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Preface

The nature of conceptual thinking constitutes a central topic in a variety of
scientific disciplines. Since 1993, the International Conference on Conceptual
Structures (ICCS) has served as a platform that brings together researchers and
practioners in information and computer sciences as well as social science to
explore novel ways of representing and analyzing conceptual knowledge. Origi-
nally centered around research on knowledge representation and reasoning with
conceptual graphs, over the years ICCS has broadened its scope to include inno-
vations from a wider range of theories and related practices, among them other
forms of graph-based formalisms like RDF or existential graphs, formal concept
analysis, Semantic Web technologies, ontologies, concept mapping and more.
Today, ICCS draws inspiration from areas as diverse as artificial intelligence,
knowledge representation and reasoning, applied mathematics and lattice the-
ory, computational linguistics, conceptual modeling and design, diagrammatic
reasoning and logic, intelligent systems and knowledge management.

In addition to vivid conferences, the vibrancy of the field is documented
by two recently published books (Hitzler, Schirfe (Eds): Conceptual Structures
in Practice and Chein, Mugnier: Graph-based Knowledge Representation: Com-
putational Foundations of Conceptual Graphs) as well as by an ISO standard
(“Common Logic”, ISO/ IEC 24707) which orginated in this community.

This volume contains the proceedings of ICCS 2009, the 17th International
Conference on Conceptual Structures (ICCS) held in Moscow. The theme of
ICCS 2009, “leveraging semantic technologies,” hints at the large overlap of the
research fields of semantic technologies and conceptual structures, and empha-
sizes the goal of closer connecting these two areas. We are confident that fostering
the exchange of ideas will lead to cross-fertilization and mutual benefit. We are
proud that we could welcome seven renowned researchers who elaborated on the
relationship between conceptual structures and semantic technologies from dif-
ferent perspectives. Five of the seven speakers submitted accompanying papers
which were peer reviewed and included in this volume.

Roughly 50 papers were submitted to ICCS 2009 for peer review. All submis-
sions were assessed by at least three referees one of whom was an Editorial Board
member, who managed any neccessary revisions. The top-ranked 18 papers were
selected for this volume, amounting to an acceptance rate of about 35%. Another
nine papers were published in a supplementary volume as CEUR workshop pro-
ceedings. The thorough selection process would not have been possible without
the help of the numerous reviewers to whom we express our thanks.

Last but not least, we would also like to thank the local organizing team and
the administration of the State University Higher School of Economics (Moscow)
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who — with genuine Russian hospitality — took care of all the arrangements to
make this conference pleasant and enjoyable.

July 2009 Sebastian Rudolph
Frithjof Dau
Sergei O. Kuznetsov
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The Maturing Semantic Web: Lessons in
Web-Scale Knowledge Representation

Mark Greaves

Vulcan Inc.
MarkG@vulcan.com

Abstract. This paper is an extended abstract of the talk given at
ICCS’09. Rules have long been considered as an essential component
of knowledge-based systems. We focus here on conceptual graph rules
and on the semantically equivalent knowledge constructs in logic and
databases, namely rules with existential variables and tuple-generating
dependencies. The aim of this presentation is to synthesize main de-
cidability, complexity and algorithmic results obtained on this kind of
rules. We emphasize the fact that the graph vision of rules has led to
new results.
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Concept Formation in Linguistic Ontologies

Natalia Loukachevitch

Research Computing Center of M.V. Lomonosov Moscow State University
(NIVC MGU)
Leninskiye Gory 1, building 4, NIVC MGU, Moscow 119991, Russia
louk@mail.cir.ru

Abstract. Problems of conceptualization in linguistic ontologies are discussed
We show that it is necessary to form concepts of a linguistic ontology as close
as possible to the meanings of linguistic units, because excessive generalization
and clustering of meanings necessarily lead to distortions in the system of rela-
tions, excessive problems in a specific subject field, or an application. At the
same time it is important to ensure that concepts can be distinguished from su-
perconcepts and sibling concepts. The usage of really existing multiword ex-
pressions helps us mitigate these contradictory requirements. The introduction
of concepts on the basis of multiword expressions does not change the essence
of a linguistic ontology, but also makes the distinction between the concepts
much clearer.

Keywords: thesaurus, linguistic ontology, conceptualization.

1 Introduction

An ontology is often considered to be independent of a natural language [1,2,3].
D. Lenat [4] emphasizes that taking the meaning of words into account can only
confuse (“words are often red herrings”), the meanings of words divide the world
ambiguously, and the division lines come from a variety of reasons: historical,
physiological, etc.

From another point of view an ontology can not be fully independent of natural lan-
guage. Names of the concepts in ontologies are often formulated in natural language —
this is a standard practice that has been used in knowledge representation systems in
artificial intelligence [2,5]. Breuster et.al [6] stress that people manipulate concepts
through words. In all known ontologies the words are used to represent concepts. There-
fore, phenomena that are not verbalized, can not be modelled. The Breuster et.al char-
acterize this phenomenon as the Ontological Whorf-Sapir hypothesis, i.e. “that which
can not be captured by words cannot be represented in an ontology.” Y. Wilks [2,5]
asserts that the symbols in representation languages are fundamentally based on the
natural language, that a representation language is a means of human communication
with the inherent dynamics, polysemy and possibility of extended interpretation.

Moreover, in ontological resources developed for specific domains most ontology
concepts are related to the meanings of domain terms. So J. Tsujii and S. Ananiadou [7]
stress that “in many fields of application, knowledge to be shared and integrated is

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 2 2009.
© Springer-Verlag Berlin Heidelberg 2009
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presented mostly in text”. Many ontologies in biology, such as GO (Gene Ontology) [8],
actually represent the information-retrieval thesauri (controlled vocabularies), and they
by nature differ from ontologies, required within the formal ontological approach to
knowledge description.

As a result a paradoxical notion of linguistic ontology emerges, i.e. an ontology,
concepts of which are considerably related to the meanings of linguistic units, the
terms of the subject field [9, 10]. Linguistic ontologies cover most of the words of the
language or the subject field, and at the same time they have an ontological structure
represented in relations between the concepts. Therefore, a linguistic ontology can be
considered as a special kind of a lexical database and a special type of an ontology.
Linguistic ontologies are relatively weakly formalized, i.e. they belong to the “termi-
nological” ontologies according to J. Sowa [11]. The role of the “linguistic ontolo-
gies” increases greatly in applications related to natural language processing.

Examples of linguistic ontologies are the Princeton WordNet [12] and wordnets of
other languages. Information retrieval thesauri can also be considered as linguistic
ontologies.One of the serious problems in the linguistic ontology development con-
sists in formulation of the principles for the concepts formation, since the relations
between the concepts and lexical meanings are quite complex. Understanding these
issues is important for developers of any types of ontologies, because creation of any
ontology deals more or less with lexical or terminological meanings.

In this paper we will describe problems of concept formation in linguistic ontolo-
gies. We will consider principles for introducing a new concept in such linguistic
ontologies as Princeton WordNet, MikroKosmos ontology [2], information-retrieval
thesauri. Finally, we present our approach to description of concepts in Thesaurus of
Russian language - RuThes, which we also consider to be a linguistic ontology [13].

RuThes is used in information-retrieval applications, such as conceptual indexing;
automatic text categorization, document clustering, automatic text summarization,
question-answering. At present it includes more than 50 thousand concepts and more
than 140 thousand Russian words and multiword expressions. It was translated into
English and comprises almost 130 thousand English words and expressions.

2 Principles of Concept Introduction and Lexical Senses

The general recommendations on the ontology concepts formation are usually de-
scribed as follows [3,14,15]. One needs to distinguish the concept and its name, i.e.
synonyms of the same concept do not represent different classes, synonyms are just
different names of the concepts.

A child concept should be distinctly different from the parent one. This difference
can be expressed in the form of a distinctive property that the child concept bears, in
limitations on slot fillers that are distinct from limitations of other classes; or in the
existence of additional relationships with other concepts. A concept must be clearly
distinguished from the concepts at the same level (sibling concepts).

These recommendations are not easy to realize if the developed ontology is based
on the existing linguistic meanings. First of all, it is not easy to distinguish a concept
and its names, working with linguistic meanings. Secondly, a critical challenge
for resources designed for the natural language processing is the presentation of
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ambiguous words, especially if the meanings are closely related to each other. More-
over, a serious problem is caused by the words with similar meanings, or near-
synonyms, the meanings of which can differ in several features (conceptual content,
speaker’s attitude, collocations, etc.), and be dependent on the context.

In the following sections we will discuss the way these problems are solved in spe-
cific linguistic ontologies. We will use the following notation: CONCEPT, term or
word, ‘meaning’, ‘transcription of Russian words’.

3 Confusion of a Concept and Its Name in Linguistic Ontologies

3.1 Confusion of a Concept and Its Name in WordNet

Initially, WordNet was considered to be a lexical rather than an ontological resource.
However, over time, the growing importance of the ontological research, as well as
the similarity of the WordNet nouns hierarchy with an ontology became appar-
ent [16]. At the same time there exist a lot of deficiencies of WordNet descriptions
from ontological point of view [17].

Numerous examples of confusion between concept and its name can be found in
WordNet. This is due to the fact that the basic relation in WordNet is the synonymy.
Sets of synonyms — synsets — are the main structural elements of WordNet. Defini-
tions of synonyms in synsets are based on the principle of substitution of one for an-
other in sentences [12]. This basic principle of the WordNet construction leads to the
situation when different synsets are introduced for different ways of naming same
entities.

There are several types of confusion of concepts and their names in wordnet-like
resources.

First of all, the confusion of concepts and their names shows itself in the support of
different hierarchies for different parts of speech. Indeed, if, for example, the PRI-
VATIZATION concept (privatize, privatization) is mentioned in a text using what-
ever parts of speech — it is always a reference to the same concept with the help of
different lexical means, the parts of speech changing should not affect the relations
between this concept and other concepts.

The first Wordnet followers (EuroWordNet project) considered the integration of
all parts of speech—derivatives in a single synset, since such division is contrary to the
principles of the development of ontological resources. However, the decision to
connect parts of speech in the same hierarchy was not made [18].

The second type of confusion of a concept and its name in WordNet is the usage of
different synsets to describe the old and new names, the names of concepts in differ-
ent dialects of the language, in different text genres, etc.

According to ontological principles of the distinction of an entity and its name, all
these different names should not produce new units of representation or concepts;
they should remain to be textual expressions of the same concept. To differentiate the
features of their linguistic use, they can be provided with extra labeling.

Thus, in the Princeton WordNet, one can find numerous examples of synsets,
which appeared due to different characteristics of the use of words. For example, for
describing slang synonyms of the word “nose”, a special synset is introduced. This
synset is presented as hyponym of nose synset.
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beak, honker, hooter, nozzle, snoot, snout, schnozzle,
schnoz -- (informal terms for the nose)

Informal words related to money are also collected in a separate synset:

boodle, bread, cabbage, clams, dinero, dough, gelt,
kale, lettuce, lolly, lucre, loot, moolah, pelf,
scratch, shekels, simoleons, sugar, wampum -- (informal
terms for money)

Several synsets fix specific features of English dialects, as a special synset for
domestic ass in British English:

Moke 1 -- (British informal)

domestic ass, donkey, Equus asinus -- (domestic beast
of burden descended from the African wild ass; patient
but stubborn)

Next example of confusion of a concept and its names consists in description of
monetary units with the same name used in different countries such as franc or
centime:

franc -- (the basic monetary unit in many countries;
equal to 100 centimes)

centime -- (a fractional monetary unit of several
countries: France and Algeria and Belgium and Burkina
Faso and Burundi and Cameroon and Chad and the Congo and
Gabon and Haiti and the Ivory Coast and Luxembourg and
Mali and Morocco and Niger and Rwanda and Senegal and
Switzerland and Togo)

From the ontological point of view such synsets are not valid, because similarity
between different monetary units is only their names, they are different in value .
Therefore concepts should be introduced for such entities as Swiss franc, French
franc, American dollar, Canadian dollar, and so on.

3.2 Differentiation of Ontology and Lexicon in the MikroKosmos Ontology

The authors of the MikroKosmos [3] ontology make a clear distinction between an
ontology and a lexicon. The concepts of the ontology are described as frames — sets of
slots. The system’s lexicon describes the meaning of words and phrases, by establish-
ing links from them to the ontology concepts. This division mainly prevents confusion
of a concept and its name.

The MikroKosmos ontology is relatively small; it contains about 6 thousand con-
cepts. The lexicon contains tens of thousand linguistic expressions. A lexicon entry
can have a simple structure - a reference to an ontology concept, or a rather complex
structure, containing both a reference to an ontology concept and features of a particu-
lar lexical unit. The names of a concept in the ontology can look like English words
or phrases, but their semantics is expressed by a set of well-defined relations between
concepts.

The authors declare the independence of ontology from a specific natural language
that manifests itself in two aspects:
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1) the ontology contains no units specific to a language such as English or
Spanish, although the names of concepts are given in English for the sake of
convenience.

2) the concepts of ontology do not have one-to-one mapping to word senses in
natural languages. Many concepts may not be mapped to any word in the
language; other concepts may correspond to several words in the same
language and vice versa.

The main stages of the ontology development include:

e assessment whether the meaning of a word gives a sufficient ground for the
introduction of a new concept;

e location of the concept in the ontology, identification of existing concepts
which can be described as generic concepts for the new one;

e  description of the new concept features that should differ from the properties
of superconcepts and subconcepts. These features are given not just by slots
filling, but also in a more informative way, e.g., in the availability of other
properties or relations to other concepts.

Thus, the proclaimed linguistic independence should not be misleading. At its core,
the MikroKosmos ontology is certainly a linguistic ontology, because, the basic prin-
ciple, which justifies the introduction of new concepts, is the existence of words with
the same meaning in many languages.

At the same time, the principle of linguistic independence of this ontology stresses
that in the construction of a linguistic ontology it is not necessary to follow the system
of meanings of a specific language. A linguistic ontology can take into account the
system of meanings of a particular language or an aggregate of languages, and in
doing so adhere to the ontological principles of the concepts introduction.

3.3 Concepts and Terms in Information Retrieval Thesauri

Information retrieval thesauri are usually considered as a kind of ontological re-
sources [19]. In addition, thesauri are based on the terms of a subject field, so they can
also be considered as linguistic ontologies. Conventional information-retrieval
thesauri regulated by national and international standards [20, 21] are intended to be
used in manual indexing by human indexers.

The basic thesauri units are terms that are divided into descriptors (= authorized
terms) and non-descriptors (= ascriptors). Most standards for information-retrieval
thesauri highlight the connection between the terms and concepts of a subject field.
The American standard points out that a term is one or more words referring to a
concept. The ISO standard [20] emphasizes that an indexing term is a concept presen-
tation, preferably in the form of a noun or a noun phrase. A concept is considered as a
unit of a thought, mentally formed to reflect some or all of the properties of a concrete
or an abstract, real or mental object. Concepts exist as abstract entities, regardless of
the terms that express them.

It should be noted that not all thesauri developers distinguished concepts and
terms. Thus, developers of AGROVOC thesaurus characterize their resource as
term-oriented; it is manifested in the fact that a term cannot be complemented with
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synonyms. This feature of the thesaurus is considered by the authors as a disadvan-
tage that must be corrected [22].

An important property of a descriptor is that it should be formulated explicitly, its
implied meaning in the thesaurus should be clear to the user. If an unambiguous and
clear descriptor cannot be found, the term, taken as a descriptor is supplied with a
“relator” (a brief note) or a comment.

American standard Z39.19 [21] recommends to use relators for descriptors’ names,
even when a descriptor sounds uniquely within a given subject field, but has different
meanings in the general language, or other domains. This makes it easier to search
through multiple databases and to compare descriptors of various subject fields. For
example, it is proposed to introduce Shells (structures) descriptor for the engineering
subject field, since the word shell has a lot of meanings in English.

4 Similar Meanings of Ambiguous Words

The existence of closely related meanings of ambiguous words presents major diffi-
culties for developers of linguistic ontologies. The difficulty of automatic disambigua-
tion of ambiguous words requires to formulate principles for the description of such
sets of related meanings as concepts of a linguistic ontology.

4.1 Similar Meanings of Ambiguous Words in WordNet

Many authors admit that the differences of meanings in WordNet are too fine-grained
for such applications as machine translation, information retrieval, text classification,
question-answering systems, etc. In [23] it was indicated that the average number of
senses in WordNet is larger than in traditional lexicographical dictionaries.

The number of senses of certain lexical items may vary in different lexical re-
sources, dictionaries. However, a large number of meanings in WordNet causes diffi-
culties in applications related to natural language processing and brings about the
question of how and what senses can be combined (“clustered”) [24, 25] to use them
in the applications.

Gonzalo [26] pointed out that the experiments on sense clustering led to a conclu-
sion that the typology of the relations between different senses of ambiguous words is
more useful than the formation of sense clusters, because sense proximity depends on
the application. For example, metaphoric senses belong to different semantic fields
therefore distinction of such senses is very important for information retrieval applica-
tions and question-answering systems. However, for machine translation applications,
this distinction may be unimportant, as the metaphorical transfer may be similar in
different languages.

Fellbaum and Miller [27] review attempts to cluster senses of WordNet. They em-
phasize that the sense clustering can be based on a variety of alternative criteria (se-
mantic, syntactical, domain-oriented), which apparently confirms the significance of
different sense clusters for natural language applications.The problem of automatic
selection of WordNet senses in practical applications can be mitigated through the use
of semantically-marked, according to WordNet meanings, corpus SemCor [28].
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The OntoNotes project proposed its own way of integrating lexical meanings of an
ambiguous word and concepts formation [29], which is based on the consideration of
the use of an ambiguous word in a corpus, representing the majority of its senses. All
examples of use are analyzed and divided into groups of senses most distant from
each other, a branch node in the tree is created, and then for each node the process
should be iterated.

The development of the ontology of word senses depends on the explanatory need
or application requirements. A standard termination condition for the ontology devel-
opment process is the absence of an obvious way of splitting the remaining group of
senses into subgroups, or the existence of equally reasonable ways of splitting it into
subgroups according to different reasons. The work also highlights the usefulness of a
multilingual consideration for the appropriate separation of the meanings and
concepts.

Consider an example of the verb drive, for which WordNet provides 22 individual
senses. In OntoNotes project two independent experts defined 7 most important
groups of meanings of this verb. The most frequent group of senses comprises seven
senses from WordNet and can be called “Operating or traveling by means of a
vehicle”:

WN1: Can you drive a truck?

WNZ2: drive to school,

WN3: drive her to school,

WN12: this truck drives well,

WN13: He drives taxi,

WN14: The car drove around the corner,
WN16: Drive the turnpike to work.

It should be stressed that, e.g. from the viewpoint of a Russian native speaker this
group of senses is not very evident because these senses correspond to 5 different
(non-synonymous) Russian words: ‘vodit’ (WN1, WN13), ‘ehat’ (WN2, WN12),
‘vezti’ (WN3), ‘povernut’ (WN14), *proehat’ (WN16).

4.2 Similar Meanings of Ambiguous Words in the MikroKosmos Ontology

The basic rule, proclaimed for dealing with similar meanings of ambiguous words in
the MikroKosmos ontology, is the reduction of polysemy rule [3]: it is necessary to
decide how many dictionary meanings a particular lexical sense can represent, and to
unite as many meanings as possible, so there will be as few different senses as
possible.

The principles of distinguishing meanings are as follows:

e A candidate meaning must be clearly distinguishable from the already
described meanings.

e It is necessary to check whether the meaning needs further clarification, if it
is used in a short sentence. If one needs additional context to figure out what
meaning is used, the meaning should not be introduced, but must be attrib-
uted to one of the existing meanings.
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e It is necessary to check whether there is a property in the description of the
meaning, which is filled with too small number of fillers. If so, the meaning
must also be assigned to one of the more common meanings, or described as
a multiword expression.

Seemingly, this procedure should reduce the problem of sense disambiguation, but
on the other hand, it leads to violations of the ontology structure. Thus, N. Guarino
[17] criticizes several existing ontologies, including the MikroKosmos ontology, for
the polysemy of ontological nodes, e.g., for the treatment of the WINDOW concept
as an artifact and as a place at the same time.

The problem resides in the fact that window in different contexts may denote an
opening (A man looked out of the window) and an artifact (The workers mounted a
window), and these entities WINDOW (OPENING) and WINDOW (ARTIFACT) are
very closely linked to each other. This criticism relates to the fact that, in Guarino
opinion, the polysemy in ontological nodes should not be permitted in any form. To
conform to the principle of forbidding polysemy nodes, the ontology should have
different nodes at different locations for such concepts as WINDOW (ARTIFACT)
and WINDOW (OPENING).

To reply to N. Guarino, the authors of the ontology [3, p. 129] explain that the fact
of the English word window having two meanings is not crucial for the ontology
development, since it is not considered that the relations between the meanings of the
natural language (or, more precisely, the meanings of all known languages) and the
ontology concepts should have a unique correspondence.

As a justification for their position the authors argue that they do not know such a
natural language, in which the word for the WINDOW concept does not realize two
meanings: the meaning of an opening and the meaning of an artifact. This semantic
genericity is the strongest argument in favour of the fact that people can combine
these two concepts. The authors of the ontology also emphasize that “an effort to split
ontological concepts into ever smaller unambiguous units leads to a sharp increase in
polysemy and, therefore, makes the task of disambiguation so much more difficult...
So if the ontology is made less ambiguous, it only means that the ambiguity will have
to be treated increasingly elsewhere” [3, p. 132].

However, we need to agree with N. Guarino that violations of the ontological
structure is also a serious problem because, if it is required to use the described rela-
tionships between the concepts for the logical inference, then at first it will be neces-
sary to determine if these relationships could be applied in current context, which
means that the problem of choosing the right meaning of an ambiguous word simply
shifted to another stage of text processing.

4.3 Lack of Similar Meanings of Ambiguous Words in Information Retrieval
Thesauri

Recently terms were considered to be unambiguous, context-independent linguistic
units, now it is known that the terms have many features of the common language
units, in particular, the terms can also be ambiguous, and their meanings can be very
similar, for example, industrial production (the process and the outcome).
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However, as the traditional information retrieval thesauri are not intended for the
automatic processing of texts, usually only one of related term meanings is presented
in an information-retrieval thesaurus.

5 Near-Synonyms in Linguistic Ontologies

The problem with near-synonyms, i.e. different words with similar meanings, is that
they can differ in many features: denotative content, language register, evaluation,
dialect, collocations, etc. This justifies the existence of a special genre of “dictionaries
of synonyms”, which explain in detail the specificity of using synonyms.

For many of these sets of near-synonyms it is extremely difficult to establish a
unique correspondence in other languages, because in another language the corre-
sponding set of near-synonyms is characterized by its own system of parametric
differences and, accordingly, its own specificities.

Although the linguistic ontology takes into account the existing lexical meanings,
nevertheless it should remain to be an ontology. According to general principles of
ontological hierarchy (see Section 2) its main elements — the concepts -- should have
clear, context-independent differences from the related concepts.

G. Hirst [30] explains that for the description of the words with similar meanings
in the linguistic ontologies, it is necessary to implement one more level of representa-
tion, a conceptual-semantic level. This level should specify a relatively coarse
conceptual hierarchical system, which is based on denotative, context-independent
properties of words. Each concept is linked to a set of near-synonyms, and their
features (stylistic, evaluation, connotations, etc.) are described in additional
intra-conceptual structures.

However, the denotative component of the meaning is often very difficult to sepa-
rate from other components. For example, consider the problem of determining the
optimal number of concepts (and principles of it) to be associated with the following
set of words with the meaning ‘error’: error, fault, omission, oversight, blunder,
mistake, miss, screw-up, dereliction, defect.

The authors of work [31] point out that it is often very difficult to determine the
words with similar meaning that should better be described as a part of the internal
structure of concept, and which should belong to different concepts. On the one hand,
linguist’s intuition can help. On the other hand, a look at the conceptual structure in
terms of another language can really help to better delimit the boundaries of the
concepts.

5.1 Near-Synonyms in WordNet

To describe the relationship between meanings according to the principles of the
possibility of synonymous substitutions in same sentences, as it was made during the
creation of Princeton WordNet, means that near-synonyms should be classified on
several grounds, as the synonymous substitution of the word must take into account
conceptual, stylistic, attitudinal and other components of the meaning. It is clear that
the development of a hierarchy on such grounds is impossible; the whole construction
becomes very volatile during the transition from language to language.
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Therefore, WordNet has a large number of synsets that are difficult to distinguish
from one another; this violates the ontological principles of descriptions of the con-
cepts. For example, there are four different synsets denoting likeness, similarity, each
next synset is a hyponym of the previous, which is hardly distinguishable from its
hyperonym:

sameness -- (the quality of being alike)
similarity -- (the quality of being similar)
likeness, alikeness, similitude -- (similarity in

appearance or character or nature between persons or
things)

resemblance -- (similarity in appearance or external or
superficial details)

5.2 Near-Synonyms in MikroKosmos Ontology

In the MikroKosmos ontology large sets of near-synonyms are related to the same
concept of ontology, their specific features are described in the lexicon [3].

The authors provide an example: all the ‘change’ verbs are assigned to the same
concept of CHANGE-EVENT. The features of the words are described in lexicon
entries, for example, for the verb fo increase it is pointed out that the THEME se-
mantic role of the verb should be presented by a SCALAR_VALUE (for example,
price or height) and the value of this quantity is changed to a larger one. The meaning
of the word Zionist is represented in the dictionary as a POLITICAL_ROLE, which
isan AGENT_OF a SUPPORT_EVENT, the theme of which is Israel. The meaning
of the word to asphalt is described as a COVER_EVENT, an instrument of which is
the ASPHALT concept.

Using the Web site of the ontology (http://ilit.umbc.edu), we can see that the situa-
tion with the implementation of the principles is quite complicated. The concept
CHANGE_EVENT is associated to a long list of words in the lexicon. In the list there
are such words as acclimatization, commerzialization, contamination, damage, dete-
riorate, improve, and many others — there are no separate concepts for these words.

At the same time, the following concepts can be seen lower in the hierarchy: AD-
JUST, CORRECT-EVENT, DIVIDE, INTEGRATE, RESTRUCTURE, etc. It is not
clear why separate concepts were introduced for some of the words, but were not
introduced for the others. Why the meaning of word acclimatization does not deserve
an independent concept, although there are important relations to climate, biological
processes, but the meaning of adjust has received a concept?

In addition to questions of consistency/inconsistency in the description, there are
clear consequences for the natural language processing applications. Thus, it is diffi-
cult to establish what words from a larger list of lexical entries to the concept of
CHANGE-EVENT can be regarded as synonyms, and what are the relations between
other words. Besides, one cannot specify the relations between, e.g., the asphalting
and road works.

In addition, in domain-specific applications the relatively small size of the ontol-
ogy leads to the introduction of additional concepts even for words that are already
included in the lexicon.
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Thus, we believe that in MikroKosmos ontology the problem of near-synonyms is
being solved by overgeneralization, which can lead to problems in real subject do-
mains. In our opinion, it is necessary to implement an additional level of concepts,
which would help to divide the words more clearly, not dumping them into large
chunks.

5.3 Near-Synonyms in Information Retrieval Thesauri

In information-retrieval thesauri, each descriptor, which most often corresponds to a
concept, combines several ascriptors that are considered as equivalent. Ascriptors are
of three sub-types [20,21]:

e actual synonyms;
e lexical variations,
e  quasi-synonyms.

Lexical variants differ from synonyms in that they represent some modification of
the same expression, for example, different spelling, abbreviations, etc.

Quasi-synonyms are terms, the meanings of which generally differ, but are re-
garded as equivalents for the purposes of the thesaurus, for example, antonyms are
often regarded as quasi-synonyms (nuclear danger — nuclear safety). Other frequent
type of quasi-synonyms is the case where some integrating type is considered as a
descriptor, and its subspecies are described as ascriptors.

For example, in the thesaurus LIV of Research Service of the U.S. Congress [32]
descriptor Transplantation of organs, tissues etc. contains such ascriptors as medical
transplantation, organ transplantation, skin grafting, surgical transplantation, tissue
transplantation, some of which could be considered as subordinate concepts (Skin
grafting).

In the same thesaurus, the term deflation is included as an ascriptor in the thesaurus
entry of the descriptor inflation, because the developers believe that these are different
manifestations of a more general concept. Typically, thesauri authors prefer introduc-
ing more quasi-synonyms for concepts, regarded as peripheral to the basic domain of
the developed thesaurus.

In addition, standards and guidelines for the creation of information-retrieval
thesauri often recommend not to include some kinds of terms into a thesaurus.

Relatively low frequency terms can be removed from the list of candidate terms, or
represented as ascriptors for more common or more frequent concepts. Too specific
terms may also be excluded from the list, since it is believed that if a thesaurus
contains too many hierarchy levels, it is difficult to manage. In particular indexing
subjectivity increases, since indexers can use descriptors of different levels for docu-
ments indexing [21]. If several terms with similar meanings were revealed, it is neces-
sary to choose the most representative one; the remaining terms can be partially
removed and transferred to ascriptors.

Thus, in traditional information retrieval thesauri some near-synonyms are excluded
from consideration, other near-synonyms are introduced as ascriptors. The exclusion of
near-synonyms from a thesaurus, made for the sake of convenience and reduction of the
subjectivity of manual indexing, results in decline of search quality if the information
retrieval thesaurus is used in automatic modes of document processing.

Table 1 summarizes above-mentioned distinctions in concept formation approaches.
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Table 1. Specific features of concept formation approaches in linguistic ontologies

Problems of WordNet MikroKosmos Information-

concept retrieval thesauri

formation

Confusion of Concept and Concept and names | Concept and names

concepts and names are often | are rarely confused | are rarely confused

their names confused

Representation Very detailed Related senses of No related senses

of related senses | description of ambiguous words

of ambiguous senses are rarely described

words

Relations There are no Related senses are -

between related | relations be- generalized to the

senses tween related same concept
senses

Near-synonyms | Sets of near- Near-synonyms are | Near-synonyms are
synonyms are generalized to the absent or presented as
arbitrarily split same concept ascriptors to the same
to synsets descriptor

6 Concepts and Senses in Thesaurus of Russian Language RuThes

RuThes Thesaurus of Russian language [13] can be called a linguistic ontology for the
automatic text processing, i.e. an ontology, where the majority of concepts are intro-
duced on the basis of actual linguistic expressions.

RuThes is a hierarchical network of concepts. Each concept has a name, relations
with other concepts, a set of linguistic expressions, i.e., text entries (words, phrases,
terms), the meanings of which correspond to the concept.

In construction of the Thesaurus we combined three different methodologies [12,
20, 21, 15, 17]:

o the methods of construction of information-retrieval thesauri (information-
retrieval context, analysis of terminology, terminology-based concepts, a
small set of relation types)

e the development of wordnets for various languages (word-based concepts,
detailed sets of synonyms, description of ambiguous text expressions)

e ontology and formal ontology research (concepts as main units, strictness of
relations description, necessity of many-step inference).

The main types of relations are taxonomic relations and a specific set of conceptual
relations based on ontological dependence relations [33, 34]. This set of relations was
experimentally confirmed to be effective in information-retrieval applications [35,
36].

In the following sections we will present the principles of concept description in
RuThes.
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6.1 Scope of Concepts in Thesaurus RuThes

Most concepts in RuThes are associated with the meanings of linguistic expressions.

Linguistic expressions that may give rise to an independent concept in the Thesau-
rus RuThes belong not only to the general vocabulary, but also can be terms of spe-
cific subject domains within the scope of social life (economy, law, international
relations, politics), and of the infrastructure (transport, banks, etc.), so-called socio-
political domain (Fig.1). This is due to the fact that many professional concepts,
terms, and slang of these domains penetrate easily into the general language, and can
become widely discussed in mass media [37].

Socio-Political Domain

W@

Levels of Hierarchy

<

Fig. 1. Specific domains vs. Socio-political domain

Multiword expressions are also actively used as concept sources in RuThes. The
basic principle of introducing this kind of concepts is the need to record some addi-
tional information that cannot be described on the basis of component word concepts.

6.2 Concept of Ontology Is Not a Synset

In RuThes, a unit is presented not by a set of similar words or terms, as it is done in
the WordNet thesaurus, but by a concept — as a unit of thought, which can be associ-
ated with several synonymic language expressions.

Words and phrases, the meanings of which are represented as references to the same
concepts of the thesaurus, are called text entries. Text entries of a concept can be:

e words that belong to different parts of speech (stabilization, stabilize,
stabilized);

e linguistic expressions relating to different linguistic styles, genres;

e single words, idioms, free multiword expressions, the meanings of which
correspond to this concept.

Concepts often have more than 10 text entries including single nouns, verbs, adjec-
tives and noun or verb groups. For example, a set of English text entries of concept
JUDICIAL COURT looks as follows:
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court, court authorities, court instance, court of
judiciary, court of jurisdiction, court of justice, court
of law, judicature, judicial bodies, judicial court,
judicial organ, judicial tribunal, law court, tribunal.

NATURE PROTECTION concept comprises such English expressions as:

conservancy, conservation of nature, to conserve
nature, to conserve natural environment, defense of
nature, maintenance of nature, nature conservation,
nature conservative, to protect nature, protection of
nature

and others.

6.3 Concept Name

To work with concepts, to analyse the results of automatic text processing, each con-
cept should have a clear, univocal and concise name. From this point of view, the
synonymic sets are not very convenient to use as concept names. Moreover, a synset
can consist only of a single ambiguous word and needs additional explication.
Therefore, in the RuThes ontology, each concept has an assigned name.
Name of a concept can be:

one of unambiguous synonyms;

an unambiguous multiword expression;

a pair of synonyms that uniquely identifies the concept;

an ambiguous word with a relator similar to those used in traditional infor-
mation retrieval thesauri.

If necessary, a concept may have a comment, which is not a part of the concept
name. This is the usual practice in the development of traditional information retrieval
thesauri.

6.4 Closely Related Senses in RuThes

The problem of similar meanings of ambiguous words, which may be very hard for
compilers of explanatory dictionaries, often become even more complicated for de-
velopers of computational linguistic resources. It is often assumed that the integration
of similar senses would help reducing the complexity of this problem in computa-
tional vocabularies.

However, such clustering may cause other problems.

First of all, as it was already noted, the integration of similar senses may be differ-
ent depending on an intended application, e.g., machine translation, information
extraction, or information retrieval.

Secondly, if we look at the example with word window, the problem of confusion
of the name of the concept and the actual concept itself reappears. For example,
WINDOW (OPENING) and WINDOW (ARTIFACT) are distinctly different entities,
which arose and existed for some time independent of each other. Integration of dif-
ferent entities because of their similar names presents an example of such confusion.
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As we have stated in Section 4.2 the integration of two different entities results in
confusion of their relations with other concepts, which eventually may affect the logi-
cal inference.

[ ARTIFACT ]
A A A A
Is a
Is_a
WALL_OPENING
opening in the wall
I
Is_a s
Is_a Is_a

WINDOW DOOR

OPENING OPENING
window door, doorway
N N
1 1
' external external !
1 depend. dependence |
| |

[ WINDOW FRAME ] [ DOOR FRAME ]
A A
whole whole
WINDOW PANE DOOR BOARD
window, pane of the window door

Fig. 2. Set of concepts corresponding to ambiguous words window and door

Finally, each of these independent entities can be expressed precisely and unambi-
guously: WINDOW (OPENING) can be expressed as window opening (351,000
pages in Google), a WINDOW (ARTIFACT) can be expressed as window pane
(697,000 pages in Google). As a result of integration of the initial concepts, window
opening has become a synonym of window pane.

Thus, in our opinion, if there are distinctly different entities with their own sets of re-
lations and text entries, then they need to be represented by different concepts, even if
these individual entities are closely related, and there is a word that can refer to both
entities. However, since such entities as WINDOW (OPENING) and WINDOW (AR-
TIFACT) are closely related, there should be a relation between respective concepts.

Note that these relations should not be relations of metaphor, metonymy, ho-
monymy, as discussed in [26] (see Section 4.1), because these are linguistic relations
between the characters, not between the concepts.
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In RuThes, one usually employs the part-whole and external dependence [33, 34,
35] relations to describe the relation between closely related entities, which may be
named by same ambiguous words. In particular, the concept WINDOW (ARTIFACT)
is externally dependent on concept WINDOW (OPENING), since to define concept
WINDOW (ARTIFACT) one should have concept WINDOW (OPENING) already
defined (Fig.2).

The existence of relations between the related entities simplifies disambiguation of
words like window, since it is possible to give a default meaning and to choose it in
complex cases.

6.5 Near-Synonyms in RuThes

To describe a set of related meanings of near-synonyms through a set of concepts of a
linguistic ontology, the following procedure is applied in RuThes.

The first step is to identify components of the meaning that either always (regard-
less of the context of use) exist for at least one word of a near-synonyms set, or may
occur in certain contexts for several words of a set. In a set of words that are close to
the word similarity (see respective WordNet synsets in Section 5.1), this element of
the meaning is, for example, the similarity of the external characteristics:

Likeness, alikeness, similitude - (similarity in
appearance or character or nature between persons or
things)

Resemblance - (similarity in appearance or external or
superficial details).

The notation suggests that ‘similarity in appearance’ meaning is significant for
people, and this fact should be reflected in the respective concept.

The second step is to find a suitable name for such a concept. In the case of near-
synonyms to the word similarity, the name of such a concept could be SIMILARITY
IN APPEARANCE (34,700 pages in the Google). The concept is introduced in the
thesaurus with the chosen name.

The next step is to find different ways of expressing the same concept in the form
of phrases and single words, e.g., resemblance in appearance, similarity of appear-
ance, external resemblance, etc. All these variants are added as text entries to the
concept description.

To reflect the meaning of the words that often express this concept in particular,
but can also be used to express the similarity in whole, e.g., resemblance, this word
is referred to as a text entry to the concept SIMILARITY IN APPEARANCE, and as a
text entry to the general concept SIMILARITY.

Fig. 3 presents the resultant set of concepts and their text entries. Such words
as resemblance and likeness are described as text entries for two different con-
cepts because of their vague meaning. Thus, we are trying to create context-
independent, distinguishable concepts, which are as close as possible to the
linguistic meanings.
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SIMILARITY
resemblance, likeness

SIMILARITY IN APPEARANCE
resemblance in appearance, similarity of appearance,
external resemblance, resemblance, likeness, alikeness

MUTUAL RESEMBLANCE

- MIRROR IMAGE
symmetrical resemblance

reflection, reflexion, mirror
reflection, mirror symmetry,
reflection symmetry

[ SPLITTING IMAGE }

Fig. 3. Formation of distinguishable concepts for near-synonyms of word similarity

The analysis of word meanings is similar to feature-based analysis that is often ac-
complished with Formal Concept Analysis methods [38]. But we try to introduce
additional taxonomic categories on the basis of existing language expressions.

In the analysis above it was not necessary to use representations of similar mean-
ings in other natural languages. However, taking into account the examples from
another language may be very helpful for recognition of poorly distinguishable
concepts.

7 Recommendations for Developers of Formal Ontologies

As we argue that concepts of an ontology cannot be fully separated from natural lan-
guage meanings we can formulate several recommendations that follow from our
consideration of concept-meaning interactions in linguistic ontologies.

In applying Formal Concept Analysis to ontology development one encounters
the problem of huge number of taxonomic categories (formal concepts) automati-
cally obtained from a formal context [39, 40]. An additional condition of choosing
the most important concepts can be based on existence of words or multiword ex-
pressions with corresponding meanings. For example, in the lattice from [39]
(Fig. 4), at least four of six intermediate concepts can be named using existing
phrases: BRAIN SIGNAL (39), MOUSE BRAIN (38), SIGNAL PATHWAY (77),
VERTEBRATE BRAIN (36).

Developers of an ontology can deal with related entities named by same ambiguous
word and, therefore, it can be difficult to distinguish these entities. In these case it can
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‘vertebrata | | human‘ growth H phenotvpe].lcnnsgwalmn U mammalian

Fig. 4. Some of intermediate concepts in the example from [38 ] have linguistic names

be helpful to find multiword expressions including the same word (or derivative
words) and synonymous to this ambiguous word, which can clarify these meanings.
We described this procedure for word window in Section 6.4 and used such expres-
sions as window pane and window opening.

Another example is ambiguous word “nation”. This word can denote both political
nation, which means ‘state, country’, and ethnic nation, which means ‘ethnicity’. So
we can see different entities behind this word and the procedure does not require
professional linguistic competence.

At last if an entity seems to have unstable attributes which appear or disappear in
different contexts it is possible that the language ambiguity takes place. In such cases
it is helpful to use more stable concepts fixing the attributes. We used this procedure
in Section 6.5 introducing concept SIMILARITY IN APPEARANCE. And again we use
a multiword expression to reveal and fix this concept.

8 Conclusion

Ontology developers can hardly avoid the influence of linguistic meanings, linguistic
polysemy, since the names of concepts and relations in ontologies have mnemonic
names, the knowledge in many subject fields is hidden in texts.

Therefore, it is important for ontology developers to understand the problems re-
lated to the formation of concepts on the basis of linguistic meanings, namely:

e The problem of distinguishing the concept and its name.
e The problem of presenting closely related meanings of ambiguous words.
e The problem of splitting meanings of near-synonyms into concepts.

In developing the RuThes as a linguistic ontology we are trying to adhere to two,
generally speaking, contradictory criteria.

On the one hand, we form concepts of the thesaurus as close as possible to the
meanings of linguistic units. As practice has shown, the excessive generalization and
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clustering of meanings necessarily lead to distortions in the system of relations, to
problems in a specific subject field, or an application.

On the other hand, we try to ensure that a concept is still a concept, i.e. it is, at
least, distinguishable from the superordinate concept and the sibling concepts.

Exploitation of really existing multiword expressions helps us mitigate these con-
tradictory requirements. The introduction of concepts on the basis of multiword ex-
pressions does not only change the essence of a linguistic ontology, but also makes
the distinction between the concepts much clearer.

For the concept of ontology, which is clearly distinguishable from other concepts,
it is much easier to find equivalents in another language in the form of single words or
multiword expressions. So distinguishable concepts do a linguistic ontology more
language-independent.

Taking into account the examples from other language(s) is very useful for recog-
nition of poorly distinguishable concepts.
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Abstract. This paper is an extended abstract of the talk given at
ICCS’09. Rules have long been considered as an essential component
of knowledge-based systems. We focus here on conceptual graph rules
and on the semantically equivalent knowledge constructs in logic and
databases, namely rules with existential variables and tuple-generating
dependencies. The aim of this presentation is to synthesize main de-
cidability, complexity and algorithmic results obtained on this kind of
rules. We emphasize the fact that the graph vision of rules has led to
new results.

1 Introduction

Rules have long been considered as an essential component of knowledge-based
systems. In this talk, we focus on rules in conceptual graphs (CG) and on the
equivalent knowledge constructs in logic and databases. For precise definitions
of all conceptual graph notions used in this presentation, we refer to [CMO0S].

A conceptual graph rule (in short R : H — C) can be seen as a pair (H,C)
of basic conceptual graphs, provided with a one to one correspondence between
a subset of generic nodes in H and a subset of generic nodes in C. H and C'
are respectively called the hypothesis and the conclusion of the rule. The distin-
guished nodes in H and C are called connection nodes. Figure [l shows a CG rule
(pictured with Cogu). The correspondence between connection nodes is visu-
alized by dotted lines. The logical translation of this rule is VaVy(Person(x) A
Person(y) A siblingO f(x,y) — Jz(Person(z) A Parent(z,x) A Parent(z,y)).
This kind of logical rule is more general than the (positive) rules usually con-
sidered in logic programming or deductive databases. Indeed, there might be
variables in the conclusion which are existentially quantified, hence the name
V3-rule given to this kind of formula in [BLMS09].

A V3-rule has the same form as a very general kind of dependency studied in
databases called tuple-generating dependency (TGD) [AHV95]. It can also be
seen as an abstraction for ontological knowledge expressed in specific knowledge
representation languages, f.i. the RDFS rules [Hay04], constraints in F-logic-
Lite [CKO06][CGKO§|, as well as some kinds of inclusions in description logics
[BCM™03].

! http://www.lirmm.fr/cogui
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Fig. 1. A conceptual graph rule

Let us point out that, in conceptual graphs, concept types and relations are
ordered by a specialization relation, and that the processing of this order is di-
rectly integrated in conceptual graph mechanisms. This feature does not add
expressivity with respect to V3-rules, since specialization orders can be trans-
lated into simple rules of form Vzy...xp(t1(21...2;) — t2(x1...2)), where t1 is a
specialization of to, k = 1 if t; and t5 are concept types, otherwise k is the arity of
the relations. However, the specialization orders are managed with simple label
comparisons, which leads to more efficient knowledge processing mechanisms.

The aim of this presentation is to synthesize theoretical and algorithmic
results obtained on conceptual graph rules, as well as on the semantically equiv-
alent knowledge constructs in logic and databases, namely V3-rules and tuple-
generating dependencies. We emphasize the fact that the graph vision of rules
has led to new results.

2 Deduction with CG Rules

A conceptual graph vocabulary, also called support, contains finite ordered sets
of concept types and of relations (as well as a set of individual markers, relation
signatures, assertions of disjointness between concept types, ...). It can be seen
as a very basic ontology. Basic conceptual graphs (BG) are used to express facts
and queries. They are logically translated into existentially closed conjunctions
of atoms. A BG itself can express a boolean database conjunctive query (i.e. with
a yes/no answer) and, when generic concept nodes are distinguished to represent
the answer part of the query, it is equivalent to a general conjunctive query. Let
us consider conceptual graph knowledge bases (KBs) composed of a vocabulary,
a set of facts (which can also be seen as a single fact) and a set of rules. Several
fundamental problems on these KBs are computationally equivalent, namely fact
deduction (is a fact deducible from a KB?), rule deduction (is a rule deducible
from a KB?) and boolean conjunctive query answering in presence of incomplete
knowledge (is a boolean conjunctive query deducible from a KB 7). Very simple
polynomial reductions allow to go from one problem to another. Since a fact can
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be seen as a rule with an empty hypothesis, fact deduction is a particular case
of rule deduction. In turn, rule deduction can be reduced to fact deduction. The
following transformation comes from [BV84] (and was applied to TGDs). Let K
be the KB and R be the rule for which we want to know if it is deducible from
the KB. Let R’ : H' — C’ be obtained from R by replacing, in each pair of
corresponding connection nodes, the generic marker by a new individual marker
that does not appear in K nor R. Let K’ be obtained from K by adding the
new fact H'. Then, R is deducible from K if and only if the fact C’ is deducible
from K’. Since a fact has the same form as a boolean conjunctive query, the
equivalence of fact deduction and boolean query answering is immediate. From
now on, we focus on fact deduction, which we simply call DEDUCTION (and all
results concerning this problem can be immediately recast in terms of the other
problems).

There are two classical ways of processing rules. Forward chaining starts from
the facts and applies rules to facts to produce new facts. A derivation is a
sequence of rule applications leading from an initial fact to an enriched fact.
Backward chaining starts from a question, usually called a goal, and tries to
build a derivation leading to an answer to this goal in a backward manner. We
assume that the reader is familiar with both paradigms.

Conceptual graph rules are provided with sound and complete forward and
backward chaining mechanisms, which operate directly on their graph form. For
forward chaining, the basic notion is the BG homomorphism, classically called
projection in the CG community (however, we do prefer to use the term homo-
morphism because it relates this notion to relational algebra and graph theory;
moreover, the CG projection may be confused with the projection operator in re-
lational algebra). The fundamental property is that BG homomorphism is sound
and complete with respect to logical deduction [CM92)]: given two BGs G and
H built on a vocabulary V, there is a homomorphism from G to H if and only if
&(@G) can be deduced from @(H) and &(V) (for the completeness part, either H
has to be in a normal form, or a variant of homomorphism can be used to avoid
this normality condition [CM04]). Homomorphism checking is NP-complete. A
rule R : H — C can be applied to a fact F if there is a homomorphism h from
H to F. Applying R to F' according to h consists of “adding” C' to F' in a way
defined by h (each connection node in C' is merged with the image by h of the
corresponding connection node in H). This yields a sound and complete mech-
anism: given a KB K composed of a vocabulary V, a fact F' and set of rules
R, and a query @ (also built on V), there is a derivation from F to a fact F”
using rules of R, and a homomorphism from @ to F’, if and only if $(Q) can be
deduced from ¢(K) (i.e. (V) UP(R) U {P(F)}) [SMIG].

Backward chaining relies on a wunification operation, between part of a cur-
rent goal and a rule conclusion. In logic programming, the conclusion of a rule
consists of a single atom, thus unification involves one atom of the goal and the
atom of a conclusion. [GW95] proposed a sound and complete backward mech-
anism for conceptual graph rules very similar to this mechanism. The goal is
split into trivial subgraphs composed of a relation node and its neighbors. Then,
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unification involves a trivial subgraph of the goal and an atom of the conclu-
sion. In [SM96], a more complex unification operation is defined, which aims
at exploiting the complex structure of a conceptual graph rule: it allows one to
process conclusions and goals without decomposing them into trivial subgraphs.
This mechanism will be detailed in section @l

It is easily checked that forward chaining may not halt, even with criteria avoid-
ing redundant applications of rules. Backward chaining may not halt either. The
fundamental reason is that DEDUCTION is not decidable, but only semi-decidable.
This has been first proven for TGDs in [BV84]. Two other proofs for CGs can be
found in [BagO1] (with a reduction from the halting problem of a Turing machine,
which proves that DEDUCTION with rules is a computation model) and in [BM02]
(with a reduction from the word problem in a semi-thue system). It thus important
to define large and meaningful cases in which the problem is decidable. Decidable
cases may be defined by an abstract property which guarantees decidability. How-
ever, such an abstract property is generally not provided with a finite procedure
allowing to determine whether a given set of rules has the property or not. The next
step is thus to exhibit concrete cases, which fulfill the abstract property and can
be recognized by a finite procedure. The conditions defining concrete cases may be
relative to each rule independently or to a set of rules.

Obviously, if the forward chaining is guaranteed to halt with a kind of rules,
then DEDUCTION is decidable in this particular case. This leads to the following
abstract property: a set of rules is called a finite expansion set if it is guaranteed,
for any fact, that after a finite number of rule applications, all further rule
applications will become redundant, i.e. will produce facts equivalent to the
current fact; DEDUCTION is decidable for finite expansion sets of rules [BM02].
Two concrete cases of finite expansion sets of rules are range-restricted rules
and disconnected rules. A range-restricted rule is such that all concept nodes of
the conclusion are either connection nodes or nodes with an individual marker
(in logical terms: it is a V3-rule without existentially quantified variable in the
conclusion, which corresponds to a range-restricted rule in positive Datalog).
A disconnected rule has no connection nodes. DEDUCTION with a set of range-
restricted rules or a set of disconnected rules is NP-complete (assuming that the
arity of relations is bounded), thus is in the same complexity as DEDUCTION
with facts only, which involves a simple homomorphism test.

In [BLMS09], a similar abstract property is exhibited in relation with back-
ward chaining. Given a goal @) and a rule R, a rewriting of () with R is a graph
obtained by a unification of ) with the conclusion of R. A set of rules R is called
a finite unification set if it is guaranteed, for any goal, that there is a finite set
Q of rewritings of @ with rules in R, such that any other possible rewriting of
@ is more specific than an element of Q. Two concrete cases of finite unification
sets are exhibited in [BLMS09]: atomic hypothesis rules and domain restricted
rules. In an atomic hypothesis rule, the hypothesis contains a single atom. These
rules are particularly well adapted to express necessary properties of concepts
or relations in ontological languages, without any restriction on the form of the
conclusion (i.e. rules of form C(x) — P or r(z; ...x,) — P, where C is a concept
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type, r a k-ary relation and P any set of atoms). The second kind of rules does
not put any restriction on the form of the hypothesis but constrains the form of
the conclusion: in a domain restricted rule, each atom of the conclusion contains
all or none of the variables in the hypothesis. The complexity of DEDUCTION for
these particular kinds of rules has not been studied yet.

Other decidable cases are not based on individual properties of rules but on
interactions between rules and will be presented in the next sections.

3 Equivalent Problems in Databases

Tuple-generating dependencies (T'GDs) are a very general class of dependencies,
encoding most dependencies in databases [AHV95)]. They have exactly the same
logical form as V3-rules. If a TGD is not satisfied by a database instance, it is
possible to repair the database instance by extending it with new atoms. The
procedure that enforces the validity of a set of TGDs is called the chase: it
is equivalent to forward chaining. The chase was first introduced for the TGD
implication problem: given a set of TGDs T', and a TGD t, is ¢ implied by 7'? (this
problem is the same as the above rule deduction problem). A related problem is
the query containment problem under a set of TGDs: given a set of TGDs T', and
two conjunctive queries ¢; and g9, is the the set of answers to ¢; included in the
set of answers to g2 for any database satisfying 7' (i.e. satisfying each TGD in
T) ? A problem more recently introduced is query answering on incomplete data
[CLRO3]: given a set of TGDs T, a database instance D, that may not satisfy T,
a conjunctive query ¢ and a tuple of values ¢, is ¢ an answer to ¢ in a database
instance obtained from D by enforcing T' 7 All these problems can be proven
equivalent to DEDUCTION.

Interestingly, very recent results have exhibited classes of TGDs for which
the problem is decidable even if the chase does not halt [CGKOS]. The abstract
property is that when all facts generated by a set of rules have a “bounded
treewidth” then DEDUCTION is decidable. Note that this class of rules includes
finite expansion sets, but not finite unification sets. Concrete cases of rules sat-
isfying this abstract property are the guarded TGDs, and their generalization
to weakly guarded TGDs. A TGD is guarded if its body (i.e. hypothesis) in-
cludes an atom, called guard, that contains all variables occurring in the body.
Weakly guarded TGDs are an extension of guarded TGDs that requires guards
to contain only some variables in the body (see [CGKOS8] for a precise defini-
tion). This property cannot be checked independently on each rule, but requires
to consider the whole set of rules. It is shown that the problem is EXPTIME-
complete (with the assumption of bounded predicate arities) for weakly guarded
TGDs, and even for guarded TGDs. It becomes NP-complete when, moreover,
the number of predicates appearing in the TGDs is bounded.

4 Graph Rules: The Added Value

In this section, we focus on backward chaining and on how the graph structure
allows to obtain new results. Graphs are a natural construct for representing
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complex structures. In previously cited results on TGDs, conclusions of rules
are restricted to one atom, as it is usually the case in logic programming. This
restriction does not lead to a loss of expressivity since any set of rules can
be rewritten (in linear time) as a set of rules with one atom in conclusion.
Indeed, a rule H — C can be equivalently encoded by a set of rules {H —
R(t1,....tr), (R(t1,...,tk) — Ac)a,ec)}, where R is a new predicate assigned
to the rule and t;...t; are the terms occurring in C. However, beside loss in
readability, this rewriting leads to a loss in efficiency and weaker decidability
results [BLMS09).

The sound and complete backward chaining outlined in this section is based
on the notions of a piece and the associated piece-based unification [SM96]. Let us
mention that these notions have been defined for conceptual graph rules obeying
two constraints. First, two corresponding connection nodes have the same type.
Secondly, an individual marker always occurs with the same concept type. As a
consequence of these restrictions, a rule application to a fact F' never restricts
labels of existing nodes in F. It only adds new nodes to F'. These restrictions
do not lead to a loss in expressivity in the sense that concept types can be
equivalently represented as unary relations. However, to work directly on general
conceptual graph rules, the notions of piece and piece-based unification presented
hereafter would need to be extended. These restrictions do not apply in a logical
setting, since there is no distinction between concept types and relations, which
are all predicates.

A cutpoint of a rule is either a connection node or a node with an individual
marker. A piece of a rule is a (non empty) subgraph of its conclusion, in which
any two nodes are connected by a path that does not go through a cutpoint
(however, a cutpoint can be an extremity of such a path), and to which no more
nodes can be added while preserving this property. A way of understanding
pieces is as follows: assume that all cutpoints of the rule conclusion are deleted;
each connected component obtained after this deletion belongs to a separate
piece; each piece itself is obtained from such a connected component by adding
again the cutpoints linked to its nodes (if any) as well as the associated edges.
For instance, the rule in Figure [Il has two cutpoints and a single piece. These
graph notions can be translated into logical notions in a straightforward way
(see [BLMSQ9]). For instance, the rule R = VaVy(p(z,y) — FzItJu(p(z,z) A
p(z,t) Ap(t,z) A p(x,u))) has one cutpoint, which is x, and two pieces defined
by the sets of atoms {p(x, 2), p(z,1t),p(t,z)} and {p(z,u)}.

The idea behind piece is that a piece can be seen as a “unit” of knowledge
brought by a rule application in forward chaining. Indeed, a rule R can be
decomposed into an equivalent set of rules with the same hypothesis and exactly
one piece in conclusion. More precisely, any rule R : H — C, such that C
contains k pieces C1,...,Cy, is equivalent to the set of rules {H — C;}i<i<k.
Moreover, the conclusions of these rules cannot be further decomposed while
keeping a set of conceptual graph rules with the same semantics as R (provided
of course that H is not modified, otherwise see the above decomposition).
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We do not recall the definition of piece-based unification, which would require
more technical developments (see [SM96] [CMO08] in the CG framework, and
[BLMS09] for ¥3-rules). The important point for the backward chaining mech-
anism is that piece-based unification allows it to be guided by the structure
of rules and goals. An experimental comparison between piece-based backward
chaining and Prolog resolution was led in [CS98].

Another important point is that it allows to characterize exactly the notion of
dependency between rules. Generally speaking, compiling a knowledge base con-
sists in preprocessing it off-line, so that the compiled form obtained can be used
on-line to accelerate reasoning tasks (e.g. query answering). Concerning rules, a
classical compilation technique consists in precomputing a graph encoding de-
pendencies between rules. This technique allows us to improve the efficiency of
forward and backward chaining mechanisms.

Given rules Ry and Rg, R5 is said to depend on R; if the application of R; on
a fact may trigger a new application of Ry, i.e. if there exists a fact F' to which
R; can be applied leading to a fact F’, such that there is a homomorphism from
the hypothesis of Ry to F’, that is not a homomorphism from the hypothesis
of Ry to F. It is easy to define necessary conditions for a rule to depend from
another: f.i. if Ry depends on R; then there is an atom in Hy that can be
unified (in the logical classical meaning) with an atom in C. Characterizing
dependency by effectively computable necessary and sufficient conditions is less
obvious.

Piece-based unification yields such an effective characterization: Rs depends
on R; if and only if there is a piece-based unification of Hy with Ry (see [Bag04])
for an equivalent characterization restricted to rules without constants, [BS06]
for this result on conceptual graph rules, and [BLMS09] for this result in a logical
framework).

Given a set of rules R, the graph of rule dependencies (GRD) of R is the
directed graph with node set R, and such that there is a (directed) edge from
R; to Ry if and only if Ry depends on R; (“an application of Ry may trig-
ger a new application of Ry”). As far as we know, piece unification yields the
first effective characterization of this graph. Very recently, in the context of
databases, [DNROS] defined a notion equivalent to the GRD on TGDs (“the
chase graph”), but no constructive characterization of this graph was provided
in this paper.

The GRD has two interests. It allows to speed up forward or backward chain-
ing and it leads to new decidability results. About the first point, a simple use of
the GRD is the following. Assume that the set of facts is considered as a single
graph, say F', and classified in the GRD as a rule with an empty hypothesis. F' is
necessarily a source (node without ingoing edge) in the GRD. The query or goal,
say @, can also be classified in the GRD as a rule with an empty conclusion. @
is necessarily a sink (node without outgoing edge) in the GRD. Then, to answer
a given @, the only rules to consider are the rules corresponding to nodes in the
GRD on a path from F' to @. Let us consider a basic forward chaining algo-
rithm, that proceeds in a breadth-first way, i.e. at each step it computes all new
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(and non redundant) rule applications w.r.t the current fact, then applies them
producing a new fact. The rules to consider in the first step are the successors
of F' in the GRD. Then, the rules to consider at a given step ¢, ¢ > 1, are the
rules successors of rules applied at step ¢ — 1. For further improvements of the
forward and backward chaining mechanisms, see [Bag04] (forward chaining) and
[BSO6] (both mechanisms).

Concerning decidability results, the structure of the GRD provides informa-
tion of how the rules interact with each other. It can be easily checked that
if the GRD has no circuit (including no loop), then DEDUCTION is decidable.
This result can be extended to a GRD in which each strongly connected com-
ponent@ is a finite expansion set of rules, i.e. circuits inside a finite expansion
set of rules are allowed [Bag04]. A similar result holds for a GRD in which
each strongly connected component is a finite unification set of rules [BLMS09].
Note that DEDUCTION may not be decidable in a GRD where each strongly
connected component is either a finite expansion set or a finite unification set.
However, there is a way of combining both notions that guarantees a finite pro-
cedure [BLMS09): assume that the set of rules R can be partitioned into two
sets, R1 and R, such that R is a finite expansion set, R is a finite unifica-
tion set, and there is no edge from a rule in Ry to a rule in Ry in the GRD;
in this case, one can first use forward chaining on F with R, which leads to
a fact F’; then, backward chaining is used on F’ and Ry to compute a set of
rewritings of @ and check if there is a homomorphism from a rewriting in this
set to F’; the mechanism obtained halts in all cases, and is sound and com-
plete [BLMSQ9]. This result can be extended by combining it with the results
in [CGKO0S]: see [BLMS09], which also provides a map of all known decidable
cases.

Let us end by emphasizing the role of the piece notion in these results, which
is a natural notion when rules are considered in their graph form because it
relies on the path notion. Of course, it can be translated into a logical setting
(see [BLMS09]) but it does not rely on logical notions.

5 Conclusion

In this presentation, we have synthesized main decidability and complexity re-
sults obtained on a kind of rules which takes several forms in the literature,
namely conceptual graph rules, V3-rules and TGDs. We have shown that the
graph vision of rules can lead to new notions and results. Some of the decidabil-
ity results for concrete cases still have to be completed by complexity results.
Further work also includes the design of forward and backward chaining algo-
rithms exploiting as much as possible the graph of rule dependencies.

2 Two nodes z and y are in the same strongly connected component if there is a path
from x to y and a path from y to z; strongly connected components in the GRD
represent maximal sets of rules that mutually depend, directly or indirectly, on each
other.
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Abstract. During the past half century, the field of artificial intelligence has
developed a large number of theories, paradigms, technologies, and tools. Many
Al systems are based on one dominant paradigm with a few subsidiary modules
for handling exceptions or special cases. Some systems are built from compo-
nents that perform different tasks, but each component is based on a single
paradigm. Since people freely switch from one method of thinking or reasoning
to another, some cognitive scientists believe that the ability to integrate multiple
methods of reasoning is key to human-like flexibility. In his book The Society
of Mind, Minsky (1986) presented an architecture for intelligence based on a
society of heterogeneous agents that use different reasoning methods to solve
different problems or different aspects of the same problem. That idea is in-
triguing, but it raises many serious issues: how to coordinate multiple agents,
distribute tasks among them, evaluate their results, encourage agents that con-
sistently produce good results, inhibit agents that produce misleading, irrele-
vant, or unfruitful results, and integrate all the results into a coherent response.
The most difficult problem is to enable multiple heterogeneous agents, acting
independently, to produce the effect of a single mind with a unified personality
that can pursue and accomplish coherent goals. This article discusses ways of
organizing a society of heterogeneous agents as an integrated system with
flexible methods of reasoning, learning, and language processing.

Keywords: agents, conceptual graphs, paradigms, reasoning, NLP.

1 Architectures for Intelligent Systems

An In the years since its founding conference in 1956, the field of artificial
intelligence has generated an impressive collection of valuable components, but no
comparably successful architecture for assembling them into intelligent systems. The
following list illustrates the range of AI components that were designed and

implemented in the 1950s and *60s:

Parsers, theorem provers, inference engines, search engines, learning
programs, classification tools, statistical tools, neural networks, pattern
matchers, analogy finders, problem solvers, planning systems, game-
playing programs, question-answering systems, dialog managers, ma-
chine-translation systems, knowledge acquisition tools, modeling tools,
and robot guidance systems.
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During the past forty years, all these systems have spawned extensions, combina-
tions, and variations. A recent handbook covered two dozen systems of logic and
knowledge representation, each with multiple versions of techniques that tend to be
mutually exclusive (Harmelen et al. 2008). Various Al systems use different tech-
niques, but few, if any, take advantage of the full range of options.

Most large systems are designed around a single paradigm, such as formal deduc-
tion, statistical language processing, or case-based reasoning. As an example, the
largest knowledge-based system, Cyc (Lenat 1995), has millions of axioms, grouped
in several thousand contexts or microtheories. To solve different kinds of problems,
Cyc uses a few dozen specialized inference engines, but all of them are based on
some form of deduction. Partisans of different paradigms have debated their virtues as
if they were mutually exclusive, yet most of them have complementary strengths and
weaknesses. There should be some way to take advantage of the best features of any
or all of them when appropriate.

One way to support divergent methods within a common framework is to partition
them among independent processes that run in separate modules. Any such partition
would require some way to control the modules and transfer information among them.
The fields of Al, computer science, and automata theory have developed several
techniques:

Lambda calculus, abstract machines, subroutines, coroutines, object-
oriented protocols, message passing, associative blackboards, Petri nets,
7 calculus.

Of these, message passing is the most general method for information transfer, and
n calculus (Milner 1999) is the most general method for combining control and mes-
sage passing. Petri nets, for example, can represent single-threaded flow charts, the
parallelism of coroutines, object-oriented protocols, and a wide range of asynchro-
nous control mechanisms. Milner showed that © calculus can simulate the mecha-
nisms of both Petri nets and lambda calculus. But & calculus goes beyond the fixed
graphs of Petri nets by allowing new links to be dynamically created and destroyed.
The Linda method of passing messages and control through associatively accessed
blackboards (Gelernter 1985) can support m calculus by its ability to create and
destroy links.

The Flexible Modular Framework™ (FMF) proposed by Sowa (2002, 2004) is an
architecture for intelligent systems inspired by The Society of Mind (Minsky 1986),
the Elephant 2000 language (McCarthy 1989), and the message-passing protocols of
computer science. As in Minsky’s society, each FMF module is an autonomous agent
that communicates with other agents by passing messages. As in McCarthy’s Ele-
phant, messages can be expressed in logic, but a marker for the speech act indicates
the sender’s intention. An agent that knows a recipient’s identity can send it a mes-
sage directly, but an agent can find new recipients that can handle a certain kind of
message by posting it to a Linda blackboard. The FMF message format has six fields:

1. Language. An identifier of the language used in the message. It could be a
natural language, a version of logic, or any computer-oriented format.

2. Source. An identifier of the module or agent that sent the message.
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3. Message ID. An identifier generated by the sender.

4. Destination. An identifier of the intended receiver, if known. For messages
sent to an associative blackboard, this field is null; any module that responds
to the message would create a new link.

5. Speech act. An identifier of the purpose of the message: command, ques-
tion, response, assertion, estimate, diagnosis, request, promise, contract, or
any other intention.

6. Message. Any sentence or list of sentences in the language specified by field
#1.

Most message formats include most of these fields. The two characteristic features
of the FMF are the null option in field #4 for an associative blackboard and the speech
act in field #5, which supports an open-ended variety of interaction modes. Without
those fields, the FMF can support useful subsets, such as dataflow graphs or Petri
nets. With associative blackboards, the FMF can dynamically create and destroy links
among agents. With speech acts, FMF agents can express a wider range of intentions
than an ordinary command or query. These two fields enable the agents to discover
and take advantage of an expanding and evolving range of services created by the
system. They also enable agents to look for alternatives if their familiar collaborators
are unable to solve an unusual kind of problem.

These formats enable the FMF to accommodate arbitrary modules, even legacy
systems, by enclosing them in a wrapper that maps their inputs and outputs to FMF
messages. Several variations of the FMF have been implemented, and they use a
lightweight protocol that can be implemented in 8K bytes per agent. Thousands of
agents can run simultaneously on a laptop computer, but they can communicate
with other agents anywhere across the Internet. The messages to and from any user
interface have the same six fields as all other messages in the FMF. Therefore, any
user interface can be replaced, revised, or enhanced dynamically just by rerouting
the messages to a different module. A version of the FMF can be implemented in
any language that supports communication among multithreaded processes. At Vi-
voMind Intelligence, Inc., several versions of the FMF were implemented in Java
and a multithreaded version of Prolog. But an FMF module can send messages
across the Internet to FMF modules implemented in any combination of hardware
and software.

Experience in implementing and using FMF systems has shown that an architec-
ture based on message passing among heterogeneous agents has several advantages
over more conventional implementations: flexibility of adding new modules with-
out disrupting operations by the old modules; reduction or elimination of systemic
errors caused by biases in any single algorithm or paradigm; performance advan-
tages of a lightweight protocol that can take advantage of multiple CPUs; and fail-
soft redundancy, which allows most of the agents devoted to a function to continue
even if one or more of them fail. Section 2 of this paper describes Minsky’s propos-
als for a society of agents and ways of implementing them. Section 3 describes an
organization of FMF agents in a managerial hierarchy that presents a unified per-
sonality to the external world. Section 4 describes the use of FMF societies for
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language analysis. The concluding Section 5 relates the multiple paradigms to
Peirce’s semiotics and the logic of pragmatism.

2 The Society of Mind

Systems of multiple agents have been proposed and implemented since the early days
of artificial intelligence. But the problems of organizing multiple autonomous agents,
allocating resources among them, getting them to focus on the relevant goals, and
integrating many partial contributions into a unified result have been challenging:

e Pandemonium. Selfridge (1959) designed a system of agents called de-
mons. Each demon could observe aspects of the current situation or work-
space, perform some computation, and put its results back into the
workspace. In effect, Pandemonium was a parallel forward-chaining rea-
soner. Its major drawback was that the demons generated large volumes of
mostly irrelevant data that overflowed storage. A great deal of research has
been devoted to measures of relevance, methods for motivating agents to
produce relevant results, and ways of allocating resources to those that con-
sistently produce the best results.

e Rational agents. At the opposite extreme from simple demons are rational
agents that simulate a human-like level of beliefs, desires, intentions, and the
ability to reason about them. Van der Hoek and Wooldridge (2008) surveyed
versions of logic designed to represent groups or coalitions of such agents.
Such logics may be useful for analyzing or simulating the behavior of a
group of intelligent agents. But a system with human-like intelligence re-
quires heterogeneous modules specialized for different functions, not a coali-
tion of reasoners that all use the same logic.

e Reactive agents. For designing robots, Brooks (1991) noted that the major
challenge was not in deliberative planning and reasoning, but in the seem-
ingly simpler insect-like functions of perception, locomotion, and goal seek-
ing. That observation stimulated work on reactive agents whose intelligence
is at the level of ants. A society of such agents can cooperate in defending
the colony, searching for food, and caring for the eggs and larvae. But no one
has shown how a colony of ants could understand language or do complex
reasoning and planning.

Complex rational agents and simpler reactive agents operate at different extremes
of intelligence. But most systems consist of one kind or the other, not a combination
of heterogeneous agents. After many years of examining different ways of designing
and implementing intelligent systems, Minsky (1986) argued that no single mecha-
nism, by itself, can adequately support the full range of functions required for a
human level of intelligence:

What magical trick makes us intelligent? The trick is that there is no
trick. The power of intelligence stems from our vast diversity, not from
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any single, perfect principle. Our species has evolved many effective al-
though imperfect methods, and each of us individually develops more
on our own. Eventually, very few of our actions and decisions come to
depend on any single mechanism. Instead, they emerge from conflicts
and negotiations among societies of processes that constantly challenge
one another. (Section 30.8)

In a review and critique of Al systems, Minsky (1991) emphasized that each of the
many paradigms had made valuable contributions, but that the goal of a homogeneous
system built around a single, ideal paradigm was too narrow to support the full range
of human intelligence:

The functions performed by the brain are the products of the work of
thousands of different, specialized sub-systems, the intricate product of
hundreds of millions of years of biological evolution. We cannot hope
to understand such an organization by emulating the techniques of those
particle physicists who search for the simplest possible unifying con-
ceptions. Constructing a mind is simply a different kind of problem —
of how to synthesize organizational systems that can support a large
enough diversity of different schemes, yet enable them to work together
to exploit one another’s abilities.

In an earlier paper, Minsky (1980) proposed an administrative organization popu-
lated by “mental managers” that employ and direct other agents that perform tasks at
varying levels of complexity:

To develop this idea, we will imagine first that this Mental Society
works much like any human administrative organization. On the largest
scale are gross “Divisions” that specialize in such areas as sensory
processing, language, long-range planning, and so forth. Within each
Division are multitudes of subspecialists — call them “agents” — that
embody smaller elements of an individual’s knowledge, skills, and
methods. No single one of these little agents knows very much by itself,
but each recognizes certain configurations of a few associates and
responds by altering its state.

As an example of the diversity of modules, Figure 1 shows the interconnections
among the kinds of modules proposed by linguists. The large box at the bottom would
contain an much larger collection of modules for all the aspects of cognition and be-
havior that provide the subject matter and the goals for language and reasoning.

The diversity of modules that process language is a subset of the even greater di-
versity in all aspects of cognition and behavior. The integration of language with
every aspect of human perception, behavior, and social interaction suggests that the
language modules are interconnected with other cognitive modules in dynamically
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Ears, Mouth, and Vocal Cords
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Fig. 1. Interconnections among language modules

changing ways. Whatever the organization, the number of modules is undoubtedly far
greater than the eight boxes of Figure 1. Perhaps there is no limit to the number of
modules, and every language game and mode of behavior has its own module or even
a group of interacting modules. That organization is radically different from a homo-
geneous system based on a logic that cannot tolerate a single inconsistency. Minsky’s
goal was to build a flexible, fault-tolerant system out of imperfect, fallible compo-
nents. Such a system could support logic, just as the flexible, fault-tolerant, and falli-
ble human brain supports logic, mathematics, and every branch of science, business,
and the arts. More recently, Minsky (2006) emphasized the role of emotions in driv-
ing an engine composed of multiple agents. Without emotions to set the goals, a
logic-based theorem prover would have no reason to do anything.

As the underlying mechanism for implementing agents, Minsky continued his
long-term research on neural networks. His newer proposals are based on knowledge
lines or K-lines that pass information and control to activate agents or even a cascade
of agents. In a review of Minsky’s theories, Singh (2003) compared the Society of
Mind to the Soar architecture for a “unified theory of cognition” (Newell 1990):

To the developers of Soar, the interesting question is what are the least
set of basic mechanisms needed to support the widest range of cognitive
processes. The opposing argument of the Society of Mind theory is that
the space of cognitive processes is so broad that no particular set of
mechanisms has any special advantage; there will always be some
things that are easy to implement in your cognitive architecture and
other things that are hard. Perhaps the question we should be asking is
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not so much how do you unify all of Al into one cognitive architecture,
but rather, how do you get several cognitive architectures to work
together?

That question is the central theme of Minsky’s book, but Singh concluded that the
complexity of the ideas and the lack of detail has discouraged implementers: “While
Soar has seen a series of implementations, the Society of Mind theory has not. Min-
sky chose to discuss many aspects of the theory but left many of the details for others
to fill in. This, however, has been slow to happen.”

The lack of detail plagues many proposed models of the mind. In the book What is
Thinking? Baum (2004) surveys attempts to simulate thinking and includes a dozen
citations to Minsky’s Society of Mind. Following Minsky, he assumes “the computa-
tion of the mind is rich, with modules connected to modules, flowing in complex flow
patterns” (p. 35). He views Minsky’s mental managers and administrative organiza-
tions as participants in an economy guided by Adam Smith’s “invisible hand” (p.
241):

The agents in the economy will be computer programs, initially random
computer programs. They will be rewarded by the economy, and the
ones that go broke will be removed. New entrepreneurs will enter.
Hopefully, if we get the economic structure right so that the individuals
are rewarded appropriately, the system will evolve to solve hard prob-
lems... Now, we want to look at what’s going on in an economy re-
garded as an evolutionary system consisting of a bunch of agents, each
evolving to pursue its own interest, each evolving purely to increase its
pay-in. We want to ensure that this evolution nonetheless promotes the
overall functioning of the whole system.

Starting evolution from random computer programs would take a long time, but us-
ing economic rewards as a management tool seems promising. In fact, the economists
Monderer et al. (2001) propose game theory for devising reward strategies that could
motivate Al agents. A working system, however, requires much more attention to
implementation detail.

3 A Hierarchy of Managers and Employees

The modules of the Flexible Modular Framework can be organized in an open-ended
number of ways, and various strategies have been implemented and tested. One of the
first had a graphic interface that allowed a software designer to drag and drop agents
on a screen and connect them in a graph that resembles a Petri net. That was a useful
tool for rapidly assembling modules, but it did not have a graphic way of showing the
links found by means of associative blackboards. Another application replaced
the fixed programs of an interactive game with FMF agents. The game graphics and
the types of characters and machines were unchanged, but the FMF agents gave them
more flexible ways of interacting, behaving, and communicating. The most general
version implemented at VivoMind exploits Minsky’s idea of a hierarchy of managers
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and employees. The chief executive officer (CEO) gives the organization a coherent
“personality” for external interactions. Beneath the CEO are vice presidents in charge
of major divisions, directors of important functions, lower-level managers, and spe-
cialists that perform an open-ended variety of cognitive tasks. As an example,
Figure 2 shows the upper levels of a hierarchy designed to analyze and interpret
natural language texts.

CEQ: Language Understanding

VP: Marphology

VP: Model Bullding
Analogy

Conslstency

Foreign

Spelling

<N

VP: Semantics

I Special

Roget's

Fig. 2. A management hierarchy of language processing agents

At the top of Figure 2, the CEO of language understanding is responsible for all
functions from the analysis of individual words (morphology) to the construction of a
“mental model” of the meaning of an entire text, which could be a sentence, a para-
graph, a conversation, a report, or a book. Reporting to the CEO are vice presidents in
charge of the divisions of morphology, syntax, semantics, pragmatics, and model
building. Beneath the vice presidents are directors in charge of functions such as
spelling correction in the morphology division and parsing in the syntax division. The
semantics division has directors of domain ontologies for the detailed axioms of the
subject matter and directors of lexical resources, such as WordNet, Roget’s Thesau-
rus, and VerbNet. For the current implementation, a formal ontology for the upper
levels has not been helpful. Detailed reasoning is done with specialized ontologies for
the subject matter, and the lexical resources have been adequate for mappings be-
tween English text and the specialized domain ontologies. The hierarchy shown in
Figure 2 is a composite that shows the typical functions performed by the agents.
Most of the implementations have more levels for middle managers, first-level man-
agers, and specialist employees.

As in Minsky’s administrative organizations, management control flows down
from the CEO at the top, many messages flow up and down the hierarchy, but mes-
sages can also flow sideways across the hierarchy. In a review of the SOAR architec-
ture, Minsky (1993) observed that the chunking mechanism of SOAR corresponds to
the production of K-lines in the Society of Mind. For the VivoMind implementations,
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the basic knowledge representation is conceptual graphs (Sowa 2008) represented in
the Conceptual Graph Interchange Format (CGIF). Chunking in conceptual graphs is
implemented by defining a new concept or relation type by a lambda abstraction —
an arbitrarily large CG in which one or more concept nodes are identified as formal
parameters. A instance chunk can be defined by assigning a name to an entity de-
scribed by a conceptual graph. These mechanisms can encode frequently occurring
patterns of graphs in single concept or relation nodes. The names or type labels corre-
spond to K-lines that link all occurrences of that chunk.

Minsky maintained that a system of heterogeneous agents should allow agents to
use a multiplicity of languages tailored for their purposes. The language field in an
FMF message supports an open-ended variety of languages, but conceptual graphs are
the lingua franca for detailed reasoning and natural language processing. Two agents
implemented in the same language, such as Prolog, can also exchange the equivalent
information in their native language form. An untranslated input language can be rep-
resented by a concept node whose referent is an uninterpreted character string:

[EnglishSentence: "This is an example of an English sentence."]

Minsky (1991) claimed that an Al system should support “neat” methods based on
formal logics as well as “scruffy” methods based on informal heuristics. With current
technology, any translation from an unrestricted natural language is at best a useful,
but scruffy approximation. Some FMF applications also use a version of Common
Logic Controlled English (CLCE), which has an unambiguous mapping to conceptual
graphs whose semantics are defined by the Common Logic standard (ISO/IEC
24707). Anyone who can read English can read a CLCE statement, but some training
in logic is necessary to write syntactically correct CLCE. With a clarification dialog, a
person who is not a trained CLCE author can work with a help facility to convert an
informal English sentence to a CLCE statement that both the human and the computer
can accept. For many applications, however, a scruffy translation from ordinary Eng-
lish can be valuable (Majumdar et al. 2008).

Singh (2003) noted the pitfalls of relying on blackboards as the primary method of
communication among agents: “While the blackboard metaphor may work when
there are only a few agents using the blackboard, by the time there are hundreds of
agents, let alone thousands or millions, the image of them huddled around a black-
board is no longer reasonable, and in fact no one has built a blackboard system of this
scale.” For that reason, most FMF messages are sent to a known recipient, but an
FMF system can have an open-ended number of blackboards, which may be used in
various ways:

1. Newsletter. Any agent that manages other agents may set up a blackboard
for notes that members of the department may post to any or all members of
the group. The CEO might use global newsletters to announce information
that could be accessed by any agents in the hierarchy, or even by unem-
ployed “freelance” agents.

2. Agenda. A blackboard may serve as a queue of tasks to be done, and any
available agent that can handle a task could remove it from the queue and do
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it. Some kinds of jobs could be performed by multiple agents, and a manager
might let more than one perform the job and select the best results.

3. Want ads. Sometimes a manager might post a job description to a global
blackboard that could be accessed by freelance agents that might offer their
services.

4. Classified advertising. Freelance agents might offer to sell data or hypothe-
ses on blackboards that are specialized for a variety of purposes.

5. Committees. Blackboards used for collaborative reasoning would normally
be restricted to a small group of agents that resemble a committee. Such a
group would fit the metaphor of collaborators “huddled around a black-
board.” Committees provide a collaborative environment for agents to evalu-
ate options, vote for their preferences, or negotiate to combine them.

Variations of these five uses for FMF blackboards have been implemented in sys-
tems for processing natural language (Majumdar et al. 2008) and in a game-playing
system for knowledge capture (Majumdar et al. 2007).

At VivoMind, the authors have developed a learning technique called Market-
Driven Learning™ (MDL), which rewards agents with resources: computer space
and time to perform their services. A hierarchy that reports to a CEO can earn re-
sources by providing services to external users or systems. The CEO distributes
resources as rewards to the vice presidents, who distribute their allotment to the man-
agers that report to them. The managers can use their resources to hire employees,
reward employees for good performance, or buy data and hypotheses from freelance
agents or from other managers. The managers may combine the data and hypotheses
themselves or assign their employees the task of doing the combination. Managers
can also serve on committees to negotiate for resources or to produce committee re-
ports to be sent up the hierarchy. Managers at each level of the hierarchy receive re-
wards from higher levels, they reward their employees for what they produce, they
can hire new employees or fire unproductive employees, and they can buy or sell data
and services by sideways transfers to other managers.

An MDL society learns by reorganizing itself to produce improved results, which
humans or other agents are willing to buy. The reward system addresses the basic
problems faced by Pandemonium: increasing resources for the most productive
agents; reducing resources for the less productive agents; and reorganizing the hierar-
chy by growing the more productive branches and shrinking the less productive
branches. The rewards pass through the management hierarchy to create an effect
similar to the backward propagation learning of a neural network. But unlike the
simple switches and numeric functions of a neural network, MDL agents can be arbi-
trarily complex programs or reasoning systems, they can hire or fire other agents, and
the messages can be propositions or even large documents stated in some version of
logic. If the messages are stated in a dialect of Common Logic, they could be trans-
lated to CLCE in order to provide humanly readable explanations or an “audit trail”
about the way the FMF system derived its data, hypotheses, and reports. These op-
tions are not possible with the numeric weighting schemes of most neural networks.
(Note, however, that individual agents in an FMF system could use any computing
mechanism internally, including neural networks. But such agents would communi-
cate with other FMF agents by the usual FMF message formats.)
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4 Interpreting Natural Languages

A system that interprets natural language must take into account all the aspects of
language covered by the eight boxes in Figure 1. As that diagram suggests, every as-
pect is related, directly or indirectly, to every other aspect. Psycholinguistic studies
indicate that people process all those aspects simultaneously, and brain scans indicate
that different aspects seem to be processed in different parts of the brain. None of the
psychological or neurological studies, however, are sufficiently detailed to show the
internal data formats or the kinds of operations performed on that data. As a working
hypothesis, many linguists and computational linguists have assumed that the under-
lying conceptual structures can be conveniently represented by labeled graphs,
possibly with nested graphs within graphs. That assumption is very general, since it
includes most of the alternatives as special cases: strings, trees, feature structures,
and various notations for logic. Conceptual graphs are a semantic representation in-
fluenced by the research in linguistics, logic, psycholinguistics, and computational
linguistics (Sowa 1984, 2008). They can represent ISO standard Common Logic as a
proper subset, but they can also be processed by scruffy heuristics.

For the VivoMind implementations, conceptual graphs are generated in the seman-
tics division in the center of Figure 2, and they are further elaborated in the pragmat-
ics and model-building divisions at the right. For any input text, the morphology and
syntax divisions at the left usually begin the processing, but the VP agents that man-
age the other divisions run concurrently. Therefore, they can begin to make partial
contributions to the analysis before the morphology and syntax agents have finished
the sentence. As an example, the following sentence appeared in a text about oil and
gas exploration:

The Diana field is situated in the western Gulf of Mexico
260 km (160 mi) south of Galveston
in approximately 1430 m (4700 ft) of water.

If the sentence had ended with the word Mexico, the syntax would be unambig-
uous. But the measures in the next two lines, the parenthetical expressions, and the
points of attachment of phrases create multiple ambiguities. Is Diana field or the Gulf
of Mexico south of Galveston? What is in the water? Diana field, the Gulf of Mexico,
or Galveston? After a devastating hurricane, Galveston was under water, but the
ontology should indicate that cities are not expected to be under water.

Agents that process lexical information, context, heuristics, and domain knowledge
contribute to the interpretation. A morphology agent expands “ft” to “feet”. An ontol-
ogy for the geoscience domain indicates that Diana field is a reservoir, which consists
of rocks that trap hydrocarbons; such a reservoir is underground; and the ground may
be under water. Parenthesized expressions are usually idiosyncratic and ad hoc. One
agent detected measures that were approximately equal, but stated in different units.
Therefore, it made the hypothesis that the parenthesized expressions were intended to
express equality. During the parsing process, the agents can create multiple links as
tentative hypotheses. A manager in charge of those agents evaluates the evidence for
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each alternative and prunes away the unlikely options. The remaining links indicate
that Diana field is south of Galveston and in the water.

Many different syntactic parsers have been used to generate conceptual graphs. But
theories that focus on the connections between words, such as dependency grammars
and link grammars, are convenient because their links map directly to the nodes and
arcs of CGs. Several different parsers have been implemented at VivoMind, and the
ones based on link grammar (Sleator & Temperley 1993) have been the easiest to
combine with the graph operations for semantics. The most recent VivoMind parser is
still based on link grammar, but it has been influenced by ParseTalk, a distributed,
concurrent, parser. Hahn et al. (1994, 2000) noted that ParseTalk replaces “the static
global-control paradigm” of conventional parsers with “a dynamic, local-control
model” that supports “a balanced treatment of both declarative and procedural con-
structs within a single formal framework.” The ParseTalk control structure is based on
actors implemented in an object-oriented language (Smalltalk). Broker (1999) added
semantic actors to the original syntactic actors of the ParseTalk system. He showed
that the control structure based on concurrent actors made it easy to support actors for
multiple knowledge sources.

The ParseTalk actors and the FMF agents have similar advantages, but the object-
oriented actors are more tightly coupled than the heterogeneous FMF agents. As the
developers said, ParseTalk has “a single formal framework.” For the FMF agents, the
only thing that is common to all of them is the message format with six fields. Differ-
ent agents can use different languages, different paradigms, and even different hard-
ware located on different continents. The loose coupling of the FMF agents makes it
easy to add new agents with new capability without disrupting any of the older func-
tions; it also enables the system to continue if some agent or agents fail. In some ap-
plications, one or more FMF agents failed, but the system continued to run without
their input. Eventually, the manager of the agents restarted them.

5 Reasoning with Multiple Paradigms

Deduction is the most common method of reasoning used with logic-based systems.
But deduction is precise, predictable, and brittle. If everything is perfect, deduction is
perfect. Such perfection is only achievable in mathematics. For normal, imperfect
computer applications, deduction can magnify and propagate any imperfec-tion to the
point of a total collapse. When people reason, they employ some safe-guards. They
seldom carry out long chains of deductions. When a conclusion seems odd, a prudent
individual would check the facts, ask for advice, and perform a “sanity check” by
using an alternative method of reasoning. People don’t expect every message to be
completely understood. They ask questions, give explanations, negotiate, and com-
promise. In short, they use multiple paradigms to cross-check their results and avoid
the biases that tend to occur with just a single paradigm.

Frege and Peirce were pioneers in logic, who independently discovered equivalent
representations for full first-order logic. But they had different goals for logic. Frege
applied his logic to mathematics, for which deduction is the primary method of rea-
soning. But Peirce used logic in a much broader range of applications, including sci-
entific discovery, philosophical analysis, and the definition of words in linguistics and
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Fig. 3. Peirce’s cycle of pragmatism

lexicography. In addition to deduction, Peirce emphasized the use of induction in
generalizing from examples and abduction in forming hypotheses or educated
guesses. Unlike many logicians who viewed metaphors and analogies with suspicion,
Peirce (1902) included analogy as one of the four ways of reasoning: ‘“Besides these
three types of reasoning there is a fourth, analogy, which combines the characters of
the three, yet cannot be adequately represented as composite.” Figure 3 is a diagram
of Peirce’s cycle of reasoning in his “logic of pragmatism.”

Note that deduction is only 25% of the cycle. By itself, deduction can only derive
the consequences of already familiar assumptions. Induction is necessary for forming
generalizations from new data, abduction is necessary for guessing or hypothesis for-
mation, and testing is necessary to keep reasoning in touch with reality. Analogy
combines aspects of the other three methods of reasoning, and it can be used by itself
as the primary method for informal reasoning. The brain in Figure 3, labeled cognitive
memory, represents an open-ended associative store of all the knowledge and data
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acquired by a system, natural or artificial. In capital letters, Cognitive Memory™ is a
high-performance associative memory developed by VivoMind.

A critical component of any intelligent reasoner is a high-speed associative mem-
ory for finding relevant chunks, K-lines, schemata, or other patterns of knowledge.
For conceptual graphs, that would require a high-speed method for indexing and find-
ing relevant graphs and subgraphs. Some of the most advanced research on processing
graphs has been done by chemists, who need to classify and search for millions of
graphs of organic molecules. An application of chemical algorithms to conceptual
graphs led to the first high-speed method for classifying and finding conceptual
graphs (Levinson & Ellis 1992); one implementation of that method was used in the
web site of a large online retailer (Sarraf & Ellis 2006). More recent work on chemi-
cal graphs has produced algorithms for encoding both the graph structure and the la-
bels in numeric vectors, indexing the encodings, and finding all graphs within a small
semantic distance of a given query graph (Rhodes et al. 2007); those algorithms are
being used to index and search a database of over four million chemical graphs. Those
techniques resemble the methods for indexing conceptual graphs and finding analo-
gous graphs in logarithmic time (Sowa & Majumdar 2003):

e Convert each graph to a unique linear representation. For a chemical graph,
the conversion is based on its International Chemical Identifier (InChI).
Similar conversions can be applied to labeled graphs of any kind.

e Map the linear form to numeric vectors that encode both the graph structure
and the ontology (labels) on the nodes and arcs.

e Use a measure of semantic distance between the vectors. For conceptual
graphs, that measure takes into account both the structure (ordering, connec-
tivity, and cycles) and the ontology (type labels and hierarchy). For chemical
graphs, similar structural properties are used, but the ontology is based on the
properties of atoms and chemical bonds.

e Use the semantic distance measure to index the graphs and find graphs
within a given distance (threshold).

For conceptual graphs, the time to build the index is proportional to (N log N),
where N is the number of graphs. The time to find graphs that are similar to a given
query graph is proportional to (log N). If more than one graph is found within a given
threshold, structure-mapping algorithms can be used (Falkenhainer et al. 1989), but
it’s often faster to distinguish graphs by applying additional semantic operations to
the encodings.

The Flexible Modular Framework with multiple heterogeneous agents has proved
to be a flexible, robust, and efficient system for learning, reasoning, and language
processing. The six-field message format together with associative blackboards has
the computational power of the n-calculus. The Cognitive Memory system provides a
high-speed resource for analogy finding, case-based reasoning, and associative access
to knowledge and information of any kind. The Market Driven Learning methods
with the rewards of resources for good performance extend the r-calculus to a version
of the $-calculus or cost-calculus by Eberbach et al. (2004). A cost measure based on
space and time requirements can constrain the excesses of systems like Pandemonium
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and focus agents toward promising directions. Following Turing (1939), who showed
that a Turing machine that could access arbitrary information from the environment
(or oracle) was strictly more powerful than a Turing machine in isolation, Eberbach et
al. claimed that the ability to access information from outside sources served the same
purpose as an oracle. Whatever the theoretical power, the FMF with these additions
has served as a flexible tool for rapidly building intelligent systems.
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Abstract. Semantic search attempts to go beyond the current state of the art in
information access by addressing information needs on the semantic level, i.e.
considering the meaning of users’ queries and the available resources. In recent
years, there have been significant advances in developing and applying seman-
tic technologies to the problem of semantic search. To collate these various ap-
proaches and to try to better understand what the concept of semantic search
entails, we describe semantic search from a process perspective. We argue that
semantics can be exploited in all steps of this process. We describe the elements
involved in the process using graph-structured, semantic models and present our
existing work on semantic search in terms of this process.

1 Introduction

The availability of structured information on the Semantic Web enables new opportu-
nities for information access. Search is no longer limited to matching keywords against
documents, but instead complex information needs can be expressed in a structured
way, with precise and structured answers as results [1-3]. We refer to this kind of infor-
mation access, in which information needs are addressed by considering the meaning
of the user queries and available resources, as semantic search.

In recent years, there have been significant advances in developing and applying
semantic technologies to the problem of semantic search. To collate these various ap-
proaches and to try to better understand what the concept of semantic search entails,
we describe semantic search from a process perspective, i.e. as an information access
process. We argue that semantics can be exploited in all steps of this process, begin-
ning with the interpretation of the user information needs, continuing with the actual
processing of the queries, over the presentation of results, to the exploitation of user
feedback. We describe the elements involved in the process using graph-structured,
semantic models of the resource -, schema -, query -, and answer space.

We further describe our existing work on semantic search in terms of this process.
In this sense, this paper can be seen as survey of our current work that compiles the
individual pieces to construct a whole picture of the entire process of semantic search.

The paper is organized as follows: In Section 2 we introduce the semantic search
process, followed by the formalization of the elements involved in this process in Sec-
tion 3. In the subsequent sections, we describe our work covering the individual steps of
the search process, with the translation of user queries in Section 4, query processing in
Section 5, and result presentation and query refinement in Section 6. After a discussion
of related work in Section 7, we conclude in Section 8.

S. Rudolph, F. Dau, and S.O. Kuznetsov (Eds.): ICCS 2009, LNAI 5662, pp. 48 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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2 Semantic Search — A Process View on Information Access

In this section, we describe our approach to semantic search. The term semantic search
has been used in various contexts. There exist many different conceptions and defini-
tions for semantic search [1,4,5]. In this paper, search is regarded as a process. The
starting point for this process is some information need. This information need might
arise from a concrete task the user aims to accomplish. In this case, the need is very
concrete such that the user exactly knows what to look for. In other cases, the informa-
tion need might be vague initially, but might become more concrete during the process.
The main objective of our approach is to cater for these different scenarios and to assist
the user throughout the search process.

In Fig. 1, we illustrate the different steps involved in this process. Hereby, offline
tasks can be distinguished from processing steps that have to be carried out online.
Resources that can help in addressing the user information need are either information
about real world resources, or documents of various types and formats. At first, these
resources need to be represented and indexed in order to make them available for search.
These steps are referred to as knowledge representation (in the case of resources) or
document representation (in the case of documents) and indexing.

Given the information need, the first task to be performed by the user is to formulate
this need as a query (query construction). The query is then processed against the in-
dices to obtain the relevant resources (query processing). The results are then presented
to the user (result presentation). They might exactly match the user need such that the
process would end here. In many cases, especially when the initial query is only a vague
or incomplete representation of the user need, further steps are required. The user may
browse the intermediate results and navigate to more relevant resources. Alternatively,
the user might want to reformulate or refine the initial query posed against the system
(query refinement). These steps might be performed iteratively until the information
need is completely satisfied.

In practice, a system is called a semantic search system if semantic technologies are
involved in some stages of this process. A distinctive characteristic of such a system
shall be the explicit use of semantics. In this regard, semantics is concerned with the
meaning of the resources made available for search. Meaning is established through
a semantic model, which essentially captures interrelationships between syntactic ele-
ments and their interpretations. Various semantic models have been proposed and used
in different research communities. There are linguistic models such as thesauri that cap-
ture relations between words. In the database community, conceptual models and Entity
Relationship diagrams are used to capture relations between data elements [6]. In the se-
mantic web community, ontologies have received widespread acceptance. The notion of
ontologies employed by this community is very general. Ontologies constitute rather a
family of models, which might differ in the degree of expressivity and formality, rang-
ing from simple taxonomies and lightweight ontologies (e.g. represented in RDF(S))
to formal theories (e.g. represented in Description Logics) where interpretations of
symbols and relationships are precise and computable [7].

In this paper, the meaning of the underlying resources is captured through seman-
tic models, which essentially, represent classes of entities and relations between them.
With respect to the categories mentioned above, these models correspond to lightweight
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ontologies represented in RDF(S). We elaborate on these models in detail in the next
and subsequent sections. Now, we briefly summarize the different steps we have im-
plemented to support the general semantic process introduced previously. In particular,
we discuss how semantics represented through our models is exploited throughout this
process:
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Fig. 1. Using semantic models for the search process

— Specification of keyword inputs. In our approach, users articulate their information

needs using keyword queries. We believe this is the most adequate form, as keyword
interfaces have been widely adopted, and users are familiar with them both due to
their simplicity and their presence in today’s systems. For searching, the users do
not need to know about the query syntax, the schema and even the labels of the data
elements. They can simply use their own words to express their information needs.
Keyword interpretation for computing query graphs. The meaning of the keywords
is computed subsequently. This follows a procedure called keyword translation
where different interpretations of the keywords are derived. More precisely, the key-
words are transformed into more expressive structured conjunctive queries, which
contain elements matching the meaning of the keywords, as well as additional el-
ements that add meaning to the query. For this, we make use of a semantic model
to represent the structure and semantics of the query space. We apply a graph ex-
ploration algorithm to identify different interpretations of the keywords within this
query space, i.e. compute query graphs.

Presentation of query graphs to user. In traditional search, users issue a query,
obtain (a set of) results, and — if the results do not fulfill the information need — start
over with issuing a new query. We introduce an additional step, in which different
possible interpretations of the user information need are computed and presented to
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the user. Instead of presenting the results directly, which might actually belong to
many distinct queries (representing different information needs), we allow the user
to select the correct interpretation of the inputs.

We have designed a query ranking scheme that is based on the structure- and
semantics-related features of the query space. According to this scheme, the com-
puted interpretations, i.e. structured queries, are sorted and presented to the user.
The queries are not presented using a formal syntax, but using an intuitive, graph-
based representation. Additionally, we also present snippets of the query results
to help the user in understanding the meaning of the query. In certain cases, these
snippets may already be the answers to the information need such that the following
steps may not be needed.

Processing query graphs. The query graph selected by the user has to be matched
against the representation of the system resources to obtain final answers. Similar
to the concept of a query space, we employ an answer space, a semantic model that
more compactly encodes the search space that has to be explored for computing an-
swers. Instead of matching the query against the system resource, we first process
the query against the more concise answer space. This results in a set of candidates
that are known to satisfy the structural constraints of the query. In the second step,
these candidates are further refined to verify that they also match the concrete enti-
ties mentioned in the queries (i.e. constants and distinguished variables). The main
advantages of using the answer space are reduction in I/O costs and reduction in
the number of joins and unions, i.e. reduced space and time complexity.

Presentation of results. The answers to the selected query are presented to the user.
The conjunctive queries we focus on can be classified into three main types: entity
queries, factual queries and general conjunctive queries. The query type ultimately
determines the structure of query result, and thus, the way it should be presented to
the user. We have designed different templates for query results of these different
types. In the case of general conjunctive queries for instance, results are sets of tu-
ples that satisfy the conjunctive query. They are presented to the user in a structured,
tabular form.

Facet-based query refinements. Refinements to the query may be needed for several
reasons. The computed interpretations may not exactly match the information need.
Also, the user may start out with a vague information need, not knowing exactly
what he is searching for. For these cases, we make use of a semantic model called
schema space that describes the different types, relations and attributes exhibited
by the underlying resources. This semantic information acts as facets describing
the resources currently presented to the user. Based on these facets, we provide
means for the user to narrow down or expand the resources of interest according
to their information need in an interactive way. In particular, the user can add,
remove or edit the facets. These operations are transparently converted to changes
on the conjunctive query. The query refined this way is immediately evaluated,
and new results are presented without the user having to explicitly issue a new

query.
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3 Data and Semantic Model

We will begin with the most fundamental model of our approach, i.e. the resource space,
a graph-based model of the underlying resources we make available for search:

Definition 1. A resource space Sg is a set of resource graphs gr(V, L, E) where

— V is a finite set of vertices. Thereby, V is conceived as the disjoint union Vg & Vy,
with E-vertices Vi (representing entities) and V-vertices Vi, (data values),
— L is a finite set of edge labels, subdivided by L = Lr W L 4, where Ly are relation
labels and L 4 are attribute labels.
- Eis afinite set of edges of the form e(v1,vo) withvy,v2 € V and e € L. Moreover,
the following types are distinguished:
e ¢ € Ly (A-edge) if and only if v1 € Vg and vy € Vy,
e ¢ € LR (R-edge) if and only if v1,ve € Vg,
e and type, a predefined edge label that denotes the class membership of an
entity.

Example 1. An example resource graph describing relationships between persons, uni-
versities and articles is depicted in Fig. 2.

Fig. 2. An example resource graph

As discussed in the last section, searchable resources might be documents and real
world entities. Note that in our model, they are commonly represented as entities, i.e. E-
vertices of a graph-structured resource space. Documents represent a class of entities,
which might have relation to other entities such as author and publisher and special
attributes such as title and abstract. They are indexed and retrieved in the same way like
other types of resources. In other words, the retrieval of documents and data amounts
to the same, namely entity retrieval.

In the resource space, we do not distinguish between different types of E-vertices
in vg, i.e. classes and instances. Intuitively, a class denotes a group of instances. In-
stances in the same class might exhibit similar types of relations and attributes. This
semantics about classes and their relations can be explicitly defined in the schema
space.

Definition 2. A schema space Sg is a set of schema graphs gs(V, L, E') where

— V is a finite set of vertices. Here, V is conceived as the disjoint union Vo & Vi &
Vi W Vp with C-vertices V¢ (classes), R-vertices Vg (relations), A-vertices V5
(attributes), and D-vertices Vp (data types).
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— L comprises the pre-defined edge labels subclassof, domain, range.

— E is a finite set of edges of the form e(v1, v2) with v1,v2 € V and e € L, where
e ¢ = domain if and only if v1 € V4 U Vg and vy € Vi,
e ¢ = range if and only if v1 € Va,v9 € Vp orvy € Vg, vy € Vi, and
o ¢ = subclassof if and only if v1,v2 € V.

Example 2. Fig. 3a) illustrates an example schema. While this one comprises of rela-
tions between classes only, a typical schema also contains attributes and data types.

Note that with respect to the different types of semantic models discussed in the previ-
ous section, the schema graph corresponds to a lightweight ontology. Alternatively, it
might also be given as a formal model that is backed by a logical theory (e.g. an OWL
ontology). Such a model would allow for reasoning, e.g. to infer additional knowledge
that is implicitly captured in the representation of the underling resources. While this
inference capability clearly can help in satisfying the information need of the user, it
comes at the cost of higher computational complexity. In this paper, we focus on the
use of lightweight semantics, i.e. compact descriptions of structures exhibited by the
underlying resources. We show how these lightweight semantic models can be used for
the interpretation of the user keywords, for guiding the process of query answering, and
for helping the user in refining the query and answers.

Note that a schema essentially describes structural relationships exhibited by the un-
derlying data. Such a description might be given explicitly, e.g. in the form of Entity
Relationship diagrams or RDF(S) ontologies'. However, in many cases, a structural
description may be incomplete or may not exist for a given resource space. Also, differ-
ent tasks require descriptions at different “levels of granularity”. For query refinement
and query interpretation, it suffices to know which relationships might exist between
classes of entities, i.e. we can use the schema space for these tasks. However, for query
processing, we need a more precise description which guarantees that there exist some
particular relationships. In the following sections, we will elaborate on the different se-
mantic models we use for the semantic search process and also, we will discuss how
they can be derived automatically from the structural properties found in the data.

4 Query Space — Enabling Query Construction Using Keywords

In this section, we describe the computation of possible interpretations of the user key-
words. These interpretations are presented to the user in the form of query graphs. The
computation of query graphs from keywords basically involves three tasks: 1) construc-
tion of the query space, 2) top-k query graph exploration, and 3) query graph ranking.
The algorithms employed for these tasks have been described in [8]. Here, we focus our
discussion on the underlying semantic model, i.e. the query space.

Typically, the search space employed for keyword search is the resource graph [9]
[10]. It is used for the exploration of substructures that connect keyword elements. Such

! Note that the schema graph is close to a RDF(S) ontology. The intuitive mapping from RDF(S)
to the schema graph is: resources correspond to entities, classes to classes, properties to either
relations or attributes and literals to data values.
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an exploration might be very expensive when the resource graph is large. While these
approaches focus on computing answers, we are interested in interpreting queries, i.e.
we want to derive the query structure from the edges and the constants and variables
from the vertices of the resource graph. For this, we employ a more compact represen-
tation of the resource graph to keep the search space minimal. We introduce the query
space model which aims to capture only information that is necessary for the com-
putation of possible interpretations. Essentially, it consists of two parts: 1) the graph
elements that match the user keywords (to identify the query constants) and 2) possible
relations between classes of entities (to derive the query predicates):

Definition 3. A query space Sq(Ss, Nk) comprises of keyword matching elements
Ny computed for a query q which when not already contained, are connected with
elements of a special schema space Sgs consisting of the graphs gs(V, L, E) where

— V' is conceived as the disjoint union Vo W Vi,
— L comprises of the pre-defined edge labels subclassof, domain, range,
— E is a finite set of edges of the form e(v1,v2) with vi,v3 € V and e € L.

To compute N, keywords of ¢ are matched against the labels of elements of the re-
source space. The second part is simply the schema without attributes and data types.
For query interpretation, we navigate through different paths of the query space to con-
nect elements in N . Note that paths on the schema space end at a datatype vertex.
Thus, edges of the form attribute — data type represent dead ends. Navigating along
such edges do not help in finding further connections. Therefore, they are not consid-
ered during the construction of the query space.

In cases where there is no schema information available, the special schema we need
can be derived from the resource space by deleting all V-vertices and A-edges, and by
the subsequent and exhaustive application of the following clustering rules:

1. Every E-vertex v, is clustered to a C-vertex v, if there is an edge type(ve, v¢). If
there is no such C-vertex, v, is clustered to T hing, a special C-vertex denoting the
most general class of entities. Here, clustering means that v, is deleted from the
graph and every v, inherits all the edges from v, except type.

2. Note that the application of the previous rule results in edges of the form e(v., , v, ).
Two edges e;(ve1, ve2) and e;(ves, vea) are then clustered to one if e; = e, ve1 =
V¢3, and veo = veq. Here, clustering simply means either to delete ¢; or e;.

Example 3. Fig. 3a) illustrates the schema that is derived from our example resource
graph in Example 1. Fig. 3b) shows the query space constructed for the example query
Qe “Article Stanford Turing Award”. The keyword elements obtained through match-
ing the user keywords against resource labels are Article, Stanford University and Tur-
ing Award. Article is already contained by the schema. Stanford University and Turing
Award are connected to the respective vertices of the schema to obtain the search space
for gey .

Given the query space, query interpretation amounts to searching for the minimal query
graphs, defined as follows:
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label

Stanford University [«€:«=====+
name

range range
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Fig. 3. a) Special schema graph computed from the resource graph in Example 1 b) a query space
obtained through connecting keyword-matching elements with elements of the schema

Definition 4. Let Sg = (Ss, Nk) be the query space, K = {ki,...,kn} be a set
of keywords, and let f : K — 2VKYEK be a function that maps keywords to sets of
corresponding graph elements (where Vi, Exx C Ny ). A query graph is a matching
subgraph g, = (Vy, Ly, Eq) with Vy, L, and E, being elements of Ss and

- foreveryk € K, f(k)N(V,UE,) # 0, i.e. g, contains at least one representative
keyword matching element for every keyword from K, and

— gq Iis connected, i.e. there exists a path from every graph element to every other
graph element.

A matching graph g,, is minimal if there exists no other g, of g such that Score(g,;) <
Score(gq, ), where score : g, — [0, 1].

We employ a top-k procedure to find such query graphs. It starts from the keyword el-
ements N and iteratively explores the query space Sg for all distinct paths beginning
from these elements. During this procedure, the path with the highest score so far is
selected for further exploration. For scoring paths we incorporate 1) the popularity of
graph elements (e.g. computed via PageRank), 2) the matching score of keyword ele-
ments (obtained via the imprecise matching of keywords to element labels), and 3) the
length of the path. At some point, an element might be discovered to be a connecting
element, i.e. there is a path from that element to at least one keyword element, for every
keyword in K. The paths between the keyword elements and the connecting element are
merged to form a query graph. The graphs explored this way are added to the candidate
list. The process continues until the upper bound score for the query graphs yet to be
explored is lower than the score of the k-ranked query graph in the candidate list, i.e. no
candidates can beat the k-ranked result. More algorithmic details can be found in [8].

Example 4. Fig. 4a shows an example query space containing elements associated with
some scores. Based on these scores, the path score is updated at every step, which is
then used to prioritize the “direction” of the exploration. The exploration starts from
the keyword elements “Stanford University”, “Article” and “Turing Award”, as shown
in Fig. 4a (labels of “non-keyword elements” are omitted due to lack of space). The
three different paths starting from these elements that have been iteratively explored
during the top-k procedure are also shown. For the first time, these three paths meet
at the vertex with the EF-IDF score = 0.0002, i.e. this vertex is a connecting element.
These paths are merged to form the query graph shown in Fig. 4b.
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Fig. 4. a) Three paths through the query space and their scores b) A resulting query graph

Note that the semantic model employed here is essentially about entities denoted
by keywords (keyword matching elements) and their possible relations. It models the
space of possible interpretations of the keywords. Using this model, query computation
operates on a more concise representation of the query search space. In experiments
presented in [8], substantial performance increase is possible compared to state-of-the-
art on keyword search.

5 Answer Space — Enabling Efficient Query Processing

In this section, we discuss another semantic model called the answer space. It repre-
sents a more compact representation of the answer search space, which is employed
for more efficient query processing. In particular, we are concerned with the match-
ing of query graphs (i.e. the ones resulting from keyword interpretation as shown in
Fig. 4b. These graphs represent conjunctive queries, an important fragment of widely
used query languages (such as SQL, SPARQL?) Here, we focus our discussion on the
model and refer the interested reader to [11] for algorithmic details and proofs.

An answer space is essentially a collection of answer graphs, where vertices denote
extensions, i.e. a set of elements. In particular, every such extension contains elements
of the resource space, which exhibit the same structure, i.e. have same (incoming and
outgoing) paths. Intuitively speaking, an answer space is a compact representation of
the different structures exhibited by elements of the Resource Graph.

Example 5. Fig. 5 shows an extended example for the resource space. Its associated
answer space is shown in Fig. 6a. The extension Ey in Fig. 6a for instance, comprises
of unil and uni2, which as illustrated in the resource space in Fig. 5, are similar in
structure.

We formalize the concept of an answer space by the notion of a bisimulation originating
from the theoretical analysis of state-based dynamic systems. Essentially, graph nodes
are considered bisimilar in this sense if they cannot be distinguished by means of “edge
trees” starting from them. Moreover, we parameterize our notion of bisimularity by two
sets (forward and backward) of edge labels. We now define our notion of parameterized
bisimilarity.

Definition 5. Given a resource graph gr = (V, L, E') and two edge label sets L1, Lo C
L, a (Ly-forward-Ly-backward) bisimulation on G is a binary relation R CV x V on
the vertices of G such that for v,w € V, 11 € Ly and ls € Lo:

2 SPARQL is a query language for RDF data recommended by the W3C.
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Fig. 5. a) An extended example of a resource space

vRw and l1(v,v") € E implies there is a w' € V with l;(w,w') € E and v' Rw/’,
vRw and Iy (w,w") € E implies there is av' € V with l1(v,v") € E and v' Rw/,
vRw and l3(v',v) € E implies there is aw' € V with la(w',w) € FE and v' Rw/',
vRw and la(w',w) € FE implies there is av' € V with l3(v',v) € E and v' Rw'.

Two vertices v, w are called bisimilar (written v ~ w), if there exists a bisimulation R
with v Rw.

Our notion of L;-forward-Lo-backward bisimulation captures as special cases forward
bisimulation (L; = L, Ly = ()), backward bisimulation (L1 = @, Ly = L) as well
as back-and-forth bisimulation (L; = Ly = L). Note that ~ is an equivalence rela-
tion, and is itself a L;-forward-Lo-backward bisimulation. In fact, it is the greatest (i.e.
most general) one as it subsumes all possible bisimulations R. In the following, we will
represent this bisimilarity equivalence by the set of its equivalence classes called exten-
sions: {[v]~ | v € V} with [v]. := {w € V | v ~ w}. Recall that these equivalence
classes form a partition of V, i.e. a family P~ of pairwise disjoint sets whose union is
V. We use these classes to define the answer graph of gg.

Definition 6. For a given resource graph gr = (V, L, E) with greatest bisimulation
~, the associated answer graph g5 = (V™, L, E™) is defined as follows:

— The vertices of the answer graph g% are exactly gr’s ~-equivalence classes :
Ve ={[l. [veV}

— The labels of g% are exactly the labels of gr, and

— An edge with a certain label e is established between two equivalence classes [v].~.
and [w]~. exactly if there are two vertices v* € [v]. and w* € [w]~. s.t. there is an
edge e(v*, w*) in the resource graph:3 E~ := {e([v*]~, [w*]~) | e(v*,w*) € E}.

We will now characterize the properties of the answer graph which justify its usage for
query processing.

Proposition 1. Let gg be a resource graph with associated answer graph g7 and let
g'r be another resource graph such that there is a homomorphism h from g7, into gg.
Then h™ with h™ (v) := [h(v)]~ is a homomorphism from g, into g7;.

* Note that from ~ being an equivalence relation follows [v]~. = [v*]~ and [w]~ = [w*]~.
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Roughly speaking, this proposition ensures that, whenever there is a match of a query
graph on a resource graph, the query also matches on the answer graph. Moreover,
the equivalence classes part of the answer graph match will contain the vertices of the
resource graph match. Thus, we can use the more compact answer graph for query
processing:

— In the first step, the query is matched against the answer graph, resulting in a set
of answer graph matches. They contain data elements that satisfy the structural
constraints captured by the query.

— In the second step, we need to verify that these data elements also match the con-
crete entities mentioned in the query, i.e. constants and distinguished variables, and
relations among them. For this, we retrieve data elements contained in the answer
graph matches, and join them along the query edges.

Example 6. Fig. 6b depicts a query, which asks for authors y working at Stanford
University that have won a Turing Award. Further, y should supervise some u that
is author of some v. The matching of the query graph in Fig. 6b on the answer graph in
Fig. 6a results in one single match h = {z — Fl,y — E4,z — E7,u— E3,v —
E5, Stan ford University — E6, Turing Award — E8}. Through this structural
matching, we know that elements in £4 work at some places =, have won some prizes
z and supervise u. Further, we also know that « is author of some v. Next, we have to
check whether elements in £4 match the concrete entities mentioned in the query, i.e.
really work at Stan ford University, and have won a Turing Award. For this, we
retrieve data contained in the extensions E6, E1, E4, E7 and E8 and join them along
the edges (y employment x), (x name Stan ford University), (y prize z), (z label
Turing Award).

Note that through structural matching, we retrieve and join data only for a certain part
of the query, i.e. the rest of the query can be pruned away after processing step one.
We will give another proposition that more precisely defines the part that can be pruned
away. We will call a graph g with a distinguished node r called root ( L:-forward-Lo-
backward) tree-shaped if its edges interpreted as undirected edges form an undirected

ame
EB(KIT, Stanford University. employment

employment

Turing Award

Fig. 6. a) The answer space for the resource space shown in Fig. 5 and b) an extended example of
a query graph
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tree and from the root node r, every path from this root to the leaves traverses forward
only L;-labeled edges and backward only Lo-labeled edges.*

Proposition 2. Let gr be a resource graph with associated answer graph g7, (where ~
is a Li-forward-Lo-backward bisimulation) and let g%{ be a Li-forward-La-backward
tree-shaped resource graph with root r. Let b’ be a homomorphism from g%, to g7;. Then
for every node v € h/(r), there is a homomorphism h from g to gr with h(r) = v.

Informally, this proposition ensures the following: Suppose there is an accordingly tree-
shaped query graph g, where all nodes except possibly the root r are non-distinguished
variables, corresponding to a query posed against the data graph gr. The proposition
now states that for any match h’ of g%, against the answer graph g7, every data element
v of the extension(s) assigned to r — namely h'(r) — represents a binding to . In other
words, for this special type of tree-like query parts, no verification step will be neces-
sary. Data elements need to be accessed only for the root node of the query g7, while
the rest of g7, can be pruned away.

Example 7. Continuing with our previous example, we can see that there are two tree-
like parts that contain no distinguished variables, i.e. the paths (x employment u) (v
author u) and (y supervises u) (v author u). These parts can be pruned away after
step one as all data elements contained in answer graph matches are already known to
satisfy these structural constraints, i.e. elements in E'4 are already known to supervise
some u that are authors of v, and elements in F1 are known to employ some w that are
authors of v respectively.

Compared to state-of-the-art approaches, the main advantages of using the answer space
for query processing are the following:

— Further Reduction of I/O Costs: Typically, a single index lookup is sufficient for
processing a query atom that involves at least one constant. Given a query atom
which contains variables only, the entire table needs to be fetched from disk. In our
approach, we retrieve only data elements that are known to satisfy the structural
constraints of the query. Thus, the amount of data that have to be retrieved from disk
might be smaller in both cases. For instance, the entire table created for the property
employment has to be fetched to obtain data matching the pattern (z employment
u). We retrieve only those bindings to x that match other constraints of the query,
i.e. have some names and employ some y. Similar arguments apply when the query
atom involves constants, e.g. (x name Stanford University): there might be
many elements in the resource space with the name Stan ford University while
the number of those exhibiting the structure specified in the query should be far
less.

* Equivalently but more formally, this can be inductively defined: every edgeless single-vertex
rooted graph (g,r) with g = ({r}, L, 0) is L,-forward-Lz-backward tree-shaped. Moreover
let (g1,71) and (g2, r2) with g1 = (V4, L, E1) and g2 = (Va, L, E2) be two Li-forward-Lo-
backward tree-shaped graphs with disjoint vertex sets. Let v € Vi and lete € {l(v,72) |l €
L1} U{l(rz,v) | I € La}. Then the rooted graph (g3, 71) with gs = (V1 U Va2, L, By U E2 U
{e}) is Ly-forward-Ls-backward tree shaped.
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— Further Reduction of Unions and Joins: While state-of-the-art approaches makes
join processing more efficient, it does not directly solve the proliferation of joins
and unions. Like in [12] and [13], we also sort values to enable fast merge joins.
Additionally, we can largely reduce the number of joins. As noted, joins are only
needed to verify the relations between concrete entities mentioned in the query
(denoted by constants and distinguished variables). Through pruning the two paths
in our example, the number of joins rendered unnecessary makes up almost 50
percent of the total number of joins that would be needed. In the extreme cases
where no answer graph matches can be found, we can skip the entire second step
to avoid data access and joins completely.

Note that the semantic model employed here is about extensions of entities that ex-
hibit similar structures. These extensions are not much different from the classes, i.e.
C-vertices, that can be found in the schema space or query space. However, whereas en-
tities of the same class might have similar properties and attributes (i.e. similar w.r.t the
outgoing edges), entities of the same extension are guaranteed to have similar structures
(i.e. similar w.r.t incoming and outgoing paths). An answer space thus can be regarded
as a more fine-granular version of the schema space. It more compactly encodes the
space of possible answers. Using this model, query processing operates on a more con-
cise representation of the answer search space. In experiments with large-scale datasets
using queries of different shapes and complexities, we have shown that this approach is
5-6 times faster than the state-of-the-art [11].

6 Presentation and Refinement

In this section, we elaborate on the use of our semantic models for query presentation,
answer presentation and query refinement. These concepts have been implemented in
the context of data web search [14] and semantic wiki search [15]. Based on our se-
mantic wiki search implementation, we will now discuss the main ideas and refer the
interested readers to [14] and [15] for more algorithmic and implementation details.

6.1 Query and Result Presentation

Since our search aims at lay end users, both intermediate and final results have to be
presented to the user in an intuitively understandable way. We have developed a concept
for visualizing query graphs along with results. We choose a table layout as it is a
general pattern that can accommodate queries and results of different structures and
complexities. As shown in Fig. 7, the table is divided horizontally into two sections
from top to bottom: a query view and a result view.

The query graph selected by the user is presented in the query view. There is one col-
umn for every variable of the query. The column labels denote classes or data types and
arrows between them represent relations or attributes respectively. This information is
encoded in the query space. In particular, labels for columns and arrows can be derived
from the labels of elements contained in query graph. The result view shows variable
bindings, i.e. entities (or data values) that satisfy the constraints specified in the query.

This table-based presentation template is sufficiently general for dealing with
different structures, the following three types of queries in particular:
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1. Entity Queries ask for specific entities like searching a person, e.g. someone with
the name “Thanh Tran”. For this, one single column is needed to display the class

of the entity in question.

2. Fact Queries ask for a concrete relation (an attribute) of a particular entity like the
mail address of “Thanh Tran”. Two columns are needed, one for the class of the

entity in question and another for displaying the requested data value (or entity).

3. General Graph-structured Queries ask for n-ary tuple sets. Several columns and
arrows are needed to show the classes, data types, relations and attributes mentioned

in the query.

6.2 Facet-Based Query Modifications

When an interpretation is chosen, the facets view is shown to the user. This view is de-
picted on the right side of the screenshot in Fig. 7. Using this view, facets are displayed
for the different entity classes mentioned in the query. In particular, the facets view
contains windows for every class shown in the query view. These windows display the
possible facets, which are relations or attributes that can be derived from the schema

space, i.e. outgoing edges of the C-vertex denoting the selected class.

Using this facets view, query modifications are supported by adding or deleting
facets. For example, in Fig. 7 the user can drill down and refine the search result by
adding the facet “submission deadline” to the class “Conference”. The user can more

special

Ask The Wiki

= There are 2 results matching your interpretation
= Use the y Facets to the right to expand or narrow the results

58 interpretation

Legend: Concepts , Relation

Step 3: View and refine results

, Labels Literals

Conference Country: "Greece"

o

L——thas location cour
[IL_iars smmin e

ESWCZ009
ECAIZ008

Greece

Greece

ct deadlingr———— 1

Abstract deadline

2008-12-08 00:00:00
2008-02-22 00:00:00
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precisely define this facet by entering a concrete value for “submission deadline”. The
new query is immediately evaluated and the results are presented to the user. Instead of
adding facets, the user can also expand the search results by removing the facet “has
located country”. He would then get all conferences and their abstract deadlines with-
out the constraint that they are located in Greece. Furthermore, the user can remove a
query variable and all facets bound to it by pressing the “x” button in the head line of
the respective facet window (on the right of Fig. 7).

According to the user study we have presented in [15], the majority of 14 users
found the presentation of the results understandable. Unlike keyword search, faceted
search seems to be not a commonly used paradigm. Three participants stated that they
did not know how to do it. However, the ones who used it found the feature helpful.
Interestingly, the use of facets was particularly effective for the more complex tasks.

Note the same principle that has been applied throughout the many steps of the se-
mantic search process. Semantics has been used to enable a more focussed exploration
of query interpretation and to enable a more guided matching of query graphs respec-
tively. In this section, semantics is used to guide the user through the process. Based
on the query space, the query and answers are presented according to their structures
to facilitate user comprehension. The schema space represents a compact view over the
answer space. It is used to derive facets that help the user in modifying and refining the
answer space.

7 Related Work

There exist many different conceptions and definitions for semantic search [1,4,5]. A
state-of-the-art analysis can be found in [3], which provides a review of different se-
mantic search tools and focuses on different modes of user interaction. In this paper, we
regard search as a process. We have discussed how semantics can be exploited through-
out the process. With respect to existing concepts, we offer a novel, process-centric
perspective on sematic search.

The other dimensions of related work concern with the steps involved in the search
process, which we will briefly discuss in the following.

Query Construction. Much work has been carried out in order to facilitate query con-
struction. This daunting task is mainly addressed in approaches on relaxed-structured
query models [16—-19] and the structure free keywords-based query model. For the
keywords-based search, native approaches can be distinguished from the ones that ex-
tend existing databases with keyword search support. Native approaches operate directly
on the data (i.e. on the resource graph), and thus have the advantage of being schema-
agnostic [20-22]. Database extensions require a schema, but can leverage the infrastruc-
ture provided by an underlying database. Example systems implemented as database
extensions are DBXplorer [23] and Discover [24]. These systems translate keywords to
candidate networks, which are essentially join expressions constructed using informa-
tion given in the schema. Thus, instead of using the resource graph, the exploration for
join expressions (i.e. queries) operate on a smaller search space based on the schema. Our
approach for query interpretation combines the advantages of these two approaches: in
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line with native approaches, it is also schema agnostic in that a schema space is automat-
ically derived from the resource space. Unlike the natives approaches, the exploration
does not operate directly on the resource space, but on the schema space.

Query Processing. The answer space used in our approach is similar to a structure
index, a concept that has been widely used for semi-structured and XML data [25-29].
In particular, dataguide [30] is a well-known concept that has been proposed for rooted
graphs, i.e. graphs having one distinguished root node. A strong dataguide is established
by grouping together nodes sharing edge label sequences of incoming paths starting
from the root. As opposed to our answer space, the resulting grouping is not a partition,
i.e. one vertex may be assigned to several blocks. Thus, the size of the dataguide can get
exponentially larger than that of the original data graph. The /-Indices [25,26] prevent
this worst-case exponential blow-up.Instead of backward bisimulation only, both back-
and forward bisimulation is employed for the construction of a covering index for XML
branch queries [27].

The main difference is that while we can derive an answer space from general graph-
structured data, the construction techniques used for the indexes mentioned above rely
on the resource graph being rooted thereby imposing a structural constraint on the re-
sources that is hard to realize. Particularly in the Semantic Web context, the graph-
structured model (i.e. RDF) has been explicitly designed for representing information
from diverse sources, which might have to be integrated in a non-hierarchical way.

Result Presentation and Query Refinement. For the presentation of structured results
and the refinement of queries, faceted browsing is increasingly used in search applica-
tions. Many websites already feature some sort of faceted search to improve the pre-
cision of their search results. A crucial aspect of faceted search is the design of a user
interface. This has been studied by [31,32] and applied in systems like Flamenco’, Ex-
hibit® or Parallax’. In a Semantic Wiki context, this paradigm has been applied in the
form of Semantic Drill Down® for browsing from top to bottom along the wiki’s cate-
gories. Another cornerstone of faceted browsing is the question what is actually used
as facets, which obviously depends on the resources and theirs structures. Systems like
Flamenco and Exhibit require a predefined set of properties, which are used as facets.
We make explicit use of the schema space to compute the relevant set of facets in a
dynamic way.

8 Conclusions

The problem of semantic search, i.e. addressing information needs at the level of the
meaning, has received increased attention in recent years. Numerous approaches to se-
mantic search have been proposed that make use of semantics in different ways. In this

5 http://flamenco.berkeley.edu

6 http://simile.mit.edu/exhibit

7 http://mglx.com/~david/parallax/

8 http://semantic-mediawiki.org/wiki/Help:SMW\_extensions#
Semantic\_Drilldown
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paper we have described semantic search from a process perspective that considers all
the relevant steps of information access. Further, we have discussed how lightweight
semantics can be exploited throughout this search process, i.e. using graph-structured
models of resources, schemas, queries, and answers. These lightweight semantic mod-
els clearly go beyond the state-of-the-art in information retrieval, as they do not treat
the resources on a word level, but instead more explicitly capture the semantics of the
elements. At the same time, the complexity of these graph-structured models and asso-
ciated algorithms are still computationally manageable, such that they can be applied to
search problems on a large scale. Specifically, based on these semantic models, we have
presented algorithms for constructing structured queries from keywords, for answering
these queries as well as for the presentation and further refinement. The search pro-
cess and presented techniques have been successfully applied in a number of semantic
search systems, such as [15] and [14].
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Summary. Logical thinking as an expression of human reason grasps the actual re-
ality by the basic forms of thinking: concept, judgment, and conclusion. Mathematical
thinking abstracts from logical thinking to disclose a cosmos of forms of potential re-
alities hypothetically. Mathematics as a form of mathematical thinking can therefore
support humans within their logical thinking about realities which, in particular, pro-
motes sensible actions. This train of thought has been convincingly differentiated by

¢

Peirce’s philosophical pragmatism and concretized by a “contextual logic” invented by

members of the mathematics department at the TU Darmstadt.

1 Logical Thinking

Already Pythagoras’ pupil Alkmaion of Croton defined a human being as “zoon
logon echon” (in latin: animal rationale), i.e. as “reasonable living being”. This
basic anthropological understanding of a human being has been lasted in western
philosophy until Scheler’s duality of “mind” and “body” and even further ([Fa73];
p-895). “Reason” is here understood as mental means of human beings to gain
insights, to form judgments, and to act in accordance to those judgments ([Du95l;
p-3694). Since those means are substantial for human beings, the formation of
humans should achieve to learn thinking and acting in a reasonable manner.
To what extent mathematics could play a role here, this shall be discussed in
the following. In particular, the claim shall be examined that logical thinking
can be supported by mathematics. How close are the meanings of “thinking
logically” and “thingking reasonably”, this may become clear by noticing that
the meanings of both linguistic expressions are apprehended in English by one
word, the verb “reason”.

To understand what is meant by “logic thinking”, one has to clarify what is
meant by “logic”. According to the “Duden: Das grofie Worterbuch der deutschen
Sprache”, logic is the doctrine of the structure, the forms, and the laws of
thinking ([Du95]; p.2145). Therefore, “logical thinking” means a thinking which
activates logical (i.e. to logic belonging) structures, forms, and laws. In the phi-
losophy since the 16th century, the basic forms of logical thinking are considered
as the concepts (as basic units of thinking), the judgments (as connections be-
tween concepts), and the conclusions (as inferences gaining judgments from other

* This article is an English version of the German publication [WiO1b].
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judgments). How, founded on those basic forms, further logical structures, forms,
and laws can be developed, this has already been shown 1662 by Antoine Ar-
nauld and Pierre Nicole in their guiding book “La Logique ou I’Art de penser”
[ANS85H]. Even when a new understanding has become dominant in the course
of the stronger formalization of logic - after Logic was ascribed to the task of
recognizing the laws of truthness (since the midle of the 19th century) - , the
everyday uses of logical thinking has basically speaking not changed if one is
orientated on general dictionaries.

This understanding of logical thinking, that it is based on concepts as the basic
units of thinking, has been further deepened by Jean Piaget in his structure-
genetic theory of cognition. For him, the logical thinking of a human being has
its roots in the coordinations of actions which are already present before the
development of the language; from those coordinations, mental operations and
with them logical structures come into being in the psychic development ([Pi73],
p.26ff). Piaget’s approach, by which he tries to clarify the question about the
logic of conceptual thinking and the truthness of knowing, consequently run
out according to Thomas Bernhard Seiler toward a theory which understands
concepts as basic units of recognizing, thinking, and knowlege. Piaget identifies
concepts with cognitive structures with which and through which the organism
examines its environment in an acting manner, adapt to it, and in which the
organism reconstructs the aspects of the environment relevant for its acting and
thinking and which provide for it the basis for interpreting the meaning of signs
(cf. [Se01]; p.164t.).

Most simple preforms of concepts are the sensorimotor schemas which arise
already early out of coordinations of actions. The next step of evolution forms
the ideas which abstract from the observed objects and correlated actions. If such
structures of cognition can also be applied to new objects and other structures
of cognition, then Piaget speaks of preconcepts. Structures of cognition have
finally reached the step of concepts if they have been freed to a large extent
from the intuitive view and have let coordinated to formal operations. Only
the construction of complex concept systems and their systematic coordination
allows a differentiated reconstruction of reality and leads to consistant concept
orders, the availability of which is a necessary condition for the development
of logical thinking. Piaget sees further conditions in the system properties of
complex structures of action, the necessity of communicative negotiation and
the compulsion to justify herself in the society ([Se01]; p.171).

Which priority meaning the logical thinking has for the recognition and action
of human beings, this has been made distinct in particular by Charles Sanders
Peirce in his philosophical pragmatism. For this the Cambridge Conferences
Lectures are an impressive source which Peirce has given in 1898 about the theme
“Reasoning and the Logic of Things [Pe92]. These lectures offer an introduction
into Peirce’s late philosophy which tries to make it intelligible for all. Logic is
understood in this lectures as normative science about forms and laws of thinking
which, as a philosophical discipline, has as theme to make understandable the
relationship between thinking and reality. Peirce sees the foundation for the
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understanding of forms of thinking in his categories of Firstness, Secondness,
and Thirdness which he defines as follows ([Pe92]; p.146ff.): Firstness is the
mode in which anything would be only for itself, irrespective of anything else;
Secondness is the mode in which anything would be related to something else,
irrespectively of anything third; Thirdness is the mode in which a First is joined
with a Second by a Third. For instance, a concept as a third joins a concept
word as a First with an object as a Second.

According to his categories, Peirce distinguishes between three kinds of logi-
cal conclusion: the abduction, the induction, and the deduction. The abduction
creates out of the horizon of self-evidence a hypothesis as a First; the induction
confirms a hypothesis by actually given facts as a Second; the deduction concludes
a hypothesis out of valid premisses by logical laws as a Third. This means: “The
deduction proves that something must be the case; the induction shows that some-
thing is actually efficient; the abduction only assumes that something might be the
case ([Pe91]; p.400). In his Cambridge Lectures Peirce elucidates the three kinds of
logical conclusions by the syllogistic figures of conclusion: the deduction by the fig-
ure Barbara, the induction by the figure Datisi, and the abduction (retroduction)
by the figure Cesare ([Pe92]; p.141f.); with that he clarifies in particular that the
three figures of conclusion distinghish essentually from each other, which Imanuel
Kant challenced 1762 in his paper “Uber die falsche Spitzfindigkeit der vier lo-
gistischen Figuren” ([Ka83al; p.597ff.). With the reached understanding of the
triadic nature of the logical conclusion, Peirce overcame the difficulties to express
geometric and algebraic conclusions by syllogisms in the way that he extended
the Boolean logic [Bo5§| to the logic of relations ([Pe92]; p.1501t.), which was for
him the formal foundation for all logical conclusions. The limitation of syllogisms,
which was for Peirce essentially depend on their mechanistic nature, becomes sur-
mounted in the logic of relations by an open diagrammatic conclusion which gives
space for different types of conclusions.

Logical thinking was generally characterized by Peirce as follows: “Reasoning is
the process by which we attain a belief which we regard as the result of previous
knowledge” ([Pe98]; p.11). Peirce discusses in his first Cambridge Lecture about
“Philosophy and the Conduct of Life” the logical thinking in everyday life, which
succeeds for him as well without help by theoretical logic as with it. Primarily he
sees the logical thinking detemined by the instinct and the sentiment of human
beings and warns therefore for superficial logical conclusions that does not pay
attention to instict and sentiment. As the logical thinking grows out of the human
expierence, so instinct and sentiment develop in human beings from inner and
outer experiences, and that takes place in a slow and deep process which brings
out mental energy and vitality. Peirce considers this process as so important
that he views instinct and sentiment as the real substance of the human mind
([Pe92]; p.110).

For this reason, the “training in reasoning” - so the theme of the fifth Cam-
bridge Lecture - must, according to Peirce, concern the human mind as a whole;
for this three mental operations are important for him: observation, experimen-
tation, habituation.
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Observation consists of two parts: the first as subconscious induction by which
an associational potency arises on repeatedly reviewing an object of perception
with a tendency to call up other ideas; the second as conscious formation of
schematic ideas which are able to react on perceivable objects. The associational
potency which arises out of the subconcious induction is according to Peirce the
most important constituent of practical thinking, while the consciously formed
schematic ideas are indispensable for theoretical thinking ([Pe92]; p.182). For
logical thinking it is particularly important to train powers of discrimination;
according to this, Peirce writes: “I never knew a man whose sagacity as a rea-
soner compelled my admiration without finding in him a considerably cultivated
discrimination” ([Pe92]; p.183). For the observation the most important precon-
dition is passivity, i.e. not to give way to the natural presure to immediately mix
the observation with own ideas.

For the experimentation however, an active energy, a persistence, and a strong
contribution of will is essential. For Peirce there is no doubt that, what ever
strengthens the will also strengthens the power of logical thinking ([Pe92]; p.187).
Experimentation needs furthermore a certain measure of resourcefullness, i.e. of
movability of the creative imaginative faculty, of flair for significant questions
and answers as well as of persistence to clarify advantages and disadvantages
of different answers. For training logical thinking one should again and again
be activated to experiment systematically; for this, systematic recordings are
indispensable. In general, Peirce recommends to record on paper cards all what
is noteworthy. For an eager student Peirce estimates approximately 20.000 paper
cards per year by which he can built up a rich treasure of experience for his
experimental thinking.

Habituation contains as mental operation the power of readily taking habits
and of readily throwing them off; for Peirce there is no habit more useful than
this habit taking up and easily throwing off mental habits ([?]). Important for
logical thinking is to win new connections of thoughts; the necessary readiness
to take up something new determines also the readiness to give up something
old. For Peirce the learner of logical thinking has therefore to be like a child with
all its uprightness and naivety of childlike imaginations and all of the plasticity
of childlike states of mind. By reading a lot the aimed flexibility of thinking can
be trained; for Peirce, reading 50 up to 100 books in a year would be desirable.
The right way of reading consists in trying to understand the author and to
assimilate his style of thinking. According to Peirce, the power of habituation
can be improved in three directions: by exercises in distinguishing and classify-
ing, by exercises in defining and logically analysing of ideas, and by excises in
compressing theories and trains of thought ([Pe92]; p.192).

The distinct openess of logical thinking has worked out by Peirce mostly in
his fourth Cambridge Lecture on “The first rule of logic”. After this basic logical
rule, logical thinking show a tendency to correct itself and that is not only by
its conclusion, but also by its premisses ([Pe92]; p.165). The quality of self-
correction, which already G. W. F. Hegel has considered as constitutive for the
dialectic process of growing reason [He86], is important for the logical thinking
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of each kind of science. Peirce realizes that “research of every type, fully carry
out, has the vital power of self-correction and of growth. This is a property so
deeply saturating its inmost nature that it may truly be said that there is but
one thing needfull for learning the truth, and that is a hearty and active desire
to learn what is true” ([Pe92]; p.170).

The self-correction of logical thinking stands in the direct connection with
another property of logical thinking, that is the principal criticizability. This
property has, according to Peirce, to be understood first of all as sense-critics in
the view of the pragmatic mazim, which in particular founds a connection be-
tween logic and ethics. Peirce writes in 1902/03: ¢ ... which makes logic and ethics
to peculiar normitive sciences is this: nothing can be logically true or morally
good without a purpose in regard to that it can be named. Since a sentence and
in particular the conclusion of an argument which would be only accidentally
true, that is not logic” ([Ap75]; p.175). 1903 Peirce finished his Havard-Lectures
about pragmatism with the maxim: “The elements of each concept enter into
the logical thinking through the door of perception and go out again through the
door of purposeful action; and all, what cannot be identified at the two doors,
has to be detained as not authorized by the reason” ([Pe91]; p.420).

2 Mathematical Thinking

With the theme “Human Being and Mathematics” the relationship of logical
thinking and mathematical thinking shall be examined in this contribution;
therefore the mathematical thinking shall now be considered in more detail. To
keep the connection with logical thinking in mind, it shall be first explained how
Peirce makes mathematics and mathematical thinking in his Cambridge Lectures
on “Reasoning and the Logic of Things’ [Pe92] to his theme. For the authors of
the extensive introduction for the first complete edition of these lectures, Keneth
Laine Ketner and Hilary Putnam, the mathematics in the lectures play such a
dominant role that they could even prefer the titel “The Consequences of Math-
ematics’. For this they stated several reasons: First Peirce had already planed
and elaborated some provisional lectures as advanced contributions stimulated
by the invitation to give a lecture series; these lectures were primarily planed
mathematical. When he as well under the pressure of his promotor William
James took back considerably the mathematical parts - because of the general
understandability - , the basic character of mathematics however remained in
the lectures. This links with a second reason that namely Peirce understood
his philosophy, under which in the lectures also the logic is incorporated, as a
consequence of mathematics. Thirdly Ketner and Putnam see in the expression
“Consequences of Mathematics” an even deeper lying importence; they write:
“Peirce argued that, epistemologically at any rate, mathematics was an observa-
sional, experimental, hypothesis-confirming, inductive science that worked only
with pure hypotheses without regard of their application in “real” life. Because
it explored the consequences of pure hypotheses by experimenting upon repre-
sentative diagrams, mathematics was the inspirational source for the pragmatic
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maxim, the jewel of the methodological part of semeotic, and the distinct feature
of Peirce’s thought” ([Pe92]; p.2).

At the end of his first Cambridge Lecture Peirce classifies the sciences ordered
by the abstractness of its objects. He places mathematics as the most abstract
of all sciences, because mathematics is for him the only science which is not
concerned to explore what the actual facts are, but inquires hypotheses ([Pe92];
p-114). The objects of mathematics have consequently no actual existence, but
are only modi of potential being. The goal that the pure mathematics approaches
by making stepwise accessible an expending cosmos of forms of abstract thinking,
that is - in the long run - the potential world of reality. As the formal science of po-
tential reality, mathematics delivers formal-hypothetical foundations for all other
sciences and humanities. In this sense logic is founding on mathematics. Thus
Peirce judges: “All necessary logical reasoning is strictly speaking mathematical
reasoning, that is to say, it is performed by observing something equivalent to a
mathematical diagram” ([Pe92]; p.116). For the mathematical reasoning Peirce
has developed as a kind of algebraic logic the mathematical logic of relations
which he introductary explains in his third Cambridge Lectures.

To understand better how mathematical thinking is able to develop a mutual
play between abstracting and concretizing, respectively, and to make it effective
in the thinking and acting of human beings, the nature of mathematical think-
ing shall be made more understandable. For this, opinions and discoveries shall
be used which Philip Kitcher explains in his book “The nature of mathemati-
cal knowledge” [Ki84]. For Kitcher there are three obvious insights: “First, we
originally acquire much of our mathematical knowledge from teachers, on whose
authority we accept not only basic principles but also conceptions of the nature
of mathematical resoning. Second, some of this knowledge is acquired with the
help of perceptions. Our early training is aided by the use of rods and beads;
later, we appeal to diagrams. Third, mathematics has a long history. The ori-
gins of mathematical knowledge lie in the practical activities of Egyptians and
Babylonians (or, perhaps, people historically are more remote)” ([Ki84]; p.91f.).
Kitcher worked out these insights in his book to a convincing Theory of the
Mathematical Thoughts and Knowledge. This process began in the earliest time
with rudimentary perceptions and ideas which developed a first understanding
of an arithmetic of small numbers and of a geometry of simple plane figures. Out
of those roots, a mathematical thinking has been developed erected on existing
knowledge, respectively, and renewed by changes for which Kitcher dicusses in
detail the general activities of answering questions, generating questions, gen-
eralizing, rigorous changing and systematizing; in doing so, he examines the
process of development of mathematical thinking in the sense of Kuhn’s thesis
that scientific change means a change of practice and not only of theory.

Kitcher explains the relationship of mathematical thinking to the real world
in particular at general actions of thinking as collecting, segregating, combining,
correlating etc. and their idealizations to mathematical operations of thinking.
For example, he represents the set theory as an idealized theory of forming
collections. How fruitful those mathematical idealizations of general actions of
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thinking are can be demonstrated by the action of thinking “summerize to a
whole” which is based on Cantor’s definition of sets. For instance, in the script
of a lecture on “Linear Algebra I” mathematical elements have been summerize
to sets as a whole which can be demonstrated as follows:

1.
2.

Rl

© N>

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.

20.

21.

22.

23.

24.
25.

the real numbers to the whole R of all real numbers,

the triples of real numbers to the analytic representation R3 of the space of
intuition,

the sections of the same length and direction to a vector,

scalars to a matrix,

the even numbers to the binary cipher 0 and the odd numbers to the binary
cipher 1,

objects, attributes, and a joining relation to a formal context,

elements with the same properties to a set,

the subsets of a set S to the power set P(S),

a family of sets to their union, to their intersection, and to their direct
product,

ordered pairs of sets to a relation,

equivalent elements to an equivalence class,

the equivalence of an equivalence relation to the appertaining quotient set,

relating arrows to a mapping,

the permutations of a set M and their concatenations o to the symmetric
group SMa

the symmetries of a geometric figure F' and their concatenations o to to the
symmetry group Sym(F),

the cosets of a normal subgroup and the representational association to the
appertaining quotient group,

the real numbers with addition and multiplication to the field R of the real
numbers,

scalars to an n-tuple,

the n-tuples of elements of a field K and their componentwise additions and
multiplication with a scalar to the vector space K,

the algebraic structures in which the vector space axioms are valid to the
concept of the vector space,

elements of a vector space and the apppertaining scalars to a linear combi-
nation,

all linear combinations of elements a1, ..., a; of a vector space to the subspace
< aj,...,ar > generated by the given elements,

the elements of a vector space which a linear mapping ¢ maps on 0 to the
subspace Kero,

linear equations to a linear system of equations,

the solutions of a linear system of equations in n-variables to the affine
subspace of the vector space K™.

The mathematical examples make clear that the combination to a whole may

end up quite different depending on what is formally mend by combining to the
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whole. What can hardly be differentiated in the common language may become
transparent in the mathematical language: In 1., 2., 3., 5., 7., 8., 10., 11., 12., 13.,
22., 23., 25., the forming of sets are of different nature; also 24. could be seen as
a forming of sets, but the word “system” indicates that there is more what is ex-
pressed in equalities of variables. The formation of tuples and matrices in 18. and 4.
are usually not considered as set formation, just as the structure formations in 9.,
14.,15.,16.,17.,and 19.In 6. and 21. one has sets and elements, respectively, which
are formed by terms and in 20. by concepts. Further differentiations are obtained
when the combined whole is mathematically characterized, which however shall
not be elaborated. An extensive investigation of mathematical thinking in linear
algebra has been presented by Katja Lengning and Susanne Prediger in [LP00).

On the basis of the rich treasure of mathematical forms, the mathematical
thinking has the special ability to formally arrange and structure contents of
thinking in great variety, by which more transparency and clearness can be usu-
ally gained. For Martin Heidegger this ability is even characteristic for modern
thinking, and that is in the sense that not only the content is arranged by forms
of thinking, but that also the content is understood at all by the corresponding
forms of thinking. Heidegger sees this basic character of modern thinking and
knowledge in the knowledge claim which he calls the “mathematical’. About
this, Heidegger writes in his book “Die Frage nach dem Ding”: “The mathe-
matical is that basic position to the things in which we propose the things to
what they are already given. The mathematical is therefore the basic assumption
about the knowledge of the things” (JHd62]; p.58). Mathematical thinking can
hence not only be understood by the lexical meaning as the thinking belong-
ing to mathematics, but more general as a thinking of forms able to the design
which according to Heidegger is set “for which we actually consider the things,
as what they are acknowledged in advance” ([Hd62]; p.71). Then the mathemat-
ical thinking is not explainable out of mathematics, but the mathematics is itself
only a certain formation of mathematical thinking. Such an understanding of
mathematics is closely related to the view which Reuben Hersh propagates in
his book “What is Mathematics, Really?” [Hr97]. The historical, social-cultural
forming of mathematics can be understood in such a way that out of figures and
operations of mathematical form-thinking, which are again and again activated
in communications, formal systems of thinking are formed in a process of a pro-
gressive conventionalizations and constituted out of this a culture of thinking
which is called “mathematics” [Wi00a], [Wi01].

3 Human Being, Mathematics and Reality

The previous discusion about the relationship of human being and mathematics
started from the understanding that it is intrinsic for a human being to think
and to act reasonable, i.e. in particular to win insights, to form a judgment,
and to follow after that in all actions. That mathematics supports the reason-
able thinking and acting has its central reason in the close connection of logical
thinking and mathematical thinking. Therefore the effort is worth to understand
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this connection between the logical and the mathematical and to make it effec-
tive. According to Peirce’s pragmatic maxim, this means that logical thinking in
his relationship to reality should be mathematized in a way that the connection
of mathematizing with the manifold of potentially appertaining realities can be
better understood and activated.

An attempt to that has been made in our “Darmstadt Research Group on Con-
cept Analysis” with the elaboration of a “contexual logic” which is understood
as a mathematization of the traditional philosophical logic with its doctrines
of concept, judgment, and conclusion [Wi00b]. The basis of this philosophical
logic underlies the view that the human recognition and thinking activates the
basic logical structures concept, judgment, and conclusion by bringing realities
under concepts, forming judgments from concepts, and concluding judgments
out of other judgments. On this base, Gottlob Benjamin Jésche makes clear in
his introduction to the logic-lectures of Imanuel Kant (edited by Jésche) with
Kant’s explicit explanation that “it is nothing else allowed to include in the ac-
tual treatise of logic and particularly in the elementary treatise as the theory
of the three essential main functions of thinking - the concepts, the judgments,
and the conclusions ([Ka83b]; p.424). Since the contextual logic is elaborated as
a mathematical theory the basic structures of which are abstracted out of the
traditional philosophical logic (cf. [Pr00]), the contextual logic is classified in
a “contextual concept logic”, a “contextual judgment logic”, and a “contextual
conclusion logic”; in its whole, the contextual logic is founded on the set-theoretic
semantics of modern mathematics.

For the contextual concept logic it is first to answer the basic question: What
is the properly abstracting linguistic set definition of the concept of concept? Ac-
cording to Piaget, concepts are cognitive structures which can only fulfill their
task of the differentiating reconstruction of the reality, when they can be coordi-
nated systematically and constructed by its complex concept systems; concepts
are therefore formed in a relational structure which is constitutive for them.
Therefore it counts first of all to introduce relational structures for creating ab-
stract concepts as set structures in the greatest possible generality. That became
successful - as rich experiences in the last thirty years have shown - with the
conception of the formal context formed by objects, attributes, and a joining re-
lation. A “formal context” is defined as a set structure (G, M, I) which consists
of two sets G and M and a relation I between the sets G and M ; the elements of
G are called (formal) objects, the elements of M are called (formal) attributes,
and the relational connection gIm is read: the object g has the attribute m. In
the sense of Peirce’s categories, an object is considered in a formal context as a
First with an attribute as a Second which are linked by the context relation as
a Third. (Fig. 1)

Formal contexts can be understood as mathematization of real-world cross-
tables. For instance, the cross-table presented in F'ig. 1, which is taken out of
the publication “Kontrastive Untersuchung von Wortfeldern im Englischen und
Deutschen” [Kr79], can be abstracted to a formal context (Gw, Mw,Iw) as
follows: the object set Gy consists out of words of the investigated semantic
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Fig. 1. Formal context partly representing a lexical field “bodies of waters”

field “waters” in [Kr79] and the attribute set My, consists of noems (smallest
elements carring a meaning) by which the words are characterized according to
their contents, and the relation Iy are grasped by the relationships which are
indicated by the crosses; i.e. the mathematical expression “puddlely temporary”
stands for the linguistic relationship “the word ‘puddle’ has the noem ‘tempo-
rary’ ” indicated by a cross in the cross-table. In general, the cross-table has
to be distinguished from the formal context which is abstracted from the cross-
table; thus, a cross-table has a logical structure with which real relationships
can be presented, but a formal context is a mathematical structure which first
of all challenges the activation further mathematical structures and connections.
In spite of their location, cross-table and formal context form a model for the
close connection of logical and mathematical thinking.

For the mathematization of ‘concept’, the formal context as mathematization
of the nessecary relational structure can now be assumed: A formal concept of
a formal context (G, M,I) is defined as a pair (A, B) where A is a subset of
G and B is a subset of M so that A consists of all those objects in G which
have all attributes of B and B consists of all those attributes in M which apply
to all objects in A; A is named the extent and B is named the intent of the
formal concept (A, B). This mathematization proceeds from the philosophical
understanding of concept; according to that, a concept is a unit of thought
consisting of an extension and an intension, as it was already presented by the
logic of Port Royal [AN85] in the 17th century (cf. also [Wa73], [Wi95]). A formal
concept (A, B) of (G, M, 1) is called a subconcept of a formal concept (C, D) in



76 R. Wille

natural stagnant

artificial

maritime

plash,
puddle

mere,
pond,
reservoir|

trickle, rill, river,
rivulet, runnel,

beck, brook, burn,
stream, torrent tarn, lake, pool

Fig. 2. Concept lattice of the formal context in Fig[Il

(G, M, I) and (C, D) a superconcept of (A, B) if the extent A is contained in the
extent C' and, equivalently, if the intent B contains the intent D.

The logical reciprocity “the greater the concept extent the smaller the concept
intent”, which becomes visible by this equivalence, is winning conciseness and
fruitfullness by the contextual mathematization of concept which lastingly moves
the mathematical thinking. The reciprocity can be formulated by the definition
of “derivation operators” of a formal context (G, M,I): For X CG anf Y C M
the derivation is defined, respectively, by

XT:={me M|gIm for all g € X} and Y! :={g€ G|gIm for all m € Y};

i.e. the derivation X7 is the set of all attributes out of M which all objects
have, and the derivation Y/ is the set of all objects out of G which all attributes
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have. For A C G and B C M, (A, B) is then obviously a formal concept of
(G, M, I) if and only if A = B! and B = A!. The logical reciprocity now finds its
differentiated expression by the following mathematical discovery: For U,V C G
or U,V C M we obtain:

(1): U CV implies U D VI (2): U C UM (3): U = U,

For the task to determine the formal concepts of a formal context (G, M, I), the
equation in (3) is basic because it follows from (3) that for X C G and Y C M,
respectively, the pairs (X!, X7) and (Y7, Y ') are formal concepts of (G, M, I);
in particular, the special case of the object concepts vg := ({g}*!,{g}?) and the
attribute concepts pm = ({m}!, {m}!!) are important. The mathematical po-
tential of the derivation operators which become transparent by the relationships
in (1), (2), and (3) cannot be estimated high enough; they represent mathemat-
ical connections which in general have been studied and activated multifariously
as set-theoretic and logical dualities (also called Galois conections).

The set of all concepts of a formal context (G, M, I) forms with the subconcept-
superconcept relation a mathematical structure of a complete lattice, which
therefore is called the concept lattice of (G, M,I). The mathematical struc-
ture of a concept lattice can be made effectively accessible to logical think-
ing by (inscribed) line diagrams. The line diagram in Fig. 2 [KW8T] represents
the concept lattice of the formal concext which is presented by the cross-table
in Fig. 1. The little circles of the line diagram represent the formal concepts
of the appertaining formal context and the ascending line segment represent
the subcontext-superconcept-relation. Hence the little circle in Fig. 2 to which
the label “artificial” is assigned represents a subconcept of the concepts with the
labels “inland” and “constant”; this indicates that, according to [Kr79)], there is
the logical relationship in English that each “artificial” water has the attributes
“inland” and “constant”. In general, the extent and intent of formal concepts
can be read from the line diagram as follows: The concept extent consists of all
objects the names of which are attached to a circle linked by an ascending se-
quence of line segments to the circle of the chosen concept. In Fig. 2, for instance,
the little circle directly above the circle with the label “artificial” represents a
concept the extent of which consists of the words “sea”, “lagoon”, “tarn”, “lake”,
and “pool” and the intent of the noems “natural”, “stagnant”, and “constant”.
From this discussion it follows in particular that the underlying context can be
reconstracted from the line diagram, i.e. no data are lost by the construction
of the concept lattice and line diagram. Therefore the logical connections of the
data represented in the cross-table can completely be reconstructed.

The logical connections which usually demand special interest are the contex-
tual implication between attributes. From the line diagram of Fig. 2 one reads for
instance that, according to [Kr79], each running water is always also constant and
inland. Also of interest are the classification of objects by suitable combinations
of attributes. The line diagram in Fig. 2 shows that the smallest of such classi-
fication consists of six concept extents: { “plash”, “puddle”}, {“trickle”, “rill”,
“river” | “rivulet”, “runnel”, “beck”, “brook”, “burn’, “stream” “torrent’”},

“canal”}, {“tarn”, “lake”, “pool”}, {“meer”, “pond’, “reservoir’}, and
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finally {“sea”, “lagoon’}. Respectively, a sequence of further forms of inves-
tigations and activations of logical connections in data contexts are treated in
the papers [Wi87] and [Wi0Oc]. In the contrastive study in [Kr79] the compari-
son of German and English semantic fields with the same noems, respectively,
are standing in the foreground. Remarkable is the finding that the first eight
noems yield the same kind of concept lattices in German and English, which has
the consequence that also the logical implications between the noems are equal.
This is different at the classifications of objects, already because the English has
considerably more words for waters as the German. This is also the reason for
it, that further noems thoroughly result in different concept structures.

Line diagrams of concept lattices inspire again and again to critics and self-
correction on the basis of background knowledge. A reseach project which pro-
vided multifarious examples for this was a common project of the Darmstadt
research group on Formal Concept Analysis and of the ministry of building con-
structions and housing projects of the province “Nordrhein-Westfalen” [EKSW).
The developed exploration system was supposed to support the administrative
office with its supervision of building works to consider the legal regulations
and technical determinations during the planing, examination, and execution of
building projects in the necessary extent. For the exploration system an exten-
sive data context was elaborated, the objects of which are the constructional
relevant paragraphs or text-units of the pertinent laws and regulations and the
attributes of which, understood as search words, are concerned with the struc-
tural components and their demands which are related to the text units. For
the exploration system frequent concept lattices from the underlying data con-
text were derived and represented by line diagrams to be able to use them as
conceptual searching structures.

Already during the system development, line diagrams have multifariously
fulfilled to make logical connections transparent. In this way the line diagrams
have always again qualified the building experts to find mistakes in the exten-
sive data contexts which has contributed to a conciderable improvement of the
data quality. An instructtive case of criticism and self-correction has happened
by means of the line diagram presented in Fig. 3, that makes available informa-
tion to the theme “function rooms in a hospital”: For testing the readability of
such diagrams, a secretary was included into the meeting in the ministry. The
secretary became much surprised that §51 of the “BauONW” (“Bauordnung
Nordrhein-Westfalen”), which demands expansions necessary for handicapped
people, was only attached to the circle with the label “toilet” (in the version
of the diagram “function rooms in a hospital” at that time); she could not un-
derstand why the wash- and bathrooms do not have to meet requirements for
handicapped people too. Even the experts became surprised when they checked
again §51 and saw that only toilets are mentioned in connections with handi-
capped people. Only after a comprehensive discussion the experts came to the
conclusion that, by superior aspects of law, §51 should apply also to wash- and
bathrooms. Finally, by similar reasons, the consulting rooms and the residential
rooms (bedrooms) were also included so that, in the underlying cross table, three



Human Being and Mathematics Logical and Mathematical Thinking 79

wash- and bathroom

i, N’
auoNW§51 ‘
KhBauVO§10 v
KhBauvO§13 [ - -

BauONW§46

BauONW§33 | /i

~

KhBauVO§30

\ KhBauV?)§25‘ [BauoNwg17NBimsch \ |KhBau;’O§29|

KhBauvO§22 [KnBauvos31 NBauONW@M‘
o

KnhBauvOg20] {BauONW§29

KhBauVvO§9 BauONW§28
BauONW§50 BauONW§27

BauONW§26

KhBauVv0§23

KhBauvO§27
N

BauONW§40

KhBauVO§17
BauONW§16

Fig. 3. Query structure “functional rooms in a hospital” of a TOSCANA information
system about laws and regulations concerning building construction

more crosses were added in the row headed by “BauONW§51” so that, in the
line diagram of Fig. 3, the label “BauONW§51” moved down to the circle with
the label “KhBauVO0§27”.

The Contextual Judgment Logic, developped since 1996, builds up on the
Contextual Concept Logic because judgments are formed by concepts. An elab-
orated informing Judgment Logic is already present since more than thirty years
by Sowa’s Theory of Conceptual Graphs [So84] which is founded on the logic
of existential graphs of Charles Sanders Peirce and the logic of semantic net-
works of artificial intelligence. Conceptual graphs, as the simple example in
Fig. 4 [S092], are understood as logical abstractions of linguistic expressions;
they represend semantic judgments, i.e. valid statements. The conceptual graph
in Fig. 4 represents the sentence “John is going to Boston by bus” as judgment-
logical structure, where the sentence is logically further differentiated with assis-
tance of background knowledge: John is identified as an instance of the concept
“Person” and Boston as an instance of the concept “City”; furthermore, three
valences of the concept “Go” are specified by the semantic relation “agent”,
“destination”, and “instrument”. The presented conceptual graph can be de-
scribed in detail as follows: “There is some going which has as agent the person
John, as destination the city Boston and as instrument some bus.” The further
“logical differentiation” discloses not only the background of a language, but
supports further treatments as the translation to other languages, the prepa-
ration for document management etc. How a technical text can be judgment-
logically processed has been, for instance, made clear in ([MSW99]; p.426) by
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Fig. 4. A simple conceptual graph

the conceptual graph which represents the instruction for decalcifying a coffee
machine.

The Contextual Judgment Logic adapts the Sowa graphs by taking the con-
cepts and relations of the conceptual graphs as formal concepts of already given
contexts; with that the conceptual graphs become mathematical structures for
which the modified naming “concept graphs’ has been chosen to distinguish
between the mathematical and the logical (s. [Wi97], [Wi00Db]). Within the Con-
textual Judgment Logic, judgments are represented by concept graphs which
are therefore also named formal judgments. With the abstraction of judgments
to mathematical structures, mathematical theories and methods can be acti-
vated for the judgment logic in a wide range. The promising method which,
up to now, has been stimulated and made possible the mathematization of the
judgment logic is the derivation of concept graphs out of relational data basis,
which are mathematized contextual-logically in a suitable manner (s. [PW99]);
i.e. expressed slogan-like: with this method, relational data bases can be “made
speaking”. Fig. 5 gives an insight into an informatoly application of this method:
The upper diagram shows a concept graph derived out of a flight data base rep-
resented as a Sowa graph, which shows the possible flights of a weekend trav-
eller from Vienna to Salzburg, Innsbruck, Graz, and back to Vienna; the lower
diagram is a user-friendly representation of the same graph which uses more
background knowledge of the traveller (s. [EGSWO], [Wi00d]).

The Contextual Conclusion Logic has already concept-logical and judgment-
logical precursors by the Contextual Attribute Logic [GW99] and the Contextual
Logic of Relations [Wi00d| which adapted the Peircean algebraic logic as recon-
structed in [Bu91]. The Contextual Conclusion Logic however obtains its full
foundation by the interplay of an elaborated syntax and semantics for concept
graphs for which Susanne Prediger made available in [Pr98] convincing concep-
tions and results. Certainly, the interplay of mathematical structural thinking,
the diagrammatic conclusions of Charles Sanders Peirce, and the logical thinking
in general have to be understood even more deeper, in particular in relationship
to the concrete intercourse with such a culture of thinking.

The close connection between the logical thinking and the mathematical
thinking, which becomes visible in the frame of contextual logic, makes pos-
sible multifariously an effective support of logical thinking through mathemat-
ical thinking which can also be extended to rich mathematical structures. For
example, the contextual-logical concept theory was already extended to an
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Fig. 5. Two representations of the same concept graph concerning flight connections

algebraic concept analysis [Vo94], to a contextual topology [Ha92], [Sa01], and to
a relational concept analysis [Ps98]. These extensions correspond with the three

structure types of the Bourbaki architecture of mathematics which Jean
Piaget has recognized in the close connection to the structures discovered by him
in the thinking of young children. In ([Pi73]; p.34f.), Piaget writes about the dis-
cussion with Jean Dieudonn, the founder of the Bourbaki-Group: “... to our great
surprise we both found out that there exists a very direct connection between
the three mathematical structures and the three structures of the operational
thinking of children.” Even if the activation of this relationship in the “New
Math”-movement was exceeded one-sidedly, an appropriate presentation of that
relationship would enrich the learning of mathematics and would contribute to
an efficient connection from the mathematical to the logical thinking.
Naturally, the logical thinking with its reference to reality has also inversely a
lasting effect on the development of mathematics by stimulating always further
differentiations of mathematical thinking. Deputizing for the large manifold of
such differentiations, it shall finally be mentioned a new view on mathematics
which has been produced during the elaboration of the contextual logic under the
influence of the triadic doctrine of categories of Charles Sanders Peirce: Different
real world connections have shown that the elementary connection “an object
has an attribute” should be specified in which way, under which conditions, by
which arguments, on which purpose, in which situation such a connection is valid.
This caused to extend the set structure of a formal context to a triadic struc-
ture [LW95], the appertaining concept structure of which was mathematically
characterized by a so-called “trilattice” [Bi98]. The thereby possible mathemat-
ical theory of triadic concepts could already be applied within the Contextual
Judgment Logic to receive mathematically the modal character of judgments
[Wi98], [Pr98], [DW0Q]. To what extend the triadic view can generally be made
productive for mathematics, this has to be explored by further research.
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Abstract. In this paper, we extend Simple Conceptual Graphs with Re-
iter’s default rules. The motivation for this extension came from the type
of reasonings involved in an agronomy application, namely the simulation
of food processing. Our contribution is many fold: first, the expressivity
of this new language corresponds to our modeling purposes. Second, we
provide an effective characterization of sound and complete reasonings
in this language. Third, we identify a decidable subclass of Reiter’s de-
fault logics. Last we identify our language as a superset of SREC™, and
provide the lacking semantics for the latter language.

1 Introduction and Motivation

The modeling need that motivated this paper came from an agronomy appli-
cation: the simulation of food processing (more specifically the pasta drying
process). In this application, successive unit operations involved in the drying
process have different impacts on product qualities. These impacts can be pos-
itive or negative, non monotonically depending on the considered quality and
the concerned unit operation. 46 kinds of qualities have been identified for pasta
products, moreover these qualities can themselves be subdivided into taxonomies
of components (e.g. sub-families of vitamins) that behave differently, hence the
need to account for particular cases concerning specific subfamilies [I]. The choice
of Conceptual Graphs (CGs) as a modeling language stems from the intuitiveness
of their graphical representation as well as the possibility to use their structure
for optimization purposes.

Generally, languages of the CG family have a semantics that can be expressed
in first-order logic (FOL). The non-monotonic features of the knowledge we want
to represent for this application calls for an extension of these languages. The
extension we consider here is based upon Reiter’s default logics. This formalism
has been designed to extend FOL with knowledge like “something is true unless
we believe something else”. On top of the traditional constructs of FOL-based
CG languages (support, facts, rules, constraints), a knowledge base of our new
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language also consists of default CG rules inspired by Reiter’s defaults. These
default CG rules fully generalize CG rules and not only the type hierarchy as
done in [2]. In this paper we formally present this language and illustrate it with
motivating examples from our application.

We define the classical notions of conceptual graphs, rules and constraints
in SECT. 2 SECT. [ is devoted to introducing default reasoning. We recall in
SECT. Reiter’s default formalism, and we introduce the syntax and semantics
of default CG rules in SECT. Finally, theoretical results are presented in
SECT. @ in sECT. [£]] we introduce the derivation tree for default conceptual
graphs and present a subclass of default CG rules for which this tree is finite. In
SECT. £ 2we use this tree for sound and complete reasonings. Finally, in SECT.
we relate our new language with the SREC™ of [3]. The paper concludes with
future directions of work.

2 Conceptual Graphs, Rules and Constraints

In this section, we recall essential results about conceptual graphs (CGs). The
different languages presented here are described in more detail in [3]. They all
form a subset of first-order logics (FOL) since all objects introduced (support,
graphs, rules or constraints) have a FOL semantics obtained via the transfor-
mation @ (@(X) is thus the logical interpretation of the object X). In all these
languages, we will consider a knowledge base (KB) containing different objects
(i.e. support, graphs, rules and/or constraints).

Definition 1 (Semantics of a knowledge base). The logical interpretation
D(K) of a KB K is the conjunction of the logical interpretations ®(X) of the
objects X it contains. A KB K is said satisfiable if the FOL formula ®(K) is
satisfiable. If Q is a simple CG, we say that Q can be deduced from IC, and note
K EQ, if #(Q) is a semantic consequence of (k).

We are interested here in the X-SATISFIABILITY and X-DEDUCTION problems,
where X is a language of the CG family defined by the kinds of objects allowed in
a KB. A SG KB contains only a support and a (set of) simple CG(s). A SR KB
is the union of a SG KB with a set of rules, and a SGC~ KB the union of a SG KB
with a set of negative constraint. A SRC™ KB is the union of a SR KB and of a
SGC~ KB. The three following subsections successively present the syntax of the
different objects that can compose a KB, their logical interpretations, and recall
essential results allowing to compute X'-SATISFIABILITY and X-DEDUCTION in
these different languages.

2.1 Simple Conceptual Graphs: The SG Language

Syntax: Support and Simple CGs (SGs) A KB of the SG language is
composed solely of a support (encoding a type hierarchy) and of a set of simple
CGs (that represent entities and relationships between them).
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Definition 2 (Support). A support is a tuple S = (T, Th, - -+, Th, M) whose
elements are partially ordered, pairwise disjoint sets, respectively of concepts
types, relation types of arity 1,--- k, and of markers. All partial orders are
noted <. Markers are partitioned into an infinite set Mg of (named) generic
markers (if m is generic, then Ym' € M,m’ < m) and a set M of individual
markers (that are pairwise non-comparable).

Definition 3 (Simple conceptual graph). A simple conceptual graph (or
SG) defined on a support S = (Tc,Th, -+, TE, M) is a tuple G = (C,R,~,¢)
where C and R are disjoint finite sets, respectively of concepts and relations.
The mapping v : R — C™T associates to each relation a tuple of concepts v(r) =
(c1,-+,¢p) called the arguments of the relation. We note v;(r) = ¢; its it
argument. The mapping € : C U R — (27¢ x M) Ui<i<k T labels each concept
and relation. If c is a concept of C, then e(c) = (t,m) € 2T x M (t is called the
type of ¢, m is called its marker). If m € Mg then c is called generic, otherwise
it is called individual. If r is a relation of R, then its type e(r) € UZ-T}% must

have the correct arity, i.e. |y(r)] =j < €(r) € Th.
A simple CG representation of information about “a pasta product that contains

peroxidase and is undergoing a late end-of-cycle temperature drying” is presented
in FIG. [1

Peroxidase: *

Pasta product: Pl

Late end-of-cycle high temperature drying: D1

2
@ Pasta product: P2

Fig. 1. The SG representing “a pasta product that contains peroxidase and is under-
going a late end-of-cycle temperature drying”

o4

Note that (as required by our modeling, and as defined, for example, in [4]),
the type of a concept can be a set of concept types of T (called a conjunctive
type). A concept ¢ can thus be an instance of many distinct types (e.g., €(c) =
{Protein,Enzyme}).

FOL Semantics. Supports and SGs can be translated into first order logic
(FOL) to obtain a precise semantics for our syntactic objects. We consider con-
cept types (resp. relation types of arity ) as predicate names of arity 1 (resp. of
arity ), generic markers as variables and individual markers as constants. If ¢
and t' are two predicate names of arity ¢, and ¢ < t’, then their logical interpre-
tation is the FOL formula ¢(t,t') = Vay -+ Va; (E(x1, -+, 25) — (21, -+, 21)).
The logical interpretation of a support S is the formula @(S) obtained from the
conjunction of the formulas ¢(t,t'), for all ¢,¢' such that ¢’ covers[] ¢ in S.

! We say that ¢’ covers ¢ if t < ' and there is no other t” (apart from ¢ and t') such
that t <¢” <t
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Let G = (C,R,~,¢) be a SG. If ¢ is a concept, we note ¢(c) the conjunction
of atoms t(m), where t € type(c) and m is the marker of c¢. If r is a relation, we
note ¢(r) = t(ma,---,m;) where t = ¢(r) and, V1 < j <, m; is the marker of
v;(r). We note ¢(G) = A.cc é(c) A N\, cr @(r). Then the logical interpretation
&(G) of G is the existential closure of ¢(G).

Theorem 1. Every SG KB K = (S, G) is satisfiable.

Reasonings. Though SG-SATISFIABILITY is a trivial problem, SG-DEDUCTION
is an important problem that has been studied both inside and outside the
CG community. Classically, SG-DEDUCTION can be computed using a kind of
graph homomorphism known as projection. It maps concepts having the same
marker of the query @ to concepts of the SG G in the KB, while preserving
the existence of relations and possibly decreasing labels, as allowed by the order
relation defined in the support S. We note G <s @ when there exists such a
mapping. For more details on projection/homomorphism, as defined for simple
CGs with conjunctive types, the reader can refer to [5]. Projection is a sound
operation w.r.t. our FOL semantics, but to be complete, the SG G must be put
into its normal form nf(G) (a semantically equivalent SG whose concepts have
all different markers). Then:

Theorem 2 (Soundness and completeness). Let K = (S,G) be a SG KB,
and Q be a SG. Then K = Q & nf(G) <5 Q.

As HOMOMORPHISM, SG-DEDUCTION is thus a NP-complete problem. By im-
posing some restrictions to the SG @ (e.g., when @ admits a bound hypertree
decomposition, see [5l6]), the problem becomes polynomial.

2.2 Adding Rules: The SG Language

Syntax. A SR KB is obtained by adding CG rules of form (hypothesis, con-
clusion) to a SG KB.

Definition 4 (CG rule). A CG rule over a support S is a tuple R = (H,C)
where H and C are two SGs. H = hyp(R) is called the hypothesis of the rule
and C = conc(R) its conclusion.

FOL Semantics. The transformation @ defined in SEcT. 2] and can be ex-
tended to take CG rules into account. If R = (H,C) is a CG rule, we note
¢ (C) =3z -+ - F2p¢(C) where x4, - - -, zp are all variables of ¢(C') that do not
also appear in ¢(H ). Then we note ¢p(R) = ¢(H) — ¢u(C) and the logical inter-
pretation @(R) of the rule R is the universal closure of ¢(R). The interpretation
®(R) of a set of CG rules R is the conjunction of the interpretations ¢(R), for
all rules R € R.

Theorem 3. Every SR KB K = (S,G,R) is satisfiable.
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Reasonings. Rules increase the complexity of our reasonings: SR-DEDUCTION
is semi-decidable (if K |= @, then a sound and complete algorithm will stop, but
no sound and complete algorithm is ensured to stop otherwise). [7] provides a
sound and complete forward chaining algorithm. It relies upon the application
of a CG rule R = (H,C) to a SG G. R is said applicable if there is a projection,
say m from H to G. In that case, the application of R to G following 7 produces
a SG «(G, R, ) obtained by juxtaposing G and C, then for each concept of ¢
whose marker also appears in a concept ¢’ of H, by fusioning ¢ with 7(¢’). Note
that other generic markers of C' have to be renamed (a safe substitution), and
that a(G, R, ) must be put into its normal form.

If R is a set of rules, we note as(G,R) the SG obtained by applying all
rules in R to G following all the projections of their hypothesis. Then we define
inductively as by a%(G, R) = nf(G) and V1 < i,a% (G, R) = as(a’ (G, R),R).

Theorem 4 (Soundness and completeness). Let K = (S,G,R) be a SR
KB, and Q be a SG. Then K = Q < 3i,a%(G,R) <s Q.

If K = (S,G,R), we note K* = lim;_,ocas(G,R). Note that, in general, K* is
an infinite SG. To ensure that forward chaining stops, even when K [~ Q, [3]
relies upon the notion of finite expansion sets of rules, ensuring that K£* is finite.

Definition 5 (Finite expansion set (f.e.s.)). Let S be a support, and R be
a set of rules. We say that (S, R) is a finite expansion set (or f.e.s.) iff for every
SR KBK =(S,G,R), K* is finite.

If (S,R) is a fe.s., forward chaining is ensured to stop (when a%(G,R) =
a5 (G,R) = K*). Finding large subsets of rules that have the finite expan-
sion property is thus an important task. [3] provides two examples of fe.s.:
disconnected rules (d.r.), that share no generic marker in the hypothesis and
the conclusion, and range restricted rules (r.r.), where all generic markers of
the conclusion are already in the hypothesis. In both cases, SR-DEDUCTION is
NP-complete. [8] introduced the notion of rules dependencies (R depends upon
R; when an application of Ry can trigger an new application of Ry). When the
graph encoding these dependencies has no circuit, then the set of rules is a f.e.s.
More importantly, when all strongly connected components of this graph are
f.e.s., then we also obtain a f.e.s.

2.3 Adding Negative Constraints: The Languages SGC~ and SRC™

Theorems [I] and [3] point out that all SGs and SG rules are satisfiable. However
considering that every KB is satisfiable is not always realistic in practice. For
example, in our application, we do not want an enzyme to be active and inhibited
at the same time. Though various mechanisms have been proposed to introduce
the notion of insatisfiability to conceptual graphs, we focus here on negative
constraints.
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Syntax. By enriching a KB of the SG (respectively SR) language with negative
constraints, we obtain a KB of the SGC™ (resp. SRC ™) language. A negative
constraint encodes that some knowledge must not be found in a graph.

Definition 6 (Negative constraint). A negative constraint, defined over a
support S, is noted N = =G, where G is a SG over S.

FOL Semantics. The notation =H stems from the semantic of negative con-
straints since the interpretation of N = =G is defined by ®#(N) = =d(G). If N
is a set of negative constraints, then ®(N) is the conjunction of all #(N), for
NeN.

It is then possible with negative constraints to express cases of insatisfiabil-
ity. For example, a KB containing the SG G of FIG. [Il as well as the negative
constraint represented by the same FIG. is unsatisfiable.

Theorem 5 (Insatisfiability). Let K = (S,G,R,N) be a SRC™ KB (it is a
SGC™ when R = (). Then K is unsatisfiable iff there exists N = =C' such that
(S,G,R) EC.

SGC ™ -SATISFIABILITY is thus co-NP complete, and SRC™-SATISFIABILITY is
truly undecidable (though SRC™-UNSATISFIABILITY is semi-decidable). The
polynomial subclasses of sEcT. Bl apply for SGC™ -SATISFIABILITY while the
decidable subclasses of SECT. apply for SRC ™ -SATISFIABILITY.

Reasonings. Since negative constraints encode negative information and the
query encodes positive formulae, negative constraints play no more role in rea-
sonings when the KB is satisfiable.

Theorem 6 (Deduction). Let K = (§,G,R,N) be a SRC™ KB, and Q be a
SG. Then K = Q iff K is unsatisfiable or (S,G,R) E Q.

SGC™ -DEDUCTION is thus a NP-complete problem and SRC™ -DEDUCTION is
semi-decidable. As previously discussed, particular subclasses of sEcT. 2.1 and
SECT. still apply.

3 Adding Defaults to Conceptual Graphs

3.1 The Need for Default Reasonings

In FIG [2] an agronomy application example is depicted: “if a pasta product un-
dergoes a quick drying, then it is subject to cracking unless the drying is accom-
panied by vapor-injection”. To deal with such non monotonic knowledge in the
following we propose to introduce default reasoning in the CG model, in order
to express rules that will be applied in the default case, i.e. unless they are a
source of insatisfiability.
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=

H N c
Quick drying : y Pasta product: 2

| Vapor-injection high temperature drying : y |

Pasta product: =

Fig. 2. An example of a default CG rule

3.2 Reiter’s Default Logics
In this section we recall some basic definitions of Reiter’s default logics [9JI0]

Definition 7 (Reiter’s default logic). A Reiter’s default theory is a pair

(A, W) where W is a set of FOL formulae and A is a set of defaults of form
§ = A(T)B1(T e on(T)

) ,n >0, where T = (x1, -, k) 15 a set of variables,
(@), Bi(T) and v(T) are FOL formulae for which each free variable is in T .

The intuitive meaning of a default § is “For all individuals (z1,---,xg) , if «(T)
is believed and each of 31 (), -, 8,(T) can be consistently believed, then one
is allowed to believe v(7)”. a(T) is called the prerequisite, 3;(T) are called the
Jjustifications and () is called the consequent. A default is said to be closed if
a(@), B;(T) and v(T) are all closed FOL formulae. A default theory (A, W)
is said to be closed if all its defaults are closed. In this case we can omit the T
notation.

Intuitively, an extension of a default theory (A, W) is a set of formulae that
can be obtained from (A, W) while being consistently believed. More formally, an
extension F of (A, W) is a minimal deductively closed set of formulae containing
W such that for any O‘f € Ajifa€ E and -3 ¢ E, then v € E.

The following theorem provides an equivalent characterization of extensions
that we use here as a formal definition.

Theorem 7 (Extension). Let (A, W) be a closed default theory and E be a
set of closed FOL formulae. We inductively define Fg = W and for all i > 0,
Eiy1 =Th(E;)U{y | a:m;’ﬁn €A a€ b and ~fy, -, 7fn & E}E

Then E is an extension of (A, W) iff E = U2, E;.

Note that extensions are only defined here for closed theories. In practice open
defaults are transformed into the sets of their ground instances over the Herbrand
universe.

Note also that this characterization is not effective for computational purposes
since both E; and E = U2 E; are required for computing E; 1.

Some closed default theories can have no extension. It is for example the case
of the default theory (A, W) = ({ Ig}, (). However, normal default theories are
ensured to have extensions.

2 We note Th(E;) the deductive closure of E;.
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Definition 8 (Normal defaults). A default is said normal if its consequent is

semantically equivalent to the conjunction of its justifications. Defaults of form
NN

§ = «(T):B(T)
B(T)

The meaning of a normal default is if « is true and it is consistent to deduce 3,

then deduce 3.

Theorem 8. Every closed normal default theory has an extension.

are normal.

Let us see a classical example of a default theory. Suppose that we want to
model the knowledge that, in general, birds fly, penguins are birds, and penguins
do not fly. Finally we add a penguin called Tweety in our knowledge base. This
knowledge can be model by the following default theory :

p(a) (@) ple) < ble) D) < S (2)
=" N e ) b))

where b(z) means that the individual x is a bird, f(x) means that z flies, and
p(z) means z is a penguin. Note that the knowledge penguins are birds have
no known exception, and so a rule Va, p(z) — b(x) can be added to W instead
of the default rule ? (ag)(f)(“c) in D. This default theory can lead to 2 different
extensions, which are By = Th({p(Tweety), b(Tweety), —~f (Tweety)}) and Fy =
Th({p(Tweety), b(Tweety), f(Tweety)}).

Some problems that must be addressed in Reiter’s default logics are the fol-
lowing:

— EXTENSION: Given a default theory (A, W), does it have an extension?

— SKEPTICAL DEDUCTION: Given a default theory (A, W) and a formula @,
does @ belong to all extensions of (A, W)? In this case we note (A, W) =g Q.

— CREDULOUS DEDUCTION: Given a default theory (A, W) and a formula @,
does @ belong to an extension of (A, W)? In this case we note (A, W) Ec Q7

In the previous example (A, W) admits two extensions. Both f(Tweety) and
—f (Tweety) can be credulously deduced, but neither can be skeptically deduced.

Note that even when restricting these problems to closed normal default the-
ories, the expressive power of FOL makes them undecidable.

3.3 Introducing Default CG Rules: The SRDC~ Language

Syntax. A KB of the SRDC™ language is obtained from a SRC~ KB enriched
with default CG rules inspired by Reiter’s defaults.

Definition 9 (Default CG rule). A default CG rule over a support S is a
tuple D = (H,Ny,--+,N,,C), withn >0, H and C are SG’s, and the N; are
negative constraints over S. As in Reiter’s defaults, we call H the prerequisite,
N; the justifications, and C' the consequent.

Intuitively, such default means that “if H is believed, the negative constraints
(justifications) are each satisfied, and it is consistent to believe C, then it is
allowed to believe C”.
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Default Semantics. The interpretation of SRDC~ KB K = (S,G,R,N,D)
is a default theory 1(K) = (Y(D),®((S, G, R,N))) where & is the FOL inter-
pretation of the KB as defined in SECT. 2 and 7 (D) = {T(D),D € D}. The
mapping 71" translates each default CG rule D into a default in Reiter’s sense
Y(D) called the default interpretation of D.

Let D = (H, Ny, -+, Nyp, C) be a default CG rule, where N; = =G;. Its default
interpretation 7°(D) is built as follows:

— Let T be the variables occurring in o(H), F the variables occurring both in
#(C) and in ¢(H), and € the variables occurring in ¢(C') and not in ¢(H).

— For ¢ € {¢(C), ¢(G1), -, d(Gp)}, the formula sk(¢) is obtained by replacing
for ¢; € @, each occurrence of ¢; by the functional term f” (7) in (.

— For € € {sk(G1),---,sk(Gp)}, sk (€) is obtained by existentially quantifying
all variables of ¢ that are not in . Finally:

d(H) : sk(C), —sk™(Gy), - -+, —sk™(Gy)
sk(C)

Let us illustrate this by the transformation of the default CG rule D =
(H,N,C) of FIG. 2 In the next equation, @D(z) means that product = un-
dergoes a quick drying, P(x) signifies that x is a pasta product, C(x) signifies
the Cracking property of pasta and VIHT D(y) specifies a vapor-injection high
temperature drying y. While at the representation level the formula below has
the same meaning as FIG. 2], the authors consider that F1G. 2l conveys its meaning
in a more intuitive manner.

_ QD(y) Ain(y,x) A P(z) : P(z) A char(f (y,x),2) A C(f (y,2)), VIHTD(y)
P(z) A char(ff (y,z),2z) A C(fP (y,2))

1 (D) =

r(D)

The problems defined in Reiter’s default logics are easily recast in SRDC™:

— SRDC~-EXTENSION: Given a SRDC~ KB K, does 7'(K) have an extension?

— SRDC™-SKEPTICAL DEDUCTION: Given a SRDC~ KB K and a SG @, does
T(K) Es 2(Q)? In this case we note K s Q.

— SRDC™-CREDULOUS DEDUCTION: Given a SRDC~ KB K and a SG @, does
T(K) Ec (Q)? In this case we note K ¢ Q.

Modeling Choices. Two features of our chosen semantics might seem surpris-
ing to the reader. First, the presence of sk(C) as an added justification. This
is due to the fact that we need to be able to represent normal defaults in our
language (if a default rule D = (H,C) has no negative constraint then 1°(D)
is a normal default). Second, we have introduced functional terms in the inter-
pretation of a default. This is due to the fact that the default interpretation is
composed of many formulae and functional terms are the only way to link up
the variables of these formulae.
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4 Reasoning in SRDC~

4.1 The Defaults Derivation Tree (d.d.t.)

The defaults derivation tree (d.d.t.) of a SRDC~ KB K = (§,G,R,N,D) is a
rooted, labeled and possibly infinite tree ddt(K) used as a tool to compute exten-
sions. To define this tree, we need new objects generalizing negative constraints,
that we call attached constraints.

Attached Constraints. Let G be a SG. A constraint attached to G is a pair
(A, 1) where A is a SG and pu is a partial mapping from the concepts of A to
the concepts of G. We say that G wviolates (A, p) iff there exists a projection 7
from A into G such that 7w extends p. Otherwise G satisfies (A, p).

Note that attached constraints generalize negative constraints (the latter oc-
curs in the case of p=0). A SR KB K = (S, G, R) violates a constraint (4, p)
attached to G iff there exists i > 0 and a projection 7 from A to o’s(G,R) such
that 7 extends u. It satisfies (A, 1) otherwise. K violates a set A of constraints
attached to G iff it violates one (A, u) € A. It satisfies A otherwise. The com-
plexity of computing satisfiability with attached constraints remains the same
as for negative constraints.

Note that if (A, u) is a constraint attached to G and G’ is a SG containing G
(such as a SG obtained by applying rules on G), then we can consider (A, i) as
a constraint attached to G’. In the same way, many algorithms rely on finding
a smaller equivalent SG G’ by fusioning concepts of the SG G. Then, for every
(A, u) attached to G, we attach a constraint (A, p') to G’ such that if there is a
concept ¢ in A such that u(c) has been fusioned into ¢’ in G’, then u/(c) = ¢/,
and p/(c) = ¢ otherwise.

Vertices of the d.d.t. The d.d.t. intuitively represents a kind of derivation
tree. Each node v is labeled by A(v) = (G, A,). Gy represents a state of knowl-
edge derived from the initial KB and A, represents the suppositions that we
made to derive GG,,. For example, consider the application of the default CG rule
represented in FIG. 2l on a pasta product A which undergoes a quick drying Q.
To conclude that A is subject to cracking, we need to suppose (and remember
in A, for further derivation) that @ is not a vapor-injection high temperature
drying. To remember this ensures that no further derivation can conclude that
@ was a vapor-injection high temperature drying.

A vertex v of ddt(K) is labeled by A(v) = (G,,A,) where G, is a SG and
A, is a set of constraints attached to G,. The root r of ddt(K) is labeled by
Ar) = (G, 0). A vertex v of ddt(K) is satisfiable iff (S,G,, R, N) is satisfiable
and (S,G,, R) satisfies A,.

If v is satisfiable, then for each D = (H, Ny, - -+, N, C), for each projection 7
into some G’ = a’5(G,, R), if 7 is not “blocked” v admits a child v' = §(v, 7).

Let us consider the SG G’ = «(G’, (H,C),w). For each justification Ny, we
build the constraint (N, u) attached to G” where py is defined as follows:
if ¢ is a concept of N whose generic marker appears in a node ¢’ of H then
wi(c) = w(c'). Otherwise, if this marker appears in a node ¢’ of C' then u(c) is a
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concept obtained from a copy of ¢’ in G”. We note Al = A, U{Aj}1<k<n. Finally
7 is blocked iff there exists j > ¢ such that a(as(Gy, R), (H,C), ) violates A..
If 7 is not blocked, then A(v') = (G”, AL).

Building Finite d.d.t. Given the expressive power of SG rules, ddt(K) is an
infinite tree: it can have an infinite depth and each vertex can have an infinite
number of children. To be able to finitely build d.d.t., let us now extend the
notion of finite expansion sets (SECT. [22)).

Definition 10 (Finite expansion property). If D = (H,Ny,---,N,,C) is
a default CG rule, we note fol(D) = (H,C) its associated SG rule. If D is a
set of default CG rules, we note fol(D) = {fol(D)}pep. Then a SRDC™ KB
K= (S,G,R,N,D) is said to have the finite expansion property iff R U fol(D)
18 a finite expansion set.

If K =(S,G,R,N,D) has a finite expansion property, then for every vertex v
of ddt(K), with A(v) = (Gy, Av), Gy is a subgraph of the finite SG (S,G, R U
fol(D))*. Then, since the graph G, labeling each vertex v is bigger than the
graph labeling is parent, the depth of ddtK is finite. And since (S,G,, R)* is
finite, there is a finite number of projections of the defaults in it, so the number
of children of v is finite, and its satisfiability can be computed in finite time. It
follows that:

Theorem 9. If a SRDC™ KB K has the finite expansion property then ddt(K)
can be computed in finite time.

4.2 Sound and Complete Reasoning w.r.t. T

Let us now show that the d.d.t. can be used for sound and complete reasonings
in SRDC™.

Theorem 10. Let K = (S,G,R,N,D) be a SRDC™ KB, and Q be a SG. Then
either (S, G, R,N) is unsatisfiable or the following assertions are equivalent:

i There exists an extension E of T(K) such that E = &(Q).
it There exists a satisfiable leaf v of ddt(K) with A(v) = (G,,Ay) such that
(S8,G,, R) modelsQ.

Due to space requirements the proof of this theorem is omitted in this paper.
It follows that:

Theorem 11 (Soundness and completeness). Let K = (S,G,R,N,D) be
a SRDC™ KB, and Q be a SG. Then K =g Q (resp. K E=c Q) iff either ddt(K)
has a unique unsatisfiable vertex, or, for all satisfiable leaves, (resp. there exists

one satisfiable leaf) v in ddt(K) with v = (G,, Ay), (S,G4,R) E Q.

This latter theorem provides us with an effective characterization of the deduc-
tion problems in SRDC ™. Thanks to THM. [ this characterization also provides
a halting algorithm when C has the finite expansion property.
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4.3 Relationship with SREC

The Language SREC. [3] presents a family of CG languages. The most ex-
pressive one in this language hierarchy is the language SREC. In this language
a KB K is composed of a support S, a SG G, a set R of inference rules (that
behave exactly as CG rules), a set € of evolution rules of form (H,C'), and a set
C of constraints. By restricting constraints to the negative constraints presented
here we obtain the language SREC™.

Reasoning in SREC™. Reasonings in SREC™ rely upon building a “tree of
possible worlds”, akin to the d.d.t. presented in this paper. Since SREC™ does
not dynamically generate constraints, a possible world is only labeled by a SG.
Children of a possible world are generated as if we considered each evolution rule
as a default rule without justification. Finally, an answer to a SG @ can be found
in any possible world, not only in the leaves as done in SRDC ™. However, default
rules translating evolution rules are normal, and thus any possible world is an
ancestor or an extension (THM. B]). Therefore, if an answer to @ can be found in
a possible world v, the same answer can be found in all leaves/extensions having
v as an ancestor.

Default Semantics for SREC™. By comparing the reasonings in SREC™ and
SRDC™ we obtain an interesting equivalence result that provides the formally
lacking semantics of SREC™. Let us consider the bijection 7 from SREC™ KBs to
SRDC™ KBs that transforms each evolution rule into a default CG rule without
justification (i.e. a normal default CG rule).

Theorem 12. Let K = (S,G,R,E,N) be a SREC™ KB, and Q be a SG. Then
(S,G,R,7(E),N) Ec Q iff (S,G,R,N) is unsatisfiable or K = Q (E being the
deduction used in SREC™ ).

We can finally provide a logical semantics 7¢ to the SREC™ language, by
defining:

(L,0)if (S,G, R, N) is unsatisfiable
(S, G, R,7(E),N)) otherwise.

SREC™ is thus the subset of SRDC™ restricted to normal defaults, and:

TE((‘Sa Ga ’R,7g7./\[)) = {

Theorem 13. Deduction in SREC™ is sound and complete with respect to cred-
ulous deduction according to the Te semantics.

5 Conclusion and Perspectives

In this paper we have formally defined the syntax and semantics of a new lan-
guage of the SG family, namely the SRDC™ language. This extension was nec-
essary in the agronomy application we are involved in, and the semantics of
this language are expressed in Reiter’s default logics. Since this subset of de-
fault logics is built upon a particular subset of FOL, we were able to provide a
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constructive characterization of Reiter’s extensions (THM. [I0). Using the finite
expansion sets that form a decidable subclass of SR, we defined a new decidable
subclass of Reiter’s default logics (THM. @)). Finally, we showed that the SREC™
language of [3] is a strict subclass of SRDC ™, and provided a formerly lacking
default logic semantics for that language.

Some problems are still to be addressed to be able to encode the knowledge
required by our application and to compute deductions in an efficient way:

Functional Relations. For more precise reasonings we need to be able to
represent numerical information in a knowledge base and to express functional
constraints such as the following rule given by a domain expert: a high tempera-
ture for drying has to be above Naples average spring temperature. [I1] extends
the language SR to handle such knowledge. This language could provide the
foundations for a functional extension of SRDC™ .

Other Decidable Subclasses of CG Rules. The KB obtained from our
preliminary modeling has the finite expansion property that ensures finite rea-
sonings. It may be possible that with the introduction of new knowledge this
property no longer holds. It would then be essential to investigate other kinds
of decidable KBs. An interesting research direction could be to extend other
kinds of decidable subclasses of SR to SRDC™ . Such decidable subclasses could
be finite unification sets (that ensure a finite backward chaining rewriting) or a
bounded treewidth sets (a strict generalization of f.e.s. ensuring that K£* has a
bounded treewidth)[12].

Reasoning with Preferences. Default logics can be extended to take de-
faults preferences into account. In this model, one can define an order (partial
or total) on the set of defaults. Our default CG rule model provides a natural
order on defaults: a default CG rule D; should be preferred to a default Do
if the prerequisite of D; is a specialization of the prerequisite of Dy. This is
exactly what is intuitively needed in our agronomy scenario. The consequent
problems of computing extensions are then transformed into finding the most
preferred extensions [10]. Even when defaults are totally ordered, the procedure
that chooses the application of the most preferred unblocked default at each
vertex of the d.d.t., is not ensured to lead to a preferred extension. Formally
defining and finding preferred extensions is left for further work.
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Abstract. This paper presents the general framework and the current
results of a project that aims to develop a system for knowledge dis-
covery and extraction from the texts of Electronic Health Records in
Bulgarian language. The proposed hybrid approach integrates language
technologies and conceptual processing. The system generates concep-
tual graphs encoding the patient case history, which contains templates
for the patient’s diseases, symptoms and treatments. We describe simple
inference in the generated graphs resource bank. Some experiments and
their evaluation are presented in the article.

1 Introduction

The first known medical record was developed by Hippocrates in the fifth century
B.C. He prescribed two goals when documenting the patient status in natural
language: (i) A medical record should accurately reflect the course of the dis-
ease and (77) A medical record should indicate the probable cause of the disease.
These goals are still appropriate today and most of the patient documentation
is still kept in natural language as free unstructured text. However, Electronic
Health Records (EHR) systems provide additional functionality, such as interac-
tive alerts to clinicians, interactive flow sheets and tailored order sets, automatic
calculation of the price of the medical treatment etc., which cannot be supported
in the paper-based archives [3].

Today most of the patient’s information is available only in textual form. This
makes its automatic processing a very difficult task. So to say, medical knowledge
is “locked up” in paper documents, files or databases in formats which are not
suitable for automated processing [7]. Great efforts have been made to translate
this information into certain (semi-)structured representations; the activities al-
ways include manual or automatic information extraction from free texts. The
main difficulties to structure medical information are the complexity of the do-
main as a whole, the complex medical language, and the variety of practices for
including text descriptions in EHR, which are too specific for different countries
and different languages. Many language processing systems, which extract and
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codify information from EHR in English have been developed. Most generally,
they reflect at least two principally-different views to patient-related texts. The
first approach is automatic extraction of information concerning patients diag-
nosis, treatment, manipulations etc. and automatic coding of this information
with respect to some established classification schemes, which are provided by
financing or statistical institutions. There are large terminology-based nomen-
clatures such as SNOMED (the Systematized Nomenclature of Medicine) and
ICD (the International Classification of Diseases). These collections are unified
classification systems, translated into many languages, and support the health
management and health statistics. Recent critics to SNOMED explicate some
conceptual shortcomings which prevent its application as medical ontology in
semantic systems [16]. It remains unclear whether the same kind of terminology-
based ontologies can support all principally different systems, which are built
on top of medical information extraction. Regarding the extraction precision,
the leaders in the fields report successful recognition of the complex medical
terminology up to 80-85% even for English [12]. The second kind of prototypes
is oriented to medical research and knowledge discovery in medicine. It reflects
the Al view to text understanding: to translate the text to internal structured
representations, to make inferences, to discover interconnections between facts
and concepts which could remain unnoticed otherwise, and to spot previously
unknown regularities. Most prototypes of this kind are developed for English.
They benefit from the various language resources, available for English, among
them large public archives of medical abstracts. Practically there are no signifi-
cant developments for lesser spoken and minor languages.

Here we present the first steps towards building a system for automatic ex-
traction of medical facts from patient-related texts in Bulgarian language. This
research effort is made in a project, supported by the Bulgarian National Sci-
ence Fund in 2009-2011. We discuss briefly the general ideas behind the project
and present the results of its first steps - design and implementation of the Re-
lations Analysis Module and the Conceptual Graphs Generator. The paper is
structured as follows. Section 2 overviews some related research and discusses
basic language technologies which are used for Information Extraction (IE) in
the medical domain. Section 3 describes the general project ideas and sketches
a view to the system architecture. Section 4 presents the Relations Analysis
Module and the main types of relations which are automatically recognized at
present. Section 5 presents the module for generation of logical forms of Concep-
tual Graphs (CG) using the templates that are filled in by the extracted EHR
data. Examples and assessment figures describe the current experiments. Section
6 contains some discussions and the conclusion.

2 Related Work

An overview of the current EHR systems and their functionality can be found in
[3]. We focus on the natural language texts in the EHRs assuming that they are
available in certain integrated hospital information system. Another overview,
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comparison and evaluation of the language technologies which extract medical
information is given in [4J5]. The white paper [I2] presents recent industrial
developments in the field.

Several language technologies are used to extract and codify medical infor-
mation. The most successful applications run for English due to many reasons,
among them the simple morphology. The tools for automatic natural language
analysis have to lemmatize the text, i.e. to recognize the basic form of every
wordform, and to group the separate wordforms into (complex) terms. After-
wards various relations between the sentence phrases have to be found to capture
the medical semantics. The main approaches for sentence processing include:

— Partial analysis of sentence segments or local phrases in order to fill in pre-
defined templates and to search for some specific relations and keywords, for
instance:

e using a shallow parser that captures relations between noun phrases
(NPs) [9]. The parser extracts relations between all NPs regardless of
their type. Then it searches for patterns in the text which are based
on English closed-class words - i.e. prepositions (by, of, in), negation,
conjunctions (and, or) and auxiliary or modal verbs. The extracted re-
lations can contain up to five arguments: relation negation, left-hand
side, connector modifier, connector and right-hand side;

e searching for cause-effect relations within the sentence parse tree. This
approach was used in [2] to identify and extract cause-effect information
that is explicitly expressed in the Medline medical abstracts. The system
is based on tree-like patterns that indicate the presence of certain causal
relation in the sentences, and which parts of the sentence represent cor-
respondingly the cause and the effect. The patterns are matched to the
syntactic parse trees of the sentences. Thus parts of the parse tree are
extracted as NPs referring to the cause or the effect;

e searching for treatment relations [§] using linguistic patterns which en-
able the discovery of treatment relations. These patterns are constructed
either semi-automatically or manually. Mining for ’association rules’ is
applied to sample sentences containing both a disease concept and a
reference to drugs, to identify frequently occurring word patterns and
evaluate whether these patterns could be used to identify treatment re-
lations in sentences;

— Deep parsing of whole sentence in order to construct detailed parsing trees
and to process further the sentence semantics;

— Combining several language technologies in a pipe-line environment - e.g. in
MedLEE (A Medical Language Extraction and Encoding System [10]).

Specific natural language processing tools are developed to ensure the proper
anonymisation of patient records [13] by removal of named entities and replac-
ing them by pseudonyms. Some prototypes deal with the essential problem of
negation in the patient records [6], among them there is a module for negation
processing in Bulgarian medical texts [I].
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3 Project Settings

The suggested system will work on EHRs collected in the Specialized Univer-
sity Hospital for active treatment in endocrinology, in the Clinical Centre of
endocrinology and gerontology - Sofia. It will be tuned to the particular domain
of diabetes (having in mind its importance). The extraction scenario reflects
the specific way of collecting patient information in this hospital. For instance,
information about the relatives identity is not systematically supported in the
EHRs although there are citations of relevant family diseases. This is due to
the fact that the documents are stored in electronic form in the recent years
only. Information is kept about the patients’ case history and there are links
between the different patient’s visits to the hospital. From the perspective of the
medical experts, the most urgent task is to analyze the hospitalization effects:
what happens to a patient when he or she enters the hospital in status A and
leaves it in status B, i.e. how the hospital treatment affects the patient state.
The prototype will extract the information needed for the automatic generation
of a Patient’s Chronicle - symptoms and diagnosis, hospital treatments and their
results. Based on the ideas of granularity shift using CG type definitions, type
contraction and type expansion [I8] and applying inference rules, some more
general statements regarding the patient status will be produced, which will de-
scribe the medications effect given certain patient status. These ‘general’ graphs
will not deal with the single words and concepts in the personal EHRs but will
allow for summarizations of the patient information in more general terms which
are used by medical professionals when they describe medical knowledge. The
whole conceptual archive will support knowledge discovery in medicine. Today
we see it as a hypercube of conceptual graphs, corresponding to patients’ EHRs
and their generalizations. There will be connections between the nodes of dif-
ferent patient graphs which correspond to different visits to the hospital. This
very challenging and ambitious task includes much research to be performed
in several years. At the present moment we can discuss only the Information
Extraction solutions, which concern the words in the particular EHRs, and the
generation of conceptual graphs which capture the factology of the individual
patient records.

As usual in natural language processing of raw documents, the input medical
resources are really problematic - texts with specific abbreviations, numerical
values of analyses and clinical test data, medical terminology in Bulgarian in
Cyrillic and in Latin (using both the Cyrillic and the Latin alphabets), numer-
ous synonyms of the medical terms, spell-errors with one or two wrong symbols
per word, specific language style of the medical professionals and so on. All
these obstacles together are not easy to overcome. Another essential problem is
the rich temporal structure of the patient descriptions which prevents the ap-
plication of standard language processing techniques. Fortunately, we rely on
stable modules for morphological analysis, very large morphological dictionar-
ies of Bulgarian and well-studied technologies for corrections of spelling errors,
which encourages us to approach the automatic processing of raw medical texts
as they are stored in the hospital information system. The test corpus contains
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about 8000 words and most of them are included in the very large lexicons of gen-
eral Bulgarian vocabulary which supports the morphological analysis. Previous
achievements in processing Bulgarian morphology enable chunking of sentence
phrases and recognition of the ICD-10 medical terms with precision higher than
50%, which will be improved for the narrow domain of diabetes. A represen-
tative corpus of epicrises facilitates the semi-automatic extraction of linguistic
templates which support the identification of important medical facts. So in
principle the project is equipped with basic background resources and tools for
natural language processing. Previous research of the negation in medical pa-
tient records in Bulgarian was carried out. It has revealed some typical language
constructions, specific features of the negation scope and solutions for their pro-
cessing [I]. The available components for processing the negation are extended
and integrated in the current system. Needless to say, the expectation is that
the automatic IE will work with partial success and many details (expressed
indirectly or by wrong words) will be missed in the texts. But we believe that IE
success of more than 75-80% will enable the development of an useful conceptual
archive which will provide a good basis for knowledge discovery and conceptual
search. Having in mind this ultimate project objective, we start by a narrow do-
main where we can progress more quickly with the natural language processing
activities.

Comparing the IE tasks for Bulgarian and English, we notice that there are
prototypes for English which are very successful in narrow domains - see for
instance [I5], where the patient smoking status is identified automatically in
more than 92% of the cases. This is done by analysis of individual sentences in
the patient record. These sentences are selected due to the presence of predefined
keywords which occur in the text. Since we have no principal difficulties to tackle
the Bulgarian morphology and to perform automatic text lemmatization, we
believe that by the project end we can achieve comparable scores for IE success
in a narrow domain (where we have to extract more templates, however, possibly
from overlapping text fragments).

The design of our IE system is strongly influenced by the EHR structure. The
textual part of the EHR in Bulgarian has average length of 2-3 pages and 11
predefined and ordered sections: Personal data, Anamnesis, Status, Examina-
tions, Consultations, Debate, Treatment, Treatment results, Recommendations,
Working abilities, and Diagnosis.

The architecture of the IE component is shown at Fig.1. It contains the fol-
lowing modules: Annotation analysis and Chunking; Patients’ Data Module; Pa-
tients’ Relations Module; Templates Selection Module; Post Processing Module;
Extractor; Filling Templates Module; Relation Analysis Module; Logical Form
Generator / Conceptual Graphs Generator; Template and Relations Refinement.

At the first step, each EHR is split to its 11 sub-topics by the Annotation anal-
ysis and Chunking module. The annotation process is based on morphological
analysis using a lexicon of 30 000 lexemes. The common Bulgarian vocabulary is
expanded by medical terminology and specific words which are met in the avail-
able EHR corpus. For each wordform, the module finds its basic form (lexeme)
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Fig. 1. Pipe-line architecture of modules for information extraction from medical texts

with the associated lexical and grammatical features. Chunks are sequences of
words that build complex terms, syntactic groups or sentence phrases. They are
recognized by rules defined as regular expressions, which take into account the
morphological features of the lexemes and their mutual position. Mostly nominal
chunks (NPs) and Prepositional Phrases are recognized at present. The module
outputs tagged text.

The Patients’ Data Module extracts personal data from the corresponding
EHR section (taking into account the pseudonymisation). The Patients’ Rela-
tions Module creates a Patients’ Chronicle graph with nodes, which are slots of
templates full of patient information collected in different time periods. The sys-
tem searches for data about the same patient in the hospital information system.
If any is found, the module includes a pointer to the previous records according
to the case history. Otherwise the system generates a new graph.

After identifying the topics included in the particular EHR and the possible
connections between the patient visits to the hospital, the system needs to de-
cide which templates fit for the representation of the patient data. The possible
templates are stored in a resource bank, which contains templates for common
information as well as specific templates for the particular medical sub-domain.
We have studied representative amounts of EHRs together with the medical
experts and have created manually about 50 templates for different diabetes-
related facts that need to be tracked in the patient records. A sample template
is shown in Fig. 2. To narrow down the search while choosing a suitable template,
the system uses domain ontology. It is very helpful that every EHR is split into
11 sections and the medical experts have some well-established practices how to
write down the epicrises. The chosen template is included in the graph node for
the current patient’s EHR. The system maintains four types of ontologies - of
symptoms, of diagnosis, of drugs and a shallow ontology of body parts. More
details about the templates and their filling are given in Section 4.

The Post Processing Module recognizes important NP and VP chunks us-
ing the lexicon and partial grammar rules. Some efforts are needed to determine
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/Sym ptom | Diagnosis _:I'reatmen_\

Evidence Cause | Location

Condition
Effect | Source Information

\_Labs Results Significance Level /

Fig. 2. Patient Status Template

Diagnosis: Toxic nodular goiter

l

—lType: Toxic Adenoma Diagnosis: Toxic adenoma

—{Le\rel: v |

Type: Decompensate

—{Partiallv Retrosternal: Yes

Level: Latent

| Complications: Rapid
| heart rate

|
Hyperthyroidism Level: 1

Grave

Complications: Rapid heart ‘
rate

Fig. 3. Templates for diagnoses with specific patient values

the VP chunks due to the telegraphic style of the medical reports which rearly
contain complete sentences.

The Extractor determines the patient’s symptoms, diagnoses and treatment
which are reported in the current EHR. The module for Filling Templates tries
to fill in the information for each node that is foreseen by the chosen template
(Fig. 3). Due to the narrow domain, the expected values of each node can be
prelisted. Analyzing the representative corpus of epicrises, we expect to be able
to identify all words which are the surface verbalization of the respective medical
notions. Some template slots might become empty but others are obligatory.

The Relation Analysis Module identifies three types of relations: is-a rela-
tions; Cause-Effect relations; Internal relations between symptoms, diagnosis
and treatment in one node of the patient case history and FEzxternal Relations
(Fig. 4) between the different nodes of the patient’s chronicle graph.

The Logical Form Generator creates CGs represented in first order logic, us-
ing the identified relations and the information which is already present in the
templates (disregarding the empty slots). The last step is to check again whether
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-

*Symptom,, *Symptom,,
- -
*Symptom,, *Symptomy,
*Diagnosis;; *Diagnosis,,
. .
eTreatment,, *Treatment,,

Fig. 4. Relations within the Patient’s Chronicle-each node contains slots-templates

some empty slots in the templates can be filled in, given the context of all ex-
tracted information and the inference rules.

4 Relation Analysis Module

There are many kinds of relations between the concepts in medical texts but we
shall classify the relations in two general classes: internal (between the slots of
one EHR) and external (between the slots of two different EHRs, e.g. two records
for one patient in the chronicle graph). At present we are working actively on
the internal relations which are extracted with better accuracy.

Recognition of relations is crucial for proper text processing. For instance,
the causal relation has significant importance in medicine, which deals with
treatments and drugs that can affect or cure a disease. Due to this reason the
causal relation is often explicitly indicated in EHRs using linguistic means (i.e.
words such as result, effect, cause etc.). In some cases the specific phrasal struc-
ture helps to identify cue patterns, which work as indicators of the location of
desired knowledge [I7]. Unfortunately not all the cause-effect relations can be
identified by keywords and phrasal patterns. There are more complex relations
for which it is necessary to process several discourse sentences and to make in-
ference in order to determine them. Khoo et al. [2] attempted to identify the
location of causal relationship description using dependency subtree patterns.
One very important task is to find a set of effective cue patterns suitable for the
domain and the mining goal. Usually the systems use cue patterns given a priori,
presumably devised by domain experts for the prescribed tasks or collected by
statistical studies.

In our initial experiment we use about 150 EHRs in Bulgarian for diabetic pa-
tients. We have investigated the specific verbalizations of the symptoms-diseases
relations in the corpus. The selected cue expressions are ranked by frequency
and include the most frequent adjectives, prepositions, adverbs and verbs:
“ommaxBanus or” (complaints) - 73% of its occurrences in the texts signal for
symptoms-diseases relations; “nannu 3a” (there exists evidences for) - it appears
at least 2 times per each EHR and 100% of the occurrences denote symptoms-
diseases relations; “nopamu” (because of) - 49.2% of the occurrences in EHRs
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encode a symptom or a disease; “mo nosonx Ha” (reason for) - 74.6% of its occur-
rences in EHRs refer to symptoms and diseases, “cobmasa” (inform) - 100% of
its occurrences signal symptoms-diseases relations (but this cue is tricky because
it appears mostly in combination with negation and it is not easy to identify the
negation scope). All above mentioned cue phrases mark that the patient has
some symptoms and diseases. Shallow ontologies for symptoms, diagnosis and
body parts supported the process of cue patterns extraction.

At present the Relation Analysis Module recognizes the following types of
cause-effect relations for patient status: (i) Between slots in one template (Symp-
tom - Diagnose; Diagnose - Treatment); (i) Between slots in two different
templates (Diagnose - Symptom; Treatment - Symptom; Diagnose - Diagnose;
Treatment - Treatment; Symptom - Symptom);

We take into account three major types of cue patterns: (i) Symptoms and
conditions of diseases; (i) Verb expressions representing a relationship, inter-
action, or action; (i) Symptoms and conditions of diseases - for this type of
patterns we use templates with predefined relations and empty slots for the con-
cepts (symptoms, diseases), as well as slots for characteristics representing the
condition.

4.1 Example for a Diabetic Patient

[MocrbnBa 3a 1 mbT B KIAWHMKATA, IO TOBOXA HA OOIIA OTIAIHAJOCT, Alle-
TOHYPUsI, BUCOKA CTOWHOCTU HA KPDLBHOTO HAJATAHE, & OT HIKOJKO HU
nMa MOBpbInaHe. 3ab0IABAHETO € YCTAHOBEHO Ipear 4 rOAWHYA IPU U3MeP-
BaHe Ha KPLBHA 3aXap, HOpaayu OOpUB Ha JUIETO. BLOpeKu Ha3HAUEHOTO
JleUyeHre C MAHWHWUI U JUAIpeJ HsIMa MOq00peHue.

This is the 1st visit of the patient to the clinic with complaints of general weak-
ness, acetonoria, high blood pressure, and sickness since few days. The disease
was detected 4 years ago by the high blood sugar measurement, made because
of a face rash. Despite of the treatment with Maninil and Diaprel there are no
changes for better.

After analysis and chunking of the first sentence we obtain:

IMocrvusa{llocrvusa.V+IPF+1:R3s:E2s:E3s} 3a{3a.PREP} 1{gb}
neT {bT.N+M:s} B{8.PREP} knunurara{xmunaura.N+F:sd},
no{no.PREP,10.PC} nosox {nosox.N+M:s}ua{na.PREP }o6ma{o6m.A+GR:sf}
ornaxuanoct {ornagaanocr.N+F:s} aneronopus{} sucoku{sucox.A+GR:p}
crofinoctu {croiinocr.N+F:p} na{ua.PREP} kpuBHOTO {KpBBHOTO .A:sSD,
kpbBHO.ADV+MNN} namsarane {namsram.V+IPF+T:VNs, naxsrane.N+N:s},
a{a.CONJ}or{or.PREP }uaronro{mnxkonko. PRO+IDF:ms}auau {nen.N+M:p:c}
mva  {mmam.V4+IPF+T:R3s:E2s:E3s} nospbmane {mospbmam.V-+IPF+T:VNs,
nospbmane.N+N:s}

The Extractor uses a cue pattern (Fig. 5) for each symptom in order to locate in
the text as many words and phrases as possible and to send them to the Templates
Filling module. There are minimal requirements to fill in the obligatory slots of
any template, which is chosen as a relevant one, and in this case they are only:
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C Atr >—  Condtion

'\/: Lo catiob Concept

Person Body Part

Fig. 5. Cue pattern for a symptom

[HAVE] -> (AGNT) -> [PERSON]
->(THME) -> [SYMPTOM] -> (CHAR) —> [CONCEPT]

The remaining slots are optional and they are filled in when additional in-
formation is present. The extractor generates the following CGs for the sample
sentence 1:

[HAVE] ->(AGNT) ->[PERSON]
->(THME) -> [SYMPTOM] —> (CHAR) -> [Weakness] -> (ATTR) -> [Generall]

[HAVE] ->(AGNT) ->[PERSON]
->(THME) -> [SYMPTOM] -> (CHAR) -> [Acetonorial

[HAVE] -> (AGNT) -> [PERSON]
->(THME) -> [SYMPTOM] ->(CHAR) -> [Blood pressure]->(ATTR)->[High]

[HAVE] -> (AGNT) -> [PERSON]
->(THME) -> [SYMPTOM] -> (CHAR) ->[Sickness] -
->(ATTR)->[since few days ago]

In this way the “elementary” cue patterns enable to fill in the templates by the
words and phrases which are encountered in the text. Implicit relations are found
in this way - e.g. AGNT, THeME, CHAR, ATTR, LOC. They do not correspond
to specific words in the EHR. Another type of cue patterns - “Verb expressions
representing a relationship, interaction, or action” - support the discovery of
relationships between the patients’ template slots as well as relations among
several slots in the patient’s chronicle.

Most generally, the relations between the slots in the different sections of one
EHR connect each Symptom with the corresponding Diagnosis and each Diag-
nosis with the corresponding Treatment. To discover such relations we apply
statistically collected cue phrases like effect, results, influence, changes, achieve-
ment etc. For instance, the cause-effect relation representing the result after the
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treatment ”seuenne - momobpenue” (treatment - improvement) can be found
in the sample sentence above with a specific negation: Bnupexku maznauenoro
JeYeHre ¢ MAHWHWI U auanped Hama nonobpenue. (Despite of the treatment
with Maninil and Diaprel there are no changes for better.)

To discover relations between slots in different patient’s nodes of the Patients’
Chronicle graph we use the rich temporal information in the EHR. The most
frequent cue phrases include time, dates, years, months, temporal adverbs like
after, before, etc. The main task is to find the last and the first occurrence of each
symptom and diagnose and to connect them to the corresponding Treatment.
The example contains typical temporal information which has to be taken into
consideration and kept for future monitoring: 3abossiBaneTo € ycTaHOBEHO
npemu 4 ronuHW TOpaIV M3MEpBAaHE HA KPbLBHA 3axap, mopaau obpuB Ha
muuero. (The disease was detected 4 years ago by the high blood sugar measure-
ment, because of a face rash.)

The simplest templates are filled in with 92% correctness. However, the more
complex cue patterns extract too many irrelevant phrases and the results needs
manual human revision. On the other hand the too specific cue patterns generate
only few results. The process of relations identification should be iterative in
order to improve step by step the IE results, which is our main task at present.

5 Generation of CG in Logical Form

The CG generator collects all the information from the patient’s node templates.
Here we briefly introduce the CG generation algorithm:

— STEP 1: For each template T; , construct one graph G; using maximal join
operation for the corresponding common concepts in the template slots.

— STEP 2: For each internal relation R', R?, ..., R* between slots in the
template T;, add consequently relations to the graph G; between the corre-
sponding concepts.

— STEP 3: Cluster the set of all p templates {T1,1s, ..., T, } in subsets de-
pending on whether the templates are linked by external relations. A given
template T}, belongs to a cluster C,, if and only if there exists a template T,
from C}, and an external relation between T} and T;,. The resulting clusters
contain interlinked templates.

— STEP 4: For each external relation between slots in the different templates
T; and T}, construct a relation between the corresponding concepts in Gj
and G; and generate a new graph G;;’

— STEP 5: Join all new graphs G;;’ belonging to one cluster

— STEP 6: Represent all constructed CGs as Logical forms (LF).

— STEP 7: The EHRs archive contains as many LF's as the number of clusters.

This algorithm ensures the production of connected conceptual structures,
which encode interlinked information in the EHRs. Several issues have to be
mentioned here. The bottom elements in the construction are the system pat-
terns - like the one at Fig. 5 - which shape the extracted words/concepts into
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conceptual structures. The pattern relations are either present in the text explic-
itly, or are introduced by default as thematic roles like CHAR, ATTR, AGNT,
THeME. Joining the simple patterns at step 1, we obtain one conceptual graph:

[HAVE] -> (AGNT) -> [PERSON]
->(THME) -> [SYMPTOM] -
->(CHAR) -> [Weakness] —> (ATTR) -> [General]
->(CHAR) ->[Acetonorial
->(CHAR) ->[Blood preasure]->(ATTR)->[High]
->(CHAR) ->[Sickness]->(ATTR)->[since few days agol]

The internal relations between the templates enable joining of conceptual
structures which correspond to separate sentences and paragraphs. The rela-
tions correspond to referential links between text fragments. We assume that
there is no referential ambiguity since the domain language is very specific. Step
2 connects conceptual structures that are linked because of certain linguistic
evidences in the EHR text. For instance, if for the sample patient above it is
mentioned in the same EHR paragraph that he/she was diagnosed with diabetes,
then in the same template we would find the following graph:

[HAVE] -> (AGNT) -> [PERSON]
->(THME) ->[Disease] ->(CHAR) ->[Diabetes]

After steps 1 and 2 we would obtain the following graph:

[HAVE] -> (AGNT) -> [PERSON]
->(THME) -> [Disease] ->(CHAR) ->[Diabetes]
->(THME) -> [SYMPTOM] -
->(CHAR) -> [Weakness] ->(ATTR)->[General]
->(CHAR) ->[Acetonorial]
->(CHAR) ->[Blood preasure] ->(ATTR)->[High]
->(CHAR) ->[Sickness] ->(ATTR)->[since few days ago]

Steps 3 and 4 enable to build groups of interlinked templates and graphs in
case of external links (reflecting multiple patient records in the hospital infor-
mation systems). Steps 5 and 6 juxtapose one logical statement to conceptual
structure which encodes connected facts.

In general, the join operation may unify different unspecified instances of
the same concept type, which is problematic from a knowledge representation
perspective. However, studying EHRs we discover that most often each word
occurrence refers to one instance - e.g., the blood pressure of the patient. Also,
we assume that there are no ambiguous words which denote simultaneously in-
dividuals and concept types. In fact the lexical semantics of the nouns in natural
language allows them to refer to classes or instances [I1] but in a narrow domain
all words can be examined in advance and the important semantic distinctions
can be marked in the system lexicon. We are currently investigating this issue,
in order to provide solid motivation behind our algorithms for construction and
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unification of patient-related conceptual structures. This on-going work will con-
tinue by tests and elaborations of our empirical approach which is tailored to
the specific domain.

6 Conclusion and Future Work

The research task presented here aims at the extraction of medical facts from
unstructured text in natural language. Since language technologies operate on
words and phrases, the atomic extracts are knowledge chunks corresponding to
domain-specific templates. The suggested scenario is based on the typical IE set-
tings; for instance all words, which remain outside the templates, are considered
as unimportant. Another typical issue for IE is the explication of the implicit
text relations via relation names defined in the template slots. At present we
evaluate the precision and recall of the initial experiments. Obviously, the im-
plementation of all extraction and modelling components will be iterative with
several development cycles.

Conceptual graphs are well-suited to serve as primary patterns because they
are adjusted to natural language applications. They also provide a well-defined
join operation, assuming that graphs can be ”"merged” on their common concept
instances. Our intuition and the present text examinations show that very often
the words occurring in the EHR text point to single instances. This referential
particularity is another important issue to be studied in the near future.
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Abstract. Where posets are used to represent taxonomies, concept lat-
tices, or information ordered databases there is a need to engineer
algorithms that search, update, and transform posets. This paper demon-
strates an approach to designing such algorithms. It presents a picture
of covering relation traversals that characterises these in terms of up-set
and down-set expressions involving union, intersection, and difference.
It then provides a detailed analysis of three types of covering relation
traversal. The approach is demonstrated by describing a suite of derived
algorithms. The intention is to express a manner of decomposing math-
ematical problems into poset traversals, and to provide context to the
selection a particular traversal algorithm. This line of work has previ-
ously been pursued by [I]. However, the success and influence of Formal
Concept Analysis [2] has shifted the emphasis from posets to lattices,
and from algorithms that operate on the graph of the partial order to
the formal context. This paper contributes a methodology for the re-
newed investigation of poset algorithms, with the potential to lead to
improvements in algorithms such as the online completion to a lattice.

1 Introduction

Given its close relationship to knowledge representation through information or-
derings and domain theory, order theory is the subject of several computational
efforts. Much of the ground work for the approach presented in this paper was
laid by [1]. In particular, [T] explicitly considers the covering relation as the basis
of the implementation, and is unusual in emphasising the poset over the lattice.
However, the community that previously existed around conceptual graphs [3]
has merged with that of formal concept analysis [2]. Thus, the emphasis has
shifted to concept lattices, as the basis for both the formalism and the imple-
mentation. Hence, many order theory algorithms are now published in terms
of formal concept analysis. For example, the question of minimal insertion into
a lattice received attention in the general case [4], but has since been largely
considered in terms of formal concept analysis. See [5] for a survey.

This paper emphasises the role of the underlying covering relation, and explic-
itly represents it. Furthermore, it makes no presumption about the knowledge
of the order, whereas formal concept analysis techniques are predicated on the
structure of the formal context. For example, [6] defines a strict lexicographic
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ordering on subsets that is particularly useful when computing over formal con-
texts. In doing so we are able to put into practice many standard results of
algorithms and data structures based on graph theory, in particular breadth-
first and depth-first search. Hence, this paper presents generic poset traversal
algorithms parametrised by pruning and visiting procedures, and demonstrates
how a broad collection of important algorithms are expressed in terms of these
generic algorithms.

1.1 Notation

This paper assumes familiarity with the basic definitions and results of order
theory as presented in [7]. At the centre of the enquiry is the partial order
relation < with the familiar shorthand x < y for z < y and = # y.

Definition 1 (Partially Ordered Set). A binary relation < on a set P is a
partial order on P if it is reflexive, antisymmetric, and transitive. In which case,
we say P is a partially ordered set or poset.

Traversals of the poset are examined in the context of the covering relation. It is
the smallest relation < that is a subset of < such that < is the transitive closure
of <. Upward traversals visit elements that are greater than a starting element,
and downward traversals visit elements that are less than a starting element.
Hence, we define up-sets, down-sets, up-closures, and down-closures where P is
a poset, A C P, and z,y € P.

Definition 2 (Covering Relation). If x < y and there is no other z € P with
x < z <y, then x is covered by y, written z < y.

Definition 3 (Up-Sets and Down-Sets). A is an up-set if x € A and z < y
implies y € A. Dually, A is a down-set if x € A and y < x implies y € A.

Definition 4 (Up-Closure and Down-Closure). The up-closure of A is the
up-set {x € P | Jy € A:y <z} written TA. Dually, the down-closure of A is
the down-set {x € P |y € A:x <y} written | A.

Note the important role played by the Duality Principle. For each statement in
order theory, there is a dual statement in which the sense of every comparison
is reversed. If the original statement is true of posets, then so is the dual. As
a consequence, structures are defined in dual pairs, and dual results are sup-
plied without explicit proof. In particular, where upwards traversals are defined,
downwards traversals follow by duality.

2 Covering Relation Traversals

The central claim of this paper is that traversals of the covering relation are a
sound and expressive mechanism for engineering poset algorithms. For the sake
of brevity, I contract the term covering relation traversal to poset traversal. The
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justification of the claim has two parts. This section proves soundness by showing
that poset traversals visit sequences whose extension and order are provably
described by order theoretic expressions. Sec. [3] demonstrates the expressiveness
by describing a representative collection of poset algorithms.

The examination considers in turn the representation of a poset, the subset
visited by a traversal, the effects of pruning by element comparison, and finally
the effects of filtering the elements before processing. The combination of poset
traversals, pruning by comparison, and filtering generates a collection of algo-
rithms that is further expanded by consideration of the operational differences
between traversal algorithms as considered in the subsections that follow. The
intention is to express a manner of decomposing mathematical problems into
traversals, and to provide context to the selection a particular traversal.

The poset representation used in this paper is expressed in terms of the cov-
ering relation. Objects are denoted by conventional mathematical variables, and
their data structure components are denoted by calls to accessor functions type-
set in a fixed-width font. In order to support traversal, the accessor functions
identify the maximal and minimal elements in the poset, and the adjacencies in
the covering relation expressed via the functions over(P,z) = {y € P | z < y}
and under(P,z) = {y € P | y < «}. Each accessor returns a subset of the poset.
They are defined with respect to a poset P and an element = € P.

heads(P)={z € P|Vye Pz Ay} over(P,z) = over(P, z)
tails(P)={x € P |Vye P:y Az} under(P, z) = under(P, x)

Given the above representation, it is possible to traverse the covering relation
in either direction. By analogy to the definitions for up-closure and down-closure,
I refer to these directions as upwards and downwards, hence upwards poset traver-
sal and downwards poset traversal. A downwards covering relation traversal in a
poset is equivalent to an upwards covering relation traversal in its dual. Hence,
each traversal algorithm is accompanied by a dual algorithm enjoying dual re-
sults. I do not present these dual algorithms, nor their dual results, except to
note their name and construction.

Given a poset P and a starting subset A C P, an upwards traversal of P from
A is limited to the up-closure of A. Dually, a downwards traversal of P from A
is limited to the down-closure of A. This is a simple consequence of transitivity
— reachability in the covering relation is equivalent to comparison in the partial
order. These simple facts are the initial outline in a picture of poset traversals.

To limit the extent of a traversal pruning tests are introduced. In order to
be susceptible to general analysis, tests in an upwards poset traversal must de-
cide up-conditions defined as follows. The dual conditions are down-conditions
required for downwards poset traversal.

Definition 5 (Up-Conditions). An up-condition in a poset P is a formula C
in one free variable x such that {x € P | C(x)} is an up-set in P.

Now an upward poset traversal on P that starts at A C P visits the up-closure
of A in P, namely TA. When pruned by an up-condition Cl,p the traversal visits
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the up-closure of A in P minus those elements belonging to the up-set described
by Cup, namely TA\ {z € P | Cyp(z)}. The dual applies for downward poset
traversals with down-conditions. This simple formulation generates a number
of possibilities, because of the complementarity between up-sets and down-sets,
and the opportunity to select starting points for either upwards or downwards
traversal.

This is best illustrated by directed Venn diagrams. These informal extensions
of Venn diagrams depict up-sets by regions that progressively widen upwards,
and dually for down-sets. For the following examples illustrated in Fig. [l let P
be a poset, let A, B C P, let Cyp, g be the up-condition formed by the disjunction
of comparisons b < z such that b € B, and let Cqown,p be the down-condition
formed by the disjunction of comparisons x < b such that b € B. Also note that
we can invert the up-condition by writing not C\p, 5, and the down-condition by
writing not Caown,B-

Given the above assignments, it is possible to compute the images in Fig. [l
The union TAUTB is computed by unpruned upwards traversal from AU B, and
the difference 1A\ 1B by upwards traversal from A pruned by Cyp . The convex
subset TAN| B is computed by upwards traversal from A pruned by not Cyown,B,
or vice-versa. In fact, the direction in which to compute an up-set or down-set

4 I ( )
TAUTB
1A\ 1B
1B 1B
14 14
N J . J
(a) (b)
4 I ( )
B
1B
” {r€P|not C,,p5(x)}
N J . J

(c) (d)

Fig. 1. Directed Venn diagram constructions via pruned poset traversal
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can be elected. So TB is computed by unpruned upwards traversal from B, or
downwards traversal from heads(P) pruned by not Cyp . The Duality Principle
ensures the observations hold in the dual.

The ability to visit an up-set or down-set by either traversal from a starting
set or traversal pruned by a condition is important. A subset of interest may
provably be an up-set or down-set, yet we may lack an expression for its minimal
or maximal elements respectively. In this case, we can visit the subset by a
traversal pruned by the membership condition. For example, to search for the
elements that would be covered by an element e if it were inserted into a poset
P, visit the down-set {z € P | x < e} with up-condition = £ e.

The problem of visiting an up-set specified by a membership condition rather
than its minimal elements contains a second interesting case. Namely, we may
hold the membership condition C'4 of an up-set A and a starting set S such that
A C 1S. In particular, there might be good reason to suspect 1.5\ A is small,
and hence to prefer an upwards traversal. Consider again the example of the
insertion of e into a poset P. Once the elements covered by e are computed, the
elements covering e are computed. These antichains determine updates required
to the representation of P for it to become a representation of P U {e}. The
covering elements are contained in the up-closure of the covered elements, and
hence we may wish to proceed by starting a new upwards traversal the covered
elements.

The technique of filtering the visited elements to select a a subset to be pro-
cessed deserves further consideration. In the above example, the covered elements
are a subset of the pruned elements. However, the technique is general and can
be applied to extract subsets that are neither up-sets nor down-sets. In addition,
it completes the collection of directed Venn diagrams, by including a technique
for recovering the intersections during traversal. In this case, it is used to com-
pute upper and lower bounds. The idea by [I] is to represent the starting set by
a bit vector, and then during the traversal to propagate information about the
reachable elements of the starting set. In short, for each visited element the bit
vector is the bitwise OR of the bit vectors of the elements it covers. The visited
elements are then filtered according to whether their bit vector is complete.

The above discussion considers which elements are visited, but not when they
are visited. Secs. 2.1 2221 and investigate this question for breadth-first,
depth-first, and topological traversals. The order of visits affects the implemen-
tation of the procedures to decide the pruning condition and operate on visited
elements, and their suitability as the basis for other poset algorithms.

Given the role of up-conditions and down-conditions in this approach, the
traversals of Secs. Bl 221 and are described by algorithms parametrized
by a procedure to decide the pruning condition, and a procedure to operate on
the visited element. For example, breadth-first traversal is parametrised by the
procedures Prune and Pre. This raises issues in the proofs of correctness for
the algorithms, because we must consider the behaviour of these procedures to
reason about the operation of the algorithms.



Algorithm Design Using Traversals of the Covering Relation 119

Clearly neither procedure should exhibit side effects in the traversal algorithm.
Namely, the pruning and visiting procedures should not alter the structure being
traversed, nor the state of the traversal. A more subtle problem concerns the
correct behaviour of the pruning decision procedure.

It is tempting to demand that the pruning decision be independent of the
position in the traversal. However, in Sec. 2.3] we note that this restriction would
rule out many useful algorithms that exploit the properties of topological traver-
sal. In particular, it rules out the propagation of reachability information as dis-
cussed. A more sophisticated assumption can be stated for the case of topological
traversal by exploiting the properties of the algorithm.

The next objective is to bridge the terminology of graph theory and order
theory in the context of poset traversal, in particular, to relate membership in
the visited subset with characteristic paths in the covering relation. It is helpful
to define a term denoting the collection of paths that extend from a starting
set A under pruning. This notational convenience allows us to succinctly state
the characteristics of the paths in a poset traversal. An ascendible path in the
covering relation extends from an element of the starting subset and terminates
at an unpruned element. The descendible paths are defined dually.

Definition 6 (Ascendible Paths). Let P be a poset, let A C P, and let Cy,, be
an up-condition. Then, the ascendible paths are the < paths denoted as follows.

(20,1, .., ) € P* | 2o <1 < -+ < Ty
ascendible(P, A, Cyp) = and zg € A

and not Cyp ()

The connection between order theoretic properties and graph theoretic proper-
ties can be made explicit via the traversable paths of Definition [l Given a poset
P and a visited subset V = {z € 1A | not Cyp}, membership in V is equiva-
lent to the existence of a path in ascendible(P, A, Cyp). Furthermore, every such
path is contained within V, so that the traversal of V' does not visit elements
outside of V. The results are a simple consequence of the fact that membership
to an up-set is monotonic with respect to the sequence of elements in a covering
relation path.

Remark 1. Let P be a finite poset, let A C P, let Cy, be an up-condition, and
let V={zxeTA|notCyuyp(x)}.

veV < Iz, x1,...,Tm) € ascendible(P, A, Cyp) : Ty = v (1)
ascendible(P, A, Cy,) C V™ (2)

2.1 Breadth-First Traversal in Posets

The breadth-first traversal of a poset uniformly expands the set of visited el-
ements across the breadth of a boundary. This ensures properties relevant to
some applications of graph theory but less relevant to the role of the covering
relation in order theory.
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Traverse-Up-Breadth-First (P, Binit, Prune, Pre)
Al: let Svisited C P — @
A2: let BC P «— {z € Biyi¢ | not Prune(P,z)}
A3: while B# 0
A4: for allz € B
Ab: Pre(P, )
A6: Svisited — Svisited U {ZL‘}
AT: B «—— Traverse-Up-Breadth-First-Succ (P, B,Prune)

Traverse-Up-Breadth-First-Succ (P, B, Prune)
Bl: let Bsuec CP «— 0
B2: for allx € B
B3: for all v € over (P, x)
B4: if v & Svisitea and not Prune(P, v)
B5: Bsuce «— Bsuce U{v}
B6: return Bgucc

Fig. 2. Perform an upwards breadth-first traversal of poset P from Binix C P. The
traversal is pruned of elements for which Prune is true, and Pre is applied to unpruned
elements during pre-order visits.

The principal and well know property of breadth-first traversal is that the
sequence of boundaries is ordered by path length. Namely, if By is the set of
initial elements and B; is the i*" boundary, then for every element = € B;, the
length of the shortest path from an element in By to z is 4. In other words,
breadth-first traversal ranks each node according to its minimum distance from
any of the initial nodes. Fig.[2ldefines a procedure Traverse-Up-Breadth-First
that implements upwards poset traversal. The dual procedure Traverse-Down-
Breadth-First implements downwards poset traversal.

It is straightforward to prove that an upwards breadth-first poset traversal
pruned by an up-condition visits the difference of the up-closure of the initial
elements, and the elements selected by the up-condition. To begin, note that
preceding values of B partition the visited subset Syisitea by Lines [A4HAGl and
each subsequent value of B is disjoint from Syisiteq by Lines [T and BTHBEl By
induction on lengths of ascendible paths, an unpruned path of length m, from an
initial element to an element x, guarantees x is visited in the m'® execution of the
loop, so long as no shorter ascendible path exists. Namely, elements are visited
according to the length of the shortest path from an initial element. Finally,
the elements of {x € 1Binit | not Cup(x)} enjoy ascendible paths by Remark [11
Hence, the elements are visited, because every ascendible path is of finite length
in finite P, and the lengths of shortest ascendible paths form a sequence given
each prefix is itself a shortest ascendible path.

The path-length properties of breadth-first traversal are of little relevance
to order theory. Hence, Traverse-Up-Breadth-First has limited application,
especially given the properties of depth-first and topological traversal detailed in
Secs. and [Z.3l However, the algorithm exemplifies an approach to sequencing
operations that will be the subject of further analysis.
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Traverse-Up-Depth-First (P, Sinit, Prune, Post)
cl: let Svisited C P — @
02: for all Zinit € Sinit
c3: if Zinit & Svisitea and not Prune(P, Tinit)
c4: Traverse-Up-Depth-First-Visit (P, Zinit, Prune, Post)

Traverse-Up-Depth-First-Visit (P, z, Prune, Post)
D1: for all v € over(P, )
D2: if v & Svisitea and not Prune(P,v)
D3: Traverse-Up-Depth-First-Visit (P, v, Prune, Post)
D4: Post(P,x)
D5: Svisited — Svisitedu{x}

Fig. 3. Perform an upwards depth-first traversal of poset P from Sinit C P. The traver-
sal is pruned of elements for which Prune is true, and Post is applied to unpruned
elements during post-order visits.

Two properties of the breadth-first traversal algorithm are of interest. First,
breadth-first traversal processes elements in a sequence of subsets that partition
the visited elements. While the subsets have no special order theoretic property,
the idea has a natural extension in topological traversal, where the subsets are
antichains. Second, breadth-first traversal is immediate in its processing of cov-
ering elements. By comparison, depth-first traversal visits an element only after
visiting all greater elements. Thus, breadth first traversal is suggestive of lazy
search, where boundaries are computed on demand.

2.2 Depth-First Traversal in Posets

The depth-first traversal of a poset extends the current path from the initial
element wherever possible. Namely, it deepens the search first. In contrast to
breadth-first traversal, it must backtrack to visit all elements reachable from the
initial elements. Therefore, rather than maintain a set representing the boundary,
the algorithm maintains a stack representing the current path.

The principal and well known property of depth-first traversal is that the
post-order visit of a node x occurs only after the post-order visit of all nodes
reachable from x. Thus, the sequence of post-order visits in a downwards depth-
first traversal is a linear extension of the partial order, and the sequence of post-
order visits in an upwards depth-first traversal is a linear extension of the dual of
the partial order. This property is very useful, because it provides an invariant on
the execution of Post that expresses the partial order, namely that every element
greater than the current element has been processed. Fig. [3 defines a procedure
Traverse-Up-Depth-First that implements upwards poset traversal. The dual
procedure Traverse-Up-Depth-First implements downwards poset traversal.

The linear extension property of depth-first traversal is of particular im-
portance to client algorithms. Hence, it is asserted on the execution state of
Traverse-Up-Depth-First, and the execution of Post in particular.



122 A. Burrow

Lemma 1. Let Traverse-Up-Depth-First(P, Sinit, Prune, Post) invoke Fig. [3
where P is a finite poset, Sinit C P, Prune decides an up-condition Cyp,, and
Prune and Post are side effect free in Traverse-Up-Depth-First. Then,

{u € P |z <wuand not Cyp(u)} C {u € P|Post(P,u) is erecuted}
at Post(P, x).

Proof. Let A(x) assert Lemma [Ilis satisfied at Post(P, z). Assume A(v) is true
for all v € over(P,z) : not Cyp(v). Note updates to Syisitea are modeled by set
union given Line Then at Post(P,x)

Syisited 2 U {u € P|v<wuand not Cyp(u)} U{v}

veover(P,z):mnot Cyp (v)

= U {u€ P|v<uand not Cyp(u)}

v€over(P,z)
= Tover(P,z) N {u € P | not Cyp(u)}
={uePlz<u}ln{ue P |notCyp(u)}

because Cyp(v) iff Cyp(u) for all v < u by Definition [ then by distributive
laws and definition of up closure. Hence by mathematical induction because the
assumption agrees with the recursion in Lines DIHD4l O

The next lemma confirms that an upwards depth-first traversal pruned by an
up-condition visits the difference of the up-closure of the initial elements, and
the elements selected by the up-condition. It is proved by showing the inclusion
in both directions of the equation.

Lemma 2. Let Traverse-Up-Depth-First(P, Sinit, Prune, Post) invoke Fig. [3
where P is a finite poset, Sinit C P, Prune decides an up-condition Cyp, and
Prune and Post are side effect free in Traverse-Up-Depth-First.

{z € P | Post(P,z) is executed} = {x € 1Sinit | not Cyup ()}

While depth-first traversal is recommended by its simplicity and order theoretic
properties, a weakness is that the linear extension generated by post-order visits
does not extend to the sequence of pruning tests. However, there are occasions
when the fact that the pruning test is applied to all visited elements and all
elements covering the visited elements is of specific use. In particular, information
that is discovered in failing calls to Prune can be passed to the post order call
to Post.

2.3 Topological Traversal in Posets

Topological traversal is distinguished by order theoretic properties of the se-
quence of visits, and its frugality with respect to element comparison. It also
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Traverse-Up-Topological (P, Ainit, Prune, Pre)
El: let Sinvitea C P «— Up-Closure(P, Ainit)
E2: let Svisited - P — @
E3: let AC P «— {z € Ainis | not Prune(P, z)}
E4: while A #£ ()
E5: forallzc A
E6: Pre(P, z)
ET: Svisited — Svisited U {ZL‘}
ES8: A «— Traverse-Up-Topological-Succ (P, A,Prune)

Traverse-Up-Topological-Succ (P, A, Prune)
Fl: let Aguec CP «— 0
F2: for allz € A
F3: for all v € over (P, x)
F4: if under (P, v) N Sinvited € Svisited and not Prune (P, v)
F5: Aguce —— Aguce U{v}
F6: return Agucc

Fig. 4. Perform an upwards topological traversal of poset P from the antichain Ainiz C
P. The traversal is pruned of elements for which Prune is true, and Pre is applied to
unpruned elements during pre-order visits.

shares properties with both breadth-first and depth-first traversal. Like breadth-
first traversal, it iterates over a sequence of disjoint boundaries; and like depth-
first traversal, it visits elements in a linear extension of the partial order.

Informally, topological traversal can be viewed as a variant of breadth-first
traversal, where the graph theoretic path length property guarantees the or-
der of visits is a linear extension of the partial order. An element =z € P
is a member of the i*" antichain if and only if the length of the longest as-
cendible path from the starting antichain Ajni to x is ¢. Thus, an element
is visited only once all lesser elements have been visited. Fig. El defines a
procedure Traverse-Up-Topological that implements upwards poset traversal.
The dual procedure Traverse-Down-Topological implements downwards poset
traversal.

The initial analysis of Traverse-Up-Topological follows that of Traverse-
Up-Breadth-First. Namely, the boundaries partition the traversal, and bound-
ary membership is decided by the lengths of ascendible paths. Again, note that
preceding values of A partition Syisiteqa by Lines [ESHET, and each subsequent
value of A is disjoint from Syisiteq by Lines [E], and [EIHEGL Then, Lemma [3 as-
serts that an unpruned path of length m, from a minimal element in P to an
element x, guarantees x is visited in the m™ execution of the loop, so long as
no longer ascendible path exists. Namely, elements are visited according to the
length of the longest path from an initial element. It is also shown by induction
on lengths of ascendible paths.

Lemma 3. Let Traverse-Up-Topological(P, A, Prune,Pre) invoke Fig.
where P is a finite poset, Ay € P is an antichain, Prune decides an up-
condition Cyp under topological order, and Prune and Pre are side effect free in
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Traverse-Up-Topological. Then,

z €A, = ( Hzo,z1,...,2Tm) € ascendible(P, Ainit, Cup) :
Tm =2 and m=mn )
and ( Y(xo,Z1,...,%m) € ascendible(P, Ajnit, Cup) :
Tm=2 = m<n )

where A, 1s the value of A after Lines[EJHES have executed n times.

The next lemma states that elements are visited only after all lesser elements
have been visited. The distinction between Lemmata [Tl and [l is that Traverse-
Up-Topological visits elements by iteration over antichains, and begins or-
dering the elements along the initial ascending paths rather than post-order.
This second fact is noted by amending the proposition to assert the ordering at
both Prune(P, x) and Pre(P, z). The result is a direct consequence of Lemma [3]
because if x < y then the longest ascendible path to y is greater than that
to x.

Lemma 4. Let Traverse-Up-Topological(P, A, Prune,Pre) invoke Fig.
where P is a finite poset, Ay € P is an antichain, Prune decides an up-
condition Cyp under topological order, and Prune and Pre are side effect free in
Traverse-Up-Topological. Then,

{u € TAiit | v <z} C{u € 1Ainit | Pre(P, u) is executed}
C {u € TAinit | Prune(P,u) is executed}

at Prune(P, z) and also at Pre(P, x).

The next lemma confirms that an upwards topological traversal pruned by an
up-condition visits the difference of the up-closure of the initial elements, and the
elements selected by the up-condition. However, this result extends to the ele-
ments visited by Prune. Note that the elements in this difference enjoy ascendible
paths by Remark [l Hence, Lemma [3] guarantees the elements are visited.

Lemma 5. Let Traverse-Up-Topological(P, A, Prune,Pre) invoke Fig.
where P is a finite poset, Ay C P is an antichain, Prune decides an up-
condition Cyp under topological order, and Prune and Pre are side effect free in
Traverse-Up-Topological.

{z € P | Pre(P,z) is executed}

= {2 € 1 Ajni | not Cp ()} 3)

{z € P | Prune(P, z) is executed}

= {x € TAinit | not Cyp ()} U tails({z € TAinit | Cup(2)}) @
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Topological traversal is recommended by its frugality with respect to pruning
tests. By Lemma [B] an element is not a candidate for testing until it has been
discovered along a longest ascendible path. The implementation of this condition
in Line [F4] is straightforward — an element 2 € P is not a candidate until it has
been discovered along every incoming edge. This is sound, because all ascendible
paths occur wholly within the unpruned space by Remark [[l Thus, an element
remains untested if a covered element is pruned or remains untested, and thus
failure propagates by indefinite deferral — pruning a single element x € P
ensures that all elements reachable from x are never tested. Consider an upward
poset traversal from A. For breadth-first and depth-first traversals, x € P is
tested if and only if z € A or there exists an incoming edge originating from a
visited element. For topological traversal, x € P is tested if and only if z € A or
every incoming edge originates from a visited element. Hence, it requires fewer
pruning tests.

A further important property concerns the order of pruning tests. Superfi-
cially, both depth-first and topological traversal generate linear extensions of
the partial order or its dual. However, in a topological traversal the pruning
tests also enjoy this ordering, because depth-first traversal recovers the order
in post-order visits while topological traversal recovers the order in pre-order
visits. This has important consequences for algorithms based upon topological
traversal. At x € P in an upwards topological traversal, the pruning of elements
greater than x can be informed by the processing of elements less than x. This
fact plays a key role in many algorithms. Hence, the pruning decision proce-
dure can be granted greater freedom by demanding only that Prune decide an
up-condition under topological order. This phrase denotes a sanction to prove
the correctness of Prune by mathematical induction, so long as the induction is
framed in terms of Lemma M concerning the order of visits.

A potential shortcoming of topological traversal is that it must distinguish
between elements that have not yet been visited, and elements that are outside
of the traversal. It is possible to avoid this issue if we search the poset as a whole.
However, there are instances where the generalisation of topological traversal to
include additional starting sets is important. For example, consider the case
where we have x € P and wish to search for k given z < k. In this case, we can
restrict the search to T {z} rather than search P.

Traverse-Up-Topological naively resolves the problem of distinguishing
between unvisited elements and elements outside of the traversal by first con-
structing T Ajnic. This somewhat negates the advantage that topological traversal
generates the linear extension in pre-order visits. While less naive implementa-
tions clearly depend upon exploitable specifics, it is worth asking whether there
are general considerations impacting on Traverse-Up-Topological.

It is tempting to propose that breadth-first and topological traversals be in-
terleaved. Namely, that a breadth-first traversal operate as a coroutine of a
topological traversal, in much the same way a lexical analyser supports a parser.
However, each step of a breadth-first traversal generates the next rank of short-
est ascendible paths, while the question in Line [E4] is whether there exist any
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undiscovered, ascendible paths. Topological traversal must defer the visit if there
exists an undiscovered, ascendible path. Breadth-first search cannot refute the
existence of ascendible paths until it has exhausted the poset.

We cannot avoid these problems without resorting to sources of informa-
tion outside the traversal. Two possibilities emerge: either we resort to apply-
ing a comparison to determine whether the unvisited elements belong to the
up-closure; or we employ ranking information stored from previous topological
traversals. The first solution annuls the comparison efficiency. The second solu-
tion requires additional mechanisms to keep the longest ascendible path ranking
up to date. Techniques to solve these problems are not considered in this pa-
per, because they do no affect the mathematical properties of the topological
traversal algorithm.

3 Conclusion

In summary, this paper provides a detailed framework within which distinct
classes of poset traversal are subsequently developed. This framework provides
both a detailed sketch of the traversable subsets of a poset, and definitions and
propositions to assist in realising this sketch under distinct types of poset traver-
sal. This allows many problems concerning partial orders to be decomposed into
traversals of the covering relation. Therefore, I conclude by providing examples
that demonstrate the most important techniques to realise an abstract data type
for posets. These cases exemplify the application of the generic poset traversal
algorithms to important poset algorithms, and employ the techniques depicted
in Fig. [l and discussed in Sec. 2l Together Sec. 2 and this list justify the claim
that traversals of the covering relation are a sound and expressive mechanism
for engineering poset algorithms.

Covered and Covering Elements. Topological traversal is well suited to searching
a poset for a match with a key. It also recovers the elements covered by the key in
case no match exists. Dually, downwards topological search recovers the elements
that cover the key. These two sets are required to update the covering relation for
element insertion. Upwards topological search traverses the elements less than
or equal to the key by starting at the minimal elements and pruned elements
that are not less than or equal to the key.

Extremal Upper and Lower Bounds. The computation of extremal upper and
lower bounds by topological traversal exemplifies two important techniques ex-
ploiting the linear extension property of Lemmaldl The first is the recovery of the
extremal elements of the pruned subset, by simply recording elements as they
are pruned. By Lemmall if z € P is pruned then elements greater than z cannot
be visited by Prune, so that Prune is successfully applied to exactly the minimal
elements in {z € P | Cyp(x)}. The second is the propagation of reachability in-
formation during traversal. In the case of reachability information, the ordering
on visited elements allows us to prove, by induction, that each visited element
enjoys complete information about the reachability of its covered elements.
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Element Removal. The first task of element removal is to determine reachability
after erasure. Namely, given (u,v) € under(P, e) x over(P, e), we require an algo-
rithm to determine the existence of an ascendible path from u to v that bypasses
e. One approach is to erase e and adjacent edges, and then test reachability. This
approach is inelegant in that the modified covering relation is inconsistent with
both P\ {e} and P. An alternative is to compute the reachability on the un-
modified poset P by a topological traversal that computes reachability in Prune
given Lemma (] with the exception that Prune discards reachability information
at e. Prune also returns false at an element of over(P,e), because over(P, e) is
an antichain and hence the elements are pairwise unreachable, and returns false
once all elements of over(P, e) have been discovered.

Join and Meet Operator Updates. The family of algorithms associated with the
incremental maintenance of join or meet operators provides excellent examples of
algorithms using depth-first traversal. The technique of representing the binary
join or meet operator of a lattice by a table, and then retrieving the partial order
via the Connecting Lemma is useful for type lattices.

The algorithms are based upon nested depth-first traversals of the lattice.
This is because the join and meet operators are composed of triples, in which
the elements can be distinguished as either operands or results. For example,
the equation x V y = z is represented by a triple (x,y, z) in which  and y are
operands, and z is a result. A lattice traversal enumerates values for a single
element in the triple. By nesting traversals we are able to enumerate values for
a pair of elements. For example, to generate all pairs (z,y) € K x K we traverse
the lattice to enumerate values for x, and for each such value we traverse the
lattice again to enumerate values for y. By careful application of the Connecting
Lemma and judicious use of pruning tests, we can develop traversals restricted
to the triples requiring update.
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Abstract. Real-world applications are often complex systems where
several ways of analysing a given situation can be expressed, depending
on actors’ viewpoints. This paper proposes a semantically sound syntac-
tic extension to Conceptual Graphs, namely Conceptual Graph Assem-
blies (CGAs), that allows the representation of multiple viewpoints on
the same situation. Several reasoning mechanisms, based on the projec-
tion operation, corresponding to different strength levels and adapted
to multi-viewpoints situations are then demonstrated. Several modelling
scenarios are then proposed and our work is put in the context of real
world examples from the agri-food domain.

1 Introduction

Quality control within agri-food chains relies on numerous criteria: nutritional,
functional, sanitary, environmental, economical, etc. The management of food
quality has to reconcile several facets constituted by these criteria. Moreover, the
objectives of quality are based on several actors: technicians, managers, users,
scientists, professional associations, public communities, etc. The importance
attached to the different quality criteria varies according to the considered ac-
tors. These elements lead to the following open research questions: “how to
represent, within a knowledge representation model, these contradictory view-
points?”; “how to take into account, by the reasoning mechanisms, the interests
of the different involved actors?”

The current structure of chains is questioned as for system perenniality, pro-
tection of the environment, public health issues, cost and energy. The actors’
viewpoints are divergent, hence it is necessary to define representational and
reasoning mechanisms able to model and take into account the balance between
viewpoints, and the risks and benefits they imply. Our general objective is the
conception of a decision support tool for the actors of an agri-food chain, in
presence of contradictory viewpoints and priorities.

In this context, as a first step, we built a knowledge-based system able to
represent the different kinds of knowledge needed, initially provided with con-
sistency checking, querying and symbolic simulation mechanisms. Given that
the information sources are both experimental data extracted from the domain
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literature and expert statements, the intuitiveness and proximity to natural lan-
guage of the representation language are essential features. Moreover, the experts
should be able to understand the reasoning on their modelling and to validate
it, thus reasoning should be done directly on the knowledge representation and
feedback intuitive. Finally, a logical semantics is desirable as a foundation for
reasoning and the language should be flexible enough to be easily extended to
new features. For these reasons, conceptual graphs were initially chosen as the
knowledge representation and reasoning language for this specific application.

However, conceptual graphs cannot easily represent different, potentially con-
tradictory viewpoints, and moreover, rigorous mechanisms for reasoning about
this type of knowledge have not been put into place. In this paper we present
a formalism that allows the representation of such contradictory, inconsistent
type of knowledge for this application along with sound and complete syntactic
operation for manipulation.

A simple case of this problem has been addressed by Puder [9] who considered
alternative descriptions for one concept. He built a tree with this concept as a
root node, and used this structure for service trading in the AI-Trader projec.
This work is not sufficient in the context of the agronomy domain where whole
sentences could be debated and argued upon. In [I0], an approach for viewpoint
representation is proposed in the framework of the conceptual graph model,
however it concerns the expression of facets of concepts in an ontology, i.e. the
terminological part of the model (the support), and does not treat the commen-
sal representation of several viewpoints in the assertional knowledge. Another
approach for representing viewpoints in the conceptual graph model is based
on nested graphs. They have been introduced at a descriptive level by Sowa
[12] as a way of representing contexts by structuring knowledge by levels, and
studied in further works such as [7I8]. Typed nestings were introduced by [2],
which allows to specify the relationship (description, explanation, etc.) between
the surrounding vertex and one of its descriptions and thus to explicitly attach
several descriptions to the same vertex. Each description can then be viewed as a
viewpoint, as proposed in [I3] which more specifically focuses on how to associate
specific vocabularies with contexts. A drawback of the nested graph approach
is that it does not allow inter-viewpoint reasoning, such as inter-viewpoint pro-
jection or detection of contradictions between viewpoints. In [5l6] an extension
to Conceptual Graphs was proposed to further address the above mentioned
modelling needs. However, the proposed formalism was lacking in rigorousness
by the fact that the combinatorial structures proposed were not complete with
respect to the proposed semantics [5]. While this problem has been partially
solved in [6] the lack of a concrete practical framework to address the concrete
modelling needs of the agri-domain was still to be addressed.

In this paper we extend this formalism by showing different combinatorial
structures of defining sound and complete viewpoints as well as demonstrating
their applicability for the above mentioned problem in the agronomy domain.
Section [2] presents a motivating example, Section [3] introduces the formalism,

! http://www.puder.org/aitrader/
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Section @ shows how CGAs can be used in conceptual modelling, finally Section [
concludes with some perspectives.

2 DMotivating Example

Conceptual graphs [ITI12] (CGs) are a logical, graph-based approach to knowl-
edge representation that introduce a clear distinction between ontological and
asserted knowledge. More specifically, a Conceptual Graph represents knowl-
edge as a support and an associated bipartite graph. The support encodes the
ontological, background information. It consists of a concept and a relation tax-
onomy along with the markers used to denote instances or generic concepts. The
factual information is depicted as a bipartite graph where one partition class,
the concepts, is represented using square nodes, and the other, the relations, is
represented using ovals. An example of a Conceptual Graph is depicted in the
figure below:

1

‘ Durum wheat product : P1 r/

1

2
@ Lipoxygenase : *

}

1

2

Color : yellow

Fig. 1. Example of a Conceptual Graph

The conceptual graph in this figure states that the durum wheat product
P1 contains a lipoxygenase and carotenoid which is characterised by the yellow
color.

Reasoning with Conceptual Graphs means translating the Conceptual Graph
into FOL (First Order Logic) formulae and employing FOL deduction. Another
method looks at finding a homomorphism (projection) between two graphs
defined on the same support. These two methods have been proven equiva-
lent [TIT2].

However, Conceptual Graphs can only represent static, “snapshot” facts about
the world. Indeed, the support encodes the hierarchies which classify the entities
and relations we need to describe a certain scene, while the bipartite graph
represents that scene. We do not have a proper built-in mechanism to describe
alternative scenes (e.g. as viewed from different / inconsistent view points). An
example of the expressivity needed for this application is depicted in figure 2

In this figure two viewpoints are represented about the information given by
a conceptual graph: the scientist viewpoint (denoted “Sc.”) and the marketing
viewpoint (denoted “Mk.”). The scientist view indicates that the durum wheat
product P1 contains carotenoid characterised by the yellow color, lipoxygenase
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Fig. 2. Multiple viewpoints in the agri-food application

that deletes carotenoid, and peroxydase that generates a brown color which hides
the yellow one. It also indicates that the HT (High Temperature) drying deletes
lipoxygenase and peroxydase and generates a glutinous texture. The marketing
view indicates that the yellow color is wanted by the consumer and that the
glutinous texture is rejected by the consumer.

In this paper we propose a syntactic, semantically sound mechanism for rep-
resenting the expressivity needs mentioned above. Viewpoints are represented
using different combinatorial grouping in the Conceptual Graphs Assemblies
(CGA). Reasoning about viewpoints is done using an extension of the projec-
tion mechanism that respects the combinatorial structure induced by the CGA.
In the following example the query is searched in all of the viewpoints therefore
denoting a consensus.

For example, consider the following simple query composed of a single concept
vertex:

Property : *

Fig. 3. Example of a simple query

The meaning of searching for this query in all of the viewpoints is highlighting
product properties that are of interest for all of them, e.g. in figure 2] for both
scientists and marketing. In the example of figure 2 there are two answers to

this query that appear in all the viewpoints. These answers correspond to the
concept vertices represented in greyed out shade in figure [
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Fig. 4. Answers to the query

3 Formalism

An ordered bipartite graph is a triple which consists of a set of concept nodes,
a set of relation nodes and a set of mappings between the relation nodes and
nonempty finite sequences over concept nodes. An ordered bipartite graph with
just one relation node is called a star graph. We consider a special kind of
subgraphs for our modelling purposes, namely spanned subgraphs. A spanned
subgraph induced by a set of relation nodes consists of the set of relation nodes,
the edges incident with these and the corresponding concept nodes.

Definition 1. (Ordered Bipartite Graph)

A triple G = (Vo, Vg, Ng) is called an ordered bipartite graph if
- Vo and Vg are finite disjoint sets, ( Vg := Vo U VR is the vertices set of G ),
and

-Ng: Vg — ng is a mapping; VC+ is the set of all finite nonempty sequences
over Ve.

Forr € Vg with Ng(r) = c1...ck, dg(r) := k is the degree of r in G and
N&(r) := ¢; is the i-neighbour of r in G. The set of (distinct) neighbours of r
is denoted Ng(r).

The multiset Eq of edges of G is Eq = ({c7 r}c € Vo,r € Vg and 3i such
that N&(r) = c).

We further assume that for each ¢ € Vo there is r € Vg and i € N such that
¢ = N&(r) (G has no isolated vertices).

An ordered bipartite graph G = (Vo, Vg, Ng) with |Vr| = 1 is called a star
graph.
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If G = (Ve, Vg, Ng) is an ordered bipartite graph and A C Vi, the subgraph
spanned by A in G is the graph G[A] := (V2, A, N},), where N}, is the restriction
of NG to A and VA = {c € Vo|3r € A and Ji € N such that c = N}5(r)}.

If A= {r}, then we simply write G[r], which is referred to as the star sub-
graph spanned by r in G. Clearly, the graph G can be expressed as the union
of its star subgraphs: G = U,cv, Glr].

Ordered bipartite graphs are appropriate tools to represent and visualize (di-
rected) hypergraphs. Visually, an ordered bipartite graph G = (Vi, Vg, Ng) can
be represented using boxes for vertices in V-, ovals for vertices in Vi and integer
labelled simple curves (edges) connecting boxes and ovals: if ¢ and r are such
that ¢ = N&(r), then we have an edge with label ¢ connecting the box labelled ¢
to the oval labelled r (the labels of the vertices are depicted outside of the cor-
responding shape, and are used as visual marks only if it is necessary to make
the diagram more clear).

We also need some additional graph theoretical notations. If D = (V| E) is a
DAG (Directed Acyclic Graph), then a source (sink) in D is any node v of D
such that there is no entering (leaving) arc in (from) v.

A hypergraph is a pair H = (V, P(H)), where V is a nonempty finite set (the
vertices set of H), and P(H) is a family of nonempty subsets of V. Each member
P of P(H) is a hyperedge of H.

The next two definitions, following the line of [I], introduce the concepts of
support and Conceptual Graphs. A support is a structure that provides the back-
ground knowledge about the information to be represented in the Conceptual
Graphs. It consists of a concept type hierarchy, a relation type hierarchy, a set of
individual markers that refer to specific concepts and a generic marker, denoted
by *, which refers to an unspecified concept.

Definition 2. (Support)
A support is a 4-tuple S = (T, Tr, T, *) where:

- Tc is a finite partially ordered set (poset), (T, <), of concept types, defining
a type hierarchy (specialization hierarchy: Vx,y € To x < y means that x is a
subtype of y) and which has a greatest element T, the universal type.

- Tr is a finite set of relation types part