

Lecture Notes in Computer Science 5347
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ashish Goel Friedrich C. Simmel
Petr Sosík (Eds.)

DNA Computing

14th International Meeting
on DNA Computing, DNA14
Prague, Czech Republic, June 2-9, 2008
Revised Selected Papers

13

Volume Editors

Ashish Goel
Management Science and Engineering,
and Computer Science, Terman 311
Stanford University
Stanford, CA, USA
E-mail: ashishg@stanford.edu

Friedrich C. Simmel
Physics Department
TU Munich
Garching, Germany
E-mail: simmel@ph.tum.de

Petr Sosík
Institute of Computer Science
Faculty of Philosophy and Science
Silesian University
Opava, Czech Republic
E-mail: petr.sosik@fpf.slu.cz

Library of Congress Control Number: 2009936573

CR Subject Classification (1998): F.1, I.2.9, I.2.11, F.2.2, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-03075-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03075-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12625284 06/3180 5 4 3 2 1 0

Preface

The 14th international meeting on DNA computation took place in the Czech
Republic in Prague, June 2–9, 2008. During the last 14 years the DNA Com-
puting meetings have been the key forum at the boundary between computer
science, biochemistry and nanotechnology where the most recent results have
been presented and their authors have met. Their scientific program includes
mathematical foundations and theoretical study of DNA computing – or bio-
computing in general – and recent experimental results in DNA nanotechnology,
nanoscience and nanocomputing. It continues to be one of the most exciting
interdisciplinary meetings, as exemplified by the diverse nature of contributions
in this volume.

The meeting began with tutorial talks by Friedrich Simmel (“Molecular Bi-
ology for Computer Scientists”), Nadrian Seeman (“Structural DNA Nanotech-
nology”), and Yasubumi Sakakibara (“Formal Grammars for DNA Computa-
tion and Bioinformatics”). During the meeting, a number of excellent keynote
speakers gave an up-to-date overview of different aspects of DNA computing
and biochemical information processing. Luca Cardelli talked about “Molecules
as Automata,” while Niles Pierce gave an exciting talk entitled “Molecular
Choreography—ProgrammingNucleic Acid Self-Assembly and Disassembly Path-
ways.” In a more biological talk, Laura Landweber discussed “RNA-Guided, Epi-
genetic Programming and Re-programming of Genomic Information in Ciliates,”
and Ming Li gave an overview of “Modern Homology Search.”

The meeting was concluded by a Nanoday with beautiful presentations by
Christof Niemeyer, Kurt Gothelf, Andrew Ellington and David Pine.

In total, the meeting was attended by 85 researchers from 14 countries from
Asia, North America and Europe. The DNA14 Program Committee received a
total number of 59 submissions, of which 25 were presented orally. Their topics
included theoretical models of biomolecular computing, demonstrations of bio-
molecular computing processes, self-assembly systems, DNA nanostructures and
nanomachines, biotechnological and other applications of DNA computing and
other related themes. This proceedings volume contains improved versions of 15
papers selected from these oral contributions.

We wish to express out gratitude to the members of the Program Committee,
the local organizers, the sponsor – Silesian University in Opava – and the Steering
Committee who made DNA14 a great success.

November 2008 Ashish Goel
Friedrich Simmel

Petr Sośık

Organization

Program Committee

Ashish Goel (Co-chair) Stanford University, USA
Friedrich Simmel (Co-chair) Technical University Munich, Germany
Martyn Amos Manchester Metropolitan University, UK
Alessandra Carbone Pierre et Marie Curie, France
Ho-Lin Chen Stanford University, USA
Mark Daley University of Western Ontario, Canada
Russell Deaton University of Arkansas, USA
Rudolf Freund Technical University of Vienna, Austria
Hendrik Jan Hoogeboom Leiden University, The Netherlands
Jozef Kelemen Silesian University, Czech Republic
Thomas LaBean Duke University, USA
Maurice Margenstern University of Metz, France
Yongli Mi Hong Kong University of Science and

Technology, Hong Kong
Satoshi Murata Tokyo Instute of Technology, Japan
Mitsunori Ogihara University of Rochester, USA
Ion Petre University of Turku, Finland
John A. Rose Ritsumeikan APU, Japan
Yasubumi Sakakibara Keio University, Japan
Lloyd Smith University of Wisconsin-Madison, USA
David Soloveichik California Institute of Technology, USA
Petr Sośık Silesian University in Opava, Czech Republic
Andrew Turberfield Oxford University, UK
Reidun Twarock University of York, UK
Ron Weiss Princeton University, USA
Bernard Yurke Boise State University, USA
Byoung-Tak Zhang Seoul National University, Korea

Steering Committee

Lila Kari (Chair) University of Western Ontario, Canada
Leonard Adleman University of Southern California, USA

(honorary member)
Anne Condon University of British Columbia, Canada
Masami Hagiya University of Tokyo, Japan
Natasha Jonoska University of Southern Florida, USA
Chengde Mao Purdue University, USA
Giancarlo Mauri University of Milan-Bicocca, Italy
Satoshi Murata Tokyo Instute of Technology, Japan

VIII Organization

Gheorghe Paun Romanian Academy, Bucharest and Seville
University, Spain

John Reif Duke University, USA
Grzegorz Rozenberg University of Leiden, The Netherlands
Nadrian Seeman New York University, USA
Andrew Tuberfield Oxford University, UK
Erik Winfree California Institute of Technology, USA

Local Organizing Committee - Prague

Petr Sośık (chair) Silesian University in Opava, Czech Republic
Michaela Ačová Silesian University in Opava, Czech Republic
Ludek Cienciala Silesian University in Opava, Czech Republic
Lucie Ciencialová Silesian University in Opava, Czech Republic
Magdalena Chmelařová Silesian University in Opava, Czech Republic
Alica Kelemenová Silesian University in Opava, Czech Republic
Sarka Vavrečková Silesian University in Opava, Czech Republic
Milena Zeithamlová Action M Agency, Czech Republic

Sponsors

Silesian University in Opava

Table of Contents

Experimental Validation of Signal Dependent Operation in Whiplash
PCR . 1

Ken Komiya, Masayuki Yamamura, and John A. Rose

Towards DNA Comparator: The Machine That Compares DNA
Concentrations . 11

Fumiaki Tanaka, Takashi Tsuda, and Masami Hagiya

Construction of Photon-Fueled DNA Nanomachines by Tethering
Azobenzenes as Engines . 21

Xingguo Liang, Hidenori Nishioka, Nobutaka Takenaka, and
Hiroyuki Asanuma

Operon Structure Optimization by Random Self-assembly 33
Yusuke Nakagawa, Katsuyuki Yugi, Kenji Tsuge, Mitsuhiro Itaya,
Hiroshi Yanagawa, and Yasubumi Sakakibara

Isothermal Reactivating Whiplash PCR for Locally Programmable
Molecular Computation . 41

John H. Reif and Urmi Majumder

DNA as a Universal Substrate for Chemical Kinetics
(Extended Abstract) . 57

David Soloveichik, Georg Seelig, and Erik Winfree

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits
(Extended Abstract) . 70

Lulu Qian and Erik Winfree

Tiamat: A Three-Dimensional Editing Tool for Complex DNA
Structures . 90

Sean Williams, Kyle Lund, Chenxiang Lin, Peter Wonka,
Stuart Lindsay, and Hao Yan

Connecting the Dots: Molecular Machinery for Distributed Robotics 102
Yuriy Brun and Dustin Reishus

Polyomino-Safe DNA Self-assembly via Block Replacement 112
Chris Luhrs

Robust Self-assembly of Graphs . 127
Stanislav Angelov, Sanjeev Khanna, and Mirkó Visontai

Time Optimal Self-assembly for 2D and 3D Shapes: The Case of
Squares and Cubes . 144

Florent Becker, Éric Rémila, and Nicolas Schabanel

X Table of Contents

Self-assembly of Discrete Self-similar Fractals (Extended Abstract) 156
Matthew J. Patitz and Scott M. Summers

Speeding Up Local-Search Type Algorithms for Designing DNA
Sequences under Thermodynamical Constraints . 168

Suguru Kawashimo, Yen Kaow Ng, Hirotaka Ono,
Kunihiko Sadakane, and Masafumi Yamashita

Sequentiality Induced by Spike Number in SNP Systems 179
Oscar H. Ibarra, Andrei Păun, and Alfonso Rodŕıguez-Patón

Author Index . 191

Experimental Validation of Signal Dependent Operation
in Whiplash PCR

Ken Komiya1, Masayuki Yamamura1, and John A. Rose2,�

1 Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate
School of Science and Engineering, Tokyo Institute of Technology

{komiya,my}@dis.titech.ac.jp
2 Institute of Information Communication Technology, Ritsumeikan Asia Pacific University

jarose@apu.ac.jp
http://www.apu.ac.jp/∼jarose/

Abstract. Whiplash PCR (WPCR), which implements self-directed operation,
programmed within a single DNA molecule, is a potential candidate for both math-
ematical and biological applications. However, WPCR-based methods are known
to suffer from a serious efficiency problem called back-hybridization (BH). Pre-
viously, we proposed and partially validated a new rule-protect operation to abol-
ish BH. In this work, we experimentally demonstrate the ability of rule-protect
to drive multi-step WPCR. Successful implementation of isothermal operation at
physiological temperatures is an essential benchmark for biological applications.
We also propose the use of rule-protect for external signalling to control computa-
tional operation. Consequently, signal-dependent self-directed operation, which is
conceptually new to DNA computing, is achieved. The present architecture, pro-
vided with sensing ability, allows a composite system design layering computa-
tional reactions, and would be suitable for functioning as the central processing
unit of this system.

1 Introduction

In early studies in DNA-based computing, the solution to mathematical problems using
pools of DNA molecules for data storage and parallel manipulations was implemented
via human-directed reactions [1]. In particular, a computational program was encoded
by an experimental protocol requiring human intervention. Subsequently, the feasibil-
ity of computations employing DNA molecules to encode both data and instruction sets
was investigated, and DNA hairpin formation was utilized in the solution to a combi-
natorial problem instance for one-time only operation [2]. For successive operations,
the use of restriction enzymes on double-stranded (ds) DNA molecules was proposed
to implement a DNA-based automaton [3], in which a program was encoded by each
reaction mixture involving a set of DNA molecules and enzymes.

In Whiplash PCR (WPCR), successive operations are processed according to data
and a computational program encoded within a single molecule [4]. Successive state

� To whom correspondence should be addressed.

A. Goel, F.C. Simmel, and P. Sosı́k (Eds.): DNA 14, LNCS 5347, pp. 1–10, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 K. Komiya, M. Yamamura, and J.A. Rose

transitions are implemented in parallel by the recursive, self-directed polymerase exten-
sion of a mixture of single-stranded (ss) DNA molecules. In principle, WPCR is a ver-
satile platform for implementing both mathematical and biological applications. With a
library of encoded strands, WPCR has been shown to be capable of solving instances
of a variety of combinatorial problems, including those in NP-complete, uniquely in
a single solution [5,6]. Moreover, WPCR is also theoretically capable of supporting in
vitro evolutionary computation [7,8] and programmable protein evolution [9]. However,
WPCR’s basic process of recursive hybridization and extension is known to suffer from
a serious efficiency problem inherent in the system design, called back-hybridization
(BH) [10]. This effect, which amounts to an unfavorable halting of operation due to the
re-formation of previously-targeted hairpin structures, has been shown to render WPCR
impractical for actual applications.

To realize highly efficient operation, we previously introduced the rule-protect
operation to the WPCR architecture [11]. By adding oligonucleotides for priming poly-
merase extension, a targeted transition rule on each strand is converted into a double-
stranded form, rendering it unavailable. When this operation is applied just after each
state transition, the hybridized hairpin is displaced, so that successive transitions are
performed in a whipping and jacking-up manner, referred to as Displacement Whiplash
PCR (DWPCR). In DWPCR, BH is expected to be abolished by strand displacement
accompanying primer-targeted extension, which simultaneously renders the most re-
cently implemented transition rule unavailable. Note here that, operation timing can be
controlled by primer addition as an external signal for regulation. In addition to the
expected near-ideal efficiency, DWPCR appears to allow isothermal operation at physi-
ological temperatures, and is thus a promising candidate for potential mathematical and
biological applications of WPCR. However, although the essential validity of primer-
targeted strand displacement to abolish a hairpin structure was confirmed in [11], the
feasibility of successive state transitions driven by rule-protect remained unobvious.

In the present work, we demonstrate that a WPCR-based reaction architecture in-
volving the rule-protect operation comprises a highly performable computing system.
As rules may also be deactivated via rule-protect prior to their implementation, this sys-
tem also supports switching operation dependent on primer addition. Our architecture,
provided with sensing ability, allows signal-dependent self-directed operation, a novel
concept in DNA-based computing. The validity of both successive state transitions and
rule switching are established via experiments on model hairpin systems. Such an ar-
chitecture would be suitable for working as a central processing unit to be combined
with a control module, which can release oligonucleotides [12] as information signals.
Thus, a composite system design, layering computational reactions would be achieved.

2 The Rule Protect Operation

The details of the WPCR-based architecture based on rule-protect operation are illus-
trated in Figs. 1 and 2. Successive state transitions are performed, following both a
computational program encoded by a single DNA molecule and a regulatory program
implemented by a series of addition of primers. A set of cyclic reactions are applied
similarly to standard WPCR, with the addition of rule-protect via primer extension, be-
tween rounds. It should also be noted that via rule-protect, the addition of primers can

Experimental Validation of Signal Dependent Operation in Whiplash PCR 3

3'5'

A BB C R2R1

A

AB R1

A

B
A

R1

R1B A

BC R2

BC R2

AB R1

B

B
C

(ii)

A
Initial
state

B

R2

rule block 1 rule block 2

AB R1

A

AB R1

A
R1

(i)

(iv)(iii)

A BB C R2R1

B

BC R2

BC
(vi)(v)

(viii)(vii)

BC R2

BC
R2

a b c

A B C

R2C BR1B A

A BB C R2R1

Probe C

Final
state

(ix)

stopper

Fig. 1. Application of Rule Protect for Displacement Whiplash PCR: Top panel depicts a DNA
strand encoding a DWPCR program for executing the short computational path, a → b → c. After
each of the strand’s two state transitions (boxed processes (i)-(iv), and (v)-(viii)), the computa-
tional process is driven by addition of the corresponding primer. Polymerization then implements
rule-protect, opening the extended hairpin, and exposing the newly-polymerized head. See text
for a detailed description. To aid discussion, a probe for hybridization with sequence C, which
encodes the final computational state is also shown.

4 K. Komiya, M. Yamamura, and J.A. Rose

be used not only to drive the basic WPCR process, but also for external signalling to
control computational operation. For instance, non-deterministically encoded transition
rules on a strand (e.g., two or more encoded rules having the same source state) can be
determined by rule-protection. In this case, non-deterministic hairpin formation is abol-
ished via primer-targeted extension prior to hairpin extension, resulting in external con-
trol at a fork point in the computation, a process here referred to as rule-switch (Fig. 2).
Similarly, single rules may simply be switched off via rule-protect. As a consequence,
the sequences of the input primers can represent input symbols for computation.

For clarity, the reaction architecture is described for a 3-state, 2 step computational
implementation, a → b → c. A ssDNA molecule is encoded by its sequence to imple-
ment a set of transition rules, each of which encodes a transition from computational
state x to state y. If X and X respectively denote the DNA sequence for state x and its
Watson-Crick reverse complement, then the transition rule for executing state transition
x → y is formed by the catenated pair of DNA sequences, 5′ −Y X − 3′. A rule block
is then formed by flanking a sensory sequence at its 3’ side for primer binding. The
completed transition rule region is formed by the concatenation of all transition rule
blocks, separated by stoppers. In Fig. 1, the transition rule region contains rule blocks
for the transitions, a → b and b → c, along with the sensory sequences for primers R1

and R2, respectively. The 3’-most codeword (sequence A in Fig. 1 (top panel)) is the
head, which encodes the initial state of the strand.

Each round of state transition is implemented via a four-step process of (i) hair-
pin formation, (ii) polymerase extension, (iii) primer binding to the sensory sequence,
Ri, and (iv) primer extension accompanied by strand displacement. Step (i): successive
transitions are initiated via intramolecular hybridization of the 3’ head with a comple-
mentary state sequence in the transition rules. Step (ii): the transition directed by the
hybridized rule block is then executed via polymerase extension of the head, which ap-
pends the sequence of the transition target state onto the strand’s 3’ end. Polymerase
extension is terminated automatically when the DNA polymerase molecule encounters
the 5’ end or the transition block’s 5’ stopper, usually implemented by an adenine triplet
sequence (i.e., AAA), combined with the absence of dTTP in the buffer. Step (iii): de-
naturation of the newly-extended hairpin structure is prompted by primer binding to
the sensory sequence in the hybridized rule block. Step (iv): given use of a DNA poly-
merase with strand-displacement activity, the hairpin structure is eliminated via poly-
merase extension of the primer, accompanied by conversion of the targeted rule block
to the double-stranded form. The strand is then ready for the next round of hairpin
formation and extension (process b → c). This architecture provides a critical improve-
ment for WPCR by abolishing BH. All processes are expected to be performed at high
efficiency.

3 Materials and Methods

The feasibility of high-efficiency state transitions rests upon that of the rule-protect op-
eration, which employs primer-triggered opening of a BH hairpin structure via strand
displacement by DNA polymerase. We investigated the proposed operation in a pair
of model experiments: (1) in a single transition, followed by primer-triggered hairpin

Experimental Validation of Signal Dependent Operation in Whiplash PCR 5

3'5'
A BB C R2-1R1

A

R2-2D B

A

Initial
state

D

rule block 1 rule block 2

R2-1C B

B BC D R2-2R2-1

b

c

d

R 2-1

AB R 1 A

BD R2-2 BD R2-2

B B
D R2-2

(v) (vi)

BD R2-2

rule block 2

a

BC R 2-1

B

BC R2-1 BC R2-1

5' 5'

R1B A

AB R1

Final
state

AB R 1

A
B

A
R 1

(ii) (iii)R2-1C B

BC R 2-1

A B

R2-1C B

B BC D R2-2R2-1

R1B A

AB R1

Rule-Switch

'

R2-1

R2-2

(i)

R2-1C B

BC R 2-1AB R 1

(iv)

Fig. 2. Application of Rule Protect for Rule Switch: The rule-protect operation may be applied
during computation, as an external signal to switch between the rules, b → c and b → d. As
shown, the selection of rule 2’ (b → d) over rule 2 (b → c) is implemented by the addition and
extension of primer R2−1 prior to the first state transition, which implements rule-protect at rule
block 2 in advance. Here, each DWPCR transition is shown in blue boxes for clarity. Note that
selection of rule 2 would be implemented by addition of primer R2−2 (not shown); both rules
could likewise be switched off via the addition of both primers.

6 K. Komiya, M. Yamamura, and J.A. Rose

opening to prompt the formation of next target hairpin, and (2) in two successive transi-
tions, followed by probing according to the final state. The feasibility of switching off a
rule via rule-protect is also examined in the latter experiment. Results were analyzed by
polyacrylamide gel electrophoresis (PAGE) with fluorophore-modified primers for fine
discrimination of reaction products. The state and primer sequences used in the experi-
ment are as follows (5’ to 3’): A: CCGGTTCTTCGTCTT; B: TGCTTGTGTGTTGCG;
C: TCTCTCGTGTTTCGG; R1: CCCTGTGTCTGTTCT; and, R2: GCTGTTGGTTC-
CTGT. All DNA strands were purchased from Sigma Genosys, excluding the template
for two successive transitions, which was from Nippon EGT.

3.1 Single State Transition

A series of polymerization steps, as essential processes for DWPCR was performed
with a 78 nucleotide (nt) template strand (shown in Fig. 3 (A)), with the sequences
given above, and a primer, R1 which was 5’-labeled with the fluorophore, Cy5. The re-
action mixture was prepared to become, after the addition of the primer, a 25-µl solution
of 1x Thermo Pol buffer (20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl, 2 mM
MgSO4, and 0.1% Triton X-100 (pH 8.8 @ 25◦C)), containing 5 pmol template strand,
50 nmol dATP, dCTP, dGTP and 2.4 units of Bst DNA Polymerase (New England Bio-
Labs). For the unreacted control (Fig. 3 (A) (i)), DNA polymerase was not added. The
reaction was halted at step (ii) or (v) by Phenol-Chloroform-Isoamylalcohol (Pheno-
Chlo) treatment. Hairpin extension (Fig. 3 (A) (ii)) was performed by an incubation at
37◦C for 15 min on a ND-M01 heat block (Nissen). Afterwards, 7 pmol Cy5-modified
R1 was added to the mixture and again incubated at 37◦C for 15 min. For the primer-
hybridized intermediate (Fig. 3 (A) (iii)), 0.7 pmol Cy5-modified R1 was added to the
Pheno-Chlo-treated aliquot of 2.5 µl from step (ii). Samples were then run on a 8%
(w/v) polyacrylamide gel (mono:bis = 29:1), each 0.5 pmol template in the respective
lane, along with 20 bp DNA ladder (Takara Bio). The resulting gel images were ob-
tained by a fluoro-image analyzer FLA-5100 (Fujifilm) upon laser excitation at 635 nm
along with detection through the LPR filter (Fujifilm) before DNA staining, and after
staining with SYBR Gold (Invitrogen) upon laser excitations at 635, 532, and 473 nm,
along with detections through the LPR, LPG, and BPB filters, respectively.

3.2 Two Successive State Transitions, Probing and Switching-Off a Rule

For the complete validation of DWPCR, the feasibility of multi-round state transitions
was investigated with an 111 nt template strand (Fig. 1 (top panel)) and primers R1

and R2, which were 5’ labeled with fluorophores, Cy5 and TAMRA, respectively. The
reaction mixture was prepared to become, after the additions of the primers and probe,
a 50-µl solution of 1x Thermo Pol buffer, containing 5 pmol template strand, 100 nmol
dATP, dCTP, dGTP and 1.6 units of Bst DNA Polymerase. For the unreacted control
(Fig. 1 (i)), DNA polymerase was not added. Reaction was halted at step (ii), (vi),
or (ix) via Pheno-Chlo treatment. Hairpin extension (Fig. 1 (ii)) was performed by an
incubation at 37◦C for 15 min on a thermal cycler, es gradient S (Eppendorf). Next, 15
pmol of Cy5-modified R1 was added to the mixture, and it was incubated again at 37◦C
for 15 min. Afterwards, 15 pmol of TAMRA-modified R2 was added to this mixture,

Experimental Validation of Signal Dependent Operation in Whiplash PCR 7

which was incubated again at 37◦C for 15 min. For the primer-hybridized intermediates
(Fig. 1 (iii) and (vii)), 0.9 pmol of Cy5-modified R1 or TAMRA-modified R2 was added
to the Pheno-Chlo-treated aliquot of 3 µl from step (ii) or (vi), respectively. For the
validation of probing according to the final state, 0.9 pmol of a probe which was 5’
labeled with the fluorophore, FAM was added to the Pheno-Chlo-treated aliquot of 3
µl from step (ix). PAGE was performed in a manner similar to that described for a
single state transition. The resulting gel images were obtained before and after staining
with SYBR Gold upon laser excitations at 635, 532, and 473 nm, through the LPR,
LPG, and BPB filters, respectively. Another experiment was also performed to validate
the feasibility of switching-off a rule. The reaction protocol is the same as described
above in this section, except for the use of unmodified primers and their additions in an
exchanged order (First, R2; then, R1), to render the rule block 2 in Fig. 1 unavailable for
transition. All samples were subjected to probing with the FAM-labeled probe before
PAGE. The resulting gel image was obtained upon laser excitations at 473 nm, through
the BPB filter.

A

R1B A

B

B

BA BB R1

(v)

100 bp

200 bp

M(i) (ii) (iii) (v) M(i) (ii) (iii) (v)

AB R1

A

B
A

R1

AB R1

(ii)

AB R1

A

AB R1

A
R1

(i)

(iv)(iii)
B

B

(A)

(B)

Fig. 3. DWPCR: Single State Transition (A) Experimental system for a single state transition,
followed by rule-protect, and hairpin formation. (B) PAGE Results. In each panel, lane labels
indicate corresponding reaction steps in (A). Left and right images show gel results prior to, and
after DNA staining, respectively.

8 K. Komiya, M. Yamamura, and J.A. Rose

4 Results

Experimental results for one round of DWPCR are shown in Fig. 3 (B). The left image
illustrates the obtained gel image before staining for identifying the primer-hybridized
strands, shown in pseudo-red color. The right image illustrates that obtained after DNA
staining to show all of the product DNA species, generated by merging three pictures
each shown in pseudo red, green, and blue colors, respectively. In the lanes of the prod-
ucts from steps (i) to (v), as labeled above each image, the reduced mobilities of the
bands lane by lane consistently agreed with the expected increase in the base-paired re-
gion of the reaction products depicted in Fig. 3 (A). The complete shift between bands
indicated the ideally efficient implementation of the series of polymerization steps, in
one round of DWPCR operation.

Experimental results for multiple rounds of DWPCR are shown in Fig. 4. The left and
right images illustrate the obtained gel images before and after staining, respectively,
generated by merging three pictures. In the left image, red bands which appeared in
lanes (iii) and (vi) indicated the product DNA species with hybridized Cy5-labeled R1

primer before and after primer extension, respectively. Likewise, green bands in lanes
(vii) and (ix) indicated those with hybridized TAMRA-labeled R2 primer before and
after primer extension, respectively. Finally, the blue band in lane (ix)+P indicated that
with hybridized FAM-labeled probe, which corresponded to the final 2-step transition
product. In lanes (vi) and after, the appearance of two or more bands indicated that
successive hairpin extension, primer binding and hairpin deformation for the second
round of DWPCR were not performed completely. The appearance of the blue band in
lane (ix)+P and the complete shift of the upward green band to this single blue band
validated the successful implementation of multiple rounds of transition via DWPCR,
and ideally efficient probing according to the final state, respectively.

Fig. 4 shows the reaction products of rule-switch, corresponding to steps (ii) and (iv)
in Fig. 2 with an omission of rule-block 2’ on the strands, along with the products as
controls from steps (vi) and (ix) in Fig. 1. In lane 2-(iv)+P of the left image, disappear-
ance of the single blue band, which appeared in lane 1-(ix)+P, indicated the successful
implementation of rule-switch to abolish the hairpin formation for the second transition
via rule-protect.

5 Discussion

The results presented in this work provide an experimental validation of the fundamen-
tal feasibility of the use of the rule-protect operation to implement both multi-step state
transition and rule-switching. However, the validity of highly efficient multi-step transi-
tion still remains unclear. Incomplete reactions, the occurrence of which was indicated
by the appearance of two or three bands in lanes (vi) and after in Fig. 4, may be at-
tributed to steric hindrance, reducing the efficiency of primer binding, since we did not
insert a sequence for spacing between the rule and head regions. Although the strand-
displacement activity of Bst DNA polymerase at 37◦C was stronger than that of DNA
Polymerase I, Klenow Fragment (unpublished data), which was previously used in [11],
it may not be sufficient for efficient operation. Optimization of reaction conditions along
with quantitative determination of efficiency are deferred to later work.

Experimental Validation of Signal Dependent Operation in Whiplash PCR 9

M M(i) (ii) (iii) (vi)(vii)(ix)
(ix)
+PM M(i) (ii) (iii) (vi)(vii)(ix)

(ix)
+P

100 bp

200 bp

300 bp

Fig. 4. DWPCR: Two Successive State Transitions and Probing (PAGE Results). In each panel,
lane labels indicate corresponding reaction steps in Fig. 1. Left and right images show gel results
prior to, and after DNA staining, respectively. See text for a detailed description.

100 bp

200 bp

300 bp

M
1-
(vi)
+P +P +P+P

1-
(ix)

2-
(ii)

2-
(iv)M

1-
(vi)
+P +P +P+P

1-
(ix)

2-
(ii)

2-
(iv)

Fig. 5. Rule-Switch (PAGE Results). In each panel, lane labels indicate corresponding reaction
steps in Fig. 1 and 2. Left and right images show gel results prior to, and after staining, respectively.

Efficient probing after hairpin deformation via rule-protect was also shown in this
work. Probe binding to the exposed head region allows the extraction of the strands,
which completed the specific transition, out of the reaction mixture containing a pool
of differently encoded strands. This operation is directly applicable to the implementa-
tion of evolutionary computation. In addition, isothermal operation of multiple rounds
of DWPCR at 37◦C seems promising for biological applications. The reaction architec-
ture utilizing DNA polymerase for hairpin deformation allows strand encoding without
constraints, such as length limitation, uniform stability, and so on. These characteris-
tics may enable evolutionary applications to protein evolution [9]. The versatility of the
rule-protect operation is noteworthy. This operation can be applied not only to driving

10 K. Komiya, M. Yamamura, and J.A. Rose

WPCR (i.e., DWPCR), but also to the controlled computation via rule-switch, in which
a pending target rule of interest is deactivated via primer addition as an external signal,
provided either via human manipulation or an output from another computational reac-
tion [12]. The coordinated operation of pools of differently encoded strands according
to external signals would realize a highly performable computing system.

Acknowledgements

Financial support for this work was generously provided by a Grant-in-Aid for Scien-
tific Research B (18300100), from the Ministry of Education, Culture, Sports, Science,
and Technology of Japan.

References

1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266,
1021–1024 (1994)

2. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.:
Molecular computation by dna hairpin formation. Science 288, 1223–1226 (2000)

3. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable
and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)

4. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards parallel evaluation
and learning of boolean µ-formulas with molecules. In: Rubin, H., Wood, D. (eds.) DNA
Based Computers III, pp. 57–72 (2000)

5. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H.,
Hagiya, M.: State transitions by molecules. Biosystems 52, 81–91 (1999)

6. Komiya, K., Sakamoto, K., Kameda, A., Yamamoto, M., Ohuchi, A., Kiga, D., Yokoyama,
S., Hagiya, M.: DNA polymerase programmed with a hairpin DNA incorporates a multiple-
instruction architecture into molecular computing. Biosystems 83, 18–25 (2006)

7. Wood, D.H., Bi, H., Kimbrough, S.O., Wu, D.-J., Chen, J.: DNA starts to learn poker. In:
Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, p. 92. Springer, Heidelberg
(2002)

8. Rose, J.A., Hagiya, M., Deaton, R.J., Suyama, A.: A DNA-based in vitro genetic program.
J. Biol. Phys. 28, 493–498 (2002)

9. Rose, J.A., Takano, M., Hagiya, M., Suyama, A.: A DNA computing-based genetic program
for in vitro protein evolution via constrained pseudomodule shuffling. Journal of Genetic
Programming and Evolvable Machines 4, 139–152 (2003)

10. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: Equilibrium analysis of the efficiency of
an autonomous molecular computer. Phys. Rev. E 65, Article 021910, 1–13 (2002)

11. Rose, J.A., Komiya, K., Yaegashi, S., Hagiya, M.: Displacement whiplash PCR: Optimized
architecture and experimental validation. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS,
vol. 4287, pp. 393–403. Springer, Heidelberg (2006)

12. Seelig, G., Soloveichik, D., Zhang, D., Winfree, E.: Enzyme-free nucleic acid logic circuits.
Science 314, 1585–1588 (2006)

Towards DNA Comparator: The Machine That

Compares DNA Concentrations

Fumiaki Tanaka, Takashi Tsuda, and Masami Hagiya

Graduate School of Information Science and Technology, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

fumiaki@dna-comp.org, tsuda@lyon.is.s.u-tokyo.ac.jp,

hagiya@is.s.u-tokyo.ac.jp

Abstract. A DNA comparator, which compares the concentration of
target strand with that of reference strand, was developed. To extend
the potentiality of autonomous machines consisting of DNA, the DNA
comparator was designed by utilizing a difference of kinetics between
hybridizations and branch migrations. The performance was evaluated
through a fluorescence quenching experiment. As a result, the DNA com-
parator can detect at least four times higher concentration of target
strand compared with that of reference strand. Furthermore, the limita-
tion of this DNA comparator is discussed based on the rate constants
and the ratio of branch migration.

1 Introduction

Nowadays, nucleic acids are utilized as nanoscale building blocks constructing
intended patterns [1][2] and autonomous machines [3][4][5] (For more informa-
tion, please refer to review articles such as [6][7]). In particular, enzyme-free
machines consisting of nucleic acids have been researched energetically. Seelig
et al. succeeded in a construction of some logic gates, AND gate, OR gate, NOT
gate, and Thresholding gate, by utilizing hybridization and branch migration
reactions [4]. This technology is expected to be utilized for the medical diagnosis
and treatment at the DNA level such as a control of gene expressions as proposed
by Benenson et al. [8].

In this paper, to extend the potentiality of autonomous machines made of
nucleic acids, we propose a DNA machine called DNA comparator, which com-
pares the concentration of target strand with that of reference strand and out-
puts single-stranded DNA if the concentration of target is higher than that of
reference. This allows us to control DNA machines based on the concentrations
of DNA rather than whether a DNA exists or not. The purpose of this paper
is to prove the principle of this comparator. To achieve this, the operation of
comparator was investigated through a fluorescence quenching experiment. Fur-
thermore, we discuss the limitation of the comparator based on the reaction rate
constant and ratio of branch migration.

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 11–20, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

12 F. Tanaka, T. Tsuda, and M. Hagiya

2 Materials and Methods

2.1 Sample Preparation

All oligonucleotides were supplied by Sigma-Aldrich Japan and synthesized using
PAGE purification except for those modified with a quencher. Oligonucleotides
with a quencher were synthesized using HPLC purification. Two different kinds
of fluophors, 6-carboxyfluorescein (6-FAM) and Texas Red, were attached to the
5’-end of sequences, while two corresponding quenchers, Black Hole Quencher
1 (BHQ1) and Black Hole Quencher 2 (BHQ2), were attached to the 3’-end of
sequences. All oligonucleotides were first dissolved in 10 mM Tris Buffer with a
pH of 7.4 and then diluted with 20×SSC buffer containing 3 M NaCl and 0.3 M
sodium citrate with a pH of 7.0.

The oligonucleotide concentrations of each sample were determined by
absorbance values at 260 nm using extinction coefficients calculated from the
nucleotides and dinucleoside phosphates based on a nearest-neighbor approxima-
tion [9]. Absorbance values were measured at 90 ◦C to prevent oligonucleotides
from forming secondary structures. Extinction coefficients of FAM, Texas Red,
and BHQs (BHQ 1 and BHQ2) at 260 nm were assumed to be 20,960, 14,400,
8,000 L/(mol cm), respectively.

2.2 DNA Comparator

DNA comparator, which is a DNA machine to compare DNA concentrations,
was developed by utilizing hybridization and branch migration reactions such
as Seelig’s DNA logic gate [4]. The purpose of DNA comparator is to determine
whether the concentration of target strand is higher than that of reference strand.
If the concentration of target is higher, DNA comparator outputs a single-strand,
which may be input strand to the other molecular logic gate.

Our DNA comparator consists of three double-strands and two inputs (see
Figure 1). One of two inputs is a target strand whose concentration is investi-
gated, while the other is a reference strand whose concentration is the standard.
Two of three double-strands have bulge loops in the middle of sequences and
toe-hold structures, which two inputs can hybridize to, at 5’-end of the opposite
sequences. DNA comparator was designed to work as follows: First, two inputs
reference and target hybridize to the toeholds of blg comp1 and blg comp2, re-
spectively. Then, reference and blg comp1 form a double-strand, while target and
blg comp2 also form a double-strand because of the branch migration reaction.
As a result, bulge1 and bulge2 are released as single strands and immediately
form into a double-strand because the loop domains of bulge1 and bulge2 are
complementary to each other. Thus, only the extra amount of bulge2 can hy-
bridize to the toehold of BHQ2-out comp, resulting in the branch migration. As
a result, TRed-output2 is released as the single strand, which can be monitored
by the fluorescent intensity of Texas Red. The key point is that the hybridiza-
tion between bulge1 and bulge2 is much faster than the branch migration be-
tween bulge2 and TRed-output2&BHQ2-out comp. Thus, if the concentration of
bulge2 is lower than that of bulge1, almost all bulge2 probably hybridize to bulge1

DNA Comparator: The Machine That Compares DNA Concentrations 13

Fig. 1. Principle of DNA Comparator

rather than the toehold of BHQ2-out comp. Therefore, only if the concentration
of target is higher than that of reference, bulge2 can hybridize to the toehold of
BHQ2-out comp and remove TRed-output2 from BHQ2-out comp by the branch
migration.

2.3 Kinetic Measurement

The operation of DNA comparator has been checked by the change of fluorescent
intensity at 40 ◦C using F-2500 Fluorescence Spectrophotometer (HITACHI).
The excitation and emission wavelengths for FAM were respectively 494 and 518
nm, while those for Texas Red were respectively 590 and 615 nm.

2.4 Sequence Design

DNA sequences were carefully designed not to hybridize each other except for
complementary sequences. The stabilities of every DNA duplexes were calcu-
lated by the minimum free energies (ΔGmin). The ΔGmin was predicted using
the program obtained by modifying our previous program [10]. Our program
considers intermolecular structures including bulge and internal loops, dangling
ends, and stacking pairs rather than intramolecular structures such as hairpin
loops. In addition, sequences were designed such that the ΔGmin of the toehold
domains fell into a narrow range in order to uniform the efficiency of branch mi-
gration. For the same reason, sequences were also designed such that the ΔGmin

of the duplex domains fell into a narrow range. To prevent the unintended sec-
ondary structure, sequences were further designed such that they did not have
continuous repeats of the same base.

The better sequences were searched according to the above criteria by a hill-
climbing algorithm. Eventually, we chose the best sequences among the 20 trials
(see Table 1). The ΔGmin of any duplexes except for complementaries were at
least -4.65 kcal/mol. The deviation of ΔGmin of the toehold domains was in the
0.15 kcal/mol range, while that of the duplex domains was in the 0.20 kcal/mol
range. Furthermore, obtained sequences had at most three continuous repeats of
the same base.

14 F. Tanaka, T. Tsuda, and M. Hagiya

Table 1. Sequence List

sequence name sequence a (5’ −→ 3’)

reference CCAAACTACTTACGTCTTCTAAGCAACTAACTGATG
bulge1 CCAAACTACTTACGTTGAACATACACCGAGGTTTAGTCCAAACTTCTAAGCAACTAA
blg comp1 CATCAGTTAGTTGCTTAGAAGACGTAAGTAGTTTGG
FAM1-bulge1 b F-CCAAACTACTTACGTTGAACATACACCGAGGTTTAGTCCAAACTTCTAAGCAACTAA

BHQ1-blg comp1 b CATCAGTTAGTTGCTTAGAAGACGTAAGTAGTTTGG-B1

target TATAAGTCAGGTCTCTTTCGTATACCACAATTCCAA
bulge2 TATAAGTCAGGTCTCTTTGGACTAAACCTCGGTGTATGTTCATTTCGTATACCACAA
blg comp2 TTGGAATTGTGGTATACGAAAGAGACCTGACTTATA

TRed-bulge2 b R-TATAAGTCAGGTCTCTTTGGACTAAACCTCGGTGTATGTTCATTTCGTATACCACAA

BHQ2-blg comp2 b TTGGAATTGTGGTATACGAAAGAGACCTGACTTATA-B2
TRed-output2 R-TTTGGACTAAACCTCGGTGTA
BHQ2-out comp2 TGAACATACACCGAGGTTTAGTCCAAA-B2

a The F, R, B1, and B2 at the end of sequences denote FAM, Texas Red, BHQ 1, and BHQ 2, respectively.
b These sequences were used only to estimate the kinetic constants.

2.5 Estimation of Rate Constant

The rate equation can be represented as the following second-order kinetics.

I + OC
k−→ IC + O, (1)

where I, O, and C represent the input strand, output strand, and complemen-
tary strand to input, respectively. Here, “output strand” represents the single
strand produced by branch migration rather than the output of DNA compara-
tor. Furthermore, the initial concentration of I is similar to that of OC:

I0 = OC0, (2)

where I0 and OC0 are the initial concentrations of I and OC, respectively.
Thus, the rate constant of branch migration was estimated using the following

equation:

dO

dt
= k(αI0 − O)(αOC0 − O) (3)

= k(αI0 − O)2, (4)

where the parameter α represents the ratio of completion of branch migration.
Since all inputs do not complete the branch migration, some double-strands with
the toehold probably remain without a branch migration.

Solving the above equation, we obtain the following equation:

O =
(αI0)2kt

1 + αI0kt
. (5)

To convert the concentration into the fluorescent intensity, the above equation
was multiplied by the dF/I0, where the dF is the difference calculated by the
subtracting the fluorescent intensity of quenched state from that of non-quenched
state F0. Therefore, fluorescent intensities as a function t can be estimated by
the following equation:

f(t) = F0 +
dFα2I0kt

1 + αI0kt
. (6)

Finally, the rate constants of branch migration were estimated by fitting the
above equation to the experimental curves using the fit command of gnuplot.

DNA Comparator: The Machine That Compares DNA Concentrations 15

3 Experimental Results

3.1 Reaction Rate Constant

To confirm the elementary reaction steps and compare their kinetics, we first
derived reaction rate constants from the curves of fluorescent intensity versus
the reaction time. The parameters are shown in Table 2, while the fitting results
are shown in Figure 2. The k3 was slower than k1 and k2. This was probably
because the k3 was the rate constant by separating the double-strand without a
bulge, while the k1 and k2 were those by separating double-strands with bulges
in the middle of sequences (see Table 2). Why was the branch migration with a
bulge fast? Once the branch migration progresses at the position of bulge loop,
the branching point never goes back because the complementary sequence is
apart from the branching point. Thus, the branch migration with a bulge in
the middle of sequence was faster than the other without a bulge. This ‘loop
acceleration’ may be useful for the speed-up of branch migration as well as the
DNA catalyst technique [11][5].

On the other hand, the difference of kinetics between k1 and k2 was not
obvious. Although we designed sequences such that both the toehold and double-
helix domains were respectively in the 0.15 kcal/mol and 0.20 kcal/mol ranges,
both the rate constant (k) and ratio of branch migration (α) were significantly
different. This result showed that the kinetics was not obviously determined
by only their thermodynamics. Thus, a design method of sequences to control
kinetics need to be further investigated.

3.2 Validation of DNA Comparator

To validate the function of DNA comparator, we investigated whether a higher
concentration of reference can prevent the branch migration between bulge2
and double-strand consisting of TRed-output2 and BHQ2-out comp2. To achieve
this, we measured the fluorescent intensity change of Texas Red attached to
TRed-output2 at various concentrations of reference. The detailed experimental
procedure was as follows:

1. First, 380 μl of 125 nM TRed-output2 was injected into a micro cell and
then the fluorescent intensity began to be monitored.

2. Second, 10 μl of 5 μM BHQ2-out comp2 was injected into the cell, where the
BHQ2-out comp2 hybridized to the TRed-output2, resulting in the quenching
between TRed and BHQ2.

3. Third, 10 μl mixture of 5 μl of 10 μM double-strand between bulge1 and
blg comp1 and 5 μl of 10 μM double-strand between bulge2 and blg comp2
was injected into the cell.

4. Finally, 10 μl mixture of 5 μl of x μM (x is 0, 1.0, 2.5, 5.0, or 10.0) reference
and 5 μl of 10 μM target, where both inputs triggered the reaction by the
branch migration.

The result is shown in Figure 3. The top graph in this figure shows the
curves of normalized fluorescent intensity versus time (s), while the bottom

16 F. Tanaka, T. Tsuda, and M. Hagiya

Table 2. Reaction Rate Constant

reaction formula a rate ratio of branch

constant b migration c

ref + F-blg1&B1-blg cp1
k1−→ ref &B1-blg cp1 + F-blg1 k1=3.3·105 0.47

target + R-blg2&B2-blg cp2
k2−→ target&B2-blg cp2 + R-blg2 k2=1.3·106 0.36

blg2 + R-out2&B2-out cp2
k3−→ blg2&B2-out cp2 + R-out2 k3=3.0·104 0.66

a Sequence names in reaction formula are slightly modified for simplisity. For example,
‘B1-blg cp1’ represents ‘BHQ1-blg comp1’ in Figure 1 and Table 1.

b This is represented by k in equation 6.
c This is represented by α in equation 6.

one does the curve of normalized fluorescent intensity versus the concentrations
of reference. The fluorescent intensity in the figure was normalized by using
F ′ = (F − Fmin)/(Fmax − Fmin), where F ′ and F were respectively the flu-
orescent intensities after and before the normalization, while Fmin and Fmax

were respectively the fluorescent intensities after and before the quenching. This
figure shows that the reference can interrupt the branch migration by bulge2
because the higher the concentration of reference was, the smaller the fluores-
cent intensity change became. Thus, the comparator worked well as expected.
However, the figure also revealed all reference did not succeed in preventing the
branch migration by bulge2. Even if the concentration of reference was similar
to that of target (at Ct = 10, where Ct is the total concentration, in the bot-
tom graph in Figure 3), some bulge2 produced by target completed the branch
migration with TRed-output2&BHQ2-out comp2. Unfortunately, the branch mi-
gration triggered by target was approximately four times faster than that by
reference (see Table 2). For this reason, the single-stranded bulge2 produced by
target probably completed the branch migration before it was interrupted by the
bulge1 produced by reference.

4 Discussion

4.1 Limitation of Current DNA Comparator

In the previous section, the principle of DNA comparator was proved through a
simple experiment. To evaluate the potential of DNA comparator, however, we
must consider the limitation of comparator. First, we focus on how concentra-
tions of target can be detected by this comparator. The answer of this question
mainly depends on the ratio of branch migration. From the result of Table 2,
the ratio of the concentration of output strand to that of input strand by two-
step branch migration (target → bulge2 → TRed-output2) were approximately
0.24 (= 0.36·0.66). Thus, if the concentration of TRed-output2 is needed for the
detection more than 5 % of concentration of bulge2, the target need to be more
than 20.83 % of concentration of bulge2. Although this limitation is a serious
problem for the application such as medical diagnosis and treatment, the prob-
lem may be reduced by using a DNA machine that amplifies an input DNA such
as the Seelig’s amplifier [12].

DNA Comparator: The Machine That Compares DNA Concentrations 17

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2000 3000 4000 5000

F
lu

or
es

ce
nt

 In
te

ns
ity

T [s]

k = 334539
a = 0.465102
k = 334539
a = 0.465102

measured value
model

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 1000 1500

F
lu

or
es

ce
nt

 In
te

ns
ity

T [s]

k = 1.26495e+06
a = 0.360904

measured value
model

 0

 100

 200

 300

 400

 500

 600

 1500 2000 2500 3000 3500 4000

F
lu

or
es

ce
nt

 In
te

ns
ity

T [s]

k = 30478.3
a = 0.656252

measured value
model

Fig. 2. Fitting Results (From top to bottom, reference → bulge1 ; target → bulge2 ;
bulge2 → output2.)

18 F. Tanaka, T. Tsuda, and M. Hagiya

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000 2500 3000

N
or

m
al

iz
ed

 F
lu

or
es

ce
nt

 In
te

ns
ity

T [s]

ref=0uM
ref=1uM

ref=2.5uM
ref=5uM

ref=10uM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-2 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 F
lu

or
es

ce
nt

 In
te

ns
ity

 C
ha

ng
e

Ct of reference strand

Fig. 3. Result of DNA Comparator

Furthermore, we focus on how difference of concentrations between refer-
ence and target can be detected by the comparator. From the bottom graph in
Figure 3, it is difficult to distinguish between when the concentration of reference

DNA Comparator: The Machine That Compares DNA Concentrations 19

was 5 μM and when that was 10 μM, where the concentration of target was 10
μM. This means that even if the concentration of the target was twice as high
as that of the reference, the comparator probably cannot detect the difference.
In contrast, the difference between 10 μM and 2.5 μM of references could be
detected successfully. Therefore, our DNA comparator can detect at least four
times higher concentration of target compared with that of reference.

4.2 Comparison with Traditional DNA Gates

Seelig et al. proposed the thresholding gate, which releases an output strand
if the concentration of input strand is higher than a threshold value [4]. The
thresholding gate worked well and the function of the gate was similar to DNA
comparator. Compared with the thresholding gate, the advantage of our com-
parator is its scalability. As shown in Figure 4, the current comparator can be
easily extended to the system with two targets, where the comparator releases
output1 or output2 according to whether the concentration of target1 is higher
than target2 or not. Note that both outputs can be utilized as the inputs to
the downstream gates. This means that we can switch the behavior of system
whether the concentration of target1 is higher than that of target2 or not. There-
fore, the DNA comparator will be utilized as the switching device based on the
concentrations of targets.

Fig. 4. Extension of DNA Comparator

5 Conclusions and Future Work

DNA comparator, which compares the concentration of target with that of ref-
erence, was developed by utilizing the hybridization and branch migration reac-
tions. The principle, which utilized the difference of kinetics between hybridization
(fast) and branch migration (slow), was proved from the curves of fluorescent in-
tensity versus time. The experimental results showed that our DNA comparator
can detect at least four times higher concentration of target compared with that

20 F. Tanaka, T. Tsuda, and M. Hagiya

of reference. In future work, we focus on an experimental validation of the limita-
tion of the comparator and extend it to the comparator that releases two different
outputs according to difference of concentrations of two targets.

References

1. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-
ture 440(7082), 297–302 (2006)

2. Erben, C.M., Goodman, R.P., Turberfield, A.J.: Single-molecule protein encapsu-
lation in a rigid DNA cage. Angew. Chem. Int. Ed. Engl. 45(44), 7414–7417 (2006)

3. Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genetic Program-
ming and Evolvable Machines 4, 111–122 (2003)

4. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585–1588 (2006)

5. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

6. Simmel, F.C., Dittmer, W.U.: DNA nanodevices. Small 1(3), 284–299 (2005)
7. Bath, J., Turberfield, A.J.: DNA nanomachines. Nature nanotechnology 2, 275–284

(2007)
8. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molec-

ular computer for logical control of gene expression. Nature 429(6990), 423–429
(2004)

9. Gray, D.M., Hung, S.H., Johnson, K.H.: Absorption and circular dichroism spec-
troscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 246, 19–34
(1995)

10. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid se-
quences for DNA computing based on a thermodynamic approach. Nucleic Acids
Res. 33(3), 903–911 (2005)

11. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills, A.P., Blakey, M.I., Simmel, F.C.:
DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90(11), 118102 (2003)

12. Seelig, G., Yurke, B., Winfree, E.: Catalyzed relaxation of a metastable dna fuel.
J. Am. Chem. Soc. 128(37), 12211–12220 (2006)

A. Goel, F.C. Simmel, and P. Sosík (Eds.): DNA 14, LNCS 5347, pp. 21–32, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Construction of Photon-Fueled DNA Nanomachines by
Tethering Azobenzenes as Engines

Xingguo Liang1, Hidenori Nishioka1, Nobutaka Takenaka1,
and Hiroyuki Asanuma1,2,*

1 Department of Molecular Design and Engineering, Graduate School of Engineering,
Nagoya University, Chikusa, Nagoya 464-8603, Japan

2 Core Reserach for Evolution Science and Technology (CREST), Japan Science and
Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

asanuma@mol.nagoya-u.ac.jp

Abstract. Nanoscale DNA tweezers operated by photo-irradiation were
constructed by using azobenzene-modified DNA as materials. The azobenzenes
that can photoisomerize between trans and cis form were used as the engines to
open and close the tweezers. The work principle is based on the reversible
photoregulation of complementary DNA hybridization. When non-substituted
azobenzene was used, the tweezers were opened after UV light irradiation (330-
350 nm, cis form), and closed after visible light irradiation (440-460 nm, trans
form). More interestingly, the operation reversed when an azobenzene
derivative with a para-isopropyl group was used: UV light irradiation closed
the tweezers and visible light irradiation opened them. As compared with the
oligonucleotide-fueled DNA machines, the nanomachines constructed here
were “environment-friendly” because no dsDNA waste was produced.
Furthermore, the operation can be repeated many times simply by switching the
photo-irradiation without any decrease of the cycling efficiency.

Keywords: DNA nanomachine, azobenzene, photoregulation, hybridization.

1 Introduction

Recently, DNA has been considered to be one of the most promising molecules for
future applications in nanotechnology and molecular computing [1-5]. A variety of
DNA nanomachines such as tweezers, gears, and walkers have been constructed by
intelligent sequence design [6-11]. These molecular machines can perform mechanical
functions such as scission, directional motion and rolling powered by molecular fuels.
Not only satisfying with the scientific curiosity, researchers even have gone further to
develop sensors, molecular transporters, and controlled drug delivery systems by using
these DNA-based nanomachines [7]. However, most of these DNA machines are
fueled with oligonucleotides that hybridize with target sequences and drive the
dynamic structural changes. For repetitive operation, the DNA fuel has to be removed
from the DNA machine by adding another DNA that is completely or partially

* Corresponding author.

22 X.G. Liang et al.

complementary to the fuel [8]. Usually, the operation efficiency decreases gradually
due to the accumulation of the double-stranded DNA waste. For further development
of DNA nanotechnology, this problem is required to overcome.

In this study, we developed DNA tweezers powered by light irradiation based on our
previously reported technique of photoregulating DNA hybridization-dehybridization
[12-14]. Azobenzenes attached on the DNA machine were used as photoswitches to
open and close it. The operation can be repeated many times with a constant efficiency
because no wastes were produced during the working cycles. Furthermore, a
nanomachine that could work on a single supramolecular level was also constructed:
Photoswitches were attached directly to the arm of DNA tweezers and the azobenzene-
modified part did not separate from the tweezers even at opening state. We proposed a
novel concept of molecular machine driven by external stimuli without disturbance of
the internal solution conditions during the operation.

2 Results and Discussion

2.1 Photoresponsive DNA Tweezers Involving Non-Substituted Azobenzene

Molecular Design of DNA Tweezers Powered by Photoirradiation. As illustrated
in Fig. 1, a photoresponsive DNA machine composed of four strands (A, B, C, and F)
is designed based on the DNA-fueled “tweezers” reported by Yurke et al [8]. The
working principle of the original DNA-fueled molecular tweezers is described as
follows (Fig. 1a): Strand F is added to close the tweezers by partially hybridizing with
strand B and C, leaving an 8-nt-long overhang. In order to open the closed tweezers,
strand F′ that is completely complementary to strand F is added. F′ first hybridizes
with the single-stranded overhang, followed by peeling of strand F from the DNA
machine through branch migration. For each operation cycle, F and F′ are added
alternatively, and F/F′ duplex is produced as a waste. Obviously, more and more F/F′
waste accumulates during successive opening and closing operation.

Instead of opening the tweezers by adding strand F′, we used an azobenzene-
modified oligonucleotide F (F8x or F12x) that can be dehybridized from the strands B
and C by ultraviolet (UV) light irradiation (Fig. 1b). Here, the azobenzenes are
tethered onto DNA through D-threoninol linkers. It can be expected that
photoisomerization of the multiple azobenzene moieties (Azo) to non-planar cis form
decreases greatly its hybridization ability and opens the tweezers [15-16]. This
photoresponsive F can be simply recycled with visible (Vis) light irradiation and the
cis-to-trans isomerization closes the tweezers again. Because the photoisomerization is
completely reversible and the azobenzene is chemically stable, repetitive operation by
simply switching the wavelength of the irradiation light can also be expected. For
evaluating the efficiency of opening and closing operation through fluorescence
resonance energy transfer (FRET), tetrachlorofluorescein (TET, as a fluorophore) and
carboxytetramethylrhodamine (TAMRA, as an acceptor) were attached at 5′- and 3′-
end of A, respectively (Fig. 1c). As the efficiency of resonant energy transfer increases
abruptly with the decrease of distance between the donor and acceptor, opening and
closing of the tweezers can be quantitatively monitored by measuring the fluorescence
change of TET (emission at around 540 nm, excited at 514.5 nm).

 Construction of Photon-Fueled DNA Nanomachines 23

Fig. 1. Schematic illustration of working principles of DNA nano-tweezers. (a) Original
tweezers constructed by Yurke et al.; (b) Photoresponsive tweezers involving non-substituted
azobenzenes tethered on D-threoninol; (c) Oligonucleotide sequences used in this study. Visible
light irradiation (trans form) closes the tweezers (left side of (b)), and UV light irradiation (cis
form) opens them (right side of (b)). The structures of azobenzene moiety (X residue) are also
show in (b). Underlined letters in A indicate the sections that hybridize with B and C.
Complementary sections between F (Fn, F8X, and F12X) and B, C are shown in bold letters. F8X
and F12X are the photoresponsive oligonucleotides involving 8 and 12 azobenzene moieties,
respectively. Fn is the native DNA without azobenzenes as the control sequence of F8X and
F12X. F′c hybridizes to F and forms a duplex with a bulge of two thymidines.

According to our previous reports, an efficient photoregulation of DNA
hybridization should be carried out at a temperature between the melting temperature
(Tm) of the duplex involving trans-azobenzenes and that of the duplex involving cis-
azobenzenes [12-15]. If the temperature is too high, the duplex dissociates in both
trans- and cis-cases; if the temperature is too low, the duplex is formed in both cases.
Here, the length of the single-stranded overhangs of B and C (when the tweezers are

24 X.G. Liang et al.

open) that are complementary to F was designed to be 15-nt-long (the corresponding
parts of DNA-fueled “tweezers” reported by Yurke et al are 24-nt-long), and two
extra dTs were inserted in F at the middle position to lower the Tm. For efficient
photoregulation of the opening and closing of DNA tweezers, as many as 8 or 12
azobenzene residues were introduced into a 32-nt-long strand F (designated as F8X
and F12X) [12]. Here, each azobenzene residue was attached on the D-threoninol linker
that was inserted into DNA backbone using the standard phosphoramidite chemistry
(Fig. 1b). Note that the structure at the position of each azobenzene residue in the
DNA duplex is similar to a single bulged base insertion and the azobenzene moiety
can be looked as the extra base. Although F8X and F12X are much longer than their
complementary strand consisting of only natural nucleotides, it has been reported that
this does not influence the stability of the formed duplex and the specificity of
hybridization when azobenzenes take trans form [12]. The photoresponsive DNA
tweezers are expected to be operated at a proper temperature range of 40~60 oC,
which is between the Tm of cis form and trans form. The sequences in A were
designed to hybridize with complementary sequences in B and C to form two 22-bp-
long stiff duplex tweezers that are stable enough at the operation temperature. The
four-base single-stranded central region of A is used as the hinge of the tweezers.

Firstly, we measured Tms of F8X/F′c, F12X/F′c, and Fn/F′c duplexes (with a bulge of
two dTs) to evaluate the ability of F8X and F12X to photoregulate DNA hybridization
(Table 1). Here, F′c was used instead of the tweezers at opening state to avoid the
influence from the hybridization of A and B, C, which has a Tm of 78.0 oC (Table 1).
In both cases, the duplex involving trans-azobenzenes has a higher Tm than that of
native duplex Fn/F′c, indicating that introduction of as many as 12 azobenzene
moieties did not influence the hybridization ability of the modified oligonucleotide.
From the difference in Tm between trans and cis form (ΔTm), it can be concluded that
F12X (ΔTm = 23.1 oC) has higher photoregulation ability than F8X. Thereafter, we
mainly used F12X to construct the photoresponsive DNA tweezers.

Table 1. Melting temperatures of the duplexes

 Tm / oC a)
Duplex trans cis ΔTm (Tm, trs-Tm, cis)

F8X/F′c 76.4 57.4 19.0
F12X/F′c 73.7 49.6 23.1
Fn/F′c 72.7

A/(B,C) a) 78.0
a) 1.0 μM DNA (or 0.5 μM for A/(B,C)), pH 6.5 (50 mM Na2HPO4), 1.0 M NaCl.

Evaluation of the Working Efficiency of DNA Tweezers Involving Azobenzene
Moieties. The photoresponsive tweezers were prepared by mixing stoichiometric
quantities of four strands, A, B, C, and F in a buffer (50 mM Na2HPO4, pH 6.5, 1.0 M
NaCl) to a final concentration of 1.0 μM [8]. As shown in Fig. 2, the fluorescence of
the solution consisting of A, B, and C (in the absence of F) was the strongest (red
lines -⋅-⋅-), indicating that the tweezers were completely opened. When Fn, the native
DNA, was added at a temperature much lower than the Tm of the duplex formed from

 Construction of Photon-Fueled DNA Nanomachines 25

Fn, B and C, the fluorescence became much lower (see solid lines in Fig. 2a and b),
showing that the tweezers were closed. Here, a new peak at about 580 nm due to the
FRET between TET and TAMRA appeared, indicating that the distance between
TET and TAMRA became closer. However, the fluorescence spectra did not change
much at lower temperatures probably due to the low FRET efficiency between TET
and TAMRA even if the tweezers were completely closed (data not shown).

 (a) (b)

(c) (d)

0

50

100

150

200

250

300

520 540 560 580 600 620 640

F
lu

o
re

sc
en

ce
 In

te
n

si
ty

 (
a.

u
.)

Wavelength (nm)

0

50

100

150

200

250

300

520 540 560 580 600 620 640

F
lu

o
re

sc
en

ce
 In

te
n

si
ty

 (
a.

u
.)

Wavelength (nm)

0

50

100

150

200

250

300

520 540 560 580 600 620 640

F
lu

o
re

sc
en

ce
 In

te
n

si
ty

 (
a.

u
.)

Wavelength (nm)

0

50

100

150

200

250

300

520 540 560 580 600 620 640

F
lu

o
re

sc
en

ce
 In

te
n

si
ty

 (
a.

u
.)

Wavelength (nm)

Fig. 2. Closing and opening of the DNA tweezers involving F12X with light irradiation at 45 oC
(a), 50 oC (b), 55 oC (c) and 60 oC (d), monitored by measuring fluorescence spectra. The
tweezers are completely open when only strands A, B and C are present in the solution (red
lines -⋅-⋅-). Upon the addition of strand Fn, the fluorescence drops and the tweezers prefer to
close (solid lines ⎯). The opening and closing are photoregulated to some extent with UV
(green lines ----) and visible light (blue lines ⋅⋅⋅⋅) irradiation, respectively.

The efficiency for the photoregulation of closing and opening of the tweezers with
F12X was estimated by measuring the change of fluorescence with the light irradiation
at thermo-stable conditions. As shown in Fig. 2b, for example, when the solution
consisting of A, B, C and F12X was irradiated with visible light (440~460 nm) at 50 oC
for 1 minute, the azobenzenes took trans form (>95%), and its fluorescence spectra
(blue lines ⋅⋅⋅⋅) was very close to that of the solution consisting of A, B, C and Fn

26 X.G. Liang et al.

(closed tweezers). On the other hand, when it was irradiated with UV light (330~350
nm) for 5 minutes, the spectra (green lines ----) became close to that of the opening
tweezers consisting of only A, B, and C (Fig. 2b). These results revealed that opening
and closing of the tweezers were switched simply by light irradiation.

Photoswitched opening and closing of the tweezers were also attained at other
temperatures, although the photoregulation efficiency depended greatly on the
operation temperature (Fig. 2a, 2c, and 2d). The percentage of opening and closing
states was calculated directly from the fluorescence intensity supposing that there is a
linear correlation between fluorescence strength and the amount of tweezers of
opening state. At 50 oC and 55 oC, about 70% of tweezers were opened after UV light
irradiation, and more than 80% of tweezers were closed after visible light irradiation.
At 45 oC, only about 40% of tweezers could be opened in the case of cis form; at 60
oC, however, the tweezers could not close efficiently in the case of trans form.
Accordingly, the most efficient photoregulation could be achieved at 50-55 oC (Table
2). These results are consistent with the Tm values of corresponding duplexes: Tms of
duplex F12X/B(C) in trans form and cis form are 59 oC and 35 oC, respectively (data
not shown).

Table 2. Contents of opening tweezers in the presence F12X after UV or visible light irradiation
at various temperatures

Temperature Percentage of the opening tweezers (%)
(oC) UV Vis Δ (UV-Vis)a)

45 38.7 2.0 36.6
50 67.0 9.7 57.3
55 73.3 17.6 55.6
60 87.3 45.2 42.1

a) Difference in contents of opening state between UV and visible light irradiation.

Another point one may concern is the irradiation time required for opening or
closing the tweezers. In the case of visible light irradiation (430~450 nm, 90
mW/cm2) at 50 oC, we found that more than 90% of the tweezers were closed after
one minute. In the case of UV light irradiation (330~350 nm, 0.5 mW/cm2), 4 minutes
were enough to reach the equilibrium, at which about 65% of the tweezers were
opened [17]. Thus, the efficient open-close photoswitching could be achieved with
UV and visible light irradiation for 4 minutes and 1 minute, respectively. The strong
stacking interaction between trans-azobenzene and base pairs can be considered as
one of the reasons for the time-consuming trans-to-cis photoisomerization.

Repetitive Opening and Closing of the Photoresponsive DNA Tweezers with
Light Irradiation. For a DNA nanomachine, one of the most important functions is
whether it can operate successively without losing efficiency. Changes of
fluorescence intensity were recorded while the photoresponsive tweezers were cycled
ten times between the opening and closing states by alternating irradiation with UV
and visible light at 50 oC. The opening and closing efficiency were calculated from
the fluorescence change and shown in Fig. 3. For every cycle, about 90% of the
tweezers were closed after visible light irradiation for 1 min, and about 65% of the

 Construction of Photon-Fueled DNA Nanomachines 27

tweezers were opened after UV light irradiation for 4 minutes (Fig. 3). The cycling
efficiency did not decrease at all after opening and closing of the tweezers for ten
times. From this point, the photoresponsive tweezers we constructed here are much
better than the original DNA-fueled tweezers, whose cycling efficiency decreased by
about 40% after 7 cycles due to the successive addition of DNA fuels and the
production of waste duplex (Fig. 1a) [8]. In our case, the photoswitching of DNA
tweezers was based on the reversible photoisomerization of azobenzene, and no
wastes were produced. Once the tweezers were constructed, the concentrations of all
the oligonucleotides remained stable during the operation because no extra
oligonucleotides were added. Therefore, the photoregulation efficiency does not
change with the operation cycles as long as the DNAs involved are not destroyed. No
detectable decomposition of the introduced azobenzene residues was observed under
the light irradiation conditions we used, although a continuous irradiation with visible
light for a long time (e.g. >30 min) was found to destroy the fluorophore TET (data
not shown). Thus, the opening and closing of photoresponsive tweezers are expected
to be photoswitched for lots of cycles without decreasing the working efficiency. In
conclusion, an efficient photon-fueled molecular machine that could be repeatedly
operated was constructed.

0

20

40

60

80

C
o

n
te

n
t

o
f

o
p

en
 t

w
ee

ze
rs

 /
%

Number of cycles

1 2 3 4 5 6 7 8 9 10

UV

Vis

UV

Open

Close

Vis Vis Vis Vis Vis Vis Vis Vis Vis

UV UV UV UV UV UV UV UV

Fig. 3. Repeated opening and closing of photoresponsive molecular tweezers at 50 oC by
alternating irradiation with visible light for 1 min and UV light for 4 min. About 55% of
tweezers were photoswitched to be open and closed in each cycle.

2.2 Hairpin-Based Photoresponsive DNA Tweezers Involving
para-Isopropyl-Substituted Azobenzenes

Molecular Design of Smart Photoresponsive DNA Tweezers Involving a Hairpin
Structure. Here we aimed to construct more intelligent photon-fueled DNA tweezers
by forming a hairpin structure on one of its arms (Fig. 4a). As compared with the
tweezers shown in Fig. 1b, strand B and strand C were replaced by strand H and R,
respectively. In the center part, strand H forms a hairpin structure with an 8-bp-long
stem and a 4-nt-long loop. The sequence at 5′-side of the hairpin hybridizes with A to

28 X.G. Liang et al.

form a 22-bp-long duplex, and its 3′-side was designed to be complementary to 5′-
side of R. Hybridization of R with H closes the tweezers, and the dehybridization
opens them. The photoswitches were introduced to 5′-side of R. Obviously, strand F
is not required here, and no strand is removed from the machine during the operation.
Therefore, this DNA machine is possible to work at a very low concentration once the
duplex parts A/R and A/H are formed. Another merit of these novel tweezers is that
only one arm can open and close the whole tweezers by photo-induced hybridization-
dehybridization so that fewer azobenzenes are required to be introduced.

Fig. 4. Schematic illustration of photoresponsive DNA tweezers involving para-isopropyl
azobenzene (iPr-azo) on L-threoninol (a) and corresponding oligonucleotide sequences used
(b). Visible light irradiation (trans form) prefers to open the tweezers, and UV light irradiation
(cis form) prefers to close them. The structure of azobenzene moiety (Y residue) is also show in
(a). Underlined letters in A indicate the section that hybridizes with R (Rn or R3Y). Italic
sections in H show the sequences that form hairpin structure with an 8-bp-long stem and a 4-nt-
long loop. Complementary parts between H and R are shown in bold letters.

In contrast with the previously constructed tweezers (Fig. 1b), para-isopropyl-
substituted azobenzene (iPr-azo) tethering on L-threoninol, a recently developed
photoswitch of reverse type, is used: Visible light irradiation (trans form) opens the
tweezers and UV light irradiation (cis form) closes them [18]. Note that the direction
of photoswitch is reversed as compared with the unmodified azobenzene shown in
Fig. 1. This photoregulation is based on the following mechanism: The trans form
destabilizes the duplex formation due to the steric hindrance of bulky para-isopropyl
group with DNA backbone; whereas the cis form prefers to form stable duplex due to
groove binding of the hydrophobic para-isopropyl group [18]. For decreasing the
number of photoswitches, duplex region formed between R and H was designed as
short as 10-bp-long with three iPr-azo at R strand.

Open and Close DNA Tweezers Involving para-Isopropyl-Substituted Azobenzenes
with Light Irradiation. The photoresponsive tweezers were prepared by mixing
stoichiometric quantities of three strands, A, H, and R (Rn or R3Y) in the buffer. As the

 Construction of Photon-Fueled DNA Nanomachines 29

control of opening tweezers, strand C (see the sequence in Fig. 1c) was first used instead
of H, and the fluorescence was strongest when A, C, and Rn were present in the buffer
(red line -⋅-⋅- in Fig. 5). We also tried to use A and H in the absence of R as a control of
opening state, however, the fluorescence became lower because non-negligible FRET
occurred due to the low stiffness of single-stranded part at 3′-side of A [8]. When the
native DNA Rn was added to a solution containing A and H at 10 oC, the fluorescence
became much lower, indicating that the tweezers were closed due to the duplex formation
between Rn and H (black line in Fig. 5). More than 90% of the tweezers were closed
even at 35 oC, and the tweezers were completely open at the temperature higher than 70
oC (data not shown). After R3Y (with 1 min of visible light-irradiation) was added instead
of Rn at the same temperature, the fluorescence was close to that of the opened state
indicating that most of the tweezers were opened because iPr-azo took trans form (see
blue line ⋅⋅⋅⋅⋅ in Fig. 5). On the contrary, the fluorescence became lower after 5 min of UV
light irradiation, although the fluorescence was still much higher than that of the
completely closed state (compare blue line with green line ---- in Fig. 5). It can be
estimated that about 13% of the tweezers were photoregulated to open and close. This
lower efficiency of closing the tweezers may be attributed to the insufficient stabilization
effect in cis form as we reported recently [18]. When visible light was irradiated for 1
min at this point, the fluorescence increased and the closed tweezers opened again. Note
that the operation of the tweezers was reversed as compared with the tweezers shown in
Fig. 1b: UV light irradiation closed the tweezers and visible light irradiation opened
them.

0

100

200

300

400

520 540 560 580 600 620 640

F
lu

o
re

sc
en

ce
 In

te
n

si
ty

 (
a.

u
.)

Wavelength (nm)

Fig. 5. Change of fluorescence intensity from the DNA tweezers involving R3Y with light
irradiation. The tweezers are completely open when strands A, B, and Rn are present in the
solution (red line -⋅-⋅-). When strand H is present instead of B, the fluorescence drops and the
tweezers are closed (solid line ⎯). When R3Y is used, the opening and closing are
photoregulated to some extent with visible light (blue line ⋅⋅⋅⋅⋅) and UV light irradiation (green
line ----), respectively. All the photoirradiation and fluorescence measurements were carried out
at 10 oC. The concentration of each DNA strand is 0.1 μM.

30 X.G. Liang et al.

The tweezers involving para-isopropyl-substituted azobenzenes could also be
regulated by light irradiation at an extremely low concentration. Since hybridization
between R and H in the DNA tweezers can be regarded as an intra-molecular
interaction, the efficiency did not change much when the concentration of each strand
varied from 1 μM to 10 nM (data not shown). The low concentration is also helpful
for avoiding the dimer formation as Yurke et al. pointed out [8]. From this point, this
novel DNA tweezers can be considered as an indeed nanomachine which can work on
a single supramolecular level.

3 Conclusions

The DNA tweezers powered by photo-irradiation were constructed by introducing
photoresponsive molecules. These nanomachines could be operated successively
without decreasing of the working efficiency. By using different photoswitches, the
opening and closing of the tweezers can be carried out by using either UV or visible
light irradiation. The constructed photoresponsive molecular machines are
‘environment-friendly’ without producing any waste because they use photons, one of
the cleanest energy sources, as the fuel.

The use of DNA-based machines plays an important role in the rapidly developing
field of nanobiotechnology. The valuable and promising applications of these
nanomachines have bright future perspectives in the development of sensors,
molecular transporters, and controlled drug delivery systems other than only
satisfying our intellectual scientific curiosity. Our novel concept to operate the DNA-
based machine with light irradiation should have an impressive impact in this field
and highlight its revolutionary progress for operating molecule machines more freely
and precisely. The introduction of azobenzenes to the DNA machine as molecular
engines makes it possible to transfer light energy first to chemical one and then to
mechanical motion. The use of our photoresponsive molecular machines also opens a
new possibility to use them in vivo, especially for the DNA tweezers involving
hairpin structure. For these purposes, further studies such as improving the operation
efficiency and lowering the number of molecular engines by using modified
azobenzenes, and improving the thermal stability of cis-azobenzene are underway.

4 Experimental Section

Materials. The oligonucleotides involving non-substituted azobenzene residues were
supplied by Nihon Techno Service Co., Ltd. (Tsukuba, Japan), and purified by
polyacrylamide gel electrophoresis. The oligonucleotides involving para-isopropyl
azobenzene residues (iPr-azo) were synthesized as previously reported [18]. The
oligonucleotides consisting of only native bases and strand A involving TET and
TAMRA were supplied by Integrated DNA Technologies, Inc. (Coralville, USA).
Concentrations of all oligonucleotides were determined by UV-Vis spectroscopy
analysis within an error margin of 10%. The molecular extinction coefficient (ε) of an
azobenzene residue at 260 nm is 1.095 × 104 mol L-1 cm-1.

Fluorescence Measurement for Monitoring the Operation of DNA Tweezers. The
photoresponsive tweezers were prepared by mixing stoichiometric quantities of DNA

 Construction of Photon-Fueled DNA Nanomachines 31

strands in SPSC buffer (50 mM Na2HPO4, pH 6.5, 1.0 M NaCl). The solution was
added to a 3 mm-square quartz cuvette, and the fluorescence spectra of TET were
measured with a JASCO FP-6500 fluorescence spectrometer (JASCO, Tokyo, Japan)
excited at 514.5 nm. For calculating the content of opened and closed state of the
tweezers tethering non-substituted azobenzenes, the fluorescence intensity at 543 nm
was used (65.0 a.u. for completely closed state and 242.1 a.u. for completely opened
state). The photo-irradiation was carried out with a Xenon light source (MAX-301,
Asahi Spectra Co. Ltd, Tokyo, Japan) equipped with an interference filter (9 nm of
bandpass) centered at 341.5 nm for UV light irradiation (0.5 mW/cm2) and an
interference filter (9 nm of bandpass) centered at 449.5 nm for visible light irradiation
(90 mW/cm2). During the irradiation, the cuvette containing the tweezers was put in a
water bath keeping at a fixed temperature (±2 oC). After the irradiation, the cuvette
was immediately moved into the fluorescence spectrometer that was kept at the same
temperature to measure the fluorescence. During the fluorescence measurement,
further UV or visible light irradiation was not carried out.

Measurement of Melting Temperatures. All the Tms were measured in SPSC buffer
(50 mM Na2HPO4, pH 6.5, 1.0 M NaCl). For duplex F/F′c, solutions consisting of 1.0
μM of F′c and Fn, F8X, or F12x were used. For measuring the Tms of DNA solution
consisting of strands A, B, C, and F, a final concentration of 0.5 μM for each strand
was used. After keeping at 90 oC for 3 min, the solution was gradually cooled to 10 oC
(1.0 oC/min). Melting curves were obtained at a heating rate of 1.0 oC/min. Peak
temperatures in the derivative curves (dA/dT) were designated as Tms. UV spectra and
UV-melting profiles (260 nm) were recorded by a JASCO model V-530 spectrometer
equipped with a programmable temperature-controller.

Acknowledgments

This work was supported by Core Research for Evolution Science and Technology
(CREST), Japan Science and Technology Agency (JST). Partial support was provided
by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology, Japan, and The Mitsubishi Foundation (for H. A.) is
also acknowledged.

References

1. Seeman, N.C., Lukeman, P.S.: Nucleic Acid Nanostructures: Bottom-Up Control of
Geometry on the Nanoscale. Rep. Prog. Phys. 68, 237–270 (2005)

2. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-Kilobase Single-Stranded DNA that Folds
into a Nanoscale Octahedron. Nature 427, 618–621 (2004)

3. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-Based Method for
Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 382, 607–609
(1996)

4. Chen, J.H., Seeman, N.C.: Synthesis from DNA of a Molecule with the Connectivity of a
Cube. Nature 350, 631–633 (1991)

5. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable
and Autonomous Computing Machine Made of Biomolecules. Nature 414, 430–434 (2001)

32 X.G. Liang et al.

6. Seeman, N.C.: From Genes to Machines: DNA Nanomechanical Devices. Trends
Biochem. Sci. 30, 119–125 (2005)

7. Beissenhirtz, M.K., Willner, I.: DNA-Based Machines. Org. Biomol. Chem. 4, 3392–3401
(2006)

8. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-Fuelled
Molecular Machine Made of DNA. Nature 406, 605–608 (2000)

9. Beyer, S., Simmel, F.C.: A Modular DNA Signal Translator for the Controlled Release of
a Protein by an Aptamer. Nucleic Acid Res. 34, 1581–1587 (2006)

10. Shin, J.S., Pierce, N.A.: A Synthetic DNA Walker for Molecular Transport. J. Am. Chem.
Soc. 126, 10834–10835 (2004)

11. Tian, Y., Mao, C.D.: Molecular Gears: A Pair of DNA Circles Continuously Rolls against
Each Other. J. Am. Chem. Soc. 126, 11410–11411 (2004)

12. Asanuma, H., Liang, X.G., Nishioka, H., Matsunaga, D., Liu, M.Z., Komiyama, M.:
Synthesis of Azobenzene-Tethered DNA for Reversible Photo-Regulation of DNA
Functions: Hybridization and Transcription. Nat. Protocols 2, 203–212 (2007)

13. Asanuma, H., Ito, T., Yoshida, T., Liang, X.G., Komiyama, M.: Photoregulation of the
Formation and Dissociation of a DNA Duplex by Using the cis-trans Isomerization of
Azobenzene. Angew. Chem. Int. Ed. 38, 2393–2395 (1999)

14. Asanuma, H., Takarada, T., Yoshida, T., Liang, X.G., Komiyama, M.: Enantioselective
Incorporation of Azobenzene into Oligodeoxyribonucleotide for Effective Photoregulation
of Duplex Formation. Angew. Chem. Int. Ed. Engl. 40, 2671–2673 (2001)

15. Asanuma, H., Liang, X.G., Yoshida, T., Komiyama, M.: Photocontrol of DNA Duplex
Formation by Using Azobenzene-Bearing Oligonucleotides. Chem. BioChem. 2, 39–44
(2001)

16. Liang, X.G., Asanuma, H., Kashida, H., Takasu, A., Sakamoto, T., Kawai, G., Komiyama,
M.: NMR Study on the Photoresponsive DNA Tethering an Azobenzene: Assignment of
the Absolute Configuration of Two Diastereomers and Structure Determination of Their
Duplex in the trans-Form. J. Am. Chem. Soc. 125, 16408–16415 (2003)

17. Liang, X.G., Nishioka, H., Takenaka, N., Asanuma, H.: A DNA Nanomachine Powered by
Light Irradiation. Chem BioChem. 9, 702–705 (2008)

18. Liang, X.G., Takenaka, N., Nishioka, H., Asanuma, H.: Molecular Design for Reversing
the Photoswiching Mode of Turning ON and OFF DNA Hybridization. Chem. Asian J. 3,
553–560 (2008)

Operon Structure Optimization by Random

Self-assembly

Yusuke Nakagawa1, Katsuyuki Yugi1, Kenji Tsuge2, Mitsuhiro Itaya2,
Hiroshi Yanagawa1, and Yasubumi Sakakibara1,3

1 Department of Biosciences and Informatics, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan

yasu@bio.keio.ac.jp
2 Institute for Advanced Biosciences, Keio University,
403-1 Daihoji, Tsuruoka, Yamagata, 997-0017, Japan

3 Institute for Bioinformatics Research and Development (BIRD),
Japan Science and Technology Agency (JST)

Abstract. Synthetic biology is an emerging research area that aims to
investigate natural biological phenomena and reconstruct complex artifi-
cial biological systems. Recent development of genetic engineering such as
multiple gene assembly method accelerates the synthetic biology study.
Ordered gene assembly in Bacillus subtilis (OGAB method) is to as-
semble multiple genes in one step using an intrinsic B.subtilis plasmid
transformation system and enables to reconstitute sets of relevant genes.
The OGAB method assembles multiple DNA fragments with a fixed or-
der and orientation and constructs an operon structure in a resultant
plasmid. However, the optimal order and orientation to reconstitute a
set of genes are generally not trivial and depends on several factors in
host bacteria, where the “optimal” means the efficiency of biosynthe-
sis induced by transfered genes in a metabolic pathway. We propose
a method to apply self-assembly technique to optimization problem of
operon structure. Self-assembly of multiple genes generates all possible
orders of genes on operon structure. The number of generated orders on
operon structure becomes the factorial of the number of multiple genes.
All generated orders of multiple genes are then introduced into E.coli
cells and most prominent colony for biosynthesis is extracted. We show
some preliminary experiment to construct more efficient orders for five
genes in the carotenoid biosynthetic pathway, and found a new order
that is more efficient than previous studies for gene order.

1 Introduction

Assembling a number of relevant genes into one plasmid is an essential tech-
nique for synthetic biology study to reconstruct biosynthesis process engaged by
multiple genes in a metabolic pathway. A classical recombinant protocol for mul-
tiple gene assembly is to progressively introduce each gene one by one. A novel
gene assembly method, OGAB developed by Tsuge et al. [1], offers one-step as-
sembly of multiple DNA fragments with high efficiency. This one-step assembly

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 33–40, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

34 Y. Nakagawa et al.

E IB Y Z

E IB YZ

ori

ori

crtE

crtB

crtI

crtY

crtZ

crtE

crtB

crtI

crtY

crtZ

crtE

crtB

crtI

crtY

crtZ

crtE

crtB

crtI

crtY

crtZ

crtE

crtB

crtI

crtY

crtZ

Ligation

OGAB

Transformation

most efficient colony

Random self-assembly

Fig. 1. Optimization by random self-assembly and OGAB method for five genes in
carotenoid biosynthesis

feature enables applications of recently advanced and more algorithmic methods
developed in DNA-based computing.

On the other hand, engineering of carotenoid biosynthesis transformed in
E.coli , conducted by Nishizaki et al. [2], is a typical application of OGAB
method. They found that the order of biosynthesis genes on plasmid affects the
final amount of zeaxanthin synthesized in transformed E.coli. The production
efficiency of metabolic biosynthesis generally depends on several factors such as
activity of biosynthetic enzymes, mRNA expression levels of biosynthesis genes,
and growth rate of host bacteria E.coli. Previous studies reveal that these factors
are significantly affected and changed by the order of genes on operon structure
of plasmid. For example, it is observed that the rank order of mRNA expression
levels in each plasmid corresponded to the sequential order of those genes of
carotenoid biosynthesis on the operon structure [2]. Thus, Nishizaki et al. in-
vestigated only five circularly permuted orders of biosynthesis genes among all
possible orders. The number of all possible orders of five biosynthesis genes be-
comes the factorial of the number of multiple genes, for example, 5! = 120 orders
for five genes, so that it is not effective to examine all combinations manually.
Our main contribution in this paper is to propose a method to apply DNA
computing method, that is, a random self-assembly technique to optimization
problem of the order of biosynthesis genes.

In the theory of DNA computing, the models of computation based on self-
assembly are well recognized to be of great importance in that they can provide
one of the most basic frameworks for DNA-based computing paradigms [3,4].

Operon Structure Optimization by Random Self-assembly 35

In fact, Adleman’s ground-breaking experimental work ([3]) that solved a small
instance of the Hamiltonian Path Problem (HPP) is a typical example of DNA
computation based on the self-assembly principle. A most important feature of
self-assembly computation is that random self-assembly of well-encoded DNA
fragments generates an exponential number of all possible combinations of the
fragments which correspond to all candidates of solutions and efficient extrac-
tion of an optimal solution among the pool solves computationally intractable
(NP-hard) problems. Our strategy to apply DNA computing method to solving
optimization problem to determine the order of biosynthesis genes consists of
three steps: (i) random self-assemblies of DNA fragments for biosynthesis genes
with well-designed sticky ends, (ii) one-step assembly of multiple DNA fragments
using OGAB method to construct plasmid vectors with various orders of self-
assembled genes to generate all possible orders, and (iii) transformation of E.coli
cells with various plasmid vectors and extraction of most prominent colony for
biosynthesis from plate (See Figure 1).

2 Methods

2.1 Random Self-assembly of Operon Structure

A general schema of self-assembly computation model is outlined as follows:

1. design a finite set of basic units for assembly computation,
2. put all those basic units with sufficiently high concentration into one test

tube, to create a random pool of shuffled self-assemblies,
3. perform screening mechanism to extract only necessary assembly of basic

units,
4. detect whether or not there is an assembly with desired constraints.

Our aim to use self-assembly computation is to generate various operon struc-
tures with randomly shuffled orders of biosynthetic genes. Operon structure on
plasmids (genome) is generally defined as one transcriptional unit consisting of
a sequence of ribosome-binding site (RBS) and open reading frames (ORFs) fol-
lowing one promoter, where an open reading frame is composed of start codon,
gene-coding region, and stop codon (See Figure 2).

5’- TTGACA TATAAT AGGA ATG … TAA AGGA ATG … TAA AGGA ATG … TAA TTTTT -3’

ORFRBS RBS RBSORF ORFpromoter

start stop start stop start stop

Fig. 2. An operon structure

In order to apply self-assembly computation to randomly generating operon
structures, a basic unit corresponds to a RBS and a double-stranded ORF with
both sticky ends. The type II restriction enzyme DraIII that recognizes two

36 Y. Nakagawa et al.

separate recognition sites, 5’-CACNNNGTG-3’, is employed so that various different
sticky ends of three bases can be designed, where N represents any base (A, C, G,
or T). DraIII cleaves a double-stranded DNA as follows:

5′ − CACNNN ↑ GTG− 3′

3′ − GTG ↑ NNNCAC− 5′

where CAC and GTG are two recognition sites and ↑ represents cleavage site. To
implement self-assembly graph shown in Figure 3 (above) to generate randomly
shuffled orders of five genes in carotenoid biosynthesis, we designed each sticky
end as 3’-ACT for node 1, 3’-GTT for node 2, 3’-ATG for node 3, 3’-CTA for node 4,
3’-TGA for node 5 (as shown in Figure 3 (below)).

1 2

crtB

crtI

crtE

crtY

crtZ

3

crtB

crtI

crtE

crtY

crtZ

4

crtB

crtI

crtE

crtY

crtZ

5

crtB

crtI

crtE

crtY

crtZ

3’-ACT crtI

. .
 .

CAA-3’

3’-ACT

GTT

crtB

crtE

crtE

crtB

crtI

crtY

crtZ

CAA-3’

GTT
TAC

ATG
GAT

CTA
ACT

TGA

3’-ACT
. .

 .

. .
 .

. .
 .

. .
 .

TAC

CAA-3’

Fig. 3. (Above) A self-assembly graph for five genes in carotenoid biosynthesis. (Below)
Basic units with well-designed sticky ends.

2.2 Reconstitution of Multiple Genes by OGAB Method
A novel gene assembly method [1], called OGAB method, was developed to recon-
stitute sets of genes with one-step assembly of multiple DNA fragments with high
efficiency. The key principle of OGAB method is based on unique mechanisms of
B.subtilis for DNA uptake and plasmid establishment. The B.subtilis mechanism
circularizes linearized plasmids when homologous sequences are present. That is,
the highly recombinogenic single-stranded DNAs form double-stranded DNA by
pairing. Then, the partial double-stranded molecule is repaired to give an intact
double-stranded circular DNA that starts replication as a plasmid [1,5].

Operon Structure Optimization by Random Self-assembly 37

We apply OGAB method to constructing circular plasmids with randomly
shuffled orders of five carotenoid biosynthetic genes. Five fragments crtE, crtB,
crtI, crtY, and crtZ are ligated to form high-molecular-weight DNA with a tan-
dem repeat unit. According to the random self-assembly, the order and orienta-
tion of these five fragments are randomly shuffled. The linear DNA molecule with
more than two tandemly aligned units at ori-subsequence transforms B.subtilis,
and preferentially establishes the plasmid, termed pGETS109RAND, in vivo.
Note that we employ the plasmid pGETS109 of E.coli-B.subtilis shuttling vec-
tor constructed in the previous study [1].

2.3 Transformation of E.coli Cell and Extraction of Best Colony

Constructed plasmid vectors with various orders of self-assembled genes are
transfered into E.coli by electroporation. These transformed E.coli are culti-
vated on LB plate and then various colonies are grown. Then, our important
strategy for detection of optimal solution is that most prominent colony with
exhibiting stronger color is extracted. This strategy also contributes to filtering
out operons with repeated same genes and hence incomplete set of five genes.

3 Experiments

We applied our random self-assembly method to searching optimal order of five
genes crtE, crtB, crtI, crtY, crtZ for synthesis of zeaxanthin in carotenoid biosyn-
thetic pathway. In the following preliminary experiment, we tested only the first
two genes, crtE and crtB, to see the feasibility of our random self-assemblymethod.

3.1 Carotenoid Biosynthetic Pathway

Carotenoids are found in bacteria, fungi, and higher plants, and act as pho-
toprotecting agents. Improvements of production of carotenoids were made by
transforming bacteria with gene clusters encoding carotenoid biosynthetic genes.
The five biosynthetic genes, crtE, crtB, crtI, crtY, and crtZ, were extracted from
the natural carotenoid cluster of Pantoea ananatis [2,6]. Actually, these five genes
were amplified from the plasmid pCAR25 which was originally constructed by
Misawa [6]. (See also Table 1 in Appendix to design appropriate primers for
random self-assembly.)

3.2 Random Self-assembly for Carotenoid Biosynthetic Gene
Operon

Each random ligation of the first two genes, crtE and crtB , followed by the
fixed order of three genes crtI, crtY, and crtZ for five carotenoid biosynthetic
genes was assembled as one transcriptional unit (plasmid) in a polycistronic
manner by OGAB method. Therefore, four different plasmids had to be con-
structed, that is, crtE-crtB-crtI-crtY-crtZ denoted by pCrtP-EBIYZ, crtB-crtE-
crtI-crtY-crtZ denoted by pCrtP-BEIYZ, crtB-crtB-crtI-crtY-crtZ denoted by
pCrtP-BBIYZ, crtE-crtE-crtI-crtY-crtZ denoted by pCrtP-EEIYZ. Since the

38 Y. Nakagawa et al.

third plasmid pCrtP-BBIYZ and the fourth pCrtP-EEIYZ do not contain the
complete set of carotenoid biosynthetic genes, these transformants will fail to
synthesize and produce zeaxanthin.

Next, these constructed plasmids were transferred into E.coli to assay the pro-
duction of zeaxanthin. These transformants were then cultivated for 48 hours on
LB plates at 37◦C. The growth of various colonies was observed, and two distinct
colonies that significantly exhibit colorswere extractedas shown inFigure 4(right).
Each plasmid from two selected colonies was digested by the restriction enzyme

10.4
4.4
3.5
1.9

0.9

c
o

lo
n

y
 o

n
e

c
o
lo

n
y
 t
w

o

Fig. 4. (Left) The ligation products were confirmed by restriction mapping. The sec-
ond lane from the left corresponds to the plasmid pCrtP-EBIYZ and the third lane
corresponds to pCrtP-BEIYZ. (Right) Two colonies that significantly exhibit colors
were extracted and re-cultivated.

Fig. 5. HPLC result of Zeaxanthin production

Operon Structure Optimization by Random Self-assembly 39

BglI and the resultant fragments were purified by agarose gel electrophoresis and
confirmed by restriction mapping. The result is shown in Figure 4 (left). The sec-
ond lane from the left in Figure 4 (left) is identical to the plasmid pCrtP-EBIYZ
and the third lane is identical to pCrtP-BEIYZ. Therefore, we confirmed that our
self-assembly to generate random operons was succeeded.

3.3 Extraction of Prominent Colony for Carotenoid Biosynthesis

Thezeaxanthinproduction in theE.coli transformantswith eachof twopCrtPplas-
mids was quantified using high-performance liquid chromatography (HPLC). As
shown in Figure 5, the higher zeaxanthin content of mg/g (dry weight) was ob-
tained in the transformantwith pCrtP-BEIYZ. More concretely, synthesis of zeax-
anthin with pCrtP-BEIYZ plasmid was 1.7-fold higher than that of zeaxanthin
with pCrtP-EBIYZ for 24h cultivation. This order of pCrtP-BEIYZ is different
from the order of (PcrtE-crtE-crtB-crtI-crtY-crtZ) that corresponds to the zeax-
anthin biosynthetic pathway and was previously found as most efficient order [2].

4 Conclusion

We proposed a method to apply self-assembly technique to optimization problem
of operon structure. Our strategy consists of three steps: (i) randomself-assemblies
of DNA fragments for biosynthesis genes with well-designed sticky ends, (ii) one-
step assembly of multiple DNA fragments using OGAB method to construct plas-
mid vectors with different orders of self-assembled genes to generate all possible
orders, and (iii) transformation of E.coli cells with various plasmid vectors and
extraction of most prominent colony for biosynthesis from plate. We presented
a preliminary experiment of our method for optimizing operon structures of five
genes in carotenoid biosynthesis, showed that our method is effective to improve
the efficiency of zeaxanthin production, and found a new order that is more ef-
ficient than previous studies for gene order. Since our preliminary experiment is
only on shuffling the first two genes among five carotenoid biosynthetic genes, we
are now conducting random shuffling orders of all five genes.

Acknowledgements

This work is supported in part by Grant program for bioinformatics research
and development of Japan Science and Technology Agency, and Grant-in-Aid
for Scientific Research on Priority Area “Comparative Genomics” No. 17018029
from the Ministry of Education, Culture, Sports, Science and Technology of
Japan. This work was also performed in part through Grant-in-Aid for Young
Scientists (Start-up) No. 18800046, Japan Society for the Promotion of Science
(JSPS), grant of Keio Leading-edge Laboratory of Science and Technology (KLL)
specified research projects and grant of Keio Engineering Foundation.

References

1. Tsuge, K., Matsui, K., Itaya, M.: One step assembly of multiple dna fragments
with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids
Research 31, 133 (2003)

40 Y. Nakagawa et al.

2. Nishizaki, T., Tsuge, K., Itaya, M., Doi, N., Yanagawa, H.: Metabolic engineering
of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus
subtilis. Applied and Environmental Microbiology 73, 1355–1361 (2007)

3. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994)

4. Yokomori, T., Sakakibara, Y., Kobayashi, S.: A magic pot: Self-assembly computa-
tion revisited. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal
and Natural Computing. LNCS, vol. 2300, pp. 418–429. Springer, Heidelberg (2002)

5. Tsuge, K., Itaya, M.: Recombinational transfer of 100-kilobase genomic DNA to
plasmid in Bacillus subtilis 168. Journal of Bacteriology 183, 5453–5458 (2001)

6. Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y., Nakamura, K.,
Harashima, K.: Elucidation of the Erwinia uredovora carotenoid biosynthetic path-
way by functional analysis of gene products expressed in Escherichia coli. Journal
of Bacteriology 172, 6704–6712 (1990)

Appendix

Table 1. Oligonucleotide sequences used as primers

Primer Sequence
crtE-1st-F 5’- tagcacACTgtgttataaggacagcccgaatgac -3’
crtE-2nd-F 5’- tagcacACTgtgttataaggacagcccgaatgac -3’
crtE-3rd-F 5’- tagcacACTgtgttataaggacagcccgaatgac -3’
crtE-1st-R 5’- tagcacAACgtgttaactgacggcagcgag-3’
crtE-2nd-R 5’- tagcacAACgtgttaactgacggcagcgag-3’
crtE-3rd-R 5’- tagcacAACgtgttaactgacggcagcgag-3’
crtB-1st-F 5’- tagcacGTTgtgatgctggaggatctgatatgaa -3’
crtB-2nd-F 5’- tagcacGTTgtgatgctggaggatctgatatgaa -3’
crtB-3rd-F 5’- tagcacGTTgtgatgctggaggatctgatatgaa -3’
crtB-1st-R 5’- tagcacCATgtgctagagcgggcgc-3’
crtB-2nd-R 5’- tagcacCATgtgctagagcgggcgc-3’
crtB-3rd-R 5’- tagcacCATgtgctagagcgggcgc-3’
crtI-1st-F 5’- tagcacATGgtgcgttaaagagcgactacatgaaac -3’
crtI-2nd-F 5’- tagcacATGgtgcgttaaagagcgactacatgaaac -3’
crtI-3rd-F 5’- tagcacATGgtgcgttaaagagcgactacatgaaac -3’
crtI-1st-R 5’- tagcacTAGgtgtcatatcagatcctccagca-3’
crtI-2nd-R 5’- tagcacTAGgtgtcatatcagatcctccagca-3’
crtI-3rd-R 5’- tagcacTAGgtgtcatatcagatcctccagca-3’
crtY-4th-F 5’- tagcacCTAgtgcttaagtgggagcggctatg -3’
crtY-4th-R 5’- tagcacTCAgtgttaacgatgagtcgtcataatggc-3’
crtZ-5th-F 5’- tagcacTGAgtgtctctaccggagaaattatgttgtg -3’
crtZ-5th-F 5’- tagcacAGAgtgttacttcccggatgcgg-3’

Underlined nucleotides are DraIII recognition sites, capital-letter nucleotides in-
dicate sticky ends generated by DraIII digestion, and the start and stop codons
(complementary sequences) are indicated as italic letters.

Isothermal Reactivating Whiplash PCR for

Locally Programmable Molecular Computation

John H. Reif and Urmi Majumder

Department of Computer Science,
Duke University, Durham, NC, USA

{reif,urmim}@cs.duke.edu

Abstract. Whiplash PCR (WPCR), due to Hagiya et al. [1], is a novel
technique for autonomous molecular computation where a state machine
is implemented with a single stranded DNA molecule and state transition
is driven by polymerase and thermal cycles. The significance of WPCR
computation lies in the fact that while other forms of autonomous molec-
ular computing such as tiling assembly [2] or Benenson automata [3]
operate based on global rules, it is possible to execute multiple WPCR
machines, each holding its own distinct program, in parallel. However,
since each transition requires a thermal cycle, multi-step WPCR ma-
chines are laborious and time-consuming. Hence they limit program
execution to only a few steps. To date, no WPCR protocol has been
developed which is both autocatalytic (self-executing) and isothermal
(with no change in temperature). Here we describe such a protocol for
computing with WPCR which uses a combination of strand displacement
and DNA polymerization. Our designs include (1) a protocol where tran-
sition rules cannot be reused in subsequent computing, a feature that is
crucial for reducing back-hybridization (2) a protocol where rules can be
reused using an auxiliary strand displacement event, (3) a reusable rule
protocol that prevents back-hybridization [1]. We also compute its state
transition likelihood and rate and present a DNA sequence design of a
3-state machine and an experimental verification plan.

1 Introduction

1.1 Need for an Autocatalytic and Isothermal Protocol for WPCR

A primary challenge in nanoscience is the design of synthetic molecular devices
that run autonomously (meaning that the program executes without any exter-
nal mediation over multiple work cycles) and programmable (meaning that the
machine’s behavior can be modified without completely redesigning the system).
In the last few years, the idea of constructing complex devices at the molecular
scale using synthetic materials, such as synthetic DNA, has gone from theoretical
concept to experimental reality. One such autonomous molecular computing de-
vice is called a Whiplash PCR (WPCR) machine [1], equivalent to a restricted
class of finite automata. In this machine, the current state is encoded at the
3

′
end of a DNA single strand while the remainder of the strand encodes the

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 41–57, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

42 J.H. Reif and U. Majumder

state transition rules. The machine works as follows: using appropriate thermal
cycles, the current state anneals to the correct transition rule and, next, a poly-
merase extends the 3

′
end of the strand to copy the next state from the encoded

transition rule. The only limitation of this system is that it can execute only a
single step before it requires significant environmental changes (thermal cycles)
before continuing the computation. This paper presents a protocol that converts
a WPCR system into an autonomous computing device, thus eliminating the
need for external mediation to enable further steps. This capability is important
if we wish to use these machines outside fully equipped laboratories.

1.2 Importance of Locally Programmable Molecular Computation

Although existing autonomous molecular computing devices e.g. DNA based
tiling assembly [2] and restriction enzyme based automata [3] are computation-
ally quite powerful [4], they are not capable of executing distinct programs in
parallel 1. In contrast, many complex molecular mechanisms found in the cell are
more flexible and can perform a diverse set of tasks simultaneously. Whiplash
PCR [5,6,7,8,1,9] allows parallel execution because each machine holds its own
program and thus multiple, distinct molecular programs can run simultaneously
in the same reaction tube.

1.3 Previous Methods for WPCR Computing Devices and Their
Limitations

Hagiya et al. first proposed and experimentally demonstrated (only for a limited
number of steps) a WPCR machine [1]. It was not easy to increase the number
of steps because of a phenomenon called back-annealing (also known as back-
hybridization), where a hairpin with a longer double stranded (ds) DNA region
is preferentially formed over one with a shorter ds-DNA region. Sakamoto et al.
suggested a modified protocol [9] where successive transitions were carried on at
the same temperature, thus preventing back-hybridization. They also proposed a
protocol for preventing out-of-frame annealing which happens because portions
of two adjacent sequences constitute the sequences complimentary to a third
state sequence. However, this work did not significantly increase the number
of steps the WPCR machine could execute before stalling at an intermediate
step. Later, Rose et al. proposed a scheme using targeted PNA2/DNA triplex
formation [7]. This triplex region destabilized the hairpin structure, thus pre-
venting back-hybridization. Although this protocol can be isothermal, it is not
autocatalytic. Further, it has been not yet been implemented and its role in in-
creasing the number of steps a WPCR machine can execute before stalling is not
clear. A recent paper by Rose et al. [10] proposed isothermal (no thermal cycling
required) conditions for the functioning of a WPCR machine using strand dis-
placement techniques. However, one still needs to add a rule protection strand
1 Tiling assembly can be made to do multiple programs in parallel if we start with a

universal cellular automata tile set with different seed rows. However, it is not very
practical to generate such a large tile set.

Isothermal Reactivating Whiplash PCR 43

after each polymerization step to drive the computation forward. Hence if we
wish to overcome this problem and also allow flexibility of applications, we need
to design an autocatalytic (a system that reactivates itself) and isothermal (no
thermal cycles) protocol for WPCR that would allow us to operate the machine
in places other than a laboratory.

1.4 Our Contribution

Our main contribution in this paper is the design of a WPCR machine that elim-
inates the need for any other external mediation (such as thermal cycles) and,
thus, the resultant machine is both isothermal and autocatalytic. By isothermal
we mean that the temperature of the reaction mixture is constant through-
out computation. However, our design requires an additional preparation stage
which precedes the computation stage and this step is not isothermal. This is
also in contrast with the definition of isothermal by Sakamoto et al. [9] who
defined isothermal as a design where the denaturation of the previous state and
annealing of the next state occur at the same temperature. This design still
needs external thermal control for multiple state transitions. By autocatalytic,
we mean that, once the protein enzyme is introduced in the solution, it drives
computation on its own. This protocol can again be contrasted against the pro-
tocol for PNA-mediated WPCR [7] where, after each polymerization step, the
mixture needs to be washed by bis-PNA. Our isothermal and reactivating pro-
tocol is partially inspired by our previous work where we used a combination of
DNA polymerization and strand displacement to minimize errors in computa-
tional tile assembly [11].

The key idea in our design of an isothermal, reactivating WPCR (IR-WPCR)
machine is to use primer extension of a secondary strand to dehybridize the 3

′
end

of the WPCR strand after the next state is copied. Thus, the 3
′
end of the WPCR

strand is now free to bind to the complement of the new current state. This
action essentially eliminates the thermal cycling required by the original WPCR
machine to execute a state transition. We give three versions of IR-WPCR: (1)
a protocol where state transition rules are no longer available for computation
after the next state is copied (Section 3), (2) a protocol in which a rule can be
made “reusable” by using an auxiliary strand that restores the original state of
the secondary primer (Section 4), (3) a protocol that allows reuse of transition
states while preventing back-hybridization (Section 5). The protocol presented
in Section 5 is the most significant protocol in this paper: isothermal reactivating
WPCR where the states are reusable and yet it is capable of preventing back-
hybridization using a type of WPCR that we call folding WPCR. A primary
assumption in all the above-mentioned protocols is that the concentration of
the WPCR strand is such that two or more copies of WPCR strands do not
interact among each other. We further compute the state transition rate for IR-
WPCR (Section 6). We also estimate the rate at which states are made reusable
in the second protocol. Additionally, we present a DNA sequence design of a
3 state machine and an experimental verification plan (Section 7). It should be
remembered, however, that this example is meant to demonstrate the isothermal

44 J.H. Reif and U. Majumder

and autocatalytic aspects of the protocol and not the computational power of a
WPCR device.

2 Original Whiplash PCR System

In the original WPCR machine, the transition table is encoded on a single
stranded DNA W as S −a1− b1 −S−a2 − b2 − . . .−S−an− bn where each pair
ai − bi represents the transition from state ai to state bi. The stopper sequence
S isolates one state transition rule from another. The 3

′
end of the same strand

encodes the current state. For the description of the rest of the protocol, refer
to Figure 1. We represent the stopper sequence S as a black square in the figure.
Without loss of generality (w.l.o.g.), let us assume that the current state of the
machine is a∗

i . Following the transition table, ai can transition to bi. Once a∗
i

hybridizes with ai (Figure 1: State S1) in W , polymerase extends the 3
′
end of

W to copy bi (Figure 1: State S3). The polymerase halts after transcribing the
bases complementary to bi because of S which is often implemented by omitting
one of the bases in the solution. For instance, in our experiments described later
in the paper, we use T as the chosen base. Using appropriate thermal cycling, W

ai bi ai+1bi+1ai-1bi-1 anbna1b1
akbk

ai*
S1

ai*
S2

aibi ai+1bi+1ai-1bi-1 anbna1b1
akbk

ai*bi*
S3

ai bi ai+1bi+1ai-1bi-1 anbna1b1
akbk

ai *bi *

S4ai bi ai+1bi+1ai-1bi-1 anbna1b1
akbk

aj*=bi*
S5

ai bi ai+1bi+1ai-1bi-1 anbna1b1
akbk

S2

Cooling

Heating

Fig. 1. Schematic of the protocol for the original Whiplash PCR machine: (S1)Initial
state of the WPCR strand W with current state being a∗

i , (S2) Polymerase binds to the

3
′
end of W (bearing the current state), (S3) Next state b∗i is copied at the head of W

by primer extension, (S4) The mixture is heated so that W loses its hairpin structure,
(S5) The solution is cooled so that the head of W can bind to the new current state

b∗i = a∗
j encoded at the 3

′
end of the strand and the whole state transition repeats

again beginning with State S2

Isothermal Reactivating Whiplash PCR 45

is then denatured. Consequently, it loses the hairpin structure (Figure 1: State
S4). Once the mixture is cooled, the 3

′
end of newly extended W (now bearing

b∗i as the current state) hybridizes with another section of itself which encodes
the appropriate transition rule (in this rule aj = bi is the current state and bj is
the next state) (Figure 1: State S5). Although input is not part of the descrip-
tion of the WPCR machine, one can easily supply input as part of the initial
state and update the encoding of the transition table to include inputs in the
manner S − ai − Ii − bi for the ith transition rule. However, back-hybridization
as mentioned in Section 1 is a serious problem with the original WPCR system
and hence we propose a new protocol in Section 3 to minimize such erroneous
state transitions.

3 IR-WPCR with Non-reusable Rules

In IR-WPCR with non-reusable rules, computation comprises of the following
steps after the 3

′
end of W binds to current state in rule Ri: (a) as with the

original WPCR protocol, copying the next state at the 3
′

end of the WPCR
strand W, (b) dislodging a secondary primer sequence Pi, which is specific to
the transition rule Ri from its initial position triggered by the primer extension
on W, (c) subsequent hybridization of Pi to its final position in rule Ri and (d)
dislodging of 3

′
end of W by primer extension of Pi, allowing the 3

′
end of W

to bind to the new transition rule (so that it can hybridize with the new current
state) by the primer extension of Pi. Observe that (b) and (d) act like a logical
toggle switch allowing for an autocatalytic reaction.

In this version of WPCR, each rule is encoded as a 7-tuple < xi, yi, zi, ai, bi,
wi, yi > where ai still represents the current state and biwiyi represents the next
state where the bi in IR-WPCR is not the same as bi in the original WPCR
strand. Rather, the original bi is now divided into 3 subsequences bi, wi and yi;
we will describe a DNA design of a small IR-WPCR machine in Section 7. The

xi yi qi zi ai bi yixi+1yi+1qi+1zi+1ai+1bi+1yi+1 x1y1q1z1a1b1y1

ai
x1 y1

p1

xi+1 yi+1

pi+1

znanbnynan-1bn-1yn-1 xnynqnxn-1yn-1qn-1zn-1

xn-1 yn-1

pn-1

xn

yn

pn

xi yi

pi

e1

e1e3eiei+1ei+2

e2eiei
+1

ei+2ej-1

ej-1 z

d1d2di-1
didi+1di+1dj-2dj-1

W

fff
ffff

ffff
d1d2di-1didi+1di+1dj-2dj-1

Fig. 2. Complete WPCR Strand for isothermal and autocatalytic program execution
(Rule Ri on focus)

46 J.H. Reif and U. Majumder

xi yi zi ai bi wi yi

ai*xi* (wi yi)*

pi
* (S1)

xi yi zi ai bi wi yi

(S2)

xi yi zi ai biwi yi

biwiyi)*

(S3)

xi yi zi ai biwi yi

yi*

(S4)
wi*

xi yi zi ai biwi yi

(S5)

xi yi zi aibiwiyi

(yi zi ai bi wi yi)*

(biwiyi) *

(S6)

(S2)
xi yi qi zi ai bi wi yixj yj qj zj aj bj wj yj

aj*=(bi wi yi)* (S7)

xi* ai*
(wi yi)*

pi
*

xi* (ai

(wi yi)* pi
*

xi*

pi
*

biwiyi)*(aibiwiyi)*(aiyi*xi*

wi*

pi
*

xi*

wi*pi
*

xj*
(wj yj)*

pj
*

(yi zi ai bi wi yi)*xi*

wi*pi
*

Fig. 3. Evaluation Stage for non-reusable rules IR-WPCR protocol with the focus being
only on the transition rule Ri to which the current state is hybridized : (S1) WPCR
strand W with protection strand Pi encoded as (xipiyi)

∗ partially hybridized with rule

Ri. Also the 3
′

end of W , bearing the current state a∗
i is hybridized to ai of Ri. (S2)

Polymerase binds to the 3
′

end of W (S3) Polymerase extends a∗
i to copy biwiyi, thus

displacing w∗
i y∗

i of Pi from wiyi of rule Ri located further away from xi in Ri. (S4) y∗
i

of Pi binds to yi located next to xi in Ri. (S5) Polymerase binds with the 3
′
end of Pi

(S6) 3
′

end of Pi is extended by the polymerase to copy ziaibiwiyi, thus displacing 3
′

end of W which has the new current state aj = biwiyi. (S7) 3
′

end of W bearing a∗
j

binds to the aj in rule Rj and the process repeats starting with the polymerase binding

to the 3
′

end of W as shown in State S2.

other regions in this tuple are required for destabilizing the 3
′
end of the strand

once the next state is copied at the end of it. In this machine, the transition table
with n rules is encoded on a single stranded DNA as S−x1−y1−z1−a1−b1−w1−
y1−. . .−S−xi−yi−zi−ai−bi−wi−yi−. . .−S−xn−yn−zn−an−bn−wn−yn. The
3

′
end of the single strand still encodes the current state as in original WPCR.

We also tether the transition table portion of W to another stable nanostructure
to prevent formation of any undesired secondary structure (Figure 2).

3.1 Computing with a Non-reusable Rules IR-WPCR Strand

Suppose we have the single strand in the form shown in Figure 2 prior to the
addition of polymerase. In Section 3.2, we will discuss how we can obtain this
particular secondary structure. W.l.o.g we will assume that the 3

′
end of the

single strand encodes for the complement of the state ai in rule Ri. For clarity,
we will refer to a figure that focuses only on the events at Ri (Figure 3).

Once a∗
i binds to ai in Ri (Figure 3 :State S1) in presence of polymerase

(Figure 3: State S2), the next state biwiyi is copied at the 3
′
end of W , thus de-

hybridizing the (wiyi)∗ portion of the protection strand Pi encoded as (xipiwiyi)∗

(Figure 3: State S3). The y∗
i portion of Pi is now free to hybridize with the yi

portion on the rule Ri that is closer to xi (Figure 3: State S4). The 3
′
end of Pi,

in presence of polymerase (Figure 3: State S5), then extends up to the stopper
sequence S (shown in black filled squares in the figure), thus displacing the 3

′

end of W (Figure 3: State S6). This rule site is now completely unavailable for

Isothermal Reactivating Whiplash PCR 47

further hybridization and hence this protocol is called non-reusable rules IR-
WPCR. The new current state a∗

j = (biwiyi)∗ at the 3
′
end of W then binds to

aj which is the current state for transition rule Rj (Figure 3: State S7). At this
stage, the next step of the computation starts with the polymerase binding to the
head (3

′
end) of W , encoding the current state a∗

j (Figure 3: State S2). Hence,
the state machine operates without thermal cycles and uses only polymerase to
facilitate denaturation of the 3

′
of W from the old rule.

3.2 Preparing a Non-reusable Rule IR-WPCR Strand for
Computation

This section will describe how to obtain the secondary structure of the WPCR
strand W as shown in Figure 2. In order to ensure that the hairpin structure
is stable, we tether the single strand with another nanostructure which has
extended ds-DNA regions. For clarity, we again focus only on rule Ri for the
description of the preparation stage (Figure 4). Since we use a secondary primer
to drive state transition, we need to ensure that the former is correctly hybridized
at the onset. This is because there are two competing sections in each rule Ri (i.e.
yi) where the secondary primer can bind. We can use either a simple or a complex
preparation protocol for this purpose. The complex preparation protocol ensures
that the initial hybridization state of every secondary primer (each corresponding
to a rule Ri) is the desired one through a series of protection/deprotection steps
as described in Figure 4 while the simple preparation protocol takes advantage
of more energetically favorable hybridization as discussed below.

In the simple preparation protocol, once we have guaranteed that the sec-
ondary structure of W is that of a hairpin, we directly introduce the protection
strands Pi for each rule Ri into the solution. Since the wiyi section is longer than

xi yi zi ai biwi yi

ai*
(S1)

xi yi zi ai biwi yi

(S2)

yi*

z
i *

xi yi zi ai biwi yi

(S3)

yj zj

(xj pj wi yj)*

yj zj

xi yi zi aibi wiyi

(S4)ci*

yi zi ci

xi yi zi ai bi wiyi

(S5)yj zj cj

(yj zj cj)*

ai* ai*

ai*ai*
(yj zj)*xi*

(wi yi)*

pi
*

xi*
(wi yi)*

pi
*

(yj zj cj)*ci*

(yj zj)*

ci*

(yj zj)*

ci*

(yj zj cj)*

Fig. 4. Complex Preparation Module with respect to only rule Ri: (S1) WPCR strand
W tethered to support (not shown in figure) (S2) (yizici)

∗ is added to the solution.
One copy binds to the yi near xi and another binds to yi further away from it (S3)
The copy of (yizici)

∗ that binds to the yi in Ri further away from xi is removed by
the addition of yizi. The duplex thus formed is then removed from the solution using
magnetic beads (not shown here) (S4) Protection strand Pi encoded as (xipiwiyi)

∗ is
introduced and it hybridizes with the xi and free wiyi of rule Ri (S5) The copy of
(yizici)

∗ that is bound to the yi in Ri nearer to xi is removed by the addition of yiqizi.
Here too, the duplex is later removed using magnetic beads.

48 J.H. Reif and U. Majumder

the yi region near xi for each Ri the protection strand for Ri acquires the config-
uration shown in Figure 3: State S1 with high probability. For more guaranteed
hybridization of the protection strand with its corresponding transition rules,
one may adhere to the complex protection protocol which has been presented in
Figure 4.

3.3 Handling Inputs

Inputs in the IR-WPCR system can be handled in a manner very similar to
the original WPCR system [1]. Each input symbol that is part of the transition
table, can be encoded between the current state and next state of a rule while
the symbols in the external input string are encoded uniquely (so as to enable
the machine to determine which input symbol to use for the next transition)
and is ligated at the 3

′
end of W at the start of the corresponding transition.

However, there is a catch, in the sense that if the input strands hybridize to the
rules independent of the current state of the WPCR strand then they can bind
long before the current state of the machine is that of a particular transition
rule. Consequently, the resultant computation will be erroneous. On the other
hand, if the current state of a transition rule is bound to a tertiary protection
strand (bearing complement of current state and input symbol for that particular
transition rule) then free floating inputs have to bind to the tertiary protection
strand first and polymerase has to fill in the rest of the bases before the current
state is available to participate in state transition. This protocol will work for
finite state machines that can be represented as directed acyclic graphs (i.e.
machines that do not revisit transitions).

3.4 Limitation

The only limitation of non-reusable rules IR-WPCR is that a rule can only be
used once. One way to avoid this problem is to have several redundant copies
of each rule encoded in W . However, we propose a more elegant solution using
strand displacement in Section 4.

4 IR-WPCR with Reusable Rules

The above mentioned protocol works very well for reducing back-hybridization
since it makes a rule unavailable after a transition. To address the limitation of
the design, this section describes a protocol that uses an additional strand Ai

to displace Pi after primer extension (Figure 5(Right)). This protocol comprises
of the same steps: (a) to (d) as the non-reusable rules IR-WPCR protocol (See
Section 3). Additionally it has a final step (e) where an auxiliary strand Ai

(present in the reaction mixture) changes the secondary structure of Pi. This
strand Ai can partially hybridize with the extended section of Pi and force Pi to
return to its original “protection” state, permitting further computation using
this transition rule. In a manner, the rule is “reset” after the state transition

Isothermal Reactivating Whiplash PCR 49

takes place. Hence this protocol is called Reusable Rules IR-WPCR. In the
following section we describe how a state transition occurs in this new protocol.
Its preparation stage is the same as that of non-reusable rules IR-WPCR (See
Section 3.2).

4.1 Computing with a Reusable Rule IR-WPCR Strand

The first part of evaluation is the same as that in non-reusable rules IR-WPCR
protocol (Figure 5(Right): State S1-State S6). However, unlike the other proto-
col, in this method, the solution additionally contains a large concentration of
Ai, which is encoded as wiyiziaibi. Hence once Pi is extended, its w∗

i region is
used an a toehold by Ai to displace the former. However, the (wiyi)∗ portion at
the end of extended Pi is still free to hybridize with its complementary region
on Ri (Figure 5(Right): State S7). This step ensures that secondary structure of
Pi is “reset” enabling Ri to participate in computation again. The last stage of
evaluation is the same as in non-reusable rules IR-WPCR where the new state
corresponds to biwiyi = aj for some j and hence the 3

′
end of P binds to rule

Rj (Figure 5(Right): State S8).

3’ of W bound to ai

in Ri waiting for
polymerase to bind

3’ of Pi binds to yi near
xi and waits for the
polymerase to bind

next state aj

is copied,
displacing Pi

3’ of Pi extended to S,
dehybridizing 3’ of W

Pi ’s original state
restored by strand
displacement by Ai

Ai binds to wi

in Pi (toehold)

3’ of W bound
to new current

state aj in Rj

rwait rwait
rpoly

rexo

r’polyr’exo

r1f

r1b

r2fr2b

r3f

r3b

rfdispl

rbdispl

S1 S2 S3

S4S5S6

S7

xi yi zi ai bi wi yi

ai*xi* (wi yi)*

pi
*

(S1) (S2) through (S5)
same as non

reusable rules
AR-WPCR

xi yi zi aibiwiyi

(yi zi ai bi wi yi)*

(biwiyi) *

(S6)
xi*

wi*pi
*

wi yi qi zi ai bi

xi yi zi aibiwiyi

wiyizi aibi (S7)(wiyizi aibi)*

(biwiyi) *

xi*
(wi yi)*

pi
*

xj yj zj aj bj wjyj

(S8)

(S2)

aj*=(bi wi yi)*
xj*

(wj yj)*

pj
*

Fig. 5. (Left) Continuous time Markov Chain for rule Ri in the reusable rules IR-
WPCR protocol that does not prevent back-hybridization, (Right) Evaluation Stage in
IR-WPCR with reusable rules with the focus being only on the transition rule to which
the current state is hybridized : (S1)-(S6) Same as IR-WPCR protocol with non-reusable
rules (S7) Ai encoded (wiyiziaibi) present in the solution displaces (wiyiziaibi)

∗ region

of the protection strand Pi so that the configuration of the latter can be reset (S8) 3
′

end of W bearing a∗
j binds to the aj in rule Rj and the process repeats again starting

with the polymerase binding to the 3
′

end of W (State S2)

This additional step adds a number of new behaviors to the computation.
For example, after each state transition, the portion on Pi between the ends
hybridized with Ri has an additional ds-DNA region encoded as wiyiziaibi, and
also gets longer each time Ri is used. The longer strand may prevent reusability
of a rule after some number of steps due to steric hindrance. Note that a copy
of Ai is consumed each time Ri is used so the solution must have an excess of
Ai. Pi must also contain a stopper sequence to prevent Pi from being extended
in an undesired direction.

50 J.H. Reif and U. Majumder

b1
b1 *a1

a1 a1*

a 2
a 2

* b 2 b2*a2 a3 a3 *b3 b3 *a3

W

an bn
* bn

an*
an

ai

bi
*

bi
ai
*

a i

a i
*

a1
*

a1

b1

b
1 *a

1

a2
*

a2

b2

b
2 *a

2

ai*ai

bi

b
i *

a
i

an
*an

bn

b
n *a

n

W

x

x x

x

x

x x

x

x

cooling

polymerase

a1
*

a1

b1

b
1 *a

1

a2
*

a2

b2

b
2 *a

2

ai*ai

bi

b
i *

a
i

an
*an

bn

b
n *a

n

W

x x

x

x

extension by polymerase

a1
*

a1

b1

b
1 *a

1

a2
*

a2

b2

b
2 *a

2

ai*ai bi

bi* ai

an
*an

bn

b
n *a

n

zW

x x x
x

aix* bi*ai*

a1
*

a1

b1

b
1 *a

1

a2
*

a2

b2

b
2 *a

2

ai*ai

bi

b
i *

a
i

an
*an

bn

b
n *a

n

W

x x

x

x

x*
ai
*

ai

bi*

heating

cooling

a1
*

a1

b1

b
1 *a

1

a2
*

a2

b2

b
2 *a

2

aj*aj

bj

b
j *

a
j

an
*an

bn

b
n *a

n

W

x x

x

x

x*

ai*

ai

bi *
aj *

ai*ai

bi

b
i *

a
i

x

(S1)

(S2)

(S3)

(S4)

(S5)

(S6)

Fig. 6. Schematic of the protocol for the folding Whiplash PCR machine that uses
thermal cycling for state transition yet prevents backhybridization using hairpin loops:
(S1) Initial state of the WPCR strand W , (S2) The solution is cooled such that the
next state in each rule hidden in a hairpin loop with current state of the machine being
a∗

i , (S3) Polymerase binds to the 3
′

end of W (bearing the current state), (S4) Next
state b∗i is copied at the head of W by primer extension and hairpin loop is opened,
(S5) The mixture is heated so that W loses its hairpin structure (It may even open up
the individual hairpin loops in each rule, not shown here), (S6) The solution is cooled

so that the head of W can bind to the new current state b∗i = a∗
j encoded at the 3

′

end of the strand and the whole state transition repeats again beginning with State
S2. Note that the next state in each rule is hidden in a stem loop as is the old current
state encoded at the 3

′
end of the WPCR strand. This stem loop formation is key to

preventing back-hybridization in this protocol.

Isothermal Reactivating Whiplash PCR 51

4.2 Limitations of a Reusable Rule IR-WPCR Machine

Reusable rules IR-WPCR suffers from all the limitations of the original WPCR,
such as back-hybridization and out-of-frame annealing. Consequently, previously

xi yi zi ai ai*biwiyi bi*ai

ai*xi* (wi yi)*

pi
* (S1)

ai*

xi*

yi *

pi
*

(S2)

ai*

wiyi

ai

bi bi*

xi yi zi
ai

wi*

d

d

ai*

xi*

yi *

pi
*

(S3)

ai*

wiyi

ai

bi bi*

xi yi zi
ai

wi*

d

xiyi zi aidai*biwi yi

bi*wi*yi*

(S4)

xi* ai*d*ai

(wi yi)* pi
*

bi*ai

(S5)

yi*xi*

wi*

pi
*

xi yi zi aidai*biwi yi bi*ai

bi*wi*yi*ai*d*ai

bi *wi *yi *

(S6)
xi*

wi*pi
*

xi yi zi aidai*biwi yi

bi*wi*yi*yi* zi* ai*d*ai

bi*ai

ai *

ai

d*

aj*

xj*

yj *

pj
*

aj*

wjyj

aj

bj bj*

xj yj zj
aj

wj*

d

bi *wi *yi *

(S7)
xi*

pi
*

xi yi zi aidai*biwi yi

wi*yi*

wi
* yi

* zi
* ai

* d* ai
bi*ai

ai *

ai

d*

ai *

ai

x
*

= bi*wi*yi*

pi
*

wi yi zi ai d
ai
*

xi*

yi *

ai*
wiyi

ai

bi bi*

xi yi zi ai

wi*

d

wi yi zi ai d
ai
*

wi
* yi

* zi
* ai

* d* ai

(S8)

polymerase

polymerase extension

main protocol for
preventing

backhybridization

secondary strand
 binding

polymerase
extension

reseting of a state
using auxiliary strand

beginning of next transition

wi yi qi zi ai bi

Fig. 7. Evaluation Stage for reusable rules IR-WPCR protocol (without thermal cy-
cling) that prevents back-hybridization using folding PCR with the focus being only on
the transition rule Ri to which the current state is hybridized : (S1) WPCR strand W
with protection strand Pi encoded as (xipiyi)

∗ partially hybridized with rule Ri. Also

the 3
′

end of W , bearing the current state a∗
i is hybridized to ai of Ri. (S2) The tem-

perature of the solution is such that the bi part of the next state biwiyi forms part of
a stem loop. (S3) Polymerase binds to the 3

′
end of W . (S4) Polymerase extends a∗

i

to copy biwiyi, thus displacing w∗
i y∗

i of Pi from wiyi of rule Ri located further away
from xi in Ri. Furthermore it opens the stem loop in which part of the next state was
hidden, (S5) y∗

i of Pi binds to yi located next to xi in Ri. Polymerase binds with the

3
′

end of Pi (S6) 3
′

end of Pi is extended by the polymerase to copy ziaid(ai)
∗biwiyi,

thus displacing 3
′

end of W which has the new current state aj = biwiyi. (S7) Ai

encoded (wiyiziaibi) present in the solution displaces (wiyiziaibi)
∗ region of the pro-

tection strand Pi so that the configuration of the latter can be reset. Furthermore, at
the 3

′
end of the WPCR strand the old state ai forms part of a hairpin loop because

of the solution temperature. (S8) The next state of Ri is reset to its stem loop config-

uration and 3
′
end of W bearing a∗

j binds to the aj in rule Rj and the process repeats

starting with the polymerase binding to the 3
′

end of W as shown in State S2.

52 J.H. Reif and U. Majumder

mentioned protocols [9,7] to avoid these problems (e.g: PNA mediation for back-
hybridization) can be incorporated into our system at the expense of losing full
autonomy. Thus, for finite state machines that can be represented as a directed
acyclic graph, non reusable rules IR-WPCR machines may be recommended. For
encoding general purpose state transitioning system, reusable rules IR-WPCR
will probably be better. There is, however, a more general yet complex machine
that builds on the previously described machines and a new protocol which we
call folding WPCR (as described in Figure 6 only due to space constraints) that
allows reuse of transition rule while handling backhybridization.

5 IR-WPCR Machine That Prevents Back-Hybridization

Refer to Figure 7 for the isothermal WPCR with reusable states protocol that
uses folding WPCR to prevent back-hybridization. In isothermal Whiplash PCR
using reusable states, for rule i, the current state is ai while the next state
is biwiyi. However, in the isothermal WPCR that also uses folding WPCR to
prevent back-hybridization, the state encoding is xiyiziaid(ai)∗biwiyiS(bi)∗ai.
Under suitable temperature, (ai)∗biwiyiS(bi)∗ai forms a stem loop and the pro-
tection strand Pi hybridizes with xi and wiyi. W.l.o.g., assume that the current
state is ai and thus the 3

′
end of the WPCR strand is binds to rule i. When the

polymerase binds to this end, it opens up the stem loop hiding part of the next
state encoding in this rule. The 3

′
end of the WPCR strand is extended as far as

the first stopper sequence in this rule. This event, in turn, displaces the 3
′

end
of the protection strand. The latter now binds to its second best match in rule i,
yi. Polymerase now binds to the 3

′
end of the protection strand and it extends

to displace the 3
′
end of the WPCR strand which has the new current state en-

coded in it. This marks the completion of a state transition. An auxiliary strand
already in solution, then resets state i to its original configuration. However, the
only difference between this protocol and the isothermal, reactivating WPCR
with reusable states that cannot prevent back-hybridization is that the former
uses folding WPCR. In other words, at the end of any state transition (say i for
instance), the 3

′
end of the WPCR strand not only has (bi)∗(wi)∗(yi)∗ encoded

in it, but also has (ai)∗dai preceding the (bi)∗(wi)∗(yi)∗ encoding. This folds into
a loop and hides (ai)∗. Similarly, in rule i, the next state bi is hidden in a loop
after being copied at the 3

′
end of the strand. This prevents back-hybridization.

6 Probability and Rate of State Transition in IR-WPCR
Method

The WPCR machine is a stochastic system and hence assuming the correctness
of the original WPCR system, we estimate the likelihood of a single state tran-
sition in the IR-WPCR machine. We base our calculation on the corresponding
continuous time Markov Chain in Figure 5(Right). Based on this Markov Chain
we can also compute the probability and rate of “reseting” a state. We, however,
first need to explain all the rates shown in the Markov Chain (Figure 5(Left)).

Isothermal Reactivating Whiplash PCR 53

6.1 Rate of Polymerization

In Figure 5(Left) rpoly corresponds to the rate at which the next state of length
l1 bases is copied and r

′
poly corresponds to the effective rate at which Pi (l2 bases)

is extended. If the polymerase can extend Nbases bases/sec, then rpoly = Nbases

l1

while r
′
poly = Nbases

l2
. rwait is the mean DNA polymerase and strand encounter

rate, given by rwait = Npoly

Nstrands
vt where Npoly is the number of units of poly-

merase in the solution and Nstrands corresponds to the total number of strands
(each Pi in a W counts for a separate strand). Additionally vt = 1

1
rpoly

+ 1
rpoly

de-

notes the mean number of distinct extensions/sec by 1 unit of polymerase under
optimal conditions using excess target and primer [7]. Furthermore, rexo (r

′
exo)

is the effective rate of exonuclease activity. It is generally very small and is given
by rexo = kexo

l1

Npoly

V and r
′
exo = kexo

l2

Npoly

V where kexo for φ29 (our chosen poly-
merase) can be calculated from primer extension experiments [12]. Here, V is the
total volume of the solution. Since target/primer is in excess, the exonuclease
activity is limited by the concentration of the polymerase.

6.2 Rate of Hybridization

For hybridization events, the rates r1f , r2f and r3f are not concentration de-
pendent since all the components are part of the same nanostructure. Hence
rif ∝

√
hli where hli is the length of the hybridization segment [13] for i = 1, 2, 3

under optimal conditions, thus neglecting effect of temperature and salt concen-
tration. The rate of dehybridization (r1b, r2b and r3b) is given by kfe−Gsei where
Gsei = (c

T − 11)hli, c = 4000 is a constant and T being the temperature of the
solution in K and kf is the forward rate constant [14].

6.3 Rate of Strand Displacement

Finally, for estimating rfdispl and rbdispl we model strand displacement as a 1D
random walk. After the toehold hybridization let G denote the free energy of the
3 strand complex, Gl the free energy after one base pair migration to the left
and Gr the same for migration to the right. Moreover, let ΔGr = Gr − G and
ΔGl = Gl−G where the change in free energy can be computed from the nearest
neighbor model. If pr and pl are the probability for right and left directional
migration, then pr ∝ exp(−ΔGr

RT) and pl ∝ exp(−ΔGl

RT). Further, the mean time
for a single base migration is about 100 μ sec [15]. Hence, rfdispl = c∑ lfdispl

i=1
pri

pri
+pli

and rbdispl = c∑ lbdispl
i=1

pli
pri

+pli

where c = 10000 is a constant, lfdispl and lbdispl

denote the number of bases displaced in the forward and backward direction
respectively. Ai displaces Pi to the right and corresponds to rfdispl.

54 J.H. Reif and U. Majumder

6.4 Likelihood and Rate of a State Transition

Based on the Markov Chain in Figure 5(Left), the probability of a state tran-

sition is given by
(

rpoly

rpoly+rwait

)
·
(

r1f

r1f+rexo

)
·
(

r
′
poly

rwait+r1b

)
·
(

r2f

r2f+r′
exo

)
and

the rate of state transition, given that 3
′

end of W is bound to ai in Ri

and the polymerase is bound at the end of it, is given by rpoly

(
r1f

r1f+rexo

)
·(

r
′
poly

rwait+r1b

)
·
(

r2f

r2f+r′
exo

)
. On the other hand, the probability that a state will

be “reset” or made reusable after participating in the computation is given by(
rpoly

rpoly+rwait

)
·
(

r1f

r1f +rexo

)
·
(

r
′
poly

rwait+r1b

)
·
(

r3f

r3f +r′
exo

)
·
(

rfdispl

rfdispl+r3b

)
while the

corresponding rate is rpoly

(
r1f

r1f+rexo

)
·
(

r
′
poly

rwait+r1b

)
·
(

r3f

r3f +r′
exo

)
·
(

rfdispl

rfdispl+r3b

)
,

given that the current state of W is ai and polymerase is bound to its 3
′
end.

7 DNA Design of IR-WPCR Computing on a 3 State
Machine

In this section we provide a concrete example of the execution of the IR-WPCR
protocol on a 3 state machine. We also describe how one can verify computation
on this state machine using gel electrophoresis and the Fluorescence Resonance
Energy Transfer (FRET) method.

7.1 Encoding of the WPCR Strand

Suppose we have a 3 state machine: s1 −→ s2 −→ s3. For simplicity, we assume
that the input is part of the state description. Thus we have to encode only
two transition rules viz. s1 −→ s2 and s2 −→ s3 in the WPCR strand W
(x1−y1−z1−a1−b1−w1−y1−S−x2−y2−z2−a2−b2−w2−y2−S−S

′−a∗
1) Here

S (6 bases) is the stopper sequence (Our chosen polymerase tends to ignore and
continue polymerizing if stopper sequences are shorter than this length.) and S

′

is the spacer sequence that allows W to form a hairpin structure easily. Observe
that a1 is the encoding for state s1, while b1 −w1 −y1 (or a2) is the encoding for
s2 and finally b2 −w2 − y2 is the encoding for s3. Each state is used for priming
and, hence, comprises of at least 15 bases.

We use polymerase φ29 to drive the computing, because of its excellent strand
displacement capability [16]. However, it has to be used in very low concentration
because of its high fidelity in higher concentrations. Further, if any state is used
as a molecular beacon for FRET experiments (e.g: b2w2y2) the length has to
be at least 24 bases. Besides W , we need to consider P1’s DNA design. P1

binds to the x1 and w1y1 of rule R1 before extension and, hence, at least three
bases are necessary for each section to ensure stable hybridization. It should be
remembered that, since R2 is the last transition rule visited by the hairpin, it
is not necessary to include P2 or A2 for R2. This compact hairpin structure is
more suitable for gel analysis.

Isothermal Reactivating Whiplash PCR 55

We can perform two distinct experiments E1 and E2 to verify whether both
state transitions are executed. This is essential because, in IR-WPCR protocols,
once the polymerase is added to the solution, in theory, the reaction goes to com-
pletion. Thus, it is not easy to probe the state of W after every state transition.
Hence, E1 corresponds to the experiment when W encodes for s1 −→ s2 and
s2 −→ s3 while, in E2, W encodes for s1 −→ s2. Since we have only a three state
machine these experiments together allow us to study the secondary structure
of W . It should be noted that for E2 we do not need either P1 or A1 since s2 is
the final state for this experiment. Sequences designed for E1 and E2 are shown
in Figure 8.

E2:
W: CAAGACCGGAGGCGC ACGCGCGGCACACGAGGACGACCA (T)30 GCGCCTCCGGTCTTG

a1 b1 w1 y1 a1*S’

B2: Flourescein GCGAGC TGGTCGTCCTCGTGTGCCGCGCGT GCTCGC Dabcyl

h1* (y1 w1 b1)* h1
QuencherFluorophore

E1:
W: GTA CGA CA CAAGACCGGAGGCGC ACGCGCGGC ACA CGA TTTTTT

ACGCGCGGCACACGA GGAGAAACCGGCGAGCACGAGGAA (T)60 GCGCCTCCGGTCTTG

B1: Flourescein GCGAGC TTCCTCGTGCTCGCCGGTTTCTCC GCTCGC Dabcyl

h1* (y2 w2 b2)* h1
QuencherFluorophore

P1: TCG TGT (T)30 TAC

y1* w1* p1* x1*

A1: ACA CGA CA CAAGACCGGAGGCGC ACGCGCGGC
w1 y1 z1 a1 b1

a1*S’b2 w2 y2a2

Sy1 z1 w1 y1x1 a1 b1

Fig. 8. DNA Sequences for experiments E1 and E2

7.2 Verification of Computation with FRET Analysis

Before introducing φ29 for E1 we add P1 to W and anneal the mixture to
30◦C so that W can attain the hairpin structure and P1 can bind to rule R1.
Auxiliary strand A1 is added in the next step. Once a small volume of very low
concentration (about 0.05μM) φ29 is added to the solution at 30◦C, the resultant
mixture is ready to be analyzed in about 30 minutes [16]. Gel electrophoresis
may be performed to analyze size of W before and after adding φ29. However,
the inference may not be conclusive.

To perform FRET analysis, we use the molecular beacon [17] technique. For
E1 we use an extended b2w2y2 region (about 24 bases in length) that is bound
to a single strand B1 encoded as h(b2w2y2)∗h∗. There is a fluorophore and a
quencher at the two ends of B1. h and h∗ are complementary to each other and
each is about 6 bases long. The idea of a molecular beacon is that, when W
copies the next state in R2, it will displace B1. Consequently, B1 is released and
the h portion of B1 binds to its h∗ portion, resulting in a hairpin. Consequently,
there is a detectable drop in fluorescence signal. Similarly for E2, the molecular
beacon B2 (h(b1w1y1)∗h∗) is hybridized to b1w1y1 region of R1 in W . Here too,
as soon as the next state in R1 is copied byφ29, B2 is released, forms a hairpin
and the existing fluorescence is quenched.

56 J.H. Reif and U. Majumder

8 Conclusion

In summary, WPCR is an useful model of computation for running distinct pro-
grams in parallel. However, existing protocols are not simultaneously isothermal
and autocatalytic, thus limiting the number of steps the machine can execute as
well as its flexibility. Here, we presented three such protocols of for computing
with WPCR. The key idea is to use strand displacement and polymerization of
a secondary priming sequence to dehybridize the 3

′
of the WPCR strand once

the next state is copied eliminating the need for a thermal cycle. One immediate
future direction is to verify with laboratory experiments and computer simula-
tion the proposed design of the 3 state machine (Section 7) and compare the
yields with that of the original WPCR implementation [9,1].

References

1. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: In: Rubin, H.,
Woods, D.H. (eds.) DNA Based Computers III, pp. 55–72. American Mathematical
Society (1999)

2. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Nature 394(6693), 539–544 (1998)
3. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Na-

ture 414, 430–434 (2001)
4. Soloveichik, D., Winfree, E.: Theoretical Computer Science 244, 279–297 (2005)
5. Matsuda, D., Yamamura, M.: Cascading whiplash PCR with a nicking enzyme. In:

Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 38–46. Springer,
Heidelberg (2003)

6. Nishikawa, A., Hagiya, M.: In: Angeline, P.J., Michalewicz, Z., Schoenauer, M.,
Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Compu-
tation, vol. 2, pp. 960–966. IEEE Press, Los Alamitos (1999)

7. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: PNA-mediated whiplash PCR.
In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 104–116.
Springer, Heidelberg (2002)

8. Winfree, E.: Whiplash PCR for o(1) computing. Technical Report 1998.23, Caltech
(1998)

9. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama,
H., Hagiya, M.: State transitions by molecules. Biosystems 52, 81–91 (1999)

10. Rose, J.A., Komiya, K., Yaegashi, S., Hagiya, M.: Displacement whiplash PCR:
Optimized architecture and experimental validation. In: Mao, C., Yokomori, T.
(eds.) DNA12. LNCS, vol. 4287, pp. 393–403. Springer, Heidelberg (2006)

11. Majumder, U., LaBean, T., Reif, J.:DNA 13. LNCS, vol. 287, pp. 195–214. Springer,
Heidelberg (1987)

12. Saturno, J., Blanco, L., Salas, M., Esteban, J.: J. of Bio. Chem. 270(52), 31235–31243
(1995)

13. Hames, B.D., Higgins, S.J.: Gene Probes 2. Oxford University Press, Oxford (1995)
14. Winfree, E.: Simulation of computing by self-assembly. Technical Report 1998.22,

Caltech (1998)
15. Sahu, S., Wang, B., Reif, J.H.: A framework for modeling DNA based molecular

systems. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 250–265.
Springer, Heidelberg (2006)

16. Sahu, S., LaBean, T.H., Reif, J.H.: A nanomotor powered by polymerase perform-
ing motions on DNA tracks (manuscript, 2008)

17. Tyagi, S., Kramer, F.: Nat Biotechnol. 14(3), 303–308 (March 1996)

DNA as a Universal Substrate for Chemical

Kinetics

(Extended Abstract)

David Soloveichik, Georg Seelig, and Erik Winfree

California Institute of Technology, Pasadena, CA, USA
dsolov@caltech.edu, seelig@dna.caltech.edu, winfree@caltech.edu

Abstract. We show that a DNA-based chemical system can be con-
structed such that it closely approximates the dynamic behavior of an
arbitrary system of coupled chemical reactions. Using strand displace-
ment reactions as a primitive we explicitly construct reaction cascades
with effectively unimolecular and bimolecular kinetics. Our construction
allows for individual reactions to be coupled in arbitrary ways such that
reactants can participate in multiple reactions simultaneously, correctly
reproducing the desired dynamical properties. Thus arbitrary systems
of chemical equations can be compiled into chemistry. We illustrate our
method on a chaotic Rössler attractor; simulations of the attractor and
of our proposed DNA-based implementation show good agreement.

1 Introduction

Chemical reaction equations and mass action kinetics provide a powerful math-
ematical language for describing and analyzing chemical systems. For well over
a century, mass action kinetics has been used to model chemical experiments, in
order to predict and explain the evolution of the various species over time, and
to elucidate the dynamical properties of the system under investigation. Chem-
istry exhibits complex behavior like oscillations, limit cycles, chaos or pattern
formation, all of which can be explained by the corresponding systems of coupled
chemical reactions [1,2,3]. While the use of mass action kinetics to describe exist-
ing chemical systems is well established, the inverse problem of experimentally
implementing a given set of chemical reactions has not been widely considered.
Many systems of coupled chemical equations appear to not have realizations in
known chemistry.

Here we propose a method for implementing an arbitrary system of coupled
chemical reactions using nucleic acids. We develop an explicit implementation of
unimolecular and bimolecular reactions which can be combined into arbitrarily
coupled reaction networks. In a formal system of chemical reactions such as

A
k1−→ B

A + B
k2−→ C + D

C
k3−→

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 57–69, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

58 D. Soloveichik, G. Seelig, and E. Winfree

a species may need to participate in multiple reactions, both as a reactant and/or
as a product (species A, B or C) and these reactions need to progress at rates
determined by the rate constants (k1, k2 and k3). This imposes onerous con-
straints on the chemical properties of the species participating in these reactions.
For example, it is likely hard to find a physical implementation of the chemical
reaction equations using small molecules, since small molecules have a limited set
of reactivities. Information-bearing biopolymers such as proteins or nucleic acids
provide a more promising physical substrate for implementing arbitrary chemi-
cal reactions. Nucleic acids have the unique advantage that interactions between
different single-stranded species can be programmed since sequence determines
reactivity through Watson-Crick base pairing.

In our DNA implementation, we assign each formal species (e.g., A, B, C, D)
to a set of DNA molecules. In some instances it may be possible to map a formal
species to a single oligonucleotide but more generally a single formal species will
correspond to several DNA species in order to reproduce the correct kinetics.
Effective interactions between the species are mediated by an additional set of
DNA complexes. Since the underlying chemistry involves aqueous-phase nucleic
acid hybridization and strand exchange reactions, arbitrarily large rate constants
and concentrations cannot be attained. However, any system of coupled chem-
ical reactions can be scaled to use smaller rate constants and concentrations
without affecting the kinetics except by a scaling factor (see Section 6). While
our constructions are purely theoretical at this point, they are based on realistic
assumptions and provide a roadmap for future experiments.

In the next section we describe strand displacement reactions that will serve
as the basic building block for our construction. In the following section we
show how to implement arbitrary unimolecular reactions, and then extend our
construction to cover bimolecular reactions. In the final section we give a demon-
stration of our approach by describing the implementation of a system due to
Willamowski and Rössler [4] with 3 species and 7 reactions exhibiting chaotic
concentration fluctuations. Numerical simulations of the original formal system
and our DNA-based chemical reactions using realistic rate constants and con-
centrations are in good agreement.

2 Cascades of Strand Displacement Reactions

We use strand displacement reactions as the basic primitive for our construc-
tions (Fig. 1). Strand displacement has been found to be a flexible method for
designing complex behaviors with nucleic acids including motors, logic gates,
and catalysts [5,6,7,8]. Although a strand displacement reaction involves multi-
ple elementary steps, including a random walk process, it is well modeled as a
second-order process for a wide range of reaction conditions [9,10]. The effective
rate constant of the second-order process is governed by the degree of sequence
complementarity between the toeholds on the single-stranded species and on the
partially double-stranded species [10].

We have recently used strand displacement cascades to construct DNA-based
logic circuits [6,8]. Here we use some of the nomenclature and ideas from that

DNA as a Universal Substrate for Chemical Kinetics 59

waste

input A

gate g

output B

1

1

12

22

2
22

3

33

1* 1*

1*

2* 2*

2*

Fig. 1. Strand displacement reactions. The 3′ end of each strand is indicated by an
arrow. Functional domains are numbered and the star indicates complementarity. We
use the underline notation 1∗ to indicate that this domain may not be completely com-
plementary to domain 1. The reaction between input strand A and gate g is initiated at
the toehold (dashed, domain 1∗). The reaction then proceeds through multiple short-
lived intermediates and leads to the release of an output strand B and the formation
of a chemically inert double-stranded waste product. Kinetically, the overall reaction

is well approximated as being bimolecular, i.e., A + g
k−→B, where we omit the in-

ert waste product. The value of the rate constant k depends on reaction conditions
(salt, temperature), length and sequence composition of the toehold as well as the de-
gree of complementarity between the toeholds on the strand and gate (domains 1 and
1∗). In practice, toehold domains are typically 2–8 nucleotides long, and the domains
undergoing strand displacement are typically 20–30 nucleotides long.

work. Fig. 2 shows a two-stage strand displacement cascade where an input
single-stranded nucleic acid species (strand) initiates a strand displacement cas-
cade between two complexes (gates) leading to the release of an output strand. In
strand displacement cascades, a strand is functionally inactive before its release
from a gate and becomes active upon becoming completely single-stranded. For
example, intermediate strand o cannot react with translator gate t before it is
released from gate g because its toehold domain 3, which is required for initiating
the reaction with t, is double-stranded. Similarly, output Bs cannot initiate a
downstream strand displacement cascade until it is released from translator gate
t because its toehold domain 4 is double-stranded. However, upon the addition
of free As, intermediate strand o is released through strand displacement, which
then causes the release of output Bs. The release of strand Bs makes it capable
of initiating other strand displacement cascades in turn. Note that the binding
of a toehold domain to its complement is transient unless a strand displacement
reaction can be initiated because the toehold domains are short. Thus, for ex-
ample, the 3 domain of input As does not block the 3∗ domain of translator
gate t.

An input or output strand has two regions: a recognition region which can
participate in a strand displacement reaction, and a history region which cannot.
The sequence of the history region (e.g., domain 7 on strand Bs) is determined
by the translator gate from which the strand was released. All strands with the
same recognition region react equivalently and we do not distinguish between
them. For example, any strand with recognition region 1-2-3 is called As and any
strand with recognition region 4-5-6 is called Bs. Since there are no sequence
constraints (i.e., complementarity or equality) between the recognition region of

60 D. Soloveichik, G. Seelig, and E. Winfree

intermediate oinput As

q1

q2

gate g waste

translator gate t waste

? 1 2 3

6
5

47

4*7*3*

3 47

1* 2* 3*

2 3

2

7
4

1* 2* 3*

?
1 2 3

4*7*3*

2
3 47

intermediate o

recognition
region

history
region

output Bs

7 4 5 6

recognition
region

history
region

a)

b)

3 472

Fig. 2. Two-stage strand displacement cascade. Functional domains are numbered and
all toehold domains are dashed. Different recognition regions are shown in different
color. Input or output strands with identical recognition regions react equivalently
and are therefore grouped into the same species. For example, As is any strand with
recognition region 1-2-3, and Bs is any strand with recognition region 4-5-6, irrespective
of their history regions. The two-stage cascade shown produces Bs with history region
7. Note that the sequences of the recognition regions of input and output strands As
and Bs (1-2-3 and 4-5-6) may be completely unrelated to one another and therefore
such a two-stage strand displacement cascade can link any input with any output
species. a) Input strand As binds to gate g and by a strand displacement reaction
releases the intermediate strand o. b) The intermediate strand o binds translator gate
t and by a strand displacement reaction releases the output Bs.

a)

b)

intermediate oAs

q1

q2

gate g waste

translator gate t waste

? 1 2 3

9
8

7

7*

11

11*

6
5

410

4*10*3*

3 410 11 7

1* 2* 3*

2 3

2

10
4

11
7

1* 2* 3*

?
1 2 3

7*11*4*10*3*

2
3 410 11 7

intermediate o

recognition
region

history
region

Bs

10 4 5 6

recognition
region

history
region

Cs

11 7 8 9

recognition
region

history
region

3 410 11 72

Fig. 3. Molecular implementation of the unimolecular reaction A→B + C. Orange
boxes highlight the DNA species As, Bs, and Cs that correspond to the formal species
A, B, and C. Rate constant q1 can be reduced by decreasing the complementarity
between domains 1 and 1∗. The sequences of the recognition regions of input and output
strands As, Bs, and Cs (regions 1-2-3, 4-5-6, and 7-8-9, respectively) may be completely
unrelated to one another. The regime for desired unimolecular kinetics (concentrations
of g, t and rate constants q1, q2) is described in the text. a) Input strand As binds
to gate g and by a strand displacement reaction releases the intermediate strand o.
b) The intermediate o binds translator gate t and by a strand displacement reaction
releases the outputs Bs and Cs.

DNA as a Universal Substrate for Chemical Kinetics 61

the input strand As and the output strand Bs, arbitrary chains of such two-step
cascades can be linked together. This is possible for two-step cascades as shown
(see “full translator” in Ref. [6]); however, a one-step cascade would force a part
of the recognition region of the output strand to have sequence equality with the
input strand, complicating the sequence design process. We call the second gate
a translator gate to emphasize its role in translating the input to the appropriate
output. A two-step strand displacement cascade may output multiple strands if
we attach two outputs to translator gate t and extend the intermediate strand o
using one more distinct history region (as is shown in Fig. 3). Again no sequence
constraints exist between the input and the output strands.

In the design of systems of coupled two-step cascades, nucleic acid sequences
need to be constructed to avoid unintended interactions. For instance, we can
first design all recognition regions to have maximally independent sequences, and
then for every translator gate, design maximally independent history regions of
its output strands. Then a gate can react with only one recognition region (g-
type gates) or intermediate strand (translator gates), ensuring the specificity of
interactions. In addition, all sequences must have minimal secondary structure,
such as hairpin loops, because such structure can inhibit the desired interactions.

3 Arbitrary Unimolecular Reactions

As a first step we will implement the basic monomolecular reaction A
k→B, such

that A and B are single-stranded nucleic acid species with completely inde-
pendent recognition regions. As we will show, the appropriate monomolecular
kinetics can be obtained as a limiting case of the reaction kinetics for a two-step
strand displacement cascade:

A
k−→B ⇒

{
As + g

q1−→ o
o + t

q2−→ Bs

We use the notation As and Bs to mean the implementation of formal species A
and B by DNA strands with recognition regions unique for A and B, respectively.
We do not include inert waste products when writing the chemical reaction
equations. We now discuss the conditions required to make the implementation
valid. First, we assume that all non-designed interactions are negligible. We will
work in a regime where the concentrations [g] and [t] are in large excess of [As]
and [o] so that they remain effectively constant at initial values [g]0 and [t]0
respectively. Then the two-step strand displacement cascade becomes equivalent
to a pair of monomolecular reactions:

As
q1[g]0−→ o

o
q2[t]0−→ Bs

By varying the toehold strength of gate g which determines rate constant q1, or
the initial concentration [g]0, we set q1[g]0 equal to the formal rate constant k and

62 D. Soloveichik, G. Seelig, and E. Winfree

attain d[As]/dt = −k[As] as desired. To also ensure that d[Bs]/dt = k[As], we
make q2[t]0 large enough that intermediate strand [o] settles to its quasi-steady-
state value q1[g]0[As]/(q2[t]0) on a much faster time scale than that on which
[As] changes. Then d[Bs]/dt = q2[t]0[o] ≈ q1[g]0[As] = k[As] as desired. To make
the quasi-steady-state approximation hold in this example, we can increase the
relative toehold strength of gate t compared to gate g, or use a much larger
initial concentration [t]0 than [g]0.

While experimentally, it may be useful to vary the degree of toehold comple-
mentarity affecting q1 or concentration of gates [g]0 to tune the effective rate
constant, for simplicity throughout this paper we control reaction kinetics by
tuning toehold strengths, while treating all gates as being present at the same
high concentration ξ. Thus we set q1 equal to k/ξ.

The same scheme can be extended to more complex unimolecular reactions.
Reactions with more than one product species (e.g., A→B + C or A→ 2B)
including catalytic (e.g., A→A + B) and autocatalytic reactions (e.g., A→ 2A)
can be constructed using a translator gate t that releases multiple strands as in
Fig. 3. Removing the translator gate altogether allows for unimolecular decay
reactions (e.g., A→). Fractional product stoichiometry (e.g., A→(1/3)B + C)
can be realized using a mixture of translator gates with some fraction having
incomplete output strands. For example, reaction A→(1/3)B + C can be im-
plemented if 2/3 of translator gates t in Fig. 3 are missing the 7-8 domains.
Fractional product stoichiometries are equivalent to multiple reactions in which
the same reactants produce different products, where the products are in integer

stoichiometries. E.g. the two reactions A
2k/3−→C and A

k/3−→B + C are kinetically
equivalent to a single reaction A

k−→(1/3)B + C. Conversely, all reactions with
the same reactants but different products can always be combined into one re-
action with possibly fractional product stoichiometries.

Arbitrary sets of unimolecular reactions can be coupled together by reusing
the same recognition region in multiple reactions. Each reaction corresponds to
a distinct two-step strand displacement cascade. For example, the system

A
k1−→ B + C

B
k2−→ 2B

can be implemented with gate-mediated reactions

A
k1−→B + C ⇒

{
As + g1

k1/ξ−→ o1

o1 + t1 −→ Bs + Cs

B
k2−→ 2B ⇒

{
Bs + g2

k2/ξ−→ o2

o2 + t2 −→ 2Bs

where unlabeled rate constants are much larger than k1/ξ and k2/ξ and initial
concentrations [ti]0, [gi]0 = ξ are high enough to remain effectively constant.
The expressions for the DNA gate-mediated reactions in terms of formal rate

DNA as a Universal Substrate for Chemical Kinetics 63

constants are obtained from the above analysis. As described in the previous sec-
tion, the different two-step strand displacement cascades do not have significant
undesired interactions. Thus each reaction should proceed without interference
from the others except through the desired coupling of input and output strands.

4 Arbitrary Bimolecular Reactions

Consider the basic bimolecular reaction A + B
k→C. Since a reaction between

an input strand and a gate can be viewed as being bimolecular, it provides
a possible implementation of this reaction. As before, A is mapped to strand
As, but now B would have to be mapped to a gate. To emphasize that a gate is
mapped to a formal species B we call the gate Bg. As in the case of unimolecular
reactions, we can use the translator gate t to ensure sequence independence
between recognition regions of As and Cs. The corresponding gate-mediated
reactions therefore are:

A + B
k−→C ⇒

{
As + Bg k−→ o

o + t −→ Cs

We set the unlabeled rate constant to be very large and the initial concentration
of the translator gate [t]0 = ξ to be big enough to remain effectively constant.
Then using the quasi-steady-state approximation for the intermediate strand o as
in Section 3 we obtain the desired effective bimolecular reaction rate k[As][Bg].

Having said that, this naive implementation has severe shortcomings. Since
strand As must directly bind gate Bg, their sequences are not independent.
Thus, gate Bg can react only with input As and cannot participate in reactions
with other strand species. Further, it is not always possible to uniquely assign
reactants to a gate or a strand. One such example is the following system:

A
k1−→ B

A + B
k2−→ C

If we combine the implementation of monomolecular reactions developed in the
previous section with the proposed bimolecular scheme, in the resulting system
species B is mapped to two different forms, a strand Bs and a gate Bg2:

A
k1−→B ⇒

{
As + g1

k1/ξ−→ o1 (i)
o1 + t1 −→ Bs (ii)

A + B
k2−→C ⇒

{
As + Bg2

k2−→ o2 (iii)
o2 + t2 −→ Cs (iv)

The concentrations of strand form Bs and gate form Bg2 are entirely indepen-
dent, and therefore the DNA reactions do not implement the desired formal
chemical system.

64 D. Soloveichik, G. Seelig, and E. Winfree

linker gate l
buffer b

Bg

intermediate o

intermediate o

waste

waste

q

-q
+

+

+

+

+

+

+

q1

q2

Bs

?
?

1 2 3

recognition
region

history
region

As

? 4 5 6

2 4 2 435 6

6* 6* 10*7*10* 7*

recognition
region

history
region

Cs

10 7 8 910 7 106 78
9

recognition
region

history
region

a)

b)

c)

translator gate t

5

5

6

5*4*2*1* 6*

3

3*

1

1*

10 7

10
7

2 5 6

5*4*2* 6*

3

3*

10
7

? 1 2 54 6

Bg

? 1

1*

2 5 6

5*4*2* 6*

3

3* 1* 5*4*2* 6*3*

10
7

?

5 6 10 7

Fig. 4. Molecular implementation of the bimolecular reaction A+B→C. Orange boxes
highlight the DNA species As, Bs, and Cs that correspond to the formal species A, B,
and C. Rate constant q1 can be reduced by decreasing the complementarity between
domains 4 and 4∗. The sequences of the recognition regions of input and output strands
As, Bs, and Cs (regions 1-2-3, 4-5-6, and 7-8-9, respectively) are completely unrelated
to one another. The regime for desired bimolecular kinetics (concentrations of l, b, t
and rate constants q+, q−, q1, q2) is described in the text. a) Input strand Bs reversibly
binds to the linker gate l forming the activated gate Bg, i.e., B + l � Bg + b. b) Input
strand As binds to the activated gate complex Bg and irreversibly releases intermediate
strand o through strand displacement. c) The intermediate strand o binds translator
gate t and by a strand displacement reaction releases the output Cs.

However, if the two forms of B could be interchanged into one another on a
time scale that is fast compared to the other reactions in the system, the correct
behavior can be restored. We can link the two species Bs and Bg2 through a
fast reversible reaction

Bs
k+

−⇀↽−
k−

Bg2

such that the two species achieve pseudoequilibrium. Then the formal species
B exists in two different forms: B = {Bs, Bg2} and the total concentration of
B is [B] = [Bs] + [Bg2]. Let f(Bg2) = [Bg2]/[B] be the fraction of B in gate
form Bg2. Under the pseudoequilibrium assumption, f(Bg2) = (k+ + k−)/k+

is a constant. Since the second formal reaction can only use the gate form Bg2

as a reactant, and not all of B, we scale the rate constant of reaction (iii) by
1/f(Bg2) so that the new rate constant is k2/f(Bg2). Then the effective rate
of the implementation of A + B

k2−→C is (k2/f(Bg2))[As][Bg2] = k2[A][B] as
desired. We can easily extend this idea to create a pseudoequilibrium between
strand Bs and gates Bgi for multiple reactions i.

We realize the above reaction establishing pseudoequlibrium between Bs and
Bg2 using a linker gate shown in Fig. 4(a). Strand Bs and buffer strand b

DNA as a Universal Substrate for Chemical Kinetics 65

reversibly compete with each other via strand displacement reactions in a toe-
hold exchange process [8]. Thus the reaction establishing pseudoequilibrium is
implemented with gates as follows:

Bs
k+

−⇀↽−
k−

Bg2 ⇒ Bs + l
q+

−⇀↽−
q−

Bg2 + b

For the correct first-order kinetics Bs
k+

−⇀↽−
k−

Bg, the linker gate l and the buffer

strand b must be in excess, such that their concentrations remain effectively
constant. Then k+ = q+[b]0 and k− = q−[l]0 where [b]0 and [l]0 are the initial
concentrations of the buffer and linker strands respectively. For simplicity we
will use [b0] = [l]0 = ξ and q+ = q−.

Lastly, we need to confirm the absence of unintended cross-reactions when
implementing multiple coupled bimolecular reactions. As in the simple strand
displacement cascades described in Section 2, gates can only react with specific
recognition regions or intermediate strands. The exception to this rule is the
reaction of gate Bg with the buffer strand b. Gate form Bg can react with any
strand with accessible domains . . . 3-4. Because without loss of generality we
can assume that there is only one formal reaction A + B → (see discussion of
fractional product coefficients in Section 3), and domains 3 and 4 are unique to
Bs and As respectively, nothing other than the correct buffer strand can react
here.

5 Systematic Construction

In this section we take the ideas developed above and describe a systematic
algorithm for compiling arbitrary unimolecular and bimolecular reactions into
DNA gate-mediated chemistry. This algorithm is used in the next section to
implement a Rössler attractor chaotic chemical system.

Without loss of generality we assume that every reaction has a unique combi-
nation of reactants. For example, the pair of reactions A+B

k1→C and A+B
k2→D

are combined into a single reaction A+B
k1+k2−→ (k1/(k1 +k2))C +(k1/(k1 +k2))D

(see the discussion of fractional product coefficients in Section 3). Let i index
reactions and Xj ∈ {A, B, C, . . . } index species. Let f(Xjs) be the fraction of
Xj in strand form Xjs. Similarly let f(Xjgi) be the fraction of Xj in gate form
Xjgi.

Consider any unimolecular formal reaction i. Write the reaction as X1
k→α2 ·

X2 + · · · + αn · Xn, where 0 < α ≤ 1. We implement this reaction by a two-step
strand displacement cascade (Fig. 3), modeled by the DNA gate reactions below
(where we omit inert waste products, and combine all strands with the same
recognition regions into a single species).

X1s + gi
k′

−→ oi

oi + ti −→ α2 · X2s + · · · + αn · Xns.

66 D. Soloveichik, G. Seelig, and E. Winfree

Product fractions αj are set by preparing translator gate ti with αj fraction of
complete and 1−αj incomplete output strands for Xjs as discussed in Section 3.
Unlabeled rate constants as well as the initial concentrations [gi]0 = [ti]0 = ξ
are as high as possible. Rate constant k′ is set to k

ξf(X1s) by varying the degree
of complementarity of the toehold on gate gi with the toehold on strand X1s.
Note that by following the argument of Section 3, and using the fact that [X1] =
[X1s]/f(X1s), the effective rate of this reaction is k′[X1s]ξ = k[X1] as desired.

Consider any bimolecular formal reaction i. Write the reaction as X1+X2
k→α3·

X3 + · · ·+αn ·Xn, where 0 < α ≤ 1. We implement this reaction by a linker gate
mechanism combined with the two-step strand displacement cascade (Fig. 4)
and is modeled by the DNA gate reactions below (where we again omit inert
waste products, and combine all strands with the same recognition regions into
a single species).

X1s + li −⇀↽− X1gi + bi

X2s + X1gi
k′

−→ oi

oi + ti −→ α3 · X3s + · · · + αn · Xns

Product fractions αj are set by preparing translator gate ti with αj fraction of
complete and 1−αj incomplete output strands for Xjs as before. Unlabeled rate
constants are as high as possible, with the forward and reverse rates of the first
reaction being equal. Rate constant k′ is set to k

f(X2s)f(X1gi)
by varying the de-

gree of complementarity of the toehold on X1gi with the toehold on strand X2s.
The initial concentrations [li]0 = [bi]0 = [ti]0 = ξ are as high as possible. Fol-
lowing the argument of Section 4, and using the facts that [X2] = [X2s]/f(X2s)
and [X1] = [X1gi]/f(X1gi), we see that the effective rate of this reaction is
k′[X2s][X1gi] = k[X1][X2] as desired.

With the above construction, determining f(Xjs) and f(Xjgi) is easy: for
every i, j, f(Xjs) = f(Xjgi) = 1/(m + 1) where m is the number of bimolecular
reactions in which Xj appears as the first reactant.

The sequences of the DNA components can be designed as follows. First, for all
formal species design maximally independent recognition regions with minimum
secondary structure. Then, for each formal reaction, design the history regions
for all products of that reaction to be maximally independent and have minimum
secondary structure. At this point all auxiliary DNA species are fully specified.
Significant unintended interactions between auxiliary species participating in
different formal reactions cannot occur by the arguments in Sections 2 and 4.
The system is initiated by adding appropriate starting amounts of the formal
species in single-stranded form with arbitrary history regions.

6 Example

We illustrate our method of using DNA-based chemistry to implement arbi-
trary formal systems of coupled chemical equations on the chaotic system due

DNA as a Universal Substrate for Chemical Kinetics 67

1

2

3
7

6

5

4

a) Target system b) Reactions for DNA implementation

5000 10 000 15 000 20 000 25 000 30 000 35 000

- 10

- 8

- 6

- 4

- 2

1000 2000 3000 4000 5000

- 8

- 6

- 4

- 2

c)

e) f)

d)
time (sec) time (sec)

lo
g 1

0
co

nc
en

tra
tio

n

lo
g 1

0
co

nc
en

tra
tio

n

-7.5
-7.0

-6.5

log10 [A]
-7.5

-7.0
-6.5

log10 [B]

-8.0

-7.5

-7.0

-6.5

log10 [C]

-7.5
-7.0

-6.5

log10 [A]
-7.5

-7.0
-6.5

log10 [B]

-8.0

-7.5

-7.0

-6.5

log10 [C]

Fig. 5. Rössler attractor example. (a) The formal chemical reaction system to be
implemented. (b) Reactions modeling our DNA implementation. Each bracket im-
plements the formal reaction with the number indicated. Here k1 through k7 are
the original rate constants for reactions 1 through 7 as in (a). Multiplicative fac-
tors fA = 1/f(As) = 1/f(Ag2) = 1/f(Ag5) = 3, fB = 1/f(Bs) = 1/f(Bg3) = 2,
fC = 1/f(Cs) = 1/f(Cg7) = 2. We use initial concentration of the gates and buffer
strands ξ = 10−4. Unlabeled rate constants are 105. (c) Plot of the log-concentrations
of A (solid), B (dashed), C (dotted) for the original system (red), as well as their mod-
eled concentrations (black). (d) Longer time plot showing also the log-concentrations of
gi (blue, decreasing) and bi (blue, increasing). (e,f) Trajectories of the original system
and DNA implementation in the 3-dimensional phase-space (first 5 hours).

68 D. Soloveichik, G. Seelig, and E. Winfree

to Willamowsky and Rössler [4]. We start with the following formal reactions,
where the rate constants are from Ref. [11]:

1 : A
30−→ 2A

2 : 2A
0.5−→ A

3 : B + A
1−→ 2B

4 : B
10−→

5 : A + C
1−→

6 : C
16.5−→ 2C

7 : 2C
0.5−→ C

The strange attractor for the concentrations of A, B, and C is in the range of
about 0–40.

First we scale this system into a regime realistic for DNA-based chemistry
which constrains reaction rates and concentrations. Second order rate constants
for strand displacement reactions can be approximately in the range 0–106/M/s,
with their value determined by the degree of toehold complementarity [10]. Typ-
ical experimental concentrations are on the order of 0–10−3M . Similar to experi-
mental implementations of other dynamical chemical systems, a flow reactor may
be used to replenish the stock of unreacted gates and remove waste to maintain
the appropriate reaction conditions [3]. This may make it possible to use lower
gate concentrations.

Clearly, by scaling all rate constants by the same factor we simply speed up
or slow down the system without affecting the dynamical behavior. We can scale
the concentrations at which the chaotic system operates by scaling the bimolec-
ular rate constants differently from the unimolecular ones. In general if [Xj](t)
are solutions to differential equations arising from a set of unimolecular and
bimolecular reactions, then α[Xj](t) are solutions to the differential equations
arising from the same set of reactions but in which we divide all bimolecular rate
constants by α. We first slow down the system by multiplying all rate constants
by 10−3, and then use concentration scaling factor α = 10−8, obtaining the rate
constants in Fig. 5(a).

Applying our construction yields a DNA implementation governed by the equa-
tions in Fig. 5(b). Simulations confirm (Fig. 5(c, d)) that the DNA implementation
behaves very close to the formal system (a) until the depletion of linker gates li
and the buildup of buffer strands bi sufficiently alters the effective rate constants,
gradually decoupling the gate implementation from the target system.

7 Conclusion

We have proposed a method for approximating an arbitrary system of coupled uni-
molecular and bimolecular chemical reactions using DNA-based chemistry. Our
construction takes advantage of cascades of strand displacement reactions [6], and
elementary techniques of approximation in chemical kinetics. Each formal species

DNA as a Universal Substrate for Chemical Kinetics 69

occurring in the system of chemical reactions is represented as a set of strands and
gates. The multiform representation is necessary because it is not always possible
to find a single DNA species that is capable of participating in all reactions in-
volving a given formal species. However, the different forms are constructed to be
in equilibrium with each other and thus participate in kinetics as if they were a
single species, up to a scaling of rate constants.

While we have taken care to provide a systematic algorithm for compiling a set
of chemical reactions into DNA, in practice it may often be possible and prefer-
able to reduce the complexity by optimizing the construction for the particular
system of interest. For example, in many cases complete sequence independence
between strands may not be necessary, possibly allowing one to eliminate some
translator gates. Similarly, pseudoequilibrium linkage is unnecessary if mapping
a species directly to a strand or gate does not cause problems.

For simplicity in our systematic construction rate constants are set by the de-
gree of sequence complementarity between toehold domains. However, there are
many other degrees of freedom available such as the relative concentrations of
linker gate and buffer strand for bimolecular reactions. Probably in practice, toe-
hold domains provide a rough order of magnitude control over formal rate con-
stants, while adjusting concentrations of auxiliary species allows fine-tuning them.

Acknowledgments. This work was supported by NSF Grant 0728703. GS ac-
knowledges support from the Swiss National Science Foundation and the Bur-
roughs Wellcome Fund. We thank D. Zhang, J. Schaeffer, and M. Magnasco for
useful discussions.

References

1. Gavalas, G.R.: Nonlinear Differential Equations of Chemically Reacting Systems.
Springer, Heidelberg (1968)

2. Scott, S.K.: Chemical Chaos. Oxford University Press, Oxford (1991)
3. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics:

Oscillations, Waves, Patterns, and Chaos. Oxford University Press, Oxford (1998)
4. Willamowski, K.D., Rössler, O.E.: Irregular oscillations in a realistic abstract

quadratic mass action system. Z. Naturforsch A 35, 317–318 (1980)
5. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-

fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)
6. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic

circuits. Science 314(5805), 1585–1588 (2006)
7. Seelig, G., Yurke, B., Winfree, E.: Catalyzed relaxation of a metastable DNA fuel.

Phys. Rev. Lett. 90, 118102–118111 (2006)
8. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven

reactions and networks catalyzed by DNA. Science 318(5853), 1121 (2007)
9. Green, C., Tibbetts, C.: Reassociation rate limited displacement of DNA strands by

branch migration. Nucleic Acids Research 9, 1905–1918 (1981)
10. Yurke, B., Mills, A.P.: Using DNA to Power Nanostructures. Genetic Programming

and Evolvable Machines 4(2), 111–122 (2003)
11. Gaspard, P.: Encyclopedia of Nonlinear Science. In: “Rössler Systems”, pp. 808–

811. Routledge (2005)

A Simple DNA Gate Motif

for Synthesizing Large-Scale Circuits

(Extended Abstract)

Lulu Qian and Erik Winfree

Computer Science, Computation & Neural Systems, and Bioengineering
California Institute of Technology, Pasadena, CA 91125, USA

Abstract. The prospects of programming molecular systems to perform
complex autonomous tasks has motivated research into the design of
synthetic biochemical circuits. Of particular interest to us are cell-free
nucleic acid systems that exploit non-covalent hybridization and strand
displacement reactions to create cascades that implement digital and
analog circuits. To date, circuits involving at most tens of gates have
been demonstrated experimentally. Here, we propose a DNA catalytic
gate architecture that appears suitable for practical synthesis of large-
scale circuits involving possibly thousands of gates.

1 Introduction

DNA-based catalysts [1,2,3] and logic gates [4,5,6] have been proposed as general-
purpose components for synthesizing chemical circuits [7,8,6] with applications
in medical therapeutics, nanotechnology, and embedded control of chemical reac-
tions. Progress in this direction will depend upon three future advances: (1) De-
veloping input/output interfaces between the DNA circuits and biomedically rel-
evant molecules [9], DNA nanomachines [10,11], and general chemistries [12,13];
(2) Developing DNA circuit construction techniques that scale up so that large
and interesting circuits can be systematically created; and (3) Extending the
DNA programming methodology beyond well-mixed solutions to include spatial
structures at the molecular [14,15,16] and macroscopic scales [17,18,19].

In this paper we focus on the second challenge. We introduce a DNA catalytic
gate motif suitable for scaling up to large circuits, along with an abstract cir-
cuit formalism that aids the design and understanding of circuit behavior. To
illustrate the potential of this approach, we show how to implement arbitrary
feedforward digital logic circuits, arbitrary relay circuits, and analog circuits
exhibiting a variety of temporal dynamics. Thanks to the modular design of
the gate motif, sequence design is straightforward. Furthermore, we argue that
synthesis and preparation of circuit components can be parallel and scalable.
Our estimates suggest that circuits involving thousands of distinct gates may be
possible.

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 70–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 71

2 A Simple Catalytic Gate with a Threshold

Each catalytic gate may be represented abstractly as a node with one or more
wires connected to the left and right sides (Fig. 1a). Each wire will correspond to
a single-stranded DNA molecule with a specific sequence, called a signal strand,
which may be absent (an inactive wire) or present at some concentration (an
active wire). Each node will correspond to a gate strand that may bind to or re-
lease signal strands on demand. As described below, an active wire on one side of
a gate can catalyze the exchange of activity on wires on the other side. Further-
more, there may be a threshold that must be exceeded before catalysis occurs.
While the catalytic gates are intrinsically symmetric, we will typically configure
them asymmetrically, with an input side and an output side. When connected
into circuits involving many interacting catalytic gates, complex circuit behavior
can be obtained.

The DNA implementation of the elementary gate illustrated in Fig. 1a is
shown in Fig. 1bc. The three wires correspond to free signal strands S2TS3

(“fuel”), S1TS3 (“output”), and S3TS4 (“input”), while the node indicates
complexes involving the gate base strand T ′S′

3T
′. The state of the network is

indicated by writing the amounts of each species in appropriate locations: the
(relative) concentrations of signals on the wires, and the (relative) concentra-
tions of gate:signal complexes within the nodes at the ends of the corresponding
wires. The concentration of a threshold complex is written as a negative num-
ber in the location for the corresponding gate:signal complex for the signal it is
absorbing. Thus, Fig. 1a specifies the gate:output complex, fuel signal strand,
and input signal strand of Fig. 1b with respective concentrations 10x, 10x, and
1x; the threshold gate absorbing the input strand, shown in Fig. 1c, is present
at 0.5x; where 1x is a standard concentration, perhaps 30 nM. With these ini-
tial concentrations, the input strand will first overcome the threshold and then
act catalytically to facilitate the equilibration of the output strand and the fuel
strand to approximately 5.1x each. (This level can be estimated by noting that
by symmetry the two wires will have similar activity, and that the total concen-
tration on each wire and within the gate remains constant. Detailed formulas
are provided in Section 3.)

The reaction mechanism is a simplified version of the entropy-driven cat-
alytic gate introduced in [3,20]. Fig. 1b shows reactions between the three signal
strands and the gate complexes involving those signal strands. Fig. 1c shows
the threshold gate that absorbs the input strand. Example sequences are shown
in Fig. 1d. The fundamental operation is toehold exchange, a toehold-mediated
strand displacement reaction that results in a free right-side signal strand re-
placing a bound left-side signal strand, or visa-versa. For example, input sig-
nal strand S3TS4 can bind to gate:output complex T ′S′

3T
′:S1TS3 via toehold

domain T , unbiased three-strand branch migration within the S3 recognition
domain will lead to a state where either input strand S3TS4 or output strand
S1TS3 is bound by no more than the short toehold domain T , and that sig-
nal strand will quickly fall off. (For simplicity, we ignore the abortive attempts,
and only consider those reactions in which strand replacement occurs.) At this

72 L. Qian and E. Winfree

(a
)

(b
)

(c
)

(d
)

C
G
A
G
T
C
T
G
G
T
T
C
A
T
C
T
A
A
C
T
A
T
T
T
C
T

G
C
T
C
A
G
A
C
C
A
A
G
T
A
G
A
T
T
G
A
T
A
A
A
G
A
G
G
T
G
G
T
G
A

T T

T T

Ml
yI

S 3 S 3
’

T’
s 4
’

T
A
C
T
T
C
C
A
A
C
A
C
C
C
T
C
C
A
C
C
C
A
T
C
T
A
A
C
T
A
T
T
T
C
T
C
C
A
C
C
C
G
C
T
G
G
C
G
T
C
G
T T

T T
G
G
T
G
G
G
T
A
G
A
T
T
G
A
T
A
A
A
G
A
G
G
T
G
G
G
C
G
A
C
C
G
C
A
G
C

S 1
T

S 3

T’
S 3
’

T’
Hg
aI

S 3 S 3
’

T’
s 4
’

S 2

T
S 3

S 1

T
S 3

T’
S 3
’

T’

T
S 3

S 4

C
A
T
C
T
A
A
C
T
A
T
T
T
C
T

G
T
A
G
A
T
T
G
A
T
A
A
A
G
A
G
G
T
G
G
T
G
A

S 3 S 3
’

s 4
’

T’

C
C
A
T
T
A
C
C
C
C
C
T
A
C
A
C
C
A
C
C
C
A
T
C
T
A
A
C
T
A
T
T
T
C
T

S 2
T

S 3

T
A
C
T
T
C
C
A
A
C
A
C
C
C
T
C
C
A
C
C
C
A
T
C
T
A
A
C
T
A
T
T
T
C
T

S 1
T

S 3

G
G
T
G
G
G
T
A
G
A
T
T
G
A
T
A
A
A
G
A
G
G
T
G
G

T’

S 3
’

T’

C
A
T
C
T
A
A
C
T
A
T
T
T
C
T
C
C
A
C
C
A
C
T
A
T
C
T
A
C
T
C
T
C
C
A

T
S 3

S 4

S 3 S 3
’

T’
s 4
’

T
S 3

S 4

S 3

S 3
’

T’
s 4
’

T
S 3

S 4

T
hr

es
ho

ld
In

pu
t

W
as

te

W
as

te

F
ue

l

S 1

T
S 3

T’
S 3
’

T’

T
S 3

S 4

S 1

T
S 3

T’
S 3
’

T’T
S 3

S 4

S 1

T
S 3

T’
S 3
’

T’T
S 3

S 4
S 2

T
S 3

S 2

T
S 3

T’
S 3
’

T’T
S 3

S 4

S 2

T
S 3

T’
S 3
’

T’

In
pu

t
G

at
e:

O
ut

pu
t

F
ue

l
O

ut
pu

t

G
at

e:
F

ue
l

O
ut

pu
t

In
pu

t
10

10

G
at

e

1
-.

5

G
at

e:
In

tp
ut

Fig. 1. The DNA motif for catalytic “seesaw” gates. (a) Abstract gate diagram. (b) The
DNA gate motif and reaction mechanism. S1, S2, S3, S4 are the recognition domains;
T is the toehold domain; T ′ is the Watson-Crick complement of T , etc. Arrowheads
mark the 3′ ends of strands. Black lines indicate elementary reactions via alternating
strand displacement and toehold exchange. All reactions are reversible and unbiased;
arrowheads indicate the dominant flows for the initial concentrations shown in (a).
(c) The threshold motif and reaction mechanism. The toehold is extended by three
bases (s′4, the complement of the first three 5′ bases of S4), providing an increased
rate constant relative to the gate itself. (d) Example sequences. Gate complexes and
signal molecules are shown in their operational form (second column). To prepare gates
from single strands of DNA, hairpin precursor molecules (third column) are cleaved by
restriction enzymes to create functional gates. Recognition domain sequences are 15 nt
and the toehold domain sequence is 5 nt.

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 73

point, the gate base strand has its left toehold revealed, and its right toehold
hidden: toehold exchange has been achieved, yielding the release of an output
strand and the production of a gate:input complex. An analogous process allows
the fuel strand to similarly displace the input strand from the new gate:input
complex, completing a catalytic cycle that has the net effect of exchanging one
left-side signal strand in solution (the fuel) for another left-side signal strand
(the output). Note, however, that a free left-side signal strand (e.g. the fuel)
cannot directly replace a bound left-side signal strand (e.g. the output bound to
the gate). It can only do so in the presence of a right-side signal strand (e.g. the
input) by an indirect sequence of events: the right-side signal strand displaces
the bound left-side signal strand, and in turn the other left-side signal strand
displaces the now-bound right-side strand. Thus, the right-side signal strand has
catalyzed the exchange of the two left-side signal strands, which cannot exchange
in its absence. This back-and-forth motion is the inspiration for our name for
this motif: “seesaw gates”.

In the above discussion, recognition domains S1, S2, and S4 played no active
role in the mechanism. Rather, these domains allow the signal strands to interact
with other gates and thus dictate connectivity within a circuit. For example,
output strand S1TS3 could also serve as a right-side signal strand for another
gate with base strand T ′S′

1T
′, not shown here. However, while bound to base

strand T ′S′
3T

′, signal strand S1TS3 cannot act as a catalyst for the downstream
gate because its toehold domain is sequestered. Of course, if it is released into
solution by a strand displacement reaction, then it is free to act upon its target
gate T ′S′

1T
′. In summary, each gate base strand consists of a single recognition

domain identifying the gate, flanked by two toehold domains, only one of which
is exposed at any given time; while each signal strand consists of two recognition
domains identifying the two gates it connects, separated by a central toehold
domain that is sequestered and thus inert when the signal strand is bound to a
gate base strand.

In addition to providing an ON/OFF switch for catalysis, threshold behavior
can be helpful for reliable circuit function by cleaning up after leaky reactions.
Fig. 1c shows a threshold gate that serves as a competitive inhibitor of the signal
strand S3TS4. Because of the slightly longer toehold on the threshold gate, the
signal strand will react faster with the threshold gate than with the original gate
complex. (Toehold-mediated strand displacement reaction rates depend exponen-
tially on toehold length, for short toeholds [21]. In this paper, we conservatively
assume a 10-fold speed-up specific to the targeted signal strand, which is less than
the ratio between the maximal rate constant for DNA hybridization and the mea-
sured rate constant for 5 nt toeholds [21]. In gates with more than one input, there
will be some crosstalk if both inputs have a threshold, because the threshold for the
first input can absorb the second input signal strand and visa versa, albeit at a 10-
fold slower speed. Thus, after one input exceeds its own threshold, it will continue
to be absorbed by the other threshold – at the same rate with which it catalyzes
the exchange of fuel and output signal. For the simulations presented in this paper
we neglect this crosstalk, but simulations including the crosstalk reactions show

74 L. Qian and E. Winfree

qualitatively similar results, albeit less ideal. The problem also could be avoided
by designing circuits in which only gates with a single input are allowed to have
a threshold.) Once the signal strand has reacted with threshold gate, it will never
be released because all relevant toeholds are sequestered – effectively, inert waste
has been produced. Only after all the threshold gates have been used up, then the
remaining signal strands can react (perhaps catalytically) with the original gate.

This consistent and modular motif makes systematic construction of circuits
logically straightforward, as discussed below, and further makes laboratory pro-
cedures for synthesizing gates and circuits plausible to carry out on a large scale.
A substantial difficulty with our previous work [6,3] was that each gate substrate
was a complex of multiple strands that had to be separately annealed together,
and each complex had to be purified to remove excess single-stranded species
and malformed gate substrates. Here, we aim to simultaneously prepare all gate
complexes together in a single test tube; to do so, we must ensure that different
gate species do not interact, and that the strands needed to form a given gate
complex find each other efficiently. For our solution, we draw inspiration from
the observation [22,23] that mixtures of hairpin molecules, when annealed, are
likely to form non-interacting intramolecular hairpins even if at room temper-
ature there exist lower free energy states involving intermolecular complexes.
This occurs because the intramolecular hairpins are typically stable at some
moderately high temperature, above the melting temperature of the intermolec-
ular complexes – thus, during annealing, the hairpins form first and become
kinetically trapped. The implication for gates is that if each gate species can be
synthesized initially as a hairpin precursor, annealing all such gate precursors in
a single reaction will result in a high yield of properly formed non-interacting
molecules. Fig. 1d shows our realization of this scheme. After annealing, incu-
bation with appropriate restriction enzymes removes the now-undesired linker
subsequence, resulting in a well-formed complex of two strands. The entire solu-
tion could be purified by gel, since all gates are the same size; all threshold gates
could be purified similarly. One way or another, making circuit function robust
to sloppy parallel synthesis methods will be crucial to scaling up existing DNA
circuits to hundreds or thousands of gates.

3 Abstract Circuit Formalism and Function

The abstract network representation introduced in Fig. 1a facilitates concise
reasoning about circuits involving many interacting catalytic gates. In general,
a circuit consists of a number of gate nodes and a number of wires between gate
nodes. Each wire connects exactly two gates (Fig. 2b). Each gate consists of a
left side and a right side, and it may connect to any number of wires on each side
(Fig. 2a). Virtual gates (dotted lines) are gates whose total concentration is zero;
they are used solely as syntactic sugar to provide a consistent naming scheme for
wires that are connected on just one side, such as the input and output wires.
When it is necessary to make the distinction, gates with non-zero concentration
are referred to as real gates (solid lines). A seesaw gate circuit then consists of

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 75

(a)

(b) (c)

i

1

2

N

1

2

N

1iw

2iw
1 :i ig

2 :i ig

:Ni igNiw

1iw

2iw

iNw

: 1i ig

: 2i ig

:i iNg

j

i

ijw 1

2

3

4

5

6

7

8

9 10

Fig. 2. Abstract diagrams for seesaw gate circuits. (a) The general form of a gate node.
Each gate may be connected to many wires on each side, potentially all N nodes in
the network, including itself. (b) The general form of a wire. Each wire is specifically
connected on its left end to the right side of a gate node, and connected on its right end
to the left side of a gate node. (c) An example circuit with five real gates, five virtual
gates, and eleven wires. Each wire is identified by the two gates it connects; thus the
virtual gates serve to provide full names to their incident wires.

a number of gate nodes connected by wires between their left and right sides
(Fig. 2c).

The implementation of any such circuit diagram using DNA molecules is
straightforward. (1) For a circuit with N gates, begin by chosing a set of N
sufficiently distinct m-mer sequences S1, S2, . . . , SN . Sequence length m must
increase (approximately logarithmically) with N ; the value m = 15 was used in
Fig. 1. Use the same univeral toehold sequence T in all cases. (2) To each gate i,
associate the gate base strand T ′SiT

′. To each wire ij, associate the wire signal
strand SiTSj. This determines the sequences for all molecules in the circuit. (3)
Based on the desired initial concentrations of each signal strand, gate complex,
and threshold, synthesize the appropriate hairpin molecules, cleave them with
restriction enzymes, and purify the desired complexes. (4) To run the system,
add the appropriate input signal strands and observe (e.g. by fluorescence) the
target output signal strands.

For standard nomenclature, a wire between gates i and j, with gate i on the
left, is called wij , representing the free signal strand SiTSj. Likewise, a gate i
base strand T ′S′

iT
′ bound to the left end of wire ij signal strand SiTSj is referred

to as gi:ij ; similarly gki:i is used when the right end of signal strand SkTSi is
bound to gate i. Note that gi:ii and gii:i refer to distinct complexes: in the former

76 L. Qian and E. Winfree

case, the signal strand is bound on its left end, leaving the gate’s left toehold
accessible; while in the latter case the signal strand is bound on its right end,
leaving the gate’s right toehold accessible. The threshold complex for wire ij into
gate j is called thij:j , and similarly for thi:ij . In a slight abuse of notation, in the
formulas below, wij refers both to the signal strand molecule itself and to the
concentration of that species, and similarly for the gate and threshold complexes.
Finally, note that although each gate has an identifying number corresponding to
its base strand sequence, circuit diagrams may be drawn without any numerical
annotation as the names are not relevant to circuit function.

Because all components are in a standard form, the set of chemical reactions
modelling the toehold exchange steps and threshold absorption steps can be
written concisely. For all i, j, k ∈ {1, 2, . . . , N},

wji + gi:ik

k0⇀↽
k0

gji:i + wik (1)

wij + thij:j
k1→ waste

k1← thi:ij + wij (2)

where the variables refer to the molecular species. Using standard mass action
chemical kinetics, this gives rise to a system of ordinary differential equations
(ODEs) for the dynamics. In the following, wij and similar terms refer to the
concentrations of the respective species, rather than to the species themselves.

dwij

dt
= k0

(
N∑

n=1

wni · gi:ij + wjn · gij:j − wij · gni:i − wij · gj:jn

)
(3)

−k1 (wij · thi:ij + wij · thij:j)

d gi:ij

dt
= k0

(
N∑

n=1

wij · gni:i − wni · gi:ij

)
(4)

d gij:j

dt
= k0

(
N∑

n=1

wij · gj:jn − wjn · gij:j

)

d thi:ij

dt
= −k1 · wij · thi:ij (5)

d thij:j

dt
= −k1 · wij · thij:j

These dynamics have conserved quantities for each gate node i and for each
signal wire ij:

gi:ij − thi:ij + wij + gij:j − thij:j
def
= cij (6)

N∑
n=1

gni:i + gi:in
def
= ci

d ci

dt
=

d cij

dt
= 0

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 77

Furthermore, the equilibrium (if it is obtained) enforces a simple relationship
between the free and bound forms of the signal strands, namely that their ratio
with respect to a particular gate must be identical for all wires connected to that
gate. This follows immediately from Eq. 1 and the detailed balance equation
k0 · wji · gi:ik = k0 · gji:i · wik. To wit, for each gate i, at equilibrium all wires
achieve the ratio

w1i

g1i:i
=

w2i

g2i:i
= · · · =

wNi

gNi:i
=

wi1

gi:i1
=

wi2

gi:i2
= · · · =

wiN

gi:iN

def
= ri (7)

As an example, we can calculate the equilibrium concentrations for a single
real gate, i, connected only to virtual gates, as in Fig. 1a. The equilibrium wire
concentration wij(∞) depends upon the gate ratio and the initial concentrations
on that wire:

wij(∞) =
wij(∞)

gi:ij(∞) + wij(∞)
(gi:ij(∞) + wij(∞))

=
ri

1 + ri
(gi:ij(0) + wij(0) − thi:ij(0)) =

ri

1 + ri
cij

The equilibrium gate ratio ri can be calculated from the conserved quantities of
Eqs. 6 and the equilibrium constraints of Eq. 7:

cij = wij(1 + 1/ri) ci = (1/ri)
∑

j

wji + wij

from which it follows with a little algebra that

ri

1 + ri
= 1 − ci∑

j cji + cij
.

For the concentrations given in Fig. 1a, we can work out ri

1+ri
= 1− 10

10+10+1−0.5 ≈
0.51, so at equilibrium w13 = w23 ≈ 10x × 0.51 = 5.1x, as claimed earlier.

The uniformity of components in seesaw gate circuits also facilitates their sim-
ulation. Using a general purpose mass action chemical kinetics simulator written
by David Soloveichik in Mathematica, we have written routines for concisely rep-
resenting, constructing, and simulating models of seesaw gate circuits.

4 Feedforward Digital Logic Circuits

Digital logic has two compelling features for circuit construction: first, it has
proven to be very expressive for the synthesis of a wide range of desired be-
haviors; and second, it is intrinsically robust to a variety of manufacturing and
operational defects. The basic principle underlying digital logic is that an intrin-
sically analog signal carrier may be considered simply to be either ON or OFF
if at each stage of computation, signals are either pushed toward the ideal ON
value or pushed toward the ideal OFF value. This is called signal restoration,

78 L. Qian and E. Winfree

3

1

2 5

4

2.5
-.5
-.5

(a) 13 23 34 13 23Input1: Input2: Output : w w w w or w

(b) 12 34 56 12 34Input1: Input2: Output : w w w w and w

21

4

8

5

2-.5

4 0.5

-.5

8

10

12w

56w

-.751.5

2.5

6

7

3
34w

-.5
8

-.5

9

13w

23w

34w

1.5

Fig. 3. The circuit diagram and input/output behavior of boolean logic gates. (a) A
two-input OR gate. (b) A two-input AND gate. Simulations are performed with the
reference concentration 1x = 30 nM.

because if noise or device imperfections slightly corrupt a signal, that devia-
tion from ideal behavior is cleaned up (perhaps not completely) by subsequent
processing without altering the interpretation of the signal as ON or OFF. In
this section we will consider a digital abstraction in which signal concentrations
below 0.1x are considered OFF, while signal concentrations above 0.9x are con-
sidered ON. Intermediate signal levels – in the transition region – are considered
a fault because proper behavior of logic gates is no longer guaranteed for input
levels in the intermediate range.

Feedforward digital circuits are an important class of combinational circuits,
i.e. memoryless circuits in which the inputs uniquely determine the outputs with-
out need to re-use any parts of the circuit. It is well known that any boolean
function can be computed (usually quite efficiently) by a well-designed feedfor-
ward circuit built from AND, OR, and NOT gates. Interestingly, with a small
cost in circuit size and a minor change in representation, called “dual-rail logic”,
AND and OR by themselves suffice. We will therefore provide constructions for
these basic operations, in addition to signal fan-in, fan-out, routing, and thresh-
olding that may be required to paste the computing gates together into large
circuits.

The OR gate (Fig. 3a) is a simple extension of the basic catalyst (Fig. 1a)
in which there are two input wires, 13 and 23, that serve as catalysts for the
release onto output wire 34, driven by exchange with the “power supply” wire
35. Under the assumption that the threshold gate reaction rate constant, k1, is

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 79

10 times faster than the gate reaction rate constant k0, clean digital behavior
is seen in the model. For larger ratios k1/k0, the sharpness of the threshold
increases correspondingly.

The AND gate is a little trickier. Essentially, the idea here is similar to what
is done with transistors: control flow from a power supply using two regulatory
gates in series, and only if both gates are active will the output be affected.
However, in our case there is no actual flow, just a sloshing back and forth of the
signals on the seesaw gates. (Recall that there is a constant total concentration
of a given signal strand either free in solution or bound to the gate at either
end.) That said, consider the circuit shown in Fig. 3b. First, if input signals 12
and/or 34 are OFF (i.e. between 0x and 0.1x), then they will be absorbed by
their respective thresholds. Now consider that if input 34 is ON (i.e. between
0.9x and 1x), then it can catalyze the power supply 49 to push strands onto the
wire 48. Gate 8 serves as a signal reflector, effectively routing a signal emanating
from the right side of a gate to arrive at the right side of another gate. (Recall
that wires can only connect left sides to right sides, so this cannot be achieved
directly.) Once the input to gate 8 exceeds its threshold, the right-side catalyst
will be released, in turn catalytically releasing strand 28 to impinge on gate 2.
But, if input 12 remains OFF, there will be no catalysis and therefore no signal
will be pushed onto wire 25. On the other hand, if input 12 is also ON, the signal
on 28 will provide power to push signal onto 25, which will in turn exceed the
threshold for gate 5 and catalyze the production of output 56. The final case
we must consider is if input 34 is OFF but input 12 is ON. In this case, there
is at most 0.5x input 12 remaining after absorption by the threshold; some of
it will end up bound to gate 2 after having pushed some 25 onto the output
wire; however, at most a total of 0.5x can be pushed onto 25, and this will be
absorbed by the gate 5 threshold. Because the total signal on gate 2 must remain
at 2x, we see that all signal strands will remain bound to gate 2, the wires 12
and 25 will be empty, and no output 56 will be produced. This is of course
considered OFF by the digital abstraction. Full simulations bearing out these
intuitive considerations are shown.

Fan-in and fan-out are handled easily using these constructions. More than
two inputs (additional fan-in) to an OR gate simply requires additional wires
connecting to the seesaw gate node, slight adjustments to the initial concen-
trations, and placing the threshold in a separate subsequent gate (to avoid the
threshold crosstalk problem). More than one output (fan-out) from an OR gate
is correspondingly simple: connect more output wires. Fan-out from an AND
gate is analogous, but additional fan-in poses problems: a longer sequence of
regulatory gates in series would require the initial power supply concentration
to be considerably larger. Thus it is preferable to construct a multi-input AND
gate as a binary tree of two-input AND gates.

Because NOT gates appear to be difficult to implement directly (although
we have not yet outlawed the possibility), the dual-rail convention is used. The
following procedure may be used to convert a single-wire digital logic circuit
(that may use AND, OR, NOT, NAND, and NOR) into an equivalent dual-rail

80 L. Qian and E. Winfree

(a) (b)

(c)

1
2

3

4

5

6

7

10

11

20

21

30

31

40

41

50

51

60

61

70

71

10

11

20

21

30

31

40

41

50

51

60

61

70

71

Fig. 4. Compiling boolean logic circuits. (a) A sample circuit with 6 gates. (b) Transla-
tion into an equivalent dual-rail circuit with 12 gates. (c) Translation into an equivalent
seesaw gate circuit with 36 gates.

circuit (which uses only AND and OR), as illustrated in Fig. 4ab. In the new
circuit, which will contain at most twice as many gates, each wire z is replaced
by two wires, z0 and z1. If neither new wire is ON, this indicates that the logical
value of z has not been computed yet; if z0 is ON, this indicates that the logical
value of z must be OFF; while if z1 is ON, this indicates that the logical value
of z must be ON. (If both z0 and z1 are ON, then the circuit is experiencing

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 81

70=1 when input = [0,1,1,1,1]

71=1 when input = [1,1,0,0,1]

ON state

OFF state

Fig. 5. Simulation results for all 32 possible input vectors. The concentrations of all
four dual-rail output species are shown as a function of time. Delays vary with the
input, depending the shortest decision path through the network.

a fault.) With this representation, each original two-input boolean logic gate
can be implemented using one AND gate and one OR gate. XOR can be easily
implemented in dual-rail logic as well, although it requires 4 OR gates and 2
AND gates. In terms of DNA molecules, the difficulty implementing NOT gates
derives from the need to detect and act on the absence of an input strand, but
the action must not take place before the computation has reached this point in
the circuit. One possible solution could be to use a clock signal to initiate the
action, or lack of it, at the appropriate time. This is effectively what dual-rail
logic does, except that explicit clocks are unnecessary because every signal value
(once computed) is represented by the presence of an appropriate molecule that,
in itself, can serve as a timing signal as well.

To demonstrate these concepts, we compiled a small circuit (5 inputs, 6 NAND
gates, 2 outputs) from its original netlist specification (Fig. 4a), to the equivalent
dual-rail circuit consisting of only AND and OR gates (Fig. 4b), and then to its
implementation as a network of seesaw gates (Fig. 4c). Because the thresholds
on downstream gates drain the outputs of upstream gates and thus shift the
equilibrium, for successful composition it was necessary to adjust the initial
concentrations shown for isolated subcircuits in Fig. 3. It was also necessary to
provide fan-out gates for inputs that were used more than once, and to add final
read-out gates to properly drain the adjusted AND and OR subcircuits. The
corresponding system of ODEs describing the network’s mass action kinetics
were then simulated for all 32 possible input combinations. (The compiler and
simulator was written in Perl and Mathematica.) As shown in Fig. 5, in every
case both outputs reached either a clear “0” or “1” concentration level, which
was verified to be correct. This provides concrete evidence that the digital logic
subcircuits compose well.

82 L. Qian and E. Winfree

5 Relay Contact Circuits

In his seminal 1940 Master’s Thesis [24], Claude Shannon established a system-
atic symbolic approach to the analysis and design of digital circuits. A prevalent
technology at the time was relay contact circuits, in which input switching signals
(A, B, C, . . .) opened or closed electrical contacts in a network, either allowing
current to flow through the network, or not. Like circuits made of AND, OR,
and NOT gates, relay contact circuits can concisely implement arbitrary boolean
functions. (Here we consider only circuits of primary relays – those directly con-
trolled by external input signals.) To illustrate the flexibility of the seesaw gate
motif, we provide a general method to compile relay contact circuits down to
equivalent seesaw gate circuits.

The basic primitives for constructing relay contact networks are simple. A
circuit with one switch (Fig. 6a) corresponds to a single seesaw gate. The cur-
rent signal is represented by the free signal strands of the seesaw gate, and the
switching signal is represented by the input catalyst strands. Signal is produced
on the output wire if and only if the switching signal A is ON. Two switches
in series perform an AND operation (Fig. 6b). Since the connectivity of seesaw
gates is oriented, we make each wire always connect two different sides of the
gates in the design. The two seesaw gates corresponding to the circuit “A and

(a) A (b) A and B

(c) A or B (d) AB or AC or BC

(e) (f)

10 10

A

10 10

A

10

B

A B

10

AB

C C

10 10

10
10

1010

10
B

10

A

10

10

10

A A B

A

B

A

B

C

A

B

Current signal
10

100

Restored current signal

Switching signal

100

10

Fan-out signals

1 1Reversed fan-out signals
1

1

1
1

1

-.5

Fig. 6. Implementation of relay circuits. (a) A simple circuit with current source (bat-
tery) and controlled device (denoted by a resistor), and the corresponding seesaw gate
circuit. (b) AND logic. The “left” side of each seesaw gate is shaded. (c) OR logic. (c)
A more complex circuit. (e) Input signal fan-out for both left-side and right-side wires.
(f) Restoration for output and intermediate signals.

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 83

B” therefore must have different sides connected. Two switches in parallel per-
form an OR operation (Fig. 6c). The only innovation here is that two distinct
input and output wires are used. Fan-out at the current source can provide such
a signal, and an OR gate at the current drain can consolidate the output into a
single wire, if desired.

For more complex circuits, such as the one in Fig. 6d, a number of additional
issues arise. First, there may be two possibilities for the current direction through
a given relay (such as C). We use a pair of seesaw gates in such cases. The current
flow from A to C to A will go through the seesaw gate C on the left while the
current flow from B to C to B will go through the other one on the right.
This provides the basis for a general construction. Each original contact relay is
replaced by a pair of seesaw gates, one prepared for each possible current flow
direction. Output of each gate is routed to all other connected gates in the given
flow direction. Thus, for each input setting, if there exists a connected path in
the relay circuit, then there is a directed path of catalytically active gates in the
seesaw gate circuit. Second, because we need different switching signal strands
for different seesaw gates representing the same logical input (such as A, B, and
C in Fig. 6d), and we also may need to connect them to either the “left” or the
“right” side of the gate (as for C in Fig. 6d), we make use of a signal fan-out
unit producing any number of signals in both the forward and reversed directions
(Fig. 6e). Finally, if we use a uniform gate:output concentration (say 10x), the
current signal will decrease as it passes through each seesaw gate. Thus, we need
to restore the current at any place the signal becomes weak. This can be achieved
by an amplifier with a threshold (Fig. 6f). Following this procedure, any relay
contact circuit can be implemented with seesaw gates.

6 Analog Time-Domain Circuits and Feedback

The behavior of seesaw gate circuits is intrinsically analog. Following the ap-
proach of [3], we construct amplifier cascades with initial quadratic growth and
with initial exponential growth. More complex temporal dynamics can also be
synthesized, such as a pulse generator.

The amplifier shown in Fig. 7a is a two-stage feedforward cascade. Input signal
12 catalytically pushes strands onto wire 24, which exhibits linear growth with
time. Signal 24 also serves as catalysts for the release onto output wire 46, which
in turn grows quadratically with time.

The amplifier shown in Fig. 7b is a one-stage feedback cascade. Initially, input
signal 12 catalytically releases strands onto output wire 22. However, signal
strand 22 contains the recognition domain of gate 2 on both left side and right
side, and therefore can play the role of the input signal once released, binding to
the gate:output complex by its right side. Thus, strand 22 is also catalytically
active in releasing additional copies of itself, resulting in exponential growth of
the signal.

The pulse generator shown in Fig. 7c illustrates a non-amplifying temporal
dynamic. The basic idea is that the input strand 45 initially releases a large
amount of output 24, but this is slowly absorbed by gate 2. The large gate 2

84 L. Qian and E. Winfree

(a) 12Input : w 2

46 12Output : w w t

(b) 12Input : w 22 12Output : tw w e

(c) 45Input : w 24Output : w

1 2

3

1

100

4

5

1

100

6
12w 46w

12w

22w

21

3

1
100

Input: 0.0001x ~ 0.1x

Input: 0.0001x ~ 0.1x

Input: 1x ~ 5x
21

3

1001

4

1

5

45w24w

Fig. 7. Analog time-domain circuits. (a) A catalytic cascade that exhibits initially
quadratic growth. Temporal trajectories are shown for a serious of exponentially de-
creasing initial input concentations. (b) A positive feedback circuit that exhibits ini-
tially exponential growth. A series of exponentially decreasing input concentrations
yields a series of trajectories with linearly increasing half-completiong times. (c) A
pulse-generating circuit. Pulse amplitude depends on the input concentration. Simula-
tions use 1x = 30 nM.

concentration ensures that signal on wire 24 returns to a small value at equilib-
rium, because the gate-to-wire ratio for wire 24 must be the same as that for 23,
which cannot be higher than 0.01x.

7 Discussion

This project was inspired by the remarkable success of scaffolded DNA origami
[15,25,26] for programming the self-assembly of hundreds of DNA strands into
a single target structure. Self-assembly was extraordinarily reliable despite that
DNA sequences could not be optimized to avoid undesired binding interactions
and that unpurified DNA strands were used, for which the strand concentrations
were not precisely known and many molecules were presumably incomplete or
damaged. We were therefore looking for an analogous design for hybridization-
based DNA catalysts and circuits that would require minimal sequence design
effort and work well even with unpurified strands and unreliable concentrations.

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 85

Does our proposed seesaw gate motif live up to hopes and expectations as a
DNA circuit component suitable for scaling up to large and complex circuits?
We see some encouraging features, some concerns, and some clear challenges.

First, design of large feedforward digital circuits looks promising. At the high-
est level, abstract specifications for circuit function can be expressed concisely
using existing hardware description languages such as Verilog [27,28] and VHDL
[29], then compiled down to a gate level netlist specifying elementary gates
(AND, OR, NOT, NOR, NAND, XOR) and their connectivity. Thus, the sheer
complexity of large-scale circuit design can be managed by off-the-shelf tools.
The next step is compiling the digital logic netlist down to the seesaw gate
circuit abstraction, using the constructions described above for dual-rail logic.
This is straightfoward if no circuit size optimizations are attempted. To achieve
the final step of designing molecules, we must assign sequences to each gate
base strand. For this purpose, a single large set of sufficiently distinct domain
sequences would enable construction of any circuit containing up to the given
number of seesaw gates.

Can we design sufficiently many domain sequences to scale up to circuits with
many gates? We consider two design criteria: (1) signal strands should not have
secondary structure and should not interact with each other, and (2) strand dis-
placement should be unable to proceed if the invading sequence is not an exact
match. The first criterion can be satisfied by standard DNA sequence design
methods [30,31]; here we take the easy approach by using a three letter code
(A, C, and T) for the signal strands, thus ensuring that problematic secondary
structures and interactions are unlikely [32,33,34]. The gate base strand will
therefore consist of (A, G, and T). A universal 5 nt toehold sequence may be
used for all nodes, since specificity of interactions arises from uniqueness of the
recognition domain sequences. Because of the complete independence of domains
within the seesaw gate motif, no system-level conflicts are generated when strand
sequences are generated by concatenation. The second criterion may be formal-
ized as combinatorial sequence constraints. For example, we could require that
at least 30% of bases are different for any two distinct recognition domains; as
each mismatch impedes branch migration speed by a factor of roughly 10 [35,36],
even 5 mismatches will dramatically reduce crosstalk. Additionally, we require
that mismatches are spread out, so that when the wrong signal strand interacts
with a gate, it will quickly encounter difficulties and dissociate; specifically, the
longest run of matches must be less than 35% of the domain length. Finally,
to prevent synthesis errors and ensure comparable melting temperatures, we re-
quire that there are no more than 4 A’s or T’s in a row, no more than 3 C’s
or G’s in a row, and that sequences have between 30% and 70% GC-content.
(Cf. constraints 1,7,8 of [37].) Using a “sphere-packing” technique [38], we have
found sets of codes of sizes 76, 559, 5181, and � 11, 000 for recognition domains
of lengths 10, 15, 20, and 25, respectively, confirming the theoretically expected
exponential growth in codebook size. This is enough to construct some interest-
ing circuits. The caveat is that we are not certain that molecules designed using
these criteria will work consistently in the laboratory.

86 L. Qian and E. Winfree

Can so many distinct sequences be synthesized and handled in the laboratory?
Promising synthesis techniques include the Agilent SurePrint inkjet microarray
spotter, which is advertized to be capable of synthesizing roughly 250, 000 dis-
tinct sequences per slide [39,40]; based on typical DNA array densities and slide
dimensions, this corresponds to ≈ 0.040 fmol per spot. If each spot provides
a 0.25x concentration (the minimal increment we use) in our chosen reaction
volume, then a gate complex using 6x would require the use of 24 spots. If we
define the complexity of a seesaw gate circuit to be the total initial concentra-
tion of strands, in 1x units, then the Agilent technology would allow us to create
circuits of complexity up to 62, 500x. (This corresponds to either ≈ 15, 000 OR
gates or ≈ 4500 AND gates for the concentrations used in Fig. 5.) NimbleGen
has a similar technology, capable of producing 350, 000 distinct 85-mers [41], and
we can expect technologies capable of synthesizing longer strands in the near fu-
ture. The hairpins in Fig. 1d are up to 91 nucleotides long, which we consider to
be synthesizable. After synthesis, linkers attaching strands to the slide can be
cleaved, and a mixture of all strands can be collected in a single tube, annealed
to form hairpins, digested with restriction enzymes to produce gates, and then
gel-purified to eliminate non-functional molecules. Thus, all molecules for the
entire circuit are synthesized and processed in parallel in a single tube.

Once designed and synthesized, will they work? The first question is speed.
If the maximum total concentration for reliable DNA gate operation is 100 μM
(perhaps optimistic), then 1x would be 1.6 nM for a 62, 500x circuit, and the
slowest reaction half-times (the effective gate delay) would be 3 days if k0 =
104 /M/s and k1 = 106 /M/s. This is too slow. Either one must resign oneself
to smaller circuits, for which the concentrations can be higher, or one must find
a way to speed up hybridization reactions in dilute complex mixtures. PERT
[42,43] claims to be such a method; in which case, k0 = 108 and k1 = 1010 may
be possible. This would reduce the 3 days to 30 seconds.

The second question is whether the computation will be correct. For feedfor-
ward digital circuits, thresholding and signal restoration – the digital abstraction
– is expected to provide some robustness to variations in concentrations, to leak,
and to minor crosstalk. However, experimental exploration of seesaw gate cir-
cuits will be needed to evaluate the potential for producing reliable function in
practice. We anticipate that there will be many unforeseen difficulties.

In summary, we have proposed a new catalytic DNA gate that appears to be
suitable for scaling up to analog and digital circuits incorporating thousands of
gates with a reasonable expectation that adequate speed and reliability could be
achieved.

However, a limitation of this work is that the circuit constructions we described
all function by completely depleting key fuel species, hence each circuit prepara-
tion can be used only once. An important goal is to implement sequential circuits
containing buffers, flip-flops, resets, and clocks that orchestrate the re-use of cir-
cuit elements and can process time-varying input signals. We do not know at this
point whether this limitation is essential to the seesaw gate motif, or whether we
have just not yet been clever enough to see how to do it. Similarly, we do not yet

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 87

have a characterization of the class of analog dynamics that can be achieved, al-
though it appears to be a rich space of behaviors. On the practical side, interfaces
between DNA circuits and other chemical reactions will be necessary if DNA cir-
cuits are to serve as embedded controlers for molecular events.

Acknowledgements

The authors thank Dave Zhang for discussion of the catalytic mechanism, Marc
Riedel for providing example netlists from logic synthesis benchmarks, Vir-
gil Griffith for suggesting useful techniques for DNA sequence design, Ho-Lin
Chen and Shuki Bruck for suggesting the connection to relay circuits, David
Soloveichik for Mathematica code for simulating chemical reaction networks,
and Georg Seelig, Bernard Yurke, and everyone else for discussions and support.
This work has been supported by NSF grant no. 0728703 and HFSP award no.
RGY0074/2006-C.

References

1. Tang, J., Breaker, R.R.: Rational design of allosteric ribozymes. Chem. Biol. 4,
453–459 (1997)

2. Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills Jr., A.P., Blakey, M.I., Simmel,
F.C.: DNA fuel for free-running nanomachines. Physical Review Letters 90(11),
118102–118104 (2003)

3. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven
reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007)

4. Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates.
Journal of the American Chemical Society 124, 3555–3561 (2002)

5. Hagiya, M., Yaegashi, S., Takahashi, K.: Computing with hairpins and secondary
structures of DNA. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology:
Science and Computation, pp. 293–308. Springer, Heidelberg (2006)

6. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314, 1585–1588 (2006)

7. Penchovsky, R., Breaker, R.R.: Computational design and experimental validation
of oligonucleotide-sensing allosteric ribozymes. Nat. Biotechnol. 23(11), 1424–1433
(2005)

8. Macdonald, J., Li, Y., Sutovic, M., Lederman, H., Pendri, K., Lu, W., Andrews,
B.L., Stefanovic, D., Stojanovic, M.N.: Medium scale integration of molecular logic
gates in an automaton. Nano Letters 6, 2598–2603 (2006)

9. Yashin, R., Rudchenko, S., Stojanovic, M.N.: Networking particles over distance
using oligonucleotide-based devices. Journal of the American Chemical Society 129,
15581–15583 (2007)

10. Seeman, N.C.: An overview of structural DNA nanotechnology. Mol. Biotechnol. 37,
246–257 (2007)

11. Bath, J., Turberfield, A.J.: DNA nanomachines. Nature Nanotechnology 2, 275–284
(2007)

12. Gartner, Z.J., Liu, D.R.: The generality of DNA-templated synthesis as a basis
for evolving non-natural small molecules. Journal of the American Chemical Soci-
ety 123, 6961–6963 (2001)

88 L. Qian and E. Winfree

13. Gothelf, K.V., LaBean, T.H.: DNA-programmed assembly of nanostructures. Or-
ganic & Biomolecular Chemistry 3, 4023–4037 (2005)

14. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

15. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-
ture 440, 297–302 (2006)

16. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular
self-assembly pathways. Nature 451, 318–322 (2008)

17. Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of
the Royal Society (part B) 237, 37–72 (1953)

18. Zhabotinsky, A.M.: A history of chemical oscillations and waves. Chaos 4, 379–386
(1991)

19. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal,
R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications
of the ACM 43, 74–82 (2000)

20. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toe-
hold exchange (in preparation)

21. Yurke, B., Mills Jr., A.P.: Using DNA to power nanostructures. Genetic Program-
ming and Evolvable Machines 4, 111–122 (2003)

22. Dirks, R.M.: Analysis, design, and construction of nucleic acid devices. PhD thesis,
California Institute of Technology (2005)

23. Bois, J.S.: Analysis of interacting nucleic acids in dilute solutions. PhD thesis,
California Institute of Technology (2007)

24. Shannon, C.E.: A symbolic analysis of relay and switching circuits. Technical Re-
port Master’s Thesis, Massachussetts Institute of Technology (1940)

25. Qian, L., Wang, Y., Zhang, Z., Zhao, J., Pan, D., Zhang, Y., Liu, Q., Fan, C., Hu,
J., He, L.: Analogic china map constructed by DNA. Chinese Science Bulletin 51,
2973–2976 (2006)

26. Douglas, S.M., Chou, J.J., Shih, W.M.: DNA-nanotube-induced alignment of mem-
brane proteins for NMR structure determination. Proc. Nat. Acad. Sci. USA 104,
6644–6648 (2007)

27. Thomas, D.E., Moorby, P.R.: The Verilog Hardware Description Language. Kluwer,
Dordrecht (1991)

28. Golze, U.: VLSI Chip Design with the Hardware Description Language VERILOG.
Springer, Heidelberg (1996)

29. Shahdad, M., Lipsett, R., Marschner, E., Sheehan, K., Cohen, H., Waxman, R.,
Ackley, D.: VHSIC hardware description language. IEEE Computer 18, 94–103
(1985)

30. Brenneman, A., Condon, A.: Strand design for biomolecular computation. Theor.
Comput. Sci. 287, 39–58 (2002)

31. Bishop, M.A., D’Yachkov, A.G., Macula, A.J., Renz, T.E., Rykov, V.V.: Free en-
ergy gap and statistical thermodynamic fidelity of DNA codes. Journal of Compu-
tational Biology 14, 1088–1104 (2007)

32. Mir, K.U.: A restricted genetic alphabet for DNA computing. In: Landweber, L.F.,
Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 243–246.
American Mathematical Society, Providence (1998)

33. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.M.:
Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499–502
(2002)

A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits 89

34. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computa-
tion: RNA solutions to chess problems. Proc. Nat. Acad. Sci. USA 97(3), 1385–1389
(2000)

35. Panyutin, I.G., Hsieh, P.: Formation of a single base mismatch impedes sponta-
neous DNA branch migration. Journal of Molecular Biology 230, 413–424 (1993)

36. Panyutin, I.G., Hsieh, P.: Kinetics of spontaneous DNA branch migration. Proc.
Nat. Acad. Sci. USA 91, 2021–2025 (1994)

37. Kao, M.-Y., Sanghi, M., Schweller, R.T.: Randomized fast design of short DNA
words. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 1275–1286. Springer, Heidelberg (2005)

38. King, O.D.: Bounds for DNA codes with constant GC-content. Electronic Journal
of Combinatorics 10, R33 (2003)

39. Agilent Technologies. SurePrint technology (web page),
http://www.chem.agilent.com/scripts/generic.asp?lpage=557

40. Agilent Technologies. Multi-pack gene expression microarrays (web page),
http://www.chem.agilent.com/scripts/generic.asp?lpage=51683

41. NimbleGen Systems, Inc. Array synthesis (web page),
http://www.nimblegen.com/technology/manufacture.html

42. Kohne, D.E., Levison, S.A., Byers, M.J.: Room temperature method for increas-
ing the rate of DNA reassociation by many thousandfold: The phenol emulsion
reassociation technique. Biochemistry 16, 5329–5341 (1977)

43. Goldar, A., Sikorav, J.-L.: DNA renaturation at the water-phenol interface. Eur.
Phys. J. E. 14, 211–239 (2004)

http://www.chem.agilent.com/scripts/generic.asp?lpage=557
http://www.chem.agilent.com/scripts/generic.asp?lpage=51683
http://www.nimblegen.com/technology/manufacture.html

Tiamat: A Three-Dimensional Editing Tool for

Complex DNA Structures

Sean Williams1, Kyle Lund2,4, Chenxiang Lin2,4, Peter Wonka3,
Stuart Lindsay2,4,5, and Hao Yan2,4

1 Department of Computer Science
University of California,

Davis, CA, 95616
2 Center for Single Molecule Biophysics, The Biodesign Institute

Arizona State University
Tempe, AZ, 85287

3 School of Computing and Informatics
Arizona State University

Tempe, AZ, 85287
4 Department of Chemistry and Biology

Arizona State University
Tempe, AZ, 85287

5 Department of Physics and Astronomy
Arizona State University

Tempe, AZ, 85287

Abstract. We present the development of a new graphical user interface
driven molecular modeling, editing and visualization tool called Tiamat.
Tiamat addresses the challenge of how to efficiently model large and com-
plex DNA nanostructures. We describe the three major components of our
system. First, we discuss design guidelines and data structures that form
the basis of flexible and large-scale editing. Second, we explain a semi-
automatic sequence generator that combines user input with random se-
quence generation to efficiently label the molecules in the DNA structure.
Third, we outline the visualization techniques including a simplification
algorithm that are used to render large designs. The results demonstrate
how Tiamat was used to generate large and complex designs.

Keywords: Structural DNA nanotechnology, DNA tile, 3D DNA struc-
ture display, DNA sequence design.

1 Introduction

The concept of the immobile branched DNA junctions [1], proposed by Seeman
in 1982, led to the use of DNA as a tool for constructing nanoscale arrays and
objects [2,3]. The designs of most DNA nanoarrays are constrained by the helical
repeat in DNA of 10.5 bases. Designing 1-dimensional (1D), 2-dimensional (2D)
and 3-dimensional (3D) structures using a simple graphics program is possible
using multiples of 10.5 bases in designing the crossover points. When trying

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 90–101, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures 91

to make very complex structures, a DNA modeling program is needed to see
precisely how the geometrical design is going to fold. Another key aspect to
designing DNA nanostructures is the generation of a random sequence with
minimized sequence symmetry where there is no secondary structure that can
be formed by the DNA.

Already in 1985, Seeman produced a command line driven Fortran program
for creating relatively simplistic drawings of DNA structures [4]. The lack of a
graphical interface in the program made the direct observation of the 3D aspect
of the DNA structure difficult. Alternatively, the jacks and straw modeling of
DNA was used for making simple structures, but as the structure increased in
complexity this became very difficult to handle [5]. Recently, Birac and Seeman
developed GIDEON, a 3D DNA rendering program [6]. GIDEON is a useful
program that allows a user to design complex and precise DNA nanostructures.
The program makes it possible to see the designed structure in top, side and
front views. GIDEON has the ability to predict the actual distortions that will
occur to the DNA structure. Overall, GIDEON is a great tool for the design of
DNA structures. In this paper we build on this successful previous work while
addressing some of the limitations that make it difficult to efficiently generate
large designs. The first limitation is that the sequence generation is not integrated
with the modeler.

The generation of DNA sequences has been predominantly prepared using
a Fortran program called SEQUIN [7]. SEQUIN has the ability to join DNA
helices together and then generate a group of sequences one at a time. The
joining of DNA helices together requires the user to sketch a 2D line drawing of
the structure. The structure is then put into the program by designating arm
lengths and linking the arms together. Once the structure has been implemented
in the program the user can generate the sequence for the structure by comparing
new sequences to sequences that already exist in the structure to avoid sequence
homology. The sequence generator is not random and the user has to decide if
they like the sequence or if they want the computer to generate another sequence.
Also, it is cumbersome to input very large structures into a separate, command-
line tool.

The second limitation of previous work is that the design of data structures
and visualization strategies were not flexible enough to allow for large and com-
plex designs. The large number of molecules in a single design might become
confusing for the designer and can also overwhelm the graphics hardware. In
this paper we present our modeling program Tiamat to overcome these limita-
tions. Tiamat is a 3D modeling program designed specifically for the creation of
large and complex DNA structures. This paper contains three major contribu-
tions. First, a design interface focused on flexibility in modeling structures. The
structures allow the modeling of general designs. Second, an integrated random
sequence generator that checks sequences directly against the provided model to
prevent the formation of secondary structures. Third, a fast and dynamic level of
detail algorithm to simplify display of very large structures while still displaying
important information.

92 S. Williams et al.

2 Methodology

This section will describe the important design and implementation considera-
tions for working with structural DNA, with overall structure sizes ranging from
dozens to tens of thousands of bases. In section 2.1, we will discuss the data
structures usable for structural DNA modeling and their impact on interactiv-
ity. In section 2.2, we will discuss random sequence generation directly applied to
a DNA model. In section 2.3, we will discuss a dynamic level of detail algorithm
for very large DNA structures.

2.1 Data Structures

In this section, we will discuss various approaches to storing and interacting with
the data that describes the components of a DNA structure. A natural starting
place is an undirected graph [8], a data structure in which the data is stored in
vertices that can be arbitrarily connected by edges, with the caveat that if an
edge exists between vertices A and B, an edge also exists between B and A. With
this in mind, there exists a more important question of what a vertex represents.

The high level approach is to have each vertex represent a DNA helix. Each
vertex would store the five-prime sequence (the three-prime sequence can be
inferred to be the complement of the five-prime sequence), with four potential
edges: the top and bottom of the five-prime strand, and the top and bottom
of the three-prime strand. By dividing a helix – converting it into two helices
with the bottom of the top helix connected to the top of the bottom helix –
junctions to other helices could be added with little trouble. In this approach,
helix-centric operations are easy, such as calculating the physical deformation
caused by junctions. However, base-centric operations, such as the creation of
arbitrarily-shaped probes, are more difficult.

The low level approach is to have each vertex represent a base. Each vertex
would store its own Watson-Crick type (e.g. cytosine), and its edges would con-
nect to its neighboring bases: the base up the strand, the base down the strand,
and its paired base. With this model, the creation of junctions and other devi-
ations from a standard helix are accomplished by reassigning the edges of the
involved bases. This model makes base-centric operations easy, while making
helix-centric operations difficult.

There are benefits and drawbacks to both choices, so the strengths of each
implementation are based on the necessity of its associated features. In a base-
centric design some elements of higher level structure can be inferred from con-
nectivity; that is, by traversing along up and down edges one can determine
all the bases that compose one strand. However, if two helices are linked by
a junction, then a traversal of all edges – which finds the entire helix a base
belongs to – will treat the linked helices as one. In this sense, a base-centric
design throws away most high level information, making helix-centric operations
virtually impossible.

The base-centric and helix-centric designs each have one associated feature
under consideration. The helix-centric feature desired was a calculation of the

Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures 93

physical deformation a structure would undergo given a configuration of junc-
tions. This stems from the physical requirement that five-prime and three-prime
connections of bases all be the same length, since they must all be composed
of the same phosphate chains. An algorithm that could reasonably solve this
problem would have to perform some sequence of rotations and translations on
helices to align them into a valid arrangement; this algorithm cannot be done
without helix-centric information.

The base-centric feature desired was a method for creating arbitrarily shaped
strands. If a strand is represented in data only as a sequence, its graphical
representation derives from well-established biological rules: a double helix with a
known rotation per base pair, distance between base pairs, and so on. Creating an
arbitrarily shaped strand – for example, a straight line – cannot be done directly,
and would at best require a hybrid implementation in which arbitrary strands are
base-centric and standard helices are helix-centric. The primary drawback of such
a hybrid approach is that it would be too complicated for any straightforward
implementation, effectively crippling its usability.

The final decision was ultimately reached by a desire for functionality over
aesthetics. That is, the most important use for a structural DNA modeling tool
is to create structures to be reproduced in real life by ordering the strands that
will create the structure via self-assembly. Calculating the physical distortions
a structure will undergo in Tiamat has relatively little theoretical value, while
being given the maximum flexibility in modeling decisions increases the range of
structures Tiamat can be used to design. Thus, Tiamat employs a base-centric
representation of the structure.

2.2 Sequence Generation

In this section, we will discuss the generation of random sequences directly ap-
plied to a DNA structure. Self-assembly dictates that, if the sequences of each
strand are assigned correctly, then those strands would assemble into the original
structure. However, the sequences must be chosen carefully to avoid the forma-
tion of secondary structures, in which unintended Watson-Crick bonds occur and
destroy part or all of a structure. To prevent secondary structure formation, Tia-
mat recognizes three constraints that can be applied to an otherwise randomly
generated sequence: unique sequence limit, repetition limit, and GC percentage.

The unique sequence limit refers to the shortest subsequence that must appear
only once in the structure. For example, with a unique sequence limit of 5, if a
strand contains the sequence ATGACT, then ATGAC and TGACT may not ap-
pear anywhere else in the structure (for example, the sequence ATGACC cannot
appear anywhere else), though sequences containing ATGA, TGAC, and GACT
may appear elsewhere (for example, ATGAGT may appear somewhere else).

The repetition limit refers to the longest sequence of bases that can all be the
same. For example, if the repetition limit is 5, then CCCCC may not appear in
the structure, though CCCCA or TCCCC can.

The GC percentage refers to the minimum percent of bases in the structure
that must be either guanine or cytosine. This places no upper limit on the

94 S. Williams et al.

number of guanine or cytosine that can occur, and for reasons that will be
explained below, the results will tend toward more occurrences of guanine and
cytosine than specified.

Generating a valid sequence is a discrete optimization problem [9,10], in which
all constraints must be satisfied but any solution that fulfills all the constraints
is valid. Exhaustive search approaches to this problem are not feasible, as the
size of the search space can easily be shown to be 4N . That is, an algorithm
based on assigning sequences in order until one turns out to meet all the criteria
will, for large problem instances, take years to solve. There is a characteristic of
this problem that makes it solvable in a short amount of time, however: the size
of the set of valid configurations is relatively large with respect to the size of
the set of possible configurations. It is therefore reasonable to use a stochastic
algorithm to solve this problem.

Our algorithm is inspired by sampling algorithms such as Metropolis-Hastings
and Simulated Annealing. We start by assigning all bases a random type. Then,
for each base, verify that it meets all of the constraints. If a base is found to
violate a constraint, randomly change one of the offending bases. We design a
fitness function of the design that includes all constraints and make a random
decision on keeping or discarding a change based on changes in the fitness func-
tion. The problem with this algorithm is that it lacks a stopping condition; if
the constraints are too tight for a solution to be possible, this algorithm will
continue forever. A rather inelegant but effective solution to this problem is to
note that the algorithm will find a valid solution very quickly if one exists, and
to simply put a timeout on the algorithm. That is, if a solution is not found
within some number of seconds, to assume a solution does not exist and report
the failure to the user. It should also be noted that the minimum valid strength
of the constraints is governed by the size of the structure; a very large structure
has more connected bases than a very small structure, and must therefore allow
more repetitions and longer repeating subsequences in order for a valid solution
to exist.

It should also be noted that, in order to reduce the execution time of the
algorithm, the random assignment of bases should take into account the GC
percentage constraint. For example, if it is required that 70% of bases be guanine
or cytosine, it is counterproductive to assign 50% of bases a guanine or cytosine
type. However, a sequence of randomly generated numbers lying on a given
mean will form a Gaussian distribution around that mean; thus, in order to
ensure a solution is more likely to be found, the percentage of guanines and
cytosines should be greater than the required percentage by at least one standard
deviation. The result of this shift is that more bases than required will be assigned
guanine or cytosine, but this is a relatively trivial drawback for its performance
increase.

2.3 Visualization

In this section, we will discuss a dynamic level of detail algorithm for very large
DNA structures. Levels of detail refers to a process for simplifying the geometry

Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures 95

of a model in order to accelerate the rendering of the model [11]. This is typically
accomplished through coarsening the polygonal mesh, and selecting an amount
of coarseness to represent the mesh based on the camera’s distance from the
mesh. The general level of detail algorithms work directly on 2-manifold smooth
surfaces.

Therefore, the first and most obvious approach is to simplify the geometry of
the structure as much as possible while maintaining the same visual elements
(see Fig. 1). Since it is still desired in the long run to make nice-looking images,
it makes sense to create two drawing modes. The simpler mode exists to draw
bases as very simple spheres and connect them with lines; this mode looks coarse,
but is much faster to draw. The more complex mode draws bases using smooth
spheres and connects them using smooth cylinders; this mode looks good, but
takes a long time to draw. The draw time difference is significant primarily
because editing tools are frustrating to use if user instructions are not carried
out at interactive frame rates. With the lower resolution view, even relatively
slow computers can be used to create structures, then switched to high resolution
drawing only when design of a structure is complete.

Fig. 1. The same helix rendered in two details: edit mode (top) and render mode
(bottom)

Even by coarsening the geometry, a direct rendering will still be very complex
for large structures (see Fig. 2). It is difficult to extract useful information from
this visualization: while the camera is far away from a helix, the position and
orientation of that helix are the only important pieces of information. A better
approach is to represent the helices using a proxy geometry, such as straight
lines (see Fig. 3, and 4). This is particularly helpful in designing and visualizing
large complex DNA nanostructures such as DNA Origami structures recently
developed by Rothemund [12].

96 S. Williams et al.

Fig. 2. A very large structure; this view is both visually confusing and has a slow frame
rate

Fig. 3. A very large structure with some helices reduced to single lines

Fig. 4. The cutoff between level of detail zones

Converting a helix to a line requires four pieces of information: the direction
of the backbone axis, the origin of the backbone axis, the height of the helix,
and the bounds at which a helix remains simple (e.g. has no junctions or sharp
turns).

The information about a helix is thrown away once the helix is created; see
section 2.1 for a detailed discussion on this topic. To reverse engineer the helix
direction, we take the position of the twenty-first base minus the position of the
first base, and normalize that. The backbone direction can also be approximated

Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures 97

as the average of the vectors from the first to the tenth and the first to the
eleventh base, though this approximation is only employed for helices shorter
than twenty-one bases. This can finally be applied to even shorter, eight-base
groups by using a ratio of approximately 3:1.

To determine the origin of the backbone axis, one of the bases from the second
pair is projected into the plane of the first pair; these three points now uniquely
define a circle. If the three points are specified as P1, P2, and P3, the center of
that circle, which is also the center of the helix, is defined by (4). To determine
the height of the cylinder, the same calculation is done for the last base pair in
the helix; the length of the vector pointing from the first center point to the last
center point is the height of the helix.

α =
|P2 − P3|2(P1 − P2) · (P1 − P3)

2|(P1 − P2) × (P2 − P3)|2
(1)

β =
|P1 − P3|2(P2 − P1) · (P2 − P3)

2|(P1 − P2) × (P2 − P3)|2
(2)

γ =
|P1 − P3|2(P2 − P1) · (P2 − P3)

2|(P1 − P2) × (P2 − P3)|2
(3)

C = αP1 + βP2 + γP3 (4)

The final and most difficult challenge is determining the bounds of a simple
helix (see Fig. 5). For a simple helix, one can traverse from a base back to itself
by going across, down, across, and down. (Note that, since the two strands of
a helix are anti-parallel, the down direction of one strand is the up direction of
its complimentary strand. Thus, going down one turn on a strand then down on
its compliment will traverse in a circle.) In the case of a junction, going across
and down sends a traversal into the other helix, so going across and down again
will find a base in a different helix. In the case of sharp turns, in order to keep
a physically possible shape, “filler” bases must be added on the wide side of the
turn, so again a circular traversal will not return to its starting point. Given all
this, a section of a helix can be simplified to one line if and only if a circular
traversal is possible for each base on that segment.

Fig. 5. Three cases for circular traversal: first, a simple helix; second, a junction; third,
a sharp turn; of these cases, the first can be represented by one cylinder, the second
by four cylinders, and the third by two cylinders

98 S. Williams et al.

Given all this information, during the drawing routine, if a base is far enough
away from the camera, traverse up and down from that base to find either where
the helix stops being simple (this can be precalculated) or where the simple helix
gets too close to the camera, draw a properly colored line between the two ends,
and mark that all bases in between have been drawn.

3 Results

To validate that Tiamat is a functional tool and useful in structural DNA nan-
otechnology a previously designed 4x4 DNA tile[3e] was re-modeled using Tia-
mat (see supplemental information for strand sequences generated). The design
was to use a single 4x4 DNA tile to grow into a large 2D array with the se-
quence generated through Tiamat. The structure was made according to the
design by Yan et al. [3e] incorporating four 4-arm branched junctions and the
adjoining junctions are orthogonal to each other and each end has a five base
sticky-end overhang. The design uses the corrugated design which allows for the
tiles to form large 2D arrays instead of folding on themselves and forming tube
structures. Figure 6A is a Tiamat output that shows the design of the 4x4 tile,
and Figure 6B is the joining of four tiles to make the beginning stages of a 2D
array.

We used Atomic Force Microscopy (AFM) and native polyacrylamide gel elec-
trophoresis (PAGE) to verify if the 4x4 structure and the self-assembled arrays
designed by Tiamat formed correctly. Native PAGE (see Figure 7) was used to
verify that the tile structure did not form any other undesired structures (usu-
ally shown as upper bands above the single intact band) and any break down
structures (lower band indicating unstable dissociations) when annealed at sto-
ichiometric amounts. Figure 8 shows AFM images taken of the 2D crystals that
were formed using the Tiamat design. The images prove that Tiamat was able
to design the structure and then generate a sequence that could fold into the
rationally designed array structures.

Fig. 6. Tiamat model of the 4x4 DNA tile and a model of the joining of four DNA
tiles together

Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures 99

Fig. 7. Native PAGE gel of the formation of the 4x4 DNA tile. Tiamat models are
used to represent each lane. The complete tile is from a purified sample of the 4x4 tile.

Fig. 8. AFM images of the 2D crystals formed by the 4x4 DNA tile

4 Discussion

As demonstrated by the above examples and figures, we have shown that Tiamat
is a novel and useful program for the designing of DNA structures and modeling
those structures for feasibility. The main novelty of Tiamat is the possibility
to efficiently model large and complex DNA structures. Future implementation
and improvement of Tiamat may include more features of DNA modeling such
as functions to estimate thermodynamic parameters for a designed DNA nanos-
tructure.

Tiamat is written in C++ using Microsoft Foundation Classes (MFC) for
windowing and interface, and OpenGL for rendering. Therefore, it only runs
on Microsoft Windows operating systems; specifically, Windows 2000, XP, and
Vista. Tiamat requires only OpenGL 1.0, so it can run on virtually any available
video card.

Supplemental information includes a manual for the Tiamat software, de-
tailed model and sequences of the 4x4 DNA tile and experimental methods used
in this work. The Tiamat program and manual can be downloaded free from
http://chemistry.asu.edu/faculty/hao yan.asp.

100 S. Williams et al.

Acknowledgements

This work is supported by a grant from NIH to S.L. and H.Y.; H.Y. also would
like to thank funding supports from NSF, ONR and AFOSR. We thank members
from Hao Yan’s group for testing the use of the Tiamat program.

References

1. Seeman, N.C.: Nucleic Acid Junctions and Lattices. J. Theo. Biol. 99, 237–247
(1982)

2. (a) Kallenbach, N.R., Ma, R.-I., Seeman, N.C.: An Immobile Nucleic Acid Junction
Constructed from Oligonucleotides. Nature 305, 829–831 (1983) (b) Chen, J., See-
man, N.C.: The Synthesis from DNA of a Molecule with the Connectivity of a Cube.
Nature 350, 631–633 (1991) (c) Zhang, Y., Seeman, N.C.: The Construction of a
DNA Truncated Octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994) (d) Fu, T.-
J., Seeman, N.C.: DNA Double Crossover Structures. Biochemistry 32, 3211–3220
(1993) (e) Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded
DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004) (f) Good-
man, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F.,
Turberfield, A.J.: Rapid chiral assembly of rigid DNA building blocks for molec-
ular nanofabrication. Science 310, 1661–1665 (2005) (g) Erben, C.M., Goodman,
R.P., Turberfield, A.J.: A Self-Assembled DNA Bipyramid. J. Am. Chem. Soc. 129,
6992–6993 (2007)

3. (a) Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and Self-Assembly
of Two-Dimensional DNA Crystals. Nature 394, 539–544 (1998) (b) LaBean, T.,
Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The Con-
struction of DNA Triple Crossover Molecules. J. Am. Chem. Soc. 122, 1848–1860
(2000) (c) Shen, Z., Yan, H., Wang, T., Seeman, N.C.: Paranemic Crossover DNA:
A Generalized Holliday Structure with Applications in Nanotechnology. J. Am.
Chem. Soc. 126, 1666–1674 (2004) (d) Mao, C., Sun, W., Seeman, N.C.: Designed
Two-Dimensional DNA: Holliday Junction Arrays Visualized by Atomic Force
Microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999) (e) Yan, H., Park, S.H.,
Ginkelstein, G., Reif, J.H., LaBean, T.H.: DNA templated Self-assembly of Pro-
tein Arrays and Highly Conductive Nanowires. Science 301, 1882–1884 (2003) (f)
Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of
Rigid DNA Triangles with Flexible Four-Arm DNA Junctions. J. Am. Chem.
Soc. 126, 2324–2325 (2004) (g) He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.:
Self-Assembly of Hexagonal DNA Two-Dimensional (2D) Arrays. J. Am. Chem.
Soc. 127, 12202–12203 (2005); (h) He, Y., Tian, Y., Ribbe, A.E., Mao, C.: Highly
Connected Two-Dimensional Crystals of DNA Six-Point-Stars. J. Am. Chem.
Soc. 128, 15978–15979 (2006); (i) Reishus, D., Shaw, B., Brun, Y., Chelyapov,
N., Adleman, L.: Self-Assembly of DNA Double-Double Crossover Complexes into
High-Density, Doubly Connected, Planar Structures. J. Am. Chem. Soc 127, 17590–
17591 (2005) (j) Ke, Y., Liu, Y., Zhang, J., Yan, H.: A Study of DNA Tube Forma-
tion Mechanisms Using 4-, 8-, and 12-Helix DNA Nanostructures. J. Am. Chem.
Soc. 128, 4414–4421 (2006)

4. Seeman, N.C.: The Interactive Manipulation and Design of Macromolecular Archi-
tecture Utilizing Nucleic Acid Junctions. J. Mol. Graphics 3, 34–39 (1985)

Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures 101

5. Seeman, N.C.: Physical Models for Exploring DNA Topology. J. Biomol. Struct.
Dynam. 5, 997–1004 (1988)

6. Birac, J.J., Sherman, W.B., Kopatsch, J., Constantinou, P.E., Seeman, N.C.:
GIDEON, A Program for Design in Structural DNA Nanotechnology. J. Mol.
Graphics Model 25, 470–480 (2006)

7. Seeman, N.C.: De Novo Design of Sequences for Nucleic Acid Structure Engineer-
ing. J. Biomol. Struct. Dynam. 8, 573–581 (1990)

8. Cormen, et al.: Introduction to Algorithms
9. Nocedal, J., Wright, S.: Numerical Optimization, Springer Series in Operations

Research and Financial Engineering
10. Chong, E.K.P., Żak, S.H.: An Introduction to Optimization, 2nd edn
11. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level

of Detail for 3D Graphics. The Morgan Kaufmann Series in Computer Graphics
12. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-

ture 440, 297–302 (2006)

Connecting the Dots:

Molecular Machinery for Distributed Robotics

Yuriy Brun and Dustin Reishus

University of Southern California, Los Angeles, CA, USA
{ybrun,reishus}@usc.edu

Abstract. Nature is considered one promising area to search for inspi-
ration in designing robotic systems. Some work in swarm robotics has
tried to build systems that resemble distributed biological systems and
inherit biology’s fault tolerance, scalability, dependability, and robust-
ness. Such systems, as well as ones in the areas of active self-assembly
and amorphous computing, typically use relatively simple components
with limited computation, memory, and computational power to accom-
plish complex tasks, such as forming paths in the presence of obstacles.
We demonstrate that such tasks can be accomplished in the well-studied
tile assembly model, a model of molecular self-assembly that is strictly
simpler than other biologically-inspired models. Our systems use a small
number of distinct components to find minimal-length paths in time
linear in the length of the path while inheriting scalability and fault
tolerance of the underlying natural process of self-assembly.

1 Introduction

Swarm robotics, active self-assembly, and amorphous computing are fields that
focus on designing systems of small, simple components that are capable of co-
operating to complete complex tasks. Many of these systems have been inspired
by biological systems seen in nature, so we will refer to them as biologically-
inspired systems. Work on biologically-inspired systems started in theoretical
explorations [1,2,3,4,5,6] and fueled the creation of distributed robotic systems
in hardware, in which individual robots with limited capabilities come together
in swarms to exhibit complex emergent behaviors [7,8,9,10,11]. Because systems
are built out of simple, and therefore cheap, components, creating a large number
of components is typically not a concern, but the number of distinct components
is. To further reduce the cost of the component-manufacturing process, many of
the systems strive to allow for unreliable components. In large, much of the work
in these fields is inspired by biological systems that not only build complex sys-
tems out of simple and cheap components, but that also often deal with faulty
and malicious agents.

Biologically-inspired systems are typically made up of a large number of iden-
tical components that are resource- and computational power-limited agents.
Various researchers have defined distinct models for studying such systems; the

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 102–111, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Connecting the Dots: Molecular Machinery for Distributed Robotics 103

models differ in the components, in the types of interactions between compo-
nents, and in the environmental resources available to the components. The
primary goal behind the creation of many of these models is to use the simplest
components to achieve complex behavior, such as the assembly of shapes or for-
mation of paths between points. While these may not seem like complex tasks
on first inspection, these behaviors can be used as primitives to accomplish more
practical results. For example, the path-forming primitive can be used to form
wires between two electrodes on a surface.

In our approach, we show that an extremely simple model of components
with practically no memory, no communication, and no control requirements
are capable of accomplishing many of the tasks commonly presented in related
literature. To that end, we leverage the tile assembly model [12,13,14], a formal
model of crystal growth. It was designed to model self-assembly of molecules
such as DNA, and thus its components are no more complex than oversimplified
biological molecules. It is an extension of a model proposed by Wang [15] in 1961.
In essence, a component is a square with a label on each of its four sides. Com-
ponents cannot change their labels, nor input or output any information. They
can, however, attach to other components if the labels on their abutting sides
match. The tile assembly model is a formal mathematical model, which allows
for the study of assembly time and tileset complexities. Many other biologically-
inspired systems lack the formalism to allow this type of study. We will present
tile systems that find paths between points, and show that these systems exhibit
the same robustness demonstrated by other biologically-inspired systems.

2 Related Work

The work presented in this paper builds on the tile assembly model to solve
problems commonly found in biologically-inspired systems literature, such as
path finding. Thus, we will first discuss the work in biologically-inspired systems
in Section 2.1 and then review work related to the tile assembly model in Sec-
tion 2.2. We will define the tile assembly model in Section 3 and explain our
path-finding system in Section 4. Finally, we will conclude in Section 5.

2.1 Biologically-Inspired Systems

Perhaps the first instance of using simple components to solve the path-finding
problem was in the paintable computing model. Paintable computing was in-
spired by the idea of placing cheap, unreliable, and tiny (invisible to the naked
eye) components into paint, and covering a wall or other surface with that
paint. The components remain stationary on the wall and are able to commu-
nicate wirelessly with their neighbors to accomplish certain tasks, for example
forming a wire between a light switch and a light fixture on the wall (an in-
stance of the path-finding problem) or displaying a photograph (an instance of
shape construction). Pushpin computing was the first physical implementation
of a paintable-computing-like system. Butera created cubic-inch-sized immobile

104 Y. Brun and D. Reishus

robots that could be pinned to a special wall made of foil [7]. The wall provided
the robots with power, and they, in turn, could communicate with a small radius
of neighbors and turn on and off LED lights.

Abelson et al. [1] formally defined an amorphous computer to be a 2-D sheet
with randomly placed immobile robots. The robots have wireless communication
capability with radius far smaller than the sheet, and their computational abil-
ities are restricted to be less powerful than Turing machines, but are otherwise
left open. In general, these robots are expected to have some memory and a
finite control. This definition formed a medium for researchers to test the power
of simple components and to experiment with programming those components
to complete complex tasks. The path-finding problem in this model was solved
in [7] with the use of messages similar to chemical gradients used in biological
systems. Several extensions of this model exist, and the path-finding problem has
been solved in almost all of them. Nagpal’s extension to the amorphous com-
puter model allows the 2-D sheet to fold along a line. She solved the path-finding
problem and related mathematical work on origami to show that it is possible to
compile an origami-folding procedure for a given structure into a program, such
that when an identical copy of the program is loaded onto each of the robots,
the robots self-organize to create that shape [5].

Clement et al. looked at ways of making the amorphous computing algorithm
that solves the path-finding problem more robust to failing robots [3]. While
most algorithms are resilient to holes and broken robots at the time of self-
organization, this work looked at situations in which robots may fail during or
after the algorithm’s execution. They came up with modified algorithms to gen-
erate lines between points that, essentially, continually check for a line’s validity,
and if a line is no longer valid, regenerate a new line to fix the problem.

Later, Nagpal et al. showed that it is possible for the robots of an amorphous
computer to self-organize into coordinate systems, with each robot knowing its
coordinate, and thus display preprogrammed images (given some ability to shine
light) [6]. Their robots send out messages similar to the gradient discussed in the
line-formation procedure, and robots can, in essence, triangulate their positions
on the sheet.

Arbuckle et al. developed their own model, similar to the amorphous com-
puter. They concentrated on limiting the robots to only a few bits of memory,
and allow the robots to move on a 2-D surface. They demonstrated the ability
to build paths, assemble shapes, and repair formed paths and shapes [2].

A number of researchers have worked on implementing systems of robots in
hardware. These implementations commonly have dozens of robots, rather than
millions as is often assumed in the theoretical work, and each robot is actually
far more complex and expensive than the theoreticians would like them to be.
Werfel et al. showed the ability for distributed robots to move blocks to form
shapes [11]. McLurkin et al. used mobile robots to assemble into groups based on
the sounds they were making, self-organizing into robotic orchestras [9]. Klavins
worked with triangular robots with programmable side interfaces that can attract
or repel each other to assemble shapes and study assembly dynamics [8]. Shen

Connecting the Dots: Molecular Machinery for Distributed Robotics 105

et al. demonstrated reconfigurable robots, made up of identical basic units, self-
organizing to crawl, walk, climb, as well as perform other complex tasks [10].

While a wealth of literature exists on biologically-inspired systems, this lit-
erature lacks the organization and common definitions necessary to effectively
compare the complexity of the basic components or the complexity of the tasks
performed by the systems. Our systems presented in this paper use components
far simpler than the ones described in this section (they have no finite control,
minimal read-only memory, and incredibly limited communication abilities) and
perform some of the same tasks we have described thus far.

2.2 Self-Assembly

Research in self-assembly attempts to explain how simple objects come together
on their own to form more complex objects capable of more complex behaviors.
Self-assembly is a process that is ubiquitous in nature. Systems form on all
scales via self-assembly, e.g., atoms self-assemble to form molecules, molecules to
form complexes, and stars to form galaxies. One manifestation of self-assembly
is crystal growth: molecules self-assemble to form crystals. The tile assembly
model [12,13,14] is a formal model of such crystal growth.

One of the potential applications of the tile assembly model is self-assembling
electronic circuits [16,17]. Researchers have shown that it is possible to attach
simple, electronically-active components to DNA tiles and use the self-assembling
interactions of the tiles to arrange these components [18]. One of the most basic
tasks one might want to use self-assembly to complete is constructing a wire
between two points. This task involves finding a path between them. One might
further specify that the path should be short, use no extraneous components,
or perhaps avoid certain regions (for example, other circuit elements). We will
present a system that accomplishes these tasks.

One similarity between the study of self-assembly and other biologically-inspired
systems is that researchers have identified the problem of forming shapes as im-
portant in both fields. It is possible to build shapes using tiles, simpler compo-
nents than the ones used in other biologically-inspired systems, to create arbitrary
computable shapes. Adleman proposed studying the complexity of tile systems
that can uniquely produce n×n squares. A series of researchers [14,19,20,21] pro-
ceeded to answer the questions “what is a minimal tile set that can assemble such
shapes?” and “what is the assembly time for these systems?” They showed that
the minimal tile set that assembles n × n squares is of size O

(
log n

log log n

)
and the

optimal assembly time is Θ(n) [20]. A key issue related to assembling squares is
the assembly of small binary counters, which theoretically can have as few as 6 or
7 tile types [22,21].

The path-finding problem is related to the “domino snake problem” that
asks whether a given tileset can form a path between two points. On the whole
plane, the domino snake problem turns out to be decidable; however, if there
are obstacles or regions that the path must avoid, the problem may become
undecidable [23].

106 Y. Brun and D. Reishus

Researchers have also studied variations on the traditional tile assembly model.
Aggarwal et al. and Kao et al. have shown that changing the temperature of as-
sembly from a constant throughout the assembly process to a discrete function
reduces the minimal tile set that can build an n × n square to a size Θ(1) tile
set [24,25]. In our work with path-finding systems, we allow the temperature to
change once.

Soloveichik et al. studied assembling all decidable shapes in the tile assembly
model and found that the size of the minimal set of tiles necessary to uniquely as-
semble a shape is directly related to the Kolmogorov complexity of that shape [26].
One of the tasks commonly used to demonstrate power in biologically-inspired sys-
tems is the construction of simple shapes. What Soloveichik et al. showed is that
systems in the tile assembly model are capable of assembling all decidable shapes,
on some scale. While we do not go into great depth on shape construction in this
paper, tile assembly model’s ability to construct shapes is one indicator of this
model’s ability to perform the same tasks other biologically-inspired systems per-
form.

3 Tile Assembly Model

The tile assembly model [12,14], a formal mathematical model of self-assembly,
can compute functions and is Turing universal. It is an extension of a model
proposed by Wang [15]. It was designed to model crystal growth via self-assembly
of molecules such as DNA. The model was fully defined by Rothemund and
Winfree [14], and the definitions here are similar to those, though we make a
slight extension to allow for growth and decay of crystals. Full formal definitions
can be found in [27].

Intuitively, the model has tiles, or squares, that stick or do not stick together
based on various binding domains on their four sides. Each tile has a binding
domain on its north, east, south, and west side. The four binding domains,
elements of a finite alphabet Σ, define the type of the tile. The strength of the
binding domains are defined by the strength function g. The placement of some
tiles on a 2-D grid is called a configuration, and a tile may attach in empty
positions on the grid if the total strength of all the binding domains on that tile
that match its neighbors exceeds the current temperature and detach if the total
strength of all the binding domains on a tile in a configuration that match its
neighbors is below the current temperature. Finally, a melting tile system S is a
quadruple 〈T, g, τg, τm〉, where T is a finite set of tiles, g is a strength function,
and τg, τm ∈ N are two temperatures , where N = Z≥0.

Starting from a seed configuration S, tiles may attach or detach at temperature
τg to form new configurations. At some switching time, the temperature changes
to τm and tiles continue to attach and detach. If that process terminates, the
resulting configuration is said to be final. At some times, there may be a position
where more than one tile can attach, there may be more than one position where
a tile can attach, or there may be more than one position where a tile can
detach. If, for all sequences of tile attachments, all possible final configurations

Connecting the Dots: Molecular Machinery for Distributed Robotics 107

are identical, then S is said to produce a unique final configuration on S. The
assembly time of the system is the minimal number of steps it takes to build a
final configuration, assuming maximum parallelism.

4 Path-Finding

Path finding is the problem of forming a path between two points on a 2-D
plane. Intuitively, given a seed configuration with a single start tile, a single goal
tile, and some number of special obstacle tiles, a path-finding system should
attach tiles to connect the start to the goal, avoiding all the obstacle tiles. It is
straightforward to design such a system that leaves extraneous tiles: simply fill
fill the plane with tiles and claim that the path is there. Thus we wish to restrict
systems to leave no extraneous tiles in the final configuration.

Informally, for a tile system S to solve the path-finding problem, starting from
a configuration with a single S tile, a single G tile, and some obstacle tiles, S

must produce a final configuration F that contains a path of connected tiles
from S to G of minimal length, and every tile in F must be on such a path. Due
to space limitations, we refer the reader to [27] for the formal definition of the
path-finding problem.

The path-finding problem is analogous to the path-finding relatives that re-
searchers have solved previously [1,2,3,5]. Demonstrating that there exists a tile
system that solves the path-finding problem indicates that it can be solved with
simpler basic components than those used in the related work.

We now describe the melting tile system Scpf that solves the path-finding
problem. Figure 1(a) shows the start (S) and goal (G) tiles. The start tile has an
n, e, s, and w binding domain on its north, east, south, and west sides, respec-
tively, the goal tile is covered with γ binding domains, and the obstacle tile is
covered with x binding domains.

Figure 1(b) shows the four tiles of Tcpf . Each tile is labeled with an arrow
(we explain the meaning of the arrow later). The glue strength function gcpf is
defined as follows:

– The x binding domain binds with strength 0 to every other binding domain,
– The γ binding domain binds with strength 1 to every other binding domain,

except x, and
– All other binding domains bind with strength 2 to themselves and 0 to others.

Let us examine the intuition behind Scpf = 〈Tcpf , gcpf , 2, 3〉. Figure 2(a) shows
a sample seed configuration with a four-tile obstacle. At temperature 2, tiles will

n

s
w eS G

(a)

n

n
w e

s

s
w e

n

s
e e

n

s
w w

(b)

Fig. 1. Scpf uses a special start (S) and goal (G) tile (a) and four “working” tiles (b)

108 Y. Brun and D. Reishus

n

s
w eS

G
x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

(a)

n

s
w eS

G

n

n
w e

x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

n

s
e e

s

s
w e

n

s
w w

(b)

G

n

s
w eS e

n
w

s

n

n
w e

n

s
e e

s

s
w e

n

s
w w

n
e

n

n
w

s

s
w

s
e e

x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

(c)

n

s
w eS

n
w

s
e

n n

n

s
w w

s

s
w

s

s
w

e

e

n

n
w

w w

s

s
e

s

s
e

e

s
e e

n

n
w w

e e

n

n
w

n

n
e e

G
x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

(d)

n

s
e e

n

s
e e

n

n
e

s
e e

n

s
w eS

G

n

s
e e

n

n
w e

x

x
x x

x

x
x x

x

x
x x

x

x
x x

obstacle

(e)

Fig. 2. An example execution of Scpf . Scpf works at temperature 2 (a-d) to build
possible paths and then at temperature 3 (e) to prune unsuccessful paths. Only binding
domains that are exposed or attached have been labeled.

attach to S to create possible paths toward G. Each of the four tiles in Tcpf is
designed to attach in a specific way to an existing assembly: each of the tiles
has exactly one of its four domains be “irregular” (where “regular” means n
for north, e for east, s for south, and w for west). The growing assembly will
always have regular domains on all its exposed sides, thus tiles may only attach
via their single irregular domain. Figures 2(b) and 2(c) show tile attachments
after 1 and 2 steps, respectively. Paths may turn and fork in their attempts to
reach G. Once G is reached, the last tile attaches with a total strength of 3 (2
via its irregular binding domain and 1 to G). Figure 2(d) shows some possible
attachments after the system has been running for some time and has reached
G. We can now increase the temperature to 3. Partial paths detach, one tile at
a time, because the tiles on one end of each of those paths are only connected
by a single strength 2 attachment. All partial paths detach, while the successful
paths remain. Figure 2(e) shows the final configuration encoding a single path
from S to G that avoids the obstacles.

To show that Scpf solves the path-finding problem, we need a notion of dis-
tance in systems with obstacles. The notion we choose is the obstructed Man-
hattan distance. The obstructed Manhattan distance between two points on a
2-D grid is the fewest number of unit-sized steps one has to take from one point
to get to the other, without stepping on an obstacle. Note that the obstructed
Manhattan distance can be quite a bit larger than the Manhattan distance, and
even infinite between two points that are unreachable from each other via a walk.

Connecting the Dots: Molecular Machinery for Distributed Robotics 109

The melting tile system Scpf solves the path-finding problem with the switch
time on the order of the obstructed Manhattan distance between the start and
the goal, if we assume maximum parallelism: whenever a tile can attach, it does,
and whenever a tile can detach, it does. In actual physical implementations of
the tile assembly model, it is far more likely that attachments and detachments
happen stochastically, with rates that are related to the bond strength. Scpf

may not always produce minimal-length paths without the maximum parallelism
assumption, but with high probability, the length of the solution path is on the
order of the obstructed Manhattan distance. Due to space constraints, we cannot
provide the proofs of these statements here, and we refer the reader to [27] for
these proofs, as well as the explanation of a slightly simpler system that solves
a variant of the path-finding problem without obstacles.

While the theoretical definitions do not require knowing the proper switch
time, in practice it may be helpful to know when to increase the temperature.
The switch time is Θ(d), where d is the obstructed Manhattan distance between
S and G. More specifically, the proper minimum switch time is exactly d − 1.
In practice, if the distance d is known, one can wait that long to increase the
temperature. If d is unknown, one can devise an algorithm of increasing and
decreasing the temperature repeatedly, perhaps increasing the length of switch
time exponentially, such that in expectation a path can be found quickly.

5 Contributions

A number of nature-inspired systems [1,2,4,5,6,10,11] attempt to use simple com-
ponents with limited computational power to come together to accomplish com-
plex tasks. The tasks commonly accomplished by these systems include finding
paths between two points in 2-D space and assembling shapes. The reason for the
desire to use simple components is that they are cheap to produce in bulk. We
have presented a tile assembly system that finds paths between two points with
obstacles present. This system uses components far simpler than those used in
the related work. The components’ interfaces are static and each component per-
forms no computation, has no controlled movement, and has no writable memory
(the binding domains are read-only memory). Components such as these have
been built out of DNA [28,29,30,31,32] at incredibly low costs.

While we have not discussed fault-tolerance within tile systems, an entire
field of related research exists on making tile systems tolerant to individual
tile failures [33]. One could apply the ideas in that related work directly to
the tile systems we describe in this paper to make these systems able to perform
successfully despite high probabilities of tiles failing, usually at the cost of slowing
down the system assembly. We have also discussed related work demonstrating
that tiles can be used to assemble arbitrary computable shapes and to solve
Turing-complete problems, showing strong reason to believe that even though
tiles are simpler than the components described in the related work, together
they can accomplish the same tasks as those components.

110 Y. Brun and D. Reishus

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr., T.F., Nagpal,
R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications
of the ACM 43(5), 74–82 (2000)

2. Arbuckle, D.J., Requicha, A.A.G.: Active self-assembly. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA 2004), New
Orleans, LA, USA, pp. 896–901 (April 2004)

3. Clement, L., Nagpal, R.: Self-assembly and self-repairing topologies. In: Proceed-
ings of the Workshop on Adaptability in Multi-Agent Systems, RoboCup Aus-
tralian Open (January 2003)

4. Kondacs, A.: Biologically-inspired self-assembly of two-dimensional shapes using
global-to-local compilation. In: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico (August 2003)

5. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape Using
Biologically-Inspired Local Interactions and Origami Mathematics. PhD thesis,
Massachussetts Institute of Technology, Cambridge, MA, USA (June 2001)

6. Nagpal, R., Shrobe, H.E., Bachrach, J.: Organizing a global coordinate system
from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L.J.
(eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)

7. Butera, W.J.: Programming a Paintable Computer. PhD thesis, Massachussetts
Institute of Technology, Cambridge, MA, USA (February 2002)

8. Klavins, E.: Programmable self-assembly. Control Systems Magazine 24(4), 43–56
(2007)

9. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speak-
ing swarmish: Human-robot interface design for large swarms of autonomous mo-
bile robots. In: Proceedings of the AAAI Spring Symposium, Stanford, CA, USA
(March 2006)

10. Shen, W.M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.:
Multimode locomotion for reconfigurable robots. Autonomous Robots 20(2), 165–
177 (2006)

11. Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile
robots with enhanced building blocks. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA (May
2006)

12. Winfree, E.: Simulations of computing by self-assembly of DNA. Technical Report
CS-TR:1998:22, California Institute of Technology, Pasadena, CA, USA (1998)

13. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Pasadena, CA, USA (June 1998)

14. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of STOC 2000, Portland, OR, USA, pp. 459–468 (May
2000)

15. Wang, H.: Proving theorems by pattern recognition. II. Bell System Technical J. 40,
1–42 (1961)

16. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In:
Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 91–107. Springer,
Heidelberg (2004)

17. Reishus, D.: Design of a self-assembled memory circuit. In: Proceedings of the 5th
Foundations of Nanoscience: Self-Assembled Architectures and Devices (FNANO
2008), Snowbird, UT, USA, pp. 239–246 (April 2008)

Connecting the Dots: Molecular Machinery for Distributed Robotics 111

18. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-
assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884
(2003)

19. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., Moisset de Espanés,
P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
Proceedings of STOC 2002, Montreal, Quebec, Canada, pp. 23–32 (May 2002)

20. Adleman, L., Goel, A., Huang, M.D., Moisset de Espanés, P.: Running time and
program size for self-assembled squares. In: Proceedings of STOC 2002, Montreal,
Quebec, Canada, pp. 740–748 (May 2002)

21. Moisset de Espanés, P., Goel, A.: Toward minimum size self-assembled counters.
Natural Computing 7(3), 317–334 (2008)

22. Chen, H.L.: Towards minimum tile self-assembled counters. In: Proceedings of
the 5th Foundations of Nanoscience: Self-Assembled Architectures and Devices
(FNANO 2008), Snowbird, UT, USA, pp. 218–223 (April 2008)

23. Etzion-Petruschka, Y., Harel, D., Myers, D.: On the solvability of domino snake
problems. Theoretical Computer Science 131(2), 243–269 (1994)

24. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., Moisset de Espanés, P.,
Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J. on
Computing 34(6), 1493–1515 (2005)

25. Kao, M.Y., Schweller, R.: Reducing tile complexity for self-assembly through tem-
perature programming. In: Proceedings of the 17th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2006), Miami, FL, USA, pp. 571–580 (January
2006)

26. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. on
Computing 36(6), 1544–1569 (2007)

27. Brun, Y., Reishus, D.: Path finding in the tile assembly model. Theoretical Com-
puter Science (in press, 2008)

28. Barish, R., Rothemund, P.W.K., Winfree, E.: Two computational primitives for
algorithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592
(2005)

29. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.:
DNA triangles and self-assembled hexagonal tilings. JACS 126(43), 13924–13925
(2004)

30. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32(13),
3211–3220 (1993)

31. Reishus, D., Shaw, B., Brun, Y., Chelyapov, N., Adleman, L.: Self-assembly of
DNA double-double crossover complexes into high-density, doubly connected, pla-
nar structures. JACS 127(50), 17590–17591 (2005)

32. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2(12), 424 (2004)

33. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic
self-assembly. In: Proceedings of FOCS 2002, Madison, WI, USA, vol. 2943, pp.
126–144 (June 2003)

Polyomino-Safe DNA Self-assembly via Block

Replacement

Chris Luhrs�

Stanford University
cluhrs@cs.stanford.edu

Abstract. The standard abstract model for analyzing DNA self-
assembly, aTAM, assumes that single tiles attach one by one to a larger
structure. In practice, tiles may attach to each other forming structures
called polyominoes and then attach to the assembly using bonds from
multiple tiles. Such polyominoes may cause errors in systems designed
with only aTAM in mind. In this paper, we first present a formal defini-
tion of when one tile system is a “block replacement” of another. Then we
present a block replacement scheme for making any system that admits
non-trivial block replacement polyomino-safe. In addition, we present a
smaller block replacement scheme that makes the Chinese Remainder
counter polyomino-safe and prove that the question of whether a system
is polyomino-safe (or other similar properties) is undecidable. Finally,
we show that applying our polyomino-safe system produces self-healing
systems when applied to most self-healing systems.

1 Introduction

Nanotechnology presents obvious and enormous potential. Manipulating objects
on that scale explicitly is infeasible though. As a result, the discipline of nano-
scale self-assembly has arisen as a means to harness nanotechnology’s promise.
In a self-assembly model, small components attach to each other using simple
local rules, producing large complicated shapes. DNA has two properties that
make it a natural tool for self-assembly. First, strands of DNA naturally store
strings of data that can be used to identify themselves. Second, for every strand
of DNA there is a complementary strand that will attach. Thus, DNA provides a
means to generate local rules in which two pieces will want to attach if they have
complimentary strands of DNA. In addition, the lab techniques for manipulation
of DNA are already well-developed because of their many other applications. As
a result of these factors, DNA self-assembly has been used in many nanoscale
applications including as a means to perform computation [1,2], to produce
patterns [3,4], and to produce nano-scale machines [5,6,7,8,9,10].

One particularly well-studied type of DNA self-assembly is the tile model.
Rectangular DNA molecules have been formed that have a piece of single-
stranded DNA on each side [11]. An abstract version of their behavior, the
� Department of Computer Science. Research supported in part by NSF grants

1104592 and 1097249.

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 112–126, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Polyomino-Safe DNA Self-assembly via Block Replacement 113

asynchronous Tile Assembly Model (aTAM), was introduced by Rothemund and
Winfree [12]. In this model, we think of each molecule as a tile with each of the
strands as a glue. Each glue has an affinity for itself called its strength (which
can be controlled in the lab by changing the length of the strand). In aTAM,
assembly starts from a structure consisting of a single tile called the seed. One
by one, tiles attach to the existing structure under the constraint that a tile
may only attach to the system at a location if its glues that match the struc-
ture at that location exceed the temperature, a parameter of an aTAM system
(corresponding to the actual temperature of the solution in which the assembly
is taking place). Study of aTAM has led to many interesting tile systems such
as counters [13,12,14,15] and systems capable of Turing-universal computation
and producing arbitrary computable shapes [16,3,17].

While aTAM is a valuable tool for analyzing tile systems, it does not perfectly
match behavior in the laboratory. For example, a tile may attach with a strength
lower than the temperature. Such “insufficient attachments” will fall off much
more quickly than attachments at the temperature but can persist if another
nearby attachment locks them in. The experimental rate for such problems is
somewhere between 1% and 10% [18], and a great deal of research has gone into
schemes to minimize the effects of these errors [19,20,21,5,18,22,23]. Another
problem that can occur is a large portion of an assembly may fall off in the
middle of construction. This behavior can cause problems when an assembly
intended to grow in one direction is not designed to grow uniquely from other
directions. Systems resilient to this problem (called self-healing systems) have
been developed for several interesting assembly problems [24,25].

Implicit in most of these error-reduction schemes is the concept of block re-
placement. In block replacement, we start with a tile system that forms some
shape we want but has other undesirable properties such as susceptibility to the
kinds of errors we described above. We then construct a new system by replacing
each tile in the old system by a larger set of tiles. These tiles assemble into a
rectangle that functions like the tile they are replacing in the new scheme, and
at the same time they locally prevent the problems of the original system from
occurring. For example, the block might halt its own formation when an insuffi-
cient attachment occurs giving the error time to fall off before it gets locked into
the assembly [19,20] or be only able to grow in a desired subset of directions [25].
While the inuition is clear, a precise definition of what should be called a block
replacement seems to be absent.

Another assumption aTAM makes is that tiles attach to the existing structure
one by one. In practice, there are large numbers of each tile floating around in
solution and if two tiles have enough attraction between them to attach indepen-
dent of the existing structure they will do so. This new supertile or polyomino
can use the glues from both tiles and may be able to attach to the super-structure
in places where neither tile could attach individually. Such a model of assembly
was first discussed by Aggarwal et al. [15]. In that paper, they propose what
they call the q-tile assembly model, which permits supertiles consisting of q or
fewer tiles. In that paper, polyominoes are seen as a tool to potentially produce

114 C. Luhrs

more efficient tile systems. Similarly, Demaine et al. proposed doing DNA self-
assembly in stages [26]; different sets of tiles would be allowed to assemble in
different test tubes, and then those test tubes would be mixed so that resultant
polyominoes could attach to each other. By doing so, they produced tile systems
that could theoretically produce shapes more efficiently than those in single-
stage self-assembly. Polyominoes are not a strictly positive effect though. aTAM
assumes single tiles attach one by one, but polyominoes may attach using their
shared glues in places none of the individual tiles could attach by themselves. As
a result, the intended assembly may be derailed. Tile systems not prone to such
problems are called polyomino-safe and were first discussed by Winfree [24]. In
his paper, he proposes a 5×5 block replacement scheme that would make a class
of tile systems he calls transformable polyomino-safe. The primary requirement
for a system to be transformable is that each side of a tile is always either used
to attach that tile to the existing assembly or always used as an attachment for
future tiles. While many natural tile systems have this property, not all do. In
particular, any system that wants to be able to regenerate from more than a
single location cannot have this property.

Polyomino tile attachments are not only a possibility, they are frequent enough
that some experiments have depended on them [21]. Thus, we need a way to
produce polyomino-safety in as much generality as possible.

1.1 Our Results

We begin our paper by presenting the definitions of aTAM, its extension for
polyominoes, and block replacement. While there is an intuitive understanding of
what a block replacement scheme should do in the literature, a formal expression
of this intuition is subtle, and we know of no paper giving a rigorous definition.

Then we develop a 6 × 6 (slightly larger than Winfree’s scheme for trans-
formable systems) block replacement scheme that guarantees polyomino-safety.
Our system will work for a class of tile sets we call block admissible. This re-
striction is rather minor as any system failing this requirement not only cannot
have a polyomino-safe block replacement scheme but can have no non-trivial
block replacement scheme whatsoever. We then show that the Chinese remain-
der counter is not polyomino-safe and present a 3 × 1 polyomino-safe block
replacement scheme for it. We also show that determining whether a given tile
system is polyomino-safe is undecidable. The proof is more generally applica-
ble and can be applied to other important properties of a tile system (such as
whether a system is self-healing). Finally, we show that our polyomino-safe block
replacement scheme preserves self-healing for any block admissible self-healing
tile system.

2 Definitions

The tile assembly model was originally developed by Rothemund and Winfree
[12]. Informally, a tile is a square with glues on each side. When the glues of two

Polyomino-Safe DNA Self-assembly via Block Replacement 115

tiles on corresponding sides match the tiles will want to attach. Here, we present
a slightly modified version from the standard.

Formally, let Σ be a set of glues containing a distinguished glue null. Let δ
denote the set of four directions {N, S, E, W}, with the inverse of a direction
defined naturally. Associate each direction with a unit vector vN = (0, 1), vS =
(0,−1), vE = (1, 0), and vW = (−1, 0) respectively. A tile t is defined by its four
glues, one for each direction in δ, denoted σi(t) for each i in δ, drawn from Σ.
We define a tile system as a tuple < T, s, g, τ >. Here, T is a set of tiles, s is a
distinguished seed tile, g is the glue function from Σ × Σ to the non-negative
integers, and τ is the temperature, a positive integer. We assume g(x, y) = 0 for
x �= y (glues only attach to themselves) and that g(null, null) = 0 (null is inert).
The standard aTAM model has s in T , but in this paper we will not include s in
T . This modification may correspond to the seed being much rarer than the rest
of the tiles or the seed being generated by some special unique process. We will
use this assumption to preclude two large polyominoes both of which contain
the seed from interacting with each other.

A configuration for a tile system is a map from Z × Z to T ∪ {s} ∪ {empty}.
Let C and D be two configurations such that C matches D except at (x, y)
where C is empty and D is some tile t ∈ T . t is attachable to C at (x, y) if the
sum of its glue functions with the surrounding tiles is at least the temperature:∑

d∈δ g(σd(t), σd−1C((x, y) + vd)) ≥ τ . If this is the case we write C → D.
Define a sequence (possibly infinite) of configurations {Ci} to be an assembly
sequence if Ci → Ci+1. We say D is derivable from C (denoted C � D) if there
is an assembly sequence beginning at C whose limit is D. The set of reachable
configurations is the set of configurations derivable from the configuration that
is s at (0, 0) and empty elsewhere.

We now define the polyomino Tile Assembly Model (pTAM) to reflect the
possibility of polyominoes interacting during assembly. As in aTAM a tile con-
figuration is a mapping from Z × Z to T ∪ {s} ∪ {empty}. We define the set of
reachable configurations in pTAM recursively as follows. All configurations that
are a tile from T in a single coordinate or s at (0, 0) and empty elsewhere are
reachable. Two configurations C and D are compatible if at least one of them
is empty at each coordinate. For two compatible configurations the composition
is the configuration that takes on C or D’s value wherever one of them is non-
empty and is empty elsewhere. Given two reachable, compatible configurations
their composition is reachable if

∑
(x,y)

∑
d∈δ

g(σdC(x, y), σd−1(D(x, y) + vd) ≥ τ.

In other words, two polyominoes can attach if they overlap nowhere and the sum
of the matching glue strengths everywhere they are adjacent exceeds τ . Since all
single tile configurations are reachable and the attachment function for pTAM
agrees with aTAM in that case, the reachable configurations under aTAM are a
subset of the reachable configurations under pTAM. We say that a tile system
is polyomino-safe if the reachable configurations under aTAM are exactly the

116 C. Luhrs

reachable configurations under pTAM containing s. That is, we allow arbitrarily
complicated polyominoes to form as long as their formation does not alter what
configurations are reachable from the seed.

Many papers add a desired property (for example self-healing or reliable
stochastic assembly) to a tile system by replacing single tiles with blocks of
tiles. The intuition for what such systems should do is very natural, but we
know of no paper that writes out a formal definition of what such a construction
should achieve. We propose a definition of what it means for a system to be a
block replacement of another system here.

For two tile systems X =< T, s, g, τ > and Y =< T ′, s′, g′, τ ′ > a (m, n)-
blowup function φ is a function from T ∪ {s} to (T ′ ∪ {s′})m×n. Let Φ map a
configuration C of X to a configuration Φ(C) of Y produced by saying that the
m × n block of tiles starting at (mx + a, ny + b) (for some fixed offset (a, b)) is
φ(C(x, y)). We say Y is an (m, n)-block replacement of X under φ if:

1. The image of all reachable configurations in X under Φ are reachable in Y .
2. For any reachable configuration D of Y there are configurations D′ in Y and

C reachable in X such that D � D′, D′ = Φ(C), and there is at least one
non-empty square in D in every block corresponding to a non-empty square
of C.

Here, the first constraint says that each reachable configuration of X maps
to a reachable configuration of Y . The second constraint is in some sense an
inverse of the first. It would be too strong a requirement for every reachable
configuration of Y to be the image of a reachable configuration of X . Tiles attach
one by one in Y , but every tile in X corresponds to multiple tiles in Y . Thus,
there must be intermediate configurations that do not correspond perfectly to
any configuration of X . Hence, we allow ourselves to grow a configuration of Y
until it agrees with something in X . Letting Y grow until it could reach any
configuration that matches a configuration of X would be too weak a constraint
though. In the extreme case, Y could grow in some arbitrary fashion so long as
its terminal configurations match those of X . This case would not match our
intuition that Y should have essentially the same growth dynamics as X but
with each tile being replaced by several. We would not want to say one system
emulated another if the second grows in some completely different direction, and
the two systems’s assemblies only converged much later. Thus, our definition
restricts Y to grow to match X only by finishing blocks it had started.

There may be room for variation in the above definition, but our definition
fits with all examples of block replacement we know of in the literature. With
the above definition, it may be the case that two systems work the same way
when starting from the seed but have divergent behavior when starting from
different beginnings. A stronger concept would be a block replacement where if
both systems start out in analagous positions they continue analgously regardless
of whether or not the original positions were reachable from the seed. We define
Y to be a strong block replacement of X if:

Polyomino-Safe DNA Self-assembly via Block Replacement 117

1. The image of all reachable configurations in X are reachable in Y , and for
all configurations C in X , the image of all configurations derivable from C
under Φ are derivable from Φ(C) in Y .

2. For all configurations C in X , for any configuration D such that Φ(C) � D
there are C′ in X and D′ in Y such that C � C′, D � D′, Φ(C′) = D′, and
there is at least one non-empty square in D in every block corresponding to
a non-empty square in C′.

3 Universal Block Replacement for Polyomino Safety

In this section we present a strong (6, 6)-block replacement scheme for polyomino
safety at temperature 2. There are two fundamental barriers to producing such
a scheme that cannot be directly overcome. The first problem is the seed. Re-
gardless of what scheme we use, the whole system must be able to form from
the seed. Thus, any sub-assembly of the system must be a potential polyomino,
so if two sub-assemblies attaching to each other is a potential problem in the
original system there is little we can do to fix it. Our approach to this problem is
to treat the seed as a special tile that only starts assembly and does not appear
in the solution as stated in the definitions. The second problem is that some tile
systems can never have a non-trivial block replacement.

3.1 Block Admissibility

There are essentially two reasons a tile system cannot have a non-trivial (larger
than (1, 1)) block replacement scheme. First, a system can never require a tile
to attach using glues on opposite sides (i.e. north and south, or east and west).
If such an attachment were required no non-trivial block replacement scheme
would be possible. Consider a situation in the original tile system where a tile
will attach using its north and south glues. In any block replacement longer than
1 in this dimension, there is no single tile where there is enough information to
determine if this tile should attach: the first tile that attaches in this block must
attach using either only the north or only the south face, which would be an
error if the other side is not present.

The second problem is when two different tiles might be able to attach at
the same location but using glues from different sides (e.g one tile could attach
using its north and east glues while another tile could attach using its north
and west glues). In the original system either one tile or the other would attach
first, locking the other tile out. In a block replacement, this process would not
be atomic. The first tile for one of the blocks can start attaching on one side or
corner while tiles for the other block start attaching somewhere else. The result
is that neither of the blocks can form completely, breaking block replacement.

Because no system having either of these two properties can have a meaningful
block replacement we call systems where tiles never attach using opposite glues
and never allow two different tiles to simultaneously be able to attach at the
same location block admissible.

118 C. Luhrs

Definition 1. A tile system is block admissible if:

1. No tile can ever attach in a way that requires both its north and south glues
or its east and west glues.

2. It is never possible for two tiles to attach at the same location using glues
from different directions.

In fact, block admissibility is a sufficient condition for polyomino-safe block
replacement.

3.2 The Polyomino-Safe Block Replacement Scheme

The workhorse of our construction is the 6×6 block presented in figure 1(a). All
glues are unique in the interior of a block. On a face of a block, the glues match
the glues on the face of another block if and only if those two faces had the same
glue in the original system. If the glue in the original system was strength 1 all
glues on the face are strength 1. If it was strength 2, we also make the glue on
the third tile strength 2. If the tile was inert we make all the glues strength 0.
The block has two useful properties. First, the whole block can form from any
complete (non-inert) face and a single tile attached to that face. Second, it is
easy to check that the system has no polyominoes larger than size 2 (this even
applies for the polyominoes that cross blocks using the strength 2 glues on faces
between blocks), and none of these polyominoes have two faces on the exterior
of the block. Because the seed block will have no face to grow from, we must use
a different construction for the block corresponding to the seed, which we show
in figure 1(b). The full block can assemble if the seed tile s is present, but no
polyomino of size larger than 2 can assemble otherwise. We handle the glues on
the faces as we did previously.

Theorem 1. The system described above is a polyomino-safe strong (6, 6)-block
replacement scheme for any block admissable tile system.

Proof. Call the original system X and the system produced by our transfor-
mation Y . We first verify that Y is a strong block replacement scheme for X .
Given only the seed tile of our block replacement scheme the whole seed block
can form, so the image of the seed tile is reachable. Thus, we may start with a
configuration of X and its image in Y , and proceed by induction on the length
of the assembly sequence. Consider an assembly sequence in X , and assume the
image of the kth configuration is derivable. Consider the (k + 1)th tile attach-
ment and the image of the location where it would attach in Y . The entire faces
corresponding to whatever tiles it used to attach are present. It either attached
using a single strength 2 glue or two strength 1 glues. If it used a strength 2
glue in X the face it used has a strength 2 glue in Y , so a first tile of the block
can attach and the rest of the block can attach using that face. Similarly, if two
strength 1 glues were used in X then a first tile in that block can attach at
the corner between the two faces and either face is sufficient for the rest of the

Polyomino-Safe DNA Self-assembly via Block Replacement 119

S

Fig. 1. (a) The basic structure for the polyomino-safe block replacement scheme where
the original block had strength 2 glues in the south and west and strength 1 glues in
the north and west. (b) The block corresponding to the seed in our replacement scheme
with the seed of the new system labelled s here. Two lines indicate strength 2 glues,
and all other glues are strength 1.

block to attach. Thus, the images of all configurations derivable from a config-
uration in X are derivable from its image in Y , and the images of all reachable
configurations are reachable.

The second part of the block replacement definition can be broken into two
pieces; first, we show that no erroneous tile (a tile that precludes the assembly
from being extended to the image of some derivable configuration) can ever at-
tach, and then we show that we can complete any assembly to be the image of
a derivable configuration without introducing new blocks. For the first, consider
the first time an erroneous tile attaches. All glues internal to blocks are unique
in the assembly, so the error must occur on the border of some block. All tiles
currently in the configuration are correct, so the error tile must attach using only
the faces of valid blocks. But then the tile must either use a strength 2 glue from
a face corresponding to a strength 2 tile in X or two strength 1 glues from faces
corresponding to strength 1 glues. In either case, the tile must be part of a block
corresponding to a tile that could have attached in that location in X . Also, since
there is only one place for the first tile of a block to attach given the sides it at-
taches from, this tile cannot be erroneous because it does not match tiles that have
already attached in the block. For the second part, a tile can only attach if a tile in
its block is already present or using glues from other blocks whose preimage tiles
would allow its preimage tile to attach. Thus, any assembly sequence in Y induces
an assembly sequence in X by adding a tile in the original system the first time a
tile from its block attaches. We can then extend our configuration by completing
blocks one by one in this assembly sequence’s order. The result is the image of the
final configuration in the assembly sequence of the original system, and no tiles
from outside blocks that already had a tile were needed.

120 C. Luhrs

We finally are ready to establish polyomino safety. By inspection, there are
no polyominoes larger than two tiles that do not contain the seed. Thus, it is
sufficient to show none of these dominoes can attach to the assembly in an er-
roneous location. Consider the first error generated by a polyomino attachment.
Since all glues internal to a block are unique a polyomino must still attach at
the appropriate coordinates in a block. The error cannot attach using glues from
any tiles in the same block because all previous tiles are correct, and if one tile
in a block is correct completing the rest of the block must also be correct. Thus,
the only way a first error could occur is if a polyomino is using glues on the
boundary of two blocks. But none of our dominoes has more than one face on
a boundary, so a single tile could attach in those places any time a polyomino
could. Thus, there can be no first polyomino error completing the proof.

3.3 Higher Temperatures

Our construction above can easily be extended to higher temperatures. Regard-
less of the temperature, there are only two ways a tile can attach in a block
admissible system: using a glue with strength equal to the temperature from a
single tile or using the combination of two glues that share a corner. In the first
case, we can put the first attachment in the middle of a face of our block replace-
ment. In the second case, the block must start assembling at the corner. Given
a tile t in a system of temperature τ we can provide a (6, 6)-block replacement
as follows:

1. For all directions with glue strength at least τ place a strength τ glue on the
outer face of the third tile on that face.

2. For all directions with glue strength s less than τ place a strength s glue on
the first and sixth tiles of that face.

3. Place a strength τ glue everywhere the temperature 2 polyomino-safe block
replacement scheme had a strength 2 glue in the interior of the block.

4. Place a strength � τ
2 � everywhere the temperature 2 polyomino-safe block

replacement scheme had a strength 1 glue.

Theorem 2. The system described above is a strong polyomino-safe block re-
placement scheme.

Proof. The proof proceeds as above, using the facts that any block can form
completely given one of its tiles and a face, the first tile in a block will only
attach if the preimage of its block could attach in the original system, there
are no polyominoes without the seed of size larger than 2, and none of the
polyominoes has more than one face on a boundary between blocks.

4 Complexity Properties

Ideally, we would like an algorithm to verify if a tile system is polyomino-safe.
Unfortunately the problem is undecidable.

Polyomino-Safe DNA Self-assembly via Block Replacement 121

Theorem 3. Determining if a given tile assembly system is polyomino-safe un-
decidable.

Proof. aTAM is strong enough to emulate a Turing machine by producing the
entire tape after each step [3]. Take a polyomino-safe implementation of a uni-
versal Turing machine, and add a structure that is not polyomino-safe that only
attaches to a specific state tile. Determining whether a Turing machine will
reach this state is undecidable, so determining if a polyomino-safety violation
can occur is undeciable as well.

The problem is still undecidable even given a finite final structure because the
potential problem can be produced by a Turing machine that is not part of
the normal assembly and assembles as a polyomino. Note that there is nothing
special about polyomino-safety in the above proof: it would apply to any property
of an assembly system that is only present if a certain tile attaches. In particular:

Theorem 4. Deterimining if a given tile assembly system is self-healing from
a given configuration is undecidable.

5 Polyomino Safety in Existing Systems

Many existing systems are already polyomino-safe. For example, consider recti-
linear systems (like the Sierpinski tile system [3]) as shown in figure 2 in which
tiles form an L using strength 2 glues and fill in the L with strength one glues.
Arbitrarily long polyominoes can form from either of the leg tiles. There is never
any place for them to attach inside the system though, so all rectilinear systems
are polyomino-safe. Similarly, a basic binary counter as described in Adleman
et al. [13] can easily be verified as polyomino-safe. Polyomino-safety does not
always come for free though.

a

a

a

a

a

s b bbbb

Fig. 2. The basic rectilinear system in which long strings of the same tile are formed
on the west and east edges from the seed s. The interior is then filled in with strength
1 glues.

122 C. Luhrs

5.1 The Chinese Remainder Counter

Consider the Chinese remainder counter system, described as follows. Let p1,
. . . pn be distinct primes. Column i of the counter consists of tiles ai

1 . . . ai
pi

such
that there is a strength 3 glue between the north face of ai

k and the south face of
ai

k+1 for k from 0 to pi − 1 and a strength 2 glue from the north of ai
pi

to ai
1 as

shown in figure 3. The east and west glues of each tile are strength 1 matching
with the west and east glues on all tiles in the adjacent columns. We take the row
of tiles a1

1 . . . an
1 as our “seed” (a minor modification of the system can allow for

a single-tile seed [25]). At temperature 3 each column can count from 1 to pi by
itself, stalling at transitions from pi to 1. If the column on either side has a tile
in the next row though, it can use the additional strength 1 glue to roll over from
pi to 1 again. Thus, this system will grow until all columns are simultaneously
on the pi to 1 transition, which happens at row

∏
pi. The Chinese remainder

counter is not polyomino-safe. Single-width columns of tiles up to size pi can
form by themselves. As all glues between adjacent columns are the same, such
polyominoes of length 3 or greater may attach at any point to which an adjacent
column has progressed, whether or not that string of tiles is appropriate. Thus,
the Chinese remainder system is unpredictable in the presence of polyominoes.

We could of course use the 6× 6 construction to make the system polyomino-
safe. However, in this particular case we can do much better, using a (1, 3)-block
replacement scheme where we reduce the temperature to 2 and replace each tile
with three tiles as illustrated in figure 4. For tiles between 1 and pi−1 the middle
north and south glues have strength 2, and the glue from pi to 1 has strength
1. We can think of this construction as adding an additional buffer tile on the
left and right of each of the old blocks and then lowering the temperature of the
system to 2 (making north/south glues 2 normally and 1 on the rollover from
pi to 1). The block replacement still permits long chains of tiles to form in the
center of each column. However, these chains can no longer cause problems.

Theorem 5. The tile system described above is a strong polyomino-safe (1, 3)-
block replacement scheme.

Proof. The proof for strong block replacement is very similar to the one in
Theorem 1, and we omit it here. For polyomino-safety, we see by inspection
that the only polyominoes that can form without the seed are chains of middle
blocks such that there are no pi to 1 attachments. Consider a first polyomino

aia1 ap

Fig. 3. The first, ith (1 < i < p), and pth, tiles in a column corresponding to the prime
p. The east and west glues of each tile match the west and east glues of the adjacent
columns.

Polyomino-Safe DNA Self-assembly via Block Replacement 123

Fig. 4. The polyomino-safe (1,3)-block replacement scheme for the Chinese remainder
counter. The middle north (south) glue is strength 1 instead for the step from pi to 1.

error in some assembly sequence. Every tile uniquely determines what the tile
above it and below it is if there is such a tile. In fact, since there are no pi to
1 attachments in these polyominoes we know that if one tile in a polyomino
belongs in the location it attached all the other tiles must also belong where
they attached. But the east and west glues of a middle tile are unique to the
block they are part of, so any attachment using one must put that tile in its
correct place. Similarly, any time a north or south strength 2 glue is used that
tile must also be correct because those glues are sufficient to determine if a tile
should attach in the original system. All that remains is the strength one north
or south glues. However, using the block replacement property if there were a
tile for the north glue to attach to then all blocks below it must have already
started forming, and the polyomino would be correct. Finally, a strength 1 glue
from the south is not sufficient for the polyomino to attach, and the system is
polyomino-safe.

Note that our system reduces the temperature to 2, a desirable property. Normally,
a (1, 2)-block replacement is used to lower the Chinese Remainder counter’s tem-
perature, so our polyomino-safe system represents only a 50% increase in size over
that basis.

6 Self-healing and Block Replacement

Occasionally, a large portion of an assembly can get knocked out of a tile system.
A system is self-healing if it can rebuild itself correctly and completely after such
an event provided one of a set of relatively small pieces is intact. Essentially,
there are two aspects of a system being self-healing. For two configurations C
and D, C � D if C is empty everywhere D is empty, and C(x, y) = D(x, y)
whenever C(x, y) is not empty. A tile system is immutable if for all reachable
configurations D, C � D and C � E imply D(x, y) = E(x, y) when D(x, y)
and E(x, y) are both not empty. Thus, a system is immutable if whenever a tile
attaches no other tile can take its place if it falls off. A tile system is progressive
for a configuration B if for all reachable D, when B � C � D there is E such
that C � E and E is not empty wherever D is not empty. Thus, a system is
progressive from B if any tiles that fall off can be recovered as long as B remains.
A system is progressive from a set of configurations B if it is progressive from
all B ∈ B. A system is self-healing from B if it is immutable and progressive
from B. We now prove that a strong block replacement of a self-healing system
is self-healing provided all tiles in a block have unique internal glues.

124 C. Luhrs

Note that an immutable system can never allow two different tiles to be able
to attach in the same location. Thus, a self-healing system is block admissible
if it never uses glues on opposite sides of a tile to attach. Block admissibility is
sufficient to turn a system that is self-healing into a system that is self-healing
and polyomino-safe.

Theorem 6. A strong block replacement of a tile system that is block admissible
and self-healing from B is self-healing from ΦB (the image of B under the block
replacement) if the tiles within a block all have unique glues.

Proof. Let X be the old system and Y be the new system. Progressiveness from
ΦB follows immediately from the ability to imitate any assembly sequence in X
with a sequence in Y . For immutability consider some reachable configuration D
and C � D. Consider the first attachment of a tile t to C that does not match D.
This attachment can use no glues within its block because all glues are unique,
and only the one correct tile can use them at any location. If the attachment
uses only glues from outside its block the preimage of t’s block in X must have
been able to attach in that location in X . Then since X is immutable, and any
assembly sequence in Y induces a sequence in X , t must come from the same
block that was present there in D. Since each tile in a block can only attach at
one location in that block t must match the tile in D, and Y is immutable.

In particular, our (6, 6)-block replacement scheme meets the requirements of the
theorem, allowing us to make block admissible self-healing systems polyomino-
safe as well.

7 Open Problems

One potential improvement to our results would be a smaller polyomino-safe
block replacement scheme. It is clear that a 2 × 2 block replacement is too
small, but we have no proof that a 3 × 3 scheme cannot exist. The primary
challenge to creating polyomino-safe block replacements is spreading out the
necessary strength 2 glues, so that they do not allow polyominoes that are too
big to form. A 6×6 scheme allows every strength 2 glue to be isolated from every
other, bounding the polyomino size by 2. It is possible that a smaller polyomino-
safe block replacement exists that allows larger polyominoes to form. Another
worthwhile question is how to address systems that are neither polyomino-safe
nor block admissible.

References

1. Barish, R., Rothemund, P., Winfree, E.: Two computational primitives for algo-
rithmic self-assembly: Copying and counting. Nano Lett. 5, 2586–2592 (2005)

2. Winfree, E., Yang, X., Seeman, N.: Universal computation via self-assembly of
DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA
Based Computers II. DIMACS, vol. 44, pp. 191–213. American Mathematical So-
ciety, Providence (1998)

Polyomino-Safe DNA Self-assembly via Block Replacement 125

3. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Computation and Neural Systems Option (1998)

4. Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature 440,
297–302 (2006)

5. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled
patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 305–
324. Springer, Heidelberg (2006)

6. Yurke, B., Turberfield, A., Mills Jr., A., Simmel, F., Neumann, J.: A DNA-fuelled
molecular machine made of DNA. Nature (406), 605–608 (2000)

7. Shin, J.S., Pierce, N.: A synthetic DNA walker for molecular transport. J. Am.
Chem. Soc. 126, 10834–10835 (2004)

8. Sherman, W., Seeman, N.: A precisely controlled DNA biped walking device. Nano
Letters 4, 1203–1207 (2004)

9. Yin, P., Yan, H., Daniel, X., Turberfield, A., Reif, J.: A unidirectional DNA walker
moving autonomously along a linear track. Angewandte Chemie 43, 4906–4911
(2004)

10. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme that walks processively
and autonomously along a one-dimensional track. Angewandte Chemie 117, 4429–
4432 (2005)

11. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998)

12. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled
squares. In: Symposium on Theory of Computing (STOC), Portland, Oregon,
United States, pp. 459–468. ACM Press, New York (2000)

13. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for
self-assembled squares. In: ACM Symposium on Theory of Computing, pp. 740–748
(2001)

14. Cheng, Q., Goel, A., Moisset, P.: Optimal self-assembly of counters at temperature
two. In: Proceedings of the first Conference on Foundations of nanoscience: self-
assembled architectures and devices (April 2004)

15. Aggarwal, G., Cheng, Q., Goldwasser, M., Kao, M.Y., de Moisset Espanes, P.,
Schweller, R.: Complexities for generalized models of self-assembly. SIAM Journal
on Computing 34, 1493–1515 (2005)

16. Lagoudakis, M., LaBean, T.: 2-D DNA self-assembly for satisfiability. In: Winfree,
E., Gifford, D.K. (eds.) DNA Based Computers V. DIMACS, vol. 54, pp. 141–154.
American Mathematical Society, Providence (2000)

17. Baryshnikov, Y., Coffman, E., Momcilovic, P.: DNA-based computation times. In:
Proceedings of the Tenth International Meeting on DNA Based Computers, Milano,
Italy (June 2004)

18. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error-correction for algorithmic
self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–
144. Springer, Heidelberg (2004)

19. Chen, H., Goel, A.: Error free self-assembly using error prone tiles. In: [27], pp.
62–75

20. Reif, J., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling as-
semblies. In: [27], pp. 293–307

21. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic
self-assembly. In: [27], pp. 319–328 (Extended abstract; preprint of the full paper
is cond.mat/0607317 on arXiv.org)

126 C. Luhrs

22. Chen, H., Cheng, Q., Goel, A., Huang, M., Moisset, P.: Invadable self-assembly:
Combining robustness with efficiency. In: ACM-SIAM Symposium on Discrete Al-
gorithms (SODA) (2004)

23. Chen, H., Goel, A., Luhrs, C.: Dimension augmentation and combinatorial cri-
teria for efficient error-resistant DNA self-assembly. In: Symposium on Discrete
Algorithms (2008)

24. Winfree, E.: Self-healing tile sets. Nanotechnology: Science and Computation, 55–
78 (2006)

25. Chen, H., Goel, A., Luhrs, C., Winfree, E.: Self-assembling tile systems that heal
from small fragments. In: DNA 13 (2007)

26. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: Nanomanufacture of arbitrary shapes
with O(1) glues. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp.
1–14. Springer, Heidelberg (2008)

27. Ferretti, C., Mauri, G., Zandron, C. (eds.): DNA 2004. LNCS, vol. 3384. Springer,
Heidelberg (2005)

Robust Self-assembly of Graphs

Stanislav Angelov1, Sanjeev Khanna2, and Mirkó Visontai3

1 Google, Inc., New York, NY 10011, USA
angelov@google.com

2 Department of Computer and Information Science, University of Pennsylvania
Philadelphia, PA 19104, USA

sanjeev@cis.upenn.edu
3 Department of Mathematics, University of Pennsylvania

Philadelphia, PA 19104, USA
mirko@math.upenn.edu

Abstract. Self-assembly is a process in which small building blocks in-
teract autonomously to form larger structures. A recently studied model
of self-assembly is the Accretive Graph Assembly Model whereby an
edge-weighted graph is assembled one vertex at a time starting from a
designated seed vertex. The weight of an edge specifies the magnitude of
attraction (positive weight) or repulsion (negative weight) between ad-
jacent vertices. It is feasible to add a vertex to the assembly if the total
attraction minus repulsion of the already built neighbors exceeds a cer-
tain threshold, called the assembly temperature. This model naturally
generalizes the extensively studied Tile Assembly Model.

A natural question in graph self-assembly is to determine whether
or not there exists a sequence of feasible vertex additions to realize the
entire graph. However, even when it is feasible to realize the assembly,
not much can be inferred about its likelihood of realization in practice
due to the uncontrolled nature of the self-assembly process. Motivated
by this, we introduce the robust self-assembly problem where the goal
is to determine if every possible sequence of feasible vertex additions
leads to the completion of the assembly. We show that the robust self-
assembly problem is co-NP–complete even on planar graphs with two
distinct edge weights. We then examine the tractability of the robust
self-assembly problem on a natural subclass of planar graphs, namely
grid graphs. We identify structural conditions that determine whether
or not a grid graph can be robustly self-assembled, and give poly-time
algorithms to determine this for several interesting cases of the problem.
Finally, we also show that the problem of counting the number of feasible
orderings that lead to the completion of an assembly is #P-complete.

1 Introduction

Self-assembly is a process in which small building blocks interact autonomously to
form larger structures. The self-assembly approach is especially suitable for build-
ing molecular scale objects with nano-scale features. Several representative appli-
cations and practical models of self-assembly are discussed in [1,2,3,4,5,6,7,8].

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 127–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

128 S. Angelov, S. Khanna, and M. Visontai

Rothemund and Winfree [9] proposed the Tile Assembly Model to formalize
and facilitate the theoretical study of the self-assembly process. This model
extends the tiling models based on Wang tiles [10]. In their work, the building
blocks, namely the DNA tiles, are abstracted as oriented unit squares. Each
side of a tile has a glue type and a (non-negative) strength associated to it. An
assembly starts from a designated seed tile and can be augmented by a tile if
the sides of the tile match the glue types of its already assembled neighbors, and
the total glue strength is no less than a threshold parameter τ , referred to as
the temperature of the assembly.

Reif, Sahu, and Yin [11] introduced a generalization of the Tile Assembly
Model, to one on general graphs, called the Accretive Graph Assembly Model.
The accretive graph assembly is a sequential process where a given weighted
graph is assembled one vertex at a time starting from a designated seed vertex.
The weight of each positive (resp. negative) edge specifies the magnitude of
attraction (resp. repulsion) between the adjacent vertices. It is feasible to add a
vertex to the assembly if the total attraction minus the total repulsion of the
already built neighbors is at least the temperature τ . Here, accretive suggests
the monotone property of the process, i.e., once a vertex is added it cannot
be removed later (cf. the Self-Destructive Graph Assembly Model [11] and the
Kinetic Tile Assembly Model where tiles can fall off [12,13]).

The Accretive Graph Assembly Model addresses some of the deficiencies of the
Tile Assembly Model. For example, it models repulsion and allows the assembly
of general graph structures. A central problem in this model is the Accretive
Graph Assembly Problem (AGAP): Given a weighted graph, a seed vertex, and an
assembly temperature τ determine if there is a sequence of feasible vertex ad-
ditions that builds the graph. Among other results, Reif et al. [11] showed that
AGAP is NP-complete for graphs with maximum degree 4 and for planar graphs
(Planar AGAP) with maximum degree 5. Subsequently, Angelov, Khanna, and
Visontai [14] improved these results by giving a dichotomy theorem which com-
pletely characterized the complexity of Planar AGAP on graphs with maximum
degree 3 and only 2 possible edge weights. Specifically, it was shown that when-
ever the allowed edge weights and τ satisfied a simple set of inequalities the
problem is NP-complete, and poly-time solvable otherwise.

A drawback of the Accretive Graph Assembly Model is that even when there
exists a feasible order of vertex additions to build the graph, its realization in
practice may require a careful control over the order of assembly. Such control is
arguably hard to implement at the molecular level, and perhaps, even in conflict
with the notion of self -assembly. To alleviate this drawback, Reif et al. [11]
considered a probabilistic variant of the model where at any point of time, the
vertex to be build is chosen uniformly at random from the set of all vertices
that can be added at that time to the partial assembly. Note that assembly still
proceeds by adding one vertex at a time (cf. insufficient attachment in [12,13]).
One of the main problems in this, so-called Stochastic Accretive Graph Assembly
Model is to determine the probability of a graph system being assembled. One
approach to estimating this probability is to consider the ratio of the number of

Robust Self-assembly of Graphs 129

orderings that assemble the input graph to the total number of feasible maximal
orderings. Reif et al. [11] showed that the problem of counting the number of ways
a given subgraph can be assembled is #P-complete, and inferred that determining
the probability of assembly of the subgraph is also #P-complete.

However, the following example shows that the number of orderings that as-
semble a graph against all possible ways to assemble a maximal subgraph can
be arbitrary far from the actual probability of assembly. Consider the following
graph with seed vertex s, a special vertex t, and two sets of vertices U and V ,
each of size n. The vertices in U are connected to s with edges with weight τ +1,
and to t with edges with weight −1. The vertices in V are connected only to t
with edges with weight τ and there is an edge (s, t) with weight τ . Here τ is the
assembly temperature. It is easy to see that starting from s, if the first vertex
that is built is t, we can complete the remaining vertices in (2n)! possible ways.
On the other hand, if we build first any vertex from U , we make t infeasible.
Furthermore, there are n! orderings that cannot be extended with additional
vertices and do not build the whole graph. Thus, the probability of assembly is
exactly 1

n+1 . On the other hand, the ratio of feasible orderings that complete
the graph to all possible ways to assemble a maximal subgraph is essentially 1.

Our Results and Techniques. We introduce a new accretive graph self-
assembly problem that captures the uncontrolled nature of the self-assembly
process: Given a graph G, does G assemble robustly, i.e., with probability 1? We
refer to this problem as Robust AGAP and characterize its complexity as follows.

Theorem 1. Robust AGAP with 2 weights is co-NP–complete on planar graphs.
Moreover, when the number of weights is 3, Robust AGAP is co-NP–complete
even on graphs with maximum degree 3.

We use ideas developed in [11,14] along with several new combinatorial gad-
gets. The use of gadgets allows us to follow the same general framework while
optimizing various parameters of the problem by finding equivalent gadgets for
each case. We note that NP-completeness of AGAP on a family of instances does
not imply that the corresponding Robust AGAP is co-NP–complete. It is easy to
construct NP-hard instances of AGAP that admit a poly-time decision algorithm
for Robust AGAP. Also, note when the number of allowed weights is one or the
maximum degree is at most two, Robust AGAP is trivially solvable in poly-time.

In light of Theorem 1, it is natural to consider Robust AGAP with two weights
on some subclasses of planar graphs. Towards this end, we study the tractability
of Robust AGAP with two weights on grid graphs. The setting, with a positive
weight wp and a negative weight wn modeling attraction and repulsion, respec-
tively, is a natural analog of the Tile Assembly Model. We systematically analyze
the complexity of Robust AGAP for all possible relationships between wp, wn, and
the assembly temperature τ . We obtain the following partial characterization.

Theorem 2. Robust AGAP on grid graphs is poly-time solvable when either τ ≤
wp + 2wn or τ > 2wp + wn.

130 S. Angelov, S. Khanna, and M. Visontai

Finally, we strengthen a result in [11] by showing #P-hardness results for count-
ing problems in the context of self-assembly. We omit the details from this version
of the paper.

Theorem 3. The problem of counting the number of ways an instance of AGAP
can be assembled, namely #AGAP, is #P-complete.

Organization. We begin by defining AGAP and Robust AGAP. In Section 3,
we show hardness of Robust AGAP using reduction from AGAP by introducing
modular gadgets. We also show hardness of Robust AGAP on planar graphs via a
new reduction from DNF tautology. In Section 4, we study a related problem to
tile assembly in the presence of repulsion, namely Robust AGAP on grid graphs.

2 Preliminaries

We adopt the Accretive Graph Assembly Model introduced in [11]. An accretive
graph assembly system is a quadruple 〈G, vs, w, τ〉, where G = (V, E) is undi-
rected weighted simple connected graph, vs ∈ V is the seed vertex, w : E → Z

is a weight function on the edges, and τ ∈ N is the temperature of the assem-
bly. The assembly process is the following. Initially, the assembly consists of vs

only. The process is a sequential attachment of vertices to the assembly, i.e.,
vertices are built one by one. Given a partially assembled graph and v ∈ V , let
Γ (v) be the set of already built neighbors of v in G. Now, v can be built iff∑

u∈Γ (v) w(u, v) ≥ τ . The model is accretive because once a vertex is built it
cannot be detached from the assembly. For u, v ∈ V we will use u ≺ v to denote
that u has already been built when vertex v is built. Note that ≺ is an irreflexive,
antisymmetric, and transitive relation. We consider the following problems:

Definition 1 (Accretive Graph Assembly Problem (AGAP)). Given an
accretive graph assembly system 〈G = (V, E), vs, w, τ〉, determine if G can be
assembled sequentially (in short, assembled) starting from the seed vertex vs,
and provide a feasible order of assembly, vs = vπ(1) ≺ vπ(2) ≺ . . . ≺ vπ(n), if one
exists. Here, π is a permutation of {1, . . . , n} and n = |V |. The AGAP problem
restricted to planar graphs is referred to as Planar AGAP. When there are at most
k different edge weights in G, we denote the problem as k-Wt. AGAP. Similarly,
when the maximum degree of G is d, we use d-Deg. AGAP.

AGAP and Planar AGAP are NP-complete [11]. Furthermore, Planar AGAP (hence
AGAP) with maximum degree 3 and two distinct weights is NP-complete [14].
Note, even when an instance G of (Planar)AGAP can be assembled, a careful
control over the order in which vertices are built may be required to assemble
G. To deal with such situations, we introduce the notion of robust self-assembly.

Definition 2 (Robust AGAP). Given an accretive graph assembly system with
underlying graph G, determine if every partial feasible order of assembly of G
can be extended to a full feasible order of assembly of G.

Robust Self-assembly of Graphs 131

Robust AGAP is in co-NP since given any ordering π, we can check in polynomial-
time that π is a partial feasible assembly of a strict subset of V that cannot be
extended to include additional vertices.

We also consider Robust AGAP on grid graphs due to its close connection with
tile assembly with repulsion.

Definition 3 (Grid Graph). An m× l grid graph Gm,l = (Vm,l, E) is a graph
such that its vertices can be arranged in an m× l rectangular (integer) grid with
edges between vertices with �1 distance 1.

3 Hardness of Robust Self-assembly

Planar 3SAT. In our hardness results, we will mostly use a reduction from
Planar 3SAT similar to [11,14]. Lichtenstein proved that Planar 3SAT, i.e., 3SAT
with the restriction that the identifying graph is planar, remains NP-complete
[15]. The identifying graph of a 3SAT formula φ is the following graph G. Vertices
of G correspond to literals and clauses of φ. There is an edge between a literal
vertex and a clause vertex if the literal participates in the clause in φ, and there
is an edge between every literal and its complement. Middleton showed that
deciding the satisfiability of a Planar 3SAT formula with a modified identifying
graph (see Fig. 1) obeying the following restrictions is still NP-complete [16]:

(1) There is a cyclic path, called the loop (the dashed circle denoted by L in
Fig. 1), that can be drawn in the plane such that it passes between all pairs
of complementary literals, but does not intersect any other edges of G.

(2) The formula φ contains only clauses in which the literals are either all positive
or all negative.

x̄1 x1

x̄2

x2

x3 x̄3

x4

x̄4

�
A

�
C

�
B

�D

�
E

��

��
��

��

L

Fig. 1. The identifying graph for
the formula A∧B∧C ∧D∧E =
(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x4)∧ (x2 ∨
x3) ∧ (x̄3 ∨ x̄4) ∧ (x̄1 ∨ x̄2)

�
sd

�a

�
b

�
c

�d

�
td

�
t′d

��
��

��
��

�����

����� �
��

�
��

2

2

2
1

1

1

1

1

1

(a) Direction gadget

�
sc

�d

�
e

�t
′
c

�
tc

��
��

2

2
2

2

-2

(b) Choice gadget

�
�

�
���
			

1
1

tu

s1
u

s2
u

(c) Unidirectional gadget (for k = 2)

Fig. 2. Gadgets for wp = 2, wn = −2, and wo = 1,
and temperature τ = 2. Edges without annotation
have weight wp = 2.

132 S. Angelov, S. Khanna, and M. Visontai

(3) G can be arranged so that interior (resp. exterior) clauses have positive
(resp. negative) literals.

(4) Let C(�) denote the set of clauses in which a literal � participates, then
|C(�)| ≤ 2 for all � in φ.

We assume the loop to be directed. This provides a natural (cyclic) ordering of
the variables. For x and y we use the notation xy ∈ L to denote that y succeeds
x in L, e.g., x1x2 ∈ L, but x1x3 /∈ L in Fig. 1.

Gadgets. In our hardness constructions, we use modular composition of basic
graph gadgets as outlined below. In parentheses, we give the identifying vertices
of the gadgets (omitting any additional vertices for clarity). We first describe the
gadgets when there are 3 distinct edge weights (wp ≥ τ , wn < 0, and 0 < wo < τ)
and then show the required modifications for 2 distinct edge weights (wp ≥ τ
and wn < 0 only). Note that we have maximum degree 3 in the first case, and
maximum degree 5 in the latter. Also, the gadgets are planar and τ > 1.
Direction gadget (sd, td, t′d) [14]: The gadget (see Fig. 2(a)) properties are as
follows. Note, to realize the gadget, we require 2wo ≥ τ .

– If sd is built, we can complete the gadget: i.e., sd ≺ {a, b} ≺ c ≺ d ≺ {td, t′d}.
– If td and t′d are built, we can complete the gadget: i.e., {td, t′d} ≺ d ≺ c ≺

{a, b} ≺ sd.
– If only td or t′d are built, but not both, we cannot build sd via the gadget.

Choice gadget (sc, tc, [14]: The gadget (see Fig. 2(b)) properties are as follows.
Note, to realize the gadget, we require wp + wn < τ and 2wp + wn ≥ τ .

– If sc is built, we can build either tc or t′c but not both via the gadget. For
example, building d before e makes the net contribution to e from (sc, e) and
(d, e) equal to 0 which is less than τ = 2.

– If only tc (resp. t′c) is built, we cannot build t′c (resp. tc) via the gadget. This
property follows from a similar argument to the one above.

Unidirectional gadget (s1
u, . . . , sk

u, tu): The gadget (see Fig. 2(c)) properties
are as follows. Note, to realize the gadget, we require kwo ≥ τ (k > 1).

– If s1
u or s2

u are built we can build tu.
– If only tu is built, we cannot build s1

u nor s2
u via the gadget.

Weak unidirectional gadget (sw, tw, fw): The gadget (see Fig. 3(b)) proper-
ties are as follows. Note, to realize the gadget, we require wp + wo + wn < τ ,
2wo ≥ τ , and 2wp + wn ≥ τ .

– If sw is built but not tw then in any feasible order of assembly for the gadget,
we can build tw, i.e., sw ≺ su ≺ su′ = fw ≺ tu ≺ a ≺ b ≺ {c, tw}.

– If tw is built before fw, then there is an order of assembly in which fw is made
infeasible, i.e., cannot be built. For example, consider the order of assembly:
tw ≺ a ≺ b ≺ c. The contribution to fw from (c, fw) is −2 which cannot be
offset by the weights of (su, fw) and (tu, fw).

Robust Self-assembly of Graphs 133

x

x

x

x

1

2

1

n

G

.

.

.

. . .

Direction

Gadget 1

Direction

Gadget 2

Direction

Gadget 2n-1

s

Weak Unidirectional

Gadget

s
sw

¶
twfw

.

s
1d

t
1d

t¶
1d

s
2d

t
2d

t¶
2d

s
2n-1d

t
2n-1d

t¶
2n-1d

. . .

(a) Composition of graph G induced by a formula
φ (as in Theorem 4) with 2n− 1 direction gadgets
and a weak unidirectional gadget.

Unidirectional

 Gadget

1 1

-2

a

csw
twsu s¶=fu w

b
tu

(b) Weak unidirectional gadget for
graphs with maximum degree 3
and three possible edge weights,
e.g., {2, 1,−2} for τ = 2.

-1

a

c

g

e

-1

-1sw fw

tw

b

d

f

h

(c) Weak unidirectional gadget for
graphs with maximum degree 5
and two possible edge weights,
e.g., {2,−1} for τ = 2.

Fig. 3. Template for co-NP–hardness reductions for 3-Deg. 3-Wt. Robust AGAP and
5-Deg. 2-Wt. Robust AGAP and the corresponding weak unidirectional gadgets. Edges
without annotation have weight equal to the temperature τ .

The gadgets above can also be constructed using only two edge weights (e.g.,
wp = 2 and wn = −1 at τ = 2) by increasing the maximum degree to 5. For
the Direction and Unidirectional gadgets, we model an edge (u, v) of weight 1
by creating a triangle adding vertex w and setting (u, v) = −1, (u, w) = 2, and
(w, v) = 2. For the Weak unidirectional gadget, we can use the construction
given in Fig. 3(b). In general, for τ > 1, we require the following edge weight
constraints to realize each gadget:

– Direction gadget: 2wp + 2wn ≥ τ .
– Choice gadget: wp + wn < τ and 2wp + wn ≥ τ .
– Unidirectional gadget: 2wp + 2wn ≥ τ .
– Weak unidirectional gadget: 2wp + 3wn < τ and 2wp + wn ≥ τ .

In Section 3.2, we will also use the Asymmetric gadget.
Asymmetric gadget (sa, ta; ws ≥ 0, wt ≥ 0): The gadget (see Fig. 5) property
is that starting from sa (resp. ta) and building all vertices of the gadget except
ta (resp. sa) the net (weight) contribution to ta (resp. sa) is wt (resp. ws).

3.1 Robust AGAP Is Co-NP–Complete

To show our hardness results, we reduce AGAP to Robust AGAP. Given an as-
sembly system on graph G, we construct an instance H of Robust AGAP such
that there is a maximal ordering that does not assemble all of H iff G can be

134 S. Angelov, S. Khanna, and M. Visontai

assembled. For the purpose, we will compose G with direction gadgets and one
weak unidirectional gadget (identified by sw, tw, and fw) such that if all of G
can be assembled then the vertex fw can be made infeasible (via tw). But, if G
cannot be assembled, H robustly assembles (via sw).

For the basis of our reductions we will use the following result shown in [14].

Theorem 4 ([14]). Given a Planar 3SAT formula φ, there is an instance of
3-Deg.3-Wt.Planar AGAP (also an instance of 5-Deg.2-Wt.Planar AGAP)
where the underlying graph G = (V, E) has a subset of vertices V ′ ⊂ V sat-
isfying:

(i) V ′ consists of the seed vertex and the literals of φ: V ′={s, x1, x̄1, . . . , xn, x̄n},
(ii) each vertex in V ′ has degree 2,
(iii) G can be assembled iff all vertices in V ′ can be built, and
(iv) all vertices in V ′ can be built iff φ is satisfiable.

Furthermore, G consists of carefully composed choice and direction gadgets only.

We now show that Robust AGAP is co-NP–complete.

Theorem 5. 3-Deg.3-Wt.Robust AGAP is co-NP–complete.

Proof. W.l.o.g., we show the proof for τ = 2 and weights {2, 1,−2}. By using
the same gadgets with different weights, the argument extends to any τ > 1.

We use reduction from an AGAP instance with graph G, seed vertex s, edge
weights {2, 1,−2} and formula φ containing literals x1, x̄1, . . . , xn, x̄n (as in The-
orem 4). From G, we obtain graph H in the following way (see Fig. 3(a)). We use
2n−1 direction gadgets where the ith gadget is identified by tdi , t

′
di

, and sdi. The
first copy is connected to x1 and x̄1 by edges (x1, td1) and (x̄1, t

′
d1

). For i > 1, the
ith gadget is connected to the (i − 1)th gadget by an edge (sdi−1 , tdi) and to G
by an edge (y, t′di

), where y = x� i
2 	+1 for even i, and y = x̄� i

2 	+1 otherwise. The
last direction gadget is connected to a weak unidirectional gadget (identified by
sw, tw, and fw) by an edge (sd2n−1 , tw). Finally, an additional vertex s′ is set to
be the seed vertex and is connected by edges (s′, s) and (s′, sw). All connecting
edges have weight equal to 2.

We now prove that there is a feasible maximal ordering H that does not
assemble all of H iff G can be assembled. We will use the fact that sd2n−1 can
be built without tw being built iff G can be assembled (from Theorem 4 and
properties of direction gadgets). Furthermore, if sd2n−1 is built, we can build all
of G via the direction gadgets.

(only-if) Suppose G cannot be assembled. Then in any feasible order of as-
sembly of H , s′ ≺ sw ≺ fw ≺ tw ≺ sd2n−1 . Now, once sd2n−1 is built, we can
assemble all vertices of G corresponding to literals via the direction gadgets.
Therefore, we can assemble all of G and thus all of H .

(if) On the other hand, if G can be assembled then we can build sd2n−1 and
therefore tw before sw and fw. Using the properties of the weak unidirectional
gadget, we conclude fw can be made infeasible.

Robust Self-assembly of Graphs 135

-1 1

xs

x

x

xt

1 1

1
1

A B

E

11

1

1 1

Choice Gadget

Unidrectional

Gadgets

(a) Gadget replacing a variable x, partici-
pating in clauses A,B, E along the loop L.

-1
xs

x

x

E

1

1
F1

...

...

...

(b) Fragment: Literal participating
in two clauses with two literals each.

Fig. 4. Construction for 6-Deg. 3-Wt. Robust AGAP on planar graphs for edge weights
{−1, 1, 3} and temperature τ = 3. Edges without annotation have weight 3.

Using the equivalent gadgets for the case when there are only 2 possible edges
weights, we obtain the next corollary.

Corollary 1. 5-Deg.2-Wt. Robust AGAP is co-NP–complete.

3.2 Robust AGAP on Planar Graphs Is Co-NP–Complete

Note that in the previous section the constructed graph H is not planar re-
gardless of G being planar. We show that Robust AGAP on planar graphs is
co-NP–complete by using reduction from DNF tautology. We construct a planar
graph that robustly self-assembles iff the underlying formula is a tautology.

Let formula φ be a Planar 3SAT formula. Then φ̄ is a DNF formula that
has the same identifying graph as φ up to a permutation of the variables. Let
the loop L induce the ordering of the variables x1, . . . , xn and recall that each
clause has either 2 or 3 literals. Given φ̄ and its identifying graph, we modify the
graph similarly to the constructions given in [11,14] but using different gadgets.
We then connect all clauses (preserving planarity) such that if any one clause is
built we can build the remaining clauses and all other vertices. In the end, we
show that the graph robustly self-assembles iff φ̄ is a tautology.

We now describe the details of the construction below for temperature τ = 3
and draw the edge weights from the set {3, 1,−1}. For every variable x and
its negation x̄, we replace the edge (x, x̄) in the graph (Fig. 1) with the gadget
depicted in Fig. 4(a). For x and y, xy ∈ L\{xnx1}, we connect the corresponding
gadgets with edge (tx, sy) with weight w(tx, sy) = 3. The gadget ensures that
unless all literal vertices adjacent to a clause are built (i.e., the clause is satisfied)
then for each variable x at most one of x or x̄ can be built following the ordering
induced by L. Formally, let i be the largest index such that xi or x̄i is built.
Then, exactly one of xj or x̄j , for all j ≤ i, are built if there is no clause with
all literals already built.

We connect each literal � to the clauses it participates as follows. If a clause
A ∈ C(�) has two literals, and � is induced by the variable with smaller index,

136 S. Angelov, S. Khanna, and M. Visontai

-2sb tb

(a) Starting from sb re-
sults in a net contribution
of 1 to tb, while starting
from tb results in a net
contribution of 3 to sb.

-2
-2

s taa

(b) Starting from sa re-
sults in a net contribution
of 2 to ta, while starting
from ta results in a net
contribution of 3 to sa.

1sb tb 2
sa ta33

(c) Simplified graphical notation of the gadgets.

Fig. 5. Asymmetric gadgets for τ = 3 and weights
{−2, 3}. Graphically, we will represent the gadgets
with bidirectional edge with corresponding weights at
end-points.

-2

3

xs

x

x ys

1
A B

E

3

2

2

3

3

3
1

1

Fig. 6. Composition of gad-
gets for 9-Deg. 2-Wt. Robust
AGAP on planar graphs for edge
weights {−2, 3} and τ = 3.

then � and A are connected with an edge of weight 2. Otherwise, � and A are
connected with an edge of weight 1. We simulate edge weight 2 by a triangle
with two edges of weight 1 and one with weight 3 (see Fig. 4(a)). If a literal is
connected to two clauses in this manner, then the induced two triangles share
the edge with weight 3 adjacent to the literal (see Fig. 4(b)).

Finally, we want to connect all clauses with paths of edges with weight 3 such
that if one clause is built then we can build the remaining clauses, planarity is
preserved, and the maximum degree of the resulting construction is low. Consider
the clauses with only positive literals (similarly negative). A clause A = xa ∧
xb ∧ xc (a < b < c) is contained in clause B = xi ∧ xj ∧ xk (i < j < k) iff
i < a < c < j or j < a < c < k. Note that the relation is transitive. Let p(A)
denote the parent of A, i.e., the clause B that contains A such that there is no
other clause C such that C contains A and B contains C. Note that clauses are
properly nested and thus preserve planarity.

Connect all clauses with a common parent in a binary tree where edges have
weight 3 and clauses are the leaves. W.l.o.g., this tree preserves planarity. Fur-
thermore, it ensures that if a clause can be built then all clauses with the same
parent can be built. We then connect the root of the tree with the parent clause
of the leaves. We introduce vertices, rp and rn, corresponding to the null par-
ents of the clauses with positive and negative literals, respectively, and an edge
(rp, rn) of weight 3. Note that since we did not connect xn and x1 above, this
edge also preserves planarity.

The maximum degree of the above construction is 6. Each clause has three
edges due to connections with literals (if the clause has two literals, one literal
contributes two edges). One edge connects the clause to its parent and to the
root of at most two trees of contained clauses. The literals have degree at most
6 and all other vertices have degree at most 5.

Robust Self-assembly of Graphs 137

For graph G, a maximal order of assembly has the following properties.

– For each variable x, the vertex sx is built. Therefore, vertex x or x̄ (or both)
is also built.

– Assume there is a built clause and let C be the first such clause in the
ordering. Then all literals participating in C are built before C.

– If a clause is built then all clauses are built: Recall all clauses are connected
by weight 3 edges and adjacent to only positive edges.

– If all clauses are built then all vertices are built: Since all clauses and all sx’s
are built, each literal receives contribution of at least 3+(−1)+1 ≥ 3. After
the literals are built, all of the remaining vertices can be built.

– If no clause is built then exactly one of x and x̄ is built, for each variable x.
Such a partial assembly corresponds to a certificate that φ is not a tautology.

Hence, we obtain the following theorem.

Theorem 6. 6-Deg.3-Wt.Robust AGAP on planar graphs is co-NP–complete.

Using τ = 3 and only two edge weights, we can modify the above construction
but the resulting maximum degree will be 9 (see Figs. 5 and 6).

Corollary 2. 9-Deg.2-Wt. Robust AGAP on planar graphs is co-NP–complete.

4 Robust AGAP on Grid Graphs

Grid graphs are of particular interest due to their correspondence to the Tile
Assembly Model. For completeness, we mention that AGAP on grid graphs with
3 weights is NP-complete by embedding on a grid the hardness construction of
[14] for planar graphs of maximum degree 3 and 2 weights (the third weight is
introduced to pad the construction to be a grid graph).

A qualitative difference between AGAP and Robust AGAP is that in instances
that assemble robustly, finding a feasible order of assembly is easy, i.e., a simple
algorithm of building any vertex (which is feasible at the time) should be able
to find such an order of assembly. On the other hand, it is enough to show one
maximal ordering on vertices that only partially assembles the input graph to
certify a graph is a NO instance for the Robust AGAP.

For our analysis, we introduce the recurring notions of inextensibility and
forbidden structures.

Definition 4 (Inextensibility). Given an accretive graph assembly system
〈G, vs, w, τ〉, a subgraph G′ of G with V (G′) � V (G) is called inextensible if
G′ can be assembled starting from the seed vertex without building any vertex in
V (G)\V (G′), and once G′ is built no other vertex can be added to the assembly.
Such an order of assembly of G′ is referred to as inextensible ordering.

Remark 1. We assume that each vertex is reachable through a path of positive
edges. Otherwise it is clear that the instance cannot be assembled.

138 S. Angelov, S. Khanna, and M. Visontai

Definition 5 (Forbidden Structure). Let G be a grid graph and H a con-
nected subgraph of G. We call v ∈ V (H) a boundary vertex if v is on the grid
boundary or ∃u ∈ V (G) \ V (H) such that (v, u) ∈ E. We say H is a forbid-
den structure if the seed vertex vs /∈ V (H) and, for each boundary vertex v,∑

u∈(V (G)\V (H))∩Γ (v) w(v, u) < τ , where Γ (v) denotes the set of vertices adja-
cent to v. The size of H is |V (H)|.

Intuitively, the boundary vertices of a forbidden structure can be made infeasible
by assembling all the outside neighbors of these vertices. The following theorem
gives a sufficient condition when these neighbors can be assembled, and hence
gives a partial characterization of Robust AGAP in terms of forbidden structures.

Theorem 7. If G cannot robustly self-assemble, then there exists a forbidden
structure. Conversely, consider a forbidden structure H in G. Let B denote the
set of boundary vertices of H, and Γ (B) the set of vertices in V (G)\V (H) which
are adjacent to some vertex in B or are on one diagonal from a vertex of B.
Then if every edge (u, v) such that u ∈ Γ (B) and v ∈ V (G) \ V (H) has weight
at least τ , G cannot robustly self-assemble.

Proof. The first part follows from the definition of forbidden structure. For the
second part, consider a forbidden structure H with a maximum number of ver-
tices on the grid boundary. Note that in this case the subgraph induced by Γ (B)
is connected and have positive edges only. Furthermore, every path from the seed
to a vertex in V (H) crosses Γ (B). Fix an order of assembly for G and consider
the first time it reaches a vertex in Γ (B). Since no vertex in V (H) is built at this
point, we can build all vertices in Γ (B) without using any vertex in V (H). Since
Γ (B) includes all outside neighbors of H , this ordering makes H infeasible. ��

4.1 Robust AGAP on Grid Graphs with 2 Weights

We now focus on Robust AGAP on grid graphs with two possible edge weights.
The case when there is only one possible weight is trivial, i.e., the graph robustly
self-assembles iff this weight is ≥ τ . Table 1 summarizes all possible cases when
there are two possible edge weights, wp ≥ τ and wn < 0. Note that when

Table 1. Cases of Robust AGAP on grid graphs with 2 edge weights wp ≥ τ and wn < 0

Case Results

τ ≤ wp + 3wn Poly-time solvable
τ ∈ (wp + 3wn, wp + 2wn] Poly-time solvable
τ ∈ (wp + 2wn, wp + wn] Open problem
τ ∈ (wp + wn, 2wp + 2wn] Open problem
τ ∈ (2wp + 2wn, 2wp + wn] Open problem
τ ∈ (2wp + wn, 3wp + wn] Poly-time solvable (Theorem 9)
τ > 3wp + wn Poly-time solvable

Robust Self-assembly of Graphs 139

both weights are positive the instance is trivial [11]. When there is only one
positive weight, it must be at least τ , otherwise the instance is not feasible.
When τ ≤ wp + 3wn, the graph G robustly self-assembles iff there is a spanning
tree of positive edges (see Remark 1) since even 3 negative neighbors cannot
make a vertex infeasible. If wp + 3wn < τ ≤ wp + 2wn, then we can show G
robustly self-assembles iff there does not exists a vertex (other than the seed
vertex) with 3 negative edges incident on it. Furthermore, if 3wp + wn < τ then
the graph G robustly self-assembles iff there is no negative edge in G.

The remaining cases for 2 edge weights appear nontrivial. In what follows, we
make progress towards understanding the complexity of those cases by giving a
poly-time algorithm that solves one of the cases. In our analysis, we will assume
that the seed vertex is connected to its neighbors in G with positive weight edges.

4.2 Robust AGAP on Grid Graphs with 2wp + wn < τ ≤ 3wp + wn

We now consider a nontrivial case of Robust AGAP on grid graphs when there
are 2 edge weights, wp and wn, such that 2wp + wn < τ ≤ 3wp + wn. We
show that this case is poly-time solvable since in this case the existence of a
forbidden structure is both sufficient and necessary condition of the fact that
G cannot robustly assemble. Therefore, we first categorize forbidden structures
into groups and then proceed with a theorem giving the desired characterization.

Definition 6 (Nearby Negative Edges). A pair of disjoint edges e1 and e2

with negative weights are nearby iff they have adjacent nodes (see Fig. 7(a)).

Theorem 8. If there is a forbidden structure in G with 2wp+wn < τ ≤ 3wp+wn

then at least one of the following conditions holds:

(i) there is a negative path of length 2 or more, or
(ii) there is a negative edge with at least one end-point on the grid boundary, or
(iii) there is an elementary forbidden structure (shown in Fig. 7).

Furthermore, if (i), (ii), or (iii) holds, then G cannot robustly self-assemble.

Proof (of the first part of Theorem 8). If we have a negative path of length 2
or a negative edge with at least one of its end-point on the grid boundary, the
statement is trivial. In fact, these are the only forbidden structures of size 1 (see
Definition 5). Assume now that there are neither negative paths of length 2 nor
negative edges with at least one end-point on the grid boundary.

Consider the boundary vertices of the forbidden structure. If there are two
boundary vertices which are adjacent to each other, then we have nearby negative
edges. Thus the only possibility is that the boundary vertices are from at distance
two from each other (on the diagonal). Also note that if there are three boundary
vertices on the same diagonal line, the middle vertex will be an end-point of a
negative edge which has a nearby edge (one of the edges with an end-point on
the diagonal). Hence, the only remaining possibility is if the boundary of the
forbidden structure consists of vertices which are distance two from each other

140 S. Angelov, S. Khanna, and M. Visontai

-2-2 -2

-2

-2

-2

-2

-2

a

b d

c e

f

g

h

m

n o

p

i

j

k
l

(a) Nearby negative edges

-2 -2

-2

-2

(b) Non-nearby edges

Fig. 7. Elementary forbidden structures for weights {−2, 1} and τ = 1. Solid edges
without annotation have weight 1; dashed edges have weight 1 or −2. The vertices of
the forbidden structures are sown with square nodes.

(only two vertices on each diagonal). The only such structure is formed by 4
vertices vertices arranged in a diamond shape (if one of the 4 vertices is missing
we can always complete the structure). In this case, depending on the orientation
of the incident edges, we either have nearby edges or the elementary forbidden
structure in Fig. 7(b).

Now we prove the second part of the theorem in the following lemmas.

Lemma 1. Let (u, v) be a negative edge and let p be a neighbor of u that has
common neighbors with v. If π is a feasible order of assembly such that p ≺ u ≺ v
in π, then either there is an ordering (possibly inextensible) where v is built before
u, or there is an ordering when u is built but v is made infeasible.

Proof. Note that if (u, v) is a negative edge and u is built before v, then when v
is built, it must have 3 neighbors connected with positive edges that have already
been built. Now consider the time when p is built in π. If we cannot build the
common neighbor, say q, of p and v, then by building u we make v infeasible.
This is because q depends on v to be built and vice versa. Now if q can be built,
we can either build v, or by building u before, we make v infeasible as it has at
most two neighbors connected with positive edge.

Lemma 2. If there is a negative edge with at least one end-point on the grid
boundary or if there is a path of negative edges of length at least 2 then the grid
cannot robustly self-assemble.

Proof. Consider a negative edge (u, v) with at least one end-point on the grid
boundary. If both u and v are on the boundary then there is no feasible order of
assembly since by building one of the vertices, we make the other one infeasible.
When only one end-points is on the boundary, say u, then it must be the case
u ≺ v in any order of assembly since 2wp +wn < τ . However, since any neighbor
of such u is as in Lemma 1, we can either built v before u or make v infeasible.

Now assume that all negative edges have end-points strictly inside the grid. Let
P = {(v, u), (u, w)} be a negative path. Consider a feasible order of assembly π.
Clearly, u ≺ {v, w}. Since each neighbor of u other than v and w is as in Lemma
1 with respect to either v or w, the claim follows.

Robust Self-assembly of Graphs 141

Lemma 3. If there are two nearby negative edges, then the grid cannot robustly
self-assemble.

Proof. W.l.o.g., the premise conditions of Lemma 2 do not hold. We proceed
by case analysis on the types of nearby edges given in Fig. 7(a). When there
are two parallel nearby negative edges (a, b) and (c, d), consider the first vertex
from {a, b, c, d} that is built, say a. Now, building c right after a completes the
forbidden structure {b, d}. For what follows, we assume there are no parallel
nearby negative edges.

Now consider the case of nearby edges (e, f) and (g, h) with forbidden struc-
ture {f, g}. Consider the first time in some feasible ordering of assembly, a vertex
adjacent to say one of {e, f} other than g is built. If it is a neighbor of e we can
extend the ordering so far to build e. If it is a neighbor of f , we use Lemma 1 to
argue that e can be built before f , otherwise e can be made infeasible. Similarly,
we can argue that we can build h before g. Note that if after building e, we
cannot reach a neighbor of {g, h} then the resulting ordering is inextensible. For
what follows, we assume there are no such nearby edges.

It remains to argue that if there is any of the remaining combinations of nearby
edges (forbidden structures) then there is an inextensible ordering. Consider an
order of assembly up to the point where we reach a vertex at distance 1 from a
vertex of nearby edges for the first time. Call this vertex r.

First, consider the case of nearby edges (i, j) and (k, l). If r is the North
neighbor of i, after r we can build i and follow clockwise the black nodes to
build l. Similarly, if r is the East neighbor of l we build l first and proceed in
counterclockwise direction to build i. For the remaining choices of r, we can
follow the unique paths on the black nodes from r to i and from r to l that
do not include the empty node (which might have a neighbor that is built and
connected with a negative edge to it). The black nodes are such that if they
cannot be built along this path (because of negative edge) it would contradict
the choice of r since we reached such neighbor of nearby edges earlier. A special
care is needed for the edges shown with dashed line which might be negative
edges. However, the only possibility an end-point of such an edge is included in
the above paths is if it coincides with r, contradicting the choice of r.

Now, let the reached nearby edges be in configuration as (m, n) and (o, p).
Furthermore, w.l.o.g. there is no reached configuration as in the previous case
(i.e., none of the horizontal dashed edges are negative). Applying the same argu-
ment as above does not work since a path from m to p always includes one of the
depicted empty nodes and furthermore it can be blocked by the vertical dashed
edges if negative. Suppose both vertical dashed edges are negative edges. Then,
depending on where r is, we can build all vertices in the row of m (resp. p) mak-
ing o (resp. n) infeasible. Now assume that at most one of the vertical dashed
edges is a negative edge, say the leftmost one. We can show that even if the
empty node on the row of m had a neighbor connected with negative weights
that is already built we can construct m and p from r. We note that when we
try to use such “disabled” vertices it is the case that they are not part of nearby
edges. Our argument uses the fact that if we have a negative edge (u, v) that is

142 S. Angelov, S. Khanna, and M. Visontai

not nearby other negative edge, if we build v we can build the two horizontal
(resp. vertical) neighbors of u by building the horizontal (resp. vertical) neigh-
bors of v. For example, if the negative edge that disables one of the empty nodes
in the Fig. 7(b) is horizontal and r is adjacent to m, then we can build the east
vertex of o and therefore the east neighbor of p and p itself. The cases when the
negative edge is vertical or r is some other vertex are slightly more involved (we
need to argue for at most two non nearby edges) but use the same ideas.

Lemma 4. If there is a forbidden structure shown in Fig. 7(b) the grid cannot
robustly self-assemble (where the seed vertex is not one of the square nodes).

Proof. W.l.o.g., we can assume that there are no nearby negative edges, other-
wise the claim follows from Lemma 3. Consider the first time a round node is
reached on this structure. Since there are no nearby negative edges, the round
end-points of negative edges shown Fig. 7(b) can be built. Now, the square end-
points of those edges cannot be built since the center vertex cannot be built.

Since the conditions of Theorem 8 are poly-time testable (and hence existence
of forbidden structures is poly-time decidable), we obtain the following theorem.

Theorem 9. Robust AGAP on grid graphs is poly-time solvable when 2wp+wn <
τ ≤ 3wp + wn.

References

1. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

2. Rothemund, P.: Using lateral capillary forces to compute by self-assembly. Proc.
Nat. Acad. Sci. U.S.A. 97, 984–989 (2000)

3. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman,
N.C.: Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes. J. Amer. Chem. Soc. 122, 1848–1860 (2000)

4. Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA
tile complexes for barcode-patterned lattices. Proc. Nat. Acad. Sci. U.S.A. 100,
8103–8108 (2003)

5. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2, 2041–2053 (2004)

6. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adle-
man, L.M.: DNA triangles and self-assembled hexagonal tilings. J. Amer. Chem.
Soc. 126, 13924–13925 (2004)

7. He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-assembly of hexagonal DNA
two-dimensional (2D) arrays. J. Amer. Chem. Soc. 127, 12202–12203 (2005)

8. Malo, J., Mitchell, J.C., Vénien-Bryan, C., Harris, J.R., Wille, H., Sherratt, D.J.,
Turberfield, A.J.: Engineering a 2D protein-DNA crystal. Angewandte Chemie In-
ternational Edition 44, 3057–3061 (2005)

9. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC, pp. 459–468 (2000)

10. Wang, H.: Proving theorems by pattern recognition II. Bell Systems Technical
Journal 40, 1–41 (1961)

Robust Self-assembly of Graphs 143

11. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive sys-
tems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005.
LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)

12. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic
self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–
144. Springer, Heidelberg (2004)

13. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti,
C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer,
Heidelberg (2005)

14. Angelov, S., Khanna, S., Visontai, M.: On the complexity of graph self-assembly
in accretive systems. Natural Computing 7, 183–201 (2008)

15. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343
(1982)

16. Middleton, A.A.: Computational complexity of determining the barriers to inter-
face motion in random systems. Phys. Rev. E 59, 2571–2577 (1999)

Time Optimal Self-assembly for 2D and 3D

Shapes:
The Case of Squares and Cubes

Florent Becker1, Éric Rémila1, and Nicolas Schabanel2

1 Université de Lyon – LIP, UMR 5668 ENS Lyon CNRS UCBL
{florent.becker,eric.remila}@ens-lyon.fr

2 CNRS, Universidad de Chile — CMM

Abstract. Self-assembling tile systems are a model for assembling DNA-
based nano artefacts. In the currently known constructions, most of the
effort is put on garanteeing the size of the output object, whereas the ge-
ometrical efficiency of the assembling of the shape itself is left aside. We
propose in this paper a framework to obtain provably time efficient self-
assembling tile systems. Our approach consists in studying how the flow
of information has to circulate within the desired shape to guarantee an
optimal time construction. We show how this study can yield an adequate
ordering of the tiling process from which one can deduced a provably time
efficient tile systems for that shape. We apply our framework to squares
and cubes for which we obtain time optimal self-assembling tile systems.

Keywords: Self-assembling, Tilings, Time Optimal Construction, 2D
and 3D Discrete Geometry.

1 Introduction

Self-assembly is the process by which small entities combine themselves into
a bigger shape by local interactions in such a way that the resulting aggre-
gates have interesting global properties. Examples of self-assembly are found in
crystal growth, coral reefs, microtubules, and so on. In [7], Winfree proposed
a framework for using DNA molecules in order to manufacture nano-artefacts
by self-assembly. These artefacts can even be made to encode the result of a
computation, leading to a good model for DNA computing [8].

This framework consists in a refinement of Wang tiles where the colors of the
sides are seen as different kinds of glues. These glues have different strengths
which represent the strength of the affinity between the DNA sequences forming
the sides of the tiles. Two equal glues will stick together, with a strength equal
to the strength of the glues. The self-assembly of the tiles is controlled by the
temperature, an integer τ such that: a tile stays attached only if the sum of the
strengths of the bonds with the other tiles along its sides is at least τ , otherwise
it is torn off from the rest of the crystal by thermal agitation. This model can
and has indeed been implemented practically [5] with DNA.

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 144–155, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Time Optimal Self-assembly for 2D and 3D Shapes 145

Theoretical research so far on self-assembly has focused on minimising the
numbers of tiles necessary to assemble a given shape. In this paper, we will
focus as well on the time needed to assemble a shape. In this model, one can
optimally assemble a shape with O(K/ log K) tiles, where K is the Kolmogorov
complexity of the shape [1,6]. This direction yields tile sets in which most of the
complexity is related to the decoding of a compact representation of the shape,
rather than assembling the shape efficiently. Furthermore, as far as we know,
the time needed to assemble a given shape has not been studied in detail so
far, and asymptotic results have been deemed sufficient. In this paper, we show
how a finer understanding of the inherent parallelism of the model can lead to
time-optimal self-assembly.

Time-constraint-based tile set design. Our approach relies on the study of the
time-relationship between the tiles. More precisely, it consists in studying the
flow of information within the desired shape, and deducing from it a specific
order in which the tiles have to be placed, and from which we finally infer a
time-optimal set of tiles. Deducing the tile set from its specifications allows to
obtain directly a tile set whose behavior has already been proved formally, which
is often easier than obtaining the tile set first and then proving that it behaves
correctly. Interestingly enough, this method yields to a new kind of self-assembly
process in which the construction is not driven by some master signals1 but
rather by a set of interdependent signals where no one takes over the other nor
may progress without the others. This implies that other kinds of relationship
between construction signals may have to be considered in future constructions.

On time optimality and tile set design. In order to set up a proper definition of
time-optimal tile set for a shape, computer science taught us that the considered
tile sets need to allow the construction of an infinite range of sizes for the object.
Indeed, the optimal construction time of a fixed size object cannot be defined
since its construction time can always be made arbitrarily small for any given tile
set simply by increasing the concentrations of the tiles. Obtaining a tile set that
can produce the desired shape at arbitrary size, is also a desirable design strategy:
it’s exactly like writing a program P that asks for n and computes n! instead
of rewriting a new program Pn each time a new n is requested. Decoupling the
problem of decoding of the size and the problem of geometric assembling of the
shape allows to focus on each problem separately and to treat each of them
with more efficiency. Moreover, as we will see, our tile set can easily be extended
by adding computations within the tiles that decodes the size and stops the
construction at the right moment.

Our contribution. In this paper, we focus on squares and cubes and answer to
the question: what is the optimal time to self-assembly these shapes? We start
with the squares and design from the constraints imposed by time-optimality an
order in which the tiles have to be placed, from which we deduce the tile set.

1 For instance, in [2] the construction is driven by the master diagonal signal.

146 F. Becker, É. Rémila, and N. Schabanel

Our tile set allows to construct any square n×n in optimal parallel time 2n− 2
instead of 3n−5 for the previously known constructions [2]. Then we extend the
result to 3 dimensional self-assembly. In three dimensions, the description of the
tile set could become cumbersome, and its verification even more so. We show
how, by designing first the order in which the tiles should be added, and then
by checking a few conditions of regularity and local determinacy on the order,
we get at once the tile set and a proof of its correctness and its time optimality.
One can also readily check properties such as the absence of bubbles in the 3D
self-assembly process, which can be crucial in practice.

2 Self Assembling Tile Systems

Definition 1 (Tiles). A tile is a unit square with one glue on each side. For-
mally, it is a quadruple of glues 〈αN , αS , αE , αW 〉 chosen from a finite set of
glues Σ.2 Each glue α ∈ Σ has a strength g(α), a non-negative integer. Two
tiles may be placed next to eachother only if their common sides hold the same
glue α; in that case, we say that there is bond of strength g(α) between these
tiles.

Definition 2 (Tile system). Formally, a seeded tile system is a quintuple
T = 〈T, t0, τ, Σ, g〉, where:

– Σ is a finite set of glues whose strengths are given by g.
– T ⊆ Σ4 is a finite set of tiles.
– t0 ∈ T is a particular tile known as the seed.
– τ is a positive integer called the temperature.

The “shapes” produced from a tile system are the one obtained by aggregation
from the seed tile, according to the rule stating that a tile may stick to the
current aggregate only if the sum of its bonds to the rest of the aggregate is at
least the temperature. Formally,

Definition 3 (Productions). A configuration is a partial mapping A : Z2 →
T , such that all neighboring tiles hold the same glue on their common sides. The
domain of A is called the shape realized by A. We say that a configuration B
extends a configuration A at site (i, j) if: the domain of B is the domain of A
plus the site (i, j); B is identical to A on A’s domain; and the tile placed in B
at site (i, j) sticks to A’s tiles, i.e., the sum of the strengths of the bonds around
the sides of the tile (i, j) in B with the rest of the configuration is at least τ . We
write A →T B and denote by →∗

T the transitive closure.
The productions P of a tile system T are the configurations derived from

the seed configuration, Γ0, which consists in the single tile t0 placed at (0, 0):

2 One can force the orientation of the tiles simply by coding the correct orientation in
the glues, so we assume here w.l.o.g. that the tiles are oriented (no rotation of the
tiles are allowed). This simplifies considerably the design of a tile system, without
affecting its generality.

Time Optimal Self-assembly for 2D and 3D Shapes 147

P = {A : Γ0 →∗
T A}. We say that a production is final if no other production

may be derived from it. The order induced by →∗
T from the seed configuration is

called the dynamics of T .

A desirable property of a tile system is that the tiles of a production have to be as-
sembled in a fixed known (partial) order. This property turns out to be very useful
in the proof of correctness of tile systems [5]. To the classic RC condition [5] which
states that all the tiles on a given column (resp. row) have to be placed after a fixed
first tile has been placed in this column (resp. row) (we say that this tile opens the
column, resp. row), we prefer the following weaker condition which allows more
geometrical freedom (for instance, assembling concave shapes) while preserving
the necessary guarantee of determinism for the design and analysis purposes.

Definition 4 (The order condition). Given an assembling sequence γ =
〈Γ0→T A1→T A2→T · · ·→T At = P 〉 of a production P and two neighboring
sites (i, j) and (i′, j′) in P , we say that (i, j) ≺P,γ (i′, j′) if the tile over (i, j)
is placed before the tile over (i′, j′) in the construction sequence. We say that
the tile system T satisfies the order condition (is ordered, for short) if for all
production P , the relationship ≺P,γ between the sites of P is independent of
the assembling sequence γ; in that case, the relationship, written ≺P , defines a
partial order (see for instance [3]) called the local order of the sites of P .

Clearly, for any ordered tile system, the assembling sequence of a given produc-
tion P is “locally deterministic”: the tiles over two neighboring sites are always
placed in the same order. The only uncertainty in an ordered tile system relies
in the choice of the tile to place at each site; this choice will condition which
production will be obtained at the end; but, every given production P is always
assembled in the same order locally. Some easy facts on ordered tile systems are:

– if a production Q extends a production P , the local order ≺Q coincides
with ≺P on P ’s sites, and moreover, since no site can be tiled before its
predecessors, P is an ideal3 ≺Q in the order theory terminology.

– since more than τ predecessors would induce uncertainty on the precedence
relationship of a site with its neighbors, every site in a production P has at
most τ predecessors according to ≺P and the seed t0 is the only tile without
predecessors;

– every RC tile system [5] is ordered.

3 Time Optimality and Skeleton

3.1 Time Optimal Tile Systems

Timed dynamics. The assembling of a shape is classically modeled by a Markov
chain in which each tile appears at each unoccupied site at a rate proportional
to its concentration [1]. We do not study here the probability that a given shape
3 An ideal I of a partial order ≺ is a set such that for all u ∈ I , v ≺ u ⇒ v ∈ I

(see [3]).

148 F. Becker, É. Rémila, and N. Schabanel

is produced, which depends on the concentrations of the tiles: we rather focus
on minimizing the expected construction time of each production, conditioned
to the event that this production is obtained. It is known from [1] that the
expected construction time of a given production P is then proportional to the
length �(P) of the longest chain of predecessors in ≺P , where the multiplicative
constant depends only on the concentrations of the tiles. Since once we condition
the expectation to construct one specific production, the concentrations play the
same role as GHz in computers (doubling them will reduce the construction time
by 2), the meaningful parameter to measure time here is �(P). We thus aim at
minimizing the length of the longest chain of dependencies in ≺P to obtain an
efficient construction time. Therefore, we say that the construction of a final
production P is time optimal when the length �(P) of the longest chain in ≺P

is as small as possible.
Note that, for ordered tile systems, �(P) is also exactly the time to construct

P in the parallel dynamics, where at every time step, we place all the tiles that
can be attached to the current aggregate.

Since any production is obtained by assembling tiles one after the other start-
ing at the seed tile, we obtain the following bound on the length of the longest
chain of dependencies.

Fact 1 (Trivial lower bound). Given a 4-connected shape S ⊂ Z2, for all tile
system T and all production P realizing S, we have: �(P) � ||S||1, where ||S||1
denotes the maximum �1-distance of a site of S to the seed tile placed at the origin.

Definition 5 (Real time assembling). Given a family of shapes S, we say
that a tile system realizes the family S in real time, if the shapes realized by its
final productions are exactly S, and for all final production P realizing a shape
S ∈ S, we have: �(P) = ||S||1.
By Fact 1, any real time tile system is by definition time optimal. The following
definition extends the notion of time to every site of a production in an ordered
tile system.

Definition 6 (Rank). We define the rank ρP (u) of a site u in a production
P , as the length of the longest chain leading to u in ≺P . We say that a site u
of P is on time if ρP (u) = ||u||1. Clearly, a tile system realizes a production P
in real time, if the site of highest rank in P is on time. Note that in the parallel
dynamics assembling a production P , each site u is tiled at time ρP (u) exactly.

3.2 Skeleton of a Production: Lower Bounding the Rank

Existing self-assembling constructions are driven by main signals, the rest of the
production been completed by “passive” tiles filling the gaps between these sig-
nals. In fact, this has to be the case for all ordered self-assembling constructions
and we formalize this fact with the following notion:

Definition 7 (Skeleton). Let T be an ordered tile system. The x-skeleton of
a production P (resp., y-skeleton) is the union of the seed site and of the sites
of P which have a unique predecessor in ≺P , placed on their right or left (resp.,
above or below). The skeleton of P is the union of its x- and y-skeletons.

Time Optimal Self-assembly for 2D and 3D Shapes 149

The x-skeleton (resp. y-) of a production P is the set of sites that open the x-
dimension (resp. y-) during the assembling of P , i.e., which are the first in each
column (resp., row) to be tiled. Indeed, in an ordered tile system, each column
of a production is progressively tiled by agregation from the corresponding x-
skeleton site on this column. Note that even if the tiles aggregated on a column
may carry as well meaningful signals, they have all to be placed by agregation
from the x-skeleton tile on this column. Naturally, the same holds respectively
for rows and the y-skeleton. It follows that given an ordered tile system, one can
lower bound the rank ρP (u) of each site u in a production P by the maximum
of the following two quantities:

σX(u) = ρP (a) + ||u − a||1 and σY (u) = ρP (b) + ||u − b||1, (1)

where a and b are the closest x- and y-skeleton sites on the column and on the
row of u in P , respectively (i.e., where a and b are the sites which open the row
and the column of u, respectively, in the assembling of P).

These two lower bounds show how the “flow of information” circulates within
the shape from the skeleton during the assembling. We will see next how one
can use these lower bounds to understand where the skeleton of a shape has to
be to match the real time constraints. We illustrate this approach by obtaining
two real time tile systems realizing, respectively, the n × n squares Sn and the
n × n × n cubes Cn, rooted at the origin, in optimal time.

4 Assembling Squares in Real Time

4.1 A Real Time Local Order for Squares

We first show how to assemble in real time the family of squares with lower left
corner at the origin, Sn = {0, . . . , n − 1}2 for n � 2. Our approach consists in
designing first a local order for the sites from the “flow of information” induced
by the real time constraints within the shape; and then deduce from it an ordered
tile systems matching this order.

Since ||Sn+1||1 = 2n, our goal is to obtain a local order for the square Sn+1

such that the highest rank of the sites is (at most) 2n. Consider an arbitrary
ordered tile system T that realizes the square Sn+1. Since Sn+1 is convex and
T is ordered, each column (resp., row) of Sn+1 contains exactly one site in the
x-skeleton (resp., y-); otherwise, if there were two x-skeleton sites on the same
column, the sites between them could be assembled from both below and above,
the local order would depend on the assembling sequence and T would not be
ordered. Let us thus denote ai = (i, yi) and bj = (j, xj) the sequences of sites in
the x- and y-skeletons respectively. If yn > n/2 (for instance in [2,4], yn = n−1),
then by the lower bound (1), the rank of lower right corner (n, 0) would be at
least ρ(an) + ||(n, 0) − (n, an)||1 � ||an||1 + yn = n + 2yn > 2n. It follows that
the x-skeleton (resp. y-) of a real time ordered tile system for Sn+1 cannot get
above the site (n, n/2!) (resp. to the left of the site (n/2!, n)).

We thus consider the following x- and y-skeletons: ai = (i, i/2!) and bj =
(j/2!, j) as displayed in Figure 1(a). The lower bound (1) tells us that the

150 F. Becker, É. Rémila, and N. Schabanel

(a) The local order induced by the x-
and y-skeletons within the square. In
each of the three regions delimited by
the x- and y-skeletons, the local order
≺ follows the directions of the arrows.
For example, in the central region,
the predecessors of (i, j) are (i− 1, j)
and (i, j − 1) and its successors are
(i + 1, j) and (i, j + 1). Each site
(i,
 i

2
�) (resp. (
 j

2
�, j)) of x-skeleton

(resp. y-) has a unique predecessor,
(i − 1,
 i

2
�) (resp., (
 j

2
�, j − 1)).

(b) The tile system for even squares. The
numbers on the sides of each tile are the IDs of
the glues, and the number of ticks accross the
boundary of the tiles stands for the strength
of the glue. The temperature is 2. Strength
2 glues lie on the lines j = 2i and j = i/2.
The green tiles and the red tile on the diag-
onal represent the GO and STOP tiles which
propagate (on time) up to the blue and or-
ange signals carrying the x- and y-skeletons
respectively either to allow them to continue
their progression for the next two steps (GO)
or to stop them (STOP).

Fig. 1. The skeleton and the tile systems assembling squares in real time

rank of each site u = (i, j) in any local order based on this skeleton is at least:
σ(u) = max(||ai||1 + ||u − ai||1, ||bj ||1 + ||u − bj ||1). More precisely,

– σ(u) = i+ j = ||u||1 if u lies between the x- and y-skeletons, i.e., if j � i/2!
and i � j/2!;

– σ(u) = i + 2 i/2!− j > ||u||1 if u lies below the x-skeleton, i.e., if j < i/2!;
– symmetrically, σ(u) = j + 2 j/2! − i > ||u||1 if u lies above the y-skeleton,

i.e., if i < j/2!.
Clearly, σ(u) � 2n, for all u. Moreover, one can easily verify that σ is the rank
of the following local order where the predecessors of each site u = (i, j) are
defined as (see Figure 1(a)):

– its east neighbor (i − 1, j), if u = ai belongs to the x-skeleton;
– its south neighbor (i, j − 1), if u = bj belongs to the y-skeleton;
– its east and north neighbors (i − 1, j) and (i, j + 1), if u lies below the

x-skeleton;
– its east and south neighbors (i − 1, j) and (i, j − 1), if u lies between the x-

and y-skeletons;
– its west and south neighbors (i + 1, j) and (i, j − 1), if u lies above the

y-skeleton.

We are now left with implementing this real time order with an ordered tile
system.

Time Optimal Self-assembly for 2D and 3D Shapes 151

4.2 A Real Time Tile System for Squares

The main issue in implementing the real time local order above into a tile sys-
tem is the synchronization between the two distant signals carrying the x- and
y-skeletons. It turns out that the sites lying between the x- and y-skeletons are
all on time (their ranks equal their �1-norms). We may then use this zone to
transport just-in-time the synchronization signals. We proceed as shown in Fig-
ure 1(b). The progress of the signals carrying the x- and y-skeletons is controlled
by the tile placed on the diagonal: if the GO tile is placed on the diagonal, then
the GO signal propagates along the row and column and allows just-in-time the
x- and y-skeletons to jump by one upward and to the right respectively and to
progress for two new steps; if the STOP tile is placed on the diagonal, then the
STOP signal propagates along the row and column and the progression of the x-
and y-skeleton stops just-in-time forcing the production to be completed into a
square. In order to obtain even square as well, we have two kinds of STOP tiles:
EVEN and ODD; while EVEN stops where the x- and y-skeleton stoped, ODD
allows one single extra step to extend the length of the sides by one.

The complete description of the tiles and their proof of correctness cannot be
given in details due to space constraints but can be read easily in Figure 1(b).
We thus conclude:

Theorem 2. There exists an ordered self-assembling system with 24 tiles (with
rotations allowed) whose final productions at temperature 2 realize exactly the
set of all squares Sn in optimal time.

Note that the tile system proposed in Figure 1(b) is not minimal and one can
significantly reduce the number of tiles by shifting the x- and y-skeletons while
preserving time optimality. The classic counter-based technique in the literature
[4] which allows to control precisely the size of the assembly can also be used
with this construction. It consists in adding O(log n/ log log n) tiles to force the
production of an n × n square. Instead of choosing non-deterministically the
position of the STOP tile on the diagonal, one can use the on time region be-
tween the x- and y-skeletons to simulate a counter (or any other computation)
and have the (ODD or EVEN) STOP tile to be put exactly at (n/2!, n/2!).
Moreover, using the same technique, and by launching simultaneously four real
time constructions with a counter in the directions SE, NE, NW, and SW, one
can also obtain a real time assembly of a square rooted on any of its sites.

5 Assembling Cubes in Real Time

5.1 The Skeleton

We will now show how our framework allows to obtain readably a tri-dimensional
tile system which assemble in optimal time the family of cubes rooted at the
origin, Cn = {0, . . . , n − 1}3 for n � 2. We extend canonically the definitions in
Sections 2 and 3 from 2D to 3D.

As observed in Section 3.2, the assembling of a convex shape by an ordered
tile systems is necessarily driven by three skeletons consisting in the sequence

152 F. Becker, É. Rémila, and N. Schabanel

of sites opening each dimension. Taking inspiration from the 2D tile system
designed above, we consider the following x-, y- and z-skeletons heading from the
origin to the centers of the three opposite faces of the cube: ai = (i, i/2!, i/2!),
bj = (j/2!, j, j/2!) and ck = (k/2!, k/2!, k).

As before, we define the rank function σ induced by the skeleton as follows. For
each site u = (i, j, k), let σX(u) = ||ai||1 + ||u−ai||1, σY (u) = ||bj ||1 + ||u− bj||1,
and σZ(u) = ||ck||1 + ||u − ck||1. The rank of u induced by the skeleton is then:
σ(u) = max(σX(u), σY (u), σZ(u)). Since tiles are assembled from the skeleton
by definition of the skeleton, σ(u) is clearly a lower bound on the earliest time
a tile may be placed at u in the parallel dynamics.

Given two neighboring sites u and v in N3, we say that u is a predecessor of
v (and v is a successor of u) if σ(u) < σ(v). We define the order induced by the
skeleton ≺ as the transitive closure of the predecessor relation: u ≺ v if there
exists a finite sequence (u0 = u, u1, . . . , uq = v) such that ui−1 is a predecessor
of ui for all i = 1, . . . , q. Our goal is to prove that there exists a tile system
whose local order is exactly ≺. We need first to understand the structure of this
order, and thus first, the local variations of σ.

5.2 On the Rank Function Induced by the Skeleton

We denote by (ex, ey, ez) the canonical basis of N3. A careful case study yields
the following key lemma describing the variations of σ along the z-axis.

Lemma 1 (Variations of σ along the z-axis). For all site u = (i, j, k) in
N3, if max(i, j) � 2k + 1, then σ(u) < σ(u + ez); and if max(i, j) � 2k, σ(u) <
σ(u − ez) (provided that k �= 0).

X Y

Z

x
y

z

Z

X

Y

x

y

z

Fig. 2. The local variations of σ and the corresponding local order in N3 from two
points of views: from (n, n, n) on the left, and from (n, 0, n) on the right. Only the sites
with at most 2 predecessors are represented. Arrows points in σ’s growth direction
along the axes. The white arrows stand for simple predecessors; the red arrow for
double predecessors; and the yellow arrows for triple predecessors. One can clearly see
the partition in seven regions filled with sites with 3 simple predecessors, separated
by discrete planes made of sites with two predecessors including at least one double
predecessor, intersecting each other on the x-, y- and z-skeletons (in pure blue, green
and red respectively) made of sites with one single triple predecessor.

Time Optimal Self-assembly for 2D and 3D Shapes 153

We thus define the following “pyramidal” discrete surfaces: ΔX = {(
⌊max(j,k)

2

⌋
,

j, k) : j, k � 0}, ΔY = {(i,
⌊max(i,k)

2

⌋
, k) : i, k � 0} and ΔZ = {(i, j,

⌊max(i,j)
2

⌋
) :

i, j � 0}. One can reformulate Lemma 1 as follows: σ is an increasing function
of z above ΔZ , and decreasing function of z below ΔZ .

Figure 2 sums up this result graphically. The discrete surfaces ΔX , ΔY and
ΔZ are respectively painted in blue and pink colors, green and orange colors,
and blue and green colors (the meaning of the colors will be explained in the
following sections). The growth directions of σ along each axis are represented
by the large white arrows within each of the seven regions partitioned by these
three surfaces and by small arrows within each surface.

Two important facts follows. First, σ defines a “proper” local order: σ never
takes the same value on two neighboring sites and thus, for every pair of neigh-
boring sites, one is always the predecessor one of the other. Second, the highest
ranked site in each cube Cn+1 is 3n = ||Cn+1||1, which is attained at the corner
(n, n, n). It follows that the order induced by the skeleton matches the real time
constraints as expected.

5.3 Classification of the Sites According to Their Relative Positions
with Their Predecessors

Thanks to Lemma 1 and Figure 2, we observe the following properties of the
order ≺ induced by σ:

Fact 3

1. each site has at most three predecessors among its neighbors;
2. the origin is the unique site with no predecessor;
3. a site u has a unique predecessor if and only if u belongs to the skeleton; this

predecessor is u − ez if u lies in the z-skeleton.
4. every site u = (i, j, k) with exactly two predecessors has two opposite neigh-

bors which are its successors; and these opposite successors are located in
u ± ez if and only if u belongs to ΔZ .

Multiplicity. We define the multiplicity of the predecessors of the sites as follows
(the missing cases are obtained by symmetry). The multiplicity will be used later
on to define the strength of the bond between the tiles attached on these sites.

– The multiplicity of the predecessors of any site with three predecesors is 1;
– If u �= 0 belongs to the skeleton, the multiplicity of its unique predecessor is 3;
– If u = (i, j, k) belongs to ΔZ : if i

2! � j
2! (u belongs to the bluish part of

ΔZ), the multiplicity of its predecessor along the y-axis is 2; if j
2! � i

2! (u
belongs to the greenish part of ΔZ), the multiplicity of its predecessor along
the x-axis is 2; if both cases apply (u belongs to the diagonal sites in cyan
of ΔZ in Figure 2), both predecessors of u get a multiplicity of 2, otherwise
the other predecessor gets a multiplicity 1.

In Figure 2, the multiplicities of the predecessors with their successors are
represented by white, red or yellow arrows whether the multiplicity is 1, 2, or

154 F. Becker, É. Rémila, and N. Schabanel

3 respectively. The following fact will ensure that the tile system we will derive
from the order in Section 5.5, assembles the productions in the prescribed order
at temperature 3.

Fact 4. For all site u �= 0, the sum of the multiplicities of its predecessors is at
least 3 and the sum of the multiplicities of any strict subset of its predecessors
is at most 2.

5.4 Deducing the Successors from the Predecessors

A key property needed to obtain the tile system is that the information trans-
mitted by the glues on the faces a site u shares with its predecessors, is enough,
independently of the position of u, to completely determine the correct glues of
the free faces of u. In terms of order, this property consists for now in checking
that one can deduce the correct types of the successors of u from the types of its
predecessors only, and a small number of criteria that can be transmitted from
site to site through the glues. Consider a site u = (i, j, k).

– If u has a triple predecessor, w.l.o.g., u − ex, then u = ai belongs to the
x-skeleton, u has four double successors u ± ey and u ± ez, and: if i is even,
then u + ex = ai+1 is a triple successor, and a simple successor otherwise.

– If u has two double predecessors, w.l.o.g., u − ex and u − ey (u belongs to
the cyan diagonal part of ΔZ), then u ± ez are both simple successors, and:
if i (resp. j) is even, u + ex (resp. u + ey) is a double successor, and a simple
successor otherwise.

– If u has two predecessors, a double and a simple, w.l.o.g., its double and
simple predecessors are respectively u − ex and u − ey and u belongs to the
lighter blue part of ΔZ ; then u ± ez are simple successors and u + ex and
u + ey are respectively double and simple successors as well.

– If u has three simple predecessors, then either u has three simple successors
or it has one triple successor, w.l.o.g. ai+1, and two simple successors; the
second alternative arising only if u = ai + ey + ez, i.e., if u is a successor of
ai + ey which is itself a successor of ai.

Each of these cases corresponds to a different color in Figure 2.

5.5 A Real Time Tile Systems for Cubes

It follows from the study above that one can correctly guess the types of the
successors of any site from the only knowledge of: 1) the multiplicity and relative
position of its predecessors, 2) the parity of the corresponding coordinates, and
3) possibly the immediate proximity to a part of the skeleton. We define thus
the glues as a combination of three labels as follows:

– each face holds a label chosen among +++, ++, +,−,−−,−−− according to
the multiplicity of the predecessor/successor relation with the corresponding
neighboring site and according to the orientation of this relation with respect
to the corresponding axis.

Time Optimal Self-assembly for 2D and 3D Shapes 155

– each pair of opposite faces holds a 0 or a 1 to propagate the parity of each
coordinate.

– each even site a2i of the x-skeleton propagates to a2i + ey which in turn
relays to a2i + ey + ez the fact that the later has to allow a triple successor
on its x+-face to attach the next element a2i+1 of the x-skeleton (the same
holds for the y- and z-skeletons).

According to the previous subsections, we now have a set of tiles that agregate
themselves from the seed tile according to the desired local order ≺ induced by
σ. We are now left with the problem of the synchronization of the stop of the
three distant signals carrying the x-, y- and z-skeletons. As for the squares in
Section 4.2, we can use for that purpose the central region between the three
surfaces ΔX , ΔY and ΔZ . Indeed an easy calculation demonstrates that this
region consists of the union of all the q × q × q cubes {q, . . . , 2q}3 and that its
sites are all on time (recall definition 6) and can thus be used to propagate from
the main diagonal a GO, STOP-EVEN, STOP-ODD signal to the three part of
the skeleton simultaneously and without delay as we did before in the 2D case.
We can thus conclude:

Theorem 5. There exists an ordered self-assembling system with a finite num-
ber of tiles whose final productions at temperature 3 realize exactly the set of all
cubes Cn in optimal time.

References

1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D.A.: Running time and program
size for self-assembled squares. In: STOC 2001: Proc. of the 33rd ACM symposium
on Theory of computing, pp. 740–748 (2001)

2. Becker, F., Rapaport, I., Rémila, E.: Self-assemblying classes of shapes with a min-
imum number of tiles, and in optimal time. In: LNCS Proc. of Found. of Software
Tech. and Theo. Comp. Sci., pp. 45–56 (2006)

3. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (2002)

4. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC 2000: Proceedings of the 32nd symp. on
Theory of computing, pp. 459–468 (2000)

5. Rothemund, P.W.K.: Theory and Experiments in Algorithmic Self-Assembly. PhD
thesis, University of Southern California (2001)

6. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Ferretti, C.,
Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 344–354. Springer,
Heidelberg (2005)

7. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, Caltech (1998)
8. Winfree, E.: Simulations of computing by self-assembly. In: Proceedings of the

Fourth DIMACS Meeting on DNA Based Computing, pp. 213–242 (1998)

Self-assembly of Discrete Self-similar Fractals�

(Extended Abstract)

Matthew J. Patitz and Scott M. Summers��

Department of Computer Science
Iowa State University
Ames, IA 50011, USA

{mpatitz,summers}@cs.iastate.edu

Abstract. In this paper, we search for absolute limitations of the Tile
Assembly Model (TAM), along with techniques to work around such lim-
itations. Specifically, we investigate the self-assembly of fractal shapes in
the TAM. We prove that no self-similar fractal fully weakly self-assembles
at temperature 1, and that certain kinds of self-similar fractals do not
strictly self-assemble at any temperature. Additionally, we extend the
fiber construction from Lathrop et. al. (2007) to show that any self-
similar fractal belonging to a particular class of “nice” self-similar frac-
tals has a fibered version that strictly self-assembles in the TAM.

1 Introduction

Self-assembly is a bottom-up process by which (usually a small number of) fun-
damental components automatically coalesce to form a target structure. In 1998,
Winfree [14] introduced the (abstract) Tile Assembly Model (TAM) - an exten-
sion of Wang tiling [12,13], and a mathematical model of the DNA self-assembly
pioneered by Seeman et. al. [10]. In the TAM, the fundamental components are
un-rotatable, but translatable “tile types” whose sides are labeled with glue “col-
ors” and “strengths.” Two tiles that are placed next to each other interact if the
glue colors on their abutting sides match, and they bind if the strength on their
abutting sides matches, and is at least a certain “temperature.” Rothemund and
Winfree [9,8] later refined the model, and Lathrop et. al. [6] gave a treatment
of the TAM in which equal status is bestowed upon the self-assembly of infinite
and finite structures. There are also several generalizations [1,7,4] of the TAM.

Despite its deliberate over-simplification, the TAM is a computationally and
geometrically expressive model. For instance, Winfree [14] proved that the TAM
is computationally universal, and thus can be directed algorithmically. Winfree
[14] also exhibited a seven-tile-type self-assembly system, directed by a clever
XOR-like algorithm, that “paints” a picture of a well-known shape, the discrete
� This research was supported in part by National Science Foundation Grants 0652569

and 0728806.
�� This author’s research was supported in part by NSF-IGERT Training Project in

Computational Molecular Biology Grant number DGE-0504304.

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 156–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Self-assembly of Discrete Self-similar Fractals 157

Sierpinski triangle S, onto the first quadrant. Note that the underlying shapes
of each of the previous results are infinite canvases that cover the first quadrant,
onto which computationally interesting shapes are painted (i.e., full weak self-
assembly). Moreover, Lathrop et. al [5] recently gave a new characterization of
the computably enumerable sets in terms of weak self-assembly using a “ray
construction.” It is natural to ask the question: How expressive is the TAM with
respect to the self-assembly of a particular, possibly infinite shape, and nothing
else (i.e., strict self-assembly)?

In the case of strict self-assembly of finite shapes, the TAM certainly remains
an interesting model, so long as the size (tile complexity) of the assembly sys-
tem is required to be “small” relative to the shape that it ultimately produces.
For instance, Rothemund and Winfree [9] proved that there are small tile sets
in which large squares self-assemble. Moreover, Soloveichik and Winfree [11] es-
tablished the remarkable fact that, if one is not concerned with the scale of an
“algorithmically describable” finite shape, then there is always a small tile set in
which the shape self-assembles. Note that if the tile complexity of an assembly
system is unbounded, then every finite shape trivially (but perhaps not feasibly)
self-assembles.

When the tile complexity of an assembly system is unbounded (yet finite),
only infinite shapes are of interest. In the case of strict self-assembly of infinite
shapes, the power of the TAM has only recently been investigated. Lathrop
et al. [6] established that self-similar tree shapes do not strictly self-assemble in
the TAM given any finite number of tile types. A “fiber construction” is also
given in [6], which strictly self-assembles a non-trivial fractal structure.

In this paper, we search for (1) absolute limitations of the TAM, with respect
to the strict self-assembly of shapes, and (2) techniques that allow one to “work
around” such limitations. Specifically, we investigate the strict self-assembly of
fractal shapes in the TAM. We prove three main results: two negative and one
positive. Our first negative (i.e., impossibility) result says that no self-similar
fractal fully weakly self-assembles in the TAM at temperature 1. In our sec-
ond impossibility result, we exhibit a class of discrete self-similar fractals, to
which the standard discrete Sierpinski triangle belongs, that do not strictly self-
assemble in the TAM (at any temperature). Finally, in our positive result, we
use simple modified counters to extend the fiber construction from Lathrop et al.
[6] to a particular class of discrete self-similar fractals.

2 Preliminaries

2.1 The Tile Assembly Model

We work in the 2-dimensional discrete Euclidean space Z2. We write U2 for the
set of all unit vectors, i.e., vectors of length 1 in Z2. We write [X]2 for the set of all
2-element subsets of a set X . All graphs here are undirected graphs, i.e., ordered
pairs G = (V, E), where V is the set of vertices and E ⊆ [V]2 is the set of edges.

A binding function on a graph G = (V, E) is a function β : E → N. (Intuitively,
if {u, v} ∈ E, then β ({u, v}) is the strength with which u is bound to v by {u, v}

158 M.J. Patitz and S.M. Summers

according to β. If β is a binding function on a graph G = (V, E) and C = (C0, C1)
is a cut of G, then the binding strength of β on C is

βC = {β(e) |e ∈ E, e ∩ C0 �= ∅, and e ∩ C1 �= ∅} .

The binding strength of β on the graph G is then

β(G) = min {βC |C is a cut of G} .

A binding graph is an ordered triple G = (V, E, β), where (V, E) is a graph and
β is a binding function on (V, E). If τ ∈ N, then a binding graph G = (V, E, β)
is τ -stable if β(V, E) ≥ τ .

A grid graph is a graph G = (V, E) in which V ⊆ Z2 and every edge {a, b} ∈ E
has the property that a − b ∈ U2. The full grid graph on a set V ⊆ Z2 is the
graph G#

V = (V, E) in which E contains every {a, b} ∈ [V]2 such that a−b ∈ U2.
We now give a brief sketch of the Tile Assembly Model. See [14,9,8,6] for other

developments of the model.
Intuitively, a tile type t is a unit square that can be translated, but not rotated,

having a well-defined “side u” for each u ∈ U2. Each side u of t has a “glue” of
“color” colt(u) - a string over some fixed alphabet Σ - and “strength” strt(u)
- a natural number - specified by its type t. Two tiles t and t′ that are placed
at the points a and a + u respectively, bind with strength strt (u) if and only if
(colt (u) , strt (u)) = (colt′ (−u) , strt′ (−u)).

Given a set T of tile types, an assembly is a partial function α : Z2 ��� T .
An assembly is stable if it cannot be broken up into smaller assemblies without
breaking bonds of total strength at least τ . The binding graph of an assembly α
is the binding graph Gα = (V, E, β), where (V, E) is the grid graph given by V =
dom α, and {m, n} ∈ E if and only if (1) m − n ∈ U2, (2) colα(m) (n − m) =
colα(n) (m − n), and (3) strα(m) (n − m) > 0. The binding function β : E → Z+

is given by β ({m, n}) = strα(m) (n − m) for all {m, n} ∈ E.
Self-assembly begins with a seed assembly σ and proceeds asynchronously and

nondeterministically, with tiles adsorbing one at a time to the existing assembly
in any manner that preserves stability at all times. A tile assembly system (TAS)
is an ordered triple T = (T, σ, τ), where T is a finite set of tile types, σ is a seed
assembly with finite domain, and τ = 2 is the temperature. An assembly α is
terminal, and we write α ∈ A�[T], if no tile can be stably added to it. A TAS T
is directed, or produces a unique assembly, if it has exactly one terminal assembly.

A set X ⊆ Z2 weakly self-assembles if there exists a TAS T = (T, σ, τ) and a
set B ⊆ T such that α−1(B) = X holds for every terminal assembly α. A set X
strictly self-assembles if there is a TAS T for which every terminal assembly has
domain X .

An assembly sequence in a TAS T = (T, σ, τ) is an infinite sequence α =
(α0, α1, α2, . . .) of assemblies in which α0 = σ and each αi+1 is obtained from
αi by the “τ -stable” addition of a single tile. To prove that a particular TAS
T = (T, σ, τ) is directed, it suffices to exhibit a locally deterministic [11] assembly
sequence.

Self-assembly of Discrete Self-similar Fractals 159

2.2 Discrete Self-similar Fractals

In this subsectionwe introduce discrete self-similar fractals, and zeta-dimension [3].

Definition 1. Let 1 < c ∈ N, and X � N2 (we do not consider N2 to be a
self-similar fractal). We say that X is a c-discrete self-similar fractal, if there is
a set {(i, i) | i ∈ {0, . . . c − 1}} �= V ⊆ {0, . . . , c − 1} × {0, . . . , c − 1} such that

X =
∞⋃

i=0

Xi,

where Xi is the ith stage satisfying X0 = {(0, 0)}, and Xi+1 = Xi ∪
(
Xi + ciV

)
.

In this case, we say that V generates X. X is a discrete self-similar fractal if it
is a c-discrete self-similar fractal for some c ∈ N.

In this paper, we are concerned with the following class of self-similar fractals.

Definition 2. A nice discrete self-similar fractal is a discrete self-similar fractal
such that ({0, . . . , c−1}×{0})∪({0}×{0, . . . , c−1}) ⊆ V , and G#

V is connected.

(a) Nice (b) Non-nice

Fig. 1. The first stages of discrete self-similar fractals. The fractals in (a) are nice,
whereas (b) shows two non-nice fractals.

The most commonly used dimension for discrete fractals is zeta-dimension, which
we use in this paper.

Definition 3. (Doty et. al. [3]) For each set A ⊆ Z2, the zeta-dimension of A is

Dimζ(A) = lim sup
n→∞

log |A≤n|
log n

,

where A≤n = {(k, l) ∈ A | |k| + |l| ≤ n}.
It is clear that 0 ≤ Dimζ(A) ≤ 2 for all A ⊆ Z2.

3 Impossibility Results

In this section, we explore the theoretical limitations of the Tile Assembly Model
with respect to the self-assembly of fractal shapes. First, we establish that no
discrete self-similar fractal weakly self-assembles at temperature τ = 1 in a
locally deterministic tile assembly system. Second, we exhibit a class C of discrete
self-similar fractals, and prove that if F ∈ C, then F does not strictly self-
assemble in the TAM.

We are specifically interested in the method of local determinism by Solove-
ichik and Winfree.

160 M.J. Patitz and S.M. Summers

Definition 4 (Soloveichik and Winfree [11]). A TAS T = (T, σ, τ) is locally
deterministic if there exists a locally deterministic τ-T -assembly sequence α.

Lemma 1 (Soloveichik and Winfree [11]). Let T = (T, σ, τ) be a TAS.
If there exists a locally deterministic τ-T -assembly sequence, then every τ-T -
assembly sequence is locally deterministic.

The reader is encouraged to consult [11] for a detailed discussion of local de-
terminism. To prove our first main result, we will need the following technical
result.

Lemma 2. Let T = (T, σ, τ) be a TAS. If T is locally deterministic and α ∈
A�[T], then the binding graph Gα is a tree.

Proof. Suppose that the binding graph Gα is not a tree. Then there is a cycle
C in Gα. Let v ∈ C, t = α(v) and α be an assembly sequence satisfying
α = dom res(α). There must be two simple paths π1 and π2 in Gα from 0
to v such that π1 �= π2. Since τ = 1, there exists an assembly sequence α′

where α′ first assembles π1 ∩ π2 (if such an intersection exists), then assembles
(π1 − π2) − {v}, and finally assembles (π2 − π1) − {v}. We can use α′ to define
the assembly sequence α′′ that does what α′ does but places the tile type t at
position v and then does whatever α does for all m �∈ dom res(α′). But since
v ∈ C, the tile that α′ places at position v has two input sides and binds with
strength 2. Thus, the assembly sequence α′ is not locally deterministic, and it
follows by Lemma 1 that T is not locally deterministic.

We use the above lemma to prove the following result.

Theorem 1. If F � N2 is a discrete self-similar fractal, and F weakly self-
assembles in the locally deterministic TAS TF = (T, σ, τ), where σ consists of a
single tile placed at the origin, then τ > 1.

We omit the proof of this theorem from this version of the paper due to space
constraints.

We make the assumption the that TF is locally deterministic because we
believe that the set of all locally deterministic tile assembly systems is represen-
tative of the set of all directed tile assembly systems at temperature 1.

We now shift our attention to the self-assembly of fractal structures at tem-
perature 2.

Definition 5 (Lathrop et al. [6]). Let G = (V, E) be a graph, and let D ⊆ V .
For each r ∈ V , the D-r-rooted subgraph of G is the graph GD,r = (VD,r, ED,r),
where

VD,r = {v ∈ V | every simple path from v to D in G goes through r}

and ED,r = E ∩ [VD,r]
2. B is a D-subgraph of G if it is a D-r-rooted subgraph

of G for some r ∈ V .

Self-assembly of Discrete Self-similar Fractals 161

Next, we exhibit a class C of (non-tree) “pinch-point” discrete self-similar fractals
that do not strictly self-assemble. Before we do so, we establish the following
lower bound.

Lemma 3. If X ⊆ Z2 strictly self-assembles in the TAS T = (T, σ, τ), where σ
consists of a single tile placed at the origin, then

|T | ≥
∣∣∣{B

∣∣∣ B is a unique dom σ-subgraph of G#
X

}∣∣∣ .

Lemma 3 is not as tight as possible, but it applies to a general class of fractals.
Our second impossibility result is the following.

Theorem 2. If X � N2 is a discrete self-similar fractal satisfying (1) {(0, 0),
(0, c − 1), (c − 1, 0)} ⊆ V , (2) V ∩ ({1, . . . c − 1} × {c − 1}) = ∅, (3) V ∩ ({c −
1} × {1, . . . , c − 1}) = ∅, and (4) G#

V is connected, then X does not strictly
self-assemble in the Tile Assembly Model.

Corollary 1 (Lathrop, et al. [6]). The standard discrete Sierpinski triangle
S does not strictly self-assemble in the Tile Assembly Model.

4 Every Nice Self-similar Fractal Has a Fibered Version

In this section, given a nice c-discrete self-similar fractal X � N2 (generated by
V), we define its fibered counterpart X. Intuitively, X is nearly identical to X ,
but each successive stage of X is slightly thicker than the equivalent stage of X
(see Figure 2 for an example). Our objective is to define sets F0, F1, . . . ⊆ Z2,
sets T0, T1, . . . ⊆ Z2, and functions l, f, t : N → N with the following meanings.

1. Ti is the ith stage of our construction of the fibered version of X .
2. Fi is the fiber associated with Ti. It is the smallest set whose union with

Ti has a vertical left edge and a horizontal bottom edge, together with one
additional layer added to these two now-straight edges.

3. l(i) is the length (number of tiles in) the left (or bottom) edge of Ti ∪ Fi.
4. f(i) = |Fi|.
5. t(i) = |Ti|.

These five entities are defined recursively by the equations

T0 = X2 (the third stage of X),

F0 =
(
{−1} ×

{
−1, . . . , c2

})
∪

({
−1, . . . , c2

}
× {−1}

)
,

l(0) = c2 + 1, f(0) = 2c2 + 1, t(0) = (|V | + 1)2,
Ti+1 = Ti ∪ ((Ti ∪ Fi) + l(i)V) ,

Fi+1 = Fi ∪ ({−i − 2} × {−i − 2,−i − 1, · · · , l(i + 1) − i − 3})
∪ ({−i − 2,−i − 1, · · · , l(i + 1) − i − 3} × {−i − 2}) ,

l(i + 1) = c · l(i) + 1,

f(i + 1) = f(i) + c · l(i + 1) − 1,

t(i + 1) = |V |t(i) + f(i).

162 M.J. Patitz and S.M. Summers

Finally, we let

X =
∞⋃

i=0

Ti.

Note that the set Ti ∪ Fi is the union of an “outer framework,” with an
“internal structure.” One can view the outer framework of Ti ∪ Fi as the union
of a square Si (of size i+2), a rectangle Xi (of height i+2 and width l(i)−(i+2)),
and a rectangle Yi (of width i + 2 and height l(i) − (i + 2)). Moreover, one can
show that the internal structure of Ti ∪Fi is simply the union of (appropriately-
translated copies) of smaller and smaller Xi and Yi-rectangles.

We have the following “similarity” between X and X.

Lemma 4. If X � N2 is a nice self-similar fractal, then Dimζ(X) = Dimζ(X).

In the next section we sketch a proof that the fibered version of every nice
self-similar fractal strictly self-assembles.

l(2)

T2

T1T1

T0T0

F0

F1

F2

Fig. 2. Construction of the fibered Sierpinski carpet. The progressively darker bands
of grey tiles represent (possibly translated copies of) F0, F1, and F2, respectively.

5 Sketch of Main Construction

Our second main theorem says that the fibered version of every nice self-similar
fractal strictly self-assembles in the Tile Assembly Model (regardless of whether
the latter strictly self-assembles).

Theorem 3. For every nice self-similar fractal X ⊂ N2, there is a directed TAS
in which X strictly self-assembles.

We now give a brief sketch of our construction of the singly-seeded TAS
TX = (XX, σ, 2) in which X strictly self-assembles. The full construction
is implemented in C++, and is available at the following URL:
http://www.cs.iastate.edu/~lnsa.

Throughout our discussion, Su, Yu, and Xu refer to the square, the vertical
rectangle and the horizontal rectangle, respectively, that form the “outer frame-
work” of the set ((Ti ∪ Fi) + l(i) · u) (See the right-most image in Figure 4).

http://www.cs.iastate.edu/~lnsa

Self-assembly of Discrete Self-similar Fractals 163

5.1 Construction Phase 1

Here, directed graphs are considered. Let X be a nice (c-discrete) self-similar
fractal generated by V . We first compute a directed spanning tree B = (V, E)
of G#

V using a breadth-first search, and then compute the graph BR =
(
V, ER

)
,

where

ER = {(v, u) | (u, v) ∈ E and u �= (0, 0)}∪{((0, 1), (0, c−1)), ((1, 0), (c−1), 0)}.

Figure 3 depicts phase 1 of our construction for a particular nice self-similar
fractal.

Notation 1. For all 0 �= u ∈ V , uin is the unique location v satisfying (u, v)
∈ ER.

(0,1)

(0,2)

(0,3)

(0,4) (1,4)

(0,0)(0,0) (1,0)
(2,0) (3,0) (4,0)

(4,1)

(4,2)

(4,3)

(2,2)

(2,3) (3,3)

(0,1)

(1,0)

Fig. 3. Phase 1 of our construction. Notice the two special cases (right-most image) in
which we define (0, 1)in and (1, 0)in.

5.2 Construction Phase 2

In the second phase we construct, for each (0, 0) �= u ∈ V , a finite set of tile
types Tu that self-assemble a particular subset of X. There are two cases to
consider.

(0,0)

Su Xu

Yu

Fig. 4. Let V be the left-most image. The first arrow represents phase 2 of the con-
struction. The second arrow shows a magnified view of a particular point in V . Each
point (0, 0) �= u ∈ V can be viewed conceptually as three components: the tile sets
TSu , TXu and TYu that ultimately self-assemble the square Su , and the horizontal and
vertical rectangles Xu and Yu respectively.

164 M.J. Patitz and S.M. Summers

Case 1. In the first case, we generate, for each u ∈ V − {(0, 0), (0, 1), (1, 0)},
three sets of tile types TSu , TXu , and TYu that, when combined together,
and assuming the presence of ((Ti ∪ Fi) + l(i) · uin), self-assemble the set
((Ti ∪ Fi) + l(i) · u), for any i ∈ N.

Case 2. In the second case, we generate, for each u ∈ {(0, 1), (1, 0)}, the same
three sets of tile types (TSu , TXu , and TYu) that self-assemble the set
((Ti ∪ Fi) + l(i) · u) “on top of” the set ((Ti−1 ∪ Fi−1) + l(i − 1) · uin), for
any i ∈ N.

Finally, we let TX =
⋃

(0,0) �=u∈V Tu, where Tu = TSu ∪ TXu ∪ TYu . Figure 4
gives a visual interpretation of the second phase of our construction. Our TAS is
TX = (TX, σ, 2), where σ consists of a single “seed” tile type placed at the origin.
Our full construction yields a tile set of 5983 tile types for the fractal generated
by the points in the left-most image in Figure 4.

5.3 Details of Construction

2

0

0

1

2

0

0

1

2

1

1

2

2

0

0

0

0

1

1

1

1

2

2

2

2

0

0

1

2

0

0

0

0

1

1

1

1

0

0

0

0

1

2

1

2

1

2

1

2

2

1

2

1

2

2

2

2

1

1

2

1

2

1

1

2

2

1

1

2

2

0

1

1

2

0

0

0

2

0

0

0

0

0

0

Fig. 5. Example of
a base-3 modified
binary counter. The
darker shaded rows
are the spacing rows.

Note that in our construction, the self-assembly of the
sub-structures Su, Yu, and Xu can proceed either forward
(away from the axes) or backward (toward the axes).

Forward Growth. We now discuss the self-assembly of
the set ((Ti ∪ Fi) + u · l(i)) for u ∈ V satisfying uin ∈
(u + {(−1, 0), (0,−1)}).

If u �∈ {(0, 0), (0, 1), (1, 0)} (i.e., case 1 of phase 2),
then the tile set TSu self-assembles the square Su directly
on top (or to the right) of, and having the same width
(height) as, the rectangle Yuin (Xuin). If u ∈ {(0, 1), (1, 0)}
(i.e., case 2 of phase 2), then the tile set TSu self-assembles
the square Su on top (or to the right) of the set Yuin such
that right (top) edge of the former is flush with that of the
latter. Note that in case 2, the width of Yuin is always one
less than that of Su. In either case, it is straightforward
to construct such a tile set TSu .

The tile set of TYu self-assembles a fixed-width base-c
counter (based on the “optimal” binary counter presented
in [2]) that, assuming a width of i ∈ N, implements the
following counting scheme: Count each positive integer j,
satisfying 1 ≤ j ≤ ci − 1, in order but count each number
exactly

[[c divides j]] · ρ(j) + [[c does not divide j]] · 1
times, where ρ(j) is the largest number of consecutive
least-significant 0’s in the base-c representation of j, and
[[φ]] is the Boolean value of the statement φ. The value of a row is the number
that it represents. We refer to any row whose value is a multiple of c as a spacing
row. All other rows are count rows. The type of the counter that self-assembles
Yu is u.

Self-assembly of Discrete Self-similar Fractals 165

Each counter self-assembles on top (or to the right) of the square Su, with
the width of the counter being determined by that of the square. It is easy to
verify that if the width of Su is i+2, then TY u self-assembles a rectangle having
a width of i + 2 and a height of

(
c2 + 1

)
ci +

ci − 1
c − 1

= l(i) − (i + 2),

which is exactly Yu. Figure 5 shows the counting scheme of a base-3 counter
of width 3. We construct the set TXu by simply reflecting the tile types in TYu

about the line y = x, whence the three sets of tile types TSu , TXu , and TYu

self-assemble the “outer framework” of the set ((Ti ∪ Fi) + u · l(i)).
The “internal structure” of the set ((Ti∪Fi)+u·l(i)) self-assembles as follows.

Oppositely oriented counters attach to the right side of each contiguous group
of spacing rows in the counter (of type u) that self-assembles Yu. The number of
such spacing rows determines the height of the horizontal counter, and its type
is (0, j/c mod c), where j is the value of the spacing rows to which it attaches.
We also hard code the glues along the right side of each non-spacing row to
self-assemble the internal structure of the points in the set T0.

The situation for Xu is similar (i.e., a reflection of its vertical counterpart),
with the exception that the glues along the top of each non-spacing row are
configured differently than they were for Yu. This is because nice self-similar
fractals need not be symmetric.

One can prove that, by recursively attaching smaller oppositely-oriented coun-
ters (of the appropriate type) to larger counters in the above manner, the internal
structure of ((Ti ∪ Fi) + u · l(i)) self-assembles.

Su Xu

(a)

SuinXu

(b)

SuinXu

(c)

Fig. 6. (a) Depicts forward growth, (b) Shows what happens if the tile set TXu were
to simply “count in reverse,” and (c) is the desired result

Reverse Growth. We now discuss the self-assembly of the set ((Ti ∪ Fi) + u ·
l(i)), for all u ∈ V satisfying uin ∈ (u + {(1, 0), (0, 1)}).

In this case, the tile set TYu (TXu) self-assembles the set Yu (Xu) directly
below (or to the left of) the square Suin , and grows toward the x-axis (or y-axis)
according to the base-c counting scheme outlined above. We also configure TYu

(TXu) so that the right (or top)-most edge of Yu (Xu) is essentially the “mirror”
image of its forward growing counterpart (See Figure 6). This last step ensures
that the internal structure of ((Ti ∪ Fi) + u · l(i)) self-assembles correctly. Next,

166 M.J. Patitz and S.M. Summers

the square Su attaches to the bottom (or left)-most edge of Yu (Xu). Finally,
the set Xu (Yu) self-assembles via forward growth from the left (or top) of the
square Su.

Proof of Correctness. To prove the correctness of our construction, we use a
local determinism argument. The details of the proof are technical, and therefore
omitted from this version of the paper.

6 Conclusion

In this paper, we (1) established two new absolute limitations of the TAM,
and (2) showed that fibered versions of “nice” self-similar fractals strictly self-
assemble. Our impossibility results motivate the following question: Is there a
discrete self-similar fractal X � N2 that strictly self-assembles in the TAM?
Moreover, our positive result leads us to ask: If X � N2 is a discrete self-similar
fractal, then is it always the case that X has a “fibered” version X that strictly
self-assembles, and that is similar to X in some reasonable sense?

Acknowledgment. We thank Dave Doty, Jim Lathrop, Jack Lutz, and Aaron
Sterling for useful discussions.

References

1. Aggarwal, G., Goldwasser, M.H., Kau, M.-Y., Schweller, R.T.: Complexities for
generalized models of self-assembly. In: Proceedings of ACM-SIAM Symposium on
Discrete Algorithms (2004)

2. Cheng, Q., Goel, A., de Espanés, P.M.: Optimal self-assembly of counters at
temperature two. In: Proceedings of the First Conference on Foundations of
Nanoscience: Self-assembled Architectures and Devices (2004)

3. Doty, D., Gu, X., Lutz, J.H., Mayordomo, E., Moser, P.: Zeta-dimension. In: Je-
drzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 283–294.
Springer, Heidelberg (2005)

4. Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through tem-
perature programming. In: Proceedings of the 17th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2006), Miami, Florida, pp. 571–580 (January
2006) (2007)

5. Lathrop, J.I., Lutz, J.H., Patitz, M.J., Summers, S.M.: Computability and com-
plexity in self-assembly. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.)
CiE 2008. LNCS, vol. 5028, pp. 349–358. Springer, Heidelberg (2008)

6. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete sierpinski
triangles. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497,
pp. 455–464. Springer, Heidelberg (2007)

7. Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: Compact, robust pro-
grammable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA
2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008)

8. Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D.
thesis, University of Southern California (December 2001)

Self-assembly of Discrete Self-similar Fractals 167

9. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: Proceedings of the Thirty-Second Annual ACM
Symposium on Theory of Computing, pp. 459–468 (2000)

10. Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biol-
ogy 99, 237–247 (1982)

11. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36, 1544–1569 (2007)

12. Wang, H.: Proving theorems by pattern recognition – II. The Bell System Technical
Journal XL(1), 1–41 (1961)

13. Wang, H.: Dominoes and the AEA case of the decision problem. In: Proceedings
of the Symposium on Mathematical Theory of Automata (New York, 1962), pp.
23–55. Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn (1963)

14. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute
of Technology (June 1998)

Speeding Up Local-Search Type Algorithms for

Designing DNA Sequences under
Thermodynamical Constraints�

Suguru Kawashimo, Yen Kaow Ng, Hirotaka Ono,
Kunihiko Sadakane, and Masafumi Yamashita

Dept. of Computer Science and Communication Engineering, Kyushu University,
744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan

{kawa,kalngyk}@tcslab.csce.kyushu-u.ac.jp,
{ono,sada,mak}@csce.kyushu-u.ac.jp

Abstract. We present general techniques to speed up local search type
algorithms for designing DNA sequences which satisfy thermodynami-
cal constraints based on the minimum free energy (MFE) criteria. MFE
based constraints are generally difficult to handle in local search type
algorithms, since these algorithms typically require a large number of
time-consuming calculations of MFE to find an improved solution. In
this paper, we introduce general techniques to reduce such calculations
of MFE. The ideas are based on the reuse of MFE computations and fast
approximation of MFE, both of which fit the nature of local search type
algorithms. In computational experiments, our techniques succeeded in
speeding up typical local search type algorithms without degenerating
the original performance of the algorithms.

Keywords: DNA Sequence Design, Local Search, Statistical Thermo-
dynamical Constraints.

1 Introduction

Designing DNA sequences is an important task for a number of techniques in nan-
otechnology and nanocomputing, e.g. Adleman’s DNA solution for the Hamilto-
nian path [1], and DNA tiling with its self-assemble [23]. In these techniques, it
is important to control the DNA molecules’ reactions so that they react only in
expected ways, since unexpected reactions of DNA sequences may cause errors.
Sequence design is an approach to avoid these unexpected reactions by using
DNA sequences that fulfill certain constraints which prohibit the unexpected
reactions [4,7].

Such constraints can be roughly classified into combinatorial and thermo-
dynamical types. Early studies of sequence design have treated combinatorial
constraints due to their simplicity [5,6,13,14,20,21]. However, there is a grow-
ing interest in thermodynamical constraints due to a need for sophistication.
� This research partly received financial support from Scientific Research Fund of

Ministry of Education, Culture, Sports, Science and Technology (KAKENHI).

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 168–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Speeding Up Local-Search Type Algorithms for Designing DNA Sequences 169

Recently, several studies have been made on designing sequences with thermo-
dynamical constraints [10,15,18,19,22] based on Minimum Free Energy (MFE).

Sequence design can be considered as a problem of combinatorial optimization.
In such problems, optimal solutions may be difficult to find (i.e. NP-hard). Since
in sequence design a good but not necessarily optimal solution often suffices, local
search methods have been considered [13,14,15,20,21,22]. Using local search meth-
ods for sequence design also allows one to adapt to different constraints easily.

In local search, one starts with an arbitrary solution S, and keep replacing S
with a “better” solution found from within the neighborhood of S. In the case
of thermodynamical constraints, solutions are evaluated on a given criteria that
is based on the Gibbs standard free energy, for instance the MFE. The currently
known method for computing MFE requires a costly O(n3) time, where n is the
input sequence’s length [2,16,24]. Since local search type algorithms need the
MFE value of each solution for evaluation, MFE computation time frequently
becomes a bottleneck on their efficiency.

This paper presents two general techniques for overcoming this difficulty: (1)
reuse values calculated for one MFE computation in later MFE computations,
(2) use a fast approximation of MFE values to determine if actual MFE compu-
tation would be needed. To evaluate the effects of these techniques on the com-
putation time of MFE based local search methods for sequence design, we apply
the techniques to the two methods: Dynamic Neighborhood Search [14,15] and
Stochastic Local Search [20,21,22]. In both cases we observe significant speed-up
in our results.

Related Work. Asahiro showed that DNA sequence design problem under a cer-
tain condition is NP-hard [6]. Tanaka et al. proposed a random-generation based
method for thermodynamically constrained sequence design [19]. The method
requires many evaluations, as in local search type methods. To reduce the cal-
culation time of MFEs they used a fast approximation method. In an earlier
paper, we proposed a Dynamic Neighborhood Search method which attempts
to circumvent the heavy calculations through a few search strategies, and ob-
tained some success [15]. Tulpan et al. succeeded in designing sequence sets under
very complicated thermodynamical constraints by the Stochastic Local Search
method [22]. However, the total running time of their method is not clear be-
cause they excluded the time for calculating energy values in their evaluation of
the search time. The stochastic local search method has also been applied to the
Secondary Structure Design (Reverse Folding) problem in a few studies [3,11],
and the heavy computation needed for calculating MFEs were also remarked in
these studies.

2 Preliminaries

A DNA sequences s is a string over the nucleotides {A,T,C,G}. A DNA se-
quence (or sequences) form a secondary structure (called a conformation) through
Watson-Crick hydrogen bonds, which can occur between the nucleotides A and T,
or between G and C. Each conformation of a sequence (or sequences) has a Gibbs

170 S. Kawashimo et al.

standard free energy, the value of which can be measured through experiments.
The Gibbs standard free energy of a conformation can be computed in time
linear to the total length of the conformation’s sequences. Conformations with
smaller Gibbs standard free energies tend to be more stable. The Minimum Free
Energy (MFE) of a sequence (resp., sequences) is the minimum value among free
energies of all possible conformations of a sequence (resp., sequences).

Let s = s1s2 · · · sn and s′ = s′1s
′
2 · · · s′n ∈ {A, T, G, C}n be DNA sequences

of length n. Each DNA sequence has a direction. The left end s1 (resp., s′1)
of sequence s (resp., s′) corresponds to the 5′ end of the DNA sequence. Let
wcc(s) denote the Watson-Crick complement of the DNA sequence s, that is,
wcc(s) = s̄ns̄n−1 · · · s̄1, where s̄i =A (resp., T) if si =T (resp., A) and s̄i =C (resp.,
G) if si =G (resp., C). Let S be a set of sequences. In the context of sequence design
problems, we call a phenomenon that a sequence in S forms completely hydrogen
bonds with its complement sequence, a hybridization, and call a conformation
that is not a hybridization, a miss-hybridization. The constraints described below
are introduced in order to avoid any miss-hybridization. The MFE between s
and s′ is represented by ΔG(s, s′), and can be calculated in O(n3) time through
dynamic programming [2,16,24]. Let wcc(S) = {wcc(s) | s ∈ S}. Given threshold
parameters tww, twc, and tcc, we define the following constraints:

word-word : ΔGww(S) def= mins,s′∈S {ΔG(s, s′)} ≥ tww.

word-complement : ΔGwc(S) def= mins∈S,s′∈wcc(S),s�=wcc(s′) {ΔG(s, s′)} ≥ twc.

complement-complement : ΔGcc(S) def= mins,s′∈wcc(S) {ΔG(s, s′)} ≥ tcc.

Our problem is to “find S such that ΔGww(S) ≥ tww, ΔGwc(S) ≥ twc, and
ΔGcc(S) ≥ tcc”.

Note that the constraints apply as well to self reactions of sequences. Hence
we can allow sequences that conform to hairpins, bulge-loops, internal-loops and
multi-loops.

While we use only the above constraints in the present study, the method we
propose should be applicable to other MFE-based criteria (e.g. energy gap [21]),
and with some careful adjustments, applicable to other criteria, such as melting
temperature and DNA error rate [17], as well.

2.1 Local Search

Combinatorial optimization problems are often stated as to find, given a scoring
function f over the solution space, a solution x such that f(x) is minimized
or maximized. Let N(x) denote the neighborhood of x (i.e., a set of solutions
which are obtained by slight perturbations to x). Operations which perturb a
solution x to obtain N(x) are called neighborhood operations. When x satisfies
f(x) < f(x′) (or f(x) > f(x′)) for ∀x′ ∈ N(x), x is called the local optima. In
general, there are a lot of local optima in a given solution space.

The basic idea behind local search methods can be stated as follows:

(1) Select an initial solution x.
(2) Search in N(x).

Speeding Up Local-Search Type Algorithms for Designing DNA Sequences 171

(3) If an improved solution x′ is found in (2), the solution x is replaced by x′,
and go to (2). Otherwise current x is a local optima. Return x.

A point to consider in implementing local searches is in deciding which im-
proved solution to use in step (3) when there is more than one improved solution
in the neighborhood N(x). There are two basic strategies for this: (i) first ad-
missible move strategy, which moves immediately when an improved solution is
found in N(x), and (ii) best admissible move strategy, which moves to the best
solution after checking all solutions in N(x).

3 Techniques to Reduce MFE Evaluations in Local-Search

We first define our neighborhood operations. For a sequence s, we call the change
of a base at a certain position in s to another base a flip. For a set of sequences S,

N(S) def= {S′ | S′is a sequence set obtained by flipping a sequence in S}. (1)

This definition is adopted in Kawashimo et al. [14,15]. Tulpan et al. [20,21]
use a similar definition for neighborhood.

To determine if a solution in N(S) is an improved solution, we use a score
which depends on the constraints given earlier. For each constraint, each calcu-
lation of ΔG(s, s′) takes O(n3) time, and this calculation is computed for every
pair of sequences in S ∪ wcc(S), i.e., for a total of O(m2) pairs where m = |S|.
Thus, it takes at most O(m2n3) time to evaluate one solution. This runtime
can be easily improved by noticing that there are overlaps between the pairs of
sequences in S and the pairs of sequences in any S′ ∈ N(S). By reusing the
values, the calculation for each S′ ∈ N(S) can be done in O(mn3) time.

While tractable, this O(mn3) computation presents a heavy bottleneck to the
efficiency of the method, because the computation needs to be repeated for every
S′ from a very numerous N(S). In this section, we suggest two techniques to
reduce this computation. The techniques utilize a characteristic of local search
type algorithms, that is, the difference between a current solution and a new
solution is small.

3.1 Reuse of DP Tables for Calculating MFE

MFE between two sequences can be calculated using a dynamic programming
(DP) approach, which corresponds to the computation of a table as in Figure 1
[2,24]. Here, the vertical and horizontal axes correspond to the concatenation
of the two sequences. In this DP, an MFE value is calculated by filling in all
the cells in the table, where the value of a cell is determined by referring to the
upper right region of the cell.

In the following, we consider how to obtain the DP table for a flipped sequence
s′ of original sequence s, from the DP table for s. To do so, we examine which
parts of the DP table need to be recalculated. If a base is flipped in a neighbor-
hood operation, only a column and a row of the new DP table that correspond

172 S. Kawashimo et al.

Fig. 1. Table of dynamic programming Fig. 2. Difference after a neighborhood op-
eration (Encircled base (T) is flipped)

to that base will take on different values. Except for a rectangular region, all the
cells in the table will have the same values as before the neighborhood opera-
tion (see Figure 2), since their values are decided from their upper right region.
Therefore, by preserving the table before a neighborhood operation, we can skip
the computations for the unchanged regions and reduce the time in calculating
MFEs. In this paper we refer to this technique as “reuse table”.

3.2 Approximate Calculation of MFE

In this subsection, we show a technique to quickly approximate MFE values.
The main incentive in obtaining such approximations is that we may be able to
tell, from the approximation, if a solution is not likely to be an improvement
over the current one, and may hence skip its MFE computation.

An MFE-structure (between two sequences s, s′) before a neighborhood op-
eration (on s′ say) tends to be similar to an MFE-structure after the operation,
because their sequences differ by only a single base in s′ (see Figure 3). It is
hence conceivable for us to obtain an approximation of the MFE-structure after
a neighborhood operation from the MFE-structure prior to the operation with
only slight alterations. There are a few possible alterations, for which we consider
only the following (see Figure 4):

(1) disassociate base-pair including flipped base.
(2) disassociate all base-pairs taking continuous stuck including base-pair

selected in (1).
(3) form new base-pair including flipped base.

The reason why we consider alteration (2) is the following: since continuous
stucks are known to be stable, we consider that deleting all base-pairs in the
continuous stucks make more stable conformation than dividing the continuous
stuck.

We list out the structures obtained by the above alterations, calculate the free
energies of each new structure (after flipping the base), and use the minimum

Speeding Up Local-Search Type Algorithms for Designing DNA Sequences 173

Fig. 3. Concept of the similarity of
MFE-structure

Fig. 4. Concept of ΔG∗

of these free energies as an approximation of the MFE after the neighborhood op-
eration. We denote this approximate MFE by ΔG∗(s, s′). Clearly, ΔG∗(s, s′) ≥
ΔG(s, s′).

3.3 Preliminary Evaluation

We perform some preliminary computational experiments to evaluate the ef-
fectiveness of our techniques, i.e. “reuse table” and “ΔG∗(s, s′)”. We use the
PairFold package [2] for calculating MFEs. The setting temperature is 37̊ C.
In the experiments, we randomly generate 100 pairs of sequences, and calculate
MFEs by two ways: one by ordinary dynamic programming and the other by
using “reuse table”. We measure the times taken for both cases. We compute
ΔG∗(s, s′) as described in Subsection 3.2, and measure the times taken for their
computation. We evaluate how frequently the approximation ΔG∗(s, s′) matches
ΔG(s, s′) exactly. We also try to see how well ΔG∗(s, s′) approximates ΔG(s, s′)
by looking at ΔG∗(s, s′) − ΔG(s, s′). Table 1 shows these values.

Table 1. Preliminary test

length normal t “reuse table” t ΔG∗(s, s′) t % match difference ΔG(s, s′)
15 9.889 7.296 0.852 61.2% 0.517 -3.550
20 38.230 26.778 1.332 70.3% 0.629 -4.866
25 109.395 75.073 1.968 41.1% 0.855 -6.559
30 257.872 171.895 2.604 34.4% 1.025 -7.941
35 518.924 336.433 4.016 35.7% 1.045 -9.324
40 949.095 573.524 5.308 34.5% 1.094 -10.526
45 1481.909 901.084 6.700 38.9% 1.032 -12.469
50 2205.982 1294.197 9.445 44.1% 0.902 -14.275

normal t : time (sec) used to calculate MFEs w/o using proposed techniques.
“reuse table” t : time (sec) used to calculate MFE with “reuse table” technique.
ΔG∗(s, s′) time : time (sec) used to calculate ΔG∗(s, s′).
% match : percentage of instances where ΔG∗(s, s′) = ΔG(s, s′).
difference : average of ΔG∗(s, s′) − ΔG(s, s′) (kcal/mol).
ΔG(s, s′) : average of ΔG(s, s′) (kcal/mol).

174 S. Kawashimo et al.

As shown in the table, the times used to calculate MFEs when using the “reuse
table” technique are only 75% to 60% of the times when “reuse table” is not
used. The times needed to calculate “ΔG∗(s, s′)” are about 10% to 0.5% those
for calculating ΔG(s, s′) exactly. On the other hand, the averages of ΔG∗(s, s′)−
ΔG(s, s′) are at most 1.1 kcal/mol, and the average error ratios are at most 15%.
These results show that: (1) “reuse table” has effectively reduced calculation
time, (2) ΔG∗(s, s′) can be computed relatively quickly, and (3) ΔG∗(s, s′) gave
good approximations of ΔG(s, s′). These results also suggest that our techniques
would be more effective for large n, since the improvements in running time for
larger n are greater.

4 Application for Local Search Type Algorithms

In this section, we try to apply the ideas proposed in section 3 to local search type
sequence design methods. Our target methods are: the Dynamic Neighborhood
Search [14,15] and the Stochastic Local Search [20,21,22].

The Dynamic Neighborhood Search method dynamically redefines neighbor-
hood so as to form a tree structure which is obtained by chains of the neighbor-
hood (Equation 1), and searches on the tree. This method is performed based
on the first admissible move strategy and the objective function in this method
is defined as follows [15]:

V alue(S) def= min{ΔGww(S) − tww, 0} + min{ΔGwc(S) − twc, 0}
+ min{ΔGcc(S) − tcc, 0} (2)

It is clear that V alue(S) ≤ 0, and V alue(S) = 0 if and only if our MFE con-
straints are satisfied. In the search, we consider the greater the value of V alue(S),
the better S is.

The Stochastic Local Search method moves at random with a probability pa-
rameter, which enables the method to find various solutions. This method is
performed based on the best admissible move strategy and the objective func-
tion in this method is defined as the number of pairs that violate the given
constraints [20].

In spite of the differences in move strategy and objective function, these two
methods share characteristics of local search methods which makes our methods
applicable.

4.1 Case: Dynamic Neighborhood Search

The Dynamic Neighborhood Search method is based on the first admissible
move strategy, i.e. the search moves to a better solution, if and when such a
solution is found. However, in the neighborhood structure of the method, a
solution typically has only a few better neighboring solutions. Hence, the total
evaluation time is dominated by evaluations of neighborhood solutions that are
not better, and we can expect the total evaluation time to be greatly reduced if
these evaluations can be avoided. So, we introduce a preprocessing phase using

Speeding Up Local-Search Type Algorithms for Designing DNA Sequences 175

ΔG∗(s, s′) to compute an approximate MFE value, which utilizes the relation
ΔG∗(s, s′) ≥ ΔG(s, s′).

We let V alue∗(S) be an approximation of V alue(S) (Equation 2) in which
ΔG∗(s, s′) is used instead of ΔG(s, s′). Since ΔG∗(s, s′) ≥ ΔG(s, s′), V alue∗(S)
≥ V alue(S) holds.

Now to check if a neighbor solution Snew is an improvement over Sold, we can
perform the following:

(1) (Preprocessing phase) Calculate V alue∗(Snew). If V alue∗(Snew) ≤
V alue(Sold), then Snew is no better than Sold. Otherwise, go to (2).

Fig. 5. Utilization of ΔG∗(s, s′)

(2) Calculate V alue(Snew) with
“reuse table”. Snew is an improvement
of Sold if and only if V alue(Snew) >
V alue(Sold).

Figure 5 summarizes the method.
The use of the approximationΔG∗(s, s′)
will not change the result of the search.
However, when the approximation is in-
sufficient to identify bad solutions, the
preprocessing becomes an extra cost to
bear.

To see how the technique helps in
speeding up the search, we implement and perform computational experiments.
For each experiment, we fix a length n, a size m, and thresholds tww, twc, tcc. We
randomly generate an initial set of m sequences, and apply the Dynamic Neigh-
borhood Search method until it satisfies ΔGww(S) ≥ tww, ΔGwc(S) ≥ twc, and
ΔGcc(S) ≥ tcc. Each experiment is repeated for five trials. The values for each
experiment are averages taken over its five trials. We perform experiments for
three cases: without the proposed techniques, with “reuse table” and with both
“reuse table” and “ΔG∗(s, s′)”. Table 2 shows the results obtained.

As shown in this table, the running times when “reuse table” is used are
about 95% to 85% of the running times when it is not used; while the running
times when both “reuse table” and “ΔG∗(s, s′)” are used are about 95% to
75% of the running times when they are not used. Since the results produced
are the same, the techniques have lost nothing in speeding the algorithm. For
the same m and n, the cases of larger tww, twc, tcc values tend to show better
improvements from the use of “ΔG∗(s, s′)”, i.e. compared to when only “reuse
table” is used. One possible explanation is that the weaker constraints due to
the smaller tww, twc, tcc values resulted in an abundance of improved solutions in
the neighborhood. Since it is easier to find an improved solution, the extra cost
in preprocessing becomes unwarranted. In fact, there are two cases where the
use of preprocessing resulted in a little extra running time. Intuitively, we may
say that the benefits from preprocessing will be more significant in the harder
instances (or constraints).

176 S. Kawashimo et al.

Table 2. Average time (sec) for sequence design using Dynamic Neighborhood Search

n m tww , twc, tcc w/o proposed tech. “reuse table” both techniques

10 50 -4.0 27.14 25.01 25.27

10 50 -3.5 153.60 134.59 129.27

10 100 -5.0 81.18 77.08 78.00

10 100 -4.0 505.59 452.68 433.83

15 50 -6.0 50.67 46.41 46.40

15 50 -5.0 187.71 163.59 158.04

15 100 -7.0 186.20 174.73 174.16

15 100 -6.0 407.63 373.57 370.60

20 50 -6.5 233.53 206.45 203.76

20 50 -5.5 999.39 830.07 741.99

20 100 -7.5 846.52 770.79 768.51

20 100 -6.5 2031.15 1781.03 1714.57

w/o proposed tech.: without using the proposed techniques.
“reuse table” : with “reuse table” technique only.
both techniques : with both “reuse table” and “ΔG∗(s, s′)” techniques.

4.2 Case: Stochastic Local Search

As mentioned, the Stochastic Local Search method is based on the best admis-
sible move strategy. The strategy evaluates all neighboring solutions and moves
to the best improved solution. For the present study, we consider the following
two possible alternative implementations of the best admissible move strategy
using the our proposed techniques:

(A) Evaluate all neighboring solutions with “reuse table” and move to the best
improved solution.

(B) Approximately evaluate all neighboring solutions with “ΔG∗(s, s′)” and
move to the best improved solution according to the approximations. Af-
ter this, exactly evaluate the solution (to get a value for comparisons with
neighboring solutions).

(A) is a speed-up version of the original Stochastic Local Search using the “reuse
table” technique, in which the implementation follows the one described in Sub-
section 4.1. In (B), the improved solution to move to is decided according to
approximate evaluations. Hence it is possible that the move may be different
from that selected with exact evaluations.

To see how these methods compare, we implement and perform computational
experiments1 in the same way as in Section 4.1. We show in Table 3) results from
experiments for the three cases: without proposed techniques, with “reuse table”
(i.e. A) and with “ΔG∗(s, s′)” (i.e. B).

As shown in the table, both the running times when “reuse table” is used and
when “ΔG∗(s, s′)” is used are about 80% to 70% those when none of them are
1 We implement the simplest Stochastic Local Search method [20]. Our implemen-

tation improves the set until it satisfies constraints without random multi-start
method. We set θ = 0.2, N STEP = 50 and fr = 10.

Speeding Up Local-Search Type Algorithms for Designing DNA Sequences 177

Table 3. Average time (sec) for sequence design using Stochastic Local Search

n m tww , twc, tcc w/o proposed tech. “reuse table” both techniques

10 50 -6.5 29.75 29.75 29.88

10 50 -5.5 93.18 71.98 72.36

10 100 -7.5 119.62 94.97 95.20

10 100 -6.5 251.22 199.47 200.56

15 50 -9.5 96.47 69.25 69.19

15 50 -8.5 184.14 132.91 132.48

15 100 -10.5 362.80 267.83 267.13

15 100 -9.5 654.20 483.00 482.07

20 50 -13.0 211.99 146.87 145.70

20 50 -12.0 299.50 207.59 206.06

20 100 -14.0 443.63 308.08 310.52

20 100 -13.0 934.59 650.05 654.08

w/o proposed tech.: without using the proposed techniques.
“reuse table” : with “reuse table” technique only.
both techniques : with both “reuse table” and “ΔG∗(s, s′)” techniques.

used. There are not much difference between the running times of “reuse table”
and “ΔG∗(s, s′)”. However, “reuse table” requires significantly more memory to
store all the DP tables prior to the neighborhood operation, while “ΔG∗(s, s′)”
requires only the MFE-structures. Our results also show the speed-up to be more
significant for larger n (see Subsection 3.3).

5 Concluding Remarks

As future work, application of the techniques we proposed to the Secondary Struc-
ture Design problem [12] could be interesting. The Secondary Structure Design
problem can be considered as a problem of combinatorial optimization [8], and
there have been some studies on solving it using Stochastic Local Search [3,11].

References

1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems.
Science 266(5187), 1021–1024 (1994)

2. Andronescu, M., Zhang, Z., Condon, A.: Secondary Structure Prediction of Inter-
acting RNA Molecules. J. Mol. Biol. 345(5), 987–1001 (2005)

3. Andronescu, M., Fejes, A., Hutter, F., Condon, A., Hoos, H.: A New Algorithm
for RNA Secondary Structure Design. J. Mol. Biol. 336(3), 607–624 (2004)

4. Arita, M., Nishikawa, A., Hagiya, M., Komiya, K., Gouzu, H., Sakamoto, K.: Im-
proving Sequence Design for DNA Computing. In: Proc. of 5th Genetic Evol. Com-
put. Conf. (GECCO), pp. 875–882 (2000)

5. Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation
Computing 20(3), 263–273 (2002)

6. Asahiro, Y.: Simple Greedy Methods for DNA Word Design. In: Proc. of 9th World
Multi-Conference on Systemics, Cybernetics and Informatics, vol. 3, pp. 186–191
(2005)

178 S. Kawashimo et al.

7. Deaton, R., Kim, J., Chen, J.: Design and test of noncrosshybridizing oligonu-
cleotide building blocks for DNA computers and nanostructures. Appl. Phys.
Lett. 82(8), 1305–1307 (2003)

8. Flamm, C., Hofacker, I., Maurer-Stroh, S., Stadler, P., Zehl, M.: Design of multi-
stable RNA molecules. RNA 7(2), 254–265 (2001)

9. Garzon, M., Deaton, R., Neathery, P., Franceschetti, D., Murphy, R.: A new metric
for DNA computing. In: Proc. of the 2nd Genetic Programming Conf., pp. 472–478
(1997)

10. Garzon, M., Phan, V., Roy, S., Neel, A.: In search of optimal codes for DNA
computing. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 143–
156. Springer, Heidelberg (2006)

11. Hernandez, R., Hoos, H., Condon, A.: Computational RNA secondary structure
design: empirical complexity and improved methods. BMC Bioinformatics 8(1), 34
(2007)

12. Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, S., Tacker, M., Schuster, P.:
Fast Folding and Comparison of RNA Secondary Structures. Monatsh. Chem. 125,
167–188 (1994)

13. Kashiwamura, S., Kameda, A., Yamamoto, M., Ouchi, A.: Two-Step Search for
DNA Sequence Design. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 87(6), 1446–1453 (2004)

14. Kawashimo, S., Ono, H., Sadakane, K., Yamashita, M.: DNA sequence design by
dynamic neighborhood searches. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS,
vol. 4287, pp. 157–171. Springer, Heidelberg (2006)

15. Kawashimo, S., Ono, H., Sadakane, K., Yamashita, M.: Dynamic neighborhood
searches for thermodynamically designing DNA sequence. In: Garzon, M.H., Yan,
H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 130–139. Springer, Heidelberg (2008)

16. Lyngsø, R., Zuker, M., Pedersen, C.: Fast evaluation of internal loops in RNA
secondary structure prediction. Bioinfomatics 15, 440–445 (1999)

17. Rose, J., Deaton, R., Suyama, A.: Statistical thermodynamic analysis and design
of DNA-based computers. Natural Computing 3, 443–459 (2004)

18. Shorteed, M., Chang, S., Hong, D., Phillips, M., Campion, B., Tulpan, D., An-
dronescu, M., Condon, A., Hoos, H., Smith, L.: A thermodynamic approach to
designing struct-free combinatorial DNA word set. Nucl. Acids Res. 33(15), 4965–
4977 (2005)

19. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid se-
quences for DNA computing based on a thermodynamic approach. Nucl. Acids
Res. 33(3), 903–911 (2005)

20. Tulpan, D., Hoos, H., Condon, A.: Stochastic Local Search Algorithms for DNA
Word Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp.
229–241. Springer, Heidelberg (2003)

21. Tulpan, D., Hoos, H.: Hybrid Randomized Neighborhoods Improve Stochastic Lo-
cal Search for DNA Code Design. In: Proc. Advances in Artificial Intelligence,
16th Conference of the Canadian Society for Computational Studies of Intelligence.
LNCS, vol. 671, pp. 418–433. Springer, Heidelberg (2003)

22. Tulpan, D., Andronescu, M., Changf, S., Shortreed, M., Condon, A., Hoos, H.,
Smith, L.: Thermodynamically based DNA strand design. Nucl. Acids Res. 33(15),
4951–4964 (2005)

23. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of DNA
crystals. Nature 394, 539–544 (1998)

24. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucl. Acids Res. 9, 133–148 (1981)

Sequentiality Induced by Spike Number in SNP

Systems

Oscar H. Ibarra1, Andrei Păun2,3,4,�, and Alfonso Rodŕıguez-Patón3

1 Department of Computer Science University of California, Santa Barbara,
CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Computer Science, Louisiana Tech University, Ruston

PO Box 10348, Louisiana, LA-71272 USA
apaun@latech.edu

3 Departamento de Inteligencia Artificial,
Faculdad de Informática, Universidad Politécnica de Madrid - UPM,

Campus de Montegancedo s/n, Boadilla del Monte
28660 Madrid, Spain
arpaton@fi.upm.es

4 Bioinformatics Department, National Institute of Research
and Development for Biological Sciences, Splaiul Independenţei, Nr. 296,

Sector 6, Bucharest, Romania

Abstract. The spiking neural P systems are a class of computing de-
vices recently introduced as a bridge between spiking neural nets and
membrane computing. In this paper we consider sequential SNP systems
where the sequentiality of the system is induced by a simple choice: the
neuron with the maximum number of spikes out of the neurons that can
spike at one step will fire. This corresponds to a global view of the whole
network that makes the system sequential. We study the properties of
this restriction.

1 Introduction

In this paper we consider a new restriction on the rule application (or neuron
firing) in SNP systems. Several authors have recently noticed that the maximal
parallelism way of rule application (which is widely used in membrane systems)
is rather non-realistic in some cases. This fact motivated the consideration of
various “strategies” for rule application in membrane systems (or neuron firing
in SNPs), for details we refer the interested reader to [3,8,9].

Here we consider the spiking restriction on neurons in the following way: if
at any step there are more than one neuron that can spike (according to their
pre-defined rules) then only the neuron(s) containing the maximum number of
spikes (among the currently “active” neurons) will fire. This is contrasting with
the maximal parallel application of the rules case, in which case all the ”active”
neurons will fire at that step. To exemplify the firing mechanism of the new
� Corresponding author.

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 179–190, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

180 O.H. Ibarra, A. Păun, and A. Rodŕıguez-Patón

strategy, let us consider four neurons: n1, n2, n3, n4 that are the only neurons
that can fire at this step (according to their internal rules and the contents of
spikes for each of them). In such a case we would find the maximum number
of spikes stored in n1 through n4, say we have the values 5, 3, 7, 1 thus the
neuron n3 holds the maximum number of spikes, thus n3 will fire at the next
step. After n3 fires, we update the number of the spikes in the whole system
according to this neuron’s spiking, and at the next step the neurons n1, n2, n4

together with n3 will be checked if they can fire (in the new conditions as they
may be rendered inactive by an increment in their number of spikes stored). If
there is a tie for the maximum number of spikes stored in the active neurons,
then all the neurons containing the maximum will fire.

The main motivation behind this spiking strategy is the observation that
in a population of cells of the same type (neurons in this case) which have
similar types of rules (the spiking rules in our case) one can notice that the
cells containing larger numbers of a specific molecule species are more active
(spike faster/more frequently) than the cells containing less numbers of the same
molecule. Another observation is the fact that the neurons that receive a large
number of spikes are more probable to spike than the neurons that do not receive
many spikes. The same modeling path was taken also when the integrate-and-fire
models were defined for neurons, which leads to the neurons that receive more
spikes to fire faster than the neurons that receive lower numbers of spikes.

The restriction proposed above makes the spiking of the neurons in the sys-
tem almost sequential (more than one neuron can spike only in the special case
when there is a tie in the number of spikes contained, the two or more active
neurons that contain the maximum number of spikes over all the active neurons
at that step will spike). Because of this, we will call this application strategy
pseudo-sequential with respect to maximum. One can also consider the sequen-
tial strategy which resolves the ties by choosing for the next spiking neuron
nondeterministically one of the neurons containing the maximum number of
spikes at that moment (out of the active neurons). This second strategy will be
called in the following sequential with respect to maximum.

We will consider also the difference between these devices from the point of
view of generators versus acceptors, specifically, we notice a major difference
between systems with deterministic neurons working as generators as opposed
to acceptors. We see that the acceptors are universal whereas the generators are
only able to generate one single value (thus are non-universal).

2 Basic Description and Definitions

The spiking neural P systems (in short, SNP) were recently introduced in [4], and
then investigated in [11] and [12], thus incorporating in membrane computing
[10] ideas from spiking neurons, see, e.g., [1], [5], [6].

We now give a more detailed description of the SNP; such a system is rep-
resented as a directed graph consisting of a set of neurons (nodes of a graph)
connected by synapses (directed edges of the graph). The neurons send signals

Sequentiality Induced by Spike Number in SNP Systems 181

(spikes) along these synapses by means of firing rules, which are of the form
E/ac → a; t, where E is a regular expression, c is the number of spikes con-
sumed by the rule that spikes a single a, and t is the delay between firing the
rule and emitting the spike. A rule can only be used if the number of spikes in
the neuron are “covered” by expression E, in the sense that the current num-
ber of spikes in the neuron, n, is such that an is contained in the set L(E).
In the time interval between firing a rule and emitting the spike, the neuron is
closed/blocked – it does not receive other spikes and cannot fire. After the time
interval, the neuron is again open and can again fire and receive other spikes.
There are also rules for forgetting spikes, of the form as → λ (s spikes are just
removed from the neuron). In this paper, for convenience, we will also refer to
the forgetting rules as firing rules. Starting from a fixed initial distribution of
spikes in the neurons (initial configuration) and using the rules in a synchro-
nized manner (a global clock is assumed), the system evolves. A computation
is a sequence of transitions starting from the initial configuration. A transition
is maximally parallel in the sense that all neurons that are fireable must fire.
However, in any neuron, at most one rule is allowed to fire. Details can be found
in [4].

An SNP can be used as a computing device in various ways. Here, as in
previous papers, we will use them as generators of numbers. We will only consider
SNPs with three types of neurons:

1. A neuron is bounded if every rule in the neuron is of the form ai/aj → a; t ,
where j ≤ i, or of the form ak → λ, provided there is no rule of the form
ak/aj → a; t in the neuron. Note that there can be several such rules in the
neuron. These rules are called bounded rules. (For notational convenience,
we will write ai/ai → a; t simply as ai → a; t.)

2. A neuron is unbounded if every rule in the neuron is of the form E/ak → a; t
where the language associated with E is infinite (i.e. we have at least one *
or + in the regular expression E). (Again, there can be several such rules
in the neuron.) These rules are called unbounded rules. As an example, the
neuron having the following three rules is unbounded: a2k+3/a5 → a; 1 and
a2k+3/a6 → a; 2 and a2k/a2 → a; 1.

3. A neuron is general if it can have general rules, i.e., bounded as well as
unbounded rules. As an example, the neuron having the following three rules
is general: a2k+3/a5 → a; 1 and a15/a6 → a; 2 and a2k/a2 → a; 1.

An SNP is bounded if all the neurons in the system are bounded. If, in addition,
there are unbounded neurons then the SNP is said to be unbounded. A general
SNP has general neurons.

It was recently shown in [2] that a set Q(Π) ⊆ N1 is recursively enumerable
if and only if it can be generated by a 1-output unbounded SNP Π all of whose
unbounded neurons have only one rule – either a(a)∗/a → a; 0 or a(a)∗/a → a; 2.

We can generalize the SNP by allowing it to produce k outputs. A k-output
SNP Π has k output neurons, O1, ..., Ok. We say that Π generates a k-tuple
(n1, ..., nk) ∈ Nk if, starting from the initial configuration, there is a sequence
of steps such that each output neuron Oi generates exactly two spikes a a (the

182 O.H. Ibarra, A. Păun, and A. Rodŕıguez-Patón

times the pair a a are generated may be different for different output neurons)
and the time interval between the first a and the second a is ni. Moreover, after
all the output neurons have generated their pair of spikes, the system eventually
halts, in the following sense:

Π halts if it reaches a configuration where all neurons are open but no
neurons are fireable. In fact, for the constructions in this paper, this will
correspond to the configuration in which all neurons, except for a specified
subset R of neurons, have zero spikes, and those in R have exactly two spikes.

The set of all k-tuples generated is denoted by Q(Π).
In this paper, we study SNPs operating in sequential and pseudo-sequential

mode as described above. Informally, this means that at every step of the com-
putation, if there is at least one neuron with at least one rule that is fireable, we
only allow to fire the neuron(s) that is(are) fireable and contain the maximum
number of spikes; and for each neuron firing only one spiking rule (nondetermin-
istically chosen) is to be fired.

As defined before in [3], we can consider the effect of the notion of strong
sequentiality (or pseudo-sequentiality) and the weak one on the power of such
devices.

1. Case 1: At every step, there is at least one neuron with a fireable rule (the
strong case). We show that:
(a) We obtain universality for unbounded SNP systems with delays.
(b) We also get universality even for the case of systems without delays, but

in this case the type of rules needs to be extended (a neuron can send
more than one spike at a time).

2. Case 2: Not every step has at least one neuron with a fireable rule (the weak
case). (Thus, the system might be dormant until a rule becomes fireable.
However, the clock will keep on ticking.) We will consider this second case
in the future studies of such systems. Once should note that even for the
restrictive previous case we obtain universality, thus we need to investigate
systems with even lower power than in that case.

For the basic definitions and prerequisites we refer the interested reader to
[13], [10], and [14]. We will use in the following universality proofs the fact
that register machines are universal, but due to the space limitations we will
not provide the prerequisite description of the register machines, the reader is
referred to [14] as this is a common proof technique.

3 Spiking Neural P Systems

The original definition of spiking P systems was given in [4]; the interested reader
can find in the reference above the motivation, basic results etc. Let us recall
the basic definition in the following.

A spiking neural membrane system (abbreviated as SNP), of degree m ≥ 1, is
a construct of the form

Sequentiality Induced by Spike Number in SNP Systems 183

Π = (O, σ1, . . . , σm, syn, i0), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m, where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, c ≥ 1, and
d ≥ 0;

(2) as → λ, for some s ≥ 1, with the restriction that for each rule
E/ac → a; d of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (i.e., σi0 is the output neuron).

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d can be applied. The application of this rule means consuming
(removing) c spikes (thus only k − c remain in σi), the neuron is fired, and it
produces a spike after d time units (as usual in membrane computing, a global
clock is assumed, marking the time for the whole system, hence the functioning
of the system is synchronized). If d = 0, then the spike is emitted immediately,
if d = 1, then the spike is emitted in the next step, etc. If the rule is used in
the step t of the computation and d ≥ 1, then we have the following setting: in
steps t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this corresponds to the
refractory period from neurobiology), so that it cannot receive new spikes (if a
neuron has a synapse to a closed neuron and tries to send a spike along it, then
that particular spike is lost). In the step t + d, the neuron spikes and becomes
again open, so that it can receive spikes (which can be used starting with the
step t + d + 1).

The rules of type (2) are the forgetting rules; they are applied as follows: if
the neuron σi contains exactly s spikes, then the rule as → λ from Ri can be
used, meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1)∩L(E2) �= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule
is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
were previously considered to function in parallel with each other. It is important
to notice that the applicability of a rule is established based on the total number
of spikes contained in the neuron. Thus, e.g., if a neuron σi contains 5 spikes,
and Ri contains the rules (aa)∗/a → a; 0, a3 → a; 0, a2 → λ, then none of these
rules can be used: a5 is not in L((aa)∗) and not equal to a3 or a2. However, if the

184 O.H. Ibarra, A. Păun, and A. Rodŕıguez-Patón

rule a5/a2 → a; 0 is in Ri, then it can be used: two spikes are consumed (thus
three remain in σi), and one spike is produced and sent immediately (d = 0) to
all neurons linked by a synapse to σi, and the process continues.

One can associate a set of numbers with Π in several ways. We follow here
the idea of [4] and we consider the intervals between the very first two con-
secutive spikes of the output neuron as numbers computed by a computation.
Furthermore, we will consider only halting computations.

Let us consider in the following the sequentiality based on maximum for SNP
systems:

Definition 1

1. SNP systems defined as above are working in the max sequentiality manner
if (by definition) the system is choosing as the spiking neuron at each step only
one of the neurons that can fire (thus the system works in a sequential way),
and furthermore, the spiking neuron chosen at each time-step has the maximum
number of spikes stored among all the other active neurons in that step.
2. Systems can work in max pseudo-sequentiality manner if (by definition) at
each time-step fire all the neurons that store the maximum number of spikes
among all the active neurons at that step.

Of course max sequentiality is forcing the system to work in a sequential manner
as at each step at most one neuron can fire, whereas the max pseudo-sequentiality
allows two or more neurons to fire at the same time if all those neurons hold the
exactly same number of spikes and that number is the highest value of spikes
that is stored among all the active neurons at that moment.

We pass now to give the results of the paper.

4 Max Sequentiality Result

We will start the description of results of these systems by giving the first the-
orem about systems based on strongly max sequentiality with delays. We will
sow the universality of such systems as opposed to the result in [3] where the
strongly sequential sequential were shown to be not universal.

Theorem 1. Max sequentiality with delays for unbounded SNP systems even in
the strongly sequential mode is universal.

Proof. We will show that any register machine can be simulated by a system
working in a Max sequentiality manner, with rules using delays. As we will see
in the following, we will need the delays only for the ADD rules in the register
machine.

Let us give a brief description of the construction: In the system we will
have neurons associated with each label in the program code of the register
machine, also the registers will be modeled by neurons holding 2n spikes for
the value n being stored in the register. Thus the ADD module will increase
by 2 the number of spikes stored in the neuron associated with the register

Sequentiality Induced by Spike Number in SNP Systems 185

r (effectively incrementing the register r in the simulation) and then choose
nondeterministically a new instruction to execute out of the two possibilities
given by the ADD instruction.

In the following we give the neurons necessary to simulate an l1 :
(ADD(r)l2, l3) rule:

Fig. 1. The addition module for l1 : (ADD r, l2, l3)

The module works as follows: the neuron l1 spikes, signalling that the instruc-
tion l1 is being executed, then the neurons a1 and a2 are activated, since a1

has at this moment two spikes and a2 only one, a1 fires first, but has a delay of
size one associated with its rule, at the next step a2 fires (since at that moment
is the only neuron fireable), making the spikes from a1 and a2 to arrive at the
same time in the neuron r. We will see later that the neurons of type r can only
fire when they hold an odd value, thus receiving two spikes keeps the neuron r
inactive. At the same time a2 sends a spike towards also neurons a3 and a4. The
job of the neurons a3 and a4 is to choose nondeterministically which register rule
to activate next: l2 or l3. This is achieved by the fact that when receiving the
spike from a2, both a3 and a4 are activated, both have exactly one spike at this
moment, so we need to choose nondeterministically one to fire. Depending of
the choice, the corresponding instruction l2 (for a3) and l3 (for a4) is activated.
This is done in two steps: a3 (or a4) fires, then it sends to the other neuron a4

186 O.H. Ibarra, A. Păun, and A. Rodŕıguez-Patón

(or a3) another spike, making the forgetting rule applicable, and another spike
to the neuron simulating the label of the next instruction. Since the a4 (or a3)
neuron holds two spikes versus one spike for the label neuron, we first apply
the forgetting rule, and then we continue to simulate the work of the register
machine.

We will now give the module simulating the SUB instruction from the register
machine. We show how are we simulating all the ADD and SUB instructions in
general.

Fig. 2. The subtract module for l1 : (SUB r, l2, l3)

When the neuron l1 fires, it sends two spikes, one in the neuron r (modeling
the register that is decremented or checked for zero) and one in the neuron s1.
We note that we will start with two spikes in the neurons modeling the registers
(we will take care of the correct counting in the finalizing module), we also start
with three spikes in the neuron s1 thus at the next step the neuron s1 contains
exactly 4 spikes, whereas the neuron r contains exactly 2n + 3 spikes, where n
is the contents of the register r in the counter automaton.

We have now two possible cases:

Case I: if the register r is empty, it means that the neuron r holds exactly 3
spikes. Since these are the only two neurons that can fire at this moment (r
and s1), then s1 will execute first since it has four spikes (one more than r).
This means that all four spikes in neuron s1 are deleted through the forgetting
rule, then at the next step r spikes sending one spike back to s1 and activating
s2. At the next step s2 fires sending one more spike in s1 and sending another
one back to r which was empty. At the next step s3 fires also replenishing the
two initial spikes in r and the third spike in s1. This means that we reached a
configuration similar to the original configuration when l1 spiked, and now l3 is
activated (since the register was empty).

Sequentiality Induced by Spike Number in SNP Systems 187

Let us consider the case when the register r would be non-empty:

Case II: then r would hold 2n + 3 spikes, with n ≥ 1, thus r will hold at least
5 spikes, more than the four held by s1. Thus r spikes sending one spike to s1

and another spike to s2. At the next step s1 will have 5 spikes as opposed to s2

that holds only one, thus s1 spikes removing two spikes. That means that at the
next step we will have s1 holding 3 spikes and being inactive, s2 holding 2 and
l2 holding one. Thus next s2 will forget its two spikes, making the configuration
as before and then the simulation can continue with l2.

It is clear that the rules from the register machine are correctly simulated by
the modules presented above. What remains is the finishing stage in which the
output register is read and processed in our setting:

Without loss of generality we can assume that the output register is never
decrementing (the register machine can be easily changed by adding another
register and a couple of rules that would copy the contents of the output to the
new register that would never decrement).

Fig. 3. The halting module

When we activate the halting label in the register machine we send a spike in
the output neuron (the neuron s1 in the picture above). Thus at the next step
s1 spikes (being the only active neuron), then both r and s1 are active. Thus the
one holding the maximum number of spikes will fire. One can notice that in r
we are deleting exactly 2 spikes each time, thus s1 will let r spike as long as the
register r (in the register machine) is non-empty, and at each time step two more
spikes are removed (thus the register r is decremented by one each clock cycle).
Thus the second time that s1 spikes would have been exactly n clock cycles after
the first spike, making the whole system to correctly simulate the work of the
starting register machine. This completes the proof. ��

If we consider the case of extended systems (where the neurons can send more
than one spike through the synapse in one clock cycle), then we can easily remove
the delay that appears in the ADD module.

Theorem 2. Extended systems with max sequentiality: unbounded and no delays
(thus strongly sequential) are universal.

Proof. We change the ADD module in the following way: change the rule in a1

to: a2|a → a2 and remove the synapse between a2 and r. Everything else remains
the same. ��

188 O.H. Ibarra, A. Păun, and A. Rodŕıguez-Patón

In the following section we will consider an even more realistic way of spiking
for the neurons in the system: if there are ties for the maximum number of
spikes stored in active neurons, then all the active neurons holding the maximum
number of spikes will fire.

5 Max Pseudo-Sequentiality

We start by noticing that there is no nondeterminism at the level of the system:
from each configuration to the next, we know for sure which neurons fire (this
was not the case with the max sequentiality discussed in the previous section,
for example one can refer to the work of neurons a3 and a4 in figure 1). Since
the SUB and HALT modules given for the Theorem 1 have always a single
neuron holding the maximum, it only remains to describe the ADD module for
this case. We will see that we can give a system that does not use delays as the
previous ADD module was the only one using this feature.

Theorem 3. For systems working in the Max pseudo-sequentiality mode, we
have universality of such systems without delays for unbounded SNP systems.

Proof. As mentioned above, we will describe the ADD module without delays:
We start with the neuron l1 firing, then the neurons a1 and a2 are activated

as they both receive a spike from l1 since there is a tie of the maximum spikes
contained in the active neurons, both a1 and a2 fire, sending exactly two spikes
in r and another two spikes in a3. We have incremented the register 1, so what
remains now is the nondeterministic jump to either l2 or l3. This is done with

Fig. 4. The addition module for l1 : (ADD r, l2, l3)

Sequentiality Induced by Spike Number in SNP Systems 189

the help of neurons a3 through a8. Because the contents of r will have an even
number of spikes, it is inactive at the next step, thus only a3 can fire. At this
moment we will have a nondeterministic choice between firing using the rule
a7|a2 → a or a7|a → a. The choice is whether the neuron will fire once (with
a7|a2 → a) or twice (through a7|a → a, and then a6|a → a).

Case I: let us assume that a3 fires the rule a7|a2 → a, then at the next step only
a4 is active, and after it fires, both a5 and a6 are active, but a5 holds 2 spikes
and a6 holds 3, so at the next step a5 (with 3 spikes) and a7 (with one spike) are
active, so a5 fires, erasing all its spikes and then a7 activates the new instruction
to be executed, l2. Let us consider the other case.

Case II: a3 fires the rule a7|a → a, then at the next step both a3 (with 6 spikes)
and a4 (with 1 spike) are active, then a3 spikes once more, making a5 the only
active neuron, at the next step a4 with 3 spikes is activated, together with a8.
We first forget the spikes from a5, and then a8 activates the label l3.

Thus we correctly simulated the increment instruction on register r. The SUB
and HALT modules remain the same. This completes the proof. ��

An interesting observation is the fact that if one considers deterministic neurons
(neurons in which the regular languages associated with each rule are disjoint),
then such a system cannot produce nondeterminism. Thus we have the following
result:

Theorem 4. A system of deterministic neurons working in a maximal pseudo-
sequential manner (as a generator) is non-universal.

Proof. We notice that we cannot have nondeterminism at the level of neurons:
they are deterministic. Since the determinism at the level of the system is also
removed by the pseudo-sequentiality, then each such system will generate at
most one value for each starting configuration. ��

This previous result contrasts the fact that if such devices are used in an acceptor
mode, then they are universal:

Theorem 5. A system of deterministic neurons working in a maximal pseudo-
sequential manner (as an acceptor) is universal.

Proof. We start with the register r containing exactly 2n+2 spikes (for the value
n to be accepted or rejected from the set). Then using the ADD and SUB given
above one simulates correctly the instructions in the register machine. Thus if we
reach the neuron with the label HALT , we should accept the value n, whereas
if we do not reach the neuron HALT , then we should reject the value n. ��

6 Final Remarks

We plan to continue the investigation of this special type of sequentiality; we have
already obtained results about the converse, min-sequentiality that will be in-
cluded in a journal version of the article. Another direction would be to consider

190 O.H. Ibarra, A. Păun, and A. Rodŕıguez-Patón

SNP systems that are stochastic with respect to the next spiking neuron in the fol-
lowing sense: each active neuron is having a probability of spiking that increases
with the number of spikes stored in the respective neuron. We will pursue more
avenues of research in this direction as we believe that this model can be more
relevant to an experimental implementation of such a stochastic system.

Acknowledgements

We gratefully acknowledge support in part from NSF Grants CCF-0430945,
CCF-0523572 and CCF-0524136, support from LA BoR RSC grant LEQSF
(2004-07)-RD-A-23, support from INBRE Program of the NCRR (a division
of NIH), support from CNCSIS grant RP-13, support from CNMP grant 11-56
/2007, support from Spanish Ministry of Science and Education (MEC) under
project TIN2006-15595, and support from the Comunidad de Madrid (grant No.
CCG07-UPM/TIC-0386 to the LIA research group).

References

1. Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations,
Plasticity. Cambridge Univ. Press, Cambridge (2002)

2. Ibarra, O.H., Păun, A., Păun, G., Rodriguez-Paton, A., Sosik, P., Woodworth, S.:
Normal forms for spiking neural P systems. Theor. Comput. Sci. 372(2-3), 196–217
(2007)

3. Ibarra, O.H., Woodworth, S., Yu, F., Păun, A.: On spiking neural P systems and
partially blind counter machines. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozen-
berg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 113–129. Springer,
Heidelberg (2006)

4. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta In-
formaticae 71(2-3), 279–308 (2006)

5. Maass, W.: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK 8(1), 32–36 (2002)

6. Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge
(1999)

7. Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs (1967)

8. Păun, A., Popa, B.: P Systems with Proteins on Membranes. Fundamenta Infor-
maticae 72(4), 467–483 (2006)

9. Păun, A., Popa, B.: P systems with proteins on membranes and membrane division.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 292–303. Springer,
Heidelberg (2006)

10. Păun, G. (ed.): Membrane Computing – An Introduction. Springer, Berlin (2002)
11. Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Spike trains in spiking neural P

systems. International Journal of Foundations of Computer Science 17(4), 975–
1002 (2006)

12. Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Infinite spike trains in spiking neu-
ral P systems (submitted, 2006)

13. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.
Springer, Berlin (1997)

14. The P Systems Web Page, http://psystems.disco.unimib.it

http://psystems.disco.unimib.it

Author Index

Angelov, Stanislav 127
Asanuma, Hiroyuki 21

Becker, Florent 144
Brun, Yuriy 102

Hagiya, Masami 11

Ibarra, Oscar H. 179
Itaya, Mitsuhiro 33

Kaow Ng, Yen 168
Kawashimo, Suguru 168
Khanna, Sanjeev 127
Komiya, Ken 1

Liang, Xingguo 21
Lin, Chenxiang 90
Lindsay, Stuart 90
Luhrs, Chris 112
Lund, Kyle 90

Majumder, Urmi 41

Nakagawa, Yusuke 33
Nishioka, Hidenori 21

Ono, Hirotaka 168

Patitz, Matthew J. 156
Păun, Andrei 179

Qian, Lulu 70

Reif, John H. 41
Reishus, Dustin 102
Rémila, Éric 144
Rodŕıguez-Patón, Alfonso 179
Rose, John A. 1

Sadakane, Kunihiko 168
Sakakibara, Yasubumi 33
Schabanel, Nicolas 144
Seelig, Georg 57
Soloveichik, David 57
Summers, Scott M. 156

Takenaka, Nobutaka 21
Tanaka, Fumiaki 11
Tsuda, Takashi 11
Tsuge, Kenji 33

Visontai, Mirkó 127

Williams, Sean 90
Winfree, Erik 57, 70
Wonka, Peter 90

Yamamura, Masayuki 1
Yamashita, Masafumi 168
Yan, Hao 90
Yanagawa, Hiroshi 33
Yugi, Katsuyuki 33

	Title Page
	Preface
	Organization
	Table of Contents
	Experimental Validation of Signal Dependent Operation in Whiplash PCR
	Introduction
	The Rule Protect Operation
	Materials and Methods
	Single State Transition
	Two Successive State Transitions, Probing and Switching-Off a Rule

	Results
	Discussion
	References

	Towards DNA Comparator: The Machine That Compares DNA Concentrations
	Introduction
	Materials and Methods
	Sample Preparation
	DNA Comparator
	Kinetic Measurement
	Sequence Design
	Estimation of Rate Constant

	Experimental Results
	Reaction Rate Constant
	Validation of DNA Comparator

	Discussion
	Limitation of Current DNA Comparator
	Comparison with Traditional DNA Gates

	Conclusions and Future Work
	References

	Construction of Photon-Fueled DNA Nanomachines by Tethering Azobenzenes as Engines
	Introduction
	Results and Discussion
	Photoresponsive DNA Tweezers Involving Non-Substituted Azobenzene
	Hairpin-Based Photoresponsive DNA Tweezers Involving {\it para}-Isopropyl-Substituted Azobenzenes

	Conclusions
	Experimental Section
	References

	Operon Structure Optimization by Random Self-assembly
	Introduction
	Methods
	Random Self-assembly of Operon Structure
	Reconstitution of Multiple Genes by OGAB Method
	Transformation of E.coli Cell and Extraction of Best Colony

	Experiments
	Carotenoid Biosynthetic Pathway
	Random Self-assembly for Carotenoid Biosynthetic Gene Operon
	Extraction of Prominent Colony for Carotenoid Biosynthesis

	Conclusion
	References
	Appendix

	Isothermal Reactivating Whiplash PCR for Locally Programmable Molecular Computation
	Introduction
	Need for an Autocatalytic and Isothermal Protocol for WPCR
	Importance of Locally Programmable Molecular Computation
	Previous Methods for WPCR Computing Devices and Their Limitations
	Our Contribution

	Original Whiplash PCR System
	IR-WPCR with Non-reusable Rules
	Computing with a Non-reusable Rules IR-WPCR Strand
	Preparing a Non-reusable Rule IR-WPCR Strand for Computation
	Handling Inputs
	Limitation

	IR-WPCR with Reusable Rules
	Computing with a Reusable Rule IR-WPCR Strand
	Limitations of a Reusable Rule IR-WPCR Machine

	IR-WPCR Machine That Prevents Back-Hybridization
	Probability and Rate of State Transition in IR-WPCR Method
	Rate of Polymerization
	Rate of Hybridization
	Rate of Strand Displacement
	Likelihood and Rate of a State Transition

	DNA Design of IR-WPCR Computing on a 3 State Machine
	Encoding of the WPCR Strand
	Verification of Computation with FRET Analysis

	Conclusion
	References

	DNA as a Universal Substrate for Chemical Kinetics
	Introduction
	Cascades of Strand Displacement Reactions
	Arbitrary Unimolecular Reactions
	Arbitrary Bimolecular Reactions
	Systematic Construction
	Example
	Conclusion
	References

	A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits
	Introduction
	A Simple Catalytic Gate with a Threshold
	Abstract Circuit Formalism and Function
	Feedforward Digital Logic Circuits
	Relay Contact Circuits
	Analog Time-Domain Circuits and Feedback
	Discussion
	References

	Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures
	Introduction
	Methodology
	Data Structures
	Sequence Generation
	Visualization

	Results
	Discussion
	References

	Connecting the Dots: Molecular Machinery for Distributed Robotics
	Introduction
	Related Work
	Biologically-Inspired Systems
	Self-Assembly

	Tile Assembly Model
	Path-Finding
	Contributions
	References

	Polyomino-Safe DNA Self-assembly via Block Replacement
	Introduction
	Our Results

	Definitions
	Universal Block Replacement for Polyomino Safety
	Block Admissibility
	The Polyomino-Safe Block Replacement Scheme
	Higher Temperatures

	Complexity Properties
	Polyomino Safety in Existing Systems
	The Chinese Remainder Counter

	Self-healing and Block Replacement
	Open Problems
	References

	Robust Self-assembly of Graphs
	Introduction
	Preliminaries
	Hardness of Robust Self-assembly
	RobustAGAP Is Co-NP–Complete
	RobustAGAP on Planar Graphs Is Co-NP–Complete

	RobustAGAP on Grid Graphs
	RobustAGAP on Grid Graphs with 2 Weights
	RobustAGAP on Grid Graphs with 2wp + wn < 3wp + wn

	References

	Time Optimal Self-assembly for 2D and 3D Shapes: The Case of Squares and Cubes
	Introduction
	Self Assembling Tile Systems
	Time Optimality and Skeleton
	Time Optimal Tile Systems
	Skeleton of a Production: Lower Bounding the Rank

	Assembling Squares in Real Time
	A Real Time Local Order for Squares
	A Real Time Tile System for Squares

	Assembling Cubes in Real Time
	The Skeleton
	On the Rank Function Induced by the Skeleton
	Classification of the Sites According to Their Relative Positions with Their Predecessors
	Deducing the Successors from the Predecessors
	A Real Time Tile Systems for Cubes

	References

	Self-assembly of Discrete Self-similar Fractals
	Introduction
	Preliminaries
	The Tile Assembly Model
	Discrete Self-similar Fractals

	Impossibility Results
	Every Nice Self-similar Fractal Has a Fibered Version
	Sketch of Main Construction
	Construction Phase 1
	Construction Phase 2
	Details of Construction

	Conclusion
	References

	Speeding Up Local-Search Type Algorithms for Designing DNA Sequences under Thermodynamical Constraints
	Introduction
	Preliminaries
	Local Search

	Techniques to Reduce MFE Evaluations in Local-Search
	Reuse of DP Tables for Calculating MFE
	Approximate Calculation of MFE
	Preliminary Evaluation

	Application for Local Search Type Algorithms
	Case: Dynamic Neighborhood Search
	Case: Stochastic Local Search

	Concluding Remarks
	References

	Sequentiality Induced by Spike Number in SNP Systems
	Introduction
	Basic Description and Definitions
	Spiking Neural P Systems
	Max Sequentiality Result
	Max Pseudo-Sequentiality
	Final Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

