
Polyomino-Safe DNA Self-assembly via Block

Replacement

Chris Luhrs�

Stanford University
cluhrs@cs.stanford.edu

Abstract. The standard abstract model for analyzing DNA self-
assembly, aTAM, assumes that single tiles attach one by one to a larger
structure. In practice, tiles may attach to each other forming structures
called polyominoes and then attach to the assembly using bonds from
multiple tiles. Such polyominoes may cause errors in systems designed
with only aTAM in mind. In this paper, we first present a formal defini-
tion of when one tile system is a “block replacement” of another. Then we
present a block replacement scheme for making any system that admits
non-trivial block replacement polyomino-safe. In addition, we present a
smaller block replacement scheme that makes the Chinese Remainder
counter polyomino-safe and prove that the question of whether a system
is polyomino-safe (or other similar properties) is undecidable. Finally,
we show that applying our polyomino-safe system produces self-healing
systems when applied to most self-healing systems.

1 Introduction

Nanotechnology presents obvious and enormous potential. Manipulating objects
on that scale explicitly is infeasible though. As a result, the discipline of nano-
scale self-assembly has arisen as a means to harness nanotechnology’s promise.
In a self-assembly model, small components attach to each other using simple
local rules, producing large complicated shapes. DNA has two properties that
make it a natural tool for self-assembly. First, strands of DNA naturally store
strings of data that can be used to identify themselves. Second, for every strand
of DNA there is a complementary strand that will attach. Thus, DNA provides a
means to generate local rules in which two pieces will want to attach if they have
complimentary strands of DNA. In addition, the lab techniques for manipulation
of DNA are already well-developed because of their many other applications. As
a result of these factors, DNA self-assembly has been used in many nanoscale
applications including as a means to perform computation [1,2], to produce
patterns [3,4], and to produce nano-scale machines [5,6,7,8,9,10].

One particularly well-studied type of DNA self-assembly is the tile model.
Rectangular DNA molecules have been formed that have a piece of single-
stranded DNA on each side [11]. An abstract version of their behavior, the
� Department of Computer Science. Research supported in part by NSF grants

1104592 and 1097249.

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 112–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Polyomino-Safe DNA Self-assembly via Block Replacement 113

asynchronous Tile Assembly Model (aTAM), was introduced by Rothemund and
Winfree [12]. In this model, we think of each molecule as a tile with each of the
strands as a glue. Each glue has an affinity for itself called its strength (which
can be controlled in the lab by changing the length of the strand). In aTAM,
assembly starts from a structure consisting of a single tile called the seed. One
by one, tiles attach to the existing structure under the constraint that a tile
may only attach to the system at a location if its glues that match the struc-
ture at that location exceed the temperature, a parameter of an aTAM system
(corresponding to the actual temperature of the solution in which the assembly
is taking place). Study of aTAM has led to many interesting tile systems such
as counters [13,12,14,15] and systems capable of Turing-universal computation
and producing arbitrary computable shapes [16,3,17].

While aTAM is a valuable tool for analyzing tile systems, it does not perfectly
match behavior in the laboratory. For example, a tile may attach with a strength
lower than the temperature. Such “insufficient attachments” will fall off much
more quickly than attachments at the temperature but can persist if another
nearby attachment locks them in. The experimental rate for such problems is
somewhere between 1% and 10% [18], and a great deal of research has gone into
schemes to minimize the effects of these errors [19,20,21,5,18,22,23]. Another
problem that can occur is a large portion of an assembly may fall off in the
middle of construction. This behavior can cause problems when an assembly
intended to grow in one direction is not designed to grow uniquely from other
directions. Systems resilient to this problem (called self-healing systems) have
been developed for several interesting assembly problems [24,25].

Implicit in most of these error-reduction schemes is the concept of block re-
placement. In block replacement, we start with a tile system that forms some
shape we want but has other undesirable properties such as susceptibility to the
kinds of errors we described above. We then construct a new system by replacing
each tile in the old system by a larger set of tiles. These tiles assemble into a
rectangle that functions like the tile they are replacing in the new scheme, and
at the same time they locally prevent the problems of the original system from
occurring. For example, the block might halt its own formation when an insuffi-
cient attachment occurs giving the error time to fall off before it gets locked into
the assembly [19,20] or be only able to grow in a desired subset of directions [25].
While the inuition is clear, a precise definition of what should be called a block
replacement seems to be absent.

Another assumption aTAM makes is that tiles attach to the existing structure
one by one. In practice, there are large numbers of each tile floating around in
solution and if two tiles have enough attraction between them to attach indepen-
dent of the existing structure they will do so. This new supertile or polyomino
can use the glues from both tiles and may be able to attach to the super-structure
in places where neither tile could attach individually. Such a model of assembly
was first discussed by Aggarwal et al. [15]. In that paper, they propose what
they call the q-tile assembly model, which permits supertiles consisting of q or
fewer tiles. In that paper, polyominoes are seen as a tool to potentially produce

114 C. Luhrs

more efficient tile systems. Similarly, Demaine et al. proposed doing DNA self-
assembly in stages [26]; different sets of tiles would be allowed to assemble in
different test tubes, and then those test tubes would be mixed so that resultant
polyominoes could attach to each other. By doing so, they produced tile systems
that could theoretically produce shapes more efficiently than those in single-
stage self-assembly. Polyominoes are not a strictly positive effect though. aTAM
assumes single tiles attach one by one, but polyominoes may attach using their
shared glues in places none of the individual tiles could attach by themselves. As
a result, the intended assembly may be derailed. Tile systems not prone to such
problems are called polyomino-safe and were first discussed by Winfree [24]. In
his paper, he proposes a 5×5 block replacement scheme that would make a class
of tile systems he calls transformable polyomino-safe. The primary requirement
for a system to be transformable is that each side of a tile is always either used
to attach that tile to the existing assembly or always used as an attachment for
future tiles. While many natural tile systems have this property, not all do. In
particular, any system that wants to be able to regenerate from more than a
single location cannot have this property.

Polyomino tile attachments are not only a possibility, they are frequent enough
that some experiments have depended on them [21]. Thus, we need a way to
produce polyomino-safety in as much generality as possible.

1.1 Our Results

We begin our paper by presenting the definitions of aTAM, its extension for
polyominoes, and block replacement. While there is an intuitive understanding of
what a block replacement scheme should do in the literature, a formal expression
of this intuition is subtle, and we know of no paper giving a rigorous definition.

Then we develop a 6 × 6 (slightly larger than Winfree’s scheme for trans-
formable systems) block replacement scheme that guarantees polyomino-safety.
Our system will work for a class of tile sets we call block admissible. This re-
striction is rather minor as any system failing this requirement not only cannot
have a polyomino-safe block replacement scheme but can have no non-trivial
block replacement scheme whatsoever. We then show that the Chinese remain-
der counter is not polyomino-safe and present a 3 × 1 polyomino-safe block
replacement scheme for it. We also show that determining whether a given tile
system is polyomino-safe is undecidable. The proof is more generally applica-
ble and can be applied to other important properties of a tile system (such as
whether a system is self-healing). Finally, we show that our polyomino-safe block
replacement scheme preserves self-healing for any block admissible self-healing
tile system.

2 Definitions

The tile assembly model was originally developed by Rothemund and Winfree
[12]. Informally, a tile is a square with glues on each side. When the glues of two

Polyomino-Safe DNA Self-assembly via Block Replacement 115

tiles on corresponding sides match the tiles will want to attach. Here, we present
a slightly modified version from the standard.

Formally, let Σ be a set of glues containing a distinguished glue null. Let δ
denote the set of four directions {N, S, E, W}, with the inverse of a direction
defined naturally. Associate each direction with a unit vector vN = (0, 1), vS =
(0,−1), vE = (1, 0), and vW = (−1, 0) respectively. A tile t is defined by its four
glues, one for each direction in δ, denoted σi(t) for each i in δ, drawn from Σ.
We define a tile system as a tuple < T, s, g, τ >. Here, T is a set of tiles, s is a
distinguished seed tile, g is the glue function from Σ × Σ to the non-negative
integers, and τ is the temperature, a positive integer. We assume g(x, y) = 0 for
x �= y (glues only attach to themselves) and that g(null, null) = 0 (null is inert).
The standard aTAM model has s in T , but in this paper we will not include s in
T . This modification may correspond to the seed being much rarer than the rest
of the tiles or the seed being generated by some special unique process. We will
use this assumption to preclude two large polyominoes both of which contain
the seed from interacting with each other.

A configuration for a tile system is a map from Z × Z to T ∪ {s} ∪ {empty}.
Let C and D be two configurations such that C matches D except at (x, y)
where C is empty and D is some tile t ∈ T . t is attachable to C at (x, y) if the
sum of its glue functions with the surrounding tiles is at least the temperature:∑

d∈δ g(σd(t), σd−1C((x, y) + vd)) ≥ τ . If this is the case we write C → D.
Define a sequence (possibly infinite) of configurations {Ci} to be an assembly
sequence if Ci → Ci+1. We say D is derivable from C (denoted C � D) if there
is an assembly sequence beginning at C whose limit is D. The set of reachable
configurations is the set of configurations derivable from the configuration that
is s at (0, 0) and empty elsewhere.

We now define the polyomino Tile Assembly Model (pTAM) to reflect the
possibility of polyominoes interacting during assembly. As in aTAM a tile con-
figuration is a mapping from Z × Z to T ∪ {s} ∪ {empty}. We define the set of
reachable configurations in pTAM recursively as follows. All configurations that
are a tile from T in a single coordinate or s at (0, 0) and empty elsewhere are
reachable. Two configurations C and D are compatible if at least one of them
is empty at each coordinate. For two compatible configurations the composition
is the configuration that takes on C or D’s value wherever one of them is non-
empty and is empty elsewhere. Given two reachable, compatible configurations
their composition is reachable if

∑

(x,y)

∑

d∈δ

g(σdC(x, y), σd−1(D(x, y) + vd) ≥ τ.

In other words, two polyominoes can attach if they overlap nowhere and the sum
of the matching glue strengths everywhere they are adjacent exceeds τ . Since all
single tile configurations are reachable and the attachment function for pTAM
agrees with aTAM in that case, the reachable configurations under aTAM are a
subset of the reachable configurations under pTAM. We say that a tile system
is polyomino-safe if the reachable configurations under aTAM are exactly the

116 C. Luhrs

reachable configurations under pTAM containing s. That is, we allow arbitrarily
complicated polyominoes to form as long as their formation does not alter what
configurations are reachable from the seed.

Many papers add a desired property (for example self-healing or reliable
stochastic assembly) to a tile system by replacing single tiles with blocks of
tiles. The intuition for what such systems should do is very natural, but we
know of no paper that writes out a formal definition of what such a construction
should achieve. We propose a definition of what it means for a system to be a
block replacement of another system here.

For two tile systems X =< T, s, g, τ > and Y =< T ′, s′, g′, τ ′ > a (m, n)-
blowup function φ is a function from T ∪ {s} to (T ′ ∪ {s′})m×n. Let Φ map a
configuration C of X to a configuration Φ(C) of Y produced by saying that the
m × n block of tiles starting at (mx + a, ny + b) (for some fixed offset (a, b)) is
φ(C(x, y)). We say Y is an (m, n)-block replacement of X under φ if:

1. The image of all reachable configurations in X under Φ are reachable in Y .
2. For any reachable configuration D of Y there are configurations D′ in Y and

C reachable in X such that D � D′, D′ = Φ(C), and there is at least one
non-empty square in D in every block corresponding to a non-empty square
of C.

Here, the first constraint says that each reachable configuration of X maps
to a reachable configuration of Y . The second constraint is in some sense an
inverse of the first. It would be too strong a requirement for every reachable
configuration of Y to be the image of a reachable configuration of X . Tiles attach
one by one in Y , but every tile in X corresponds to multiple tiles in Y . Thus,
there must be intermediate configurations that do not correspond perfectly to
any configuration of X . Hence, we allow ourselves to grow a configuration of Y
until it agrees with something in X . Letting Y grow until it could reach any
configuration that matches a configuration of X would be too weak a constraint
though. In the extreme case, Y could grow in some arbitrary fashion so long as
its terminal configurations match those of X . This case would not match our
intuition that Y should have essentially the same growth dynamics as X but
with each tile being replaced by several. We would not want to say one system
emulated another if the second grows in some completely different direction, and
the two systems’s assemblies only converged much later. Thus, our definition
restricts Y to grow to match X only by finishing blocks it had started.

There may be room for variation in the above definition, but our definition
fits with all examples of block replacement we know of in the literature. With
the above definition, it may be the case that two systems work the same way
when starting from the seed but have divergent behavior when starting from
different beginnings. A stronger concept would be a block replacement where if
both systems start out in analagous positions they continue analgously regardless
of whether or not the original positions were reachable from the seed. We define
Y to be a strong block replacement of X if:

Polyomino-Safe DNA Self-assembly via Block Replacement 117

1. The image of all reachable configurations in X are reachable in Y , and for
all configurations C in X , the image of all configurations derivable from C
under Φ are derivable from Φ(C) in Y .

2. For all configurations C in X , for any configuration D such that Φ(C) � D
there are C′ in X and D′ in Y such that C � C′, D � D′, Φ(C′) = D′, and
there is at least one non-empty square in D in every block corresponding to
a non-empty square in C′.

3 Universal Block Replacement for Polyomino Safety

In this section we present a strong (6, 6)-block replacement scheme for polyomino
safety at temperature 2. There are two fundamental barriers to producing such
a scheme that cannot be directly overcome. The first problem is the seed. Re-
gardless of what scheme we use, the whole system must be able to form from
the seed. Thus, any sub-assembly of the system must be a potential polyomino,
so if two sub-assemblies attaching to each other is a potential problem in the
original system there is little we can do to fix it. Our approach to this problem is
to treat the seed as a special tile that only starts assembly and does not appear
in the solution as stated in the definitions. The second problem is that some tile
systems can never have a non-trivial block replacement.

3.1 Block Admissibility

There are essentially two reasons a tile system cannot have a non-trivial (larger
than (1, 1)) block replacement scheme. First, a system can never require a tile
to attach using glues on opposite sides (i.e. north and south, or east and west).
If such an attachment were required no non-trivial block replacement scheme
would be possible. Consider a situation in the original tile system where a tile
will attach using its north and south glues. In any block replacement longer than
1 in this dimension, there is no single tile where there is enough information to
determine if this tile should attach: the first tile that attaches in this block must
attach using either only the north or only the south face, which would be an
error if the other side is not present.

The second problem is when two different tiles might be able to attach at
the same location but using glues from different sides (e.g one tile could attach
using its north and east glues while another tile could attach using its north
and west glues). In the original system either one tile or the other would attach
first, locking the other tile out. In a block replacement, this process would not
be atomic. The first tile for one of the blocks can start attaching on one side or
corner while tiles for the other block start attaching somewhere else. The result
is that neither of the blocks can form completely, breaking block replacement.

Because no system having either of these two properties can have a meaningful
block replacement we call systems where tiles never attach using opposite glues
and never allow two different tiles to simultaneously be able to attach at the
same location block admissible.

118 C. Luhrs

Definition 1. A tile system is block admissible if:

1. No tile can ever attach in a way that requires both its north and south glues
or its east and west glues.

2. It is never possible for two tiles to attach at the same location using glues
from different directions.

In fact, block admissibility is a sufficient condition for polyomino-safe block
replacement.

3.2 The Polyomino-Safe Block Replacement Scheme

The workhorse of our construction is the 6×6 block presented in figure 1(a). All
glues are unique in the interior of a block. On a face of a block, the glues match
the glues on the face of another block if and only if those two faces had the same
glue in the original system. If the glue in the original system was strength 1 all
glues on the face are strength 1. If it was strength 2, we also make the glue on
the third tile strength 2. If the tile was inert we make all the glues strength 0.
The block has two useful properties. First, the whole block can form from any
complete (non-inert) face and a single tile attached to that face. Second, it is
easy to check that the system has no polyominoes larger than size 2 (this even
applies for the polyominoes that cross blocks using the strength 2 glues on faces
between blocks), and none of these polyominoes have two faces on the exterior
of the block. Because the seed block will have no face to grow from, we must use
a different construction for the block corresponding to the seed, which we show
in figure 1(b). The full block can assemble if the seed tile s is present, but no
polyomino of size larger than 2 can assemble otherwise. We handle the glues on
the faces as we did previously.

Theorem 1. The system described above is a polyomino-safe strong (6, 6)-block
replacement scheme for any block admissable tile system.

Proof. Call the original system X and the system produced by our transfor-
mation Y . We first verify that Y is a strong block replacement scheme for X .
Given only the seed tile of our block replacement scheme the whole seed block
can form, so the image of the seed tile is reachable. Thus, we may start with a
configuration of X and its image in Y , and proceed by induction on the length
of the assembly sequence. Consider an assembly sequence in X , and assume the
image of the kth configuration is derivable. Consider the (k + 1)th tile attach-
ment and the image of the location where it would attach in Y . The entire faces
corresponding to whatever tiles it used to attach are present. It either attached
using a single strength 2 glue or two strength 1 glues. If it used a strength 2
glue in X the face it used has a strength 2 glue in Y , so a first tile of the block
can attach and the rest of the block can attach using that face. Similarly, if two
strength 1 glues were used in X then a first tile in that block can attach at
the corner between the two faces and either face is sufficient for the rest of the

Polyomino-Safe DNA Self-assembly via Block Replacement 119

S

Fig. 1. (a) The basic structure for the polyomino-safe block replacement scheme where
the original block had strength 2 glues in the south and west and strength 1 glues in
the north and west. (b) The block corresponding to the seed in our replacement scheme
with the seed of the new system labelled s here. Two lines indicate strength 2 glues,
and all other glues are strength 1.

block to attach. Thus, the images of all configurations derivable from a config-
uration in X are derivable from its image in Y , and the images of all reachable
configurations are reachable.

The second part of the block replacement definition can be broken into two
pieces; first, we show that no erroneous tile (a tile that precludes the assembly
from being extended to the image of some derivable configuration) can ever at-
tach, and then we show that we can complete any assembly to be the image of
a derivable configuration without introducing new blocks. For the first, consider
the first time an erroneous tile attaches. All glues internal to blocks are unique
in the assembly, so the error must occur on the border of some block. All tiles
currently in the configuration are correct, so the error tile must attach using only
the faces of valid blocks. But then the tile must either use a strength 2 glue from
a face corresponding to a strength 2 tile in X or two strength 1 glues from faces
corresponding to strength 1 glues. In either case, the tile must be part of a block
corresponding to a tile that could have attached in that location in X . Also, since
there is only one place for the first tile of a block to attach given the sides it at-
taches from, this tile cannot be erroneous because it does not match tiles that have
already attached in the block. For the second part, a tile can only attach if a tile in
its block is already present or using glues from other blocks whose preimage tiles
would allow its preimage tile to attach. Thus, any assembly sequence in Y induces
an assembly sequence in X by adding a tile in the original system the first time a
tile from its block attaches. We can then extend our configuration by completing
blocks one by one in this assembly sequence’s order. The result is the image of the
final configuration in the assembly sequence of the original system, and no tiles
from outside blocks that already had a tile were needed.

120 C. Luhrs

We finally are ready to establish polyomino safety. By inspection, there are
no polyominoes larger than two tiles that do not contain the seed. Thus, it is
sufficient to show none of these dominoes can attach to the assembly in an er-
roneous location. Consider the first error generated by a polyomino attachment.
Since all glues internal to a block are unique a polyomino must still attach at
the appropriate coordinates in a block. The error cannot attach using glues from
any tiles in the same block because all previous tiles are correct, and if one tile
in a block is correct completing the rest of the block must also be correct. Thus,
the only way a first error could occur is if a polyomino is using glues on the
boundary of two blocks. But none of our dominoes has more than one face on
a boundary, so a single tile could attach in those places any time a polyomino
could. Thus, there can be no first polyomino error completing the proof.

3.3 Higher Temperatures

Our construction above can easily be extended to higher temperatures. Regard-
less of the temperature, there are only two ways a tile can attach in a block
admissible system: using a glue with strength equal to the temperature from a
single tile or using the combination of two glues that share a corner. In the first
case, we can put the first attachment in the middle of a face of our block replace-
ment. In the second case, the block must start assembling at the corner. Given
a tile t in a system of temperature τ we can provide a (6, 6)-block replacement
as follows:

1. For all directions with glue strength at least τ place a strength τ glue on the
outer face of the third tile on that face.

2. For all directions with glue strength s less than τ place a strength s glue on
the first and sixth tiles of that face.

3. Place a strength τ glue everywhere the temperature 2 polyomino-safe block
replacement scheme had a strength 2 glue in the interior of the block.

4. Place a strength � τ
2 � everywhere the temperature 2 polyomino-safe block

replacement scheme had a strength 1 glue.

Theorem 2. The system described above is a strong polyomino-safe block re-
placement scheme.

Proof. The proof proceeds as above, using the facts that any block can form
completely given one of its tiles and a face, the first tile in a block will only
attach if the preimage of its block could attach in the original system, there
are no polyominoes without the seed of size larger than 2, and none of the
polyominoes has more than one face on a boundary between blocks.

4 Complexity Properties

Ideally, we would like an algorithm to verify if a tile system is polyomino-safe.
Unfortunately the problem is undecidable.

Polyomino-Safe DNA Self-assembly via Block Replacement 121

Theorem 3. Determining if a given tile assembly system is polyomino-safe un-
decidable.

Proof. aTAM is strong enough to emulate a Turing machine by producing the
entire tape after each step [3]. Take a polyomino-safe implementation of a uni-
versal Turing machine, and add a structure that is not polyomino-safe that only
attaches to a specific state tile. Determining whether a Turing machine will
reach this state is undecidable, so determining if a polyomino-safety violation
can occur is undeciable as well.

The problem is still undecidable even given a finite final structure because the
potential problem can be produced by a Turing machine that is not part of
the normal assembly and assembles as a polyomino. Note that there is nothing
special about polyomino-safety in the above proof: it would apply to any property
of an assembly system that is only present if a certain tile attaches. In particular:

Theorem 4. Deterimining if a given tile assembly system is self-healing from
a given configuration is undecidable.

5 Polyomino Safety in Existing Systems

Many existing systems are already polyomino-safe. For example, consider recti-
linear systems (like the Sierpinski tile system [3]) as shown in figure 2 in which
tiles form an L using strength 2 glues and fill in the L with strength one glues.
Arbitrarily long polyominoes can form from either of the leg tiles. There is never
any place for them to attach inside the system though, so all rectilinear systems
are polyomino-safe. Similarly, a basic binary counter as described in Adleman
et al. [13] can easily be verified as polyomino-safe. Polyomino-safety does not
always come for free though.

a

a

a

a

a

s b bbbb

Fig. 2. The basic rectilinear system in which long strings of the same tile are formed
on the west and east edges from the seed s. The interior is then filled in with strength
1 glues.

122 C. Luhrs

5.1 The Chinese Remainder Counter

Consider the Chinese remainder counter system, described as follows. Let p1,
. . . pn be distinct primes. Column i of the counter consists of tiles ai

1 . . . ai
pi

such
that there is a strength 3 glue between the north face of ai

k and the south face of
ai

k+1 for k from 0 to pi − 1 and a strength 2 glue from the north of ai
pi

to ai
1 as

shown in figure 3. The east and west glues of each tile are strength 1 matching
with the west and east glues on all tiles in the adjacent columns. We take the row
of tiles a1

1 . . . an
1 as our “seed” (a minor modification of the system can allow for

a single-tile seed [25]). At temperature 3 each column can count from 1 to pi by
itself, stalling at transitions from pi to 1. If the column on either side has a tile
in the next row though, it can use the additional strength 1 glue to roll over from
pi to 1 again. Thus, this system will grow until all columns are simultaneously
on the pi to 1 transition, which happens at row

∏
pi. The Chinese remainder

counter is not polyomino-safe. Single-width columns of tiles up to size pi can
form by themselves. As all glues between adjacent columns are the same, such
polyominoes of length 3 or greater may attach at any point to which an adjacent
column has progressed, whether or not that string of tiles is appropriate. Thus,
the Chinese remainder system is unpredictable in the presence of polyominoes.

We could of course use the 6× 6 construction to make the system polyomino-
safe. However, in this particular case we can do much better, using a (1, 3)-block
replacement scheme where we reduce the temperature to 2 and replace each tile
with three tiles as illustrated in figure 4. For tiles between 1 and pi−1 the middle
north and south glues have strength 2, and the glue from pi to 1 has strength
1. We can think of this construction as adding an additional buffer tile on the
left and right of each of the old blocks and then lowering the temperature of the
system to 2 (making north/south glues 2 normally and 1 on the rollover from
pi to 1). The block replacement still permits long chains of tiles to form in the
center of each column. However, these chains can no longer cause problems.

Theorem 5. The tile system described above is a strong polyomino-safe (1, 3)-
block replacement scheme.

Proof. The proof for strong block replacement is very similar to the one in
Theorem 1, and we omit it here. For polyomino-safety, we see by inspection
that the only polyominoes that can form without the seed are chains of middle
blocks such that there are no pi to 1 attachments. Consider a first polyomino

aia1 ap

Fig. 3. The first, ith (1 < i < p), and pth, tiles in a column corresponding to the prime
p. The east and west glues of each tile match the west and east glues of the adjacent
columns.

Polyomino-Safe DNA Self-assembly via Block Replacement 123

Fig. 4. The polyomino-safe (1,3)-block replacement scheme for the Chinese remainder
counter. The middle north (south) glue is strength 1 instead for the step from pi to 1.

error in some assembly sequence. Every tile uniquely determines what the tile
above it and below it is if there is such a tile. In fact, since there are no pi to
1 attachments in these polyominoes we know that if one tile in a polyomino
belongs in the location it attached all the other tiles must also belong where
they attached. But the east and west glues of a middle tile are unique to the
block they are part of, so any attachment using one must put that tile in its
correct place. Similarly, any time a north or south strength 2 glue is used that
tile must also be correct because those glues are sufficient to determine if a tile
should attach in the original system. All that remains is the strength one north
or south glues. However, using the block replacement property if there were a
tile for the north glue to attach to then all blocks below it must have already
started forming, and the polyomino would be correct. Finally, a strength 1 glue
from the south is not sufficient for the polyomino to attach, and the system is
polyomino-safe.

Note that our system reduces the temperature to 2, a desirable property. Normally,
a (1, 2)-block replacement is used to lower the Chinese Remainder counter’s tem-
perature, so our polyomino-safe system represents only a 50% increase in size over
that basis.

6 Self-healing and Block Replacement

Occasionally, a large portion of an assembly can get knocked out of a tile system.
A system is self-healing if it can rebuild itself correctly and completely after such
an event provided one of a set of relatively small pieces is intact. Essentially,
there are two aspects of a system being self-healing. For two configurations C
and D, C 	 D if C is empty everywhere D is empty, and C(x, y) = D(x, y)
whenever C(x, y) is not empty. A tile system is immutable if for all reachable
configurations D, C 	 D and C � E imply D(x, y) = E(x, y) when D(x, y)
and E(x, y) are both not empty. Thus, a system is immutable if whenever a tile
attaches no other tile can take its place if it falls off. A tile system is progressive
for a configuration B if for all reachable D, when B 	 C 	 D there is E such
that C � E and E is not empty wherever D is not empty. Thus, a system is
progressive from B if any tiles that fall off can be recovered as long as B remains.
A system is progressive from a set of configurations B if it is progressive from
all B ∈ B. A system is self-healing from B if it is immutable and progressive
from B. We now prove that a strong block replacement of a self-healing system
is self-healing provided all tiles in a block have unique internal glues.

124 C. Luhrs

Note that an immutable system can never allow two different tiles to be able
to attach in the same location. Thus, a self-healing system is block admissible
if it never uses glues on opposite sides of a tile to attach. Block admissibility is
sufficient to turn a system that is self-healing into a system that is self-healing
and polyomino-safe.

Theorem 6. A strong block replacement of a tile system that is block admissible
and self-healing from B is self-healing from ΦB (the image of B under the block
replacement) if the tiles within a block all have unique glues.

Proof. Let X be the old system and Y be the new system. Progressiveness from
ΦB follows immediately from the ability to imitate any assembly sequence in X
with a sequence in Y . For immutability consider some reachable configuration D
and C 	 D. Consider the first attachment of a tile t to C that does not match D.
This attachment can use no glues within its block because all glues are unique,
and only the one correct tile can use them at any location. If the attachment
uses only glues from outside its block the preimage of t’s block in X must have
been able to attach in that location in X . Then since X is immutable, and any
assembly sequence in Y induces a sequence in X , t must come from the same
block that was present there in D. Since each tile in a block can only attach at
one location in that block t must match the tile in D, and Y is immutable.

In particular, our (6, 6)-block replacement scheme meets the requirements of the
theorem, allowing us to make block admissible self-healing systems polyomino-
safe as well.

7 Open Problems

One potential improvement to our results would be a smaller polyomino-safe
block replacement scheme. It is clear that a 2 × 2 block replacement is too
small, but we have no proof that a 3 × 3 scheme cannot exist. The primary
challenge to creating polyomino-safe block replacements is spreading out the
necessary strength 2 glues, so that they do not allow polyominoes that are too
big to form. A 6×6 scheme allows every strength 2 glue to be isolated from every
other, bounding the polyomino size by 2. It is possible that a smaller polyomino-
safe block replacement exists that allows larger polyominoes to form. Another
worthwhile question is how to address systems that are neither polyomino-safe
nor block admissible.

References

1. Barish, R., Rothemund, P., Winfree, E.: Two computational primitives for algo-
rithmic self-assembly: Copying and counting. Nano Lett. 5, 2586–2592 (2005)

2. Winfree, E., Yang, X., Seeman, N.: Universal computation via self-assembly of
DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA
Based Computers II. DIMACS, vol. 44, pp. 191–213. American Mathematical So-
ciety, Providence (1998)

Polyomino-Safe DNA Self-assembly via Block Replacement 125

3. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Computation and Neural Systems Option (1998)

4. Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature 440,
297–302 (2006)

5. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled
patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 305–
324. Springer, Heidelberg (2006)

6. Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled
molecular machine made of DNA. Nature (406), 605–608 (2000)

7. Shin, J.S., Pierce, N.: A synthetic DNA walker for molecular transport. J. Am.
Chem. Soc. 126, 10834–10835 (2004)

8. Sherman, W., Seeman, N.: A precisely controlled DNA biped walking device. Nano
Letters 4, 1203–1207 (2004)

9. Yin, P., Yan, H., Daniel, X., Turberfield, A., Reif, J.: A unidirectional DNA walker
moving autonomously along a linear track. Angewandte Chemie 43, 4906–4911
(2004)

10. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme that walks processively
and autonomously along a one-dimensional track. Angewandte Chemie 117, 4429–
4432 (2005)

11. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998)

12. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled
squares. In: Symposium on Theory of Computing (STOC), Portland, Oregon,
United States, pp. 459–468. ACM Press, New York (2000)

13. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for
self-assembled squares. In: ACM Symposium on Theory of Computing, pp. 740–748
(2001)

14. Cheng, Q., Goel, A., Moisset, P.: Optimal self-assembly of counters at temperature
two. In: Proceedings of the first Conference on Foundations of nanoscience: self-
assembled architectures and devices (April 2004)

15. Aggarwal, G., Cheng, Q., Goldwasser, M., Kao, M.Y., de Moisset Espanes, P.,
Schweller, R.: Complexities for generalized models of self-assembly. SIAM Journal
on Computing 34, 1493–1515 (2005)

16. Lagoudakis, M., LaBean, T.: 2-D DNA self-assembly for satisfiability. In: Winfree,
E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS, vol. 54, pp. 141–154.
American Mathematical Society, Providence (2000)

17. Baryshnikov, Y., Coffman, E., Momcilovic, P.: DNA-based computation times. In:
Proceedings of the Tenth International Meeting on DNA Based Computers, Milano,
Italy (June 2004)

18. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error-correction for algorithmic
self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–
144. Springer, Heidelberg (2004)

19. Chen, H., Goel, A.: Error free self-assembly using error prone tiles. In: [27], pp.
62–75

20. Reif, J., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling as-
semblies. In: [27], pp. 293–307

21. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic
self-assembly. In: [27], pp. 319–328 (Extended abstract; preprint of the full paper
is cond.mat/0607317 on arXiv.org)

126 C. Luhrs

22. Chen, H., Cheng, Q., Goel, A., Huang, M., Moisset, P.: Invadable self-assembly:
Combining robustness with efficiency. In: ACM-SIAM Symposium on Discrete Al-
gorithms (SODA) (2004)

23. Chen, H., Goel, A., Luhrs, C.: Dimension augmentation and combinatorial cri-
teria for efficient error-resistant DNA self-assembly. In: Symposium on Discrete
Algorithms (2008)

24. Winfree, E.: Self-healing tile sets. Nanotechnology: Science and Computation, 55–
78 (2006)

25. Chen, H., Goel, A., Luhrs, C., Winfree, E.: Self-assembling tile systems that heal
from small fragments. In: DNA 13 (2007)

26. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: Nanomanufacture of arbitrary shapes
with O(1) glues. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp.
1–14. Springer, Heidelberg (2008)

27. Ferretti, C., Mauri, G., Zandron, C. (eds.): DNA 2004. LNCS, vol. 3384. Springer,
Heidelberg (2005)

	Polyomino-Safe DNA Self-assembly via Block Replacement
	Introduction
	Our Results

	Definitions
	Universal Block Replacement for Polyomino Safety
	Block Admissibility
	The Polyomino-Safe Block Replacement Scheme
	Higher Temperatures

	Complexity Properties
	Polyomino Safety in Existing Systems
	The Chinese Remainder Counter

	Self-healing and Block Replacement
	Open Problems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

