in systems like Flamenco5, Ex-
hibit6 or Parallax7. In a Semantic Wiki context, this paradigm has been applied in the
form of Semantic Drill Down8 for browsing from top to bottom along the wiki’s cate-
gories. Another cornerstone of faceted browsing is the question what is actually used
as facets, which obviously depends on the resources and theirs structures. Systems like
Flamenco and Exhibit require a predefined set of properties, which are used as facets.
We make explicit use of the schema space to compute the relevant set of facets in a
dynamic way.

8 Conclusions

The problem of semantic search, i.e. addressing information needs at the level of the
meaning, has received increased attention in recent years. Numerous approaches to se-
mantic search have been proposed that make use of semantics in different ways. In this

5 http://flamenco.berkeley.edu
6 http://simile.mit.edu/exhibit
7 http://mqlx.com/˜david/parallax/
8 http://semantic-mediawiki.org/wiki/Help:SMW\_extensions#
Semantic\_Drilldown
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paper we have described semantic search from a process perspective that considers all
the relevant steps of information access. Further, we have discussed how lightweight
semantics can be exploited throughout this search process, i.e. using graph-structured
models of resources, schemas, queries, and answers. These lightweight semantic mod-
els clearly go beyond the state-of-the-art in information retrieval, as they do not treat
the resources on a word level, but instead more explicitly capture the semantics of the
elements. At the same time, the complexity of these graph-structured models and asso-
ciated algorithms are still computationally manageable, such that they can be applied to
search problems on a large scale. Specifically, based on these semantic models, we have
presented algorithms for constructing structured queries from keywords, for answering
these queries as well as for the presentation and further refinement. The search pro-
cess and presented techniques have been successfully applied in a number of semantic
search systems, such as [15] and [14].
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Summary. Logical thinking as an expression of human reason grasps the actual re-
ality by the basic forms of thinking: concept, judgment, and conclusion. Mathematical

thinking abstracts from logical thinking to disclose a cosmos of forms of potential re-
alities hypothetically. Mathematics as a form of mathematical thinking can therefore
support humans within their logical thinking about realities which, in particular, pro-
motes sensible actions. This train of thought has been convincingly differentiated by
Peirce’s philosophical pragmatism and concretized by a “contextual logic” invented by
members of the mathematics department at the TU Darmstadt.

1 Logical Thinking

Already Pythagoras’ pupil Alkmaion of Croton defined a human being as “zoon
logon echon” (in latin: animal rationale), i.e. as “reasonable living being”. This
basic anthropological understanding of a human being has been lasted in western
philosophy until Scheler’s duality of “mind” and “body” and even further ([Fa73];
p.895). “Reason” is here understood as mental means of human beings to gain
insights, to form judgments, and to act in accordance to those judgments ([Du95];
p.3694). Since those means are substantial for human beings, the formation of
humans should achieve to learn thinking and acting in a reasonable manner.
To what extent mathematics could play a role here, this shall be discussed in
the following. In particular, the claim shall be examined that logical thinking
can be supported by mathematics. How close are the meanings of “thinking
logically” and “thingking reasonably”, this may become clear by noticing that
the meanings of both linguistic expressions are apprehended in English by one
word, the verb “reason”.

To understand what is meant by “logic thinking”, one has to clarify what is
meant by “logic”. According to the “Duden: Das große Wörterbuch der deutschen
Sprache”, logic is the doctrine of the structure, the forms, and the laws of
thinking ([Du95]; p.2145). Therefore, “logical thinking” means a thinking which
activates logical (i.e. to logic belonging) structures, forms, and laws. In the phi-
losophy since the 16th century, the basic forms of logical thinking are considered
as the concepts (as basic units of thinking), the judgments (as connections be-
tween concepts), and the conclusions (as inferences gaining judgments from other

� This article is an English version of the German publication [Wi01b].

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 66–85, 2009.
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judgments). How, founded on those basic forms, further logical structures, forms,
and laws can be developed, this has already been shown 1662 by Antoine Ar-
nauld and Pierre Nicole in their guiding book “La Logique ou l’Art de penser”
[AN85]. Even when a new understanding has become dominant in the course
of the stronger formalization of logic - after Logic was ascribed to the task of
recognizing the laws of truthness (since the midle of the 19th century) - , the
everyday uses of logical thinking has basically speaking not changed if one is
orientated on general dictionaries.

This understanding of logical thinking, that it is based on concepts as the basic
units of thinking, has been further deepened by Jean Piaget in his structure-
genetic theory of cognition. For him, the logical thinking of a human being has
its roots in the coordinations of actions which are already present before the
development of the language; from those coordinations, mental operations and
with them logical structures come into being in the psychic development ([Pi73],
p.26ff). Piaget’s approach, by which he tries to clarify the question about the
logic of conceptual thinking and the truthness of knowing, consequently run
out according to Thomas Bernhard Seiler toward a theory which understands
concepts as basic units of recognizing, thinking, and knowlege. Piaget identifies
concepts with cognitive structures with which and through which the organism
examines its environment in an acting manner, adapt to it, and in which the
organism reconstructs the aspects of the environment relevant for its acting and
thinking and which provide for it the basis for interpreting the meaning of signs
(cf. [Se01]; p.164f.).

Most simple preforms of concepts are the sensorimotor schemas which arise
already early out of coordinations of actions. The next step of evolution forms
the ideas which abstract from the observed objects and correlated actions. If such
structures of cognition can also be applied to new objects and other structures
of cognition, then Piaget speaks of preconcepts. Structures of cognition have
finally reached the step of concepts if they have been freed to a large extent
from the intuitive view and have let coordinated to formal operations. Only
the construction of complex concept systems and their systematic coordination
allows a differentiated reconstruction of reality and leads to consistant concept
orders, the availability of which is a necessary condition for the development
of logical thinking. Piaget sees further conditions in the system properties of
complex structures of action, the necessity of communicative negotiation and
the compulsion to justify herself in the society ([Se01]; p.171).

Which priority meaning the logical thinking has for the recognition and action
of human beings, this has been made distinct in particular by Charles Sanders
Peirce in his philosophical pragmatism. For this the Cambridge Conferences
Lectures are an impressive source which Peirce has given in 1898 about the theme
“Reasoning and the Logic of Things [Pe92]. These lectures offer an introduction
into Peirce’s late philosophy which tries to make it intelligible for all. Logic is
understood in this lectures as normative science about forms and laws of thinking
which, as a philosophical discipline, has as theme to make understandable the
relationship between thinking and reality. Peirce sees the foundation for the
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understanding of forms of thinking in his categories of Firstness, Secondness,
and Thirdness which he defines as follows ([Pe92]; p.146ff.): Firstness is the
mode in which anything would be only for itself, irrespective of anything else;
Secondness is the mode in which anything would be related to something else,
irrespectively of anything third; Thirdness is the mode in which a First is joined
with a Second by a Third. For instance, a concept as a third joins a concept
word as a First with an object as a Second.

According to his categories, Peirce distinguishes between three kinds of logi-
cal conclusion: the abduction, the induction, and the deduction. The abduction
creates out of the horizon of self-evidence a hypothesis as a First; the induction
confirms a hypothesis by actually given facts as a Second; the deduction concludes
a hypothesis out of valid premisses by logical laws as a Third. This means: “The
deduction proves that something must be the case; the induction shows that some-
thing is actually efficient; the abduction only assumes that something might be the
case ([Pe91]; p.400). In his Cambridge Lectures Peirce elucidates the three kinds of
logical conclusions by the syllogistic figures of conclusion: the deduction by the fig-
ure Barbara, the induction by the figure Datisi, and the abduction (retroduction)
by the figure Cesare ([Pe92]; p.141f.); with that he clarifies in particular that the
three figures of conclusion distinghish essentually from each other, which Imanuel
Kant challenced 1762 in his paper “Über die falsche Spitzfindigkeit der vier lo-
gistischen Figuren” ([Ka83a]; p.597ff.). With the reached understanding of the
triadic nature of the logical conclusion, Peirce overcame the difficulties to express
geometric and algebraic conclusions by syllogisms in the way that he extended
the Boolean logic [Bo58] to the logic of relations ([Pe92]; p.150ff.), which was for
him the formal foundation for all logical conclusions. The limitation of syllogisms,
which was for Peirce essentially depend on their mechanistic nature, becomes sur-
mounted in the logic of relations by an open diagrammatic conclusion which gives
space for different types of conclusions.

Logical thinking was generally characterized by Peirce as follows: “Reasoning is
the process by which we attain a belief which we regard as the result of previous
knowledge” ([Pe98]; p.11). Peirce discusses in his first Cambridge Lecture about
“Philosophy and the Conduct of Life” the logical thinking in everyday life, which
succeeds for him as well without help by theoretical logic as with it. Primarily he
sees the logical thinking detemined by the instinct and the sentiment of human
beings and warns therefore for superficial logical conclusions that does not pay
attention to instict and sentiment. As the logical thinking grows out of the human
expierence, so instinct and sentiment develop in human beings from inner and
outer experiences, and that takes place in a slow and deep process which brings
out mental energy and vitality. Peirce considers this process as so important
that he views instinct and sentiment as the real substance of the human mind
([Pe92]; p.110).

For this reason, the “training in reasoning” - so the theme of the fifth Cam-
bridge Lecture - must, according to Peirce, concern the human mind as a whole;
for this three mental operations are important for him: observation, experimen-
tation, habituation.



Human Being and Mathematics Logical and Mathematical Thinking 69

Observation consists of two parts: the first as subconscious induction by which
an associational potency arises on repeatedly reviewing an object of perception
with a tendency to call up other ideas; the second as conscious formation of
schematic ideas which are able to react on perceivable objects. The associational
potency which arises out of the subconcious induction is according to Peirce the
most important constituent of practical thinking, while the consciously formed
schematic ideas are indispensable for theoretical thinking ([Pe92]; p.182). For
logical thinking it is particularly important to train powers of discrimination;
according to this, Peirce writes: “I never knew a man whose sagacity as a rea-
soner compelled my admiration without finding in him a considerably cultivated
discrimination” ([Pe92]; p.183). For the observation the most important precon-
dition is passivity, i.e. not to give way to the natural presure to immediately mix
the observation with own ideas.

For the experimentation however, an active energy, a persistence, and a strong
contribution of will is essential. For Peirce there is no doubt that, what ever
strengthens the will also strengthens the power of logical thinking ([Pe92]; p.187).
Experimentation needs furthermore a certain measure of resourcefullness, i.e. of
movability of the creative imaginative faculty, of flair for significant questions
and answers as well as of persistence to clarify advantages and disadvantages
of different answers. For training logical thinking one should again and again
be activated to experiment systematically; for this, systematic recordings are
indispensable. In general, Peirce recommends to record on paper cards all what
is noteworthy. For an eager student Peirce estimates approximately 20.000 paper
cards per year by which he can built up a rich treasure of experience for his
experimental thinking.

Habituation contains as mental operation the power of readily taking habits
and of readily throwing them off; for Peirce there is no habit more useful than
this habit taking up and easily throwing off mental habits ([?]). Important for
logical thinking is to win new connections of thoughts; the necessary readiness
to take up something new determines also the readiness to give up something
old. For Peirce the learner of logical thinking has therefore to be like a child with
all its uprightness and naivety of childlike imaginations and all of the plasticity
of childlike states of mind. By reading a lot the aimed flexibility of thinking can
be trained; for Peirce, reading 50 up to 100 books in a year would be desirable.
The right way of reading consists in trying to understand the author and to
assimilate his style of thinking. According to Peirce, the power of habituation
can be improved in three directions: by exercises in distinguishing and classify-
ing, by exercises in defining and logically analysing of ideas, and by excises in
compressing theories and trains of thought ([Pe92]; p.192).

The distinct openess of logical thinking has worked out by Peirce mostly in
his fourth Cambridge Lecture on “The first rule of logic”. After this basic logical
rule, logical thinking show a tendency to correct itself and that is not only by
its conclusion, but also by its premisses ([Pe92]; p.165). The quality of self-
correction, which already G. W. F. Hegel has considered as constitutive for the
dialectic process of growing reason [He86], is important for the logical thinking
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of each kind of science. Peirce realizes that “research of every type, fully carry
out, has the vital power of self-correction and of growth. This is a property so
deeply saturating its inmost nature that it may truly be said that there is but
one thing needfull for learning the truth, and that is a hearty and active desire
to learn what is true” ([Pe92]; p.170).

The self-correction of logical thinking stands in the direct connection with
another property of logical thinking, that is the principal criticizability. This
property has, according to Peirce, to be understood first of all as sense-critics in
the view of the pragmatic maxim, which in particular founds a connection be-
tween logic and ethics. Peirce writes in 1902/03: “ ... which makes logic and ethics
to peculiar normitive sciences is this: nothing can be logically true or morally
good without a purpose in regard to that it can be named. Since a sentence and
in particular the conclusion of an argument which would be only accidentally
true, that is not logic” ([Ap75]; p.175). 1903 Peirce finished his Havard-Lectures
about pragmatism with the maxim: “The elements of each concept enter into
the logical thinking through the door of perception and go out again through the
door of purposeful action; and all, what cannot be identified at the two doors,
has to be detained as not authorized by the reason” ([Pe91]; p.420).

2 Mathematical Thinking

With the theme “Human Being and Mathematics” the relationship of logical
thinking and mathematical thinking shall be examined in this contribution;
therefore the mathematical thinking shall now be considered in more detail. To
keep the connection with logical thinking in mind, it shall be first explained how
Peirce makes mathematics and mathematical thinking in his Cambridge Lectures
on “Reasoning and the Logic of Things” [Pe92] to his theme. For the authors of
the extensive introduction for the first complete edition of these lectures, Keneth
Laine Ketner and Hilary Putnam, the mathematics in the lectures play such a
dominant role that they could even prefer the titel “The Consequences of Math-
ematics”. For this they stated several reasons: First Peirce had already planed
and elaborated some provisional lectures as advanced contributions stimulated
by the invitation to give a lecture series; these lectures were primarily planed
mathematical. When he as well under the pressure of his promotor William
James took back considerably the mathematical parts - because of the general
understandability - , the basic character of mathematics however remained in
the lectures. This links with a second reason that namely Peirce understood
his philosophy, under which in the lectures also the logic is incorporated, as a
consequence of mathematics. Thirdly Ketner and Putnam see in the expression
“Consequences of Mathematics” an even deeper lying importence; they write:
“Peirce argued that, epistemologically at any rate, mathematics was an observa-
sional, experimental, hypothesis-confirming, inductive science that worked only
with pure hypotheses without regard of their application in “real” life. Because
it explored the consequences of pure hypotheses by experimenting upon repre-
sentative diagrams, mathematics was the inspirational source for the pragmatic
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maxim, the jewel of the methodological part of semeotic, and the distinct feature
of Peirce’s thought” ([Pe92]; p.2).

At the end of his first Cambridge Lecture Peirce classifies the sciences ordered
by the abstractness of its objects. He places mathematics as the most abstract
of all sciences, because mathematics is for him the only science which is not
concerned to explore what the actual facts are, but inquires hypotheses ([Pe92];
p.114). The objects of mathematics have consequently no actual existence, but
are only modi of potential being. The goal that the pure mathematics approaches
by making stepwise accessible an expending cosmos of forms of abstract thinking,
that is - in the long run - the potential world of reality. As the formal science of po-
tential reality, mathematics delivers formal-hypothetical foundations for all other
sciences and humanities. In this sense logic is founding on mathematics. Thus
Peirce judges: “All necessary logical reasoning is strictly speaking mathematical
reasoning, that is to say, it is performed by observing something equivalent to a
mathematical diagram” ([Pe92]; p.116). For the mathematical reasoning Peirce
has developed as a kind of algebraic logic the mathematical logic of relations
which he introductary explains in his third Cambridge Lectures.

To understand better how mathematical thinking is able to develop a mutual
play between abstracting and concretizing, respectively, and to make it effective
in the thinking and acting of human beings, the nature of mathematical think-
ing shall be made more understandable. For this, opinions and discoveries shall
be used which Philip Kitcher explains in his book “The nature of mathemati-
cal knowledge” [Ki84]. For Kitcher there are three obvious insights: “First, we
originally acquire much of our mathematical knowledge from teachers, on whose
authority we accept not only basic principles but also conceptions of the nature
of mathematical resoning. Second, some of this knowledge is acquired with the
help of perceptions. Our early training is aided by the use of rods and beads;
later, we appeal to diagrams. Third, mathematics has a long history. The ori-
gins of mathematical knowledge lie in the practical activities of Egyptians and
Babylonians (or, perhaps, people historically are more remote)” ([Ki84]; p.91f.).
Kitcher worked out these insights in his book to a convincing Theory of the
Mathematical Thoughts and Knowledge. This process began in the earliest time
with rudimentary perceptions and ideas which developed a first understanding
of an arithmetic of small numbers and of a geometry of simple plane figures. Out
of those roots, a mathematical thinking has been developed erected on existing
knowledge, respectively, and renewed by changes for which Kitcher dicusses in
detail the general activities of answering questions, generating questions, gen-
eralizing, rigorous changing and systematizing; in doing so, he examines the
process of development of mathematical thinking in the sense of Kuhn’s thesis
that scientific change means a change of practice and not only of theory.

Kitcher explains the relationship of mathematical thinking to the real world
in particular at general actions of thinking as collecting, segregating, combining,
correlating etc. and their idealizations to mathematical operations of thinking.
For example, he represents the set theory as an idealized theory of forming
collections. How fruitful those mathematical idealizations of general actions of
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thinking are can be demonstrated by the action of thinking “summerize to a
whole” which is based on Cantor’s definition of sets. For instance, in the script
of a lecture on “Linear Algebra I” mathematical elements have been summerize
to sets as a whole which can be demonstrated as follows:

1. the real numbers to the whole R of all real numbers,
2. the triples of real numbers to the analytic representation R3 of the space of

intuition,
3. the sections of the same length and direction to a vector,
4. scalars to a matrix,
5. the even numbers to the binary cipher 0 and the odd numbers to the binary

cipher 1,
6. objects, attributes, and a joining relation to a formal context,
7. elements with the same properties to a set,
8. the subsets of a set S to the power set P(S),
9. a family of sets to their union, to their intersection, and to their direct

product,
10. ordered pairs of sets to a relation,
11. equivalent elements to an equivalence class,
12. the equivalence of an equivalence relation to the appertaining quotient set,
13. relating arrows to a mapping,
14. the permutations of a set M and their concatenations ◦ to the symmetric

group SM ,
15. the symmetries of a geometric figure F and their concatenations ◦ to to the

symmetry group Sym(F ),
16. the cosets of a normal subgroup and the representational association to the

appertaining quotient group,
17. the real numbers with addition and multiplication to the field R of the real

numbers,
18. scalars to an n-tuple,
19. the n-tuples of elements of a field K and their componentwise additions and

multiplication with a scalar to the vector space Kn,
20. the algebraic structures in which the vector space axioms are valid to the

concept of the vector space,
21. elements of a vector space and the apppertaining scalars to a linear combi-

nation,
22. all linear combinations of elements a1, ..., ak of a vector space to the subspace

< a1, ..., ak > generated by the given elements,
23. the elements of a vector space which a linear mapping φ maps on 0 to the

subspace Kerφ,
24. linear equations to a linear system of equations,
25. the solutions of a linear system of equations in n-variables to the affine

subspace of the vector space Kn.

The mathematical examples make clear that the combination to a whole may
end up quite different depending on what is formally mend by combining to the
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whole. What can hardly be differentiated in the common language may become
transparent in the mathematical language: In 1., 2., 3., 5., 7., 8., 10., 11., 12., 13.,
22., 23., 25., the forming of sets are of different nature; also 24. could be seen as
a forming of sets, but the word “system” indicates that there is more what is ex-
pressed in equalities of variables. The formation of tuples and matrices in 18. and 4.
are usually not considered as set formation, just as the structure formations in 9.,
14., 15., 16., 17., and 19. In 6. and 21. one has sets and elements, respectively, which
are formed by terms and in 20. by concepts. Further differentiations are obtained
when the combined whole is mathematically characterized, which however shall
not be elaborated. An extensive investigation of mathematical thinking in linear
algebra has been presented by Katja Lengning and Susanne Prediger in [LP00].

On the basis of the rich treasure of mathematical forms, the mathematical
thinking has the special ability to formally arrange and structure contents of
thinking in great variety, by which more transparency and clearness can be usu-
ally gained. For Martin Heidegger this ability is even characteristic for modern
thinking, and that is in the sense that not only the content is arranged by forms
of thinking, but that also the content is understood at all by the corresponding
forms of thinking. Heidegger sees this basic character of modern thinking and
knowledge in the knowledge claim which he calls the “mathematical”. About
this, Heidegger writes in his book “Die Frage nach dem Ding”: “The mathe-
matical is that basic position to the things in which we propose the things to
what they are already given. The mathematical is therefore the basic assumption
about the knowledge of the things” ([Hd62]; p.58). Mathematical thinking can
hence not only be understood by the lexical meaning as the thinking belong-
ing to mathematics, but more general as a thinking of forms able to the design
which according to Heidegger is set “for which we actually consider the things,
as what they are acknowledged in advance” ([Hd62]; p.71). Then the mathemat-
ical thinking is not explainable out of mathematics, but the mathematics is itself
only a certain formation of mathematical thinking. Such an understanding of
mathematics is closely related to the view which Reuben Hersh propagates in
his book “What is Mathematics, Really?” [Hr97]. The historical, social-cultural
forming of mathematics can be understood in such a way that out of figures and
operations of mathematical form-thinking, which are again and again activated
in communications, formal systems of thinking are formed in a process of a pro-
gressive conventionalizations and constituted out of this a culture of thinking
which is called “mathematics” [Wi00a], [Wi01].

3 Human Being, Mathematics and Reality

The previous discusion about the relationship of human being and mathematics
started from the understanding that it is intrinsic for a human being to think
and to act reasonable, i.e. in particular to win insights, to form a judgment,
and to follow after that in all actions. That mathematics supports the reason-
able thinking and acting has its central reason in the close connection of logical
thinking and mathematical thinking. Therefore the effort is worth to understand
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this connection between the logical and the mathematical and to make it effec-
tive. According to Peirce’s pragmatic maxim, this means that logical thinking in
his relationship to reality should be mathematized in a way that the connection
of mathematizing with the manifold of potentially appertaining realities can be
better understood and activated.

An attempt to that has been made in our “Darmstadt Research Group on Con-
cept Analysis” with the elaboration of a “contexual logic” which is understood
as a mathematization of the traditional philosophical logic with its doctrines
of concept, judgment, and conclusion [Wi00b]. The basis of this philosophical
logic underlies the view that the human recognition and thinking activates the
basic logical structures concept, judgment, and conclusion by bringing realities
under concepts, forming judgments from concepts, and concluding judgments
out of other judgments. On this base, Gottlob Benjamin Jäsche makes clear in
his introduction to the logic-lectures of Imanuel Kant (edited by Jäsche) with
Kant’s explicit explanation that “it is nothing else allowed to include in the ac-
tual treatise of logic and particularly in the elementary treatise as the theory
of the three essential main functions of thinking - the concepts, the judgments,
and the conclusions ([Ka83b]; p.424). Since the contextual logic is elaborated as
a mathematical theory the basic structures of which are abstracted out of the
traditional philosophical logic (cf. [Pr00]), the contextual logic is classified in
a “contextual concept logic”, a “contextual judgment logic”, and a “contextual
conclusion logic”; in its whole, the contextual logic is founded on the set-theoretic
semantics of modern mathematics.

For the contextual concept logic it is first to answer the basic question: What
is the properly abstracting linguistic set definition of the concept of concept? Ac-
cording to Piaget, concepts are cognitive structures which can only fulfill their
task of the differentiating reconstruction of the reality, when they can be coordi-
nated systematically and constructed by its complex concept systems; concepts
are therefore formed in a relational structure which is constitutive for them.
Therefore it counts first of all to introduce relational structures for creating ab-
stract concepts as set structures in the greatest possible generality. That became
successful - as rich experiences in the last thirty years have shown - with the
conception of the formal context formed by objects, attributes, and a joining re-
lation. A “formal context” is defined as a set structure (G, M, I) which consists
of two sets G and M and a relation I between the sets G and M ; the elements of
G are called (formal) objects, the elements of M are called (formal) attributes,
and the relational connection gIm is read: the object g has the attribute m. In
the sense of Peirce’s categories, an object is considered in a formal context as a
First with an attribute as a Second which are linked by the context relation as
a Third. (Fig. 1)

Formal contexts can be understood as mathematization of real-world cross-
tables. For instance, the cross-table presented in Fig. 1, which is taken out of
the publication “Kontrastive Untersuchung von Wortfeldern im Englischen und
Deutschen” [Kr79], can be abstracted to a formal context (GW , MW , IW ) as
follows: the object set GW consists out of words of the investigated semantic
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Fig. 1. Formal context partly representing a lexical field “bodies of waters”

field “waters” in [Kr79] and the attribute set MW consists of noems (smallest
elements carring a meaning) by which the words are characterized according to
their contents, and the relation IW are grasped by the relationships which are
indicated by the crosses; i.e. the mathematical expression “puddleIW temporary′′

stands for the linguistic relationship “the word ‘puddle’ has the noem ‘tempo-
rary’ ” indicated by a cross in the cross-table. In general, the cross-table has
to be distinguished from the formal context which is abstracted from the cross-
table; thus, a cross-table has a logical structure with which real relationships
can be presented, but a formal context is a mathematical structure which first
of all challenges the activation further mathematical structures and connections.
In spite of their location, cross-table and formal context form a model for the
close connection of logical and mathematical thinking.

For the mathematization of ‘concept’, the formal context as mathematization
of the nessecary relational structure can now be assumed: A formal concept of
a formal context (G, M, I) is defined as a pair (A, B) where A is a subset of
G and B is a subset of M so that A consists of all those objects in G which
have all attributes of B and B consists of all those attributes in M which apply
to all objects in A; A is named the extent and B is named the intent of the
formal concept (A, B). This mathematization proceeds from the philosophical
understanding of concept; according to that, a concept is a unit of thought
consisting of an extension and an intension, as it was already presented by the
logic of Port Royal [AN85] in the 17th century (cf. also [Wa73], [Wi95]). A formal
concept (A, B) of (G, M, I) is called a subconcept of a formal concept (C, D) in
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Fig. 2. Concept lattice of the formal context in Fig.1

(G, M, I) and (C, D) a superconcept of (A, B) if the extent A is contained in the
extent C and, equivalently, if the intent B contains the intent D.

The logical reciprocity “the greater the concept extent the smaller the concept
intent”, which becomes visible by this equivalence, is winning conciseness and
fruitfullness by the contextual mathematization of concept which lastingly moves
the mathematical thinking. The reciprocity can be formulated by the definition
of “derivation operators” of a formal context (G, M, I): For X ⊆ G anf Y ⊆ M
the derivation is defined, respectively, by

XI := {m ∈ M |gIm for all g ∈ X} and Y I := {g ∈ G|gIm for all m ∈ Y };

i.e. the derivation XI is the set of all attributes out of M which all objects
have, and the derivation Y I is the set of all objects out of G which all attributes
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have. For A ⊆ G and B ⊆ M , (A, B) is then obviously a formal concept of
(G, M, I) if and only if A = BI and B = AI . The logical reciprocity now finds its
differentiated expression by the following mathematical discovery: For U, V ⊆ G
or U, V ⊆ M we obtain:

(1): U ⊆ V implies U I ⊇ V I , (2): U ⊆ U II , (3): U I = U III .

For the task to determine the formal concepts of a formal context (G, M, I), the
equation in (3) is basic because it follows from (3) that for X ⊆ G and Y ⊆ M ,
respectively, the pairs (XII , XI) and (Y I , Y II) are formal concepts of (G, M, I);
in particular, the special case of the object concepts γg := ({g}II , {g}I) and the
attribute concepts μm := ({m}I , {m}II) are important. The mathematical po-
tential of the derivation operators which become transparent by the relationships
in (1), (2), and (3) cannot be estimated high enough; they represent mathemat-
ical connections which in general have been studied and activated multifariously
as set-theoretic and logical dualities (also called Galois conections).

The set of all concepts of a formal context (G, M, I) forms with the subconcept-
superconcept relation a mathematical structure of a complete lattice, which
therefore is called the concept lattice of (G, M, I). The mathematical struc-
ture of a concept lattice can be made effectively accessible to logical think-
ing by (inscribed) line diagrams. The line diagram in Fig. 2 [KW87] represents
the concept lattice of the formal concext which is presented by the cross-table
in Fig. 1. The little circles of the line diagram represent the formal concepts
of the appertaining formal context and the ascending line segment represent
the subcontext-superconcept-relation. Hence the little circle in Fig. 2 to which
the label “artificial” is assigned represents a subconcept of the concepts with the
labels “inland” and “constant”; this indicates that, according to [Kr79], there is
the logical relationship in English that each “artificial” water has the attributes
“inland” and “constant”. In general, the extent and intent of formal concepts
can be read from the line diagram as follows: The concept extent consists of all
objects the names of which are attached to a circle linked by an ascending se-
quence of line segments to the circle of the chosen concept. In Fig. 2, for instance,
the little circle directly above the circle with the label “artificial” represents a
concept the extent of which consists of the words “sea”, “lagoon”, “tarn”, “lake”,
and “pool” and the intent of the noems “natural”, “stagnant”, and “constant”.
From this discussion it follows in particular that the underlying context can be
reconstracted from the line diagram, i.e. no data are lost by the construction
of the concept lattice and line diagram. Therefore the logical connections of the
data represented in the cross-table can completely be reconstructed.

The logical connections which usually demand special interest are the contex-
tual implication between attributes. From the line diagram of Fig. 2 one reads for
instance that, according to [Kr79], each running water is always also constant and
inland. Also of interest are the classification of objects by suitable combinations
of attributes. The line diagram in Fig. 2 shows that the smallest of such classi-
fication consists of six concept extents: {“plash′′, “puddle′′}, {“trickle′′, “rill′′,
“river′′, “rivulet′′, “runnel′′, “beck′′, “brook′′, “burn′′, “stream′′, “torrent′′},
{“canal′′}, {“tarn′′, “lake′′, “pool′′}, {“meer′′, “pond′′, “reservoir′′}, and
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finally {“sea′′, “lagoon′′}. Respectively, a sequence of further forms of inves-
tigations and activations of logical connections in data contexts are treated in
the papers [Wi87] and [Wi00c]. In the contrastive study in [Kr79] the compari-
son of German and English semantic fields with the same noems, respectively,
are standing in the foreground. Remarkable is the finding that the first eight
noems yield the same kind of concept lattices in German and English, which has
the consequence that also the logical implications between the noems are equal.
This is different at the classifications of objects, already because the English has
considerably more words for waters as the German. This is also the reason for
it, that further noems thoroughly result in different concept structures.

Line diagrams of concept lattices inspire again and again to critics and self-
correction on the basis of background knowledge. A reseach project which pro-
vided multifarious examples for this was a common project of the Darmstadt
research group on Formal Concept Analysis and of the ministry of building con-
structions and housing projects of the province “Nordrhein-Westfalen” [EKSW0].
The developed exploration system was supposed to support the administrative
office with its supervision of building works to consider the legal regulations
and technical determinations during the planing, examination, and execution of
building projects in the necessary extent. For the exploration system an exten-
sive data context was elaborated, the objects of which are the constructional
relevant paragraphs or text-units of the pertinent laws and regulations and the
attributes of which, understood as search words, are concerned with the struc-
tural components and their demands which are related to the text units. For
the exploration system frequent concept lattices from the underlying data con-
text were derived and represented by line diagrams to be able to use them as
conceptual searching structures.

Already during the system development, line diagrams have multifariously
fulfilled to make logical connections transparent. In this way the line diagrams
have always again qualified the building experts to find mistakes in the exten-
sive data contexts which has contributed to a conciderable improvement of the
data quality. An instructtive case of criticism and self-correction has happened
by means of the line diagram presented in Fig. 3, that makes available informa-
tion to the theme “function rooms in a hospital”: For testing the readability of
such diagrams, a secretary was included into the meeting in the ministry. The
secretary became much surprised that §51 of the “BauONW” (“Bauordnung
Nordrhein-Westfalen”), which demands expansions necessary for handicapped
people, was only attached to the circle with the label “toilet” (in the version
of the diagram “function rooms in a hospital” at that time); she could not un-
derstand why the wash- and bathrooms do not have to meet requirements for
handicapped people too. Even the experts became surprised when they checked
again §51 and saw that only toilets are mentioned in connections with handi-
capped people. Only after a comprehensive discussion the experts came to the
conclusion that, by superior aspects of law, §51 should apply also to wash- and
bathrooms. Finally, by similar reasons, the consulting rooms and the residential
rooms (bedrooms) were also included so that, in the underlying cross table, three
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Fig. 3. Query structure “functional rooms in a hospital” of a TOSCANA information
system about laws and regulations concerning building construction

more crosses were added in the row headed by “BauONW§51” so that, in the
line diagram of Fig. 3, the label “BauONW§51” moved down to the circle with
the label “KhBauVO§27”.

The Contextual Judgment Logic, developped since 1996, builds up on the
Contextual Concept Logic because judgments are formed by concepts. An elab-
orated informing Judgment Logic is already present since more than thirty years
by Sowa’s Theory of Conceptual Graphs [So84] which is founded on the logic
of existential graphs of Charles Sanders Peirce and the logic of semantic net-
works of artificial intelligence. Conceptual graphs, as the simple example in
Fig. 4 [So92], are understood as logical abstractions of linguistic expressions;
they represend semantic judgments, i.e. valid statements. The conceptual graph
in Fig. 4 represents the sentence “John is going to Boston by bus” as judgment-
logical structure, where the sentence is logically further differentiated with assis-
tance of background knowledge: John is identified as an instance of the concept
“Person” and Boston as an instance of the concept “City”; furthermore, three
valences of the concept “Go” are specified by the semantic relation “agent”,
“destination”, and “instrument”. The presented conceptual graph can be de-
scribed in detail as follows: “There is some going which has as agent the person
John, as destination the city Boston and as instrument some bus.” The further
“logical differentiation” discloses not only the background of a language, but
supports further treatments as the translation to other languages, the prepa-
ration for document management etc. How a technical text can be judgment-
logically processed has been, for instance, made clear in ([MSW99]; p.426) by
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Fig. 4. A simple conceptual graph

the conceptual graph which represents the instruction for decalcifying a coffee
machine.

The Contextual Judgment Logic adapts the Sowa graphs by taking the con-
cepts and relations of the conceptual graphs as formal concepts of already given
contexts; with that the conceptual graphs become mathematical structures for
which the modified naming “concept graphs” has been chosen to distinguish
between the mathematical and the logical (s. [Wi97], [Wi00b]). Within the Con-
textual Judgment Logic, judgments are represented by concept graphs which
are therefore also named formal judgments. With the abstraction of judgments
to mathematical structures, mathematical theories and methods can be acti-
vated for the judgment logic in a wide range. The promising method which,
up to now, has been stimulated and made possible the mathematization of the
judgment logic is the derivation of concept graphs out of relational data basis,
which are mathematized contextual-logically in a suitable manner (s. [PW99]);
i.e. expressed slogan-like: with this method, relational data bases can be “made
speaking”. Fig. 5 gives an insight into an informatoly application of this method:
The upper diagram shows a concept graph derived out of a flight data base rep-
resented as a Sowa graph, which shows the possible flights of a weekend trav-
eller from Vienna to Salzburg, Innsbruck, Graz, and back to Vienna; the lower
diagram is a user-friendly representation of the same graph which uses more
background knowledge of the traveller (s. [EGSW0], [Wi00c]).

The Contextual Conclusion Logic has already concept-logical and judgment-
logical precursors by the Contextual Attribute Logic [GW99] and the Contextual
Logic of Relations [Wi00d] which adapted the Peircean algebraic logic as recon-
structed in [Bu91]. The Contextual Conclusion Logic however obtains its full
foundation by the interplay of an elaborated syntax and semantics for concept
graphs for which Susanne Prediger made available in [Pr98] convincing concep-
tions and results. Certainly, the interplay of mathematical structural thinking,
the diagrammatic conclusions of Charles Sanders Peirce, and the logical thinking
in general have to be understood even more deeper, in particular in relationship
to the concrete intercourse with such a culture of thinking.

The close connection between the logical thinking and the mathematical
thinking, which becomes visible in the frame of contextual logic, makes pos-
sible multifariously an effective support of logical thinking through mathemat-
ical thinking which can also be extended to rich mathematical structures. For
example, the contextual-logical concept theory was already extended to an
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Fig. 5. Two representations of the same concept graph concerning flight connections

algebraic concept analysis [Vo94], to a contextual topology [Ha92], [Sa01], and to
a relational concept analysis [Ps98]. These extensions correspond with the three
structure types of the Bourbaki architecture of mathematics [Bo74] which Jean
Piaget has recognized in the close connection to the structures discovered by him
in the thinking of young children. In ([Pi73]; p.34f.), Piaget writes about the dis-
cussion with Jean Dieudonn, the founder of the Bourbaki-Group: “... to our great
surprise we both found out that there exists a very direct connection between
the three mathematical structures and the three structures of the operational
thinking of children.” Even if the activation of this relationship in the “New
Math”-movement was exceeded one-sidedly, an appropriate presentation of that
relationship would enrich the learning of mathematics and would contribute to
an efficient connection from the mathematical to the logical thinking.

Naturally, the logical thinking with its reference to reality has also inversely a
lasting effect on the development of mathematics by stimulating always further
differentiations of mathematical thinking. Deputizing for the large manifold of
such differentiations, it shall finally be mentioned a new view on mathematics
which has been produced during the elaboration of the contextual logic under the
influence of the triadic doctrine of categories of Charles Sanders Peirce: Different
real world connections have shown that the elementary connection “an object
has an attribute” should be specified in which way, under which conditions, by
which arguments, on which purpose, in which situation such a connection is valid.
This caused to extend the set structure of a formal context to a triadic struc-
ture [LW95], the appertaining concept structure of which was mathematically
characterized by a so-called “trilattice” [Bi98]. The thereby possible mathemat-
ical theory of triadic concepts could already be applied within the Contextual
Judgment Logic to receive mathematically the modal character of judgments
[Wi98], [Pr98], [DW00]. To what extend the triadic view can generally be made
productive for mathematics, this has to be explored by further research.
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Verlag, München (1973)

[Wi87] Wille, R.: Bedeutungen von Begriffsverbänden. In: Ganter, B., Wille, R.,
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Abstract. In this paper, we extend Simple Conceptual Graphs with Re-
iter’s default rules. The motivation for this extension came from the type
of reasonings involved in an agronomy application, namely the simulation
of food processing. Our contribution is many fold: first, the expressivity
of this new language corresponds to our modeling purposes. Second, we
provide an effective characterization of sound and complete reasonings
in this language. Third, we identify a decidable subclass of Reiter’s de-
fault logics. Last we identify our language as a superset of SREC−, and
provide the lacking semantics for the latter language.

1 Introduction and Motivation

The modeling need that motivated this paper came from an agronomy appli-
cation: the simulation of food processing (more specifically the pasta drying
process). In this application, successive unit operations involved in the drying
process have different impacts on product qualities. These impacts can be pos-
itive or negative, non monotonically depending on the considered quality and
the concerned unit operation. 46 kinds of qualities have been identified for pasta
products, moreover these qualities can themselves be subdivided into taxonomies
of components (e.g. sub-families of vitamins) that behave differently, hence the
need to account for particular cases concerning specific subfamilies [1]. The choice
of Conceptual Graphs (CGs) as a modeling language stems from the intuitiveness
of their graphical representation as well as the possibility to use their structure
for optimization purposes.

Generally, languages of the CG family have a semantics that can be expressed
in first-order logic (FOL). The non-monotonic features of the knowledge we want
to represent for this application calls for an extension of these languages. The
extension we consider here is based upon Reiter’s default logics. This formalism
has been designed to extend FOL with knowledge like “something is true unless
we believe something else”. On top of the traditional constructs of FOL-based
CG languages (support, facts, rules, constraints), a knowledge base of our new
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language also consists of default CG rules inspired by Reiter’s defaults. These
default CG rules fully generalize CG rules and not only the type hierarchy as
done in [2]. In this paper we formally present this language and illustrate it with
motivating examples from our application.

We define the classical notions of conceptual graphs, rules and constraints
in sect. 2. sect. 3 is devoted to introducing default reasoning. We recall in
sect. 3.2 Reiter’s default formalism, and we introduce the syntax and semantics
of default CG rules in sect. 3.3. Finally, theoretical results are presented in
sect. 4: in sect. 4.1 we introduce the derivation tree for default conceptual
graphs and present a subclass of default CG rules for which this tree is finite. In
sect. 4.2 we use this tree for sound and complete reasonings. Finally, in sect. 4.3
we relate our new language with the SREC− of [3]. The paper concludes with
future directions of work.

2 Conceptual Graphs, Rules and Constraints

In this section, we recall essential results about conceptual graphs (CGs). The
different languages presented here are described in more detail in [3]. They all
form a subset of first-order logics (FOL) since all objects introduced (support,
graphs, rules or constraints) have a FOL semantics obtained via the transfor-
mation Φ (Φ(X) is thus the logical interpretation of the object X). In all these
languages, we will consider a knowledge base (KB) containing different objects
(i.e. support, graphs, rules and/or constraints).

Definition 1 (Semantics of a knowledge base). The logical interpretation
Φ(K) of a KB K is the conjunction of the logical interpretations Φ(X) of the
objects X it contains. A KB K is said satisfiable if the FOL formula Φ(K) is
satisfiable. If Q is a simple CG, we say that Q can be deduced from K, and note
K |= Q, if Φ(Q) is a semantic consequence of Φ(K).

We are interested here in the X -satisfiability and X -deduction problems,
where X is a language of the CG family defined by the kinds of objects allowed in
a KB. A SG KB contains only a support and a (set of) simple CG(s). A SR KB
is the union of a SG KB with a set of rules, and a SGC− KB the union of a SG KB
with a set of negative constraint. A SRC− KB is the union of a SR KB and of a
SGC− KB. The three following subsections successively present the syntax of the
different objects that can compose a KB, their logical interpretations, and recall
essential results allowing to compute X -satisfiability and X -deduction in
these different languages.

2.1 Simple Conceptual Graphs: The SG Language

Syntax: Support and Simple CGs (SGs) A KB of the SG language is
composed solely of a support (encoding a type hierarchy) and of a set of simple
CGs (that represent entities and relationships between them).
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Definition 2 (Support). A support is a tuple S = (TC , T 1
R, · · · , T k

R, M) whose
elements are partially ordered, pairwise disjoint sets, respectively of concepts
types, relation types of arity 1, · · · , k, and of markers. All partial orders are
noted ≤. Markers are partitioned into an infinite set MG of (named) generic
markers (if m is generic, then ∀m′ ∈ M, m′ ≤ m) and a set MI of individual
markers (that are pairwise non-comparable).

Definition 3 (Simple conceptual graph). A simple conceptual graph (or
SG) defined on a support S = (TC , T 1

R, · · · , T k
R, M) is a tuple G = (C, R, γ, ε)

where C and R are disjoint finite sets, respectively of concepts and relations.
The mapping γ : R → C+ associates to each relation a tuple of concepts γ(r) =
(c1, · · · , cp) called the arguments of the relation. We note γi(r) = ci its ith

argument. The mapping ε : C ∪ R → (2TC ×M) ∪1≤i≤k T i
R labels each concept

and relation. If c is a concept of C, then ε(c) = (t, m) ∈ 2Tc ×M (t is called the
type of c, m is called its marker). If m ∈ MG then c is called generic, otherwise
it is called individual. If r is a relation of R, then its type ε(r) ∈ ∪iT

i
R must

have the correct arity, i.e. |γ(r)| = j ⇔ ε(r) ∈ T j
R.

A simple CG representation of information about “a pasta product that contains
peroxidase and is undergoing a late end-of-cycle temperature drying” is presented
in fig. 1.

1
2

1

2

1

2

1

output

inactive

input

Late end−of−cycle high temperature drying: D1

Pasta product: P1

Pasta product: P2

Peroxidase: *

Fig. 1. The SG representing “a pasta product that contains peroxidase and is under-
going a late end-of-cycle temperature drying”

Note that (as required by our modeling, and as defined, for example, in [4]),
the type of a concept can be a set of concept types of TC (called a conjunctive
type). A concept c can thus be an instance of many distinct types (e.g., ε(c) =
{Protein,Enzyme}).

FOL Semantics. Supports and SGs can be translated into first order logic
(FOL) to obtain a precise semantics for our syntactic objects. We consider con-
cept types (resp. relation types of arity i) as predicate names of arity 1 (resp. of
arity i), generic markers as variables and individual markers as constants. If t
and t′ are two predicate names of arity i, and t ≤ t′, then their logical interpre-
tation is the FOL formula φ(t, t′) = ∀x1 · · · ∀xi(t(x1, · · · , xi) → t′(x1, · · · , xi)).
The logical interpretation of a support S is the formula Φ(S) obtained from the
conjunction of the formulas φ(t, t′), for all t, t′ such that t′ covers 1 t in S.
1 We say that t′ covers t if t ≤ t′ and there is no other t′′ (apart from t and t′) such

that t ≤ t′′ ≤ t′.
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Let G = (C, R, γ, ε) be a SG. If c is a concept, we note φ(c) the conjunction
of atoms t(m), where t ∈ type(c) and m is the marker of c. If r is a relation, we
note φ(r) = t(m1, · · · , mi) where t = ε(r) and, ∀1 ≤ j ≤ i, mj is the marker of
γj(r). We note φ(G) =

∧
c∈C φ(c) ∧

∧
r∈R φ(r). Then the logical interpretation

Φ(G) of G is the existential closure of φ(G).

Theorem 1. Every SG KB K = (S, G) is satisfiable.

Reasonings. Though SG-satisfiability is a trivial problem, SG-deduction
is an important problem that has been studied both inside and outside the
CG community. Classically, SG-deduction can be computed using a kind of
graph homomorphism known as projection. It maps concepts having the same
marker of the query Q to concepts of the SG G in the KB, while preserving
the existence of relations and possibly decreasing labels, as allowed by the order
relation defined in the support S. We note G �S Q when there exists such a
mapping. For more details on projection/homomorphism, as defined for simple
CGs with conjunctive types, the reader can refer to [5]. Projection is a sound
operation w.r.t. our FOL semantics, but to be complete, the SG G must be put
into its normal form nf(G) (a semantically equivalent SG whose concepts have
all different markers). Then:

Theorem 2 (Soundness and completeness). Let K = (S, G) be a SG KB,
and Q be a SG. Then K |= Q ⇔ nf(G) �S Q.

As homomorphism, SG-deduction is thus a NP-complete problem. By im-
posing some restrictions to the SG Q (e.g., when Q admits a bound hypertree
decomposition, see [5,6]), the problem becomes polynomial.

2.2 Adding Rules: The SG Language

Syntax. A SR KB is obtained by adding CG rules of form (hypothesis, con-
clusion) to a SG KB.

Definition 4 (CG rule). A CG rule over a support S is a tuple R = (H, C)
where H and C are two SGs. H = hyp(R) is called the hypothesis of the rule
and C = conc(R) its conclusion.

FOL Semantics. The transformation Φ defined in sect. 2.1 and can be ex-
tended to take CG rules into account. If R = (H, C) is a CG rule, we note
φH(C) = ∃x1 · · · ∃xpφ(C) where x1, · · · , xp are all variables of φ(C) that do not
also appear in φ(H). Then we note φ(R) = φ(H) → φH(C) and the logical inter-
pretation Φ(R) of the rule R is the universal closure of φ(R). The interpretation
Φ(R) of a set of CG rules R is the conjunction of the interpretations Φ(R), for
all rules R ∈ R.

Theorem 3. Every SR KB K = (S, G,R) is satisfiable.
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Reasonings. Rules increase the complexity of our reasonings: SR-deduction
is semi-decidable (if K |= Q, then a sound and complete algorithm will stop, but
no sound and complete algorithm is ensured to stop otherwise). [7] provides a
sound and complete forward chaining algorithm. It relies upon the application
of a CG rule R = (H, C) to a SG G. R is said applicable if there is a projection,
say π from H to G. In that case, the application of R to G following π produces
a SG α(G, R, π) obtained by juxtaposing G and C, then for each concept of c
whose marker also appears in a concept c′ of H , by fusioning c with π(c′). Note
that other generic markers of C have to be renamed (a safe substitution), and
that α(G, R, π) must be put into its normal form.

If R is a set of rules, we note αS(G,R) the SG obtained by applying all
rules in R to G following all the projections of their hypothesis. Then we define
inductively αi

S by α0
S(G,R) = nf(G) and ∀1 ≤ i, αi

S(G,R) = αS(αi−1
S (G,R),R).

Theorem 4 (Soundness and completeness). Let K = (S, G,R) be a SR
KB, and Q be a SG. Then K |= Q ⇔ ∃i, αi

S(G,R) �S Q.

If K = (S, G,R), we note K∗ = limi→∞αi
S(G,R). Note that, in general, K∗ is

an infinite SG. To ensure that forward chaining stops, even when K �|= Q, [3]
relies upon the notion of finite expansion sets of rules, ensuring that K∗ is finite.

Definition 5 (Finite expansion set (f.e.s.)). Let S be a support, and R be
a set of rules. We say that (S,R) is a finite expansion set (or f.e.s.) iff for every
SR KB K = (S, G,R), K∗ is finite.

If (S,R) is a f.e.s., forward chaining is ensured to stop (when αi
S(G,R) ≡

αi+1
S (G,R) ≡ K∗). Finding large subsets of rules that have the finite expan-

sion property is thus an important task. [3] provides two examples of f.e.s.:
disconnected rules (d.r.), that share no generic marker in the hypothesis and
the conclusion, and range restricted rules (r.r.), where all generic markers of
the conclusion are already in the hypothesis. In both cases, SR-deduction is
NP-complete. [8] introduced the notion of rules dependencies (R2 depends upon
R1 when an application of R1 can trigger an new application of R2). When the
graph encoding these dependencies has no circuit, then the set of rules is a f.e.s.
More importantly, when all strongly connected components of this graph are
f.e.s., then we also obtain a f.e.s.

2.3 Adding Negative Constraints: The Languages SGC− and SRC−

Theorems 1 and 3 point out that all SGs and SG rules are satisfiable. However
considering that every KB is satisfiable is not always realistic in practice. For
example, in our application, we do not want an enzyme to be active and inhibited
at the same time. Though various mechanisms have been proposed to introduce
the notion of insatisfiability to conceptual graphs, we focus here on negative
constraints.



Default Conceptual Graph Rules: Preliminary Results 91

Syntax. By enriching a KB of the SG (respectively SR) language with negative
constraints, we obtain a KB of the SGC− (resp. SRC−) language. A negative
constraint encodes that some knowledge must not be found in a graph.

Definition 6 (Negative constraint). A negative constraint, defined over a
support S, is noted N = ¬G, where G is a SG over S.

FOL Semantics. The notation ¬H stems from the semantic of negative con-
straints since the interpretation of N = ¬G is defined by Φ(N) = ¬Φ(G). If N
is a set of negative constraints, then Φ(N ) is the conjunction of all Φ(N), for
N ∈ N .

It is then possible with negative constraints to express cases of insatisfiabil-
ity. For example, a KB containing the SG G of fig. 1 as well as the negative
constraint represented by the same fig. is unsatisfiable.

Theorem 5 (Insatisfiability). Let K = (S, G,R,N ) be a SRC− KB (it is a
SGC− when R = ∅). Then K is unsatisfiable iff there exists N = ¬C such that
(S, G,R) |= C.

SGC−-satisfiability is thus co-NP complete, and SRC−-satisfiability is
truly undecidable (though SRC−-unsatisfiability is semi-decidable). The
polynomial subclasses of sect. 2.1 apply for SGC−-satisfiability while the
decidable subclasses of sect. 2.2 apply for SRC−-satisfiability.

Reasonings. Since negative constraints encode negative information and the
query encodes positive formulae, negative constraints play no more role in rea-
sonings when the KB is satisfiable.

Theorem 6 (Deduction). Let K = (S, G,R,N ) be a SRC− KB, and Q be a
SG. Then K |= Q iff K is unsatisfiable or (S, G,R) |= Q.

SGC−-deduction is thus a NP-complete problem and SRC−-deduction is
semi-decidable. As previously discussed, particular subclasses of sect. 2.1 and
sect. 2.2 still apply.

3 Adding Defaults to Conceptual Graphs

3.1 The Need for Default Reasonings

In fig 2 an agronomy application example is depicted: “if a pasta product un-
dergoes a quick drying, then it is subject to cracking unless the drying is accom-
panied by vapor-injection”. To deal with such non monotonic knowledge in the
following we propose to introduce default reasoning in the CG model, in order
to express rules that will be applied in the default case, i.e. unless they are a
source of insatisfiability.
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N CH

Vapor-injection high temperature drying : y
2

1

Cracking : z

char

Pasta product: x

2
1

Quick drying : y

in

Pasta product: x

Fig. 2. An example of a default CG rule

3.2 Reiter’s Default Logics

In this section we recall some basic definitions of Reiter’s default logics [9,10]

Definition 7 (Reiter’s default logic). A Reiter’s default theory is a pair
(Δ, W ) where W is a set of FOL formulae and Δ is a set of defaults of form

δ = α(−→x ):β1(−→x ),···,βn(−→x )
γ(−→x )

, n ≥ 0, where −→x = (x1, · · · , xk) is a set of variables,

α(−→x ), βi(−→x ) and γ(−→x ) are FOL formulae for which each free variable is in −→x .

The intuitive meaning of a default δ is “For all individuals (x1, · · · , xk) , if α(−→x )
is believed and each of β1(−→x ), · · · , βn(−→x ) can be consistently believed, then one
is allowed to believe γ(−→x )”. α(−→x ) is called the prerequisite, βi(−→x ) are called the
justifications and γ(−→x ) is called the consequent. A default is said to be closed if
α(−→x ), βi(−→x ) and γ(−→x ) are all closed FOL formulae. A default theory (Δ, W )
is said to be closed if all its defaults are closed. In this case we can omit the −→x
notation.

Intuitively, an extension of a default theory (Δ, W ) is a set of formulae that
can be obtained from (Δ, W ) while being consistently believed. More formally, an
extension E of (Δ, W ) is a minimal deductively closed set of formulae containing
W such that for any α:β

γ ∈ Δ, if a ∈ E and ¬β /∈ E, then γ ∈ E.
The following theorem provides an equivalent characterization of extensions

that we use here as a formal definition.

Theorem 7 (Extension). Let (Δ, W ) be a closed default theory and E be a
set of closed FOL formulae. We inductively define E0 = W and for all i ≥ 0,
Ei+1 = Th(Ei) ∪ {γ | α:β1···,βn

γ ∈ Δ, α ∈ Ei and ¬β1, · · · ,¬βn /∈ E}2.
Then E is an extension of (Δ, W ) iff E = ∪∞

i=0Ei.

Note that extensions are only defined here for closed theories. In practice open
defaults are transformed into the sets of their ground instances over the Herbrand
universe.

Note also that this characterization is not effective for computational purposes
since both Ei and E = ∪∞

i=0Ei are required for computing Ei+1.
Some closed default theories can have no extension. It is for example the case

of the default theory (Δ, W ) = ({�:β
¬β }, ∅). However, normal default theories are

ensured to have extensions.
2 We note Th(Ei) the deductive closure of Ei.
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Definition 8 (Normal defaults). A default is said normal if its consequent is
semantically equivalent to the conjunction of its justifications. Defaults of form
δ = α(−→x ):β(−→x )

β(−→x )
are normal.

The meaning of a normal default is if α is true and it is consistent to deduce β,
then deduce β.

Theorem 8. Every closed normal default theory has an extension.

Let us see a classical example of a default theory. Suppose that we want to
model the knowledge that, in general, birds fly, penguins are birds, and penguins
do not fly. Finally we add a penguin called Tweety in our knowledge base. This
knowledge can be model by the following default theory :

(Δ, W ) =
({p(x) : ¬f(x)

¬f(x)
,
p(x) : b(x)

b(x)
,
b(x) : f(x)

f(x)

}
, {p(Tweety)}

)

where b(x) means that the individual x is a bird, f(x) means that x flies, and
p(x) means x is a penguin. Note that the knowledge penguins are birds have
no known exception, and so a rule ∀x, p(x) → b(x) can be added to W instead
of the default rule p(x):b(x)

b(x) in D. This default theory can lead to 2 different
extensions, which are E1 = Th({p(Tweety), b(Tweety),¬f(Tweety)}) and E2 =
Th({p(Tweety), b(Tweety), f(Tweety)}).

Some problems that must be addressed in Reiter’s default logics are the fol-
lowing:

– extension: Given a default theory (Δ, W ), does it have an extension?
– skeptical deduction: Given a default theory (Δ, W ) and a formula Q,

does Q belong to all extensions of (Δ, W )? In this case we note (Δ, W ) |=S Q.
– credulous deduction: Given a default theory (Δ, W ) and a formula Q,

does Q belong to an extension of (Δ, W )? In this case we note (Δ, W ) |=C Q?

In the previous example (Δ, W ) admits two extensions. Both f(Tweety) and
¬f(Tweety) can be credulously deduced, but neither can be skeptically deduced.

Note that even when restricting these problems to closed normal default the-
ories, the expressive power of FOL makes them undecidable.

3.3 Introducing Default CG Rules: The SRDC− Language

Syntax. A KB of the SRDC− language is obtained from a SRC− KB enriched
with default CG rules inspired by Reiter’s defaults.

Definition 9 (Default CG rule). A default CG rule over a support S is a
tuple D = (H, N1, · · · , Nn, C), with n ≥ 0, H and C are SG’s, and the Ni are
negative constraints over S. As in Reiter’s defaults, we call H the prerequisite,
Ni the justifications, and C the consequent.

Intuitively, such default means that “if H is believed, the negative constraints
(justifications) are each satisfied, and it is consistent to believe C, then it is
allowed to believe C”.
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Default Semantics. The interpretation of SRDC− KB K = (S, G,R,N ,D)
is a default theory Υ (K) = (Υ (D), Φ((S, G,R,N ))) where Φ is the FOL inter-
pretation of the KB as defined in sect. 2, and Υ (D) = {Υ (D), D ∈ D}. The
mapping Υ translates each default CG rule D into a default in Reiter’s sense
Υ (D) called the default interpretation of D.

Let D = (H, N1, · · · , Nn, C) be a default CG rule, where Ni = ¬Gi. Its default
interpretation Υ (D) is built as follows:

– Let −→h be the variables occurring in φ(H), −→f the variables occurring both in
φ(C) and in φ(H), and −→c the variables occurring in φ(C) and not in φ(H).

– For ζ ∈ {φ(C), φ(G1), · · · , φ(Gn)}, the formula sk(ζ) is obtained by replacing
for ci ∈ −→c , each occurrence of ci by the functional term fD

i (−→f ) in ζ.
– For ξ ∈ {sk(G1), · · · , sk(Gn)}, sk∗(ξ) is obtained by existentially quantifying

all variables of ξ that are not in −→h . Finally:

Υ (D) =
φ(H) : sk(C),¬sk∗(G1), · · · ,¬sk∗(Gn)

sk(C)

Let us illustrate this by the transformation of the default CG rule D =
(H, N, C) of fig. 2. In the next equation, QD(x) means that product x un-
dergoes a quick drying, P (x) signifies that x is a pasta product, C(x) signifies
the Cracking property of pasta and V IHTD(y) specifies a vapor-injection high
temperature drying y. While at the representation level the formula below has
the same meaning as fig. 2, the authors consider that fig. 2 conveys its meaning
in a more intuitive manner.

Υ (D)=
QD(y) ∧ in(y, x) ∧ P (x) : P (x) ∧ char(fD

1 (y, x), x) ∧ C(fD
1 (y, x)), V IHTD(y)

P (x) ∧ char(fD
1 (y, x), x) ∧ C(fD

1 (y, x))

The problems defined in Reiter’s default logics are easily recast in SRDC−:

– SRDC−-extension: Given a SRDC− KB K, does Υ (K) have an extension?
– SRDC−-skeptical deduction: Given a SRDC− KB K and a SG Q, does

Υ (K) |=S Φ(Q)? In this case we note K |=S Q.
– SRDC−-credulous deduction: Given a SRDC− KB K and a SG Q, does

Υ (K) |=C Φ(Q)? In this case we note K |=C Q.

Modeling Choices. Two features of our chosen semantics might seem surpris-
ing to the reader. First, the presence of sk(C) as an added justification. This
is due to the fact that we need to be able to represent normal defaults in our
language (if a default rule D = (H, C) has no negative constraint then Υ (D)
is a normal default). Second, we have introduced functional terms in the inter-
pretation of a default. This is due to the fact that the default interpretation is
composed of many formulae and functional terms are the only way to link up
the variables of these formulae.
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4 Reasoning in SRDC−

4.1 The Defaults Derivation Tree (d.d.t.)

The defaults derivation tree (d.d.t.) of a SRDC− KB K = (S,G,R,N ,D) is a
rooted, labeled and possibly infinite tree ddt(K) used as a tool to compute exten-
sions. To define this tree, we need new objects generalizing negative constraints,
that we call attached constraints.

Attached Constraints. Let G be a SG. A constraint attached to G is a pair
(A, μ) where A is a SG and μ is a partial mapping from the concepts of A to
the concepts of G. We say that G violates (A, μ) iff there exists a projection π
from A into G such that π extends μ. Otherwise G satisfies (A, μ).

Note that attached constraints generalize negative constraints (the latter oc-
curs in the case of μ = ∅). A SR KB K = (S, G,R) violates a constraint (A, μ)
attached to G iff there exists i ≥ 0 and a projection π from A to αi

S(G,R) such
that π extends μ. It satisfies (A, μ) otherwise. K violates a set A of constraints
attached to G iff it violates one (A, μ) ∈ A. It satisfies A otherwise. The com-
plexity of computing satisfiability with attached constraints remains the same
as for negative constraints.

Note that if (A, μ) is a constraint attached to G and G′ is a SG containing G
(such as a SG obtained by applying rules on G), then we can consider (A, μ) as
a constraint attached to G′. In the same way, many algorithms rely on finding
a smaller equivalent SG G′ by fusioning concepts of the SG G. Then, for every
(A, μ) attached to G, we attach a constraint (A, μ′) to G′ such that if there is a
concept c in A such that μ(c) has been fusioned into c′ in G′, then μ′(c) = c′,
and μ′(c) = c otherwise.

Vertices of the d.d.t. The d.d.t. intuitively represents a kind of derivation
tree. Each node v is labeled by λ(v) = (Gv,Av). Gv represents a state of knowl-
edge derived from the initial KB and Av represents the suppositions that we
made to derive Gv. For example, consider the application of the default CG rule
represented in fig. 2 on a pasta product A which undergoes a quick drying Q.
To conclude that A is subject to cracking, we need to suppose (and remember
in Av for further derivation) that Q is not a vapor-injection high temperature
drying. To remember this ensures that no further derivation can conclude that
Q was a vapor-injection high temperature drying.

A vertex v of ddt(K) is labeled by λ(v) = (Gv,Av) where Gv is a SG and
Av is a set of constraints attached to Gv. The root r of ddt(K) is labeled by
λ(r) = (G, ∅). A vertex v of ddt(K) is satisfiable iff (S, Gv,R,N ) is satisfiable
and (S, Gv ,R) satisfies Av.

If v is satisfiable, then for each D = (H, N1, · · · , Nn, C), for each projection π
into some G′ = αi

S(Gv,R), if π is not “blocked” v admits a child v′ = δ(v, π).
Let us consider the SG G′′ = α(G′, (H, C), π). For each justification Nk, we

build the constraint (Nk, μk) attached to G′′ where μk is defined as follows:
if c is a concept of Nk whose generic marker appears in a node c′ of H then
μk(c) = π(c′). Otherwise, if this marker appears in a node c′ of C then μk(c) is a
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concept obtained from a copy of c′ in G′′. We note A′
v = Av∪{Ak}1≤k≤n. Finally

π is blocked iff there exists j ≥ i such that α(αj
S(Gv,R), (H, C), π) violates A′

v.
If π is not blocked, then λ(v′) = (G′′,A′

v).

Building Finite d.d.t. Given the expressive power of SG rules, ddt(K) is an
infinite tree: it can have an infinite depth and each vertex can have an infinite
number of children. To be able to finitely build d.d.t., let us now extend the
notion of finite expansion sets (sect. 2.2).

Definition 10 (Finite expansion property). If D = (H, N1, · · · , Nn, C) is
a default CG rule, we note fol(D) = (H, C) its associated SG rule. If D is a
set of default CG rules, we note fol(D) = {fol(D)}D∈D. Then a SRDC− KB
K = (S, G,R,N ,D) is said to have the finite expansion property iff R∪ fol(D)
is a finite expansion set.

If K = (S, G,R,N ,D) has a finite expansion property, then for every vertex v
of ddt(K), with λ(v) = (Gv,Av), Gv is a subgraph of the finite SG (S, G,R ∪
fol(D))∗. Then, since the graph Gv labeling each vertex v is bigger than the
graph labeling is parent, the depth of ddtK is finite. And since (S, Gv,R)∗ is
finite, there is a finite number of projections of the defaults in it, so the number
of children of v is finite, and its satisfiability can be computed in finite time. It
follows that:

Theorem 9. If a SRDC− KB K has the finite expansion property then ddt(K)
can be computed in finite time.

4.2 Sound and Complete Reasoning w.r.t. Υ

Let us now show that the d.d.t. can be used for sound and complete reasonings
in SRDC−.

Theorem 10. Let K = (S, G,R,N ,D) be a SRDC− KB, and Q be a SG. Then
either (S, G,R,N ) is unsatisfiable or the following assertions are equivalent:

i There exists an extension E of Υ (K) such that E |= Φ(Q).
ii There exists a satisfiable leaf v of ddt(K) with λ(v) = (Gv,Av) such that

(S, Gv ,R) modelsQ.

Due to space requirements the proof of this theorem is omitted in this paper.
It follows that:

Theorem 11 (Soundness and completeness). Let K = (S, G,R,N ,D) be
a SRDC− KB, and Q be a SG. Then K |=S Q (resp. K |=C Q) iff either ddt(K)
has a unique unsatisfiable vertex, or, for all satisfiable leaves, (resp. there exists
one satisfiable leaf) v in ddt(K) with λv = (Gv,Av), (S, Gv,R) |= Q.

This latter theorem provides us with an effective characterization of the deduc-
tion problems in SRDC−. Thanks to thm. 9, this characterization also provides
a halting algorithm when K has the finite expansion property.
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4.3 Relationship with SREC

The Language SREC. [3] presents a family of CG languages. The most ex-
pressive one in this language hierarchy is the language SREC. In this language
a KB K is composed of a support S, a SG G, a set R of inference rules (that
behave exactly as CG rules), a set E of evolution rules of form (H, C), and a set
C of constraints. By restricting constraints to the negative constraints presented
here we obtain the language SREC−.

Reasoning in SREC−. Reasonings in SREC− rely upon building a “tree of
possible worlds”, akin to the d.d.t. presented in this paper. Since SREC− does
not dynamically generate constraints, a possible world is only labeled by a SG.
Children of a possible world are generated as if we considered each evolution rule
as a default rule without justification. Finally, an answer to a SG Q can be found
in any possible world, not only in the leaves as done in SRDC−. However, default
rules translating evolution rules are normal, and thus any possible world is an
ancestor or an extension (thm. 8). Therefore, if an answer to Q can be found in
a possible world v, the same answer can be found in all leaves/extensions having
v as an ancestor.

Default Semantics for SREC−. By comparing the reasonings in SREC− and
SRDC− we obtain an interesting equivalence result that provides the formally
lacking semantics of SREC−. Let us consider the bijection τ from SREC− KBs to
SRDC− KBs that transforms each evolution rule into a default CG rule without
justification (i.e. a normal default CG rule).

Theorem 12. Let K = (S, G,R, E ,N ) be a SREC− KB, and Q be a SG. Then
(S, G,R, τ(E),N ) |=C Q iff (S, G,R,N ) is unsatisfiable or K |= Q (|= being the
deduction used in SREC−).

We can finally provide a logical semantics ΥE to the SREC− language, by
defining:

ΥE((S, G,R, E ,N )) =
{

(⊥, ∅) if (S, G,R,N ) is unsatisfiable
Υ ((S, G,R, τ(E),N )) otherwise.

SREC− is thus the subset of SRDC− restricted to normal defaults, and:

Theorem 13. Deduction in SREC− is sound and complete with respect to cred-
ulous deduction according to the ΥE semantics.

5 Conclusion and Perspectives

In this paper we have formally defined the syntax and semantics of a new lan-
guage of the SG family, namely the SRDC− language. This extension was nec-
essary in the agronomy application we are involved in, and the semantics of
this language are expressed in Reiter’s default logics. Since this subset of de-
fault logics is built upon a particular subset of FOL, we were able to provide a
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constructive characterization of Reiter’s extensions (thm. 10). Using the finite
expansion sets that form a decidable subclass of SR, we defined a new decidable
subclass of Reiter’s default logics (thm. 9). Finally, we showed that the SREC−
language of [3] is a strict subclass of SRDC−, and provided a formerly lacking
default logic semantics for that language.

Some problems are still to be addressed to be able to encode the knowledge
required by our application and to compute deductions in an efficient way:

Functional Relations. For more precise reasonings we need to be able to
represent numerical information in a knowledge base and to express functional
constraints such as the following rule given by a domain expert: a high tempera-
ture for drying has to be above Naples average spring temperature. [11] extends
the language SR to handle such knowledge. This language could provide the
foundations for a functional extension of SRDC−.

Other Decidable Subclasses of CG Rules. The KB obtained from our
preliminary modeling has the finite expansion property that ensures finite rea-
sonings. It may be possible that with the introduction of new knowledge this
property no longer holds. It would then be essential to investigate other kinds
of decidable KBs. An interesting research direction could be to extend other
kinds of decidable subclasses of SR to SRDC−. Such decidable subclasses could
be finite unification sets (that ensure a finite backward chaining rewriting) or a
bounded treewidth sets (a strict generalization of f.e.s. ensuring that K∗ has a
bounded treewidth)[12].

Reasoning with Preferences. Default logics can be extended to take de-
faults preferences into account. In this model, one can define an order (partial
or total) on the set of defaults. Our default CG rule model provides a natural
order on defaults: a default CG rule D1 should be preferred to a default D2
if the prerequisite of D1 is a specialization of the prerequisite of D2. This is
exactly what is intuitively needed in our agronomy scenario. The consequent
problems of computing extensions are then transformed into finding the most
preferred extensions [10]. Even when defaults are totally ordered, the procedure
that chooses the application of the most preferred unblocked default at each
vertex of the d.d.t., is not ensured to lead to a preferred extension. Formally
defining and finding preferred extensions is left for further work.
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Abstract. This paper presents the general framework and the current
results of a project that aims to develop a system for knowledge dis-
covery and extraction from the texts of Electronic Health Records in
Bulgarian language. The proposed hybrid approach integrates language
technologies and conceptual processing. The system generates concep-
tual graphs encoding the patient case history, which contains templates
for the patient’s diseases, symptoms and treatments. We describe simple
inference in the generated graphs resource bank. Some experiments and
their evaluation are presented in the article.

1 Introduction

The first known medical record was developed by Hippocrates in the fifth century
B.C. He prescribed two goals when documenting the patient status in natural
language: (i) A medical record should accurately reflect the course of the dis-
ease and (ii) A medical record should indicate the probable cause of the disease.
These goals are still appropriate today and most of the patient documentation
is still kept in natural language as free unstructured text. However, Electronic
Health Records (EHR) systems provide additional functionality, such as interac-
tive alerts to clinicians, interactive flow sheets and tailored order sets, automatic
calculation of the price of the medical treatment etc., which cannot be supported
in the paper-based archives [3].

Today most of the patient’s information is available only in textual form. This
makes its automatic processing a very difficult task. So to say, medical knowledge
is “locked up” in paper documents, files or databases in formats which are not
suitable for automated processing [7]. Great efforts have been made to translate
this information into certain (semi-)structured representations; the activities al-
ways include manual or automatic information extraction from free texts. The
main difficulties to structure medical information are the complexity of the do-
main as a whole, the complex medical language, and the variety of practices for
including text descriptions in EHR, which are too specific for different countries
and different languages. Many language processing systems, which extract and
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codify information from EHR in English have been developed. Most generally,
they reflect at least two principally-different views to patient-related texts. The
first approach is automatic extraction of information concerning patients diag-
nosis, treatment, manipulations etc. and automatic coding of this information
with respect to some established classification schemes, which are provided by
financing or statistical institutions. There are large terminology-based nomen-
clatures such as SNOMED (the Systematized Nomenclature of Medicine) and
ICD (the International Classification of Diseases). These collections are unified
classification systems, translated into many languages, and support the health
management and health statistics. Recent critics to SNOMED explicate some
conceptual shortcomings which prevent its application as medical ontology in
semantic systems [16]. It remains unclear whether the same kind of terminology-
based ontologies can support all principally different systems, which are built
on top of medical information extraction. Regarding the extraction precision,
the leaders in the fields report successful recognition of the complex medical
terminology up to 80-85% even for English [12]. The second kind of prototypes
is oriented to medical research and knowledge discovery in medicine. It reflects
the AI view to text understanding: to translate the text to internal structured
representations, to make inferences, to discover interconnections between facts
and concepts which could remain unnoticed otherwise, and to spot previously
unknown regularities. Most prototypes of this kind are developed for English.
They benefit from the various language resources, available for English, among
them large public archives of medical abstracts. Practically there are no signifi-
cant developments for lesser spoken and minor languages.

Here we present the first steps towards building a system for automatic ex-
traction of medical facts from patient-related texts in Bulgarian language. This
research effort is made in a project, supported by the Bulgarian National Sci-
ence Fund in 2009-2011. We discuss briefly the general ideas behind the project
and present the results of its first steps - design and implementation of the Re-
lations Analysis Module and the Conceptual Graphs Generator. The paper is
structured as follows. Section 2 overviews some related research and discusses
basic language technologies which are used for Information Extraction (IE) in
the medical domain. Section 3 describes the general project ideas and sketches
a view to the system architecture. Section 4 presents the Relations Analysis
Module and the main types of relations which are automatically recognized at
present. Section 5 presents the module for generation of logical forms of Concep-
tual Graphs (CG) using the templates that are filled in by the extracted EHR
data. Examples and assessment figures describe the current experiments. Section
6 contains some discussions and the conclusion.

2 Related Work

An overview of the current EHR systems and their functionality can be found in
[3]. We focus on the natural language texts in the EHRs assuming that they are
available in certain integrated hospital information system. Another overview,
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comparison and evaluation of the language technologies which extract medical
information is given in [4,5]. The white paper [12] presents recent industrial
developments in the field.

Several language technologies are used to extract and codify medical infor-
mation. The most successful applications run for English due to many reasons,
among them the simple morphology. The tools for automatic natural language
analysis have to lemmatize the text, i.e. to recognize the basic form of every
wordform, and to group the separate wordforms into (complex) terms. After-
wards various relations between the sentence phrases have to be found to capture
the medical semantics. The main approaches for sentence processing include:

– Partial analysis of sentence segments or local phrases in order to fill in pre-
defined templates and to search for some specific relations and keywords, for
instance:
• using a shallow parser that captures relations between noun phrases

(NPs) [9]. The parser extracts relations between all NPs regardless of
their type. Then it searches for patterns in the text which are based
on English closed-class words - i.e. prepositions (by, of, in), negation,
conjunctions (and, or) and auxiliary or modal verbs. The extracted re-
lations can contain up to five arguments: relation negation, left-hand
side, connector modifier, connector and right-hand side;

• searching for cause-effect relations within the sentence parse tree. This
approach was used in [2] to identify and extract cause-effect information
that is explicitly expressed in the Medline medical abstracts. The system
is based on tree-like patterns that indicate the presence of certain causal
relation in the sentences, and which parts of the sentence represent cor-
respondingly the cause and the effect. The patterns are matched to the
syntactic parse trees of the sentences. Thus parts of the parse tree are
extracted as NPs referring to the cause or the effect;

• searching for treatment relations [8] using linguistic patterns which en-
able the discovery of treatment relations. These patterns are constructed
either semi-automatically or manually. Mining for ’association rules’ is
applied to sample sentences containing both a disease concept and a
reference to drugs, to identify frequently occurring word patterns and
evaluate whether these patterns could be used to identify treatment re-
lations in sentences;

– Deep parsing of whole sentence in order to construct detailed parsing trees
and to process further the sentence semantics;

– Combining several language technologies in a pipe-line environment - e.g. in
MedLEE (A Medical Language Extraction and Encoding System [10]).

Specific natural language processing tools are developed to ensure the proper
anonymisation of patient records [13] by removal of named entities and replac-
ing them by pseudonyms. Some prototypes deal with the essential problem of
negation in the patient records [6], among them there is a module for negation
processing in Bulgarian medical texts [1].
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3 Project Settings

The suggested system will work on EHRs collected in the Specialized Univer-
sity Hospital for active treatment in endocrinology, in the Clinical Centre of
endocrinology and gerontology - Sofia. It will be tuned to the particular domain
of diabetes (having in mind its importance). The extraction scenario reflects
the specific way of collecting patient information in this hospital. For instance,
information about the relatives identity is not systematically supported in the
EHRs although there are citations of relevant family diseases. This is due to
the fact that the documents are stored in electronic form in the recent years
only. Information is kept about the patients’ case history and there are links
between the different patient’s visits to the hospital. From the perspective of the
medical experts, the most urgent task is to analyze the hospitalization effects:
what happens to a patient when he or she enters the hospital in status A and
leaves it in status B, i.e. how the hospital treatment affects the patient state.
The prototype will extract the information needed for the automatic generation
of a Patient’s Chronicle - symptoms and diagnosis, hospital treatments and their
results. Based on the ideas of granularity shift using CG type definitions, type
contraction and type expansion [18] and applying inference rules, some more
general statements regarding the patient status will be produced, which will de-
scribe the medications effect given certain patient status. These ‘general’ graphs
will not deal with the single words and concepts in the personal EHRs but will
allow for summarizations of the patient information in more general terms which
are used by medical professionals when they describe medical knowledge. The
whole conceptual archive will support knowledge discovery in medicine. Today
we see it as a hypercube of conceptual graphs, corresponding to patients’ EHRs
and their generalizations. There will be connections between the nodes of dif-
ferent patient graphs which correspond to different visits to the hospital. This
very challenging and ambitious task includes much research to be performed
in several years. At the present moment we can discuss only the Information
Extraction solutions, which concern the words in the particular EHRs, and the
generation of conceptual graphs which capture the factology of the individual
patient records.

As usual in natural language processing of raw documents, the input medical
resources are really problematic - texts with specific abbreviations, numerical
values of analyses and clinical test data, medical terminology in Bulgarian in
Cyrillic and in Latin (using both the Cyrillic and the Latin alphabets), numer-
ous synonyms of the medical terms, spell-errors with one or two wrong symbols
per word, specific language style of the medical professionals and so on. All
these obstacles together are not easy to overcome. Another essential problem is
the rich temporal structure of the patient descriptions which prevents the ap-
plication of standard language processing techniques. Fortunately, we rely on
stable modules for morphological analysis, very large morphological dictionar-
ies of Bulgarian and well-studied technologies for corrections of spelling errors,
which encourages us to approach the automatic processing of raw medical texts
as they are stored in the hospital information system. The test corpus contains



104 S. Boytcheva and G. Angelova

about 8000 words and most of them are included in the very large lexicons of gen-
eral Bulgarian vocabulary which supports the morphological analysis. Previous
achievements in processing Bulgarian morphology enable chunking of sentence
phrases and recognition of the ICD-10 medical terms with precision higher than
50%, which will be improved for the narrow domain of diabetes. A represen-
tative corpus of epicrises facilitates the semi-automatic extraction of linguistic
templates which support the identification of important medical facts. So in
principle the project is equipped with basic background resources and tools for
natural language processing. Previous research of the negation in medical pa-
tient records in Bulgarian was carried out. It has revealed some typical language
constructions, specific features of the negation scope and solutions for their pro-
cessing [1]. The available components for processing the negation are extended
and integrated in the current system. Needless to say, the expectation is that
the automatic IE will work with partial success and many details (expressed
indirectly or by wrong words) will be missed in the texts. But we believe that IE
success of more than 75-80% will enable the development of an useful conceptual
archive which will provide a good basis for knowledge discovery and conceptual
search. Having in mind this ultimate project objective, we start by a narrow do-
main where we can progress more quickly with the natural language processing
activities.

Comparing the IE tasks for Bulgarian and English, we notice that there are
prototypes for English which are very successful in narrow domains - see for
instance [15], where the patient smoking status is identified automatically in
more than 92% of the cases. This is done by analysis of individual sentences in
the patient record. These sentences are selected due to the presence of predefined
keywords which occur in the text. Since we have no principal difficulties to tackle
the Bulgarian morphology and to perform automatic text lemmatization, we
believe that by the project end we can achieve comparable scores for IE success
in a narrow domain (where we have to extract more templates, however, possibly
from overlapping text fragments).

The design of our IE system is strongly influenced by the EHR structure. The
textual part of the EHR in Bulgarian has average length of 2-3 pages and 11
predefined and ordered sections: Personal data, Anamnesis, Status, Examina-
tions, Consultations, Debate, Treatment, Treatment results, Recommendations,
Working abilities, and Diagnosis.

The architecture of the IE component is shown at Fig.1. It contains the fol-
lowing modules: Annotation analysis and Chunking; Patients’ Data Module; Pa-
tients’ Relations Module; Templates Selection Module; Post Processing Module;
Extractor; Filling Templates Module; Relation Analysis Module; Logical Form
Generator / Conceptual Graphs Generator; Template and Relations Refinement.

At the first step, each EHR is split to its 11 sub-topics by the Annotation anal-
ysis and Chunking module. The annotation process is based on morphological
analysis using a lexicon of 30 000 lexemes. The common Bulgarian vocabulary is
expanded by medical terminology and specific words which are met in the avail-
able EHR corpus. For each wordform, the module finds its basic form (lexeme)



Towards Extraction of Conceptual Structures 105

Fig. 1. Pipe-line architecture of modules for information extraction from medical texts

with the associated lexical and grammatical features. Chunks are sequences of
words that build complex terms, syntactic groups or sentence phrases. They are
recognized by rules defined as regular expressions, which take into account the
morphological features of the lexemes and their mutual position. Mostly nominal
chunks (NPs) and Prepositional Phrases are recognized at present. The module
outputs tagged text.

The Patients’ Data Module extracts personal data from the corresponding
EHR section (taking into account the pseudonymisation). The Patients’ Rela-
tions Module creates a Patients’ Chronicle graph with nodes, which are slots of
templates full of patient information collected in different time periods. The sys-
tem searches for data about the same patient in the hospital information system.
If any is found, the module includes a pointer to the previous records according
to the case history. Otherwise the system generates a new graph.

After identifying the topics included in the particular EHR and the possible
connections between the patient visits to the hospital, the system needs to de-
cide which templates fit for the representation of the patient data. The possible
templates are stored in a resource bank, which contains templates for common
information as well as specific templates for the particular medical sub-domain.
We have studied representative amounts of EHRs together with the medical
experts and have created manually about 50 templates for different diabetes-
related facts that need to be tracked in the patient records. A sample template
is shown in Fig. 2. To narrow down the search while choosing a suitable template,
the system uses domain ontology. It is very helpful that every EHR is split into
11 sections and the medical experts have some well-established practices how to
write down the epicrises. The chosen template is included in the graph node for
the current patient’s EHR. The system maintains four types of ontologies - of
symptoms, of diagnosis, of drugs and a shallow ontology of body parts. More
details about the templates and their filling are given in Section 4.

The Post Processing Module recognizes important NP and VP chunks us-
ing the lexicon and partial grammar rules. Some efforts are needed to determine
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Fig. 2. Patient Status Template

Fig. 3. Templates for diagnoses with specific patient values

the VP chunks due to the telegraphic style of the medical reports which rearly
contain complete sentences.

The Extractor determines the patient’s symptoms, diagnoses and treatment
which are reported in the current EHR. The module for Filling Templates tries
to fill in the information for each node that is foreseen by the chosen template
(Fig. 3). Due to the narrow domain, the expected values of each node can be
prelisted. Analyzing the representative corpus of epicrises, we expect to be able
to identify all words which are the surface verbalization of the respective medical
notions. Some template slots might become empty but others are obligatory.

The Relation Analysis Module identifies three types of relations: is-a rela-
tions ; Cause-Effect relations ; Internal relations between symptoms, diagnosis
and treatment in one node of the patient case history and External Relations
(Fig. 4) between the different nodes of the patient’s chronicle graph.

The Logical Form Generator creates CGs represented in first order logic, us-
ing the identified relations and the information which is already present in the
templates (disregarding the empty slots). The last step is to check again whether
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Fig. 4. Relations within the Patient’s Chronicle-each node contains slots-templates

some empty slots in the templates can be filled in, given the context of all ex-
tracted information and the inference rules.

4 Relation Analysis Module

There are many kinds of relations between the concepts in medical texts but we
shall classify the relations in two general classes: internal (between the slots of
one EHR) and external (between the slots of two different EHRs, e.g. two records
for one patient in the chronicle graph). At present we are working actively on
the internal relations which are extracted with better accuracy.

Recognition of relations is crucial for proper text processing. For instance,
the causal relation has significant importance in medicine, which deals with
treatments and drugs that can affect or cure a disease. Due to this reason the
causal relation is often explicitly indicated in EHRs using linguistic means (i.e.
words such as result, effect, cause etc.). In some cases the specific phrasal struc-
ture helps to identify cue patterns, which work as indicators of the location of
desired knowledge [17]. Unfortunately not all the cause-effect relations can be
identified by keywords and phrasal patterns. There are more complex relations
for which it is necessary to process several discourse sentences and to make in-
ference in order to determine them. Khoo et al. [2] attempted to identify the
location of causal relationship description using dependency subtree patterns.
One very important task is to find a set of effective cue patterns suitable for the
domain and the mining goal. Usually the systems use cue patterns given a priori,
presumably devised by domain experts for the prescribed tasks or collected by
statistical studies.

In our initial experiment we use about 150 EHRs in Bulgarian for diabetic pa-
tients. We have investigated the specific verbalizations of the symptoms-diseases
relations in the corpus. The selected cue expressions are ranked by frequency
and include the most frequent adjectives, prepositions, adverbs and verbs:
“oplakvani� ot” (complaints) - 73% of its occurrences in the texts signal for
symptoms-diseases relations; “danni za” (there exists evidences for) - it appears
at least 2 times per each EHR and 100% of the occurrences denote symptoms-
diseases relations; “poradi” (because of) - 49.2% of the occurrences in EHRs
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encode a symptom or a disease; “po povod na” (reason for) - 74.6% of its occur-
rences in EHRs refer to symptoms and diseases, “s�obwava” (inform) - 100% of
its occurrences signal symptoms-diseases relations (but this cue is tricky because
it appears mostly in combination with negation and it is not easy to identify the
negation scope). All above mentioned cue phrases mark that the patient has
some symptoms and diseases. Shallow ontologies for symptoms, diagnosis and
body parts supported the process of cue patterns extraction.

At present the Relation Analysis Module recognizes the following types of
cause-effect relations for patient status: (i) Between slots in one template (Symp-
tom - Diagnose; Diagnose - Treatment); (ii) Between slots in two different
templates (Diagnose - Symptom; Treatment - Symptom; Diagnose - Diagnose;
Treatment - Treatment; Symptom - Symptom);

We take into account three major types of cue patterns: (i) Symptoms and
conditions of diseases; (ii) Verb expressions representing a relationship, inter-
action, or action; (iii) Symptoms and conditions of diseases - for this type of
patterns we use templates with predefined relations and empty slots for the con-
cepts (symptoms, diseases), as well as slots for characteristics representing the
condition.

4.1 Example for a Diabetic Patient

Post�pva za 1 p�t v klinikata, po povod na obwa otpadnalost, ace-
tonuri�, visoki sto�inosti na kr�vnoto nal�gane, a ot n�kolko dni
ima povr�wane. Zabol�vaneto e ustanoveno predi 4 godini pri izmer-
vane na kr�vna zahar, poradi obriv na liceto. V�preki naznaqenoto
leqenie s maninil i diaprel n�ma podobrenie.

This is the 1st visit of the patient to the clinic with complaints of general weak-
ness, acetonoria, high blood pressure, and sickness since few days. The disease
was detected 4 years ago by the high blood sugar measurement, made because
of a face rash. Despite of the treatment with Maninil and Diaprel there are no
changes for better.

After analysis and chunking of the first sentence we obtain:
Post�pva{Post�pva.V+IPF+I:R3s:E2s:E3s} za{za.PREP} 1{gb}

p�t {p�t.N+M:s} v{v.PREP} klinikata{klinika.N+F:sd},
po{po.PREP,po.PC} povod {povod.N+M:s}na{na.PREP}obwa{obw.A+GR:sf}
otpadnalost {otpadnalost.N+F:s} acetonori�{} visoki{visok.A+GR:p}
sto�inosti {sto�inost.N+F:p} na{na.PREP} kr�vnoto {kr�vnoto .A:sn,
kr�vno.ADV+MNN} nal�gane {nal�gam.V+IPF+T:VNs, nal�gane.N+N:s},
a{a.CONJ}ot{ot.PREP}n�kolko{n�kolko.PRO+IDF:ms}dni {den.N+M:p:c}
ima {imam.V+IPF+T:R3s:E2s:E3s} povr�wane {povr�wam.V+IPF+T:VNs,
povr�wane.N+N:s}

The Extractor uses a cue pattern (Fig. 5) for each symptom in order to locate in
the text as many words and phrases as possible and to send them to the Templates
Filling module. There are minimal requirements to fill in the obligatory slots of
any template, which is chosen as a relevant one, and in this case they are only:
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Fig. 5. Cue pattern for a symptom

[HAVE]->(AGNT)->[PERSON]
->(THME)->[SYMPTOM]->(CHAR)->[CONCEPT]

The remaining slots are optional and they are filled in when additional in-
formation is present. The extractor generates the following CGs for the sample
sentence 1:

[HAVE]->(AGNT)->[PERSON]
->(THME)->[SYMPTOM]->(CHAR)->[Weakness]->(ATTR)->[General]

[HAVE]->(AGNT)->[PERSON]
->(THME)->[SYMPTOM]->(CHAR)->[Acetonoria]

[HAVE]->(AGNT)->[PERSON]
->(THME)->[SYMPTOM]->(CHAR)->[Blood pressure]->(ATTR)->[High]

[HAVE]->(AGNT)->[PERSON]
->(THME)->[SYMPTOM]->(CHAR)->[Sickness]-

->(ATTR)->[since few days ago]

In this way the “elementary” cue patterns enable to fill in the templates by the
words and phrases which are encountered in the text. Implicit relations are found
in this way - e.g. AGNT, THeME, CHAR, ATTR, LOC. They do not correspond
to specific words in the EHR. Another type of cue patterns - “Verb expressions
representing a relationship, interaction, or action” - support the discovery of
relationships between the patients’ template slots as well as relations among
several slots in the patient’s chronicle.

Most generally, the relations between the slots in the different sections of one
EHR connect each Symptom with the corresponding Diagnosis and each Diag-
nosis with the corresponding Treatment. To discover such relations we apply
statistically collected cue phrases like effect, results, influence, changes, achieve-
ment etc. For instance, the cause-effect relation representing the result after the
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treatment ”leqenie - podobrenie” (treatment - improvement) can be found
in the sample sentence above with a specific negation: V�preki naznaqenoto
leqenie s maninil i diaprel n�ma podobrenie. (Despite of the treatment
with Maninil and Diaprel there are no changes for better.)

To discover relations between slots in different patient’s nodes of the Patients’
Chronicle graph we use the rich temporal information in the EHR. The most
frequent cue phrases include time, dates, years, months, temporal adverbs like
after, before, etc. The main task is to find the last and the first occurrence of each
symptom and diagnose and to connect them to the corresponding Treatment.
The example contains typical temporal information which has to be taken into
consideration and kept for future monitoring: Zabol�vaneto e ustanoveno
predi 4 godini poradi izmervane na kr�vna zahar, poradi obriv na
liceto. (The disease was detected 4 years ago by the high blood sugar measure-
ment, because of a face rash.)

The simplest templates are filled in with 92% correctness. However, the more
complex cue patterns extract too many irrelevant phrases and the results needs
manual human revision. On the other hand the too specific cue patterns generate
only few results. The process of relations identification should be iterative in
order to improve step by step the IE results, which is our main task at present.

5 Generation of CG in Logical Form

The CG generator collects all the information from the patient’s node templates.
Here we briefly introduce the CG generation algorithm:

– STEP 1: For each template Ti , construct one graph Gi using maximal join
operation for the corresponding common concepts in the template slots.

– STEP 2: For each internal relation R1, R2, ..., Rk between slots in the
template Ti, add consequently relations to the graph Gi between the corre-
sponding concepts.

– STEP 3: Cluster the set of all p templates {T1,T2, ..., Tp } in subsets de-
pending on whether the templates are linked by external relations. A given
template Tk belongs to a cluster Cm if and only if there exists a template Tn

from Cm and an external relation between Tk and Tn. The resulting clusters
contain interlinked templates.

– STEP 4: For each external relation between slots in the different templates
Ti and Tj , construct a relation between the corresponding concepts in Gi

and Gj and generate a new graph Gij ’
– STEP 5: Join all new graphs Gij ’ belonging to one cluster
– STEP 6: Represent all constructed CGs as Logical forms (LF).
– STEP 7: The EHRs archive contains as many LFs as the number of clusters.

This algorithm ensures the production of connected conceptual structures,
which encode interlinked information in the EHRs. Several issues have to be
mentioned here. The bottom elements in the construction are the system pat-
terns - like the one at Fig. 5 - which shape the extracted words/concepts into
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conceptual structures. The pattern relations are either present in the text explic-
itly, or are introduced by default as thematic roles like CHAR, ATTR, AGNT,
THeME. Joining the simple patterns at step 1, we obtain one conceptual graph:

[HAVE]->(AGNT)->[PERSON]
->(THME)->[SYMPTOM]-

->(CHAR)->[Weakness]->(ATTR)->[General]
->(CHAR)->[Acetonoria]
->(CHAR)->[Blood preasure]->(ATTR)->[High]
->(CHAR)->[Sickness]->(ATTR)->[since few days ago]

The internal relations between the templates enable joining of conceptual
structures which correspond to separate sentences and paragraphs. The rela-
tions correspond to referential links between text fragments. We assume that
there is no referential ambiguity since the domain language is very specific. Step
2 connects conceptual structures that are linked because of certain linguistic
evidences in the EHR text. For instance, if for the sample patient above it is
mentioned in the same EHR paragraph that he/she was diagnosed with diabetes,
then in the same template we would find the following graph:

[HAVE]->(AGNT)->[PERSON]
->(THME)->[Disease]->(CHAR)->[Diabetes]

After steps 1 and 2 we would obtain the following graph:

[HAVE]->(AGNT)->[PERSON]
->(THME)->[Disease]->(CHAR)->[Diabetes]
->(THME)->[SYMPTOM]-

->(CHAR)->[Weakness]->(ATTR)->[General]
->(CHAR)->[Acetonoria]
->(CHAR)->[Blood preasure]->(ATTR)->[High]
->(CHAR)->[Sickness]->(ATTR)->[since few days ago]

Steps 3 and 4 enable to build groups of interlinked templates and graphs in
case of external links (reflecting multiple patient records in the hospital infor-
mation systems). Steps 5 and 6 juxtapose one logical statement to conceptual
structure which encodes connected facts.

In general, the join operation may unify different unspecified instances of
the same concept type, which is problematic from a knowledge representation
perspective. However, studying EHRs we discover that most often each word
occurrence refers to one instance - e.g., the blood pressure of the patient. Also,
we assume that there are no ambiguous words which denote simultaneously in-
dividuals and concept types. In fact the lexical semantics of the nouns in natural
language allows them to refer to classes or instances [11] but in a narrow domain
all words can be examined in advance and the important semantic distinctions
can be marked in the system lexicon. We are currently investigating this issue,
in order to provide solid motivation behind our algorithms for construction and
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unification of patient-related conceptual structures. This on-going work will con-
tinue by tests and elaborations of our empirical approach which is tailored to
the specific domain.

6 Conclusion and Future Work

The research task presented here aims at the extraction of medical facts from
unstructured text in natural language. Since language technologies operate on
words and phrases, the atomic extracts are knowledge chunks corresponding to
domain-specific templates. The suggested scenario is based on the typical IE set-
tings; for instance all words, which remain outside the templates, are considered
as unimportant. Another typical issue for IE is the explication of the implicit
text relations via relation names defined in the template slots. At present we
evaluate the precision and recall of the initial experiments. Obviously, the im-
plementation of all extraction and modelling components will be iterative with
several development cycles.

Conceptual graphs are well-suited to serve as primary patterns because they
are adjusted to natural language applications. They also provide a well-defined
join operation, assuming that graphs can be ”merged” on their common concept
instances. Our intuition and the present text examinations show that very often
the words occurring in the EHR text point to single instances. This referential
particularity is another important issue to be studied in the near future.
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Abstract. Where posets are used to represent taxonomies, concept lat-
tices, or information ordered databases there is a need to engineer
algorithms that search, update, and transform posets. This paper demon-
strates an approach to designing such algorithms. It presents a picture
of covering relation traversals that characterises these in terms of up-set
and down-set expressions involving union, intersection, and difference.
It then provides a detailed analysis of three types of covering relation
traversal. The approach is demonstrated by describing a suite of derived
algorithms. The intention is to express a manner of decomposing math-
ematical problems into poset traversals, and to provide context to the
selection a particular traversal algorithm. This line of work has previ-
ously been pursued by [1]. However, the success and influence of Formal
Concept Analysis [2] has shifted the emphasis from posets to lattices,
and from algorithms that operate on the graph of the partial order to
the formal context. This paper contributes a methodology for the re-
newed investigation of poset algorithms, with the potential to lead to
improvements in algorithms such as the online completion to a lattice.

1 Introduction

Given its close relationship to knowledge representation through information or-
derings and domain theory, order theory is the subject of several computational
efforts. Much of the ground work for the approach presented in this paper was
laid by [1]. In particular, [1] explicitly considers the covering relation as the basis
of the implementation, and is unusual in emphasising the poset over the lattice.
However, the community that previously existed around conceptual graphs [3]
has merged with that of formal concept analysis [2]. Thus, the emphasis has
shifted to concept lattices, as the basis for both the formalism and the imple-
mentation. Hence, many order theory algorithms are now published in terms
of formal concept analysis. For example, the question of minimal insertion into
a lattice received attention in the general case [4], but has since been largely
considered in terms of formal concept analysis. See [5] for a survey.

This paper emphasises the role of the underlying covering relation, and explic-
itly represents it. Furthermore, it makes no presumption about the knowledge
of the order, whereas formal concept analysis techniques are predicated on the
structure of the formal context. For example, [6] defines a strict lexicographic
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ordering on subsets that is particularly useful when computing over formal con-
texts. In doing so we are able to put into practice many standard results of
algorithms and data structures based on graph theory, in particular breadth-
first and depth-first search. Hence, this paper presents generic poset traversal
algorithms parametrised by pruning and visiting procedures, and demonstrates
how a broad collection of important algorithms are expressed in terms of these
generic algorithms.

1.1 Notation

This paper assumes familiarity with the basic definitions and results of order
theory as presented in [7]. At the centre of the enquiry is the partial order
relation ≤ with the familiar shorthand x < y for x ≤ y and x �= y.

Definition 1 (Partially Ordered Set). A binary relation ≤ on a set P is a
partial order on P if it is reflexive, antisymmetric, and transitive. In which case,
we say P is a partially ordered set or poset.

Traversals of the poset are examined in the context of the covering relation. It is
the smallest relation ≺ that is a subset of ≤ such that ≤ is the transitive closure
of ≺. Upward traversals visit elements that are greater than a starting element,
and downward traversals visit elements that are less than a starting element.
Hence, we define up-sets, down-sets, up-closures, and down-closures where P is
a poset, A ⊆ P , and x, y ∈ P .

Definition 2 (Covering Relation). If x < y and there is no other z ∈ P with
x < z < y, then x is covered by y, written x ≺ y.

Definition 3 (Up-Sets and Down-Sets). A is an up-set if x ∈ A and x ≤ y
implies y ∈ A. Dually, A is a down-set if x ∈ A and y ≤ x implies y ∈ A.

Definition 4 (Up-Closure and Down-Closure). The up-closure of A is the
up-set {x ∈ P | ∃y ∈ A : y ≤ x} written ↑A. Dually, the down-closure of A is
the down-set {x ∈ P | ∃y ∈ A : x ≤ y} written ↓A.

Note the important role played by the Duality Principle. For each statement in
order theory, there is a dual statement in which the sense of every comparison
is reversed. If the original statement is true of posets, then so is the dual. As
a consequence, structures are defined in dual pairs, and dual results are sup-
plied without explicit proof. In particular, where upwards traversals are defined,
downwards traversals follow by duality.

2 Covering Relation Traversals

The central claim of this paper is that traversals of the covering relation are a
sound and expressive mechanism for engineering poset algorithms. For the sake
of brevity, I contract the term covering relation traversal to poset traversal. The
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justification of the claim has two parts. This section proves soundness by showing
that poset traversals visit sequences whose extension and order are provably
described by order theoretic expressions. Sec. 3 demonstrates the expressiveness
by describing a representative collection of poset algorithms.

The examination considers in turn the representation of a poset, the subset
visited by a traversal, the effects of pruning by element comparison, and finally
the effects of filtering the elements before processing. The combination of poset
traversals, pruning by comparison, and filtering generates a collection of algo-
rithms that is further expanded by consideration of the operational differences
between traversal algorithms as considered in the subsections that follow. The
intention is to express a manner of decomposing mathematical problems into
traversals, and to provide context to the selection a particular traversal.

The poset representation used in this paper is expressed in terms of the cov-
ering relation. Objects are denoted by conventional mathematical variables, and
their data structure components are denoted by calls to accessor functions type-
set in a fixed-width font. In order to support traversal, the accessor functions
identify the maximal and minimal elements in the poset, and the adjacencies in
the covering relation expressed via the functions over(P, x) = {y ∈ P | x ≺ y}
and under(P, x) = {y ∈ P | y ≺ x}. Each accessor returns a subset of the poset.
They are defined with respect to a poset P and an element x ∈ P .

heads(P ) = {x ∈ P | ∀y ∈ P : x �≺ y} over(P, x) = over(P, x)
tails(P ) = {x ∈ P | ∀y ∈ P : y �≺ x} under(P, x) = under(P, x)

Given the above representation, it is possible to traverse the covering relation
in either direction. By analogy to the definitions for up-closure and down-closure,
I refer to these directions as upwards and downwards, hence upwards poset traver-
sal and downwards poset traversal. A downwards covering relation traversal in a
poset is equivalent to an upwards covering relation traversal in its dual. Hence,
each traversal algorithm is accompanied by a dual algorithm enjoying dual re-
sults. I do not present these dual algorithms, nor their dual results, except to
note their name and construction.

Given a poset P and a starting subset A ⊆ P , an upwards traversal of P from
A is limited to the up-closure of A. Dually, a downwards traversal of P from A
is limited to the down-closure of A. This is a simple consequence of transitivity
— reachability in the covering relation is equivalent to comparison in the partial
order. These simple facts are the initial outline in a picture of poset traversals.

To limit the extent of a traversal pruning tests are introduced. In order to
be susceptible to general analysis, tests in an upwards poset traversal must de-
cide up-conditions defined as follows. The dual conditions are down-conditions
required for downwards poset traversal.

Definition 5 (Up-Conditions). An up-condition in a poset P is a formula C
in one free variable x such that {x ∈ P | C(x)} is an up-set in P .

Now an upward poset traversal on P that starts at A ⊆ P visits the up-closure
of A in P , namely ↑A. When pruned by an up-condition Cup the traversal visits
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the up-closure of A in P minus those elements belonging to the up-set described
by Cup, namely ↑A \ {x ∈ P | Cup(x)}. The dual applies for downward poset
traversals with down-conditions. This simple formulation generates a number
of possibilities, because of the complementarity between up-sets and down-sets,
and the opportunity to select starting points for either upwards or downwards
traversal.

This is best illustrated by directed Venn diagrams. These informal extensions
of Venn diagrams depict up-sets by regions that progressively widen upwards,
and dually for down-sets. For the following examples illustrated in Fig. 1, let P
be a poset, let A, B ⊆ P , let Cup,B be the up-condition formed by the disjunction
of comparisons b ≤ x such that b ∈ B, and let Cdown,B be the down-condition
formed by the disjunction of comparisons x ≤ b such that b ∈ B. Also note that
we can invert the up-condition by writing notCup,B, and the down-condition by
writing notCdown,B.

Given the above assignments, it is possible to compute the images in Fig. 1.
The union ↑A∪↑B is computed by unpruned upwards traversal from A∪B, and
the difference ↑A\↑B by upwards traversal from A pruned by Cup,B. The convex
subset ↑A∩↓B is computed by upwards traversal from A pruned by notCdown,B,
or vice-versa. In fact, the direction in which to compute an up-set or down-set

(a) (b)

(c) (d)

Fig. 1. Directed Venn diagram constructions via pruned poset traversal
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can be elected. So ↑B is computed by unpruned upwards traversal from B, or
downwards traversal from heads(P ) pruned by notCup,B. The Duality Principle
ensures the observations hold in the dual.

The ability to visit an up-set or down-set by either traversal from a starting
set or traversal pruned by a condition is important. A subset of interest may
provably be an up-set or down-set, yet we may lack an expression for its minimal
or maximal elements respectively. In this case, we can visit the subset by a
traversal pruned by the membership condition. For example, to search for the
elements that would be covered by an element e if it were inserted into a poset
P , visit the down-set {x ∈ P | x ≤ e} with up-condition x �≤ e.

The problem of visiting an up-set specified by a membership condition rather
than its minimal elements contains a second interesting case. Namely, we may
hold the membership condition CA of an up-set A and a starting set S such that
A ⊆ ↑S. In particular, there might be good reason to suspect ↑S \ A is small,
and hence to prefer an upwards traversal. Consider again the example of the
insertion of e into a poset P . Once the elements covered by e are computed, the
elements covering e are computed. These antichains determine updates required
to the representation of P for it to become a representation of P ∪ {e}. The
covering elements are contained in the up-closure of the covered elements, and
hence we may wish to proceed by starting a new upwards traversal the covered
elements.

The technique of filtering the visited elements to select a a subset to be pro-
cessed deserves further consideration. In the above example, the covered elements
are a subset of the pruned elements. However, the technique is general and can
be applied to extract subsets that are neither up-sets nor down-sets. In addition,
it completes the collection of directed Venn diagrams, by including a technique
for recovering the intersections during traversal. In this case, it is used to com-
pute upper and lower bounds. The idea by [1] is to represent the starting set by
a bit vector, and then during the traversal to propagate information about the
reachable elements of the starting set. In short, for each visited element the bit
vector is the bitwise OR of the bit vectors of the elements it covers. The visited
elements are then filtered according to whether their bit vector is complete.

The above discussion considers which elements are visited, but not when they
are visited. Secs. 2.1, 2.2, and 2.3 investigate this question for breadth-first,
depth-first, and topological traversals. The order of visits affects the implemen-
tation of the procedures to decide the pruning condition and operate on visited
elements, and their suitability as the basis for other poset algorithms.

Given the role of up-conditions and down-conditions in this approach, the
traversals of Secs. 2.1, 2.2, and 2.3 are described by algorithms parametrized
by a procedure to decide the pruning condition, and a procedure to operate on
the visited element. For example, breadth-first traversal is parametrised by the
procedures Prune and Pre. This raises issues in the proofs of correctness for
the algorithms, because we must consider the behaviour of these procedures to
reason about the operation of the algorithms.
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Clearly neither procedure should exhibit side effects in the traversal algorithm.
Namely, the pruning and visiting procedures should not alter the structure being
traversed, nor the state of the traversal. A more subtle problem concerns the
correct behaviour of the pruning decision procedure.

It is tempting to demand that the pruning decision be independent of the
position in the traversal. However, in Sec. 2.3 we note that this restriction would
rule out many useful algorithms that exploit the properties of topological traver-
sal. In particular, it rules out the propagation of reachability information as dis-
cussed. A more sophisticated assumption can be stated for the case of topological
traversal by exploiting the properties of the algorithm.

The next objective is to bridge the terminology of graph theory and order
theory in the context of poset traversal, in particular, to relate membership in
the visited subset with characteristic paths in the covering relation. It is helpful
to define a term denoting the collection of paths that extend from a starting
set A under pruning. This notational convenience allows us to succinctly state
the characteristics of the paths in a poset traversal. An ascendible path in the
covering relation extends from an element of the starting subset and terminates
at an unpruned element. The descendible paths are defined dually.

Definition 6 (Ascendible Paths). Let P be a poset, let A ⊆ P , and let Cup be
an up-condition. Then, the ascendible paths are the ≺ paths denoted as follows.

ascendible(P, A, Cup) =

⎧⎪⎨
⎪⎩

〈x0, x1, . . . , xm〉 ∈ P ∗ | x0 ≺ x1 ≺ · · · ≺ xm

and x0 ∈ A

and notCup(xm)

⎫⎪⎬
⎪⎭

The connection between order theoretic properties and graph theoretic proper-
ties can be made explicit via the traversable paths of Definition 6. Given a poset
P and a visited subset V = {x ∈ ↑A | notCup}, membership in V is equiva-
lent to the existence of a path in ascendible(P, A, Cup). Furthermore, every such
path is contained within V , so that the traversal of V does not visit elements
outside of V . The results are a simple consequence of the fact that membership
to an up-set is monotonic with respect to the sequence of elements in a covering
relation path.

Remark 1. Let P be a finite poset, let A ⊆ P , let Cup be an up-condition, and
let V = {x ∈ ↑A | notCup(x)}.

v ∈ V ⇐⇒ ∃〈x0, x1, . . . , xm〉 ∈ ascendible(P, A, Cup) : xm = v (1)
ascendible(P, A, Cup) ⊆ V ∗ (2)

2.1 Breadth-First Traversal in Posets

The breadth-first traversal of a poset uniformly expands the set of visited el-
ements across the breadth of a boundary. This ensures properties relevant to
some applications of graph theory but less relevant to the role of the covering
relation in order theory.
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Traverse-Up-Breadth-First(P, Binit, Prune, Pre)
a1: let Svisited ⊆ P ←− ∅
a2: let B ⊆ P ←− {x ∈ Binit | not Prune(P, x)}
a3: while B 
= ∅
a4: for all x ∈ B
a5: Pre(P, x)
a6: Svisited ←− Svisited ∪ {x}
a7: B ←− Traverse-Up-Breadth-First-Succ(P, B, Prune)

Traverse-Up-Breadth-First-Succ(P, B, Prune)
b1: let Bsucc ⊆ P ←− ∅
b2: for all x ∈ B
b3: for all v ∈ over(P, x)
b4: if v 
∈ Svisited and not Prune(P, v)
b5: Bsucc ←− Bsucc ∪ {v}
b6: return Bsucc

Fig. 2. Perform an upwards breadth-first traversal of poset P from Binit ⊆ P . The
traversal is pruned of elements for which Prune is true, and Pre is applied to unpruned
elements during pre-order visits.

The principal and well know property of breadth-first traversal is that the
sequence of boundaries is ordered by path length. Namely, if B0 is the set of
initial elements and Bi is the ith boundary, then for every element x ∈ Bi, the
length of the shortest path from an element in B0 to x is i. In other words,
breadth-first traversal ranks each node according to its minimum distance from
any of the initial nodes. Fig. 2 defines a procedure Traverse-Up-Breadth-First
that implements upwards poset traversal. The dual procedure Traverse-Down-
Breadth-First implements downwards poset traversal.

It is straightforward to prove that an upwards breadth-first poset traversal
pruned by an up-condition visits the difference of the up-closure of the initial
elements, and the elements selected by the up-condition. To begin, note that
preceding values of B partition the visited subset Svisited by Lines a4–a6, and
each subsequent value of B is disjoint from Svisited by Lines a7, and b1–b5. By
induction on lengths of ascendible paths, an unpruned path of length m, from an
initial element to an element x, guarantees x is visited in the mth execution of the
loop, so long as no shorter ascendible path exists. Namely, elements are visited
according to the length of the shortest path from an initial element. Finally,
the elements of {x ∈ ↑Binit | notCup(x)} enjoy ascendible paths by Remark 1.
Hence, the elements are visited, because every ascendible path is of finite length
in finite P , and the lengths of shortest ascendible paths form a sequence given
each prefix is itself a shortest ascendible path.

The path-length properties of breadth-first traversal are of little relevance
to order theory. Hence, Traverse-Up-Breadth-First has limited application,
especially given the properties of depth-first and topological traversal detailed in
Secs. 2.2 and 2.3. However, the algorithm exemplifies an approach to sequencing
operations that will be the subject of further analysis.
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Traverse-Up-Depth-First(P, Sinit, Prune, Post)
c1: let Svisited ⊆ P ←− ∅
c2: for all xinit ∈ Sinit

c3: if xinit 
∈ Svisited and not Prune(P, xinit)
c4: Traverse-Up-Depth-First-Visit(P, xinit, Prune, Post)

Traverse-Up-Depth-First-Visit(P, x,Prune, Post)
d1: for all v ∈ over(P, x)
d2: if v 
∈ Svisited and not Prune(P, v)
d3: Traverse-Up-Depth-First-Visit(P, v, Prune, Post)
d4: Post(P, x)
d5: Svisited ←− Svisited ∪ {x}

Fig. 3. Perform an upwards depth-first traversal of poset P from Sinit ⊆ P . The traver-
sal is pruned of elements for which Prune is true, and Post is applied to unpruned
elements during post-order visits.

Two properties of the breadth-first traversal algorithm are of interest. First,
breadth-first traversal processes elements in a sequence of subsets that partition
the visited elements. While the subsets have no special order theoretic property,
the idea has a natural extension in topological traversal, where the subsets are
antichains. Second, breadth-first traversal is immediate in its processing of cov-
ering elements. By comparison, depth-first traversal visits an element only after
visiting all greater elements. Thus, breadth first traversal is suggestive of lazy
search, where boundaries are computed on demand.

2.2 Depth-First Traversal in Posets

The depth-first traversal of a poset extends the current path from the initial
element wherever possible. Namely, it deepens the search first. In contrast to
breadth-first traversal, it must backtrack to visit all elements reachable from the
initial elements. Therefore, rather than maintain a set representing the boundary,
the algorithm maintains a stack representing the current path.

The principal and well known property of depth-first traversal is that the
post-order visit of a node x occurs only after the post-order visit of all nodes
reachable from x. Thus, the sequence of post-order visits in a downwards depth-
first traversal is a linear extension of the partial order, and the sequence of post-
order visits in an upwards depth-first traversal is a linear extension of the dual of
the partial order. This property is very useful, because it provides an invariant on
the execution of Post that expresses the partial order, namely that every element
greater than the current element has been processed. Fig. 3 defines a procedure
Traverse-Up-Depth-First that implements upwards poset traversal. The dual
procedure Traverse-Up-Depth-First implements downwards poset traversal.

The linear extension property of depth-first traversal is of particular im-
portance to client algorithms. Hence, it is asserted on the execution state of
Traverse-Up-Depth-First, and the execution of Post in particular.
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Lemma 1. Let Traverse-Up-Depth-First(P, Sinit, Prune, Post) invoke Fig. 3
where P is a finite poset, Sinit ⊆ P , Prune decides an up-condition Cup, and
Prune and Post are side effect free in Traverse-Up-Depth-First. Then,

{u ∈ P | x < u and notCup(u)} ⊆ {u ∈ P | Post(P, u) is executed}

at Post(P, x).

Proof. Let A(x) assert Lemma 1 is satisfied at Post(P, x). Assume A(v) is true
for all v ∈ over(P, x) : notCup(v). Note updates to Svisited are modeled by set
union given Line d5. Then at Post(P, x)

Svisited ⊇
⋃

v∈over(P,x):notCup(v)

{u ∈ P | v < u and notCup(u)} ∪ {v}

=
⋃

v∈over(P,x)

{u ∈ P | v ≤ u and notCup(u)}

= ↑ over(P, x) ∩ {u ∈ P | notCup(u)}

= {u ∈ P | x < u} ∩ {u ∈ P | notCup(u)}

because Cup(v) iff Cup(u) for all v ≤ u by Definition 5, then by distributive
laws and definition of up closure. Hence by mathematical induction because the
assumption agrees with the recursion in Lines d1–d4. ��

The next lemma confirms that an upwards depth-first traversal pruned by an
up-condition visits the difference of the up-closure of the initial elements, and
the elements selected by the up-condition. It is proved by showing the inclusion
in both directions of the equation.

Lemma 2. Let Traverse-Up-Depth-First(P, Sinit, Prune, Post) invoke Fig. 3
where P is a finite poset, Sinit ⊆ P , Prune decides an up-condition Cup, and
Prune and Post are side effect free in Traverse-Up-Depth-First.

{x ∈ P | Post(P, x) is executed} = {x ∈ ↑Sinit | notCup(x)}

While depth-first traversal is recommended by its simplicity and order theoretic
properties, a weakness is that the linear extension generated by post-order visits
does not extend to the sequence of pruning tests. However, there are occasions
when the fact that the pruning test is applied to all visited elements and all
elements covering the visited elements is of specific use. In particular, information
that is discovered in failing calls to Prune can be passed to the post order call
to Post.

2.3 Topological Traversal in Posets

Topological traversal is distinguished by order theoretic properties of the se-
quence of visits, and its frugality with respect to element comparison. It also
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Traverse-Up-Topological(P, Ainit, Prune, Pre)
e1: let Sinvited ⊆ P ←− Up-Closure(P, Ainit)
e2: let Svisited ⊆ P ←− ∅
e3: let A ⊆ P ←− {x ∈ Ainit | not Prune(P, x)}
e4: while A 
= ∅
e5: for all x ∈ A
e6: Pre(P, x)
e7: Svisited ←− Svisited ∪ {x}
e8: A ←− Traverse-Up-Topological-Succ(P, A, Prune)

Traverse-Up-Topological-Succ(P, A, Prune)
f1: let Asucc ⊆ P ←− ∅
f2: for all x ∈ A
f3: for all v ∈ over(P, x)
f4: if under(P, v) ∩ Sinvited ⊆ Svisited and not Prune(P, v)
f5: Asucc ←− Asucc ∪ {v}
f6: return Asucc

Fig. 4. Perform an upwards topological traversal of poset P from the antichain Ainit ⊆
P . The traversal is pruned of elements for which Prune is true, and Pre is applied to
unpruned elements during pre-order visits.

shares properties with both breadth-first and depth-first traversal. Like breadth-
first traversal, it iterates over a sequence of disjoint boundaries; and like depth-
first traversal, it visits elements in a linear extension of the partial order.

Informally, topological traversal can be viewed as a variant of breadth-first
traversal, where the graph theoretic path length property guarantees the or-
der of visits is a linear extension of the partial order. An element x ∈ P
is a member of the ith antichain if and only if the length of the longest as-
cendible path from the starting antichain Ainit to x is i. Thus, an element
is visited only once all lesser elements have been visited. Fig. 4 defines a
procedure Traverse-Up-Topological that implements upwards poset traversal.
The dual procedure Traverse-Down-Topological implements downwards poset
traversal.

The initial analysis of Traverse-Up-Topological follows that of Traverse-
Up-Breadth-First. Namely, the boundaries partition the traversal, and bound-
ary membership is decided by the lengths of ascendible paths. Again, note that
preceding values of A partition Svisited by Lines e5–e7, and each subsequent
value of A is disjoint from Svisited by Lines e8, and f1–f6. Then, Lemma 3 as-
serts that an unpruned path of length m, from a minimal element in P to an
element x, guarantees x is visited in the mth execution of the loop, so long as
no longer ascendible path exists. Namely, elements are visited according to the
length of the longest path from an initial element. It is also shown by induction
on lengths of ascendible paths.

Lemma 3. Let Traverse-Up-Topological(P, Ainit, Prune, Pre) invoke Fig. 4
where P is a finite poset, Ainit ⊆ P is an antichain, Prune decides an up-
condition Cup under topological order, and Prune and Pre are side effect free in
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Traverse-Up-Topological. Then,

x ∈ An ⇐⇒ ( ∃〈x0, x1, . . . , xm〉 ∈ ascendible(P, Ainit, Cup) :
xm = x and m = n )

and ( ∀〈x0, x1, . . . , xm〉 ∈ ascendible(P, Ainit, Cup) :
xm = x =⇒ m ≤ n )

where An is the value of A after Lines e5–e8 have executed n times.

The next lemma states that elements are visited only after all lesser elements
have been visited. The distinction between Lemmata 1 and 4 is that Traverse-
Up-Topological visits elements by iteration over antichains, and begins or-
dering the elements along the initial ascending paths rather than post-order.
This second fact is noted by amending the proposition to assert the ordering at
both Prune(P, x) and Pre(P, x). The result is a direct consequence of Lemma 3,
because if x ≺ y then the longest ascendible path to y is greater than that
to x.

Lemma 4. Let Traverse-Up-Topological(P, Ainit, Prune, Pre) invoke Fig. 4
where P is a finite poset, Ainit ⊆ P is an antichain, Prune decides an up-
condition Cup under topological order, and Prune and Pre are side effect free in
Traverse-Up-Topological. Then,

{u ∈ ↑Ainit | u < x} ⊆ {u ∈ ↑Ainit | Pre(P, u) is executed}
⊆ {u ∈ ↑Ainit | Prune(P, u) is executed}

at Prune(P, x) and also at Pre(P, x).

The next lemma confirms that an upwards topological traversal pruned by an
up-condition visits the difference of the up-closure of the initial elements, and the
elements selected by the up-condition. However, this result extends to the ele-
ments visited by Prune. Note that the elements in this difference enjoy ascendible
paths by Remark 1. Hence, Lemma 3 guarantees the elements are visited.

Lemma 5. Let Traverse-Up-Topological(P, Ainit, Prune, Pre) invoke Fig. 4
where P is a finite poset, Ainit ⊆ P is an antichain, Prune decides an up-
condition Cup under topological order, and Prune and Pre are side effect free in
Traverse-Up-Topological.

{x ∈ P | Pre(P, x) is executed}
= {x ∈ ↑Ainit | notCup(x)}

(3)

{x ∈ P | Prune(P, x) is executed}
= {x ∈ ↑Ainit | notCup(x)} ∪ tails({x ∈ ↑Ainit | Cup(x)})

(4)
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Topological traversal is recommended by its frugality with respect to pruning
tests. By Lemma 3, an element is not a candidate for testing until it has been
discovered along a longest ascendible path. The implementation of this condition
in Line f4 is straightforward — an element x ∈ P is not a candidate until it has
been discovered along every incoming edge. This is sound, because all ascendible
paths occur wholly within the unpruned space by Remark 1. Thus, an element
remains untested if a covered element is pruned or remains untested, and thus
failure propagates by indefinite deferral — pruning a single element x ∈ P
ensures that all elements reachable from x are never tested. Consider an upward
poset traversal from A. For breadth-first and depth-first traversals, x ∈ P is
tested if and only if x ∈ A or there exists an incoming edge originating from a
visited element. For topological traversal, x ∈ P is tested if and only if x ∈ A or
every incoming edge originates from a visited element. Hence, it requires fewer
pruning tests.

A further important property concerns the order of pruning tests. Superfi-
cially, both depth-first and topological traversal generate linear extensions of
the partial order or its dual. However, in a topological traversal the pruning
tests also enjoy this ordering, because depth-first traversal recovers the order
in post-order visits while topological traversal recovers the order in pre-order
visits. This has important consequences for algorithms based upon topological
traversal. At x ∈ P in an upwards topological traversal, the pruning of elements
greater than x can be informed by the processing of elements less than x. This
fact plays a key role in many algorithms. Hence, the pruning decision proce-
dure can be granted greater freedom by demanding only that Prune decide an
up-condition under topological order. This phrase denotes a sanction to prove
the correctness of Prune by mathematical induction, so long as the induction is
framed in terms of Lemma 4 concerning the order of visits.

A potential shortcoming of topological traversal is that it must distinguish
between elements that have not yet been visited, and elements that are outside
of the traversal. It is possible to avoid this issue if we search the poset as a whole.
However, there are instances where the generalisation of topological traversal to
include additional starting sets is important. For example, consider the case
where we have x ∈ P and wish to search for k given x < k. In this case, we can
restrict the search to ↑ {x} rather than search P .

Traverse-Up-Topological naively resolves the problem of distinguishing
between unvisited elements and elements outside of the traversal by first con-
structing ↑Ainit. This somewhat negates the advantage that topological traversal
generates the linear extension in pre-order visits. While less naive implementa-
tions clearly depend upon exploitable specifics, it is worth asking whether there
are general considerations impacting on Traverse-Up-Topological.

It is tempting to propose that breadth-first and topological traversals be in-
terleaved. Namely, that a breadth-first traversal operate as a coroutine of a
topological traversal, in much the same way a lexical analyser supports a parser.
However, each step of a breadth-first traversal generates the next rank of short-
est ascendible paths, while the question in Line f4 is whether there exist any
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undiscovered, ascendible paths. Topological traversal must defer the visit if there
exists an undiscovered, ascendible path. Breadth-first search cannot refute the
existence of ascendible paths until it has exhausted the poset.

We cannot avoid these problems without resorting to sources of informa-
tion outside the traversal. Two possibilities emerge: either we resort to apply-
ing a comparison to determine whether the unvisited elements belong to the
up-closure; or we employ ranking information stored from previous topological
traversals. The first solution annuls the comparison efficiency. The second solu-
tion requires additional mechanisms to keep the longest ascendible path ranking
up to date. Techniques to solve these problems are not considered in this pa-
per, because they do no affect the mathematical properties of the topological
traversal algorithm.

3 Conclusion

In summary, this paper provides a detailed framework within which distinct
classes of poset traversal are subsequently developed. This framework provides
both a detailed sketch of the traversable subsets of a poset, and definitions and
propositions to assist in realising this sketch under distinct types of poset traver-
sal. This allows many problems concerning partial orders to be decomposed into
traversals of the covering relation. Therefore, I conclude by providing examples
that demonstrate the most important techniques to realise an abstract data type
for posets. These cases exemplify the application of the generic poset traversal
algorithms to important poset algorithms, and employ the techniques depicted
in Fig. 1 and discussed in Sec. 2. Together Sec. 2 and this list justify the claim
that traversals of the covering relation are a sound and expressive mechanism
for engineering poset algorithms.

Covered and Covering Elements. Topological traversal is well suited to searching
a poset for a match with a key. It also recovers the elements covered by the key in
case no match exists. Dually, downwards topological search recovers the elements
that cover the key. These two sets are required to update the covering relation for
element insertion. Upwards topological search traverses the elements less than
or equal to the key by starting at the minimal elements and pruned elements
that are not less than or equal to the key.

Extremal Upper and Lower Bounds. The computation of extremal upper and
lower bounds by topological traversal exemplifies two important techniques ex-
ploiting the linear extension property of Lemma 4. The first is the recovery of the
extremal elements of the pruned subset, by simply recording elements as they
are pruned. By Lemma 4, if x ∈ P is pruned then elements greater than x cannot
be visited by Prune, so that Prune is successfully applied to exactly the minimal
elements in {x ∈ P | Cup(x)}. The second is the propagation of reachability in-
formation during traversal. In the case of reachability information, the ordering
on visited elements allows us to prove, by induction, that each visited element
enjoys complete information about the reachability of its covered elements.
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Element Removal. The first task of element removal is to determine reachability
after erasure. Namely, given 〈u, v〉 ∈ under(P, e)×over(P, e), we require an algo-
rithm to determine the existence of an ascendible path from u to v that bypasses
e. One approach is to erase e and adjacent edges, and then test reachability. This
approach is inelegant in that the modified covering relation is inconsistent with
both P \ {e} and P . An alternative is to compute the reachability on the un-
modified poset P by a topological traversal that computes reachability in Prune
given Lemma 4 with the exception that Prune discards reachability information
at e. Prune also returns false at an element of over(P, e), because over(P, e) is
an antichain and hence the elements are pairwise unreachable, and returns false
once all elements of over(P, e) have been discovered.

Join and Meet Operator Updates. The family of algorithms associated with the
incremental maintenance of join or meet operators provides excellent examples of
algorithms using depth-first traversal. The technique of representing the binary
join or meet operator of a lattice by a table, and then retrieving the partial order
via the Connecting Lemma is useful for type lattices.

The algorithms are based upon nested depth-first traversals of the lattice.
This is because the join and meet operators are composed of triples, in which
the elements can be distinguished as either operands or results. For example,
the equation x ∨ y = z is represented by a triple 〈x, y, z〉 in which x and y are
operands, and z is a result. A lattice traversal enumerates values for a single
element in the triple. By nesting traversals we are able to enumerate values for
a pair of elements. For example, to generate all pairs 〈x, y〉 ∈ K×K we traverse
the lattice to enumerate values for x, and for each such value we traverse the
lattice again to enumerate values for y. By careful application of the Connecting
Lemma and judicious use of pruning tests, we can develop traversals restricted
to the triples requiring update.
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Abstract. Real-world applications are often complex systems where
several ways of analysing a given situation can be expressed, depending
on actors’ viewpoints. This paper proposes a semantically sound syntac-
tic extension to Conceptual Graphs, namely Conceptual Graph Assem-
blies (CGAs), that allows the representation of multiple viewpoints on
the same situation. Several reasoning mechanisms, based on the projec-
tion operation, corresponding to different strength levels and adapted
to multi-viewpoints situations are then demonstrated. Several modelling
scenarios are then proposed and our work is put in the context of real
world examples from the agri-food domain.

1 Introduction

Quality control within agri-food chains relies on numerous criteria: nutritional,
functional, sanitary, environmental, economical, etc. The management of food
quality has to reconcile several facets constituted by these criteria. Moreover, the
objectives of quality are based on several actors: technicians, managers, users,
scientists, professional associations, public communities, etc. The importance
attached to the different quality criteria varies according to the considered ac-
tors. These elements lead to the following open research questions: “how to
represent, within a knowledge representation model, these contradictory view-
points?”; “how to take into account, by the reasoning mechanisms, the interests
of the different involved actors?”

The current structure of chains is questioned as for system perenniality, pro-
tection of the environment, public health issues, cost and energy. The actors’
viewpoints are divergent, hence it is necessary to define representational and
reasoning mechanisms able to model and take into account the balance between
viewpoints, and the risks and benefits they imply. Our general objective is the
conception of a decision support tool for the actors of an agri-food chain, in
presence of contradictory viewpoints and priorities.

In this context, as a first step, we built a knowledge-based system able to
represent the different kinds of knowledge needed, initially provided with con-
sistency checking, querying and symbolic simulation mechanisms. Given that
the information sources are both experimental data extracted from the domain

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 128–140, 2009.
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literature and expert statements, the intuitiveness and proximity to natural lan-
guage of the representation language are essential features. Moreover, the experts
should be able to understand the reasoning on their modelling and to validate
it, thus reasoning should be done directly on the knowledge representation and
feedback intuitive. Finally, a logical semantics is desirable as a foundation for
reasoning and the language should be flexible enough to be easily extended to
new features. For these reasons, conceptual graphs were initially chosen as the
knowledge representation and reasoning language for this specific application.

However, conceptual graphs cannot easily represent different, potentially con-
tradictory viewpoints, and moreover, rigorous mechanisms for reasoning about
this type of knowledge have not been put into place. In this paper we present
a formalism that allows the representation of such contradictory, inconsistent
type of knowledge for this application along with sound and complete syntactic
operation for manipulation.

A simple case of this problem has been addressed by Puder [9] who considered
alternative descriptions for one concept. He built a tree with this concept as a
root node, and used this structure for service trading in the AI-Trader project1.
This work is not sufficient in the context of the agronomy domain where whole
sentences could be debated and argued upon. In [10], an approach for viewpoint
representation is proposed in the framework of the conceptual graph model,
however it concerns the expression of facets of concepts in an ontology, i.e. the
terminological part of the model (the support), and does not treat the commen-
sal representation of several viewpoints in the assertional knowledge. Another
approach for representing viewpoints in the conceptual graph model is based
on nested graphs. They have been introduced at a descriptive level by Sowa
[12] as a way of representing contexts by structuring knowledge by levels, and
studied in further works such as [7,8]. Typed nestings were introduced by [2],
which allows to specify the relationship (description, explanation, etc.) between
the surrounding vertex and one of its descriptions and thus to explicitly attach
several descriptions to the same vertex. Each description can then be viewed as a
viewpoint, as proposed in [13] which more specifically focuses on how to associate
specific vocabularies with contexts. A drawback of the nested graph approach
is that it does not allow inter-viewpoint reasoning, such as inter-viewpoint pro-
jection or detection of contradictions between viewpoints. In [5,6] an extension
to Conceptual Graphs was proposed to further address the above mentioned
modelling needs. However, the proposed formalism was lacking in rigorousness
by the fact that the combinatorial structures proposed were not complete with
respect to the proposed semantics [5]. While this problem has been partially
solved in [6] the lack of a concrete practical framework to address the concrete
modelling needs of the agri-domain was still to be addressed.

In this paper we extend this formalism by showing different combinatorial
structures of defining sound and complete viewpoints as well as demonstrating
their applicability for the above mentioned problem in the agronomy domain.
Section 2 presents a motivating example, Section 3 introduces the formalism,

1 http://www.puder.org/aitrader/
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Section 4 shows how CGAs can be used in conceptual modelling, finally Section 5
concludes with some perspectives.

2 Motivating Example

Conceptual graphs [11,12] (CGs) are a logical, graph-based approach to knowl-
edge representation that introduce a clear distinction between ontological and
asserted knowledge. More specifically, a Conceptual Graph represents knowl-
edge as a support and an associated bipartite graph. The support encodes the
ontological, background information. It consists of a concept and a relation tax-
onomy along with the markers used to denote instances or generic concepts. The
factual information is depicted as a bipartite graph where one partition class,
the concepts, is represented using square nodes, and the other, the relations, is
represented using ovals. An example of a Conceptual Graph is depicted in the
figure below:

Fig. 1. Example of a Conceptual Graph

The conceptual graph in this figure states that the durum wheat product
P1 contains a lipoxygenase and carotenoid which is characterised by the yellow
color.

Reasoning with Conceptual Graphs means translating the Conceptual Graph
into FOL (First Order Logic) formulae and employing FOL deduction. Another
method looks at finding a homomorphism (projection) between two graphs
defined on the same support. These two methods have been proven equiva-
lent [1,12].

However, Conceptual Graphs can only represent static, “snapshot” facts about
the world. Indeed, the support encodes the hierarchies which classify the entities
and relations we need to describe a certain scene, while the bipartite graph
represents that scene. We do not have a proper built-in mechanism to describe
alternative scenes (e.g. as viewed from different / inconsistent view points). An
example of the expressivity needed for this application is depicted in figure 2.

In this figure two viewpoints are represented about the information given by
a conceptual graph: the scientist viewpoint (denoted “Sc.”) and the marketing
viewpoint (denoted “Mk.”). The scientist view indicates that the durum wheat
product P1 contains carotenoid characterised by the yellow color, lipoxygenase
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Fig. 2. Multiple viewpoints in the agri-food application

that deletes carotenoid, and peroxydase that generates a brown color which hides
the yellow one. It also indicates that the HT (High Temperature) drying deletes
lipoxygenase and peroxydase and generates a glutinous texture. The marketing
view indicates that the yellow color is wanted by the consumer and that the
glutinous texture is rejected by the consumer.

In this paper we propose a syntactic, semantically sound mechanism for rep-
resenting the expressivity needs mentioned above. Viewpoints are represented
using different combinatorial grouping in the Conceptual Graphs Assemblies
(CGA). Reasoning about viewpoints is done using an extension of the projec-
tion mechanism that respects the combinatorial structure induced by the CGA.
In the following example the query is searched in all of the viewpoints therefore
denoting a consensus.

For example, consider the following simple query composed of a single concept
vertex:

Fig. 3. Example of a simple query

The meaning of searching for this query in all of the viewpoints is highlighting
product properties that are of interest for all of them, e.g. in figure 2 for both
scientists and marketing. In the example of figure 2, there are two answers to
this query that appear in all the viewpoints. These answers correspond to the
concept vertices represented in greyed out shade in figure 4.
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Fig. 4. Answers to the query

3 Formalism

An ordered bipartite graph is a triple which consists of a set of concept nodes,
a set of relation nodes and a set of mappings between the relation nodes and
nonempty finite sequences over concept nodes. An ordered bipartite graph with
just one relation node is called a star graph. We consider a special kind of
subgraphs for our modelling purposes, namely spanned subgraphs. A spanned
subgraph induced by a set of relation nodes consists of the set of relation nodes,
the edges incident with these and the corresponding concept nodes.

Definition 1. (Ordered Bipartite Graph)
A triple G = (VC , VR, NG) is called an ordered bipartite graph if

- VC and VR are finite disjoint sets, ( VG := VC ∪ VR is the vertices set of G ),
and
- NG : VR → V +

C is a mapping; V +
C is the set of all finite nonempty sequences

over VC .
For r ∈ VR with NG(r) = c1 . . . ck, dG(r) := k is the degree of r in G and

N i
G(r) := ci is the i-neighbour of r in G. The set of (distinct) neighbours of r

is denoted NG(r).
The multiset EG of edges of G is EG =

(
{c, r}|c ∈ VC , r ∈ VR and ∃i such

that N i
G(r) = c

)
.

We further assume that for each c ∈ VC there is r ∈ VR and i ∈ N such that
c = N i

G(r) (G has no isolated vertices).
An ordered bipartite graph G = (VC , VR, NG) with |VR| = 1 is called a star

graph.
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If G = (VC , VR, NG) is an ordered bipartite graph and A ⊆ VR, the subgraph
spanned by A in G is the graph G[A] := (V 1

C , A, N1
G), where N1

G is the restriction
of NG to A and V 1

C = {c ∈ VC |∃r ∈ A and ∃i ∈ N such that c = N i
G(r)}.

If A = {r}, then we simply write G[r], which is referred to as the star sub-
graph spanned by r in G. Clearly, the graph G can be expressed as the union
of its star subgraphs: G = ∪r∈VRG[r].

Ordered bipartite graphs are appropriate tools to represent and visualize (di-
rected) hypergraphs. Visually, an ordered bipartite graph G = (VC , VR, NG) can
be represented using boxes for vertices in VC , ovals for vertices in VR and integer
labelled simple curves (edges) connecting boxes and ovals: if c and r are such
that c = N i

G(r), then we have an edge with label i connecting the box labelled c
to the oval labelled r (the labels of the vertices are depicted outside of the cor-
responding shape, and are used as visual marks only if it is necessary to make
the diagram more clear).

We also need some additional graph theoretical notations. If D = (V, E) is a
DAG (Directed Acyclic Graph), then a source (sink) in D is any node v of D
such that there is no entering (leaving) arc in (from) v.

A hypergraph is a pair H = (V,P(H)), where V is a nonempty finite set (the
vertices set of H), and P(H) is a family of nonempty subsets of V . Each member
P of P(H) is a hyperedge of H .

The next two definitions, following the line of [1], introduce the concepts of
support and Conceptual Graphs. A support is a structure that provides the back-
ground knowledge about the information to be represented in the Conceptual
Graphs. It consists of a concept type hierarchy, a relation type hierarchy, a set of
individual markers that refer to specific concepts and a generic marker, denoted
by *, which refers to an unspecified concept.

Definition 2. (Support)
A support is a 4-tuple S = (TC , TR, I, ∗) where:

- TC is a finite partially ordered set (poset), (TC ,≤), of concept types, defining
a type hierarchy (specialization hierarchy: ∀x, y ∈ TC x ≤ y means that x is a
subtype of y) and which has a greatest element "C, the universal type.

- TR is a finite set of relation types partitioned into k posets (T i
R,≤)i=1,k of

relation types of arity i (1 ≤ i ≤ k), where k is the maximum arity of a relation
type in TR. Each (T i

R,≤)i=1,k has a greatest element, the universal type "T i
R
.

- I is a countable set of individual markers, used to refer specific concepts.
- ∗ is the generic marker used to refer to an unspecified concept (having,

however, a specified type).
- The sets TC, TR, I and {∗} are mutually disjoint and I ∪ {∗} is partially

ordered by x ≤ y iff x = y or y = ∗.

A Conceptual Graph is a structure that depicts factual information about the
background knowledge contained in its support. This information is presented
in a visual manner as an ordered bipartite graph, whose nodes have been la-
belled with elements from the support. The label λ(v) is inserted in the shape
representing the node v.
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Definition 3. (Conceptual graph) A (simple) Conceptual Graph (CG) is a
triple SG = [S, G, λ], where:

– S = (TC , TR, I, ∗) is a support;
– G = (VC , VR, NG) is an ordered bipartite graph;
– λ is a labelling of the vertices of G with elements from the support S: ∀r ∈

VR, λ(r) ∈ T
dG(r)
R ; ∀c ∈ VC , λ(c) ∈ TC ×

(
I ∪ {∗}

)
.

We introduce now the notion of a Conceptual Graph Assembly (CGA) as a
structure which consists of a Conceptual Graph (CG) and a hypergraph on the
CG’s relation nodes. Each hyperedge defines a CG subgraph which is a member
of the CGA.

Definition 4. (Conceptual Graph Assembly)
Let S = (TC , TR, I, ∗) be a support, SG = [S, G, λ] a Conceptual Graph without
isolated concept vertices, and let H = (VR,P(H)) be a hypergraph on the set VR

of all relation vertices of G.
The pair CGA = (SG, H) is called a Conceptual Graph Assembly. The

members of CGA = (SG, H) are the Conceptual Graphs SGP = (S, G[P ], λP ),
where P ∈ P(H) is any hyperedge of H, G[P ] is the subgraph of G spanned by
the hyperedge P , and λP is the restriction of λ on the set of vertices of G[P ].

Note that any simple Conceptual Graph SG (without isolated concept vertices)
can be viewed as a Conceptual Graph Assembly with a single member, by taking
H as a hypergraph with a single hyperedge P(H) = (VR), containing all relation
vertices of G.

Each hyperedge can be considered as a given world; each CG member of a
CGA thus provides information available in this world. The hypergraph H can
be given explicitly or implicitly, by a combinatorial property of its hyperedges.
The latter case will be developed in Section 4.

Explicitly, the hypergraph H can be represented as a bipartite graph with
one node class VR, and the other (disjoint) class having a node vP for each
hyperedge P ∈ P(H), connected by edges to the relation nodes belonging to P .
In the visual representation of the Conceptual Graph SG, this new set of vertices,
VP , representing the members of the CGA, can be designated as diamonds. This
was illustrated in the example of figure 2.

From a knowledge representation point of view, this tripartite graph structure
has the property that the information is well organized in order to facilitate
reasoning (inferences) and, at the same time, presents itself as a visual medium
of expression.

CGs are provided with logical semantics; more precisely, an operator θ is
considered, which assigns to every support S a set of FOL formulas θ(S) and
maps each simple Conceptual Graph G to a conjunctive, existential closed FOL
formula θ(G). θ can be the well-known Sowa’s operator Φ, or a variant of it Ψ
discussed in [3]. A logical semantics of CGAs can be defined as follows.
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Definition 5. (CGA logical semantics)
Let θ be a logical semantics for CGs, and CGA = (SG, H) a Conceptual Graph
Assembly. Then, θ(CGA) is the disjunction of the formulas assigned by θ to the
members of CGA, that is,

θ(CGA) = ∨P∈P(H)θ(SGP ).

For example, consider the CGA CGAgrouping described in Figure 5 and θ = Φ.
Then, Φ(CGAgrouping)=[Color(yellow)∧Color(brown)∧hides(brown, yellow)]∨
[Color(yellow) ∧ Actor(consumer) ∧ Texture(glutinous) ∧ wanted(yellow,
consumer) ∧ rejected(glutinous, consumer)].

Projection [12] is the fundamental operation on simple Conceptual Graphs since
it can be used to define a preorder on the set of CGs based on the same support.
If SG = (G, λG) and SF = (F, λF ) are two CG’s defined on the same support
S, then a projection from SG to SF is a mapping Π : VC(G) ∪ VR(G) →
VC(F ) ∪ VR(F ) such that

- Π(VC(G)) ⊆ VC(F ) and Π(VR(G)) ⊆ VR(F );
- ∀c ∈ VC(G), ∀r ∈ VR(G) if c = N i

G(r) then Π(c) = N i
F (Π(r))

- ∀v ∈ VC(G) ∪ VR(G) λG(v) ≥ λF (Π(v)).

If there is a projection from SG to SF then SG subsumes SF , which is denoted
SG ≥ SF . This subsumption relation is a preorder on the set of all CG’s defined
on the same support. Subsumption checking is an NP-complete problem [1].

The notion of projection can be extended to CGAs. In the next definition we
consider three forms of projection (weak, mild and strong) under two scenarios:
projecting a CGA to a CG or projecting a CGA to a CGA. Intuitively we need
different projection mechanisms to account for the very nature of Conceptual
Graph Assemblies: commensalism. More precisely when trying to project a Con-
ceptual Graph Assembly in a simple conceptual graph we need to distinguish
from the case when the information encoded in the simple conceptual graph
is contained in at least one world, all of worlds, or the conceptual graph itself
represented by the Conceptual Graph Assembly. Similarly when projecting two
Conceptual Graph Assemblies (which is a generalization of the previous case)
we have to consider the same three possible situations.

Definition 6. (CGA Projection)
I. Let CGA1 = (SG1, H1) be a CGA and SG2 a CG. Then
- weak projection : CGA1 ≥w SG2 if there is P 1 ∈ P(H1) such that SG1

P 1 ≥
SG2.
- mild projection : CGA1 ≥m SG2 if SG1

P 1 ≥ SG2 for each P 1 ∈ P(H1).
- strong projection : CGA1 ≥s SG2 if SG1 ≥ SG2.

II. Let CGA1 = (SG1, H1) and CGA2 = (SG2, H2) be two CGAs . Then
- weak projection : CGA1 ≥w CGA2 if there are P 1 ∈ P(H1) and P 2 ∈
P(H2)such that SG1

P 1 ≥ SG2
P 2 .

- mild projection : CGA1 ≥m CGA2 if for each P 1 ∈ P(H1) there is P 2 ∈
P(H2) such that SG1

P 1 ≥ SG2
P 2 .



136 M. Croitoru and R. Thomopoulos

- strong projection : CGA1 ≥s SG2 if there is a projection Π from SG1 to
SG2 such that the restriction of Π to the relation vertices of SG1 is a homo-
morphism from H1 to H2.

Note that in the case when CGA1 = (SG1, H1) is a simple conceptual graph
(i.e. it contains a single member), weak, mild and strong projection are identical.

The following theorem can be easily deduced from the above definitions and
further explains the need for different combinatorial degrees of subsumption.
Note that strong and mild projection can give extra information with regard
to the associated CGA logical semantics. When defined from a CGA to a CG,
weak projection preserves the soundness and completeness of CG projection;
when defined on two CGAs, it only preserves the soundness.

Theorem 1. I. Let CGA1 = (SG1, H1) be a CGA and SG2 a SCG. Then the
following implications hold:

CGA1 ≥s SG2 ⇒ CGA1 ≥m SG2 ⇒ CGA1 ≥w SG2.

Furthermore, if θ is a logical semantics for CGs such that SG projection is sound
and complete with respect to θ then

CGA1 ≥w SG2 ⇔ θ(S), θ(SG2) |= θ(CGA1).

II. Let CGA1 = (SG1, H1) and CGA2 = (SG2, H2) be two CGAs. Then the
following implications hold:

CGA1 ≥s CGA2 ⇒ CGA1 ≥m CGA2 ⇒ CGA1 ≥w CGA2.

If θ is a logical semantics for CGs such that SG projection is sound and complete
with respect to θ then

CGA1 ≥w CGA2 ⇔

there is P 2 ∈ P(H2) s.t. θ(S), θ(SG2
P 2) |= θ(CGA1).

Proof
Part I. Suppose that CGA1 ≥s SG2. It follows that ΠG1→G2 �= ∅. Let π ∈
ΠG1→G2 and P 1 ∈ P(H1). π1, the restriction of π to the vertices of [P 1]G1 , is
a projection from SG1

P 1 to SG2. Therefore SG1
P 1 ≥ SG2 for each P 1 ∈ P(H1),

that is CGA1 ≥m SG2. The implication CGA1 ≥m SG2 ⇒ CGA1 ≥w SG2 is
obvious by the definition of CGA projection.

Let θ be a logical semantics for CGs such that SG projection is sound and
complete with respect to θ.

If CGA1 ≥w SG2, then there is P 1 ∈ P(H1) such that SG1
P 1 ≥ SG2. By

the soundness of θ, we have θ(S), θ(SG2) |= θ(SG1
P 1). Now, by the definition of

CGA semantics, θ(SG1
P 1) |= θ(CGA1), and therefore θ(S), θ(SG2) |= θ(CGA1).

If θ(S), θ(SG2) |= θ(CGA1), it follows that there is a term in the disjunction
θ(CGA1), say θ(SG1

P 1 ), where P 1 ∈ P(H1), such that θ(S), θ(SG2) |= θ(SG1
P 1).

By the completeness of θ, we obtain that SG1
P 1 ≥ SG2. We have obtained that
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there is P 1 ∈ P(H1) such that SG1
P 1 ≥ SG2 and, by the definition of CGA

projection, CGA1 ≥w SG2 holds.

Part II. Suppose that CGA1 ≥s CGA2. It follows, by the definition of CGA
projection, that there is π a projection from SG1 to SG2 such that P 2 = π(P 1) ∈
P(H2), for each P 1 ∈ P(H1). Obviously, SG1

P 1 ≥ SG2
P 2 . Therefore, for each

P 1 ∈ P(H1) there is P 2 ∈ P(H2) such that SG1
P 1 ≥ SG2

P 2 , that is, CGA1 ≥m

CGA2.
If CGA1 ≥w CGA2, then there is P 1 ∈ P(H1) and P 2 ∈ P(H2) such that

SG1
P 1 ≥ SG2

P 2 . By the soundness of θ, we have θ(S), θ(SG2) |= θ(SG1
P 1 ). Now,

by the definition of CGA logical semantics, θ(SG1
P 1) |= θ(CGA1), and therefore

θ(S), θ(SG2) |= θ(CGA1).
Conversely, if there is P 2 ∈ P(H2) s.t. θ(S), θ(SG2

P 2) |= θ(CGA1), then it
follows that there is a term in the disjunction θ(CGA1), say θ(SG1

P 1 ), where
P 1 ∈ P(H1), such that θ(S), θ(SG2

P 2 ) |= θ(SG1
P 1 ). By the completeness of θ, we

obtain that SG1
P 1 ≥ SG2

P 2 . Therefore, we have obtained that CGA1 ≥w CGA2.

4 Conceptual Modelling Using CGAs

As mentioned in the previous section, the hypergraph H defined on the Con-
ceptual Graph Assemblies relation nodes can be given explicitly (a list of the
hyperedges of H is provided) or implicitly. This section details the latter tech-
nique and shows how CGAs can be effectively used for knowledge modelling.

H is given by specifying a property of its hyperedges. In this way, it is pos-
sible to represent, in a succinct manner, an exponential number of members in
the CGA. However, if it is necessary, the explicit list of the hyperedges can be
generated. Let us give some interesting ways to specify the above property.

(Di)graphs. On the set VR of all relation vertices of the CG G, a graph (or
digraph) HG is provided. The edges (or directed edges) of the graph HG express
some links between their extremities. P(H) is described as a usual family of
subsets of the vertices set of HG having graph theoretical significance.

For example, if D is an arbitrary DAG on the set VR of all relation vertices of G,
we can take P(H) as the family of vertices of all paths in D starting from a source
and ending in a sink. The acyclicity condition assures that each path starting in
a source must reach a sink. If it is necessary, a dummy source and a dummy sink
are added in order to increase the visual quality of the digraphs considered (this
fictive nodes are not considered when the hyperedges of H are constructed).

Another example can be obtained if we consider a graph HG on the set VR of all
relation vertices of G with the set of edges expressing a compatibility relation. For
example, an edge {vr1 , vr2} ∈ E(HG) means that the facts expressed by vr1 and
vr2 in the CG G can be considered in the same time in order to describe a complex
factual information. Taking P(H) as the family of vertices of all maximal (w.r.t.
set inclusion) cliques in HG, we obtain a CGA with an exponential number of
members, which could be an elegant and efficient representational mechanism.
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Conceptual Grouping. Let S = (TC , TR, I, ∗) be a support, SG = [S, G, λ]
a Conceptual Graph without isolated concept vertices and CGA1 = (SG, H1) a
CGA. Let TH ⊆ TC be a given set of threshold concept types and let VTH ⊆ VC

the set of all concept vertices vc of the graph G, with the property that if λ(vc) =
(typevc , refvc) then ∃t ∈ TH such that typevc ≥ t (VTH contains the vertices of
G designating objects having the type “above” the prescribed threshold TH).

Taking P(H) as the family of all maximal (w.r.t. inclusion) subsets P of the
members P 1 of CGA1 such that NG(P ) ⊆ VTH , we obtain a new CGA whose
members describe only the facts about objects having a type above the threshold
set TH in the hierarchy given by S.

For example, starting from the CGA of figure 2, with TH = {Food product,
Color, Texture, Person}, we obtain the new CGA shown in figure 5. This CGA
contains two members P1 and P2. P1 indicates that the brown color hides the
yellow one. P2 indicates that the yellow color is wanted by the consumer and that
the glutinous texture is rejected by the consumer. The interest of such a trans-
formation can be, for instance, to determine parts of the knowledge base that
can be easily understood by a wide public, due to the non-specific vocabulary
used in the concepts.

Transversal Methods. Let CGA1 = (SG, H1) be a CGA. Taking P(H) as
the family of all subsets P of VR with the property that P ∩ P 1 �= ∅, for
each P 1 ∈ P(H1), we obtain a new CGA CGA = (SG, H) with interesting
combinatorial connections with the first one. For example, let us suppose that
CGA1 = (SG, H1) satisfies the property that ∀P 1 ∈ P(H1) and ∀P 2 ∈ P(H1),
if P 1 ⊆ P 2 then P 1 = P 2; if we take in P(H) only minimal transversal (that is
minimal subsets, w.r.t. sets inclusion, of VR intersecting all members of H1) then

Fig. 5. The new obtained CGA
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the hypergraph H has the property that its minimal transversals are precisely
the members of the initial hypergraph H1.

Another example in this category comes from the integration framework de-
scribed in [4]. Let SGi = [Si, Gi, λi], i ∈ [0, n], be a set of n + 1 CGs. For each
relation node r0

j ∈ V 0
R = {r0

1 , . . . , r
0
m}, a set R(r0

j ) of triples is provided. Each
such triple, (i, A, w) ∈ R(r0

j ) specifies a rewriting rule of r0
j in SGi: r0

j is trans-
lated in the spanning subgraph [A]Gi , and the k = degG0(r0

j ) neighbors of r0
j in

G0 are represented by the sequence w = w1, . . . , wk of concept nodes in [A]Gi :
N1

G0(r0
j ) is represented by w1, ..., Nk

G0(r0
j ) is represented by wk.

Now, for each transversal T of the hypergraph R = (R(r0
1), . . . , R(r0

m)), a
hyperedge is added to the hypergraph T i by considering the union of the relation
nodes sets of T contained in V i

R. In this way, n CGAs, CGAi = (SGi, T i), are
obtained.

Assisting Reasoning. Let SG = [S, G, λG] and SQ = [S, Q, λQ] be two CGs
defined on the same support S such that SQ ≥ SG.

If ΠQ→G = {π|π is a projection from SQ to SG}, then we can consider
Occ(Q, G) = (π(V Q

R )|π ∈ ΠQ→G). Taking H = (V G
R , Occ(Q, G)) we obtain a

CGA CGA = (SG, H) which gives all the occurences of the query SQ in SG.
For some usual query SQ this CGA can be pre-computed in order to have fast
response time. With the same goal of efficiency, the following CGA can be con-
sidered.

Let SG = [S, G, λ] be a Conceptual Graph and M a model for the support
S = (TC , TR, I, ∗). Suppose that M �|= SG and let us consider the CGA CGA =
(SG, H), H = (V G

R ,P(H)), where P(H) = (I|I ⊂ V G
R and M |= [I]G). It is easy

to see that H is an independence system on V G
R , that is, if I ∈ P(H) and I1 ⊆ I,

then I1 ∈ P(H).

5 Conclusions

In this paper we proposed a semantically sound syntactic extension to Concep-
tual Graphs: Conceptual Graph Assemblies (CGAs), and defined several rea-
soning mechanisms, based on the projection operation. We showed that CGAs
provide increased representational power. We proposed several modelling scenar-
ios and illustrated through an example in the agri-food domain the applicability
of this extension in practice, in particular for the representation of multiple
viewpoints on the same situation.

Conceptual Graph Assemblies are a flexible, versatile way of representing in-
terrelated facts, concurrent events or possible scenarios. In future work we plan
to explore two directions of modelling with CGAs: modelling temporal infor-
mation, by attaching a temporal value to the relation nodes of the conceptual
graph prior to defining the CGA by the means of this “stamp” value; modelling
multi-viewpoints reasoning such as conflict detection – that can be viewed e.g. as
the projection of a negative constraint in the conceptual graph represented by a
CGA –, and resolution proposals through argumentation and decision methods.
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We believe these are promising directions of work which will further demonstrate
CGAs applicability.
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Abstract. Role Based Access Control (RBAC) is a methodology for
providing users in an IT system specific permissions like write or read to
users. It abstracts from specific users and binds permissions to user roles.
Similarly, one can abstract from specific documents and bind permission
to document types.

In this paper, we apply Description Logics (DLs) to formalize RBAC.
We provide a thorough discussion on different possible interpretations of
RBAC matrices and how DLs can be used to capture the RBAC con-
straints. We show moreover that with DLs, we can express more intended
constraints than it can be done in the common RBAC approach, thus
proving the benefit of using DLs in the RBAC setting. For deriving addi-
tional constraints, we introduce a strict methodology, based on attribute
exploration method known from Formal Concept Analysis. The attribute
exploration allows to systematically finding unintended implications and
to deriving constraints and making them explicit. Finally, we apply our
approach to a real-life example.

1 Introduction

1.1 Access Control Matrix, RBAC, Description Logics

An access control matrix M , first introduced by Lampson [1], is an abstract
formal computer security model which consists of a set of objects O, subjects S
and actions A. Each matrix row represents a subject and each column represents
an object. Each matrix element M [s, o] ⊆ A is the set of actions which a subject
s ∈ S is allowed to perform on object o ∈ O. For any type of access control
system it can model the static access permissions, ignoring further definitions
of a policy like rules and dynamic behavior in time. One type of access control
system is Role Based Access Control (RBAC) [2], which abstracts from specific
users and binds permissions to user roles. The permission set of a specific user is
the union of all permissions of the roles he is assigned to. Flat RBAC comprises
a set of users U , a set of roles R and a set of permissions P . Users are assigned
to roles via a relation UA ⊆ U × R, and permissions are assigned to roles via
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a relation PA ⊆ R × P . One extension to this simple model is Hierarchical
RBAC, which introduces a hierarchy of user roles for permission inheritance.
The partial order ≥R⊆ R × R defines the role dominance relation. If a senior
role rs ∈ R dominates a junior role rj ∈ R, it inherits all permission from it (i.e.
∀p ∈ P : (rj , p) ∈ PA ∧ (rs, rj) ∈≥R→ (rs, p) ∈ PA).

The relationship between RBAC and other access control systems which can
be modeled with the access control matrix has been elaborated in [3]. For our
paper we straightforwardly interpret the set of user roles as the set of subjects
(S = R) and we define permissions as a set of tuples of action and object
(P ⊆ A×O). We call this an RBAC matrix. An RBAC policy can not completely
be described by an RBAC matrix, since it contains further constraints, e.g. rules,
dynamic behavior in time, user role hierarchy, implications between the allowed
actions etc. Objects do not need to be individuals but could also be abstract
groups. As an example for the RBAC matrix, each row represents a user role
and each column a document type.

Description Logic (DL) [4] systems are formal knowledge representation and
reasoning systems which provide inference services that deduce implicit knowl-
edge from the explicitly represented knowledge. For these inference services to
be feasible the underlying inference problems must at least be decidable, since
DL is a decidable fragment of First Order Logic this is provided. Some proposals
are available to model an RBAC policy with a DL ontology, in order to reduce
authorization decision to standard reasoning services. Some of these approaches
contained modeling flaws which we discussed in [5] and [6].

1.2 Our Contributions

Our paper discusses how FCA can be applied in order to provide services to
a security policy designer. In our approach, a role-based access control matrix
is formalized as triadic formal context KR,D,P := (R,D,P, I), with a set R of
role names, a set D of document type names and a set P of permission names.

Although it is quite straightforward to use an access control matrix as a
model for RBAC, the interpretation of the matrix is not a priori clear. The
paper contains a discussion of three interpretations of an RBAC matrix.

Up to now the DL modeling was done with ad hoc approaches. In [6] we
discussed a flawed approach and proposed a reworked version. In this paper, we
show how in each of the three possible interpretations, the information contained
in the RBAC matrix is correctly modeled by DL general concept inclusions
(GCIs). The used DL is ALEROI which is a subset of SROIQ, the basis for
the coming W3C OWL 2 standard. This DL is required to simulate the concept
product expressions RI × DI ⊆ PI and (RI × DI) ∩ PI = ∅.

Using DLs, it will turn out that we can model additional constraints which
are intended by the RBAC engineer, but which cannot be modd in role-based
access control matrix alone. For example for a review process, it is not allowed
that the same person who writes a document also approves it. The inclusion
of axiom mayWrite � mayApprove $ ⊥ in the DL model defines that both
permissions are disjoint. The DL model allows consistency checks of the RBAC
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policy with given additional restrictions. Both the higher expressiveness of a DL
based modelling approach and the consistency check clearly show the benefit of
using DLs for RBAC.

Generally, one can say that ontology editors provide reasoning facilities, where
for example the consistency of an DL knowledge base can be checked. Roughly
speaking, ontology editors support checking the soundness of a DL knowledge
base. In this paper, we do not only target the soundness of the DL formalization
of an RBAC matrix, but also the completeness (compare to [7]). We introduce
a strict methodology, based on the attribute exploration method of FCA, for
deriving additional constraints in RBAC setting. Our methodology derives such
constraints not explicitly contained in the RBAC matrix in a computer supported
dialog with the RBAC engineer. This helps the engineer to create the policy as
DL model based on the matrix.

The paper is structured as follows: In Sec. 2, all relevant notions are formally
defined, and the running example we will use is introduced. Moreover, in this
section the tree possible interpretations of an RBAC matrix are discussed. In
Sec. 3, we show how the information of an RBAC matrix can be expressed by
means of DL GCIs. In Sec. 4, we thoroughly discuss how attribute exploration
can be used in order to obtain additional constraints from the RBAC matrix,
and how these constraints are then modeled with DL GCIs. In Sec. 4, we apply
our approach to a real-life example. Finally, in Sec. 6 we summarize this paper
and discuss future research.

2 Basic Definitions

In this section, all relevant notions which will be used in this paper are formally
defined, and our working example is introduced.

Vocabulary: As already mentioned, our starting point is a three-dimensional
matrix, where the three dimensions are the roles, document types and permis-
sions. In order not to mix up user roles and DL roles, with “role” we always
refer to a user role, whereas we use the OWL terminology “property” for a
DL role. In our ongoing formalization, both roles and document types will be
modeled as concept names of a (appropriately chosen) DL, and each permis-
sion will be modeled as a property between roles and document types. That
is, we consider a DL vocabulary which consists of a set R of role names, a set
D of document type names, and of a set P of permission names. The vocabu-
lary of these names will be denoted V. We will use a working example with
specific roles, document types and permissions. We consider the permissions
mayApprove, mayWrite and mayOpen, which are abbreviated by MA, MW and
MO, respectively. The document types are user manual, marketing document,
customer contract document, term of use document, installation guide, external
technical interface document, design document and rating entry, abbreviated by
UM, MD, CCD, ToUD, IG, ETID, DD, RE. The roles are marketplace visitor, ser-
vice consumer, software development engineer, service vendor, legal department em-
ployee, service provider, marketing employee, technical editor and customer service



144 F. Dau and M. Knechtel

Table 1. Our example RBAC matrix

mayOpen mayWrite mayApprove
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MV × × ×
SC × × × × × × × × ×
SDE × × × × × × × × × × × ×
SV × × × × × × × × × × × × × × ×
LDE × × × × × × × × × ×
SP × × × × × ×
ME × × × × × × × ×
TE × × × × × × × × × × ×
CSE × × × × × × × × ×

employee, abbreviated by MV, SC, SDE, SV, LDE, SP, ME, TE and CSE. This ex-
ample stems from the research project Theseus/Processus from a scenario where
documents describe aspects of services offered in the Internet of Services. The
documents are accessible by different roles with different permissions.

Formal Contexts: The three-dimensional matrix of roles, document types and
permissions is formalized as a triadic formal context KR,D,P := (R,D,P, I). The
example we use in this paper is provided in Tab. 1.

Our aim is to conduct an attribute exploration in order to explore dependen-
cies between different roles, different document types, or different permissions.
As attribute exploration is applied to dyadic contexts, we have do derive such
contexts from the given triadic context. This can be done in several ways.

1. First, we can consider “slices” of the triadic context. For our goal, it is most
useful to consider the “slice” for each P ∈ P. That is, for a given P ∈ P, we
consider KP

R,D := (R,D, IP), where (R, D) ∈ IP :⇔ (R, D, P) ∈ I.
2. Next, we can consider the dyadic contexts, where the set of attributes is one

of the sets R, D, P, and the set of objects is the cross-product of the remain-
ing two sets. E.g. we can consider the context KR×P,D := (R×P,D, IR×P,D)
with ((R, P), D) ∈ IR×P,D ⇔ (R, D, P) ∈ I. This is a straight-forward trans-
formation. To simplify notations, we will denote the incidence relation again
by I, thus writing (R × D,P, I). We can construct six dyadic contexts this
way, namely KR×D,P, KP×R,D, KD×P,R and the respective named variants
with identical cross table KD×R,P, KR×P,D, KP×D,R.

3. For a given context K := (G, M, I), when attribute exploration is conducted,
sometimes it is sensible to add an additional attribute ⊥ (which satisfies
¬∃g ∈G : (g,⊥) ∈ I) to M . We use K⊥ := (G, M ∪ {⊥}, I) to denote this
context (again, we simply ‘reuse’ the symbol ‘I’ for the incidence relation).
In our example no agent will be allowed to write and approve the same
document, thus mayApprove ∧mayWrite → ⊥.
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As each of the formal context only deals with names for roles, document
types, and permissions, but not with instances of these names (in some DL
interpretations, see below), all these formal contexts are called T -context.

Interpretations: The DL-interpretations for RBAC matrices are straightfor-
wardly defined: For our setting, a DL-interpretation for V is a pair (Δ, · I) with
a non-empty universe (of discourse) Δ and an interpretation function · I which
satisfies:

– RI ⊆ Δ for each R ∈ R. Moreover, we set RI :=
⋃

R∈R RI . The elements
r ∈ RI are called agents.

– DI ⊆ Δ for each D ∈ D. Moreover, we set DI :=
⋃

D∈D DI .
– PI ⊆ RI ×DI for each P ∈ P
– RI ∩DI = ∅ (nothing is both agent and document)
– RI ∪DI = Δ (everything is either agent or document)

Note that the first two conditions are standard conditions for DL interpretations,
whereas the last 3 condition are additional constraints.

Permissive, Prohibitive and Strict Interpretations: As each formal object
and attribute of (R,D,P, I) stands in fact for a whole class of agents resp.
documents, it is not a priori clear what the semantics of the incidence relation I
with respect to an interpretation (Δ, · I) is. So we have to clarify the meaning of
I. First we might assume that a relationship (R, D, P) ∈ I means that each agent
r ∈ RI has the permission PI for each document d ∈ DI . So a cross in the cross-
table of the context (R,D, IP) grants permissions to agents on documents, and
we can read from the context which permissions are at least granted to agents.
Vice versa, we might assume that a missing relationship (R, D, P) /∈ I means that
no agent r ∈ RI has the permission PI for any document d ∈ DI . So a missing
cross in the cross-table of the context (R,D, IP) prohibits that permissions are
granted to agents, and we can read from the context which permissions are
at most granted to agents. And finally, we could of course assume that both
conditions hold. That is, we can read from the context which permissions are
precisely granted to agents.

These three understandings lead to the notion of permissive, prohibitive and
strict interpretations (with respect to the formal context) summarized in Tab. 2.
They are formally defined as follows:

– An interpretation (Δ, · I) is called permissive (with respect to KR,D,P), and
we write (Δ, · I) |=+ (R,D,P, I), iff. for all role names R ∈ R, all document

Table 2. Variants how to interpret a cross in the context

interpretation cross no cross
strict permission for all individuals prohibition for all individuals
permissive permission for all individuals permission for some individuals
prohibitive permission for some individuals prohibition for all individuals
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type names D ∈ D all permission names P ∈ P we have:

(R, D, P) ∈ I =⇒ ∀r∈RI ∀d∈DI : (r, d) ∈ PI

In other words, if (R, D, P) ∈ I, we have RI ×DI ⊆ PI .
– An interpretation (Δ, · I) is called prohibitive (with respect to KR,D,P), and

we write (Δ, · I) |=− (R,D,P, I), iff. for all role names R ∈ R, all document
type names D ∈ D all permission names P ∈ P we have:

(R, D, P) /∈ I =⇒ ∀r∈RI ∀d∈DI : (r, d) /∈ PI

In other words, if (R, D, P) /∈ I, we have (RI ×DI) ∩ PI = ∅.
– An interpretation (Δ, · I) is called strict (with respect to KR,D,P), iff. it is

both permissive and prohibitive.

We say that we use the permissive approach (prohibitive approach, strict
approach), if we assume that each interpretation is permissive (prohibitive,
strict).

Instantiations of Contexts: As already said in the introduction, it will turn
out that for running attribute exploration on the context, it is reasonable not
to consider the T -context, but contexts where on the side of the objects, roles
are replaced by “real” users resp. document types are replaced by “real” doc-
uments. Essentially, instantiations of a context contain at least all rows of the
given context, and there might be more rows, but these additional rows must be
extensions of rows in the given context. These contexts are now introduced.

Let one of the contexts KP
R,D := (R,D, IP) (P ∈ P) be given. An instantiation

of KP
R,D is a context (R,D, JP), where R is a set of agents such that

Table 3. The context KmayWrite
R,D and one possible instantiation
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MV

SC ×
SDE × × × ×
SV

LDE × ×
SP

ME ×
TE × × × ×
CSE ×

U
M

M
D

C
C
D

T
o
U

D
IG E
T

ID
D

D
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agent1
agent2 ×
agent3 × × × ×
agent4
agent5 × ×
agent6
agent7 ×
agent8 × × × ×
agent9 ×
agent10 × × ×
agent11 × × × × × ×
agent12 × ×



Access Policy Design Supported by FCA Methods 147

– ∀R∈R ∃r∈R ∀D∈D : (R, D) ∈ IP ⇔ (r, D) ∈ JP

– ∀r∈R ∃R∈R ∀D∈D : (R, D) ∈ IP ⇒ (r, D) ∈ JP

Such a context will be denoted KP
R,D. We define similarly the instantiations

KR×P,D of KR×P,D, and KP×R,D of KP×R,D (where again the role names are
replaced by agents), as well as the instantiations KP

D,R of KP
D,R (P ∈ P), KD×P,R

of KD×P,R, and KP×D,R of KP×D,R (where now the document type names are
replaced by documents).

Instantiations of the contexts where the permissions are the attributes, i.e.
instantiations KD×R,P of KD×R,P (resp. KR×D,P of KR×D,P) are defined similarly
(where on the side of the objects, both document type names and role names
are replaced by “real” documents and “real” agents, respectively).

An example for an instantiation of KmayWrite
R,D is given in Tab. 3.

3 Expressing the Cross-Table by GCIs

In this section, we scrutinize how the information of the context KR,D,P can
be expressed by means of DLs. Besides the standard DL quantifications ∃R.C
(the set of entities which stand in relation R to at least one instance of C) and
∀R.C (the set of entities which stand in relation R only to instances of C), we
will use the non-standard constructor ∀C.R (the set of entities which stand in
relation R to all instances of C). This constructor can be expressed by means of
negation of relations, as ∀C.R is equivalent to ∀¬R.¬C (see [8] for a thorough
discussion of the constructor). Adding it to ALC still yields a decidable DL, but
as this constructor is certainly non-standard, is it not supported by common DL
reasoners.

For the permissive approach, we have to capture the condition RI×DI ⊆ PI .
The left expression is a concept product. It can not be expressed in SHOIN (D),
which is the underlying DL of OWL DL. In OWL 2.0, there does not exist a
native language construct for the concept product, but Krötzsch, Rudolph, Hit-
zler provide in [9] a workaround to express it in OWL 2.0. Using the constructor
∀C.R, the condition RI ×DI ⊆ PI can be expressed with the GCIs

R $ ∀D.P (i.e. R $ ∀¬P.¬D) and D $ ∀R.P−1 (i.e. D $ ∀¬P−1.¬R)

For the prohibitive approach, the condition (RI × DI) ∩ PI = ∅ has to be
captured. This can be expressed by the two GCIs

R $ ∀P.¬D and D $ ∀P−1.¬R

Note that this condition is precisely the condition for the permissive approach,
when we replace each permission P by its complement ¬P. This duality principle
will be discussed in the next section.

If we knew that KR,D,P is correct, and if we know which type of approach
(permissive, prohibitive, strict) we use, then we can describe the information of
KR,D,P by DL GCIs. We first set Rall :=

⊔
R∈R R and Dall :=

⊔
D∈D D. Now we

define the following knowledge base:
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KB0 := {Rall � ∀P.Dall , Dall � ∀P−1.Rall | P ∈ P} ∪ {Rall � ¬Dall} ∪ {Rall � Dall ≡ �}

Obviously, a general DL-interpretation (Δ, · I) is a DL-interpretation of V iff.
it satisfies KB0. According to the chosen approach, we can now capture the
information of KR,D,P as follows:

KB+ := KB0 ∪ {R $ ∀¬P.¬D , D $ ∀¬P−1.¬R | (R, D, P) ∈ I}
KB− := KB0 ∪ {R $ ∀P.¬D , D $ ∀P−1.¬R | (R, D, P) �∈ I}
KB± := KB+ ∪KB−

Again, a DL-interpretation is obviously an permissive (prohibitive, strict) inter-
pretation of KR,D,P, if it satisfies KB+ (KB−, KB±).

4 Using Attribute Exploration for RBAC Matrices

In this section, we discuss how attribute exploration can be utilized in order
to create a DL knowledge base which captures as best as possible the depen-
dencies between roles, documents, and permissions. It is crucial which approach
(permissive, prohibitive, strict) we use, thus we first elaborate the differences
between these approaches with respect to attribute exploration. In the second
and third part of this section, we go into the details of an attribute exploration
for instantiations of contexts in the permissive approach.

4.1 General Discussion

We first compare the permissive and the prohibitive approach. In the permis-
sive approach, the crosses in a cross-table carry information, whereas missing
crosses are not informative. In the prohibitive approach, the situation is con-
verse: Missing crosses carry information, and crosses are not informative. Miss-
ing crosses in a relation correspond to crosses in the complement of the relation.
Thus if we replace in the prohibitive approach the relations mayOpen,mayWrite
and mayApprove by their complements mayOpenc = mustNotOpen, mayWritec =
mustNotWrite, mayApprovec = mustNotApprove, we have a situation similar to
the permissive approach. That is, we have the following duality principle: Any ac-
count to the permissive approach can be turned into an account to the prohibitive
approach (and vice versa) by replacing each permission by its complement.1 For
this reason, we do not target the prohibitive approach in this paper.

We assume that the set of role names, document type names, and permission
names is fixed. Conducting an attribute exploration on one of the T -contexts
seems for this reason to some extent pointless, as we cannot add new objects
(counterexamples for implications which do not hold). We can still use attribute
exploration in order to check that the information in KR,D,P is correct, but this

1 But keep in mind that switching between the permissive and prohibitive approach
requires changing the underlying DL-language, including the need for non-standard
constructors in the permissive approach.
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idea does not tap the full potential of attribute exploration and will not be carried
out in this paper (we assume that the matrix KR,D,P is correct). But notice that
this check for correctness would have avoided the inconsistency between role
hierarchy, DL model and access matrix discussed in [6]. Anyhow, we emphasized
that in the formal context, the formal objects (the elements of R) and attributes
(the elements of D) stand in turn for complete classes (of agents and documents).
This can be used to apply attribute exploration to RBAC matrices. Assume we
stick to the permissive approach. Assume moreover that we consider a permissive
interpretation (Δ, · I) with respect to KR,D,P. Then for a given permission P ∈ P,
agent r ∈ RI for a role R ∈ R, and document d ∈ DI for a document type D ∈ D,
we might have that r has permission P to d (i.e., (r, d) ∈ PI), though we do not
have (R, D, P) ∈ I. That is, it is sensible to run an attribute exploration on the
instantiations of the T -contexts. As we will see in the next section, with attribute
exploration we can in fact infer constraints for the dependencies between roles,
documents and permissions which are not captured by KR,D,P.

In the strict approach, the situation is different. If we consider a strict inter-
pretation (Δ, · I) with respect to KR,D,P, then for a given permission P ∈ P,
agent r ∈ RI and document d ∈ DI , we have (r, d) ∈ PI ⇔ (R, D, P) ∈ I.
That is, based on the given assumption that the sets of roles, documents and
permissions are fixed, all possible constraints for the dependencies between these
entities are already captured by KR,D,P. This observation has two consequences:
First, no DL formalization of the strict approach can extend the information
of KR,D,P, i.e., a DL formalization of KR,D,P is somewhat pointless. Second, the
instantiations of T -context are nothing but the T -context themselves (instan-
tiations might duplicate some rows, but this is of course of no interest), thus
conduction attribute exploration in the strict approach is pointless as well.

To summarize: As the permissive and prohibitive approach are mutually dual,
and as addressing the strict approach with DLs or attribute exploration is point-
less, it is sufficient that we here address only the permissive approach.

4.2 Attribute Exploration for Instantiations of T -Contexts

In the last part we argued why we will run attribute exploration on instantiations
of T -contexts. Before doing so, we first have to discuss how implications in T -
contexts and their instantiations are read, and then we will scrutinize some
peculiarities for applying attribute exploration in our setting. In fact, due to the
fact that the objects and attributes of KR,D,P stand for whole classes, the existing
approaches for conducting attribute explorations on triadic contexts (e.g, [10])
cannot be applied to our framework.

Reading Implications. We consider the two contexts of Tab. 3. In both
contexts, term of use document→customer contract document holds. For the T -
context KmayWrite

R,D , the objects are classes, thus this implication is read as follows:

T -reading: For each role we have that whenever every agent of that
role may write all terms of use documents, then every agent of that role
may write all customer contract documents as well.
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For the instantiation of KmayWrite
R,D , the objects are now instances instead of classes,

thus we have a different reading of the implication. It is:

I-reading: Whenever every agent may write all terms of use documents,
then the agent may write all customer contract documents as well.

Implications like this cannot be read from any T -context, thus running attribute
exploration on instantiations can indeed be used to obtain new knowledge.

Please note that none of the above readings conforms to the concept inclusion
term of use document$customer contract document. This is due to in both impli-
cations we quantify over all term of use documents and all customer contract
documents. For the latter reading, we now show how it is correctly translated into
a GCI. The implication means that for any permissive interpretation (Δ, · I) , we
have that ∀r ∈RI : (∀d∈ToUDI : (r, d) ∈ MWI → ∀d∈CCDI : (r, d) ∈ MWI)
holds. This condition is now transformed into a GCI as follows:

∀r∈RI :
(
∀d∈ToUDI : (r, d) ∈ MWI → ∀d∈CCDI : (r, d) ∈ MWI

)

⇐⇒ ∀r∈RI :
(
r ∈ (∀ToUD.MW)I → r ∈ (∀CCD.MW)I

)

⇐⇒ (Δ, · I) |= ∀ToUD.MW $ ∀CCD.MW

(we have to emphasize that the direction “→” of the last equivalence is only valid
if we assume that dom(MWI) ⊆ RI holds, but we assume that out interpretation
satisfies KB0, which models this additional condition).

In general, any implication of the form D1∧. . .∧Dn−1 → Dn in an instantiation
of one of the contexts KP

R,D can be translated into the following GCI:

∀D1.P � . . . � ∀Dn−1.P $ ∀Dn.P

Similarly, any implication of the form R1 ∧ . . . ∧ Rn−1 → Rn in an instantiation
of one of the contexts KP

D,R can be translated into the following GCI:

∀R1.P
− � . . . � ∀Rn−1.P

− $ ∀Rn.P−

If we consider an instantiation of a context where the attributes of the context are
neither document type names nor role names, but instead permission names, the
situation is different, as now the attributes do not stand for classes of instances,
but for properties between instances. In Sec. 5.1, we consider a context KD×R,P.
In this context, mayWrite → mayOpen holds. The reading of this implication is

Whenever some agent has the permission to write some document, then
this agent may open this document as well.

So we see that in this case, the implication can be translated to a simple inclusion
axiom between properties, namely mayWrite $ mayOpen.

4.3 Conducting Attribute Exploration on Instantiations

We consider the instantiation of a T -context, where we want to run attribute
exploration on. Obviously, for any T -context K, there exists a smallest instantia-
tion Kmin, which is isomorphic to K, and a largest instantiation Kmax. The basic
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idea is that we start the attribute exploration with Kmin, and for implications
which do not hold, we add (as usual) counterexamples to the context, until we
finally reach a context Kae. Anyhow, in this process, we cannot add counterex-
amples in an arbitrary manner, as the context Kae we obtain must still be an
instantiation. The question is how this additional constraint can be captured by
attribute exploration. First of all, we trivially have the following subset relations
between the implications which hold in the contexts:

Imp(Kmax) ⊆ Imp(Kae) ⊆ Imp(Kmin)

So if we run an attribute exploration on Imp(Kmin), we could use Imp(Kmax)
as a set of additional background implications. Anyhow, a closer observation
yields that Imp(Kmax) only contains all implications of the form ∅ → m, where
m is an attribute of Kmin which applies to all objects. This can easily be seen
as follows: Let Kmin := (Omin, M, Imin), let Kmax := (Omax, M, Imax), let M1 :=
{m ∈ M | ∀o ∈ Omin : (o, m) ∈ Imin} and M2 := M −M1 be the complement of
M1. First of all, we obviously have that ∅ → m1 holds in Kmin, thus in Kmax as
well, for each m1 ∈ M1. Now let m2 ∈ M2. Then there exists an object o ∈ Omax
with (o, m) ∈ Imax ⇔ m �= m2 for all m ∈ M . That is, there cannot exist any
(nontrivial) implication in Imp(Kmax) with m2 in its conclusion.

4.4 Choice of Instantiation Contexts for Attribute Exploration

Theoretically, we could conduct an attribute exploration on the minimal instan-
tiation of KR×P,D. Anyhow, we observe that any instantiation of KR×P,D is the
subposition of instantiations of the contextsKP

R,D, P ∈ P. Generally, for any
contexts K1, . . . , Kn with identical attribute sets, an implication holds in each
context K1, . . . , Kn if and only if it holds in the subposition of these contexts.
Thus if the RBAC engineer runs an attribute exploration on the minimal in-
stantiation of all contexts KP

R,D, P ∈ P, there is no need to run an attribute
exploration on the minimal instantiation of KR×P,D.

The discussion above applies to the context KD×P,R as well. To summarize: For
a complete investigation of KR,D,P, the RBAC engineer should run an attribute
exploration on the minimal instantiations of the following contexts:

– KP
R,D for each permission P ∈ P to infer document implications

– KP
D,R for each permission P ∈ P to infer role implications

– KR×D,P to infer permission implications

For the context KR×D,P, one could add the additional attribute ⊥ in order to
obtain constraints which express the disjointness of some permissions.

5 Evaluation of the Approach for a Real-Life-Example

In this section, we apply our approach to the example introduced in Tab. 1.
Due to space limitations, we do not conduct a complete attribute exploration:
Instead we consider only the contexts KD×R,P and KMO

D,R.
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M
O

M
W

M
A

⊥

(mv1, um1)
(sc1, um1) ×
(sde1, um1) × ×
. . .
(sv1, ig1) × ×
. . .
(cse1, re1) ×

Fig. 1. The instantiation context KD×R,P and its concept lattice

5.1 Attribute Exploration for KD×R,P.

In this section, we conduct the attribute exploration on the minimal instanti-
ation Kmin of KD×R,P. For this exploration, as discussed in Sec. 2, we added
an additional attribute ⊥ to the set of attributes. An excerpt of Kmin, together
with its concept lattice, is provided in Fig. 1. This is the context the RBAC
engineer starts the attribute exploration on. In KD×R,P, thus in Kmin, we have
the following implications:

1. MW → MO
2. MA → MO
3. ⊥ → MO ∧MW ∧MA
4. MO ∧MW ∧MA → ⊥.

The first implication is read: Whenever some agent can write some document,
then this agent can open this document as well. It can easily be verified that
this implication should indeed hold in any interpretation KR,D,P, so we add the
property inclusion mayWrite$mayOpen to our DL knowledge base. This is the
first example of a statement which can be modeled with a DL statement, but
not with matrix KR,D,P alone.

The next implication can be handled analogously, and we add the inclusion
mayApprove$mayOpen to the knowledge base.

The third implication trivially holds due to the definition of ⊥.
The last implication can, due to the first two implications, be simplified to

MW∧MA → ⊥. Due to the definition of ⊥, this is read: No agent can both write
and approve some document. Again, the engineer decides that this implication is
valid. Thus she adds the disjoint property axiom MW�MA $ ⊥ to the knowledge
base.

If it is later verified that the complete RBAC policy is consistent, which can
be done with a DL reasoner, then each document which can be written or can
be approved has to be readable and furthermore no document can be written
and approved by the same agent. These are constraints which have not been
contained in the matrix but where derived by our methodology.



Access Policy Design Supported by FCA Methods 153

5.2 Attribute Exploration for KmayOpen
D,R .

For a second example, attribute exploration is performed on the minimal instan-
tiation context Kmin of KmayOpen

D,R . The context Kmin looks like the left third of
the cross table in Tab. 1 despite that it is transposed and document types are
replaced by documents (columns are roles, rows are documents). Due to space
limitation, we do not conduct a complete attribute exploration on Kmin, but
only provide an example for an valid and an invalid implication.

Let us first note that in KmayOpen
D,R , the attributes SV, LDE and CSE apply to

all objects. So, according to the discussion in the implications ∅ → SV, ∅ → LDE
and ∅ → CSE hold in all instantiations of KmayOpen

D,R , thus we can add the GCIs
" $ ∀SV.mayOpen−, " $ ∀LDE.mayOpen− and " $ ∀CSE.mayOpen− to our
knowledge base.

A example for an implication (of the stem base) of Kmin is TE → ME. During
the attribute exploration, the RBAC engineer has to decide whether this impli-
cation holds in all desired interpretations of KmayOpen

D,R . In fact there might be a
contract document in preparation by a technical editor which is not allowed to be
opened by a marketing employee. Thus the RBAC engineer adds a counterexam-
ple to the context (CCD in prep, TE, MO) ∈ I and (CCD in prep, ME, MO) /∈ I.

Another example for an implication (of the stem base) of is MV → SC. In
fact, the RBAC engineer realizes that this implication must hold: Any document
which can be opened by a marketplace visitor can be opened by a service consumer
as well. So she adds the GCI ∀MV.mayOpen− $ ∀SC.mayOpen− to the knowledge
base. This is again an example which cannot be derived from KR,D,P alone.

6 Conclusion and Future Research

In this paper we used the access control matrix as basic model for the behavior
of RBAC and called this an RBAC matrix. We discussed three interpretations
of an RBAC matrix and described that for the permissive approach additional
constraints can be derived which are not contained in the RBAC matrix. This
additional information was added to a so called RBAC policy, modeled in DL.

For obtaining a complete RBAC policy, we introduced a strict methodology,
based on FCA. The general approach was to derive different dyadic context from
RBAC matrix context KR,D,P and conduct an attribute exploration on them.
The attribute exploration allowed finding unintended implications and to derive
constraints and make them explicit.

Our ongoing work comprises several directions. First, we are seeking a smaller
DL fragment which meets our modeling requirements. This is particularly for
the permissive approach essential, as the DL modelling we used so far is based
on some non-standard DL constructors. Next, we want to support positive and
negative authorizations in one policy. That is, we want to combine the permissive
and prohibitive approach, so we have to investigate how our approach has to be
extended in order to do so. Finally, recall that our approach was based on the
assumption that sets of roles resp. document types are fixed. In some applications
this might be too strict. The three interpretations would have to be adapted and
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even attribute exploration for the strict approach might make sense if we drop
this assumption. This is subject of future research as well. In the long run, we
target at a comprehensive methodology for utilizing DLs for RBAC.
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Abstract. This paper proposes to use the VRML technology to save and display 
visual schemes of Topic Maps representing the structures of educational  
subjects. As learning purposes always require the careful selection of the most 
pertinent concepts from the total scientific knowledge, the rendering of Topic 
Maps for educational scope need not be too large. Special software has been 
developed to convert the original TM files into corresponding VRML 3D 
scenes. Processing of several computer science courses has already produced 
satisfactory images, and work to improve the visualization will continue. 

Keywords: VRML, Topic Map, visualization, relation, concept, knowledge, 
structure, education. 

1   Introduction 

Every educational course has a number of conceptual notions and terms that must be 
compulsory learnt. Being interconnected, they form some kind of semantic thesaurus, 
which contains not only a list of terms, but, more importantly, the relations between 
them. Such course’s “skeleton”, formulated very close to computer presentation of the 
data, may be considered as a conceptual model of the selected knowledge domain. It 
is clear that visualization of the thesaurus structure can help both students and teach-
ers in the learning process. 

Like various other knowledge structures, interrelated educational concepts can be 
described using different computer technologies, for instance in the form of ontolo-
gies [1]. The author has found the Topic Map technology [2] to be very convenient 
for representing the thesaurus of a course. But while Topic Map structures, based on 
XML text, succinctly generalize a human experience, they obviously lack a pictorial 
representation. 

The problem of visualizing Topic Maps has a long history. The comprehensive  
illustrated review by Le Grand and Soto [3] particularly describes the current state of 
the question. It shows the difficulty of the issue and numerous attempts to find appro-
priate solutions. Most of the reviewed works have a very general goal of visualizing 
millions of topic nodes with unlimited associations between them. 

In contrast to this approach, educational Topic Maps tends to have few nodes and a 
limited number of associations, so we may try to depict them in their entirety on a 
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computer display. From the sense of the learning process it follows that only the most 
essential concepts must be examined and bulk of the incidental detail must be re-
moved to make the theories under consideration clear for students. To illustrate the 
difference, consider comparing the full specification of a passenger aircraft with a 
description of its organization for passenger transportation. 

2   Statement of the Problem 

This work is devoted to the visualization of Topic Maps representing educational  
thesauruses. The free software TM4l [4], [5] has been used to build the structures of 
several computer science courses, such as Introduction to Computer Architecture [6]. 
In order to get more demonstrative visual images of these structures, we have added a 
depth dimension to the conventional flat drawing. Special software developed by the 
author is used to specify a 3D graphic map of concepts in the well-known VRML 
language. Such technology provides the possibility to study the structure of educa-
tional materials by means of one of the numerous VRML viewers. The free Right 
Hemisphere Deep View [7] was recognized as the most suitable for our aims. 

Let’s consider a typical educational course and pick out its main concepts. Gener-
ally we expect to find no more than 100-150 topics after this procedure. Our analysis 
of the associations between concept terms includes standard “whole-part” and “class-
subclass” relations, as well as specific ones defined for our course; typical custom 
associations for the computer science domain are “theoretical base”, “connection” and 
“control”. Building a set of the governing relationships is not predefined and  
self-evident procedure, but we have found that quite a small number of relational 
categories is enough to describe an educational domain. Their full table for our com-
puter architecture course [6] consists of only 11 basic types of interrelations. 

As a result we get the thesaurus, containing all of the fundamental terms and the in-
terrelations between them. It can be directly entered into the computer in the form of a 
Topic Map, and is then ready for our analysis. 

In addition to the development of Topic Map files for specific computer science 
courses, the contribution of this work is the creation of the software that reads these 
files, analyzes the character of the interrelations in the thesaurus, and specifies the 
results of topics’ arrangement in VRML language. Using this software, suitable repre-
sentation of the main concepts was obtained on the display screen. 

3   Discussion of Results 

It is clearly not a trivial task to produce an optimal rendering of the structure of an 
educational course, so here we briefly present the most general algorithm of the soft-
ware. To generate a VRML scene with interdependent spatial objects, our program 
carries out the following operations: 

• reads a selected XML file with Topic Map, parses it and builds tables of concepts 
and relations between them; 

• sorts the concepts, arranging them according to their interrelations, in order to get 
some regularized groups of connected concepts; 
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• allocates the visual symbols of the concepts in space and associates them with 
graphical links, trying to optimize the visibility of all concepts; 

• calculates coordinates for the graphical objects and fixes them in the VRML  
notation. 

To arrange the concepts we tested several different algorithms, based mainly on the 
idea of layers. We may define a layer as a collection of concepts, that are equally dis-
tant from the basic concept of the whole map (TM4l editor demands to set such main 
topic mandatory). In the educational courses we have explored the typical number of 
layers ranges from five to nine. For instance, one version of the tested Topic Map for 
the course of Pascal language consists of eight layers, containing 3, 6, 13, 27, 18, 10, 
6 and 2 terms. 

Every layer can be split into sub-layers according to correlations between its  
topics. Our exploration shows that drawing of the internal links is the most difficult 
problem, so evaluation of object’s position within the layer is extremely important. 

We have considered several variations of the algorithm, such as combining all 
nodes with a common parent, splitting a layer into several parts on parallel planes, 
changing the coordinate system, and more. No variation produced an ideal method of 
visualization, although some combinations of strokes generated satisfactory images.  
 

 

 
 
Fig. 1. Fragment of the VRML scheme for the main concepts of Pascal language, captured 
directly from computer screen 
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These explorations gave rise to the idea of creating an original software toolbox for  
processing Topic Maps, which was realized by the author, using Borland Turbo Del-
phi. Future work will include adding new methods of visualization to this toolbox. 

Applying our software to prepared Topic Maps for several computer science disci-
plines confirmed that all of the conceptual notions could be automatically combined 
and displayed together on the computer screen. The results look satisfactory and  
certainly readable. The added ability to travel across the VRML scheme gives us a 
good tool to observe as an organic whole the foundations of an educational course. 

Fig. 1 illustrates a fragment of the VRML 3D map describing the main concepts of 
Pascal. Every concept on this scheme is a parallelepiped labeled with a term from the 
knowledge domain. Multicolored lines, representing different types of relations, con-
nect the concepts into a semantic network. The picture shows the teacher or student 
all of the basic interrelations of the course, for instance, string-array-char, index-
ordinal type, file-predefined file-input-output and so on. Such a holistic view of the 
course can clearly be very useful for learning. 

Developed method of representation has obvious practical application. From the 
educational point of view such a map of a course may be very helpful for both  
lecturer and students, as it clearly shows the relations between different parts of the 
material and demonstrates the role of every concept in the learning discipline. 

Work will continue on improving the graphical VRML representation of educa-
tional courses. 
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Abstract. Formal concept analysis is recognized as a good paradigm
for browsing data sets. Besides browsing, update and complex data are
other important aspects of information systems. To have an efficient im-
plementation of concept-based information systems is difficult because of
the diversity of complex data and the computation of conceptual struc-
tures, but essential for the scalability to real-world applications. We pro-
pose to decompose contexts into simpler and specialized components:
logical context functors. We demonstrate this allows for scalable imple-
mentations, updatable ontologies, and richer navigation structures, while
retaining genericity.

1 Introduction

Formal Concept Analysis (FCA) [GW99] has been recognized as a good paradigm
for browsing data sets [GMA93, CES03, FR04]. Besides browsing (querying and
navigation), update is another important aspect of information systems. FCA
is defined on binary relations between objects and attributes. Those relations
are called formal contexts. In practice, data is generally more complex than the
simple attributes of formal contexts: e.g., numbers and intervals, strings and
patterns, valued attributes [GW89], vectors, trees, graphs [GK01]. Furthermore,
logical dependencies may exist in complex data: e.g., if an object has the prop-
erty age = 23, it implicitly has the more general property age ∈ [20, 30]. A first
approach to handle complex data in FCA is conceptual scaling [GW89], which
is a process that takes complex data as an input, and outputs a standard for-
mal context, called the scaled context. In the scaled context, the attributes are
abstraction of the original data, and the incidence relation reflects their inter-
nal logic. For example, Prediger et al [PS99] use description logics to define the
meaning a finite set of chosen attributes; and Tane et al [TCH06] use the same
description logics to compute scaled contexts as views over a complex knowledge
base. A second approach [CM00, FR00, GK01] strives to keep complex data in
its original form by generalizing the definition of a formal context as well as
other FCA operations (e.g., Galois connection, concept lattice). For example,
Logical Concept Analysis (LCA) [FR00] uses logical formulas instead of sets
of attributes to represent and manipulate object descriptions, concept intents,
queries, and navigation links between concepts. The first approach allows the
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reuse of FCA algorithms and tools on complex data, while the second approach
keeps the original form of complex data, and entails no loss of information.

This paper discusses the efficient implementation of concept-based informa-
tion systems. In the two above approaches, the existing implementations make
no or little use of the specificities of complex data. For example, the data struc-
ture used to represent contexts in LCA, called the logic cache [FR04], makes use
of the logical entailment between formulas, but makes no difference between a
string, an interval or a graph. This entails the following problems: (1) the update
of the context is not efficient enough to support scalability (10,000 objects at
most), (2) any change in the logic requires the complete recomputation of the
logic cache, and (3) the set of navigation links is not informative enough.

We propose to benefit from the nature of the original complex data to solve
the above problems. For instance, there exist dedicated data structures and
algorithms for strings, which can be used to build specialized implementations of
contexts where objects are described by strings. The same can be done for other
concrete domains, or taxonomies. Now, if objects are described by string-valued
attributes, a specialized implementation can be composed from two specialized
contexts: one for attributes, and the other for strings. Operations for composing
contexts have been defined in FCA [GW99]: e.g., apposition, direct product.
However, they apply to formal contexts only, and their implementation is not
discussed. We detail in this paper the definition and specialized implementation
of both primitive contexts and composition operations. Those are collectively
called logical context functors, because they are functions (with zero, one or
several arguments) from logical contexts to logical contexts. The term functor
is taken from the domain of functional programming where it denotes functions
from modules to modules [Mog89], which are precisely used to implement our
functors.

Section 2 recalls the basics of LCA, and introduce the browsing and update
operations. Section 3 explains the problems of the logic cache, the existing LCA
implementation. Section 4 defines a logical context functor as an extension of a
logic functor, and details five functors: string, taxonomy, product, disjoint union,
and root. Section 5 illustrates the use of logical context functors on two real
examples (string-valued attributes, and user-tag annotations), and demonstrates
their efficiency by giving the complexity of operations compared to the logic
cache. For instance, the addition of an object into a context of n objects is
in O(1) or O(ln(n)) instead of O(n).

2 Logical Contexts and Logical Information Systems

The LCA framework [FR04] applies to logics with a set-valued semantics similar
to description logics [BCM+03]. The logic is not fixed a priori so that it can be
customized to different applications. Examples of logical formulas are binary at-
tributes, attributes valued on different concrete domains (e.g., strings, intervals,
dates), terms from taxonomies, and any combination of those such as lists, trees
or graphs. It is sufficient here to define a logic (see [FR04] for a detailed pre-
sentation) as a pre-order of formulas. The pre-ordering is the logical entailment,
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called subsumption: e.g., an interval included in another one, a string matching
some regular expression, a graph being a subgraph of another one.

Definition 1 (logic). A logic is a pre-order LT = (L,$T ), where L is a set of
formulas, T is a customizable parameter of the logic, and $T is a subsumption
relation that depends on T . The relation f $T g reads “f is more specific than g”
or “f is subsumed by g”, and is also used to denote the partial ordering induced
from the pre-order.

The parameter T helps to take into account domain knowledge that may change
over time: e.g., an ontology, a taxonomy. In the following, for simplicity, we des-
ignate this parameter as the “ontology”, and consider it is a set of subsumption
axioms f ≺ g: e.g., cat ≺ animal , Quebec ≺ Canada . In addition to the logic
and its ontology, the logical context constitutes the third level of knowledge. It
defines a set of objects along with their logical description, and a finite subset
of formulas, called vocabulary, that is used for navigation.

Definition 2 (logical context). A logical context is a tuple K =(O,LT , X, d),
where O is a finite set of objects, LT is a logic, X ⊆ L is a finite subset of
formulas called the navigation vocabulary, and d ∈ (O → LT ) is a mapping
from objects to logical formulas. For any object o, the formula d(o) denotes the
description of o.

Each formula is described by a single formula for genericity reasons. Even if a
description is often in practice a set of properties, it can also be a sequence of
properties or any other data structure. The definition of a vocabulary is necessary
because there is often an infinite set of formulas (e.g., intervals, strings). The
choice of a relevant vocabulary depends on both the logic and object descriptions,
and a contribution of this paper is precisely to show how it can be automatically
generated in a logical context. The elements of the vocabulary are called features.

Logical contexts make up the core of Logical Information Systems (LIS)[FR04],
so that we need both update and information retrieval operations on them. Update
operations apply to the ontology, the objects, and the navigation vocabulary. For
every formulas f, g ∈ L:

– K.axiom(f, g) adds the axiom f ≺ g to the ontology T , which modifies the
behaviour of the subsumption $T ;

– K.add(o, f) adds the new object o to the set of objects O, and sets its
description d(o) to f ;

– K.show(f) adds the formula f to the navigation vocabulary X .

The filling of a context is the successive addition of a set of objects, defining
the updatable part of the context. There are also update operations for remov-
ing axioms, modifying the description of objects, removing objects, and hiding
formulas, but we do not detail them here.

A key feature of LIS, shared by other concept-based information systems
[GMA93, DVE06], is to allow the tight combination of querying and navigation.
The principle is that, instead of returning a ranking of all the answers to the
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query, the system returns a set of query increments that suggest to users rel-
evant ways to refine the query, i.e., navigation links between concepts, until a
manageable amount of answers is reached. They are two information retrieval
operations on logical contexts: one to compute the query answers, and another
to compute the query increments from those answers.

A query is a logical formula, and its answers are defined as the extent of this
formula, i.e., the set of objects whose description is subsumed by this formula.

Definition 3 (extent). Let K be a logical context, and q ∈ L be a query for-
mula. The extent of q in K is defined by K.ext(q) = {o ∈ O | d(o) $T q}.

The increments of a query q are the features that are frequent in the extent of q,
i.e., the features whose extent shares a pre-defined minimum m of objects with
the extent of q: {y ∈ X | |K.ext(q) ∩ K.ext(y)| ≥ m}. Those increments are
partially ordered by subsumption, and should be presented so to users because
this gives a more comprehensive view. For instance, if the vocabulary contains
continents, countries, and regions, it is better to display them as a tree rather
than a flat list. Moreover, it is not necessary to compute and display all of them
at once; continents should be displayed first, and could then be expanded on de-
mand to display countries, etc. So, the navigation operation takes an increment x
and returns its lower neighbours that are also increments. For technical reasons,
we prefer to compute increments w.r.t. a set of objects O ⊆ K.ext(x) instead of
a query. Starting with a query q, that set O is defined as K.ext(q) ∩K.ext(x).
Each increment is returned with the extent of the concept that would be reached
by using it as a navigation link.

Definition 4 (children increments). Let K be a logical context, x ∈ X be
an increment, O be a set of objects s.t. O ⊆ K.ext(x), and m be a frequency
threshold. The children increments of x, called the parent increment, w.r.t. O at
threshold m is defined by K.incrs(x, O, m) =

MaxT {(y, O′) | y ∈ X, y $T x , x �$T y , O′ = O∩K.ext(y), |O′| ≥ m},
where $T is trivially extended to pairs (y, O′).

These increments provide feedback on the current query and answers, as well as
several forms of navigation [Fer09]. LIS have been applied to many kinds of data,
and most noticeably to the management of a collection of > 5000 photos [Fer09],
which can be browsed and updated in terms of time, location, event, persons,
and objects.

3 Problems with Logic Caches

Logical information systems were designed to be generic, and so can make no
assumption on the logic, except for the existence of a decision procedure for
subsumption (decidability). Because this subsumption test is costly for some
expressive logics, the choice was made to minimize its use in browsing operations,
which are more frequent than update operations. Therefore the cost of computing
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subsumption is moved to update operations, in the form of an incremental pre-
processing, whose result is called a logic cache [FR04].

There are a number of problems with logic caches as a generic implementa-
tion. The first problem is that efficient browsing has been achieved at the cost
of a quadratic complexity for the building of a logic cache. This is more ac-
ceptable to users than lengthy response times in browsing operations, but this
strongly limits the scalability of LIS. An appropriate complexity would be O(n)
or at most O(n ln(n)). The second problem is the operation K.axiom that re-
quires a complete recomputation of the logic cache. This is because the impact
of new axioms on the subsumption is only known by the logic, and not by the
generic logic cache. In order to take real profit of changing ontologies, the abil-
ity to handle them incrementally is crucial. The third problem is in the design
of the vocabulary (the set of scale attributes in conceptual scaling). There is a
conflict between having a rich and progressive navigation that requires a large
vocabulary, and the efficient filling of contexts that requires a small vocabulary.
Consider the example where objects are documents, and object descriptions
are titles, i.e. strings. If the vocabulary contains only full titles, the navigation
structure is a flat list of titles, which is not very interesting. If the vocabulary
contains all words occuring in the titles, the navigation structure is more in-
teresting, but: (1) it still misses composed keywords such as “formal concept
analysis”; (2) it contains unique words that are specific to one title, and in this
case it is better to show the full title; (3) it is costly compared to the small
vocabulary.

Consider another context where documents are described by a set of pairs
(user, tag), and users/tags are organized in two taxonomies. The taxonomy of
users defines various groups over users (possibly overlapping), and the taxonomy
of tags defines a generalization ordering on tags. This context enables different
kinds of queries: Which documents have been given this kind of tags by this
kind of users ? Which tags have been given by this kind of users on this set of
documents ? Which users have given this kind of tags on this set of documents ?
Even if each taxonomy has a reasonable size, say 1000, the vocabulary will
contain all pairs (user, tag) that have a non-empty extent, which can go up
to 1 million pairs. Intuitively, it should be possible to keep each taxonomy on
its side as a kind of partial logic cache, and to combine them on the fly, thus
bounding the size of the total logic cache to the sum rather than the product of
taxonomies sizes. In the next section, this decomposition is formalized by logical
context functors.

4 Logical Context Functors

We introduce in this section logical context functors, i.e. functions that build
logical contexts and their operations from simpler parts. We show how they solve
the problems presented in the previous section: efficiency, ontology evolution, and
selection of the navigation vocabulary. The problem of efficiency comes from the
well-known trade-off between genericity and efficiency. Efficiency requires specific
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data structures and algorithms, which is a priori incompatible with the need for
genericity. A solution, that has already been done and validated on logics [FR04],
is to define specific components, called functors, and to allow their composition
in more and more complex components, in which the correction of operations
w.r.t. semantics is automatically verified [FR06]. The efficiency comes from the
specificity of functors, and the genericity comes from the ability to compose
them. This is similar to languages where a finite number of different words can
be combined in an infinity of sentences. Of course, the expressivity is limited
by the available functors, but new functors can always be added to the set.
Another benefit of logic functors is to permit the choice of the right logic for
each application, instead of having an all-purpose logic that is costly to use, and
cannot cover the specific needs of all applications.

Definition 5 (logic functor). A logic functor is a function F that takes log-
ics L1, ...,Ln as arguments (n ≥ 0), returns a composed logic LT = F(L1, ...,Ln).
As for any logic, one has LT = (L,$T ), but L (resp. $T ) is function of the sets of
formulas (resp. subsumption) of arguments logics.

Examples of logic functors are String that takes no argument, and returns the set
of all strings ordered by the subsumption relation “contains”; and Prod(L1,L2)
that takes two arguments, and returns the logic where formulas are pairs (f1, f2)
of formulas from L1 and L2, and the subsumption test is naturally decomposed
in the two subsumption tests. These examples and others are more formally
defined below, along with logical context functors. Logical context functors are
defined similarly to logic functors, as functions from contexts to contexts.

Definition 6 (logical context functor). A logical context functor is a func-
tion F that takes logical contexts K1, ..., Kn as arguments (n ≥ 0), returns a com-
posed context K = F (K1, ..., Kn). As for any context, one has K = (O,LT , X, d),
but each part of this context is function of the respective parts of argument con-
texts.

Logical context functors and logic functors are implemented as functors1 in the
Objective Caml programming language. In order to reuse code from logics
into contexts, logical context functors inherit (in the object-oriented sense) from
their respective logic functors.

In the following we detail a few common logical context functors. For each
functor we define the set of objects, the set of formulas, the subsumption, the
vocabulary, and the description mapping as a function of argument contexts. Be-
sides this mathematical point of view, each functor is also given data structures
and algorithms for the implementation of logical context operations. Complexi-
ties are given in function of the number n of objects, the size x of the vocabulary,
and the number i of children increments.

1 Similar structures exist in other programming languages: e.g., parameterized mod-
ules (ML), generic classes (Java), templates (C++).
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4.1 String Context

The logical context functor String represents the concrete domain of strings and
substrings ordered by string inclusion. It has no argument, so that it constitutes
a logical context that can be used alone or as part of a more complex logical
context. This logical context could also be defined as Seq(Char ), where Seq
and Char would be two functors respectively about sequences and characters.

The logic is simply defined as L = (Σ∗,⊇), where Σ∗ stands for finite strings
over an alphabet Σ, and ⊇ is the “contains” relation on strings. It is not param-
eterized by an ontology because it is a concrete domain. It enables to describe
objects by strings, and to query them with patterns like contains "FCA". A
previous work [Fer07] has shown that a concise and complete vocabulary X can
be efficiently and automatically extracted from such a context: the set of maxi-
mal substrings. This vocabulary is complete because the set of formal concepts
it generates is the same as when considering all possible substrings. It is con-
cise because its size is bounded by the cumulated size kn of strings describing
the n objects in K, where k is the average length of strings. It can be com-
puted in O(kn ln(kn)). In practice, however, the number of maximal substrings
is generally much lower than kn (e.g., 3,816 instead of 52,360 [Fer07]).

The data structure that permits to store the string-description of objects, and
to compute the vocabulary, is an extended suffix tree [Fer07]. Its complexity in
space is in O(kn ln(kn)). It naturally provides the efficient incremental addi-
tion of a string, and hence the addition of an object in the context: K.add(o, s)
takes O(|s| ln(kn)) time, where |s| is the length of the string s. Other opera-
tions can also be directly performed on the extended suffix tree. For the opera-
tion K.show(s) one reads the string s down the suffix tree, in O(|s|) time, and
marks the reached node as visible. For the operation K.ext(s), one also reads the
string s, and then collects the objects below the reached node: O(|s| + n) time.
For the operation K.incrs(x, O, m), one again reads the string s, then follows
links from the reached node to find the smallest maximal substrings below, and
finally filters those that are frequent in O: O(|s|+ ni) time.

The most visible advantage of the functor, compared to the logic cache, is the
computation of a rich, yet concise, vocabulary that provides a much better nav-
igation feeling because it dynamically adapts to the context contents. Another
advantage is the efficiency in the filling of the context: O(kn ln(kn)) instead of
O(k4n2). Even when the vocabulary is restricted to the strings describing ob-
jects, the complexity of the logic cache is in O(kn2), still quadratic in the number
of objects. This makes a huge difference in practice when the number of objects
gets high, and this efficiency comes with a much larger and useful vocabulary.

4.2 Taxonomy Context

Taxonomies are very helpful in the organization of a collection of documents
[Sac00]. They are a simple kind of ontologies in which an axiom states that a
term is more specific than another. Examples of such axioms are inQuebec ≺
inCanada , or cat ≺ mammal , mammal ≺ animal . The logical context func-
tor Taxo produces contexts in which each object is described by one term, and
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implicitly has all more general terms. For instance, an object described as a
cat is also an instance of mammal , and animal . The logic of those contexts is
naturally derived from the taxonomy T that parameterizes it.

Definition 7 (taxonomy logic). Let T = (L, A) be a taxonomy, where L is the
set of terms, and A is a set of taxonomic axioms f ≺ g. The logic of functor Taxo
is defined by LT = (L,$T ), where the subsumption $T is defined as the reflexive
and transitive closure of the relation ≺.

Because the set of terms of a taxonomy is finite, the vocabulary can be defined
as X = L, ensuring it to be complete w.r.t. the generation of concepts. The
data structure used in the implementation of Taxo is the taxonomy seen as
a graph: nodes are terms from X , edges are the taxonomic axioms from T ,
and terms are labelled by their extent. We call ancestors of a term f all terms
that subsume f (including f), which can be found in the graph by transitively
collecting successors.

The addition of a new object, K.add(o, f), consists in adding the term f into X
with an empty extent if it is not yet in X , then in adding o to the extent of every
ancestor of f . This operation is in O(a) with a the number of ancestors. The
operation K.show(f) is unnecessary because every relevant formula is already in
the vocabulary. The addition of an axiom K.axiom(f, g) consists in adding an
edge from f to g in the graph, and adding the extent of f to the extent of every
ancestor of g. This operation is in O(na). It must be noted here that, contrary
to a logic cache, it is not necessary to completely recompute the data structure
to add an axiom; new axioms can be processed incrementally. This is possible
because the functor Taxo has knowledge about its logic, and so can update
its data structures in parallel to updates in the logic. The operation K.ext(f)
consists in a simple access to the label of f in the graph, and is therefore in O(1).
The operation K.incrs(x, O, m) consists in filtering among the predecessors of x
in the graph those that are frequent in O. This operation is in O(ni).

The shape of the taxonomy has an influence on the complexity of operations.
If we assume the taxonomy is a balanced tree with arity k (a = lnk(x)), the
filling of a context is in n lnk(x), and the computation of increments is in nk.
This suggests to find a compromise between flat taxonomies (small a) and deep
taxonomies (large a).

4.3 Product of Contexts

Section 3 presents two examples of contexts, where the formulas can be decom-
posed as a pair of subformulas. The first example shows valued attributes made of
an attribute and a (sub)string; the second example shows pairs (user,tag), where
each part is placed into a taxonomy. Instead of developping two new logical con-
text functors, it is more useful to define a logical context functor Prod(K1, K2)
that produces the product of two simpler contexts. Then, the first example is
simply composed as Prod(Taxo,String), and the second example as Prod(Taxo,
Taxo). We recall that in logical contexts, each object is described by a single
formula, here a pair.
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Definition 8 (product of contexts). Let K1 = (O,L1, X1, d1) and K2 =
(O,L2, X2, d2) two logical contexts sharing a same set of objects. The prod-
uct Prod(K1, K2) of these two contexts is defined as a context K = (O,L, X, d),
where L = L1 × L2, (f1, f2) $ (g1, g2) iff f1 $1 g1 and f2 $2 g2, X = X1 ×X2,
and d(o) = (d1(o), d2(o)).

The term product is justified by the fact that the logical language and the vo-
cabulary are defined as products. There is no equivalent operation on formal
contexts [GW99] (i.e., same set of objects, product of attribute sets). The appo-
sition uses set union for composing attribute sets, which would entail a loss of
the user-tag connection. The direct product uses set product to compose object
sets, and uses a disjunction that would entail indeterminacy in the operation
K.add.

The data structure of K = Prod(K1, K2) is reduced to the union of the data
structures of K1 and K2, and there is no proper data structure in the func-
tor Prod . Hence, the size of K is the sum, and not the product, of the size of the
argument contexts. The implementation of Prod looks like apposition [GW99],
but that is not an apposition because L �= L1 ∪ L2. This means that X is not
explicitely represented, i.e, a pair (f1, f2) is only known to belong to X because
each part fi is known to belong to the respective vocabulary Xi. This makes
a big difference with a logic cache or conceptual scaling, where the vocabu-
lary X = X1 ×X2 would be represented explicitly.

Because Prod has no proper data structure, operations on K are reduced to a
composition of the operations on argument contexts. The operation
K.add(o, (f1, f2)) decomposes itself in the sequence K1.add(o, f1); K2.add(o, f2).
The operations K.show and K.axiom decompose similarly. The time complex-
ity of those three operations are the sum of the time complexities in the two
argument contexts. Because of the definition of the subsumption $, an object is
in the extent of (f1, f2) in K if it is in the extent of f1 in K1, and in the extent
of f2 in K2.

K.ext((f1, f2)) = K1.ext(f1) ∩K2.ext(f2).

The computation of the increments requires the computation of the lower neigh-
bours of a parent increment (x1, x2). As the vocabulary X is not explicitely
represented, we have to make use of the vocabularies X1 and X2, and the respec-
tive increments operations. The lower neighbours of (x1, x2) are the pairs (y1, x2)
where y1 is a lower neighbour of x1 in X1, and the pairs (x1, y2) where y2 is a
lower neighbour of x2 in X2.

K.incrs((x1, x2), O, m) =
{((y1, x2), O′) | (y1, O

′
1) ∈ K1.incrs(x1, O, m), O′ = O ∩O′

1, |O′| ≥ m}
∪ {((x1, y2), O′) | (y2, O

′
2) ∈ K2.incrs(x2, O, m), O′ = O ∩O′

2, |O′| ≥ m}.

This definition is justified by the definition of the extent in K that makes the
extent of a pair (f1, f2) in K be a subset of the extent of f1 and f2 in their
respective context. The time complexity of those operations is equal to the sum of
the time complexities in the argument contexts plus additional set intersections:
O(n) for K.ext, and O(ni) for K.incrs.
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4.4 Disjoint Union of Contexts

Suppose we want valued attributes whose values belong to one of several value
domains, e.g. taxonomic terms and strings. This means we want to define a value
domain that is the disjoint union of these value domains. The logical context
functor DisjointUnion(K1, K2) produces a context whose logic is the disjoint
union of the logics of K1 and K2: e.g., DisjointUnion(Taxo,String).

Definition 9 (disjoint union of contexts). Let K1 = (O1,L1, X1, d1), and
K2 = (O2,L2, X2, d2) be two logical contexts such that O1∩O2 = ∅, and L1∩L2 =
∅. The disjoint union (K1, K2) of these two contexts is defined as a context K =
(O,L, X, d), where O = O1∪O2, L = L1∪L2, ($) = ($1)∪($2), X = X1∪X2,
and d(o) = d1(o) if o ∈ O1, and d(o) = d2(o) otherwise.

The condition O1 ∩ O2 = ∅ is required because an object of K can have only
one description, and the condition L1 ∩L2 = ∅ is required to avoid confusion on
the meaning of a formula. The term disjoint union is justified by the fact that
the logical language and the vocabulary are defined as a disjoint union. There
is an equivalent operation on formal contexts (i.e., union of objects, union of
attributes), also called the disjoint union.

Like the functor Prod , the functor DisjointUnion has no proper data structure,
and only relies on the data structures of its argument contexts. It
behaves like a switch, redirecting each operation to one argument context, de-
pending on the parameter formula. For instance, the operation K.show(f) is
defined as K1.show(f) if f ∈ L1, and as K2.show(f) if f ∈ L2. The opera-
tion K.axiom(f, g) is defined only when the two formulas f, g belong to the
same logic L1 or L2. Hence, the worst case time complexity of those operations
is the maximum of the worst case time complexities in the argument contexts.

4.5 The Root Context Functor

There remains a gap between the previous logical context functors, and the
need in most LIS to describe objects with several properties, and to combine
features by boolean connectives in queries. This gap is filled by a functor that
is called Root(K1) because it is designed to be used as the outermost func-
tor in a composition of functors. Another function of that logical context func-
tor is the application of the Closed World Assumption (CWA) that says that
every object that is not instance of a property f is an instance of its nega-
tion ¬f . This makes querying more intuitive as boolean connectives then match
set operations: e.g., the extent of a disjunction q1 ∨ q2 is the union of the
extents of q1 and q2. The functor Root(K1) may look artificial, but it is in
fact an idiomatic composition of more primitive functors (defined in [FR06]):
Prop(Bottom(Single(Multiset(K1)))), where Prop applies the Boolean closure,
Single applies the CWA, and Multiset allows for (multi)sets of properties on
objects.

Definition 10 (root logic). Let L1 = (L1,$1) be a logic. The root logic Root
(L1) is defined as a logic L = (L,$), where:
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– L = Ld ∪ Lq, where
• Ld is the set of finite subsets {f1, . . . , fp} ⊆ L1 (used for descriptions),
• Lq is the smallest set that contains L1, and such that for every q1, q2 ∈

Lq, the formulas q1 ∧ q2, q1 ∨ q2,¬q1 also belong to Lq (used for queries),
– the subsumption $ is characterized by the following inference rules, for ev-

ery f1, . . . , fp ∈ L1, d ∈ Ld, q1, q2 ∈ Lq:
1. if f1 $1 f2 then f1 $ f2,
2. if ∃fi ∈ d : fi $1 f2 then d $ f2,
3. if d �$ q1 then d $ ¬q1,
4. if d $ q1 and d $ q2 then d $ q1 ∧ q2,
5. if d $ q1 or d $ q2 then d $ q1 ∨ q2.

The last three inference rules are justified by the fact that descriptions are un-
derstood under the CWA [FR04]. Subsumption can also be defined between
queries, but we can save it because it is useful neither for querying, nor for nav-
igation. Indeed, the navigation vocabulary of the argument context of Root is
sufficient because boolean connectives can be introduced through the navigation
process [Fer09].

Definition 11 (root context). Let K1 = (O1,L1, X1, d1) be a logical context.
The root context Root(K1) is defined as a logical context K = (O,L, X, d), where
O is a partition of O1 (

⋃
O = O1, and ∀o, o′ ∈ O : o ∩ o′ = ∅), L = Root(L1),

X = X1, and d(o) = {d1(o1) | o1 ∈ o}.

An object of the root context is represented by a set of objects in the argument
context, each holding a property of the root object. In the following, o1 denotes
the root object that contains o1 ∈ O1; and by extension, O1 denotes the set of all
root objects that contain any element of O1 ⊆ O1. The proper data structures
of Root are limited to a table defining each root object as a subset of O1, and
another table from each object o1 ∈ O1 to its root object o1.

The operation K.add(o, {f1, ..., fp}) consists in, for each fi, creating a new
object oi to be added to O1, calling the operation K1.add(oi, fi), and defining
the root object o as the set {oi | 1 ≤ i ≤ p}. Its worst case time complexity
is therefore p times the worst case time complexity of the operation K1.add.
The operations K.show and K.axiom apply only to formulas of the argument
context K1, and so can be directly transmitted to K1; their complexities are
unchanged.

The computation of the extent of a query follows the definition of subsumption
between descriptions and queries. For every f1 ∈ L1, and q1, q2 ∈ Lq:

K.ext(f1) = K1.ext(f1), K.ext(q1 ∧ q2) = K.ext(q1) ∩K.ext(q2),
K.ext(¬q1) = O \K.ext(q1), K.ext(q1 ∨ q2) = K.ext(q1) ∪K.ext(q2).

The complexity of this operation depends on the number k of atoms in the
query: there are k calls to K1.ext, and (k − 1) set intersections in O(n) on
resulting extents. The computation of increments is based on the fact that,
if an increment is frequent in K, it is also frequent in K1 because for every
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object o ∈ O and x ∈ X : if o ∈ K.ext(x) then ∃o1 ∈ o : o1 ∈ K1.ext(x). Because
the reverse is not true, the increments computed in K1 must be checked to be
increments in K.

K.incrs(x, O, m) =
{(y, O′) | (y, O′

1) ∈ K1.incrs(x, K1.ext(x) ∩
⋃

O, m), O′ = O′
1, |O′| ≥ m}

The additional cost for computing those increments is limited to computing O′

for each increment coming from the argument context: O(npi).

5 Applications

We now present how the context examples presented in Section 3 can be
defined with logical context functors. The first context K1 is a collection of
documents described by various properties such as title, authors, publisher. Be-
cause each property can be represented by a string-valued attribute, that con-
text is defined as K1 = Root(Prod(Attr ,String)), where Attr is an instance
of the functor Taxo. The use of Taxo for representing attribute names adds
the ability to abstract similar attributes into a more general attribute: e.g.,
“author” and “editor” can be grouped under “person”; “title”, “subtitle”, and
“keywords” can be grouped under “subject”. The use of String enables the au-
tomatic extraction of keywords from titles. The second context K2 is a col-
lection of documents described by pairs (user, tag), meaning that some user
put some tag on it, where user and tag terms can be organized into two tax-
onomies. That context is defined as K2 = Root(Prod(User ,Tag)), where User
and Tag are two instances of Taxo. In order to describe and retrieve docu-
ments by both valued attributes and (user,tag) pairs, we can defined a context
K3 = Root(DisjointUnion(Prod(Attr ,String),Prod(User ,Tag))).

Table 1 presents the complexities of the five operations on the contexts K1
and K2, depending on the use of a logic cache or logical context functors. Those
complexities are expressed in function of the number n of objects, the number p
of properties per object in Root , the maximum height h of taxonomies, and
the maximum length s of strings. In practice, p, h, s are often bounded, so that
complexities can be expressed in term of the number n of objects only. We
note that the complexity for adding an object, or showing a formula, is in O(1)
or O(ln(n)) with functors instead of O(n) with a logic cache. This achieves our
objective to make the filling of a context in O(n) or O(n ln(n)) instead of O(n2).
About the browsing operations, the complexity O(n) for computing the extent
and each increment is obtained, like with logic caches.

Even if detailed experiments remain to be done, first experiments are very
conclusive w.r.t. the efficiency of functors compared to logic caches. We used K1
for representing BibTEX files, where entries are objects, and fields are valued
attributes. For a file with 1500 entries, it took 46s on a standard laptop to build
the context with the logic cache, while it took only 26s with functors, comprising
the additional computation of all maximal substrings. Without this additional
computation, the time is about 10 times less, hence a 20 fold speed up. We
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Table 1. Complexities of LIS operations on contexts K1 and K2, depending on the
use of a logic cache or logical context functors

K1 K2

operation logic cache functors logic cache functors
axiom phn phn
add p2s5n ps ln(psn) p2h5n ph
show ps3n s ph3n 1
ext n s + pn n pn
incrs ni pni ni pni

managed to build the context of a file with 30,000 entries in about 1,000s, while
this is not possible with a logic cache, even without generating any navigation
feature.

6 Conclusion

Logical context functors are introduced as reusable components for composing
logical contexts according to the structure of its formulas. They allow for efficient
implementations of LIS because each functor can use specific data structures
and algorithms. The genericity of the LIS framework is retained by the ability
to freely compose functors. Examples of composed contexts are given for string-
valued attributes, taxonomies, and pairs of taxonomic terms. The filling of a
context is shown to be in O(n) or O(n ln(n)) instead of O(n2), comprising the
computation of a rich navigation vocabulary on strings. Several taxonomies can
be updated incrementally and efficiently. Functors form an open collection so
that new functors can be designed and added to the collection, indepently of
existing functors. Moreover, if a better data structure or algorithm is found, it
can be integrated in an existing functor without impacting other functors or
applications using it. We are developping functors for numbers, dates, intervals,
and functors can be composed to represent vectors, lists and trees.
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In Search of Semantic Compositionality in
Vector Spaces�

Eugenie Giesbrecht
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Abstract. In spite of the widespread usage of geometric models of
meaning in computational linguistics and information retrieval research,
they have been until recently mostly utilized for modeling lexical mean-
ing. The ability to deal with concept combination, however, is the es-
sential capacity of human language, and any semantic theory should be
able to handle it.

Making use of Word Space Models (Schütze 1998) and Random In-
dexing (Sahlgren 2005), we explore the hypothesis that compositional
meaning can be captured in such models by adopting a number of mathe-
matical operations for vector composition (summation, component prod-
uct, tensor product and convolution) to model semantic composition in
a multiword unit identification task.

1 Introduction

Symbolic or logical approaches to meaning, following the traditions of Mon-
tague’s semantics and known in the linguistics community as compositional se-
mantics (Dowty 1981), have been concerned prevalently with composition of
individual units into sentences and not with the meaning of those individual
units. The principle of compositionality, commonly attributed to Frege (1914),
claims that the meaning of a sentence is a function of the meanings of its parts.

Within this logical tradition of semantics, the meaning of a sentence ”Peter
washed the car” could be represented as: washed(Peter, car) - which can be
obtained by the composition of the constituents λxλy.washed(x, y), Peter and
car extracted word-wise from the original sentence.

Such constructions are good at conveying the structural or grammatical prop-
erties of language, but unfortunately they do not tell us anything about the
meaning of individual units except that some X washed some Y, and this X is
in this case Peter and Y is car. We still may have no idea though, what a car
is, or how washed is different from polluted. It is just assumed that there is a
referent in the external world or in the speaker’s mind. Lexicon is much more
empirical than grammar and is therefore harder to formalize (Widdows 2008).
According to Jones and Sinclair (1974), “one of the troubles with studying lexis
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was making a start somewhere”, and a brilliant start was made by geometrical
models of meaning, realized in vector spaces.

Vector Space Models (VSMs) embody the so-called distributional hypothesis
of meaning, the motto of which is that a word is known ”by the company it
keeps” (Firth 1957). The meaning of words is thereby defined by contexts in
which they occur (in analyzed text collections). The context can be both lo-
cal, i.e., just the immediate neighbours, as well as global, e.g., a sentence or a
paragraph or the whole document. Vector Space Models have been rather in-
tensively and successfully applied for modeling meaning in information retrieval
and computational linguistics. Typically the global context is used for modeling
the words’ meanings within the information retrieval paradigm. To do this, a
term-document matrix is constructed and the meaning of the terms is defined
by the documents they co-occur in. Table 1 shows an example of such space
that consists of three documents and 5 key terms. The numbers in the columns
denote how often given terms occur in corresponding documents, e.g., the word
automobile appears 2 times in document1 and not at all in document2. Usually,
more sophisticated weighting schemes are used. According to the vector space
in Table 1, the meanings of the words car and automobile would be not related
at all as they never occur in the same documents.

Table 1. Vector Space Model (VSM)

document1 document2 document3

automobile 2 0 3
car 0 2 0
garage 1 3 0
factory 0 0 3

In contrast, research in computational linguistics concentrated mostly on mod-
eling the local contexts in that word-by-word matrices are built from text col-
lections. The latter are also called Word Space Models (Schütze 1998). In this
framework, the meaning is modeled as an n-dimensional vector, where the dimen-
sions are defined by the co-occurring words within a predefined context window.
Thus, we can see from Table 2 that the word car co-occurs with garage and wash
in 3 cases in a given collection within, say, a context of 15 words. In this WSM,
the words car and automobile get closer to each other as they co-ocur with the
same words at least in a couple of contexts, but this may still be not enough to
detect that they are synonyms.

Usually, dimensionality reduction techniques, like Singular Value Decompo-
sition (Deerwester et al. 1990), often referred to as Latent Semantic Analysis
(LSA), are applied to the resulting Word Spaces as those are mostly sparse.
LSA is a low-rank approximation of the original vector space matrix. Lower-
ing the rank of the matrix is a means of removing extraneous information or
noise. By rank reduction, we cut off the dimensions that do not contribute a
lot to the meaning of terms. Some information is lost, but the most impor-
tant one is preserved and emphasized. Therefore, similar words get closer to
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Table 2. Word Space Model (WSM)

street garage wash exhibition

automobile 0 1 1 3
car 4 3 3 1
garage 1 1 1 0
factory 0 1 0 0

each other in vector spaces, although the connections between them may not
have been explicitly present in the original data. Thus, if we reduce our ma-
trix (s. Table 2) from 4 to 2 dimensions, the words car and automobile will get
very close or ”similar” to each other in the vector space. Thereby second-order
representations are achieved. This kind of dimensionality reduction has been
shown to improve performance in a number of text-based domains (Berry et al.
1999).

In spite of the widespread usage of Vector and Word Space Models, they have
been predominantly used for meaning representation of single words and thereby
have been the mainstream of interest in lexical semantics since the 90s. Until
recently, little attention has been paid to the way of modeling more complex
conceptual structures with such models, which is a crucial barrier for semantic
vector models on the way to model language (Widdows 2008). As a consequence,
an emerging area of research that receives more and more attention among the
advocates of distributional models are the methods, algorithms and evaluation
strategies for modeling of compositional meaning within VSM framework.

VSMs are mathematically well-understood, have been shown to work well in
modeling lexical meaning, allow integration of uncertainty, and are in line with
empirical results from cognitive science (Gärdenfors 2004). The crucial missing
piece is how to model compositionality. We address this problem here by ex-
amining mathematical models of vector composition in Section 4 and proposing
an evaluation framework for compositional models that is inherited from the re-
search on collocations (cf. Sections 3 and 5). In the end, we assess and compare
the performance of compositionality operators and provide an outlook for future
research.

2 Related Work

Untill recently, the ”bag-of-words” approach has been used as a default to get
the meanings of phrases and sentence in vector spaces (Landauer and Dumais
1997, Deerwester et al. 1990). The latter consists of just adding up the individual
vectors of the words to get the meaning of a phrase or sentence. The vector sum
operation can obviously not serve as an adequate means of semantic composition,
as word order information is ignored, whereby Peter washed the car and the car
washed Peter would mean the same.
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Among the early attempts to provide more compelling combinatory functions
to capture word order information and the non-commutativity of linguistic com-
positional operation in VSMs is the work of Kintsch (2001) who is using though a
more sophisticated but still just addition operation to model predicate-argument
structures in VSM.

There are approaches under way to work out a combined framework for mean-
ing representation using both the advantages of formal and distributional meth-
ods. Thus, Clark and Pulman (2007) aim at a conceptual model which unites
symbolic and distributional representations in the similar way as Cognitive Sci-
ence research does with symbolic and connectionist models, namely by adopting
the tensor product representations (Smolensky 2006, Gärdenfors 2004).

They propose to combine the symbolic representation, such as a parse tree on
the sentence level, with the distributional co-occurrence signature of the individ-
ual words by means of a tensor product. They leave open the practical question
of obtaining the vector representation for the dependency relations, such as sub-
ject, object and predicate which are essential for the model and without which
the suggested framework could not be evaluated.

Recent work which addresses the problem of compositionality in Vector- or
Word Space Models include Mitchell and Lapata (2008) and Widdows (2008).

Mitchell and Lapata (2008) introduce a number of addition and multiplication
models for vector combinations and evaluate the proposed models on a sentence
similarity task (Kintsch 2001). In a nutshell, their conclusion is that multiplica-
tive models are superior to the simple additive models for the similarity task in
question. The similarity rates in their evaluation are elicited from the human
subjects, with rather small inter-annotator agreement rate of 0.40 (Spearman’s
rho coefficient). The low agreement rate suggests that the used “gold standard”
may not have been reliable enough to serve as a basis for evaluation.

Widdows (2008) proposes a number of more advanced vector operations well-
known from quantum mechanics, such as tensor product and convolution, to
model composition in vector spaces. Furthermore, he presents two small but
intuitive experiments that show the ability of the VSM models to reflect the
relational and phrasal meanings on simple similarity tasks. The latter include
finding the relations of the kind Moscow is related to Russia like Berlin - to
Germany, or finding out whether eating apples is different from cooking tomatoes
in vector spaces. Both Widdows (2008) and Clark and Pulman (2007) provoke
further research in the area by summarizing a number of possible mathematical
operators on vectors, thereby inspiring interfaces between language and quantum
research, which promises to be a fruitful area.

We take the baton from Widdows (2008) and evaluate empirically the appli-
cability of suggested mathematical vector operations to model semantic com-
position. As a test-bed for our experiments, we draw on research in multiword
units extraction, which has been a long tradition in computational linguistics as
identifying non-compositional (or idiomatic) units is an important subtask for
any computational system (Sag et al., 2002).
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3 Multiword Units (MWUs), Word Spaces and
Compositionality

Following Schone and Jurafsky (2001), we define a multiword unit (MWU) as
a connected collocation, i.e., a sequence of neighbouring words whose exact and
unambiguous meaning cannot be derived from the meaning of its components.
Spill the beans or hot dog are examples of such MWUs. Therefore, a MWU either
has a completely opaque meaning, or its constituent words acquire some other
nuance of meaning when they are used together, thereby making the expression
as a whole non-compositional. Thus, spill is no more about slopping when it
comes together with the beans, it is about revealing (secrets). In contrast, buy a
ticket is about buying and ticket together and is perfectly compositional. Figura-
tive MWUs have always posted a problem for compositional theories of language
and have been used as an objection to the principle of compositionality of human
language within symbolic approaches.

There have been a number of research efforts looking for methods of auto-
matic identification of such non-compositional MWU with statistical association
measures (Evert and Krenn 2000, Evert 2004, Lin 1999) or by means of Latent
Semantic Analysis (Schone and Jurafsky 2001, Baldwin et al. 2003, Katz and
Giesbrecht 2006). Research in the latter field was a motivation for this work.

Schone and Jurafsky (2001) and Katz and Giesbrecht (2006) explored de-
tection of non-compositional phrases by means of comparing the co-occurrence
signatures of a multiword unit as a whole and those of the composed vectors of
its constituents. The main assumption in all similar experiments is that compo-
sitional MWUs appear systematically in contexts more similar to those in which
their component words appear than do non-compositional MWUs, which is a
general assumption in the spirit of distributional semantics. Figure 1 illustrates
such a vector space in two dimensions. Note that the meaning vector for the
MWU yellow press is quite similar to that for gossip but distant from yellow,
while the meaning vector for yellow banana would be, in contrast, much closer to
yellow. Indeed yellow press is a non-compositional idiom meaning ‘newspapers
that publish gossip about celebrities’.

Katz and Giesbrecht (2006) showed that the local context of a MWU could
reliably distinguish idiomatic uses of MWU from non-idiomatic uses. It was
shown that LSA vectors for compositional and non-compositional uses of an
idiom (manually annotated) were orthogonal, i.e., unrelated.

However, both of the above mentioned works define the estimated compo-
sitional meaning vector by taking it to be the sum of the component vectors,
i.e., the compositional meaning of an expression < word1, word2 > consisting
of two words is taken to be sum of the vectors for the corresponding words or
< word1 > + < word2 >. They recognize that the composed vector is clearly
nowhere near a perfect model of compositional meaning, but it proved to be just
enough to test the hypothesis.

We build here upon the work of Katz and Giesbrecht (2006) and explore more
advanced mathematical operations on vectors, suggested by Widdows (2008),
as an approximation of ”semantic composition” by adopting their evaluation
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Fig. 1. Two-dimensional word space

paradigm. In particular, we are looking for an answer to the question whether
simply applying more advanced mathematical operations on vectors would be
enough to achieve better models of the semantic compositionality in vector
spaces.

4 Compositional Models

Let w1w2 denote the composition of two vectors w1 and w2. In the following,
we define the operations for vector compositionality models that we test later.
The estimated compositional meaning vector w1w2 is calculated by taking it to
be:

1. The sum of the meaning vectors of the parts, i.e., the compositional meaning
of an expression w1w2 consisting of two words is taken to be sum of the mean-
ing vectors for the constituent words w1 and w2 : (w1w2) i = w1 i+w2 i ;

Thus, the “compositional” vector for yellow press in this case would be
the sum of the vectors for yellow and press.

2. The simplified multiplicative model as it is defined in Mitchell and Lapata
(2008): under the assumption that only the ith component of w1 and w2
contribute to the ith component of w1w2, we can formulate vector multipli-
cation operation as: (w1w2)i = w1i · w2i;

3. The tensor product: if the vector of the word w1 has components w1i and
the vector of the word w2 has components w2j , then the tensor product
(w1 ⊗ w2) is a matrix whose ijth entry is w1iw2j (cf. Widdows 2008);

4. The convolution product, which is also a kind of vector multiplication that
results in the third vector of dimensionality (m + n− 1). Given two vectors
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w1 = [w11, w12, w1..., w1m] and w2 = [w21, w22, w2..., w2n], their convolu-
tion (w1 ∗ w2) is defined as (w1w2)i =

∑
j w1jw2i−j+1.

For computing meaning similarity for vector addition, component multiplica-
tion and convolution, we use the standard measure of cosine of the angle between
two vectors (the normalized correlation coefficient) as a metric (Schütze 1998,
Baeza-Yates and Ribeiro-Neto 1999), which corresponds for normalized unit vec-
tors to a scalar product of those. In this metric, two expressions are taken to
be unrelated if their meaning vectors are orthogonal (the cosine is 0) and syn-
onymous if their vectors are parallel (the cosine is 1). For the tensor product,
the natural similarity measure is the inner product on tensors and is defined as
the product of the similarities of the constituents: (w11 ∗w21)× (w12 ∗w22) (cf.
Widdows 2008). The quantitative interpretation of this metric corresponds to
that of a scalar product, i.e., the higher the similarity score, the more related
the components.

5 Experimental Setup

In our work we make use of the Word Space Model. In this framework, the mean-
ing of a word is modeled as an n-dimensional vector with dimensions being its
co-occurrence signature, derived via Random Indexing (Sahlgren 2005). Random
Indexing (RI) is a computationally tractable analogue of Singular Value Decom-
position (Deerwester et al. 1990) where Word Space Models are built iteratively,
unlike in the LSA scenario, where first a complete sparse WSM of a text collec-
tion is constructed and then the dimensionality of a WSM is reduced by means
of SVD. RI is claimed to achieve comparable results to LSA (cf. Sahlgren 2005).
As to our knowledge, this specific technique has not been tested yet for the task
of MWU identification.

We build our WSM on the excerpt of a local German newspaper corpus1.
As our MWU test set we use a database of German (Preposition)-Noun-Verb
(PNV) pairs available as an example data collection in the UCS-Toolkit2. From
this database only word combinations with frequency of occurrence more than
30 in the corpus were considered.

The Semantic Vectors package (Widdows 2008) was used to build the context
vectors of reduced dimensionality. We use a window context of 15 words and
limit the dimensionality to 100, resulting in 100 dimensional “meaning”-vectors
for each word. In our experiments, MWUs were assigned meaning vectors as a
whole, using the same procedure. In order not to bias the contribution of the
constituent words, the meaning vectors for these words were always computed
from contexts in which they appear alone (that is, not in the local context of the
other constituent). Table 3 illustrates a possible resulting matrix, which indicates
that, e.g., the words gossip and celebrity occur 20 times with yellow press within
a distance of 7 words before or 7 words after the yellow press.
1 Süddeutsche Zeitung (SZ) corpus for 2003 with about 42 million words.
2 www.collocations.de



180 E. Giesbrecht

Table 3. An example of the MWU word space

dim1=gossip dim3=celebrity dim4=banana ... dim100=resources

yellow 0 0 20 ... 0
press 1 3 0 ... 15
yellow press 20 20 0 ... 1

Fig. 2. Vectors for composition operations vs that of the MWU in a 2-dimensional
vector space

Our task was to compare the actual vector of a multiword unit with that
of the ”composed” vector of its constituents, whereas the ”composed vector”
was defined by the models of compositionality described in Section 4. Figure 2
exemplifies the idea behind the overall procedure.

6 Evaluation

Evaluation is a challenge when it comes to the analysis of compositionality. As
to our knowledge, there are just a few evaluation attempts in this field and most
of the relevant research has concentrated on the conceptual modeling. The only
evaluation in the field was done on sentence similarity judgements. The strategy
we suggest in this paper is a bit different.

To evaluate the method, we use the manually annotated collocations database
described by Krenn (2000) as our gold standard. This collection includes colloca-
tions that have been manually classified into Support Verb Constructions(SVC),
figurative expressions, or neither of the two. SVC are (preposition-)noun-verb
constructions where a noun provides the main semantic contribution to the
meaning of the whole phrase, like in ”Peter took a walk”, or an example in
German could be ”Peter hat das Problem in Angriff genommen” The whole
word combination in this case is neither non-compositional nor can it be called



In Search of Semantic Compositionality in Vector Spaces 181

Table 4. Similarity values for tested compositionality models

ADDITION < 0.2 < 0.3 < 0.4 < 0.5
Precision 0.125 0.28 0.29 0.25
Recall 0.05 0.53 0.84 0.88

F-measure 0.09 0.37 0.43 0.40
MULTIPLICATION < 0.001 < 0.01 < 0.02 < 0.03

Precision 0.19 0.20 0.19 0.19
Recall 0.47 0.79 0.89 1.00

F-measure 0.27 0.39 0.31 0.31
TENSOR < 0.03 < 0.05 < 0.1 < 0.15
Precision 0.21 0.29 0.31 0.28
Recall 0.16 0.37 0.84 1.00

F-measure 0.18 0.325 0.45 0.44
CONVOLUTION < 0.01 < 0.1 < 0.2 < 0.26

Precision 0.22 0.20 0.22 0.25
Recall 0.26 0.47 0.79 1.00

F-measure 0.24 0.28 0.35 0.40

compositional. To be on the safe side, the current evaluation is based solely on
the phrases annotated as figurative, as they are per se non-compositional. The
latter constitute 19% of our test set (19 out of 100).

The idea behind our evaluation strategy is to use these non-compositional
collocations to compare how good different vector composition models are at
identifying them. This should give us a clue whether just using a more advanced
mathematical operator is enough to reproduce semantic composition in language.

The resulting vector similarity values for tensor product range from -0.009 to
0.55; for vector sum, the cosine values are between 0.04 and 0.79; the products
range from -0.009 to 0.03; and finally, convolution ranges from -0.04 to 0.663.
Since we cannot directly compare the values between the different composition
operations, important are the comparisons within the individual models.

In computational linguistics, one straightforward way of doing this is by means
of precision and recall.

Precision is defined in this case as the proportion of the phrases under given
cosine similarity thresholds that are multiword units. Recall is the proportion
of all given multiword units under the cosine threshold. As there is generally a
trade-off between the two measures, the F-measure (Manning and Schütze 1999)
is often used instead, which is a weighted harmonic mean of precision and recall.
Table 4 gives an overview of precision, recall and F-score values for different
cut-offs of a similarity value for the evaluated composition models.

The results in Table 4 and in Fig. 3 show that the tensor product does a con-
sistently better job at recognizing non-compositional multiword units. Though
the precision of all the models seems to be rather small at first sight, it is worth

3 The biggest possible value is 1.0. Remember, the higher the similarity score, the
more related the components.
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Fig. 3. Precision-recall diagram

mentioning that it is still significantly better than expected by chance alone for
almost all models. The outcomes of other methods are rather dispersed in the
vector space, especially these of vector addition. Our preliminary results are in
line with those of Widdows (2008) who showed on a couple of examples that
the tensor product performs well at discovering unlikely word combinations on
a phrase similarity task.

7 Conclusions and Outlook

To summarize, we address in this paper the problem of expressing compositional-
ity in vector spaces and propose an alternative evaluation framework for assessing
the models of vector composition. The latter is adopted from the recent research
on collocations. We compute an approximation of the compositional meaning of
MWUs with the help of different mathematical vector combination methods and
compare this with the vector of the expression as it is used on the whole. Our
preliminary findings prove that the more advanced compositional operators, like
tensor products, lead to better results than just using vector addition, which is
still the most common operator for vector composition. Though the results are
encouraging, there is definitely a need for further explorations on the way to a
complete compositionality model in vectors spaces. Like Widdows (2008), who
indirectly inspired us to perform this evaluation with his introductory paper on
semantic vector products, we are not in the position yet to commit ourselves to
any representative statements. It is obvious though, that just using a different
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mathematical operator will not do the job; and it is not foreseeable at the mo-
ment how structural peculiarities of language can be reflected in such models
with current approaches.

We believe that the way to go is to merge the strengths of distributional and
symbolic approaches. In the future, we plan to investigate advanced composi-
tionality models in vector spaces, especially the tensor product, in an integrated
scenario with symbolic structural representations, like conceptual graphs (Sowa
2000), or as proposed by Clark and Pulman (2007).

Language has structure, and the meaning of a sentence in language is de-
pendent on lexis as well as on grammar. Consequently, any successful meaning
theory should be able to integrate these.

A further important open issue which could have received more attention both
in symbolic and in subsymbolic communities is that compositionality appears to
come in degrees (Bannard et al. 2003).

Acknowledgements. Special thanks go to Radomir Zugic and Sebastian Rudolph
who have generously spared the time to read and comment on this work. Many
thanks also to the anonymous reviewers for their constructive critique.
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Abstract. A vast amount of documents in the Web have duplicates,
which is a challenge for developing efficient methods that would compute
clusters of similar documents. In this paper we use an approach based
on computing (closed) sets of attributes having large support (large ex-
tent) as clusters of similar documents. The method is tested in a series
of computer experiments on large public collections of web documents
and compared to other established methods and software, such as biclus-
tering, on same datasets. Practical efficiency of different algorithms for
computing frequent closed sets of attributes is compared.

1 Introduction

Around 30% of documents in Internet have duplicates, which necessitates cre-
ation of efficient methods for computing clusters of duplicates
[5,6,7,9,10,14,15,17,24,23]. The origin of duplicates can be different: from in-
tended duplicating information on several severs by companies (legal mirrors)
to cheating indexing programs of websites, illegal copying and almost identical
spammer messages. Usually duplicates are defined in terms of similarity rela-
tion on pairs of documents: two documents are similar if a numerical measure
of their similarity exceeds a certain threshold (e.g., see [5,6,7]). The situation is
represented then by a graph where vertices are documents and edges correspond
to pairs of the similarity relation. Clusters of similar documents are computed
then as cliques or as connected components of such similarity graphs [7]. The
main stages in finding clusters of duplicates are as follows (see, e.g., [7]): rep-
resenting documents by sets of attributes, making concise document images by
choosing subsets of images, defining similarity relation on document images, and
computing clusters of similar documents. At the first stage of processing, after
removing HTML-markup and punctuation marks, documents are turned into
strings of words, which are, in turn, represented by sets of attributes. We have
there two main different approaches, called syntactical and lexical. The syntacti-
cal approach consists in defining binary attributes that correspond to each fixed
length substring of words (or characters). Such substrings are called shingles.
Usually a shingle corresponds to a sequence of words and there are two param-
eters of shingling: the length of a shingle (the number of words in a shingle)
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and offset, the distance between the beginnings of two shingles. Each shingle is
coded by a hash code (equal shingles have equal codes and it is unlikely that
different shingles have same codes). Then, by means of a randomization scheme,
a subset of shingles is chosen for a concise image of the document [5,6,7]. Such
an approach is used in AltaVista search engine and (judging by patent [23]),
in Google too. There are several principles for choosing number of shingles in
an image: A fixed number, a logarithmic (as in Yandex mail service) number,
linear number (each kth shingle), etc. In lexical methods representative words
are chosen according to their significance of these words. Usually indices of sig-
nificance are based on frequencies: those words whose frequencies lie in a certain
interval (except for stop-words from a special list of about 30 stop-words with
including articles, prepositions and pronouns) are taken: high frequency words
can be noninformative and low frequency words can be either haphazard words
that could have not appeared in a text or misprints.

In lexical methods such as I-Match [10] a large text corpus is used for gener-
ating lexicon, i.e., a set of representative words. A document is represented by
the words that occur in the lexicon. In generation of the lexicon the words with
lowest and highest frequencies are deleted, I-Match generates signature of a doc-
ument (set of terms) and hash code of the document, where two documents get
the same hash code with the probability equal to their similarity measure (ac-
cording to the so-called cosine measure). As shown in [17], I-Match is sometimes
instable to changes in texts, e.g., to marginal randomization of actually identical
spammer messages. To avoid this drawback, besides one standard signature, one
uses K more signatures, each of which is obtained by random deletion of certain
amount of terms from the initial signature (i.e., all new signatures are subsets of
the initial one). Two documents are considered to be almost duplicates if their
images from K+1 signatures have large intersection in at least one of signature.
In [17] the authors noted the similarity of this approach to the approach based on
supershingles (concatenation of supershingles). In lexical method [15] the focus
is towards the construction of a lexicon, a set of descriptive words, which should
be concise, but cover well the collection. The occurrence of a word in a document
image is robust with respect to small changes in the document. When document
images are defined, one defines similarity relation on documents starting from a
similarity measure which takes two documents to a number in the [0,1] interval
depending on the amount of their common description units (shingles or words,
in syntactical or lexical approaches, respectively). Then one chooses a thresh-
old, exceeding which means large similarity of documents (the documents are
near-duplicates). This metrics and a threshold define (symmetric and reflexive)
similarity relation on document pairs. The similarity relation on document pairs
determine clusters of near-duplicates. Definition of a cluster may also vary. A
possible definition often used in practice, e.g., in Altavista search engine [7], is
as follows: Consider the graph where Internet documents correspond to vertices
and similarity relation corresponds to edges. Then a cluster of near duplicates
is a connected component of such a graph. An advantage of such definition is
efficiency of computation: a connected component may be computed in time
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linear in the number of edges. An obvious drawback here is that the relation to
be near duplicates is not transitive, therefore absolutely different documents can
occur in a cluster. The strongest definition of a cluster arising from a similarity
relation is that based on a graph clique. This definition is more adequate than
that based on the connected component, but is much harder computationally,
since generation of maximal cliques is a classical intractable problem. These two
extreme definitions of a cluster admit for a broad scope of intermediate formu-
lations that realize trade-off between precision and complexity of computing the
clusters. Other methods of cluster definition are based on variations of standard
methods of cluster analysis, e.g., when clustering a new object uses the distance
to the mass center of clusters. Methods of this type essentially depend on the
sequence in which objects to be clustered arrive. As applied to the problem of
clustering duplicates, this means that documents that occurred earlier determine
stronger the structure of cluster than documents that occurred later.

In this paper we consider similarity not as a relation on the set of documents,
but as an operation taking each two documents to the set of all common ele-
ments of their concise descriptions. Here description elements are either syntac-
tical units (shingles) or lexical units (representative words). A cluster of similar
documents is defined as a set of all documents with a certain set of common
description units. A cluster of duplicates is defined as a set of documents where
the number of common description units exceeds a certain threshold. In this pa-
per we compare results of its application (for various values of thresholds) with
the list of duplicates obtained by applying other methods to the same collection
of documents. We studied the impact of the following model parameters on the
result:

– The use of the syntactical or lexical methods for representing documents,
– the use of method “n minimal elements in a permutation” or “minimal ele-

ments in n permutations”[5,6,7] (the second method, having better
probability-theoretical properties, has worse computational complexity.)

– shingling parameter,
– threshold value of similarity of document images.

One of our goals was to relate computation of pairwise similarity with gener-
ation of clusters so that, on the one hand, the obtained clusters are independent
of the order of document occurrence (in contrast to methods of cluster analy-
sis) and, on the other hand, they would guarantee real pairwise similarity of all
document images in the cluster. To this end we employed an approach based on
formal concepts: Clusters of documents are given by formal concepts of the con-
text where objects correspond to description units (units of a language describing
documents: shingles, lexical units, etc.) and attributes are document names. A
cluster of very similar documents corresponds then to a formal concept such that
the size of extent (the number of common description units of documents) ex-
ceeds a threshold given by parameter. Thus, generating very similar documents
is reduced to the problem of Data Mining [21] known as generating frequent
closed itemsets.
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The rest of the paper is organized as follows. In the second section we con-
sider briefly a mathematical model underlying methods of composing document
images and methods for finding clusters of similar documents. In the third sec-
tion we give a short description of software tools and experiments with a large
collection of web documents. In the fourth section we discuss results of computer
experiment and set further problems.

2 Computational Model

2.1 Document Image

For creating document images we used standard syntactical and lexical ap-
proaches with different parameters. Within syntactical approach we realized the
shingling scheme and computing document image (sketch) with the method “n
minimal elements in a permutation” and the method “minimal elements in n
permutations” detailed description of which can be found in [5,6,7]. For each text
the program shingle with two parameters (length and offset) generate contigu-
ous subsequences of size length such that the distance between the beginnings
of two subsequent substrings is offset. The set of sequences obtained in this way
is hashed so that each sequence receives its own hash code. From the set of hash
codes that corresponds to the document a fixed size (given by parameter) subset
is chosen by means of random permutations described in [5,6,7]. The probability
of the fact that minimal elements in permutations on hash code sets of shingles
of documents A and B (these sets are denoted by FA and FB, respectively)
coincide, equals to the similarity measure of these documents sim(A, B):

sim(A, B) = P [min{π(FA)} = min{π(FB)}] =
|FA ∩ FB|
|FA ∪ FB|

Permutations (that can be represented by renumbering of shingles) are re-
alized by multiplying of binary vectors that represent document images (each
component of such a vector corresponds to the hash code of a particular shingle
from the image) on random binary matrices. For each hash code from the set
of hash codes of a documents its number in each random permutation is com-
puted as a product of the hash code given in the form of binary vector on the
randomly generated binary matrix that corresponds to the permutation. The
number of permutations is also a parameter. For each permutation (given by a
binary matrix) the minimal element (i.e., hash code of a shingle that became the
first after the permutation) is chosen. The image of a document in the method
“n minimal elements in a permutation” is the set of n minimal (first) hash codes
in a permutation. The image of a document in the method “minimal elements
in n permutations” is the set consisting of minimal (first) hash codes in n inde-
pendent permutations. In both methods the images of all documents have fixed
length n. The second approach has better randomization properties (see [5,6,7]
for details), however needs more time for computations (n times more than in
the first approach).
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2.2 Definition of Similarity and Similarity Clusters by Means of
Frequent Concepts

First, we briefly recall the main definitions of Formal Concept Analysis (FCA) [11].
Let G and M be sets, called the set of objects and the set of attributes, re-
spectively. Let I be a relation I ⊆ G × M between objects and attributes: for
g ∈ G, m ∈ M , gIm holds iff the object g has the attribute m. The triple
K = (G, M, I) is called a (formal) context. Formal contexts are naturally given
by cross tables, where a cross for a pair (g, m) means that this pair belongs to
the relation I. If A ⊆ G, B ⊆ M are arbitrary subsets, then derivation operators
are given as follows:

A′ := {m ∈ M | gIm for all g ∈ A},
B′ := {g ∈ G | gIm for all m ∈ B}.

The pair (A, B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a (formal)
concept (of the context K) with extent A and intent B.

The operation (·)′′ is a closure operator, i.e., it is idempotent (X ′′′′ = X ′′),
extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆ Y ′′). Sets A ⊆ G, B ⊆ M
are called closed if A′′ = A and B′′ = B. Obviously, extents and intents are closed
sets. Formal concepts of context are ordered as follows: (A1, B1) ≤ (A2, B2) iff
A1 ⊆ A2(⇔ B1 ⊇ B2). With respect to this order the set of all formal concepts
of the context K makes a lattice, called a concept lattice B(K) [11].

Now we recall some definitions related to association rules in Data Mining.
For B ⊆ M the value |B′| = |{g ∈ G | ∀m ∈ B(gIm)}| is called support of
B and denoted by sup(B). It is easily seen that the set B is closed if and only
if for any D ⊃ B one has sup(D) < sup(B). This property is used for the
definition of a closed itemset in Data Mining. A set B ∈ M is called k-frequent
if |B′| ≤ k (i.e., the set of attributes B occurs in more than k objects), where k
is parameter. Computing frequent closed sets of attributes (or itemsets) became
important in Data Mining since these sets give the set of all association rules [21].
For our implementation where contexts are given by set G of description units
(e.g., shingles), set M of documents and incidence (occurrence) relation I on
them, we define a cluster of k-similar documents as intent B of a concept (A, B)
where |A| ≥ k. Although the set of all closed sets of attributes (intents) may
be exponential with respect to the number of attributes, in practice contexts
are sparse (i.e., the average number of attributes per object is fairly small).
For such cases there are efficient algorithms for constructing all most frequent
closed sets of attributes (see also survey [18] on algorithms for constructing all
concepts). Recently, a competitions in time efficiency for such algorithms were
organized in series of workshops on Frequent Itemset Mining Implementations
(FIMI). By now, a leader in time efficiency is the algorithm FPmax* [13]. We
used this algorithm for finding similarities of documents and generating clusters
of very similar documents. As mentioned before, objects are description units
(shingles or words) and attributes are documents. For representation of this
type frequent closed itemsets are closed sets of documents, for which the number
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of common description units in document images exceeds a given threshold.
Actually, FPmax* generates frequent itemsets (which are not necessarily closed)
and maximal frequent itemsets, i.e., frequent itemsets that are maximal by set
inclusion. Obviously, maximal frequent sets of attributes are closed.

3 Program Implementation

Software for experiments with syntactical representation comprise the units that
perform the following operations:

1. XML Parser (provided by Yandex): it parses XML packed collections of web
documents

2. Removing html-markup of the documents
3. Generating shingles with given parameters length-of-shingle, offset
4. Hashing shingles
5. Composition of document image by selecting subsets (of hash codes) of shin-

gles by means of methods n minimal elements in a permutation and minimal
elements in n permutations.

6. Composition of the inverted table the list of identifiers of documents shingle
thus preparing data to the format of programs for computing closed itemsets.

7. Computation of clusters of k-similar documents with FPmax* algorithm:
the output consists of strings, where the first elements are names (ids) of
documents and the last element is the number of common shingles for these
documents.

8. Comparing results with the existing list of duplicates (in our experiments
with the ROMIP collection of web documents, we were supplied by a pre-
computed list of duplicate pairs).

This unit outputs five values: 1) the number of duplicate pairs in the ROMIP
collection, 2) the number of duplicate pairs for our realization, 3) the number
of unique duplicate pairs in the ROMIP collection, 4) the number of unique
duplicate pairs in our results, 5) the number of common pairs for the ROMIP
collection and our results. For the lexical method, the description units are words
(not occurring in the stop list) the frequencies of which lie in a certain interval.
The amount of words in the dictionary is controlled by making closer the extreme
points of the interval.

4 Experiments with ROMIP Data

As experimental data we used ROMIP collection of URLs (see www.romip.ru)
consisting of 52 files of general size 4.04 GB. These files contained 530 000
web pages from narod.ru domain. Each document from the collection has size
greater or equal to 10 words. For experiments the collection was partitioned into
several parts consisting of three to 24 such files (from 5% to 50% percent of the
whole collection). Shingling parameters used in experiments were as follows: the
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number of words in shingles was 10 and 20, the offset was always taken to be
1 (which means that the initial set of shingles contained all possible contiguous
word sequences of a given length). Two methods of composing document image
described in Section 2.1 were studied: n minimal elements in a permutation and
minimal elements in n permutations. The sizes of resulting document images
were taken in the interval 100 to 200 shingles. In case of lexical representation
described in Section 2.1, only words from the resulting dictionary were taken
in the document image (the set of descriptive words). As frequency thresholds
defining frequent closed sets (i.e., the numbers of common shingles in document
images from one cluster) we experimentally studied different values in intervals,
where the maximal value is equal to the number of shingles in the document
image, e.g., [85, 100] for document images with 100 shingles, the interval [135,
150] for document images of size 150, etc. Obviously, choosing the maximal value
of an interval, we obtain clusters where document images coincide completely.

For parameters taking values in these intervals we studied the relation between
resulting clusters of duplicates and ROMIP collection of duplicates, which con-
sists of pairs of web documents that are considered to be near duplicates. Simi-
larity of each pair of documents in this list is based on Edit Distance measure,
two documents were taken to be duplicates by authors of this testbed if the
value of the Edit Distance measure exceeds threshold 0.85 [27]. As we show be-
low, this definition of a duplicate is prone to errors, however making a testbed
by manual marking duplication in a large web document collection is hardly
feasible. Unfortunately, standard lists of near-duplicates are missing even for
standard corpora such as TREC or Reuters collection [22]. For validating their
methods, researchers create ad-hoc lists of duplicates using slightly transformed
documents from standard collections.

In our study for each such pair we sought an intent that contains both el-
ements of the pair, and vice versa, for each cluster of very similar documents
(i.e., for each corresponding closed set of documents with more than k common
description units) we take each pair of documents in the cluster and looked for
the corresponding pair in the ROMIP collection. As result we obtain the ta-
ble with the number of common number of near duplicate pairs found by our
method (denoted by HSE) and those in the ROMIP collection, and the number
of unique pairs of HSE duplicates (document pairs occurring in a cluster of “very
similar documents” and not occurring in the ROMIP collection). The results of
our experiments showed that the ROMIP collection of duplicates, considered to
be a benchmark, is far from being perfect. First, we detected that a large number
of false duplicate pairs in this collection due to similar framing of documents.
For example the pages with the following information in table 1 about historical
personalities 1 and 2 were declared to be near duplicates.

However these pages, as well as many other analogous false duplicate pairs in
ROMIP collection do not belong to concept-based (maximal frequent) clusters
generated in our approach.

In our study we also looked for false duplicate clusters in the ROMIP collec-
tion, caused by transitive closure of the binary relation “X is a duplicate of Y ”
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Table 1. Information about historical personalities

1. Garibald II, Duke of Bavaria
Short information:
Full Name: Garibald
Date of birth: unknown
Place of birth: unknown
Date of death: 610
Place of death: unknown
Father: Tassilo I Duke of Bavaria

Mother: uknown

2. Giovanni, Duke of Milan
Short information:
Full Name: Giovanni Visconti
Date of birth: unknown
Place of birth: unknown
Date of death: 1354
Place of death: unknown
Father: Visconti Matteo I,
the Great Lord of Milan
Mother: uknown

(as in the typical definition of a document cluster in [7]). Since the similarity
relation is generally not transitive, the clusters formed by transitive closure of
the relation may contain absolutely nonsimilar documents. Note that if clusters
are defined via maximal frequent itemsets (subsets of attributes) there cannot
be effects like this, because documents in these clusters share necessarily large
itemsets (common subsets of attributes).

We analyzed about 10000 duplicate document pairs and found four false dupli-
cate clusters. An example is a cluster of 58 documents containing the webpages

aadobr.narod.ru/Foto/fotofr.html
avut.narod.ru/pages/page02.htm
azer.narod.ru/index.html
b-tour.narod.ru/index.html
barents.narod.ru/foto nov.html
. . .
There is no cluster like this generated in our approach. Instead, we have

several clusters of similar documents that have a certain amount (depending on
the parameter) of common features.

4.1 Performance of Algorithms and Their Comparison

We measured time elapsed on the stages of shingling, composing document im-
ages and generating clusters of similar documents (by algorithms for computing
frequent maximal itemsets). On the last stage we used and compared various
algorithms: several well-known algorithms from Data Mining [12] and AddIn-
tent, an algorithm which proved to be one of the most efficient algorithms for
constructing the set of all formal concept and concept lattices [20].

Experiments were carried out on a PC P-IV HT with 3.0 MHz frequency,
1024 MB RAM under Windows XP Professional. Experimental results and time
elapsed are partially represented in Tables 2-6.

Results of the method “n minimal elements in a permutation”. For the
dataset narod.1-6.xml, which contained 53 539 documents, the following shin-
gling parameters were taken: size of document image 150 shingles, length of
shingle 20, offset 1 character.
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Table 2. Results of the method “n minimal elements in a permutation”

FPmax All Pairs of Du-
plicates

Unique pairs of
duplicates

Common
pairs

Input Threshold ROMIP HSE ROMIP HSE
b 1 20 s 100 n1-12.txt 100 105570 15072 97055 6557 8515
b 1 20 s 100 n1-12.txt 95 105570 20434 93982 8846 11588
b 1 20 s 100 n1-12.txt 90 105570 30858 87863 13151 17707
b 1 20 s 100 n1-12.txt 85 105570 41158 83150 18738 22420
b 1 20 s 100 n1-24.txt 100 191834 41938 175876 25980 15958
b 1 20 s 100 n1-24.txt 95 191834 55643 169024 32833 22810
b 1 20 s 100 n1-24.txt 90 191834 84012 155138 47316 36696
b 1 20 s 100 n1-24.txt 85 191834 113100 136534 57800 55300
b 1 10 s 150 n1-6.txt 150 33267 6905 28813 2451 4454
b 1 10 s 150 n1-6.txt 145 33267 9543 27153 3429 6114
b 1 10 s 150 n1-6.txt 140 33267 13827 24579 5139 8688
b 1 10 s 150 n1-6.txt 135 33267 17958 21744 6435 11523
b 1 10 s 150 n1-6.txt 130 33267 21384 19927 8044 13340
b 1 10 s 150 n1-6.txt 125 33267 24490 19236 10459 14031

Table 3.

Time elapsed, s Precision Recall Threshold F1
1,2 0,4 0,2 100 0,24
2,0 0,4 0,2 95 0,31
3,1 0,5 0,4 90 0,42
5,3 0,5 0,4 85 0,44
7,2 0,4 0,5 80 0,46

For evaluating we used a popular measure that combines Precision and Recall:
the weighted harmonic mean of precision and recall, or F -measure = 2·(precision·
recall)/(precision+ recall). This is also known as the F1-measure, because recall
and precision are evenly weighted. The results obtained are given in Table 3,
Fig. 1 and Fig. 2.

For the dataset narod.1.xml, which contained 6941 documents, the following
shingling parameters were taken: size of document image 100 shingles, length of
shingle 10, offset 1 character. The results were obtained are given in Fig. 3 and
Table 4.

Comparing results of FPmax with results obtained with Cluto. In
our experiments with Cluto we chose the repeated-bisecting algorithm that uses
the cosine similarity function with a 10-way partitioning (ClusterRB), which is
mostly scalable according to its author [16]. The number of clusters is a param-
eter, documents are given by sets of attributes, fingerprints in our case. The
algorithm outputs a set of disjoint clusters. Algorithms from FIMI repository
can process very large datasets, however, to compare with Cluto (which is much
more time consuming as we show below) we took collection narod.1.xml that
contains 6941 documents.
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Fig. 1. Results of FPmax* on narod1-6.xml collection

Fig. 2. F-measure vs shingle length

Table 4.

Time elapsed,s Precision Recall Threshold F1
0,098 0,76 0,25 150 0,38
0,128 0,74 0,29 145 0,42
0,187 0,70 0,39 140 0,50
0,276 0,67 0,50 135 0,57
0,383 0,63 0,57 130 0,60
0,455 0,58 0,64 125 0,61
0,559 0,47 0,64 120 0,54
0,669 0,37 0,67 115 0,48
0,873 0,29 0,70 110 0,41
1,045 0,23 0,73 105 0,35
1,294 0,18 0,69 100 0,29

Graphs and tables show that for 5000 clusters the output of ClusterRB has al-
most the same value of F-measure (0.63) as FPmax* for threshold 150 (F1=0,61).
However, computations took 4 hours for ClusterRB and half a second for
FPmax*.



Frequent Itemset Mining for Clustering Near Duplicate Web Documents 195

Fig. 3. Results of FPmax* on narod1.xml collection

Table 5.

Time, s Precision Recall Number of clusters F1
11 0,02 0,90 100 0,04
766 0,09 0,78 1000 0,16
3125 0,19 0,74 2000 0,30
6402 0,28 0,71 3000 0,40
14484 0,64 0,61 5000 0,63
19127 0,90 0,35 6000 0,51

Fig. 4. Results of Cluto on narod1.xml collection

For same data collection narod.1.xml we made comparison to D-miner algo-
rithm [3] and biclustering algorithms from BicAT system [2]. D-miner takes input
in FIMI format, but computations were not completed due to lack of memory.
Same effect was observed for biclustering algorithms from BicAT, which cannot
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Table 6. Results for the method “minimal elements in n permutations”

FPmax All Pairs of Du-
plicates

Unique pairs of
duplicates

Common
pairs

Input Threshold ROMIP HSE ROMIP HSE
m 1 20 s 100 n1-3.txt 100 16666 4409 14616 2359 2050
m 1 20 s 100 n1-3.txt 95 16666 5764 13887 2985 2779
m 1 20 s 100 n1-3.txt 90 16666 7601 12790 3725 3876
m 1 20 s 100 n1-3.txt 85 16666 9802 11763 4899 4903
m 1 20 s 100 n1-6.txt 100 33267 13266 28089 8088 5178
m 1 20 s 100 n1-6.txt 95 33267 15439 26802 8974 6465
m 1 20 s 100 n1-6.txt 90 33267 19393 24216 10342 9051
m 1 20 s 100 n1-12.txt 100 105570 21866 95223 11519 10347
m 1 20 s 100 n1-12.txt 95 105570 25457 93000 12887 12570

Fig. 5. Time spent by FPmax* for the method “n minimal elements in a permutation”

work with condensed representation and required inputting datatable of size 1.9
Gb in case of our document collection narod.1.xml.

FPmax* algorithm for the method “minimal elements in n permutations”.
For large collections of documents and lower thresholds FPmax* did not com-
plete computation due to insufficient memory.

In our experiments the best performance is attained by FPmax* algorithm,
followed by the AFOPT algorithm [19]. These two algorithms proved to be the
fastest in FIMI competitions [12]. AddIntent* (AddIntent modified for maximal
frequent itemsets) lags behind these two, however, performs much better than
MAFIA [8]. Optimized implementations of APRIORI and ECLAT [4] failed to
compute the output even in the case of small subcollections of documents (about
4000 documents or 1% of the whole collection). These relative behaviour of
algorithms is similar to that observed in [12] in experiments with low support.
In the following Table we present running times in a typical experiment with
different algorithms on a subcollection of about 10% of the whole collection.
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Fig. 6. Time spent by FPmax* for the method “minimal elements in n permutations”

Fig. 7. Comparing efficiency of algorithms that compute maximal closed sets

In the contexts corresponding to these subcollections the number of objects is
relatively large as compared to the minsup threshold value defined by parameters
in the definition of duplicates. Thus, these are typical problems of generating
frequent itemsets in low-support data and relative performance of data mining
algorithms in our experiments is similar to that in survey [12].

5 Conclusion and Future Research

Analyzing results of our experiments with concept-based definition of clusters
of similar documents with ROMIP data collection we can draw the following
conclusions:

– The approach proposed in this paper allows for detecting false duplicates,
as shown in experiments with ROMIP near-duplicate collection.
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– Approaches based on closed sets of attributes propose adequate and efficient
techniques for both determining similarity of document images and generat-
ing clusters of very similar documents. They can be efficiently used on the
stage of outputting documents relevant to a query, when the number of all
found relevant documents does not exceed several thousands (around 10000
documents). However, these algorithms may encounter major difficulties in
treating larger collections of documents due to intrinsic exponential worst-
case complexity of the problem of computing maximal frequent itemsets.

– For our datasets (which are very “column-sparse”) the best Data Mining
algorithms for computing frequent closed itemsets, FPmax* and Afopt, out-
perform AddIntent, one of the best algorithm for constructing concept lat-
tice, adapted for computing maximal frequent itemset.

– Results of syntactical methods essentially depend on the parameter shingle
length. Thus, in our experiments, for the shingle length 10 the results (pairs
of duplicates) were much closer to those in the ROMIP collection as for the
lengths of shingles equal to 20, 15, and 5.

– In our experiments the results obtained by different methods of document
representation – n minimal elements in a permutation and minimal elements
in n permutations – did not differ much, which testifies in favor of the first,
faster method.

– Further work on generating clusters of web duplicates as formal concepts will
be related to efficiency issues: more efficient algorithms and new definitions
of suitable subsets of all clusters covering a collection of documents.
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System Consequence

Robert E. Kent

Ontologos

Abstract. This paper discusses system consequence, a central idea in
the project to lift the theory of information flow to the abstract level of
universal logic and the theory of institutions. The theory of information
flow is a theory of distributed logic. The theory of institutions is abstract
model theory. A system is a collection of interconnected parts, where the
whole may have properties that cannot be known from an analysis of
the constituent parts in isolation. In an information system, the parts
represent information resources and the interconnections represent con-
straints between the parts. System consequence, which is the extension of
the consequence operator from theories to systems, models the available
regularities represented by an information system as a whole. System
consequence (without part-to-part constraints) is defined for a specific
logical system (institution) in the theory of information flow. This paper
generalizes the idea of system consequence to arbitrary logical systems.

Keywords: logical system, information flow, information system, chan-
nel, system consequence.

1 Introduction

We study the information flow of ontologies and related information resources
by using the theory of institutions, which provides an axiomatization of the
notion of logical system. The theory of information flow is centered on a par-
ticular logical system denoted IF. Institutions are based on Tarski’s idea, in his
semantic definition of truth, that the notion of satisfaction is central (Goguen
and Burstall [6]). Ontologies are of two types: populated and unpopulated. Un-
populated ontologies contain theoretical information only, whereas populated
ontologies also contain semantic information. Semantic information is related
to theoretical information through satisfaction. At the most elemental level, we
represent theoretical information as types (universals), semantic information as
instances (tokens, particulars), and satisfaction as classification “It is particu-
lars, things in the world, that carry information; the information they carry is
in the form of types” (Barwise and Seligman [2]).

Abstraction is used in the theory of institutions: the details of the notions
of formal language, sentence, semantic structure and satisfaction are abstracted
away from their meaning in specific institutions such as first order logic: lan-
guages, sentences and structures are atomic (elemental) notions and satisfaction
is a composite notion that relates sentences to structures. Abstraction is used in
the theory of information flow: types and tokens (instances) are atomic notions
and classification is a composite notion that relates types to tokens. This paper
combines these uses of abstraction.

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 201–218, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Notions of information flow are used in both theories. The theory of information
flow defines the invariance of classification under parameterized atomic flow, the
“adjoint connection” between token and type flow. The theory of institutions de-
fines the invariance of satisfaction under parameterized atomic flow, the “adjoint
connection” between structure and sentence flow. The theory of information flow
defines direct and inverse molecular flow of IF theories and IF (local) logics, but
does not exploit the “adjoint connection”between these. The theory of institutions
defines direct and inversemolecularflow of specifications, and exploits the “adjoint
connection” between these. This paper extends these uses of information flow.

Until this paper, the theory of institutions has not combined semantics with
formalism into something like a local logic. Here, we define and discuss the
notion of system consequence, as part of the effort to generalize the theory of
information flow to the level of logical systems. At the atomic level the paper
generalizes from type sets, classifications and sequents to languages, structures
and sentences, respectively. At the molecular level it generalizes from IF theories
and IF (local) logics to specifications and logics (generic, sound or composite),
respectively. Logics are unsound and/or incomplete semantic representions for
various information resources such as universal algebras, libraries, knowledge
bases (data collections with formal description), or physical (chemical) theories
for a portion of the physical (chemical) world.

The paper falls into two parts: section 2 is concerned with the theory of
institutions and section 3 is about channel theory. Readers are assumed to be
familiar with the basic notions of category theory as presented in Barr and Wells
[1] and information flow as presented in Barwise and Seligman [2]. Section 2 de-
scribes the two alternate representations for logical systems (institutions): the
heterogeneous representation is outlined in subsection 2.1 and the homogeneous
representation is discussed in some detail in subsection 2.2. Important concepts
of the heterogeneous representation are languages, sentences and structures. Sen-
tences are the atoms of formalism, and structures are the atoms of semantics.
Important concepts of the homogeneous representation are specifications and
logics. Specifications, the molecules of formalism, are partitioned into complete
fiber preorders over their languages. Logics, the molecules of semantics, are parti-
tioned into complete fiber preorders over their structures. Section 2 discusses the
information flow between fibers of specifications along language morphisms and
between fibers of logics along structure morphisms. In addition, this section also
describes several well-known logical systems. Section 3 generalizes channel the-
ory, the theory of information flow, to the theory of institutions. Subsection 3.1
defines distributed and information systems from both the formal and semantic
perspectives. Subsection 3.2 defines information channels over distributed sys-
tems and describes direct and inverse information flow along channels. System
consequence is defined in terms of these notions of information flow.

2 Logical Systems

Any ontology is based on the logical language Σ of a domain (of discourse),
which often consists of the generic ideas of the connectives and quantifiers from



System Consequence 203

logic and the specific ideas of the signature (the constant, function and rela-
tion symbols) for that domain. In the institutional approach, a sentence is the
atom of formalism and a structure is the atom of semantics. Both sentence and
structure are described and constrained by the logical language Σ. The collec-
tion of sentences and the category1 of structures are symbolized by sen(Σ) and
struc(Σ), respectively. A structure M ∈ struc(Σ) provides a universe of dis-
course in which to interpret a sentence s ∈ sen(Σ). In the context supplied or
indexed by the language, satisfaction is the composite connecting formalism and
semantics. A structure M satisfies (is a model of) a sentence s in the context of
Σ, symbolized M |=Σ s (a kind of triadic construct), when s (holds in) is true
when interpreted in M .

In order to define the flow of information, we make several assumptions. We
assume that information resides at a (possibly abstract) location; such a location
is represented by, or indexed as, a language Σ. We assume that any two locations
can be connected by a link; such a location link is represented by or indexed as
a language morphism σ : Σ1 → Σ2, which has source language Σ1 and target
language Σ2. This is also a primitive notion in this paper. The languages Σ1 and
Σ2 represent two locations and the language morphism σ enables information
flow from Σ1 to Σ2. We assume that languages form the object collection (and
their morphisms form the morphism collection) of a language category Lang
(Fig. 1). Starting from this base, we describe two equivalent representations for
the notion of a logical system or institution, a heterogeneous representation and
a homogeneous representation.

2.1 Heterogeneous Representation

The formal atoms (sentences) and the semantical atoms (structures) can be moved
along language morphisms. For any language morphism σ : Σ1 → Σ2, there is a
sentence function sen(σ) : sen(Σ1) → sen(Σ2) from the collection of source
sentences to the collection of target sentences, and there is a structure functor2

struc(σ) : struc(Σ2) → struc(Σ1) (in the contra direction) from the category

1 A category C represents some “species of mathematical structure” (Goguen [4]). It
consists of a collection of objects |C| which have that structure and a collection of
morphisms, each directed from a source object to a target object, which preserve that
structure (there is an implicit notion of flow here). Morphisms compose associatively,
and each object has an identity morphism on itself. As examples, Set is the category
with sets as objects and functions as morphisms, and Cat is the category with
categories as objects and functors as morphisms.

2 A functor F : A → B is a “natural construction on structures of one species, yield-
ing structures of another species” (Goguen [4]). It is a link from a source category A
of one species to a target category B of another species, which maps the source ob-
jects (morphisms) to target objects (morphisms), preserving directionality, composi-
tion and identity. As an example, the underlying set functor |-| : Cat → Set maps a
category to its collection of objects and maps a functor to its underlying function on
objects. The composition F ◦G : A → C of two functors F : A → B and G : B → C
is defined in terms of their object/morphism maps.
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of target structures to the category of source structures. Hence, there is a sentence
functor sen : Lang → Set and a structure indexed category3 struc : Langop →
Cat. Passage composition with the underlying set functor yields the structure
functor |struc| = struc◦|-| : Langop → Cat → Set (Fig. 1). The satisfaction re-
lation is preserved during this information flow: struc(σ)(M2) |=Σ1 s1 iff M2 |=Σ2

sen(σ)(s1). Equivalently, using structure intent (Sec. 2.2), struc(σ)(M2)Σ1 =
sen(σ)−1(MΣ2

2 ). In the institutional approach, this is regardedas the invariance of
truth under change of notation. The formal and semantic functors, sen : Lang →
Set and |struc| : Langop → Set, can be combined with satisfaction into a clas-
sification functor cls : Lang → Cls, where a language Σ maps to the satisfac-
tion classification cls(Σ) = 〈|struc(Σ)|, sen(Σ), |=Σ〉 and invariance of truth
under change of notation corresponds to the infomorphism condition.4 The hetero-
geneous representation of logical systems is represented on the left side of
Fig. 1.
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Fig. 1. Logical System

2.2 Homogeneous Representation

This description is a way for “homogeneously handling situations of structural
heterogeneity” (Goguen [5]). It maps the heterogeneous situations represented
by indexed categories to the homogeneous situations represented by fibered

3 An indexed category C : Bop → Cat is a (contravariant) functor from an indexing
category B to Cat.

4 Cls, the basic category of the theories of information flow (Barwise Seligman [2])
and formal concept analysis (Ganter and Wille [3]), has classifications as objects and
infomorphisms as morphisms. A classification A = 〈X, Y, |=〉 consists of a set of in-
stances X, a set of types Y and a binary incidence or classification relation |= between
instances and types. An infomorphism f : A1 = 〈X1, Y1, |=1〉 � 〈X2, Y2, |=2〉 = A2

consists of an instance function (in the contra direction) f̌ : X2 → X1 and a type
function f̂ : Y1 → Y2 that satisfy the condition f̌(x2) |=1 y1 iff x2 |=2 f̂(y1) for any
source type x1 and target instance x2.
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categories5. We describe fibered categories for structures, specifications and log-
ics (generic or sound). Specifications are the formal molecules of information that
flow along language morphisms. Logics are the semantic molecules of information
that flow along structure morphisms. The fibered categories for specifications and
logics are defined in terms of this information flow over the base categories of
languages and structures, respectively. In all of the fibered categories described
here, the base category is ultimately the category of languages Lang. The ho-
mogeneous representation of logical systems (institutions) is represented on the
right side of Fig. 1.

Specifications. An unpopulated ontology expressed in terms of a language Σ
is represented as a Σ-specification (Σ-presentation) T ∈ spec(Σ) = ℘sen(Σ)6

consisting of a collection of Σ-sentences. In the institutional approach, a speci-
fication is a molecule of formalism, which allows for the expression of the laws
and facts deemed relevant for a domain. A structure M ∈ struc(Σ) satisfies (is
a model of) a specification T ∈ spec(Σ), symbolized M |=Σ T , when it satisfies
every sentence in the specification, s ∈ T implies M |=Σ s. A specification T
entails a sentence s, symbolized T 'Σ s, when any model of the specification sat-
isfies the sentence. The collection T • = {s ∈ sen(Σ) | T 'Σ s} of all sentences
entailed by a specification T is called its consequence.

The consequence operator (-)•, which is defined on specifications, is a clo-
sure operator: (increasing) T ⊆ T •, (monotonic) T1 ⊆ T2 implies T •

1 ⊆ T •
2 ,

and (idempotent) T •• = T •. There is an intentional (concept lattice) entailment
order between specifications that is implicit in satisfaction: T1 ≤Σ T2 when
T •

1 ⊇ T •
2 ; equivalently, T •

1 ⊇ T2. This is a specialization-generalization order; T1
is more specialized than T2, and T2 is more generalized than T1. We symbol-
ize this preorder by fbr (Σ)op = 〈spec(Σ),≤Σ〉. Intersections and unions define
joins and meets. Its opposite preorder is symbolize by fbr(Σ) = 〈spec(Σ),≥Σ〉.
Any specification T is entailment equivalent to its consequence T ∼= T •. A spec-
ification T is closed when it is equal to its consequence T = T •. This paper
is concerned with extending the notion of consequence from specifications to
information systems. Although implicit, we usually include the language in the
symbolism, so that a specification (presentation) T = 〈Σ, T 〉 is an indexed notion
consisting of a language Σ and a Σ-specification T ∈ spec(Σ).9

Inverse image preserves closed specifications: for any language morphism σ :
Σ1 → Σ2, (−)• ◦ sen(σ)−1 ◦ (−)• = (−)• ◦ sen(σ)−1; that is, sen(σ)−1(T •

2 )• =
sen(σ)−1(T •

2 ) for any target specification T2 ∈ spec(Σ2). Direct image com-
mutes with consequence: for any language morphism σ : Σ1 → Σ2, ℘sen(σ) ◦
(−)• = (−)• ◦ ℘sen(σ) ◦ (−)•; that is, ℘sen(σ)(T1)• = ℘sen(σ)(T •

1 )• for any
5 A fibered category (fibration) P : E → B is a category E whose objects exist

above some underlying base category B. Objects X in B index subcategories (often
preorders) fbr(X) ⊆ E of the fibered category called fibers. Links f : X → Y in B
index contravariant inverse image pseudofunctors between fibers fbr(f) : fbr(Y ) →
fbr(X) taking fiber objects indexed by Y to fiber objects indexed by X. Pseudo
means preservation of composition and identity up to natural isomorphism.

6 The symbol ‘℘’ denotes powerset for sets and direct image for functions.
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source specification T1 ∈ spec(Σ1). The formal molecules (specifications) can
be moved along language morphisms. For any language morphism σ : Σ1 → Σ2,
define the direct flow operator dir(σ) = ℘sen(σ) : spec(Σ1) → spec(Σ2) and
the inverse flow operator inv(σ) = sen(σ)−1((-)•) : spec(Σ2) → spec(Σ1).
These are adjoint monotonic functions w.r.t. specification order: inv(σ)(T2) ≤Σ1

T1 iff T2 ≤Σ2 dir(σ)(T1).7 We symbolized this adjunction by 〈inv(σ),dir(σ)〉 :
fbr(Σ2) → fbr(Σ1) between entailment preorders or by 〈dir(σ), inv(σ)〉 :
fbr(Σ1)op → fbr (Σ2)op between opposite preorders. Hence, there are indexed
categories dir : Lang → Set and inv : Langop → Set for specifications.

A specification morphism σ : T1 → T2 is a language morphism σ : Σ1 → Σ2
that preserves entailment: T1 'Σ1 s1 implies T2 'Σ2 sen(σ)(s1) for any s1 ∈
sen(Σ1). Equivalently, that maps the source specification to a generalization
of the target specification dir(σ)(T1) ≥Σ2 T2; or that maps the target specifi-
cation to a specialization of the source specification T1 ≥Σ1 inv(σ)(T2). Thus,
the fibered category of specifications Spec is defined in terms of formal infor-
mation flow. The fibered category of specifications Spec has specifications as
objects and specification morphisms as morphisms (Fig. 1). There is an underly-
ing language functor lang : Spec → Lang from specifications to languages T =
〈Σ, T 〉 �→ Σ.

Structures. For a language Σ, the conceptual (concept lattice) intent of a
Σ-structure M ∈ struc(Σ), implicit in satisfaction, is the (closed) specifica-
tion MΣ = {s ∈ sen(Σ) | M |=Σ s} consisting of all sentences satisfied
by the structure. There is an intentional (concept lattice) order between Σ-
structures: M1 ≤Σ M2 when MΣ

1 ≤Σ MΣ
2 (specification order); equivalently,

MΣ
1 ⊇ MΣ

2 . An indexed structure M = 〈Σ, M〉 consists of a language Σ and a
Σ-structure M .9

An indexed structure morphism σ : M1 = 〈Σ1, M1〉 → 〈Σ2, M2〉 = M2 is a
language morphism σ : Σ1 → Σ2 that preserves satisfaction: M1 |=Σ1 s1 implies
M2 |=Σ2 sen(σ)(s1) for any s1 ∈ sen(Σ1); that is, sen(σ)−1(MΣ2

2 ) ≤Σ1 MΣ1
1

meaning σ : 〈Σ1, M
Σ1
1 〉 → 〈Σ2, M

Σ2
2 〉 is a specification morphism. Equiva-

lently, (by satisfaction invariance) struc(σ)(M2)Σ1 ≤Σ1 MΣ1
1 or (by defini-

ton of structure order) that maps the target structure to a specialization of
the source structure struc(σ)(M2) ≤Σ1 M1. The fibered category of struc-
tures Struc has indexed structures as objects and structure morphisms as mor-
phisms (Fig. 1). There is an underlying language functor lang : Struc → Lang
from structures to languages M = 〈Σ, M〉 �→ Σ. Also, there is a conceptual
intent functor int : Struc → Spec from structures to specifications, where
int ◦ lang = lang .

Logics. A populated ontology expressed in terms of a language Σ is represented
as a (generic) logic L having two components, a structure M ∈ struc(Σ) and a

7 The paper (Tarlecki, et al [11]) claims that inverse image can be used without first
computing the consequence.
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specification T ∈ spec(Σ) that share Σ.8 In the institutional approach, a logic is
a molecule of semantics. Although implicit, we include the language in the sym-
bolism, so that a logic L = 〈Σ, M, T 〉 is an indexed notion consisting of a language
Σ, a Σ-structure M and a Σ-specification T .9 This notion of logic is a precursor to
the local logics defined and used in information flow (Barwise and Seligman [2]),
which are represented by the composite logics defined below. For any fixed struc-
tureM = 〈Σ, M〉, the set of all logics log(M) with that structure is a preordered
set under the specification order: 〈Σ, M, T1〉 ≤ 〈Σ, M, T2〉 when T1 ≤ T2. We de-
note this preorder by fbr(M)op = 〈log(M),≤M〉 ∼= 〈spec(Σ),≤Σ〉 = fbr (Σ)op.

A logic morphism σ : L1 → L2 is a language morphism σ : Σ1 → Σ2 that
is both a structure morphism σ : 〈Σ1, M1〉 → 〈Σ2, M2〉 and a specification
morphism σ : 〈Σ1, T1〉 → 〈Σ2, T2〉. The fibered category of logics Log has logics
as objects and logic morphisms as morphisms (Fig. 1). It is the fibered product of
the fibered categories Struc and Spec. There are projective component functors
from logics to structures and specifications, pr0 : Log → Struc and pr1 :
Log → Spec, which satisfy the condition pr0 ◦ lang = pr1 ◦ lang .

The semantic molecules (logics) can be moved along structure morphisms. De-
fine direct and inverse flow of logics along structure morphisms in terms of the
specification components. For any structure morphism σ : M1 = 〈Σ1, M1〉 →
〈Σ2, M2〉 = M2, define the direct flow operator dir(σ) : log(M1) → log(M2)
by dir(σ)(L1) = 〈Σ2, M2, ℘sen(σ)(T1)〉 for source logics L1 = 〈Σ1, M1, T1〉
and the inverse flow operator inv(σ) : log(M2) → log(M1) by inv(σ)(L2) =
〈Σ1, M1, sen(σ)−1(T2

•)〉 for target logics L2 = 〈Σ2, M2, T2〉. These are ad-
joint monotonic functions w.r.t. logic order: inv(σ)(L2) ≤Σ1 L1 iff L2 ≤Σ1

dir(σ)(L1).
In general, the logics in the institutional approach to information flow are

neither sound nor complete. A logic L = 〈Σ, M, T 〉 is sound when the structure
models the specification; equivalently, T ' s implies M |= s; or MΣ ≤ T •. A
logic L is complete when every sentence satisfied by the structure is a sentence
entailed by the specification, M |= s implies T ' s; or T • ≤ MΣ. A logic L
is sound and complete when structure and specification are “conceptually” the

8 Using only a single structure in logics is not a restriction. For any classification A =
〈X, Y, |=〉 there is a power instance classification ℘A = 〈℘X, Y, |=℘〉 where X̌ |=℘ y
holds when x |= y for all x ∈ X̌. For any infomorphism f = 〈f̌ , f̂〉 : A1 � A2

there is a power instance infomorphism ℘f = 〈℘f̌, f̂〉 : ℘A1 � ℘A2 with di-
rect image instance function. Combining these constructions defines a power instance
functor ℘inst : Cls → Cls. Hence, for any institution with classification functor
cls : Lang → Cls, there is an associated institution with classification functor
cls ◦℘inst : Lang → Cls. For this power structure institution a logic L = 〈Σ,M , T 〉
consists of a collection of structures M ⊆ struc(Σ) and a specification T ∈ spec(Σ),
where the individual structures in M may or may not model the specification T . The
logic L is sound when they all model the specification.

9 Languages index structures, specifications and logics. The homogenization process
(Fig. 1) (also called the Grothendieck construction), moving from indexed categories
to fibered categories, is the process of combining an indexing language Σ with elements
from the indexed category components (fibers) struc(Σ), spec(Σ), etc.
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same, MΣ = T •, generating the same concept in the satisfaction concept lattice.
For any structure morphism σ : M1 →M2, direct flow preserves soundness: if
a source logic L1 is sound, then the direct flow logic dir(σ)(L1) is also sound.
For any structure morphism σ : M1 →M2, inverse flow preserves completeness:
if a target logic L2 is complete, then the inverse flow logic inv(σ)(L2) is also
complete.

Sound Logics. Sound logics form a subcategory of logics inc : Snd → Log
with the same projections (Fig. 1). Associated with any indexed structure M =
〈Σ, M〉 is a natural logic nat(M) = 〈Σ, M, MΣ〉, whose specification is the
conceptual intent of M. The natural logic is essentially (up to equivalence)
the only sound and complete logic over the given language Σ. Any indexed
structure morphism σ : M1 → M2 induces the natural logic morphism σ :
nat(M1) → nat(M2). Hence, there is a natural logic functor nat : Struc →
Snd. Structures form a reflective subcategory of sound logics, since the pair
〈pr0,nat〉 : Snd → Struc forms an adjunction10 with L ≥Σ nat(pr0(L)) and
nat ◦ pr0 = 1Struc.

Since the identity language morphism 1Σ : Σ → Σ is a structure morphism
1Σ : 〈Σ, M1〉 → 〈Σ, M2〉 iff M1 ≥Σ M2, the structure fiber over Σ w.r.t.
lang : Struc → Lang is the opposite of the structure order. Since the identity

� = 〈Σ, M, ∅〉 = �

nat(M) = 〈Σ, M, MΣ〉

⊥ = 〈Σ, M, ℘sen(Σ)〉

sound

complete

log(M)
∼=

spec(Σ)
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language morphism 1Σ : Σ → Σ is a spec-
ification morphism 1Σ : 〈Σ, T1〉 → 〈Σ, T2〉
iff T1 ≥Σ T2, the specification fiber over Σ
w.r.t. lang : Spec → Lang is the oppo-
site of the specification order spec(Σ) =
fbr(Σ)op. For any fixed structure M =
〈Σ, M〉, since the identity structure mor-
phism 1M : M → M is a logic mor-
phism 1M : 〈Σ, M, T1〉 → 〈Σ, M, T2〉 iff
〈Σ, M, T1〉 ≥M 〈Σ, M, T2〉 iff T1 ≥Σ T2,
the logic fiber over M w.r.t. pr0 : Log →
Struc is the opposite of the logic order log(M) = fbr(M)op ∼= spec(Σ).
There are larger fibers. For any fixed language Σ, the set of all logics with
that language is a preordered set under the structure and specification orders:
〈Σ, M1, T1〉 ≤ 〈Σ, M2, T2〉 when M1 ≤Σ M2 and T1 ≤Σ T2. This is the (opposite
of the) fiber over Σ w.r.t. the composite functor pr0 ◦ lang : Log → Lang.

Associated with any logic L = 〈Σ, M, T 〉 is its restriction res(L) = L ∨Σ

nat(M) = 〈Σ, M, MΣ ∩ T •〉, which is the conceptual join of the logic with
the natural logic of its structure component. Clearly, the restriction is a sound
logic and res(L) ≥Σ L. There is a restriction functor res : Log → Snd, which
maps a logic L to the sound logic res(L) and maps a logic morphism σ : L1 → L2

10 An adjunction (adjoint pair) consists of an adjunction of functors; that is, a pair
of oppositely-directed functors that satisfy inverse equations up to morphism. Any
“canonical construction from one species of structure to another” is represented by
an adjunction between corresponding categories of the two species (Goguen [4]).
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to the morphism of sound logics res(σ) = σ : res(L1) → res(L2). This is
well-defined since it just couples the structure morphism condition to the theory
morphism condition. The category of sound logics forms a coreflective subcate-
gory of the category of logics, since the pair 〈inc, res〉 : Log → Snd forms an
adjunction with inc ◦ res = 1Snd and inc(res(L)) ≥Σ L for any logic L. For
any structure M, restriction and inclusion on fibers are adjoint monotonic func-
tions 〈resM, incM〉 : log(M) → snd(M), where log(M) = fbr op(M) is the
opposite fiber of logics overM and snd(M) is the opposite fiber of sound logics.
For any structure morphism σ : M1 →M2, the restriction-inclusion adjunction
on fibers is compatible with the inverse-direct flow adjunction: 〈resM2 , incM2〉 ·
〈invSnd(σ),dirSnd(σ)〉 = 〈invLog(σ),dirLog(σ)〉 · 〈resM1 , incM1〉.

The movement of sound logics is a modification of logic flow. Direct flow
preserves soundness, hence there is no change. Augment inverse flow by re-
stricting to sound logics (joining with structure-intent). For any structure mor-
phism σ : M1 = 〈Σ1, M1〉 → 〈Σ2, M2〉 = M2, define the direct flow operator
dir(σ) : snd (M1) → snd (M2) by dir(σ)(L1) = 〈Σ2, M2, ℘sen(σ)(T1)〉 for
sound source logics L1 = 〈Σ1, M1, T1〉 and the inverse flow operator inv(σ) :
snd(M2) → snd (M1) by inv(σ)(L2) = 〈Σ1, M1, sen(σ)−1(T2

•) ∨ MΣ1
1 〉 for

sound target logics L2 = 〈Σ2, M2, T2〉. These are adjoint monotonic functions
w.r.t. sound logic order: inv(σ)(L2) ≤Σ1 L1 iff L2 ≤Σ1 dir(σ)(L1) for all sound
target logics L2 and sound source logics L1.

A composite logic, the abstract representation of the (local) logics of the theory
of information flow (Barwise and Seligman [2]), consists of a base logic and a
sound logic sharing the same language and specification, where any sentence
satisfied by the base logic structure is also satisfied by the sound logic structure.
Composite logics form a category with two projective component functors to
both logics and sound logics. Sound logics are justified as legitimate objects of
study, since they are the common abstract form for both universal algebras and
knowledge bases. In the approach used in this paper, generic logics are useful
as first steps (precursors) toward the definition of sound and composite logics.
Composite logics represent the commonsense theories of aritifial intelligence (AI).
They are justified by the following argument for unsound or incomplete theories
in Barwise and Seligman [2] “Ordinary reasoning is not logically perfect; there
are logical sins of commission (unsound inferences) and of omission (inferences
that are sound but not drawn). Modeling this, AI has had to cope with logics
that are both unsound and incomplete.”

2.3 Examples

Examples of logical systems (Goguen and Burstall [6]), (Mossakowski, et al [10])
include: first order, equational, Horn clause, intuitionistic, modal, linear, higher-
order,polymorphic, temporal,process,behavioral, coalgebraic and object-oriented
logics. In this paper, we describe four important logical systems: unsorted equa-
tional logic EQ; information flow IF, unsorted first-order logic with equality FOL,
which extends EQ and IF, and the sketch institution Sk.
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In equational logic EQ, languages are families of function symbols with ar-
ity, sentences are equations between terms of function symbols, structures are
abstract algebras (universe, plus operations), and satisfaction is equational satis-
faction. First-order logic FOL extends equational logic by adding relation symbols,
so that EQ is a subsystem of FOL: sentences are the usual first order sentences
(equations, relational expressions, connectives, quantifiers), structures extend
those of unsorted equational logic by adding relations with terms, and satis-
faction is as usual. In information flow IF, languages are sets of type symbols,
language morphisms are maps of type symbols, sentences are sequents of type
symbols, structures are classifications, and satisfaction is sequent satisfaction by
instances. IF is a subsystem of FOL when types are regarded as unary relation
symbols. The sketch institution Sk is the category-theoretic approach to onto-
logical specification (Barr and Wells [1]), whose special cases include multisorted
universal algebra, the entity relationship data model (Johnson and Rosebrugh
[7]), and topos axiomatizations (foundations).

3 Channel Theory

System Principle: Information flow results from regularities in a distributed
system. (This is the first principle of the theory of information flow, as discussed
in Barwise and Seligman [2].)

This principle motivates the representation of distributed systems by diagrams
of objects that can incorporate regularities. We will argue that these objects
should be specifications in a formal representation or logics in a semantic
representation.

3.1 Information Systems

In general systems theory, a system is a collection of interconnected parts, where
the whole may have properties that cannot be known from an analysis of the
constituent parts in isolation. In an information system, the parts represent
information resources and the interconnections represent constraints11 between
the parts.

Example. Consider a semantic information system consisting of the logics of
four communities L0,L1,L2,L3 that wish to interact in various ways to share
11 In general, a constraint is conceptually an interconnection between many parts (a

special case is an n-ary relation R(A1, A1, . . . , An)). It can be represented with the
connective form of an n-ary span. An n-ary span (fk : R → Ak | 1 ≤ k ≤ n) in a
category consists of n morphisms (directed binary constraints) fk with a common
source or vertex object R (relational concept) connecting n component objects Ak.
Thus, we represent a system as a diagram consisting of a collection of objects and a
collection of binary constraints. Compare (1) the use of thematic roles (case relations)
in conceptual graphs and (2) the representation of entity-relationship modeling with
sketches (Johnson and Rosebrugh [7]).
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some of their information. We assume that L0 and L1 would like to collaborate
and share information through a binary span with vertex (reference or bridging)
sublogic C. Assume the same is true for (B,L0,L2), (D,L1,L3), and (E ,L2,L3).
We also assume that L0, L1 and L2 would like to collaborate and share informa-
tion through a ternary span with vertex sublogic A. Hence, the total information
system consists of nine logics and eleven logic morphisms: the four community
logics mentioned above, plus five mediating logics A, B, C, D and E and eleven
linking logic morphisms L0←C→L1, . . . ,A→L0, . . . making up the spans. The
underlying distributed system has the same shape, and consists of nine structures
and eleven structure morphisms: four community structures M0 = pr0(L0),
. . . underlying the community logics, plus five reference structures pr0(A), . . . ,
and eleven linking structure morphisms M0←pr0(C)→M1, . . . used to help
aid the collaboration.

L0

C0

B0 A0

L2

B2 A2

E2

L1

C1

A1 D1

L3

D3

E3

D
�

�
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These communities might use several ways to
collaborate. Suppose the three communities in the
ternary span (A,L0,L1,L2), want to combine their
axioms on a common underlying structure. Here the
sublogics A0, A1 and A2 share a common under-
lying structure with logic A, so that pr0(A0) =
pr0(A1) = pr0(A2) = pr0(A). As a concrete exam-
ple, suppose these communities are businesses that
want to collaborate about safety. Logic A might
represent government-mandated rules about safety,
whereas sublogics A0, A1 and A2 might represent special rules that the three
businesses L0, L1 and L2 need for some business transactions. Suppose the pairs
of communities in the four binary spans above want to bring their vocabularies
into alignment. As a concrete example, suppose the two community logics in
the binary span (E ,L2,L3) are government agencies that represent health care
for citizens in sublogics E2 and E3, where L2 uses the term “personnel” for a
citizen in the language underlying sublogic E2, but L3 uses the term “worker”
in its sublogic E3. In order to equivalence this terminology, they use the refer-
ence logic E with “citizen” in its vocabulary, and then map this via morphisms
E2←E→E3 as “personnel” � “citizen” � “worker”.

Structure Principle: Information flow crucially involves structures of the world.
(This is the second principle of the theory of information flow, as discussed in
Barwise and Seligman [2] and generalized from classifications to structures.)

By the world we mean the category of structures, and we papaphrase the quote
in the introduction to “It is structures in the world, that carry information;
the information they carry is in the form of sentences”. This principle motivates
the use of structures as the underlying objects for the logics that incorporate the
regularities in a distributed system and the use of structure morphisms as the
underlying morphisms for the logic morphisms that incorporate the information
flow of regularities in a distributed system.
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Systems. We have discussed flow links for primitive/composite notions (speci-
fication flow over language morphisms, and logic flow over structure morphisms)
above, and we will discuss flow links for complex notions (distributed and in-
formation systems) below. Here we discuss constraint links. Information
systems have either specifications or logics as their information resources, de-
pending on whether they are formal or semantic in nature. A semantic infor-
mation system can alternatively use sound logics or composite logics instead
of generic logics. A formal information system only uses specifications. Just as
every specification has an underlying language and every logic has an underly-
ing structure, so also every information system has an underlying distributed
system. As such, distributed systems have either languages or structures for
their component parts, depending on whether they are under a formal or se-
mantic information system. Without loss of generality, we discuss only semantic
systems.

A distributed system (Fig. 2) is a diagram12 M : I → Struc within the
ambient category of structures and structure morphisms. As such, it consists
of an indexed family {Mi = 〈Σi, Mi〉 | i ∈ |I|} of structures together with
an indexed family {Me = σe : Mi → Mj | (e : i → j) ∈ I} of structure
morphisms. Two distributed systems with the same shape are pointwise ordered
M ≤ M′ when the component structures satisfy the same ordering Mi ≤ M′

i

for all i ∈ |I|. An information system (Fig. 2) is a diagram13 L : I → Log
within the category of logics. This consists of an indexed family of logics {Li =
〈Σi, Mi, Ti〉 : i ∈ |I|} and an indexed family of logic morphisms {Le = σe :
Li → Lj | (e : i → j) ∈ I}. Two logical systems with the same shape are
pointwise ordered L ≤ L′ when the component logics satisfy the same ordering
Li ≤ L′

i for all i ∈ I. This is only a preliminary ordering, since it does not
represent the influence of one part of the system upon another. An information
system L with Li = 〈Σi, Mi, Ti〉 has an underlying distributed system M =
L◦pr0 of the same shape withMi = 〈Σi, Mi〉. This underlying passage preserves
order. Distributed and information systems were initially defined in the theory
of information flow (Barwise and Seligman [2]) for the special logical system IF.
In this paper we have defined distributed and information systems in any logical
system.

12 Let V be any category within which we will work. Of course, one would nor-
mally choose a category V that has some useful properties. We keep that cate-
gory fixed throughout the discussion and call it the ambient category. We regard
the objects and morphisms in the ambient category V to be values that we want
to index, and we focus on a particular part of the ambient category. We use a
functor into V for this purpose. A diagram is a functor D : I → V from an index-
ing or shape category I into the ambient category V. The objects in the indexing
category are called indexing objects and the morphisms are called indexing mor-
phisms.

13 The representation of systems as diagrams allows for systems of systems, and systems
of systems of systems, etc. Just use diagrams of diagrams. However, the product-
exponential adjointness for functors then allows for the conflation of a system of
systems into just a system with product indexing shape.
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3.2 Information Flow
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Link Types. In this paper, there are two kinds of
links: constraint links and flow links. We think of con-
straints as being orthogonal to flow and being of a
static nature. Constraints are used in the alignment
of systems of information resources. For example, let L
be an information system with underlying distributed
system M = L◦pr0 and let M′ be another distributed
system. A constraint link σ : L1 → L2 in information system L from an informa-
tion resource L1 located at M1 = pr0(L1) to an information resource L2 located
atM2 = pr0(L2) represents the alignment of various elements in L2 with certain
elements in L1. Although we think of constraints as being static in nature, there
is actually a local flow, either direct or inverse, along a constraint link in order to
compare the information resources at source and target to check satisfaction of
alignment requirements. Flow links are used to specify and compute the fusion
(Kent [8]) and consequence of systems; for example, a flow link σ1 : M1 →M′

1
connecting a structureM1 in systemM to a structureM′

1 in systemM′, can de-
note the flow of information between systemsM andM′, either directly from M1
to M′

1 or inversely from M ′
1 to M1. Flow interacts with constraints; for example,

the flow links σ1 : M1 →M′
1 and σ2 : M2 →M′

2 connecting the M-constraint
σ : M1 →M2 to the M′-constraint σ′ : M′

1 →M′
2 should satisfy “preservation

of constraints” in the sense that composition of the direct (or inverse) flow along
constraint/flow paths is equal, dir(σ) ◦ dir(σ2) = dir(σ1) ◦ dir(σ′).

Connection Principle: It is by virtue of regularities among connections that
information about some components of a distributed system carries information
about other components. (This is the third principle of the theory of information
flow, as discussed in Barwise and Seligman [2].)

This principle motivates the use of logics over structures, which lift specifica-
tions over languages, to represent information flow over covering channels of a
distributed system.

Channels. For any distributed system M : I → Struc, we think of the compo-
nent structures Mi as being parts of the system. We would like to represent the
whole system as a structure, where we might use different structures for different
purposes. The theory of part-whole relations is called mereology. It studies how
parts are related to wholes, and how parts are related to other parts within a
whole. In a distributed system, the part to part relationships are modeled by
the structure morphisms Me = σe : Mi → Mj indexed by e : i → j. We
can model the whole as a structure C and model the part-whole relationship
between some part Mi indexed by i ∈ |I| and the whole with a structure mor-
phism γi : Mi → C. An information channel 〈γ : M⇒ Δ(C), C〉 (Fig. 2) (called
a corelation by Goguen [5]) consists of an indexed family {γi : Mi → C | i ∈ |I|}
of structure morphisms with a common target structure C called the core of the
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channel14. A channel 〈γ, C〉 covers a distributed system M : I → Struc when
the part-whole relationships respect the system constraints (are consistent with
the part-part relationships): γi = σe · γj for each indexing morphism e : i → j
in I. Covering channels respect the intraconnectivity of the system. For any
two covering channels 〈γ′, C′〉 and 〈γ, C〉 over the same distributed system M,
a refinement ρ : 〈γ′, C′〉 → 〈γ, C〉 is a constraint (structure morphism) between
cores ρ : C′ → C that respects the part-whole relationships of the two channels:
γ′

i · ρ = γi for i ∈ |I|. In such a situation, we say the channel 〈γ′, C′〉 is a refine-
ment of the channel 〈γ, C〉. A channel 〈ι,

∐
M〉 is a minimal cover or optimal(ly

refined) channel of a distributed system M (Fig. 2) when it covers M and for
any other covering channel 〈γ, C〉 there is a unique refinement [γ, C] :

∐
M→ C

from 〈ι,
∐
M〉 to 〈γ, C〉. Any two minimal covers are isomorphic15.

Channel Principle: The regularities of a given distributed system are relative
to its analysis in terms of information channels. (This is the fourth principle of
the theory of information flow, as discussed in Barwise and Seligman [2].)

The core of a channel connects the parts of a distributed system, reflecting the
constraints when it covers the system. More refined means closer connections.

System Consequence. Without loss of generality, we discuss only the semantic
version of system consequence. The fibered category Log is cocomplete and its
projection functor pr0 : Log → Struc is cocontinuous, since the fibers fbr(M)
are complete preorders for all indexing structures M, direct and inverse flow
are adjoint monotonic functions 〈dir(σ), inv (σ)〉 : fbr(M1) → fbr(M2) for
all indexing structure morphisms σ : M1 → M2, and Struc is cocomplete
(minimal covers exist for any distributed system). Then, information flow can
be used to compute colmits in Log and to define system consequence. This
holds also for sound and composite logics. It holds in the formal version and we
can define system consequence for formal information systems, since comparable
properties hold for the fibers fbr(Σ) and the category Lang. This holds for the
logical systems IF, EQ and FOL, and the special cases of Sk mentioned above. It is
based upon the colimit theorem (Tarlecki, et al [11]), a general criterion for when
such colimits of specifications and logics actually exist. Let L : I → Log be an
information system with underlying distributed systemM = L◦pr0 : I → Struc
and optimal (minimal covering) channel 〈ι,

∐
M〉. The optimal core

∐
M is

called the sum of the distributed systemM, and the optimal channel components
(structure morphisms) ιi : Mi →

∐
M for i ∈ |I| are flow links. Fusion and

consequence represent the component “logics of the system and the way they fit
together” [2].

14 The notation Δ(-) denotes the constant operator, which maps objects to diagrams.
For any structure A, the distributed system Δ(A) : I → Struc is (constantly) the
structure Δ(A)i = A for each index i ∈ |I| and the identity Δ(A)e = 1A : A → A
for (e : i → j) ∈ I.

15 In category theory, a covering channel 〈γ : M ⇒ Δ(C), C〉 is called a cocone over
M, and a minimal cover is called a colimiting cocone over M.
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Fig. 2. Channel Theory

The fusion (unification)
∐
L of the information system L represents the whole

system in a centralized fashion. This is called fusion in Kent [8] and theory blend-
ing in Goguen [5]. The fusion logic is defined as direct system flow (unification).
Direct system flow has two steps: (i) direct logic flow of the component parts
{Li | i ∈ |I|} of the information system along the optimal channel over the under-
lying distributed system to a centralized location (the lattice fbr(

∐
M) at the

optimal channel core
∐
M), and (ii) lattice meet combining the contributions

of the parts into a whole:
∐
L .=

∧
{dir(ιi)(Li) | i ∈ |I|}.

The consequence L� of the information system L represents the whole system
in a distributed fashion. This is an information system, defined as inverse system
flow (projective distribution). Inverse system flow has two steps: (i) consequence
of the fusion logic, and (ii) inverse logic flow of this consequence back along
the same optimal channel, transfering the implications (theorems) of the whole
system (the fusion logic) to the distributed locationsMi of the component parts:
L� .= {inv(ιi)(

∐
L) | i ∈ |I|} : I → Log. The consequence operator (-)�, which

is defined on information systems, is a closure operator: (increasing) L ≥ L�,
(monotonic) L1 ≥ L2 implies L�

1 ≥ L�
2 and (idempotent) L�� = L�. 16

This is a true abstract system consequence operator, and an improvement over
the“distributed logic” operator inLecture (Chapter) 15ofBarwiseandSeligman [2]

16 By allowing system shape to vary, channels can be generalized to (co)morphisms
of distributed systems. Then a notion of relative fusion (direct system flow) can be
defined in terms of left Kan extension, and a notion of relative system consequence
can be defined as the composition of direct followed by inverse system flow.
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for three reasons: it maps an information system to another information system,
recognizing the existence of constraint links between the indexed components of
the system consequence; it recognizes the fact that system consequence is a clo-
sure operator, satisfying the monotonicity, increasing and idempotency laws; and
it is a true generalization from the specific logical system IF to an arbitrary logi-
cal system. Fig. 2 provides a graphic representation for the calculation of system
consequence: in the Log category information systems are illustrated as ovals, on-
tologies represented by logics are illustrated as nodes within ovals, and alignment
constraints between ontologies are illustrated as edges between nodes; and in the
Struc category distributed systems are illustrated as ovals, structures are illus-
trated as nodes within ovals, and channels are illustrated as triangular shapes.

Any information system L : I → Log restricts as the sound information
system res L = L ◦ res : I → Snd, where each component logic Li restricts
as the sound component logic resΣi(Li) for each i ∈ I. Any sound informa-
tion system L : I → Snd is included as the (generic) information system
inc L = L◦ inc : I → Log, where each sound component logic Li is included as
the (generic) logic incΣi(Li) for each i ∈ I. Two questions arise. (1) How is the
system consequence L� of a sound information system L related to the system
consequence (inc L)� of its inclusion inc L? The direct system flow along a chan-
nel of a sound information system is sound, and hence the system consequence
of a sound information system L is the restriction of the system consequence of
its inclusion: L� = res (inc L)�. (2) How is the system consequence L� of an
information system L related to the system consequence (res L)� of its sound
restriction res L? In general, since the sound restriction of the fusion logic of
an information system is more specialized than the fusion logic of its sound re-
striction res(

∐
L) ≤

∐
(res L), the sound restriction of the system consequence

of an information system L is more specialized than the system consequence of
its sound restriction res(L�) ≤ (res L)�. An authentic example showing strict
inequality, would demonstrate that restriction before fusion loses information;
thus providing strong justification for the use of unsound/incomplete logics.

The pointwise entailment order ≤ is only a preliminary order, since it does
not incorporate interactions between system component parts. Just as system
consequence (−)� is analogous to specification consequence (−)•, we think of ≤
as analogous to ⊇, reverse subset order for specifications. Extending this analogy,
system entailment order L1 � L2 for any two I-shaped information systems
L1,L2 : I → Log is defined by L�

1 ≤ L�
2 ; equivalently, L�

1 ≤ L2. Pointwise order
is stronger than system entailment order: L1 ≤ L2 implies L1 � L2. System
entailment is a preorder: (reflexive) L � L and (transitive) if L1 � L2 and
L2 � L3, then L1 � L3. This is a specialization-generalization order; L1 is more
specialized than L2, and L2 is more generalized than L1. Any information system
L is entailment equivalent to its consequence L ∼= L�. An information system L
is closed when it is equal to its consequence L = L�.

A specific example of system consequence in IF, the logical system of infor-
mation flow, is the file copying example in Lecture (Chapter) 15 of Barwise
and Seligman [2], which involves file properties such as content, time stamp,
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protection, etc. Two general examples of system consequence occur in any logi-
cal system L : I → Log. The first is a system with a discrete shape I = I, which is
essentially an indexing set. Then the system consequence is the pointwise conse-
quence L� = {L•

i | i ∈ I}. The second is a system with any shape I, but constant
underlying distributed system Δ(M) : I → Struc for some single structure M.
Then the minimal cover is identity, direct system flow is the meet operation
(specification union), inverse system flow is specification consequence, and sys-
tem consequence is the constant information system Δ((

∧
Li)

•) : I → Log. A
(formal) concrete example of this system consequence occurs in FOL, the logical
system of first order logic, where the information system T = (T◦

1← T1
1→ T∝)

with span shape I = · ← · → · consists of the three specifications for reflexive
relations T1, preorders (reflexive-transitive relations) T◦ and reflexive-symmetric
relations T∝, with T1 a subspecification of the other two. The underlying lan-
guage for all three specifications is a single binary relation symbol. The fu-
sion specification is T � = T≡ the (closed) specification for equivalence relations
(reflexive-symmetric-transitive relations), and the system consequence is the con-
stant information system Δ(T≡) : I → Spec.

4 Conclusion

This paper has discussed system consequence, one step in the program to com-
bine and extend the theories of institutions and information flow. The insti-
tutional approach was first formulated by Goguen and Burstall [6]. Revealing
its importance, many people have either independently discovered or implicitly
used the institutional approach. The theory of information flow is one example
of this. The Information Flow Framework [12] has followed many of the ideas of
information flow, and hence has implicitly followed the institutional approach.
The paper Goguen [5] is an excellent survey of the institutional approach to
information integration. However, the current paper, in contrast to Goguen [5],
believes that information flow follows, and is in great accord with, the institu-
tional approach. An indication of this accord is revealed by the “Interpretations
in First-Order Logic” example in Barwise and Seligman [2]. We do not believe
that institutions are more abstract than information flow, but that the theory of
institutions has not been fully applied in order to generalize the theory of infor-
mation flow, and that the theory of information flow has not been fully applied
in order to extend the theory of institutions. That is the goal of this paper.

This paper has combined two approaches to universal logic, the theories of
information flow and institutions, and has applied them to information systems.
We have given dual descriptions (heterogeneous and homogeneous) of logical
systems and have demonstrated how important concepts in the theory of infor-
mation flow can be defined within any logical system: distributed/information
systems, channels, information flow, all leading up to system consequence. Hence,
these concepts are independent of the particular logical system in which one
works. Thus, the theory of institutions generalizes the theory of information
flow, and the theory of information flow extends the theory of institutions.
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A central problem of distributed logic is to understand how one part of a dis-
tributed system affects another part. This paper has solved this problem in the
general case of any logical system. The solution is expressed in terms of system
consequence.

References

1. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice-Hall, En-
glewood Cliffs (1999)

2. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems.
Cambridge University Press, Cambridge (1997)

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1999)

4. Goguen, J.: A Categorical Manifesto. Math. Struc. Comp. Sci. 1, 49–67 (1991)
5. Goguen, J.: Information Integration in Institutions. Draft paper for the Jon Barwise

memorial volume edited by Moss, L. (2006)
6. Goguen, J., Burstall, R.: Institutions: Abstract Model Theory for Specification and

Programming. J. Assoc. Comp. Mach. 39, 95–146 (1992)
7. Johnson, M., Rosebrugh, R.: Fibrations and Universal View Updatability. Th.

Comp. Sci. 388, 109–129 (2007)
8. Kent, R.E.: Semantic Integration in the Information Flow Framework. In:

Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S., Uschold, M. (eds.) Seman-
tic Interoperability and Integration, Dagstuhl Research Online Publication Serve.
Dagstuhl Seminar Proceedings, vol. 04391 (2005)

9. Krotzsch, M., Hitzler, P., Zhang, G.: Morphisms in Context. In: Dau, F., Mugnier,
M.-L., Stumme, G. (eds.) ICCS 2005. LNCS, vol. 3596, pp. 223–237. Springer,
Heidelberg (2005)

10. Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a Logic? In:
Beziau, J.Y. (ed.) Logica Universalis, pp. 113–133. Birkhäuser, Basel (2005)
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Abstract. We are interested in using a fusion process to complete in-
formation prior to the reasoning process about scientific discoveries. In
particular, using fusion to complete the set of experiments used as the
source of information of the process that led Claude Bernard to his dis-
covery about the effects of curare. Our reconstruction of the discovery
process is based on his experiments as they are illustrated in his note-
books. Our main problem is the lack of some important information in
his notebooks containing descriptions of his set of experiments. In order
to fill in the gaps in his set of experiments, we propose to use fusion be-
tween experiments. Prior to fusion, we must ensure that the experiments
are compatible according to some similarity measures and depending on
the objectives of the fusion. The paper presents our domain-independent
approach for similarity checking and fusion, including similarity and fu-
sion strategies.

1 Introduction

In previous papers, we studied the process of scientific discovery [5] and [6].
Our study aimed at constructing computer programs that simulate, at a grosser
or finer level of approximation, the paths that have been followed by Claude
Bernard on his road to important discoveries including his discovery on the
effects of curare. Many works from Cognitive Science and AI focus on modeling
scientific reasoning. For instance, the work on DENDRAL and Meta-DENDRAL
[1], on AM [3], on MOLGEN [19], on BACON and related programs [10] and on
KEKADA [9] among others.

The focus of our research is to study discoveries that occur in experimental
sciences. Since the research leading to such discoveries sometimes spans months
or years, it is not practical to gather continuous protocols of the process. Thus,
we must seek other sources for insights into the processes: for example, scientists’
recollections, published papers on the discovery, and accounts from diaries and
laboratory notes.

Our reconstruction of the process that led Claude Bernard to the discovery
of the effects of curare is based on his notebooks. In other words, we reconstruct
the course of his discovery using descriptions of experiments as illustrated in his
laboratory notebooks. In most experimental sciences it is customary for scientists
to record the details of their experimental activity on a daily basis in a laboratory

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 219–232, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



220 C. Laudy, B. Habib, and J.-G. Ganascia

notebook or log. That is why logs may contain reasons for carrying out an
experiment, observations, hypotheses and conclusions drawn from the data.

We aim, in a future direction, at the reasoning about Bernard’s scientific ap-
proach by constructing a causal network that links observations obtained after
an experiment with deduced hypotheses. Therefore, descriptions about experi-
ments must be complete. But the main problem, with using notebooks as the
source of insight into the discovery process, is gaps in these notebooks. In the
case of Bernard’s notebooks, gaps are, especially, due to the lack of information
about hypotheses deduced from observations. Generally, these gaps may be filled
in by other sources such as : retrospective recollections of the discoverer during
his lifetime or even by his published papers. But in the case of Claude Bernard
and as we are interested in detailed experiments as they are illustrated in his
notebooks, those other sources are not of great use.

That is the reason we propose another way to fill in these gaps by fusing
descriptions about experiments. To fuse descriptions about experiments, we use
a generic domain-independent approach that we presented in [13]. The aim is
to take two partial experiments and build from them a more precise and more
complete experiment. But before being able to fuse two experiments, we have to
make sure that they are compatible according to some similarity measures and
regarding some precise objectives. If so, the result of their fusion should complete
one of the experiment’s description with information provided by the other one.
Therefore, we will be able to complete the set of Bernard’s experiments prior to
our reasoning.

The paper is organized as follows: In Section 2, we provide an overview of
formal representation of Claude Bernard’s experiments. In Section 3, we explain
how we process the similarity of two experiments and in Section 4, we empha-
size on the fusion aspects. Section 5 describes our results showing the fusion of
two selected experiments. Finally, the conclusion summarizes our approach and
describes our future directions.

2 Knowledge Representation

2.1 Epistemological Study on Claude Bernard’s Manuscripts

As previously introduced, the focus of our work is on Claude Bernard’s discov-
ery about the effects of curare. This discovery is based on data gathered from
his notebooks and manuscripts between 1845 and 1875. Since Claude Bernard’s
manuscripts contain descriptions of experiments in natural language, it was nec-
essary to abstract from these descriptions a number of attributes (experimental
criteria), which are rich enough to reflect the complexity of the original de-
scriptions, and sufficiently representative of their variability. An attribute is cre-
ated if this potential attribute intervenes in a significant proposition of available
experiments.

Claude Bernard’s manuscripts have been the subject of an epistemological
study, which consists of several steps:
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– The transcription of these manuscripts using a text editor. These manuscripts
contain experiments using curare or strychnine as a toxic substance.

– The surrender of this work in a chronological order.
– The formalization of an Excel table in which Claude Bernard’s experiments

are annexed according to several experimental criteria (attributes) such as:
weight, age, dose, animal, preparation/manipulation, point of insertion, date,
ideas of experiments, observations, hypotheses and references.

2.2 Lack of Important Information in Descriptions of Experiments

The identification of the main attributes allowed us to formalize Bernard’s ex-
periments. This is a preliminary step to the simulation of these experiments in a
virtual laboratory previously built [8]. Prior to the simulation, Claude Bernard’s
experiments are classified into several sets of experiments. The classification of
experiments may be done according to one precise criterion; for instance, the set
of experiments using dogs as experimental animals, or even the set of experiments
including some nerve manipulations, etc. This classification is a methodological
problem, because it constitutes an important step in the process of empirical
discovery that concerns us, but it is not systematic, and even less, automatic.

Since Claude Bernard does not write down all the details about preparation,
observations or even less about the deduced hypotheses, some experiments are
not complete comparing to others in the same set of experiments. Hence comes
the idea to complete descriptions about some experiments using descriptions
about other experiments from the same set, which are compatible according to
some similarity measures, using fusion between experiments.

Fusion allows us, on the one hand, to reduce the number of experiments within
a set of experiments and thus, to reduce the number of possible simulations in
a particular set of experiments since each experiment may be the object of a
simulation. On the other hand, fusion allows to complete descriptions about some
experiments with information of a great interest in our reasoning process. After
the fusion step, information includes not only the complete set of observations
resulting from an experiment takes place but also the hypotheses deduced by
Claude Bernard.

2.3 Using Conceptual Graphs to Represent Experiments

As said above, our goal is to fuse Claude Bernard’s experiments. Before fusion
takes place, the experiments have to be represented by conceptual graphs where
their concepts are the main attributes selected beforehand.

The Conceptual Graphs model was developed by JF Sowa in [18]. The model
encompasses a formalism for knowledge representation and integrates linguisti-
cal, psychological and philosophical aspects. It was conceived in order to develop
a logical system, able to represent natural language in a simple manner and al-
lowing deductions and inferences.

The conceptual graphs model is essentially composed of an ontology (called
support) and the graphs themselves. The ontology defines the different types



222 C. Laudy, B. Habib, and J.-G. Ganascia

Fig. 1. Type hierarchy for Bernard’s experiments

of concepts and relations which are used in the conceptual graphs. To describe
Claude Bernard’s experiments using conceptual graphs, we first had to define the
support on which the description will be based. Therefore, we used the ontology
that Claude Bernard himself defined during his work (see [8] for more details).
The support defines a set of type labels as well as a partial order over the type
labels and the support defines the lattice of the conceptual types. The conceptual
types are, for instance, Experiment, Poison, Muscle, etc.

Figure 1 depicts a subset of the support that we formalized in order to repre-
sent Claude Bernard’s experiments.

Conceptualgraphs arebipartite graphs, composedof conceptand relationnodes.
Figure 2 shows an example of a conceptual graphs. The relation nodes are repre-
sented in ovals while the boxes represent the concept nodes. The conceptual graph
of figure 2 stands for “The patient of the second experiment is a dog named dog1”.

Fig. 2. Example of a conceptual graph

In the two following Sections, we detail the approach that we use, both for
discriminating among the experiments the ones that could complete each others,
and for fusing these similar experimentations.

Regarding the whole process of grouping similar experiments and fusing them,
the discrimination phase can be viewed as a classification. The aim is to group
together the experiments that can be fused in order to reduce the total number
of experiments that should be simulated. It also reminds of the issue of concep-
tual clustering. Conceptual clustering was defined by Michalki and Stepp in [15].
Given a set of objects associated with their descriptions, conceptual clustering
allows to define a set of classes that group these objects together. We are partic-
ularly interested in the work related in [2] that aims at representing and storing
event descriptions as conceptual graphs. These descriptions are extracted from
texts. Some subsets of event descriptions are then generalized in order to build
patterns or prototypes of event.
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As a second step of the conceptual clustering, the naming allows to define a
description of each class. The fusion phase can be viewed as a particular type of
naming where the fused experiment description describes the cluster of exper-
iments. In [4] the authors’ aim is to store descriptions of events, classify them
according their similarity and generalize them in the naming phase. However, the
authors also explain how all the information contained in the initial descriptions
must be available in order to simulate the process of memory. Our aim with the
fusion of Claude Bernard’s experiments is also to keep all the information that
is given by the initial experiment descriptions.

3 Discrimination between the Experiments

Before to fuse two experiments, one has to determine whether they are compati-
ble or not. The compatibility of two experiments depends on the objectives that
we have when we want to fuse them. For instance, sometimes Claude Bernard
does not write down all the observations of an experiment because some of them
were already observed during an earlier experiment. In such cases, we aim at fus-
ing experiments that have almost similar preparation phases in order to complete
the observations. Then the similarity of experiments will be processed regarding
the preparation phase. For instance, we will emphasize on similar animals and
similar poison. On the contrary, if our aim was to aggregate all the different
effects of curare, we would process similarity only regarding the poison with no
restriction on the animal, point of insertion, observations, etc.

To determine whether two experiments are sufficiently similar to be fused, we
use a similarity measure. Several similarity measures between conceptual graphs
have been proposed. Some, as [17] rely on the similarity of the structure and
values of the two graphs taken as a whole. Other works concern the semantic
distance between conceptual types, like [20] and [7]. Studies were also performed
regarding the issues of classifying a set of conceptual graphs ([2] and [16] for
instance). This is also a way to find the conceptual graphs closed one to another.

Our approach relies on combining these different approaches. Relying on [2]
and [7], we define a similarity measure of two concept nodes that depends on the
distance between their conceptual types, the distance between their individual
values and the similarity of their immediate neighborhood. The similarity be-
tween two graphs is then computed, regarding the best matching of their nodes,
as [17] does it.

One of our goals is to compare two experiments using only local comparison
that are cheap in terms of processing time. Therefore, we propose to compare
the different pairs of concepts of the two graphs. The global graph structure of
the experiments’ descriptions will be handle during the fusion process.

In the next Section, we use the following notations:

– C denotes the set of concepts with conceptual types defined on a support S;
– c1 ∈ C and c2 ∈ C are two concept nodes;
– c1 = [T1 : v1] and c2 = [T2 : v2] with T1 ∈ S, T2 ∈ S, the two conceptual

types of c1 and c2.
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3.1 Similarity between Two Concepts

To measure the similarity between two concepts, we propose to compare their
conceptual types, their individual markers as well as their neighborhood. The
study of the neighborhood gives clue about the context in which a concept is
used. In our case, the neighborhood is composed of the relation nodes that are
immediately linked to the concept nodes in the initial graphs.

The similarity measure is expressed as follows:
sim : E × E → [0, 1] where

sim(c1, c2) =
p1(T1, T2)simType(T1, T2) ∗

(
p2(T1,T2)simRef (v1,v2)+p3simrel(c1,c2)−p4dissRel(c1,c2)

p2+p3

)

– p1, p2, p3 and p4 are weights that allow to give more importance to some
elements with regards to the others;

– simType, simRef , simRelComm and dissRel are local similarity/dissimilarity
measures that we detail hereafter.

Similarity between Conceptual Types: simType. The similarity measure,
between two conceptual types, depends on their distance in the lattice of con-
cepts. Among the different studies that exist, concerning this problem, we are
particularly interested in the distance between types proposed by [7]. The ap-
proach related by Gandon and colleagues proposes an extension of the distance
between types proposed in [20].

Our objective is to fuse the different experiments in order to make them more
precise. Therefore, unlike most of the existing measures that use the nearest
common parent of the two types to be compared as key feature, we will use the
nearest common subtype as key type in our measure.

The distance between two types is defined as follows:
∀(t1, t2) ∈ S × S

dist(t1, t2) = min{t≤t1,t≤t2}
(
lS(t1, t) + lS(t2, t)

)

with ∀(t, t′) ∈ S × S, t ≤ t′

lS(t, t′) =
∑

ti∈〈t,t′〉,ti �=t

[
1

2prof(ti)

]

where 〈t, t′〉 is the shortest path between t and t′ and prof(t) is the depth of t
in the support.

Given this distance, the similarity between t1 and t2 is given by 1−dist(t1, t2).

Similarity between Two Referents: simRef . The similarity between the
values of two concepts depends on the conceptual types of the concepts and
the application domain. For instance, the similarity between two strings can be
based on the editing distance ([14]) between these two strings. If the concepts
to be compared are numeric values or dates, the difference between them can be
used to compute similarity.

A lot of distances exist on different types of data and are specific to different
application domains. The similarity measure between two referents can be based
on any of them.
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Similarity Regarding Neighborhoods: simRel. In order to compare the
context in which the two concepts are expressed, we propose to compare their im-
mediate neighborhood. Intuitively, the similarity measure of two concepts given
the common neighboring relations is processed by measuring the proportion of
relations linked to the concepts and that have the same conceptual type.

The similarity of c1 and c2 is given by:

simRelComm(c1, c2) =
2 ∗ nbRelComm(c1, c2)
nbRel(c1) + nbRel(c2)

with nbRelComm(c1, c2): the number of relations shared by c1 and c2, regarding
their conceptual types;
and nbRel(c): the total number of relations linked to the concept c.

Dissimilarity Regarding Neighborhoods: dissRel. As for common neigh-
boring relations, we compare the neighboring relations that are different. The
similarity of c1and c2, given the relations that are different in their neighborhood,
is given by:

dissRel(c1, c2) =
nbRelDiff(c1, c2)

nbRel(c1) + nbRel(c2)

with nbRelDiff(c1, c2): the number of relations that are not shared between c1
and c2;
and nbRel(c): the total number of relations linked to the concept c.

The Weights. Our similarity measure encompasses several weight (p1, p2, p3
et p4 and pnoeud). This allows us to give more importance to some parts of the
measure, according to the specificities and objectives of the information that is
encoded in the graphs. A detailed example concerning the comparison of several
experiments of Claude Bernard is given in 5.

3.2 Similarity between Two Experiments

The similarity of two experiments depends on the different matchings that exist
between the concepts of the two graphs. It is processes given the similarity of
the matching concepts.

Given a matching of the concepts of the two graphs G1 and G2, the similarity
between G1 and G2 is computed as follows:

simmatch(G1, G2) =

∑
(c1,c2)∈app simconcept(c1, c2)

min(|C1|, |C2|)

– C1 (resp. C2) is the set of concepts of G1 (resp. G2) and |C1| (resp. |C2|) is
the number of concepts in the graph G1 (resp. G2);

– c1 ∈ C1 (resp. c2 ∈ C2) is a concept of G1 (resp. G2).
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The global similarity measure between two graphs G1 and G2 is then com-
puted by maximizing the similarity of the different possible matchings:

sim(G1, G2) = max
∀match⊆V1,V2

simmatch(G1, G2)

4 Fusion of Claude Bernard’s Experiments

4.1 Maximal Join as Fusion Operator

In [13], [11] and [12], we presented a framework for high-level information fusion
based on the use of the conceptual graphs formalism. In the ontology, we describe
all the entities of the external world and the relations that may be observed
among them. Our approach is generic. In [11], we used conceptual graphs to
represent TV program descriptions. The descriptions were coming from different
sources of information and were related to the same TV program. In this work,
we represent Claude Bernard’s experiment descriptions. The descriptions that we
want to fuse relate to quite similar but different experiments. Furthermore, they
are all coming from the same source of information: Claude Bernard’s notebooks.

The fusion process relies on the conceptual graphs model. We use the max-
imal join operation defined by Sowa in order to fuse information. As shown in
Figure 3, the maximal join operation allows to fuse two compatible sub graphs
of two conceptual graphs. Graph G3 is the result of the fusion of G1 and G2
using the maximal join operation.

The maximal join operation copies all the information that is present in the
initial graphs in the new one. Intuitively, when one wants to join two graphs
maximally, the first step is to look for two compatible sub graphs in the two
initial ones. The initial graphs are then joined, according to the compatible sub
graphs. Furthermore, two concepts are compatible if:

– their conceptual types share a common sub-type different from ⊥;
– their referents conform their most general subtype; and
– either one of their referent is undefined, or their referents are identical.

Fig. 3. Example of Maximal Join
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The maximal join keeps the most specific elements of two compatible sub
graphs and complete one graph according to the information contained in the
other one. Furthermore, it gives several results, which depict the different ways
of combining the information, that is to say, the different fusion hypotheses.

The maximal join is a fusion operator. However, as stated in [11], using the
maximal join only is not sufficient in order to fuse information coming from real
systems. Real data is noisy and knowledge about the domain is often needed in
order to fuse two different but compatible values into a single one. Observations
such as a person named “J. Smith” and a one named “Mr. John Smith” are not
equals, but our background knowledge let us believe that the two observations
rely to the same person.

It is necessary to extend the notion of compatibility between different concepts
in the maximal join operation by introducing domain knowledge. The notion
of compatibility between concepts is extended from compatibility of conceptual
types only to compatibility of individual values and referents. We introduced the
notion of fusion strategies. They are rules encoding domain knowledge and fusion
heuristics. We use them to compute the fused value of two different observations
of the same object. On the one hand, the fusion strategies extend the notion
of compatibility that is used in the maximal join operation. According to some
fusion strategy, two entities with two different values may be compatible and
thus mergeable. On the other hand, the strategies encompass functions that give
the result of the fusion of two compatible values.

4.2 Using Fusion Strategies to Handle Noisy Data

The fusion strategies are used to extend the maximal join operation that was ini-
tially defined by Sowa. Therefore, the building of the set of the fusion hypotheses
of two graphs is still directed by the search of compatible projections. The no-
tion of compatibility between two concept nodes is extended, as details hereafter.
Furthermore, due to the extension of the compatibility between concepts, the con-
struction of the joint (i.e. fused) concepts is also modified, allowing to use heuris-
tics in order to choose the concept values. This is the concept resolution step.

The definition of the fusion strategies are divided into two parts:

– The definition of the compatibility conditions between two concepts; and
– the process of the fused value of two concepts.

The fusion strategies are expressed as the composition of two functions: Let
E be the set of concept nodes defined on a support (ontology) S. Let G1 and
G2 be two conceptual graphs defined on S. A fusion strategy strategyfusion is
defined as follows:

strategyfusion = ffusion ◦ fcomp : E × E → E ∪ {E × E}
where

– ffusion : {true, false}×E×E → E ∪{E×E} is a fusion function upon the
concepts nodes of the graphs;
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– fcomp : E×E → {true, false}×E×E is a function testing the compatibility
of two concept nodes.

The fusion strategies applied on two concept nodes result either in a fused
concept node if the initial nodes are compatible, or in the initial nodes themselves
if they are incompatible.

5 Case Study

5.1 Context

Within the context of understanding the process of scientific discovery followed
by Claude Bernard, the goal here, as said before, is to reduce the number of ex-
periments and, therefore, to reduce the number of simulations of his experiments,
which their descriptions became more complete after fusion.

Therefore, our first step consisted of the classification of the experiments into
several classes (sets of experiments). We will take here the example of the class
of experiments that Claude Bernard achieved on dogs, using curare as the toxic
substance. This set of experiments includes ten experiments. Once the selection
of the set of experiments is done, we use our similarity measures and process
the similarity between the experiments. In our example, the similarity measures
include the given animal (a dog), manipulations (introduction of a toxic sub-
stance), the poison used (the curare) and the observations (whether the curare
affects the animal or not). Including the observations in the similarity measure
allows to ensure that we will aggregate the hypotheses that relate to experiments
that have the same conclusions or observations. As a result of the similarity step,
we could devide our set of experiments into two subsets, the first one contains
the experiments for which the curare affects the experimental animal (six exper-
iments including experiments 2 and 4 for which we will show the result of the
fusion). The second subset is the one for which the curare has no effect (four
experiments).

The last step is to apply fusion strategies on the experiment descriptions
within the same subset of experiments. The fusion will allow, as said before, to
aggregate all the hypotheses given by Claude Bernard, regarding a same subset of
experiments. Therefore, after the fusion of the experiments, only one simulation
will be sufficient to validate or invalidate several hypotheses.

5.2 From Natural Language Descriptions to Conceptual Graphs

As said before, the preliminary step of the process when we want to simulate
Bernard’s reasoning is to formalize his experiments. This is part of the work re-
alized by the epistemological study and that we completed in order to transform
the Excel table into a set of conceptual graphs. In the following sections, we
illustrate our approach on a concrete example that uses two of Bernard’s exper-
iments on curare. The experiments are described in his notebooks as follows:
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“Experiment 2: Small dog, 12 days-old. Arrow of curare lodged in the tissue of
the thigh. 3 minutes later, death without screams or convulsions. Immediately af-
ter death, reflex movements are abolished. The heart beats a few more moments.
At the autopsy, nothing can explain the death.”

“Experiment 4: Small dog, 12 days-old. Dissolution of five centigrams of curare
in water and injected by the anus in the stomach. 5 minutes later, death with
the same symptoms as in the experiment 2. Immediately after death, we can not
produce any reflex movement. The nerves in the legs being naked, cut or pinched
do not give any contraction in the muscles. At the autopsy, nothing can explain
the death.”

The corresponding conceptual graphs are shown in figures 4 and 5. For a mat-
ter of readability the figures only depict a subset of the experiment descriptions.

Fig. 4. First experiment

Fig. 5. Second experiment

5.3 Similarity between Experiments

The aim is to complete the observations and/or the details of the preparation
of the animal for the experiments. Therefore, we will emphasize on the sim-
ilarity of the preparation phase, and particularly on the type of animal, the
poison used and the manipulation that is done. We propose to use the following
weights:
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– p1(T1, T2) = 1 if T1 and T2 are sub-types of Expe, Animal, Manipulation,
Date and Poison;

– p1(T1, T2) = 2 if T1 and T2 are sub-types of Observation;
– p1(T1, T2) = 0 in the other cases;
– p2(T1, T2) = 1 if T1 and T2 are sub-types of Poison and Date;
– p2(T1, T2) = 0 in the other cases;
– p3 = p4 = 0.

The similarity between 2 concepts referents is precessed as follows:

– simRef(v1, v2) = 1− edit distance(v1, v2) where editdistance gives the result
of the normalized version of the Leventshtein edit distance if v1 and v2 are
strings;

– simRef(v1, v2) = 1− v1−v2
max(v1,v2

if v1 and v2 are numerical values.

Using these weights and similarity measures, we compared two experiments
that were done on dogs, using curare poison. In the first experiment, the poison
was introduced in the dog’s anus, while the in the second one, it was injected in
a second dog’s leg. The similarity rate of these experiments is 0,82.

5.4 Completing Descriptions of Experiments

As said before, figures 4 and 5 show the description of two experiments that
are very similar regarding our similarity measure. We used our fusion platform
to fuse them. Figure 6 shows the result of the fusion process. The experiment
descriptions have been completed regarding the observations that were made
during the second experiment.

Fig. 6. Fusion of two experiment’s descriptions

On the one hand, our process allows to fuse experiments regarding the obser-
vations. Thanks to that, the implicit observations that Claude Bernard didn’t
rewrite from one experiment to an other one are used in the simulation. On
the other hand, we can also fuse the experiment descriptions regarding the hy-
pothesis. Then, one simulation will be sufficient to validate or invalidate several
hypothesis. As the simulation phase is very time consuming, it saves a consider-
able amount of time within the global study of scientific discovery.
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6 Conclusion and Perspectives

In this paper, we showed how we used similarity and fusion strategies to fill in
the gaps in Claude Bernard’s notebooks. Since he doesn’t always write down
every detail of preparation, observations or even hypotheses deduced by these
observations, the fusing of his experiments helps us to complete them, which is
of great interest for the reasoning on his discovery process.

However, to simulate the reasoning about Bernard’s scientific approach, espe-
cially, in his reasoning about the process of the discovery of the effects of curare,
we would like to add a generalization feature among the different experiments.
From several almost similar experiments, Claude Bernard was able to generalize
some aspects such as the properties of curare. For instance, from two experiments
where the mode of introduction of curare is different, but where the observations
are similar, one would like to automatically deduce that the introduction mode
doesn’t affect the curare properties.

The studies performed by [2] and [16] for instance, aim at classifying concep-
tual graphs. After constructing classes of conceptual graphs, one of the goals is
to find a single conceptual graph to represent each set of classified graphs. This
graph is more general than each graph in the class it describes. We will rely
on these works in order to propose a method for generalizing knowledge from
a set of experiments. We aim at mixing generalization and fusion processes. In
do so, we will not only deduce general knowledge from a set of different related
experiments, but also take advantage of fusion to complete the generalization of
several partial experiment descriptions.
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Abstract. In knowledge bases (KB), the open world assumption and
the ability to express variables may lead to an answer redundancy prob-
lem. This problem occurs when the returned answers are comparable.
In this paper, we define a framework to distinguish amongst answers.
Our method is based on adding contextual knowledge extracted from
the KB. The construction of such descriptions allows clarification of the
notion of redundancy between answers, based not only on the images of
the requested pattern but also on the whole KB. We propose a defini-
tion for the set of answers to be computed from a query, which ensures
both properties of non-redundancy and completeness. While all answers
of this set can be distinguished from others with a description, an open
question remains concerning what is a good description to return to an
end-user. We introduce the notion of smart answer and give an algorithm
that computes a set of smart answers based on a vertex neighborhood
distance.

1 Motivation

In the semantic web age, a large number of applications strongly rely on the
building and processing of knowledge bases (KB) for different domains (multi-
media, information management, semantic portals, e-learning, etc.). The formal
languages used for representation will encounter obvious scaling problems and
therefore rely on implicit or explicit graph based representations (see for ex-
ample Topic Maps, RDF, Conceptual Graphs, etc.) As a direct consequence,
querying such systems will have to be done through graph based mechanisms
and, accordingly, optimization techniques implemented [1].

In ICCS’08 [2], we identified the semantic database context in which a set of
answers has to be computed. For this case, there are two kinds of answer graphs:
answers as subgraphs of the knowledge base graph that are used for browsing
the KB or for applying rules; and answers as graphs, independent of the KB,
corresponding to the classical use of a querying system1. With this latter kind

1 For example, in SPARQL, as blank node labels can be renamed in results, see [1]
2.4.
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of answer, an important problem concerns detecting redundant answers. Unlike
classical databases, redundancies are not limited to duplicate tuples. Indeed, the
presence of unspecified entities (generic markers in CG or blank nodes in RDF)
and also a type hierarchy leads us to consider that an answer which is more
general than another as redundant. In [2], we studied this problem and proposed
to return irredundant forms of the most specific answers to a query.

An important problem arising in this context is ultimately related to the
nature of a KB vs. a database. With a classical database, one can assume that
a query designer knows the database schema and is thus able to build a query
corresponding to its needs. With a KB, the schema is extended to an ontology
and the different assertions are not supposed to instantiate a specific frame (the
knowledge is semi-structured). Consequently, it is difficult for a query designer
to specify the content of the searched knowledge: he/she wants to obtain some
information about a specific pattern of knowledge. The suppression of redundant
answers only by comparing answer graphs independently of the KB results in the
problem not being considered. A better way to address the redundancy problem
consists of completing the answer graphs with their neighborhood to obtain more
detailed answers in order to return some relevant knowledge to the end-user in
order to get insight (restitution, reflet) into the diversity of the knowledge in the
KB. Moreover, users seem to prefer answers in their context (e.g. paragraph)
rather than the exact answer[3].

In this paper we focus on answers given in a graph based form. Our motivation
stems from the homogeneity of preserving the same format between the KB,
query and answer. Moreover, this will allow the reuse of answers as a KB for
different future answers (see for example nested queries). Note that while this
paper focuses solely on the problem of distinguishing graph based answers, the
same research problem will arise and results will be obtained when of answers
are represented as a tuple.

2 Contribution and Related Work

Figure 1 shows a query, a conceptual graph formalized KB (see section 3.1) and
all five answers to the query in the KB (from A1 to A5, in gray in the picture).

The problem that arises in this scenario is how to define relevant answers
when they are independent of the KB (i.e. a set of answer graphs and not a set
of answer subgraphs of the KB). For instance, answers A1 and A5 are equivalent
(“there is a human who owns an animal”), and knowledge expressed by these
answers is expressed by all of the others. The open world assumption makes it
impossible to state that all humans or animals represent distinct elements of the
described world. Therefore it seems preferable to only return answers that bring
more knowledge, i.e. in our example that “Mary owns a cat” and “a human owns
a dog”. But another relevant answer could be that “there is a human knowing
Mary who owns a cat”.
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Fig. 1. Query, KB and highlighted answers

The contribution of the paper is to refine our preceding notion of redundancy
between answers, to take the knowledge of the KB into account, through the
notion of a fair extension of an answer, a graph that specifically describes an
answer. Thus, an answer is irredundant if there is such a “fair” extension. A
special case of this problem (when the answer is a concept node) corresponds
to the problem of Generation of Referring Expressions (GRE) studied in the
conceptual graph context in [4], that we extend for our purposes. Based on
the extended notion of redundancy, we define two answer subset properties of
non-redundancy (there is no redundant answer in the subset) and complete-
ness (each answer is redundant to an answer of the subset). We then explain
how to compute all the non-redundant and complete subsets of answers, based
on a redundancy graph. We then discuss what is a good set of referring graphs
to be returned to the user, and give an algorithm that fulfills these good
properties.

As previously mentioned, a special case of answer identification was studied
in [4]. The RDF query language SPARQL offers a way to describe answers (by
the DESCRIBE primitive) but it does not address the specific problem of dis-
tinguishing one answer from another according to semantically sound syntactic
criteria. The problem of answer redundancy in the Semantic Web context has
been studied in [5], but the redundancy stated in this paper concerns the union
of all answers, and corresponds, in the CG field, to the classical notion of ir-
redundancy (see section 3.1), as opposed to our redundancy between answers.
In an article about OWL-QL [6] the notion of server terseness is defined, which
is the ability of a server to always produce a response collection that contains
no redundant answers (i.e. there is no answer that subsumes another one). This
corresponds to our previous notion of redundancy defined in [2].

In the next section, preliminary notions about conceptual graphs and our
query framework are given. Section 4 deals with the extended notion of redun-
dancy between answers and its application to a subset of answers. In section 5
we discuss the relevancy of the set of referring graphs returned to the user. We
conclude our work in the last section.
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3 Preliminary Notions

3.1 Simple Graphs

The conceptual graph formalism we use in this paper has been developed at
LIRMM over the last 15 years [7]. The main difference with respect to the initial
general model of Sowa [8] is that only representation primitives allowing graph-
based reasoning are accepted.

Simple graphs (SGs) are built upon a support, which is a structure S =
(TC , TR, I, σ), where TC is the set of concept types, TR is the set of rela-
tions with any arity (arity is the number of arguments of the relation). TC and
TR are partially ordered sets. The partial order represents a specialization re-
lation ( t′ ≤ t is read as “t′ is a specialization of t”). I is a set of individual
markers. The mapping σ assigns a signature to each relation specifying its arity
and the maximal type for each of its arguments.

SGs are labeled bipartite graphs denoted G = (CG, RG, EG, lG) where CG and
RG are the concept and relation node sets respectively, EG is the set of edges
and lG is the mapping that labels nodes and edges. Concept nodes are labeled
by a couple (t : m), where t is a concept type and m is a marker. If the node
represents an unspecified entity, its marker is the generic marker, denoted ∗, and
the node is called a generic node, otherwise its marker is an element of I, and
the node is called an individual node. Relation nodes are labeled by a relation r
and, if n is the arity of r, it is incidental to n totally ordered edges.

A specialization/generalization relation corresponding to a deduction notion
is defined over SGs and can be easily characterized by a graph homomorphism
called projection. When there is a projection π from G to H , H is considered to
be more specialized than G, denoted H ≤ G. More specifically, a projection π
from G to H is a mapping from CG to CH and from RG to RH , which preserves
edges (if there is an edge numbered i between r and c in G then there is an edge
numbered i between π(r) and π(c) in H) and may specialize labels (by observing
type orders and allowing substitution of a generic marker by an individual one).

In the following, we use the notion of bicolored SG that was first introduced
in [9]. A bicolored SG is an SG H = 〈H0, H1〉 in which a color on {0, 1} is
assigned to each node of H , in such a way that the subgraph generated by 0-
colored nodes, denoted H0 and called the core of H , is a subSG. H1, which is the
sub-SG defined by 1-colored vertices and 0-colored concepts that are in relation
with at least one 1-colored concept, is called the description.

3.2 Query Framework

The chosen context is a base composed of assertions of entity existences and rela-
tions over these entities, called facts, and stored in a single graph (not necessarily
connected) named the knowledge base. This graph is assumed to be normalized
if it does not contain two individual nodes with the same marker i. A normal
form is easily computed by merging duplicate individual nodes of the graph. On
the other hand, we do not require the KB graph to be in irredundant form: a
graph G is in irredundant form iff there is no a projection from G in one of these
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strict subgraphs; otherwise this graph is said to be in redundant form. Indeed,
computation of the irredundant form of a graph is expensive as the base can be
large [10] and, moreover, there is not any local criterion for computation of the
irredundant form and thus no incremental method (started at each updating of
the base) can be expected. Such a KB graph B is simply queried by specifying a
SG Q called the query. There is no constraint on the query (normalization or ir-
redundancy). The answers to the query are found by computing the set Π(Q, B)
of projections from Q to B. The primary notion of answer consists of returning
the set of subgraphs of B image of Q by a projection in Π(Q, B).

Definition 1 (Answer set). The set of answers of a query Q in a base B,
denoted Q(B), is {π(Q) | π ∈ Π(Q, B)}2.

The first research question we address in this paper is whether this set of answers
contains redundant answers? In fact, three kinds of redundancies can arise:

1. Duplication: two answers are identical. There is a duplication when two
projections define the same subgraph. This problem can be solved easily by
only keeping one of the duplicate subgraphs (this is done in the answer set
Q(B)). An example of duplication is given in fig. 3(b) taken as the KB and
fig. 3(c) taken as the query: there are two projections from the query whose
images are the whole KB.

2. Inclusion: An answer is contained in another one. There is an inclusion
when an answer is in a redundant form. Then its subgraph, in irredundant
form, is also an answer. In the previous example (fig. 3(b) and 3(c)), there
are two projections that define included answers.

3. Redundancy: An answer is more general or equivalent than another one.
There is a redundancy when two answers are comparable (thus the knowledge
expressed by one is also expressed by another); as an example answers A1
and A2 of figure 1.

Inclusion will be studied in section 4.4. The true redundancy problem becomes
crucial since the answers are no longer KB subgraphs. Indeed, two answers can
appear redundant when they are not really redundant. In [2], we define the notion
of redundancy based only on the comparability of the answer graphs. This ap-
proach was motivated by the following argument: as the returned set of answers
is independent of the KB, the subset of the more specific irredundant answers,
denoted Rmin, is sufficient to bring the entire range of answers. Moreover, Rmin

is minimal in terms of vertex number. In the following section, we characterize
the true redundancy.

4 Dealing with True Redundancy

In [2], the completeness criterion (the knowledge expressed by each initial answer
is expressed by one of the answers contained in the returned subset of answers)
2 “Answer set”, denoted Q(B), and “answer” notions correspond respectively in our

previous work [2] to notions of “answers by image subgraphs”, denoted RIP (Q, B),
and “images of proof”. Names have been changed for simplification.
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ensures that no knowledge is lost when a redundant answer is deleted. But this
redundancy is based only on the comparability of answer subgraphs (that are
semantically close as they are specializations of the query).

4.1 The True Redundancy

The true redundancy has to take the knowledge brought by the neighbor vertices
of the answer into account. With this aim, we introduced the notion of extended
answer, which is an answer supplemented with some knowledge extracted from
its neighborhood.

Definition 2 (Extension of an answer). Let B be a KB graph and Q a
query graph. An extension of an answer A from Q(B) is a bicolored graph E =
〈E0, E1〉, where E0 is isomorphic to A and such that there is a projection π from
E to B with π(E0) = A.

2

2
Animal: *

Cat: *
1

own

1
ownHuman: *

(a)

1 2
Cat: *own

2
Cat: *

1
own

2
1

know

Human: *

Human:Mary

(b)

Fig. 2. Several extensions of answer A2 of fig. 1

Fig. 2 represents several extensions of answer A2 of fig. 1. Note that the
extensions are not necessarily isomorphic copies of subgraphs of the KB.

With the previous definition of redundancy (section 3.2), if two answers have
two incomparable extensions, they are two distinct answers and thus have to be
considered as non-redundant answers, the one w.r.t. the other one. However, these
two answers must not be distinguished in an “artificial” way: i.e. if the answers
are distinguished by selectively adding knowledge to the extension of only certain
answers but not to all of those which possess this knowledge in their neighborhood.

Definition 3 (Fairness property). An extension E of an answer A from a
set Q(B) is fair iff there is no extension E′ of another answer A′ from Q(B)
such that there is a projection π from E to E′ with π(E0) = E′

0 and π(E1) = E′
1.

The extension of figure 2(b) is a fair extension of the answer A2 of figure 1,
contrary to the extension of figure 2(a). One can now give a definition of the
true redundancy:

Definition 4 (True redundancy). An answer A from a set of answers Q(B)
is truly redundant if there is no fair extension of this answer.

In the example of fig. 1, answer A1 is redundant. The search for a fair exten-
sion may seem to be a difficult task, considering that the number of extensions
that can be generated for an answer is infinite. However, these extensions are
semantically bounded by a more specific one that corresponds to an isomorphic
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copy of the base, 〈A, B \ A〉3. Naturally, the more one adds knowledge to the
extension (the more it is specific), the more one potentially distinguishes this
answer. So A is irredundant only if 〈A, B \A〉 is a fair extension.

Theorem 1. There is a fair extension E of an answer A iff 〈A, B \A〉 is a fair
extension.

Proof. By contraposition. Suppose that there is a fair extension E = 〈E0, E1〉 of
A and that 〈A, B \A〉 is not a fair extension of A. 〈A, B \A〉 is an extension of
A and is isomorphic (without considering the colors) to B. As E is an extension
of A, there is a projection π from E to B such that π(E0) = A. As 〈A, B \ A〉
is not a fair extension of A, there is a projection π′ from 〈A, B \ A〉 to B such
that π(R0) �= A. So there is a projection π′′ = π ◦ π′ from E to B such that
π′′(E0) �= A. Thus E is not a fair extension of A. ��

Corollary 1. An answer A of Q(B) is truly irredundant iff 〈A, B \A〉 is a fair
extension.

4.2 The GRE Problem

The problem of finding a fair extension of an answer is strongly related to the
problem of generation of referring expressions (GRE) known in the natural lan-
guage processing field, which aims to describe an object in a scene such that the
description only refers to this object. The GRE problem was formalized in the
CG framework in [4], where the scene is an SG and the object to identify is a
concept of the SG. A referring graph of a concept v is a subgraph of the KB
containing this concept, and a distinguishing graph is a referring graph whose v
is a fixed point for all projections of the graph in the KB. Our problem of answer
redundancy can be seen as an extension of this formalization.

Definition 5 (Referring graph). A referring graph of a subgraph G′ of a
graph G is a subgraph R of G that contains G′ as a subgraph. To distinguish
G′ from the rest of the referring graph, we denote it as a bicolored graph R =
〈R0, R1〉 where R0 = G′ and R1 = R \G′.

Definition 6 (Distinguishing graph). A referring graph R of a subgraph G′

of a graph G is distinguishing if, for each projection π from R to G, π(R0) = G′.

The referring graph of figure 2(b) is a distinguishing graph of the answer A2
of figure 1, contrary of the referring graph of figure 2(a). We can now link the
true redundancy notion with the existence of a distinguishing graph for a given
answer. The next properties strengthen the notion of true redundancy by showing
its independence in the query and thus in the other answers.

Property 1. Let A be an answer of Q(B). There is a fair extension of A iff there
is a distinguishing graph of A w.r.t. B.
3 For clarity, we sometimes denote subgraphs of KB as cores or descriptions of bicol-

ored graph instead of their isomorphic copies.
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Proof. Let E = 〈E0, E1〉 be a fair extension of A. Then π(E) is a distinguishing
graph of A w.r.t. B. On the other hand, a distinguishing graph of A is also a
fair extension of A. ��

Corollary 2. An answer A of Q(B) is irredundant iff R = 〈A, B \ A〉 is a
distinguishing graph of A w.r.t. to B.

Thus, determining whether an answer is irredundant can be done by testing the
distinguishness of the referring graph built from KB. However, the cost of such
a test is exponential in the size of the KB.

4.3 Redundancy and Subset of Answers

Since the redundancy of an answer has been defined, it could be considered that
for building a set of answers without redundancies one could simply remove
redundant answers. However, the redundancy defined in the preceding section
hides the fact that they are two types of redundancy. This is shown in fig. 3 (a
query and three different KBs) :

The first case will arise when an answer is completely redundant with respect
to another answer (fig. 3(b)). This means that A2 is redundant w.r.t. A1 but the
reverse does not hold. In this case, we say that A2 is strongly redundant w.r.t.
A1. Thus, we only return the answer A1.

The second case arises when there are a set of answers which are redundant
amongst themselves (fig. 3(c) and 3(d)). In these two examples, an answer is re-
dundant with respect to the others and vice-versa. In this case, we say that the
answers are mutually redundant and we have to choose an answer in this set.

Note that the answer redundancy problem still holds in KBs in irredundant
forms, as in the example of fig. 3(d).

Strong and mutual redundancies are based on the redundancy of an answer
w.r.t. another one:

Definition 7 (Redundancy relation). An answer A is redundant to an an-
swer A′ iff for each referring graph RA of A, there is a projection π from RA to
a referring graph RA′

of A′ with π(RA
0 ) = π(RA′

0 ) = A′.

21
likeHuman : * Human : *

(a) Query

A1

A2

1
2

Human: *like

2
Human: Mary1 like

Human: *

(b) Strong redundancy
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1
2

Human: *like
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Human: *1 like

Human: *

(c) Mutual redundancy

A5

A6

12
like

2

Human: *

1 like

Human: *

(d) Mutual redundancy

Fig. 3. Different cases of redundant answers
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One can test the redundancy relation with the KB referring graph:

Property 2. An answer A is redundant to an answer A′ iff there is a projection
π from 〈A, B \A〉 to a referring graph RA′

of A′ with π(A) = A′.

Therefore an answer A is redundant to an answer A′, the redundancy relation
between A′ and A defines the two previously seen redundancy cases:

Definition 8 (Redundancies between answers). Given A and A′ ∈ Q(B),
such that A is redundant to A′:
– A is strongly redundant to A′ if A′ is not redundant to A ;
– A and A′ are mutually redundant if A′ is redundant to A ;

Based on the notion of true redundancy, we can refine our notions of non-
redundancy and completeness of subsets of answers that we defined in [2] :

Definition 9 (Non-redundant subset of answers). A subset of answers A
of Q(B) is non-redundant if there are no two answers A and A′ ∈ A such that
A �= A′ and A is redundant to A′.

Definition 10 (Completeness). A subset of answers A of Q(B) is complete if
for each answer A of Q(B) there is an answer A′ of A such that A is redundant
to A′.

We define a graph of redundancies based on the notions of strong and mutual
redundancies. All types of redundancies of definition 8 can be viewed as relations
on Q(B)2, for example (A, A′) belongs to the strong redundancy relation if
A is strongly redundant to A′. Thus we can characterize properties of these
relations. Particularly, mutual redundancy defines equivalent classes over the set
of answers, and strong redundancy links all answers of an equivalent class to all
answers of another equivalent class. We construct the redundancy graph such
that each vertex is an equivalent class, and is linked by the strong redundancy:

Definition 11 (Graph of redundancy). The graph of redundancy G = (V, E)
of Q(B) is a directed graph, where vertices represent equivalent classes of the
mutual redundancy relation and where there is an edge between v1 and v2 if all
answers of the class represented by v1 are strongly redundant to all answers of
the class represented by v2.

Fig. 4(a) represents the redundancy graph of query and KB of fig. 1, whereas
fig. 4(b) represents the redundancy graph of query of fig. 3(a) and KB defined
by the union of KBs of fig. 3(b), 3(c) and 3(d).

A2 A3 A4 A5A1

(a)

A4A3
A2A1 A5 A6

(b)

Fig. 4. Redundancy graph of the previous examples
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To construct a complete and non-redundant set of answers, one has to only
choose a single answer per equivalent class (to avoid mutual redundancy), only
from equivalent classes that are sinks (to avoid strong redundancy), and for all
of them (to be complete). This is why there is more than one non-redundant
complete subset in the second example (fig. 4(b)): there is an equivalent class
that is a sink and contains more than one element ({A5, A6}).

Theorem 2. A subset of answers A of Q(B) is complete and non-redundant
iff for each sink in the redundancy graph there is a single answer of A that is
represented by this sink.

Proof. Given anon-redundant and complete subset of answersA. Non-redundancy
means that there is a single answer for each equivalent class represented in A and
that there are no two answers Ai and Aj such that there is a path from Ai to Aj .
Completeness ensures that for all answers Ai of Q(B) (particularly answers be-
longing to a sink) there is an answer Aj such that Ai is redundant to Aj . So A
has to contain an answer of each sink. When combining completeness and non-
redundancy, only one answer of each sink is taken.
• Given a subset of answers A that is composed of an element of each sink of the
redundancy graph. Given two answers of A. These answers are not mutually re-
dundant because there are no two answers of the same equivalent class. These an-
swers are not strongly redundant because each answer comes from a sink. ThusA
is non-redundant. For each answer Ai of Q(B), either there is an answer Aj of the
same equivalent class in A (thus Aj is redundant to Ai), or there is an answer Ak

in A that comes from a sink such that there is a path from the equivalent class of
Ai to the sink, and thus Ai is redundant to Ak. A is complete.

The construction of a redundancy graph combines the problem of finding all
projections of a graph into another graph (to compute the set of answers) and the
problem of computation of the irredundant form of a graph. Indeed, as stated by
property 2, computation of all redundancy links of all answers used to construct
the graph is based on all projections of the most specific referring graph of each
answer (i.e. a bicolored isomorphic copy of the whole KB). Therefore, a way to
compute all redundancy links is to compute all projections from the KB into
itself, and check images of a each answer by all projections.

4.4 Inclusion of Answers

As mentioned in section 3.2, the inclusion of answers is one of the problems that
can occur. If treated as a kind of duplication, included answers are just deleted
from the answer set before computation of a non-redundant complete subset.
But this approach is not the best one. We think that the inclusion problem
should be treated after the redundancy problem.

In the example of fig. 5, there are seven answers: three that contain only one
relation (A1, A2, A3), three that contain two relations (A12

4, A13, A23), and one

4 Answer Aij represents the answer that is the union of answers Ai and Aj .
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Fig. 5. A query and a KB that produce included answers, and their redundancy graph

with three relations (A123). Considering all answers, only answers A2, A3 and A23
are irredundant (see fig. 5(c)), but it is not suitable to keep A2 and A3. Otherwise,
if only non-included answers are kept, this leads to keeping answers that were re-
dundant to deleted answers (here A123, redundant to A23), which is not good.

So the best way is to deal with redundancy first (by computing a subset that
is non-redundant and complete) and to delete included answers after that. In
the previous example, this strategy led to the subset {A23}.

4.5 Redundancy at a Considered Distance

In the query framework section, it was stated that computation of the irredun-
dant form of the KB is a difficult problem. But we also see that computation of
the redundancy graph also requires finding all projections of the KB into itself.
Thus, we propose to restrict referring graphs of an answer to a portion of the
base that is “near” this answer. This is also due to the fact that a referring graph
that contains too much knowledge, even if it distinguishes an answer, does not
help the user much. So we propose to bound referring graphs by a distance k,
and to only consider vertices that are in the distance field of one of the vertex
of an answer, which forms the k-neighborhood graph of the answer:

Definition 12 (k-neighborhood graph). Given a KB B, a subgraph S of
B, and a step k (k ≥ 0), the k-neighborhood graph, denoted Nk(S), is defined
recursively by:
– N0(S) = S
– Nn+1(S) is composed of Nn(S) expanded by every relation r not in Nn(S)

and which is linked to a concept of Nn(S), and by all concepts linked to r.
Recursion stops when n = k or Nn(S) = Nn+1(S) and returns Nn(S).

It seems obvious that all definitions put forward previously should now take this
constraint into account. Bounding referring graphs can be seen as a restriction
of the KB, which is now considered as the union of the k-neighborhood graph of
each answer, for a given distance.

Definition 13 (Truncated KB). Given a KB B, a query Q, and a distance
k ≥ 0, the truncated KB at distance k is Bk =

⋃
A∈Q(B) Nk(A)
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Now we can apply all previous definitions to the truncated KB. For example, an
answer A of Q(B) is irredundant considering the distance k iff R = 〈A, Bk \A〉
is a distinguishing graph of A w.r.t. Bk (see corollary 2).

5 Building Smart Answers

In the previous section, redundancy and completeness were only studied from a
theoretical standpoint. A more user-aspect oriented standpoint was introduced
in the section 4.5. Even if the user gets a subset of answers that is non-redundant
and complete, he/she has no way to distinguish answers, i.e. the only assumption
that can be made is that there is, for each answer, a way to distinguish them
from the others. Otherwise, property 1 states that the most specific referring
graph is one of them, but it usually contains too much knowledge.

So what are the properties of a really good set of referring graphs returned
to the user? To keep the notions of non-redundancy and completeness, only
answers of such a subset of answers should have a referring graph. As all of these
answers can be distinguished, all referring graphs should be a distinguishing
graph. Finally, to not introduce unnecessary redundancies in the set of referring
graphs, there should be only one distinguishing graph by referred answer. A set
of referring graphs that fulfills these properties is called a set of smart answers:

Definition 14 (Set of smart answers). A set of smart answers S of a query
Q on a KB B is a set of distinguishing graphs of all answers of a non-redundant
complete set A of Q(B) such as |S| = |A|.

We propose the Bounded Smart Answers (BSA) algorithm (see algo. 1) that
takes the answers and a distance as parameters, and returns a set of smart
answers of truncated KB at distance k such that each extension is the minimal
k-neighborhood graph that distinguishes the answer5.

Theorem 3. Algorithm BSA(Q(B), k) produces a set of smart answers of Q
on the truncated KB Bk.

Proof. In DAK, all referring graphs are constructed with the same distance.
Therefore, thanks to the distance conservation property of the projection, that
if there is a bicolored projection from Nk(Ai) to Nk(Aj), there is a projection
from Nk(Ai) to Bk such that image of the core of Nk(Ai) is equal to Aj (i.e.
Nk(Ai) is a referring graph of Aj in Bk). For each answer A that belongs to
an equivalent class that is not a sink, A will not be returned by DAK because
of the second “foreach” of DAK. The third foreach of DAK ensures that for
each equivalent class that is a sink, the algorithm will only add one (the first
taken) answer that belongs to this class once the good distance is reached. Thus
the union of all answers returned by DAK is a non-redundant complete subset
of answers of Bk. As BSA returns only one graph per answer of the computed
non-redundant complete subset, BSA returns a set of smart answers of Bk. ��

5 Note that comparisons in DAK (algo. 2) are between bicolored graphs, that is
B ≤ B′ iff there is a π from B′ to B such that π(B′

0) = B0.
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Data: Answers Q(B), a distance k
Result: A set of smart answers of truncated KB Bk

begin
i ← 0
D ← ∅ // distinguished answers

S ← ∅ // smart answers

while i ≤ k or D = Q(B) do
D′ ← DISTING AT K(Q(B),D, i)
D ← D ∪ D′

foreach A ∈ D′ do
S ← S ∪ {〈A, N i(A) \ A〉}

return S
end

Algorithm 1. BOUNDED SMART ANSWERS (BSA)

Data: Answers Q(B), distinguished answers D, a distance k
Result: A set D′ of distinguished answers at distance k
begin

D′ ← ∅
foreach A ∈ Q(B) \ D do

disting ← true
foreach A2 ∈ Q(B) \ {A} do

if Nk(A) ≥ Nk(A2) and Nk(A2) � Nk(A) then
disting ← false

foreach A3 ∈ D′ do

if Nk(A) ≥ Nk(A3) then
disting ← false

if disting = true then
D′ ← D′ ∪ {A}

return D′
end

Algorithm 2. DISTING AT K (DAK)

6 Conclusion

We extended our previously defined notion of answer redundancy. Our new
framework now considers answers but also descriptions (called referring graphs)
that can distinguish an answer amongst others. These descriptions could be
adapted to query languages of the semantic web, e.g. by giving a formal def-
inition of the SPARQL DESCRIBE query form. Therefore this new redundancy
is now linked to the whole KB. Based on this new redundancy, we refined two
other previous definitions concerning subsets of answers: non-redundancy prop-
erty (there is no redundant answer in the subset) and completeness (each answer
is redundant to an answer of the subset). We proposed a way to construct all
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non-redundant and complete subsets of answers using a redundancy graph. We
introduced the notion of smart answer and gave an algorithm that computes a
set of smart answers based on a vertex neighborhood distance.

Answer redundancy arises because of open world assumption and undefined
objects (generic concepts). A deeper redundancy still exists, that is not related
to the formalized world (the KB), but rather to the “real world” (described by
the KB). For example, it is possible that non-redundant answers “a big cat” and
“a white cat” refer to a single cat of the “real world”, which is big and white.
The study of this new kind of redundancy can provide a foundation for using
aggregation operators (e.g. number of results to a query) in graph based KB
query languages.
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Abstract. ISO Common Logic (CL, ISO/IEC 24707:2007) offers the
Semantic Web (SW) a new and powerful dimension in achieving the ef-
fective discovery, automation, integration, and reuse across applications,
data and knowledge. The paper shows how it is possible to explore such
interoperability through small scale exemplar projects. As Conceptual
Graphs (CG) is a key technology in CL, we focused on the Amine CG
software and for the SW we focused on the Protégé OWL software, ex-
ploring the possible mappings between ontologies captured in OWL and
in Amine. Through this practical exercise the dimensions and extent
of the desired interoperability could be demonstrated. This small but
significant experiment provided a practical insight into how CG Tools
can actually interoperate towards achieving the wider goal of Ontology
interoperability between CL and the SW.

1 Introduction and Motivation

At the Panel Session during the Conceptual Structures Tools Interoperability
Workshop (CS-TIW) at ICCS 2008 (www.inra.fr/iccs08/workshops) one of us
(Polovina) expressed concern over the ongoing poor progress of Conceptual
Graphs (CG) software tools’ ability to interoperate with one another. It was
shown how interoperability could be progressed in a practical way through small-
scale exemplar projects such as an Ontology Importer for Amine [1]. One of the
key ensuing comments that if we wanted interoperability was for individuals sim-
ply to do it for themselves. Also arising from the session was how CG tools could
interoperate with the Semantic Web (SW), reflecting the desires and develop-
ments towards this goal [3,8]. Thus we had a spectrum from exploring interoper-
ability that ranged from a being a ‘cottage industry’ to globally interoperating
CG tools with the Web itself.

In this larger view, CG is a key technology in the ISO Common Logic (CL)
standard (ISO/IEC 24707:2007)[4]. ISO CL propels ‘non-SW’ technologies like
CG (and their tools) from being disparate cottage industries into the global
arena of the SW. This arises from the fact that standards play a key part in
the adoption of any technology however promising that technology is. Standards
diminish the risk of being locked into a non-interoperable technology. Interop-
erability across standards offers any technology the most appropriate standard

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 247–256, 2009.
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for it to belong to whilst allowing it to be used with technologies in other stan-
dards according to their individual strengths. ISO CL accordingly offers the SW
a new and powerful dimension in achieving its aims of the effective discovery,
automation, integration, and reuse across applications, data and knowledge. In-
teroperating W3C’s SW recommendations with ISO CL offers the most lucrative
route in best realising these aims.

The ‘challenge’ of ‘doing it ourselves’ may nonetheless continue to offer a
worthwhile route in this larger endeavour. Given the previous experience of the
Amine Ontology Importer project referred to earlier, and in taking up this re-
mark, we present a further small-scale exemplar practical project. Namely we
investigated how an ontology produced in an emergent ISO CL software tool
can interoperate with a SW one through interoperating CG’s Amine software
(amine-platform.sourceforge.net) with the SW’s Protégé OWL (Web Ontology
Language) software (protege.stanford.edu).

2 CG and OWL

CG and OWL provide various layers of functionality for supporting ontologies.
CG are a way of structuring knowledge in a form readable by both humans
and computers. CG can be read in a graphical or linear manner [9]. CG are
constructed from Concepts, Relations and Arcs. Concepts consist of a type name
within a rectangle, they may also have a referent which refers to an individual
or instance of that type. Relations are shown as the relation type name within
a circle or ellipsis and refer to the relationship between the two concept types.
Arcs are shown as arrows between the concepts and the relations, the direction
of the arrow dictates which way the formal logic should be read. If the arrow is
directed towards the relation then the relationship will generally be ‘has a’, if
the arrow is directed away from the relation then the relationship will generally
be ‘which is/who is/is a’.

Thus [Concept-1] -> (Relation) -> [Concept-2] states that “Concept-1
has a Relation which is a Concept-2”. [Cut] -> (Inst) -> [Knife] denotes
that “Cut has an Inst(rument) which is Knife”. (In CG is generally easier to start
the description with the relation, so for this example we would state that “The
Instrument of Cut is a Knife”.) An introduction to CG provides a description in
more detail including the use of referents [6].

In CG, an ontology is a hierarchy of Concept Types and Relations with Uni-
versal at the topmost super-type of all types and Absurd at the bottommost
subtype of all types; as such an ontology denotes a ‘catalogue of modes of exis-
tence’ [9], and the purpose of an ontology is to model knowledge in a formally
logical structure so that facts can be derived from it.

OWL is a SW technology (www.w3.org/TR/owl-features/) that uses
Web technologies, such as XML and Uniform Resource Identifiers (URI,
www.ietf.org/rfc/rfc2396.txt) which uniquely identify ontologies and elements
within ontologies across the Web. The OWL language is based on the SW’s
XML/RDF Schema (www.w3.org/RDF). OWL is a high level mark-up language
that can easily read by humans as well as computers in its raw form.
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2.1 The Amine Suite

The Amine CG platform provides an entire suite of applications aimed at creat-
ing complex intelligent systems. Amine ontologies allow the use of CG in their
structure both as ‘Definitions’ and ‘Canons’. The difference between a Canon and
a Definition is essentially that the former describes a good use of a CG whilst the
latter is a definition of a given Concept or a Relation, and examples distinguish-
ing the two can be found (e.g. www.huminf.aau.dk/cg/Module III/1152.html).
Canons and Definitions provide an invaluable and powerful basis to structure
a model of knowledge based on the CG ontology format described above. Each
of these nodes can contain a Canon or a Definition in the form of a CG which
relates to other nodes in the structure to form the inherent conceptual links
which the ontology carries. The Amine ontologies are stored as XML files, and it
is through parsing between Amine’s Ontology XML format and Protégé OWL’s
XML format that interoperability across the two ontology formats is explored.

2.2 Protégé OWL

Protégé OWL is a platform which enables creation and manipulation of ontolo-
gies in the W3C’s OWL format. This platform provides an intuitive interface
enabling a graphical representation of an OWL ontology. It may include de-
scriptions of classes, properties and their instances that are used to build the
model of knowledge used to reason facts. There are three subsets of the OWL
language: OWL lite, OWL DL and OWL full. OWL DL was judged to be the
most appropriate level by which to investigate interoperability across the two
ontology formats as it supports Description Logic (The ‘DL’ in OWL DL), given
the previous correspondence between CG and DL [2]. In passing, OWL uses
URI to identify objects it allows inter ontology transfer of data over the Web,
a simple functionality that does not exist in the Amine platform at present but
could easily be implemented.

3 Mapping between Amine Ontology and Protégé OWL

We based our approach on JXML2OWL, a project using a Java XML DOM
parsing approach to migrate data from a standard XML data structure to the
OWL Web Ontology Language. However we used “LINQ To XML” parsing in
VB.NET to conduct the mappings [5,7]. This choice capitalised on the particular
experience that one of us had (Cooke). We accordingly explored the pathways
between a Protégé OWL and Amine ontology, creating it in one of them and
testing the parsed ontology in the other. Our findings were as follows.

3.1 Amine Concepts to OWL Classes

Amine Concept Types. In Amine, concept types represent a type of a con-
cept. The concept types build up a hierarchy of concepts in Amine through their
children and fathers. For example, the following XML describes the concept type
‘City’, and its father (Universal):
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OWL Classes. To construct the same hierarchy, OWL uses Classes, and the
subClassOf construct to define the Super-Class (or in Amine terms, the ‘father’).
For example, the following XML describes the classes Universal and City and
the hierarchy between them via the subClassOf construct:

Analysis. Concept types in Amine can be mapped across to OWL easily as
Classes, in addition the structure of the Concept Types can be translated using
OWL’s (or to be specific, RDFs) subClassOf feature. Using this simple map-
ping, the Amine ontology type hierarchy can be translated into an OWL file
and still maintain its Sub-Type/Super-Type structure, this file can then be
modified or expanded using the Protégé OWL Suite. This is achieved by pars-
ing the Amine XML and finding all of the <Type>.<Key> nodes. Then within
each node find all of the <Fathers>.<Father>.<Key> nodes. If there are no
<Fathers>.<Father>.<Key> nodes present in a <Type> node then there is no
subClassOf construct in the OWL XML, illustrated by Figure 1.

Fig. 1. Amine Concept to OWL Classes

3.2 Amine Relation Types to OWL Properties

Amine Relation Types. In Conceptual Graph theory a relation type is a type
of relation which can contain a CG. Amine defines a Relation Type as a con-
ceptual structure which is always a subtype of the special ‘Relational Root’. In
line with CG theory, Amine allows a relational type to have a CG. For example,
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the following XML is direct output from Amine and shows the definition of the
Relation Type ‘Agnt’ and that it’s Super-Type is ‘Relation’:

OWL Properties. To construct the same hierarchy, OWL uses Properties, and
the subPropertyOf construct to define the Super-Class (or in Amine terms, the
“father”). For example, the following XML describes the Properties ‘Relation’
and ‘Agnt’ and the hierarchy between them via the subPropertyOf construct:

Analysis. An Amine ontology can include conceptual Relation Types, integrat-
ing a relational type hierarchy with the Concept Type hierarchy to capture the
relations between the concept types [9]. These can be mapped to OWL proper-
ties and using RDF’s subPropertyOf feature, enabling the Sub-Type/Super-type
structure of the type hierarchy to be maintained. These similarities lead us to
believe that there is a pathway to convert Amine Relation Types to OWL Prop-
erties through 2 stages:

1. Parse the XML to find the <RelationRoot> node and its value, then create
a OWL property with no domain or range as the root property.

2. Parse the XML and find all of the <RelationType>.<Key> nodes (except for
the Relation Root) then search within each of the <RelationType> nodes
(except for the Relation Root) for <Fathers>.<Father>.<Key> nodes then
writing the OWL ObjectProperty and subPropertyOf.

Figure 2 provides an example.

Fig. 2. Amine Relation Types to OWL Properties
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3.3 Amine Individuals to OWL Individuals

Amine Individuals. In Amine, an individual is a specific member of a group.
For example, the following XML describes the Individual ’John’ and that he is
a member of the type ‘Person’:

OWL Individuals. To construct the same hierarchy OWL uses the coincidently
named Individuals, the definition of OWL Individuals is simpler than Classes and
Properties. For example:

Analysis. In an Amine ontology an individual is an instance of a concept type,
OWL also has individuals which are defined as instances of classes. Following our
mappings thus far this is a natural conversion. First we must parse the XML and
find all of the <Individual> nodes, for each node write the <Individual>.<key>
value as the Individual’s name then Write the <Individual>.<Fathers>.
<Father>.<key> value as the name of the class this individual belongs to.
Figure 3 provides an example.

Fig. 3. Amine Individuals to OWL Individuals

3.4 Amine CG to OWL Mapping

So far we have proposed pathways/mappings to convert between an Amine on-
tology and Protégé OWL. However we noted that these mappings do not take
advantage of the expressiveness of CG and their use within Amine. Therefore
we lay out a method for translating CG in an Amine ontology to an appropriate
structure within an OWL ontology.

In an Amine ontology Concept Types and Relation Types have the capability
to contain both definitions and canons in the form of CG; these CG connect the
nodes together and define the relationships between them. Here a parallel can
be drawn with properties of OWL.

Figure 4 tabulates the mappings.
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Fig. 4. Amine-OWL mappings

4 Binary Relations vs. n-adic Relations

Considering we have a larger more complex CG with many arcs we would break
them up into smaller, binary CG and model them as OWL properties one by
one. With the nature of the n-adic relations of CG and the Binary relations of
OWL it may not seem as simple for these two technologies to interoperate as this
paper implies. However using the pathways identified in this paper the complex
many arced CG are broken down into binary OWL Properties.

4.1 The n-adic Dimension

OWL properties along with their domain and range can be used to express a
dyadic relationship between individuals. However as CG may be n-adic we need
to employ Class Conditions in OWL in order lay out the logic as it appears in
CG. Using necessary asserted conditions we can map individuals, properties and
classes together and translate some of the model of knowledge contained within
the Amine ontology.

In order to achieve this we must first programmatically set the Domain and
Range of all of the Properties. This can only be done if the property (or in
Amine, the Relation) is used somewhere in the ontology. For example if we
had in a Amine ontology with the relation ‘Agnt’ but this relation was never
used in a CG, the computer would have no way to know what concepts it ex-
ists to relate. For this reason we will assume that all of the Relation types
in the Amine ontology we are converting to OWL are referenced by a CG
somewhere.
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Let us take a CG from the previous example: [Go] -> (Inst) -> [Bus] This
CG is the Definition of the ‘Go’ concept in an Amine ontology, from this CG we
must get the Domain and Range for the “Inst” Property.

Domain. It is logical that the domain will be a Super-Type of the ‘Go’ Concept
Type, however there could be n-amount of Super-Types for the Concept Type
in question, its direct Super-Type could be ‘Action’, should this be the domain?,
the Super-Type of ‘Action’ could be ‘Movement’, should this be the domain? The
computer has no way of knowing what the correct Domain for a given Concept
Type should be with reference to creating an OWL Property, it is for this reason
that we have decided to use the direct Super-Type as it cannot be incorrect and
will be valid for other uses of the Concept Type. For example now that we have
established that the Domain of the property ‘Inst’ is ‘Action’ this domain will
still be valid when used in a CG like this: [Return] -> (Inst) -> [Bus] as
the Super-Type of ‘Return’ is also ‘Action’.

Range. The same can be said of the Range of the Property ‘Inst’ as if we use
the Super-Type of ‘Bus’ which is ‘Vehicle’, the property would still be valid for
a CG like this [Return] -> (Inst) -> [Car]. However this will cause an is-
sue if we encounter a CG like this: [Cut] -> (Inst) -> [Knife] as ‘Knife’ is
not a Sub-Type of ‘Vehicle’. It is for this reason that when the parser encoun-
ters a scenario like this the Domain or Range (whichever caused the error) will
be ‘pushed up’ from its existing hierarchical level to a level which will satisfy
both of the CG. For example if the above CG is encountered and causes a con-
flict, the Range will be changed from ‘Vehicle’ to a concept type (or in OWL
Class) which is a Super-Type of ‘Car’, ‘Bus’ and ‘Knife’, in this case it would
be ‘Entity’.

4.2 Class Restrictions

Now that we have established a method of getting the Domain and Range of the
for the OWL properties we can begin asserting conditions on the Classes based
on CG from the Amine Ontology.

To continue with our simple example: [Go] -> (Inst) -> [Bus] In order
to translate this knowledge ’The instrument of Go is Bus’ we need to use a
restriction on the ‘Go’ Class in the OWL ontology, this is because this statement
is changing the structure of the ‘Go’ Class. Programmatically this is decided by
which ever concept in the CG is logically read first.

When the parser reaches the point of asserting Class Conditions and it en-
counters a CG it will take the first logical concept, in this case ‘Go’ and add
an OWL Restriction. The onProperty attribute will set the property which re-
stricts the Class, in this case the ‘Inst’ Property. As the second relation in this
CG (‘Bus’) is a Concept and not an Individual, the construct someValuesFrom
is used to allow any Sub-Type of ‘Bus’ to be accepted as valid.

Figure 5 illustrates.
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Fig. 5. Class restrictions

5 Levels of Conceptual Interoperability

We informally assessed the mappings according to the Levels of Conceptual In-
teroperability Model (LCIM) [10,11]. We were pleased to detect that even within
this small-scale project LCIM level 3 (the semantic level) could be achieved, and
elements of level 4 (the pragmatic/dynamical level) may be present. In our view
Level 5 (the conceptual level, a common view of the world is established i.e.
a way to formalize the knowledge about a given domain) would not presently
be attained. For this we would turn to the larger-scale CL-SW interoperability
projects alluded to towards the beginning of this paper. But considering the
ambitious nature of such a small project, “3 1

2 out of 5 isn’t bad”.

6 Concluding Remarks

Through this practical exercise we have managed to demonstrate the actual
dimensions and extent of useful interoperability. Whilst originally taken in good
humour, ‘doing it yourself’ can nonetheless provide useful results and a context
and direction for larger scale projects. The success of our small ‘cottage industry’
project demonstrates that work in the interoperability arena is not as impossible
a task as it may seem. Ours indeed was a small but significant experiment
that provided a practical insight into how CG Tools can actually interoperate
towards achieving the wider goal of Ontology interoperability between CL and
the SW.
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Abstract. This paper discusses the use of relation algebra operations on formal
contexts. These operations are a generalisation of some of the context operations
that are described in the standard FCA textbook (Ganter & Wille, 1999). This
paper extends previous research in this area with respect to applications and im-
plementations. It also describes a software tool (FcaFlint) which in combination
with FcaStone facilitates the application of relation algebra operations to contexts
stored in many formats.

1 Introduction

Relation algebra (RA) operations provide a generalisation of some of the context op-
erations that are described in the standard Formal Concept Analysis (FCA) textbook
(Ganter & Wille, 1999). Using relation algebra is of interest because it provides an
alternative to SQL-based conceptual modelling. Currently, some FCA software tools
allow users to perform a limited number of context operations, for example, generat-
ing the dual context which switches objects and attributes. But the complete set of RA
operations did not use to be available. Furthermore, software exists1 which allows to
extract formal contexts from relational databases via SQL queries. But FCA users who
are not relational database experts may find it difficult to translate their natural language
queries into SQL. In many applications, users therefore have to manually edit their for-
mal contexts until they have the desired format and FCA visualisations can be applied.
There is software for RA operations2, but this is not designed for FCA and cannot eas-
ily be used for formal contexts. As far as we know up to now there has not been an
extensive analysis of RA operations on FCA contexts and there has not been a software
tool that implements RA operations systematically. This situation is changed by the new
FcaFlint software3 which provides an interface for performing RA operations directly
on formal contexts stored in a variety of formats.

This paper starts with an introduction to relation algebra (Section 2). It then con-
tinues with an exploration of using RA for formal contexts (Section 3) and context
schemata (Section 4). Section 5 considers RA for the modelling of lexical databases.
Previously, the use of relation algebra for the modelling of lexical databases has been
described (Priss & Old, 2006). Because, lexical databases are usually quite large, it

1 Tupleware available at http://tockit.sourceforge.net/
2 http://www.informatik.uni-kiel.de/˜progsys/relview.shtml
3 FcaFlint will be bundled with the next edition of FcaStone available at
http://fcastone.sourceforge.net/

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 257–269, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://tockit.sourceforge.net/
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is not practical to generate the lattice of a formal context that contains all of the data
of the lexical database. Thus mechanisms must be provided that allow for the extrac-
tion of meaningful smaller contexts. Furthermore over time, users of lexical databases
may want to extract different types of formal contexts, thus the extraction of formal
contexts must be achieved in a fairly flexible manner. Relation algebra provides a use-
ful framework for modelling the context extraction for such databases. Results pre-
sented in previous research (Priss & Old, 2006) are extended and elaborated in this
paper.

The paper continues (in Section 6) with a discussion of the FcaFlint software tool
which in combination with FcaStone facilitates the application of RA operations to
contexts stored in a variety of formats. FcaFlint allows to enter RA queries in a tex-
tual format. The implementation of FcaFlint is based on the description of a theoretical
means for establishing an RA for formal contexts by Priss (2006). But the RA opera-
tions described in that paper are more theoretically than practically useful because they
are inefficient (and to some degree incomplete). For practical implementations some
modifications are needed as discussed in Section 7.

2 Relation Algebra

Relation algebra was invented and developed by Peirce, Tarski and others. Priss (2006)
discusses the modelling of FCA with RA and provides some background and references
which shall not be repeated in this paper. An introduction to using RA with FCA, which
contains detailed examples of the operations is available elsewhere4. RA can serve as
an alternative to the more common modelling of FCA operations with Peirce Algebraic
Logic (PAL) or Relational Algebra5 (RLA). The difference between RA and RLA is
that RA operates on binary relations while RLA operates on n-ary relations. Both RA
and RLA can be used for the modelling of many-valued contexts or power context
families. Since concept lattices correspond to binary relations, at the visualisation stage
a binary relation must be extracted from the many-valued data, for example, by using the
process of conceptual scaling (Ganter & Wille, 1999). The difference is that with RLA
the binary context is extracted at the end after the context operations have been applied
to n-ary relations, whereas with RA (with the addition of a Fork algebraic operation)
n-ary relations are encoded in a binary format from the start. The details of this process
are described by Priss (2006). In any case, both RA and RLA are relevant for FCA
and ideally there should be FCA software for RA and RLA operations. This paper
focuses on RA operations, which can be seen as a generalisation of some of the context
operations discussed by Ganter & Wille (1999).

A detailed formal notation of FCA with RA is quite complex because all operations
need to consider the sets of formal objects, attributes and the matrices of the contexts.
In this paper, we simplify the notation and focus mostly on the Boolean matrices repre-
senting the binary relations of the contexts. It is assumed that the operations are applied

4 An “Introduction to using Relation Algebra with FCA” can be downloaded from:
http://www.upriss.org.uk/fca/relalg.html

5 The similarity in the names of Relation versus Relational Algebra is unfortunate, but these are
the names that are established in the literature. RLA is Codd’s algebra for relational databases.
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1*0 + 1*1 + 0*0 = 1
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Fig. 1. Binary relational composition, I ◦ J

sensibly with respect to the sets of formal objects and attributes. For example, in the
case of union and intersection, the matrices need to have the same dimensions.

Definition 1. A matrix-RA is an algebra (R,∪,− , one, ◦,d , dia) where R is a set of
square Boolean matrices of the same size; one is a matrix containing all 1s; dia is a
matrix, which has 1s on the diagonal and 0s otherwise; ∪,− , ◦,d are the usual Boolean

matrix operations. ∩ and nul are defined as I ∩ J := I ∪ J and nul := one.

Boolean (or binary) matrices are elaborated by Kim (1982). Boolean matrix operations
are exactly like normal matrix operations except that the matrices contain only 0s and
1s and use Boolean OR, AND, and NOT for the componential operations. For example,
Fig. 1 illustrates relational composition. The operations ⊆ and = are as usual: I ⊆
J :⇐⇒ I ∩ J = I and I = J :⇐⇒ I ⊆ J and J ⊆ I . It can be shown that a matrix-
RA is an RA and fulfills all the axioms of an RA, such as (R,∪,∩,− , nul, one) is a
Boolean algebra; ◦ is associative and distributive with ∪; dia is a neutral element for ◦
(but unique inverse elements need not exist); (Id)d = I; (I∪J)d = Id∪Jd; (I ◦J)d =
Jd ◦ Id; and so on (cf. Priss, 2006). RA has the expressive power of First Order Logic
(FOL) with three variables. For finite matrices a transitive closure of composition can
be defined: Itrs := I ∪ (I ◦ I) ∪ (I ◦ I ◦ I) ∪ .... But this is not an RA operation and
not FOL.

Boolean matrices have many interpretations. If they are interpreted as binary rela-
tions, they can be used to check properties. A binary relation is:

– symmetric if I = Id,
– reflexive if dia ⊆ I ,
– transitive if I ◦ I ⊆ I ,
– antisymmetric if I ∩ Id ⊆ dia,
– a partial ordering if I ∩ Id = dia and I ◦ I = I ,
– surjective if dia ⊆ Id ◦ I (or I has at least one 1 per column),
– injective if I ◦ Id ⊆ dia (or I has at most one 1 per column).

If Boolean matrices are interpreted as the incidence relation of a directed graph, the
transitive closure Itrs shows the reachability for travelling along the graph’s edges. The
transitive closure (I ◦ Id)trs shows the connectedness in an undirected graph. The next
section discusses Boolean matrices interpreted as formal contexts.
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3 Formal Contexts as Boolean Matrices

Ganter & Wille (1999) discuss context constructions and operations, some of which are
RA operations, some are not. In their Definition 30, the complementary context Kc (I
in our notation) and the dual context are RA operations. Ganter & Wille write X and
Ø instead of one and nul, respectively. Ganter & Wille’s apposition and subposition
are non-RA operations, but are frequently used with FCA (see the next section). Ganter
& Wille’s disjoint union is not an RA operation because it involves apposition and
subposition.

As mentioned above, in order for RA formalisms to be meaningful for FCA, matrix
operations should only be applied if the involved contexts have appropriate sets of ob-
jects and attributes. For example in the case of composition, the set of attributes of the
left matrix should correspond to the set of objects of the right matrix. This means that
the sets need to contain the same elements and need to be in the same linear order. In
the rest of this paper, it shall always be assumed that the RA operations are applied sen-
sibly without explicitly mentioning the details about the sets of objects and attributes.
Furthermore, the RA operations are also applied to non-square matrices and it is silently
assumed that the dimensions of the matrices are compatible as needed. The matrix dia
always needs to be square, but nul and one adjust their dimensions to the matrices they
are unioned or intersected with.

An interesting question, which as far as we know has not yet been discussed else-
where, is to investigate the expressiveness of RA with respect to FCA. Because the
number of concepts in a concept lattice tends to be different from the numbers of ob-
jects and attributes, but RA operations do not radically change the matrix dimensions, it
is immediately apparent that it is not possible to generate concept lattices from formal
contexts using RA operations. But, as will be shown below, it is possible to calcu-
late basic FCA facts about the objects and attributes and their ordering using just RA
operations.

This paper does not contain an introduction to FCA (which can be found in Gan-
ter & Wille (1999)). But a few notions shall be mentioned here: for a formal con-
text (G, M, I), the prime operator retrieves intensions of concepts if applied to sets
of objects and extensions of concepts if applied to sets of attributes. For G1 ⊆ G,
G′

1 := {m ∈ M | gIm for all g ∈ G1}. Dually, for M1 ⊆ M , M ′
1 := {g ∈ G |

gIm for all m ∈ M1}. The plus operator uses an EXISTS-quantifier instead of an
ALL-quantifier: G+

1 := {m ∈ M | gIm for one g ∈ G1}. An object concept γg is
the smallest concept to which that object belongs. It is the concept which is labelled
by the object in the usual graphical representation of a concept lattice. An attribute
concept μm is the largest concept to which that attribute belongs. The object order ≤o

of a concept lattice is an order on the set of objects derived from the order among the
object concepts in the concept lattice: g1 ≤o g2 ⇐⇒ γg1 ≤ γg2. The attribute order is
defined analogously.

For a formal context (G, M, I), the following examples indicate what kind of in-
formation can be derived about the conceptual structure by using just RA operations
(described here for the set of objects, but dually for the set of attributes):
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Fig. 2. A formal context (left) and its object order (right), I ◦ Id

1. Sets of objects that share at least one attribute with each other: (G, G, I ◦ Id). This
matrix is symmetric: (I ◦ Id)d = (Id)d ◦ Id = I ◦ Id. Each row or column contains
g++. It represents applying the plus operator twice.

2. An equivalence relation on the objects based on the horizontal decomposition of
the lattice (see Priss & Old, 2006): (G, G, (I ◦ Id)trs).

3. Objects which have no attributes in common: (G, G, I ◦ Id).
4. The object order: (G, G, I ◦ Id). Each column in this context shows the extension

of the object concept of that object: g′′. It represents applying the prime operator
twice. The lattice of this context displays the object order. Fig. 2 shows an example.

Thus the RA operations are able to extract some information about the relationships
among the objects (and attributes, respectively) but not the full lattice. Also, although
the arrow relations (Ganter & Wille, 1999) are representable within a formal context, it
is unlikely that these can be generated with RA operations because two different formal
contexts with the same object orders can have different arrow relations. Thus, if RA
can only extract the object and attribute orders, it is not sufficient to calculate the arrow
relations.

4 Examples of Context Schemata

This section and the next one show some more examples of how RA operations can
be used for FCA applications. Apposition and subposition are not RA operations, but
they can be used to iteratively build a context from smaller contexts. A context schema
consists of four (or nine etc) contexts built via apposition and subposition, such as the
examples in Table 1 and Fig. 3. Quite often some of the contexts in a context schema
are functionally dependent on other ones in the same schema. For example, in schemata
5 and 6 in Table 1 the context in the lower right corner is derived by composition. In
general, the functions used for building context schemata are not restricted to RA oper-
ations. If the functions used for building a context schema are solely RA operations and
nul, one, dia, these are called RA context schemata. It might be an interesting research
question, to examine the algebraic structure that is formed by RA context schemata.

Table 1 shows examples of RA context schemata. The simplest examples (1-3) are
listed in Ganter & Wille (1999) and yield the horizontal and vertical sums and the
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Table 1. RA context schemata

Context schema Effect on the lattices

1) nul I
J nul

Horizontal sum (Ganter & Wille, 1999).

2) one I
J nul

Vertical sum (Ganter & Wille, 1999).

3) one I
J one

Direct product (Ganter & Wille, 1999).

4) dia I
nul dia

All object and attribute concepts are turned into atoms/co-atoms.

5) dia J
I I ◦ J

Composition of two lattices.

6) dia Id

I I ◦ Id Vertical gluing of a lattice and its dual.

direct product of concept lattices. Many other constructions of RA and non-RA context
schemata are known (e.g. Ganter & Wille, Section 1.4).

The following examples demonstrate how classification can be represented with con-
text schemata and RA operations. In Fig. 3, one context (J) is a classification on the
attributes of another context (I). The relational composition I ◦ J means that the ob-
jects of the first context are classified with the attributes of the second context. This is
an example of a context schema of type 5 from Table 1. In this case, the first context
I contains types of living beings as objects and food sources as attributes. The sec-
ond context J contains a classification of the food sources into food types. Using the
dia matrix in the upper left corner has the effect that both lattices are glued together
along the object-attribute concepts of the shared set. The lattice of J can be embedded
join-preservingly into the combined lattice, which retains the attribute order of J . The
lattice of I is meet-preservingly mapped and retains the object order of I . In the lattice
diagram in Fig. 3, the concepts of I (except top and bottom) can be identified by their
thicker node-borders. The concepts of J have been shaded in grey.

Wille proposed a different modelling of the relational composition6 of two contexts,
which represents a classification. Instead of the dia matrix, a context is used that repre-
sents the union of the object/attribute orders. Translated into RA notation, this context

is (Id ◦ I)d ∪ J ◦ Jd J
I I ◦ J

. Fig. 4 shows this lattice and a dual/invers construction, which

was not mentioned by Wille. The difference between the left-hand side lattice in Fig. 4
and the lattice in Fig. 3 is that Fig. 4 maintains the object and attribute orders of I and
J . This usually means that the lattice has fewer concepts.

The dual construction on the right-hand side assumes that the relational composi-
tion uses an implicit ALL-quantifier. In this case, an object of context I only belongs
to a class (i.e. an attribute in J), if all of its attributes in I are in that class. In this
case, neither the object concepts, nor the attribute concepts can be mapped using order-
preserving mappings. The object and attribute concepts are still highlighted in the lattice
diagram as before. Together the lattices in Fig. 4 show the differences in the interpreta-
tions of the classifications. For example, although humans eat some instances of each of

6 Rudolf Wille suggested this in a seminar presentation in 1995. I am not sure if this has ever
been published.
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meat × × ×
French fries × × × ×
milk × × ×
mice × × ×
gras × ×
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eagle × × × ×
cow × ×

human
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gras
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Fig. 3. An example of a context schema for relational composition: dia J
I I ◦ J

the different food types (left lattice), humans eat all instances of fast food and vegetarian
food in this context, but not all instances of meat, plant-based and animal products (right
lattice).

The relationship between the EXISTS- and the ALL-quantifier is also explored in
the next example, but in a single lattice. Fig. 5 shows another example of classification.
In this case, a formal context (C, C, I) represents a classification (bird, mammal, ver-
tebrate and songbird). Another context contains some instances (G, C, J) of that clas-
sification (penguin, sparrow, kiwi and bat). The instances have properties (egg-laying,
wings, flightless, flippers and nocturnal) represented by a third context (G, M, K). The
properties are generalised to the classes using an ALL-quantifier. A class has a property

if all of its instances have that property (C, M, (J ◦ I)d ◦ K). The resulting concept
lattice in Fig. 5 shows the wider and narrow senses of each class. This is indicated by
the dashed lines for the class BIRD. The concepts under the attribute concept of a class
name show the wider sense of the class which contains any instances that have some
of the class attributes. The concepts under the object concept of a class name show the
narrower sense of the class which contains only instances which have properties com-
mon to all instances in the class. The prototypical instances of each class are given by

(J ◦ I)d; in this case: the prototypical bird and songbird is sparrow; the prototypical
mammal is bat. It is not claimed that this construction is novel (because it is similar to
common FCA-models of Fuzzy and Rough Set Theory), but it is demonstrated how this
can easily be expressed with RA operations.



264 U. Priss

mice

ANIMAL PRODUCT

milk

meat

vegetarian

PLANT−BASED
VEGETARIAN FOOD

French fries

FAST FOOD

gras

gras

cow

cathuman

milk

MEAT PRODUCT

mice

meatFrench fries eagle

gras

ANIMAL PRODUCT

French fries

meat milk

VEGETARIAN FOOD

mice

humanmilkmeat
mice
cat

MEAT PRODUCT FAST FOOD

vegetarian

French fries

PLANT−BASED

gras

cow

eagle

Fig. 4. Left-hand side: I
d ◦ I

d

∪ J ◦ Jd J
I I ◦ J

. Right-hand side:
Id ◦ I ∩ J ◦ Jd J

I I ◦ J

B
IR

D
M

A
M

M
A

L
V

E
R

T
E

B
R

A
T

E
S

O
N

G
B

IR
D

eg
g

la
yi

ng
w

in
gs

fl
ig

ht
le

ss
fl

ip
pe

rs
no

ct
ur

na
l

bird × × × ×
mammal × × × ×
vertebrate ×
songbird × × × × ×
penguin × × × × ×
sparrow × × × × ×
kiwi × × × × × ×
bat × × × ×

flippers

flightless

SONGBIRD MAMMAL

nocturnal

bird

wings

VERTEBRATE

vertebrate

penguin

egg laying
BIRD

songbird
sparrow

kiwi mammal
bat

Fig. 5. The wider and narrower senses of a class, I J ◦ I
d ◦ K

J K



Relation Algebra Operations on Formal Contexts 265

In this example in Fig. 5, if each class has at least one instance that is distinguished

from all other instances, then I is the attribute order of J , i.e. I = (Jd ◦ J)d. Turning
this argument around, if the set of attributes in a formal context can be partitioned into
a set of class C of type indicators and a set M of other attributes (i.e., the context is of
the form (G, C ∪M, J |K)), then the narrower and wider senses can be calculated for

these classes using (Jd ◦ J)d Jd ◦ J ◦ Jd ◦ K
J K

.

5 RA for Modelling of Neighbourhood Lattices in Lexical
Databases

Lexical databases are usually too large to be visualised as a single concept lattice. For
example, a lexical database, such as WordNet or Roget’s Thesaurus, contains more than
100,000 words. Therefore techniques are required that allow to extract smaller formal
contexts from the lexical database. Priss & Old (2006) discuss the use of neighbour-
hood lattices, which use the plus operator to extract a neighbourhood around a word
in Roget’s Thesaurus. Starting with one word (or small set of words), all senses of this
word are extracted, and then all other words that have the same senses. Priss & Old
(2006) show how this process can be modelled with RA operations.

Simple neighbourhood lattices are not always the best way to represent the data be-
cause they can be too broad and include too many unrelated words. Simple neighbour-
hood lattices tend to include homographs which are words that have the same spelling,
but are otherwise unrelated, such as “lead” as a verb and as a metal. A mechanism for
excluding homographs is to use restricted neighbourhood lattices. These were invented
by Old and shown by Priss & Old (2008) to be the most useful types of concept lattices
for Roget’s Thesaurus compared to other methods of reducing the complexity of con-
cept lattices. Independently, a lattice-based model of Roget’s Thesaurus was invented
in the 1950’s by Margaret Masterman and shown to be very similar to restricted neigh-
bourhood lattices by Priss & Old (2009). Masterman’s work precedes FCA and does not
use formal contexts or concept lattices. Her algorithms are not mathematically formu-
lated, but described semi-formally and with examples. Thus, the relationship between
her work and FCA is not entirely obvious without careful analysis and was only recently
discovered (Priss & Old, 2009). Nevertheless, the fact that Old and Masterman indepen-
dently and starting from different theoretical backgrounds discover a similar method for
modelling Roget’s Thesaurus, seems to indicate that this method is appropriate for its
domain.

Because Priss & Old (2006) describe neighbourhood lattices with RA, but not re-
stricted ones, the RA modelling of restricted neighbourhood lattices is added here. For
a context (G, M, I), neighbourhoods of objects are computed as (I ◦ Id) ◦ (I ◦ Id) ◦ ...,
and for attributes as (Id ◦ I) ◦ (Id ◦ I) ◦ .... Each additional (I ◦ Id) corresponds to
applying the plus operator two more times. The resulting matrices are symmetric. Thus
the rows or columns of these matrices show which objects (or attributes) belong to the
same neighbourhood at that stage. The plus operator is not a closure operator, but the
transitive closure can be formed. The transitive closures (I ◦ Id)trs and (Id ◦ I)trs

show the neighbourhood closures for the sets of objects and attributes, respectively. If
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all objects are connected to all attributes via transitive closure then both matrices are
one. Otherwise, the matrices show equivalence relations on the objects and attributes.
Priss & Old (2006) show that (I ◦ Id)trs ◦ I = I ◦ (Id ◦ I)trs. This is a matrix which
contains the neighbourhood closures of the objects as columns and of the attributes
as rows.

A restricted neighbourhood context of degree n means that instead of “at least one”
as for the plus operator, an object must have at least n attributes: G

(I,≥n)
1 := {m ∈

M | gIm for at least n elements g ∈ G1}. For attributes: M
(I,≥n)
1 := {g ∈ G |

gIm for at least n elements m ∈ M1}. We use the notation ◦≥n to express that at least
n elements need to be in common in the composition. Thus, I ◦≥2 Id shows objects
that have at least two attributes in common. It is not possible to model this with just RA
operations because this is equivalent to an FOL expression with more than 3 variables:
∃a,b,x,y : (a, b), (a, x), (b, x), (a, y), (b, y), x �= y. It is possible to express the condition
that each row or column must have at least two 1s using RA: ((I ◦ dia ◦ Id) ∩ dia) ◦ I
selects rows which have at least two 1s. (((I ◦ dia ◦ Id) ∩ dia) ◦ I) ∩ (I ◦ ((Id ◦ dia ◦
I) ∩ dia)) = (I ◦ dia ◦ Id) ◦ I ◦ (Id ◦ dia ◦ I) keeps only those 1s from the matrix
I which belong to rows with at least two 1s and columns with at least two 1s. This is
the form of a restricted neighbourhood context which has been shown to be useful for
Roget’s Thesaurus (Priss & Old, 2008).

6 FcaFlint

The FcaFlint software, which will be bundled with the next edition of FcaStone, imple-
ments all of the RA operations discussed in this paper. The operations are applied to a
context stored in an input file (e.g. input.cxt) and the result is saved in a new file (e.g.
output.cxt). The default format of the contexts is the Burmeister format, but in combi-
nation with FcaStone, any context format can be used that is supported by FcaStone.
The RA operations are entered as functions. For example, I ◦ Id is executed from the
command-line as:

fcaflint ’compos(invers(input.cxt),dual(input.cxt))’ output.cxt

The matrices one, dia, nul, dia are entered as “<ONE>”,“<DIA>”,“<NUL>”and
“<AID>”. The dimensions of these matrices are automatically determined where pos-
sible. For example, in a union or intersection, one will use the same dimensions as
the matrix it is unioned or intersected with. FcaFlint also provides the non-RA op-
erations apposition, subposition, equality and transitive closure of composition. The
one, dia, nul, dia matrices can be used for apposition and composition with other ma-
trices, but not in combination with each other. This is because in that case, the dimen-
sions of the matrices would be unknown. The ‘equal()’ function determines whether two
matrices are equal. The ‘trans()’ function calculates the transitive closure of a matrix
with respect to composition (◦). The composition function also implements the (non-
RA) operations of requiring at least n values to be shared in the comparison (written as
◦≥n in the previous section).

Because context schemata are used frequently in FCA-based modelling, FcaFlint
should be useful in many applications. FcaFlint has been tested on matrices of sizes
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of up to 50×400. It returns reasonably fast results, with the exception of the transitive
closure function, which should only be used for smaller matrices. It should be stressed
that FcaFlint is not aimed at end users (because using relation algebra requires some
expertise) but is meant as an intermediate representation - as a formal language for
conceptual modelling. In the future, it is intended to produce a graphical interface that
allows users to enter certain natural language queries which are then translated inter-
nally into a relation algebra representation used for further processing.

7 Implementing RA Operations for FCA Contexts

According to Definition 1, square Boolean matrices form an RA, but FCA contexts are
not usually square (i.e. have G = M .) Non-square matrices cannot form an RA because,
for example, union and intersection require the matrices to have the same dimensions.
Furthermore, the nul, one and dia matrices need to change their dimensions depending
on which matrices they are used with. But it can be shown that if RA operations are ap-
plied to non-square matrices of appropriate dimensions then they fulfill the RA axioms.
Thus, non-square Boolean matrices almost form an RA and the RA operations can be
meaningfully used with such matrices.

FcaFlint intends to implement two modes for FCA contexts. In the first mode, only
the matrices of the contexts are considered, not the sets of objects and attributes; and the
RA operations are just matrix operations. FcaFlint only checks whether matrices have
appropriate dimensions. If yes, the operations are executed. Otherwise a warning is
printed. In this mode it is up to the user of FcaFlint to make sure that the RA operations
are actually meaningful with respect to the formal objects and attributes.

The second mode for FcaFlint attempts to implement RA operations which consider
objects and attributes as well as the matrices. Priss (2006) describes context-RAs and
context algebraic structures (CAS) as a means for using RA with FCA. A context-RA
assumes an active domain which is a set of all objects and attributes of all contexts of
an application. Each context is then transformed into a square, |A|-dimensional matrix.
A context-RA is a matrix-RA where each row and column corresponds to an element of
the active domain. This context-RA is only of theoretical interest because it is not prac-
tically useful to create |A|-dimensional matrices. Apart from the size problems, such
matrices would need to be recalculated each time new data is added to an application.

Priss (2006) therefore also describes CAS as a means of implementing RA operations
for FCA contexts in a more efficient manner. For example, in order to calculate the
union of two contexts their sets of objects and attributes are unioned (using a normal
union, not a disjoint union as suggested by Ganter & Wille (1999)). The problem with
this approach is that a CAS does not form an RA and, in fact, if the operations are used
in combination with negation, the CAS operations may yield different results from the
context-RA operations (which is undesirable).

The problem with the CAS operations is that because they enlarge contexts as needed,
rows and columns may need to be added to a context. These rows and columns are usu-
ally filled with 0s, but if a context was previously negated once, they should be filled
with 1s. The idea for FcaFlint is to consider both the inside of a formal context (which
consists of the relation between objects and attributes that is currently defined for the
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context) and the outside of the context (which collects conditions about potential ele-
ments from the active domain that might be added to the context at a later stage). Only
the inside is stored as a matrix. The outside is stored as a set of conditions (e.g., “all 0”,
“all 1”) without having a complete list of which elements belong to the outside. This
is much more efficient than using context-RAs and allows to add new elements to an
active domain over time.

All contexts start out with their outside containing all 0s. If the context is once
negated, the outside contains all 1s. For union and intersection, both inside and outside
conditions contribute to the new inside of the context. It can be shown that the axioms
of a Boolean algebra are fulfilled by union, intersection, negation, one, and nul applied
to formal contexts as defined for CAS and by additionally keeping track of whether the
outside of a context is filled with all 0s or all 1s.

Unfortunately, composition can change the outside of a context into conditions which
are more complicated than “all 1” or “all 0”. Thus, it is still not easy to create an RA
in this manner. But the complexity of these conditions increases slowly. For many ap-
plications, the outside conditions of the contexts will be simple or irrelevant. For now,
the approach that is taken with FcaFlint is to store simple conditions and to stop the
program with a warning if the conditions are getting too complex. A warning would tell
users that they need to manually check the sets of objects and attributes of their formal
contexts and to verify whether the CAS operations that they are attempting to use are
actually meaningful.

8 Conclusion

In summary, this paper presents a discussion of the use of RA operations on formal
contexts. The paper was motivated by the development of the FcaFlint software which
allows to apply RA applications directly to formal contexts stored in a variety of for-
mats. With FcaFlint, RA operations can be used for conceptual modelling in the same
way as RLA operations can be used using the Tupleware software7. But the implemen-
tation of FcaFlint highlighted some problems with previous models of RA/FCA that
needed to be overcome. This paper also provides some insights into the expressivity of
RA for formal contexts and discusses examples in the area of classification and lexical
databases. A more systematic evaluation of RA operations on formal contexts might be
of interest, but this is left for future research.
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Abstract. Datatypes, like numbers or strings, are widely used in Knowl-
edge Representation (e.g. in RDF(S)/OWL or UML languages). The
usual model of simple conceptual graphs does not support datatypes.
Some extensions of conceptual graphs have been proposed for using
datatypes, however these extensions often wander from initial model of
conceptual graphs by introducing for instance procedural relations be-
tween nodes. This paper proposes a datatype extension for the simple
conceptual graph model. Our contribution is threefold. First, we allow
the use of datatypes for typing concept nodes. Second, we define two fam-
ilies of conceptual graphs: factual graphs and query graphs, both close
to initial model. Factual graph is used to represent factual knowledge,
including values of datatypes. Query graph may contain concept nodes
that represent conditional queries on values of datatypes; these condi-
tions are expressed by regular operators on datatypes. Third, we adapt
projection to operate from a query graph to a factual graph.

1 Introduction

The notion of datatypes, like numbers, dates or strings, is widely used in Knowl-
edge Representation, especially in semantic web languages such as RDF/RDFS
[1,2] and OWL [3] or in UML [4], an object oriented modeling language. However,
the model of simple conceptual graphs (SG model), which is a formalization by
Chein & Mugnier [5,6,7] of Sowa’s conceptual graph model [8], does not support
datatypes. The conceptual graphs’ inability to model datatypes and their values
is mainly due to the fact that individual markers are not suitable to represent
values of datatypes and that projection operation is not fitting for operating on
such values, like for querying data. Indeed, to extend SG model it is necessary to
use specific operators to properly operate on values of datatypes, e.g. to answer
the following query: “Who are people over 18 years old?”.

Our contribution is threefold. Firstly, we extend SG model in order to repre-
sent datatypes into the support (i.e. into ontological level of modeled knowledge)
and to represent values of datatypes into conceptual graphs. In other words, we
allow the possibility of a concept node to have a datatype as type. Secondly,
we define two families of conceptual graphs: factual graphs and query graphs. In
both cases, values of datatypes can be represented. While a factual graph repre-
sents known facts of modeled knowledge, a query graph allows the opportunity

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 270–283, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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to represent a data by a set of values - of the same datatype - with special op-
erators, called comparison operators. For example, all the values over 18 can be
represented using the greater-than operator (>). Thirdly, we adapt projection
operation so that it operates from a query graph to a factual graph and it takes
into account values of datatypes.

Some extensions of conceptual graph model (especially SG model) have been
proposed in the literature for using datatypes to type some nodes, such as the
use of procedural relations between nodes in [9] extended in [10]. Our approach
is different in two main points from extension in [10], which it is wandered from
initial SG model. First, a conceptual graph in [10] includes four families of nodes
(concept nodes, relation nodes, operator nodes and data nodes), while we main-
tain the bipartite composition of a conceptual graph. Second, [10] systematically
allows representation of data by a set of values that expresses a given condition,
for instance the existence of a number under than 20. We chose not to allow
conditional values into a conceptual graph that models factual knowledge of a
given modeling. We only allow it into a conceptual graph that models a query,
where such conditions on values are still represented in a bipartite graph. Oth-
erwise, what would be for example the answer to the query “What are people
over 18 years old?” on some knowledge that contains the following information:
“Is There a person whose age is under 20 years old”? Thus, our adaptation of
projection operation is close to initial SG model. To keep interest of projection
we adapt too the definition of normal form of a graph, and we introduce a special
transformation of a factual graph called datatypes specialization form.

This paper is organized as follows. Section 2 presents our extension of the
definition of support in order to represent datatypes and the definition of fac-
tual graphs in order to represent values of datatypes. Section 3 presents query
graphs and a comparison operator set. Section 4 presents an adaptation of pro-
jection operation, an adaptation of normal form and the definition of datatypes
specialization form.

2 Datatype Extension

2.1 Some Notes on Simple Graphs

In this article, we consider the so-called model of simple conceptuals graphs (SGs)
[5,6,7]. To simplify reading, fundamental definitions that constitute SG model
are reported in Appendix (Definitions 10 to 15).

We recall here the main lines of conjunctive types that are used in SG model
and that may be less-known.

In basic conceptual graph model (see in [7]), to express the fact that a concept
node has several types t1, t2, . . . , tn one needs to represent and use a concept type
that is the subtype of all types t1, t2, . . . , tn. Giving in extension all acceptable
types is not conceivable in practice, therefore [6] defines conjunctive types.

The set of conjunctive types, noted T�, is defined in intension by a hierarchy of
primitive concept types (primitive adjective is used to refer "standard" concept
types with SGs). Any subset of incomparable primitive concept types defines a
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conjunctive type (Definition 11). However not all conjunctions of types have a
meaning. Thus unexpected conjunctive type is banned, i.e. the primitive types
of the banned conjunction cannot have a common subtype. If B refers the set
of defined banned types, ↓B denotes the set of all banned types (Definition 12).
Note that a primitive type can be seen as a conjunctive type with one type.
Conjunctive types are provided with a natural partial order, which extends the
one on primitive types (Definition 13): t ≤ s, where t = {t1, . . . , tn} and s =
{s1, . . . , sp}, if for all primitive types sj ∈ s there is a primitive type ti ∈ t such
as ti ≤ sj .

Concerning normal form of a SG, if an individual is represented by a node of
type t = {t1, . . . , tn} and by a node of type t′ = {t′1, . . . , t′p} then the individual is
exactly represented by a node of conjunctive type t∪ t′. For example, a conceptual
graph that has the two following concepts nodes [Student: Mike] and [Professor: Mike]
may express the fact that student Mike is also a professor (e.g. a PhD student who
has a teaching assistant status). Thus, individual Mike is represented, into the con-
ceptual graph in normal form, by the single concept node [Professor,Student: Mike]
that is typed by the conjunctive concept type {Professor,Student}, i.e. by both Pro-
fessor and Student. Note that if a conjunctive type is composed by two comparable
primitive types, only the most specialized type is kept.

2.2 Set of Literals and Extension of Support

Let us recall that in SG model, an individual marker is a reference and only a
reference for identifying a given entity. Thus the set of individual markers is not
suitable to represent values of datatypes. Even if individual markers are usually
written as strings, one of these strings do not have the meanning of “a string”
(as a value of datatype string): they are comparable to URI (in semantic web)
or names of constants. For this reason, we keep unchanged the set of individuals
but we introduce a new set representing literals. This literal set is defined in
intension, unlike individual markers that are given in extension.

Definition 1 (Set of literals). Let Σ be all printable characters (including
blank) of the Unicode standard 1. A literal is a finite sequence, possibly empty,
of characters; the literal formed by characters a, b and c is noted abc. The set of
literals that can be formed from Σ is denoted by Σ∗.

We now extend the definition of support from SG model. The concept type set
is adapted and we introduce a function for typing literals i.e. it associates a
(conjunctive) concept type for each literal.

Definition 2 (Extended support). An extended support is a 7-uplet S =
(TC , B, TR, σ, I, τ, μ), as TC , B, TR, σ, I and τ are defined in Definitions 10,
11 et 12, and where:
1 Unicode specifies a set of characters independent of any coding,
http://www.unicode.org/. The choice of Unicode is only to explicitly desig-
nate a set of characters, and thus to formally define Σ∗.
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– TC is structured as follows: Thing and Literal are the only two direct subtypes
of ", with {Thing,Literal} a banned conjunctive type. Both of these concept
types form the skeleton of every set of primitive concept types (Figure 1).

– I ∩Σ∗ = ∅, with Σ∗ the set of literals (see Definition 1).
– the type t associated by τ with an individual marker m is such as t ≤ Thing.
– μ is a function, called typing literals function, such as μ : l ∈ Σ∗ → t ∈

T� | t ≤ Literal
– # is a generic value, as non-valued value. ∗ and # are not comparable.

Fig. 1. Skeleton of every support

The constraint stipulating that only Thing and Literal are direct subtypes of "
enables to explicitly separate concept types corresponding to datatypes (subtypes
of Literal) from concept types corresponding to classes (subtypes of Thing). These
two sets of concept types are obviously disjoint: the conjunctive concept type
{Thing,Literal} is banned. So for a given modeling, user will be prompted to create
its own concept types, either subtypes of Thing or subtypes of Literal.

The typing literals function is necessary because it is not conceivable in prac-
tice to define by extension all values of a datatype; corresponding datatype(s)
of a value is thus given by intension, contrary to what is done by τ concerning
individual markers. It is important to note that μ is a function of our extented
SG model, but the designer of a given modeling is assigned to define μ according
to this modeling. For instance, a first typing literals function μ1 may associate
literal 42 with conjunctive type {integer,string} and may associate literal foo with
type string, whereas a second typing literals function μ2 (of another modeling)
may associate literal 42 with type integer and literal "foo" with type string.

Example 1. Figure 2 shows an example of extended support. Concept types Per-
son, Professor, Student and Lesson represent some classes. So, they are defined as
subtypes of Thing. Concept types string, real and int, which are subtypes of Literal,

Fig. 2. Example of extended support
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Fig. 3. Example of factual graph, based on extended support in Figure 2

represent some datatypes. Both datatypes and classes may be hierarchically or-
ganized with a kind-of relation, as with SG model. For instance, datatype int is
a kind-of datatype real, Student is a specialization of Person. Some relation types
are given between two classes, like teach between Professor and Lesson, or between
a class and a datatype, like age between Person and real. In addition to the banned
concept type {Thing,Literal}, which is defined into skeleton’s extended support,
other banned concept types are defined here: {Person,Lesson} and {string,real}.

2.3 Factual Graph

A factual graph (FG) represents factual knowledge of a given modeling. It is
based on an extended support that represents ontological knowledge.

Definition 3 (Factual graph). A factual graph F = (C, R, U, lab) based on
an extended support S = (TC , B, TR, σ, I, τ, μ) is a labelled bipartite graph as it
is defined in Definition 14, and where:
– lab satisfies:

• ∀c ∈ C, lab(c) ∈ T� \ {"} × (I ∪ {∗} ∪ Σ∗ ∪ {#}). Label of a concept
node c is a pair (type(c), ref(c)). A concept node c such as 2 ref(c) ∈ Σ∗

is called a valued data concept node, if ref(c) = # then c is called an
unvalued data concept node.

– Moreover, lab respects:
• constraints fixed by μ:

◦ ∀c ∈ C if ref(c) ∈ Σ∗ then μ(ref(c)) ≤ type(c).
This definition differs from the one of SG model, because the label of a concept
node in a factual graph can be made up of a marker (individual or generic) or
of a literal (possibly generic).

Example 2. Figure 3 presents an example of factual graph, which is based on
extended support that is defined in Figure 2. Let us see in particular the presence
of three valued data concept nodes of type string where values are the strings
"John Smith", "Paul Durant" and "français", and the data concept node of type
int where value is integer 20. This factual graph expresses following knowledge:
“A student (ID smith) named "John Smith" is taking part in lecture named
"français" of 20 hours long, identified by french and given by a professor named
"Paul Durant".”
2 From Definition 14, one recalls that if ref(c) ∈ I then c is said to be an individual

concept node, and if ref(c) = ∗ then c is called a generic concept node.
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3 Query Graph

We define here a second family of conceptual graphs (in addition to factual
graphs): query graphs (QGs). Into a query graph, a label of concept node has
three parts such as one is a comparison operator. Comparison operators are used
to express some conditions on values.

Definition 4 (Query graph). A query graph Q = (C, R, U, lab) based on an
extended support S = (TC , B, TR, σ, I, τ, μ) is a labelled bipartite graph as it is
defined in Definition 3, and where:
– lab satisfies:

• ∀c ∈ C, lab(c) ∈ T� \{"}×Op×(I∪{∗}∪Σ∗∪{#}). Label of a concept
node c is a triplet (type(c), operator(c), ref(c)).
Op is a set of binary operators, called comparison operators (see for
instance Table 1). Each operator has a domain of definition, given by
the function domain : o ∈ Op → t ∈ T�. ∀c ∈ C, type(c) ≤ domain(ope-
rator(c)).

InTable 1, the threefirst comparisonoperators exist in everycase; theuser/designer
of a given modeling is assigned to define other operators that are needed to ex-
press queries on this modeling. Domain of definition of an operator is obviously the
greatest as possible (primitive or conjunctive) concept type that can be used with
this operator. For example, the domain definition of operator < is the datatype real
rather than int, thus < may be used between reals or integers (int is a subtype of
real) and not just between integers.

It is important to note in Table 1 that operator � and <= have nothing in
common, since set of markers and set of literals are disjoint. Indeed, � is used
to test order between two (individual or generic) markers whereas <= is used
to test order between real numbers.

Example 3. Figure 4 shows an example of a query graph, which is based on the
extended support that is defined in Figure 2. This graph expresses the follow-
ing query: “What is the name of the lesson, more than 10 hours long, that is
learned by the person whose name (not necessarily complete) is "Smith"?”. The
valued data concept node [int: {>} 10] represents an integer upper than 10. The
valued data concept node [string: {like} "Smith"] queries the existence of a string
containing the substring "Smith". The unvalued data concept node [string: {eq}
#] represents any string, i.e. any value of datatype string.

Fig. 4. Example of query graph, based on extended support in Figure 2
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Table 1. A set of comparison operators that may compose labels of (valued or unval-
ued) data concept nodes into query graphs

(binary)
Operator

Domain of
definition

comments

� I ∪ {∗} true iff individual makers are the same or if left operand
is the generic marker ∗.

= Σ∗ ∪ {#} true iff there is strictly equality between literals or if left
operand is the generic value #.

<> Σ∗ ∪ {#} true iff there is not equality between literals or if left
operand is #.

== real ∪ {#} true iff there is numerical equality between two operands
or if left operand is #.

! = real ∪ {#} true iff there is not numerical equality between two
operands or if left operand is #.

< real ∪ {#} true iff left operand is strictly lower than right operand or
if left operand is #.

<= real ∪ {#} true iff left operand is lower or equal than right operand
or if left operand is #.

> real ∪ {#} true iff left operand is strictly upper than right operand or
if left operand is #.

>= real ∪ {#} true iff left operand is upper or equal than right operand
or if left operand is #.

eq string ∪ {#} true iff there is strictly equality between two operands or
if left operand is #.

neq string ∪ {#} true iff there is not equality between two operands or if
left operand is #.

ll string ∪ {#} true iff left operand is strictly lower (as alphanumeric com-
parison) than right operand or if left operand is #.

leq string ∪ {#} true iff left operand is lower or equal (as alphanumeric
comparison) than right operand or if left operand is #.

gg string ∪ {#} true iff left operand is strictly upper (as alphanumeric com-
parison) than right operand or if left operand is #.

geq string ∪ {#} true iff left operand is upper or equal (as alphanumeric
comparison) than right operand or if left operand is #.

like string ∪ {#} true iff left operand is a strictly substring of right operand
or if left operand is #.

cil string ∪ {#} true iff left operand is a substring (as case insensitive com-
parison) of right operand or if left operand is #.

4 Operations

4.1 Projection

In our extension of SG model, the projection operation requires a minor adapta-
tion due to the fact that projection is now applied from a query graph to a factual
graph. Indeed, criteria of comparison of projection between two concept nodes
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Fig. 5. Factual graph F (from Figure 3), query graph Q (from Figure 4), and in bold
image of Q in F by application of our adapted projection operation from Q to F

(one from query and one from fact) needs a revision to conclude if a concept
node from fact may be an image by projection of a concept node from query.

Definition 5 (Compatibility on labels). Let Q = (CQ, RQ, UQ, labQ) be a
query graph and F = (CF , RF , UF , labF ) be a factual graph, both based on a
same extended support S = (TC , TR, σ, I, τ, μ). Let e = (t, �, m) and e′ = (t′, m′)
be labels of two concepts nodes where c ∈ CQ and c′ ∈ CF with labQ(c) = e and
labF (c′) = e′.

Label e is said to be compatible with e′ if and only if t′ ≤ t and m′�m is true.

Definition 6 ((adapted) Projection). A projection from a query graph Q =
(CQ, RQ, UQ, labQ) to a factual graph F = (CF , RF , UF , labF ), both based on a
same extended support S = (TC , TR, σ, I, τ, μ), is a pair of mappings Π = (f, g),
such as it is defined in Definition 15, and where: the compatibility used between
two concept nodes is the one defined in Definition 5.

Here, comparison between two concept nodes, the first from a query graph and
the second from a factual graph, considers what is done in Definition 5 and not
just ≤ such as it is used in Definition 15 (we recall that in SG model, ≤ is used
to compare two labels of two concept nodes).

Example 4. In Figure 5, the answer of query graph Q on factual graph F is the
bold-marked subgraph of F . This only answer, given by projection 3 from Q to
F , expresses that “The lesson named "français" is 20 hours long and is learned by
student "John Smith"”. This answer is the image by the only projection from Q
to F . In particular the image of valued data concept node [string: {like} "Smith"]
is the valued data concept node [string: "John Smith"], the image of [int: {>}10] is

3 The projection operation to consider is obviously the one defined in Definition 6.
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[int: 20], and the image of unvalued data concept node [string: {eq} #] is [string:
"français"].

Let us note that operator of an individual or a generic concept node of a query is
necessarily the operator �, because each operand is either an individual marker
or the generic marker. So, operators of such concept nodes may be omitted
within nodes’ representations, as it is shown in query graph Q in Figure 5 (that
is the same as the query graph in Figure 4). For instance, individual concept
node [Person: ∗] is equivalent to [Person: {�} ∗].

In the same way, if the operator of a (valued or unvalued) data concept node
is omitted that is a shortcut to express the operator =.

4.2 Normalization

Normal form of a FG remains almost the same as a SG, literals are considered
in addition. A factual graph is said to be in normal form if an individual marker
or a literal are used into one and only one concept node.

Definition 7 (Normal form of factual graph). Let F = (CF , RF , UF , labF )
be a factual graph, based on an extended support S = (TC , B, TR, σ, I, τ, μ).
The normal form of F , denoted by nf(F ), is obtained as follows: for any set
{c1, . . . , ck} | ci ∈ CF , ref(ci) = x, 1 ≤ j ≤ k and x ∈ I (respectively x ∈ Σ∗),
all ci are merged into one individual concept node c (respectively into one valued
data concept node c) with type(c) = type(c1) ∪ . . . ∪ type(ck) and ref(c) = x.

Example 5. Let us consider in Figure 6 query graph Q1 to interrogate factual
graphs F1 and F2. F1 represents the following knowledge: “mary and bob have
the same age that is 20”; F2 represents the fact: “mary is 20 years old and bob is
20 years old”. Q1 expresses the query: “Are there two people who are the same
age, which is greater than (>=) 18?”.

Q1 to interrogate F1 has an answer, which is F1 as whole, whereas Q1 to inter-
rogate F2 has no answer through an answer is expected. This example presents
the interest of using the normal form of a factual graph. Namely, Q1 has an
answer to interrogate F2 where F2 is nf(F1).

Fig. 6. Interest of a factual graph to be in normal form
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4.3 Datatype Specialization Form

We recall that the typing literals function μ of an extended support (see Defi-
nition 2) is a function that associates a concept type for each literal; μ depends
on defined datatypes, i.e. depends on a given modeling. For example, literal
18 may be associated by a given function μ1 with conjunctive concept type
{real,int,string}, or just type {int,string} due to int ≤ real (see Definition 11).

We define here the value-datatypes mapping operator (VDM operator). For a
valued data concept node [t : v] into a factual graph, VDM operator creates a
conjunctive concept type composed by primitive concept types (as datatypes)
from μ w.r.t. v that are subtypes of t (t included).

Definition 8 (Value-datatypes mapping operator). Let c be a valued data
concept node of a factual graph, where t = type(c) and v = ref(c). The value-
datatypes mapping operator returns a conjunctive concept type in accordance
with ref(c), noted vdm(c), such as: vdm(c) = μ(v) ∩ {t′ | t′ ≤ t}.

For example, the conjunctive concept type that is returns by VDM operator from
the valued data concept node [real: 18] is {int}. Indeed, literal 18 is associated by
μ1 with conjunctive concept type {int,string}, and according to the support int ≤
real and string is incomparable with real.

We now define datatype specialization form of a factual graph. This spe-
cial form is motivated to compensate for the fact that given some comparable
datatypes (see in Definition 2 order among concept types subtypes of Literal), val-
ues of such datatypes may not be comparable by comparison operators whereas
they have to be; e.g. see example 6.

Definition 9 (Datatypes specialization form). A factual graph F is said
to be in datatype specialization form if each valued concept node c of F is such
as type(c) = vdm(c).

The datatypes specialization form of a factual graph F , denoted dsf(F ), is
obtained as follows: for any valued concept node c of F , type(c) is remplaced
with vdm(c).

Example 6. Let us consider in Figure 7 the query graph Q2 and the two factual
graphs F3 and F4. Q2 expresses the query “Is There a person who is older than
18 (as an integer)?”. F3 represents the knowledge “The person mary is 20 (as a
real number) years old”. F4 represents the knowledge “Person mary is 20 (as a
real) and bob is 20 (as an integer)”.

It is interesting to see that Q2 to interrogate F3 has no answer, whereas if
knowledge of F3 are completed such as that is represented in F4 then Q2 to
interrogate nf(F4) (we have discussed in the previous section the interest of
normal form) has two answers including “mary is 20 years old”. So, datatypes
specialization form of F3 has to be used to settle problem of this unwanted lack
of answer: Q2 to interrogate dsf(F3) has the expected answer “mary is a person
who is 20 (number equally represented as a real or as an int) years old”.
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Fig. 7. Interest of a factual graph to be in datatypes specialization form

5 Conclusion

We have proposed an extension of SG model. First, our approach takes into
account datatypes and their values into a model close to initial SG model. Two
families of graphs, factual graphs and query graphs, were defined for different
use cases: for representing factual knowledge or for expressing a query. Second,
the complexity of our adaptation of projection operation remains the same as
the one in SG model. Indeed, all algorithms of usual projection can be used for
our model. The only change is the compatibility for valued data concept nodes.
Moreover, the cost of comparison operator does not depend on size of graphs.
So, the extra cost of projection’s execution is negligible. Third, our approach is
easy to implement on top of a given conceptual graph tool; we have implemented
a prototype on top of Cogitant [11].

We are now working on the possibility of using rules [12] and constraints [13]
with our SG extended model. Namely, definitions of a rule and of a positive or
negative constraint may be adapted as follows. For a rule, the hypothesis may
be a query graph while the conclusion may be a factual graph. For a constraint,
the condition, the obligation (of a positive constraint) and the prohibition (of a
negative constraint) may be query graphs. Applying a rule or checking a con-
straint on a factual graph will be done by using our adaptation of the projection
operation.
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Appendix

Following definitions are fundamental definitions of SG model [5,6,7,8].

Definition 10 (Support [5,6,7]). A support of conceptual graphs is a 6-uplet
S = (TC , B, TR, σ, I, τ), where:
– TC is the partial ordered set of primitive concept types, whose greatest ele-

ment is " (the universal type).
– B is the set of banned primitive concept types (see Definition 12).
– TR is the set of relation types, with a partition: TR = TRi1

∪· · · ∪TRip
where

TRij
is a set of ij-ary relation types, ij > 0. Each TRij

is partially ordered
and has a greatest element "ij . The partial orders on T� (see Definition 13)
and on TR, noted ≤, correspond to a kind-of relation between types.

– σ is a mapping, which associates a signature with each relation type; the
signature of a relation specifies the arity and greatest possible (primitive or
conjunctive) concept type for each argument. More precisely, for any tr ∈
TRij

, σ associate an uplet σ(tr) ∈ (T�)ij and verifies: for all tr1 and tr2 of
TRij

, if tr1 ≤ tr2 then σ(tr1) ≤ σ(tr2) where order on signature is the product
order 4 on (T�)ij . The ith argument of σ(tr) is noted σi(tr).

4 Namely, the type that is associated with the kth argument of tr1 is lower or equal
than the type that is associated with the kth argument of tr2 .

http://cogitant.sourceforge.net
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– I is the set of individual markers. In addition there is a generic marker,
noted ∗, as non-specified individual. I ∈ {∗} is provided with an order, such
that ∗ is greater than every individual marker, and individual markers are
pairwise non-comparable.

– τ is a mapping from I to TC, called conformity mapping, which for each
individual marker associates a concept type.

Definition 11 (Set of conjunctive concept types [5]). A conjunctive con-
cept type is given by a (non-empty) set of incomparable primitive concept types
{t1, . . . , tn}. This type is denoted by the set itself or by t1 ∧ . . . ∧ tn; i.e. an
antichain of the set of primitive types.

Let TC be a set of primitive concept types. T� denotes the set of all con-
junctive concept types over TC . It is provided with the following partial order,
which extends the partial order on TC: given two types t = {t1, . . . , tn} and
s = {s1, . . . , sp}, t ≤ s if for every primitive type sj ∈ s, 1 ≤ j ≤ p, there exists
a primitive type ti ∈ t, 1 ≤ i ≤ n, such that ti ≤ sj.

The set of acceptable conjunctive types can be exponentially bigger than the
primitive type set. That is why the concept type hierarchy is not defined in
extension but in intension of the primitive type set and a set of assertions stating
which types are banned. The set of acceptable types is obtained from T� by
removing the banned types (↓B).

Definition 12 (Banned type set [5]). Let B denote a subset of non compa-
rable conjunctive types. An element of T� is said to be banned w.r.t. B if it is
less or equal to an element of B.
↓B denotes the set of all banned types; i.e. ↓B = {t ∈ T� | ∃t′ ∈ B, t ≤ t′}.

Definition 13 (Concept type hierarchy [5]). A concept type hierarchy T is
given by a couple (TC, B) where:
– TC is the set of primitive concept types,
– B is the set of basic banned conjunctive types,
– ∀b ∈ B, �t ∈ TC | t ≤ b ; i.e. ↓B ∩ TC = ∅.

T is defined as the set 5 T� \ ↓B. T� is thus partitioned into the acceptable types
T and the banned types ↓B.

Using conjunctive types, the label of a concept node is a pair (type(c),ref(c))
where type(c) is in the conjunctive concept type set (rather than the primitive
concept type set). type(c) is represented by a list of primitive types, which are
separated by a comma.

Definition 14 (Conceptual graph [5,6,7]). A conceptual graph G=(C, R, U,
lab), based on a support S = (TC , B, TR, σ, I, τ), is a finite, undirected and bi-
partite multigraph where:
– C is the set of concept nodes, R is the set of relation nodes. C and R are

disjoint (C ∩R = ∅).
5 A primitive type can be seen as a conjunctive type with one type.



Conceptual Graphs and Datatypes 283

– U is the set of edges.
– lab is a mapping that associates a label for every nodes and every edges of

G, such as:
• ∀r ∈ R, lab(r) ∈ TR

• ∀c ∈ C, lab(c) ∈ T� × (I ∪ {∗}}). A concept node c is labelled by a pair
(type(c), ref(c)). A concept node c where ref(c) ∈ I is called an individual
concept node, else (ref(c) = ∗) it is called a generic concept node.
∀c1, c2 ∈ C, lab(c1) ≤ lab(c2) if and only if 6 type(c1) ≤ type(c2) and
ref(c1) ≤ ref(c2).

• ∀e ∈ U, lab(e) ∈ N
– Moreover, lab satisfies

• constraints from σ et τ :
◦ Edges incident on a relation node are totally ordered, they are num-

bered from 1 to the degree of the relation node. The ith neighbor of a
relation r is denoted by Gi(r).

◦ ∀r ∈ R, type(Gi(r)) ≤ σi(type(r)).
◦ ∀c ∈ C if ref(c) ∈ I then τ(ref(c)) ≤ type(c).

• constraints from conjunctive type definition:
∀c1, c2 ∈ C where ref(c1), ref(c2) ∈ I, let us note t1 = type(c1) and
t2 = type(c2), if ref(c1) = ref(c2) and t1 �= t2 then the conjunctive type
t1 ∪ t2 /∈ ↓B ; with ↓B the banned conjunctive concept type set.

Definition 15 (Projection [5,6,7]). Let H = (CH , RH , UH , labH) and G =
(CG, RG, UG, labG) be two conceptual graphs, both based on a same support S =
(TC , B, TR, σ, I, τ). A projection from H to G 7 is an ordered pair of mappings
Π = (f, g), with f : CH → CG and g : RH → RG, such that Π preserves edges
and may decrease concept and relation labels:
– ∀c ∈ CH , labH(c) is compatible with labG(f(c)) (in usual SG model, com-

patible means: labH(c) ≤ labG(f(c))),
– ∀r ∈ RH , labG(g(r)) ≤ labH(r).
– for every edge rc of UH , Π(rc) is an edge of UG with the same label. More-

over, if c = Hi(r), then f(c) = Gi(g(r)).

6 This order on concept node labels is not use just like that in our extension of SG
model.

7 Projection operation has an interest especially if G is in normal form [5].
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Abstract. Pseudo-intents play a key rôle in Formal Concept Analy-
sis. They are the premises of the implications in the Duquenne-Guigues
Base, which is a minimum cardinality base for the set of implications
that hold in a formal context. It has been shown that checking whether
a set is a pseudo-intent is in conp. However, it is still open whether
this problem is conp-hard, or it is solvable in polynomial time. In the
current work we prove a first lower bound for this problem by showing
that it is at least as hard as transversal hypergraph, which is the
problem of identifying the minimal transversals of a given hypergraph.
This is a prominent open problem in hypergraph theory that is conjec-
tured to form a complexity class properly contained between p and conp.
Our result explains why the attempts to find a polynomial algorithm for
recognizing pseudo-intents have failed until now. We also formulate a
decision problem, namely first pseudo-intent, and show that if this
problem is not polynomial, then, unless p = np, pseudo-intents cannot
be enumerated with polynomial delay in a specified lexicographic order.

1 Introduction

Pseudo-intents play a key rôle in Formal Concept Analysis (FCA) [7]. They form
the premises of the Duquenne-Guigues Base [9], which is a minimum cardinality
base for the set of implications that hold in a formal context. Computational
problems related to pseudo-intents have been of major interest to the FCA com-
munity since their introduction. Among these problems, the most central one,
namely recognizing pseudo-intents, which is the problem of checking whether a
given set is a pseudo-intent of a given formal context, has been shown to be in
conp [15,16]. However, so far neither a polynomial time algorithm that solves
this problem, nor a proof that this problem is intractable has been found.

In another field of discrete mathematics, namely hypergraph theory [1], prob-
lems that show a similar computational behaviour exist as well. The problem
known as transversal hypergraph [3], which is the problem of checking
whether the edges of a given hypergraph are precisely the minimal transversals
of another given hypergraph, is one such problem. Like the problem of recogniz-
ing pseudo-intents, this problem is also known to be in conp, however whether it
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is conp-hard or it is solvable in polynomial time has now been open for more than
20 years. Moreover, many other problems from various fields of computer sci-
ence have been shown to be computationally equivalent to this problem. Some of
these problems are: from relational databases the problem fd-relation equiv-
alence, which is checking whether a given set of functional dependencies that is
in Boyce-Codd Normal Form is a cover of a given relation instance [3], the prob-
lem additional key for relation instances, which is the problem of checking
whether an additional key exists for a given relation instance and a set of minimal
keys thereof [3], and from logic the problem monotone dual, which is checking
whether two monotone Boolean functions given in CNF are mutually dual [4].
Related problems from artificial intelligence can be found in [13], problems from
data mining can be found in [10], and a comprehensive survey on these problems
can be found in [4]. In a landmark paper Fredman and Khachiyan proved in [5]
that transversal hypergraph can be solved in no(log n) time, which implies
that this problem is most likely not conp-hard. It is conjectured that this prob-
lem, together with the computationally equivalent problems mentioned above,
forms a class properly contained between p and conp.

The present paper is the first step of an ongoing work investigating whether
the problem of recognizing pseudo-intents is computationally equivalent to the
abovementioned problems. We show that it is at least as hard as transversal
hypergraph. However, whether it is transversal hypergraph-complete re-
mains open. Our result explains why the attempts in the FCA community to
find a polynomial time algorithm for this problem have failed until now. We also
formulate a decision problem, namely first pseudo-intent, and show that if
this problem is not solvable in polynomial time, then, unless p = np, pseudo-
intents cannot be enumerated with polynomial delay in a specified lexicographic
order.

2 Preliminaries

2.1 Formal Concept Analysis

Formal Concept Analysis (FCA) [7] is a field of mathematics that is based on
a lattice-theoretic formalization of the notions of a concept and a conceptual
hierarchy. It facilitates the use of mathematical reasoning for conceptual data
analysis and knowledge processing.

In FCA, one represents data in a formal context, which in its simplest form
is a way of specifying which attributes are satisfied by which objects. A formal
context is usually denoted by K = (G, M, I) where G is the set of objects, M is
the set of attributes, and I is the incidence relation between the objects and the
attributes. A formal context is usually visualized as a cross table, where the rows
represent the objects, and the columns represent the attributes of the context.
A cross in column m of row g means that the object g has the attribute m, and
the absence of a cross means that g does not have the attribute m. For a set
of objects A ⊆ G, the derivation operator applied to A, which is denoted with
A′, defines the set of attributes that are satisfied by all objects in A. Similarly,
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for a set of attributes B ⊆ M , the derivation operator applied to B, which
is denoted with B′, defines the set of objects that satisfy all attributes in B.
Double application of the derivation operator yields the closure operator (·)′′.
The subsets of M closed under (·)′′ are called the concept intents of K, and
when ordered w.r.t. inverse set inclusion, they yield a complete lattice called the
concept lattice of K. Given a formal context K = (G, M, I) and an implication
P → Q, where P, Q ⊆ M , we say that P → Q holds in K if the objects that
have the attributes in P also have the attributes in Q, i.e., P ′ ⊆ Q′. We denote
the implicational theory of K, i.e, the set of all implications that hold in K, with
Imp(K).

The implicational theory of a formal context K can be large. Thus, one is
interested in small implicational bases generating Imp(K). In [9] a canonical
implicational base, which is called the Duquenne-Guigues Base, of a given formal
context has been characterized, and it has been shown that there cannot be
another base with fewer implications. The premises of the implications in a
Duquenne-Guigues Base are called the pseudo-intents of the underlying formal
context. A set P ⊆ M is called a pseudo-intent if P �= P ′′ and Q′′ � P holds for
every pseudo-intent Q � P . Equivalently, a set P ⊆ M is called a pseudo-intent
if P �= P ′′, it is a quasi-intent, and for every quasi-intent Q � P , Q′′ � P holds,
where a quasi-intent is defined as a set Q ⊆ M that satisfies R′′ ⊆ Q or R′′ = Q′′

for any R ⊆ Q.

2.2 Hypergraphs

Hypergraph theory [1] is a field of discrete mathematics with many important
applications in both theoretical and applied computer science.

A hypergraph H = (V, E) is a pair consisting of a set of vertices V = {vi |
1 ≤ i ≤ n}, and a set of (hyper)edges E = {Ej | 1 ≤ j ≤ m} where Ej ⊆ V . A
hypergraph is called simple if none of its edges contains another edge, that is,
∀E, F ∈ E . E ⊆ F ⇒ E = F . A set of vertices W ⊆ V is called a transversal
of H if it intersects every edge of H, i.e., ∀E ∈ E . E ∩W �= ∅. A transversal is
called minimal if no proper subset of it is a transversal. The set of all minimal
transversals of H constitute another hypergraph on V called the transversal
hypergraph of H, which is denoted by Tr(H). Generating Tr(H) is an important
problem which has applications in many fields of computer science. The well
known decision problem associated to this computation problem is defined as
follows:

Problem: transversal hypergraph (trans-hyp)
Input: Two hypergraphs H = (V, EH) and G = (V, EG).
Question: Is G the transversal hypergraph of H, i.e., does Tr(H) = G hold?

We say that a decision problem Π is trans-hyp-hard if trans-hyp can be
reduced to Π by a standard polynomial transformation. We say that Π is trans-
hyp-complete if it is trans-hyp-hard and Π can be reduced to trans-hyp by
a polynomial transformation.
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3 Related Work and Previous Results

Pseudo-intents and computational problems related to them has attracted great
attention among the researchers in the FCA community since their introduc-
tion. It is well known that for a formal context K = (G, M, I) the number of
pseudo-intents can be exponential in |M |. This is for instance the case when
object intents are precisely all possible subsets of M with cardinality |M |/2.
However, in this case |G| as well as |I| are also exponential in |M |, thus the
number of pseudo-intents is polynomial in |I|. In [14] Kuznetsov has given
an example of a context where the number of pseudo-intents is exponential
in the size of the incidence relation |I|. Moreover, he has shown that deter-
mining the number of pseudo-intents of a formal context is a #p-hard prob-
lem. Given the fact that the number of pseudo-intents can be exponential in
the size of the input context, it is clearly not possible to enumerate all pseudo-
intents in time polynomial time in the size of this formal context. In complexity
theory, for analyzing the performance of enumeration algorithms where the num-
ber of solutions can be exponential in the size of the input, one considers other
measures. One such measure is to take into account not only the size of the input,
but also the size of the output when defining a notion of performance. An algo-
rithm is said to run in output polynomial time (or polynomial total time) [12] if it
outputs all solutions in time polynomial in the size of the input and the output.
One advantage of an output polynomial algorithm is that it runs in polyno-
mial time (in the size of the input) when there are only polynomially many
solutions.

For enumerating pseudo-intents, currently no output polynomial algorithm
is known. The most well known algorithm next closure [6] by Ganter, as a
by-product, enumerates the concept intents as well. That is, its running time
depends not only on the number of pseudo-intents but also on the number of
concept intents. Since the number of concept intents can be exponential in the
number of pseudo-intents, this algorithm in general does not run in output poly-
nomial time. Similarly, the attribute-incremental algorithm [17] by Duquenne and
Obiedkov has also time complexity depending on both the number of pseudo-
intents and the number of concept intents. Recently in [18] we have shown
that enumerating pseudo-intents is at least as hard as computing the minimal
transversals of a given hypergraph. There we have also identifed a class of formal
contexts for which these two problems are computationally equivalent. In [11], for
the special case where the concept lattice is meet-semidistibutive, Janssen and
Nourine have shown that there are at most polynomially many pseudo-intents,
and they can be enumerated in polynomial time. For the special case where the
concept lattice is modular, Wild has shown in [19] that an optimal base, i.e.,
a base that not only contains the minimum number of implications, but also
contains the minimum number of attributes, can be computed in polynomial
time. In [2] Duquenne has shown that for locally distributive lattices a minimum
cardinality base can be computed in polynomial time.
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4 Complexity of Recognizing Pseudo-intents

Apart from enumerating and counting pseudo-intents, recognizing them is an-
other important computatinal problem. Kuznetsov and Obiedkov has shown in
[15,16], that this problem is in conp. However, neither a polynomial time algo-
rithm, nor a proof of conp-hardness has been found so far. In the following we
prove a first lower bound for this problem.

First we need to introduce some more notions from hypergraphs. A hyper-
graph H = (V, E) is called saturated [3] if every subset of V is contained in at
least one of the edges of H, or it contains at least one edge of H, i.e., for every
W ⊆ V , W ⊆ E holds, or E ⊆ W holds for some E ∈ E . It has been shown
in [3] that checking whether a hypergraph is saturated is conp-complete. There,
a special case of the problem where the given hypergraph is restricted to be
simple, has also been considered. It is the following problem:

Problem: simple hypergraph saturation (simple-h-sat)
Input: A simple hypergraph H = (V, E), i.e., ∀E, F ∈ E . E ⊆ F ⇒ E = F .
Question: Is H saturated, i.e., is it true that for every W ⊆ V , W ⊆ E holds or
E ⊆ W holds for some E ∈ E?

It is not difficult to see that this problem is in conp. However, like the problem of
recognizing pseudo-intents, neither a polynomial time algorithm that solves this
problem, nor a proof that it is conp-hard has been found so far. It has been shown
in [3] that this problem is under polynomial transformations computationally
equivalent to trans-hyp. In the following we show that recognizing pseudo-
intents is at least as hard as this problem. We start with a formal definition of
our problem:

Problem: pseudo-intent (psi)
Input: A formal context K = (G, M, I), and a set P ⊆ M .
Question: Is P a pseudo-intent of K?

Now we show that psi is simple-h-sat-hard.

Theorem 1. psi is simple-h-sat-hard.

Proof. Let an instance of simple-h-sat be given with the simple hypergraph
H = (V, E), where V = {v1, . . . , vn} and E = {E1, . . . , Em}. FromH we construct
an instance of psi, i.e., a formal context KH = (G, M, I) and a set P ⊆ M , as
follows: As attributes of KH, we take the vertices of H and two new attributes
a and b that do not already occur in V , that is, M = V ∪ {a, b}. For every
i, where 1 ≤ i ≤ m, we construct an object gi whose intent is Ei ∪ {a}. In
addition, for each i we construct the following objects: Consider edge Ei. For
every F � Ei such that |F | = |Ei|−1, we create an object with the intent F . Ei

has |Ei|-many such subsets. We name these objects as gi1, . . . , gi|Ei|. In total KH

contains
∑m

i=1 |Ei|+ m objects. Figure 1 demonstrates the context KH. Finally
we create a subset of M just by defining P = V ∪{a}. It is easy to see that both
KH and P can be constructed in polynomial time. We know that H is simple,
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v1 · · · vn a b

g1 E1 x
...

...
...

gm Em x
g11 F11

...
...

g1|E1| F1|E1|
...

...
gm1 Fm1

...
...

gm|Em| Fm|Em|

Fig. 1. Formal context KH constructed from simple hypergraph H

that is none of its edges is contained in another edge. Then KH has the following
property:

(∗) Each Ei is contained in only one object intent, namely in Ei∪{a}, so E′′
i =

Ei ∪ {a}. That is, Ei are not closed. Moreover, strict subsets of Ei are closed.
In order to see this, consider a fixed Ei. KH contains the objects gi1, . . . , gi|Ei|
whose intents are all strict subsets of Ei with cardinality |Ei| − 1. Every strict
subset of Ei can be written as the intersection of such object intents, i.e, every
strict subset of Ei is closed. This means that the edges of H are pseudo-intents
of KH.

Now we claim that P is a pseudo-intent of KH if and only if H is saturated.
We are going to give a proof of the contrapositive of this claim, i.e., H is not
saturated if and only if P is not a pseudo-intent of KH.

(⇒) If H is not saturated, then there exists a W ⊆ V such that W �⊆ Ei

and Ei �⊆ W for every 1 ≤ i ≤ m. Then W ′ = ∅, and W ′′ = M because W is
not contained in any object intent. Assume without loss of generality that W is
minimal with respect to set inclusion, that is for every X � W , X ⊆ Ei holds for
some i. We know that Ei �⊆ W holds for every i. Then every X � W is strictly
contained in some Ei, that is X � Ei for some i. By property (∗) above we know
that strict subsets of Ei are closed, thus X is closed. That is W is not closed, but
its all strict subsets are closed, i.e., W is a pseudo-intent of KH. Since W � P
and W ′′ is not strictly contained in P , P is not a pseudo-intent of KH. Thus we
have shown that if H is not saturated, then P is not a pseudo-intent of KH.

(⇐) If P is not a pseudo-intent of KH, then KH has a pseudo-intent W � P
such that W ′′ is not strictly contained in P (this is because P is not closed). It
cannot be the case that W ′′ = P since KH does not contain any object whose
intent is P or a superset of P . This means that W ′′ = M , i.e., W ′ = ∅, that is
W is not contained in any object intent. Assume a ∈ W . We know that W is not
contained in any object intent. This implies that W \{a} is not contained in any
object intent either, i.e., (W \ {a})′′ = M . Note that (W \ {a}) is a quasi-intent,
because every X ⊆ (W \{a}) satisfies X ′′ ⊆ (W \{a}), or X ′′ = (W \{a})′′ = M .
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But this contradicts the fact that W is a pseudo-intent since a pseudo-intent is
minimal among the quasi-intents that generate the same closure. Thus, a �∈ W ,
i.e., W ⊆ V . Due to property (∗) each edge Ei of H is a pseudo-intent of KH and
its closure contains the attribute a. Since a pseudo-intent contains the closure of
all strictly smaller pseudo-intents and a �∈ W , for every 1 ≤ i ≤ m, Ei is not a
strict subset of W . In addition W is different from every Ei since W ′′ �= E′′

i for
every i. That is, Ei �⊆ W for every 1 ≤ i ≤ m. Moreover, since W is a pseudo-
intent and its closure W ′′ = M is not contained in any Ei, W is not contained
in any Ei, i.e., for every 1 ≤ i ≤ m, W �⊆ Ei. Thus we have shown that if P
is not a pseudo-intent of KH, then there is a W ⊆ V such that W �⊆ Ei and
Ei �⊆ W for every 1 ≤ i ≤ m, i.e., H is not saturated. This completes the proof
of our claim. �

The following is an immediate consequence of Theorem 1 above and Theorem
4.12 in [3]:

Corollary 1. psi is trans-hyp-hard.

Corollary 1 explains why attempts to find a polynomial time algorithm for solv-
ing psi have failed until now. Because if such an algorithm exists, then this
algorithm can also decide trans-hyp in polynomial time.

5 Enumerability with Polynomial Delay

One other notion for analyzing the performance of enumeration algorithms is
polynomial delay. An algorithm is said to run with polynomial delay [12] if
the time until the first solution is generated, and thereafter the time between
any two consecutive solutions is bounded by a polynomial in the size of the
input. Currently we do not know whether pseudo-intents can be enumerated
with polynomial delay in a specified order. Assuming that the elements of M
are linearly ordered, we say that a set P ⊆ M is lexicographically smaller than
Q �= P if the smallest element that distinguishes P and Q belongs to Q. The
following decision problem is of crucical importance for the above question:

Problem: first pseudo-intent (first-psi)
Input: A formal context K = (G, M, I), a pseudo-intent P ⊆ M of K, and a
linear order on M .
Question: Is P lexicographically the first pseudo-intent of K?

Because if first-psi cannot be decided in polynomial time, then pseudo-intents
cannot be enumerated with polynomial delay in a specified lexicographic order.

Proposition 1. If first-psi is not in p, then unless p = np, pseudo-intents
cannot be enumerated in lexicographic order with polynomial delay.

Proof. It is not difficult to see this. Assume we have an algorithm that enumer-
ates the pseudo-intents of a given formal context with polynomial delay. This
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means that given a formal context K = (G, M, I) and a P ⊆ M , it generates the
lexicographically next pseudo-intent coming after P in polynomial time. If we
run this algorithm with the input K and P = ∅, which is the lexicographically
smallest subset of M , then in polynomial time it generates the lexicographically
first pseudo-intent, thus solves first-psi in polynomial time. ��

Of course if psi turns out to be conp-hard, then unless p = np, pseudo-intents
cannot be enumerated with polynomial delay since the lexicographically first
pseudo-intent cannot be generated in polynomial time. However, even if psi
turns out to be polynomial it can still be the case that first-psi is intractable.
A similar case about maximal independent sets has been investigated in [12].
Although recognizing a maximal independet set is polynomial, there it has been
shown that deciding whether a given set is the lexicographically last maxi-
mal independent set, is conp-hard. Thus maximal independent sets cannot be
enumerated in reverse lexicographic order with polynomial delay.

6 Concluding Remarks and Future Work

We have shown that recognizing pseudo-intents is at least as hard as recogniz-
ing the transversal hypergraph, which is a prominent open problem. This can
be taken as a weak evidence that recognizing pseudo-intents is unlikely to be
polynomial time solvable. As future work we are going to work further on inves-
tigating whether these problems are computationally equivalent, i.e., whether
psi is trans-hyp-complete. We are also going to work on solvability of psi with
limited non-determinism [8], and determining the complexity of first-psi.
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Abstract. Conceptual graphs (CGs) are a knowledge representation formalism 
that models monotonic first-order logic.  However, in the case of an active 
knowledge base and in other cases, it is necessary to modify a CG dynamically, 
rendering the preceding static first-order CG possibly inconsistent and in need 
of further analysis. In order to extend monotonic first-order logic to non-
monotonic second-order computation, and therefore achieve all of the power of 
a modern computer, CGs need to use atomic actors to represent change. To  
illustrate the power of actors, we represent the well-defined Turing machine; 
this has the added effect of showing that CGs can represent any of the power  
of a modern computer. This addition to the CG theory will have other similar 
practical effects. 

Keywords: conceptual graphs, actors, non-monotonic logic, sequence, alterna-
tive, iteration, context, Turing machine. 

1   Introduction 

Conceptual graphs, introduced in [1], are a knowledge representation formalism that 
models monotonic first-order logic. However, in the case of an active knowledge base 
and in other cases, it is necessary to modify a CG dynamically, rendering the preced-
ing static first-order CG possibly inconsistent and in need of further analysis. In order 
to extend monotonic first-order logic to non-monotonic second-order computation, 
and therefore achieve all of the power of a modern computer, CGs need to use atomic 
actors as a representation of change. To illustrate the power of actors, we represent the 
well-defined Turing machine, introduced in [2]. This illustration has the added effect 
of showing that CGs can represent the power of a modern computer. The impetus of 
this problem originated in [3], when iteration was needed within CGs to ensure  
consistency among two different sets of data, which progressed to this paper, and we 
feel that this addition to the community will have other similar practical effects. In the 
long term, we feel that by showing that CGs can model Turing machines, we bridge 
the gap from CG to programming languages. 

We begin by defining a Turing machine. Then we will model a Turing machine us-
ing CGs. While modeling a Turing machine, we will explain how CGs can represent 
the necessary features of a Turing machine; sequence, alternative, and iteration, 
within the existing framework of CGs, and give examples of each. We then discuss an 
issue that we found while modeling sequence, and conclude the paper. 
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Fig. 1. A Turing machine with a finite tape 

2   What is a Turing Machine? 

A Turing machine consists of two basic parts.  First, there is an infinite “tape” com-
posed of cells. Second, there is a “read/write head” that moves up and down this infinite 
tape, based on commands represented in those cells, until the head hits a predefined stop 
command cell, usually represented by a blank (denoted by “B” here).  Since CGs are 
finite, and a sheet of assertion is finite, we will ignore the case of the Turing machine 
with an infinite tape and will instead begin with a variant, a Turing machine with a finite 
tape. Fig 1 is a Turing machine with a finite tape, and this is the Turing machine variant 
that we will mainly consider when we are analyzing CGs in this paper. 

It has been shown that a Turing machine can represent any kind of computation 
[4], and that a Turing machine consists of three basic features. These are (i) sequence 
whereby one step follows another, (ii) alternative where one sequence is selected 
from a set of possible sequences and (iii) iteration where a sequence may be repeated. 

3   Modeling Turing Machines with CGs 

When a Turing machine with a semi-infinite tape is represented by a CG, we repre-
sent it by an actor with a set of inputs from a repository of data external to the sheet of 
assertion; this repository can be considered as semi-infinite, as it has a beginning (the 
first element of a file), yet no known, a priori ending. 

When a Turing machine with a finite tape is represented by a CG, we can represent 
it the same way as we represent a Turing machine with a semi-infinite tape.  We can 
also represent it by an actor with a set of inputs from a repository of data on the sheet 
of assertion, by using a concept with a set of references, noted by using brackets, as 
shown in Fig 2 below. 

Int: {1,2,3,4,5}  

Fig. 2. A CG representation of a set of five distinct integers 

The benefit of using a set of referents to represent the tape is that all data is on the 
sheet of assertion, but the disadvantage is that the tape must be finite.  This is not a 
large disadvantage when dealing with CGs because CGs must be finite, but it should 
be considered when dealing with Turing machines.  Next, we will discuss how the 
three features of a Turing machine, sequence, alternative, and iteration, are  
represented in CGs. 
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3.1   Sequence 

To begin, we need to establish how sequence is indicated and enforced in CGs  
with actors. In the canon of CGs, if a relation is monadic or dyadic, no arc labeling is 
necessary. But if there are more than one or two arcs indicating a relation, the arcs are 
labeled from 1 to the number of arcs.  Extending this idea, the framework for identify-
ing sequence has already been established, by utilizing labeled links. In Fig 3, we 
show that in a triadic graph, labels become necessary. 

We propose extending the use of these labeled arcs to include enforcing a rule to 
label all links that connect to actors, regardless of whether their definitions require it. 
Each actor is defined independently of other actors; therefore each actor has at least 
one labeled arc, either input or output, in its definition.  In order for multiple actors to 
work together in a CG, a transformation has to occur that retains the definition of  
individual actors, yet extends to coordinate multiple actors acting together. We want 
to be able to maintain a relationship between a single actor as defined and an actor 
interacting with others. 

The transformation is simple and extendable. From [1], we have the following 
definitions. A source concept is an input concept to one or more actors, but not an 
output concept of any actor. An intermediate concept is an output concept of exactly 
one actor and an input concept of one or more actors. A sink concept is an output con-
cept of exactly one actor, but not an input concept of any actor.  Utilizing these terms, 
we begin with all of the necessary definition actors (actors with n arcs labeled 1 
through n) placed on the sheet of assertion. 

All links are labeled, and we identify each intermediate concept, and combine 
them. The result is the creation of intermediate concepts from existing source and sink 
concepts, and this is shown in Fig 5. In the above example, [T: *b] is the only inter-
mediate concept. 

 

 

Fig. 3. A labeled, triadic relation 

 

Fig. 4. Step 1 of transforming a CG, finding all needed individual actors 
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Fig. 5. Step 2 of transforming a CG, combining repeated concepts 

 

Fig. 6. An example of sequence that maintains the definition of an actor 

Once all intermediate concepts are linked, the system identifies a critical path by 
identifying all concepts, relations, and actors involved from all source concepts to all 
sink concepts.  There may be multiple critical paths of the same length.  Now starting 
with the labeled link from each source concept to its actor, and using a depth first 
transversal, that link would assume the value of 1 and (if available) the intermediate 
concepts of that first actor would assume increasing integer values all the way to the 
first sink concept.  Then the link from the next (if available) source concept to its  
actor would get labeled with the next increasing integer, resulting in the graph shown 
in Fig 6. 

At the end of the process, we have a graph that, when followed in labeled order, 
reveals the most sink concepts in the fewest number of steps. Also, we have a graph 
that can easily be deconstructed to its original definition actors. An alternative process 
would involve labeling the links from source concepts to actors and intermediate con-
cepts all the way to the eventual sink concepts in a breadth first transversal, but this 
would not reveal the most sink concepts in the fewest number of steps. To explain by 
way of an example, we will compare the depth first and breadth first traversals of 
these graphs. Consider two cases. In case 1, consider a source concept whose actor 
has m outgoing sink concepts.  Using a depth first numbering algorithm and a breadth 
first numbering algorithm both yield the result of a sink concept in one step, each, and 
all sink concepts will be calculated in m steps. In this case, neither algorithm performs 
better than the other and we consider this the best case. In case 2, the worst case, we 
consider a source concept whose actor has m number of outgoing intermediate con-
cepts, and the number of intermediate concepts and sink concepts is n.  In order to 
calculate the m * n nodes, using a depth first numbering algorithm, we would calcu-
late n nodes before we got our first sink concept.  Using a breadth first numbering 
algorithm, we would calculate m * (n - 1) nodes before we got our first sink concept. 
Overall, we would still need to calculate m * n nodes to calculate all of our sink nodes 
using either numbering algorithm, but using a depth first numbering algorithm returns 
up to the first n - 1 sink concepts quicker.  
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It could be argued that Fig 6 is not an example of sequence, but is instead an ex-
ample of dependence. If this is the argument, then we contend that the sequence of 
any program that terminates is really just dependent on the final state of that program. 
We address another pathological case in Section 5. 

3.2   Alternative 

There are two methods to establish the notion of alternative in CGs.  The first method 
has been shown in [6], but will be explained again here for completeness.  Each actor 
needs an [Enabled] concept as an input.  If the [Enabled] referent is true or “T”, then 
the actor is enabled, and if the [Enabled] referent is false or “ ”, then the actor is 
disabled.  With this framework in use, a simple comparison of a changeable concept 
can enable actors and disable them.  

 

 

Fig. 7. One example of alternative 

 

Fig. 8. A more coherent example of alternative 

The above-mentioned method of using a type of Enable to control the activity of an 
actor might seem arbitrary. To create something more within the framework of CGs, 
we go back to basic principles. From [1], we know that there are control marks that 
determine when actors are executed to compute referents for their output concepts. 
The three different types of control marks are: the request mark “?”, the assertion 
mark “!”, and the neutral mark “˚”. We know that if all input concepts have referents, 
then an actor is ready, and that a ready actor will not fire unless it is enabled. We use 
this knowledge to utilize the assertion mark to indicate which concepts are ready for 
use. Currently, <notequal> and <equal> will output a [T], or a [null], for true and 
false, respectively. In the case where we want to disable an actor, we need another 
type of actor that will not modify the output referent for false and in the case that we 
want to enable an actor, we need another type of actor that will use the assertion mark 
for true, as shown in Fig 8. 
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These changes have the effect of enabling and disabling the actor, and functions 
within the framework of CGs better than using something like an input of type  
Enabled. 

3.3   Iteration 

To demonstrate iteration, we utilize a construct that has been used by C# and Perl 
already, the idea of a <foreach> actor.  As demonstrated in Fig 9, the <foreach> 
actor takes a set of referents as its input, and outputs the matching type and a referent.  
The outputted referent is an individual of the input set.  The <foreach> actor begins 
by outputting the first element of the input referent set.  When all actions have com-
pleted downstream, the <foreach> actor updates its output’s referent with the next 
referent in the set of the input. 

 

 

Fig. 9. An example of iteration at three different steps 

The above figure shows the activation of <foreach> over three cycles. In [7] it is 
mentioned that the time structure can be mapped to discrete timestamps of the world, 
but we would like to further define this idea.  

CGs are known for their strength in showing knowledge based on first order logic. 
A limitation of first order logic and an issue that we will attempt to ameliorate is that 
its representations are static and its validity may not hold as a graph changes over 
time. Time and change are not built into first order logic, yet any practical knowledge 
base must demonstrate knowledge that may constantly be updated. 

Having an actor in a CG does not necessarily require that when that actor is used that 
the entire sheet of assertion must be revalidated. When actors act, they can change  
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referents on the sheet of assertion, and every time that they change a referent, the entire 
sheet is suspect, and must be revalidated to ensure that the sheet is still consistent. 

At least two scenarios are possible. One scenario is that a single actor acts, either 
by changing or not changing the sheet of assertion.  In the case that the sheet of asser-
tion is not changed, then the sheet of assertion still maintains its previous consistency. 
In the case that the sheet of assertion does change, then all concepts associated with 
that changed referent must be re-evaluated.  This offers just a subset of all of the con-
cepts on the sheet of assertion. The subset’s size is based on the connections of the 
changed referent.  Thus, we argue that a benefit of finely-grained CGs is that if a sin-
gle referent changes, then it affects a much smaller scope than if a referent changes on 
a monolithic graph. 

A second scenario is that a single actor fires multiple times by design. Perhaps the 
actor is an iterator or a determiner of averages that must act several times until it has 
completed its job. Regardless, this class of actor must be noted as a class of actor that 
must complete multiple actions before the results are complete. In this situation, we 
wait for the actor to finish operating, and then follow the same rules as outlined above 
in the first scenario, treating a single actor that acts multiple times as a single actor 
that acts one time. 

To constrain the scope of actors in the case of iteration, we require contexts so that 
the entire graph would not need to be re-validated between each step of the iteration. 
Contexts are necessary in the first scenario to enclose the area of the conceptual graph 
that, in the worst case, every concept within needs to be reevaluated. Contexts are also 
necessary in the second scenario to indicate which concepts must complete before  
the actor is marked for firing again, which are necessary to formulate loops. We dem-
onstrate the use of contexts to control, in this case <foreach>, in Section 4. 

4   Operational Semantics of a Graph with Actors 

We can put sequence, alternative, and iteration together to get a programmatic CG. 
Fig 10 represents the CG that will be our case study. This graph can either sum or 
multiply the first three positive integers, and give us the result. 

 

 

Fig. 10. Sequence, alternative, and iteration shown together initially 
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Table 1. Steps 1 through 3 

Step Precondition Link Active Postcondition 
1 1,2,4,5 <notequal>, <equal> 
2 3,6 [Int: 1,2,3], [Int: 1,2,3]! 
3 9 <foreach> 

 

 

Fig. 11. At step 4 

Table 2. Steps 4 through 6 

Step Precondition Link Active Postcondition 
4 10 [Int: 1] 
5 14,15 <multiply> 
6 16 [Int: 1] 

 

 

Fig. 12. At step 9 
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As described in Table 1, during the first step, the links labeled 1, 2, 4 and 5 are  
active, which gives all necessary inputs to <notequal> and <equal>. At step 2, 
<notequal>’s output’s referent is not changed (this is the new functionality of 
<equal> and <notequal>), and the <equal>’s output’s referent is asserted. Since 
<notequal>’s referent is not declared, the path consisting of 7, 8, 11, 12 and 13 is 
disabled, and not considered for the rest of this example. At step 3, the inputs of the 
<foreach> with the activated input is updated. 

As described in Table 2, at step 4, the enabled <foreach> outputs its first input’s 
referent, [Int: 1]. At step 5, <multiply> acts since its inputs are updated, resulting, at 
step 6, in an output of [Int: 1], since <multiply>’s inputs are [Int: 1] and [Int: 1]. 

Table 3. Steps 7 through 9 

Step Precondition Link Active Postcondition 
7 10 [Int: 2] 
8 14,15 <multiply> 
9 16 [Int: 2] 
 

 

Fig. 13. At step 12 

Table 4. Steps 10 through 12 

Step Precondition Link Active Postcondition 
10 10 [Int: 3] 
11 14,15 <multiply> 
12 16 [Int: 6] 

 
As described in Table 3, during step 7, since the enabled thread had completed (all 

activity within the context had occurred), <foreach> outputs its next referent in its 
set, [Int: 2].  At step 8, <multiply> acts since its inputs are updated, resulting, at step 
9, in an output of [Int: 2], since <multiply>’s inputs are [Int: 2] and [Int: 1]. 

As described in Table 4, at step 10, since the enabled thread had completed (all ac-
tivity within the context had occurred), <foreach> outputs its next referent in its set, 
[Int: 3].  At step 11, <multiply> acts since its inputs are updated, resulting, at step 12, 
in an output of [Int: 6], since <multiply>’s inputs are [Int: 3] and [Int: 2]. 
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It is important to note that when a graph with actors is viewed, it is a snapshot of 
first-order logic, even though the graph with the actors represents second-order logic. 
This is extended to software that saves a graph with actors. When that graph is  
reopened, the graph should not necessarily be considered active; otherwise, it would 
be very difficult to be read by a human.  Instead, some sort of activation should have 
to be initiated before the graph activates. 

5   Discussion and Issues of Sequence 

We initially wanted to not enforce unique labeling of each link, but instead wanted to 
label links that could be active during the same step, as shown in Fig 14. 
 

 

Fig. 14. An example of sequence that violates an actor’s definition by not being able to decom-
pose back to all of the actors’ definition 

This gives us the benefit of being able to see the most concepts that can change in a 
given step; however, we are not able to make the transformation from a connected 
graph containing actors back to the set of primitive definition actors. 

We also would like to consider a pathological case. What if the outputs of two dif-
ferent actors happen to be the same concept?  (From [1], this is a conflicting concept.) 
Fig 15 would be machine dependent and nondeterministic and therefore not encour-
aged. But it does represent an example of a valid execution of Dijkstra’s guarded 
command [6]. 
 

 

Fig. 15. A pathological case, the guarded command 

We consider two scenarios where this type of graph would be useful. In the first, 
shown above, there are two different ways to arrive at the same value, and, depending 
on hardware implementation, one way is faster than the other.  In the second scenario, 
we have a case where only one of many possible criteria must be met.  For example, 
an individual wonders if they are eligible for a promotion and in order to be consid-
ered, they must satisfy one of two criteria.  The potential candidate must have: 
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A. three years relevant full-time experience after completion of a Master’s degree 
or 

B. a Master’s degree and five years relevant full-time experience after completion 
of a Bachelor’s degree. 

The following graph, Fig 16 describes this situation.  Here, [Database: Smith.txt] 
contains several columns with data that tells us relevant work and education data 
about an employee.  In this scenario, the columns are 

1. BeginWork: the year of graduation with a Bachelor’s Degree and the year that 
the employee began working 

2. MastersDegree: true if the employee has a Master’s degree, false otherwise 
3. MSGrad: the year of graduation with a Master’s degree 

In addition to what is found in the external repository, this graph also contains 

1. [Year: 2008]: the referent is populated by the actor <currentyear> 
2. [Experience: 2]: the referent is populated by <minus> which is a calculation 

of the number of years of experience from the year of graduation with a Mas-
ter’s degree and the current year 

3. [YearsNeeded: 3]: this referent came from the requirement that if you are go-
ing to be promoted based on Rule A, then you must have three years relevant 
full-time experience 

4. [Experience: 5]: this referent is populated by <minus> which is a calculation 
of the number of years of experience from the first year of work and the cur-
rent year 

5. [YearsNeeded: 5]: this referent came from the requirement that if you are go-
ing to be promoted based on Rule B, then you must have five years relevant 
full-time experience 

6. [Promoted: true]: this referent is the result of the employee being promoted 
because he meets the criteria based on Rule B, but could also apply to the em-
ployee if he meets the criteria based on Rule A. 

 

 

Fig. 16. Another pathological case, only one path needs to be true.  One path has arcs that begin 
with “A,” while the other path has arcs that begin with “B”. 
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In order for this to work as shown, there must exist some definition that a result of 
true, here [Promote: true], stops the action of the graph for which there is no simple 
indicator. Alternatively, there must be a way to define that a result of false stops  
the reasoner’s evaluation of the graph.  For instance, if an employer was checking the 
background of a potential employee, then that employer would probably stop the 
background check as soon as the employer found out that the candidate had a felony 
conviction. In addition to these features, the automatic parallelization of “A” arcs and 
“B” arcs would benefit us greatly.  As of now, the knowledge engineer must define 
these arcs himself.  

6   Background (or Previous Work) 

It is hard to argue against the merits of computers, and programming languages are a 
powerful force that makes computers general purpose.  However, little work has been 
done to further CGs as a programming language.  In [8], a review of the state of  
dynamic conceptual graphs was written, which focused on MODEL-ECS, while men-
tioning other executable systems based on conceptual graphs.  These include Sowa’s 
Actors and Dataflow Diagrams [1], Nagle’s CONGENT [9], Hartley’s Actor Graphs 
[10], Delugach’s Dynamic Conceptual Graph [11], Mineau’s Conceptual Program-
ming Environment [12], Kabbaj and Frasson’s Actors [13], Bos, et al.’s Executable 
Conceptual Graphs implemented on CoGITo platform [14], and Raban and 
Delugach’s Animating Conceptual Graphs [15]. 

MODEL-ECS introduced a new relationship to indicate sequence.  This conceptual 
construct, Finish Before Starting (FBS), is very interesting, and easily captures the 
desire of finishing many activities before beginning a new activity (or activities). 
However, for many sequences of individual activities, we feel that this would clutter 
the sheet of assertion. In [11] and [15], the idea of actors asserting referent values is 
discussed. We choose, in this paper, to really limit the changes and assertions of ref-
erents to a sequential and ordered fashion, but also without disagreeing with the idea 
addressed there. However, the idea of an initiator can describe the first input concept 
to the first actor in the sequence. The Conceptual Programming Environment [12] has 
been suggested where imperative programming and logical programming both coexist 
and complement each other. After [13], there has been additional work creating an 
object-oriented programming language based on CGs, named Synergy [16]. We par-
ticularly liked how Synergy breaks up actors into different slices of activity and how 
Synergy differentiates coupled and non-coupled actors. 

Visual programming languages exist on a large field with many players. The Labo-
ratory Virtual Instrumentation Engineering Workbench (LabVIEW) uses the dataflow 
programming language G which connects different function-nodes by drawing wires. 
The nodes can execute as soon as all input data is available, allowing inherent support 
for parallel execution [17], the same way CG actors can support parallel execution. 
However, LabVIEW is proprietary and is not managed by a third party standards 
committee. AgentSheets was developed to bridge the gap between what a customer 
wanted and what a programmer delivers [18].  Storytelling Alice is developed to teach 
programming, requires memorization of no syntax, and is designed to appeal to those 
who would not normally be exposed to programming [19]. Alice 2.0 extends Alice 
towards high school and college students.  
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All of these systems are building blocks that could lead in the future to bridging the 
gap between static, first order CGs and dynamic knowledge based systems. 

7   Conclusion and Summary 

We suggest the incorporation of actors into more uses of CGs. Actors need further 
definition, perhaps by using primitives, or more formally, using Herbrand’s Universe. 
We also believe that CGs can be considered a functional language.  Also, we would 
like to know where (if at all), CGs fit in with visual programming languages. It would 
be interesting to compare our CG research with OWL and RDF research. Further-
more, we would like to compare our research with the research done in [20] to ensure 
consistency. Finally, we would like to incorporate the work done in [21] regarding, 
among other topics, their use of sequences and their proofs regarding while loops. 
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Abstract. In this paper two developments in Conceptual Knowledge
Processing are combined, namely Contextual Logic introduced by Rudolf
Wille and Temporal Concept Analysis introduced by the author. The ba-
sic structures connecting both theories are Relational Semantic Systems
(RSS), each consisting of conceptual scales and a Relational Data Sys-
tems (RDS) for the representation of relational knowledge. We introduce
the notion of a concept graph of a RSS. As opposed to the definition of
a concept graph of a power context family the concepts used in the con-
cept graph of a RSS are taken from the conceptual scales and not from
the concept lattices of the contexts of k-ary relations. For the graphical
representation of relational knowledge in information maps we modify
tools from Temporal Concept Analysis and develop relational trace dia-
grams. Its usefulness is shown in a small example of a Relational Semantic
System.

1 Introduction

In this paper relational conceptual structures are investigated with the pur-
pose to develop practically successful methods for the representation, evaluation
and visualization of relational structures. These investigations are based on the
Theory of Conceptual Graphs as developed by J. Sowa [So84, So00] and the
mathematization of concepts in Formal Concept Analysis [Wi82, GW99a]. For
the purpose of representing relational knowledge R. Wille [Wi97] has introduced
power context families. To represent judgments he has introduced the notion
of a concept graph of a power context family which is now the main tool in
Contextual Judgment Logic and Contextual Conclusion Logic where inferences
between formal judgments are studied [Pr98, PW99]. To combine the knowledge
representation in power context families with the advantages of many-valued con-
texts and the successful tools for conceptual scaling, as for example the program
TOSCANAJ (see [BH05]), the notion of Relational Scaling has been introduced
in [PW99] and connected to database theory in [He02]. These ideas had been
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continued in the paper A Contextual-Logic Extension of TOSCANA [EGSW00].
From its abstract we cite:

As graphical representations we recommend, besides labelled line dia-
grams of concept lattices and Sowa’s diagrams of conceptual graphs,
particular information maps for utilizing background knowledge as much
as possible.

In the following we contribute to these investigations by combining power context
families and concept graphs with Conceptual Semantic Systems as introduced
by the author in [Wo05b, Wo06, Wo07a]. A first step into that direction was the
introduction of the notion of a Relational Data System (RDS) which, combined
with a family of conceptual scales, yields the notion of a Relational Semantic
System [Wo09]. These structures help to clarify the discussion about relational
and conceptual scaling in power context families; they also improve the practi-
cal representation of relational knowledge, including the development of useful
information maps.

1.1 Relational Trace Diagrams as Information Maps

An example of a nice information map about flights in Austria is shown in
[EGSW00], Fig. 8, where surrounded by the border-line of Austria the Austrian
towns with airport are represented as small circles which are connected by arrows
indicating flight connections. Each arrowhead is connected by a dashed line with
a small data table indicating further information about this flight connection,
as for example the corresponding flight numbers, its departure and arrival times
and its days.

The construction of a good information map needs a clever combination of
several graphical tools, in this case the border-line of Austria, the correctly
embedded points for the towns, the arrows and the small data tables. It is
obvious that the geographical information about the border-line and the towns
are not given in the data table on the Austrian flights as represented in Fig. 1
in [EGSW00].

It was shown by the author [Wo07a] how such geographical information can
be used to construct an information map which may also include life tracks of
moving objects (see Fig. 3 in [Wo07a]). The corresponding conceptual theory is
based on the notion of Temporal Conceptual Semantic Systems. The ideas de-
veloped there seem to be relevant also for the discussion of relational conceptual
structures in general. A first example has been shown by the author in [Wo09]
where an animation of the Austrian flights [EGSW00] is explained using life
tracks of flights.

In this paper we develop relational trace diagrams which are based on a new
representation of objects which generalizes the broadly employed objects as for-
mal objects strategy (OFOS) to represent objects from application domains as
formal objects in many-valued contexts or formal contexts.
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1.2 Representation of Objects: Not Necessarily as Formal Objects

Conceptual Semantic Systems have been introduced by the author [Wo04] with
the purpose to understand the physical notions of “particles” and “waves” from
a conceptual point of view. These notions are now well understood in that frame-
work. The main idea was to study the ternary relation that “an object is at some
time at some place” with respect to different granularities. That led to the notion
of a distributed object as for example a wave or a wave packet. For that reason
it was necessary to think about the role of formal objects and the consequences
of representing objects (like particles) as formal objects. The main consequence
of this representation is that each formal object has a unique object concept in
each part of the derived context of the scaled many-valued context. That is nice
if we represent a particle as a formal object and represent its place as an object
concept in the concept lattice representing the space. Such an object “occupies
a single point” in that space. But sometimes we wish to represent a particle, for
example a ball or an electron, in such a way that it occupies a certain volume
in space. For that purpose it is necessary to represent the objects not as formal
objects; the mostly used alternative is to represent objects as values in the data
table. That is for example the case when we represent several kinds of objects,
like persons, days, places and some judgments of the kind that a person visited
a place at some day. In the practice of many applications of FCA it is tried to
choose a suitable kind of objects, for example the persons, to be represented as
formal objects. Usually, the other objects are then represented as values in a
many-valued context. It is well-known for all experts in FCA that the obligation
to choose in some given application domain a suitable kind of objects to be rep-
resented as formal objects often yields no problems, but in some applications it
is quite problematic. A typical example was our search for a good representation
of temporal data where for example several persons at several points of time had
to be represented conceptually. Should we take the persons as formal objects or
the points of time? My actual solution to this problem, as given in the notion of
a Conceptual Semantic System, is to take none of the many kinds of objects as
formal objects. Instead, the formal objects g are interpreted as basic judgments,
each representing the information given in the row of g in the data table of the
given Conceptual Semantic System.

1.3 Formal Concepts as Values in a Many-Valued Context

At that point of the discussion we should notice that the usage of the notion of a
“value” in a many-valued context does not fit really well with the accepted and
basic doctrines of concepts, judgments, and conclusions [Wi00]. It seems natural
to understand a “value” as a concept, and to represent it as a formal concept in
some formal context which explains the meaning of the given “value”.

Therefore, in the definition of a conceptual semantic system (CSS) [Wo04] we
start with a family (Sm)m∈M of formal contexts; their formal concepts are used
as values of a many-valued context, described by a mapping λ : G × M → W
which satisfies λ(g, m) ∈ B(Sm) for all g ∈ G and all m ∈ M .
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Each element of g ∈ G represents the information (λ(g, m)m∈M ) given in its
row of the data table. For the theory and applications of CSS and temporal
CSS the reader is referred to [Wo04, Wo05b, Wo06, Wo07a, Wo07b]. Useful
construction methods for information maps based on (temporal) CSS have been
demonstrated in these papers, for example in [Wo07a], Fig. 3 where a weather
map with a moving high pressure zone is shown. It is well-known that such maps
are valuable tools for the representation of relational knowledge in a suitably
chosen granularity. The formal connection between these two important fields
of research, namely the relational structures on one side and the granularity
structures on the other side are not well understood until now. In this paper
we do some steps to improve our understanding of the connections among these
fields of research.

1.4 Relations and Granularity

For the purpose of combining relations and granularity in a mathematical theory
I like to use well-established approaches, namely to ground on the philosophical
doctrines of concepts, judgments, and conclusions as emphasized by R. Wille
[Wi00]. I also agree with Wille’s idea to represent relations as formal concepts,
such that the extent of such a relation concept is a subset of a direct product
of sets; hence the usual mathematical notion of a relation corresponds to the
extent of a relation concept.

For the formal representation of statements like
“ALICE works as a TEACHER in BERLIN” we introduce the relation “ . works
as a . in .” and formalize that statement as an infon in the sense of Devlin [De91]
by (. works as a . in .; ALICE, TEACHER, BERLIN). In general, an infon has
the form (R; x1, ..., xk) where R denotes a k-ary relation and (x1, ..., xk) ∈ R.

For the contextual representation of a set of infons with possibly different
arities of their relations we represent each infon in a row of a data table. The
formal definition of such conceptual structures has been introduced by the au-
thor in [Wo09] under the name Relational Semantic Systems (RSS) since they
are Conceptual Semantic Systems with an additional structure for the formal
representation of the relational information. This additional relational structure
is defined in the notion of a Relational Data Systems (RDS). The precise defini-
tions will be recalled from [Wo09] in the following.

2 Relational Data Systems

The main idea for the introduction of a Relational Data System can be explained
easily using the example in Table 1 where five infons labeled from 1,...,5 are
represented.

To represent statements like “BOB lives in ENGLAND” or “ALICE works
as a TEACHER in BERLIN” in a data table we have to represent some linear
ordering on the set of words of the statement. One possibility is to use the
spoken sequence of the words of the given statement, but we restrict ourselves
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Table 1. A data table for relational information

infon r∗ PERSON1 PERSON2 PROFESSION LOCATION
1 .lives in. BOB ENGLAND
2 .lives in. BOB LONDON
3 .works as a.in. ALICE TEACHER BERLIN
4 .meets.in. BOB ALICE PARIS
5 .is the native town of. ALICE PARIS

Table 2. The arity-position table

c α(c) PERSON1 PERSON2 PROFESSION LOCATION
.lives in. 2 1 2

.works as a.in. 3 1 2 3
.meets.in. 3 1 2 3

.is the native town of. 2 2 1

to statements of the form of an infon (R; x1, . . . , xn). The example “PARIS is
the native town of ALICE” shows that we do not insist that the statements have
to be read from left to right in the table; clearly, the set M of attributes of a
RDS is not assumed to be ordered.

In general, we map each value c of the many-valued attribute r∗ (called the
relational attribute) first to a non-negative integer α(c) which is interpreted as
its arity, second to a subset of the set of many-valued attributes β(c) which is
called the region of c, and third, for β(c) �= ∅, to a bijection πc which assigns to
each integer i ∈ [1, α(c)] a many-valued attribute πc(i) ∈ β(c), called the “i−th
position of c”. In our example the mappings α, β and πc are given in Table 2.

For example, for the relation “.lives in.” the arity is 2, the region β(.lives in.)
= {PERSON1, LOCATION} and the first position of “.lives in.” is PERSON1,
its second position is LOCATION. From Table 1 we see that there are two rows
in which the relation “.lives in.” occurs, giving the statements “BOB lives in
ENGLAND” and “BOB lives in LONDON”.

In the following mathematical definition of a Relational Data System we do
not represent any specific interpretation of the values as for example the inter-
pretation that a value “is a relation”. Therefore we do not use here the dots
occuring in the relation names.

2.1 Definition of a Relational Data System

The following definition of a Relational Data System has been introduced by
the author in [Wo09] with the purpose to represent any given power context
family, and any given concept graph, and to combine them with the possibility
for conceptual scaling which will be done in Relational Semantic Systems later.
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Definition 1. “Relational Data System”
Let G, M, W be sets, λ : G ×M → W . Then R := (G, M, W, λ, r∗, A, α, β, π) is
called a Relational Data System (RDS) if

– r∗ ∈ M

– A ⊆ Wr∗ := {λ(g, r∗) | g ∈ G}
– α : Wr∗ → N := {1, 2, . . .}
– β : Wr∗ → P(M \ {r∗}) := {X | X ⊆ M \ {r∗}}
– π is a mapping which maps each c ∈ Wr∗ with β(c) �= ∅ to a bijection

πc : [1, α(c)] → β(c).

For β(c) �= ∅ and 1 ≤ i ≤ α(c) the many-valued attribute πc(i) is called the
i−th position of c. For c ∈ Wr∗ the integer α(c) is called the arity of c. For
c ∈ Wr∗ let Dc := {g ∈ G | λ(g, r∗) = c}, and for β(c) �= ∅ and g ∈ Dc let
�c(g) := (λ(g, πc(i)))1≤i≤α(c); �c(g) is called the tuple of c at g. The set A ⊆ Wr∗

is called the set of artificial relations. The set A ⊆ Wr∗ will be used for the
representation of a normed power context family (Kk)k∈S by an RDS; then the
isolated formal objects of Kk, namely the elements of {g ∈ Gk | g↑ = ∅} will
be collected in an artificial relation k∗. Then β(c) �= ∅ for all c ∈ A and the set
τ(A) := {�c(g) | c ∈ A, g ∈ Dc} is disjoint from τ(Wr∗ \A).

3 Relational Data Systems and Power Context Families

Power context families have been introduced by Wille [Wi97] using the following
definition.

A power context family is a sequence �K := (K0, K1, K2, . . .) of formal
contexts Kk := (Gk, Mk, Ik) with Gk ⊆ (G0)k for k = 1, 2, . . .. The
formal concepts of Kk with k = 1, 2, . . . are called relation concepts,
because they represent k-ary relations on the object set G0 by their
extents.

For our purposes it is not necessary to distinguish between the formal contexts
K0 and K1. Furthermore, we would like to make explicit the dots “. . .” in the
previous definition by introducing a set S of indices.

Definition 2. “Normed Power Context Family of Type S”
�K := (Kk)k∈S is called a normed power context family of type S if

– S ⊆ N := {1, 2, . . .}, 1 ∈ S, and
– Kk = (Gk, Mk, Ik) is a formal context for all k ∈ S such that

Gk ⊆ (G1)k for k > 1.

�K is called a normed power context family (NPCF) if �K is a normed power
context family of type S for some set S.
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Clearly each power context family �K := (K0, K1, K2, . . .) in the sense of the
definition in [Wi97] can be represented by a normed power context family, simply
by deleting K0 and replacing K1 by (G0, M0∪M1, I0 ∪ I1) assuming M0 and M1
disjoint.

It has been proven by the author in [Wo09] that each normed power context
family can be faithfully represented by a RDS in the following sense.

In [Wo09] two operators R and �K have been introduced; R maps each normed
power context family �K to a Relational Data System R(�K), while �K maps each
Relational Data System R to a normed power context family �K(R); in [Wo09],
Proposition 1 says that for any normed power context family �K (with non-empty
contexts) we get �K(R(�K)) = �K; and Proposition 2 shows that for any RDS R

(with non-empty contexts in its power context family) we get �K(R(�K(R))) =
�K(R), but R(�K(R)) is not necessarily equal to R.

4 Relational Semantic Systems

4.1 Definition of a Relational Semantic Systems

In this section we recall from [Wo09] the notion of a Relational Semantic Sys-
tem (RSS) which covers the notions of a Conceptual Semantic System (CSS)
[Wo05b, Wo06] and the notion of a Relational Data System. That makes ex-
plicit the idea that we list in each row of a data table an infon (R; c1, . . . , ck).
According to traditional philosophical logic with its doctrines of concepts, judge-
ments, and conclusions (cf. [Wi00]) we start with concepts c1, . . . , ck which are
combined with a relational concept R to build an infon (R; c1, . . . , ck). There-
fore, we represent the concepts R, c1, . . . , ck as formal concepts of formal contexts
Sm (m ∈ M). These formal contexts will play the role of conceptual scales of
the many-valued context described in the following definition of a Relational
Semantic System.

Definition 3. “Relational Semantic System”
Let R := (G, M, W, λ, r∗, A, α, β, π) be a Relational Data System and for each
m ∈ M let Sm := (Gm, Nm, Im) be a formal context and B(Sm) its concept
lattice. If λ : G × M → W satisfies λ(g, m) ∈ B(Sm) for all g ∈ G and all
m ∈ M , then the pair (R, (Sm)m∈M ) is called a Relational Semantic System
(RSS).

Remark: If (R, (Sm)m∈M ) is a RSS, then (G, M, (B(Sm))m∈M , λ) is a CSS.

4.2 Example of a Relational Semantic Systems

We construct a RSS (R1, (Sm)m∈M ) from the
RDS R1 := (G, M, W, λ, r∗, A, α, β, π) given in Table 1 and Table 2, where
G := {1, 2, 3, 4, 5}, M := {r∗, PERSON1, PERSON2, PROFESSION,
LOCATION}, W :=

⋃
m∈M B(Sm); to define the scales we denote for any
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Fig. 1. The scale for LOCATION

set X by N(X) := (X, X, =) the nominal scale on X .
Sr∗ := N({.lives in., .works as a.in, .meets.in., .is the native town of.}),
SPERSON1 := SPERSON2 := N({BOB, ALICE}),
SPROFESSION := N({TEACHER}),
SLOCATION is given by the line diagram of its concept lattice in Fig. 1.

For g ∈ G and m ∈ M let λ(g, m) := γm(h) be the object concept in Sm of the
formal object h which occurs in row g and column m in Table 1. For example, the
fact that the name “BOB” occurs in Table 1 in row 1 and column “PERSON1”
is understood as an abbreviation for λ(1, PERSON1) = γPERSON1(BOB). For
short, each value in Table 1 is a formal object in the scale of its column and
represents its object concept in that scale.

In other examples the tabular description of the mapping λ may not use the
object names for the representation of object concepts, for example if some λ-
values are not object concepts. To continue the definition of the RDS R1 we
mention that r∗ is the relational attribute, that A := ∅, and that α, β, π can be
seen from the arity-position table in Table 2.

5 Concept Graphs of a Relational Semantic System

5.1 Definition of a Concept Graph of a Relational Semantic System

To define the notion of a concept graph of a Relational Data System we recall
the definition of a relational graph ([Wi04]).

A relational graph is a structure (V, E, ν) consisting of two disjoint sets V
and E together with a map ν : E →

⋃
k=1,2,... V

k; the elements of V and E are
called vertices and edges, respectively, and ν(e) = (v1, . . . , vk) is read: v1, . . . , vk

are the adjacent vertices of the k-ary edge e (|e| := k is the arity of e; the arity
of a vertex is defined to be 0). Let E(k) be the set of all elements of V ∪ E of
arity k (k = 0, 1, 2, . . .).
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In the following definition of a concept graph of a RSS we modify the definition
of a concept graph of a power context family.

Definition 4. “Concept Graph of a Relational Semantic System”
Let (R, (Sm)m∈M ) be a RSS and R := (G, M, W, λ, r∗, A, α, β, π). A concept
graph of (R, (Sm)m∈M ) is a structure G := (V, E, ν, κ, ρ) for which

– (V, E, ν) is a relational graph, where the arity of an edge e ∈ E is |e| := k,
if ν(e) ∈ V k

– κ: V ∪ E →
⋃

m∈M B(Sm)
– ρ: V → P(

⋃
m∈M\{r∗} B(Sm))\{∅}

such that for v ∈ V and e ∈ E

1. κ(v) ∈
⋃

m∈M\{r∗} B(Sm)
2. κ(e) ∈ B(Sr∗)
3. if ν(e) = (v1, . . . , vk), then α(κ(e)) = k = |e| and for 1 ≤ i ≤ k
4. κ(vi) ∈ B(Sp(e,i)), where p(e, i) := πκ(e)(i) is the i-th position of κ(e) and
5. ρ(vi) ⊆ B(Sp(e,i)) such that
6. d ≤ κ(vi) for all concepts d ∈ ρ(vi) and
7. for all (d1, . . . , dk) ∈ ρ(v1)× . . .× ρ(vk) there is a g ∈ G such that

λ(g, r∗) = κ(e) =: c and �c(g) = (d1, . . . , dk).

This definition of a concept graph of a RSS differs from the definition of a
concept graph of a power context family in a remarkable point, namely in the
choice of the employed concept lattices: for a concept graph of a RSS the concept
lattices B(Sm) are employed, while for a concept graph of a power context family
(K0, K1, K2, . . .) the concept lattices B(Kk) are used. Either of the two series of
concept lattices are needed: the concept lattices B(Sm) represent the meaning
of the formal concepts which occur as values in a given RSS (R, (Sm)m∈M );
the concept lattice B(Kk) of the power context family �K(R) represents the
intersections of all chosen k−ary relations.

An example of a concept graph of a Relational Semantic System will be shown
in the next subsection.

5.2 Example of a Concept Graph of a Relational Semantic System

Fig. 2 shows a graphic representing a concept graph of the Relational Semantic
System (R1, (Sm)m∈M ). This graphic is drawn according to J. Sowa’s convention
for drawing conceptual graphs [So84]. This concept graph represents a judgment
consisting of the first four infons in Table 1.

The graphic in Fig. 2 visualizes the relational graph with three edges e1, e2, e3,
drawn as ellipses, and six vertices v1, . . . , v6, drawn as boxes. The ellipse of an
edge e is connected to the boxes of its adjacent vertices by straight lines which
are labeled by the integers 1, . . . , |e| where |e| is the arity of e. For example,
ν(e2) = (v1, v4, v3) is the tuple of adjacent vertices of e2. Now it is easily seen
that Fig. 2 represents a relational graph.
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Fig. 2. A concept graph of a Relational Semantic System

To define the mappings κ and ρ using Fig. 2 we mention that the name in the
ellipse of an edge e denotes the formal concept κ(e); for example, κ(e1) is the
object concept of the formal object “.lives in.” in the scale Sr∗ . The first name in
the box of a vertex v denotes the formal concept κ(v), the second name denotes
its reference set ρ(v). In Fig. 2 the first name in a box denotes the top concept
of the corresponding scale; for example, κ(v2) = LOCATION is understood
here as the top concept in the concept lattice of SLOCATION . Therefore, one can
easily check that κ and ρ are mappings as demanded.

Conditions (1.) to (3.) in Def. 4 are obviously satisfied, for example, the arity
α(κ(e1)) = α(.lives in.) = 2 = |e1|. Condition (4.) is satisfied; for example, in
the tuple ν(e2) = (v1, v4, v3) the vertex v4 as the second entry in that tuple sat-
isfies that κ(v4) is the top concept of the scale SPERSON1 = SPERSON2 , hence
it is an element of B(SPERSON2) and PERSON2 = p(κ(e2), 2) is the second
position of κ(e2), the object concept of “.meets.in.”. Condition (5.) is also satis-
fied; as an example we choose edge e1 and its second vertex v2. Its reference set is
ρ(v2) = {γLOCATION(ENGLAND), γLOCATION (LONDON)} which is a sub-
set of B(Sp(e1,2)) = B(SLOCATION ). Obviously, condition (6.) is satisfied; we dis-
cuss condition (7.) for the edge e1; for each of the two 2-tuples in the setρ(v1)×ρ(v2)
there is an infon satisfying the condition, namely infon 1 and infon 2, see Table 1.
Condition (7.) is satisfied obviously also for the other edges.

6 Relational Trace Diagrams

Trace diagrams have been introduced by the author [Wo07a]. The main idea
for the construction of trace diagrams stems from usual weather maps where
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Fig. 3. An information map of the location view

information about many entities like pressure or temperature is embedded into
a single map. In this section we introduce relational trace diagrams of Relational
Semantic Systems using a small example.

6.1 Example of a Relational Trace Diagram

Fig. 3 shows a relational trace diagram of the Relational Semantic System of the
previous example.

It is constructed as follows: starting from the RSS (R1, (Sm)m∈M ) in the
previous example we take its underlying CSS (G, M, (B(Sm))m∈M , λ) where
Sm = (Gm, Nm, Im) (m ∈ M) and construct its (semantically) derived context
[Wo07a]

K := (G, N, J) where N := {(m, n) | m ∈ M, n ∈ Nm} and
gJ(m, n) :⇐⇒ n ∈ int(λ(g, m)).

Remark: Roughly speaking, each formal concept λ(g, m) ∈ B(Sm) is repre-
sented in the derived context by its intent.

Then we select a view Q which is defined as a subset Q ⊆ N and construct
its corresponding subcontext KQ := (G, Q, J ∩ (G × Q)), called the Q−part
of K. For the concept lattice in Fig. 3 the view is chosen as the set of the
LOCATION-attributes in N . The concept lattice of the Q−part is shown in
Fig. 3. To understand the role of the infons 1,...,5 in this Q−part we mention,
that for each many-valued attribute m ∈ M and each formal object (infon)
g ∈ G in the m−part Km := (G, {m} × Nm, J ∩ (G × ({m} × Nm))) of the
(semantically) derived context K := (G, N, J) we have
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gJ = {(m, n)|n ∈ B} in Km ⇐⇒ B is the intent of λ(g, m) in Sm

by definition of the semantically derived context.
For example, for the many-valued attribute LOCATION and the infon 2 the

set B = {London, England, european} is the intent of λ(2, LOCATION) =
μLOCATION (London), the attribute concept of London in the scale SLOCATION .

To explain the representation of relational knowledge in Fig. 3 we use the object
representation and the traces of objects in CSS as introduced in [Wo07a, Wo07b].

6.2 Object Representation and Traces of Objects

For the formal definition of the notion of an object in Conceptual Semantic
Systems and the definition of a trace of an object in some view Q the reader is re-
ferred to [Wo07a, Wo07b]. To present the main ideas quickly we use our example
of the RSS (R1, (Sm)m∈M ) where we represent the object “BOB” not as a for-
mal object, but as the formal concept μPERSON1(BOB) of the scale SPERSON1 .
Then we select the set S := {g ∈ G|λ(g, PERSON1) = μPERSON1(BOB)} and
construct the set of object concepts γLOCATION (S) which is a special trace of
the formal concept μPERSON1(BOB) in the LOCATION-view. This set of three
object concepts is visualized in Fig. 3 by the rectangle labeled “BOB”.

Clearly, in the same way we can represent traces of relation concepts in B(Sr∗).
They are shown in Fig. 3 for all four relation concepts. The same can be done
for subtuples of an infon; for example, we might be interested in which locations
Alice works as a teacher, for short denoted by the question “ALICE works as
a TEACHER in ?”; then we would find only the object concept of 3 in the
LOCATION-view, and that is the attribute concept of BERLIN.

The construction of such traces can be supported in the computer program
TOSCANAJ choosing the scale of the view Q as the last in the priority list
for the nested line diagrams. For example, for the question “ALICE works as a
TEACHER in ?” one should choose the priority list (PERSON2, r∗, PROFES-
SION, LOCATION). Clicking on ALICE, .works as a.in., TEACHER in their
scales yields only those object concepts which satisfy all the conditions. Hence
the trace of the object tuple (ALICE, .works as a.in., TEACHER) consists only
of the object concept of 3, hence we get as answer the location “BERLIN”.

7 Conclusion and Future Work

In this paper two developments in Conceptual Knowledge Processing are com-
bined, namely Contextual Logic introduced by Rudolf Wille and Temporal Con-
cept Analysis introduced by the author. The basic structures which can now
serve for both theories are Relational Semantic Systems. They are defined using
the notion of a Relational Data System which has been introduced recently by
the author for the representation of relational knowledge [Wo09].

A Relational Semantic System (R, (Sm)m∈M ) contains the conceptual scales
Sm as well as the relational scales, namely the formal contexts of its power con-
text family �K(R). The concept graphs of a Relational Semantic System represent
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formal concepts of the conceptual scales, while the concept graphs of a power
context family represent the formal concepts of the relational scales.

For the graphical representation of relational structures we have employed
the object representation by tuples and the visualization of traces of objects
as developed by the author in Temporal Concept Analysis. That yields trace
diagrams for the representation of relational knowledge. Its usefulness is shown
in a small example of a Relational Semantic System.

Future work has to combine the rich theory in Contextual Logic with Rela-
tional Semantic Systems. One of the most challenging problems is the develop-
ment of a Conclusion Logic in Relational Semantic Systems. In many problems in
practice the relational structures change with time, therefore temporal Relational
Semantic Systems should be developed.
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