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Preface

The two volumes contain the papers presented at the ICONIP 2008 conference
of the Asia Pacific Neural Network Assembly, held in Auckland, New Zealand,
November 25–28, 2008.

ICONIP 2008 attracted around 400 submissions, with approx. 260 presen-
tations accepted, many of them invited. ICONIP 2008 covered a large scope of
topics in the areas of: methods and techniques of artificial neural networks, neu-
rocomputers, brain modeling, neuroscience, bioinformatics, pattern recognition,
intelligent information systems, quantum computation, and their numerous ap-
plications in almost all areas of science, engineering, medicine, the environment,
and business.

One of the features of the conference was the list of 20 plenary and invited
speakers, all internationally established scientists, presenting their recent work.
Among them: Professors Shun-ichi Amari, RIKEN Brain Science Institute; Shiro
Usui, RIKEN Brain Science Institute, Japan; Andrzej Cichocki, RIKEN Brain
Science Institute; Takeshi Yamakawa, Kyushu Institute of Technology; Kenji
Doya, Okinawa Institute of Science and Technology; Youki Kadobayashi, Na-
tional Institute of Information and Communications Technology, Japan; Sung-
Bae Cho, Yonsei University, Korea; Alessandro Villa, University of Grenoble,
France; Danilo Mandic, Imperial College, UK; Richard Duro, Universidade da
Coruna, Spain, Andreas König, Technische Universität Kaiserslautern, Germany;
Yaochu Jin, Honda Research Institute Europe, Germany; Bogdan Gabrys, Uni-
versity of Bournemouth, UK; Jun Wang, Chinese University of Hong Kong; Mike
Paulin, Otago University, New Zealand; Mika Hirvensalo, University of Turku,
Finland; Lei Xu, Chinese University of Hong Kong and Beijing University, China;
Wlodzislaw Duch, Nicholaus Copernicus University, Poland; Gary Marcus, New
York University, USA.

The organizers would also like to thank all special session organizers for
their strong efforts to enrich the scope and program of this conference. The
ICONIP 2008 conference covered the following special sessions: “Data Mining
Methods for Cybersecurity,” organized by Youki Kadobayashi, Daisuke Inoue,
and Tao Ban, “Computational Models and Their Applications to Machine Learn-
ing and Pattern Recognition,” organized by Kazunori Iwata and Kazushi Ikeda,
“Lifelong Incremental Learning for Intelligent Systems,” organized by Seiichi
Ozawa, Paul Pang, Minho Lee, and Guang-Bin Huang, “Application of Intelli-
gent Methods in Ecological Informatics,” organized by Michael J. Watts and Su-
san P. Worner,“Pattern Recognition from Real-world Information by SVM and
Other Sophisticated Techniques,” organized by Ikuko Nishikawa and Kazushi
Ikeda, “Dynamics of Neural Networks,” organized by Zhigang Zeng and Tingwen
Huang, “Recent Advances in Brain-Inspired Technologies for Robotics,” orga-
nized by Kazuo Ishii and Keiichi Horio, and “Neural Information Processing
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in Cooperative Multi-Robot Systems,” organized by Jose A. Becerra, Javier de
Lope, and Ivan Villaverde.

Another feature of ICONIP 2008 was that it was preceded by the First Sym-
posium of the International Neural Network Society (INNS) on New Directions
in Neural Networks (NNN 2008), held November 25–25, 2008. This symposium
was on the topic “Modeling the Brain and Neurvous systems,” with two streams:
Development and Learning and Computational Neurogenetic Modeling. Among
the invited speakers were: A. Villa, J. Weng, G. Marcus, C. Abraham, H. Ko-
jima, M. Tsukada, Y. Jin, L. Benuskova. The papers presented at NNN 2008 are
also included in these two volumes.

ICONIP 2008 and NNN 2008 were technically co-sponsored by APNNA,
INNS, the IEEE Computational Intelligence Society, the Japanese Neural
Network Society (JNNS), the European Neural Network Society (ENNS), the
Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland
University of Technology, Toyota USA, Auckland Sky City, and the School of
Computing and Mathematical Sciences at the Auckland University of Technol-
ogy. Our sincere thanks to the sponsors!

The ICONIP 2008 and the NNN 2008 events were hosted by the Knowledge
Engineering and Discovery Research Institute (KEDRI) of the Auckland Uni-
versity of Technology (AUT). We would like to acknowledge the staff of KEDRI
and especially the Local Organizing Chair Joyce DMello, the Web manager Pe-
ter Hwang, and the publication team comprising Stefan Schliebs, Raphael Hu
and Kshitij Doble, for their effort to make this conference an exciting event.

March 2009 Nikola Kasabov
Mario Köppen
George Coghill
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Charles Latchoumane, Nigel Hudson, Sunil Wimalaratna,
Jaeseung Jeong, and Andrzej Cichocki

Global Minimization of the Projective Nonnegative Matrix
Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987

Zhijian Yuan



Table of Contents – Part II XXIII

Learning Sparse Representations Using a Parametric Cauchy Density . . . 994
Ling-Zhi Liao

A One-Layer Recurrent Neural Network for Non-smooth Convex
Optimization Subject to Linear Equality Constraints . . . . . . . . . . . . . . . . . 1003

Qingshan Liu and Jun Wang

VIII Brain-Computer Interface

A Study on Application of Reliability Based Automatic Repeat Request
to Brain Computer Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013

Hiromu Takahashi, Tomohiro Yoshikawa, and Takeshi Furuhashi

Analysis on Saccade-Related Independent Components by Various ICA
Algorithms for Developing BCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021

Arao Funase, Motoaki Mouri, Yagi Tohru, Andrzej Cichocki, and
Ichi Takumi

Policy Gradient Learning of Cooperative Interaction with a Robot
Using User’s Biological Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029

Tomoya Tamei and Tomohiro Shibata

Real-Time Embedded EEG-Based Brain-Computer Interface . . . . . . . . . . 1038
Li-Wei Ko, I-Ling Tsai, Fu-Shu Yang, Jen-Feng Chung,
Shao-Wei Lu, Tzyy-Ping Jung, and Chin-Teng Lin

IX Neural Network Implementations

SpiNNaker: The Design Automation Problem . . . . . . . . . . . . . . . . . . . . . . . . 1049
Andrew Brown, David Lester, Luis Plana, Steve Furber, and
Peter Wilson

The Deferred Event Model for Hardware-Oriented Spiking Neural
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057

Alexander Rast, Xin Jin, Mukaram Khan, and Steve Furber

Particle Swarm Optimization with SIMD-Oriented Fast Mersenne
Twister on the Cell Broadband Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065

Jun Igarashi, Satoshi Sonoh, and Takanori Koga

DNA Computing Hardware Design and Application to Multiclass
Cancer Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072

Sun-Wook Choi and Chong Ho Lee

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1081



Table of Contents – Part I

I INNS Symposium “New Directions in Neural Networks”

Integrative Probabilistic Evolving Spiking Neural Networks Utilising
Quantum Inspired Evolutionary Algorithm: A Computational
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Nikola Kasabov

A Spiking Network of Hippocampal Model Including Neurogenesis . . . . . 14
Yusuke Tabata and Masaharu Adachi

NeuroEvolution Based on Reusable and Hierarchical Modular
Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Takumi Kamioka, Eiji Uchibe, and Kenji Doya

A Common-Neural-Pattern Based Reasoning for Mobile Robot
Cognitive Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Aram Kawewong, Yutaro Honda, Manabu Tsuboyama, and
Osamu Hasegawa

Identifying Emotions Using Topographic Conditioning Maps . . . . . . . . . . . 40
Athanasios Pavlou and Matthew Casey

A Gene Regulatory Model for the Development of Primitive Nervous
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Yaochu Jin, Lisa Schramm, and Bernhard Sendhoff

Real-Time Epileptic Seizure Detection on Intra-cranial Rat Data Using
Reservoir Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Pieter Buteneers, Benjamin Schrauwen, David Verstraeten, and
Dirk Stroobandt

Learning of Subgoals for Goal-Oriented Behavior Control of Mobile
Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Sang Hyoung Lee, Sanghoon Lee, Il Hong Suh, and Wan Kyun Chung

Coding Mechanisms in Hippocampal Networks for Learning and
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Yasuhiro Fukushima, Minoru Tsukada, Ichiro Tsuda,
Yutaka Yamaguti, and Shigeru Kuroda

Developmental Stereo: Topographic Iconic-Abstract Map from
Top-Down Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Mojtaba Solgi and Juyang Weng



XXVI Table of Contents – Part I

An Analysis of Synaptic Transmission and its Plasticity by Glutamate
Receptor Channel Kinetics Models and 2-Photon Laser Photolysis . . . . . 88

Hiroshi Kojima and Shiori Katsumata

A Biologically Inspired Neural CPG for Sea Wave
Conditions/Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Leena N. Patel and Alan Murray

Feature Subset Selection Using Differential Evolution . . . . . . . . . . . . . . . . . 103
Rami N. Khushaba, Ahmed Al-Ani, and Adel Al-Jumaily

Topology of Brain Functional Networks: Towards the Role of Genes . . . . 111
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A Novel Method for Manifold Construction

Wei-Chen Cheng and Cheng-Yuan Liou�

Department of Computer Science and Information Engineering
National Taiwan University
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cyliou@csie.ntu.edu.tw

Abstract. This paper presents a distance invariance method to con-
struct the low dimension manifold that preserves the neighborhood topo-
logical relations among data patterns. This manifold can display close
relationships among patterns.

1 Introduction

Dimension reduction in the manifold space can configure topological relation-
ships among patterns. Foundations for various data manifolds have been set
down for the factorial components [8], oblique transformation [11], ICA [19],
generalized adaline [21]. They have been successfully applied in various tempo-
ral data analyses [20]. The principal component analysis (PCA) and multidi-
mensional scaling (MDS) [18] are well established linear models that have been
developed for such reduction. Many nonlinear reduction algorithms [2][6][9] have
been designed with varying degrees of success. The Isomap [1][17] extends MDS
by using the geodesic distance to construct the nonlinear manifold. The Lo-
cally Linear Embedding (LLE) [14] computes certain linear model coefficients
to maintain the local geometric properties in the manifold. Both Isomap and
LLE have distinguished performances. Isomap has been applied to find intrinsic
curvature manifold, such as a fishbowl surface. The local distance preservation
(LDP) method has been proposed to learn the latent relations of data [12] di-
rectly. This paper further devises a distance invariance method based on the
LDP and presents new applications.

2 Method

Suppose there are P patterns distributed in a D-dimensional pattern space,
X = {xj , j = 1, ..., P}. Each pattern point, xj , is a D-dimensional column
vector and has a corresponding mapped cell, yj , in the output manifold space.
The positions of the cells in the output space are Y = {yj , j = 1, ..., P}. Each
output, yj , is a M -dimensional column vector. In the pattern space, for a pattern
point xp, the set of those points whose distances to xp are less than r are included

� Corresponding author.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 3–10, 2009.
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in the set U (p, r), where r denotes the radius of neighborhood region in the
pattern space. The notation |U (p, r)| denotes the number of points in the set
U (p, r). Rewrite the SIR energy function [10][12], E = ± 1

2

∑
p

∑
q

[d(yp, yq)]2, get

E (r) =
∑

p

Ep (r) =
1
4

∑
p

∑
xq∈U(p,r)

(
‖yp − yq‖2 − ‖xp − xq‖2

)2

, (1)

where
Ep (r) =

∑
xq∈U(p,r)

(
‖yp − yq‖2 − ‖xp − xq‖2

)2

.

This is a distance invariance energy function for the construction of manifold.
Note that there is no percise energy function for SOM, see the preface in [6]. The
difference between (1) and MDS [18] is that (1) is a function of r. All pattern
points are used in (1) when r is very large. Few neighbors are used when r
is small. The LDP algorithm that adjusts the cell position, yj , in the output
manifold space is as follows.

LDP Algorithm

1. Initialize the output set Y .
2. Assign a value to r.
3. For each epoch
4. For every pair patterns xp and xq, adjust their cell positions by

yp ←− yp − η
∂E (r)
∂yp

, yq ←− yq − η
∂E (r)
∂yq

. (2)

5. Reduce r.
6. End For

In the above algorithm, η is a learning rate. The gradient is

∂E (r)
∂yp

= 2×
∑

xq∈U(p,r)

(
‖yp − yq‖2 − ‖xp − xq‖2

)
(yp − yq) ,

and the coefficient 2 can be absorbed into the learning rate. The computational
complexity for calculating the pairwise distance is O

(
DP 2

)
and finding the

neighbors for every pattern is O
(
P 2

)
. To explain the idea of this algorithm, one

may imagine that there are P labeled balls (cells) on a flat table. This table
resembles the low dimensional space, M . These balls are free to move on the
table. So, they are constrained on this M -dimensional space. Each ball is labeled
with its corresponding pattern p. The position of the pth ball on the table is yp.
The algorithm seeks a ball distribution Y in M that can reveal and resemble
the neighborhood topology of X in D. The system energy (1) exerts a force to
the current distribution Y to force it maximally similar to the distribution X .
Of course, one can construct a Gibbs type system for the energy (1) to relax
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the table distribution as a whole and solve the distribution Y . Here, we prefer a
sequential operation, Step 4, by using the force to redistribution the balls.

There are many flexible ways to assign the initial cell positions in Step 1. For
example, one may apply the linear projection methods, such as PCA and MDS,
to project all pattern points onto the M -dimensional space. Other developed
methods, LLE and Isomap, can also be used for the initial assignment.

In Step 2, r denotes the neighborhood radius of the hypersphere in the pattern
space. Those points inside the hypersphere are used in the energy (1). During
the end of the training process, the value of r is shrunk to the minimum distance
among all pattern pairs. We set the initial value r to be the maximum distance
among all pattern pairs and reduce r linearly or exponentially. Note that when
r is kept at a large constant for a long period, the evolution of cell positions may
not stop and not reach convergence. The algorithm stops the evolution by fading
out those far neighbors manually. The computational complexity of updations is

(number of iterations)×O
(
MP max

xp
|U (p, r)|

)
. (3)

Note that the LDP organizes the positions of the output cells based on the
distance relations instead of the pattern vectors used in SOM [6]. These vectors
need absolute coordinates. The relative distances are readily available in many
applications. The positions of the cells will not be fixed in regular positions as
those in SOM. There is no synaptic weight attached to each cell that indicates
its absolute constellation in the pattern space.

3 Experiments on Artificial Data

3.1 Swiss Roll Dataset

In this example, we show that the sampling density affects the LLE manifold.
The Swiss roll equation is(√

u

2π
sin (3πu) ,

√
u

2π
cos (3πu) , v

)
, 0 ≤ u ≤ 1,− 3

10
≤ v ≤ 3

10
. (4)

We uniformly sample data points along the variable v in the range
[− 3

10 , 3
10

]
and non-uniformly along u. Let r (u) be the equation of the curve,

r (u) =
(√

u

2π
sin (3πu) ,

√
u

2π
cos (3πu)

)
, 0 ≤ u ≤ 1. (5)

The arc length of r (u) is

f (u) =
∫ u

0

√
∂r (u′)

∂u′ · ∂r (u′)
∂u′ du′, (6)

where f (u) is the arc length with respect to u. We sample along f (u) and use
f−1 to compute the u value. With this u and v, we can find a corresponding
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Fig. 1. The manifolds of LLE, Isomap and LDP with different sampling densities along
the arc length f (u) plotted in the left diagrams

Fig. 2. The left-top image is the curve which has two kinds of structures. This curve
has a S-shape on the xy-plane and a sinusoid curve along the z-axis. The manifolds
obtained by using LDP, Isomap, LLE and MDS are plotted with their labels.
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point on the surface by using the roll formula (4). Using this sampling technique,
the probability density of a point may be uniform or non-uniform along the
arc length. We can design any sampling densities along the variables, u and v.
Figure 1 shows the manifolds obtained by different algorithms using different
density distributions. The diagrams on the left column plot the density distri-
butions with respect to f (u). In this column, the horizontal coordinate, x-axis,
is f (u), and the vertical coordinate, y-axis, is the density. Figure 1(a) shows the
manifolds of unbalanced sampling. The blue area of the roll has dense sampling
points in unit area and the red area has low density of points. Figure 1(b) shows
the manifolds that the red part of the roll has high density. Figure 1(c) shows the
manifolds that the density is even along the arc length. Figure 1(d) shows the
manifolds that the yellow area (middle portion) has high density. From Figure 1,
we see that Isomap and LDP are not affected much by the density distributions.
This is because every pattern has its correspondent cell in the output space. The
density of each pattern is equal to the density of its cell. There is no probability
manipulation [9]. There is no clustering and no LVQ in LDP, see the preface
in Kohonen’s book [6]. The LDP is developed only for data visualization on
the manifold space. The LDP transfers the coordinates of all patterns to the
manifold space. The sinusoid curve in the LLE manifold will fluctuate with the
density.

3.2 S-Curve

The LDP fully utilizes the output space to maintain both global and local struc-
tures. As an example, the pattern points in Figure 2 have two kinds of structures.
These points globally form a S-curve on the xy-plane and locally form a sinusoid
curve along the z-axis. The points which have the same color are from the same
input data. The LDP reveals these two kinds of information. Both Isomap and
LLE with parameter, K = 12, show incorrect structures. MDS maps data onto
a projection plane and reveals the S-curve structure only.

4 Experiments on Real Data

4.1 Phylogenetic Tree

The phylogenetic tree can be used to visualize the inter-relations among species.
Given a set of distance relations, we plan to construct the edge lengths of a
given tree that meets the distance relations with its path lengths. Rewrite the
SIR energy function [10][12], E = ± 1

2

∑
p

∑
q

[d(yp, yq)]2, for the path lengths and

get
Ê =

∑
p

∑
q

(t (p, q)− ‖xp − xq‖)2 , (7)

where t (p, q) denotes the path length from the leaf node p to the leaf node q. The
tree is an undirected binary tree. Its edges have no direction. The cells are the
leaf nodes. The tree has P leaf nodes and 2P − 2 edges. Sattath [15] suggested
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using the least square method with non-negative constraint to modify the edge
lengths of the tree. Assume that the lengths of the 2P−2 edges are variables, z =[
z1, . . . , z(2P−2)

]T . We construct a matrix for a known tree, A(P (P−1)
2 )×(2P−2)

. In

A, the row indices denote the tree paths corresponding to input pairs, {(xi,xj
)
,

i = 1, ..., P ; j = i + 1, ..., P}, and the column indices denote the 2P − 2 edges of
the tree. The element, aij , of the matrix A is set as

aij =
{

0 , when the path i doesn’t contain the edge j.
1 , when the path i includes the edge j. . (8)

Let δ =
[∥∥x1 − x2

∥∥ ,
∥∥x1 − x3

∥∥ , . . . ,
∥∥xP−1 − xP

∥∥]T be a P (P−1)
2 -by-1 column

vector that consists of all distances between data pairs. We require that the edge
lengths z satisfy

Az ≈ δ, subject to z ≥ 0. (9)

Employ the idea of LDP and write

2P−2∑
j=1

aijzj ≈ δi, if δi ≤ r (10)

subject to z ≥ 0. (11)

We adjust the edge lengths z by the gradient descent method and restrict the
values of z to be larger than or equal to zero. We expect that the equation (10)
can minimize the energy function, Ê (r), after convergence

Ê (r) =
∑

p

∑
xq∈U(p,r)

(t (p, q)− ‖xp − xq‖)2 . (12)

The value of r is reduced during the training.
The set of data used in the experiment is Case’s data [3] that contains the

immunological distances among nine frog (Rana) species. In simulations, we em-
ploy the technique UPGMA (Unweighted Pair Group Method with Arithmetic
mean) [16] to build a tree and use LDP to estimate the edge lengths of the tree.

Figure 4 shows the estimated tree lengths by LDP. The lengths by Sattath
[15] is also plotted in this figure for comparison. The LDP obtains very different
subtree for the five species, R. aurora, R. boylii, R. cascadae, R. muscosa, and
R. pretiosa. After convergence, we compute the performance using the formula,
MDI (r), for the LDP and Sattath’s method. The measurement of distance
invariance, MDI (r), is

MDI (r) =
1∑

p
|U (p, r)|

∑
p

∑
xq∈U(p,r)

√
(t (p, q)− ‖xp − xq‖)2

‖xp − xq‖ . (13)

The performance is plotted in Figure 3. In this figure, the x-axis denotes r and
y-axis denotes the corresponding MDI (r) in (13). The performance shows that
LDP obtains very precise length information for those close distance species.
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Fig. 3. The performance comaprison, MDI (r)

Fig. 4. The trees are constructed by UPGMA . The edge lengths are obtained by LDP
(left) and Sattath’s method (right).

4.2 Summary

Distortion analysis [13][7] has been introduced to study the formation mechanism
of the SOM [5]. The lack of precise energy function [4] of the SOM. This paper
devised a distance invariance energy for the manifold construction. It is a precise
energy function. The manifold is stable for patterns with different densities.
It can resolve detailed substructures. There is no LVQ, no clustering and no
probability manipulation in the method, see the preface in [6]. The method is
developed for data visualization only. The flat output space Y may be set to a
curved Reimann space.

The manifold can be used in many applications, such as time series, chain,
and tree length. It is relatively difficult to display chains or tree links in SOM.
The LLE manifold is sensitive to the density distribution of patterns. The LDP
and Isomap manifolds are much stable when patterns have different density
distributions. The computational complexity of Isomap is O

(
P 3

)
. It is higher

than that of LLE. The complexity of LDP is O
(
MP 2

)
. M is very small in the

dimension reduction.
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Abstract. This paper presents a non-linear classifier based on a region oriented
approach for interval data. Each example of the learning set is described by a
interval feature vector. Concerning the learning step, each class is described by a
region (or a set of regions) in �p defined by hypercube of the objects belonging to
this class. In the allocation step, the assignment of a new object to a class is based
on a suitable Lr Minkowski distance between intervals. Experiments with two
synthetic interval data sets have been performed in order to show the usefulness
of this classifier. The prediction accuracy (error rate) of the proposed classifier is
calculated through a Monte Carlo simulation method with 100 replications.

1 Introduction

The recording of interval data has become a common practice with the recent advances
in database technologies. A natural source of interval data is the aggregation of huge
data bases, when real values describing the individual observations result in intervals
in the description of the aggregated data. Such type of data have been mainly studied
in Symbolic Data Analysis (SDA) [1] which is a domain in the area of knowledge dis-
covery and data management, related to multivariate analysis, pattern recognition and
artificial intelligence. SDA has been introduced as a new domain related to multivariate
analysis, pattern recognition and artificial intelligence in order to extend classical ex-
ploratory data analysis and statistical methods to symbolic data. Symbolic data allows
multiple (sometimes weighted) values for each variable, and it is why new variable
types (interval, categorical multi-valued and modal variables) have been introduced.

Several classifiers has been introduced in SDA. Concerning region oriented approach,
Ichino et al. [3] introduced a symbolic classifier as a region oriented approach for
multi-valued data where the classes of examples are described by a region (or set of re-
gions) obtained through the use of an approximation of a Mutual Neighbourhood Graph
(MNG) and a symbolic join operator. Souza et al. [4] proposed a MNG approximation
to reduce the complexity of the learning step without losing the classifier performance
in terms of prediction accuracy and D’Oliveira et al. [7] presented a region oriented
approach in which each region is defined by the convex hull of the objects belonging to
a class. All these region oriented classifiers mentioned above were applied for quanti-
tative data sets and concerning the allocation step, the assignment of a new object to a
class is based on a dissimilarity matching function which compares the class description
(a region or a set of regions) with a point in �p.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 11–18, 2009.
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This work addresses a region oriented classifier for symbolic interval data. Here,
the region oriented classifier has as input data a symbolic interval data set with known
classes and at end of the learning step each class is describe by a region (or a set of
regions) in �p defined by the hypercube of the objects belonging to this class. In the
allocation step, the assignment of a new object to a class is based on a Lr Minkowski
distance between interval feature vectors which compares the class description with the
description of a object.

The structure of the paper is as follows: Section 2 presents synthetic interval data sets
considered in this work. Section 3 introduces the region oriented classifier for interval
data. Section 4 discusses the performance analysis considering two synthetic interval
data sets ranging from easy to moderate cases with linearly non-separable clusters. The
evaluation of the performance of this non-linear classifier is based on the prediction
accuracy. This measurement is assessed in the framework of a Monte Carlo experience
with 100 replications of each data set. Section 5 concludes the paper.

2 Symbolic Interval Data

In classical data analysis, the items to be grouped are usually represented as a vector
of quantitative or qualitative measurements where each column represents a variable.
However, this model is too restrictive to represent complex data, which may, for in-
stance, comprehend variability and/or uncertainty. We may have ’native’ interval data,
when describing ranges of variable values - for example, daily stock prices. Interval
variables also allow to deal with imprecise data, coming from repeated measures or
confidence interval estimation.

Suppose that there are K classes. Let Ck (k = 1, . . . , K) be a class of items labelled
ω1, . . . , ωnk

with Ck ∩ Ck′ = ∅ if k 	= k′ and ∪m
k=1Ck = Ω (data set). Each item i is

described by a vector of p symbolic variables xi = (X1, . . . , Xp). A symbolic variable
Xj (j = 1, . . . , p) is an interval variable when, given an item i of �, Xj(i) = xij =
[aij , bij ] ⊆ Aj where Aj = [a, b] is an interval.

In this work, two synthetic interval data sets are considered. They are initially gen-
erated from two standard quantitative data set in �2. These data sets have 450 points
scattered among three classes of unequal sizes: one class with ellipse shape of size
200 and two classes with spherical shapes and sizes 150 and 100. Each class in these
quantitative data sets were drawn according to a bi-variate normal distribution with
non-correlated components and vector µ and covariance matrix Σ represented by:

µ =
[

µ1

µ2

]
and Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
Standard data set 1 showing classes well separated was drawn according to the fol-

lowing parameters:

a) Class 1: µ1 = 50, µ2 = 25, σ2
1 = 9, σ2

2 = 36 and ρ12 = 0.0;
b) Class 2: µ1 = 45, µ2 = −2, σ2

1 = 25, σ2
2 = 25 and ρ12 = 0.0;

c) Class 3: µ1 = 38, µ2 = 40, σ2
1 = 9, σ2

2 = 9 and ρ12 = 0.0;
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Standard data set 2 showing overlapping classes was drawn according to the follow-
ing parameters:

a) Class 1: µ1 = 50, µ2 = 25, σ2
1 = 9, σ2

2 = 36 and ρ12 = 0.0;
b) Class 2: µ1 = 45, µ2 = 5, σ2

1 = 25, σ2
2 = 25 and ρ12 = 0.0;

c) Class 3: µ1 = 45, µ2 = 40, σ2
1 = 9, σ2

2 = 9 and ρ12 = 0.0;

Each data point (z1, z2) of each one of this synthetic quantitative data set is a seed
of a vector of intervals (rectangle) defined as:([z1 − γ1/2, z1 + γ1/2], [z2 − γ2/2, z2 +
γ2/2]). These parameters γ1, γ2 are randomly selected from the same predefined in-
terval. The intervals considered in this paper are: [1, 10], [1, 20], [1, 30] and [1, 40].
Figure 1 and 2 illustrate these synthetic interval data sets 1 and 2, respectively, ranging
from easy to moderate cases of overlapping classes with parameters γ1 and γ2 randomly
selected from the interval [1, 10].

Fig. 1. Symbolic interval data set 1

Fig. 2. Symbolic interval data set 2

3 A Region Oriented Classifier for Interval Data

This section describes the learning and allocation steps of a non-linear classifier for
symbolic interval data based on a region oriented approach.
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3.1 Learning Step

The idea of this step is to provide a description of each class through a region (or a set
of regions) in �p defined by the hyper-cubes formed by the objects belonging to this
class, which is obtained through a suitable approximation of MNG.

Definition 1 Join operator
The join [3] between the interval feature vectors xki (i = 1, . . . , nk) is an inter-
val feature vector which is defined as yk = xk1 ⊕ . . . ⊕ xknk

= (xk11 ⊕ . . . ⊕
xknk1, . . . , xk1j ⊕ . . .⊕ xknkj , . . . , xk1p ⊕ . . .⊕ xknkp), where xk1j ⊕ . . .⊕ xknkj =
[min{ak1j, . . . , aknkj}, max{bk1j, . . . , bknkj}]( j = 1, . . . , p).

Definition 2 Join region
The region R(Ck) associated to class Ck is a region in �p which is spanned by the
join of the objets belonging to class Ck . Its description is given by a interval feature
vector g(Ck) = (gk1, . . . , gkp) where gkj = [αkj , βkj ] is an interval with αkj =
min{ak1j, . . . , aknkj} and βkj = max{bk1j , . . . , bknkj}, (j = 1, . . . , p) is an interval
value.

Definition 3 Mutual neighborhood graph
The mutual neighborhood graph (MNG) [3] yields information about interclass struc-
ture. The objects belonging to class Ck are each one mutual neighbors [3] if ∀ωk′i ∈
Ck′ (k′ ∈ {1, . . . , m}, k′ 	= k), xk′i ∩ gk /∈ R(Ck) (i = 1, . . . , nk′). In this case, the
MNG of Ck against Ck = ∪m

k′ �=k

k′=1

Ck′ , which is constructed by joining all pairs of objects

which are mutual neighbors, is a complete graph.
If the objects belonging to class Ck are not each one mutual neighbors, we look for all
the subsets of Ck where its elements are each one mutual neighbors and which are a
maximal clique in the MNG, which, in that case, is not a complete graph. To each of
these subsets of Ck we can associate a region.

Concerning this step, we have a basic remarks. When the MNG of a class Ck is
not complete, it is necessary to construct of an approximation of the MNG because the
computational complexity in time to find all maximal cliques on a graph is exponential.

Algorithm 1 shows the steps for the construction of the MNG for the classes Ck (k =
1, . . . , m) and the representation of each class by a region (or by a set of region). At
the end of this algorithm it is computed the subsets C1

k , . . . , Cnk

k of class Ck and it is
obtained the description of this class by the R-regions R(C1

k), . . . , R(Cnk

k ).

3.2 Allocation Step

The aim of the allocation step is to associate a new object to a class based on a Lr

Minkowski distance that compares the class description (an interval vector or a set of
interval vectors) with the description of this object (an interval vector).

Let ω be a new object, which is candidate to be assigned to a class Ck(k = 1, . . . , m),
and its corresponding description given by the continuous interval feature vector xω =
(xω1, . . . , xωp) where xωj = [aωj , bωj] is an interval. Remember that from the learning
step it is computed the subsets C1

k , . . . , Cvk

k of Ck.
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Algorithm 1. Learning step
For each class k = 1, . . . , m do

1: Find the the region R(Ck) (according to definition 2) associated to class Ck

Verify if the objects belonging to this class are each one mutual neighbors according to
the definition 3

2: If it is the case, construct the MNG (which is a complete graph) and stop
3: If it is not the case (MNG approximation) do:

3.1: Choose an object of Ck as a seed according to the lexicographic order of these objects
in Ck;

Do t = 1 and put the seed in the set Ct
k;

Remove the seed from Ck

3.2: Add the next object of Ck (according to the lexicographic order) to Ct
k

If all the objects belonging now to Ct
k remains each one mutual neighbors according to

the definition 3, remove this object from Ck

3.3: Repeat step 3.2) for all remaining objects in Ck

3.4: Find the region R(Ct
k) (according to definition 2) associated to Ct

k)
3.5: If Ck �= ∅,

Do t = t + 1
Repeat steps 3.1) to 3.4) until Ck = ∅

3.6: Construct the MNG (which now is not a complete graph) and stop

Algorithm 2. Allocation step
For a new example ω do

1: For each class k = 1, . . . , m compute
δ(ω,Ck) = min{dr(ω,C1

k), . . . , dr(ω,C
vk
k )} where

dr(ω,Cs
k) =

p∑
j=1

φr(xωj, g
s
kj) (1)

s = 1, . . . , vk and

φr(xωj, g
s
kj) = [|aωj − αs

kj |r + |bωj − βs
kj |r]1/r (2)

with µ(∗) being the range of the interval ∗.
2: Affect ω to class Ck

δ(ω,Ck) ≤ δ(ω, Ch),∀h ∈ {1, . . . , m}

The equation (2) corresponds to represent an interval [a, b] as a point (a, b) ∈ �2,
where the lower bounds of the intervals are represented in the x-axis, and the upper
bounds in the y-axis, and then compute the Lr distance between the points (aj

i , b
j
i ) and

(αj
i , β

j
i ). Therefore the distance function in equation (1) is a suitable extension of the

Lr metric to interval data. In [5], [6] and [2], respectively, are presented versions of
this distance for the cases when r = 1 (City-Block), r = 2 (Euclidean) and r = ∞
(Chebyshev).
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4 The Monte Carlo Experiences

Experiments with two synthetic interval data sets in �2 showing from easy to mod-
erate cases of classification with linearly non-separable clusters and a corresponding
performance analysis of the region oriented classifier introduced in this paper are con-
sidered in this section. Monte Carlo experiences with 100 replications of each data set
with identical statistical properties are obtained and for each one training (75% of the
original data set) and test (25% of the original data set) sets are randomly generated.

The evaluation of the classifier presented in this paper is carried out based on predic-
tion accuracy that was measured through the error rate of classification obtained by the
region oriented classifier from a test data set. The estimated error rate of classification
corresponds to the average of the error rates found between the 100 replicates of test
set.

Table 1 presents the average (in %) and the standard deviation (in parenthesis) of
the error rates for interval data sets 1 and 2 as well as γ1 and γ2 drawn from [1,10],
[1,20], [1,30] and [1,40] according to the L1, L2 and L∞ distances. From the results in
this table, we can observe clearly that the L1 and the L∞ are, respectively, the best and
worst options for both data sets. Moreover, this table shows that the average error rate
decreases from the predefined interval [1, 10] to [1, 20]. It is why the number of regions
in the predefined interval [1, 20] is four times the number of regions in the predefined
interval [1, 10].

Table 1. The average (%) and the standard deviation (in parenthesis) of the error rate for synthetic
interval data sets 1 and 2

Range of values Data Set 1 Data Set 2
of γi L1 L2 L∞ L1 L2 L∞

i = 1, 2 distance distance distance distance distance distance
[1, 10] 6.39 7.47 9.07 7.18 7.11 7.47

(0.0594) (0.0636) (0.0648) (0.0269) (0.0278) (0.0265)
[1, 20] 1.41 1.40 1.65 6.76 6.58 6.83

(0.0126) (0.0121) (0.0127) (0.0212) (0.0221) (0.0233)
[1, 30] 1.29 1.27 1.37 6.60 6.49 6.53

(0.0101) (0.0099) (0.0100) (0.0226) (0.0226) (0.0226)
[1, 40] 1.44 1.35 1.23 6.98 6.77 6.92

(0.0118) (0.0120) (0.0114) (0.0242) (0.0244) (0.0260)

To compare distances evaluated in this paper, Student’s t-test for independent sam-
ples at the significance level of 5% was used to determine whether there is a significant
difference in error rate between L1, L2 and L∞ distances. In Tables 3 and 4 µ1, µ2 and
µ3 are, respectively, the corresponding averages for L1, L2 and L∞ distances. From the
values in these tables, we can conclude that, for these interval data sets 1 and 2, the L2

distance outperforms the L1 and L∞ distances in almost all situations.
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Table 2. Comparison between the distances for interval data set 1 according to the average error
rate

Range of values Hypothesis Decision Hypothesis Decision Hypothesis Decision
of γi i = 1, 2 H0 : µ1 = µ2 H0 : µ1 = µ3 H0 : µ2 = µ3

H1 : µ1 > µ2 H1 : µ1 < µ3 H1 : µ2 < µ3

[1,10] -124.10 Not -304.872 Reject H0 -176.218 Reject H0

Reject H0

[1,20] 5.724 Reject H0 -134.153 Reject H0 -142.520 Reject H0

[1,30] 14.141 Reject H0 -56.286 Reject H0 -71.065 Reject H0

[1,40] 53.476 Reject H0 127.991 Not 72.499 Not
Reject H0 Reject H0

Table 3. Comparison between the distances for interval data set 2 according to the average error
rate

Range of values Hypothesis Decision Hypothesis Decision Hypothesis Decision
of γi i = 1, 2 H0 : µ1 = µ2 H0 : µ1 = µ3 H0 : µ2 = µ3

H1 : µ1 > µ2 H1 : µ1 < µ3 H1 : µ2 < µ3

[1,10] 18.095 Reject H0 -76.799 Reject H0 -93.733 Reject H0

[1,20] 58.776 Reject H0 -22.221 Reject H0 -77.848 Reject H0

[1,30] 34.416 Reject H0 21.901 Reject H0 -12.515 Reject H0

[1,40] 61.107 Reject H0 16.892 Not -42.068 Reject H0

Reject H0

5 Concluding Remarks

A non-linear classifier for symbolic interval data based on a region oriented approach
for interval data was presented in this paper. The input of the region oriented approach
is a set of interval feature vectors. Concerning the learning step, each class is described
by a region (or a set of regions) in �p defined by the hypercubes formed by the ob-
jects belonging to this class, which is obtained through an approximation of a Mutual
Neighbourhood Graph (MNG). In the allocation step, the assignment of a new object to
a class is based on a suitable Lr Minkowski distance between interval feature vectors
which compares the class description with the description a of object.

To show the usefulness of the proposed classifier in this paper, two synthetic interval
data sets in �2 are considered ranging from easy to moderate cases with linearly non-
separable clusters. The evaluation was based on prediction accuracy according to the
error rate of classification according to the L1, L2 and L∞ distances for interval data.
This measurement was calculated in the framework of a Monte Carlo experience with
100 replications.

Acknowledgments. The authors would like to thank CNPq (Brazilian Agency) for its
financial support.
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Abstract. The aim of Symbolic Data Analysis (SDA) is to provide a
set of techniques to summarize large data sets into smaller ones called
symbolic data tables. This paper considers a kind of symbolic data called
Interval-Valued Data (IVD) which stores data intrinsic variability and/or
uncertainty from the original data set. Recent works have been proposed
to fit the classic linear regression model to symbolic data. However, those
works do not consider the presence of symbolic data outliers. Generally,
most specialists treat outliers as errors and discard them. Nevertheless,
a single interval-data outlier holds significant information which should
not be discarded or ignored. This work introduces a prediction method
for IVD based on the symmetrical linear regression (SLR) analysis whose
response model is less susceptible to the IVD outliers. The model con-
siders a symmetrical distribution for error which allows to the model
possibility of applying regular statistical hypothesis tests.

1 Introduction

Symbolic Data Analysis (SDA) provides a set of techniques that can summarize
large data sets into smaller data called symbolic data tables. In a symbolic data
table, a cell can contain a distribution, or intervals, or several values linked by
a taxonomy and logical rules. In particular, in this paper it will be considered
a kind of symbolic data called here as Interval-Valued Data (IVD), which keeps
data intrinsic variability and/or uncertainty from the original data set.

SDA could be also defined as the extension of standard data analysis to sym-
bolic data tables. The aim of SDA is to provide suitable methods (e.g., clustering)
for managing aggregated data described by multi-value variables, in which the
cells of the data table contain sets with categories, intervals or weight (proba-
bility) distributions[1].

Recent works have been proposed to fit the classic linear regression model
(CLRM) to symbolic data. However, those works do not consider the presence of
symbolic data outliers. It is known that CLRM is strongly influenced by outliers.
Because the least square predictions are dragged towards the outliers and the
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variance of the estimates is artificially inflated, the result is that outliers can
be masked. Thus, when performing CLRM, most of specialists prefer to discard
outliers before computing the line that best fit the data under investigation.

In general, outliers are interpreted as an error. However, a small number of
outliers is not due to any anomalous condition and they frequently contain valu-
able information about the analysed process and should be carefully investigated
before being removed.

In the framework of regression models for IVD,[2] presented an approach to
fitting a CLRM to IVD sets, which consists of fitting a CLRM to the mid-points
of the IVD assumed by the symbolic interval variables. In the following, [3] pro-
posed another approach that fits two independent classic regression models on
the lower and upper bounds of the intervals. In [4] the regression methodology
is extended to models which include taxonomy predictor variables and mod-
els which contain a hierarchical variable structure. Recently, [5] presented the
centre and range method for fitting a CLRM to symbolic in which the prob-
lem is investigated as an L2 norm problem and compared this method with
the [2] and [3] methods. The cited model do not consider any probabilistic as-
sumptions for the CLRM errors and do not present any treatment for IVD with
outliers.

This work introduces a new prediction method for IVD based on the symmet-
rical linear regression (SLR) analysis. Its innovative feature is that the response
model is less susceptible to the presence of IVD outliers. The model consid-
ers a heavy-tailed Student-t distribution as an assumption for the errors in the
mid-point of the IVD assumed by the symbolic interval variables. The error
probability distribution assumption allows to the model possibility of applying
regular statistical hypothesis tests, making the model powerful.

The rest of this paper is structured as follows: Section 2 presents the synthetic
IVD sets considered in the work. Section 3 describes the SLR models for IVD.
Section 4 presents a performance analysis for the proposed method with synthetic
IVD sets. Finally, Section 5 gives the concluding remarks.

2 Interval-Valued Data

In the classical data analysis, the items are represented as a vector of quan-
titative or qualitative measurements in which each column represents a vari-
able. However, this model is too restrictive to represent complex data which
may comprehend variability and/or uncertainty. Interval variables permit to
deal with imprecise data resulting of repeated measures or confidence interval
estimation.

2.1 Synthetic Interval-Valued Data Sets Containing Outlier
Rectangles

Synthetic IVD sets in �2 are generated from synthetic standard quantitative
data sets in �2 such that each point belonging to the standard quantitative data
set is a centre (seed) for a rectangle in �2.
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Let IY be a response interval variable that is related to a predictor inter-
val variable IX . Let E = {e1, . . . , en} be an example set where each exam-
ple ei (i = 1, . . . , n) is represented as an interval quantitative feature vector
z = (IX(i), IY (i)) with IX(i) = [lX(i), uX(i)] ∈ � = {[a, b] : a, b ∈ �, a ≤ b} and
IY (i) = [lY (i), uY (i]] ∈ �.

Let Y c and Xc be, respectively, standard quantitative variables that assume
as their value the mid-point of the interval assumed by the symbolic interval-
valued variables IY and IX . Also, let Y r and Xr be, respectively, quantitative
variables that assume as their value the half range of the interval assumed by
the symbolic interval-valued variables IY and IX .

Here, four configurations for centre and range according to [5] are consid-
ered. These configurations assume that the centre and range of the intervals are
simulated independently of uniform distributions.

Let Xc ∼ U [a, b] and Xr ∼ U [c, d] be, respectively, centre and range variables
associated to an independent interval-valued variable IX . Let Y r ∼ U [e, f ] be
the range variable associated to the dependent interval-valued variable IY . The
centre variable Y c is related to the centre variable Xc as Y c = β0+ β1Xc + ε,
where β0 ∼ U [g, h] and β1 ∼ U [g, h], and ε ∼ U [l, m] is an error.

Each standard data set (in �2) has 250 points. Table 1 displays four different
configurations with centre and range values to simulate rectangle in �2, for
β0 ∼ U [−10, 10] and β1 ∼ U [−10, 10].

For synthetic IVD sets considered in this paper, a rectangle is an outlier if
its mid-point y coordinate is remote in the rectangles set. The effect that this
rectangle causes on the regression model depends on the x coordinate of its
mid-point and on the general disposition of the other rectangles in the data
set.

Outlier IVD are created based on the centre data set (Y c(i), Xc(i)) (i =
1, . . . , 250). First, this set in �2 is sorted ascending by the dependent vari-
able Y c and a small cluster containing the m first points of the sorted set
(Y c(i),Xc(i)) is selected. The observations of this cluster are changed into outlier
points by

Y c(i) = Y c(i)− 3 ∗ SY c (i = 1, . . . , m)

where SY c is the standard deviation of Y c(i) (i = 1, . . . , 250) of data set.
After that, the lower and upper bounds of the intervals IX(i) and IY (i) (i =

1, . . . , 250) of the rectangle set are obtained by

Table 1. Configurations with centre and range for prediction and response variables
IX and IY

Config. Interval-valued variable IX Error Interval-valued variable IY

Centre Range Centre Range
1 Xc ∼ U [20, 40] Xr ∼ U [20, 40] ε ∼ U [−20, 20] Y c = β0+ β1(Xc) + ε Y r ∼ U [20, 40]
2 Xc ∼ U [20, 40] Xr ∼ U [20, 40] ε ∼ U [−5, 5] Y c = β0+ β1(Xc) + ε Y r ∼ U [20, 40]
3 Xc ∼ U [20, 40] Xr ∼ U [1, 5] ε ∼ U [−20, 20] Y c = β0+ β1(Xc) + ε Y r ∼ U [1, 5]
4 Xc ∼ U [20, 40] Xr ∼ U [1, 5] ε ∼ U [−5, 5] Y c = β0+ β1(Xc) + ε Y r ∼ U [1, 5]
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IX(i) = [Xc(i)−Xr(i)/2, Xc(i) + Xr(i)/2]

IY (i) = [Y c(i)− Y r(i)/2, Y c(i) + Y r(i)/2]

Figures 1 depict the IVD sets 1, 2, 3 and 4. Figures 1(a) and 1(b) describe
high variability on the ranges of the rectangles, hence the outlier rectangles are
lightly remote in y coordinate, as those figures show. Figures 1(c) and 1(d) show
low variability on the ranges of the rectangles, there are outlier rectangles in
those figures that are remote in y coordinate.

(a) Data set 1. (b) Data set 2.

(c) Data set 3. (d) Data set 4.

Fig. 1. Interval-valued data sets 1, 2, 3 and 4 containing outlier rectangles

3 Symmetrical Linear Regression Models

In classic data analysis, the presence of outliers normally affect the regression
model. A practical case is one in which the observations follow a distribution
that has heavier tails than the normal. These heavy-tailed distributions tend to
generate outliers, and these outliers may have a strong influence on the method
of least squares in the sense that is no longer an optimal estimation technique[6].

The importance of taking into account the centre (mid-point) and range infor-
mation in a CLRM for predicting IVD was demonstrated in [5]. In their model,
the estimation uses the least square method that does not take into account any
probabilistic hypothesis on the response variable. However, this model may also
suffer strong influence when there are outlier IVD.

This section presents a SLR model for IVD. The model is less susceptible to
the presence of outliers and considers a Student-t distribution as assumption
for errors on the mid-point of a learning data set. The assumption that the
errors have a probability distribution grants to the model powerful possibilities
of applying regular statistical hypothesis tests.
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3.1 Symmetrical Linear Regression Models for Classical Data

Suppose Y1, . . . , Yn as n independent random variables where density function
is given by

fYi(y) =
1√
φ

g{(y − µi)2/φ}, y ∈ IR, (1)

with µi ∈ IR and φ > 0 being the location and dispersion parameters, respec-
tively. The function g : IR −→ [0,∞) is such that

∫∞
0

g(u)du < ∞ is the density
generator and it is denoted by Yi ∼ S(µi, φ, g).

The SLR model is defined as Yi = µi + εi, i = 1, . . . , n, where µi = xt
iβ,

β = (β0, . . . , βp)T is an unknown parameters vector, additionally, εi ∼ S(0, φ, g)
and xi is the vector of explanatory variables. When they exist, E(Yi) = µi = xt

iβ
and V ar(Yi) = ξφ, where ξ > 0 is a constant that depends on distribution
(see, for instance, [7]). This class of models includes all symmetric continuous
distributions, such as normal, Student-t, logistic, among others. For example,
the Student-t distribution with ν degrees of freedom results in ξ = ν

ν−2 then
V ar(Yi) = ν

ν−2φ and normal distribution ξ = 1, V ar(Yi) = φ. In SLR model,

β = (β0, β1)T and θ̂ = (β̂
T

, φ̂)t.
The maximum likelihood estimates of θ, θ̂ = (β̂

T

φ̂)T cannot be obtained
separately and closed-form expressions for this estimates do not exist. Some
iterative procedures can be used such as newton-raphson, BFGS and scoring
Fisher method. Scoring Fisher method can be easily applied to get θ̂ where
the process for β̂ can be interpreted as a weighting least square. The iterative
process for θ̂ takes the form

β(m+1) = {XD(v(m))X}−1XtD(v(m))y. (2)

φ(m+1) =
1
n
{y −Xβ}TD(v){y −Xβ} (m = 0, 1, 2, . . .). (3)

with D(v) = diag{v1, . . . , vn}, y = (y1, . . . , yn)t, X = (xt
1, . . . ,x

t
n)t and vi =

−2Wg(ui), Wg(u) = g′(u)
g(u) , g′(u) = dg(u)

du and ui = (yi − µi)2/φ. For the normal
distribution the maximum likelihood estimates take closed-form expressions, be-
cause vi = 1, ∀i. For the Student-t distribution with ν degrees of freedoms,
we have g(u) = c(1 + u/ν)−(ν+1)/2, ν > 0 and u > 0 so that Wg(ui) =
−(ν + 1)/2(ν + ui) and vi = (ν + 1)/(ν + ui), ∀i. In this case the current weight
v
(r)
i from (2) is inversely proportional to the distance between the observed value

yi and its current predicted value xt
iβ

(r), so that outlying observations tend to
have small weights in the estimation process (see discussion, for instance, in [8]).

3.2 Construction of the Symmetrical Linear Regression Models for
Interval-Valued Data

In this model, each example ei (i = 1, . . . , n) is represented by two vectors
zc = (Xc(i), Y c(i)) and zr = (Xr(i), Y r(i)) where Xc(i) = [lX(i) + uX(i)]/2,
Xr(i) = [uX(i)−lX(i)]/2, Y c(i) = [lY (i)+uY (i)]/2 and Y r(i) = [uY (i)−lY (i)]/2.
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The predictor variable IX is related to the response variable IY according to
two linear regression equations, respectively, on their centre and range values

Y c = βc
0 + βc

1X
c

Y r = βr
0 + βr

1Xr (4)

The parameters βc
0 and βc

1 are estimated by the maximum likelihood method
according to subsection 3.1 and the parameters βr

0 and βr
1 are estimated by the

least squared method [6].

3.3 Rule of Prediction

The prediction of the lower and upper bounds ÎY (v) = [l̂Y , ûY ] of a new example
v is based on the prediction of Ŷ c(v) and Ŷ r(v). Given the interval IX(v) =
[lX , uX ] with Xc(v) = (lX + uX)/2 and Xr(v) = (uX − lX)/2, the interval
ÎY (v) = [l̂Y , ûY ] is obtained as follow:

l̂Y = Ŷ c(v)− Ŷ r(v) and ûY = Ŷ c(v)− Ŷ r(v)

where Ŷ c(v) = β̂c
0(v) + β̂c

1X
c(v) and Ŷ r(v) = β̂r

0(v) + β̂r
1Xr(v)

4 Performance Analysis

In order to demonstrate the usefulness of the symmetrical model presented in
this paper, experiments with four synthetic IVD sets in �2 are considered in this
section. These IVD sets contain outlier rectangles. Moreover, the proposed SLR
model is compared with the linear regression model for IVD introduced by [5].

4.1 Results for Synthetic Interval Data Sets

Here, the analysis was performed in the framework of a Monte Carlo experience
with 100 replications of each data set. Test and learning sets are randomly se-
lected from each synthetic IVD set. The learning set corresponds to 75% of the
original data set and the test data set corresponds to 25%.

The performance assessment of the SLR model presented is based on the
pooled root mean-square error (PRMSE). This measure is obtained from the
observed interval values IY (i) = [lY (i), uY (i)] (i = 1, . . . , n) of IY and from their
corresponding predicted interval values ÎY (i) = [l̂Y (i), ûY (i)] and it is estimated
in the framework of a Monte Carlo simulation with 100 replications in two ways.

For each learning synthetic IVD set, the PRMSE measure is given by

PRMSE1 =

√∑250
i=1 ω(i)error(i)

250
where,

error(i) = [(lY (i)− l̂Y (i))2 + (uY (i)− ûY (i))2]
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and ω(i) is the weight of the residual ri = Y c(i)− Ŷ c(i) (i = 1, . . . , 250) obtained
from symmetrical model described in subsection 3.1 and adopted to fit (Y c(i),
Xc(i)). In the centre and range model [5], the least squares criterion function
weights all residuals equally to 1.0.

For each test synthetic IVD set, the PRMSE measure is given by

PRMSE2 =

√∑125
i=1 error(i)

125

The PRMSE1 and PRMSE2 measures are estimated for each fixed config-
uration. At each replication of the Monte Carlo method, a SLR model to the
learning synthetic IVD set is fitted. Thus, the fitted model is used to predict
the interval values of the dependent interval-valued variable IY in the test and
learning synthetic IVD sets.

For each PRMSEk (k = 1, 2), the average and standard deviation over the
100 Monte Carlo simulations are calculated and a statistical Student’s t-test for
paired samples at a significance level of 1% is then applied to compare the SLR
model proposed in this paper to the linear regression model for IVD introduced
by [5]. The null and alternative hypotheses are, respectively:

H0 : (PRMSEk)Symmetrical = (PRMSEk)Linear

H1 : (PRMSEk)symmetrical < (PRMSEk)Linear .

where (PRMSEk)Symmetrical and (PRMSEk)Linear are, respectively, the pooled
root mean-square error for symmetrical model and pooled root mean-square error
for proposed model in [5].

Table 2 displays the ratio of times that the hypothesis H0 is rejected for the
measures PRMSE1 and PRMSE2 regarding all configurations of IVD sets.

Table 2. Comparison between regression models according to the rejection ratio (%)
of H0 for PRMSE1 and PRMSE2

Config. PRMSE1 PRMSE2

1 100 100
2 100 100
3 100 100
4 100 100

The results in the table above show clearly that the SLR model for IVD is
superior to the regression model proposed in [5]. For all test data sets in this
evaluation the rejection ratios of H0 are equal to 100%.

5 Conclusions

A symmetrical linear prediction model for symbolic IVD is introduced in this
paper. The input data set is described by feature vectors, for which each feature
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is an interval. The relationship between a dependent interval variable (response
variable) and an independent interval variable is modeled by information con-
tained in the range and mid-point of the intervals. A symmetrical linear predic-
tion is fitted for mid-points and the prediction of the lower and upper bounds of
the intervals is performed from these fits. A linear regression is fitted for range.

In order to validate the introduced symmetrical model for IVD, experiments
with synthetic IVD sets containing outlier IVD are considered. The fit and pre-
diction qualities are assessed by on a pooled root mean square error calculated
from learning and test data sets, respectively, and the results provided by the
proposed method are compared to the correspondent results provided by regres-
sion model for interval data presented in [5]. For synthetic IVD set, this measure
is estimated in the framework of Monte Carlo simulations.

The comparison between the models is achieved by hypothesis tests at 1% level
of significance. Regarding the pooled root mean square error, the results showed
that the symmetrical model is superior to centre-range model in terms of fit and
prediction qualities. This fact points out that, according to this evaluation, the
introduced symmetrical linear model is not sensitive in the presence of outlier
interval-valued data.

The next step is to investigate the behavior of the symmetrical model assum-
ing different families of heavy-tailed probability distribution for the errors.
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Abstract. The paper proposes new neuron model with an aggregation
function based on Generalized harmonic mean of the inputs. Information-
maximization approach has been used for training the new neuron model.
The paper focuss on illustrating the efficiency of the proposed neuron
model for blind source separation. It has been shown on various gener-
ated mixtures (for blind source separation) that the new neuron model
performs far superior compared to the conventional neuron model.

1 Introduction

Blind Source Separation (BSS) using neural network is one of the most emerging
areas in the field of neural network. Blind source separation (BSS) refers to the
problem of recovering statistically independent signals from a linear mixture[1].
The application of neural base blind source separation to extract signals of in-
dependent sources from their linear mixture has already been considered in sev-
eral real life problem such as in telecommunications, biometric, EGG, signal
and image processing. BSS using conventional neuron model with information
maximization approach has been attempted by several authors [2,3,4]. The per-
formance of these algorithms is usually influenced by the selection of the neuron
model. The drawback of the existing models is that non-linearity can not be
captured accurately. In this paper, we have purposed new neuron model which
is based on generalized harmonic mean (GHMN). The conventional perceptron
model is the special case of this neuron model. The order of hyperplane in gen-
eralized harmonic mean based neuron (GHMN) model is higher than that of
conventional model and thus the GHMN captures nonlinearity more efficiently.
Information-maximization approach has been used as a learning algorithm in
the GHMN model. The performance of the information-maximization approach
using GHMN model has been evaluated on a numbers of generated blind source
mixtures and compared with a performance of the conventional neuron model
and EASY algorithm for independent algorithm given by David Gleich [5]. The
results reveal the superiority of the GHMN model.
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Rest of the paper is organized as follows. In section 2, the new neuron model
is presented. Section 3 gives an overview of blind source separation problem.
The training algorithm of new neuron model for the blind source separation is
discussed in Section 4. In section 5, results have been tested on several generated
mixtures of signals. In section 6, we have concluded our work.

2 Generalized Harmonic Mean Neuron Model

Neuron modeling concerns with relating function to the structure of the neuron
on the basis of its operation. The MLP neuron is based on the concept of weighted
arithmetic mean of the N input signals

W eighted arithmetic mean (x1, x2, · · · , xN ) =
1
N

N∑
i=1

wi.xi (1)

The higher order neurons models are difficult to train because of a combinatorial
explosion of higher order terms as the number of inputs to the neuron increases.
To overcome this problem, as the name suggests we proposed generalized har-
monic mean neuron (GHMN) model which is based on the concept of generalized
harmonic mean. The generalized harmonic mean of the N inputs can be found
by the summing operation as follows [6]:

Mean (x1, x2, · · · , xN ) =

⎛⎜⎜⎜⎜⎝ N
N∑

i=1

xi
p

⎞⎟⎟⎟⎟⎠
−1/p

(2)

Case 1 : p = −∞

Mean (x1, x2, · · · , xN ) = limp→−∞

⎛⎜⎜⎜⎜⎝ N
N∑

i=1

xi
p

⎞⎟⎟⎟⎟⎠
−1/p

= Min(xi) = Min operation (3)

Case 2 : p = −1

Mean (x1, x2, · · · , xN ) =

⎛⎜⎜⎜⎜⎝ N
N∑

i=1

xi
−1

⎞⎟⎟⎟⎟⎠
1
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=

⎛⎜⎜⎜⎜⎝ N
N∑

i=1

1
xi

⎞⎟⎟⎟⎟⎠ = Harmonic mean (4)

Case 3 : p = 0

Mean (x1, x2, · · · , xN ) = limp→0

⎛⎜⎜⎜⎜⎝ N
N∑

i=1

xi
p

⎞⎟⎟⎟⎟⎠
−1/p

= (x1, x2, x3, · · · , xN )
1
N = Geometric mean (5)

Case 4 : p = 1

Mean (x1, x2, · · · , xN ) =
1
N

N∑
i=1

xi = Arithmetic mean (6)

Case 5 : p = 2

Mean (x1, x2, · · · , xN ) =

⎛⎜⎜⎜⎜⎝ N
N∑

i=1

xi
2

⎞⎟⎟⎟⎟⎠
−1/2

=
1
N

(
N∑

i=1

x2
i

)1/2

= Quadratic mean (7)

Case 6 : p = ∞

Mean (x1, x2, · · · , xN ) = limp→∞

⎛⎜⎜⎜⎜⎝ N
N∑

i=1

xi
p

⎞⎟⎟⎟⎟⎠
−1/p

= Max(xi) = Max operation (8)

The aggregation function of the new neuron model which gives the weighted
generalized harmonic mean of the N input signals of the neuron is defined as

nety =

⎛⎜⎜⎜⎜⎝ 1
N∑

i=1

wi · xi
p

⎞⎟⎟⎟⎟⎠
−1/p

+ b (9)
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where wi is adaptive parameter corresponding to input xi . b is the bias of the
neuron. nety is the net output passing trough the activation function.

On passing net value through an activation function ϕ , the output y will be
given as:

y = ϕ(nety) (10)

From Eq. 10 , we find that for p=1

y = ϕ

(
N∑

i=1

wi · xi + b

)
(11)

which is the output of conventional neuron model [7].

3 Blind Source Separation

Blind source separation (BSS) problems are those in which several source signals
are mixed together and the objective is to extract the original source signals from
themixtures [1]. Thebest example ofBSS isCocktail PartyProblem, inwhichmore
than one person start talking at a time and the listener is unable to judge any of
the conversations. The term blind in BSS is used because the mixing process and
sometimes number of source signals are not known. Several statistical and neural
approaches have been purposed for the solution of this problem. Independent com-
ponent analysis (ICA) is one of the methods which is most widely used for blind
source separation. In terms of neural network, ICA can be viewed as an unsuper-
vised technique which tries to represent data in terms of statistically independent
variables. In this section the basic data model of ICA has been defined [8,9].

Consider a source vector S.
S = [S1, S2, · · · , SN ]T

where N is the number of mutually statistically independent source. The vector
S is input to a linear system whose input-output characterization is defined by
nonsingular N − by − N mixing matrix A. The result is a N − by − 1 mixture
vector X related to S as follows:

X = A× S
where

X = [X1, X2, · · · , XN ]T

In real life situation both the source vector S and mixing matrix A are un-
known. The objective is to find de-mixing matrix W from mixture vector X
such that the source vector S can be recovered from output vector Y defined as
S = W ×X in Eq.12 as:

Y = [Y1, Y2, · · · , YN ]T (12)

Here, source vector S, mixing vector X and output vector Y are normalized
between zero to one. In this paper we are using logistic transform function which
has the range from 0 to 1 and due to use of power term; it is restriction that the
scaled value of X must be positive.
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4 Learning Algorithm

For blind source separation, we first expect the outputs of the separation sys-
tem to be statistically independent. For this purpose, we must utilize a measure
of independence. As mutual information is the best index to measure of inde-
pendence so in this paper mutual information-maximization approach has been
used for learning of the purposed neuron model for blind source separation. The
mutual information that the output Y of a neural network contains about its
input X can be defined as [10,11]:

I(Y, X) = H(Y )−H(Y/X) (13)

where H(Y ) is the entropy of the output and H(Y/X) is entropy which does not
come from input. Thus in this case, H(Y/X) is the part which does not depend
on weight [12]. To maximize the mutual information, the differentiation of the
equation (1) with respect to ′W ′ can be written as:

∂

∂W
I(Y, X) =

∂

∂W
H(Y ) (14)

∂
∂W H(Y/X) = 0, Thus the maximization of the mutual information I(Y/X) is
equivalent to maximization of the output entropy H(Y ).

Bell and Sejnowski [2] stated that when we pass a single input x through
a transforming function g(x) to give an output variable y, both I(y, x) and
H(y) are maximized when we align high density parts of the probability density
function (pdf) of x with highly sloping parts of the function g(x). This is the
idea of ”matching a neuron’s input-output function to the expected distribution
of single” that we find in [13]

When g(x) monotonically increases or decreases, the pdf of the output,fy(y)
, can be written as a function of the pdf of the input, fx(x),[14]

fy(y) =
fx(x)
|∂y/∂x| (15)

The entropy of the output H(y) is given by [10]:
H(y) = −E[lnfy(y)] = − ∫∞

−∞ fy(y) lnfy(y)

= E

[
ln |∂y

∂x
|
]
− E[ln fx(x)] (16)

In order to maximize the entropy of y by changing w and bias b, we need only
concentrate on maximizing the first term, which is the average log of how the
input affects the output. The second term on the right (the entropy of x) may be
considered to be unaffected by alterations in a parameter w and b determining
g(x). The weight update equations using gradient descent learning rule are given
below:

∆w ∝ ∂H

∂w
=

∂

∂w

(
ln |∂y

∂x
|
)

=
(

∂y

∂x

)−1
∂

∂w

(
∂y

∂x

)
(17)
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∆b ∝ ∂H

∂b
=

∂

∂b

(
ln |∂y

∂x
|
)

=
(

∂y

∂x

)−1
∂

∂b

(
∂y

∂x

)
(18)

In the case of logistic transfer function: y = 1
1+e−u , u =

⎛⎜⎜⎜⎜⎝ 1
N∑

i=1

wi · xi
p

⎞⎟⎟⎟⎟⎠
−1/p

where w is the weight and x is the input and b is the bias of the neuron. Then
the partial differentiation of output with respect to input can be written as

∂y

∂x
= y(1− y) (w · xp)

1
p−1

w · xp−1 (19)

and

∆w =
(

∂y

∂x

)−1
∂

∂w

(
∂y

∂x

)
(20)

∆w ∝
[

1
w

[(
1− 1

p

)
· 1
(w · xp)

+ (1− 2y) (w · xp)
1
p−1

]]
· xp (21)

similarly

∆b =
(

∂y

∂x

)−1
∂

∂b

(
∂y

∂x

)
(22)

∆b = (1− 2y) (23)

The above equation can be used as a weight update rule for the case of an input
and one output.

Putting q = 1 gives:

∆w =
1
w

+ x(1− 2y) (24)

which is the weight update rule given by Bell and Sejnowski for conventional
neuron model.

Let us consider a multidimensional inputs and outputs network with an input
vector X , a weight matrix W , a bias vector b and a monotonically transformed
output vector Y . weight update rule can be extended for this as:

∆W ∝ ∂H

∂W
=

∂

∂W

(
ln | ∂Y

∂X
|
)

=
(

∂Y

∂X

)−1
∂

∂W

(
∂Y

∂X

)
(25)
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For our proposed model with sigmoidal units Y = g(U), U =
(

1
W ·Xp

)−1/p

With g being the logistic function:y = g( 1
1+e−u ) the resulting learning rule is

familiar in form:

∆W ∝
[

1
W

[(
1− 1

p

)
· 1
(W ·Xp)

+ (1− 2Y ) (W ·Xp)
1
p−1

]]
·Xp (26)

∆b = (1 − 2Y ) (27)

5 Results

The results were tested on various generated mixtures of signals. The input signal
is normalized between 0-1. Logistic transformation is used to limit the output in
the range of 0-1. In all the BSS problems all the diagonal elements of the initial
weight matrix has chosen to be unity. The result is compared with the BSS with
information maximization approach using classical model and EASY algorithm
for independent algorithm given by David Gleich [5].

5.1 Example 1

The sources used to generate mixtures are sawtooth wave and Sin wave. Follow-
ing Fig. 1(a) show the wave forms of mixture.

x1 = 9 · sawtooth(5a) + 4 · sin(5a)
x2 = 3 · sawtooth(5a) + 3 · sin(5a)

Figs 1(b) and Figs 1(c) show the separated signal with information maximiza-
tion approach using GHMN model and classical model respectively and fig.1(d)
shows the separated signal by EASY-ICA algorithm. From the results it is visible
that BSS using GHMN model separate, Sin and sawtooth wave more accurately
than BSS using classical neuron model and EASY-ICA algorithm. And BSS us-
ing classical neuron model with information maximization approach performs
better than EASY-ICA algorithm.

5.2 Example 2

Three mixtures are synthetically generated with trigonometric, algebraic and
logarithmic functions. Sin, wave is taken as trigonometric function, square wave
is taken as algebraic and log wave is taken as logarithmic function. The mathe-
matical equations used to generate mixtures are given below:

x1 = 2 · log(2a) + 4 · square(5a) + 9 · sin(3a)
x2 = 8 · log(2a) + 3 · square(5a) + 3 · sin(3a)
x3 = 3 · log(2a) + 7 · square(5a) + 2 · sin(3a)

wave forms of mixtures are given in Fig. 2(a). The separated signals from the
mixture using various model has been depicted in Figs 2(b), (c) and (d) respec-
tively. The inference drawn for the earlier example holds true for this example
also. Since BSS using GHMN model outperform other two models.
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Fig. 1(a)      Two mixture of two signals Fig. 1(b) Separated signals using GHMN model

Fig. 1(c) Separated signals using classical neuron Fig. 1(d) Separated signals using EASY−ICA
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Fig. 2(c)  Separated signals using classical neuron Fig. 2(d) Separated signals using EASY−ICA
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5.3 Example 3

Three mixtures of different harmonic are generated using following equations:
x1 = 2 · sin(160a)+ 4 · [sin(60a)+6 · cos(60a)]+9 · sin(cos(180a))
x2 = 8 ·sin(160a)+3 · [sin(60a)+6 · cos(60a)]+3 ·sin(cos(180a))
x1 = 3 ·sin(160a)+7 · [sin(60a)+6 · cos(60a)]+2 ·sin(cos(180a))

The wave forms of mixtures are given in Fig. 3(a). The separated signals from
the mixture using various model and EASY-ICA algorithm has been depicted in
Figs 3(b), (c) and (d) respectively. The inference drawn for the earlier example
1 and 2 holds true for this example also.
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Fig. 3(a) Three mixtures of different harmonic signals Fig. 3(b)  Separated signals using GHMN model

Fig. 3(c) Separated signals using classical neuron Fig. 3(d)   Separated signals using EASY−ICA

Fig. 3.

6 Conclusions

This paper proposes a new neuron model base on generalized harmonic mean
information-maximization has been used as the learning algorithm. Comparative
performance evaluations of this propose model depicts that separation of original
sources in the blind source mixtures is far superior compare to conventional
neuron model.
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Abstract. The paper aims at training multilayer perceptron with dif-
ferent new error measures. Traditionally in MLP, Least Mean Square
error (LMSE) based on Euclidean distance measure is used. However
Euclidean distance measure is optimal distance metric for Gaussian dis-
tribution. Often in real life situations, data does not follow the Gaussian
distribution. In such a case, one has to resort to error measures other
than LMSE which are based on different distance metrics [7,8]. It has
been illustrated in this paper on wide variety of well known time se-
ries prediction problems that generalized geometric and harmonic error
measures perform better than LMSE for wide class of problems.

1 Introduction

Time series prediction and forecasting are key problems of function approxima-
tion. In the existing literature, various neural network learning algorithms have
been used for these problems [1,2,3]. In this paper, we have used multilayer per-
ceptron (MLP) neural network for time series prediction. MLP is composed of a
hierarchy of processing units, organized in series of two or more mutually exclu-
sive sets of neurons or layers. The input layer serves as the holding site for the
input applied to the network. The output layer is the point at which the overall
mapping of the network input is available [4,5]. Most widely used algorithm for
learning MLP is the back-propagation algorithm [6]. In Back-propagation algo-
rithm, error between target value and observed value is minimized. Typically
Euclidean distance is used to for the error measure. It has been proven based
on Maximum Likelihood criterion that Euclidean distance is optimal distance
metric for Gaussian distribution [7,8].Since the distribution of data is unknown,
using LMSE for training of MLP may not give the actual approximation of the
functions.In this paper, Back-propagation algorithm with some new error mea-
sures based on distance metrics (for similarity measures) given by Jie Yu et al
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[7,8] has been used for training MLP for time series prediction. Comparative
performance for each of the error measures has been done on a wide variety of
well known time series prediction problems. The performance measures used are
chi-square goodness of fit test, AIC and training and testing error.

Rest of the paper is organized as follows, Section 2, gives the overview of
distance metrics used as various error measures. The network architecture of
feed-forward (MLP) neural network is presented in section 3. In section 4, learn-
ing rule of MLP using Back-propagation (BP) algorithm with different error
measures has been discussed. In section 5, results have been tested on several
widely known time series prediction and forecasting data sets. In section 6, we
have concluded our work.

2 New Error Measures

Traditionally Back-propagation (BP) algorithm is used in training Artificial Neu-
ral Network (ANN). The performance of Neural Network depends on the method
of error computation. It has been proven that when the underlying distribution
of data is Gaussian, Least mean square error (LMSE) [7,8] is best for training
the network. %begincenter Since the distribution of data is unknown, it may be
possible that error computed based on Euclidean distance may not be suitable
for training of neural network. It will be reasonable to assume that there may
be some distance metric which will give new error measure to fit the unknown
data better. Some new error measures based on distance metric for similarity
measures [7,8] is given in Table 1. In Table 1, yi denotes the desired value of
neuron, ti denotes the target value and N denotes number of pattern.In error
estimation, if the target value is far away from the desired value, error measure

Table 1.

Error Measure

LMS E = 1
2

N∑
i=1

(ti − yi)2

Geometric E = 1
2

N∑
i=1

[log(ti/yi)]2

Harmonic E = 1
2

N∑
i=1

[ti(yi/ti) − 1]2

Generalized Geometric E = 1
2

N∑
i=1

[ti
r log(ti/yi)]2

Generalized Harmonic Type-1 E = 1
2

N∑
i=1

[ti
p(yi/ti) − 1]2

Generalized Harmonic Type-2 E = 1
2

N∑
i=1

(ti
q − yi

q)2
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based on the geometric and harmonic distance metric will be lower in compari-
son to least mean square error (LMSE). Geometric and Harmonic errors are less
sensitive to outliers. Hence the training of neural network using geometric and
harmonic error is more robust.

In Generalized Geometric and Harmonic errors, parameters r, p and q define
specific error measures. When r = 0, generalized geometric error becomes simple
geometric error, and when p = 1, q = −1, both types of Generalized Harmonic
errors become simple harmonic error and for p = 2 and q = 1, both give least
mean square error (LMSE) [8].

3 Multi-Layer Perceptron

Multilayer Perceptron (MLP) (Fig.1) consists of an input layer of source nodes,
one or more than one hidden layers of neurons and an output layer [4,5]. The
number of nodes in the input and the output layers depends on the number of
input and output variables, respectively. The input signal propagates through
the network layer-by-layer [9].

Fig. 1.

It has been proved that a single hidden layer is sufficient to approximate any
continuous function [11]. A three layer MLP is thus taken into account in this
paper. Computation of the output of MLP carried out as follows [5]:

The net value at jth neuron of hidden layer is

nethj =
ni∑

i=1

(whji.xi + bhj), j = 1, 2, . . . , nh (1)

where xi is the input at ith node of input layer.

whji is the connection weight of ith neuron with jth input.
bhj is the weight of the bias at jth neuron of hidden layer.
ni is the number of neuron in input layer.
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Output of ith neuron of hidden layer is

hj = φ(nethj) =
1

1 + e−nethj
(2)

The net value at kth neuron of output layer is

netyk =
nh∑
j=1

(wokj .hj + bok), k = 1, 2, . . . , no (3)

where hj is the output of jth neuron of hidden layer.

wokj is the connection weight of jth hidden layer neuron with kth output
layer neuron.
bok is the weight of the bias at kth neuron of output layer.
nh is the number of neurons in hidden layer.

Output of kth neuron of output layer is yk = φ(netyk) = 1
1+e−netyk

.

4 Training Algorithm of MLP

We describe an error back-propagation learning rule for the training of the net-
work with new error measures. The weight equations using gradient descent rule
are given bellow:

whji(new) = whji(old) + η · ∂E

∂yk
· ∂yk

∂whji
(4)

bhj(new) = bhj(old) + η · ∂E

∂yk
· ∂yk

∂bhj
(5)

wokj(new) = wokj(old) + η · ∂E

∂yk
· ∂yk

∂wokj
(6)

bok(new) = bok(old) + η · ∂E

∂yk
· ∂yk

∂bhk
(7)

where, η is the learning rate and

∂yk

∂whji
= [

no∑
k=1

(1− yk) · yk · wkj ] · (1 − hj) · hj · xi (8)

∂yk

∂bhj
= [

no∑
k=1

(1− yk) · yk · wkj ] · (1 − hj) · hj (9)

∂yk

∂wokj
= (1− yk) · yk · hj (10)

∂yk

∂bok
= (1− yk) · yk (11)
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For different error criterion only ∂E
∂yk

will change. This is dependent on the dis-
tance used in computation of the total error E.
Case 1: Euclidean distance, LMSE = E = 1

2

∑N
n=1

∑no
k=1(tk − yk)2

Then,
∂E

∂yk
= −η · (tk − yk) (12)

Case 2: Geometric distance, E = 1
2

∑N
n=1

∑no
k=1[log(yk/tk)]2

Then,
∂E

∂yk
= −η · (log(tk)− log(yk)) · 1/yk (13)

Case 3: Harmonic distance, E = 1
2

∑N
n=1

∑no
k=1 tk · (yk/tk − 1)2

Then,
∂E

∂yk
= η · (tk) · (yk/tk − 1) (14)

Case 4: Generalized geometric distance, E = 1
2

∑N
n=1

∑no
k=1[tk

r ·log(tk/yk−1)]2

Then,
∂E

∂yk
= −η · tk2r · (log(tk)− log(yk)) · 1/yk (15)

Case 5: Generalized harmonic distance type 1, E = 1
2

∑N
n=1

∑no
k=1 tk

p·(yk/tk−1)2

Then,
∂E

∂yk
= η · tkp · (yk/tk − 1) (16)

Case 6: Generalized harmonic distance type 2, E = 1
2

∑N
n=1

∑no
k=1(tk

q − yk
q)2

Then,
∂E

∂yk
= −η · q · (tkq − yk

q) · yk
q (17)

5 Results

Performance of different error measures using MLP was tested on a number of
widely known time series prediction data sets. The data in all the datasets were
normalized between 0.1 to 1.0.For the sake of comparison, learning rate and
number of epochs was kept same for all errors. Average sum squared error alone
may not accurately reflect the accuracy of the network. Thus accuracy of the
network is evaluated based on chi-square goodness of fit test, Akaiki information
criterion (AIC) and training and testing error [11,12,13].
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5.1 Short-Term Internet Incoming Traffic

Short-term Internet traffic data was supplied by HCL-Infinet (a leading Indian
ISP). We propose a model for predicting the Internet traffic using previous val-
ues. Four measurements at time t, (t-1), (t-2) and (t-4) were used to predict
the incoming internet traffic at time (t+1). The structure of the model has four
neurons in the hidden layer. In this case, out of 300, 70% samples are taken for
training and 30% for testing. To train the network a learning rate of 0.2 was
chosen and the number of epochs was taken as 1000.

5.2 Financial Time Series

In time series prediction to predict the future index of stock is a great challenge.
For prediction 77 data points (August 28 1972- December 18 1972) [14] were
chosen, 50 data sets were taken for training and 27 data sets were taken for
testing purpose. Previous two indices were used to predict future index. Three
neurons were used in the hidden layer. Regarding the learning parameters 2000
epochs was chosen with learning rate of 0.01.

5.3 Petroleum Sales

Petroleum sales data for the period Jan 1971 to Dec 1991 [14] was used for
prediction of sales. Sales of petrol in the previous three months were taken to
predict the sale in the fourth month. The data comprises of 252 points. For
training of the network, 196 data were used and 53 data points were taken for
testing. In the hidden layer four neurons were used. Training of the network is
done till 2000 epochs with a learning rate of 0.02.

5.4 Box-Jenkis Gas Furnace

The Box-Jenkins gas furnace data [15] set was recorded from a combustion pro-
cess in which air and methane were combined in order to obtain a mixture of
gases which contained CO2. We modeled the furnace output as a function of
the previous output y(t-1) and input x(t-1). The training was performed on 145
samples and 145 samples were used for testing. In the hidden layer four neurons
were taken. Network is trained till 2000 epochs with a learning rate of 0.02.

5.5 Australian Monthly Electricity Production

Australian monthly electricity production data was used for forecasting [14].
371 data points were used in training and 98 data points were used for testing.
Data in the periods (t-1), (t-2), (t-3) was used for predicting for time period
(t). The structure of model contains four neurons in the hidden layer. Learning
parameters are same as chosen for the previous two data set.
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5.6 Cow Milk Production

Monthly milk production per cow over 14 years [14] was used for time series
prediction. Data in the previous two periods was used for prediction. Till one
thousand epochs network was trained with a learning rate of 0.02. In the network,
the hidden layer comprised of three neurons.

Table 2.

LMS Geometric Harmonic Generalized Generalized Generalized
Geometric Harmonic Type 1 Harmonic Type 2

HCL

TRE 0.0033 0.0031 0.0033 0.0033 0.0032 0.0032
TTE 0.0043 0.0040 0.0043 0.0043 0.0042 0.0041
CHI 2.2254 2.1484 2.1893 2.1778 2.1756 2.0793
AIC -19.64 -19.76 -19.60 -19.70 -19.65 -19.55

DOWJONES

TRE 9.1133e-004 9.8006e-004 6.9288e-004 7.4659e-004 7.4022e-004 6.4087e-004
TTE 0.0012 0.0012 9.3175e-004 8.9355e-004 9.8927e-004 8.6135e-004
CHI 0.3685 0.3354 0.3179 0.3078 0.3152 0.2960
AIC -3.32 -3.28 -3.45 -3.42 -3.42 -3.49

PETROL

TRE 8.4186e-004 4.7920e-004 5.8087e-004 5.8497e-004 5.5775e-004 4.6957e-004
TTE 0.0068 0.0031 0.0038 0.0028 0.0038 0.0031
CHI 1.1819 0.8223 0.8874 0.7899 0.9259 0.8151
AIC –13.55 -14.66 -14.28 -14.70 -14.27 -14.36

GAS FURNACE

TRE 3.2815e-004 4.4026e-004 3.6901e-004 3.3292e-004 3.4909e-004 3.4125e-004
TTE 0.0016 0.0017 0.0012 0.0014 0.0014 0.0012
CHI 0.9319 0.9051 0.8460 0.8272 0.8546 0.8041
AIC -10.39 -10.96 -11.22 -11.37 -11.30 -11.39

ELECTRICAL

TRE 7.4763e-004 7.4891e-004 6.7267e-004 6.0223e-004 6.9835e-004 7.1438e-004
TTE 0.0084 0.0081 0.0079 0.0079 0.0078 0.0078
CHI 1.9166 1.8710 1.8279 1.8048 1.8531 1.8319
AIC -26.38 -26.77 -26.39 -27.18 -26.64 -26.55

COW MILK

1-7 TRE 0.0056 0.0052 0.0056 0.0051 0.0053 0.0049
TTE 0.0201 0.0188 0.0204 0.0177 0.0188 0.0182
CHI 2.2254 2.1484 2.1893 2.1778 2.1756 2.0793
AIC -5.97 -6.07 -5.97 -6.10 -6.04 -6.06

It is seen from Table 2 that in all the data sets, the training and testing error
was much lower for generalized errors in comparison to LMSE. For the data sets
HCL, Dow Jones, Gas furnace and Electrical, Generalized harmonic performs
best in terms of testing error. The chi-square values and AIC for these data
sets also justify that generalized errors perform best. For Petrol and Cow milk
Generalized geometric performs the best in terms of testing error and chi-square
test and AIC.
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6 Conclusions

In this paper, a novel approach of using different error measures in MLP is
suggested. The weight update equations have been evaluated for each of the error
measures. It has been shown on several widely known time series prediction and
forecasting problems that error measures other than LMSE gives much better
performance.
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Abstract. Feature selection has improved the performance of text clus-
tering. Global feature selection tries to identify a single subset of features
which are relevant to all clusters. However, the clustering process might
be improved by considering different subsets of features for locally de-
scribing each cluster. In this work, we introduce the method ZOOM-IN
to perform local feature selection for partitional hierarchical clustering
of text collections. The proposed method explores the diversity of clus-
ters generated by the hierarchical algorithm, selecting a variable number
of features according to the size of the clusters. Experiments were con-
ducted on Reuters collection, by evaluating the bisecting K-means algo-
rithm with both global and local approaches to feature selection. The
results of the experiments showed an improvement in clustering perfor-
mance with the use of the proposed local method.

1 Introduction

Clustering algorithms have been applied to support the information access in
large collections of textual documents [7]. Such techniques may organize similar
documents in clusters (groups) associated to different levels of specificity and
different contexts. The structure of clusters, properly labeled, offers a vision of
what types of questions can be answered by the query results.

In order to accomplish the text clustering process, the documents are re-
presented, in most cases, as a set of indexing terms associated to numerical
weights. Considering all existing terms in a collection brings some difficulties
to the clustering algorithm. In fact, when the size of the feature space is very
high, the distance between similar points is not very different than the distance
between more distant points (i.e.,“curse of dimensionality”) [8].

Considering the above context, text clustering usually contains a phase of
dimensionality reduction of the vectors that represent the documents. Features
in the reduced space may correspond to a subset of the original features (as
performed by feature selection methods [2]), or they may be created by com-
bining the original features (as performed by feature extraction methods [8]). In
text clustering, feature extraction presents a disadvantage compared to feature
selection since each new feature is no longer associated with an existing term or
word, which makes the formed clusters less comprehensive [8].
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Feature selection can be classified as either global or local [5]. The global ap-
proach aims to select a single subset of features which are relevant to all derived
clusters [5]. Despite the large use of global methods in literature, depending on
the problem, it is possible that there are several different subsets of features that
show good clusters. In order to overcome this limitation, local feature selection,
in turn, tries to identify different subsets of features associated to each formed
cluster. Although recent work has obtained good empirical results by evaluating
local feature selection on non-textual data (see [5]), there is no investigation of
the use of local feature selection for text clustering.

In this work, we proposed the ZOOM-IN, a local feature selection method for
partitional hierarchical clustering. In this method, all the documents are initially
allocated to a single top-level cluster which is recursively divided into small sub-
clusters. At each division step, a feature selection criterion is applied to choose
the features which are more relevant only considering the cluster being divided.
The number of selected features is defined according to the cluster size. The result
of our method is a hierarchy of clusters in which each cluster is represented by
a different subset of features.

Experiments were performed on the Reuters collection [4], comparing the bi-
secting K-means algorithm (a partitional hierarchical algorithm) [7], with both
the global and local feature selection approaches. The results revealed an improve-
ment in precision when the local approach was compared to the global approach.
The ZOOM-IN method eliminated irrelevant terms, at same time maintaining the
quantity of information required for each division of the clusters.

Section 2 brings a brief introduction to text clustering. Section 3 presents fea-
ture selection approaches applied to text clustering, followed by Section 4 which
presents the proposed method. Section 5 brings the experiments and results.
Finally, Section 6 presents some final considerations and future work.

2 Text Clustering

Text clustering is the process of grouping similar documents into clusters, in
order to better discriminate documents belonging to different categories. A do-
cument in text clustering is described by a set of keywords, so-called terms of
indexing, which is a vocabulary extracted in the collection of texts. A weight is
associated to each term, defining an array of terms that represents the document.
The term weights are commonly computed by deploying the Vector Space Model
with the TF -IDF weighting schema. In this model, each term weight tfidfj in
the document dj is given by:

tfidfj = tfj log
n

DFt
(1)

where n is the number of documents in the collection, DFt is the number of
documents in the corpus where the term t occurs and tfj is the frequency of the
term t in the document dj . The proximity between two document vectors d1 and
d2, represented in this model, is usually defined by the cosine measure as:
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cos (d1, d2) =
d1 · d2

‖d1‖ × ‖d2‖ (2)

A hierarchical clustering algorithm groups the data in a hierarchy of clusters.
For text clustering, the hierarchical solution has more advantages regarding a
flat approach, since it divides the collection of documents on various levels of
granularity and specificity, providing a better view of the collection.

The hierarchical clustering algorithms may be further categorized into agglom-
erative or partitional. Agglomerative clustering is a bottom-up approach which
starts affecting each document to a distinct cluster and progressively joins simi-
lar clusters. Partitional clustering, in turn, is a top-down approach which starts
with all documents in a single cluster and progressively divides the existing clus-
ters. In the agglomerative clustering, wrong decisions of combining clusters at
the beginning of the algorithm execution tend to multiply errors as the clustering
is executed. Partitional algorithms, in turn, have a more global vision of possible
cohesive clusters, and hence, they will be the focus of our work. A widespread
partitional algorithm is the bisecting K-means [7], in which the simple K-means
algorithm is used to bisect the clusters (i.e., dividing each cluster in two sub-
clusters) at each division step. The bisecting K-means has shown to be very
competitive compared to agglomerative algorithms [7].

3 Feature Selection for Text Clustering

Feature selection for text clustering is the task of disregarding irrelevant and
redundant terms in the vectors that represent the documents, aiming to find the
smallest subset of terms that reveals “natural” clusters of documents [2]. Using a
small subset of relevant terms will speed up the clustering process, while avoiding
the curse of dimensionality. The methods commonly used to select features in
text clustering deploy statistical properties of the data as a criterion to determine
the quality of the terms [1,8] (see Section 3.1). The selection is performed with
the use of a threshold or a fixed number of desired features.

3.1 Criteria for Ranking Features

In this section, we cited some criteria which will be later applied in our experi-
ments:

Document Frequency (DF). The value DFt of the term t is defined as the
number of documents in which the term t occurs at least once in the collection
of documents.

Term Frequency Variance (TfV). Let tfj be the frequency of term t in the
document dj . The quality of term t is defined in the TfV method as:

T fVt =
n∑
j

tf2
j −

1
n

⎡⎣ n∑
j

tfj

⎤⎦2

(3)
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where n is the number of documents in the collection. In the experiments per-
formed in [1], the TfV method has maintained the precision of the clustering
process with up to 15% of the total number of features.

Mean of TF−IDF (TI). In [8], the quality of a term t is defined as the mean
value of tfidfj across all documents (j = 1, . . . , n) in the collection. The TI
method has shown a performance superior to DF and similar to TfV [8].

3.2 Global and Local Feature Selection

Feature selection for clustering may occur on either the global or the local ap-
proach. The global feature selection chooses the relevant features once by de-
ploying a pre-defined ranking criterion, and uses the same subset of features in
the whole clustering process. Global selection is the most investigated approach
in the literature [2,8]. In local feature selection, a subset of features is chosen for
each cluster. It assumes that the clusters may be better discriminated from each
other by considering a different subset of features for each cluster.

Figure 1 illustrates a set of objects belonging to four clusters, which are de-
scribed by the features x, y and z. The clusters G1 and G2 are only revealed
when the attributes x and y are considered, i.e., the attribute z is irrelevant to
distinguish between G1 and G2 (see Figure 1(a)). Figure 1(b), in turn, illus-
trates that features y and z are relevant to identify the clusters G3 and G4, i.e.,
feature x is irrelevant in this context. Finally, the attributes x and z correspond
to an irrelevant subset of features (Figure 1(c)). In such situation, any subset of
features eventually returned by a global method would not be able to identify
the four existing clusters. It is necessary to examine a feature in the context of
different subsets before stating that the feature is actually irrelevant [2].
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Fig. 1. Data of the clusters G1, G2, G3 and G4 for different features

Compared to the global approach, there is few relevant work in the literature
of clustering that investigated the local feature selection. In [5], for instance,
the authors proposed a local feature selection method for clustering, by search-
ing several subsets of features that show different clusters, and choosing the
most cohesive clustering based on a criterion of cluster evaluation. In [5], exper-
iments were performed to evaluate the proposed local method for the K-means
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algorithm. By using the local method, the authors obtained an improvement
in precision for clustering benchmarking problems from the UCI repository. We
highlight here that, to the best of our knowledge, the local approach for feature
selection has not been applied in any work for text clustering.

4 Proposed Method

In this work, it is proposed an algorithm to perform partitional hierarchical
clustering with local feature selection. In our proposal, it is expected that the
privileged global vision of partitional algorithms can take advantage of a local
vision offered by the local feature selection. We also expected that the variety of
subsets of features selected to each division of the clusters might reveal hidden
clusters in the data. The proposed algorithm for local feature selection using the
bisecting K-means follows the steps:

1. Choose a cluster to divide, considering an initial cluster containing all the
documents;

2. Select features for the chosen cluster by deploying a ranking criterion (as
cited in Section 3.1). The features may be filter based on a pre-defined num-
ber of N required terms or based on a threshold τ on the ranking criterion;

3. Build 2 sub-clusters using the K-means algorithm;
4. Repeat steps 2 and 3 by ITER times;
5. Repeat steps 1, 2, 3 and 4 until the required number of clusters is reached.

The problem in Figure 1 can be initially solved by selecting the subset of
features (e.g., x and y) that best reveals clusters in the data (e.g., Figure 1(a)).
Following, the algorithm generates sub-clusters to both clusters A (the data of
G1 plus G2) and B (the data of G3 plus G4). By performing a new feature
selection to each cluster, the cluster A remains with the features x and y and
cluster B with the features y and z. The cluster A can now be broken into G1
and G2 (children of the cluster A). Cluster B, in turn, can be broken into G3
and G4 (children of the cluster B), thus revealing all clusters for these data.

An important aspect to be considered in our algorithm is the number N of
terms to be selected for each cluster. As the algorithm is executed, the generated
clusters become smaller, and hence, the number of distinct terms in documents
also decreases. Thus, the choice of a large constant number N tends to minor the
selection potential (capacity to select all the relevant features) of our method
since the number of selected terms will be similar to the number of distinct
terms. The choice of a small constant number N , on other hand, will cause a
lost of information when the clusters are large.

A solution to the above trade-off is to use a variable number of terms according
to the size of the clusters and the number of distinct terms. For simplicity, in
our work, it is proposed to choose the number of terms ni for the cluster i as:

ni =
⌊

NT

NC
·mi

⌋
(4)
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where NT is the number of different terms in the collection of documents, NC is
the size of the collection of documents and mi is the size of the cluster i. NT /NC is
the proportion of different terms revealed in each document of the collection. This
procedure reduces the number of terms locally selected in each division of cluster.
Because this reminds the setting of a binocular, this method is referred in this
work as ZOOM-IN method. As it will be seen, we performed experiments with
both the local feature selection with constant number of features and the ZOOM-
IN to decide the number of selection terms per each iteration. This method is
similar to that proposed in [3] to text categorization, being said as “glocal”,
since it performs global feature selection at each split of clusters and it is local
because it makes feature selection to the clusters resulting from a split, in such a
way that each set of sibling nodes of the dendogram is represented by a different
subset of features.

5 Experiments and Results

Section 5.1 describes the experiments performed to evaluate the viability of the
proposed method. Section 5.2, in turn, presents the obtained results.

5.1 Experiments Description

In our experiments, we used a subset of documents in the Reuters-21578 col-
lection [4] which were assigned to a single class (representing a total number of
1228 documents associated to 42 classes). The collected documents were initially
processed in order to remove stopwords (prepositions and common words). We
also applied the stemming operator with the Porter’s algorithm.

The clustering algorithms were evaluated by deploying the micro-averaged
precision measure, also used, for instance, in [6]. The micro-averaged precision
assumes that each cluster formed by the clustering algorithm has a majority
representative class c. Considering T the set of clusters and C the set of classes,
the micro-averaged precision is given by [6]:

P (T ) =
∑

c∈C α (c, T )∑
c∈C α (c, T ) + β (c, T )

(5)

where α (c, T ) is the number of documents correctly affected to c and β (c, T ) is
the number of documents incorrectly affected to c.

For evaluating the hierarchy generated by the clustering algorithms, the clus-
ters considered for computing the precision were those present in the leaves of
the produced dendogram and the number of clusters specified for execution of
the algorithms was equal to the number of classes of the collection. Finally,
the micro-average precision was averaged over 30 different runs of the evaluated
algorithms.
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5.2 Results and Discussion

Figure 2 presents the precision obtained for each evaluated algorithm (bisecting
K-means with both the global and local feature selection), with constant number
of selected features. As it may be seen, for all global methods, when few terms
are selected the performance of the global methods falls. The criterion of ranking
that obtained best precision rates is the TfV, with performance similar to TI
and better than the DF, as already observed in the work [8]. It is concluded that
for a few number of selected terms, there is little information on the documents,
which deteriorates the precision of the clustering.
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Fig. 2. Micro-averaged precision in relation to the number of terms used for the Reuters
collection, with local and global feature selection

The local approach, in turn, keeps the precision even with a very small quan-
tity of terms, excepting for the method DF. Interestingly, the precision ob-
tained for fewer selected terms is even better than the precision obtained when
a large number of features is selected. This is due to the fact that for large
values of the number of selected terms, the selective potential decreases locally
(as discussed in Section 4). With a small amount of selected terms, the selec-
tive potential is kept during the divisions of the clusters, and the precision is
improved.

Table 1. Micro-averaged precision with the ZOOM-IN method

Collection Without method TfV DF TI

Reuters 0.527117 0.540988 0.527362 0.541395

However, a small amount of selected terms may undermine the amount of
information needed at the beginning of the execution of the clustering, when the
clusters are still large and the number of distinct terms as well. It is necessary to
select the terms that reflect a real benefit to the clustering. In this context, we
also performed an experiment using a variable amount of locally selected terms,
which is called the ZOOM-IN method (as proposed in Section 4). The values of
precision obtained by ZOOM-IN were even better that the results obtained by
the local method with few features (see Table 1).
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6 Conclusions

In this work, it was proposed the use of a local feature selection approach for par-
titional hierarchical text clustering. Each set of sibling nodes derived by the pro-
posed method is represented by a different subset of features. In the performed
experiments, the local approach was compared to the global feature selection
approach for the bisecting K-means. It was observed that the local approach
obtained good precision even for few selected terms. We also performed exper-
iments by using the ZOOM-IN method to automatically define the number of
selected features in each iteration of the partitional algorithm. The results ob-
tained by the ZOOM-IN were satisfactory, because it showed the benefits in
locally selecting features.

As future work, we intend to evaluate other criteria for ranking features,
which use information from the similarity between documents, such as the rank-
ing based on entropy. Finally, the proposed method will be evaluated on other
collections of documents.
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Abstract. In text classification, one key problem is its inherent di-
chotomy of polysemy and synonym; the other problem is the insuffi-
cient usage of abundant useful, but unlabeled text documents. Targeting
on solving these problems, we incorporate a sprinkling Latent Semantic
Indexing (LSI) with background knowledge for text classification. The
motivation comes from: 1) LSI is a popular technique for information
retrieval and it also succeeds in text classification solving the problem of
polysemy and synonym; 2) By fusing the sprinkling terms and unlabeled
terms, our method not only considers the class relationship, but also ex-
plores the unlabeled information. Finally, experimental results on text
documents demonstrate our proposed method benefits for improving the
classification performance.

1 Introduction

Text classification (or categorization) is one of key problems in text mining. It
aims to automatically assign unlabeled documents to one or more predefined
classes based on their content. A number of statistical and machine learning
techniques have been developed to solve the problem of text classification, e.
g., regression model, k-nearest neighbor, decision tree, Näıve Bayes, Support
Vector Machines, etc. [4,9]. There are several difficulties for this task. First,
the existence of polysemy (a word contains multiple meanings) and synonym
(different words express the same concepts) makes it hard to form appropriate
classification models [3,11,8]. Second, documents usually representing by “bag
of words” are inherently in very high dimension feature space. It increases the
chance of overfitting [9]. Third, due to the difficult and tedious nature of labeling,
training samples are sometimes extremely limited, this makes it difficult to make
decisions with high confidence [11].

In order to solve the problems of polysemy and synonym, researchers usually
adopt the Latent Semantic Indexing (LSI) technique [3] due to its empirically
effective at overcoming these problems in text classification. LSI also succeeds
in a wide variety of learning tasks, such as search and retrieval [3], classifica-
tion [11,8] and information filtering [5,6], etc. It is a vector space approach for
modeling documents, and many papers have claimed that this technique brings
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out the latent semantics in a collection of documents [3]. Typically, LSI is ap-
plied in an unsupervised paradigm. It is based on the well known mathematical
technique called Singular Value Decomposition (SVD) and maps the original
term-document matrix into a low dimensional space. Recently, researchers have
incorporated class information into LSI for text classification. For example, [10]
has presented a technique called Supervised LSI which is based on iteratively
identifying discriminative eigenvectors from class-specific LSI representations.
[1] has introduced a very simple method, called “sprinkling” to integrate class
information into LSI. The basic idea of [1] is to construct an augmented term-
document matrix by encoding class labels as artificial terms and appending to
training documents. LSI is performed on the augmented term-document matrix,
where class-specific word associations being strengthened. These pull documents
and words belonging to the same class closer to each other in a indirect way.
[2] extends the idea of [1] by adaptively changing the length of sprinkling terms
based on results from confusion matrices.

One problem is that the above supervised LSI techniques do not take into ac-
count useful background knowledge from unlabeled text documents. This reduces
a chance to improve the performance of LSI in text categorization. After litera-
ture review, we found that [11] has incorporated background knowledge into LSI
to aid classifying text categories. However, the LSI-based method in [11] does not
consider the class label information, which is the most important information,
in the text classification.

Hence, we aim at the above mentioned problems and utilize the advantages of
LSI to improve the performance of classifying text documents. More specifically,
we incorporate the sprinkling terms, which can capture relationships between
classes, into original LSI and expand the term-by-document matrix by using the
background knowledge from unlabeled text documents. We then validate the
proposed method through detailed experiments on three text datasets from the
CMU text mining group. The results show that our method can truly improve
classification accuracy.

The rest of this paper is organized as followings: In Section 2, we give a brief
introduction to the LSI-based techniques. In Section 3, we detail the proce-
dure of the proposed new sprinkled LSI with background knowledge method. In
Section 4, we present the experimental setup and results. Finally, the paper is
concluded in Section 5.

2 Related Works

2.1 Latent Semantic Indexing

Latent Semantic Indexing [3] is based on the assumption that there is an under-
lying semantic structure in textual data, and that the relationship between terms
and documents can be re-described in this semantic structure form. Textual doc-
uments are usually represented as vectors in a vector space. Each position in a
vector corresponds to a term. If the term does not appear in the document,
the value for the corresponding position equal to 0 and it is positive otherwise.
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Hence, a corpus is deemed into a large term-by-document (t × d) matrix X ,
where, xij corresponds to the presence or absence of a term (in row i) in a doc-
ument (in column j), X·j represents the vector of a document j, Xi· represents
the vector of a word i. The value of xij can have other expressions, e.g., term
frequency (tf), term frequency inverse document frequency (tf-idf), etc.

This matrix, X , is typically very sparse, as most documents consist of only a
small percentage of the total number of terms occurred in the full corpus of doc-
uments. Due to the nature of text documents, where a word can have ambiguous
meanings and each concept can be represented by many different words, LSI re-
duces the large space to a small space hoping to capture the true relationships
between documents by Singular Value Decomposition (SVD), i.e., X = TSD�,
where � is the transpose of a matrix, T and D are orthogonal matrices and S is
the diagonal matrix of singular values and the diagonal elements of S are ordered
by magnitude. To reduce the dimension, the smallest k values in S can simplified
be set to zero. The columns of T and D that correspond to the values of S that
were set to zero are deleted. The new product of these simplified three matri-
ces consists of a matrix X̃ that is an approximation of the term-by-document
matrix, X̃ = TkSkD�

k .
These factors can be deemed as combining meanings of different terms and

documents; and documents can be reexpressed using these factors. When LSI is
used for retrieval, a query, q, is represented in the same new small space that
the document collection is represented in, forming a pseudo-document. This is
done by multiplying the transpose of the term vector of the query with matrices
Tk and S−1

k [3], Xq = q�TkS−1
k .

Once the query is represented in this way, the distance between the query
and documents can be computed using the cosine metric (or Euclidean dis-
tance), which measures similarity between documents. LSI returns the distance
between the query and all documents in the collection. Those documents that
have higher cosine value (or smaller Euclidean distance) than a given threshold
can be returned as relevant to the query. For text classification, k-nearest neigh-
bor (kNN) or Support Vector Machine (SVM) are then applied on the reduced
features to get the decision rule or boundary.

2.2 Sprinkling

In [1], a sprinkling LSI was developed by augmenting artificial terms based on
class labels in the term-by-document matrix. As the usual manner of LSI, SVD is
then performed on the augmented term-by-document matrix. Noisy dimensions
corresponding to small singular values are deleted and a low rank approximated
matrix is constructed. When in the test phase, in order to make the training
document representations compatible with test documents, the sprinkled dimen-
sions are removed. Standard classification methods, e.g., kNN and SVM are then
applied in the new represented training features. The inherent reason for this
method is that the sprinkled term can add contribution to combine the class
information of text documents in the classification procedure.
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Further, in [2], an adaptive sprinkling LSI is proposed to adjust the number
of sprinkled terms based on the complexity of the class decision boundary and
the classifier’s classification ability. The number of sprinkled terms for each class
is then determined by the confusion matrices: when it is hard to distinguish
two classes, it induces more errors in the confusion matrix. In this case, more
sprinkling terms are introduced for those classes.

3 Our Approach

In this section, we detail our proposed method on how to incorporate the class
information and unlabeled information from background knowledge into the LSI
technique. Fig. 1 gives a demonstration.

Assume that there are two classes documents, each consisting of two docu-
ments and two other unlabeled documents. We then extend the term-by-document
matrix, which is represented by term frequency, by adding sprinkling terms,
where we set 1 when the documents are from the same class, zero when they
are not in the same class or no label information is given. We then perform the
SVD method and obtain an approximation of the term-by-document matrix,
Xk, which is reconstructed by selecting the two largest values in S, as shown in
Fig. 1. It is easy to see that the approximate matrix has reconstructed the value
distribution of data.

Hence, we summarize the procedure as follows:

1. Construct a term frequency matrix, X ∈ R
f×(NL+NU ), by using labeled and

unlabeled data, where f is the number of words, NL and NU corresponds to
the number of labeled and unlabeled documents, respectively;

2. Expand X to a sprinkled matrix, Xe ∈ R
(f+d)×(NL+NU ), by adding sprin-

kling terms with ones for the labeled data and terms with zeros for the
unlabeled data, where d is the length of sprinkling terms;

3. Perform Singular Value Decomposition (SVD) on the expanded matrix,
i.e., Xe = TSD�, where T ∈ R

(f+d)×(f+d) is an orthogonal matrix, S ∈
R

(f+d)×(NL+NU ) is a diagonal matrix, and D ∈ R
(NL+NU )×(NL+NU ) is an-

other orthogonal matrix;

Fig. 1. An example of the term-by-document matrix transforming by Sprinkling LSI
with background knowledge
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4. Determine columns of T and D corresponding to the k largest eigen values
in S and discard the additional sprinkling terms. Hence, finally, Tk ∈ R

f×k,
Sk ∈ R

k×k, a diagonal matrix, and Dk ∈ R
k×NL ;

5. Transform training data to new features, Dk, and for a test data, q ∈ R
f , the

corresponding new feature is calculated by q̃ = q�TkS−1
k ∈ R

k. The length
of new features becomes shorter since k << f ;

6. Perform classification algorithms on transformed new features.

4 Experiments

4.1 Experimental Setup

In this section, we evaluate the standard LSI, sprinkled LSI (SLSI), LSI with back-
groundknowledge (LSI-bg) and our proposed sprinkledLSIwith backgroundknowl-
edge (SLSI-bg) on three datasets: the WebKB dataset, the 20 newsgroups dataset
and the industry sector (IS) dataset, from CMU text mining group 1.

Test is performed in the transductive mode: test data are considered as unla-
beled data and used for the test. Accuracy [2] is used to evaluate the performance
of text classification on kNN with two different metrics, the Euclidean distance
(kNNE) and the cosine similarity (kNNC).

Before performing classification, text processing, skipping headers, skipping
html, etc., is run by the rainbow package 2. The option of whether or not using
stoplist is detailed in the following data sets description. Further, we remove
the words that only occur once and choose the top 1000 with highest mutual
information gain [2].

4.2 Data Sets

Three standard text documents data sets are tested in the experiments:

20 newsgroups dataset: This data set is a collection of 20, 000 UseNet news
postings into 20 different newsgroups [7] including seven sub-trees: alt, comp,
rec, sci, soc, talk and misc. We use rec sub-tree which consists of 4 classes
in the experiment. 500 documents from each class are selected [2]. Words
in the standard SMART stoplist is removed from the dataset. Finally, this
dataset forms a 1000× 2000 term-by-document matrix.

WebKB dataset: It is the 4 universities data set from the World Wide Knowl-
edge Base (WebKb) project of the CMU text learning group 3. There are
8, 282 pages were manually classified into the following seven categories: stu-
dent, faculty, staff, department, course, project and other. Here, again, each
class consists of 500 documents. Hence, the categories of staff and depart-
ment do not use in the experiment. Stoplist option is not used in this dataset.
The dataset forms a 1000× 2500 term-by-document matrix.

1 http://www.cs.cmu.edu/~TextLearning/datasets.html
2 http://www.cs.umass.edu/~mccallum/bow/rainbow/
3 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

http://www.cs.cmu.edu/~TextLearning/datasets.html
http://www.cs.umass.edu/~mccallum/bow/rainbow/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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Industry sector dataset: This dataset consists of 7 industry sector informa-
tion: basic materials, energy, finance, healthcare, technology, transportation
and utilities. Here, again, we choose 500 documents for each class. Hence,
only categories of basic materials, finance, technology and transportation are
considered in the experiment. Stoplist option is used in this dataset. Finally,
the dataset consists of a 1000× 2000 term-document matrix.
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Fig. 2. Results of kNN based on two different distance metrics for rec, WebKB, and
IS datasets
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4.3 Experimental Results

In the experiments, we let the number of labeled data be 1, 5, 10, 20, 40, 60, 80
and 100 to test the effect of the number of training data. In classification using
kNN method, features generated by LSI, SLSI, LSI-bg and SLSI-bg are used.

The length of sprinkling term for each class is set to 4 as [1]. In the kNN, k
is set to 1. Results are performed on 10 runs to get the average accuracies.

Fig. 2 presents the results of kNNE and kNNC on the rec sub-tree of 20
newsgroups, the WebKB, and the industry sector datasets, respectively. From
the results, we have the following observations:

– As the number of labeled training samples increases, the accuracies for all
four features, LSI, SLSI, LSI-bg, SLSI-bg increase correspondingly. SLSI-bg
is the best overall for all three datasets.

– The performance usually has a large increase when the number of training
sample increase from 1 to 5, especially using the kNNC method. For example,
when using the kNNC method, it is over 41% improvement on the rec sub-
tree and over 70% improvement on other two datasets.

– The performance of kNNC outperforms that of kNNE greatly for all three
datasets. Especially, the improvement using the same feature is obviously
significant, at least 20% improvement, for the rec subtree in 20 newsgroup
dataset. Even for the WebKB dataset, although the improvement is not large
when the number of labeled data is 1, the performance increases significantly
when the number of labeled data is larger than 1.

– For the industry sector dataset, it is shown that LSI is rather worse in this
dataset under the kNNE metric, especially when the number of training sam-
ples equals 20, 40, 60; while other three features can get relative better results.
This means that other features can help for the classification procedure.

5 Conclusions

In this paper, we consider two problems: the existence of poylsemy and synonym,
and the huge useful unlabeled text documents, in text classification. We propose
a novel Latent Semantic Indexing expression which utilizes the class relationship
and background knowledge embedding in text documents. We perform detailed
experimental comparisons to test the effects of class relationship and background
knowledge. Experimental results demonstrate our proposed method is promising
in text classification.

There are still several works need to be considered. For example, why and how
this combination will help increase the performance of text classification. Devel-
oping theoretical framework for analyzing the difference between our method
and original LSI and providing theoretical guidance are significant works.
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Abstract. In this paper we present a comparison of multiple cluster
algorithms and their suitability for clustering text data. The clustering
is based on similarities only, employing the Kolmogorov complexity as a
similiarity measure. This motivates the set of considered clustering algo-
rithms which take into account the similarity between objects exclusively.
Compared cluster algorithms are Median kMeans, Median Neural Gas,
Relational Neural Gas, Spectral Clustering and Affinity Propagation.

Keywords: Cluster algorithm, similarity data, neural gas, spectral clus-
tering, message passing, kMeans, Kolmogorov complexity.

1 Introduction

In the last years a variety of vector based clustering methods like self-organizing
maps [7], neural gas (NG) [9] and affinity propagation (AP) [6] have been de-
veloped for a wide range of areas, e.g. bioinformatics, business, and robotics.
Recent developments focus on algorithms which are purely based on the anal-
ysis of similarities between data. Beside AP respective algorithms are Median
k-Means, Median and Relational NG [3,1] or spectral clustering [8] for example.
These approaches have in common that they relax the condition that the objects
of interest have to be embedded in a metric space. Instead, the only informa-
tion used in these algorithms are the pairwise similarities. This ability provides
greater flexibility of the algorithm if an embedding of data is impossible but a
similarity description is available, for instance by external expert rating.

In this paper we compare the above mentioned algorithms in two experimental
settings of text clustering. We consider two types of text sources: the first data
are taken from the Multilingual Thesaurus of the European Union Eurovoc1.
This database consists of laws and regulations in different categories whereas
each text is available in multiple languages. It can be expected that the data
1 Obtained from: http://europa.eu/eurovoc/sg/sga_doc/eurovoc_dif!SERVEUR/

menu!prod!MENU?langue=EN

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 61–69, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://europa.eu/eurovoc/sg/sga_doc/eurovoc_dif!SERVEUR/menu!prod!MENU?langue=EN
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should be clustered according to language specific features on the one hand side.
On the other hand, contents specific features should also provide structural in-
formation for clustering. The second data set is a series of psychotherapy session
transcripts of a complete psychodynamic psychotherapy with a respective clin-
ical assessment of the session [10]. Here, it is known that narrative constructs
provide information about the therapy state and, hence, should also be appear-
ing in cluster structures. Both data sets are clustered by means of the priorly
given methods. The results are compared in terms of cluster agreement and the
relation to the external description. As a measure for the cluster agreement we
employ the Cohens-Kappa and variants.

The paper is organized as follows: first the encoding of the data is explained.
After a short overview of the algorithms, the data sets are briefly described and
finally the experimental results are presented and discussed.

2 Theoretical Background

Appropriate embedding of text data into metric spaces is a difficult task [7]. An
approach is the analysis of textural data based on their Kolmogorov-Complexity
[2]. It is based on the minimal description length (MDL) Zx of a single document
x and pairwise combined documents Zx,y. The respective normalized information
distance is given by:

NIDx,y =
Zxy −min(Zx, Zy)

max(Zx, Zy)
(1)

The normalized information distance is a similarity measure (distance metric)
[2]. In particular, it is positive definite, i.e. NIDx,y ≥ 0 with NIDx,x = 0, and
symmetric NIDx,y = NIDy,x. Usually, the MDL is estimated by the compres-
sion length z according to a given standard compression scheme or algorithm.
Then the NID is denoted as normalized compression distance (NCD) [2]. Due
to technical reasons NCDx,y is non-vanishing in general but takes very small
values [2]. Further, it violates usually the symmetry property in the sense that
NCDx,y −NCDy,x = δ with 0 < δ � 1. Therefore, the symmetrized variant is
frequently applied NCDs

x,y = (NCDx,y+NCDy,x)
2 .

To estimate NCD, we used the Lempel-Ziv-Markow-Algorithm (LZMA) pro-
vided by the 7-Zip file archiver for the compression of the text data. zx and zy are
the lengths of the compressed data sets Tx and Ty respectively. To obtain zxy the
two texts Tx and Ty are first concatenated to Txy and subsequently compressed.
In this way for all data pairs (xi, xj) the similarity (distance) dij = NCDxi,xj

is calculated in both data sets (separately).

3 Algorithms

The role of clustering is to decompose a given data set X = {x1, . . . , xn} into
clusters C1, . . . , Ck ⊂ X such that the clusters are as homogeneous as possible.
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For crisp clustering as considered in the following, the sets Ci are mutually
disjoint, and they cover the set X . We assume that data are characterized by
pairwise dissimilarities dij specifying the dissimilarity of the data points xi and
xj . For euclidean data, dij could be given by the squared euclidean metric,
however, in general, every symmetric square matrix is appropriate. However,
we assume here that only the distances are known but not the data objects
itself. This restricts the set of applicable cluster algorithms. Following, we briefly
describe recently developed approaches as well as classical ones which will later
be compared.

3.1 Median k-Means

Median k-means (MKM) is a variant of classic k-means for discrete settings. The
cost function for MKM is given by

E =
n∑

i=1

p∑
j=1

XI(xj)(i) · d
(
xj , wi

)
(2)

where n is the cardinality of the set W =
{
wk

}
of the prototypes and p the

number of data points. XI(xj)(i) is the characteristic function of the winner
index I(xj), which refers to the index of the prototype with minimum distance
to xj (winner).

E is optimized by iteration through the following two adaptation steps until
convergence is reached.

1. determine the winner I(xj) for each data point xj

2. Since for proximity data only the distance matrix is available the new pro-
totype i has to be chosen from the set X of data points with wi = xl where

l = argmin
l′

p∑
j=1

XI(xj)(l) · d(xj , xl′) (3)

3.2 Median Neural Gas

A generalization of MKM incorporating neighborhood cooperativeness for faster
convergence and better stability and performance is the Median Neural Gas
(MNG). The respective cost function is

EMNG =
n∑

i=1

p∑
j=1

hλ(ki(xj , W )) · d(xj , wi) (4)

with hλ(ki(xj , W )) being the Gaussian shaped neighborhood function hλ(t) =
exp(−t/λ) ( λ < 0) and

ki(xj , W ) = #
{
wl|d(xj , wl) < d(xj , wi)

}
(5)

the winning rank. Then EMNG can be optimized by iterating the following
procedure:
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1. kij = ki(xj , W )
2. and assuming fixed kij the prototype i is chosen as the data point with

wi = xl where

l = argmin
l′

p∑
j=1

hλ(kij) · d(xj , xl′).

3.3 Relational Neural Gas

Relational neural gas as proposed in [1] is based on a similar principle as MNG,
whereby prototype locations can be chosen in a more general way than in MNG.
Standard batch neural gas [3] has been defined in the euclidean setting, i.e.
xi ∈ R

m for some m. It optimizes the cost function 1
2

∑
ij exp(−kij/σ2)‖xi−wj‖2

with respect to the prototypes wj where kij as above but using the Euclidean
distance. σ > 0 denotes the neighborhood cooperation. For vanishing neighbor-
hood σ → 0, the standard quantization error is obtained. This cost function can
be optimized in batch mode by subsequent optimization of prototype locations
and assignments. Unlike k-means, neighborhood cooperation yields a very robust
and initialization insensitive behavior of the algorithm.

The main observation of relational clustering is that optimum prototypes fulfill
the relation wj =

∑
i αjix

i with
∑

i αji = 1. Therefore, the distance ‖xi −wj‖2

can be expressed solely in terms of the parameters αji and the pairwise distances
D = (d2

ij)ij of the data as

‖xi − wj‖2 = (D · αj)i − 1/2 · αt
j ·D · αj . (6)

Therefore, it is possible to find a formulation of batch NG which does not rely
on the explicit embedding of data in a vector space:

init αji with
∑

i αji = 1
repeat

– compute the distance ‖xj − wi‖2

– compute optimum assignments kij based on this distance matrix
– compute parameters α̃ij = exp(−kij/σ2)
– normalize αij = α̃ij/

∑
j α̃ij

Obviously, this procedure can be applied to every symmetric dissimilarity
matrix D, resulting in relational neural gas (RNG). The algorithm can be related
to the dual cost function of NG:∑

i

∑
ll′ exp(−kil/σ2) · exp(−kil′/σ2) · dll′

4
∑

l exp(−kil/σ2))

Since prototypes of RNG are represented virtually in terms of weighting fac-
tors αij , the algorithm yields a clustering rather than a compact description
of the classes in terms of prototypes. However, it is possible to approximate
the clusters by substituting the virtual prototypes wj by its respective closest
exemplar xi in the data set X . We refer to this setting as 1-approximation of
RNG.
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3.4 Spectral Clustering

Spectral clustering (SC) offers a popular clustering method which is based on
a graph cut approach, see e.g. [8]. The idea is to decompose the vertices of
the graph into clusters such that the resulting clusters are as close to con-
nected components of the graph as possible. More precisely, assume vertices
are enumerated by 1, . . . , n corresponding to the data points xi and undirected
edges i − j weighted with pij indicate the similarity of the vertices. We choose
pij = −dij + minij dij , but alternative choices are possible, as described in [8].
Denote the resulting matrix by P , D denotes the diagonal matrix with vertex
degrees di =

∑
i pij . Then normalized spectral clustering computes the smallest

k eigenvectors of the normalized graph Laplacian D−1 ·(D−P ). The components
of these eigenvectors constitute n data points in R

k which are clustered into k
classes using a simple algorithm such as k-means. The index assignment gives
the clusters Ci of X .

The method is exact if the graph decomposes into k connected components.
As explained in [8], it constitutes a reasonable approximation to the normal-
ized cut optimization problem 1

2

∑
i W (Ci, C

c
i )/vol(Ci) for general graphs, where

W (A, Ac) =
∑

i∈A,j /∈A pij denotes the weights intersected by a cluster A and
vol(A) =

∑
j∈A dj the volume of a cluster A. Further, for normalized SC, some

form of consistency of the method can be proven [8].

3.5 Affinity Propagation

Affinity propagation (AP) constitutes an exemplar-based clustering approach
as proposed in [6]. Given data points and pairwise dissimilarities dij , the goal
is to find k exemplars xi such that the following holds: if data points xi are
assigned to their respective closest exemplar by means of I(i), the overall quan-
tization error 1

2

∑
i di,I(i) should be minimum. This problem can be alterna-

tively stated as finding an assignment function I : {1, . . . , n} → {1, . . . , n}
such that the costs − 1

2

∑
i di,I(i) +

∑
i δi(I) are maximum. Thereby, δi(I) ={−∞ if I(i) 	= i, ∃jI(j) = i

0 otherwise punishes assignments which are invalid, because

exemplar i is not available as a prototype but demanded as exemplar by some
point j. Note that, this way, the number of clusters is not given priorly but it
is automatically determined by the overall cost function due to the size of self-
similarities −dii. These are often chosen identical for all i and as median value
or half the average similarities. Large values −dii lead to many clusters whereas
small values lead to only a few or one cluster. By adjusting the diagonal dii, any
number of clusters in {1, . . . , n} can be reached. AP optimizes this cost function
by means of a popular and efficient heuristics. The cost function is interpreted
as a factor graph with discrete variables I(i) and function nodes δi(I) and di,I(i).
A solution is found by the max-sum-algorithm in this factor graph which can be
implemented in linear time based on the number of dissimilarities dij . Note that
−dij can be related to the log probability of data point i to choose exemplar j,
and δi(I) is the log probability of a valid assignment for i as being an exemplar
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or not. Thus, the max-sum algorithm can be interpreted as an approximation to
compute assignments with maximum probability in the log-domain.

While spectral clustering yields decompositions of data points into clusters,
affinity propagation also provides a representative exemplar for every cluster.
This way, the clustering is restricted to specific types which are particularly
intuitive. Further, unlike spectral clustering, the number of clusters is specified
only implicitly by means of self-similarities.

4 Experiments and Results

4.1 Measures for Comparing Results

To measure the agreement of two different cluster solutions we applied Cohen’s
Kappa κC [4]. Fleiss’ Kappa κF as an extension of Cohen’s Kappa is suitable
for measuring the agreement of more than two classifiers [5]. For both measures
yields the statement that if they are greater than zero the cluster agreements are
not random but systematic. The maximum value of one is perfect agreement.

4.2 ’Eurovoc’ Documents

The first data set consists of a selection of documents from the multilingual The-
saurus of the European Union ”‘Eurovoc”’. This thesaurus contains thousands of
documents which are available in up to 21 languages each. For the experiments
we selected a set of 600 transcripts in 6 different languages - 100 transcripts with
the same contents in English, German, French, Spanish, Finnish and Dutch re-
spectively. These transcripts can roughly be sorted into 6 different categories:
International Affairs, Social Protection, Environment, Social Questions, Educa-
tion and Communications, and Employment and Working Conditions.

First the distances between data are calculated according to dij =
NCDxi,xj for the whole data set giving a large 600 × 600 matrix and, for each
language set separately, yielding 6 small 100× 100 matrices.

The first calculations in this section are based on the 600 × 600 matrix: As
a first step the complete set containing all 600 documents was clustered into
six groups using the above mentioned algorithms to investigate whether the
language structure influences the clustering. It can be observed that all clus-
ter solutions of the different methods are identical and exactly separating the
data set according to the languages. In the second step we initialized a cluster-
ing into 12 clusters to examine the content based information for clustering. It
can be observed that again a clean separation regarding to the languages was
achieved. Yet, the segmentation within a single language was more or less irregu-
lar. For some languages there was no further break down at all, while others were
separated into up to four different clusters. Hence, it seems that the language
specifics dominate the clustering. Thereby, this behavior was shown more or less
by all cluster algorithms. This fact is emphasized by the similarity of the cluster
solutions judged in terms of Fleiss’ Kappa (overall agreement) κF = 0.6072 re-
ferred as a substantial agreement. The the agreements of every two algorithms
are estimated by Cohen’s Kappa κC which also show a clear match:
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MNG RNG SC AP
k-Means 0.56 0.50 0.59 0.73
MNG — 0.58 0.54 0.73
RNG — — 0.57 0.63
SC — — — 0.66

Noticeable is the clustering obtained by AP. Each language is separated
into two clusters, which are almost identical with respect to the language sets.
Measuring the similarity of the clusters between the different languages gives
κF = 0.8879, a perfect agreement.

In the next step we examined each language separately using the 100 × 100
matrices. According to the given 6 text categories, we performed each clus-
tering into 6 clusters. At first, we have to mention that the resulted cluster
solutions do not reflect the category system. This is observed for all languages
and all algorithms. However, within each language the behavior of the differ-
ent cluster approaches is more or less similar, i.e. comparing the cluster solu-
tions gives high Kappa values above 0.4123 (moderate agreement). As an exam-
ple, for English the solutions are depicted in Fig1a). with Fleiss’ Kappa κF =
0.5324 (moderate agreement). However, the averaged performance of the several

Fig. 1. a) (left) Comparison of the cluster solutions (six clusters) for the different
algorithms. A moderate agreement can be observed. b) (right) Cluster solutions for
the different languages obtained by AP-clustering. The similarity of the cluster results
is high.
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algorithms according to the different languages varies. Despite AP and RNG,
all algorithms show an instable behavior. AP and RNG offer similar cluster as-
signments independent from the language giving κF = 0.5766 and κF = 0.3454,
respectively (see Fig.1b). This leads to the conclusion that the contents of the
text can be clustered adequately in each language.

4.3 Psychotherapy Transcripts

The second data set was a set of text transcripts of a series of 37 psychotherapy
session dialogs of a psychodynamic therapy. Clustering these texts, using the
NCD-distance as above, was again accomplished by applying all algorithms,
here preferring a two-cluster solution according to the fact that the therapy
was a two-phase process with the culminating point around session 17 [10]. The
latter fact is based on the evaluation of several clinical therapy measures [10].
Except SC, all algorithms cluster the data in a similar way such that the two
process phases are assigned to separate clusters (κF = 0.77). This coincides
with the hypothesis that narratives of the psychotherapy can be related to the
therapeutic process.

4.4 Conclusions

In this paper we investigated the behavior of different cluster algorithms for text
clustering. Thereby we restricted ourself to such algorithms, which only take
the distances between data into account but not the objects to be clustered it-
self. As distance measure we used the information distance. It can be concluded
that, if texts from different languages are available (here ’Eurovoc’-documents),
this language structure dominates the clustering, independent from the cluster
algorithm. An overall moderate agreement between the different approaches is
observed. Content specific clustering (separated in each language) is more dif-
ficult. The overall agreement is good as well but with instable results for the
different languages depending on the approaches. Here, AP and RNG (with cur-
tailments) show the most reliable results. The content specific discrimination
ability is also verified for a text data base of psychotherapy session transcripts,
which can be related to different therapy phases. This phase structure is nicely
verified by the text clustering by almost all cluster algorithms.

Acknowledgement. The authors would like to thank Matthias Ongyerth for
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Abstract. Internet literature queries return a long lists of citations, ordered
according to their relevance or date. Query results may also be represented us-
ing Visual Language that takes as input a small set of semantically related con-
cepts present in the citations. First experiments with such visualization have been
done using PubMed neuronal plasticity citations with manually created seman-
tic graphs. Here neurocognitive inspirations are used to create similar semantic
graphs in an automated fashion. This way a long list of citations is changed to
small semantic graphs that allow semi-automated query refinement and literature
based discovery.

1 Introduction

Structured electronic databases and free text information accessible via Internet com-
pletely changed the way information is searched, maintained and acquired. Most
popular search engines index now well over 10 billion pages, but the quality of this
information is low. Instead of boosting productivity increasingly large proportion of
time is spent on searching and evaluating results. An ideal search and presentation sys-
tem should be matched to the neurocognitive mechanisms responsible for understand-
ing information [1]. Visualization of clusters of documents that are semantically related
should reflect relations between configurations of neural activations in the brain of an
expert. Many books have been written on various concept mapping or mind mapping
techniques [2] that essentially recommend non-linear notes in form of graphs contain-
ing interrelated concepts. These techniques are also supported by a large number of
software packages, known as mind mapping software (see the Wikipedia entry on mind
map). There are some indications that these techniques indeed help to learn and remem-
ber written material in a better way [3]. However, creation of mind maps has so far been
manual, and there is a clear need to introduce these techniques in query refinement [4]
and literature based discovery [5].

We are especially interested in search and visualization of information in the life sci-
ences domain, therefore the experiments reported below have been done on a PubMed,
a collection of over 18 million citations. In [6,7] a prototype of a Visual Language (VL)
system has been used on manually create semantic graphs that represent semantically
related key biological concepts manually extracted from findings reported in the litera-
ture from the PubMed database. The purpose of this paper is to show that similar results
can be obtained using computational methods.
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There are several ways in which information retrieval can be improved. A novel ap-
proach introduced recently is based on asking the user a minimum number of relevant
questions to disambiguate the topic in a precise way [8]. An interesting research direc-
tion is based on knowledge-based clustering techniques [9]. In this paper neurocognitive
inspirations [1] are used to create semantic graphs that represent PubMed search results.
In the next section the outline of this approach is presented, followed by the descrip-
tion of methods and experiments on a restricted PubMed domain. The neurocognitive
approach increases quality of query result clusters enabling to create useful input for
the Visual Language system that changes textual representation to icon-based graphical
representation. The end-user is presented iconic graphs instead of a long list of citations
enabling faster query refinement and literature based discovery.

2 Neurocognitive Inspirations in Information Retrieval

The purpose of the VL project is to test and report the effectiveness of the icon-based
visualization in comparison with an existing text-based display approach to internet or
database queries. The goal is a display that will enable scientists to identify biological
concepts and their relationships more quickly, leading to insight and discovery. In order
to make the project precise yet extensible the initial prototype is based on the Unified
Medical Language System (UMLS) [10], a well-developed biomedical scientific ontol-
ogy. Moreover the domain for developing the VL was narrowed to neuronal plasticity in
Alzheimer disease (a field of expertise of one of the authors). Hence, to make the project
rather general from a design perspective, graphic design and information visualization
principles will be limited to provide a syntax of visual form for systems biology. How-
ever, systematic visualization techniques for the representation of biological concepts
and their relations are applicable to the visualization of concepts within any field of
biology.

For the first VL project experiment papers were reviewed manually based upon a ran-
dom selection of 40 citations from PubMed resulting from search of the terms Alzheimer
Disease and the protein ApoE. From these papers 20 terms were extracted that express
important key concepts [7]. These concepts were represented in a semantic graph shown
in the left side of fig. 1 (edges of the graph represent semantic relations between con-
cepts manually extracted from the 40 citations).

Next, graphical designers converted each conceptual object into a visual icon, adding
specific modification of shapes as one means to systematically depict basic categories
of things, processes and actions. These modifiers should perform functions similar to
the role adjectives or adverbs serve in natural language [11]. One visual icon systems
(designed by students Sean Gresens, David Kroner, Nolan Stover and Luke Woods
at the University of Cincinnati) was used to change graph shown in the left fig. 1 to
an icon representation shown in the right fig. 1. Visual elements are quickly associated
with the desired information that is being searched for. The final step of this project is to
measure accuracy and time for completing a list of cognitive tasks that are selected and
sequenced to represent the workflow of a scientist conducting a search. These measures
will both demonstrate whether the effects of the display are significant, and also provide
feedback for future improvements for the VL prototype.
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Fig. 1. Manually created textual and iconic representation of a semantic graph based on random
sample of 40 publications about the Alzheimer disease and the protein ApoE

An intermediate step for the VL project is to create graphs similar to the one in the
left fig. 1 in an automated fashion. This is achieved by clustering query results (similar
to Teoma, Ask, Vivisimo or Clusty search engines), enhancing the initial concept space
with semantically related terms and representing each cluster with by a semantic graph.
Since each citation is represented by a set of biological concepts enhancing the initial
set concepts with semantically related concepts is similar to automated priming effect
in a human brains [12]. This means that whenever someone sees word dog most likely
he will also think about concept cat. Semantic priming was studied for over 30 years but
never incorporated per se into practical computational algorithms. Multiple evidence for
priming effects comes from psychology and neuroimaging. For that reason presented
here technique for information retrieval is neurocognitively inspired [1,13,14].

3 Methods

Large number of PubMed citations have been annotated using Medical Subject Head-
ings (MeSH), providing keywords that characterize the content of an article. MeSH
is a hierarchical controlled vocabulary created by National Library of Medicine, used
also for indexing books and other documents. Moreover, MeSH is a part UMLS [10],
much larger vocabulary that combines over 140 biomedical ontologies and enhance
MeSH terms with additional semantic relations that come from other sources. The use
of MeSH terms allows for some standardization of searches.

In our experiment a search query ”Alzheimer disease”[MeSH Terms] AND ”apolipo-
proteins e”[MeSH Terms] AND ”humans”[MeSH Terms] was submitted to the PubMed
server. It returned 2899 citations along with 1924 MeSH terms. MeSH terms are orga-
nized in 16 hierarchical trees. Concepts from only four trees were selected: Anatomy;
Diseases; Chemicals and Drugs; Analytical, Diagnostic and Therapeutic Techniques
and Equipment. This narrowed down the number of concepts to 1190. A binary docu-
ment/concept matrix was created with information whether a citation had a given MeSH
term assigned to it or not. Creating graphs similar to one in the left fig. 1 involves iterative
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use of cluster analysis and automated priming technique. Once a desired clustering
quality is achieved a semantic graphs as an input for the VL prototype can be computed.

Cluster analysis proposed in this paper is composed of three steps: calculating a dis-
tance matrix, organizing documents into hierarchical clusters, and choosing a number of
clusters based on quality measures. Since the data is binary various similarity measures
from the R language statistical package called simba can be used [15]. Let’s assume
that M is a matrix with rows corresponding to documents and columns to MeSH con-
cepts. Then M j

i = 1 means that a document i has MeSH concept j assigned to it. For
this experiment Legendre measure is chosen as a distance function (among fifty other
measures it was found to give good results, publication in preparation), defined by [16]:

d(x,y) = 1− 3〈x,y〉
〈x,y〉 + 〈x,x〉 + 〈y,y〉 ∈ [0, 1]. (1)

Clustering is done using Ward’s minimum variance rule [17]. This method is known
to produce clusters of almost equal size, but is sensitive to outliers [18]. This is not
the optimal clustering algorithm but it suffice for presented here experiments (relation
between clustering algorithm and automated priming will be published elsewhere).

In order to choose the optimal number of clusters a combination of four quality
measures from the clusterSim R language statistical package is used [19]. This includes
Davies-Bouldin’s index which needs to be minimized [20], Calinski-Harabasz pseudo
F-Statistic which needs to be maximized [21], Hubert-Levine internal cluster quality
index which needs to be minimized [22] and Rousseeuw Silhouette internal cluster
quality index which needs to be maximized [23]. A combination of all four indexes
can be normalized between 0 and 4 so that 4 means perfect agreement between all
the measures as for the number of clusters. Prior work that used automated priming
approach showed usefulness of combined indices in discovery of interesting clusters in
patient discharge summaries [1,13,14].

Automated priming can be explained by a spreading activation theory [12]. It gives
mathematical simplicity therefore it was used here for modeling the priming effect.
At the initial step t = 0 of the spreading activation only a subset columns in the M
matrix have non-zero elements. As activation spreads from initial concepts to semanti-
cally related concepts the number of non-zero columns M increases. The initial concept
space representation is symbolized here by 0M . Let’s assume that R is a symmetric ma-
trix with all possible semantic relations between MeSH terms, derived from the UMLS.
Then Rj

i = Ri
j = 1 means that there is a semantic relation (e.g. is a, is associated with,

may be treated by, etc.) between concept i and a concept j (e.g. cerebral structure
is finding site of alzheimer‘s disease). The simplest mathematical model of spreading
activation scheme can be written as:

t+1M = f(tM + f(tMR)). (2)

This process enhances the previous feature space tM with new, semantically related
concepts, defined by the R matrix. Simple spreading activation algorithms have been
already investigated by [24,25,26,27,28]. These approaches did not exploit the full po-
tential of semantic networks (only parent/child relationships were used).
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On the other hand if the full potential of semantic relations from UMLS are used for
spreading activation it may result in associations similar to that in a schizoid brain (al-
most everything is associated with everything) [29]. One solution to this problem is to
inhibit certain relations by removing those concepts that do not help in assigning doc-
uments into right clusters. They may be roughly identified using feature ranking tech-
niques. Ranking is done using Legendre distance (Eq. 1) between columns in the t+1M
matrix and the cluster labels. The main difference of this technique from a standard fea-
ture filtering algorithm is that the ranking is done for each of the cluster separately. So if
there are three clusters identified then there are three sets of ranking. The best concepts
are taken from each ranking and are put in a set that will excite only those concepts that
passed ranking test. This set is called here t+1E and can be roughly defined by:

t+1E =
⋃
i

the best concepts according to eq. 1 that represent ith cluster. (3)

The original adjacency matrix R was inhibited to a tR
′ matrix according to a rule:

tR
′ =

{
0 if j /∈ t+1E
Rij otherwise

. (4)

Enhanced with additional semantic knowledge matrix t+1M was calculated using in-
hibited tR

′ matrix and the simple neuron threshold output function:

t+1M = f(tM + f(tM tR
′)). (5)

Semantic graphs are computed using high quality PubMed query results clusters.
These graphs are called graphs of consistent concepts (GCC) [30]. The idea of GCC
that represents a PubMed query results is to show an optimal number of concepts that
represent each query cluster. There should be maximum number of connection between
concepts that belong to the same cluster and minimum number of connection between
concepts that represent different clusters. Increasing the number of concepts that repre-
sent each cluster increases also chance that the lower rank concept will have semantic
connections with concepts that represent other clusters.

First step is to rank concepts for each cluster separately using Legendre distance
from eq. 1. Next a function is defined:

Concepts(i, n) = a set of n best concepts using eq. 1 that represent ith cluster. (6)

In order to make the GCC optimization process simple n was varied the same way for
each cluster. This gives a set of of concepts that will be used to create adjacency matrix:

En =
⋃
i

Concepts(i, n) (7)
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After iter number of iterations of clustering and spreading activation the R matrix can
be modified according to following rule to create an adjacency matrix for the semantic
graphs:

iter
n R =

{
Rij if i ∈ En and j ∈ En

0 otherwise
. (8)

At the beginning n, the best n representants for each cluster, was unknown. It was
computed maximizing following function:

gcc(iter
n R) =

∑
k

⎛⎝ ∑
{i|Concepts(i,n)}

∑
{j|Concepts(j,n)}

iter
n Rj

i

⎞⎠ /2o

−
∑
l,m
l �=m

⎛⎝ ∑
{i|Concepts(i,n)}

∑
{j|Concepts(j,n)}

iter
n Rj

i

⎞⎠ /2o + p/o

(9)

where p is the number of clusters, o is the number of active concepts (o = |En|). The
first term of this equation sums relations between concepts that represent the same clus-
ter, second term sums relations between concepts representing different clusters, while
the last term adds the number of clusters. All terms are divided by the total number of
concepts o to assure that gcc(nR) = 1 when all concepts representing the same clus-
ters are connected by a minimum spanning trees and there are no connections between
concepts that represent different clusters.

A summary of the algorithm for creating semantic graphs that can be used as input
to the VL prototype can be written as a pseudo-code (algorithm 1). The algorithm takes
as an input data matrix, semantic relations, a number of iterations and outputs optimal
GCC.

Algorithm 1. GCC algorithm
1: function GCC(R, 0M , iterations)
2: for t in 0 to iter do
3: compute distance matrix based on tM matrix
4: compute tree based on distance matrix and Ward’s clustering algorithm
5: compute number of clusters based on combined and normalized cluster quality index
6: compute the best ranked features separately for each cluster that will be activated
7: compute tR

′ by inhibiting original tR matrix using the best ranked features
8: compute t+1M based on inhibited tR

′, tM and neuron output function
9: end for

10: compute ranking of features for each cluster separately
11: compute n best ranked features that maximize graph consistency index
12: compute iter

n R adjacency matrix with optimal number n best ranked features
13: return graph of consistent concepts
14: end function
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4 Results

Concepts that occurred in less than three documents, and documents that had less then
three concepts were removed. This created a matrix with 2575 documents and 416
concepts. Two constrains were applied to the system: concepts that receive activation
from at least two other concepts are activated (threshold of the f(·) function is set to
2), and semantic relations are used if they are mentioned in at least two UMLS sources
(e.g. MeSH and SNOMED CT).

Six steps of spreading activation were applied to the initial data matrix. The feature
space increased from 416 to only 423 concepts. Every step of spreading activation in-
creased quality of clusters for all measures: Davies-Bouldin’s index was reduced from
2.2844 to 1.3849, pseudo F-Statistic was increased from 112. 96 to 940.15, Hubert-
Levine index was reduced 0.4574 to 0.4414, and Silhouette cluster quality was in-
creased from 0.1515 to 0.3867.

Fig. 2. Multidimensional scaling for ”Alzheimer disease”[MeSH Terms] AND ”apolipoproteins
e”[MeSH Terms] AND ”humans”[MeSH Terms] PubMed query at the initial step (t = 0), after
fourth (t = 4), fifth (t = 5) and sixth step (t = 6) of spreading activation. Red triangle sign (first
cluster), green plus sign (second cluster) and blue x sign (third cluster) show to which cluster a
document concept belongs to. Each step of feature space enhancement creates clearer clusters.
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Fig. 3. Semantic graphs for ”Alzheimer disease”[MeSH Terms] AND ”apolipoproteins e”[MeSH
Terms] AND ”humans”[MeSH Terms] PubMed query at the initial step (t = 0), after fourth
(t = 4), fifth (t = 5) and sixth step (t = 6) of spreading activation. Triangle (first cluster),
rectangle (second cluster) and pentagon (third cluster) nodes show to which cluster a concept
belongs to (see eq. 6). Each image shows the optimal value of gcc function (see eq. 9).

The most important finding is that the initial graph that represents query clusters has
low maximum consistency measure gcc(0nR) = 0.1. Adding new information that sim-
ulates associative processes in the expert’s brains using spreading activation networks
increases not only the cluster quality but also consistency of semantic graph that rep-
resents same query results clusters gcc(6nR = 1.25). Fig. 3 shows the increase of the
consistency measure calculated using eq. 9 while fig. 2 shows changes in the 2D pro-
jections of the high dimensional concept space using classic multidimensional scaling.
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5 Conclusion

In computational intelligence community WebSOM [31] has been the most well-known
attempt to visualize information using clustering techniques. However, in many respects
2-dimensional visual representation of hierarchical visualization of clusters offered by
SOM is not sufficient: relations between documents are much more complicated and
may only be shown in a non-planar graphs. Instead presentation of query results that
match human cognitive abilities in a best way may be done using neurocognitive inspi-
rations.

The algorithm presented here tries to re-create pathways of neural activation in
the expert’s brain, enhancing the initial concepts found in the text using relations be-
tween the concepts. This may be done in the medical domain because specific relations
between MeSH terms present in a citation may be extracted from the huge UMLS
resources [10]. Background knowledge is added using adjacency matrix describing
semantic relations. The whole algorithm is presented in the matrix form, making it
suitable for efficient large-scale retrieval systems. The goal here is to automatically
create graphs of consistent concepts using documents that result from specific queries,
and present these concepts using Visual Language iconic system [7]. This paper has
demonstrated the usefulness of neurocognitive inspirations approximating brain pro-
cesses with a combination of clustering, feature selection and neural spreading activa-
tion techniques. While there is an ample room for improvement using better clustering
techniques and feature selection methods a significant increase of the quality of the ini-
tial GCC graph has been obtained, giving much better representation of the information
in a visual form.
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Abstract. This study concentrates on adapting the user profile model
(UPM) based on individual’s continuous interaction with preferred search
engines. UPM re-ranks the retrieved information from World Wide Web
(WWW) to provide effective personalization for a given search query.
The temporal adaptation of UPM is considered as a one-to-one socio-
interaction between the dynamics of WWW and cognitive information
seeking behavior of the user. The dynamics of WWW and consensus rel-
evant ranking of information is a collaborative effect of inter-connected
users, which makes it difficult to analyze in-parts. The proposed sys-
tem is named as Search-in-Synchrony and a preliminary study is done
on user group with background in computational neuroscience. Human-
agent interaction (HAI) can implicitly model these dynamics. Hence, a
primary attempt to converge the two fields is highlighted - HAI and
statistically learned UPM to incorporate cognitive abilities to search
agents.

1 Introduction

Effective and efficient information retrieval (IR) from the vast amount of data
present in the WWW is of primary importance to the day-to-day internet users.
Personalization of web searches shifts the domain from consensus relevancy (one
model fits the entire populations) to personal relevancy [2]. This shift in IR from
WWW can help in filtering out websites which do not interest the user, thereby,
reducing the search time and user’s effort (usage of computer peripherals). A
number of researches have been actively directed towards personalization of web
searches based on UPM [2].

Personalization of web searches can be accomplished by a user-adaptive search
agent which works between the user and popular search engine. A personalized
search agent computationally incorporates user’s desire by exploiting apriori
knowledge on their IR behavior and cognitive search strategies. A number of
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Fig. 1. Architecture of proposed Search-in-Synchrony

machine learning algorithms can model user’s IR behavior while using popu-
lar internet search engines [3,4]. Neural network approaches can also be used
to categorize webpages in document clusters using content similarity [5]. Al-
though, user profile model can enhance effective IR from the WWW, design of
consistent UPM is a challenging task considering the dynamics of human inter-
est. In addition, UPM must be flexible to temporal adapt with the dynamics
nature of WWW and other contextual factors. In literature, such intelligent in-
ternet agents are referred as reconnaissance agents [6]. Reconnaissance agents
perform contextual computing which computationally models the user behavior
and also adapts to its multi-user environment; thus, depicting social cognition
[7]. Web-based search behavior follows implicit characteristics of its user. Ford
et al. argued the existence of symbiotic relationship among inter-personal web
searching strategies and human individual difference. The individual differences
are primarily due to their study approaches, cognitive and demographic features,
internet perception and information seeking behavior on WWW [8]. Information
seeking behavior and cognitive search strategies can also be utilized in computa-
tional designs of personalized agents to highlight information seeking behavior
of users [9].

The proposed architecture of Search-in-Synchrony is shown in figure 1 and
discussed in section 2. Section 3 presents the re-ranking criteria for effective per-
sonalization of web search experience. In section 4, preliminary results compare
the performance of proposed Search-in-Synchrony with results of Google search
[16]. The paper is concluded in section 5.

2 Search-In-Synchrony - Architecture of Proposed
Personalized Search Agent

Once the user gives a query using the web-interface [15], top L Page-ranked
[10] webpages from Google searches are crawled. The content of the web pages
appearing in the order of their Page-rank is processed by UPM to re-rank search
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results in coherence with user’s satisfaction. In a way, we are trying to train
UPM to mimic user’s behavior while retrieving data from WWW - a personalized
search agent that works like you.

Web search history database. Data collection is important to initialize the
personalized search agent, UPM. A toolbar is designed as an interface between
the user and web search engines (in our study Google search is used). Once a
search query is submitted, users are directed to the original Page-ranked web-
pages retrieved by Google search. If the particular webpage is of interest, users
can store it’s content by clicking on the interest button on the toolbar. Click-
ing interest or not − interest button on toolbar initiates parsing of HTML
contents of the webpage being surfed. The parsed text data is stored in the
web search database along with search query, web URL, and user name. Bi-
nary categorization of surfed webpages in database can be utilized to filter
irrelevant information from WWW and present more personalized search re-
sults. A case study is done with the students of Computational NeuroSystems
Lab (CNSL) at KAIST [1]. The web search history database is constructed
by using the webpages relevant to general research interests in Computational
Neuroscience on hyperlink ontology of Open Directory Project [11], Wikipedia
[12] and Wikibooks [13]. In addition, user group with background in computa-
tional neuroscience update the database with websites relevant to their research
interests.

User profile model. Before constructing the UPM, text data corresponding
to webpages in the database is preprocessed:

– Removal of non-alphabetical characters like ε, 1, etc.
– All alphabetical characters are made lower case.
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Fig. 2. Mutual information measure and frequency of the 1000 most frequent words
extracted from webpage relevant to user’s interest in web search database. In this case
study, user’s interest is in computational neuroscience.
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Fig. 3. Decay of mutual information of 100 most significant features (words) extracted
from computational neuroscience web search database

– Stop-word removal: all stop words (ex. a, the, etc.) are filtered from the text
database to increase search performance.

– Removal of words with length ≤ 2.

After pre-processing, UPM is designed by selecting K word features with max-
imal mutual information from F most frequent words extracted from the web-
pages of user’s interest in the search database. Mutual information criteria is a
machine learning approach which is defined as [14],

I(φi; C) =
c2∑

c∈c1

∑
φi

p(φi, c)
p(φi, c)

p(φr)p(c)
, (1)

where p(·) is the probability distribution of the input random variable and φi

is the i-th most frequent word feature. | · | is defined as the cardinality of the
input set. c1 is the category of webpages that are of interest to the user, while
c2 includes the remaining websites which are of minimal interest to the user.
Using the value of I(φi, C), we can select the i-th most significant word feature,
ψi, as

r = argmax
i

I(φi; C),

ψi = φr, 1 ≤ i, r ≤ |c1|. (2)

Figure 2 shows the mutual information measure and frequency of the 1000
most frequent words.

UPM is a word-weblink 2-D matrix, WK×|c1| = [w1 · · ·wj · · ·w|c1|], where
wj = [w1j · · ·wij · · ·wKj ]T . wij is the frequency of occurrence of i-th most sig-
nificant word features, ψi in j-th webpage and [·]T is the transpose operator in
input matrix. In this case study on users with sound background in computa-
tional neuroscience, F = 1000, D = 862, K = 100, |c1| = 315 and |c2| = 547.
Figure 3 shows the decay of I(φi, C for the most significant 100 features (words).
UPM (W100×315) is shown in figure 4.
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Fig. 4. User Profile Model: 2-D word-weblink matrix constructed from web search
database. Elements of the matrix show the frequency of occurrence of 100 words se-
lected from 1000 most frequent words based on their mutual information with webpages
of interest and not-interest.

3 Re-ranking of Page-Ranked Results Using User Profile
Model

Top L-Page-ranked webpages crawled for a given query are re-ranked using the
UPM. The content of crawled webpages is pre-processed as discussed in section
2. To improve the computational speed stop words are not removed from the
text content of the crawled webpages.

The crawled webpage matrix for given search query is a 2-D word-frequency
matrix, V = [v1 · · ·vl · · ·v|c1|] where vl = [v1l · · · vil · · · vKl]T . vil is the fre-
quency of occurrence of ψi in the l-th Page-ranked webpage. Figure 5 shows
the crawled webpage matrix for search query SVM (referred as Support Vector
Machines in computational neuroscience area).

Both UPM and crawled webpage matrix are utilized to re-rank the l-th PageR-
anked webpage. The re-ranking criteria is defined as,

rank(l) ∝
|c1|∑
i=1

M(wi,vl), (3)

where M(wi,vl) is the distance metric. In this case study, cosine similarity
between wi and vl is used as the distance metric.

Figure 6 shows the re-ranking of the Page-ranked webpages by Search-in-
Synchrony for the search query SVM. Webpages which are of interest to the user
shows better ranking with personalized search agent as seen from the cluster of
red squares in figure 6. Latency and user efforts are greatly reduced if webpages
of interest can be among the top 20 searched webpages.
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Fig. 5. Crawled webpage matrix for search query SVM. x-axis shows the index of top
100 Page-ranked webpages for search query SVM (in decreasing order of Page-rank).
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Fig. 6. Re-ranked results by Search-in-Synchrony for search query SVM. Red square re-
fer to webpages of interest to computational neuroscience researcher and black triangle
refer to webpages which are of minimal interest.

4 Performance Evaluation of Search-in-Synchrony

The performance of personalized search agent is evaluated based on two param-
eters − a) latency and b) effort (additional usage of computer peripherals like
mouse and keyboard) in finding information from WWW which satisfies user’s
interest. For the case study, 10 computational neuroscience researchers at CNSL
were asked to compare their web search experience for Search-in-Synchrony and
Google search. Supervised web search for the following queries were made by
each subject: a) PCA − Principal Component Analysis, b) ICA − Independent
Component Analysis, c) NMF − Non-negative Matrix factorization, and d) SVM
− Support Vector Machines.

For the given search query, subjects were asked to find sufficient information
using Google search until they were satisfied. In similar manner, they were also
asked to search relevant webpages using Search-in-Synchrony for the same search
query. Figure 7 shows that the average latency and effort of the subjects in
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Fig. 7. Average a) time taken, b) number of mouse clicks by 10 subjects to find relevant
webpages corresponding to search query. In some cases, subjects gave up searching for
ICA using Google search engine, therefore, the average of additional mouse clicks for
the case is not given.

searching relevant information from WWW for the given query is reduced when
Search-in-Synchrony is used instead of Google search. Especially, for the search
query ICA average latency is much less, in addition, most users gave up retrieving
information using Google search as the relevant results did not appear on first
5 pages (going from 1st search page to other is time consuming and requires
additional effort from the user).

5 Conclusions

The proposed model, Search-in-Synchrony, personalizes information retrieval
from World Wide Web. It powers web search experience by reducing latency
and effort to retrieve information which maximally coheres with user’s interest.
UPM which is at the heart of Search-in-Synchrony is a reconnaissance agent
working on HAI philosophy. It can effectively model user’s cognitive web search
behavior by implicitly extracting features relevant to their interest. Mutual infor-
mation between user’s IR behavior and their interests is exploited for supervised
selection of relevant information features for personalized WWW search.

Initial results on small population with similar interests shows motivating
improvements in latency and efforts during IR from WWW. Application of the
proposed model on large population set is currently being explored for improved
generalization and commercialization of personalized web search.
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Abstract. One of the simplest creative act is the invention of a new word that
captures some characteristics of objects or processes, for example industrial or
software products, activity of companies, or the main topic of web pages. Neu-
rocognitive mechanisms responsible for this process are partially understood and
in a simplified form may be implemented in a computational model. An algorithm
based on such inspirations is described and tested, generating many interesting
novel names associated with a set of keywords.

1 Introduction

Creativity understood as “the capacity to create a solution that is both novel and appro-
priate” [1], manifests itself not only in creation of novel theories or inventions, but per-
meates our everyday life, including comprehension and production of text and speech.
The best chance to capture creativity in computational algorithms is to follow neurocog-
nitive inspirations [2,3].

Despite the limitation of the current knowledge of the neural processes that give
rise to the higher cognitive processes in the brain it is possible to propose a testable,
neurocognitive model of creative processes. A review of the psychological perspectives
and neuroscientific experiments on creativity has already been presented in [2,3]. Three
elements are essential for computational model of creativity: first, a neural space for
encoding probabilities of strings of letters and phonemes in a given language, leading
to automatic associations of keywords with semantically and phonetically related words
through spreading of neural activation; second, imagination based on combinations of
phonemes or letters, with probability that depends on the priming effects [4]; and third,
the filtering of interesting results based on density of phonological and semantic associ-
ations. Creative brains are well trained, have greater imagination, combine faster basic
primitives, and pick up interesting combinations of these primitives through emotional
and associative filtering. For novel words filters based on phonological and semantic
plausibility may be proposed. Phonological filters may be realized using autocorre-
lation matrix memories or probabilistic models. Semantic filters should evaluate how
many words have similar meaning to the new word, including similarity to morphemes
that the words may be decomposed to.

The Mambo algorithm described here is one of many possible models based on these
principles. It is tested on the invention of novel, interesting words that are suitable as
names for products, companies, web sites or names of various entities.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 88–96, 2009.
© Springer-Verlag Berlin Heidelberg 2009
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2 Algorithmic Considerations

Initially the Mambo system does not have any a priori linguistic knowledge. Google Web
1T 5-gram [5] dictionary is used as the training source. This dictionary is based only on
word frequency, therefore it is necessary to perform at least minimal spell-checking be-
fore using this data for training. The LRAGR [6] and SCOWL [7] dictionaries have been
used to correct the misspelled words. An unexpected and quite surprising problem is the
relative shallowness of such large dictionary provided by Google – over 40% of words
that exist in standard English dictionaries are not yet present in the Google dictionary,
probably due to the large number of rare and outdated words in English [8].

Dictionary presented to the system is used to learn morphological regularities using
probabilistic model. This model is somewhat easier to control than the autocorrelation
matrix memory that may also be used for such learning. Word frequencies are used in
the learning process. However, using raw word frequencies would lead to very frequent
presentation of some common words (mostly articles and conjunctions). For example
“the” occurred 23 billion times, while “of”, the next most common word, occurred 13
billion times only. On the other end of the list such word as “viscoses” has frequency
around 200. To avoid these huge differences logarithmic scale for frequencies is used.

Filtered data (words and their frequencies) are the source of knowledge for the sys-
tem – depending on selected symbol set, data can be presented as letters (“the” → “t”,
“h”, “e”), phonemes (“the” → “ð”, “@”), in a semi-letter form (“the” → “th”, “e”), only
for English, or in a mixed form (a word is processed in several forms at the same time).
In our implementation mixed mode with letters and phonemes causes huge CPU load
because conversion to a phoneme representation is done via a slow external program.
The pure phoneme form, written using the IPA (International Phonetic Alphabet) codes,
is hard to read for most people. The semi-letter form is easily readable and as fast to
process as the letter one, allowing to keep the atomicity of most characteristic phonemes
(“sh”, “ch”, “th”, “ph”, “wh”, “rh”).

Semantics. The system learns the structure of the words but not their meanings. Thus
it does not have such flexible associations as people. For example, “light” may mean
“small weight”, but it may also be associated with “daylight”. The program is unaware
of intended or unintended collocations of symbol strings. Advertising some product it is
helpful to associate “possibilities” with “great” (positive association), rather than “prob-
lems” (negative association). Currently the Mambo system does not include word va-
lence, but such an extension is not difficult, as affective word lists are readily available.
Without it in real applications better results are obtained if a distinct sets of priming
words with only negative associations (“bound”, “less”), or words with only positive
associations (“more”, “energy”), are provided, but not both sets.

Associations. In a typical situation a description of the product will be given, read, and
names for this product will be proposed by a human expert. Reading such description
leads to priming of the network, making it more susceptible to activation for the same
and related words. Priming is one of the effects of implicit memory which increases
the probability of recalling the previously encountered item, not necessarily in the same
form (as defined by Kalat [9]). Priming is achieved by repetition of the presented item
or by presenting items associated with the target [4].
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It is not easy to implement realistic priming in an automatic way. WordNet database
[10] that collects words with similar meanings into “synsets” may help, but despite
extensive efforts the content of WordNet is still far from perfect, and even for simple
queries questionable associations arise. Therefore WordNet is used only to help the user
to prepare the priming set.

Word determinant (prefix or suffix) is defined as the shortest prefix (suffix) of word
which is not a prefix (suffix) of any other word in the dictionary, with the exception of
derivatives of this word. For example, the prefix determinant of “education” is “edu-
cat” (“educated”, “educational”, and other forms are derivates of “educate”). Possible
backward associations may become a problem: the system can create a word which
is relevant to the priming set, but this word may be related in a much stronger way
to words outside of the priming set. As an example consider the priming item “owl”,
and the system’s association with more frequent “bowl” that may dominate [11] inhibit
correct associations to “owl”. There is no good mechanism that could control such hi-
jacking, the system can only enforce existence of word determinants from the priming
set. This enforcement has diminished the problem but did not eliminate it completely.
Restricting created words to those that contain at least one word determinant will assure
that results will be associated with the desired (priming) word set.

Originality. Words created by the system should be original, therefore copies of pre-
viously learnt words should be avoided. At the filtering level all shortened forms of
already known words are rejected (“borrow” → “borr”) and words with superficial
changes (“borrow” → “borrom”). At first this looks like an obvious decision, but for
real world application it may be too strict – just consider “sorrow”, “barrow”, or “bur-
row”. Originality plays the most important role in applications of Mambo system. Brand
names or company names should distinguish themselves from those already existing
(although similarity has some advantages, for example several “Imtel” or “Indel” com-
panies exist). The same rules are also used in order to avoid numerous variations on a
single created word.

Imitations. Compound words, such as the “bodyguard”, “brainstorm” or “airmail”, are
highly ranked by the Mambo system. While testing the system on concepts related to
aviation quite compelling word “jetmail” has been created, but only because the system
was primed with the word “jet” and there was word “• • •mail” in the dictionary. The
first part gave it a high association rank, the latter contributed to good linguistic quality
of the result. Thus creation of compound words in the Mambo system may lead to
a form of plagiarism – the system is creative only if humans were creative before.
Although this may be corrected in the final stage (searching the Internet to determine
if the word is new), for the purpose of testing all compound words have been removed
from the dictionary to guarantee that words created by the Mambo system result from
its internal algorithm, and not from a simple word takeover.

3 Word Rank Function

Words are ranked by their linguistic (phonological) and semantic quality, depending on
associations that they may invoke. The word rank function Q′(w) is defined as:
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Q′(w) =
|ng(T (w))|−1∏

i=0

q(ng(T (w))[i]) (1)

where function q is a dictionary function, for a given ngram returning numerical value
based on previously processed dictionary data (see below), T (w) is a composition of
word w transformations, ng is a function partitioning symbols in w into overlapping
ngrams of length Nng +1, shifted by Sng . Function ng(w) returns a sequence of strings
(ngrams):

ng(w) = 〈w[0 : Nng], w[Sng : Sng + Nng], w[2Sng : 2Sng + Nng], ..., (2)

w[nSng : nSng + Nng]〉

where w[i : j] represents string of symbols at positions i to j in the word w, and
nSng = |w|−Nng−1. In most cases these values are set to Nng = 2 and Sng = 1; for
example, partition of ”world” is then ”wor”, ”orl”, ”rld”. Let a ·b mean concatenation of
sequences a and b, and let Σ be the alphabet. Some examples (for Nng = 2, Sng = 1)
of word strings transformations are:
neutral transformation w → w e.g. world → world
cyclic transformation w → w·w[0 : Nng − 1] e.g. world → worldwo
mirror transformation w → w[|w| − 1]·w[|w| − 2]·...·w[0] e.g. world → dlrow

Let us define also functions h(w) = w[0 : |w| − 2], t(w) = w[|w| − 1] and func-
tion r(i). When r(i) = i positional ngrams are used (ngrams which „remember” their
position within a sequence), and when r(i) = 0 free ngrams are used.

Several transformations may be applied to words simultaneously. A model of such
computation is defined by several user-defined parameters: function r(·), ngram param-
eters Nng, Sng, composition of transformations (T ), the alphabet (Σ), and the exponent
W estimating importance of the function Q′(w) for a given model. The total word rank
function is a product over models:

Q(w) =
#models∏

k=1

Q′
k(w)Wk (3)

At least one model is always required; if there are more models specified the first one

is assumed to be the main model, and the remaining ones are auxiliary. Only words
ranked above some threshold will be accepted as “interesting”.

Function q is calculated using information from the dictionary of words and their
frequencies, and optionally from a sub-dictionary containing the priming set Pr, which
also contains words and their counts. Its purpose is to obtain probability-like measure of
ngrams for words found in the training dictionary. For each specific model of creating
words, data are put into distinct pairs of C and D tables. The steps to create these tables
are presented below in the pseudo-C++ code; the calculations in lines marked with †
symbol are dependent on the parameters passed to the system.
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1. Saving data from Dict to table Dd

for each word w in Dict
for each i-th ngram g in ng(T(w))

† Dd[r(i),h(g),t(g)] += count(w)
2. Saving data from Pr to table Dp

for each word w in Pr
for each i-th ngram g in ng(T(w))

† Dp[r(i),h(g),t(g)] = 1
3. Rescaling values

for each element e in Dd
† e = log10(e)

4. Normalization of Dd, creating table Cd

for b = 0 to depth(Dd)-1, step +1
from y = 0 to rows(Dd)-1, step +1

† Cd[b,y] = sum(Dd[b,y]) / sum(Dd[b])
s = sum(Dd[b,y])
for x = 0 to cols(Dd)-1, step +1

† Dd[b,y,x] /= s
5. Creating table Cp

for b = 0 to depth(Dp)-1, step +1
for y = 0 to rows(Dp)-1, step +1

† Cp[b,y] = sum(Dp[b,y]) > 0 ? 1 : 0
6. Adding table values

† C = Cd + Cp
† D = Dd + Cp

7. Normalization correction of the final tables
for b = 0 to depth(D)-1, step +1
for y = 0 to rows(D)-1, step +1

† C[b,y] /= sum(C[b])
s = sum(D[b,y])
for x = 0 to cols(D)-1, step +1

† D[b,y,x] /= s
8. Weighting the tables

for each element e in C
† e = eW

for each element e in D
† e = eW

The C and D tables serve to construct functions q and q′ that may be interpreted as
the probability of occurrence of a given ngram. For the first ngram h the function q may
be identified as unconditional probability, and for the remaining symbols as conditional
probability. In simplified notation P (ai) = P (a|i), where i is the position of a in word
w over alphabet Σ. For subword v of word w let’s also define:

P (b|ai) = P (bi+|a||ai); h(v) = a, t(v) = b (4)
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Probability function P is calculated by a call to the table C and D: P (ai) = C[r(i), a],
and P (b|ai) = D[r(i), a, b]. Function q(G), for a transformed sequence G = ng(w),
is defined as a product:

q(G) = P (h(G[0])0)
|G|−1∏
i=0

P (t(G[i])|h(G[i])i) (5)

For the main model and positional ngrams the sequence G does not have to be treated
as a continuous entity – it can be divided into independent sub-sequences in such a way
that G0·G1· ...·GJ = G. With the helper function that ranks ngrams:

qj (G′, d) = P (h(G′[0])d)
|G′|−1∏

i=0

P (t(G′[i])|h(G′[i])d+i) (6)

where G′ is sub-sequence of G and d is initial depth of search in tables C and D, the
counterpart of q for non-continuous case—function q′—is defined as:

q′(G) =
J∏

i=0

qj(Gi, di); 0 � di � depth(D)− |Gi|, d0 = 0 (7)

Parameter J , defined by the user, controls the depth of search in matrix D for ngrams
that are combined; when J = 0 there is no G division and q′ ≡ q. Computationally
the algorithm for functions q and q′ seems to be straightforward – it is just some multi-
plication of values taken from the tables. However, when creating all words of a given
length L the naive approach will not be acceptable due to the time complexity: for
function q it is O(|Σ|L). To avoid lengthy computations optimized algorithm has been
used, with cut-offs for words that fall below desired rank threshold at an early stage.
Detailed discussion of these technical improvements are beyond the scope of this paper
(Pilichowski, PhD thesis, 2009).

4 Results

The first test aims at finding a better name for Kindle electronic book reader that Ama-
zon is advertising. Manually creating the whole priming set would be too tedious, there-
fore the user has to provide only the core set and the exclusion list (both in form of reg-
ular expressions). The priming set is obtained automatically from the dictionary adding
the words that match regular expressions in the core set and do not match any words
from the exclusion list.

The core priming set in this experiment was (each row is a concept group):
1. acquir, collect, gather
2. air, light$, lighter, lightest, paper, pocket, portable
3. anyplace, anytime, anywhere, cable, detach, global, globe, go$, went, gone, going,

goes, goer, journey, move, moving, network, remote, road$, roads$, travel, wire, world
4. book, data, informati, knowledge, librar, memor, news, word$, words$
5. comfort, easi, easy, gentl, human, natural, personal
6. computer, electronic
7. discover, educat, learn, read$, reads, reading, explor
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The exclusion list contains: aird, airin, airs, bookie, collectic, collectiv, globali, globed,
papere, papering, pocketf, travelog. The top-ranked results are below, with the number
of domains that use the word, identified using Google at the end of 2008, given in the
last column:

Created word Google word count No. domains
librazone 968 1
inforizine – –
librable 188 –
bookists 216 –
inforld 30 –
newsests 3 –
memorld 78 1
goinews 31 –
infooks 81,200 7
libravel 972 –
rearnews 8 –
informated 18,900,000 8
booktion 49 –
inforion 7,850 61
newravel 7 –
datnews 51,500 20
infonews 1,380,000 20
lighbooks 1 –
journics 763 1

Mambo has created several interesting new words, finding may words that are al-
ready used and have been created by people. The system has also proposed words the
humans so far have used almost by accident – like “inforld”.

Another experiment was carried out to find the name for itself, i.e. the Mambo sys-
tem, as it was preliminarily called. The parameters of all runs were exactly the same as
above. The core priming set is presented in the table below:

1. articula, name
2. create, creating, creativ, generat, conceiv, build, make, construct, cook,

formula, prepar, produc
3. explor, discov, new$, newer$, newest$, newly$, imagin
4. mean$, meanin, associat, idea$, ideas, cognitiv, think, thought, semant,

connect, art$, artist, brain, mind, cogit
5. system$, systems$, program, automat, computer, artifici
6. wit$, wits$, witty$, smart, intell
7. word, letter, languag

with the exclusion of one word: cookie. It is worth noting that this algorithm selected
much fewer words as interesting than resulted from our previous experiments [3]; it has
generated the following words:



Neurocognitive Approach to Creativity in the Domain of Word-Invention 95

Created word Google word count No. domains
semaker 903 9
braingene 45 –
assocink 3 –
thinguage 4,630 –
systemake 4 –
newthink 8,960 46
thinknew 3,300 43
assocnew 58 –
artistnew 1,590 1
semantion 693 6

Mambo system was capable of creating such words as “braingene” or “thinguage”.
Fine-tuning the system (parameters, priming) may provide a lot of new words.

5 Conclusions

Inventing novel names is clearly a creative process that can be simulated using compu-
tational algorithms, and tested against human ingenuity. Many companies offer naming
services, for example: Brands and Tags, Brighter Naming, Names and Brands, Named
at Last, NameSharks. Models of neurocognitive processes involved in the process of
creating and understanding novel words, capturing details at different levels of approx-
imation, are worth developing. In this paper probabilistic approach has been presented.
Despite its simplicity it gives quite interesting results. General neurocognitive princi-
ples of creativity are probably common to various tasks [2,3]. There is no doubt that
algorithms based on neurocognitive inspirations are going to be quite useful in many
interesting applications.
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Abstract. In this paper we study personal credit scoring using several machine 
learning algorithms: Multilayer Perceptron, Logistic Regression, Support Vec-
tor Machines, AddaboostM1 and Hidden Layer Learning Vector Quantization. 
The scoring models were tested on a large dataset from a Portuguese bank. Re-
sults are benchmarked against traditional methods under consideration for 
commercial applications. A measure of the usefulness of a scoring model is pre-
sented and we show that HLVQ-C is the most accurate model. 

1   Introduction 

Quantitative credit scoring models have been developed for the credit granting deci-
sion in order to classify applications as ‘good’ or `bad’, the latest being loosely de-
fined as a group with a high likelihood of defaulting on the financial obligation.  

It is very important to have accurate models to identify bad performers. Even a 
small fraction increase in credit scoring accuracy is important. Linear discriminant 
analysis still is the model traditionally used for credit scoring. However, with the 
growth of the credit industry and the large loan portfolios under management, more 
accurate credit scoring models are being actively investigated [1]. This effort is 
mainly oriented towards nonparametric statistical methods, classification trees, and 
neural network technology for credit scoring applications [1-5].  

The purpose of this work is to investigate the accuracy of several machine learning 
models for the credit scoring applications and to benchmark their performance against 
the models currently under investigation.  

The credit industry has experienced a rapid growth with significant increases in in-
stalment credit, single-family mortgages, auto-financing, and credit card debt. Credit 
scoring models, i.e, rating of the client ability to pay the loans, are widely used by the 
financial industry to improve cashflow and credit collections. The advantages of 
credit scoring include reducing the cost of credit analysis, enabling faster credit deci-
sions, closer monitoring of existing accounts, and prioritizing collections [4].  

Personal credit scoring is used by banks for approval of home loans, to set credit 
limits on credit cards and for other personal expenses. However, with the growth in 
financial services there have been mounting losses from delinquent loans. For  
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instance, the recent crises in the financial system triggered by sub-prime mortgages 
have caused losses of several billion dollars.  

In response, many organizations in the credit industry are developing new models 
to support the personal credit decision. The objective of these new credit scoring 
models is increasing accuracy, which means more creditworthy applicants are granted 
credit thereby increasing profits; non-creditworthy applicants are denied credit thus 
decreasing losses. 

The main research focuses on two areas: prediction of firm insolvency and predic-
tion of individual credit risk. Due to the proprietary nature of credit scoring, there is 
few research reporting the performance of commercial credit scoring applications. 
Salchenberger et al. investigated the use of a multilayer perceptron neural network to 
predict the financial health of savings and loans [6]. The authors compare a multilayer 
perceptron neural network with a logistic regression model for a data set of 3429 
S&L's from January 1986 to December 1987. They find that the neural network 
model performs as well as or better than the logistic regression model for each data 
set examined.  

The use of decision trees and multilayer perceptrons neural network for personal 
credit scoring were studied by several authors. West [7] tested several neural net-
works architectures on two personal credit datasets, German and Australian. Results 
indicates that multilayer perceptron neural network and the decision tree model both 
have a comparable level of accuracy while being only marginally superior to tradition 
parametric methods. 

Jensen [5] develops a multilayer perceptron neural network for credit scoring with 
three outcomes: obligation charged of (11.2%), obligation delinquent (9.6%), and 
obligation paid-of. He reports a correct classification of 76 - 80% with a false positive 
rate (bad credit risk classified as good credit) of 16% and a false negative rate (good 
credit risk classified as bad credit) of only 4%. This author concludes that the neural 
network has potential for credit scoring applications, but its results were obtained on 
only 50 examples. 

The research available on predicting financial distress, whether conducted at the 
firm or individual level, suggests that recent non-parametric models show potential 
yet lack an overwhelming advantage over classical statistical techniques. Recently we 
have successfully applied new data mining models, like Hidden Layer Learning Vec-
tor Quantization (HLVQ-C) [8] and Support Vector Machines (SVM) [9] for bank-
ruptcy prediction. However, the major drawback for using these models is that they 
are difficult to understand and the decisions cannot be explicitly discriminated. 

This paper is organized as follows. Section 2 discusses the dataset used, the pre-
processing of the data and feature selection. Section 3 presents the models and the 
usefulness measure. In Section 4 the results are discussed and finally section 5 pre-
sents the conclusions.  

2   Dataset 

The database contains about 400 000 entries of costumers who have solicited a per-
sonal credit to the bank. The value solicited ranges from 5 to 40 kEuros and the pay-
ment period varies between 12 to 72 months.   
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Table 1 presents the definitions of the eighteen attributes used by the bank. Eight 
of these attributes are categorical (1, 2, 3, 4, 5, 8, 9 and 10) and the remaining con-
tinuous. Most of the entries in the database have missing values for several attributes. 
To create a useful training set we select only entries without missing values. 

The database also contains the number of days that each client is in default to the 
bank concerning the payment of the monthly mortgage. This quantity is usually called 
“days into arrears” and in most cases is zero. A client is considered delinquent when 
this number is greater than 30 days. We found 953 examples in the database within 
this category. To create a balanced dataset an equal number of randomly selected non-
default examples were selected, reaching a total of 1906 training cases. We called this 
dataset 1. 

We also created a second dataset where the definition of credit delinquency was set 
to 45 days into arrears. This dataset is therefore more unbalanced containing 18% of 
defaults and 82% non-defaults. This is called dataset 2. 

Table 1. Attributes used for credit scoring. Marked bold are the selected attributes. 

# Designation  # Designation  

1 Professional activity 10 Nationality 
2 Previous professional activity 11 Debt capacity 
3 Zip code 12 Annual costs 
4 Zip code – first two digits 13 Total income 
5 Marital status 14 Other income 
6 Age 15 Effort ratio 
7 Number of dependents 16 Future effort ratio 
8 Have home phone 17 Number of instalments 
9 Residential type 18 Loan solicited 

2.1   Feature Selection 

Several feature selection algorithms were used to exclude useless attributes and re-
duce the complexity of the classifier. Due to the presence of many categorical attrib-
utes, feature selection is difficult. Several methods were used to test the consistency 
of the selection: SVM Attribute Evaluation, Chisquared and GainRatio.  Each method 
selected slightly different sets of attributes. We choose the following set of six attrib-
utes with has the highest consensus among all rankers: 1, 3, 4, 11, 17 and 18. 

3   Models Used 

The data was analysed with five machine learning algorithms: Logistic, Multilayer 
Perceptron (MLP), Support Vector Machine (SVM), AdaBoostM1 and Hidden Layer 
Learning Vector Quantization (HLVQ-C).  

For MLP, we used a neural network with a single hidden layer with 4 neurons. The 
learning rate was set to 0.3 and the momentum to 0.2. The SVM algorithm used was 
the LibSVM [10] library with a radial basis function as kernel with the cost parameter 
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C = 1 and the shrinking heuristic. For AdaBoostM1 algorithm we used a Decision 
Stump as weak-learner and set the number of iterations to 100. No resampling was 
used.  

The HLVQ-C algorithm was developed to classify high dimensional data [8]. It is 
implemented in four steps. First, a multilayer perceptron is trained using back-
propagation. Second, supervised Learning Vector Quantization is applied to the out-

puts of the last hidden layer to obtain the code-vectors icw  corresponding to each 

class ci in which data are to be classified. Each example, ix , is assigned to the class ck 
having the smallest Euclidian distance to the respective code-vector:  

)(min xhwk jc
j

−=  (1) 

where h
r

 is a vector containing the outputs of the hidden layer and ⋅  denotes the 

usual Euclidian distance. In the third step the MLP is retrained but with two differ-
ences regarding conventional multilayer training. First the error correction is not ap-
plied to the output layer but directly to the last hidden layer. The second difference is 
in the error correction backpropagated to each hidden node:  
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 After retraining the MLP a new set of code-vectors,  
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is obtained according to the following training scheme:  

))((
icic wxnw −=∆ α  if x  ∈  class ci ,     

    0=∆
icw                   if x ∉class ci 

(4) 

The parameter α  is the learning rate, which should decrease with iteration n to 
guarantee convergence. Steps two and three are repeated following an iterative proc-
ess. The stopping criterium is met when a minimum classification error is found.  

The distance of a given example x to each prototype is: 

ici wxhd −= )(  (5) 

which is a proximity measure to each class.  
The final step of the algorithm is then applied.  

 Each test example, ix
r

, is included in the training set and the neural network re-
trained. Since the class membership of this example is unknown, we first assign it to 

class “0” and determine the corresponding output ii yxy 00 )( =v
 as well as the respec-

tive distances to each class prototype, 
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In a second step the network is retrained considering the example as class “1”. The 

new output ii yxy 11 )( =v
 and the respective distances to the prototypes are obtained 

in a similar way, thus: 
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From these outputs, iy0  and iy1 , the choice is made following the heuristic rule:  
 

  ii yy 0=  if 1
0

0
0

cc dd <  

  ii yy 1=  if 0
1

1
1

cc dd < . 

3.1   Usefulness of a Classifier  

Accuracy is a good indicator, but not the only criteria, to choose the appropriate clas-
sifier. We introduce a measure of the usefulness of a classifier, defined by: 

LE −=η , (8) 

where E is the earnings obtained by the use of the classifier and L the losses incurred 
due to the inevitable misclassifications.  

Earning, for the bank point of view, results from refusing credit to defaults clients, 
and can be expressed as:  

xeNVE I )1( −=  (9) 

where N is the number of loans applicants, V the average value of a loan, Ie  the type 

I error and x the typical percentage of defaults in the real sample. For simplicity we 
are assuming a Loss Given Default (LGD) of 100%. 

Losses results from excluding clients that were incorrectly classified as defaults. In 
a simplified way they can be calculated as: 

IIexmNVL )1( −=  (10) 

where m is the average margin typically obtained by the bank in a loan. The net gain 
in using a classifier is: 

[ ]mexexNV III )1()1( −−−=η . (11) 

To have 0>η   we need: 
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where 
I

II

e

e
G

−
=

1
, is a measure of the efficiency of the classifier. This quantity 

should be the lowest possible. Assuming x small and Ie  = 0.5 , we should have 

IImex 2> . 

4   Results 

In table 2 we compare the efficiency of the classifiers on two datasets using 10-fold 
cross validation. For dataset 1, most classifiers achieve a good accuracy in detecting 
defaults but at the cost of large type II errors.  Since real data is highly unbalanced, 
most cases being non-defaults, this means that more than half of clients will be re-
jected. SVM is the most balanced classifier while HLVQ-C achieved the highest ac-
curacy on both datasets. 

Since dataset 2 is more unbalanced and the default definition more strict, error type 
II decreased considerably while error type I increased. More important, the usefulness 
of the classifier, measured by G, improved substantially. The HLVQ-C is again the 
best performer, either on accuracy and usefulness, and AdaboostM1 the second best. 
Logistic is the worst performer. 

Following our definition, Eq. 12, for the classifier to be useful the dataset has to 
have about 6% defaults, considering the best model (HLVQ-C), and as much as 11% 
for the Logistic case (setting m = 0.5).  

To increase the usefulness, i.e. lower G, error type II should decrease without dete-
riorating error type I. This can be done either by using a more unbalanced dataset or 
applying different weights for each class. The exact proportion of instances in each 
class in the dataset can be adjusted in order to minimize G. 

Table 2. Accuracy, error types and usefulness of different models in the two datasets consid-
ered. Values are in percentage. 

 Classifier Accuracy Type I Type II G 
 Logistic 66.3 27.3 40.1 54.8 
 MLP 67.5 8.1 57.1 61.1 
Dataset 1 SVM 64.9 35.6 34.6 52.3 
 AdaboostM1 69.0 12.6 49.4 55.7 

 HLVQ-C 72.6 5.3 49.5 52.3 

 Logistic 81.2 48.2 11.0 21.2 

 MLP 82.3 57.4 9.1 20.1 

Dataset 2 SVM 83.3 38.1 12.4 19.3 
 AdaboostM1 84.1 45.7 8.0 14.7 

 HLVQ-C 86.5 48.3 6.2 11.9 
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5   Conclusions 

In this work we compared the efficiency of several machine learning algorithms for 
credit scoring. Feature selection was used to reduce complexity and eliminate useless 
attributes. From the initial set of 18 features only 6 have been selected. 

While MLP slightly improves the accuracy of Logistic regression, other methods show 
considerable gains. AdaboostM1 boosts the accuracy by 3% and HLVQ-C up to 5%.  

The price to be paid for the accurate detection of defaults is a high rate of false 
positives. To circumvent this situation an unbalanced dataset was used with a more 
strict definition of default. A measure of the usefulness of the classifier was intro-
duced and we showed that it improves considerably on this second dataset. 
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Abstract. This paper proposes the use of behavior-based control architecture
and investigates on some techniques inspired by Nature- a combination of re-
inforcement and supervised learning algorithms to accomplish the sub-goals of
a mission of building adaptive controller. The approach iteratively improves its
control strategies by exploiting only relevant parts of action and is able to learn
completely in on-line mode. To illustrate this, it has been applied to non-linear,
non-stationary control task: Cart-Pole balancing. The results demonstrate that our
hybrid approach is adaptable and can significantly improve the performance of
TD methods while speed up learning process.

1 Introduction

Based on reinforcement learning (RL), agents can be partially successful to perform
mode-free learning of action policies of some control problems. The biggest problem
of a RL algorithm when applied to a real system is the curse of dimensionality, and the
reliance on a number of assumptions about the nature of environment in which the learn-
ing takes place. e.g., it is usually assumed that the process to be controlled is either open
loop stable 1 or of slow dynamic. Unfortunately, these assumptions are usually violated
by any control application domain operating in the real world. Due to the above limi-
tations in adaptability of the current RL algorithms interest to a hybrid that combines
different learning strategies model arose as well. The success of RL method in applica-
tion to the intelligent control of continuous control systems is turned out to be depend on
the ability to combine proper function approximation method with temporal-difference
(TD) methods such as Q-learning and value iteration [8,9,10]. This paper proposes the
use of behavior-based control architecture and investigates on some techniques inspired
by Nature- a combination of reinforcement and supervised learning algorithms to ac-
complish the sub-goals of a mission of building adaptive controller. In the presented
approach, the above mentioned limitations are solved by a hybrid architecture combin-
ing temporal-difference (TD) learning algorithm with on-line variant of random forests
(RF) learner that we have developed recently [5]. The variant of TD learning used here
is TD(λ) [7] when λ = 1, uses the ε-greedy policy for action selection. We call this
implementation Random-TD. The approach iteratively improves its value function by
exploiting only relevant parts of action space, and is able to learn completely in the on-
line mode, and since we do not freeze the learning, it can adapt to a changing situation.

1 There is no set procedures to tune controllers.
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Such capability of on-line adaptation would take us closer to the goal of more robust
and adaptable control. Learning is expected to be faster than in TD learning, which
uses stochastic search. Our results below on nonlinear and non-stationary control task:
Cart-Pole balancing confirms this prediction, and its also suggested that the learning
algorithm could become scalable and produce large and adaptive systems.

On-line RFOn-line RF TD-LearningTD-Learning

Random-TDRandom-TD

A hybrid 

Module

Learning 

Module

Decision of hybrid

Output Output

Take the action, state transition

State

Reward

Value FunctionValue Function

FAFA

Action SelectorAction Selector

Action

Fig. 1. Random-TD architecture

2 Random-TD Architecture

Figure 1 demonstrates the architecture of the proposed Random-TD. It consists of two
modules, a learning module and a hybrid module. These two modules interact with each
other. The learning module is in the first level; in which both on-line RF and TD learner
learn their control policies, based on its current policy and state. Then, each learner
submits its decision of the selected action or the preference of actions to the hybrid
module, where Random-TD learns the combined policies. The action selector chooses
an action based on the value function and some exploration and exploitation strategies.
The hybrid module is at the second level, where the control policies from learning mod-
ule are dynamically aggregated. After that, the hybrid module sends a final decision of
action back to the learning module. Then every learner in the learning module takes
the action, transits to a new state, and obtains an instant reward. In this case rewards
are given for smoothing controlling the cart-pole task. Then, each learner updates its
policy. Repeat for a number of steps or until several criteria are satisfied. Because both
the TD-algorithm and RF run on-line, this is frees us the curse of dimensionality in
a sense that memory requirements need not be exponential in the number of dimen-
sions. The overall effect is particularly efficient computationally. The novelty of our
approach stems from its orientation towards the application of knowledge based func-
tion approximation, as a result of aggregate supervisor learning with TD learning. From
this approach, we hope to highlight some of the strengths of RF function approximator
to the RL problems.
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3 A Hybrid MDP

Let us consider a dynamic control system:

ds(t)
dt

= f(s(t), (a(t)) (1)

RL solve sequential decision making problems that can be modeled by stochastic pro-
cess called Markov Decision Processes (MDPs). In our modeling, we assume a large
but limited state space represented by control input matrix Ψ , at any given time step
t = 0, 1, 2, · · · , an agent perceives its state st and selects an action at. By exploring
a state space an agent tries to learn the best control policy, π : S → A, which maps
states to actions by estimating Bellman error. The system (environment) responds by
given the agent some (possibly zero) numerical reward r(st) and changing into state
st+1 = δ(st, at). Estimate approximation for reward represented as a vector R ∈ �|s|,
are incremented by rtφt and φt(φt − γφt+1), where φt, φt+1 are control variable vec-
tors at time step t and t + 1, and the transition probabilities under π can be represented
as a matrix P ∈ �|s|×|s|. The state transition may be determined solely by the current
state and the agent’s action or may also involve stochastic processes. Given two Markov
decision process M1 and M2 which share the same state space S but have two differ-
ent action spaces A1 and A2, respectively, a new Markov decision process M12 can
be defined by the composition of M1 and M2 such that at each time step the learning
agent select one action from A1 and one from A2. The transition and cost function of
the composite process M12 are define by

δ12(s, (a1, a2)) = δ2(δ1(s, a1), a2) and (2)

r12(s, (a1, a2)) = r1(s, a1) + γr2(δ1(s, a1, a2)). (3)

4 Random Forests in Reinforcement Learning

Learning of RF [2] is refined in this paper to deal with learning control scheme, on-line
learning and other adaptability issues. Our implementation is structured by the desire to
supply a behavioral guarantee based on a convergent learning algorithm.

4.1 On-Line RF

The structure of on-line forest is shown in Figure 2. The state space is partitioned onto
�2 into g disjoint group, in order to transfer a state s from the input space to a vec-
tor of input controls (actions)(See SELECT VARIABLE in Algorithm.1). The state is
represented as control vectors; for each s ∈ S:

φs = [(φs(1), φs(2), · · · , φs(n))]T (4)

Vt(s, θt) = θT
t φs =

n∑
i=1

θt(i)φs(i) (5)
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Fig. 2. A simple parameter representation of weights for a forest. The fitness of the policy is the
reward “payoff” when the agent uses the corresponding on-line RF as its decision policy.

At each sub-space a local estimation is performed in order to find a good feature ma-

trix Ψ . Then value function is estimated from control (action) space, V̂ =
→
θT ·

→
As,

where
→
θ is the parameter vector and

→
As is the input controls vector. Based on control

input ranking we develop a new, conditional permutation scheme for the computation
of action importance measure [5]. According to control input ranking results, different
yet random action subsets are used as new action spaces for learning a diverse base-
learners (decision trees). In contrast to off-line random forests, where the root node
always represents the class in on-line mode, the tree adapts the decision at each inter-
mediate node (nonterminal) from the response of the leaf nodes, which characterized
by a vector (wi, θi) with ‖wi‖ = 1. Nodes are number in the breadth-first order with
the root node numbered as 1, the activation of two child nodes 2i and 2i + 1 of node i
is given as

u2i = ui.f(w
′
is + θi) (6)

u2i+1 = ui.f(−w
′
is + θi) (7)

where ui represents the activation of node i, and f(.) is chosen as a sigmoidal function.
Consider a sigmoidal activation function f(.), the sum of the activation of all leaf nodes
is always unity provided that the root node has unit activation.
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4.2 Learning Value Function

Individual trees in RF are incrementally generated by specifically selected subsamples
from the new action spaces. The decision trees consist of two types of nodes: decision
nodes, corresponding to state variables and leaf nodes, which correspond to all possible
actions that can be taken. In a decision node a decision is taken about one of the input.
Each leaf node stores the state values for the corresponding region in the state space,
meaning that a leaf node stores a value for each possible action that can be taken. The
tree starts out with only one leaf that represents the entire input space. So in a leaf
node a decision has to be made whether the node should be split or not. Once a tree is
constructed it can be used to map an input vector to a leaf node, which corresponds to a
region in the state space. We will use temporal-difference learning (TD) [7] to associate
a value with each region. We favoured TD learning in this implementation since it
requires no model of environment, gives immediate results, and computationally cheap.
In this case, the value function approximation has the form V̂ = Φθ, where Φ is a
|S| ×m matrix m which each row contains the control variable vector for a particular
state, and θ is a vector of m parameters. Typically it is desirable to have m � |S|.
Usually only Φ is assumed to be given, and the learning algorithm adjusts θ.

5 Random-TD Policy Evaluation

One possible way to combine TD with RF is to choose the best combined strategy s→i =
s→i (s) given the expected combined strategy for each learners involved and to represent
the value function V π as combined policy of entire value function, rather than base value
of a given state. This process is taken place at the hybrid module in Fig.1. Unlike in lookup
tables, the value function estimate depends on a parameter vector θt, and only the param-
eter vector is updated. The Random-TD algorithm for value function approximation is
shown in Algorithm 1. The function SELECT VARIABLE (st, et, A, g) uses state st as
data points and the Bellman error estimate et, while the transformation from state space
to feature space is done on the previous step [6]. Initially, a single feature which is 1 ev-
erywhere is defined and TD is used to compute the parameters of the approximator. On
every iteration the Bellman residuals et are estimated for each state. A direct solution of
the model parametersP and Rnot be feasible, either due to unknown model parameters or
due to the cardinality of the state space. In either case, temporal difference (TD) methods
may be employed, so the residuals can only be approximated based on an approximate
model, or on sample data. The accuracy of the estimates is not crucial since on-line RF
algorithm is robust to noise. In the results presented below, we use approximate Bellman
errors, but using TD errors gives very similar results. Partition of state space into up to
g states is done at SELECT VARIABLES stage, and it represented by combined control
feature matrix Ψ . Random-TD is repeated to obtain a new approximation V̂ k.

6 Empirical Evaluations

The results present here extends our previous results [3,4]. Before reporting our results,
let us provide a brief description of the experiment.
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Algorithm 1. Random-TD Policy Evaluation
1: Given the dimensionality d to be used in each projection the number of features to be added

in each iteration, g. the desire number of iteration K.
2: Initialize state s
3: Choose action a using policy π and observe reward r and next state ś
4: Update V (s) such that V (s) ← V (s) + α[r + γV (s) − V (s)] where α is the learning rate

and γ is the discount factor, 0 < α < 1, 0 < γ < 1
5: s ← ś
6: Repeat steps 3-5 until episode ends

7: Φ0 ←→
1

8: Φ0 ← TD(st, rt, Φ
0)

9: for k = 1, 2, · · · , K do
10: Estimate the Bellman residuals
11: et ≈ R(st + γ

∑
s∈S Pst,sV̂

k−1
s − V̂ k−1

st )
12: �2 ← Random-TD (st, et, d)
13: Ψ ← SELECT VARIABLE (st, et, A, g)
14: Φk ← [Φk−1, Ψ ]
15: Φk ← Random-TD(st, rt, Φ

k)
16: V k ← (Φkθk)
17: end for
18: return V̂ k

Cart Pole Balancing One of the most well-known benchmarks in RL is the Cart-Pole
balancing - the setup is shown in Figure 3 (a). In this control task, a pole with a point-
mass on its upper end is mounted on a cart, and the goal is to balance a pole on top
of the cart by pushing the cart left or right. Also the cart must not stray too far from
its initial position. The state description to the agent consists of a four continuous state
variables, the angle θ (radial) and speed of the pole φ́ = δx/δt and the position x and
speed x́ = δx/δt of the cart. Two actions were set up for the training and evaluation of
the controller: RightForce (RF) (results in pushing the cart right), and LeftForce (LF)
(results in pushing the cart left). The physical parameters (the mass of cart, mass and the
length of the pole, and the coefficient of frictions) were the same as in [1]. An episode
is a single trail to balance the pole and a non-zero reward is given at the end of the trail
only. The reward is calculated as follows:

rt =
{

1 if |φ| < 1
15π and | x| < 1

−1 otherwise

This reward function gives a reward of−1 on failure and a reward of 1 on all other time
steps. Failure is defined as a state where the angle of the pole is more than 12 degrees in
either direction, or the cart is further than 1 meter from its initial position. When one of
the conditions for failure was reached, the system was reset to x = 0, x́ = 0 and θ = x,
where x is a random number in the interval [−0.05, 0.05]. This was also the initial state
of the system.
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Fig. 3. The performance of Random-TD in the Cart-Pole Balancing control system. In(a), The
general setup of the Cart-Pole balancing problem. In (b), a sample learing. The dashed line de-
notes the Random-TD performance.

Table 1. The table gives the percentage of trials that ended with a solution that can balance the
pole at least 100 s. Reward with a σ of 0.3. 20 simulations were performed.

ε-greedy ε-soft softmax
γ succ γ succ γ succ

TD 0.80 40% 0.80 60% 0.99 55%
Q-learing 0.90 15% 0.80 20% 0.00 80%
Random-TD 0.90 80% 0.95 65% 0.95 100%

6.1 Experimental Results and Discussion

In this section we demonstrate the performance of Random-TD and also compare it with
other function approximation paradigms. Results for Cart Pole balancing are illustrated
in Figure 3. In 3 (b), a sample run is shown: the Random-TD algorithm estimates the
optimal solution with less than 8 minutes of simulated trail time. Table 1 reports result
using different action selection policies; ε-greedy, ε-soft and softmax, and comparing
with different RL algorithms; TD learning, Q-learning. With ε-greedy, most of the time
the action with the highest estimated reward is chosen, called the greediest action. Ev-
ery once in a while, say with a small probability ε, an action is selected at random.
This method ensures that if enough trials are done, each action will be tried an infinite
number of times, thus ensuring optimal actions are discovered. ε-soft very similar to
ε-greedy. The best action is selected with probability 1 − ε and the rest of the time a
random action is chosen uniformly. On the other hand Softmax works by assigning a
rank or weight to each of the actions, according to their action-value estimate. A ran-
dom action is selected with regards to the weight associated with each action, meaning
the worst actions are unlikely to be chosen. From the above experimental results, it can
be concluded that, the Random-TD can obtain better performance than conventional
TD learning algorithm.
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7 Conclusion

In this paper we propose Random-TD representation as a new model for function ap-
proximation to solve problems associated with learning in large state and actions spaces.
Despite the challenges when we aggregate supervised learning with TD-learning, we
still reap benefits from both paradigms. From TD-learning we gain the ability to dis-
cover behavior that optimizes performance. From supervised learning we gain a flexible
way to incorporate domain knowledge. Our empirical results demonstrate the feasibil-
ity and indicate strong potential for this proposed model. Our future work is to make
Random-TD available as a general purpose automatic controller for self-configuring
robots or mechanisms in an unknown and unstructured environment.
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Abstract. Efficient retrieval of information with regards to its meaning and 
content is an important problem in data mining systems for the creation, man-
agement and querying of very large information databases existing in the World 
Wide Web. In this paper we deal with the main aspect of the problem of content 
based retrieval, namely, with the problem of document classification, outlining 
a novel improved and systematic approach to it's solution. We present a docu-
ment classification system for non-domain specific content based on the learn-
ing and generalization capabilities mainly of SVM neural networks. The main 
contribution of this paper lies on the feature extraction methodology which, 
first, involves word semantic categories and not raw words as other rival ap-
proaches. As a consequence of coping with the problem of dimensionality re-
duction, the proposed approach introduces a novel higher order approach for 
document categorization feature extraction by considering word semantic cate-
gories higher order correlation analysis, both two and three dimensional, based 
on cooccurrence analysis.  The suggested methodology compares favourably to 
widely accepted, raw word frequency based techniques in a collection of docu-
ments concerning the Dewey Decimal Classification (DDC) system. In these 
comparisons different Multilayer Perceptrons (MLP) algorithms as well as the 
Support Vector Machine (SVM), the LVQ and the conventional k-NN tech-
nique are involved. SVM models seem to outperform all other rival methods in 
this study. 

1   Introduction 

A number of statistical classification and machine learning techniques have been 
applied to automatic text categorisation, including domain-specific rule learning 
based systems [1], regression models [2], nearest neighbour classifiers [2], decision 
trees [3], Bayesian classifiers [3], Support Vector Machines [4] and neural networks 
[5]. On the other hand, several feature extraction methodologies have already been 
applied to this field. The basic methodology is the frequency of word occurrence 
technique representing a document through the vector space model (SMART) [6]. A 
multitude of feature extraction methods stem from the SMART representation, like 
word frequency weighting schemes (Boolean, tf x idf (inverse document frequency), 
tfc, entropy, etc.) [7] as well as feature extraction techniques involving dimensionality 
reduction through feature selection schemes (document frequency thresholding,  
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information gain, hypothesis-testing, etc.) [7] and through feature combination or 
transformation (For instance, Latent Semantic Indexing (LSI) related methodologies) 
[7]. For a survey of the state-of-the-art in supervised text categorization we should 
point out [7].  

In the herein introduced approach we present a supervised text categorization sys-
tem for non-specific domain full-text documents, aimed at extracting meaning accord-
ing to well defined and systematically derived subject categories used by librarians. 
This system is based on Supervised Neural Networks of the Multilayer Perceptron 
(MLP) and SVM type and a novel feature extraction scheme based on semantics 
processing through first, second and third order statistical procedures.  The herein 
approach extends and improves the one presented in [12], modifying the feature ex-
traction method presented there to introduce higher order correlations. More specifi-
cally, the proposed feature extraction technique has the following attributes. 
• It involves the extraction of first, second and third order characteristics of the 

input documents, based on processing individual and pairs/triplets of word se-
mantic categories. But despite [12], where word distances were examined, the 
methodology herein involved examines word pairs/triplets frequencies instead of 
distances 

• Both the text categorization indexing scheme and the word semantic category 
extraction scheme are based on widely accepted state of the art approaches. More 
specifically, concerning the former, the widely adopted by librarians DDC meth-
odology [8] is considered. Concerning the latter, the use of the WorldNet [8] as a 
tool for processing the documents and associating semantic categories to their 
words has been adopted due to its high credibility and acceptance among NLP 
(Natural Language Processing) researchers.  

In the following section 2, the suggested supervised text categorization approach is 
described in detail. In section 3 the experimental study is outlined. And finally, sec-
tion 4 presents the conclusions and prospects of this research effort. 

2   The Proposed Neural Based Document Classification System 
Involving SVM and Higher Order Correlation Analysis of 
Semantic Categories 

The suggested procedure is mainly divided into two phases. In the first phase we 
extract first, second and third order characteristics, that is, frequency of word seman-
tic categories appearance (extraction of keywords) and word semantic categories 
affinity (extraction of pairs and triplets of words semantic categories), from a set of 
documents collected from the Internet and labeled using DDC methodology [8].  We 
then use the widely accepted NLP semantics extraction program, the thesaurus called 
WordNet, in order to put the words we have extracted into a fixed number of semantic 
categories. As illustrated in the next paragraphs, the application of WordNet results in 
substituting a word by the vector of its semantic categories. After this stage, we use 
these semantic categories vectors instead of the initial words for subsequently extract-
ing the first, second and third order document features of the proposed supervised text 
categorization system. In the second phase, employing these features, SVM/MLP 
Neural Networks are trained so that they can classify documents into a set of DDC 
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text categories (note that these document categories are not related in any way with 
the categories of the WordNet). The collection of documents used in this research 
effort, concerning the development of the proposed system, comes from the Internet 
site (link.bubll.ac.uk/isc2), which contains documents classified and accessed accord-
ing to DDC (Dewey Decimal Classification). DDC is a document content classifica-
tion system, internationally known and used in libraries and other organizations where 
a subject classification of documents is needed.   

DDC defines a set of 10 main categories of documents that cover all possible sub-
jects a document could refer to. Each one of them is divided into 10 Divisions and 
each division into 10 Sections. The classes of documents in DDC are defined through 
a systematic and objective way and not arbitrarily and subjectively. The DDC classes 
used in this paper are the following: 
(1) Generalities,( 2) Philosophy & related disciplines, (3) Religion, (4) Social sci-
ences, (5) Language, (6) Pure sciences, (7) Technology (Applied sciences), (8) The 
arts, (9) Literature & rhetoric and (10 General geography, history, etc. 

For each of these 10 classes a collection of 150 documents was made. The average 
length of these 1500 files was 256 words. Out of them, 1000 (10x100) documents 
(67%) comprise the training set and the rest 500 (10x50) documents (33%) comprise 
the test set. Following the process defined next, each document will be represented by 
a training (or test) pattern. So, there are 1000 training and 500 test patterns for train-
ing and testing the neural networks. We must note here that all collected documents 
are in English.  

The first step is to remove a certain set of words, which are of less importance for 
meaning extraction. The set of such words excluded from further processing in this 
research effort are the ones presented in [12 ]. 

The second step involves creation of a vector containing every different semantic 
category and the frequency of its appearance in the text.  That is, each word is  
sequentially extracted from the text and its corresponding set of n Wordnet semantic 
categories is found, word_i = (semantic_word_i_1, semantic_word_i_2, …. seman-
tic_word_i_n). The element in position [i] of the semantic categories frequency vector 
is increased by one if the semantic category in position [i] of that vector is found in 
the set of semantic categories associated to that particular word and produced by 
WordNet. The total number of word semantic categories is 229. Therefore, each word 
frequency vector is transformed into word semantic categories frequency vector of 
229 elements. 

The third step in the suggested feature extraction methodology is the creation of 
the two Full Affinity Matrices of semantic categories involving their pairs and triplets 
triplets respectively. Based on the vector of semantic categories frequencies of ap-
pearance, prepared previously, we then, create accordingly the matrices of pairs and 
triplets of semantic words. Each cell of such matrices [i,j]/[i,j,k] contains the corre-
sponding frequency of appearance within the text of the associated pair or triplet of 
semantic categories. In the case of these two affinity matrices, each pair/triplet of 
semantic categories [i,j]/[i,j,k] encountered in the text is considered. The element 
[i,j]/[i,j,k] of the semantic categories affinity matrix is changed if categories i,j/i,j,k  
are found in the current document position associated with the current pair or triplet 
of words.  
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Thus, after finishing the third step, each text is represented by: 
• A 229-element WordNet categories frequency vector  
• A 229x229-element semantic categories affinity matrix (Full Affinity Matrix)- – 

semantic categories pairs frequencies 
• A 229x229x229-element semantic categories affinity matrix (Full Affinity Matrix) 

– semantic categories triplet frequencies. 
The last step in the proposed feature extraction approach is to transform the 

above described affinity matrices into vectors of 6 elements by applying Cooccur-
rence Matrices Analysis to each one of them. The final result is that each text is 
represented by a vector of 229+6+6=241 elements by joining the semantic catego-
ries frequency vector and the two vectors obtained by applying the cooccurrence 
matrices analysis measures (of 6 dimensions each) to each of the two affinity  
matrices. 

In this last step, some ideas taken from Texture Analysis are utilized. Texture 
analysis as a process is part of what is known as Image Processing. The purpose of 
texture analysis in image processing is to find relations between the pixel intensities 
that create an image. Such a relation is for example the mean and the variance of the 
intensity of the pixels. A common tool for texture analysis is the Cooccurrence 
Matrix [9]. The purpose of the cooccurrence matrix is to describe the relation be-
tween the current pixel intensity and the intensity (grey level) of the neighbouring 
pixels. The creation of the cooccurrence matrix is the first step of the texture analy-
sis process. The second step is to extract a number of statistical measures from the 
matrix.  

After cooccurrence matrices formation in image texture analysis, several meas-
ures are extracted from these cooccurrence matrices in order to best describe the 
texture of the source image in terms of classification accuracy. The following 6 
measures in table 1 are an example of texture measures [9]. Cooccurrence matrices 
analysis in texture processing could be associated with word cooccurrence matrices 
for text understanding, in a straightforward way, where, each semantic word cate-
gory (from 1 to 229) is associated with a pixel intensity. The rationale underlying 
such an association is explained below. It is clear that similar measures could be 
extracted for both word affinity matrices.  Here, however, we extend, obviously the 
concept of two dimensional cooccurrence matrices into three dimensional ones. In 
every equation, f(r,c)/f(r,c,w) represents the position [r,c]/[r,c,w] of the associated 
matrix. Texture analysis process ends up with a small set of numbers describing an 
image area in terms of texture information, which results in information compres-
sion. Instead of the source image (a matrix of pixels) there is a set of numbers (the 
results of applying the texture measures) that represent textural information in a 
condensed way. This is the reason why it is herein attempted to associate texture 
analysis and text understanding analysis, namely, dimensionality reduction of the 
input vectors produced in text processing. This happens for both two and three di-
mensional cooccurrence analysis case as implemented through table 1. The same 
ideas emerging from texture analysis in image processing are applied to the docu-
ment text categorization problem. 
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Table 1. The cooccurrence matrices analysis associated measures for the two proposed Affinity 
matrices of semantic categories pair and triplets frequencies. Note the differences in [12 ]. 

While cooccurrence matrices in texture analysis contain information about the cor-
relation of neighbouring pixel intensities in an image, the proposed affinity matrices 
contain information about the correlations of WordNet semantic categories associated 
with a text. Autocorrelation matrices are involved in both definitions and therefore, 
both processes bear some similarities. Thus, the measures defined in table 1 are ap-
plied to the word affinity matrices too. After the application of cooccurrence based 
matrices analysis, there will be a total of 1500 vectors of 241 elements each. An im-
portant aspect concerning neural networks training with such vectors is the normaliza-
tion of their input vectors. Normalization of the set of features presented in this paper 

is achieved by substituting each feature value x with Min-Max

Min-x

 where Max and 
Min are the maximum and the minimum values of the set where this feature value 
belongs in, respectively.  

3   Experimental Study and Results 

In order to evaluate the proposed text categorization methodology an extensive ex-
perimental study has been conducted and herein is presented. Two different sets of 
experiments have been organized. The first one involves the collection of documents 
based on the DDC classification approach and the herein proposed feature extraction 

 

1. Energy:                   M1 = Sum Sum f(r,c)2  
2. Entropy:                  M2 = Sum Sum log(f(r,c) * f(r,c)  
3. Contrast:                 M3 = Sum Sum (r-c)2 * f(r,c)    
4. Homogeneity:          M4 = Sum Sum f(r,c)/(1+|r-c|)   
5. Correlation:             M5 = Sum Sum {(r*c) f(r,c) –mr mc}/sr sc   

where, mi is the mean value and si is the variance of line (column) i.   
6. Inverse Difference Moment:   M6 = Sum Sum f(r,c)/((1+(r-c))  
 where, the double summation symbol {Sum Sum} ranges for all rows and columns respec-

tively. 
7. Energy:                   M1 = Sum Sum Sum f(r,c,w)2  
8. Entropy:                  M2 = Sum Sum Sum log(f(r,c,w) * f(r,c,w)  
9. Contrast:                 M3 = Sum Sum Sum (r-c)2 * f(r,c)  +  
                                                                                                   (r-w)2 * f(r,w) +   (c-w)2 * f(c,w) 
10. Homogeneity:          M4 = Sum Sum Sum f(r,c)/(1+|r-c|) +   
                                                                                                  f(r,w)/(1+|r-w|) + f(c,w)/(1+|c-w|) 
                                                                            
11. Correlation:             M5 = Sum Sum Sum {(r*c) f(r,c) –mr mc}/sr sc  + 
                  {(r*w) f(r,w) –mr mw}/sr sw+{(c*w) f(c,w) –mc mw}/sc 

sw 
where, mi is the mean value and si is the variance of line (column) i.   

12. Inverse Difference Moment:   M6 = Sum Sum Sum f(r,c)/((1+(r-c))  + 
      f(r,w)/((1+(r-w))  + f(c,w)/((1+(c-w)) 
 where, the summation symbol {Sum Sum Sum} ranges for all rows in the three dimensions 

and columns respectively. 
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methodology, while the second one involves the DDC collection again but different, 
proposed in the literature and well established, feature extraction techniques [7]. In 
the second set of experiments, in order to validate our approach, we have applied a 
standard feature extraction method as the tf x idf word frequency weighting scheme 
[7] to the DDC collection of 1500 documents. Therefore, a set of 1500 document 
space vectors, different from the ones of the first set, has been obtained. The total 
number of different words encountered in all the 1500 documents, after removing the 
words specified in section 2 (words selection procedure), are 6533. Therefore, all the 
word frequencies based document space vectors used in this set of experiments are of 
6533 dimensions. 

In both sets of experiments the classifiers reported in the next paragraphs define 
the second stage of the text categorization system. While, in the first set they are ap-
plied to the proposed document space vectors, analyzed in section 2, in the second set 
of experiments they have been applied to the document space vectors derived using 
the tf x idf technique.  

Concerning both sets of experiments, a cross-validation methodology [10] has been 
applied to all the text categorization methods herein involved, in order to ensure sta-
tistical validity of the results, due to the relatively not large number of documents 
included in this DDC collection. As mentioned above, the 1500 document space vec-
tors constructed from the DDC collection are divided in the training set of patterns 
(1000 of them) and in the test set of patterns (500 of them). In order to apply the 
cross-validation methodology  [10], 500 different pairs of such training and test sets 
have been created from the set of 1500 document space vectors by randomly assign-
ing each of them to a training or test set.  

A variety of MLP training models has been applied to both sets of experiments,  
including standard on-line Backpropagation, RPROP and SCG (Scaled Conjugate 
Gradients). Several architectures have been investigated of the types 241-x-10 and 
6533-x-10 (input neurons- hidden layer neurons- output neurons). Only the best of 
these MLP model architectures and training parameters, out of the many ones investi-
gated, are reported in tables 2 and 3, outlining the outcomes of this study. The MLP 
simulation environment is the SNNS (Stuttgart Neural Network) Simulator [11]. All 
training parameters shown for the Pattern Classifier training algorithms used are de-
fined in [11]. For comparison reasons the LVQ and the k-NN classifier, which is 
reported to be one of the best algorithms for text categorization [7] are, also, involved 
in this experimental study.  

Concerning the performance measures utilized in this study, mean, variance, 
maximum and minimum of the classification accuracy obtained by each text classifier 
involved are reported in tables 2 and 3. To this end, if one classifier results in G1%, 
G2%, G3%, …., G500% over all the 10 classes classification accuracies with respect to 
each one of the 500 different testing sets of patterns associated with the cross-
validation procedure, then,  

• Mean Accuracy  =  (G1%+G2%+G3%+ ….+ G500%)/500 
• Accuracy Variance = VARIANCE (G1%, G2%, G3%, …., G500%) 
• Max Accuracy = MAX (G1%, G2%, G3%, …., G500%) 
• Min Accuracy = MIN (G1%, G2%, G3%, …., G500%) 

where, each Gi% refers to the over all categories classification accuracy (number of 
correctly classified patterns/ total number of patterns) for the patterns encountered in 
the ith test set and not to each category classification accuracy separately. These  
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performance measures are the usually involved statistical measures in cross-validation 
experiments [10]. The following tables 2 and 3 show the results obtained by conduct-
ing the above defined experimental study. Table 2 illustrates the results obtained by 
applying the proposed feature extraction methodology, while table 3 presents the 
results obtained by applying the tf x idf technique. These favorable text classification 
performance results show the validity of our approach concerning the document space 
vector extraction and the feasibility of the proposed solution in the real word data-
mining problem under consideration. 

 
Table 2. Text Categorization accuracy obtained involving the proposed, in section 2, document 
space vectors extraction methodology versus the method proposed by the author in [12]. The 
statistics were obtained after 500 runs of all algorithms. 

 
Performance Measures

Text Classifier 

Mean 
Accuracy 

(%) 
Proposed 
method

Accuracy 
Variance 

(%) 
Proposed 
method

Mean Ac-
curacy 

(%) 
method    
in [12 ]

Accuracy 
Variance 

(%) 
method
in [ 12 ]

Support Vector Machine (RBF 
with 45  support  vectors) 

77.5 2.2 76.1 2.4 

LVQ, 40 code book vectors  72.1 2.2 69.8 2.4 
LVQ, 28 code book vectors 72.5 2.3 70.6 2.5 
Vanilla BP, 241-12-10, (0.6, 0.2)  62.3 2.5 60.8 2.8 
RPROP, 241-12-10, (1,100,10) 77.2 3.1 75.5 3.5 
RPROP, 241-12-10, (0.1,50,4) 75.5 3.1 74.1 3.1 
RPROP, 241-14-10, (0.1,50,4) 63.9 2.5 62.3 2.7 
SCG, 241-15-10,  (0,0,0,0) 64.8 1.9 63.4 1.8 
Vanilla BP, 241-18-10, (0.6,0.2) 62.8 1.1 61.5 1.1 
RPROP, 241-18-10,  (1,100,10) 73.3 0.9 72.2 0.8 
Vanilla BP, 241-24-10, (0.4,0.1) 70.9 2.7 69.6 3.0 
K-NN (nearest neighbor)-(K= 30) 70.4 2.2 69.2 2.6  

 
 

Table 3. Text Categorization accuracy obtained involving the tf x idf word frequency based 
document space vectors extraction methodology. The statistics were obtained after 500 runs of 
all the algorithms. 

 
        Performance Measures 

 
Text Classifier 

Mean 
Accura-cy 

(%) 

Accuracy 
Variance 

(%) 

Max 
Accuracy 

(%) 

Min 
Accuracy 

(%) 

Support Vector Machine (RBF 
with 60 support  vectors) 

69.1 2.4 69.8 65.2 

LVQ, 28 code book vectors 67.7 2.2 69.1 64.9 
Vanilla BP (On-line BP), 6533-
320-10, (0.4,0.5)  

57.3 4.1 62.4 55.6 

RPROP, 6533-320-10, (1,100,10)  68.4 5.2 72.3 61.6 
SCG, 6533-320-10, (0,0,0,0) 61.7 2.3 64.5 60.5 
K-NN (nearest neighbor)-(K= 30) 67.6 2.1 68.9 64.7 
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4   Conclusions and Prospects 

This paper outlines an improved text categorization system for content information re-
trieval. The collection of documents and their content categorization is based on a widely 
accepted and systematic methodology, namely, the DDC system. The techniques sug-
gested involve MLP/SVM neural networks and novel feature extraction methods based on 
first, second and third order characteristics of word concept frequencies and word affini-
ties frequencies estimated by application of a widely accepted NLP thesaurus tool, 
namely, the WordNet and statistical techniques stemmed from Texture processing in im-
age analysis. The promising results obtained are favourably compared to other well estab-
lished text categorization document space vectors formation techniques. It is, also, shown 
that these results improve previous ones of the same author. Future aspects of our work 
include, also, the designing of a complete system based on Computational Intelligence and 
Artificial Intelligence Techniques for dealing with the full DDC text categorization prob-
lem, involving 1000 human understandable categories. 
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Abstract. T. Kohonen and P. Somervuo have shown that self orga-
nizing maps (SOMs) are not restricted to numerical data. This paper
proposes a symbolic measure that is used to implement a string self orga-
nizing map based on SOM algorithm. Such measure between two strings
is a new string. Computation over strings is performed using a priority
relationship among symbols, in this case, symbolic measure is able to
generate new symbols. A complementary operation is defined in order to
apply such measure to DNA strands. Finally, an algorithm is proposed
in order to be able to implement a string self organizing map. This paper
discusses the possibility of defining neural networks to rely on similar-
ity instead of distance and shows examples of such networks for symbol
strings.

1 Introduction

Self Organizing maps are usually used for mapping complex, multidimensional
numerical data onto a geometrical structure of lower dimensionality, like a rect-
angular or hexagonal two-dimensional lattice [4]. The mappings are useful for
visualization of data, since they reflect the similarities and vector distribution of
the data in the input space. Each node in the map has a reference vector assigned
to it. Its value is a weighted average of all the input vectors that are similar to
it and to the reference vectors of the nodes from its topological neighborhood.
For numerical data, average and similarity are easily computed: for the average,
one usually takes the arithmetical mean, and the similarity between two vectors
can be defined as their inverse distance, which is most often the Euclidian one.
However, for non-numerical data [6]– like symbol strings – both measures tend to
be much more complicated to compute. Still, like their numerical counterparts,
they rely on a distance measure. For symbol strings one can use the Levenshtein
distance or feature distance.

For strings, one such measure is the Levenshtein distance [7], also known as
edit distance, which is the minimum number of basic edit operations – insertions,
deletions and replacements of a symbol – needed to transform one string into
another. Edit operations can be given different costs, depending on the operation
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and the symbols involved. Such weighted Levenshtein distance can, depending
on the chosen weighting, cease to be distance in the above sense of the word.

Another measure for quantifying how much two strings differ is feature dis-
tance [4]. Each string is assigned a collection of its substrings of a fixed length.
The substrings the features are typically two or three symbols long. The feature
distance is then the number of features in which two strings differ. It should be
noted that this measure is not really a distance, for different strings can have a
zero distance. Nevertheless, feature distance has a practical advantage over the
Levenshtein by being much easier to compute.

A similarity measure is simpler than distance. Any function S : X2 → R can
be declared similarity – the question is only if it reflects the natural relationship
between data. In practice, such functions are often symmetrical and assign a
higher value to two identical elements than to distinct ones, but this is not
required.

2 String Measure

Let V an alphabet over a set of symbols. A string x of length m belonging to
an alphabet V is the sequence of symbols a1a2 · · ·am where the symbol ai ∈ V
for all 1 ≤ i ≤ m. The set of all strings that belong to V is denoted by V ∗, the
empty symbol is λ and the empty string is denoted by ε = (λ)∗.

Let O : x → n, x ∈ V, n ∈ N a mapping that establish a priority relationship
among symbols belonging to V , u ≤ v iff O(u) ≤ O(v). Obviously O−1(O(x)) =
x, x ∈ V and O(O−1(n)) = n, n ∈ N , and O(λ) = 0,O−1(0) = λ. This mapping
can be extended over an string w in such a way that O(w) =

∑O(wi), wi ∈ w.
Usually, such mapping O covers a range of integer numbers, that is, the output
is 0 ≤ i ≤ k, where k = card(S), S ⊆ V .

It is important to note that new symbols can be generated provided that
given two symbols a, b ∈ V |O(a) − O(b)| > 1, and there is no symbol c such
that O(a) < O(c) < O(b). That is,

O−1(k) =
{

x ∈ V iff O(x) = k
sk i.o.c. , with k ∈ N (1)

Symbolic measure between two strings u, v ∈ V ∗, denoted by ∆(u, v), with
|u| = |v| = n is another string defined as:

∆(u, v) =
n⋃

i=1

O−1(|O(ui)−O(vi)|), where ui/vi is the i-th symbol ∈ u/v (2)

For example, let u = (abcad), v = (abdac), and O the index of such symbol
in the european alphabet, that is, O(a) = 1,O(b) = 2,O(c) = 3,O(d) = 4 then
∆(u, v) = λλaλa. If u = (jonh), v = (mary) then ∆(u, v) = s3njs11, two new
symbols s3, s11 are generated (that correspond to s3 = c and s11 = k, usually
such correspondence is unknown).



A String Measure with Symbols Generation: String Self-Organizing Maps 125

A numeric value D can be define over a string w:

D(w) =

√√√√ |w|∑
i=0

O(wi)2, wi ∈ w (3)

It is clear to proof that:D(∆(u, v)) = D(∆(v, u)), D(∆(u, u)) = 0,D(∆(u, ε)) =
D(u) and D(∆(u, w)) ≤ D(∆(u, v)) +D(∆(v, w)).

Mappings O/D also define a priority relationship among string in V ∗ is such
a way that

u ≤ v iff

√√√√n=|u|∑
i=1

O(ui)2 ≤

√√√√n=|v|∑
i=1

O(vi)2 (4)

u ≤ v iff D(u) ≤ D(v) (5)

In short, symbolic measure between two string u, v is obtained using ∆(u, v),
see equation (3), and numeric measure is obtained using D(∆(u, v)), see equation
(2).

Let x, y ∈ S ⊆ V two symbols belonging to alphabet, two symbols are com-
plementary, denoted by (x, y)−, iff ∆(x, y) = x or ∆(x, y) = y. Such property
can be extended over string, let u, v ∈ S∗ ⊆ V ∗, two strings are complementary,
denoted by (u, v)−, iff ∆(u, v) = u or ∆(u, v) = v.

Theorem 1. Let u, v ∈ S∗, u and ∆(u, v) are complementary iff O(ui) >=
O(vi) for all 1 ≤ i ≤ n.

Proof.

∆(u, v) =
n⋃

i=1

O−1(|O(ui)−O(vi)|) (6)

Hence:

∆(u, ∆(u, v)) =
n⋃

i=1

O−1(|O(ui)−O(∆(ui, vi))|) =

=
n⋃

i=1

O−1(|O(ui)−O(O−1(|O(ui)−O(vi)|)|) =

=
n⋃

i=1

O−1(|O(ui)− (|O(ui)−O(vi)|)|) =

=
n⋃

i=1

O−1(O(vi)) = v

� 
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Two strings u, v ∈ S∗ are Watson-Crick complementary (WC complementary),
denoted by (u, v)−WC , iff (ui, vi)− for all 1 ≤ i ≤ |u|.

Theorem 2. Let u, v ∈ S∗, if (u, v)− then (u, v)−WC .

Such duality in symbolic/numeric measures, see equations (2) (3), is a good
mechanism in order to implement algorithms on biological DNA strands [8,3].
Like DNA or amino-acid sequences which are often subject to research in com-
putational molecular biology. There, a different measure – similarity – is usually
used. It takes into account mutability of symbols, which is determined through
complex observations on many biologically close sequences. To process such se-
quences with neural networks, it is preferable to use a measure which is well
empirically founded.

2.1 Different Length on Strings

Given two strings u, v, such that |u| = n ≥ |v| = m, and U(u) the set of all
substring w ⊆ u such that,

U(u)m = {w(j)||w(j)| = m, w = w1 · · ·wm, wi = uk, i = k + j}
∀ 0 ≤ j ≤ |u| −m

String measure between u, v, denoted by δ(u, v), is

δ(u, v) = {∆(s, v)|s ∈ U(u)|v|,O(∆(s, v)) ≤ minx∈U(u)|v|{O(∆(x, v))}} (7)

In this case, measure δ is a set of strings with the lower distance (see table
below). Such distance can be read as a the set of matching strings with lower
distance. This δ can be used to identify cuting points (index j) over a DNA
string when applying a restriction enzyme, from a biological point of view.

u = abcdabcdab, v = cda

U(u)|v| u
a b c

b c d
c d a O(∆(cda, v)) = 0

d a b
a b c

b c d
c d a O(∆(cda, v)) = 0

d a b
δ(u, v) = {λλλ, λλλ}

Let |u| = |v|, it is clear that δ(u, v) = ∆(u, v) since U(u) = u.
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3 String Self-Organizing Maps

The self-organizing map of symbol strings [4] (SSOM for short) doesnt differ
much from ordinary numerical SOM . It is also a low dimensional lattice of neu-
rons (usually two-dimensional quadratic or hexagonal lattice, sometimes one or
three-dimensional), but instead of having a reference vector of input space di-
mensionality assigned to each node, reference strings are used. In the ordinary
SOM , the reference vectors approximate the average of similar input vectors
and input vectors similar to the reference vectors of the nodes from the topolog-
ical neighborhood. In SSOM , the reference strings aproximate the averages of
corresponding input strings [6].

A string self-organizing map of size n (SSOMn
(i,j) for short) is a construct

Φ = {I, C, Ω} where (i, j) are the dimensions of the competitive layer, other
parameters are define as:

– I = {i1, i2, · · · , in} is the input nodes set,
– C is the competitive set, with (i× j) nodes,

C =

⎧⎪⎪⎨⎪⎪⎩
c11 c12 · · · c1j

c21 c22 · · · c2j

· · · · · · · · · · · ·
ci1 ci2 · · · cij

⎫⎪⎪⎬⎪⎪⎭ (8)

– and Ω : n×(i×j) → ωn,ij is a function that identifies the connection between
a given input node i and a competitive node (i, j), where ωn,ij ∈ U ⊆ V .

Given a set U ⊆ V and S = {s1, s2, · · · , sk} of strings in U∗ ⊆ V ∗ in such a
way that the length of every string si ∈ S is |si| = n and a priority relationship
among strings in S defined using a given mapping O. The problem consists on
finding the set defined by mapping Ω such that it minimizes the overall distance
∆ with respect the input set S.

The algorithm is based on the SOM algorithm, but in this case everything is
symbolic.

1. Inizialitation: Each element ωn,ij is randomly assigned a symbol in U .

2. Feeding: One string si ∈ S in presented in the input nodes set I. Nodes in I
work in a simple way, they just store information they received. Each node
ij ∈ I stores one symbol of string si, that is, ij = (si)j , 1 ≤ j ≤ n.

3. Propagation: Information on input nodes will pass through connection till
competitive layer. Nodes in competitive layer works as follows, and they will
store this information:

cij =
n⋃

k=1

∆(ik, ωk,ij) = ∆(si, (ω1,ijω2,ij · · ·ωn,ij)) (9)

Such behavior is equivalent to compute distance between the input string
and the connection string. This way competitive nodes calculate all distances
with respect to the input string.
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4. Winning: Nodes in C have all possible string measures, so there exists one
node clm ∈ C such that

D(clm) ≤ D(cij), ∀i, j (10)

that is, node clm has the lower distance.

5. Learning: Only winning node will adjust his weights (based on winner-takes-
all algorithm) according to following equation:

ωi,lm = O−1(O(ωi,lm) + α(O(ii)−O(ωi,lm))) (11)

Some results, in literature, that could be checked with this new measure can
be: for an example application of the string SOM, Igor Fisher generated a set of
500 strings by intorducing noise to 8 english words: always, certainly, deepest,
excited, meaning, remains, safety, and touch, and initialized a quadratic map
with the Sammon projection of a random sample from the set [1]. Another real
world example is the mapping produced from 320 hemoglobine alpha and beta
chain sequences of different species [2]. SOM and LV Q algorithms for symbol
strings have been introduced by [5,6] and applied to isolated word recognition,

Table 1. Strings used in a SSOM , they have been modified with uniform noise

universe networks emulsion elements referred printing moonlike

vnfyctpb ndwwprjt fpwktjok fogmeqvt rggcopbb spkkrhkh lprnljjb

rlkxhpth mctunpnu hmtiqlnm bjdpdqtv rbhhrscg rsfnwiqd olrkjjjg

rojtdprg kgrxlumr gjsnrlpk bjcpdotu sbihoqed osiouiqf nmqklhkh

rliwbuth lctzppmt bjwksknq emfjdkqv pggeoudd oufqsjpe lqqpmflh

ulfudotb ohuxrthu eoumsllp bobjhlsu shihpseg orlqvflg lnlplfjb

unfwhuve lcwvorls dormsjml bocngnvq qcfcuqba pohosgmi noomjgkc

tklubstg phwvqtmu dnslufnq dleleovv segdqocc mpimqiqg nlpkkhhb

uniufuuc phsxlshu bkvnrkpn ckbpgmqt obicqoed qplkulnf lmolkjjd

wmhwcpqc peqwpphq flululnm glhmekss qgdftugf rojnqlnj jqrkniie

sogveusc qfuyqukr gnvmpgqo gibnfptv qgfetrfg stikvlpg lrmpkllg

sphsdotb kgtznoiv hmwlslrk dnbneorq rffeorff moimtflg lnmmkjkc

uqgscrrd qcturslt boslqlrn didmcmur qdfeordg qtkosiof krmlnjnb

rmhsfrtd pfrupqnp bltiqfpl foejbowu tegbtuhb osgnvimj omnqkhng

xnkyequh ndrymrls elwlpflq emfmhluv phhgophe osglsgpd kmnnnflb

vniucqpf kdsuptlp cnwmtjqm bkfpdotq ubdcprbf mrgotkqi nmpomihf

vofsguth nguyqslv gmtkuhrl fmelfosp rhdgtpdd qujqtlqj kqrmokkf

smlthqrf mcsymrlp hmtipknl djhpektq pceeppff srfowgmg nmlpmgmb

skixbsvd mdtyoukq hpwirglq gmhpcqrp tgffuscg pplowhqd lmppkjie

rmfudtqf lfsyqsmp cjuouhqn gkdkbptv thcbsqce nrklsfkh mnqkjjlh

vkjvfttd mcsynsns gktmvhmq dmbkfoqv pgderpdb qtgkuimi oonpjgnf

uohvhrse pertlqnv cntouhqk dihneqsr scidosed pqjosjkh nqlqjflg

wphuhuqc ngvyrpkq eproqlnp hlbmbqqr rhdcusbc mpkoqlqe pnlplhhh

skltdrsd kbtwntkt bpxjtglk bieoekus ucfhoodc mrgovgpi pomknhhb

uplygpph ndtuoojt hnukvkpm hlejcoqq pgfbtobb nuhpsgme nmmqlgmb

snhxhtrb qbsxopip cpuiqgqq fjhnblws tecfsubg sphkqjqe kromjkjf



A String Measure with Symbols Generation: String Self-Organizing Maps 129

Fig. 1. Projection of string samples corresponding to table 1

for the construction of an optimal pronunciation dictionary for a given speech
recognizer.

Table 1 shows strings used in a SSOM with a 3×3 competitive layer. Strings
are obtained adding uniform noise to original strings (first row in table). After
the training phase is finished clusters are named using original strings. Data
in table 1 are projected in a 2 − d surface, figure 1 shows such projection. In
this case we can observe that there is a clear separation among the 7 different
clusters. This is a simple projection, since it seems that some clusters are mixed,
we can use the Sammon projection to obtain a better data projection.

4 Conclusions and Future Work

In some applications, like molecular biology, a similarity measure is more natural
than distance and is preferred in comparing protein sequences. It is possible that
such data can be successfully processed by self organizing neural networks. It
can therefore be concluded that similarity-based neural networks are a promising
tool for processing and analyzing non-metric data. This paper has proposed a
string measure that can be applied to self organizing maps with the possibility
of new symbols generation. Watson-Crick complementary concept was defined
using such measure.
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Abstract. The problem of increasing the accuracy of geonavigation data being 
used for the control of the drilling oil-gas well trajectory is considered. The ap-
proach to solving the problem based on the distortion and measurement noise 
filtration with the use of the smoothing neural network is proposed. The gener-
alized algorithm of the smoothing neural network design on the basis of the 
multilevel regularization is discussed.  The peculiarities of the algorithm reali-
zation with the use of the offered vector regularization criterion of network pa-
rameters ranking is considered. The example of smoothing the geonavigation 
data on the basis of designed RBF network is considered.  

1   Introduction 

Geonavigation (geophysical navigation) is an important direction of oil-gas well drill-
ing control development based on the continuous monitoring of the well bottom con-
dition which is determined in its turn by the coordinates of its spatial location and the 
parameters of the geological environment. The continuous measurement of the azi-
muth and zenith angles of the drilling well trajectory in the bottom point, the natural 
background radiation level and the specific electric resistance of the drilling muck is 
carried out to monitor well bottom condition.  

The peculiarity of the given parameters measurement process is the presence of 
distortions and measurement noises caused by intensive shock-and-vibration loads by 
measuring converters suffer from while drilling. Thus, the problem of increasing the 
geonavigation parameters measurement accuracy is one of high priority. 

Practically applied approaches to solving this problem usually concern averaging  
multiple measurements at the separate points of the well trajectory. However, this 
approach becomes often inefficient because of the limited number of point measure-
ments and the high level of obtained data dispersion. 

The method of increasing the geonavigation parameters determination accuracy 
based on the principle of smoothing the measured data is considered bellow. The use 
of this principle allows us to solve the problem of the measurement errors filtration on 
the basis of analysis of the measurement results made sequentially by the well length. 

The problem statement for smoothing the separate parameter x in this case is as fol-
lows.  

For the known measurements sequence xm(li) containing the actual information x(li) 
and the measurement errors ε(li): 
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xm(li) = x(li) + ε(li), i=1,…, n, (1) 

 
where l is the trajectory length, i – the measurement number, it is necessary to recon-
struct the law of the measurement parameter x(l) change in the form of the continuous 
smoothing model xs(l). 

The corresponding values xs(li) calculated on the basis of the smoothing model can 
be used further as the required values xs(l): 

 
x(li) ≈xs(li), i=1,…n.  (2) 

 
One of the main difficulties arising under solving this problem is caused by the 

presence of an uncertain component ε(l) in the initial data. The classical approach to 
overcome this problem is based on the use of the regularization principle taking into 
account some priori assumptions on the character of a desired solution [1, 2, 4, 5, 6]. 
The effective method of data smoothing based on the regularization principle is the 
construction of the smoothing model on the neural network logical basis. In a general 
case for this purpose one can use the Multi Layer Perceptron (MLP) or Radial Basis 
Function (RBF) smoothing neural network model [2]. 

As applied to neural networks, the regularization principle is reduced to training 
the neural network by optimization of the smoothing criterion representing by itself 
the weighted sum of two criteria [2]: 

J=Jp+λJR(xs(l)), (3) 
where Jp is the likelihood criterion, i.e. the sum of the squares of errors between the 
actual x(li) and smoothed xs(li) data: 
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JR(xs(l) - the regularizing functional characterizing the variation degree of  the 

smoothing model from a priori hypothesis, which as a rule is accepted as the hypothe-
sis of maximal smoothness of the model xs(l). In the simplest case this criterion can be 
chosen as the sum of the squares of the network synaptic links; 

λ - the regularization parameter determining the criteria Jp, JR significance in (3). 
The solution of the regularization task is the linear superposition of n Green’s func-

tions [1]. The special case of the Green’s function is the radial basis function (RBF): 
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where G(l,li) is the Green’s function (RBF); wi - the weight coefficients. 

It is reasonable to apply the RBF network as a solution of the regularization task. 
The ordinary way of RBF network learning includes finding the synaptic links weights 
wi on the assumption of a priori definition of functions G(l,li) and parameter λ. 

Learning of the neural network on the basis of the regularization principle consid-
erably increases a generalizing ability of the neural network model compared with 
traditional learning methods. At the same time, this approach has some disadvantages: 
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a) selection of the smoothing model is limited by the parameters regularization 
for the model from a priory chosen class without using a possibility of selecting the 
model’s class (type of Green’s functions) as itself; 

b) high sensitivity of the criterion (3) to regularization parameter λ that requires 
the use of the higher level criteria to evaluate the relative significance of the criteria 
Jp, JR. Some of the known approaches to solving this problem are: the Bayesian ap-
proach based on setting a priori distribution density for the network links weights [3], 
cross-validation estimation based on the result prediction [2]. These approaches are 
based on adequate a priori information of the being investigated process that is usu-
ally inaccessible in practice. 

The approach to elimination of the mentioned disadvantages based on the proposed 
multilevel regularization algorithm with the use of the vector smoothing criterion is 
discussed below. The example of designing the neural network model providing the 
efficient smoothing of geonavigation data in the class of RBF networks is considered. 

2   Generalized Algorithm of Smoothing Neural Network Design on 
the Basis of Multilevel Regularization 

In order to use generalizing abilities of neural networks fully, the hierarchical proce-
dure of its design is proposed. The initial information for this procedure includes the 
set of data D being smoothed and a priori regularizing hypothesis h on the character 
of the required model. The being proposed design procedure involves the following 
steps of the sequent restriction of the models set that can be realized on the basis of 
the chosen neural network type: 

1) selection of the models classes set {M}; 
2) selection of the models class M∈{M}; 
3) selection of the model xS(l)∈M; 
4) testing of the model xS(l) adequacy. 
In order to realize this procedure let us introduce below the tuple P of hierarchi-

cally ordered network parameters: 

P = (P1, P2, P3),  (6) 

where P1 are the parameters that determine the set of the models classes {M}P1 which 
can be realized by the given neural network; 

P2 – the parameters setting the class of the models MP2∈{M}P1 realized by the 
given neural network and the given values of the parameters P1; 

P3 – the parameters that determine the model xS.(l)∈MP2 on the basis of the given 
neural network under the given values of the parameters  P1 and P2. 

Let us define the vector criterion J evaluating the selection of mentioned parame-
ters P of the neural network for the initial data D and hypothesis h: 

J = { J1(P1),  J2(P2)|P1, J3(P3) |P1,P2 , J4(D)|P1,P2,P3 }, (7) 

where J1(P1) is the criterion evaluating the selection of the parameters P1; 
J2(P2)|P1 – the criterion evaluating the selection of the parameters P2 under the 

given parameters P1; 
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J3(P3)|P1,P2 – the criterion evaluating the selection of the parameters P3 under the 
given parameters P1 and P2; 

J4(D)|P1,P2,P3 – the criterion evaluating the adequacy of the model xS.(l) under the 
given parameters P1, P2 and P3 with respect to the smoothed data D. 

Unlike the classical vector criterion where partial criteria are equal by their signifi-
cance and depend on one set of parameters, the vector criterion (7) uses the hierarchi-
cal principle of the partial criteria interaction based on the hierarchical ranking of the 
tuple of evaluated parameters (6). 

As a result of the hierarchical interaction of the vector P and J components, the al-
gorithm of the smoothing neural network design takes a form of the sequential uncer-
tainty elimination: 

Selection of the set of the smoothing models classes set {M}: 

))((minarg 11min,1
1

PP J
P

= ; (8) 

2. Selection of the smoothing models class set M: 
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3. Selection of the smoothing model xS(l)∈M: 

)|)((minarg
min2,min1,

3

,33min,3 PPPP J
P

= ; (10) 

4. Testing of the model xS(l) adequacy: 
а) if  J4(D)| P1,min, P2,min,P3,min ∉ G, then: 
4.1. Iteration concessions ∆1 by the model classes are carried out: 

P2, min
(i+1) = P(i)

2, min ±  ∆1 (11) 

where i is the iteration number;   
- transfer to step 3; 
4.2. Iteration concessions ∆2 by the set of the model classes are carried out:  

P1, min
(i+1) = P(i)

1, min ±  ∆2; (12) 

- transfer to step 2; 
b) if  J4(D)| P1,min, P2,min,P3,min ∈ G, then: 
4.3. The procedure interruption. 
4.4. The adoption of the smoothing neural network parameters P = (P1,min, P2,min, 

P3,min), where G is the area of the admitted values of the model adequacy degree. 
Unlike the traditional algorithm of the smoothing neural network regularization, 

the proposed algorithm transfers the emphasize of regularization from the stage of 
the model selection to the stage of the model class selection (steps 1-2). Here the 
model parameters can be chosen by traditional way, i.e. by training the network 
with use of the scalar likelihood criterion JP in the framework of the chosen models 
class. 

Let us consider the peculiarities of the described multilevel regularization algo-
rithm realization on the basis of RBF network. 
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3   Structure of the Smoothing RBF Network 

The peculiarity of RBF network is the presence of one hidden layer composed of the 
radial basis elements (neurons) reproducing the Gaussian response surface on the 
basis of RBF activation functions. RBF networks have some advantages over MLP 
networks. Firstly, there is no need to choose the network layers number. Secondly, the 
weights of the output layer neurons are being optimized with the use of effective well-
known optimization methods. Thus, RBF networks have the learning rate essentially 
higher than for MLP networks. 

The structure of the smoothing RBF network is shown in Figure 1 where S1 is the 
input neuron, S2,j , j=1,..N - the radial basis neurons of the hidden layer; S3 - the out-
put linear neuron; li - the network input data; xs(li) - the output smoothed data; wj , 
j=1,…,N - weights of output neuron links, -N  - the number of the hidden layer  
neurons. 
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Fig. 1. Structure of smoothing RBF network  

For simplicity, it is supposed here that RBF network has only one output neuron 
(in general case the network has several outputs). The radial-basis neuron S2,j structure 
is shown in Figure 2. 
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Fig. 2. Structure of the radial basis neuron S 2,j  

This structure provides the calculation of the input li distance from the weights tj, 
the multiplication of the result obtained by the bias bj and the calculation of the RBF 
value by the formula 

2))(( jij blt

j ey
−−= . (13) 

The smoothing model realized on the basis of RBF network has a form: 
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where wj , j=0,…N are the weights of the output linear neuron links. 
Thus, the vector of the smoothing RBF network parameters can be presented in the 

form: 
PRBF =(N, B, W)T

 

where N is the number of the hidden layer neurons; 
B = (b1,…, bN)T  - the vector of the hidden layer neurons’ RBF biases; 
W - the matrix of the synaptic links weights for the output neurons. 
To realize the proposed algorithm of multilevel regularization it is necessary to 

define: 
- the method of the RBF network parameters ranking; 
- a priori hypothesis of the model regularization; 
- the method of evaluating the regularization vector criterion components. 

4   Method of RBF Network Parameters Ranking 

The suggested method of RBF network parameters ranking is based on the analysis of 
their influence on the smoothing model characteristics: 

1) the component P1 determining the models classes set {M} can be chosen as the 
number of the hidden layer neurons: P1 = N. It means that each radial basis neuron 
with the parameters bi, tj  is capable to generate a definite class of the models; 

2) the vector of parameters P2 determining the class of the models under the given 
parameters P1 (i.e. the given number of the hidden layer neurons N) is being chosen 
as the vector of the hidden layer neurons’ RBF biases B. One can see that with the 
purpose of  algorithm simplification, the equal bias values for all N radial basis neu-
rons can be chosen: P2 = (b, b …b)T.  

The choice of parameter b value is based on the investigation results showing its 
significant influence on the smoothing model shape. The example of this investigation 
results is shown in Figure 3 where the input data of RBF network are marked by 
points (the geonavigation parameter θ is here the tangent inclination angle to the well 
trajectory in different points by its trajectory length l), the given curves correspond to 
the different smoothing models. These models are obtained on the basis of RBF net-
work having 20 radial basis neurons and different values of the bias b: 

- curve 1 (b= 5.95⋅10 -5): the models class M is close to the linear models 
class; 

- curve 2 (b= 8.33⋅10 -5 ): the models class M is close to the parabolic models 
class; 

- curve 3 (b= 1.7⋅10 -3 ): the models class M is close to the harmonic models 
class; 

3) as the vector of the parameters P3 determining the smoothing model’s character-
istics realized by RBF network under the given parameters P1 and P2, the matrix W of 
the output linear neuron’s synaptic links weights is adopted. 

Thus, the following relationships are distinguished: 
 - the models  classes set {M} is defined by the number N of  the radial basis  

neurons; 
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Fig. 3. Influence of bias b on smoothing function shape 

- the class of the models M is defined by the bias b value of RBF; 
- the model  xs(l) is defined by the value of the links weights W of output linear 

neuron. 

5   Algorithm of Smoothing RBF Network Design on the Basis of 
Multilevel Regularization 

According to the considerations given above, the algorithm of smoothing RBF net-
work design is as follows: 

1) selection of the smoothing models classes set {M}: the optimal number of the 
radial basis neurons is determined on the basis of the regularization criterion (8): 

optNM ⇔}{ .  (15) 

The number N of the radial basis neurons can be chosen equal to the number of the 
training points in the sequence of the measured data D. 

2) selection of the models class M∈{M}: the optimal value of RBF bias b is de-
termined on the basis of regularization criterion (9): 

)|)((minarg 2opt optN
b

bJbM =⇔ .  (16) 

The solution of this task can be obtained with the use of the well known algorithms 
of one-parameter optimization; 

3) selection of the smoothing model xS(l)∈M: the parameters W are selected on the 
basis of RBF learning by the criterion of maximum likelihood (10) under the given 
parameters Nopt, bopt: 

)|)((minarg)()( ,3optS optopt bNJlx WW
W

=⇔ . (17) 
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Taking into account that the model class-representatives are determined at the step 2 
on the basis of the maximum likelihood criterion, the required smoothing model can 
be chosen as the representative of the class: 

DW ,,,S |)()(
optoptopt bNlxlx = . 

Thus, step 3 is combined here with step 2; 
4) testing of the model xS(l) adequacy: the information criterion J4(xS(l)) compo-

nent value is checked for its  belonging to accessible area G: 
a) if the adequacy condition is false, i.e.  J4 ∉ G, then a new models class is se-

lected on the basis of concession by the criterion J2: 
b(i+1) =b(i) ±δ where i is the number of the iteration step,  
then transfer to step 3 to select new model parameters (W); 
b) if the adequacy condition is true, i.e.  J4 ∈ G, then the above mentioned al-

gorithm stops, and the chosen smoothing model is adopted: 
xS.(l) ↔(Nopt, bopt, Wopt, Aopt). 

6   Conclusions 

The algorithm of the regularization design of the smoothing neural network providing 
the sequential determination of the model class and its parameters is suggested. The 
algorithm uses more completely a neural network generalization property by introduc-
ing the regularization stage at the level of the models class regularization. The method 
of RBF network’s parameters hierarchical ranking and their selection on the basis of 
the proposed regularization vector criterion is considered. The investigations carried 
out show the advantages of the proposed algorithm over the traditional one-level 
approaches in respect of increasing the smoothing model adequacy. 

Acknowledgement 

This research  was partially supported by the Russian Foundation Basis Research 
(RFBR) grant № 40/51 P. 

References 

1. Tikhonov, A.N., Arsenin, V.A.: Solution of Ill-posed Problems. Winston & Sons, Washing-
ton (1977) 

2. Haykin, S.: Neural Networks. A comprehensive foundation. Prentice Hall, New York 
(1994) 

3. Xu, L.: Data Smoothing regularization, multi-sets-learning, and problem solving strategies. 
Neural Networks 16(5-6), 817–825 (2003) 

4. Wahba, G.: Spline Models For Observation Data. SIAM, Philadelphia (1990) 
5. Chris, M., Bishop: Training with noise is equivalent to Tikhonov regularization. Neural 

Computation 7(1), 108–116 (1995) 
6. Burger, M., Neubauer, A.: Analysis of Tikhonov regularization for function approximation 

by neural networks. Neural Networks 16(1), 79–90 (2003) 



M. Köppen et al. (Eds.):  ICONIP 2008, Part II, LNCS 5507, pp. 139–146, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Knowledge-Based Rule Extraction from  
Self-Organizing Maps 

Chihli Hung 

Department of Information Management, Chung Yuan Christian University, Taiwan 
chihli@cycu.edu.tw 

Abstract. The technology of artificial neural networks has been proven to be 
well-suited for the mining of useful information from vast quantities of data. 
Most work focuses on the pursuit of accurate results but neglects the reasoning 
process. This “black-box” feature is the main drawback of artificial neural net-
work mining models. However, the practicability of many mining tasks relies 
not only on accuracy, reliability and tolerance but also on the explanatory abil-
ity. Rule extraction is a technique for extracting symbolic rules from artificial 
neural networks and can therefore transfer the features of artificial neural net-
works from “black-box” into “white-box”. This paper proposes a novel ap-
proach in which knowledge is extracted, in the forms of symbolic rules, from 
one-dimensional self-organizing maps. Three data sets are used in this paper. 
The experimental results demonstrate that this proposed approach not only 
equips the self-organizing map with an explanatory ability based on symbolic 
rules, but also provides a robust generalized ability for unseen data sets. 

1   Introduction 

Artificial neural networks (ANNs) have been proven to be able to deal with high 
dimensional data sets for several fundamental data mining tasks. However, most such 
work mainly concentrates on pursuing accurate results without considering the bene-
fits from understanding and explaining the reasoning process for their mining deci-
sions. This “black-box” feature prevents ANNs from being applied in several tasks 
which need stricter verification [1-2]. In other words, the practicability of a data min-
ing technique depends not only on accuracy, reliability and tolerance for a task but 
also on its explanatory ability [3].  

The technique which extracts symbolic rules from ANNs in order to provide a 
meaningful explanation is called rule extraction [4]. In this paper, we focus on ex-
tracting symbolic rules from the self-organizing map (SOM). The SOM, proposed by 
Teuvo Kohonen [5], is a neural topology preserving model, which projects high-
dimensional data onto a low-dimensional map, usually a two-dimensional grid of 
units for visualization, and faithfully keeps the relationships between high-
dimensional data in an output ordered map. 

Most work extracts rules from a two-dimensional SOM [6-7] but such models  
contain a potential shortcoming in automatically having a closed boundary for each 
cluster. This paper projects high dimensional input samples onto a one-dimensional 
self-organizing map in order to extract more general rules. As the SOM is a  
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topological ordered map, two neighbor units which have similar weights and similar 
input samples are mapped onto the same unit or units located nearby. Thus, a closed 
boundary for each cluster in the one-dimensional SOM can be found simply by evalu-
ating the similarity of neighbor units.  

On the other hand, pure unsupervised clustering methods may not be able to dis-
cern predefined classification knowledge hidden in data samples. If the results of 
clustering are compared with human classification knowledge, the accuracy is de-
pendent on the difference between implicit factors of human classification labeling 
and explicit definitions of cluster features and similarities [8]. Thus, in this paper, we 
use predefined classification knowledge for finding cluster boundaries and propose a 
knowledge-based rule extraction from one-dimensional self-organizing maps. We use 
three data sets, IRIS (http://archive.ics.uci.edu/ml/), ATOM and ENGYTIME [9], to 
demonstrate that our proposed rule extraction model is able to extract symbolic rules 
from a SOM and even provides a robust generalized ability for unseen data sets. 

2   Related Work 

Most work on rule extraction from artificial neural networks has concentrated on super-
vised neural networks [4, 10-12]. By comparison with supervised neural networks, the 
approach of extracting rules from unsupervised neural networks, i.e. the self-organizing 
map (SOM), is relatively few. Darrah et al. [2] extracted rules from each best matching 
unit (BMU) of the trained dynamic cell structure (DCS) while the BMU is the most 
similar unit to the current input sample. That is, each BMU consists of one symbolic 
rule, which could be suitable for its associated input samples. Darrah et al. directly ana-
lyzed the maximum and minimum values for each attribute to produce an antecedent 
statement of a rule, i.e. the “IF” part. Antecedent statements from all attributes are 
joined with “AND”. Conclusion statements, i.e. the “THEN” part, are also joined with 
“AND” while the dependent variable is continuous. However, this approach may fail to 
induce understandable rules when the DCS contains too many units. 

Ultsch and Korus [6] proposed a rule extraction system, called REGINA, which used 
a unified distance matrix [13], called u-matrix method (UMM), to detect and display 
clusters formed by a two-dimensional trained SOM. UMM calculates the average vector 
of the surrounding unit vectors. Then, the trained SOM is transformed into a landscape 
with “hills” or “walls”. All input samples that lay in a common basin belong to the same 
cluster as they have a stronger similarity than other input samples and thus the decision 
borders have been found [9]. However, the main problem of this approach is the diffi-
culty in finding a closed and consistent decision boundary for each class, which makes it 
difficult for REGINA to produce the efficient symbolic rules.  

Based on UMM, Malone et al. [7] built decision boundaries from a two dimen-
sional trained SOM using the u-matrix formed by all attributes and by individual 
attributes respectively. That is, a data set with n attributes has n+1 u-matrices. Each 
individual u-matrix is then compared with the total u-matrix. An attribute is consid-
ered important if a match is found between an individual u-matrix boundary and the 
total u-matrix boundary. However, a closed boundary may not be found using a 
UMM-like approach in a two-dimensional map.  
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3   Finding Boundaries from a One-Dimensional Trained SOM 

Extracting rules from a trained SOM can be divided into three main sub-tasks: finding a 
definite boundary for each cluster, selecting significant attributes for each cluster 
boundary and generating symbolic rules for each cluster. The main issue in the first 
stage is to decide the conceptual label for each SOM output unit. There is no general 
solution to combine neighbor units. Some researchers combine them by evaluating the 
mutual similarities for all SOM units based on unified Euclidean distance [9]. Some 
researchers take advantage of significant concepts of attributes. Two neighbor units are 
combined as they contain similar concepts of dominant attributes [14]. Others combine 
neighbor units as such units contain the same or similar concepts of dominant labels 
[15]. In this paper, we treat pre-labeled information as useful knowledge, so neighbor 
units with the same dominant label are combined in order to form a cluster.  

A A A A B B B C C

Unit 1 2 3 4 5 6 7 8 9 10

A A A B CA CBB

Unit 1 2 3 4 5 6 7 8 9 10

Cluster 1 Cluster 2 Cluster 3  
Fig. 1. A one-dimensional SOM trained map using ten output units 

For example, we have a one-dimensional trained SOM which contains 10 output 
units as shown in Fig. 1. We assign the dominant label as the unit label. We assume 
that there are 10 input samples which are mapped onto Unit 1. Among these 10 input 
samples, seven input samples are pre-labeled as Class A, two input samples are pre-
labeled as Class B and one input sample is pre-labeled as Class C. This unit is then 
labeled by A as it is the dominant label in this unit. We omit the dead unit, which has 
no associated input samples. The neighbor units with the same dominant label form a 
cluster. Thus, Unit 8 is a dead unit, which has no label on it. Units 1-4, Units 5-7 and 
Units 9-10 form different clusters with different conceptual labels, i.e. 1, 2, and 3 
respectively. Neighbor units with different dominant labels are boundary units, i.e. 
Units 4, 5, 7 and 9, which are circled (Fig. 1).  

4   Selecting Significant Attributes 

More attributes mean a rule contains more logical conditions in the IF-part, but also 
makes it more complicated to understand. Furthermore, more attributes may lead to a 
more specific model, which may also cause the model to suffer from over-training. 
Thus, it is necessary to select significant attributes while extracting rules from a 
trained SOM.  
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U-matrix [13] is a Euclidean-distance based approach to the evaluation of the 
similarity of neighbor units. The Euclidean distance between Unit i-1 and Unit i is 
shown in (1). A indicates the total number of attributes and u(a) indicates the value 
of Attribute a of U. In this paper, we also follow this approach and extend the origi-
nal u-matrix approach to the attribute level. Thus, for each attribute, u-matrix can 
also be used for the evaluation of the similarity of neighbor units. We show the 
equation of u-matrix in the attribute level. The distance between Unit i-1 and Unit i 
for the specific attribute a is shown in (2). We compare the difference of u-matrix 
between two levels for the evaluation of the significance of each attribute. The basic 
concept is that one attribute is more important than other attributes if its normalized 
u-matrix is more similar to its normalized unit u-matrix. We calculate u-matrix for 
each unit and attribute as (3) and (4) respectively. Dall(Ui-1, Ui) is the Euclidean 
distance between the Units i-1 and i. Dall(Ui) is the average u-matrix of Ui’s sur-
rounding units, i.e. Dall(Ui-1, Ui) and Dall(Ui, Ui+1). Da(Ui-1, Ui) is the distance be-
tween the Units i-1 and i. Da(Ui) is the average Attribute a u-matrix of Ui’s sur-
rounding units, i.e. Da(Ui-1, Ui) and Da(Ui, Ui+1). We then normalize all the weight 
values of u-matrix to be between 0 and 1. 
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u-matrix(attribute=all)=[Dall(U1), Dall(U1, U2), Dall(U2), Dall(U2, U3), …, 
Dall(Ui-2, Ui-1), Dall(Ui-1), Dall(Ui-1, Ui), Dall(Ui) …, Dall(UM-2, UM-1), 
Dall(UM-1), Dall(UM-1, UM), Dall(UM)] . 

(3) 

u-matrix(attribute=a)=[Da(U1), Da(U1, U2), Da(U2), Da(U2, U3), …, Da(Ui-

2, Ui-1), Da(Ui-1), Da(Ui-1, Ui), Da(Ui)…, Da(UM-2, UM-1), Da(UM-1), Da(UM-1, 
UM), Da(UM)] . 

(4) 

We only keep Dall(Ui) and Da(Ui), where i is from 1 to M. Thus, u-
matrix(attribute=all) and u-matrix(attribute=a) are equal to [Dall(U1), Dall(U2), …, 
Dall(Ui-1), Dall(Ui), …, Dall(UM-1), Dall(UM)] and [Da(U1), Da(U2), …, Da(Ui-1), 
Da(Ui), …, Da(UM-1), Da(UM)] respectively. We use u-difference to evaluate the rela-
tionship between each attribute u-matrix and its associated unit u-matrix as shown in 
(5).  

u-differencei(attribute=a)=(Da(Ui)-Dall(Ui))
2 . (5) 

To detect the significance of an attribute in a cluster, we accumulate each u-
difference of units in this cluster as acc-difference in (6). c indicates a specific cluster 
and Units between i and s belong to cluster c. Then the relative difference of each 
attribute will be evaluated as rel-difference in (7). A is the total number of attributes 
and c is a specific cluster. A larger value of rel-difference for an attribute in a cluster 
means that this attribute is less similar to the value of unit u-matrix. Thus, this attrib-
ute is less important to describe its associated cluster. We arrange all attributes in their 
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associated clusters in an increasing order based on their rel-difference. The attributes 
with the smallest rel-difference value in the ordered sequence are accumulated if the 
cumulative percentage equals or is less than a given threshold. 
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5   Generating Symbolic Rules 

For clusters located at two ends of a one-dimensional SOM map, i.e. Clusters 1 and 3 
in Fig. 2, each cluster has one boundary unit, i.e. Units 9 and 4 respectively, and one 
neighbor cluster, i.e. Cluster 2. Thus, we only compare each boundary unit with its 
neighbor boundary unit, i.e. Units 7 and 5, respectively. On the other hand, for clus-
ters located between these two ends of a one-dimensional SOM map, there are two 
boundary units and two associated neighbor clusters. For example, Cluster 2 is lo-
cated between Clusters 1 and 3 so we need to compare its boundary units, i.e. Units 7 
and 5, with their associated boundary units, i.e. Units 9 and 4.  

A cluster with a greater number of significant attributes means that this cluster is 
more specific. Thus, we rank symbolic rules based on the number of significant at-
tributes. For example, the rule for Cluster 1 is ranked above Cluster 2 if Cluster 1 has 
more significant attributes than Cluster 2. If this condition is tied, we then rank sym-
bolic rules based on the cumulative value of rel-difference. A cluster with a smaller 
cumulative rel-difference is ranked higher. 

In order to make our rule extraction model more general, we consider the purity of 
boundary units to fine tune the decision border of neighbor clusters. The purity of 
boundary is defined as (8) and the decision border is defined as (9). Nl indicates the 
total number of samples with the dominant Label l which are projected to Unit u. Nu 
indicates the total number of samples which are projected to Unit u. Bi,j is the decision 
border between boundary Units i and j, P is the purity of the unit and U is the weight 
value of unit. Originally the decision border is located between two boundary units as 
in Fig. 2. This decision border is then adjusted to move towards one side when the 
purity of the boundary unit on this side is purer than the other. 
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Unit 1 2 3 4 5 6 7 8 9 10

B BBA A A A C

Cluster 1 Cluster 2 Cluster 3

C

 
Fig. 2. Decision borders for a one-dimensional SOM trained map using ten output units 

6   Experimental Results 

In this paper we have used three data sets, i.e. IRIS, ATOM and ENGYTIME. The 
IRIS data set is made of 150 4D vectors from three classes, i.e. setosa, versicolor and 
virginica, each of which contains 50 input samples. We use 120 input samples as the 
training set and use the remaining 30 samples as the test set. The ATOM data set 
contains 800 input samples, which are pre-classified into two classes. We use 600 
input samples as the training set and use 200 input samples as the test set. The EN-
GYTIME data set contains 4097 input samples, which are also pre-classified into two 
classes. We use 3072 input samples as the training set and use 1025 samples as the 
test set. 

For the IRIS data set, we set a threshold, i.e. 10%, for the cumulative percentage of 
relative difference and have rules for the training set as shown in Fig. 3. We compare 
our results with the work of Malone et al. [7] and Darrah et al. [2]. The accuracy of 
the training set in our model is 92.50% and this accuracy is even higher for the test 
set, which reaches 100% and is better than other rule extraction models (Table 1).  

 
Rule 1：if X(a=3)< 2.5238 and X(a=4)< 0.659 then class 1 (setosa) 

Rule 2：if X(a=4)< 1.5798 and X(a=4)> 0.659 then class 2 (versicolor) 

Rule 3：if X(a=3) > 4.729 then class 3 (virginica) 
Otherwise : unknown 

Fig. 3. Rules extracted from a one-dimensional trained SOM with a threshold of 10% for the 
IRIS training set 

Table 1. The performance comparison for IRIS evaluated by accuracy 

 Proposed model Malone et al. 2006 Darrah et al. 2004 
Training set 92.50% 
Test set 100.00% 

95.30% 82.00% 

 
We use 25% of the threshold for the ATOM data set and 35% of the threshold for 

the ENGYTIME data set. Their associated rules are shown in Fig. 4 and 5. The per-
formance for the ATOM and ENGYTIME data sets is shown in Table 2. All test sets 
are able to achieve a higher accuracy than their associated training sets, which ex-
plains the generality of our rule extraction model. 
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Rule 1: if X(a=3) < -2.7458 then class 1 
Rule 2: if X(a=1) < 11.17065 and X(a=1) > -5.1146 then class 2 
Rule 3: if X(a=1) > -5.1146 then class 1 
Otherwise : unknown 

Fig. 4. Rules extracted from a one-dimensional trained SOM with a threshold of 25% for the 
ATOM training set 

Rule 1: if X(a=2) > 1.0738 then class 1 
Rule 2: if X(a=1) < 2.7298 then class 2 
Otherwise: unknown 

Fig. 5. Rules extracted from a one-dimensional trained SOM with a threshold of 35% for the 
ENGYTIME training set 

Table 2. The performance for the ATOM and ENGYTIME data sets evaluated by accuracy 

Dataset ATOM ENGYTIME 
Training set 83.67% 81.35% 
Test set 85.00% 82.23% 

7   Conclusions 

The technique of rule extraction from artificial neural networks is a way to improve 
their practicability in a real-world environment. Extracting symbolic rules from SOMs 
could be treated as a complementary approach to the original data visualization tech-
nique. In this paper, we have proposed a novel approach of extracting rules from one-
dimensional trained self-organizing maps. Most related work extracts rules from a 
two-dimensional SOM but suffers from automatically composing a closed boundary 
for each cluster. This paper projects high dimensional input samples directly onto a 
one-dimensional self-organizing map, so the formation of a closed boundary for each 
cluster is straightforward. This paper also integrates unsupervised clustering tech-
niques with supervised classification knowledge in order to investigate human classi-
fication information hidden in data. Three data sets are used in this paper. The ex-
perimental results demonstrate that this proposed approach not only equips the self-
organizing map with an explanatory ability based on symbolic rules, but also provides 
a robust generalized ability for unseen data sets. 
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Abstract. In general, wavelet neural networks have a problem on the
curse of dimensionality, i.e. the number of hidden units to be required are
exponentially rose with increasing an input dimension. To solve the above
problem, a wavelet neural network incorporating a local linear model has
already been proposed. On their network design, however, the number of
hidden units is empirically determined and fixed during learning. In the
present paper, a design method based on Bayesian method is proposed for
the local linear wavelet neural network. The performance of the proposed
method is evaluated through computer simulation.

1 Introduction

Wavelet neural networks (WNNs) have been mainly developed on signal process-
ing and image processing [1]. The greatest characteristic of the WNNs is based on
a temporally and spacially localized basis function, called mother wavelet. The
localized basis function can identify the localization with arbitrary precision be-
cause both location and resolution can be freely adjusted by translation and
dilation parameters. Radial basis function (RBF) networks also use a localized
function [2], but it is difficult to adjust resolution with arbitrary precision.

Y. C. Pati et al. proposed a WNN introducing a discrete affine wavelet trans-
form and presented the solutions to three problems on general feedforward neural
networks, i.e. (1) how to determine the number of hidden units, (2) how to utilize
information on training data and (3) how to escape local minima [3]. Q. Zhang et
al. derived a WNN from a wavelet series expansion and mathematically proved
that it can approximate any continuous functions [4]. K. Kobayashi et al. pro-
posed a network design method utilizing a wavelet spectrum on training data
[5] and another design method using genetic algorithm [6].

However, WNNs still have a problem on the curse of dimensionality, i.e. the
number of hidden units rises exponentially as the number of input dimensions
increases. To solve the above problem, T. Wang et al. introduced a local linear
model into a WNN and developed a local linear wavelet neural network (LL-
WNN) [7]. After that, a lot of effort were mainly devoted into the LLWNN from
parameter learning aspect. T. Wang et al. proposed two methods employing
gradient descent method and genetic programing for parameter learning [7,8].

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 147–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Y. Chen et al. also presented two methods using gradient descent method and
PSO (particle swarm optimization) for parameter learning [9,10] Most research,
however, does not focused on the network design.

On the other hand, Bayesian method based on Bayesian statistics has applied
to the network design of neural networks [11]. S. Albrecht et al. formulated a RBF
network byBayesianmethodand employedEM(Expectation-Maximization) algo-
rithm for parameter learning [12]. C. Andrieu et al. also formulated a RBF network
and approximated the integral calculation in posteriori distribution by MCMC
(Markov Chain Monte Carlo) method [13]. N. Ueda et al. proposed a split and
merge EM algorithm to network design and parameter learning for a mixture of
experts model [14]. M. Sato et al. presented a design method based on variational
Bayes method for a normalized Gaussian network (NGnet) [15]. C. C. Holmes et
al. proposed a Bayesian design method for a feedforward neural network [16].

In the present paper, a Bayesian-based method for both network design and
parameter learning of LLWNN is proposed. The proposed method basically fol-
lows a framework which proposed by C. C. Holmes et al. and tries to formulate
a LLWNN. The LLWNN applying the proposed method is called a BLLWNN
(Bayesian local linear wavelet neural network). Through computer simulation us-
ing function approximation problem, the performance of the BLLWNN is verified.

2 Local Linear Wavelet Neural Network (LLWNN)

Figure 1 shows a three-layered feedforward local linear wavelet neural network
with N inputs and one output [7]. When an input vector x = {x1, x2, · · · , xN} ∈
RN is given, LLWNN converts it to a weighted output f̂(x) with a local linear
parameter ck. That is, the output f̂ of LLWNN is denoted by the follwoing
equation.

f̂(x) =
K∑

k=1

ck Ψk(x) =
K∑

k=1

(wk0 + wk1x1 + · · ·+ wkNxN )Ψk(x). (1)

Fig. 1. Architecture of a local linear wavelet neural network
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In (1), the basis function Ψk is defined by

Ψk(x) = |ak|− 1
2 ψ

(
x− bk

ak

)
, (2)

where ak ∈ RN and bk ∈ RN refer to dilation and translation parameters, re-
spectively. Then, the basis function ψ in (2) must satisfy the following admissible
condition. ∫

R

|Ψ̂(λ)|2
λ

dλ < ∞, (3)

where Ψ̂(λ) means Fourier transform of Ψ(x). For a localized basis function, (3)
is equivalent to

∫
R ψ(x)dx = 0. That is, the basis function has no direct current

component.
The difference between general WNN and LLWNN depends on the parameter

ck. The parameter ck is scalar for WNN and a local linear model for LLWNN.
This allows LLWNN could cover larger area in input space compared with WNN.
As a result, LLWNN may resolve the curse of dimensionality because it can
reduce the numbers of hidden units and free parameters. Furthermore, it is
clarified that the local linear model realizes good interpolation even if the number
of learning samples is small [7].

On network design of LLWNN, however, almost all the models empirically
determine the number of hidden units [7,8,9,10]. Namely, the network structure
is determined in advance and fixed during learning. Y. Chen et al. has tried to
construct a LLWNN using eCGP (Extended Compact Genetic Programming)
[17]. However, since they represented the network as a hierarchical structure, it
seems that the numbers of hidden units and free parameters tend to be large
[10].

In the present paper, a Bayesian method is applied to network design and
parameter learning of LLWNN.

3 Bayesian Design Method for LLWNN

3.1 Bayesian Method

First of all, D, x, y and θ denote observed data D = (x, y), training data, desired
data and unknown parameter, respectively. The Bayesian method follows the
following procedure [18].

(1) Modeling p(·|θ)
(2) Determine a prior distribution p(θ)
(3) Observe data p(D|θ)
(4) Calculate a posteriori distribution p(θ|D)
(5) Estimate a predictive distribution q(y|x, D)
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The posteriori distribution p(θ|D) is derived using the following Bayes’ theorem.

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (4)

Then, if the complexity of model is known, the predictive distribution q(y|x, D)
is derived as

q(y|x, D) =
∫

p(y|x, θ)p(θ|D)dθ, (5)

and if the the complexity of the model, m, is unknown, it is derived as

q(y|x, D) =
∑
m

∫
p(y|x, θ, m)p(θ, m|D)dθ. (6)

The Bayesian method estimates the parameters of observed data to be ap-
proximated as the posteriori distribution of parameters [11]. Its characteristics
are listed as follows.

• It can utilize a priori knowledge as the prior distribution.
• It shows high generalization ability even if training data is small.
• It can evaluate the reliability of the predictive value.
• It can automatically select models.

On the other hand, the Bayesian method has a serious problem on the integral
calculation in posteriori distribution. It requires any approximation methods or
any numerical calculation methods. So far, four method, (1) Laplace approxima-
tion method [18], (2) mean field method [19], (3) MCMC (Markov Chain Monte
Carlo) method [20] and (4) variational Bayes method [21] have been proposed.

A method to be proposed in the present paper utilizes the above MCMC
method. In the present paper, as both network design and parameter learning
of LLWNN are conducted and then the size of model is unknown, the reversible
jump MCMC method [20] is employed

3.2 Proposed Bayesian Design Method

In this section, the proposed Bayesian method for LLWNN is described. The
proposed method follows a framework by C. C. Holmes et al. [16] and formulates
a LLWNN. In the present paper, the LLWNN by applying the proposed method
is called a BLLWNN (Bayesian Local Linear Wavelet Neural Network).

At first, data set D = {(xi, yi) | i = 1 ∼ n} is defined by input data xi ∈ RN

and output data yi ∈ R. The relation between xi and yi is represented by

yi = f(xi) + εi, (7)

where εi referes to a noise term. After that, the input-output characteristic f(·)
is modeled by (1). Then, a model Mk and model space M are written as

Mk = {a1,b1, · · · , ak,bk}, (8)
M = {k, Mk, W}, (9)
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respectively, where W = (w1, · · · ,wk) means a weight matrix and a vector
element wk is written as wk = (wk0, wk1, · · · , wkN )′ (w′ refers to a transpose
of w). Furthermore, an unknown parameter θk of LLWNN is written as θk =
{ak,bk,wk}.

The predictive distribution is derived by averaging predictive output f̂M (x)
with the posteriori distributions p(W |Mk, D) and p(Mk|D).

p(y|x, D) =
∑

k

∫∫
f̂M (x)p(W |Mk, D)p(Mk|D)dMkdW, (10)

where p(W |Mk, D) and p(Mk|D) are written as

p(W |Mk, D) =
p(D|W, Mk)p(W )

p(D)
, (11)

p(Mk|D) =
p(D|Mk)p(Mk)

p(D)
. (12)

In (7), if the noise term εi follows a normal distribution with mean 0 and variation
σ2, p(D|W, Mk) in (11) is derived as

p(D|W, Mk) = log
N∏

i=1

p(εi)

= log
N∏

i=1

1√
2πσ

exp
(
− (yi − f(xi, Mk, W ))2

2σ2

)

= −n

2
log(2π)− n logσ − 1

2σ2

N∑
i=1

{yi − f(xi, Mk, W )}2
. (13)

In the present paper, prior distributions p(W ) in (11) and p(M) in (12) are
assumed by the following normal and gamma distributions, respectively.

p(W ) = N(W |0, λ−1I), (14)
p(M) = Ga(DF |α, β), (15)

where DF means a degrees of freedom of model and is defined by

DF = tr
(
Ψ(Ψ ′Ψ + λI)−1Ψ ′) , (16)

where tr(S) refers to a trace of matrix S. From (14) and (15),

p(M, W ) = Ga(DF |α, β)N(W |0, λ−1I)

∝ DFα−1 exp (−βDF ) exp
(
−λ

2
||W ||2

)
. (17)

In the present paper, the integral calculation in (10) is solved using the
reversible jump MCMC method, which is a type of MCMC that allows for
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dimensional changes in the probability distribution being simulated [20]. There-
fore, (10) is approximated by

p(y|x, D) ≈ 1
ns − n0

ns∑
t=n0

fπt(x), (18)

where πt is a Markov chain sample followed by the probability distribution
p(π|D), n0 is the number of samples in burn-in time and ns is the total number
of samples. In the present paper, a Metropolis-Hastings algorithm [11] is used
for sampling.

4 Computer Simulation

This section describes computer simulation to evaluate the performance of the
proposed method.

In the simulation, a function approximation problem was used. The following
two-dimensional continuous function used by T. Wang et al. [7] was employed.

f(x1, x2) =
sin(πx1) cos(πx2) + 1.0

2.0
, (19)

where the domains of input variables x1 and x2 were set to x1, x2 ∈ [−1.0, 1.0].
The training data set consists of 49 input points (x1, x2) which generated by
equally spaced on a 7×7 grid in [−1.0, 1.0]×[−1.0, 1.0] and corresponding output
f(x1, x2). Then, testing data set consists of 400 input points which generated by
equally spaced on a 20× 20 grid in the same domain.

The basis function, i.e. ψ in (2) is defined by

ψ(x) = −x exp
(
−x2

2

)
. (20)

Then, function Ψ is written as tensor product of ψ for input xi as follows.

Ψ(x) =
N∏

i=1

ψ(xi). (21)

The performance was evaluated by three factors, i.e. the number of hidden
units, the number of free parameters and the root-mean-square error (RMSE)
defined by

RMSE =

√√√√ 1
Np

Np∑
j=1

{
f(xj)− f̂(xj)

}2

, (22)

where f(xj) and f̂(xj) are desired and predictive values for input xj , respectively
and Np is the number of training data.
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Table 1. Parameter setting

Parameter Value

σ 1.0
λ 0.01
α 0.1
β 0.1
ns 10000
n0 5000

Table 2. Simulation result

Method # of hidden units # of free parameters RMSE

WNN 8 40 1.65 × 10−2

LLWNN 4 28 1.58 × 10−2

BLLWNN 4 28 1.56 × 10−2

The parameter setting and the simulation results are shown in Table 1 and
2, respectively. In Table 2, the results of general WNN and LLWNN [7] are
also provided to compare with the proposed method, i.e. BLLWNN. Both WNN
and LLWNN empirically determine the number of hidden units. The BLLWNN,
however, could automatically determine the numbers of hidden units and free
parameters because of the Bayesian method.

As shown in Table 2, BLLWNN is much better than WNN. Furthermore,
the BLLWNN shows almost the same performance with LLWNN. Therefore,
BLLWNN is superior than LLWNN and WNN because it could automatically
build network structure and determine its parameters.

5 Summary

In the present paper, the Bayesian method to determine both network structure
and parameter of LLWNN has been proposed. Through computer simulation
using function approximation problem, the effectiveness of the proposed method
is confirmed. The evaluation for higher-dimensional functions and time-series
prediction are future work.

References

1. Chui, C.K.: An Introduction to Wavelets. Academic Press, London (1992)
2. Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. of the

IEEE 78(9), 1481–1497 (1990)
3. Pati, Y.C., Krishnaprasad, P.S.: Discrete affine wavelet transformations for analysis

and synthesis of feedforward neural networks. In: Advances in Neural Information
Processing Systems, vol. 3, pp. 743–749. MIT Press, Cambridge (1991)



154 K. Kobayashi, M. Obayashi, and T. Kuremoto

4. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Trans. on Neural Net-
works 3(6), 889–898 (1992)

5. Kobayashi, K., Torioka, T., Yoshida, N.: A Wavelet Neural Network with Network
Optimizing Function. Systems and Computers in Japan 26(9), 61–71 (1995)

6. Ueda, N., Kobayashi, K., Torioka, T.: A Wavelet Neural Network with Evolution-
ally Generated Structures. Trans. on the Institute of Electronics, Information and
Communication Engineers J80-D-II(2), 652–659 (1997) (in Japanese)

7. Wang, T., Sugai, Y.: A local linear adaptive wavelet neural network. Trans. on the
Institute of Electrical Engineers of Japan 122-C(2), 277–284 (2002)

8. Wang, T., Sugai, Y.: The local linear adaptive wavelet neural network with hybrid
ep/gradient algorithm and its application to nonlinear dynamic system identifica-
tion. Trans. on the Institute of Electrical Engineers of Japan 122-C(7), 1194–1201
(2002)

9. Chen, Y., Dong, J., Yang, B., Zhang, Y.: A local linear wavelet neural network.
In: Proc. of the 5th World Congress on Intelligent Control and Automation, pp.
1954–1957 (2004)

10. Chen, Y., Yang, B., Dong, J.: Time-series prediction using a local linear wavelet
neural network. Neurocomputing 69, 449–465 (2006)

11. MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge (2003)

12. Albrecht, S., Busch, J., Kloppenburg, M., Metze, F., Tavan, P.: Generalized radial
basis function networks for classification and novelty detection: Self-organization
of optimal Bayesian decision. Neural Networks 13, 755–764 (2000)

13. Andrieu, C., de Freitas, N., Doucet, A.: Robust full Bayesian learning for radial
basis networks. Neural Computation 13, 2359–2407 (2001)

14. Ueda, N., Nakano, R., Ghahramani, Z., Hinton, G.E.: Split and merge EM al-
gorithm for improving Gaussian mixture density estimates. In: Proc. of the 1998
IEEE Signal Processing Society Workshop, pp. 274–283 (1998)

15. Sato, M.: Online model selection based on the variational Bayes. Neural Compu-
tation 13, 1649–1681 (2001)

16. Holmes, C.C., Mallick, B.K.: Bayesian radial basis functions of variable dimension.
Neural Computation 10, 1217–1233 (1998)

17. Sastry, K., Goldberg, D.E.: Probabilistic Model Building and Competent Genetic
Programming, pp. 205–220. Kluwer, Dordrecht (2003)

18. MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4, 415–447 (1992)
19. Peterson, C., Anderson, J.R.: A Mean Field Theory Learning Algorithm for Neural

Networks. Complex Systems 1, 995–1019 (1987)
20. Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika 82, 711–732 (1995)
21. Attias, H.: Inferring parameter and structure of latent variable models by varia-

tional Bayes. In: Proc. of the 15th Conf. on Uncertainty in Artificial Intelligence,
pp. 21–30 (1999)



Analysis on Equilibrium Point of Expectation
Propagation Using Information Geometry

Hideyuki Matsui and Toshiyuki Tanaka

Graduate School of Informatics, Kyoto University
Kyoto, 606-8501 Japan

{matsuih@sys.,tt@}i.kyoto-u.ac.jp

Abstract. Expectation Propagation (EP) extends belief propagation by
approximating messages with expectations of statistics, in which users
can choose the statistics. In this paper, we discuss how a choice of statis-
tics affects accuracy of EP’s estimates. We approximate estimation error
of EP via perturbation analysis based on information geometry. By com-
paring the approximated estimation error, we show that adding statistics
does not necessarily improve the accuracy of EP. A numerical example
confirms validity of our analytical results.

1 Introduction

Belief Propagation (BP) has recently been drawing attention as a computa-
tionally efficient approximation method for probabilistic inference problems. BP
updates and passes marginal distributions as messages, which however causes
difficulty in applying BP to inference problems with continuous variables. Expec-
tation Propagation (EP) [1] extends BP by making messages to be expectations
of statistics [1,2,3], which allows EP to treat continuous variables efficiently. It
also gives users a chance of choosing statistics which define EP’s messages. The
freedom of choice of statistics raises another problem of EP: How does the choice
affect accuracy of EP’s estimates?

In this paper, we tackle this problem by using information geometry [4], which
has been successfully applied to analysis of estimation errors of BP [5,6]. View-
ing EP as an extension of BP, in Sect. 2 we reformulate EP by following the
information-geometrical framework of BP [5,6]. In Sect. 3 we approximate EP’s
estimation error via perturbation analysis and argue its dependence on a choice
of statistics. We supplement our analytical result with a numerical example in
Sect. 4.

2 Information Geometrical View of EP

Let x = (x1, · · · , xN ) be a random vector and let q(x) be its probability distribu-
tion, which we call a target distribution. We define {fi(x)} as a set of real-valued
functions of x. Assume that we are interested in expectation of fi(x) with re-
spect to the target distribution, that is, ηi(q) = 〈fi(x)〉q =

∑
x fi(x)q(x). This
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situation often appears in machine learning as well as several other Bayesian
inference problems. An example of the situation is posterior mean estimation:
fi(x) = xi for i = 1, · · · , N and q(x) is a posterior distribution. If x is of high
dimension and q is “intractable,” it is difficult to obtain ηi(q). In this paper “a
distribution p(x) is intractable” means that one has to sum up fi(x)p(x) for
all configurations of x in order to evaluate ηi(p). Conversely, “p(x) is tractable”
means that one can evaluate ηi(p) analytically or one does not have to consider
all the configuration of x in order to evaluate it due to its independence structure.
If the target distribution is intractable, one requires some kind of approximation
method. EP is one of such methods.

We assume that the target distribution is decomposed as

q(x) ∝ exp [c1(x) + c2(x) + · · ·+ cL(x)] , (1)

where {cr(x)} is a set of real-valued functions. We consider an exponential family

S = {p(x; θ, v) = exp[θifi(x) + vrcr(x)− ψ(θ, v)]}, (2)

where (θ, v) is a canonical coordinate system of S, and where ψ(θ, v) is for nor-
malization. Here and hereafter, we use Einstein’s convention: If an index appears
as a superscript and a subscript within the same term, we take a summation with
respect to the index. The target distribution has the coordinate (θ, v) = (0, 1),
where 1 denotes an all-1 vector. We call the statistics {fi(x)} which define S the
basis statistics. Given q(x), an EP user can choose basis statistics arbitrarily, as
long as they include statistics whose expectations are of interest.

We give a reformulation of EP, which forms a basis for our information geo-
metrical argument. First, we define subfamilies S0 and {Sr} of S as

S0 = {p0(x; θ) = exp[θifi(x)− ψ0(θ)]}, (3)
Sr = {pr(x; ζr) = exp[ζi

rfi(x) + cr(x)− ψr(ζr)]}, r = 1, . . . , L, (4)

where ζr is a canonical coordinate system of Sr. For EP to be computationally
feasible, we assume that all distributions in {Sr} are tractable and that evalua-
tion of θ(p0) from η(p0) = (η1(p0), . . .) is easy, where θ(p0) is the value of the
parameter θ of a distribution p0 ∈ S0. The reformulation of EP shown below
closely follows [5,6]:

1. Initialize θ and {ξr}. Let ζr = θ − ξr for all indexes r.
2. For one or several numbers of r, evaluate η(pr) for the distributions pr(x; ζr).
3. Derive distributions p0r ∈ S0 which satisfy η(p0r) = η(pr).
4. Evaluate θ(p0r) from η(p0r). Let ξr := θ(p0r)− ζr.
5. Let θ :=

∑
r ξr and ζr := θ − ξr.

6. Repeat 2–5 until convergence.
7. Output η∗ := η(p0)|θ=θ∗ as an estimate of η(q).

Here and hereafter, starred variables denote their equilibrium values.
In this paper we assume that EP converges, although the convergence is not

guaranteed in general, and study properties of its equilibrium. Usually, EP’s
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estimate η∗ is not equal to η(q), and estimation error is affected by choices of the
basis statistics. Intuitively, one would expect that the more statistics one uses as
the basis statistics, the more the accuracy is. A similar problem in the context of
Generalized Belief Propagation was discussed by Welling [7], which asks whether
or not adding a new region always improves accuracy. In our context, he argued
that the intuition is wrong if the target distribution is distant from S0. He also
argued that the intuition should be true if the target distribution is close to S0,
but the validity of his hypothesis remains a matter of research.

We tackle this problem by comparing EP’s estimation errors with two different
models studied in Sects. 3.2 and 3.3. The model studied in Sect. 3.2 is included
in the model we consider in Sect. 3.3, so we call the former the small model and
the latter the large model.

3 Accuracy of Estimates

3.1 Properties of Equilibrium

As observed in our reformulation in Sect. 2, EP corresponds to BP with a partic-
ular choice of basis statistics. It then follows that the equilibrium of EP satisfies
the same conditions as those of BP, called the e- and the m-conditions [5,6],

e-condition : θ∗ =
∑

r

ξ∗
r = −

∑
r

(ζ∗
r − θ∗), (5)

m-condition : η∗ ≡ η(p0)|θ=θ∗ = η(pr)|ζr=ζ∗
r
. (6)

The e-condition relates p0(x; θ∗), {pr(x; ζ∗
r )} and q(x): Let

E∗ =
{

pE(x; t0, t) | ln pE(x; t0, t) = t0 ln p0(x; θ∗)

+
L∑

r=1

tr ln pr(x; ζ∗
r ) + C(t0, t), tr ∈ �,

L∑
r=0

tr = 1
}

, (7)

where t = (t1, · · · , tL)T , and where C(t0, t) is a normalization term. E∗ is a
log-linear submodel of S connecting p0(x; θ∗) = pE(x; 1, 0) and {pr(x; ζ∗

r ) =
pE(x; 0, er)}, where er is a unit vector whose rth component is 1. The e-
condition dictates that E∗ contains q(x) = pE(x; −(L− 1), 1) as well.

3.2 Small Model

We define the small model S by choosing {fi(x)} as the basis statistics, as

S = {p(x; θ, v) = exp[θifi(x) + vrcr(x)− ψ(θ, v)]}. (8)

We evaluate the estimation error η(q)− η∗ via second-order perturbation anal-
ysis [5]. First, we introduce a foliation {S(v)} of S with

S(v) = {p(x; ζ, v) = exp[ζifi(x) + vrcr(x)− ψ(ζ, v)]}. (9)
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Fig. 1. Relation between (θ(1), 1) and (0, 1). Estimation error is ηi(0, 1)−ηi(θ(1), 1).

Note that q(x) ∈ S(1), S0 = S(0) and Sr = S(er) hold. We introduce another
foliation {M(η)} of S with M(η) = {p ∈ S|η(p) = η}. From the m-condition,
M(η∗) includes η(p0)|θ=θ∗ and η(pr)|ζr=ζ∗

r
.

In the following, in order to avoid possible confusion due to our use of many
indexes, we introduce a rule of using the indexes i, j and k for specifying com-
ponents of θ, η and {ζr}, and r and s for specifying components of v.

The key to evaluating the error is to study the intersection of S(1) and M(η∗).
On the submodel M(η∗) of S, the parameter θ is an implicit function of v,
which is denoted by θ(v). The intersection of S(1) and M(η∗) has the coordi-
nate (θ(1), 1). We let ηi(θ, v) denote the expectation of fi(x) with respect to
p(x; θ, v), so that η∗

i = ηi(θ(1), 1) and ηi(q) = ηi(0, 1) hold. The first-order
Taylor expansion along S(1) at (θ(1), 1) yields the approximation of the error

ηi(q)− η∗
i ≈ −g∗ijθ

j(1), (10)

where gij = ∂ηi/∂θj . Figure 1 shows the relation between (θ(1), 1) and (0, 1).
To evaluate θ(1), we approximate θ(v) by the second-order Taylor expansion

around v = 0 and let v = 1, yielding

θi(1) ≈ θi∗ +
∑

r

Ai∗
r +

1
2

∑
r, s

Ai∗
rs. (11)

where Ai∗
r = ∂θi/∂vr|v=0 and Ai∗

rs = ∂2θi/∂vr∂vs|v=0. Similarly, one has

ζi∗
r = θi(er) ≈ θi∗ + Ai∗

r +
1
2
Ai∗

rr. (12)

Substituting (12) into the right-hand side (RHS) of the e-condition (5), we obtain

θi∗ = −
∑

r

(ζi∗
r − θi∗) ≈ −

∑
r

(
Ai∗

r +
1
2
Ai∗

rr

)
. (13)
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Substituting (13) into (11), one obtains the approximation

θi(1) ≈ 1
2

∑
r, s
r �=s

Ai∗
rs. (14)

Since derivatives of η with respect to v along M(η∗) should vanish identically,
considering the derivatives around (θ∗, 0) leads to

g∗ijA
j∗
r + g∗ir = 0, (15)

g∗ijA
j∗
rs = −BrBsηi, (16)

where Br is an operator which evaluates a derivative ∂r + Aj∗
r ∂j at (θ, v) =

(θ∗,0), and where gir = ∂ηi/∂vr. Finally, from (10), (14), and (16), the approx-
imation of estimation error is evaluated as

ηi(q)− η∗
i ≈

1
2

∑
r, s
r �=s

BrBsηi. (17)

Since our argument is based on Taylor expansion, the closer the target distribu-
tion is to S0, the more accurate our approximation is expected to be.

3.3 Large Model

We define the large model, denoted by S̄, as

S̄ = {p(x; θ, δ, v) = exp[θifi(x) + δλgλ(x) + vrcr(x)− ψ̄(θ, δ, v)]} (18)

where {gλ(x)} is a set of real-valued functions of x, and where (θ, δ, v) is
a canonical coordinate system of S̄. The basis statistics of the model S̄ are
{fi(x)} ∪ {gλ(x)}. The small model S is a submodel of S̄ with δ = 0. Here and
hereafter, we use the indexes λ and κ for components of δ and µ, in addition to
the rule introduced in Sect. 3.2. We let µλ(p) denote expectation of gλ(x) with
respect to p(x), and let µ(p) = (µ1(p), . . .).

We follow the same procedure as in Sect. 3.2 to evaluate estimation error of
EP in S̄. We introduce the dual foliations {S̄(v)} and {M̄(η, µ)} of S̄, with

S̄(v) = {p(x; ζ, τ , v) = exp[ζifi(x) + τλgλ(x) + vrcr(x)− ψ̄(ζ, τ , v)]} (19)

and M̄(η, µ) = {p ∈ S̄|(η(p), µ(p)) = (η, µ)}, and define S̄0 := S̄(0) and
S̄r := S̄(er). We assume that all distributions in S̄r are tractable and that one
can evaluate (θ(p0), δ(p0)) from (η(p0), µ(p0)) easily for all p0 ∈ S̄0.

The result in Sect. 3.2 is applicable to S̄ as well, yielding

ηi(q)− η̄∗
i ≈ −ḡ∗ijθ

j(1)− ḡ∗iκδκ(1) ≈ 1
2

∑
r, s
r �=s

B̄rB̄sηi, (20)

where B̄r is an operator which evaluates a derivative ∂r + Āj∗
r ∂j + Āκ∗

r ∂κ at
(θ∗, δ∗,0). The derivatives Āi∗

r = ∂θi/∂vr|v=0 and Āλ∗
r = ∂δλ/∂vr|v=0 satisfy(

ḡ∗ij ḡ∗iκ
ḡ∗λj ḡ∗λκ

)(
Āj∗

r

Āκ∗
r

)
+
(

ḡ∗ir
ḡ∗λr

)
=
(

O
O

)
. (21)
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3.4 Comparison of Estimation Errors

We discuss effects of using extra statistics in the basis statistics by comparing
estimation errors derived in Sects. 3.2 and 3.3. For simplicity, we assume that
{gλ(x)} are orthogonal to {fi(x)} at (θ, δ, v) = (θ∗, δ∗, 0), or equivalently, that
ḡ∗iλ = 0 holds. One has Āi∗

r ≈ Ai∗
r in the leading order, and thus B̄r ≈ Br+Āκ∗

r ∂κ.
One can use it to relate the terms in (20) with those in (17), as

B̄rB̄sηi ≈ BrBsηi + (Āλ∗
s Br + Āλ∗

r Bs)∂ληi + Āλ∗
r Āκ∗

s ∂λ∂κηi, (22)

or in a more concrete form,

B̄rB̄sηi ≈ Trsi + Āj∗
r Tsji + Āj∗

s Trji + Āj∗
r Āk∗

s Tjki

+ Āλ∗
s (Trλi + Āj∗

r Tjλi) + Āλ∗
r (Tsλi + Āj∗

s Tjλi) + Āλ∗
r Āκ∗

s Tλκi, (23)

where Trsi = ∂ηi/∂vr∂vs, Tsji = ∂ηi/∂vs∂θj, Tjki = ∂ηi/∂θj∂θk, Trλi =
∂ηi/∂vr∂δλ, Tjλi = ∂ηi/∂θj∂δλ and Tλκi = ∂ηi/∂δλ∂δκ, all evaluated at (θ∗, δ∗,
0). The terms in the second line of the RHS of (23) represent effects of adding
the statistics {gλ(x)}. Since these terms can be positive or negative depending
on choices of added statistics, we have shown that adding more statistics to the
basis statistics does not necessarily improve the accuracy of EP. Note that our
argument is valid when the target distribution is close to S0.

4 Numerical Example

4.1 Formulation

In this section we supplement the result in the previous section with an example
in which adding statistics to basis statistics results in loss of accuracy of EP.
The target distribution in the example is a 3-variable Boltzmann machine

q(x; w) ∝ exp

⎡⎣w
∑
i<j

xixj +
3∑

i=1

xi

⎤⎦ , (24)

where x = (x1, x2, x3) ∈ {−1, 1}3. We assume the decomposition q(x) ∝
exp

[
c(x) + w

∑3
r=1 cr(x)

]
with

c(x) = x1 + x2 + x3, c1(x) = 2x1x2 − x1x3,

c2(x) = 2x1x3 − x2x3, c3(x) = 2x2x3 − x1x2, (25)

and consider the problem of estimating η1(q) = 〈x1〉q.
The small model S is defined as

S = {p(x; θ, v) = exp [c(x) + θx1 + vrcr(x)− ψ(θ, v)]}, (26)

where (θ, v) is a canonical coordinate system of S. The target distribution has
the coordinate (θ, v) = (0, w1). Application of our perturbation analysis to EP
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in S is straightforward, by absorbing ec(x) into the dominating measure. S is the
simplest model to estimate η1(q), since its basis statistic is x1 only. We define
the submodels of S as

S0 = {p0(x; θ) = exp [c(x) + θx1 − ψ0(θ)]}, (27)
Sr = {pr(x; ζr) = exp [c(x) + ζrx1 + wcr(x)− ψr(ζr)]}, (28)

where ζr is a canonical coordinate of Sr.
The large model S̄ is defined by adding x2 and x3 to the basis statistics, as

S̄ = {p(x; θ, v) = exp
[
c(x) + θixi + vrcr(x)− ψ̄(θ, v)

]}, (29)

where (θ, v) is a canonical coordinate system of S̄. The target distribution has
the coordinate (θ, v) = (0, w1). Note that EP in S̄ corresponds to the conven-
tional BP. We define the submodels of S̄ as

S̄0 =
{
p0(x; θ) = exp

[
c(x) + θixi − ψ̄0(θ)

]}
, (30)

S̄r = {pr(x; ζr) = exp
[
c(x) + ζi

rxi + wcr(x)− ψ̄r(ζr)
]}, (31)

where ζr = (ζ1
r , ζ2

r , ζ3
r ) is a canonical coordinate system of S̄r. In these settings,

the parameter w determines how close the target distribution is to S0 or S̄0.

4.2 Results

Figure 2 depicts how the EP’s estimates vary as the parameter w changes. It
shows that the EP’s estimate in the large model is less accurate than that in
the small model. Figure 3 shows the estimation errors and their second-order
approximations derived in Sect. 3. It shows that the estimation errors are well
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predicted by our analysis around w = 0, confirming validity of our analysis.
These observations support the result of second-order perturbation analysis that
choosing more statistics as basis statistics does not always improve the accuracy
of EP even when the target distribution is close to S0. We would like to mention
that we have also found examples in which the large model is less accurate
basically because the target distribution is distant from S0. But this example
demonstrates that the large model can be less accurate even when w, which
measures how distant the target distribution is from S0, is small.

5 Conclusion

We have shown, by an information-geometry-based perturbation analysis, as well
as by a numerical example, that adding more statistics to basis statistics does
not necessarily improve the accuracy of EP, even when the target distribution
is close to S0, which implies that EP does not have a simple trade-off between
model complexity and estimation accuracy.

It should be noted that this conclusion is not related with the bias-variance
trade-off : The latter is regarding errors of estimating parameter values from
finite-sized training sets, dictating that a larger model yields a smaller bias but
suffers from a larger variance. On the other hand, we have discussed approximate
estimation of expectations on the basis of a probability model with prespecified
parameter values. Therefore, the framework of these problems are quite different.

Finally, we want to mention that our formula for estimation errors allows
us to perform correction to EP’s estimates. The validity and efficiency of this
approach, however, need further investigation.
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Abstract. In this paper, we propose a new method to extract explicit
features for competitive learning as well as self-organizing maps. The
method aims to enhance final internal representations by conventional
methods. We first train networks by conventional methods and com-
pute enhanced information by focusing upon some specific input units
or variables. Because we focus upon some specific inputs and activate
competitive units, this enhancement is called partial enhancement. Then,
networks are retrained to imitate the states obtained by partial enhance-
ment. Final representations obtained by this retraining generate repre-
sentations influenced by these specific variables. We applied the method
to the famous Iris problem and the air pollution problem. In both prob-
lems, partial enhancement methods could produce clearer feature maps,
superior to those obtained by self-organizing maps.

1 Introduction

In this paper, we propose a new method to produce explicit features or explicit
self-organizing maps. Competitive learning and, especially, self-organizing maps
by Kohonen have been used for clustering, feature detection and particularly for
visualizing complex data. To obtain clearer maps, many visualization techniques
have been developed [1], [2], [3], [4]. However, even with these sophisticated
visualization techniques, it may be difficult to extract important features from
the ambiguous representations generated by the conventional methods.

In this context, we introduce a new method to retrain networks to obtain
clearer final internal representations. In this model, we have three steps. First,
connection weights are obtained, for example, by using conventional SOM; then
we compute enhanced information for all variables to detect which variables play
important roles in feature detection. Finally, we try to imitate networks in which
competitive units are enhanced by using specific variables with high enhanced
information. Because final representations can be modified by influential vari-
ables in input patterns, conventional visualization techniques can more easily be
applied to the representations to extract important features.

2 Theory and Computational Methods

2.1 Partial Enhancement

Figure 1 shows a concept of partial enhancement. We call enhancement ”partial
enhancement” because some variables are partially used to enhance competitive
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Fig. 1. A concept of partially enhanced competitive learning

units. First, a network is trained by conventional competitive learning or SOM,
as shown in Figure 1(a). Then, by computing enhanced information for each
variable, the variables are arranged according to the magnitude of enhanced
information, as shown in Figure 1(c). Enhanced information is obtained by com-
puting cross entropy between probabilities of firing of competitive units and
probabilities obtained by partial enhancement. In Figure 1(c), enhanced infor-
mation for the first variable is the highest. At the next stage, Figure 1(d), a
network is retrained to imitate enhanced probabilities with one variable with
maximum enhanced information. The number of variables used for retraining is
increased gradually according to the magnitude of the enhanced information of
the variables, as shown in Figure 1(e) and (f).

2.2 Enhanced Information for Input Units

Figure 1(a) shows a network architecture in which xs
k denotes the kth element

of the sth input pattern, and wjk represents connection weights from the kth
input unit to the jth competitive units. We now define enhanced information
for input units. Distance between input units and connection weights when the
kth input unit is used for enhancement is given by

vs
jt = exp

(
−
∑L

k=1(x
s
k − wjk)2

2σ2
kt

)
, (1)

where

σkt =
{

1/α, if k = t ;
α, otherwise,
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where α is an enhancement parameter. For all experiments discussed in this
paper, the enhanced parameter α is five. We can normalize these activations,
and we have enhanced probabities

pt(j | s) =
vs

jt∑M
m=1 vs

mt

. (2)

By using these probabilities, we have enhanced information for the tth compet-
itive unit

EIt =
S∑

s=1

M∑
j=1

p(s)p(j | s) log
p(j | s)
pt(j | s) . (3)

We examined the properties of this enhanced information and found that, as
enhanced information is increased, the corresponding variables play more im-
portant roles in feature detection.

2.3 Enhanced Learning

Learning consists of imitating enhanced probabilities as much as possible. Now,
p(j | s) denotes the probability of firing of the jth competitive unit, and then
we have cross entropy defined by

I =
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)
pt(j | s) . (4)

It is possible to differentiate this cross entropy to obtain exact update rules [5],
[6], [7]. However, the update rules need heavy computation for conditional prob-
abilities. To simplify computational procedures, we follow statistical mechanics
and introduce free energy [8], [9]. As is the free energy in statistical mechanics,
free energy can be defined by

F = −2σ2
S∑

s=1

p(s) log
M∑

j=1

pt(j|s) exp
(
− ds

j

2σ2

)
. (5)

For an optimal state, this equation is transformed into

F =
S∑

s=1

p(s)
M∑

j=1

p(j | s)
L∑

k=1

(xs
k − wjk)2

+2σ2
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)
p̃(j | s) . (6)

This equation shows that, to minimize the free energy, we must minimize the
cross entropy as well as the error function. Now, it is easy to differentiate the
free energy, and we have
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∆wjk = β

S∑
s=1

p(s)p(j | s)(xs
k − wjk), (7)

where β is a learning rate and set to unity for all experiments discussed below.
The Gaussian width is changed according to the equation:

σt = a0

(
0.005
a0

) t
T

+
1
a0

, (8)

where a0 is the half of the network size, t is the number of epochs and T is the
total number of epochs. The term 1/a0 is introduced to stabilize learning.

3 Results and Discussion

In the following experiments, we try to show how well the new method extracts
features in input patterns. For easy comparison, we use the conventional SOM1.
All data in the following experiments were normalized, and the variance was
unity or its range was between zero and one.
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Fig. 2. Enhanced information for four variables

3.1 Iris Problem

We applied the method to the famous Iris problem for easy comparison. Figure 2
shows enhanced information for four variables. We can see that, compared with
the first and the second enhanced information, the fourth and third variables
show large enhanced information. Figure 3(a) shows a U-matrix and labels ob-
tained by SOM. In the U-matrix, a clear boundary can be detected. When partial
enhancement is applied with one variable (b) to three variables (c), the boundary

1 We used SOM Toolbox 2.0, February 11th, 2000 by Juha Vesanto
http://www.cis.hut.fi/projects/somtoolbox/. No special options were used for
easy reproduction.
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Fig. 3. U-matrix and labels obtained by SOM (a) and by partial enhancement (b)-(d).
Warmer and cooler colors represent larger and smaller values, respectively.

becomes clearer. Figure 4 shows component planes obtained by SOM (a) and
by partial enhancement (b). For the purpose of page limitation, only component
planes with one variable are shown. We can see that, with one-variable enhance-
ment, component planes become clearer. In particular, when we see variables
No. 1 and No. 2 in Figure 4 (a) and (b), obtained component planes become
more similar to the U-matrix in Figure 3.

3.2 Air Pollution Problem

We tried to examine how much of polluted substances countries discharge2.
The substances are composed of four types, that is, sulfur, nitrogen, carbon-
monoxide and non-methane. The quantity is measured in kilograms per GDP.
Figure 5 shows enhanced information for input units. As can be seen in the figure,
variables No. 1 and No. 3 show higher enhanced information and should play
important roles. That means that the substances sulfur and carbon-monoxide
are critical in classification.

Figure 6 shows U-matrices and labels obtained by SOM (a) and partial acti-
vations (b)-(d). Figure 6(a) shows a U-matrix (a1) and label (a2) obtained by

2 http://www.e-stat.go.jp/SG1/estat/eStatTopPortal.do.
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Fig. 5. Enhanced information for four variables

conventional SOM. As can be seen in the figure, clear boundaries in red or brown
can be seen on the lower side of the map; however, the boundaries are rather
wide. In other words, complicated boundaries can be seen on the lower side of
the U-matrix. On the other hand, Figure 6(b) shows a U-matrix and labels after
only one-variable enhancement. We can see two clear boundaries. One is slightly
weak, in light green, and located in the middle of the map. The other one is
strong, in red and brown, and it is located on the lower side of the map. As
the number of variables is increased from two to three, in Figure 6(c)-(d), these
boundaries become obscure. However, we can still trace the boundaries on the
maps.
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4 Conclusion

In this paper, we have proposed a new method to extract explicit feature maps.
In this model, competitive units are partially enhanced by using some specific
variables. Networks are retrained to imitate partially enhanced states. First,
networks are trained with a conventional method such as SOM. Then, enhanced
information for each variable is detected. According to the magnitude of en-
hanced information, the relevance of variables is determined. Then, with partial
enhancement, for example, of one variable, networks are retrained. We applied
the method to two problems: the Iris problem and the air pollution problem.
In both problems we succeeded in extracting salient features in input patterns.
We have confined ourselves to partial enhancement by variables. However, any
other elements, such as input patterns and competitive units, can be used to
enhance competitive units. Thus, we should examine the performance of partial
enhancement through other elements in learning.
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Abstract. In this paper, we propose structural enhanced information
for detecting main features in input patterns. In structural enhanced
information, three types of enhanced information can be differentiated,
that is, the first-, the second- and the third-order enhanced information.
The first-order information is related to the enhancement of competitive
units themselves through some elements in a network, and the second-
order information is dependent upon the enhancement of competitive
units with input patterns. Then, the third-order information is obtained
by subtracting the effect of the first-order information from the second-
order information. Thus, the third-order information more explicitly rep-
resents information on input patterns. With this structural enhanced in-
formation, we can estimate more detailed features in input patterns. We
applied the method to the well-known Iris problem. In both problems,
we succeeded in extracting detailed and important features especially by
using the third-order information.

1 Introduction

Much attention has been paid to feature extraction and discovery in neural
networks. For example, for supervised learning, sensitivity analysis [1], [2], [3]
has been used to interpret final representations after learning. One of the major
problems of neural networks consists in difficulty in interpreting final internal
representations. However, to our best knowledge, due attention has not been
paid to this problem for unsupervised learning, though much effort has been
made to improve classification performance in competitive learning [4], [5], [6],
[7], [8] and visualization performance [9], [10], [11] in self-organizing maps. This
is because it has been difficult to identify criteria comparable to those in errors
terms between targets and outputs. In this context, we have introduced the
information-theoretic approach to feature detection.

Information-theoretical methods have been proposed to describe many aspects
of neural computing [12], [13], [14]. We have, especially, pointed out the similar-
ity between information-theoretic learning and competitive learning [15], [16]. In
addition to the similarity between it and competitive learning, the information-
theoretic learning method has presented a solution for the fundamental prob-
lems of competitive learning, such as the dead neuron problem [17], [4], [5], [8].

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 171–178, 2009.
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However, as an information measure, mutual information used in information-
theoretic formulation is only an average of all input patterns and competitive
units. It does not give useful information on detailed parts in neural networks.

To obtain useful information on detailed parts of a network, we introduce
enhancement and relaxation for competitive units. By the enhancement of a
competitive unit, the unit responds explicitly to all the input patterns, while by
relaxation of the competitive unit, the unit responds uniformly to all the input
patterns. Information change by enhancement or relaxation is called enhanced
information. Enhanced information seems to be a powerful method to detect
features. However, we have found that, if we consider several types of enhanced
information, we can more clearly detect important features in input patterns. In
this context, we introduce structural enhanced information in which the first-,
the second- and the third-order enhanced information are differentiated. The
first-order information is an information change due only to competitive units.
On the other hand, the second-order information is an information change due to
competitive units with input patterns. The third-order information is obtained
by subtracting the effect of the first-order information from the second-order
information. The third-order information is used to produce information with-
out the effect of the first-order information. Because we take into account the
structure of information content, this information is called structural enhanced
information. Though all types of information play important roles in interpret-
ing final representations, we focus upon the third-order information in this paper
and try to show that the third-order information is good at extracting important
features in input patterns.

2 Theory and Computational Methods

2.1 Enhancement and Relaxation

Figure 1 shows a process of enhancement and relaxation. Figure 1(a) shows an orig-
inal situation obtained by competitive learning, in which three neurons are differ-
ently activated for input units. With enhancement, as shown in Figure 1(b), the
characteristics of competitive unit activations are enhanced, and only one compet-
itive unit is strongly activated. This means that obtained information in compet-
itive units is larger. On the other hand, Figure 1(c) shows a state by relaxation,
in which all competitive units respond uniformly to input units. Because compet-
itive units cannot differentiate between input patterns, no information on input
patterns is stored.

This enhancement can be realized by changing the Gaussian width. We con-
sider a network for competitive learning, shown in Figure 2, where xs

k denotes
the kth element of the sth input pattern, and wjk represent connection weights
from the kth input unit to the jth competitive unit. In this network, a neuron
output can be defined by the Gaussian function:

vs
j = exp

(
−
∑L

k=1(x
s
k − wjk)2

2σ2

)
, (1)
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where σ is a Gaussian width and L is the number of input units. As the Gaussian
width is smaller, competitive units are considered to be more enhanced.

2.2 Structural Enhanced Information

In this paper, enhancement is measured in three different ways in order to see a
more detailed change in neurons. For this purpose, we introduce structural en-
hanced information, in which we can define three types of enhanced information.
Let us introduce structural enhanced information. Suppose that the probability
p(j) of firing of the jth neuron is changed to penh(j) by enhancement, and the
conditional probability p(j | s) to penh(j | s). The first-order enhanced informa-
tion for the probability p(j) can be defined by using the cross entropy:

EI1 =
M∑

j=1

p(j) log
p(j)

penh(j)
. (2)
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The second-order enhanced information is defined by

EI2 =
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)

penh(j | s) . (3)

By an analogy with mutual information, we have the third-order enhanced in-
formation

EI3 = EI2 − EI1

=
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)

penh(j | s) −
M∑

j=1

p(j) log
p(j)

penh(j)
. (4)

This third-order enhanced information is formulated by our expectation of the
second-order enhanced information to be much larger than the first-order in-
formation. The first-order enhanced information is concerned with information
change due to competitive units themselves. On the other hand, the second-
order enhanced information is related to information change due to competitive
units with input patterns. The third-order enhanced information is information
change due to competitive units with input patterns without the effect due to
the competitive units themselves.

2.3 Structural Enhanced Information for Input and Competitive
Units

We define only enhanced information for input and competitive units with page
limitation. However, other types of enhanced information can easily be obtained
in the same way. Distance between input units and connection weights when the
rth competitive unit and the kth input unit are used for enhancement are given
by

ds
kt,jr =

L∑
k=1

Φkt,jr(xs
k − wjk)2, (5)

where

Φkt,jr =
{

1/ε, if k = t and j = r;
ε, otherwise,

where
ε =

1
2ασ2

. (6)

By using this distance, we have competitive units activations through the kth
unit and the jth unit:

vs
kt,jr = exp

(
−ds

kt,jr

2σ2

)
. (7)
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We can also define the first order enhanced information

EItr
1 =

M∑
j=1

p(j) log
p(j)

ptr(j)
. (8)

By using these probabilities, we have the second order enhanced information for
the rth competitive unit

EItr
2 =

S∑
s=1

M∑
j=1

p(s)p(j | s) log
p(j | s)

ptr(j | s) . (9)

The third order enhanced information is defined by difference between two en-
hanced information defined by

EItr
3 = EItr

2 − EItr
1 . (10)

2.4 Iris Problem

In this experiment, we use the well-known Iris problem to show how well the
new method extracts features in input patterns. The data is normalized and the
variance is unity. The number of competitive units is 66 (6 by 11), specified by
the SOM software package1.

Figure 3 shows a U-matrix (a) and a map with labels (b). As can be seen
in Figure 3(a), the U-matrix shows a clear boundary in red or brown by which
input patterns can be classified into two groups. However, in the U-matrix we
cannot see a boundary between class No. 2 and class No. 3. The boundary
between classes No. 2 and No. 3 can be found in the map with labels, shown in
Figure 3(b). Figure 4 shows the first-order enhanced information (a), the second-
order information (b) and the third-order information (c). As shown in Figure
4(a), the first-order enhanced information for competitive units clearly detects a
boundary in warmer colors, such as brown and red, in the middle, corresponding
to the boundary obtained by the SOM in Figure 3(a). This means that, with first-
order enhanced information, input patterns are classified into two groups. Figure
4(b) shows the second-order enhanced information, which shows three groups on
the map. The first group is located on the upper end of the map in red and
brown. In the middle, we can see a group in cooler colors. Finally, on the lower
end, we can see another group in warmer colors. Figure 4(c) shows the third-
order enhanced information. Though it is slightly difficult to see details on the
map, we can say that the third-order enhanced information shows a boundary
in darker blue in the middle that is clearer or darker than that obtained by
the second-order information in Figure 4(b). Competitive units corresponding
to a boundary in Figure 3(a) are represented in darker blue, meaning smaller
values. This effect is obtained by subtracting the first-order information from
the second-order information.
1 http://www.cis.hut.fi/research/som-research.
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Fig. 3. U-matrix (a) and a map with labels (b). Warmer and cooler colors represent
larger and smaller values, respectively.
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Fig. 4. The first-order enhanced information EIr
1 (a), the second-order information

EIr
2 (b) and the third-order information EIr

3 (c). Warmer and cooler colors represent
larger and smaller values, respectively. Frames in the figures show that competitive
units in the frame in (c) are smaller (darker) than that in (b). Warmer and cooler
colors represent larger and smaller values, respectively.
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Fig. 5. Component planes (a) and the first-order (b), the second-order (c) and the
third-order enhanced information for input and competitive units. Warmer and cooler
colors represent larger and smaller values, respectively.

Figure 5 shows component planes obtained for the variable No.3 with the
highest enhanced information by SOM (a) and the first-order (b), the second-
order (c) and the third-order (d) enhanced information. Figure 5(b) shows the
first-order enhanced information for the variable No.3. The enhanced information
(Figure 5(b)) shows a strong boundary in red and brown, corresponding to the
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Fig. 6. Component planes (a), the first-order (b), the second-order (c) and the third-
order (d) enhanced information. Warmer and cooler colors represent larger and smaller
values, respectively.

boundary in Figure 3(a). The enhanced information of the second and third order
in Figure 5(c) and (d) are similar to each other. Though it is relatively difficult
to see the details, we can see that the third-order enhanced information is one
where a boundary in the second-order information in Figure 5(c) is accentuated.

3 Conclusion

In this paper, we have introduced a new type of information called enhanced
information as well as structural enhanced information. Enhanced information
is obtained by enhancing competitive units through some elements in a net-
work, while all the other competitive units are forced to be relaxed. If this
enhancement causes a drastic change in information for competitive units, the
elements surely play a very important role in information processing in com-
petitive learning. To see in more detail the role of this enhanced information,
we have introduced structural enhanced information, with three types of infor-
mation, that is, first, second- and the third-order enhanced information. The
first-order enhanced information consists of change only in competitive units.
The second-order enhanced information consists of change of competitive units,
given input patterns. The third-order enhanced information is the difference be-
tween the first- and the second-order enhanced information. We have applied
the method to the well-known Iris problem to show easily how well the new
method discovers features in input patterns. Experimental results have shown
that features extracted by the new method are clearer than those extracted by
the conventional SOM, and results correspond to our intuition on input patterns.
Though much effort remains for the method to be made practically applicable, it
is certain that this study opens up a new perspective in the information-theoretic
approach to unsupervised learning.
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Abstract. A slightly simplified version of the Spike Response Model
SRM0 of a spiking neuron is tailored to gradient learning. In particular,
the evolution of spike trains along the weight and delay parameter trajec-
tories is made perfectly smooth. For this model a back-propagation-like
learning rule is derived which propagates the error also along the time
axis. This approach overcomes the difficulties with the discontinuous-in-
time nature of spiking neurons, which encounter previous gradient learn-
ing algorithms (e.g. SpikeProp). The new algorithm can naturally cope
with multiple spikes and preliminary experiments confirm the smooth-
ness of spike creation/deletion process.

1 Learning in Networks of Spiking Neurons

The prominent position among neural network models has recently been occu-
pied by networks of spiking (pulse) neurons [4]. As compared to the traditional
perceptrons the spiking neurons represent a biologically more plausible model
which has a great potential for processing the temporal information. However,
one of the main open issues is the development of a practical learning algorithm
for the networks of spiking neurons although the related training problem is
known to be NP-complete at least for binary coded data [6,11].

Learning in the perceptron networks is usually performed by a gradient de-
scent method, e.g. by using the back-propagation algorithm which explicitly
evaluates the gradient of an error function. For the first time, the same approach
was employed for spiking networks in the SpikeProp algorithm [2] which learns
the desired firing times of output neurons by adapting the weight parameters
in the Spike Response Model SRM0 [4]. Plenty of experiments with SpikeProp
was carried out which clarified e.g. the role of the parameter initialization and
negative weights [7]. The performance of the original algorithm was improved
by adding the momentum term [14]. Moreover, the SpikeProp was further en-
hanced with additional learning rules for synaptic delays, thresholds, and time
constants [8] which resulted in faster convergence and smaller network sizes for
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given learning tasks. An essential speedup was achieved by approximating the
firing time function using the logistic sigmoid [1]. The SpikeProp algorithm was
also extended to recurrent network architectures [13].

Nevertheless, the SpikeProp method and its modifications do not usually al-
low more than one spike per neuron which makes it suitable only for ‘time-to-
first-spike’ coding scheme [12]. Another important drawback of these learning
heuristics is that the adaptation mechanism fails for the weights of neurons that
do not emit spikes. At the core of these difficulties the fact is that the spike
creation or removal due to weight updates is by nature a very discontinuous
process while in contrast the gradient learning algorithms do essentially require
the error function to be perfectly smooth for their implementations. Recently,
the so-called ASNA-Prop has been proposed [9] to solve this problem by emu-
lating the feedforward networks of spiking neurons with the discrete-time analog
sigmoid networks with local feedback, which is then used for deriving the gra-
dient learning rule. Another method estimates the gradient by measuring the
fluctuations in the error function in response to the dynamic neuron parameter
perturbation [3]. See also paper [5] for a recent review of supervised learning
methods in the spiking neural networks.

In the present paper we employ a different approach to this problem of spike
creation/deletion. Similarly as the Heaviside function was replaced by the logis-
tic sigmoid in the conventional back-propagation algorithm to make the neuron
function differentiable, we modify a slightly simplified version of the Spike Re-
sponse Model SRM0 by smoothing out the discontinuities also along the weight
and delay parameter trajectories (Section 2). Thus, a new spike arises through
a continuous “division” of the preceding spike into two spikes while the spike
disappearance is implemented by a continuous “fusion” with its predecessor. For
our model of smoothly spiking neurons we derive a nontrivial back-propagation-
like rule for computing the gradient of the error function with respect to both
the weight and delay parameters which is only sketched in Section 3 due to lack
of space while the complete formulas can be found in our technical report [10]. In
particular, the chain rule for computing the partial derivatives of the composite
error function is implemented so that each neuron propagates backwards a vari-
able number of partial derivative terms corresponding to different time instants
including the second-order derivative terms. Thus, the new gradient learning
method can naturally cope with multiple spikes whose number changes in time
and can be used for supervised learning of desired spike trains in the networks of
spiking neurons. Preliminary experiments with the proposed learning algorithm
exhibit the smoothness of spike creation/deletion process (Section 4).

2 A Feedforward Network of Smoothly Spiking Neurons

Formally, a feedforward network can be defined as a set of spiking (pulse) neurons
V which are densely connected into a directed (connected) graph representing an
architecture of the network. Some of these neurons may serve as external inputs
or outputs, and hence we assume X ⊆ V and Y ⊆ V to be a set of input and



Gradient Learning in Networks of Smoothly Spiking Neurons 181

output neurons, respectively, while the remaining ones are called hidden neurons.
We denote by j← the set of all neurons from which an edge leads to j while j→

denotes the set of all neurons to which an edge leads from j. As usual we assume
j← = ∅ for j ∈ X and j→ = ∅ for j ∈ Y whereas j← 	= ∅ and j→ 	= ∅ for
j ∈ V \ (X ∪ Y ). Each edge in the architecture leading from neuron i to j is
labeled with a real (synaptic) weight wji and delay dji ≥ 0. In addition, a real
bias parameter wj0 is assigned to each noninput neuron j ∈ V \X which can be
viewed as the weight from a formal constant unit input1. All these weights and
delays altogether create the network parameter vectors w and d, respectively.

We first define an auxiliary function that will be used for making the com-
putational dynamics of the network smooth with respect to both the time and
parameters w and d. In particular, a twice differentiable nondecreasing func-
tion of one variable σ(α, β, δ) : � −→ [α, β] (or σ for short) is introduced
which has three real parameters α ≤ β and δ > 0 such that σ(x) = α for
x ≤ 0 and σ(x) = β for x ≥ δ whereas the first and second derivatives satisfy
σ′(0) = σ′(δ) = σ′′(0) = σ′′(δ) = 0. In fact, σ is a smooth approximation of
the step function where δ controls the approximation error. In order to fulfill
the conditions on the derivatives we can employ, e.g., the primitive function∫

Ax2(x− δ)2 dx = A
(

x5

5 − 2δ x4

4 + δ2 x3

3

)
+ C for a normalized σ0 = σ(0, 1, δ)

on [0, δ] where the real constants C = 0 and A = 30/δ5 are determined from
σ0(0) = 0 and σ0(δ) = 1. Thus we can choose σ(α, β, δ ; x) = (β − α)σ0(x) + α
for x ∈ [0, δ] which results in the following definition:

σ(α, β, δ ; x) =

⎧⎨⎩
α for x < 0
(β − α)

((
6x

δ − 15
)

x
δ + 10

) (
x
δ

)3 + α for 0 ≤ x ≤ δ
β for x > δ .

(1)

We will also use the logistic sigmoid function with a gain parameter λ (e.g.
λ = 4):

P (x) =
1

1 + e−λx
. (2)

Now we introduce the smooth computational dynamics. Each spiking neuron
j ∈ V in the network may produce a sequence of pj spikes (firing times) 0 <
tj1 < tj2 < · · · < tjpj < T . In addition, define formally tj0 = 0 and tj,pj+1 = T .
For every input neuron j ∈ X , this sequence of spikes is given externally as a
global input to the network. For a noninput neuron j ∈ V \ X , on the other
hand, the underlying firing times are computed as the time instants at which its
excitation

ξj(t) = wj0 +
∑
i∈j←

wji ε (t− dji − τi(t− dji)) (3)

evolving in time t ∈ [0, T ] crosses 0 from below, that is,{
0 ≤ t ≤ T | ξj(t) = 0 & ξ′j(t) > 0

}
=
{
tj1 < tj2 < · · · < tjpj

}
. (4)

1 For simplicity, we assume a constant threshold function (which equals the opposite
value of the bias), thus excluding the refractory effects [4].
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Formula (3) defines the excitation of neuron j ∈ V \X at time t as a weighted
sum of responses to the last spikes from neurons i ∈ j← delayed by dji preceding
time instant t. Here ε : � −→ � denotes the smooth response function which is
the same for all neurons, e.g.

ε(t) = e−(t−1)2 · σ0(t) where σ0(t) = σ(0, 1, δ0 ; t) (5)

is defined by (1) using parameter δ0 particularly for the definition of ε. Clearly, ε
is a twice differentiable function with a relatively flat spike shape which reaches
its maximum ε(1) = 1 for t = 1. Furthermore, τi : � −→ � is a smooth ap-
proximation of the stair function that gives the last firing time tis of neuron i
preceding a given time t, that is tis < t ≤ ti,s+1.

In particular, we define the function τj for any neuron j ∈ V as follows. The
firing times tj1 < tj2 < · · · < tjpj of j are first transformed one by one into
t̃j0 = 0 < t̃j1 < t̃j2 < · · · < t̃jpj < T = ˜tj,pj+1 by formula

t̃js =

{
tjs for j ∈ X

σ
( ˜tj,s−1, tjs, δ ; ξ′j(tjs)

)
for j ∈ V \X

(6)

using (1) where s goes in sequence from 1 to pj and ξ′j(tjs) for j ∈ V \ X
is the derivative of excitation ξj at time tjs which is positive according to (4).
Clearly, t̃js = tjs for ξ′j(tjs) ≥ δ while t̃js ∈ ( ˜tj,s−1, tjs) is smoothly growing with
increasing small ξ′j(tjs) ∈ (0, δ). The purpose of this transformation is to make
the creation and deletion of spikes smooth with respect to the weight and delay
updates. In particular, by moving along the weight and delay trajectories, the
excitation ξj may reach and further cross 0 from below (spike creation), which
leads to an increase in the first derivative of excitation ξ′j(tjs) at the crossing
point tjs starting from zero. Thus, the new transformed spike t̃js arises through
a continuous “division” of the preceding transformed spike ˜tj,s−1 into two spikes
while the spike disappearance is implemented similarly by a continuous “fusion”
with its predecessor, which is controlled by the first derivative of the excitation.
The transformed spikes then define

τj(t) =
pj+1∑
s=1

(
t̃js − ˜tj,s−1

)
P c

(
t− t̃js

)
(7)

using the logistic sigmoid (2) where c ≥ 1 (e.g. c = 3) is an optional exponent
whose growth decreases the value of P (0) shifting the transient phase of P (x)
to positive x. Finally, the derivative of j’s excitation with respect to time t is
calculated as

ξ′j(t) =
∑
i∈j←

wji ε′ (t− dji − τi(t− dji)) (1− τ ′
i(t− dji)) (8)

where ε′(t) = e−(t−1)2 · (σ′
0(t)− 2(t− 1)σ0(t)) and

τ ′
i(t) =

∂

∂ t
τi(t) = cλ

pi+1∑
s=1

(
t̃is − ˜ti,s−1

)
P c

(
t− t̃is

)(
1− P

(
t− t̃is

))
. (9)
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3 The Back-Propagation Rule

A training pattern associates a global temporal input specifying the spike trains
0 < ti1 < ti2 < · · · < tipi < T for every input neuron i ∈ X with corresponding
sequences of desired firing times 0 < �j1 < �j2 < · · · < �jqj < T prescribed
for all output neurons j ∈ Y . The discrepancy between the desired and actual
sequences of spikes for the underlying global temporal input can be measured
by the following L2 error

E(w,d) =
1
2

∑
j∈Y

qj∑
s=0

(τj (�j,s+1)− �js)
2 (10)

which is a function of the weight and delay parameters w and d, respectively.
In particular, τj(�j,s+1) is the smooth approximation of the last firing time of
output neuron j ∈ Y preceding time instant �j,s+1 which is desired to be �js.

We will derive a back-propagation-like rule for computing the gradient of
the error function (10) which can then be minimized using a gradient descent
method, e.g. for every j ∈ V and i ∈ j← (or i = 0 for bias wj0)

w
(t)
ji = w

(t−1)
ji − α

∂ E

∂ wji

(
w(t−1)

)
, d

(t)
ji = d

(t−1)
ji − α

∂ E

∂ dji

(
d(t−1)

)
(11)

starting with suitable initial paramater values w(0),d(0) where 0 < α < 1 is a
learning rate. Unlike the conventional back-propagation learning algorithm for
the perceptron network, the new rule for the network of spiking neurons must
take also the temporal dimension into account. In particular, the chain rule
for computing the partial derivatives of the composite error function E(w,d)
requires each neuron to propagate backwards a certain number of partial deriva-
tive terms corresponding to different time instants. For this purpose, each non-
input neuron j ∈ V \X stores a list Pj of mj ordered triples (πjc, π

′
jc, ujc) for

c = 1, . . . , mj where πjc, π
′
jc denote the values of derivative terms associated

with time ujc such that

∂ E

∂ wji
=

mj∑
c=1

(
πjc · ∂

∂ wji
τj(ujc) + π′

jc ·
∂

∂ wji
τ ′
j(ujc)

)
for i ∈ j← ∪ {0} (12)

(similarly for ∂ E
∂ dji

). Notice that the triples (πjc1 , π
′
jc1

, ujc1) and (πjc2 , π
′
jc2

, ujc2)
such that ujc1 = ujc2 can be merged into one (πjc1 + πjc2 , π

′
jc1

+ π′
jc2

, ujc1) and
also the triples (πjc, π

′
jc, ujc) with πjc = π′

jc = 0 can be omitted.
For any noninput neuron j ∈ V \X we will calculate the underlying derivative

terms πjc, π
′
jc at required time instants ujc. For an output neuron j ∈ Y the list

Pj = ((τj(�j,s+1)− �js , 0 , �j,s+1) , s = 0, . . . , qj) (13)

is obtained directly from (10). For creating Pi for a hidden neuron i ∈ j← for
some j ∈ V \X , we derive a recursive procedure using the partial derivatives

∂

∂ wi�
τj(t) =

pj∑
s=1

∂

∂ t̃js

τj(t) · ∂ t̃js

∂ wi�
,

∂

∂ wi�
τ ′
j(t) =

pj∑
s=1

∂

∂ t̃js

τ ′
j(t) ·

∂ t̃js

∂ wi�
(14)
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where ∂
∂ t̃js

τj(t) and ∂
∂ t̃js

τ ′
j(t) are calculated by differentiating (7) and (9), re-

spectively. Furthermore,

∂ t̃js

∂ wi�
=

∂ t̃js

∂ ˜tj,s−1

· ∂ ˜tj,s−1

∂ wi�
+

(
∂ t̃js

∂ tjs
· ∂ tjs

∂ τi
+

∂ t̃js

∂ ξ′j
· ∂ ξ′j

∂ τi

)
∂ τi

∂ wi�

+
∂ t̃js

∂ ξ′j
· ∂ ξ′j
∂ τ ′

i

· ∂ τ ′
i

∂ wi�
(15)

according to (6) and (8) where the particular partial derivatives can simply be
calculated by differentiating the underlying formulas, e.g. using (1), except for
∂ tjs

∂ τi
whose calculation follows. According to (3) and (4), the dependence of tjs

on τi can only be expressed implicitly as ξj(tjs) = 0 where ξ′j(tjs) 	= 0, which
implies the total differential identity

ξ′j(tjs) dtjs +
∂ ξj

∂ wi�
dwi� = 0 (16)

employing e.g. the variable wi� for which ∂ τk

∂ wi�
= 0 for k ∈ j← unless i = k.

Hence, ξ′j(tjs) · ∂ tjs

∂ wi�
= − ∂ ξj

∂ wi�
= −∂ ξj

∂ τi
· ∂ τi

∂ wi�
which gives

∂ tjs

∂ τi
=

∂ tjs

∂ wi�

∂ τi

∂ wi�

=
−∂ ξj

∂ τi

ξ′j(tjs)
=

wji ε′(tjs − dji − τi(tjs − dji))
ξ′j(tjs)

. (17)

Now, the formula (15) for the derivative ∂ t̃js

∂ wi�
in terms of ∂ ˜tj,s−1

∂ wi�
is applied

recursively, which is further plugged into (14) as follows:

∂

∂ wi�
τj(t) =

pj∑
s=1

∂

∂ t̃js

τj(t)
s∑

r=s−njs

(
s∏

q=r+1

∂ t̃jq

∂ ˜tj,q−1

)

×
((

∂ t̃jr

∂ tjr
· ∂ tjr

∂ τi
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τi

)
∂ τi

∂ wi�
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τ ′

i

· ∂ τ ′
i

∂ wi�

)
(18)

(similarly for ∂
∂ wi�

τ ′
j(t)) where 1 ≤ njs ≤ s−1 is defined to be the least index such

that
∂ ˜tj,s−njs

∂ ˜tj,s−njs−1
= 0 which exists since at least ∂ t̃j1

∂ t̃j0
= 0. Note that the product∏s

q=r+1
∂ t̃jq

∂ ˜tj,q−1
in formula (18) equals formally 1 for r = s. The summands of

formula (18) are used for creating the list Pi for a hidden neuron i ∈ V \ (X ∪Y )
provided that the lists Pj = ((πjc, π

′
jc, ujc) , c = 1, . . . , mj) have already been

created for all j ∈ i→, that is

Pi =

(
fjcsr

(
∂ t̃jr

∂ tjr
· ∂ tjr

∂ τi
+

∂ t̃jr

∂ ξ′j
· ∂ ξ′j

∂ τi

)
, fjcsr · ∂ t̃jr

∂ ξ′j
· ∂ ξ′j
∂ τ ′

i

, tjr − dji

)
(19)

including factors
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fjcsr =

(
πjc · ∂

∂ t̃js

τj(ujc) + π′
jc ·

∂

∂ t̃js

τ ′
j(ujc)

)
s∏

q=r+1

∂ t̃jq

∂ ˜tj,q−1

(20)

for all j ∈ i→, c = 1, . . . , mj , s = 1, . . . , pj , and r = s− njs, . . . , s.
Thus, the back-propagation algorithm starts with output neurons j ∈ Y for

which the lists Pj are first created by (13) and further continues by propagating
the derivative terms at various time instants backwards while creating the lists
Pi also for hidden neurons i ∈ V \ (X ∪ Y ) according to (19). These lists are
then used for computing the gradient of the error function (10) according to
(12) where the derivatives ∂

∂ wji
τj(t) and ∂

∂ wji
τ ′
j(t) are calculated analogously to

(18). For example, the dependencies of tjr on wji can again be expressed only
implicitly as ξj(tjr) = 0 and hence, the derivatives ∂ tjr

∂ wji
are calculated using the

implicit function theorem. See [10] for more details.

4 Preliminary Experiments and Future Work

We have implemented the proposed learning algorithm and performed several
preliminary computer simulations with simple toy problems such as XOR with
temporal encoding. These experiments also served as a tool for debugging our
model of a smoothly spiking neuron, e.g. for choosing suitable function shapes,
and this work has not been finished yet. Nevertheless, the first experimental
results confirm the smoothness of spike creation/deletion. For example, Figure 1
shows how the graph of function τj(t) evolves in the course of weight and delay
adaptation for a spiking neuron j. Recall τj(t) is the smooth approximation of
the stair function which produces the last firing time preceding a given time t.
Figure 1 depicts the process of a spike creation during training when the time
instant of a new spike t̃js “detaches” from the preceding spike tj,s−1 (which, for
simplicity, is assumed here to be “fixed” for a moment, i.e. ˜tj,s−1 = tj,s−1) and
“moves” smoothly with increasing ξ′j(tjs) > 0 to its actual position t̃js = tjs
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Fig. 1. Spike creation



186 J. Š́ıma

(ξj(tjs) = 0) where ξ′j(tjs) reaches threshold value δ. In a general case, more
spikes can smoothly be generated at the same time which was also observed in
our experiments.

Nevertheless, the proposed learning algorithm for networks of smoothly spik-
ing neurons still needs to be justified by experiments with more complicated
temporal training patterns. Another challenge for further research is to general-
ize the model for a nonconstant threshold function taking the refractory period
of a spiking neuron into account.
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Abstract. In this article, we proposed training methods for improving
the generalization capability of a learning machine that is defined by a
weighted sum of many fixed basis functions and is used as a nonpara-
metric regression method. In the basis of the proposed methods, vectors
of basis function outputs are orthogonalized and coefficients of the or-
thogonal vectors are estimated instead of weights. The coefficients are
set to zero if those are less than predetermined threshold levels which
are theoretically reasonable under the assumption of Gaussian noise. We
then obtain a resulting weight vector by transforming the thresholded
coefficients. When we apply an eigen-decomposition based orthogonal-
ization procedure, it yields shrinkage estimators of weights. If we employ
the Gram-Schmidt orthogonalization scheme, it produces a sparse rep-
resentation of a target function in terms of basis functions. A simple
numerical experiment showed the validity of the proposed methods by
comparing with other alternative methods including the leave-one-out
cross validation.

1 Introduction

This article considers a regression method using a learning machine that is de-
fined by a linear combination of fixed basis functions. Especially, we focus on a
machine in which the number of basis functions, or equivalently, the number of
adjustable weights is identical to the number of training data. This problem is
viewed as a nonparametric regression method in statistics. In machine learning,
such a formulation is employed in support vector machines(SVMs) in which the
kernel trick with the representer theorem yields a linear combination of kernel
functions; e.g. [2]. In recent works, it has also been proposed that variations
of SVMs, such as least squared support vector machines(LS-SVMs)[6] and rele-
vance vector machines(RVMs)[7]. Since we adopt a squared error loss function
in this article, our formulation of training is similar to LS-SVM and RVM rather
than SVM.

In a nonparametric regression method, we need devices for improving the gen-
eralization capability of a trained machine. Each of LS-SVM and RVM adopts a
particular regularizer while both of them employ basically quadratic forms of a
weight vector. In RVMs, regularization parameters are assigned individually to
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weights and those are iteratively updated based on the Bayesian log evidence.
Basis functions are removed if the corresponding weights are small enough. This
ensures a sparse representation of a target function in terms of basis functions. [3]
developed a method called LROLS(locally regularized orthogonal least squares)
which is a modification of RVM. In LROLS, vectors of basis function outputs
are orthogonalized by a modified Gram-Schmidt procedure and coefficients of
the orthogonalized vectors are estimated as in RVM. The resulting weight vec-
tor is obtained by transforming the estimated coefficients. [4] also introduced
an orthogonalization procedure. [4] has applied an eigen-decomposition based
orthogonalization procedure and proposed shrinkage methods based on thresh-
olding of coefficients of orthogonalized vectors, in which threshold levels are
introduced to decide whether to remove or keep the corresponding orthogonal
vectors. By the benefit of orthogonalization, the proposed threshold levels are
theoretically reasonable under the assumption of Gaussian noise. A model se-
lection problem is thus solved in [4] while it is not in LROLS. Unfortunately,
the methods in [4] do not give us a sparse representation of a target function in
terms of basis functions. This article extends the idea in [4]. We derive a general
form of a thresholding method on orthogonal coefficients and give the concrete
implementations which include a shrinkage method and a method for obtaining
a sparse representation.

In Section 2, we describe a learning machine and its training procedure, in
which orthogonalization of vectors of basis function outputs and thresholding
of coefficients of the orthogonal vectors are formulated. In Section 3, we derive
threshold levels for coefficients. In Section 4, we give training methods which
are concrete implementations of the procedure established in Section 2 and 3. In
Section 5, the proposed methods are compared with other alternative methods
throughout a simple numerical experiment. Section 6 is devoted to conclusions.

2 Formulations of Machine and Training Procedure

2.1 Learning Machine

Let {(xi, yi) : xi ∈ R
d, yi ∈ R, i = 1, . . . , n} be a set of input-output training

data. We assume that output data are generated by yi = h(xi)+ei, i = 1, . . . , n,
where h is a fixed function on R

d and e1, . . . , en are i.i.d. sequence of Gaussian
noise having N(0, σ2); i.e. a Gaussian distribution with mean zero and variance
σ2. We refer to h by a target function or true function.

We consider a curve-fitting problem by using a machine whose output for
x ∈ R

d is given by

fw(x) =
n∑

j=1

wjgj(x), (1)

where w = (w1, . . . , wn) ∈ R
n is a weight vector. (1) is a linear combination

of fixed basis functions, in which the number of weights is identical to that of
training data. gj(x) can be written by g(x, xj) if we employ kernel functions as
basis functions.
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Let G be an n × n matrix whose (i, j) element is gj(xi). We define gj =
(gj(x1), . . . , gj(xn))′ which is the jth column vector of G. ′ denotes the transpose.
We assume that g1, . . . , gn are linearly independent. Also we redefine w as a
vertical vector; i.e. w = (w1, . . . , wn)′. We define fw = (fw(x1), . . . , fw(x1))
which is written by fw = Gw. We also define y = (y1, . . . , yn)′, e = (e1, . . . , en)′

and h = (h(x1), . . . , h(xn))′.

2.2 Transformation of G

{g1, . . . , gn} can be regarded as a coordinate system since fw is represented
by a weighted sum of those. In this article, we introduce another coordinate
system which is obtained by a transformation of original coordinates and is an
orthogonal system.

Let Q be an invertible n×n matrix. We define A = GQ and denote the jth col-
umn vector of A by aj . We assume that A′A is a diagonal matrix by an appropri-
ate choice of Q. We define Γ = A′A, where Γ = diag(γ1, . . . , γn). diag(γ1, . . . , γn)
denotes a diagonal matrix whose (j, j) element is γj . {a1, . . . , an} is thus a set of
orthogonal vectors. Since A′A = Q′(G′G)Q, a transformation by Q implements
a diagonalization of G′G which is the Gram matrix of {g1, . . . , gn}. For given
input data x1, . . . , xn and fixed basis functions g1, . . . , gn, Q can be viewed as a
matrix that transforms {g1, . . . , gn} into {a1, . . . , an}. We call aj an orthogonal
component or orthogonal basis vector. We define

v = (v1, . . . , vn)′ = Q−1w. (2)

We can then write fw = Gw = Av. We call v an orthogonal coefficient vector.

2.3 Estimation of Orthogonal Coefficient Vector

In nonparametric regression methods, it is natural to introduce a regularization
method to avoid over-fitting and stabilize a training process. In a regularization
method, we obtain an estimator of v that minimizes a regularized cost function
defined by C(v) = ‖y − Av‖2 + v′Λv, where the first term is an error function
and the second term is a regularization term or regularizer. Λ is an n-dimensional
diagonal matrix defined by Λ = diag(λ1, . . . , λn), where λj ≥ 0 for all j. Note
that we may introduce a regularizer only for stabilizing a training procedure
while the generalization capability is improved by another source. However, we
need not introduce a regularizer and will actually apply another technique for the
stabilization problem in below. In this case, we set λj = 0 for all j. A regularized
estimator that minimizes C(v) is defined by v̂. By simple calculations, we have

v̂ = (Γ + Λ)−1A′y (3)

since A′A = Γ . By the definition of Γ and Λ, we can write v̂j = a′
jy/(γj + λj)

for j = 1, . . . , n.
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2.4 Thresholding of Orthogonal Coefficient Vector

By introducing a set of threshold levels defined by θ = (θ1, . . . , θn)′, we con-
sider to apply a hard thresholding operator Tθ on an orthogonal coefficient vec-
tor. An orthogonal coefficient vector after thresholding is given by Tθ(v) =
(Tθ1(v1), . . . , Tθn(vn))′, where Tθj(vj) is equal to vj if v2

j > θj and is equal to 0
if v2

j ≤ θj for j = 1, . . . , n. For the regularized estimator given by (3), we define
v = Tθ(v̂). By (2), we then obtain w = Qv which is a resulting weight vector in
our method.

3 Thresholding Levels

3.1 Statistical Property of v̂

We denote a set of training inputs by ξ = {x1, . . . , xn}. We assume that a tar-
get function is realizable in terms of {fw|w ∈ R

n}, i.e. there exists w∗ such
that h = Gw∗ = Av∗, where v∗ = (v∗1 , . . . , v∗n)′ = Qw∗. Under the assump-
tion of Gaussian noise, the conditional distribution of v̂ given ξ is shown to
be v̂ ∼ N (ν, S|ξ), where ν = (µ1v

∗
1 , . . . , µnv∗n)′ and S = σ2(Γ + Λ)−2Γ =

diag(σ2
1 , . . . , σ2

n) in which µj = γj/(γj + λj) and σ2
j = σ2γj/(γj + λj)2. Since S

is diagonal, v̂j ∼ N(µjv
∗
j , σ2

j ), j = 1, . . . , n hold and those are independent.

3.2 Thresholding Operation with Threshold Levels

We assume that a sparse representation of h in terms of orthogonal basis vectors
which are column vectors of A. We define V ∗ = {j|v∗j 	= 0, 1 ≤ j ≤ n}. We refer
to {aj |j ∈ V ∗} by true components. Let K∗

n be the cardinality of V ∗. The sparse
representation implies that K∗

n is very small by comparing with n. We also define
V = {j|v∗j = 0, 1 ≤ j ≤ n}. Let Kn be the cardinality of V , where Kn = n−K∗

n.
Orthogonal components with indexes in V do not relate to a target function and
relate only to noise in training. We thus refer to {aj |j ∈ V } by noise components.

We define Cn,ε = (2 + ε) log n, where ε is a constant. Let δ be an arbitrary
positive constant below. We consider a thresholding operator Tθn,δ

in which
θn,δ = (θ1,n,δ, . . . , θn,n,δ)′ and

θj,n,δ = σ2
j Cn,δ, j = 1, . . . , n. (4)

We state theoretical implications of these threshold levels without proofs while
the validity of implications is easily confirmed from the extreme value theory[5].

(1) P

[⋃
j∈V

{
v̂2

j > θj,n,δ

}]
goes to zero as n →∞.

(2) P

[⋂
j∈V

{
v̂2

j ≤ θj,n,−δ

}]
goes to zero as n →∞ if Kn ≥ ρn for ρ ∈ (0, 1], or

equivalently, K∗
n ≤ (1− ρ)n.
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The first fact tells us that, for any j ∈ V , v̂2
j cannot exceed θj,n,δ with high prob-

ability when n is large. If we employ θn,δ as a set of component-wise threshold
levels then the thresholding procedure surely remove noise components. On the
other hand, the second fact tells us that there are some noise components for
which v̂2

j > θj,n,−δ with high probability when n is large. In other words, there
exist some noise components for which v̂2

j are close to θj,n,0. Thus, we can not
distinguish a true component from a noise component if the corresponding v̂2

j

is happen to be less than θj,n,−δ. Since δ can be taken as an arbitrary small
value, θj,n,0, j = 1, . . . , n are critical and reasonable levels for deciding whether
to remove or keep orthogonal components if Kn ≥ ρn. Kn ≥ ρn is fulfilled if
we assume a sparse representation of a target function in terms of orthogonal
components.

4 Implementations

4.1 Estimation of Noise Variance

Based on the previous discussion, we employ θn,0 as a vector of component-
wise threshold levels. We thus apply Tθn,0 as a thresholding operator. In prac-
tical applications of Tθn,0 , we need an estimate of noise variance in (4). For-
tunately, in nonparametric regression methods, [1] suggested to apply σ̂2 =
y′(In −H)2y/trace[(In −H)2] as an estimate of σ2, where H = A(Γ + Λ)−1A′

and In denotes the n× n identity matrix.

4.2 Orthogonalization Procedure

In this article, we consider two procedures of determining Q by which A′A be-
comes a diagonal matrix, or equivalently, {a1, . . . , an} becomes a set of orthog-
onal vectors.

The first procedure is based on eigen-decomposition of G′G. We choose Q
in which the kth column vector is the kth eigen vector of G′G. Q is then
an orthonormal matrix; i.e. Q−1 = Q′. By this choice of Q, the column vec-
tors of A = GQ, which are a1, . . . , an, are orthogonal and actually A′A =
(GQ)′GQ = Q′(G′G)Q = Γ , where γk is the kth eigen value of G′G. Since G is
non-degenerate, we have γk > 0 for any k. Without loss of generality, we assume
that γ1 ≥ γ2 ≥ · · · ≥ γn > 0. We refer to this procedure as ED.

The second procedure is based on the Gram-Schmidt orthogonalization for
G = (g1, . . . , gn), which is also employed in [3] for achieving a sparse
representation also in terms of original basis vectors. In the Gram-Schmidt or-
thogonalization procedure, gk is orthogonalized based on g1, . . . , gk−1. We as-
sume that q1, . . . , qk−1 are orthogonal vectors which are already obtained by
the Gram-Schmidt orthogonalization of g1, . . . , gk−1. At the kth step, we de-
fine pj,k = 〈qj , gk〉/‖qj‖2, j = 1, . . . , k − 1, where 〈·, ·〉 denotes the Euclidean
inner product. We then obtain qk = gk −

∑k−1
j=1 pj,kqj which is orthogonal to

q1, . . . , qk−1. This procedure is successively applied by starting from q1 = g1.
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We define P1 = In. Let Pk, k = 2, . . . , n be an n × n matrix whose (j, k) el-
ement is pj,k if j = 1, . . . , k − 1, is 1 if j = k and is 0 otherwise. We define
Qk =

∏k
j=1 Pj . We then have GQk = (q1, . . . , qk, gk+1, . . . , gn); i.e. multipli-

cation of Qk achieves the Gram-Schmidt orthogonalization up to the kth step.
We choose Qn as Q. Then A = GQ = (q1, . . . , qn). We thus set ak = qk and
γk = ‖qk‖2. We refer to this procedure as GS. In each step of the orthogonaliza-
tion in [3], a basis function is selected to reduce the residual error maximally, by
which it is difficult to construct a criterion for choosing an set of effective basis
functions. Note that our threshold levels cannot be applied to this procedure. In
our GS, at the kth step, we calculate pj,i, qi and γi for all i in {k, . . . , n}. We then
find ck = arg maxk≤i≤n γi. We set pj,k = pj,ck

and qk = qck
, hence gk = gck

.
This process chooses the kth orthogonal component which is possibly disrelated
to the previously chosen components. Note that the proposed threshold levels
are valid in this case since we do not utilize training outputs for choosing an
orthogonal component at each step.

We refer to hard thresholding methods using the ED and GS procedures by
HTED and HTGS respectively. In HTED and HTGS, we define J as an index
such that vj = 0 for all J < j ≤ n. HTED and HTGS yield different types of
estimates. The trained weight vector of HTED is shown to be a shrinkage esti-
mator due to the orthonormality of Q and the definition of our hard thresholding
method. In the GS procedure, the number of non-zero weights is also J by its
definition. In other words, HTGS works as a thresholding method also on an
original representation when J < n. HTGS is thus possible to produce a sparse
representation if J is small.

4.3 Modifications of HTED and HTGS

In this article, we further consider modifications of HTED and HTGS. Orthogo-
nal components with large γj ’s mainly contribute for machine outputs. If a hard
thresholding method happen to remove such components, it is possible to yield
a large bias. It is thus safety to avoid the unexpected remove and keep such
components. We then consider to keep all of J orthogonal components and set
vJ = (v̂1, . . . , v̂J )′. In other words, this procedure is a stopping point search,
which is J here, in increasing order of magnitudes of γj ’s. HTED and HTGS
with this modification are referred to as HTED2 and HTGS2 respectively.

4.4 Numerical Stability Problem

Although a set of basis functions is assumed to be linearly independent, it may
arise a problem of numerical instability of trained weights. In our methods, it is
caused by estimation of coefficients for orthogonal components with small val-
ues for γj’s. To avoid the numerical instability, one can take small values for
regularization parameters. Here, we set λj = 0 for all j and rather consider to
use a set of stable orthogonal components for which γj > η, where η is a fixed
positive constant. This reduces a computational cost for estimating coefficients,
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thresholding and inverse transform for obtaining a weight vector. We choose a
small value for η to just ensure the numerical stability. The number of candi-
dates of stable components is then relatively large. However, in those candidates,
effective components are automatically selected by thresholding.

5 Numerical Experiments

We compare performances of the proposed methods to those of the leave-one-out
cross validation(LOOCV), RVM and LROLS.

A target function is h(x) = 3.0 sinc(8.0 x) for x ∈ R. x1, . . . , xn are randomly
drawn in the interval [−1, 1]. We set σ2 = 1. Basis functions are Gaussian basis
functions that are defined by gj(x) = exp(−(x − xj)2/(2τ2)), j = 1, . . . , n. We
trained a machine for n training samples, in which a value of τ is chosen from
{0.02, 0.05, 0.1, 0.2, 0.5} by the 10-folds cross validation. After training, test error
is measured by the mean squared error between outputs of a target function and
a trained machine on 2000 equally spaced input points in [−1, 1]. We repeat this
procedure for 100 sets of training samples and then obtain the averaged test error.

In LOOCV, we assume that a squared error loss and an �2-regularizer with
a single regularization parameter. A set of candidate values for a regularization
parameter in LOOCV is {k×10j; k = 1, 2, 5, j = −4,−3, . . . , 2}. Parameters of
RVM are λR, KR and ηR which are an initial common value for regularization
parameters, the number of repetitions for updating regularization parameters
and a threshold level for a measure of certainty of weights respectively[7]. We
set λR = 10−3, KR = 100 and ηR = 10−12. Parameters of LROLS are λL, KL

and ηL which are an initial common value for regularization parameters, the
number of repetitions for updating regularization parameters and a threshold
level for the norm of orthogonal components. We set λL = 10−3, KL = 20 and
ηL = 10−12. In RVM and LROLS, ηR and ηL are criteria for removing basis
functions. For our methods, we set λj = 0 for j = 1, . . . , n and η = 10−12.

In Table 1, we show the averaged test errors and the numbers of remaining
basis functions when n = 200 and 400. In the table, we can see that HTED2
is superior to the other methods in terms of the averaged test error while the

Table 1. Averaged test errors and the numbers of remaining basis functions

test errors the number of basis functions
n 200 400 200 400

LOOCV 0.0617±0.0243 0.0347±0.0210 200 400
HTED 0.0552±0.0157 0.0302±0.0094 200 400
HTED2 0.0482±0.0112 0.0269±0.0082 200 400
HTGS 0.0869±0.0240 0.0435±0.0137 6.22±0.71 6.78±0.74
HTGS2 0.0647±0.0175 0.0303±0.0095 6.27±0.68 6.69±0.79
RVM 0.0653±0.0219 0.0356±0.0165 48.24±7.91 89.24± 14.99

LROLS 0.0648±0.0185 0.0307±0.0085 17.15±3.97 17.92±3.96
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differences of the averaged test errors are almost within the standard deviations.
We can also see that HTGS and HTGS2 are superior to the other methods
in terms of sparseness. However, HTGS is worse than HTGS2 in terms of the
averaged test errors. This gap is due to a bias caused by unexpected removes of
contributed components. For RVM and LROLS, there may be better choices of
the parameter values while there are no systematic choices of them. Especially,
determining the number of basis functions, which is controlled by ηR in RVM
and ηL in LROLS, is still an important problem in RVM and LROLS while some
heuristics may be considered. HTGS and HTGS2 solve this problem based on
the benefit of orthogonalization.

6 Conclusions

In this article, we proposed shrinkage and thresholding methods for a nonpara-
metric regression problem. The proposed methods are based on orthogonaliza-
tion of vectors of basis function outputs. By introducing a hard thresholding
method on coefficients of orthogonal components, we derived HTED and HTED2
as shrinkage methods and HTGS and HTGS2 as thresholding methods on orig-
inal representation. The important point is that the proposed threshold levels
in thresholding are theoretically reasonable under the assumption of Gaussian
noise and existence of a sparse representation of a target function in terms of or-
thogonal components. Throughout a simple numerical experiment, performances
of the proposed methods are compared to those of LOOCV, RVM and LROLS.
As a result, we found that HTED2 is superior or comparable to the other meth-
ods in terms of the generalization capability and HTGS2 is preferable to the
other methods in terms of sparseness, in which sparseness may unfortunately
not imply a better generalization performance.
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Abstract. We analyzed the equilibrium states of an Ising spin neural
network model in which both spins and interactions evolve simultane-
ously over time. The interactions are Mexican-hat-type, which are used
for lateral inhibition models. The model shows a bump activity, which
is the locally activated network state. The time-dependent interactions
are driven by Langevin noise and Hebbian learning. The analysis results
reveal that Hebbian learning expands the bistable regions of the ferro-
magnetic and local excitation phases.

1 Introduction

Neural networks that can model local excitation are often described by lateral
inhibition type networks. The lateral inhibition represents recurrent excitation
with nearby neurons and inhibition between distant neurons: it is also referred
to as “Mexican-hat-type interaction”.

Hamaguchi, Hatchett, and Okada built a statistical mechanics of a neural net-
work on a one-dimensional ring with disordered lateral inhibition and analyzed
its equilibrium state[1]. Keeping the difficulty of analyzing the replica-symmetry
breaking (RSB) using the signal to noise (SN) analysis in mind, they defined
the Hamiltonian of their system and discussed the effects of disordered lateral
inhibition by using the replica method. They showed that there are four phases:
paramagnetic (P), ferromagnetic (F), local excitation (L), and spin-glass (SG).
They also showed that there is a bump activity in their model, which is the
locally activated network state. It is stable depending on the input and config-
uration of the interactions of the network[1].
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Recurrent neural networks with time-dependent interaction have been inves-
tigated by several groups[2],[3],[4]. Coolen et al. shows that both neurons and
synaptic interactions (or coupling) evolve simultaneously over time in accordance
with specific coupled stochastic equations. They assumed that the time-scale of
the neuron dynamics is sufficiently shorter than that of the interactions. When
neurons are updated, the interactions are assumed to be fixed to the instan-
taneous values in the equilibrium state. The coupling dynamics are described
by the Langevin equations including an Hebbian learning term and a Langevin
noise term. Coolen et al. demonstrated that the replica method can be used to
calculate the equilibrium state of the network through time-dependent interac-
tions. Their results showed that the phase transition temperature is changed
by the time-dependent interactions. Dotsenko et al. introducing time-dependent
interaction increases the capacity of the network.

We analyzed the equilibrium states of an Ising spin neural network with time-
dependent Mexican-hat-type interaction. The concept of capacity is not defined
in the network. A bump activity in such a locally activated network state and
is stable depending on the input and configuration of the interactions of the
network. We investigated how the stability of a bump activity is changed by
introducing the time-dependent interaction. We also investigated the effect of
Hebbian learning in the coupling dynamics on the equilibrium states of the
network.

2 Model Definitions

The Ising spin neural network we used is modeled by an N -neuron state vector
σ = (σθ1 , σθ2 , . . . , σθN ) ∈ {−1, 1}N . Here σθi = 1 if neuron i fires, and σθi = −1
if it is at rest. Neuron i is located at angle θi = 2πi

N − π on a one-dimensional
ring indexed by θi ∈ [π, π). The Hamiltonian of the system studied is

H(σ) = −1
2

∑
θi �=θj

Jθiθj σθiσθj − h
∑
θi

σθi . (1)

where h is a common external input to the neurons. We assume that the coupling
dynamics slow compared to the spin dynamics. A Langevin equation is used for
the coupling dynamics.

τ
dJθiθj

dt
=

1
N

[ε < σθiσθj >sp +Kθiθj ]− µJθiθj +
√

τ

N
ηθiθj (t) (2)

with τ << 1. In the adiabatic limit τ → ∞, the term < σiσj >sp, representing
spin correlations associated with coupling Jij , is the average over the Boltzmann
distribution of the spins, given instantaneous couplings J . The ε represents the
strength of Hebbian learning. This model is equivalent to that of Hamaguchi
when ε = 0[1]. The ηθiθj (t) represents white Gaussian noise contribution of zero
mean and covariance < ηθiθj (t)ηθkθl

(t′) >= 2T̃ δθiθk
δθjθl

δ(t − t′), i < j, k < l

with associate T̃ = β̃−1. Interaction Jθiθj is defined to be lateral inhibition, and
it is a function only of (θi − θj): Kθiθj = K0 + K1 cos(θi − θj) where K0 is a
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uniform ferromagnetic interaction, and K1 is a lateral inhibition type interaction.
This model can be considered to be a Fourier series expansion of the interaction
function with a lower order and periodic boundary condition.[1] The time-scale
of coupling dynamics is very long compared to the spin dynamics, so couplings
can be considered to be quenched state in the spin dynamics. We assume that
K0 and K1 are non-negative real numbers.

3 Replica Calculation of the Free Energy and Order
Parameters

The free energy per neuron and relevant order parameters are calculated using
the replica method. The effective Hamiltonian H is represented as

H = − ε

β
ln Zβ −

∑
θi<θj

KθiθjJθiθj +
Nµ

2
J2

θiθj
, (3)

so eq. (2) can be rewritten as

Nτ
dJθiθj

dt
= − ∂H

∂Jθiθj

+
√

Nτηθiθj (t). (4)

The equilibrium distribution of {Jθiθj}, Peq({Jθiθj}) is a Boltzmann distribution
and is specified by the partition function Z̃β̃ and free energy F̃β̃ . The partition
function related to the effective Hamiltonian H is given by

Z̃β̃ =
∫

dJ exp(−β̃H)

=
∫ ⎡⎣ ∏

θi<θj

√
Nµβ̃

2π
dJθiθj

⎤⎦Z
ε β̃

β

β

× exp

⎛⎝β̃
∑

θi<θj

KθiθjJθiθj −
β̃Nµ

2

∑
θi<θj

J2
θiθj

⎞⎠ . (5)

The Zβ is the conventional partition function with inverse temperature β = T−1

related to the spins.

Zβ = exp(−βH) = exp

⎛⎝β
∑

θi<θj

Jθiθj σθiσθj + βh
∑
θi

σθi

⎞⎠ . (6)

As shown by eq.(5), the spin dynamics and coupling dynamics are controlled by
the individual inverse temperatures of β and β̃, respectively. We rewrite ε β̃

β = n,
so eq. (5) has the same form as the Sherrington-Kirkpatrick (SK) model, so we
can calculate the free energy per neuron and relevant order parameters of the
system through the replica method. By introducing replicas σ1, σ2, · · ·σn, we
can express Zn

β as
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Zn
β = Trσ exp

(
−β

n∑
α=1

H(σα)

)
, (7)

were Tr means the sum of all possible combinations of σ, and α is the replica
index. The partition function is then given by

Z̃β̃ = Trσ

∫ ∏
α<β

dqαβ
∏
α

dMα
0

∏
α

dMα
C

∏
α

dMα
S

× exp

⎧⎨⎩−Nβ̃2J2

2

∑
α<β

(qαβ)2 − Nβ̃K0µ

2

∑
α

(Mα
0 )2

− Nβ̃K1µ

2

∑
α

((Mα
C)2 + (Mα

S )2) + L +
Nβ̃2J2n

4

}
. (8)

where

L =
∑
θi

⎧⎨⎩J2β2
∑
α<β

σα
θi

σβ
θi

qαβ + βK0

∑
α

Mα
0 σθi

+ βK1

∑
α

(Mα
C cos θi + Mα

S sin θi)σα
θi

+ βh
∑

α

σα
θi

}
, (9)

and J =
√

1/β̃µ. We define four order parameters.

q = N−1
∑
θi

σα
θi

σβ
i , M0 = N−1

∑
θi

σθi ,

MC = N−1
∑
θi

σθi cos θi, MS = N−1
∑
θi

σθi sin θi

where M0 is the magnetization parameter, q is the spin-glass order parameter,
and MC and MS are order parameters that show how spins are aligned in the
same direction locally, but not globally. As Hamaguchi pointed out, the network
state is in the bump state, or locally activated, if MC or MS is nonzero. We
note that MC and MS depend on the position of the bump, but our interests are
rather the size and the position of the bump. We thus introduce the following
transformation to separate the size and position of the bump.

Mα
1 =

√
(Mα

C)2 + (Mα
S )2, φα = tan−1(Mα

S /Mα
C).

The alternative order parameters, M1 and φ are global measure of the activity
profiles and indicate the degree of activity localization and its angle, respectively.
We can now rewrite the third term of eq. (9) as βK1

∑
α Mα

1 [cos(θi − φα)]σα
θi

.
We assume replica symmetry, that is qαβ = q , Mα

0 = M0, Mα
1 = M1, and

φα = φ. The introduction of the replica symmetry and Gaussian integral identity
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exp( b2

2 ) ≡ ∫
Dzθi exp(bzθi), Dzθi = dzθi√

2π
exp(− z2

θi

2 ) simplify Trσ exp(L) in Eq.
(8) to

Trσ exp(L) = Trσ

∏
θi

∫
Dzθi exp

{
[βJ

√
qzθi + βK0M0

+ βK1M1 cos(θi − φ) + βh]
∑
α

σα
θi

}
× exp

(
−Nnβ2J2

2
q +

Nnβ2J2

4

)
=
∏
θi

∫
Dzθi [2 coshβH̃(Zθi , θi − φ)]n

× exp
(
−Nnβ2J2

2
q +

Nnβ2J2

4

)
, (10)

where H̃(zθi , θi) = J
√

qzθi + K0M0 + K1M1 cos(θi) + h. From this, we get

Z̃β̃ =
∫

dqdM0dMcdMs exp
{NnJ2β2

4
[(1− n)q2 − 2q + 1]

− NnβK0

2
M2

0 −
NnβK1

2
M2

1

+
∑
θi

ln
(∫

Dzθi [2 coshβH̃(zθi , θi − φ)]n
)}

(11)

The summation of θi is now replaced by an integral over θ. We define the free
energy per neuron by f̃β̃ = − 1

β̃N
ln Z̃β̃. We get the next equation by evaluating

the integral at the saddle point.

−β̃f̃β̃ = −βK0µn

2
M2

0 −
βK1µn

2
M2

1 +
β2J2

4
n(1− 2q + (1− n)q2)

+
1
2π

∫ π

−π

Dz ln[2 coshn βH̃(z, θ − φ)]. (12)

The order parameters are given by the saddle point equations of free energy
f̃β̃ through the saddle point method. We introduce variables M0µ = m0, MCµ =
mc, MSµ = mS , and m1 =

√
m2

C + m2
S , and then the order parameters are

m0 =
∫ π

−π

dθ

2π

∫
Dz coshn β(H̃(zθ, θ − φ)) tanh β(H̃(zθ, θ − φ))∫

Dz coshn β(H̃(zθ, θ − φ))
, (13)

m1 =
∫ π

−π

dθ

2π

∫
Dz cos(θ − ϕ) coshn β(H̃(zθ, θ − φ)) tanh β(H̃(zθ, θ − φ))∫

Dz coshn β(H̃(zθ, θ − φ))
, (14)

q =
∫ π

−π

dθ

2π

∫
Dz coshn β(H̃(zθ, θ − φ)) tanh2 β(H̃(zθ, θ − φ))∫

Dz coshn β(H̃(zθ, θ − φ))
, (15)
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where H̃(zθ, θ−φ) = J
√

qzθ + K0
µ m0 + K1

µ m1 cos(θ−φ), n = εβ̃/β, J = 1/

√
β̃µ,

Dz ≡ dz√
2π

exp(− z2

2 ). These saddle point equations are similar to those of a
neural network with disordered lateral inhibition[1].

4 Results

4.1 Temperature Dependence of Order Parameters

Figure 1 shows numerical solutions of the saddle point equations (Eqs. (13),
(14), and (15)). We defined βK0 and βK1 as the inverse temperatures of spins,
and we set β to 1. We set the inverse temperature of the Langevin noise, β̃ to
10, meaning that the Langevin noise was assumed to be small. We scanned the
inverse temperature (K1) from higher (right side of figure) to lower (left side).
In the figure, the horizontal axis shows the inverse temperature K1, and the
vertical axis shows the order parameter m1. We set K0 = 0 and µ = 1 in eq. (2).
The strength of Hebbian learning is ε = 1.0 is referred as “learning”, and it is
ε = 0.0 is referred as “not-learning”. The solid lines represent a stable solution,
and dotted line represents an unstable solution. A stable solution is given by
using the iterative method, and an unstable solution is given by the Newtonian
method.
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Fig. 1. Temperature dependence and phase transition of order parameter m1

The figure shows that for “not-learning”, the phase transition from Local
phase (m1 	= 0, q 	= 0, m0 = 0), refereed to as “L”, to paramagnetic phase(m0 =
m1 = q = 0), referred to as “P”, was a second order phase transition. However,
for “learning”, the transition was a first order one. The phase transition tem-
perature from L to P for “not-learning” was K1 = 2.0; it shifted to K1 = 1.48
for “learning”. Moreover, only a stable solution was obtained for “not-learning”,
while both unstable and stable solutions were obtained for “learning”. The un-
stable solutions were obtained between K1 = 1.48 and 2.0, and a stable solution
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Fig. 2. Temperature dependence of order parameters q, m0, and m1

of m1 = 0 was obtained in this interval. Bistable regions, referred to as “P+L”,
were thus obtained. Similar phenomena were obtained for order parameter m0.

Figure 2(a) shows the temperature dependence of the order parameters(q,
m0 and m1 from the top) when the inverse temperature K0, was set to 3, and
Fig. 2(b) shows the dependence when K1 was set to 5 (with K0 scanned from
5 to 0). The inverse temperature of the Langevin noise was set to 10 in both
cases. The ε = 0 corresponds to “not-learning”, and ε = 1 corresponds to results
of “learning”. From these figures, we can see that (1) the phase transitions of
m0 	= 0 → m0 = 0(Fig.2(a) middle), m0 = 0 → m0 	= 0(Fig.2(b) middle), m1 =
0 → m1 	= 0(Fig. 2(a) bottom), and m1 	= 0 → m1 = 0 (Fig.2(b) bottom) were
the first order transitions for any strength of Hebbian learning ε, and (2) all the
phase transition temperatures tended to be shifted to lower inverse temperatures.
Figure 2(a) shows that the state of the system is L(m1 	= 0, q 	= 0, m0 = 0) for
K1=5, and Fig. 2(b) shows that the state is F(m0 	= 0, q 	= 0, m1 = 0) for
K0 = 3. This means that, at the point (K0, K1) = (3, 5), both L and F are
stable; that is, there is a bistable region.

4.2 Phase Diagram and Order Parameters

Figure 3(a) shows the phase diagram of the system when the inverse temperature
of the Langevin noise was 10. Figure 3(b) shows diagram when it was 0.25. In
these figures, P represents the paramagnetic phase(m0 = m1 = q = 0), and SG
represents the spin-glass phase(m0 = m1 = 0, q 	= 0). Depending on the relative
strength of K0 and K1, F or L are stable once they exceed a certain threshold.
Between them, there are bistable regions, which are represented as F+L, where
both the F and L phases are locally stable. The bistable regions shrink as β̃
decreases. Hamaguchi showed that when the coupling noises are relatively large,
an SG phase appears instead of a P phase[1]. As shown by Fig. 3, the SG phase
appears in the present model. When ε = 1, the bistable region gradually widened
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Fig. 3. Phase diagram with fixed β̃ in the intersection of {K0, K1} plane: (a) is set to
β̃ = 10, and (b) is set to β̃ = 0.25, respectively

compared to that with ε = 0. This means that the bistable region becomes more
stable in wider regions of the {K0, K1} plane when Hebbian learning is used in
the coupling dynamics.

5 Conclusions

We analyzed the equilibrium states of an Ising spin neural network with time-
dependent Mexican-hat-type interaction using the replica method. We derived
the saddle point equations for order parameters q, m0 and m1, and showed that
they are similar to those of a neural network with disordered lateral inhibition[1].
We analyzed the phase transition of ferromagnetic interaction or lateral inhibi-
tion interaction. By solving the saddle point equations numerically, we showed
that, with Hebbian learning, the phase transition is a first order transition, and
that, without Hebbian learning, it is a second order phase transition. We then
drew the phase diagram of the system for small and large Langevin noise. We
found that there was a paramagnetic phase, a ferromagnetic phase, a local ex-
citation phase, and a spin-glass phase. The paramagnetic phase appears when
the Langevin noise is small, and the spin-glass phase appears when the noise
is large. The bistable regions of the ferromagnetic and local excitation phases
tended to widen with Hebbian learning in the coupled dynamics.
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Abstract. In this paper, we propose a Divided Chaotic Associative
Memory for Successive Learning (DCAMSL).The proposed model is based
on the Improved Chaotic Associative Memory for Successive Learning
(ICAMSL) and the Divided Chaotic Associative Memory for Successive
Learning using Internal Patterns (DCAMSL-IP) which were proposed in
order to improve the storage capacity. In most of the conventional neural
network models, the learning process and the recall process are divided,
and therefore they need all information to learning in advance. However,
in the real world, it is very difficult to get all information to learn in ad-
vance. So we need the model whose learning and recall processes are not
divided. As such model, although some models have been proposed, their
storage capacity is small. In the proposed DCAMSL, the learning process
and the recall process are not divided and its storage capacity is larger than
that of the conventional ICAMSL.

1 Introduction

Recently, neural networks are drawing much attention as a method to realize
flexible information processing. Neural networks consider neuron groups of the
brain in the creature, and imitate these neurons technologically. Neural networks
have some features, especially one of the important features is that the networks
can learn to acquire the ability of information processing.

In the filed of neural network, many models have been proposed such as
the Hopfield network[1] and the Bidirectional Associative Memory[2]. In these
models, the learning process and the recall process are divided, and therefore
they need all information to learn in advance.

However, in the real world, it is very difficult to get all information to learn
in advance. So we need the model whose learning and recall processes are not
divided. As such model, Grossberg and Carpenter proposed the Adaptive Reso-
nance Theory (ART)[3]. However, the ART is based on the local representation,
and therefore it is not robust for damaged neurons. While in the field of associa-
tive memories, some models have been proposed[4] [5]. Since these models are
based on the distributed representation, they have the robustness for damaged

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 203–211, 2009.
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neurons. However, their storage capacity is very small because their learning pro-
cesses are based on the Hebbian learning. In contrast, the Improved Chaotic As-
sociative Memory for Successive Learning (ICAMSL)[4] and the Divided Chaotic
Associative Memory for Successive Learning using Internal Patterns (DCAMSL-
IP)[5] have been proposed in order to improve the storage capacity.

In this paper, we propose a Divided Chaotic Associative Memory for Suc-
cessive Learning (DCAMSL). The proposed model is based on the Improved
Chaotic Associative Memory for Successive Learning (ICAMSL)[4] and the Di-
vided Chaotic Associative Memory for Successive Learning using Internal Pat-
terns (DCAMSL-IP)[5]. In the proposed DCAMSL, the learning process and the
recall process are not divided. When an unstored pattern set is given to the
network, the DCAMSL can learn the patterns successively. Moreover, the stor-
age capacity of the proposed DCAMSL is larger than that of the conventional
ICAMSL.

2 Divided Chaotic Associative Memory for Successive
Learning

Here, we explain the outline of the proposed Divided Chaotic Associative Mem-
ory for Successive Learning (DCAMSL). The proposed DCAMSL has three
stages; (1) Pattern Search Stage, (2) Distributed Pattern Generation Stage and
(3) Learning Stage.

When an unstored pattern set is given, the DCAMSL recalls the patterns.
When an unstored pattern set is given to the network, the DCAMSL changes
the internal pattern for input pattern set by chaos and presents other pattern
candidates (we call this the Pattern Search Stage). When the DCAMSL can not
recall the desired patterns, the distributed pattern is generated by the multi-
winners competition[6] (Distributed Pattern Generation Stage), and it learns
the input pattern set as an unstored pattern set (Learning Stage).

2.1 Structure of DCAMSL

The proposed DCAMSL is a kind of the hetero-associative memories. Figure 1
shows the structure of the DCAMSL. This model has two layers; an Input/
Output Layer (I/O Layer) composed of conventional neurons and some Dis-
tributed Representation Layers (DR Layers) composed of chaotic neurons[7]. In
this model, there are the connection weights between neurons in each Distributed
Representation Layer and the connection weights between the Input/Output
Layer and each Distributed Representation Layer. As shown in Fig.1, the In-
put/Output Layer has plural parts. The number of parts is decided by depending
on the number of patterns included in the pattern set. In the case of Fig.1, the
Input/Output Layer consists of N parts corresponding to the patterns 1∼N . In
this model, when a pattern set is given to the Input/Output Layer, the internal
pattern corresponding to the input patterns is formed in the Distributed Rep-
resentation Layer. Then, in the Input/Output Layer, an output pattern set is
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Fig. 1. Structure of Proposed DCAMSL

recalled from the internal pattern. The DCAMSL distinguishes an unstored pat-
tern set from stored patterns by comparing the input patterns with the output
patterns.

In this model, the output of the rth Distributed Representation Layer at the
time t+1, xDr

i (t + 1) is given by the following equations.

xDr

i (t + 1) = φD(ξr
i (t + 1) + ηr

i (t + 1) + ζr
i (t + 1)) (1)

ξr
i (t + 1) = ksξ

r
i (t) +

M∑
j=1

vr
ijAj(t) (2)

ηr
i (t + 1) = kmηr

i (t) +
Nr∑
j=1

wr
ijx

Dr

j (t) (3)

ζr
i (t + 1) = krζ

r
i (t)− αr(t)xDr

i (t)− θr
i (1− kr) (4)

In Eqs.(1)∼(4), M is the number of neurons in the Input/Output Layer, vr
ij is

the connection weight between the neuron j in the Input/Output Layer and the
neuron i in the rth Distributed Representation Layer, Nr is the number of neu-
rons in the rth Distributed Representation Layer, wr

ij is the connection weight
between the neuron i and the neuron j in the rth Distributed Representation
Layer, αr(t) is the scaling factor of the refractoriness in the rth Distributed
Representation Layer at the time t, ks, km and kr are the damping factors, and
θr

i is the threshold in the neuron i in the rth Distributed Representation Layer.
φD(·) is the following output function:

φD(ui) = tanh(ui/ε) (5)

where ε is the steepness parameter.
The output of the neuron j in the Input/Output Layer at the time t, xIOr

j (t)
is given as follows.

xIOr

j (t) = φIO

(
Nr∑
i=1

vr
ijx

Dr

i (t)

)
(6)

φIO(u) =
{

1 , u ≥ 0
−1 , u < 0 (7)
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2.2 Pattern Search Stage

In the Pattern Search Stage, when an input pattern set is given, the DCAMSL
distinguishes the pattern set from stored patterns. When an unstored pattern
set is given, the DCAMSL changes the internal pattern for the input pattern
by chaos and presents the other pattern candidates. Until the DCAMSL recalls
the desired patterns, the following procedures are repeated. If the DCAMSL can
not recall the desired patterns, when the stage is repeated certain times, the
DCAMSL finishes the stage.

Pattern Assumption. In the proposed DCAMSL, only when the input pat-
terns are given to all parts of the Input/Output Layer, the patterns are judged.
When the input pattern Aj(t) is similar to the recalled pattern xIOr

j (t), the
DCAMSL can assume that input patterns is one of the stored patterns. The
DCAMSL outputs the pattern formed by the internal pattern in the Distributed
Representation Layer. The similarity rate s(t) is defined by

s(t) = max
r

(s1(t), · · · , sr(t), · · · , sR(t)) (8)

sr(t) =
1
M

M∑
j=1

Aj(t)xIOr

j (t) (r = 1, · · · , R) (9)

where R is the number of the Distributed Representation Layers. The DCAMSL
regards the input patterns as a stored pattern set, when the similarity rate sr(t)
is larger than the threshold sth(s(t) ≥ sth).

Pattern Search. When the DCAMSL assumes that the input patterns an
unstored pattern set, the DCAMSL changes the internal pattern xDr

i (t) for the
input pattern by chaos and presents the other pattern candidates.

In the chaotic neural network, it is known that dynamic association can be
realized if the scaling factor of the refractoriness αr(t) is suitable. Therefore in
the proposed model, αr(t) is changed as follows:

αr(t) = ((αr
max(t)− αmin)(1− sr(t)) + αmin)/αDIV (10)

αr
max(t) = Mvr

max + Nrw
r
max (11)

vr
max = max

(|vr
11|, · · · , |vr

ij |, · · · , |vr
NM |) (12)

wr
max = max (|wr

11|, · · · , |wr
ii′ |, · · · , |wr

NN |) (13)

where αmin is the minimum of α, αr
max(t) is the maximum of α in the rth

Distributed Representation Layer at the time t, sr(t) is the similarity between
the input pattern and the output pattern at the time t in the rth Distributed
Representation Layer (the time when the Pattern Search Stage started), and
αDIV is the constant.

2.3 Distributed Pattern Generation Stage

In the Distributed Pattern Generation Stage, the distributed pattern correspond-
ing to the input patterns is generated by the multi-winners competition[6].
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In the proposed DCAMSL, only one distributed pattern is generated in the
r∗th Distributed Representation Layer. r∗ is decided by

r∗ = argmin
r

( |w1
max|, · · · , |wr

max|, · · · , |wR
max|

)
(14)

where wr
max is the maximum connection weight in rth Distributed Representa-

tion Layer, R is the number of the Distributed Representation Layers.

Calculation of Outputs of Neurons in I/O Layer. When the input pattern
Aj(t) is given to the Input/Output Layer, the output of the neuron j in the
Input/Output Layer xIO

j is given by

xIO
j = Sf (Aj(t)) (15)

where Sf (·) is the ramp function and is given by

Sf (u) =
{

u, u > 0
0, u ≤ 0 . (16)

Calculation of Initial Output of Neurons in DR Layer. The output of the
neuron i in the r∗th Distributed Representation Layer x

Dr∗ (0)
i is calculated by

x
Dr∗ (0)
i = φD

⎛⎝ M∑
j=1

vr∗
ij xIO

j

⎞⎠ (17)

where vr∗
ij is the connection weight from the neuron j in the Input/Output

Layer to the neuron i in the r∗th Distributed Representation Layer and M is
the number of neurons in the Input/Output Layer. The output function φD(·)
is given by Eq.(5).

Competition between Neuron in DR Layer. The competition dynamics is
given by the following equation:

xDr∗
i = φD

(
Nr∗∑
i′=1

wr∗
ii′x

Dr∗
i′

)
(18)

where xDr∗
i is the output of the neuron i in the r∗th Distributed Representation

Layer and Nr∗ is the number of neurons in the r∗th Distributed Representation
Layer.

2.4 Learning Stage

In the Pattern Search Stage, if the DCAMSL can not recall the desired pattern
set, it learns the input pattern set as an unstored pattern set. The Learning
Stage has two phases; (1) Hebbian Learning Phase and (2) anti-Hebbian Learn-
ing Phase. If the signs of the outputs of two neurons are the same, the connec-
tion weight between these two neurons is strengthened. By this learning, the
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connection weights are changed to learn the input patterns, however the Heb-
bian learning can only learn a new input pattern set. In the proposed DCAMSL,
the anti-Hebbian Learning Phase is employed as similar as the conventional
ICAMSL[4]. In the anti-Hebbian Learning Phase, the connection weights are
changed in the opposite direction in the case of the Hebbian Learning Phase.
The proposed DCAMSL can learn a new pattern set without destroying the
stored patterns by the anti-Hebbian learning.

Hebbian Learning Phase. In the Hebbian Learning Phase, until the similarity
rate s(t) becomes 1.0, the update of the connection weights is repeated.

The connection weight between the Input/Output Layer and the Distributed
Representation Layer vr∗

ij and the connection weight in the Distributed Repre-
sentation Layer wr∗

ii′ are updated as follows:

v
r∗(new)
ij = v

r∗(old)
ij + γ+

v x
Dr∗ (comp)
i Aj(t) (19)

w
r∗(new)
ii′ = w

r∗(old)
ii′ + γ+

wx
Dr∗ (comp)
i x

Dr∗ (comp)
i′ (20)

where γ+
v is the learning rate of the connection weight vr∗

ij in the Hebbian Learn-
ing Phase, and γ+

w is the learning rate of the connection weight wr∗
ii′ in this phase.

Give Up Function. When the similarity rate s(t) does not become 1.0 even if
the connection weights are updated Tn times, the DCAMSL gives up to memorize
the pattern set. If the DCAMSL gives up to learn the pattern set, the anti-
Hebbian Learning Phase is not performed.
Anti-Hebbian Learning Phase. The anti-Hebbian Learning Phase is per-
formed after the Hebbian Learning Phase. In this phase, the connection weight
vr∗

ij and wr∗
ii′ are changed in the opposite direction in the case of the Hebbian

Learning Phase. The anti-Hebbian learning makes the relation between the pat-
terns is learned without destroying the stored patterns.

In this phase, vr∗
ij and wr∗

ii′ are updated by

v
r∗(new)
ij = v

r∗(old)
ij − γ−

v x
Dr∗ (comp)
i Aj(t) (21)

w
r∗(new)
ii′ = w

r∗(old)
ii′ − γ−

w x
Dr∗ (comp)
i x

Dr∗ (comp)
i′ (22)

where γ−
v (γ−

v > γ+
v > 0) is the learning rate of the connection weight vr∗

ij in
this phase, and γ−

w (γ−
w > γ+

w > 0) is the learning rate of the connection weight
wr∗

ii′ in this phase.

3 Computer Experiment Results

In this section, we show the computer experiment results to demonstrate the
effectiveness of the proposed DCAMSL. The computer experiments were carried
out under the conditions shown in Table 1.
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Table 1. Experimental Conditions

Learning Parameters
the number of pattern searches in Pattern Search Stage 10
initial value of all connection weights −1.0 ∼ 1.0
learning rate in Hebbian Learning γ+

v , γ+
w 1.0

learning rate in anti-Hebbian Learning γ−
v , γ−

w 2.0
threshold of similarity rate sth 1.0

Chaotic Neuron Parameters
constant for refractoriness αDIV 25
minimum of scaling factor α αmin 0.0
damping factor ks 0.5
damping factor km 0.3
damping factor kr 0.95
threshold of neurons θr

i 0.0
steepness parameter ε 0.0005

Competition Parameters
steepness parameter ε 0.0005
the number of competitions T 50

(a) t = 1 (b) t = 2 (c) t = 11

(d) t = 13 (e) t = 14 (f) t = 15

(g) t = 24 (h) t = 28 (i) t = 29

(j) t = 30 (k) t = 35

Fig. 2. Successive Learning in Pro-
posed Model
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3.1 Successive Learning and One-to-Many Associations

Figure 2 shows the successive learning and one-to-many associations in the pro-
posed DCAMSL. As seen in Fig.2, the patterns “lion”, “penguin” and “frog”
were given to the network at t=1. At t=1, the DCAMSL could not recall the
correct patterns because no pattern was stored in the network. During t=2∼11,
the DCAMSL changed the internal patterns by chaos and presented the other
patterns. As a result, the DCAMSL regarded the input patterns as unstored
patterns, at t=13, the patterns “lion”, “penguin” and “frog” were trained as
new patterns.

At t=14, the patterns “lion”, “penguin” and “crow” were given to the net-
work. At this time, since only the pattern set “lion”, “penguin” and “frog” was
memorized in the network, the DCAMSL recalled the patterns “lion”, “pen-
guin” and “frog”. During t=15∼24, the DCAMSL changed the internal patterns
by chaos and presented the other pattern candidates, however it could not recall
the correct patterns as unstored patterns, at t=28, the “lion”, “penguin” and
“crow” were trained as new patterns.

At t=29, the patterns “lion” and “penguin” were given to the network, the
DCAMSL recalled “lion”, “penguin” and “frog” (t=30) and “lion”, “penguin” and
“crow” (t=35). From these results, we confirmed that the proposed DCAMSL can
learn patterns successively and realize one-to-many associations.

3.2 Storage Capacity

Here, we examined the storage capacity of the proposed DCAMSL. In this ex-
periment, we used the DCAMSL which has 200 neurons (100 neurons for pattern
1 and 100 neurons for pattern 2) in the Input/Output Layer and 420 neurons
in the Distributed Representation Layer. We used random patterns to store and
Fig.3 shows the average of 100 trials. In this figure, the horizontal axis is the
number of stored pattern pairs, and the vertical axis is the perfect recall rate. In
this figure, the storage capacity of the Improved Chaotic Associative Memory for
Successive Learning (ICAMSL)[4] is also shown for reference. From these results,
we confirmed that the storage capacity of the proposed DCAMSL is larger than
that of the conventional ICAMSL.

4 Conclusions

In this paper, we have proposed the Divided Chaotic Associative Memory for
Successive Learning (DCAMSL). The proposed model is based on the Improved
Chaotic Associative Memory for Successive Learning (ICAMSL)[4] and the Di-
vided Chaotic Associative Memory for Successive Learning using Internal Pat-
terns (DCAMSL-IP). In the proposed DCAMSL, the learning process and recall
process are not divided. When an unstored pattern set is given to the network,
the DCAMSL can learn the pattern successively. We carried out a series of com-
puter experiments and confirmed that the proposed DCAMSL can learn patterns
successively and realize one-to-many associations, and the storage capacity of the
DCAMSL is larger than that of the conventional ICAMSL.
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Abstract. In this paper, we propose a reinforcement learning method
using Kohonen Feature Map Associative Memory with Refractoriness
based on Area Representation. The proposed method is based on the
actor-critic method, and the actor is realized by the Kohonen Feature
Map Associative Memory with Refractoriness based on Area Represen-
tation. The Kohonen Feature Map Associative Memory with Refractori-
ness based on Area Representation is based on the self-organizing feature
map, and it can realize successive learning and one-to-many associations.
Moreover, it has robustness for noisy input and damaged neurons because
it is based on the area representation. The proposed method makes use
of this property in order to realize the learning during the practice of
task. We carried out a series of computer experiments, and confirmed
the effectiveness of the proposed method in path-finding problem.

1 Introduction

The reinforcement learning is a sub-area of machine learning concerned with
how an agent ought to take actions in an environment so as to maximize some
notion of long-term reward[1]. Reinforcement learning algorithms attempt to
find a policy that maps states of the world to the actions the agent ought to
take in those states.

Temporal Difference (TD) learning is one of the reinforcement learning al-
gorithm. The TD learning is a combination of Monte Carlo ideas and dynamic
programming (DP) ideas. TD resembles a Monte Carlo method because it learns
by sampling the environment according to some policy. TD is related to dynamic
programming techniques because it approximates its current estimate based on
previously learned estimates. The actor-critic method[2] is the method based on
the TD learning, and consists of two parts; (1) actor which selects the action
and (2) critic which evaluate the action and the state.

On the other hand, neural networks are drawing much attention as a method to
realize flexible information processing. Neural networks consider neuron groups
of the brain in the creature, and imitate these neurons technologically. Neural
networks have some features, especially one of the important features is that the
networks can learn to acquire the ability of information processing. The flexible
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information processing ability of the neural network and the adaptive learning
ability of the reinforcement learning are combined, some reinforcement learning
method using neural networks are proposed[3][4].

In this paper, we propose the reinforcement learning method using Kohonen
Feature Map Associative Memory with Refractoriness based on Area
Representation(KFMAM-R-AR)[5]. The proposed method is based on the actor-
critic method, and the actor is realized by the KFMAM-R-AR. The KFMAM-
R-AR is based on the self-organizing feature map[6], and it can realize successive
learning and one-to-many associations. The proposed method makes use of this
property in order to realize the learning during the practice of task.

2 Kohonen Feature Map Associative Memory with
Refractoriness Based on Area Representation

Here, we explain the conventional Kohonen Feature Map Associative Memory
with Refractoriness based on Area Representation (KFMAM-R-AR)[5] which
can realize one-to-many associations. This model is based on the Kohonen Fea-
ture Map with Area Representation (KFMAM-AR)[7], and refractoriness is in-
troduced to the neurons in the Map-Layer. In the KFMAM-R-AR, one-to-many
associations are realized by the refractoriness of neurons. And, in the model,
enough robustness for damaged neurons when analog patterns are memorized
are realized by improvement of the calculation of the internal states of neurons
in the Map-Layer.

2.1 Structure

Figure 1 shows the structure of the KFMAM-R-AR. As shown in Fig.1, the
KFMAM-R-AR has two layers; (1) Input/Output(I/O)-Layer and (2) Map-
Layer, and the I/O-Layer is divided into some parts.

In the KFMAM-R-AR, since one concept is expressed by the winner neuron
and some neurons located adjacent to the winner neuron, it has the robustness
for damaged neurons in the Map-Layer.

�
���
�

Input/Output-Layer

Map-Layer

�
���
�

�
�

�
�

�

�

Fig. 1. Structure of KFMAM-R-AR



214 A. Shimizu and Y. Osana

2.2 Learning Process

The learning algorithm for the KFMAM-R-AR is based on the conventional
sequential learning algorithm for the KFMAM-AR.

In the sequential learning algorithm for the KFMAM-R-AR, the connection
weights are learned as follows:

(1) The initial values of weights are chosen randomly.
(2) The Euclid distance between the learning vector X(p) and the connection

weights vector W i, d(X(p), W i) is calculated.

d(X(p), W i) =

√√√√ M∑
k=1

(X(p)
k −Wik)2 (1)

(3) The winner neuron r whose Euclid distance is minimum is found.

r = argmin
i

d(X(p), W i) (2)

(4) If d(X(p), W i) > θl, the connection weights of the winner neuron r are fixed.
The connection weights except those of fixed neurons are changed by

W i(t + 1) = W i(t) + H(di)α(t)hri(X(p) −W i(t)) (3)

where hri is the neighborhood function and is given by

hri = exp
(−||r − i||2

2σ(t)2

)
(4)

where σ(t) is the following decreasing function:

σ(t) = σi

(
σf

σi

)t/T

.

(5)

In this equation, σi is the initial value of σ(t) and σ(t) varies from σi to
σf (σi > σf ). T is the upper limit of the learning iterations.
In Eq.(3), α(t) is the learning rate and is given by:

α(t) =
−α0(t− T )

T
(6)

where α0 is the initial value of α(t), and H(di) is calculated by

H(di) =
1

1 + exp(−(di −D)/ε).
(7)

In this equation, di is the Euclid distance between the neuron i and the
nearest weights fixed neuron in the Map-Layer, D is the constant and ε is
the steepness parameter of the function H(di). Owing to H(di), weights of
neurons close to the fixed neurons are semi-fixed, that is, they become hard
to be learned.

(5) (2)∼(4) are iterated until d(X(p), W i) ≤ θl is satisfied.
(6) The connection weights of the winner neuron r, W r are fixed.
(7) (2)∼(6) are iterated when a new pattern set is given.
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2.3 Recall Process

In the recall process of the KFMAM-R-AR, when the pattern X is given to the
I/O-Layer, the output of the neuron i in the Map-Layer at the time t, xmap

i (t)
is calculated by

xmap
i (t) = Hrecall(d(r, i))f(umap

i (t)) (8)

Hrecall(d(r, i)) =
1

1 + exp ((d(r, i)−D)/ε)
(9)

where D is the constant which decides the area size, ε is the steepness parameter.
d(r, i) is the Euclid distance between the winner neuron r and the neuron i and
is calculated by

r = argmax
i

umap
i (t). (10)

Owing to Hrecall(d(r, i)), which are far from the winner neuron become hard
fire. f(umap

i (t)) is calculated by

f(umap
i (t)) =

{
1, if umap

i (t) > θmap and umap
i (t) > θmin

0, otherwise
(11)

where umap
i (t) is the internal state of the neuron i in the Map-Layer at the time

t, θmap and θmin are the threshold of the neuron in the Map-Layer. θmap is
calculated as follows:

θmap = min
i

(umap
i (t)) + a(max

i
(umap

i (t))−min
i

(umap
i (t))) (12)

where a (0.5 < a < 1) is the coefficient.
In Eq.(8), when the binary pattern X is given to the I/O-Layer, the internal

state of the neuron i in the Map-Layer umap
i (t) is calculated by

umap
i (t) = 1− din(X , W i)√

N in
− α

t∑
d=0

kd
rxmap

i (t− d) (13)

where din(X, W i) is the Euclid distance between the input patterns X and the
connection weights W i. In the recall process, since all neurons in the I/O-Layer
not always receive the input, the distance for the part where the pattern is given
is calculated by

din(X , W i) =
√∑

k∈C

(Xk −Wik)2 (14)

where C shows the set of the neurons in the I/O-Layer which receive the input.
In Eq.(13), N in is the number of neurons which receive the input in the I/O-
Layer, α is the scaling factor of the refractoriness, kr(0 ≤ kr < 1) is the damping
factor. The output of the neuron k in the I/O-Layer xin

k (t) is calculated by

xin
k (t) =

{
1, if uin

k (t) ≥ θin
b

0, otherwise
(15)

uin
k (t) =

1∑
i:xi>θout

xmap
i (t)

∑
i:xi>θout

Wik (16)
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where θin
b is the threshold of the neuron in the I/O-Layer, θout is the threshold

for the output of the neuron in the Map-Layer.

3 Reinforcement Learning Using KFMAM-R-AR

Here, we explain the proposed reinforcement learning method using Kohonen
Feature Map Associative Memory with Refractoriness based on Area Represen-
tation.

Outline In the proposed method, the actor in the Actor-Critic[2] is realized by
the KFMAM-R-AR. In this research, the I/O-Layer in the KFMAM-R-AR is
divided into two parts corresponding to the state s and the action a, and the
actions for the states are memorized(Fig.2).

In this method, the critic receives the states which are obtained from the
environment, the state is estimated and the value function is updated. Moreover,
the critic outputs Temporal Difference(TD) error to the actor. The KFMAM-R-
AR which behaves as the actor (we call this “actor network”) is trained based
on the TD error, and selects the action from the state of environment. Figure 3
shows the flow of the proposed method.

3.1 Actor Network

In the proposed method, the actor in the Actor-Critic[2] is realized by the
KFMAM-R-AR.

Dynamics. In the actor network, when the state s is given to the I/O-Layer,
the corresponding action a is recalled.

�
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�
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�
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Input/Output Layer

Map Layer

�

Fig. 2. Structure of Actor Network
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Fig. 3. Flow of Proposed Method
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When the pattern X is given to the network, the output of the neuron i in
the Map-Layer at the time t xmap

i (t) is given by Eq.(11). In the actor network,
only the state information is given, so the input pattern is given by

X = (s(t),0)T (17)
where s(t) is the state at the time t.

The internal state of the neuron i in the Map-Layer at the time t umap
i (t) is

given by Eq.(13).
The output of the neuron k in the I/O-Layer at the time t xin

k (t) is given by
Eq.(15).

Learning. The actor network is trained based on the TD error from the critic.
The learning vector at the time t X(t) is given by the state s(t) and the

corresponding action a(t) as follows.
X(t) = (s(t), a(t))T (18)

The learning vector X(t) is trained the following procedures.

(1) The Euclid distance between the learning vector X(t) and the weight vector
W i(t), d(X(t), W i(t)) is calculated by

d(X(t), W i(t)) =

√√√√ M∑
k=1

(X(t)
k −Wik(t))2 (19)

where M is the number of neurons in the I/O-Layer.
(2) The winner neuron r whose Euclid distance is minimum is found.

r = argmin
i

d(X(t), W i(t)) (20)

(3) The connection weights are updated based on the TD error.
(3-1) When TD error is smaller than 0

When the undesired action a(t) for the state s(t) is selected, the
connection weights are updated so that the X(t) is not recalled. If the
connection weights for the winner neuron r selected in (2) are fixed, they
are unlocked.

The connection weighs are updated as follows.
W i(t + 1) = W i(t) + δβ(1 −H(di))hri(X(t) −W i(t)) (21)

where δ is TD error, and β is random number. H(·) the semi-fix function
given by Eq.(7). And hri is the neighborhood function give by Eq.(4).

(3-2) When TD error is greater than 0
When the desired action a(t) for the state s(t) is selected, the learning

vector X(t) is memorized.
The connection weights are updated as follows.

W i(t + 1) = W i(t) + δβH(di)hri(X(t) −W i(t)) (22)

If d(X(t), W r) ≤ θl, the connection weights of the winner neuron r are
fixed.

(3-3) When TD error is zero
When the TD error is zero, the connection weights are not updated.
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3.2 Reinforcement Learning Using KFMAM-R-AR

The flow of the proposed reinforcement learning method using KFMAM-R-AR
is as follows:

(1) The initial values of weights in the actor network are chosen randomly.
(2) The agent observes the environment s(t), and the actor a(t) is selected by

the actor network.
(3) The state s(t) transits to the s(t + 1) by action a(t).
(4) The critic receives the reward r(s(t+1)) from the environment s(t+1), and

outputs the TD error δ to the actor.

δ = r(s(t + 1)) + γV (s(t + 1))− V (s(t)) (23)

where γ (0 ≤ γ ≤ 1) is the decay parameter, V (s(t)) is the value function
for the state s(t).

(5) The eligibility et(s) is updated.

e(s) ←
{

γλe(s) (if s 	= s(t + 1))
γλe(s) + 1 (if s = s(t + 1)) (24)

where γ (0 ≤ γ ≤ 1) is the decay parameter, and λ is the trace decay
parameter.

(6) All values for states V (s) are updated based on the eligibility et(s) (s ∈ S).

V (s) ← V (s) + ξδet(s) (25)

where ξ (0 ≤ ξ ≤ 1) is the learning rate.
(7) The connection weights in the actor network are updated based on the TD

error (See 3.1).
(8) Back to (2).

4 Computer Experiment Results

S

G

(14 steps)

Fig. 4. Trained Route

Here, we show the computer experiment results to
demonstrate the effectiveness of the proposed method.

We applied the proposed method to the path-
finding problem. In this experiment, a agent moves
from the start point (S) to the goal point (G).
The agent can observe the states of six cells in
the lattice including the agent, and can move for-
ward/backward/left/right. As the positive reward, we
gave 0.5 when the agent arrived at the goal, and as
the negative reward, we gave −0.045 when the agent
hit against the wall and for every actions.

Figure 4 shows an example of map and the trained
route(arrow). Figure 5 shows an example of trained relation between the state
and the action. Figure 6 shows the transition of number of average/minimum
steps from the start to the goal in the same trial.



Reinforcement Learning Using Kohonen Feature Map Associative Memory 219

forward

forward

left right

forwardleft

Fig. 5. An example of Trained Re-
lation between State and Action
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We carried out the similar experiments using other maps, and confirmed that
the proposed method can learn the path from the start to the goal.

5 Conclusion

In this paper, we have proposed the reinforcement learning method using Koho-
nen Feature Map Associative Memory with Refractoriness based on Area Rep-
resentation. The proposed method is based on the actor-critic method, and the
actor is realized by the KFMAM-R-AR. We carried out a series of computer
experiments, and confirmed the effectiveness of the proposed method in path-
finding problem.
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Abstract. In this paper, we propose a learning method called Corrected
Error Backpropagation which maximizes the corrected log-likelihood
which works like Akaike Information Criterion. For the purpose of max-
imizing the corrected log-likelihood, we introduce temperature param-
eter for the corrected log-likelihood. This paper also shows an optimal
scheduling of the temperature parameter. Applying to our method to a
linear regression model on the Boston house price estimation problem
and multi layered perceptrons on the DELVE datasets, the method gives
good results.

1 Introduction

When a learning model is redundant or there is not enough learning samples,
maximum likelihood estimation gives an overfitted estimate. Therefore, in prac-
tice, we should select an appropriate learning model from some learning models
after they are estimated by maximum likelihood estimation. Overfitting process,
which is gradual increase of the generalization error in the learning process of
a sequential learning method such as error backpropagation (BP) [1], is also
observed in the learning of a redundant neural network.

In unidentifiable cases, where the true function has smaller rank than the
learning model, Fukumizu [2] showed that overfitting occurs when a linear neural
network is trained by BP. Fukumizu [3] also showed that the generalization error
of the maximum likelihood estimator (MLE) in the unidentifiable cases is bigger
than that in the identifiable cases, and that the generalization error of the MLE
in the almost unidentifiable cases where the true function has very small singular
values is close to that in the unidentifiable cases.

There is early-stopping [4] for dealing with the overfitting process and reg-
ularization for dealing with the overfitting. Here, we need to select a stopping
time or a regularization parameter appropriately. Therefore, even if we apply
these methods, the necessity of the selection is unchanged.

In this paper, we propose a learning method called Corrected Error Backpropa-
gation which maximizes the corrected log-likelihood which works like
Akaike Information Criterion [5]. For the purpose of maximizing the corrected
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log-likelihood, we introduce temperature parameter for the corrected log-
likelihood. This paper also shows an optimal scheduling of the temperature pa-
rameter. The results of applications to our method to a linear regression model
on the Boston house price estimation problem and multi layered perceptrons on
the DELVE datasets are also shown.

2 Preliminaries

2.1 Regression Problems

We consider a set of functions {f(x; ϑ)} from x ∈ R
M to y ∈ R as a regres-

sion model, and a function f(x; ϑ0) in the regression model as a true func-
tion. We assume (x, y) is independently generated from q(x) and p(y|x; θ0) =
N (y; f(x; ϑ0), σ2

0), and we adopt p(y|x; θ) as a learning model. N (·; µ, σ2) is
the normal distribution with a mean µ and a variance σ2, θ = (ϑ, σ2) and
θ0 = (ϑ0, σ

2
0).

Log-empirical likelihood to learning samples D = {(xn, yn)}N
n=1 is

L(θ; D) = log q(D) − N

2
log 2πσ2 − 1

2σ2
J(ϑ; D), (1)

J(ϑ; D) =
N∑

n=1

(
yn − f(xn; ϑ)

)2
. (2)

J(ϑ; D) is called squared empirical error.

2.2 Neural Networks

Three layered neural network is defined as

f(x; ϑ) = φ(x; ϑ)T w, (3)

φ(x; ϑ) = (φ(x; ϕ1), · · · , φ(x; ϕH))T , (4)

where T denotes a transpose, w ∈ R
H is a coefficient vector, φ(x; ϕi) is a

basis function which is defined by a parameter vector ϕi ∈ R
L, and ϑ =

(w1, · · · , wH , ϕT
1 , · · · , ϕT

H)T is a parameter vector of the neural network. The
number of basis functions H is called size of the neural network. The parameter
vector of the learning model p(y|x; θ) is θ = (ϑT , σ2)T .

Hyperbolic tangent:

φ(x; ϕi) = tanh(xT ϕi) (5)

is usually used for multi layered perceptrons, We usually set x1 as x1 = 1 and
use ϕ1 as an intercept.
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3 Corrected Error Backpropagation

3.1 Corrected Log-Likelihood

Akaike Information Criterion (AIC) [5] is defined as

IC(M; D) = −2L(θ̂; D) + 2A · dim(θ). (6)

IC(M; D) becomes AIC when A = 1. θ̂ is the maximum likelihood estimate.
Because linear regression model or neural network contains the model which

has only subset of the variables or the basis functions of it, these models are called
hierarchical models. Therefore, there exists a sub parameter space corresponding
to the size H ′ (H ′ ≤ H) model on the parameter space of the size H model.
When the minimum size of the model which realizes the same distribution of a
parameter θ is H ′, we use the effective size size(θ)eff as size(θ)eff = H ′. Then,
we can count the effective number of parameters for the parameter θ as

dim(θ)eff = size(θ)eff (L + 1) + 1. (7)

Here, L + 1 is for the parameter vector ϕi and coefficient value wi. The second
term 1 is for the variance parameter σ2.

Using the effective number of parameters, we define corrected log-likelihood
as

LC(θ; D) = L(θ; D) − A · dim(θ)eff . (8)

While the information criterion (6) evaluates the maximum likelihood estimate
θ̂, the corrected log-likelihood evaluates parameter θ.

Because maximization of the corrected log-likelihood under fixed dim(θ)eff

is mere maximum likelihood estimation under dim(θ)eff , maximization of the
corrected log-likelihood without fixing dim(θ)eff is selection of the optimal size
Ĥ∗ which minimizes the information criterion (6) and maximum likelihood es-
timation of the size Ĥ∗ model.

3.2 Corrected Error Backpropagation

We call the gradient maximization of the corrected log-likelihood Corrected Error
Backpropagation. Corrected error backpropagation modify the parameter as:

θ(t + 1) = θ(t) + η
∂LC(θ; D)

∂θ

∣∣∣∣
θ(t)

, (9)

where t is a discrete time and η is a learning rate.

3.3 Annealing Optimization

The corrected term of the corrected log-likelihood (8) cannot work appropriately
because size(θ)eff has discrete shape on the parameter space. Therefore, we
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Fig. 1. Approximated corrected error (A = 1, N = 5)

approximate size(θ)eff by a smooth function and gradually make it closer to
size(θ)eff . We define the approximated effective size as

size(θ; τ)eff =
H∑

i=1

g(wi; τ), (10)

g(x; τ) = 1 − exp
(

− x2

2τ2

)
(11)

where τ is a temperature parameter. If there is no i which satisfies φ(x; ϕi) = 0
and there are no i and j (i �= j) which satisfy φ(x; ϕi) = φ(x; ϕj) or φ(x; ϕi) =
−φ(x; ϕj), size(θ; τ)eff goes size(θ)eff when τ → 0.

We use the approximated number of parameters dim(θ; τ)eff using
size(θ; τ)eff for size(θ)eff in (7). And we use the approximated corrected log-
likelihood LC(θ; D, τ) using dim(θ; τ)eff for dim(θ)eff in (8).

Fig. 11 shows the approximated corrected squared error:

JC(w; D, τ) = exp
(

− 2
N

L̄C((w, σ̂2)T ; D, τ)
)

(12)

which is a converted function of the approximated corrected log-likelihood of a
linear regression model f(x; w) = wx when a true function is f0(x) = 0:

LC((w, σ̂2)T ; D, τ) = L̄C((w, σ̂2)T ; D, τ) + Const., (13)

1 aEb stands for a × 10b.
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L̄C((w, σ̂2)T ; D, τ) = −N

2
log J(w; D) − A · dim(θ; τ)eff . (14)

In this case, AIC would eliminate the parameter w because the approximated
corrected squared error with τ = 1.0 × 10−8 is minimized at w = 0. If the initial
value of w is negative, we can obtain the optimal value w = 0 by minimization of
the approximated corrected squared error with τ = 1.0E × 10−8 using gradient
descent. However, if the initial value of w is positive, gradient descent gives
w ≈ 0.1 which is the minimizer of the empirical squared error. The approximated
corrected squared error with τ = 1.0 × 108 has almost the same shape as the
empirical squared error. Therefore the minimizer of the approximated corrected
squared error with τ = 1.0 × 108 is w ≈ 0.1. If this value is set to the initial
value of w, gradient descent gives smaller w by minimization of the approximated
corrected squared error with τ = 9.7 × 10−2. By repeating minimization of the
approximated corrected squared error with fixed τ and reduction of τ , we can
obtain w = 0 as shown in Fig. 1

There is a similar approach which minimizes Modified Information Criterion
(MIC) proposed by Watanabe [6]. However, MIC is designed for the pruning
of the multi layered perceptrons. And, there has yet to be reported that the
appropriate scheduling of the reduction of τ . On the contrary, our approach
is designed for the selection of the size of the lerning model, and we give a
scheduling method in the following section.

3.4 Optimal Annealing

If we reduce τ too much at one time, it is possible that the coefficient value wi

which should converges to 0 does not converge. Because the gradient of g(x; τ)
in (11) has maximum value at |x| = τ , we set the temperature parameter τ to
the absolute value of the coefficient value wi which has yet to be identified as
non-convergeable parameter.

We use the following annealing algorithm.

1. τ ← τmax.
2. Corrected error backpropagation under τ until it converges.
3. If τ > τmin then

τ ← max
{

max
|wi|<ρτ

|wi|, τmin

}
and go to 2.

Here, ρ is a threshold value for determining whether wi, which defines the tem-
poral τ , is non-convergeable or not. The initial temperature τmax should be
sufficiently large and the terminal temperature τmin should be sufficiently small
such as τmax = 1.0×108 and τmin = 1.0×10−8. We call this algorithm Annealing
Corrected error BackPropagation (ACBP).
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Table 1. Variables of the Boston house price estimation problem

x1 = 1
x2 = per capita crime rate by town
x3 = proportion of residential land zoned for lots over 25, 000 sq.ft.
x4 = proportion of non-retail business acres per town
x5 = Charies River dummy variable (if tract bounds river then 1 else 0)
x6 = squared nitric oxides concentration (parts per 10 million)
x7 = squared average number of rooms per dwelling
x8 = proportion of owner-occupied units built prior to 1940
x9 = weighted distances to five Boston employment centres

x10 = index of accessibility to radial highways
x11 = full-value property-tax rate per $10,000
x12 = pupil-teacher ratio by town
x13 = 1000(a − 0.63)2 where a is the proportion of African-American
x14 = proportion of lower status of the population
x15 = log Median value of owner-occupied homes in $1000’s

Table 2. Transition of the coefficients updated by ACBP. Bold face stands for the
absolute value of the corresponding coefficient is smaller than 1.0E-8.

w3 w4 w8 w10 w11

ML - 1.15E-03 2.75E-03 -4.12E-05 1.35E-02 -6.14E-04
t = 1 τ = 1.00E8 1.15E-03 2.75E-03 -4.12E-05 1.35E-02 -6.14E-04
t = 50 τ = 2.75E-3 1.07E-03 1.78E-03 -6.90E-06 1.32E-02 -5.81E-04
t = 87 τ = 1.07E-3 9.05E-04 5.28E-04 -8.17E-06 1.26E-02 -5.28E-04
t = 122 τ = 5.28E-4 8.22E-04 1.29E-04 -7.99E-06 1.23E-02 -5.05E-04
t = 144 τ = 4.04E-4 9.19E-04 7.49E-05 8.11E-07 1.23E-02 -5.02E-04
t = 181 τ = 7.49E-5 1.02E-03 2.97E-06 1.49E-06 1.28E-02 -5.28E-04
t = 186 τ = 2.97E-6 1.02E-03 7.90E-09 -1.75E-08 1.28E-02 -5.27E-04
t = 190 τ = 1.75E-8 1.02E-03 -3.80E-11 2.24E-11 1.28E-02 -5.27E-04
t = 192 τ = 1.00E-8 1.02E-03 -5.72E-12 3.42E-12 1.28E-02 -5.27E-04

4 Computer Simulations

4.1 Boston House Price Estimation with Linear Regression Model

We apply ACBP to a linear regression model on the Boston house price estima-
tion problem [7]. A corrected version of the data, which is available from StatLib
Datasets Archive [8], is used in this section. We convert some variables from the
original ones. Table. 1 shows variables. We want to estimate x15 using x1 ∼ x14.
When we calculate AIC of all 214 combinations of the variables, the minimizer
has 12 variables excluding x4 and x8.

The question is whether the optimal combination can be obtained by ACBP
or not. In our simulation with the golden section search in each step of quasi
Newton method (ρ = 0.9, τmax = 1.0 × 108 and τmin = 1.0 × 10−8), ACBP
successfully converges to the optimal combination as shown in Table. 2. The
number of total steps is 192 and the number of updating the temperature is 19.
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Table 3. Average and standard deviation of the normalized mean squared test error
of 50 trials. The best result and comparable methods according to the T-test at the
significance level 5% are written in bold face.

data BP ACBP (A = 1) ACBP (A = log N/2)
kin-8fm 1.00 × 0.37 0.96 × 0.32 0.99 × 0.36

kin-8fh 1.00 × 0.94 0.47 × 0.22 0.43 × 0.13

kin-8nm 1.00 × 0.30 0.88 × 0.22 0.92 × 0.19

kin-8nh 1.00 × 0.18 0.93 × 0.14 0.92 × 0.15

kin-32fm 1.00 × 0.50 0.33 × 0.12 0.24 × 0.02

kin-32fh 1.00 × 0.86 0.35 × 0.57 0.21 × 0.10

kin-32nm 1.00 × 0.12 0.70 × 0.08 0.57 × 0.03

kin-32nh 1.00 × 0.17 0.69 × 0.08 0.57 × 0.04

pumadyn-8fm 1.00 × 0.25 0.94 × 0.16 0.94 × 0.15

pumadyn-8fh 1.00 × 0.22 0.82 × 0.11 0.73 × 0.08

pumadyn-8nm 1.00 × 0.35 1.04 × 0.31 0.97 × 0.27

pumadyn-8nh 1.00 × 0.19 0.84 × 0.10 0.76 × 0.09

pumadyn-32fm 1.00 × 0.18 0.66 × 0.05 0.55 × 0.05

pumadyn-32fh 1.00 × 0.15 0.69 × 0.07 0.58 × 0.06

pumadyn-32nm 1.00 × 0.16 0.77 × 0.07 0.66 × 0.05

pumadyn-32nh 1.00 × 0.11 0.76 × 0.07 0.65 × 0.06

Table. 2 shows only 5 coefficients and 9 temperatures when a certain amount of
changes occurred.

4.2 Delve Datasets with Multi Layered Perceptron

We apply BP (error BackPropagation) and ACBP (Annealing Corrected error
BackPropagation) to multi layered perceptrons (MLPs) on kin-family dataset
and pumadyn-family dataset in DELVE datasets [9].

It is known that the bias of the log-empirical likelihood of a MLP is bigger
than that of a regular statistical model [10]. Asymptotic order of the lower bound
of the bias has been proved to be O(log N) [11,12,13]. Therefore we should set
A in (8) to be larger than 1. In this paper, we tried A = 1 and A = log N/2.

Table. 3 shows the average mean squared test error of 50 trials (N = 128,
H = 8). Although the optimal A is still open to discuss, ACBP with A = log N/2
gives the best result or comparable to the best one in all cases.

5 Conclusion

In this paper, we proposed a learning method called Corrected Error Backprop-
agation which maximizes the corrected log-likelihood which works like Akaike
Information Criterion. This paper also shows an optimal scheduling of the tem-
perature parameter of the approximated corrected log-likelihood. Applying to
our method to a linear regression model on the Boston house price estimation
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problem and multi layered perceptrons on the DELVE datasets, the results
showed the effectiveness of our method.
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Abstract. Hybrid systems consisting of model-based and model-free
systems will be engaged in the behavior/dialog control systems of fu-
ture robots/agents to satisfy several user’s requirements and simultane-
ously cope with diverse and unexpected situations. We have constructed
a modular neural network model based on reinforcement learning for
model-free learning. For an effective hybrid system, the model-free learn-
ing system should be aware of the current targets. This can be achieved
by automatically acquiring a list of important sequential events. We pro-
pose a basic mechanism that can automatically acquire the list of se-
quential events with confidence measures reflecting current situations.

1 Introduction

Future symbiotic robots/agents are expected to support humans in houses, of-
fices, and so on. They will autonomously perform situation associated behav-
iors/dialogs and carry out tasks for users in the real world. The behavior/dialog
control system of future robots/agents will be a model-based system enabling
the products to work incipiently. Every users’ situations are often both outside of
our expectations and volatile. Model-based systems will likely fail to perform sit-
uation specific behaviors because they are not inherently attuned to every user’s
situations. These limitations will make robots/agents commercially uncompeti-
tive, and moreover, not truly symbiotic. A possible option for overcoming these
shortcomings is to introduce an on-line learning system that bonds situations
with behaviors. We are striving to create an on-line learning system that is
capable of working together with model-based systems.

The on-line learning system should function using only its experiences outside
of pre-designed environmental models in order to complement model-based sys-
tems. Reinforcement learning (RL) [1] is a learning algorithm that makes a map
between observed states and actions, which is very close to our requirements.
The standard implementations of RL, however, require formulating the learning
targets. In general, RL requires task-specific reward functions that are carefully
tailored by designers. One has to adjust the system to make them function, so RL
implicitly depends on environmental models. In the standard implementations of
RL, value functions are represented by means of tables. These tables are usually
also created by designers. To reduce the dependence on hand-wired designs, we

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 228–235, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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constructed an RL system capable of functioning in several kinds of state tran-
sitions without hand-wired adjustments for each transition. This is crucial in
order to achieve learning systems which can cope with real situations where sev-
eral kinds of state transitions potentially emerge. In our previous model [2], we
introduced internal rewards to reduce hand-wired factors of reward functions.
In addition, the system consisted of neural networks equipped with a modu-
lar reinforcement learning algorithm. We found that the combined system with
both modular networks and the internal reward generators led to performance
that converged to the optimal sequences of actions in multiple tested transitions
without any specific adjustments for each transition. The tested transitions in-
cluded not only a Markov decision process (MDP) but also a transition under
partially observable conditions. We also demonstrated that the modular neural
network model achieved comparable performance to one implemented with a
table representation [3]. We call the constructed on-line learning model SOMRL
(Self-Organizing Modular RL).

Even if SOMRL could learn several kinds of unknown transitions, it is insuf-
ficient for constructing a hybrid system for robot controls. The learning system
should suggest selected actions with ‘sufficient reasons’ because the robots/agents
need to determine their actions depending not only on current states but also on
current targets. For example, a temporal target of the robot can be different from
the optimized actions for RL in actual situations because the robot should deal
with multiple targets to satisfy several user’s requirements. If the learning system
has the information about current targets, it can consider whether actions sug-
gested by on-line learning are effective for current targets. In principle, however,
RL cannot even distinguish between several goals. By means of recorded sequence
lists during learning, we may be able to identify target goals for each selected ac-
tion. It is not trivial to make the lists that are easy to use for providing target
information because the raw transitions usually contain errors and probabilistic
factors. Moreover, taking an action at a state usually ends in several targets. We
require confidence measures to report the current target of the on-line learning
system. We named the acquired events lists SREL (Self-Referential Event Lists),
they were formulated so that the learning system could report itself, that is, what
it is targeting now. In this study, we propose a basic mechanism that can auto-
matically acquire sequential events with confidence measures in unknown, prob-
abilistic, fluctuating, partially-observable and open-ended situations.

2 Background

In this study, we referred to intrinsically motivated reinforcement learning (IMRL)
studies [5,6] to construct the algorithm. IMRL studies represented acquired skills
of agents by means of options [7]. Options are the minimal extension of actions.
IMRL studies also suggested a method to acquire options by introducing intrinsic
motivations where specified salient events were temporal motivations to acquire
new options and modify them. The formulations of option reinforcement learning
depended on table representations where any state information can be available
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Fig. 1. a) A schematic diagram of the SOMRL. The predictor network in each module
predicts the current state ŝt

n from the previous observed state st−1 and the previous
action at−1. Each predictor network contains one hidden layer. The outputs of the
controller layer in each module (Qn) are Q-function vector values for each action. The
inputs of each controller layer are the observed state st (s), the previous action at−1

(a), and the history information ht−1 (h). The history information is represented with
an echo state network (ESN) reservoir [4]. Each state was represented by a fifteen-
dimensional normalized vector consisting of random values. The previous actions were
represented by ten-dimensional unit vectors. For the controller in each module, we
adopted a gradient-descent SARSA(λ) algorithm [1]. b) A schematic diagram of the
SREL.

for calculations at any time so that they can perform a backup of all possibilities
for option policy learning. These requirements can hardly be fulfilled in neural
network representations.

We were also affected by the idea of temporal-difference networks (TD net-
works) [8]. There is a proposed method for on-line discovery of TD networks [9].
But the method to calculate predictions for TD networks is difficult to apply for
probabilistic transitions without pre-designed environmental models.

We formulate SREL for SOMRL [2,3]. One of the advantages in using neural
networks is that we can reduce the dependencies on input space dimensions. Tak-
ing advantage of this property, we could make reinforcement learning function
in several kinds of transitions including a simple MDP and partially observable
conditions without properly adjusting input information. Table representations
directly depend on the input dimensions so it is necessary to adjust input in-
formation for each transition. The learning speed of a single neural network
is, however, generally much slower than that of table representations especially
when a single neural network tries to learn all sequences. Hence we introduced a
modular structure to decompose the sequences into several modules. Figure 1a
shows a schematic diagram of SOMRL described in our previous article [3]. We



Self-Referential Event Lists for Self-Organizing Modular RL 231

previously applied [2] the modular reinforcement learning algorithm suggested
by Doya, et al. [10], which was effective in on-line learning. It was composed
of n modules, each of which consisted of a state prediction model and an RL
controller. The action output of the RL controllers, as well as the learning rates
of both the predictors and the controllers, were weighted by the predictability
levels, which is a Gaussian softmax function of the errors in the outputs of the
predictions [10]. The most recent SOMRL was based on modular RL algorithm
suggested by Nishida et al. using the modular network self-organization map
(mnSOM) [11] that is an extension of the conventional Kohonen’s SOM [12]. In
the mnSOM each SOM node extended to a functional module such as the mod-
ule in our model, in which the winning node was the module that has the lowest
prediction error at a time. By combining the mnSOM with the parameter-less
SOM proposed in [13], we made the on-line version of mnSOM. (We did not
adopt an original SOM because it was empirically too sensitive to the actual
number of input states in our model.)

3 Self-Referential Event List

Each SREL is compromised of one target state sLT and a list IL and each item
of the list contains a pair of an action (aj) and a state (si) and a confidence
measure value ML for this pair (Figure 1b). We expected that the agent would
earn rewards by transiting to the target states of each SREL. Each state was
not predefined in the SOMRL model because our model-free learning should
function in several kinds of transitions without hand adjustments. In stead of
using defined states, each state can be represented by the winning module in-
dex Si in the SOMRL model. We should note that each module may represent
multiple actual states. Hence, we utilized almost the same neural network as the
controllers in SOMRL. Each item in SREL has a two-layered neural network
to represent a confidence measure value ML so that the confidence measures
can reflect the actual inputs. The input sources of the network are the same as
the controllers in SOMRL, current observed states, previous actions and history.
Each target state of SREL also points to a specific module SLT in SOMRL,
which could cause errors when the targeted module represents plural states. We
could correct these errors by distinguishing each represented state via another
classification algorithm such as the nearest neighbor method. In this study, how-
ever, we evaluated the system by leaving them as errors for simplifications. We
formulated the learning algorithm to approximate each confidence measure value
in SREL.

ML(S, a) = E{I(St+k)|S, a, SLT },

where t + k is a time when a state is outside of IL and E means expectation. I
is,

I(St) =

{
1 if St = SLT

0 else.
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We can approximate ML(S, a) via on-line TD-learning. If St+1 = SLT , then,

ML(St, at) ← ML(St, at) + α[1 − ML(St, at)], (1)

where α is an update state constant. If St+1 �= SLT ∧ {St+1, at+1} ∈ IL, then,

ML(St, at) ← ML(St, at) + α[ML(St+1, at+1) − ML(St, at)]. (2)

In the other cases,

ML(St, at) ← ML(St, at) + α[0 − ML(St, at)]. (3)

This learning takes place in all the SRELs that satisfy {St, at} ∈ IL.
Barto et al. [5,6] also suggested a method to generate options. We based on

their algorithm for automatically producing SRELs. When the agent earns a
positive reward rt at S = St, the system searches the already acquired SRELs
that contains the target state as St = SLT . If any SRELs did not contain the
target state St, the system generates a SREL targeted St and adds {St−1, at−1}
to IL. If the system finds a SREL of which SLT is St and IL does not contain
{St−1, at−1}, it added the pair item to the list. When the rewards are zeros, each
SREL tries to grow the list IL. If a SREL has maximum ML(St, at) at time t,
the pair {St−1, at−1} is added to the SREL except in the case where it already
contains the pair or the action-value (Q) for {St, at} of SOMRL is not positive.

4 Evaluation

This section describes the evaluations of our proposed model using an environ-
ment in which the kind of transition was abruptly changed from an MDP to
a partially observable conditioned transition. Figure 2a shows the MDP transi-
tion. At initial state s0, if the agent selected actions sequentially in the order of
the subscriptions, external rewards were earned, otherwise, the agent received
no positive external reward. We engaged in continuing tasks so the transition
repeated from the initial state even after earning an external reward. The proba-
bility of transition from s0 to s1 with action selection a0 is 0.3. Other transitions
of the correct sequence to earn external rewards were 0.9. In addition, the ob-
served states were probabilistically changed. For example, in state s0, the agent
could observe a state signal o00 or o01 with a probability of 0.5. Each state sn was
represented by on0 and on1, so the number of observed state signals was twelve in
this environment. All state signals onx were fifteen dimensional vectors that were
randomly generated; therefore, on0 and on1 for the same sn were not correlated
except coincidentally. We also let in the partially observable transition depicted
in Fig. 2b. In this case, if the agent succeeded in earning an external reward, the
unobservable state of the environment changed to another state. Thus, because
of the unobservable state, the state transitions were changed and the agent had
to select another sequence of actions to earn another external reward. Each trial
ended when the agent received two external rewards. The agent had to pass two
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a

b

Fig. 2. a) Test continuing MDP transition. An external reward rex = 1 is earned after
sequential events. Dashed lines indicate probabilistic transitions. b) Test continuing
partially observable conditioned transition. The optimum action selection when the
agent starts from the state s0 is a0 → a2 → a3 → a4 → a5 (A), thereby receiving rex

and then a0 → a3 → a4 → a5 → a1 (B) whereby the agent receives another rex.

probabilistic alternating transitions of p = 0.3 to earn two external rewards. The
memory information to solve the partially observability was previous actions at
transitions from s3 to s5. When the agent was in state s2, the agent could not
distinguish the hidden states from the previous action because the previous ac-
tions were the same in both hidden states. History information was necessary
to distinguish the situation. We refer to this transition as HOMDP (High Order
MDP).

Figure 3a shows learning curves for the average performance of 1000 trial sets
(each set consisting of 2000 trials). Each trial set was simulated with different
state vector values. Each trial started with the final states of the immediately
preceding trials, and stopped either when the agent was rewarded, or when time
ran out. Every transition in all cases cost negative rewards −0.05 in SOMRL
where the number of modules was 25. We set α = 0.1 in equations (1)-(3). In
this environment, the transition was abruptly changed from MDP to HOMDP
at 1000 trials. Nothing about this change was notified to the learning system.
We investigated the averaged concordance rate of acquired lists of state-action
pairs in all SRELs with the correct ones (Fig. 3b). The correct pairs were gen-
erated by adding the correct sequences whenever they actually occurred during
the simulation. The correct sequence means that the agent chose correct actions
to earn external rewards and the state transition progressed toward earning re-
wards. For example, in the MDP, when the agent selected action a1 at state s1

and the state was transit to s2, this sequence was a correct one. Both the SREL
and the correct pair list were never reduced even after the transition change
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Fig. 3. a) The learning curves SOMRL in the environment. The ordinates indicate the
number of steps to earn external rewards before time runs out (200 steps). The abscis-
sas indicate the number of trials the agent had attempted in each set. b) The averaged
concordance rate of acquired state-action paris in SRELs. ‘Correct’ means (the num-
ber of acquired pairs that concord with the correct ones)/(the number of all correct
pairs). ‘Error’ is (the number of acquired pairs that are not matched with any correct
ones)/(the number of all acquired pairs). c) The averaged maximum confidence mea-
sures within the ‘Correct’ pairs and the ‘Error’ pairs. ‘Average’ denotes the averaged
values of all confidence measures.

Table 1.

1 2 3 4 5
s o11 o20 o31 o41 o51

a a0 a3 a4 a5 a1

ML 0.11 0.36 0.44 0.51 0.59

from MDP to HOMDP. The averaged error rates in Fig. 3b were nearly zero. In
contrast, the correct ones reached over 90 %. Figure 3c shows the averaged max-
imum confidence measures within the correct pairs and the erroneous pairs. The
averaged maximum confidence measures reached around 0.5: that was correct
because the target states were separated by probabilistic changing state signals.
For example in the MDP transition, the target could be o00 or o01. These confi-
dence measures indicate the beliefs to reach each specific target. Table 1 shows
a SREL of a final sequence that was HOMDP started from o11 (s1) and ended
at o01 (s0). The confidence measures ML roughly indicated the probabilistic
property of this transition where the probabilities were 0.9 from s2 to s5 and the
transition from s1 to s2 was 0.3.

5 Discussion

We applied on-line TD-learning to calculate confidence measures of acquired
sequential event lists. These acquired confidence measures reflected the recent
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policy of reinforcement learning, environmental changes and fluctuations. They
indicate the extent to which each state-action pair was valid to achieve each
target at any time. In order to grow each list, we referred to confidence measures
and action values (Q) of SOMRL because we thought that it was not necessary
to add events of low confidence and small action values. We confirmed the low
rate to acquire inaccurate sequences by the result. By using SRELs, the learning
system is able to suggest an action with not only expectation value of rewards but
also target states with confidence measures. We believe that these mechanisms
can bridge between model-free learning and model-based systems.
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Abstract. Constructive cascade algorithms are powerful methods for training 
feedforward neural networks with automation of the task of specifying the size 
and topology of network to use. A series of empirical studies were performed to 
examine the effect of imposing constraints on constructive cascade neural net-
work architectures. Building a priori knowledge of the task into the network 
gives better generalisation performance. We introduce our Local Feature Con-
structive Cascade (LoCC) and Symmetry Local Feature Constructive Cascade 
(SymLoCC) algorithms, and show them to have good generalisation and net-
work construction properties on face recognition tasks.  

1   Introduction 

The functionality and complexity of a backpropagation trained neural network (NN) 
are greatly influenced by the network architecture, number of neurons, and neuron 
connectivity. The greater number of connections and the larger the possible magni-
tude of the weights, the better the NN is able to model complex functions. 

A constructive cascade neural network is a feedforward neural network in which 
the network architecture is built during the learning process, in order to obtain a good 
match between network complexity and the complexity of the problem to solve [1]. 

In some highly regular tasks such as image recognition, a priori knowledge about 
the task can be built into the network for better generalisation performance. Classical 
works in visual pattern recognition have shown the advantages of using local features 
and combining them to form higher order features. Extracting local features can be 
viewed as a way of reducing the space of possible functions that can be generated 
without overly reducing the network’s computational power [2]. 

In this paper, we propose two constructive cascade algorithms that incorporate a 
priori knowledge about the problem to be solved, i.e. face recognition, into the design 
of the architecture and explore the relationship between the generalisation perform-
ance and variations on the architecture. These are the Local Feature Constructive  
Cascade (LoCC) and Symmetry Local Feature Constructive Cascade (SymLoCC) al-
gorithms. They have lesser number of free parameters but preserve the good generali-
sation properties of constructive cascade algorithms. Unlike other face recognition 
technique such as in [3] our approach does not require normalisation and  
pre-processing of data sets or additional feature extraction procedures. 
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2   Method 

2.1   Neural Network Topology  

Constructive algorithms such as CasPer 
and Cascade Correlation (CasCor) start 
with the minimal size NN architecture of-
ten with no hidden neurons [4] as in  
Fig. 1. Initially, all input neurons are 
fully-connected to the output neurons. The 
number of connections in the initial net-
work would be very large for face recog-
nition, hence LoCC and SymLoCC start                                                                                  
with an initial network with one hidden layer           Fig. 1. Cascade Correlation 
as shown on the left in Fig. 2.  

The initial architecture of our algorithm is a slight modification of the two layer 
8x8 architecture proposed in [5] which was shown to give good generalisation  
performance on handwritten digit recognition and face recognition. Instead of a 
two-dimensional 16 by 16 hidden layer with a total of 256 hidden neurons, our al-
gorithm uses a reduced number of hidden neurons, which is 8 by 8 hidden layer, to 
achieve smaller network size with similar good generalisation performance. Each 
hidden neuron functions as a local feature extractor that receives inputs from the 
corresponding receptive field in the input layer. The hidden neurons are thus par-
tially connected to the input neurons but are fully-connected to the ten output  
neurons.  

The middle diagram in Fig. 2 shows the network structure after one cascade layer 
is added. Instead of adding hidden neurons to the network one at a time during the 
learning process as in typical constructive cascade algorithms such as CasCor [6], 
our algorithm adds a number of cascade chunks (cascade layers), each of a fixed 
size set prior to training. Treadgold and Gedeon used a similar approach to build 
cascade towers for their algorithm [4]. In order to limit the functionality of the cas-
cade layer and to reduce the overall number of hidden neurons, the size of each cas-
cade layer is smaller than the hidden layer. Each cascade layer consists of 4 by 4 
neurons, each extracts local features from both the input and the hidden layer in the 
initial network. Preserving the characteristic of constructive cascade algorithms, the 
cascade layers receive input from all preceding layers and are fully-connected to the 
output layer. 

There are three variants of the two architectures presented in this paper, with the 
same overall structure shown in Fig. 2. They differ in the size and structure of the 
receptive fields. In the first variant, each neuron in the hidden layer takes its inputs 
from 25 neurons on the input layer situated in a 5 by 5 square neighbourhood. For 
neurons in the hidden layer that are one unit apart, their receptive fields in the input 
layer are four units apart. Hence, their receptive fields overlap by one row or col-
umn of units. 
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Fig. 2. Local Feature Constructive Cascade Neural Networks  

In the first variant, each neuron in a cascade layer takes its inputs from the input 
layer situated in a 9 by 9 neighbourhood and from the hidden layer situated in a 3 by 3 
neighbourhood. For each neuron that is adjacent, the input patches from the input 
layer are eight units apart and are two units apart on the hidden layer. In other words, 
9 by 9 patches on the input plane have one row or column of unit overlapped and the 
3 by 3 patch on the hidden layer has one row or column of unit overlapped. Each cas-
cade layer has one-to-one connection to all preceding cascade layers. 

In the second variant, each hidden neuron receives 36 inputs from a 6 by 6 square 
neighbourhood in the input layer with 2 rows or columns of units overlapped. In the 
cascade layer, each neuron receives inputs from a 10 by 10 patch with 2 rows or col-
umns of neurons overlapped. Neurons in the cascade layer also receive inputs from 16 
hidden neurons in the hidden layer, arranged in 4 by 4 receptive fields with two rows 
or columns of neurons overlapped. As in the first variant, all neurons in each cascade 
layer have one-to-one connections with all preceding cascade layers. 

Finally, the third variant employs larger receptive fields than both previous archi-
tectures. Hidden neurons in the initial network each takes a 7 by 7 receptive field in 
the input layer. Neurons in cascade layers each takes a 11 by 11 receptive field in the 
input layer and from the 5 by 5 receptive field in the hidden layer. As before, each 
cascade layer has one-to-one connections with all preceding cascade layers. 

2.2   Data Set 

The two data sets used were originally proposed by Georghiades, Belhumeur, and 
Kriegman [7] and is available from the Yale Face Database B. The original data set 
contains a total of 5,850 single light source images of 10 subjects each seen under 576 
viewing conditions (9 poses of 64 illumination conditions and 1 with ambient illumi-
nation). The images are 8-bit grey scale with size 480 height x 640 width. Due to its 
massive size, not all of the data set in the Yale Face Database B was employed in the 
first data set. Thirteen images of each subject under nine different poses were  
randomly selected from the original data set. Of these images, 630 of them are desig-
nated as the training set, and 360 as test set. Each face image was resized using  
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nearest-neighbour interpolation [8] into a 24 x 32 image, with added 0s to form a 32 x 
32 images. The second consists of 650 frontal view images in total, split into 450 
training data and 200 testing data, randomly. 

2.3   Training Methodology  

Human faces possess some symmetric characteristics. SymLoCC implements this 
knowledge by adjusting all weights leaving the input layer so that the weights for neu-
rons in the right-half of the square plane mirror the value of the weights in the left-
half of the plane (i.e. the weights are shared). Hence, the number of free parameters 
from input layer to hidden and cascade layers are 50% less than in the non-symmetric 
algorithm LoCC. 

Before training our neural networks, all weights and biases of the network are ini-
tialised using the Nguyen-Widrow method [9]. The activation function used in all 
networks is the hyperbolic tangent function. Hyperbolic tangent functions are sym-
metric functions, which are believed to be able to yield faster convergence than non-
symmetric functions. Resilient propagation (RPROP) [10] was use for all networks 
learning. RPROP is an adaptive learning algorithm which performs a direct adaptation 
of the weight step size based on local gradient information. Instead of taking into ac-
count the magnitude of the error gradient as seen by a particular weight, RPROP uses 
only the sign of the gradient. This allows the algorithm to adapt the step size without 
the size of the gradient interfering with the adaptation process. Also, a weight biasing 
technique [11] is employed to bias the search direction of the RPROP algorithm in fa-
vour of the weights of the newly added neurons, setting different initial update values 
in the RPROP algorithm. 

For each architecture variant, the network starts from the initial architecture and the 
learning process continues for a maximum of 100 epochs. A new cascade layer is 
added to the network when either the maximum epoch is reached or the MSE is less 
than or equal to 0.03. The input patterns were presented in a consistent order, batch 
trained. Each experiment was performed 5 times with different initial conditions. The 
performance function is the standard mean squared error (MSE), the output layer was 
composed of 10 units, one per class, and we used a winner-takes-all method to clas-
sify the networks’ output error on the test data set. 

3   Experimental Results 

We have evaluated our method using two subsets of Yale Database B as described in 
Section 2.2. The problem to be solved is face recognition of ten subjects. Information 
of each face image is input into the network through 32 x 32 that is 1,024 input neu-
rons. The 10 output neurons each represent one of the subjects. Table 1 shows the av-
erage of the best performance of the five repetitions of each experiment. 

Addition of each cascade layer increases the number of weights by some 1,500 to 
2,000. These increases lead usually to some increase in performance for each  
architecture-variant combination. The performance of most networks is quite good, 
ranging from a few results in the vicinity of 80%, but with more than half of the archi-
tecture-variants with results over 95%.The average of the best performance of the five  
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Table 1. Average of best performance on both data sets 

Architecture 
Number 

of 
weights 

Generalisation 
Performance % 

(all poses) 

Generalisation 
Performance % 

(frontal pose) 
initial network 2,314 94.2 95.7 
cascade layers: 1 3,930 95.2 96.5 
                         2 5,562 97.7 99.5 

551- 
991- 
331 

                         3 7,210 98.6 99.0 
initial network 3,018 94.5 93.5 
cascade layers: 1 5,050 94.8 95.0 
                         2 7,098 98.2 99.2 

662- 
10102- 
442 

                         3 9,162 97.7 99.1 
initial network 3,850 92.2 92.9 
cascade layers: 1 6,362 94.7 95.8 
                         2 8,890 98.6 98.8 

LoCC 
 
 

 

773- 
11113- 
553 

                         3 11,434 97.6 98.6 
initial network 1,514 83.3 92.0 
cascade layers: 1 2,482 90.8 94.1 
                         2 3,466 97.9 99.1 

551- 
991- 
331 

                         3 4,466 97.6 98.8 
initial network 1,866 82.6 88.5 
cascade layers: 1 3,098 91.9 95.0 
                         2 4,346 97.8 98.4 

662- 
10102- 
442 

                         3 5,610 97.7 98.5 
initial network 2,282 86.7 81.8 
cascade layers: 1 3,826 93.6 94.1 
                         2 5,386 97.8 97.6 

SymLoCC 

773- 
11113- 
553 

                         3 6,962 98.3 98.7 

 
repetitions of each experiment performed using the first data set is plotted in Fig. 3, 
and similarly for the second data set in Fig. 4. The connecting lines in the graph show 
the growth of complexity of each architecture from the initial network to the final net-
work structure with three cascade layers. 

In Fig. 3 we can see a number of patterns. Most obviously, as the number of 
weights increases, there is generally an increase in the generalisation performance of 
the networks. The best results are those located in the top-left corner, hence the best 
result is either LoCC-551-991-331 initial network, or SymLoCC-551-991-331 with 
two cascade layers. The choice between them would be context dependent. I.e., is the 
50% increase in number of weights worthwhile for 3.7% increase in performance? Al-
ternatively stated, is this worthwhile for a 2/3 decrease in the remaining error (from 
5.8% to 2.1%)? In subsequent discussion, we will focus on differential effects of our 
various architectural variations, and the effect of sequential addition of cascade layers. 

For the first of our architectures, the local feature constructive cascade (LoCC) 
network, shown in Fig. 3 by the solid lines, we can see that addition of a cascade layer 
increases the weights appreciably, while only slightly increasing the generalisation 
ability. This pattern holds for the 2nd and 3rd variants, as they also show little im-
provement in generalisation. The addition of a second cascade layer has a beneficial 
effect, in that there is a more significant increase in generalisation ability. The addi-
tion of a third cascade layer is slightly detrimental in two cases and mildly beneficial 
in one case, so this is not useful as we add weights without improving generalisation 
ability much or at all. 
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Fig. 3. LoCC and SymLoCC results using the first data set (all poses) 

For the second architecture, using symmetry (SymLoCC), shown in Fig. 3 by 
dashed lines, the performance starts at much lower values. The addition of a cascade 
layer improves generalisation for all three variants. At this point the second architec-
ture variants with a cascade layer have very much the same number of weights as the 
first architecture and no cascade, but with lower generalisation. On the addition of a 
second cascade layer, again we find an increase in performance for all three variants, 
and now we achieve a situation of lower weights but higher performance than the next 
step of the first architecture. A third cascade layer produces little effect. 

We can note a few subtle observations. For the second architecture, as we move 
from the 1st variant to the 3rd, adding the first two cascade layers, the slope of im-
provement decreases from 1st variant to 3rd variant on the addition of the first cascade 
layer, and further decreases in the same way on the addition of the second cascade 
layer. A possible explanation is that the patch sizes are overall better in the 1st variant 
and worsen to the 3rd variant. 

In Fig. 4, we have slightly better data, in that the frontal poses are by definition 
more symmetrical and might benefit more from the symmetry incorporated in our 
second architecture. No pre-processing has been done to align faces in the images. 

Our first architecture (solid lines) has similar effects as in Fig. 3, in that the  
addition of the first cascade layer has some effect, which is increased by the second 
cascade layer. At this point the overall best result is reached, the 1st variant with two 
cascade layers has 99.5% accuracy on the test set. A third cascade layer is not  
beneficial. 
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Fig. 4. LoCC and SymLoCC results using the second data set (frontal pose only) 

Our second architecture (dashed lines) also has similar results to Fig. 3, in that re-
sults start lower than the first architecture, the addition of two cascade layers produces 
results which are substantially improved, and better than the first architecture. 

For Fig. 4, we can make a different illustration of the tradeoff if we assume that ab-
solute performance is most important. In that case the best networks have 3,466 
weights 99.1%, and 5,562 weights and 99.5% generalisation performance, respec-
tively. Depending on the measurement error, the percentage results may not be relia-
bly distinguishable so clearly the version with significantly lower weights is best. 

4   Conclusion and Future Work 

We have introduced our algorithm for constructing cascade networks for face recogni-
tion using our notion of cascade layers, by constraining the cascade process by adding 
chunks of 4 x 4 neurons. We have examined a number of variants of this model, fo-
cusing on the sizes of patches taken by each layer from the preceding layer. We have 
extended this model by introducing a symmetry component. From our testing we have 
shown that our models work well on a standard face image database. We have dem-
onstrated that restricting the data to just the frontal pose improves all our results. An 
alternative expression of this statement demonstrates the strength of our approach: if 
we take the frontal pose as the baseline, then using multiple different poses cost only 
a 0.9% drop in maximum performance. 
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Our future work will be to further examine the architecture variations in our model. 
The three variations discussed here increased all the patch sizes from 1st variant to 2nd, 
and from 2nd variant to 3rd variant, however the patch sizes could be varied independ-
ently. We will also investigate the effects of aligning the frontal pose images on the 
images. 
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Abstract. Developing neural controllers for autonomous robotics is a
tedious task as the desired state trajectory of the robot is very often
not known in advance. This led to the large success of evolutionary al-
gorithm in this field. In this paper we introduce SOMA (Synchronized
Oriented Mutations Algorithm), which presents an alternative for rapidly
minimizing the parameters characterizing a given individual. SOMA is
characterized by its easy implementation and its flexibility: it can use any
continuous fitness function and be applied to optimize neural network of
diverse topologies using any kind of activation functions. Contrary to
evolutionary approach, it is applied on a single individual rather than
on a population. Because the procedure is very fast, it allows for rapid
screening and selection of good candidates. In this paper, the efficiency
of SOMA at training ordered connection feed forward networks on func-
tion modeling problem, classification problem and robotic controllers is
investigated.

1 Introduction

The field of autonomous robotic requires the development of automatic meth-
ods for controller synthesis that do not need hand coding or in depth human
knowledge of the robot’s task. Artificial neural networks (ANN) have been used
successfully as such robot controllers, but pose the problem of optimizing ANN
structure in the context of sparse, noisy and delayed rewards. For example tech-
nics such as back-propagation require a desired state trajectory for comparison
with the actual output trajectory of the network so that an error signal can be
computed. In autonomous robotics, no such desired state trajectory generally
exists. This is why evolutionary algorithm are so broadly used: contrary to gra-
dient descent based algorithm, they do not depend on gradient information and
thus are quite suitable for problems where such information is unavailable or
very costly to obtain or estimate. They can even deal with problems where no
explicit and/or exact objective function is available [1].

The present paper presents the Synchronized Oriented Mutation Algorithm
(SOMA), an alternative or a completion to evolutionary strategies for training
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ANN. SOMA is characterized by a very simple implementation, can be used
with any continuous fitness function (does not require learning/validation sets
based fitness function), does not rely on the derivative of neuron’s activation
function, can be used with diverses ANN topologies (not restricted to layered
feed forward networks) and can be used to update any kinds of free parameters
(not restricted to connection’s weights - useful if the activation function contains
several parameters to be optimized or for avoiding the use of bias neuron).

After presenting the algorithm itself, we present the results obtained using
it for: minimizing a three variables equation and training fully connected feed
forward networks (modeling trigonometric/polynomial function, solving a classic
classification problem and training robotic controller)1.

2 General Principle

2.1 Oriented Mutation Operator

Basic principle. The oriented mutation operator is derived from the mutation
operator of genetic algorithms - but can be used independently of them. The
simple principle is to apply the mutation operator, but not randomly. For a
given parameter, mutations are tried ”both way”: a very small positive number
is added to the parameter and the fitness is calculated. If the fitness decreases,
the orientation will be considered positive (mutation will consist of adding a
positive number). If not, the number is subtracted to the parameter and the
fitness calculated again. If it decreases, the orientation is considered negative. If
the fitness increases or remains the same, the parameters is left as such. Once
the orientation (positive or negative) is decided, the mutation operator is applied
accordingly until it does not decrease the fitness anymore. By applying oriented
mutation over all parameters one after another until no more decrease of the
fitness can be done, the individual characterized by these parameters will rapidly
move to the vicinity of the closest local minimum.

Dynamic parameter. Once the orientation is determined, the question of what
value λ (mutation step, value added or subtracted from the parameter when a
mutation is performed) should be used for mutation is of great importance,
as it will determine both the precision and the speed of the algorithm. For
optimization purposes, λ is modified dynamically as follows:

As an example, we consider an individual X characterized by n free param-
eters (X = [x1, ..., xi, ..., xn]) on which the oriented positive mutation operator
is applied to the parameters xi (orientation determined using methodology de-
scribed above). f(X) being the fitness function which has to be minimized, the
mutation operator is applied (xt+1

i = xt
i + λ) until f(Xt+1) ≥f(Xt), in which

case we set back xt+1
i = xt

i. λ is then modified λ = λ/10 before the mutation

1 All results presented in the document are based on calculation performed on an
Intel pentium 4, 3GHz, 1000MB RAM. ANN, SOMA and back-propagation were
implemented in Java and run on Ubuntu release 7.1, java 6.0 04, eclipse SDK 3.4.0.
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operator is performed again. The procedure is exited when λ reach a minimal
value set by the user.

This procedure allows to increase the precision when xi approaches the vicinity
of its closest minimum while keeping high speed when the algorithm starts.

2.2 Synchronized Oriented Mutations

While oriented mutation is applied on a single parameter, synchronized oriented
mutation is applied on several parameters simultaneously, thus taking account
the interrelated effects several parameters have when modified at the same time.
First, a subset of parameters is randomly selected. Then a very small number is
added or subtracted (operation randomly selected for each parameter) to each
parameter of this subset and the fitness is measured. If the fitness decreased,
then we consider we found a subset of parameters each being related to an
orientation of mutation (positive or negative) leading to a decrease of fitness.
The mutation operator is then applied accordingly simultaneously to all the
selected parameters until it does not allow the fitness to decrease anymore. In
the same way than described above, a dynamic mutation step λ is used.

The operations of subset selection, decision of the mutation’s orientation and
mutation itself are repeated until no more efficient subset that allows reduction
of the fitness can be found (after a certain number of random selections and
trials, here set to 100) or a maximal number of iteration (set by the user) is
reached.

While genetic algorithms have been proven to be efficient in finding global
minimum independently of the initial population, the method proposed here is
an alternative for when the users seeks to get rapidly an acceptable solution
rather than finding the optimal minimal in a more time-consuming process.
The results of a run will be highly dependent of the individual minimized. But
the methodology being very rapid, it allows, if diverse individuals are picked
up and minimized, to find very rapidly a diverse range of acceptable solutions.
Furthermore, a first rapid screening of a large number of individual using loose
parameters will provide rapidly a subpopulation of promising candidates for
stricter minimization.

3 Experiments

3.1 Minimizing Equation

As a first benchmark problem with multiple minimums, we use the SOMA algo-
rithm on the following equation:

f(x1, x2, x3) = x2
1 + 2x2

2 − 10sin(2x1)sin(x3) + 0.5cos(x1 + 2x2) +
x2

1x
2
3 − 5sin(2x1 − x2 + 3x3), −10 <= xi <= 10, i = 1, 2, 3

The objective is to find x1, x2 and x3 such as to minimize f(x1, x2, x3). The
global minimum is -12.765474. Generally, searches using traditional genetics al-
gorithms are often stuck by some local minima [2]. The strategy for applying
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Table 1. Performance of SOMA on finding global minimum of equation 1 over 100 runs.
The first column presents the average over all the runs between the global minimum
(-12.765474) and the minimum found by SOMA after the rapid screening. The second
column presents the result after applying SOMA with stricter parameters on the best
individual found during screening.

minima-fitness after screening final minima-fitness calculation time in ms
(standard deviation) (standard deviation) (standard deviation)

0.3724 2.941e-5 13.1
(0.3727) (1.019e-4) (11.29)

SOMA using f(x1, x2, x3) as a fitness function in order to find solutions is the
following: In a first step a population of 30 diverse individuals [x1, x2, x3] is
created and rapidly screened to extract its more promising member. Screening
consists of applying the algorithm with loose parameters (initial λ: 1, minimal
λ: 0.01, 3 iterations maximum) on each member of the population. Then SOMA
is performed with much stricter parameters (initial λ: 1, minimal λ: 0.0001, 100
iterations maximum) on the individual having the lowest fitness. Results are
shown on table 1. The calculation time (in milliseconds), being dependent on
the operating system, is just given as an indication.

This test showed that testing a relatively small diverse population (30 indi-
viduals) allows finding very rapidly (less than 0.05s) solution in the very close
vicinity of the optimal minimum (precision of 10e-4) with great confidence: so-
lutions were found for each of the 100 runs.

3.2 Training Artificial Neural Networks

Network’s structure. One of the difficulties before training an artificial neural
network is to decide the structure to be used. For example, in the case of feed
forward layered network, the user has to specify the number of layers as well
as the number of neurons in each layer. To avoid this difficulty, we will use
the following topology: A neural network will consist of an ordered array of
m neurons. The first indexes of the neuron array will be occupied by input
neurons while the last indexes will be occupied by output neurons. Each neuron
is connected to all neurons of superior index, but with the following exceptions:
input neurons are not connected to other input neurons and output neurons are
not connected to other output neurons. A step of the neural network will start
by feeding inputs in the input neurons. The neurons of the network then fire in
order of their respecting index, the last neurons to fire being the output neurons.
Using this structure the user just need to fix the number of neuron. We will refer
to this structure as ordered connection feed forward network (figure 1).

Modeling trigonometric and polynomial function. As a second bench-
mark, the ability of training 7 neurons ordered connection feed forward network
for modeling polynomials and trigonometric functions is explored. Since SOMA
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Fig. 1. Two representations of the same 8 neurons ordered connection feed forward
network with 2 input neurons and 2 output neurons. (a) all the connections are repre-
sented. (b) only the connections of neurons 1 and 3 are represented. Since neuron 1 is
an input neuron, it is not connected to the other input and output neurons.

allows to train simultaneously weights and parameters in the activation function,
no bias neuron will be used but the sigmoid function f(x) = 1/(1 + e−ax) will
contain a parameter a subjected to learning. The results will be compared with
back-propagation, using two topologies:

– The same as the one trained by SOMA (ordered connection feed forward),
except that the regular sigmoid function will be used (a is fixed to 1) and a
bias neuron is added.

– A one layered feed forward network with bias, with a total of 12 neurons
(including input, output and bias). The number of neuron (12) was deter-
mined such as the number of free parameters (27) to be very close to the
one characterizing the ordered connection structure (26 parameters).

The procedure for training is the following: polynomial functions ax3 + bx2 +
cx + d of order 1, 2 and 3 are randomly generated with a, b, c, d : {0, 1, 2, 3}.
For each order, 20 functions are generated. Sine and cosine are also added to
the set of functions (total of 62 functions). 120 neural networks are created and
trained on each function using loose parameters (initial λ: 1, minimal λ: 0.0001,
10 iterations). From the whole population of networks, stricter parameters are
applied on the 10 best individuals (initial λ: 1, minimal λ: 0.00001, 250 iterations)
and the best is kept. The squared error percentage [3] between the output and
f(x) is used as a fitness value, with x varying from -1 to 1 with a step of 0.125.
The same procedure is applied to back-propagation, the loose parameters being a
learning rate of 0.3 and 200 iterations, and the stricter parameters a learning rate
of 0.2 and 800 iterations. Results are shown in table 2. We can see that contrary
to SOMA, which gives correct results for all kind of functions to models, back-
propagation could not train orderd connection feed forward network to model
polynomial function of order 3 (increasing the number of epoch of the first and/or
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Table 2. Comparative results of SOMA and BP for training ANN to model functions.
Polynomial functions were grouped according to their order. SOMA was applied on
ordered connection feed forward network while BP was applied on both ordered con-
nection feed forward networks (first column) and one hidden layer feed forward network
(third column).

function BP SOMA BP-one layered ANN
average average average average average average
fitness calculation time fitness calculation time fitness calculation time

cosine 0.01 1760 0.02 25 0.01 2470
sine 0.02 1829 0.01 69 0.02 2442

order 1 0.00 1869.48 0.03 60.6 0.9629 2673.35
(0.00) (75) (0.08) (27.71) (1.53) (396.47)

order 2 170.57 1948.45 4.07 241.85 32.12 3031.20
(258.90) (136.60) (4.58) (85.13) (43.53) (916.22)

order 3 370.08 1940.30 15.86 604.45 91.13 3337.50
(385.32) (189.93) (9.44) (869.64) (157.74) (610.57)

the second screening could not lead to better results, data not shown). Back-
propagation applied to regular feed forward layered network led to better results,
but with calculation time superior to those obtained by SOMA (the decrease
of the number of epoch of the first and/or the second screening could indeed
decrease this calculation time, but with drastic consequences on the quality of
the model obtained, especially on polynomial functions of order 3, data not
shown).

Classification: Iris Database. The ability of SOMA for training ordered con-
nection feed forward network is further explored using the iris plant database,
very well known in the pattern recognition literature [4]. The data set contains
3 classes of 50 instances each, refering to a type of iris plant. There are four nu-
meric attributes (in cm: sepal length, sepal width, petal length, petal width) that
are used as input, the output being the expected class (setosa, versicolour or vir-
ginica). There are 150 instances (50 for each class) in the database. This problem
being considered easy, high speed is expected for the training phase and high
confidence is expected on both learning and validation set. The methodology
used for training is the following: a population of 250 diverse ordered connection
feed forward networks of 9 neurons, including 4 input neurons and 3 output neu-
rons is created. As before, the sigmoid function is used as activation function.
For training, the fitness used is the squared error percentage between the output
of the network and the expected output. The database is randomly separated
into a learning set (70%) and a validation set (30%). During the first screening,
SOMA (initial λ: 1, minimal λ: 0.001, 200 iterations maximum) is performed on
each of the 250 networks. Then all the network having a classification better than
72% (on the learning set) are submitted to 20 consecutive runs of SOMA (initial
λ: 1, minimal λ: 0.0001, 500 iterations maximum). The procedure is repeated 10
times using different learning and validation sets. Results are shown in table 3.
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Table 3. Performance of SOMA for classifying iris type over ten run

correct classification correct classification calculation time
on learning set on validation set

(standard deviation) (standard deviation) (standard deviation)
97 [%] 94 [%] 29175.2 [ms]

(1) (1) (11298.4)

Fig. 2. The four trainging environment. The light is represented by a grey spot and
the initial position of the robot by a black square.

For all ten run, very good classification percentage were found rapidly (around
half a minute per run) with good generalization abilities on the validation set.

Training of robotic controller. In this section SOMA is used in a basic
simulation to train an ordered connection feed forward as a robot controller.
The robot, equipped with two wheels, four range sensors and two light sensors,
is driven using differential kinematics. The network has eight neurons, six for
the inputs (four range sensors and two light sensors) and two for the outputs
(one for each wheel). The sigmoid function is used as activation function, with
a free parameter a submitted to training (no bias neuron used). The network is
symmetrical, insuring the left side and the right side of the robot to be treated
in the same way and dividing the number of free parameters by two (40 free
parameters consisting of the weights and the free parameters in the activation
function). The objective of the algorithm is to train the robot to reach a light in a
labyrinth using four training environments (figure 2). In a training environment,
a fitness function is calculated over 6000 steps of the simulation as follow:

f = 2W − 3S + 2P + 10L

W is the sum over all the steps of the absolute difference between the right
wheel speed and the left wheel speed. S refers to the sum over all the steps
of the robot’s speed. P is the wall penalty, consisting of the sum of the term
1/distance(wall, robot) over every step the robot was at a distance inferior to
20 cm of a wall. Finally the light bonus L consist of the sum of the term
10xDistance(light, robot) − 1000 over every step the robot was at a distance
inferior to 50 cm to the light. The final fitness used for training is the sum of
the fitness obtained in each of the four environments. The methodology used
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was the following: a population of 800 networks was randomly created , screened
(initial l : 1, minimal 0.001, 2 iterations maximum) and the 20 best individuals
were further minimized four times (initial l : 1, minimal 0.00001, 10 iterations
maximum). As a result four controllers showed to be successful in the four en-
vironments: they allowed the robot to explore the environments avoiding walls
until the light was detected. The robots would then go then in its directions and
remains at its vicinity.

4 Conclusion and Future Work

Despite the fact that SOMA is not population based, its speed allows to test a
large number of individuals and led to good solutions for the different tasks it
was tested on. Also, it showed to be more flexible than back-propagation toward
the topology of the ANN used for learning. SOMA also showed to have the
required characteristics for being used in the field of autonomous robotics.

Further theoritical work will have to be conducted to determine to what kind
of solution space topology this approach is best adapted. Also some of its po-
tential advantages toward genetic algorithm will be investigated. For example,
it is not population-based, and can thus be applied directly to any existing con-
troller: if such a controller is asked to perform in a slightly different environment
or asked to perform a slightly different task than the one it was trained for
(resulting in small modifications of the corresponding fitness function), SOMA
could be rapidly applied to re-adapt the existing network.

Finally the use of SOMA as genetic operator for replacing random mutations
will be considered. Similar approaches have been already been tested (using a
modified mutation operator, methodology often referred as Baldwin effect) and
proved successful [2]. SOMA could be used in the same way with the advantage
of modifying different parameters simultaneously.
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1 Computer Science Department - University of São Paulo, Brazil
{alrossi,andre}@icmc.usp.br

2 LIAAD-INESC Porto LA - University of Porto, Portugal
csoares@fep.up.pt

Abstract. The values selected for the free parameters of Artificial Neural Net-
works usually have a high impact on their performance. As a result, several works
investigate the use of optimization techniques, mainly metaheuristics, for the se-
lection of values related to the network architecture, like number of hidden neu-
rons, number of hidden layers, activation function, and to the learning algorithm,
like learning rate, momentum coefficient, etc. A large number of these works use
Genetic Algorithms for parameter optimization. Lately, other bioinspired opti-
mization techniques, like Ant Colony optimization, Particle Swarm Optimization,
among others, have been successfully used. Although bioinspired optimization
techniques have been successfully adopted to tune neural networks parameter
values, little is known about the relation between the quality of the estimates of
the fitness of a solution used during the search process and the quality of the solu-
tion obtained by the optimization method. In this paper, we describe an empirical
study on this issue. To focus our analysis, we restricted the datasets to the domain
of gene expression analysis. Our results indicate that, although the computational
power saved by using simpler estimation methods can be used to increase the
number of solutions tested in the search process, the use of accurate estimates to
guide that search is the most important factor to obtain good solutions.

1 Introduction

Artificial Neural Networks (ANNs) [10] have provided powerful tools for several Pat-
tern Recognition tasks. It is common sense, however, that the performance achieved
by ANNs is largely affected by the appropriate choice of values of their free parame-
ters. These parameters are usually tuned by trial and error, which is a subjective and
time consuming process. Several works try to overcome this problem by using opti-
mization techniques, mainly metaheuristics, for the selection of values related to the
network architecture (e.g., number of hidden neurons, number of hidden layers, acti-
vation function) and to the learning algorithm (e.g., learning rate, momentum coeffi-
cient). A large number of these parameter optimization works use Genetic Algorithms
(GA) (e.g., [14,2,13,3,19]). Lately, other bioinspired optimization techniques, like Ant
Colony Optimization (ACO), Particle Swarm Optimization (PSO), among others, have
been successfully used. In [5], PSO was used to optimize the parameters of different

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 252–259, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Bioinspired Parameter Tuning of MLP Networks for Gene Expression Analysis 253

connectionist paradigms. A modified PSO was applied by [7] to simultaneously tune
structure and connection weights of ANNs. A learning algorithm based on an artificial
immune system was used by [12] to design fuzzy-neural networks. Although bioin-
spired optimization techniques have been successfully adopted to tune neural networks
parameter values, there is a lack of works comparing the use of these bioinspired tech-
niques in a controlled scenario.

In previous work, we have compared the performance of different bioinspired opti-
mization techniques on the choice of the parameters for Multi-Layer Perceptron (MLP)
networks [10] and their learning algorithm parameters [16]. Here, as in the previous
paper, MLP networks have their number of hidden neurons and training parameters ad-
justed by the bioinspired optimization techniques. The networks obtained are trained
by the backpropagation algorithm with momentum [17]. Four different bioinspired op-
timization techniques were applied on the problem of ANN parameter tuning. These
techniques are: Ant Colony Optimization (ACO) [6], Particle Swarm Optimization
(PSO) [18], Clonal Selection Algorithm (CSA) [4] and GAs [8].

In order to reduce variability caused by using datasets from different domains in the
experimental results, we restricted the datasets to one particular domain, gene expres-
sion analysis. The choice of this domain was motivated by a particular characteristic
found in datasets from this domain: small number of examples (tens) with a very large
number of features (thousands).

In order to maximize the quality of the estimates of fitness of each solution, an in-
ternal 10 times/10-fold cross-validation procedure was used to assess the error of the
MLP. This approach is obviously very computationally expensive. In this paper, we in-
vestigate the effect of reducing the number of experiments done for estimating fitness
on the trade-off between the loss in the quality of those estimates and the gain obtained
by searching more solution in the time which is saved.

This paper is organized as follows. Section 2 presents the methodology followed in
the experiments. Section 3 shows the experimental results and their analysis. The main
conclusions of this paper are discussed in Section 4.

2 Experimental Methodology

In this section, we describe the methodology used to compare the bioinspired optimiza-
tion techniques on the problem of tuning the parameters of the MLP.

2.1 Optimization Problem

As stated earlier, the goal of this work is to tune the parameters of MLP networks.
Three parameters were considered: the number of neurons in the hidden layer (γ), the
learning rate (η) and the momentum coefficient (µ). A single hidden layer was used.
This enables the representation of a range of functions that is sufficiently large for the
purpose of this study, which is not to have the best possible architecture, but to compare
different parameter tuning approaches. The AMORE1 R package implements the back-
propagation algorithm with momentum. The domains of the parameters were limited as
follows: γ ∈ {2, 102} , η ∈ {5−2, 1} and µ ∈ {0, 1}.

1 http://cran.r-project.org/web/packages/AMORE/index.html

http://cran.r-project.org/web/packages/AMORE/index.html
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The fitness of a solution on a given dataset is computed as follows. A MLP net-
work with the number of hidden units set to the value of γ in the solution, is assigned
initial weights randomly. Then, it is trained using the backpropagation algorithm with
parameters η and µ set to the corresponding values in the solution.

The final weights obtained with the backpropagation algorithm with a fixed set of
parameters may vary with the initial weights. This implies that the performance of a
given individual will probably also vary with the set of initial weights. In our earlier
work, to reduce the effect of this variance, we used N -fold cross-validation with r
repetitions of the learning process for each fold [16]. The dataset is divided into Nf

subsets. We then use each of these subsets in turn as a fitness estimation set, and the
remaining data as training set. For each fold, a MLP was learned using r different initial
weights subsets and the mean error is assigned to the fold. The fitness of the solution is
computed as the mean of the error rates computed in the Nf folds.

In this paper, we analyse the effect of replacing the average of the r × Nf results
with the results of a single run of the algorithm as the estimate of the fitness, both in
terms of the reduction of the computational cost of estimation and on the quality of
the optimization process. We will refer to the first fitness estimation process as 10/10,
because we have used r = 10 and Nf = 10, and to the second as 1/1.

2.2 Optimization Methodology

To ensure, as much as possible, that the techniques are tested under the same condi-
tions, we analysed the number of evaluations that each algorithm performs to find its
best solution. To evaluate the solutions obtained by the optimization methods, the error
rate of the best solution found by each one is estimated using a separate test set. The
reliability of the test error estimates is affected by three factors: the random nature of
the optimization techniques, the random sample of the data into training and test sets
and the random initial weights of MLP network. We address this three issues by esti-
mating the test error as the average of 30 runs, by adopting a 10-fold cross-validation
procedure for estimation of the test error and by training each network ten times with
random initial weights for each solution.

This experimental setup requires a large number of executions of the backpropa-
gation algorithm. In the case of the 10/10 process, the execution of a single test fold
optimization process depends on the number of folds used for fitness estimation (Nf )
and the number of repetitions r for each fold. Finally, it depends on the number of indi-
viduals tested by each bioinspired technique, s, yielding a total of Nf ×r×s executions.
For Nf = 10, r = 10 and s = 3 000, the backpropagation algorithm would be executed
300 000 times. To reduce the number of executions of the backpropagation algorithm,
the number of different values considered is reduced by discretizing the values of the
continuous parameters, η and µ. This is achieved by rounding the corresponding values
to the nearest adequate fractions. The fitness of every combination of parameter values
is stored in an appropriate data structure. When evaluating an individual, the fitness
value previously stored is retrieved without the need to execute the backpropagation
algorithm once more.

In the experiments reported in this paper, the values of the η and µ were rounded to
fractions of 0.05 and 0.1, respectively. Therefore, the domain of values for the
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η parameter is {0.05, 0.1, . . . , 1} and for the µ parameter, it is {0, 0.1, . . . , 1}. Ad-
ditionally, the numbers of hidden neurons, γ, was rounded to even values, namely
{2, 4, . . . , 100}. This means that the search space of the optimization techniques con-
tains a total of 20(γ) × 11(η) × 50(µ) = 11 000 different combinations of parameter
values.

Finally, it is important to assess whether the optimization techniques are really doing
useful search or not. For this purpose, their results are compared with those obtained
with two simple baseline strategies. The first one is a single MLP obtained using the
default parameter values of WEKA, i.e., γ = (A + C)/2, η = 0.3 and µ = 0.2,
where A and C are the number of attributes and classes of the datasets, respectively.
In the results reported below, we refer to this method as default. The second baseline
consists of randomly generating s combinations, where s is the approximate number
of individuals tested by each technique. Given the nature of this method, 30 runs were
carried out and its performance is computed as the mean of the 30 results obtained. This
strategy is referred to as random.

3 Experimental Results

Four binary-class gene expression datasets were used in the experiments: colon [1],
glioma [15], pancreas [11] and leukemia [9]. Class distribution on these datasets is
(Class1/Class2): 40/22, 28/22, 24/25 and 49/51, respectively. The attributes are all
numerical, each one of them representing a single gene.

Tables 1 to 4 present the mean error rate of the best ANNs found by each optimiza-
tion technique, on the fitness set and on the test set using both the 10/10 and the 1/1
fitness estimation procedures. The standard deviation (in percentage) for 30 runs of the
techniques is presented in parenthesis. The number of different individuals (combina-
tions) that is tested by each bioinspired technique is also presented.

We start by comparing different parameter tuning techniques obtained with the 10/10
fitness estimation process (Section 3.1). The parameter values used for the bioinspired
techniques are described in [16]. Then, we present the results of replacing the estimates
of fitness using a 10 times/10 fold cross-validation procedure (10/10) with a simpler
process, which uses only one of those results (1/1) (Section 3.2).

Table 1. Results on the Colon dataset

Fitness Test Dif. Solutions

Tech. 10/10 1/1 Dif. 10/10 1/1 Dif. 10/10 1/1 Dif.

ACO 12.70 (0.1) 0.06 (0.3) 12.64 18.09 (1.0) 19.66 (2.2) -1.58 1546 8798 -7252
CSA 13.90 (0.2) 0.00 (0.0) 13.90 15.84 (1.8) 18.33 (3.1) -2.49 1425 893 532
GA 13.66 (0.2) 1.11 (1.2) 12.55 16.59 (1.6) 17.30 (2.7) -0.71 253 4426 -4174
PSO 13.45 (0.1) 1.06 (1.0) 12.39 16.50 (1.7) 17.53 (2.4) -1.03 1517 1289 228
Default 19.81 (-) 18.33 (-) 1.48 17.86 (-) 17.86 (-) � � � �
Random 13.23 (0.2) 0.00 (0.0) 13.23 16.68 (1.6) 17.49 (1.7) -0.81 2623 9987 -7365
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Table 2. Results on the Glioma dataset

Fitness Test Dif. Solutions

Tech. 10/10 1/1 Dif. 10/10 1/1 Dif. 10/10 1/1 Dif.

ACO 12.31 (0.2) 2.00 (0.0) 10.31 16.04 (1.7) 22.14 (3.3) -6.10 1552 8800 -7248
CSA 12.80 (0.3) 2.00 (0.0) 10.80 17.50 (2.5) 19.25 (3.4) -1.75 1481 1452 29
GA 13.04 (0.1) 3.20 (1.0) 9.84 14.54 (0.9) 19.30 (2.6) -4.75 317 4488 -4171
PSO 12.79 (0.1) 2.93 (1.0) 9.86 14.02 (1.3) 19.69 (3.4) -5.66 1477 1532 -55
Default 18.02 (-) 16.00 (-) 2.02 15.80 (-) 15.80 (-) � � � �
Random 12.60 (0.2) 2.00 (0.0) 10.60 17.47 (2.1) 19.42 (3.6) -1.95 2622 9986 -7364

Table 3. Results on the Leukimia dataset

Fitness Test Dif. Solutions

Tech. 10/10 1/1 Dif. 10/10 1/1 Dif. 10/10 1/1 Dif.

ACO 12.83 (0.1) 1.00 (0.0) 11.83 20.34 (0.9) 21.16 (1.8) -0.82 1608 8792 -7184
CSA 13.92 (0.2) 1.00 (0.0) 12.92 19.45 (1.3) 22.08 (2.3) -2.63 1384 739 646
GA 13.88 (0.3) 1.00 (0.0) 12.88 20.33 (0.9) 22.82 (2.9) -2.48 256 4584 -4328
PSO 13.33 (0.2) 1.00 (0.0) 12.33 19.72 (1.0) 22.82 (1.9) -3.10 1557 894 663
Default 18.94 (-) 9.00 (-) 9.94 23.03 (-) 23.03 (-) � � � �
Random 13.21 (0.1) 1.00 (0.0) 12.21 19.22 (1.2) 22.64 (2.1) -3.43 2623 9988 -7365

Table 4. Results on the Pancreas dataset

Fitness Test Dif. Solutions

Tech. 10/10 1/1 Dif. 10/10 1/1 Dif. 10/10 1/1 Dif.

ACO 12.42 (0.2) 0.67 (0.8) 11.75 21.60 (1.5) 19.47 (2.1) 2.14 1615 8796 -7181
CSA 13.96 (0.2) 0.50 (0.8) 13.46 20.30 (1.8) 20.92 (2.3) -0.62 1536 1159 377
GA 14.34 (0.5) 1.44 (0.6) 12.89 18.88 (1.8) 20.54 (2.0) -1.66 416 5408 -4992
PSO 13.39 (0.3) 1.22 (0.7) 12.17 19.04 (1.6) 21.27 (2.2) -2.23 1775 1471 304
Default 17.76 (-) 19.67 (-) -1.91 17.33 (-) 17.33 (-) � � � �
Random 13.25 (0.2) 0.44 (0.7) 12.80 20.00 (1.7) 21.64 (2.4) -1.63 2623 9989 -7366

3.1 Comparison of Optimization Methods Using the 10/10 Fitness Estimation
Process

It is possible to observe that the bioinspired techniques generally obtain better results
than the default method. This means that the search made by these techniques is, in
fact, working as expected. On the other hand, they are similar to the results obtained
with the random search method. This indicates that parameter tuning problems that
these datasets pose are not hard. Statistical tests confirm these observations [16]. The
comparison between the different optimization techniques shows that ACO achieves
the best results. It obtains the lowest fitness error on all datasets. Nevertheless, it is not
possible to clearly identify the best algorithm in terms of the test error.
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The number of different combinations tested by each technique, presented in Ta-
bles 1-4, provides information concerning the compromise between exploration and
exploitation. As stated earlier, the maximum number of individuals that each technique
is able to test is determined by its parameters. In our experiments, the ACO, PSO and
GA could test approximately 3 000 individuals, while the CSA, due to the cloning pro-
cess, could test approximately 7 000 individuals. The size of the search space is 11 000
different combinations. The proportion of different combinations tested by ACO, PSO
and CSA indicate a good balance between exploration and exploitation of the search
space. On the other hand, the GA explored a much smaller proportion of different com-
binations. This occurs even though elitism, which increases exploitation, was not used.
This may be due to the operators that were used and also to the low mutation prob-
ability. Nevertheless, its results are comparable to the results obtained with the other
techniques. This means that there is not a clear correlation between the amount of ex-
ploration and the quality of the solutions obtained.

3.2 Effect of Simplifying the Fitness Estimation Process

Given that the computational effort of the 1/1 method is approximately 100 times less
than that of 10/10, we have allowed the optimization methods to evaluate more solutions
in the former case (approximately 10 times more solutions).

Tables 1-4 show that the test error obtained with 10/10 is systematically lower than
the error obtained with 1/1. On the other hand, the fitness error obtained with 1/1 is
significantly lower. In fact, it is almost zero, which indicates that overfitting may be
occurring. Additionally, it also indicates that even if more than 10 times the solutions
were tested using 1/1 than with 10/10, the solution would probably not improve.

According to these results, there is a trade-off between the quality of the estimates
of fitness and the number of solutions tried out. However, it is more important for the
search process to obtain accurate estimates. However, we note that 10/10 and 1/1 repre-
sent extreme scenarios and a better trade-off could be obtained with intermediate ones,
such as, 1/10, i.e., 10 repetitions of a training/test procedure.

4 Conclusions

Recently, a comparison between four different bioinspired optimization techniques on
the problem of tuning the parameters of MLP networks for classification tasks has been
published [16]. The techniques considered were Ant Colony Optimization, Particle
Swarm Optimization, Clonal Selection Algorithm and Genetic Algorithms. Although
these techniques are commonly used on this task, no comparative study had been car-
ried out before that. The focus was on a single domain, gene expression analysis, to
reduce the variation which would be introduced by testing on datasets from different
domains and also because Bioinformatics is an important area of application of learn-
ing methods.

This paper extends that previous work by investigating the relation between the qual-
ity of the estimates of the fitness of a solution used during the search process and the
quality of the solution obtained by the optimization method. An empirical study is per-
formed to assess the effect of reducing the number of experiments done for estimating
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fitness on the trade-off between the loss in the quality of those estimates and the gain
obtained by searching more solutions in the time which is saved.

Our results clearly show that such a compromise exists. However, they also show
that the quality of the fitness estimates is more important for the final solution than
making a longer search. However, we only tested two extreme settings so, further work
is required to better understand the trade-off.
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Abstract. Feature selection (FS) plays a crucial role in machine learning to 
build a robust model for either learning or classification from a large amount of 
data. Among feature selection techniques, the Relief algorithm is one of the 
most common due to its simplicity and effectiveness. The performance of the 
Relief algorithm, however, could be dramatically affected by the consistency of 
the data patterns. For instance, Relief-F could become less accurate in the pres-
ence of noise. The accuracy would decrease further if an outlier sample was in-
cluded in the dataset. Therefore, it is very important to select the samples to be 
included in the dataset carefully. This paper presents an effort to improve the 
effectiveness of Relief algorithm by filtering samples before selecting features. 
This method is termed Sample Filtering Relief Algorithm (SFRA). The main 
idea of this method is to discriminate outlier samples out of the main pattern us-
ing self organizing map (SOM) and then proceed with feature selection using 
the Relief algorithm. We have tested SFRA with a gene expression dataset of 
interferon-α (IFN-α) response of Hepatitis B patients that contains outlier data. 
SFRA could successfully remove outlier samples that have been verified by 
visual inspection by experts. Also, it has better accuracy in separating the rele-
vant and irrelevant features than other feature selection methods considered.  

1   Introduction 

Feature selection plays a crucial role in machine learning because irrelevant or noisy 
features could affect the discriminative power of the algorithm or model. Selecting 
only a minimal set of informative and relevant features could improve the robustness 
of algorithms or models for learning parameters, classifying samples, or predicting 
responses from a large amount of data. The fundamental motivation behind almost 
every feature selection techniques is the curse of dimensionality, which is the condi-
tion that the system or algorithm has to process large number of features with small 
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number of samples. Feature selection can alleviate this problem by removing irrele-
vant and redundant features. The smaller number of consistent features would result 
in faster and more reliable data analysis [1]. 

The machine learning algorithms and models such as decision tree, artificial neural 
network, Bayesian network and other classification systems are error-prone in the 
presence of irrelevant and noisy features [2]. Feature selection can enhance the ro-
bustness of these algorithms by searching for the feature subset which is most perti-
nent and best representing the data. For instance, in [3], the combination between 
feature selection techniques with ensemble neural network showed better accuracy in 
cancer gene expression classification. Three feature selection methods (rank sum test, 
PCA, t-test) were evaluated to determine the statistically significant features and those 
features were used to construct an artificial neural network for classification of sam-
ple class. Another example is the evaluation of similarity measure including Pearson’s 
correlation coefficient, Spearman’s correlation coefficient, Euclidean distance, and 
cosine coefficient to find essential features before using the ensemble neural network 
for classification [4]. The results from both studies showed that using feature selection 
yielded higher prediction accuracy than without. 

Comparative studies of feature selection were conducted in [5, 6] to assess the 
classifiers’ performance. However, these works did not find a single best classifier for 
all datasets used. This is because each dataset has some specific properties that may 
affect classifier performance differently. Nonetheless, their findings indicated that the 
overall accuracy was generally good for datasets with a small number of classes. 
However, the prediction accuracy was dramatically lower for the datasets with a large 
number of classes.  Feature selection in classification has been used in various bioin-
formatics related applications such as cancer classification [7], diagnosis and progno-
sis of cancer [8], and in drug discovery [9]. 

In general statistical analyses, the performance of feature selection methods could 
be deteriorated from the presence of outliers in the dataset. The outlier can be either a 
feature outlier or a sample outlier which is defined by specific properties of each data. 
Outliers themselves are often the special points of interest in many practical situations 
and their identification is the main purpose of this investigation. In bioinformatics 
study, the classical statistical methods based on mean and covariance matrix may not 
be able to detect multivariate outliers [10]. Therefore, identifying such multivariate 
outliers is important for improving consistency of the pattern of data which would 
result in better classification power. 

Most outlier identification methods generally focus on removing feature outliers 
[10-12]. However, sample outlier profile identification or mostly called sample filter-
ing has not been studied. For example, a method called Cancer Outlier Profile Analy-
sis (COPA) was proposed for detection of the profile outlier sample of microarray 
gene expression data based on principle of chromosomal rearrangement [13].  COPA 
was used to calculate cancer association score for each gene at different percentiles. 
Genes with high score are considered as important genes that may be related to can-
cer. In addition, a measurement called outlier sums was developed. It is based on 
interquatile range (IQR), and focuses on the group of samples that defined as a case 
group only (disease group). A sample would be identified as an outlier if their score is 
higher than the threshold. These methods defined the presence of outliers as an  
important factor for identification of significant genes. On the other hand, in terms of 
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classification, an outlier is the unwanted information that could affect the consistency 
of the model and should be removed from the data. This paper, therefore, uses the 
later definition of outlier and focuses on improving feature selection techniques by 
removing the outlier before training or analyzing the data [14]. 

Among existing feature selection techniques, the Relief algorithm is one of the 
most successful techniques because of its simplicity and effectiveness [15]. The key 
goals of the Relief algorithm are to estimate the relevancy of features according to 
how well their values are distinguishable among samples that are near to each other, 
and to estimate features having intense dependencies between samples for selection of 
feature subsets. Nevertheless, the original Relief is not robust against incomplete or 
outlier data and is limited to only two-class problems [16].  

There are few extensions of Relief algorithm that have been developed to over-
come these problems. For example, both Relief-F and Relief-F regression can be used 
to solve the multi-class problems by adjusting the function that calculate the weigh for 
each feature [17]. Iterative Relief algorithm (I-Relief) is a modification based on the 
Expectation-Maximization (EM) algorithm to estimate the optimal solution and im-
prove the solution convergence [15].  Although, in terms of convergence, I-Relief is 
better than Relief-F, the former also requires more computational time. Therefore  
I-Relief is not practical when the data contains a large number of features such as 
microarray data. Therefore, this study uses Relief-F as a basis for feature selection 
techniques for the microarray dataset studied. 

Since Relief-F algorithm is not robust in the presence of outliers, outlier filtering 
techniques should be included in the algorithm. This paper proposes a modified Relief 
algorithm, termed Sample Filtering Relief Algorithm (SFRA), to remove outliers 
before selecting features. First, several outlier filtering methods were tested. Then, the 
most accurate method was incorporated into the Relief-F algorithm. Afterward, SFRA 
was used to find the significant features. These features were then used in the classifi-
cation task for biomarker identification. The pseudo-code for the overall methodology 
of SFRA is given below. 
 
Pseudo code of Sample Filtering Relief Algorithm (SFRA) 
 
(1) Detect and remove outlier sample(s) by SOM 
(2) Set all weights W[A] = 0.0 
(3) for i = 1 to m do begin 
(4)  randomly select sample Ri 
(5)  find k nearest hit Hj 
(6)   for each class C ≠ class(Ri) do 
(7)    find k nearest miss Mj(C) from class C 
(8)    for A = 1 to all feature do 

(9)    +  

  

(10)   end 
(11)  end 
(12)end 
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2   Hepatitis B Dataset 

The dataset used in this study is a microarray dataset of the differential gene expres-
sion study of hepatitis B patients that responded to drug treatment and those who did 
not respond to drug treatment. Specifically, the dataset consists of interferon-α (IFN-
α) response of Hepatitis B patients. The dataset is a gene expression microarray data 
of peripheral blood mononuclear cell (PBMC) of patients using Illumina HumanRef-8 
Expression BeadChips microarray. There are 22,184 genes with 23 cell line samples. 
The samples can be separated into 2 classes, 12 samples in SVR (sustained virological 
response) and 11 samples in NR (non-response). The SVR and NR classes are the 
groups of patients that responded and not responded to the treatment of IFN-α respec-
tively. One sample (no. 25) was excluded from the dataset because of mislabeling.  
The goal of analysis for this dataset is to identify biomarkers which play a role in 
IFN-α response of hepatitis B patients from the different gene expression profile 
pattern between groups. 

The dataset was first normalized by using quantile normalization. The significant 
genes were then identified by using t-test (p<0.05 and fold change>1.3). A total of 
183 significant genes that differentially expressed were found. Z-scores of these sig-
nificant genes were then computed to standardize the expression profile across all 
genes. Finally, the gene expression profiles of both classes were calculated by K-
means clustering (K=5) to determine expression profile pattern (see Fig.1).  

From Fig.1, sample 34 is visually distinguishable in SVR class from others in the 
group. For NR, samples 12, 37, and 39 seem to have contradictory profiles. Therefore, 
by using human “expert” visualization, samples 34, 12, 37 and 39 were considered to 
be outlier samples. These outliers could interfere with further analysis, especially in 
the selection of significant genes or identification of the biomarkers.  
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Fig. 1. Heatmap of Hepatitis B patient gene expression profiles. (The 12 samples to the left of 
“2” are in SVR class, and those to the right are in NR class).  
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3   Methods for Outlier Filtering  

To find a suitable technique to remove outlier profiles, we evaluated a number of 
methods including t-test, inter-quartile range (IQR) score, principal component analy-
sis (PCA), hierarchical clustering (HCL), and self-organizing map (SOM). By using t-
test, the p-value for each sample was calculated from all gene expression value in that 
sample. If p-value was lower than the significant level of α=0.05, the sample would 
be identified as an outlier sample. The IQR score was calculated from the expression 
range from first to third quartile of the sample. The score was calculated from the 
number of samples that has values outside 1.5 times the IQR of other samples.  Any 
sample with a higher score than threshold (at 95% confidence level) was considered 
to be an outlier sample. For PCA, we used median centering mode and the number of 
neighbors for k-nearest neighbors (KNN) imputation was set to 10. The goal of PCA 
is to reduce large dimensionality of dataset to lower dimensions for analysis, which 
are adequate in representing the data. For HCL, it is the separating of a dataset into 
subsets called clusters; the data in each subset share some common trait according to 
some defined distance measure. We applied average linkage clustering and used 
Euclidean distance matrix in our work.  

SOM is a popular artificial neural network based on unsupervised learning. It con-
sists of neurons organized on a regular low-dimensional grid called a map, usually in 
rectangular or hexagonal configuration. The training parameters such as the training 
length, the training rate, and the size of the updating neighborhood are user defined 
parameters. After the network is stable, these reference vectors are used to group the 
data points into clusters based on the closeness of the data points to the reference 
vectors [18].  

4   Experimental Results 

4.1   Outlier Filtering 

Experiments were conducted to compare the performance of all mentioned methods. 
The results from t-test could not detect any outlier samples because the resulting p-
value for all samples was equal to 0, at α = 0.05, indicating all samples were outlier 
samples. The IQR score indicated sample 30 as an outlier sample with the highest 
score.  The same result was also found with HCL and PCA methods. Results of HCL 
showed that sample 30 was separated from other samples when clustering using all 
samples and only SVR class samples. However, clustering result of only NR class did 
not indicate any outlier sample. Moreover, when performing PCA using all samples 
and only SVR class sample, the results showed that sample 30 was strongly an outlier 
sample. Also, no outlier was detected in the NR class samples.   

In contrast, SOM could detect most of the outlier samples in NR class and all in 
SVR class (see Table 1). However, SOM also detected sample 30 as an outlier. Even 
though it was not considered to be an outlier from the pre-defined visualization of 
gene expression profile, it has a contrasting expression profile to others. This sample 
has very high expression level which is obvious from the very high intensity of red 
color. Therefore, sample 30 may indeed be an outlier sample in this context.  
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From the results, SOM was better in indicating outlier samples (see Table 2), but 
appropriate parameters needed to be defined. For this study, the grid dimension was 
set to 3×3 ( × , where n is the number of samples), the learning rate (α) was set to 
0.005, and 2000 iterations were used. Furthermore, the use of rectangular topological, 
Euclidean distance function, and Gaussian neighborhood function was required to 
generate the result clusters that could separate an outlier sample from other samples.  

Table 1. Summary of SOM results by class 

SVR class NR class Cluster 
Sample(s) in 
the cluster 

Average Euclidean 
distance  

Sample(s) in 
the cluster 

Average Euclidean 
distance  

1 1,  6,  8 15.68507 4 16.20966 
2 - - 7 15.84978 
3 5, 9, 31 15.14084 11 15.42758 
4 - - 36 15.64289 
5 - - - - 
6 34 16.13726 3 14.79307 
7 24, 29 14.70772 26 16.27777 
8 32 14.27062 12*, 37*, 39* 17.43354* 
9 30* 18.52925* 2, 10 15.70184 

          * indicate an outlier sample cluster at 95% confident. 

Table 2. Comparison of methods used to detect outlier samples in gene expression profile  

Method Selected 
outlier sample 

Matched 
outlier  
sample 

Matched 
outlier  

(from 4) 

Not Matched 
outlier 

Computational 
time used  

(10-3 second) 
t-test all samples 12,34,37,39 4 18 ~980 
IQR score 30 - - 1 ~300 
HCL 30 - - 1 ~484 
PCA 30 - - 1 ~492 
SOM 12, 37, 39, 30 12, 37, 39 3 1 ~290 

 
One of the pre-defined outlier samples, sample 34, could not be detected by any 

method that we used. This means the gene expression profile of this sample may not 
be significantly different from others in the same class. Therefore visualization alone, 
without any indicator values, may lead to incorrect outlier identification.   

4.2   Classification Results 

After detection and removal of outlier samples (12, 30, 37, 39), the data was normal-
ized by Z-score and then Relief-F was applied to find the significant genes, followed 
by the classification task. The accuracy of SFRA was compared with the original 
Relief-F without outlier sample filtering.  The most appropriate parameter k for Re-
lief-F used in this work was set to roundup(log2n) where n is the number of samples 
[19]. The result of classification task is shown in Table 3. In most cases, SFRA 
showed higher accuracy than original Relief-F when using K-nearest neighbors 
(KNN) or Naïve Bayes (NB) as a classifier. The accuracy was 100% when the  
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Table 3.  Comparison of prediction accuracy (using LOOCV) between original Relief and 
SFRA algorithms. (Using KNN, with number of neighbors equal to 3, and NB as classifiers).  

Original Relief-F  
(outlier not filtered) 

SFRA 
(outlier filtered by SOM) 

Significant gene(s) 

KNN NB KNN NB 
1 77.27 81.82 100 100 
10 95.45 95.45 94.44 88.89 
20 90.91 81.82 100 94.44 
50 90.91 81.82 100 94.44 
100 90.91 81.82 94.44 88.89 
200 86.36 81.82 88.89 88.89 
2000 81.82 77.27 88.89 83.33 

 
number of significant gene(s) was 1, 20, and 50 for KNN and only 1 for NB. There-
fore, our results indicate that SFRA performs better than the original Relief-F. After 
the identification of the highly informative gene(s), further analysis will be required 
clinically to find potential biomarker(s). 

5   Conclusions and Future Research 

This study proposes a modified Relief algorithm, termed Sample Filtering Relief 
Algorithm (SFRA), which embeds SOM as an outlier filtering part into the Relief-F 
algorithm. SFRA can be used in gene selection for microarray gene expression data 
analysis as the pre-processing step for biomarker detection. The authors believe that 
SFRA should be versatile enough to be used in various fields that are related to fea-
ture selection. However, testing with other datasets is needed to validate this claim. 

To further improve the performance of the proposed algorithm, a learning algo-
rithm such as ANN may be introduced to Relief algorithm to enable the adjustment of 
the weight of features heuristically. This improvement may help the algorithm to 
avoid local optimums and produce more optimal results. Other unsupervised learning 
methods than SOM may also be used for comparison purposes.  Besides, a systematic 
development of an adaptive model that is capable of dealing with incremental data is 
also a goal in a future study. 
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Abstract. In this paper, we propose a simple but powerful method to
visualize connection weights by SOM. The conventional SOM has been
well established and extensively used to visualize complex data. There
have been a number of methods to visualize final connection weights.
However, even sophisticated visualization techniques may be ineffective
in dealing with ambiguous connection weights due to the complexity
of the data set. To cope with this problem, we retrain a network with
connection weights obtained by SOM. At this time, we do not optimize
networks in terms of errors but we train networks to enhance the charac-
teristics of connection weights at the price of optimality. This enhance-
ment can be realized by smaller Gaussian width. Though these smaller
Gaussian widths are not optimal ones in terms of errors, it may give
some insights into the characteristics of connection weights. We applied
the method to the famous Iris problem and a classification problem for
OECD countries. In both problems, we can obtain U-matrices with more
explicit boundaries for easy interpretation.

1 Introduction

In this paper, we propose a new method to enhance visualization performance
of SOM by additional learning called enhancement learning. The conventional
SOM [1], [2] has been now widely accepted as one of the fundamental methods in
neural networks. There have been many attempts to identify explicitly objective
functions and to reformulate it in a framework of information-theoretic approach,
Bayesian approach, statistical mechanical approach and mixture models [3], [4],
[5]. [6], [7], [8] to cite a few.

In applications, visualization performance is one of the main properties ur-
gently needed. Thus, we need to explore new approach biased toward improved
visualization performance. Many sophisticated visualization techniques for SOM
[9], [10], [11] have been developed. However, even those sophisticated visualiza-
tion techniques are of no use if final connection weights are in essence ambiguous.
At this point, we think that for better visualization, an optimization principle in
terms of errors between input patterns and connection weights should be weak-
ened for more biased solutions with better visualization performance especially
for practical applications.
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In this context, we propose a new method, which is simple but efficient in
visualization. We combine the conventional SOM with another component that
retrains final connection weights by SOM. We choose a mixture model [12] for
retaining the network, because of its simplicity. In the first place, we use the
conventional SOM to produce final connection weights. By these connection
weights, we compute initial prior and posterior probabilities that are given as
initial conditions to the mixture model. In the mixture model, connection weights
and the prior probability are updated for convergence. However, the Gaussian
width σ is fixed through the entire learning processes. The Gaussian width is
determined by the enhancement parameter α where the width σ is determined
by the inverse of the parameter α. As the enhancement parameter is increased,
more detailed parts can be extracted.

In Section 2, we briefly explain a mixture model and how to compute pa-
rameters by the EM algorithm. In Section 3, we present two experimental re-
sults. In the first example of the Iris problem and the second example of the
OECD countries classification problem, we will show that as the enhancement
parameter is increased, more detailed boundaries in U-matrices can be seen.
In addition, for a certain enhancement parameter, more explicit classes can be
obtained.

2 Theory and Computational Methods

2.1 Mixture Model and EM Algorithm

We consider a network shown in Figure 1 and interpret it as a mixture model[12].
Now, suppose that for the jth competitive unit, the sth input pattern xs is
generated by the following Gaussian function

p(xs | j) ≈ exp
(

−‖ xs − wj ‖2

2σ2

)
, (1)

L input units

s

Wjk

x
k

s
v

j

p(j|s)

q(j|s)

   Target
   probability

M competitive
units

Actual
probability

Fig. 1. A network architecture
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where wj denotes connection weights into the jth competitive unit and σ is a
Gaussian width. The corresponding posterior probability can be computed by

p(j | xs) =
p(xs | j)p(j)∑M

j=1 p(xs | j)p(j),
(2)

where M is the number of competitive units, and p(j) denote a mixing parameter
or the prior probability. Then, the negative log-likelihood for the data set or the
error function is define by

E = −
S∑

s=1

log

⎧⎨⎩
M∑

j=1

p(xs | j)p(j)

⎫⎬⎭ . (3)

By the EM algorithm[13], we can directly compute connection weights wj and
the prior probability p(j)

wnew
j =

∑S
s=1 pold(j | xs)xs∑S

s=1 pold(j | xs)
, (4)

and

pnew(j) =
1
S

S∑
s=1

pold(j | xs), (5)

where S is the number of input patterns. For the Gaussian width σ, we do not
update it, and then we change it by the following equation

σ =
1
α

, (6)

where α is an enhancement parameter. As this parameter α is increased, networks
are considered to be more enhanced.

2.2 Computational Procedures

In the first place, we apply the SOM to the data set to obtain connection weights
wj and the prior probabilities p(j) and the posterior probability p(j | xs) as
shown in Figure 2. Then, we set the enhancement parameter α to be a fixed
value (α > 1). With these initial conditions, we retrain the network by using a
mixture model with the EM algorithm to update connection weights wj and the
prior probabilities p(j). The EM algorithm stops when max(mse(wnew

j − wold
j ))

is less than 0.0001.

Mixture
modelsSOM

Prior
probabilities

Connection
weights

Fig. 2. A computational procedure for enhancement learning.
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Fig. 3. U-matrix by the conventional SOM (a) and by the enhancement (b)-(e) and
labels (f). The enhanced parameter α was increased from 2 (b) to 8 (e). Warmer and
cooler colors show larger and smaller values, respectively. Note that labels are the same
for all enhancement parameters.

3 Results and Discussion

In the following experiments, we try to show how well the new method extracts
features in input patterns. For easy comparison, we use the conventional SOM1.
All data in the following experiments were normalized and its range is between
zero and one.

3.1 Iris Problem

In this experiment, we used the famous Iris problem for easy comparison. Figure
3 shows the U-matrices by SOM(a), the enhancement method (b)-(e) and a map
with labels (f). Though the data set is composed of three Iris classes, only two
classes can be detected by using the SOM in Figure 3(a). Three classes can be
found only by inspecting labels in Figure 3(f). Then, we enhance networks by
increasing the enhancement parameter α. When the enhancement parameter α is
two, a slightly clearer U-matrix can be obtained but two classes are detected by
1 We used SOM Toolbox 2.0, February 11th, 2000 by Juha Vesanto

http://www.cis.hut.fi/projects/somtoolbox/. No special options were used for
easy reproduction.
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(a) SOM
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Fig. 4. Component planes by the conventional SOM (a) and the enhancement method
(b)-(e). Warmer and cooler colors show larger and smaller values, respectively.

a boundary in red and brown in Figure 3(b). When the enhancement parameter
α is increased to four in Figure 3(c), another boundary in light blue can be
found, meaning that the map are divided into three classes. As the enhancement
parameter is further increased from six to eight, more detailed classes can be
detected in Figure 3(d) and (e).

Figure 4 shows component planes by SOM (a) and by the enhancement
method (b)-(e). When the enhancement parameter α is two, all component
planes represent two parts (Figure 4(b)). When the enhancement parameter
α is increased to four in Figure 4(c), all component planes are divided into three
parts in terms of the magnitude of connection weights. As the enhancement
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parameter α is further increased from six to eight, several detailed parts in dif-
ferent colors or magnitudes can be detected in Figure 4(d) and (e).

These experiments clearly show that final U-matrices tend gradually to cap-
ture more detailed classification of input patterns as the enhancement parameter
σ is increased.

3.2 OECD Classification

We tried to classify 23 OECD countries by using four variables, that is, the total
fertility rate, the female labor rate, the tertiary industry labor ratio and the
gender development index [14].

Figure 5 shows U-matrices by SOM(a), by the enhancement method (b)-(e)
and a map with labels (f). Figure 5(a) shows a U-matrix by the SOM. We can see
a relatively wide boundary in red in the middle of the map. The data set seems
to be divided into two classes of countries. When the enhancement parameter α
is two, strong values on the upper side and lower values on the lower side can
be detected. When the parameter is further increased to three in Figure 5(c), a
map is completely divided into two parts by a strong boundary in brown colors
in the middle. As the parameter is further increased from four to five in Figure
5(d) and (e), additional detailed parts are gradually separated.

(a) SOM (b) Alpha=2

(c) Alpha=3

Portugal

Finland

Denmark

Iceland

Austria

Switzerland

Belgium

France

Greece

Holland

Canada

Italy

Japan

Luxemburg

UK

Australia

(d) Alpha=4

(e) Alpha=5 (f) Labels

Fig. 5. U-matrices by conventional SOM (a), by enhancement (b)-(e) and a map with
labels (f). enhanced learning (b). Warmer and cooler colors show larger and smaller
values, respectively.
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This experimental results also show that as the enhancement parameter is
increased, more detailed boundaries can be detected. For a certain value of the
enhancement parameter α, the clearest U-matrix can be obtained.

4 Conclusion

In this paper, we have proposed a new method to enhance connection weights ob-
tained by the conventional SOM. The SOM has been now very popular in many
applications, because it has strong potentiality to visualize complex data. There
have been a number of techniques to visualize connection weights for easy inter-
pretations. However, one of the main problems is that even if sophisticated visu-
alization techniques are used, they are useless for ambiguous connection weights.
For making the characteristics of connection weights more explicit, we retrain
networks to produce explicit connection weights. In the first place, we train a
network with the conventional SOM, and then with the fixed enhancement pa-
rameter, the network is retrained with a mixture model with EM algorithm. We
applied the method to the famous Iris problem and an OECD countries classifi-
cation problem. In both problems, we succeeded in making some boundaries by
SOM more explicit.

The method here proposed is simple but it gives a very powerful tool to
visualize complex data. However, we should note that because we train networks
to produce more explicit internal representations at the expense of the errors
between input patterns and connection weights, final representations should be
interpreted with much reference to original input patterns.
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Abstract. Missing data is a common issue in almost every real-world
dataset. In this work, we investigate the relative merits of applying two
imputation schemes for coping with this problem while designing radial
basis function network classifiers, which show sensitiveness to the exis-
tence of missing values. Whereas the first scheme centers upon the k-
nearest neighbor algorithm and has been deployed with success in other
supervised/unsupervised learning contexts, the second is based on a sim-
ple genetic algorithm model and has not been fully explored so far.

1 Introduction

Real-life datasets invariably contain examples in which the values of some at-
tributes, for some reason or other, are unknown. Aiming at managing this prob-
lem, several preprocessing techniques have been devised so far, ranging from
those more generic/simple to those more customized/complicated [5]. A broad
class of techniques, referred to as imputation methods, involves the replacement
of absent values with plausible ones, usually estimated from the data itself. In
this context, a common practice is to substitute missing values (MV) with sta-
tistical amounts, such as the most likely values, for discrete attributes, or the
mean (median) values, for the continuous case.

Since different learning algorithms show different rates of sensitiveness to
different levels of data incompleteness, several comparative studies have been
conducted recently over different MV handling methods (with an emphasis on
those based on imputation) in order to reveal their advantages and
disadvantages [1,3,5,9]. In this paper, we move a step further in this initiative
and investigate the relative merits of applying two imputation schemes for coping
with missing data while specifically designing radial basis function (RBF) net-
works [6,7]. Whereas the first method centers upon the k-nearest neighbor (KNN)
algorithm and has been deployed with success in other supervised/unsupervised
learning contexts [3,8], the second is based on a simple genetic algorithm (GA)
model [4] and has not been fully explored so far.

In order to contrast, in terms of effectiveness and efficiency, the pros & cons of
the genetic and KNN imputation methods for the training and generalization of
RBF network classifiers, experiments over UCI benchmark datasets [2] have been
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conducted, the quantitative results of which are discussed here. In this analysis,
we have considered different types of atributes as well as MV rates, and also
taken as reference the performance exhibited by mean/mode imputation.

The rest of the paper is organized as follows. Section 2 describes ein passant
how RBF networks work and comments upon their sensitiveness to MV. The next
two sections briefly outline the distinctive aspects behind the nearest-neighbor
and genetic imputation methods. Section 5 is dedicated to the analysis of the
performance levels exhibited by the contestant imputation schemes, whereas
Section 6 concludes the paper and brings remarks on future work.

2 RBF Networks

RBF networks are a popular type of three-layer feedforward networks [6,7]. Each
unit i of the hidden layer of this type of network essentially represents a particular
point ci in the input space, and its output for a given instance x depends solely
on the distance between ci and x (which is achieved by using nonlinear activation
functions to convert the distance into a similarity measure). On the other hand,
the role of the output layer is to linearly combine the outputs produced at the
hidden layer and bring about the actual network’s estimates.

An advantage of RBF networks over multilayer perceptrons is that the training
of each layer can be conducted separately, bringing efficiency. A disadvantage is
that they give every attribute the same weight, meaning that they may show
high sensitiveness to the way MV are handled. Although relevant, this issue
seems to be overlooked in the literature.

3 Nearest-Neighbor Imputation of Missing Values

This method uses the KNN algorithm [10] to estimate missing data, by consider-
ing each time the attribute with MV as class attribute and the others as sources
of information for locating the nearest samples. Some advantages of this method
include [3]: a) it can estimate both discrete and numeric attribute values; b) it
is not necessary to build up a predictive model for each attribute with missing
data, as KNN is a lazy-learning method; and c) it can easily treat examples
with multiple MV. On ther other hand, efficiency may be a big trouble for this
method when considering large datasets if special-purpose data structures (as
kD-trees) are not used [10]. Likewise, how to select the value k and the measure
of similarity is a decision that may impact the performance results greatly [9].

4 Genetic Imputation of Missing Values

The second scheme employs a customized GA as a mechanism for imputation,
which in turn is cast as an optimization problem. So, the values of missing data
may be automatically tailored in accord with the supervised learning algorithm
being used, leveraging up its performance. Although appealing, to the best of



278 P.G. de Oliveira and A.L.V. Coelho

our knowledge, no work has yet fully explored the idea of applying a GA engine
to deal specifically with the MV issue. According to the model adopted here,
the representation of the individuals is linear, so that each MV is assigned to
a position in the string. The encoding can be homogeneous or not, depending
on the types of attributes with MV (continuous or discrete). Moreover, fitness-
proportionate selection, two-point crossover, and simple mutation are employed
for generating novel solutions. Finally, we have made use of the wrapper approach
commonly used in the attribute selection task [4] for assigning fitness values. So,
these values are set as the average error rate achieved by the RBF network in a
stratified 10-fold cross-validation process conducted over the enhanced dataset.

5 Experiments and Results

To assess the performance of the genetic and KNN imputation methods with
respect to the training and generalization of RBF network classifiers, extensive
experiments have been conducted over UCI benchmark datasets [2].

Due to space limitation, we focus our analysis here on the six datasets depicted
in Table 1, which show different number of samples, class distributions, and
number/types of attributes and are roughly organized from the less to the more
complex ones. These datasets originally do not show absent items, except given
to the fourth and sixth in the list. But even in these cases (where we have
maintained the MV items), we have followed the same strategy adopted in other
papers [3,9], viz., to artificially inject MV completely at random – by this means,
the probability of missing data on any attribute would not depend on any value
of that attribute.

In the experiments, we have considered three rates of data missingness: 5%,
10%, and 20%. For every original dataset, 10 pairs of training and test (80/20%)
partitions were produced via a stratified manner. Then, MV were injected in
each novel dataset; this process was repeated five times, giving birth to 50 de-
rived datasets for each original one. In order to assess the performance of the
methods, we have recorded the average error rates produced by RBF networks
both over the training (10-fold cross-validation) and test datasets. This division
is necessary as the genetic imputation uses the cross-validation results as fitness
values for its individuals whereas KNN and mean/mode schemes do not.

Table 1. Configuration of the datasets used in the experiments. NC: number of classes;
NS: number of samples; CD: class distribution; NA: number of attributes; and TA:
type(s) of attributes (Discrete × Continuous).

Name NC NS CD NA TA

IRIS 3 150 (33.3%;33.3%;33.3%) 4 C
ZOO 7 101 (40.6%;19.8%;4.9%;12.9%;4.00%;7.9%;9.9%) 16 D&C

DIABETES 2 768 (65.1%;34.9%) 8 C
BCD699 2 699 (65.5%;34.5%) 9 C

CAR 4 1,728 (70.0%;22.2%;4.0%;3.8%) 6 D
DERMATOLOGY 6 366 (30.6%;16.7%;19.7%;13.4%;14.2%;5.5%) 33 D&C
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Table 2. Average results for 5%-level of missing values

Method Crossval Test Generation Time

IRIS
Mean/Mode 92.78 ± 1.00 97.11 ± 3.42 – 0.00 ± 0.10
KNN (k = 1) 93.83 ± 1.20 97.33 ± 2.67 – 0.00 ± 0.00
KNN (k = 3) 93.94 ± 0.92 97.11 ± 2.69 – 0.00 ± 0.00
KNN (k = 5) 94.17 ± 1.17 96.89 ± 3.01 – 0.00 ± 0.00

GA 96.67 ± 0.60 98.28 ± 1.34 5.07 ± 1.01 96.73 ± 4.40
ZOO

Mean/Mode 93.17 ± 1.64 95.67 ± 4.04 – 0.00 ± 0.00
KNN (k = 1) 95.39 ± 1.22 94.67 ± 3.51 – 0.07 ± 0.12
KNN (k = 3) 94.90 ± 2.40 95.33 ± 4.51 – 0.07 ± 0.12
KNN (k = 5) 94.57 ± 1.73 95.00 ± 5.00 – 0.13 ± 0.12

GA 98.19 ± 0.71 94.29 ± 2.86 3.53 ± 1.42 125.67 ± 9.03
DIABETES

Mean/Mode 73.39 ± 0.71 77.82 ± 0.54 – 1.00 ± 0.00
KNN (k = 1) 73.03 ± 0.15 78.87 ± 2.16 – 1.00 ± 0.00
KNN (k = 3) 72.60 ± 0.07 78.47 ± 1.90 – 1.00 ± 0.00
KNN (k = 5) 72.70 ± 0.28 78.34 ± 2.41 – 1.00 ± 0.00

GA 75.63 ± 0.92 78.36 ± 1.04 8.20 ± 1.06 181.27 ± 4.05
BCD699

Mean/Mode 96.12 ± 0.31 95.92 ± 1.22 – 1.13 ± 0.23
KNN (k = 1) 96.28 ± 0.40 95.39 ± 0.63 – 1.07 ± 0.12
KNN (k = 3) 96.20 ± 0.29 95.63 ± 0.98 – 1.00 ± 0.00
KNN (k = 5) 96.19 ± 0.42 95.34 ± 0.84 – 1.00 ± 0.00

GA 97.17 ± 0.41 95.38 ± 1.15 7.67 ± 0.42 192.13 ± 10.64
CAR

Mean/Mode 83.64 ± 0.41 87.38 ± 0.79 – 6.20 ± 0.20
KNN (k = 1) 82.69 ± 0.66 86.67 ± 0.99 – 5.00 ± 0.00
KNN (k = 3) 83.10 ± 0.53 86.42 ± 0.72 – 5.07 ± 0.12
KNN (k = 5) 83.17 ± 0.90 86.77 ± 1.16 – 5.13 ± 0.12

GA 87.47 ± 0.44 87.51 ± 0.29 8.80 ± 0.60 898.40 ± 79.15
DERMATOLOGY

Mean/Mode 95.81 ± 0.72 95.43 ± 1.51 – 4.53 ± 1.42
KNN (k = 1) 95.56 ± 0.83 94.89 ± 1.51 – 5.80 ± 1.83
KNN (k = 3) 95.84 ± 0.58 95.43 ± 1.98 – 5.20 ± 1.22
KNN (k = 5) 95.72 ± 0.74 94.79 ± 1.71 – 5.53 ± 1.63

GA 97.93 ± 0.45 95.77 ± 1.49 6.33 ± 2.55 596.27 ± 183.15

For the experiments, we have made use of the RBF network model as well
as the validation testbench as implemented in the Weka framework [10]. The
machine used was an Intel Pentium Core 2, 1.66 GHz equipped with 2 GB of
RAM memory. Concerning the values of the control parameters adopted for the
GA, they were calibrated as follows: a population of 20 individuals; 10 genera-
tions for each execution; 70% as crossover rate; and 10% as mutation rate. This
configuration was adopted taking into account the efficiency issue: The GA was
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Table 3. Average results for 10%-level of missing values

Method Crossval Test Generation Time

IRIS
Mean/Mode 93.00 ± 1.09 96.44 ± 3.85 – 0.00 ± 0.00
KNN (k = 1) 93.50 ± 0.44 96.45 ± 3.42 – 0.00 ± 0.00
KNN (k = 3) 93.50 ± 0.50 96.45 ± 3.42 – 0.00 ± 0.00
KNN (k = 5) 93.28 ± 0.25 96.22 ± 3.36 – 0.00 ± 0.00

GA 95.11 ± 0.54 98.71 ± 2.24 6.47 ± 0.23 123.53 ± 1.62
ZOO

Mean/Mode 91.52 ± 1.98 95.67 ± 4.04 – 0.20 ± 0.20
KNN (k = 1) 93.17 ± 1.85 95.33 ± 2.52 – 0.20 ± 0.35
KNN (k = 3) 92.59 ± 2.43 93.67 ± 3.06 – 0.47 ± 0.23
KNN (k = 5) 93.00 ± 2.95 95.00 ± 2.65 – 0.53 ± 0.12

GA 97.61 ± 0.38 95.24 ± 2.86 4.13 ± 1.63 139.07 ± 4.66
DIABETES

Mean/Mode 72.48 ± 0.85 77.25 ± 2.35 – 1.00 ± 0.00
KNN (k = 1) 72.24 ± 0.13 78.17 ± 1.93 – 1.00 ± 0.00
KNN (k = 3) 72.25 ± 0.62 77.91 ± 1.71 – 1.00 ± 0.00
KNN (k = 5) 72.47 ± 0.75 77.91 ± 1.37 – 1.00 ± 0.00

GA 74.44 ± 0.34 76.71 ± 1.04 8.53 ± 1.85 192.67 ± 1.86
BCD699

Mean/Mode 96.08 ± 0.26 95.73 ± 0.79 – 1.00 ± 0.00
KNN (k = 1) 95.90 ± 0.32 95.63 ± 1.34 – 1.00 ± 0.00
KNN (k = 3) 96.21 ± 0.16 95.49 ± 1.22 – 1.00 ± 0.00
KNN (k = 5) 96.07 ± 0.39 95.54 ± 1.04 – 1.00 ± 0.00

GA 96.88 ± 0.32 95.05 ± 1.15 7.20 ± 1.11 199.40 ± 2.95
CAR

Mean/Mode 80.11 ± 0.31 85.45 ± 0.29 – 7.40 ± 0.35
KNN (k = 1) 78.88 ± 1.03 85.08 ± 0.66 – 5.13 ± 0.23
KNN (k = 3) 79.16 ± 0.54 85.41 ± 0.49 – 5.07 ± 0.12
KNN (k = 5) 79.43 ± 0.22 85.94 ± 0.85 – 5.20 ± 0.20

GA 84.01 ± 0.39 85.51 ± 0.58 7.87 ± 0.76 872.00 ± 28.93
DERMATOLOGY

Mean/Mode 94.58 ± 1.40 95.25 ± 0.84 – 7.07 ± 2.61
KNN (k = 1) 94.95 ± 0.82 94.89 ± 2.02 – 8.47 ± 1.45
KNN (k = 3) 95.29 ± 1.24 94.52 ± 1.19 – 6.93 ± 0.76
KNN (k = 5) 94.74 ± 0.76 94.15 ± 1.94 – 8.20 ± 1.25

GA 97.47 ± 0.79 94.68 ± 1.28 6.00 ± 0.35 734.67 ± 120.89

allowed to search for the best MV imputation having available only 200 fitness
evaluations in total.

Tables 2-4 bring the results achieved for each combination of dataset, MV
rate, and imputation method. In these tables, Crossval and Test denote the
average misclassification rates achieved by the schemes for the training/test data
partitions, respectively, whereas Time refers to the mean simulation time, in
seconds, for a single execution of each imputation technique alone – thus, in
case of the GA, it takes into account the time elapsed from the first until the
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Table 4. Average results for 20%-level of missing values

Method Crossval Test Generation Time

IRIS
Mean/Mode 88.33 ± 1.33 94.22 ± 4.29 – 0.00 ± 0.00
KNN (k = 1) 89.39 ± 2.30 96.00 ± 3.71 – 0.07 ± 0.12
KNN (k = 3) 89.22 ± 2.12 95.78 ± 4.07 – 0.00 ± 0.00
KNN (k = 5) 89.11 ± 2.55 95.78 ± 3.01 – 0.00 ± 0.00

GA 90.39 ± 0.54 98.49 ± 0.37 6.93 ± 1.86 104.20 ± 1.56
ZOO

Mean/Mode 87.57 ± 1.22 94.67 ± 2.89 – 0.73 ± 0.12
KNN (k = 1) 87.90 ± 3.48 93.67 ± 3.79 – 1.20 ± 0.35
KNN (k = 3) 90.04 ± 0.87 93.67 ± 3.21 – 0.93 ± 0.12
KNN (k = 5) 89.63 ± 0.85 94.33 ± 3.06 – 1.00 ± 0.20

GA 95.23 ± 0.38 95.56 ± 2.40 7.13 ± 1.36 162.60 ± 10.34
DIABETES

Mean/Mode 71.58 ± 1.32 77.08 ± 1.32 – 2.20 ± 0.20
KNN (k = 1) 70.86 ± 0.73 77.30 ± 1.45 – 2.00 ± 0.00
KNN (k = 3) 71.45 ± 0.66 77.65 ± 1.46 – 2.00 ± 0.00
KNN (k = 5) 71.47 ± 0.75 77.60 ± 1.74 – 2.00 ± 0.00

GA 72.47 ± 0.25 73.64 ± 0.39 6.93 ± 1.01 210.53 ± 0.70
BCD699

Mean/Mode 95.87 ± 0.32 95.10 ± 0.72 – 2.00 ± 0.00
KNN (K=1) 94.17 ± 0.20 94.96 ± 1.14 – 2.00 ± 0.00
KNN (K=3) 95.48 ± 0.54 95.39 ± 0.87 – 2.00 ± 0.00
KNN (K=5) 95.56 ± 0.64 95.39 ± 1.12 – 2.00 ± 0.00

GA 96.13 ± 0.32 94.48 ± 1.19 7.93 ± 1.21 207.00 ± 1.40
CAR

Mean/Mode 75.13 ± 0.84 82.75 ± 1.12 – 9.47 ± 0.46
KNN (K=1) 74.24 ± 0.25 81.99 ± 0.23 – 6.00 ± 0.00
KNN (K=3) 73.82 ± 0.18 81.78 ± 1.87 – 6.00 ± 0.00
KNN (K=5) 74.43 ± 0.23 81.95 ± 1.67 – 6.00 ± 0.00

GA 77.94 ± 0.24 82.14 ± 1.33 8.27 ± 0.64 838.60 ± 4.10
DERMATOLOGY

Mean/Mode 91.63 ± 0.34 94.61 ± 2.46 – 25.47 ± 9.54
KNN (K=1) 91.15 ± 1.24 94.25 ± 1.45 – 24.33 ± 4.20
KNN (K=3) 91.72 ± 0.84 94.70 ± 1.41 – 23.33 ± 1.14
KNN (K=5) 91.29 ± 0.46 94.25 ± 1.45 – 22.93 ± 3.97

GA 93.99 ± 0.83 94.96 ± 2.17 6.53 ± 1.90 1, 702.47 ± 395.70

last generation of individuals. Conversely, Generation indicates the GA iteration
at which the best individual was produced for the first time. Highlighted in these
tables are the best results achieved (in terms of mean and standard deviation)
for both training/test partitions.

From these quantitative results, it is possible to conclude the following. In
terms of effectiveness, the three imputation methods were very competitive, with
a prevalence of the genetic scheme, when considering the cross-validation results
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alone, and the mean/mode and genetic schemes, when considering the test results
alone. Taking into account both results simultaneously, it is fair to argue that the
genetic imputation has outperformed the others in most of the cases, meaning
that it could capture better the different forms of attribute interactions. To ratify
this perspective, one should note that, as the mean/mode and KNN imputation
schemes do not create models of MV data and do not use the cross-validation
results for any purpose, their performance over the training dataset should be
considered as important as that over the test dataset.

Moreover, as the MV rate increases, the performance of the three methods
decreases slightly, with KNN and mean/mode imputation showing higher sen-
sitiveness to this factor for the training partition. Considering the KNN impu-
tation alone, it seems that the choice of k has not influenced so much both in
terms of effectiveness and efficiency. For this last criterion, it is worth mentioning
that, in these experiments, we have made use of the implementation of the KNN
algorithm available in Weka [10], which is very optimized.

Finally, in terms of efficiency, both mean/mode and KNN imputation methods
have prevailed significantly over the genetic one, even considering the fact that,
in most of the cases, the number of fitness evaluations necessary to locate the
final best individual for the first time was lower than the total number of fitness
evaluations available. Therefore, one negative aspect of the genetic scheme is
its lack of computational scalability, mainly when considering complex/large
datasets.

6 Final Remarks

In this work, we have investigated the relative merits of two machine learn-
ing based imputation methods for coping with MV while training RBF net-
work classifiers. Whereas the first method centers upon the k-nearest neigh-
bor algorithm, the second is based on a simple genetic algorithm model and
has not been fully explored so far. The performance of these schemes were
assessed taking into account different types of atributes, MV rates, and UCI
benchmark datasets and also considering as yardstick the performance exhib-
ited by the simple mean/mode imputation. Overall, the simulation results indi-
cate that, in terms of effectiveness, the three methods perform comparatively,
with the genetic imputation prevailing in terms of higher generalization en-
dowed to the induced RBF networks. However, if efficiency is a requirement,
both KNN and mean/mode imputation are more adequate, mainly for complex
datasets.

As future work, we plan to assess the impact of choosing other MV impu-
tation methods [1,3,5,9] over the training/generalization of RBF networks as
well as to investigate alternative mechanisms to circumvent the scalability prob-
lem presented by the genetic imputation method. A hybrid imputation scheme,
combining the KNN and genetic ones, is also underway.
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1 Department of Mathematics, Fac. of Chemical and Food Technologies
Slovak University of Technology, 812 37 Bratislava, Slovakia

Phone/FAX: +421 2 52495177
stefan.babinec@stuba.sk

2 Institute of Applied Informatics, Fac. of Informatics and Information Technologies
Slovak University of Technology, 842 16 Bratislava, Slovakia

Phone: +421 2 60291548; FAX: +421 2 65420587
pospichal@fiit.stuba.sk

Abstract. Echo State neural networks are a special case of recurrent
neural networks. The most important part of Echo State neural net-
works is so called ”dynamic reservoir”. Echo State neural networks use
dynamics of this massive and randomly initialized dynamic reservoir to
extract interesting properties of incoming sequences. A standard train-
ing of these neural networks uses pseudo inverse matrix for one-step
learning of weights from hidden to output neurons. In this approach, we
have merged this dynamic reservoir with standard feedforward neural
network, with a goal to achieve greater prediction ability. This approach
was tested in laser fluctuations and Mackey-Glass time series prediction.
The prediction error achieved by this approach was substantially smaller
in comparison with prediction error achieved by standard algorithm or
time delay neural network with backpropagation algorithm.

1 Introduction

From the point of information transfer during processing, neural networks can
be divided into two types: feed-forward neural networks and recurrent neural
networks [1]. Unlike the feed forward networks, recurrent neural networks con-
tain at least one cyclical path, where the same input information repeatedly
influences the activity of the neurons in a cyclical path. The advantage of such
networks is their close correspondence to biological neural networks, but there
are many theoretical and practical difficulties connected with their adaptation
and implementation. The common problem of all such networks is the lack of an
effective supervised training algorithm. This problem was overcome with Echo
State neural networks [2]. A very fast algorithm is used in these networks consist-
ing of a calculation of one pseudo-inverse matrix, which is a standard numerical
task. But the advantage of ”one step” learning turns into a disadvantage when
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we try to improve the predictive abilities of the network. The pseudo-inverse
matrix approach does not offer any straightforward solution in this case.

On the other hand, classic feedforward neural networks have difficulties with
time context. So they cannot be used in standard way for time series forecasting.
In this paper we have merged the most important part of Echo State neural net-
work, dynamic reservoir, with standard feedforward neural network. With this
approach we lose the advantage of fast computation of the ”one-step” optimiza-
tion typical for Echo State networks, but we get flexibility and better quality of
prediction. Connection between ”liquid state” computing, related to echo states,
and backpropagation was mentioned previously in [4]. In our previous work [5]
we explored a possibility to improve ”one-step” learning by Anti-Oja’s learning.

2 Combination of Dynamic Reservoir and Feedforward
Neural Network

Our paper presents a combination of dynamic reservoir and feedforward neural
network. In this approach the most complex and at the same time most impor-
tant part of Echo State neural network, so called ”dynamic reservoir”, remained
preserved. The main task of this big recurrent layer is to preprocess the input
signal for the feedforward neural network (Fig. 1).

In original Echo State neural networks we have no possibility to stop the
training algorithm to avoid the overfitting problem. Therefore such neural net-
works have often troubles with generalization. We are using backpropagation of
error learning algorithm in our approach. So we can stop training when error on
validation set does not improve.

Description of neural network. We will mark dynamic reservoir with its
input and output neurons as Echo State part of the whole neural network (Fig.
1). This part consists of K input, N hidden and L output neurons. The values
of ”input – to – dynamic reservoir” synaptic weights are stored in matrix Win,
internal weights are stored in matrix W and ”dynamic reservoir – to – output”
weights are stored in matrix Wout. The feedforward neural network consists of
L input neurons, M output neurons and of S hidden layers which may have
different number of neurons in each layer. As we can see from the Fig.1, the
output layer in Echo State part is the same as the input layer in the feedforward
neural network.

The learning algorithm. The only weights which are trained in this com-
bination of neural networks are the weights in the feedforward part. The whole
algorithm for training and testing consists of two steps.

The first step: The first step should create an untrained Echo State part, con-
sisting of weights Win,W,Wout, which however can produce so called ”echo”
states. There exists a number of ways how to obtain such a network with the
given property. We have used the approach presented in [3].
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Fig. 1. The architecture used in this approach – combination of dynamic reservoir and
feedforward neural network

The second step: Now we can accede to the training and testing of the whole
neural network. As we mentioned before, the only weights which are trained in
this approach are the weights in the feedforward neural network. The learning
algorithm used in this part is the well known backpropagation of error learning
algorithm. This algorithm is described in details in [1]. For our approach it is
important, how to propagate the input signal through the Echo State part. The
states of hidden neurons in dynamic reservoir are calculated from the formula

x(n + 1) = f(Winu(n) + Wx(n)), (1)

where f is the activation function of hidden neurons (we used the sigmoidal
function). The states of output neurons are calculated by the formula

y(n + 1) = fout(Wout(u(n)x(n + 1)), (2)

where fout is the activation function of output neurons (we used the sigmoidal
function).

3 Comparison of Two Different Approaches

When we look closer at time delay neural network and combination of dynamic
reservoir and feedforward neural network (Figure 2), we can see that they are
almost identical from architectural point of view. If we stretch dynamic reservoir
in one line, we will get a standard input layer almost identical to the input layer
used in time delay neural network. The main difference is in input sequence
processing. In the case of time delay neural network, the time delayed input
signal is introduced to every input neuron in input layer (symbol τ in Figure
2 is time delaying item). Each next neuron in input layer will get input signal,
which is time delayed, compared to the previous neuron. On the other hand,
in the case of combination of dynamic reservoir and feedforward neural net-
work, every input neuron will receive the same input signal. Perceiving of time
context is ensured by recurrent connections in dynamic reservoir and through
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Fig. 2. Comparison of two different approaches – time delay neural network and com-
bination of dynamic reservoir and feedforward neural network

the formula applied for calculation of the neurons activities (Equation 1). As
the synaptic weights in dynamic reservoir are not adjusted during the training
process, it can consist of hundreds of neurons. The training process will be not
slowed-down at all.

4 Experiments

We have used two classic benchmarking data sets in this paper. The first testing
set was composed of a time sequence of 1000 samples of laser fluctuations data,
and the quality of prediction was measured by an error of prediction in the next
100 steps. A mean absolute percentage error (MAPE) was used to measure the
quality of prediction of this testing set. The second testing set was composed of
a time sequence of 3000 samples of Mackey-Glass (MG) data, and the quality
of prediction was measured by an error of prediction in the independently gen-
erated 2000 steps. A normalized root mean square error (NRMSE) was used to
measure the quality of prediction on this second testing set. The most frequently
used prediction horizon in literature is 84 steps ahead in the series. From that
reason, we will use the same value. Different error measures were used here to
allow eventual comparison with previous results [2]. To conserve the space, the
following section provides detailed results of experiments only for laser data set.

The learning was divided into two phases. The first phase was aimed to find
the best parameters of dynamic reservoir for quality prediction results from the
training set. To reduce computational demands, a very simple feedforward neural
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Table 1. Results of representative experiments in the first phase: quality of the laser
prediction for different parameter values.

Index DR Alpha Average MAPE The best MAPE

1 200 0.8 33.86 % 31.24 %
2 250 0.8 34.23 % 29.42 %
3 300 0.7 35.94 % 32.85 %
4 350 0.8 38.22 % 34.64 %

network was used in this first phase. The network consisted of two layers with 5
neurons in the first layer and 1 neuron in the second layer. The results for laser
data set are in Table 1.

In this table, DR represents the dynamic reservoir; Alpha is the parameter
influencing the ability of the neural network to exhibit echo states. These DR
and Alpha values were chosen in accordance with the proposal used by Jaeger
(see [2]). Experiments were carried out in the following way. For each value of DR
and the parameter Alpha, the values of synaptic weights in DR were randomly
generated 50 times and for each initialization of weights, the error for the testing
set was calculated. Further, an average error of all 50 trials is presented in
the column Average MAPE. Also, the smallest achieved error was recorded in
the Best MAPE column in the same table. A clear correlation between Best
and Average value columns is apparent from Table 1. When a better Average
MAPE was achieved, there is also a better Best MAPE. The best results for
laser prediction were achieved with a DR consisting of 250 neurons and for the
parameter Alpha 0.8. For Mackey-Glass prediction, the best results were achieved
with a DR composed of 400 neurons and for Alpha 0.8.

The main experiments were carried out in the second phase with a partial
knowledge of behavior of the neural network gained from the first phase. This
phase was focused on finding the best parameters of feedfoward neural network
and its backpropagation of error learning algorithm. The parameters and initial-
ization of the synaptic weights of the dynamic reservoir were chosen based on
the best results from the first phase of the experiments.

The training of synaptic weights in feedforward part using backpropagation
of error learning algorithm was carried out for all the samples of the training
set. The only exceptions were the last 10 samples in the case of laser prediction.
These 10 samples were chosen as the validation set, which was, after the weight
adjustment, used for checking the prediction quality of the samples, which were
not available for training the neural network. The validation set for Mackey-Glass
data was newly generated and was composed of 500 samples. Using this method,
a great number of training cycles was carried out, while the use of the validation
set monitored the quality of prediction. The representative results for the laser
training set are given in Table 2. The variable Learning cycles tells how many
learning cycles were required to produce the smallest error with the validation
set. The variable Number of neurons specifies the number of neurons in each layer
and Parameter γ specifies the value of learning parameter in backpropagation
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Table 2. Results of representative experiments for laser testing set in second phase of
neural network learning

Index Learning cycles Number of neurons Parameter γ MAPE

1 5108 12 – 1 0.70 % 16.96 %
2 5211 16 – 1 0.80 % 16.24 %
3 9231 16 – 7 – 1 0.85 % 13.84 %
4 7328 12 – 5 – 1 0.85 % 12.92 %

Table 3. Results of three different approaches for laser and Mackey-Glass data sets

Approach MAPE NRMSE84

TD FFNN 21.76 % 0.00051
ESN 29.52 % 0.00034

Combination of dynamic reservoir and FFNN 12.92 % 0.00019
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Fig. 3. Testing data: 100 records of laser fluctuations and 100 values predicted by time
delay feedforward neural network (MAPE 21.76 %)

of error learning algorithm. Every training of feedforward network started with
the same values of synaptic weights and other parameters of dynamic reservoir.
Attribute MAPE specifies the best reached prediction error on the testing laser
set.

In the following Table 3 we can see the comparison of best achieved errors
on testing data sets with three different approaches. We can see graphical rep-
resentation of two approaches in Figures 3 and 4. It is clear from this table
and figures that the combination of dynamic reservoir and feedforward neural
network can considerably increase the quality of prediction in comparison with
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Fig. 4. Testing data: 100 records of laser fluctuations and 100 values predicted by
dynamic reservoir combined with feedforward neural network (Experiment No. 4 from
Table 2, MAPE 12.92 %)

classic Echo State neural network or time delay feedforward neural network. At-
tributes MAPE and NRMSE84 in Table 3 specifies the best reached prediction
error on the individual testing sets. Attribute Approach specifies the approach
used for prediction. TD FFNN means time delay feedforward neural network
with backpropagation of error learning algorithm. ESN means Echo State neu-
ral network with ”one-step” learning algorithm.

5 Conclusions

Echo State neural networks have a substantial advantage over other types of
recurrent networks in their ”one-step” learning ability. As a disadvantage, they
can be considered to have a relatively low ability to generalize and in general
lack an approach, which would be able to improve, at least partially, a previously
learned network.

The problem of improving on a previously learned network does not emerge
in the case of common feedforward or even other recurrent neural networks. If
the need arises to improve the network, a simple adjustment of adding more
iterations of the back propagation of error can help. However, this does not
work for the Echo State networks, when a standard algorithm allows an ”all or
nothing” approach, for example: either we shall teach, or we shall not teach the
neural network, but nothing between. The already taught neural network cannot
be partially amended by this approach. On the other hand, classic feedforward
neural networks are not able to perceive time context. So they cannot be used
in standard way for time series forecasting.

The work described in this paper tried to solve both problems, where the
main part of Echo State neural network, dynamic reservoir, was combined with
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feedforward neural network. We have chosen laser fluctuations and Mackey-Glass
time series as a testing data. Our aim was to find out if this approach is able to
increase prediction quality in comparison with original Echo State neural net-
works and time delay feedforward neural networks. From the results shown in
the paper, it is clear, that this aim has been accomplished. Combination of dy-
namic reservoir and feedforward neural network can increase the quality of the
network’s prediction.
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Abstract. Human learners are known to exploit statistical dependen-
cies of language elements such as syllables or words during acquisition
and processing. Recent research suggests that underlying computations
relate not only to adjacent but also to nonadjacent elements such as
subject/verb agreement or tense marking in English. The latter type of
computations is more difficult and appears to work under certain condi-
tions, as formulated by the variability hypothesis. We model this finding
using a simple recurrent network and show that higher variability of
the intervening syllables facilitates the generalization in the continuous
stream of 3-syllable words. We also test the network performance in case
of more realistic, two intervening syllables and show that only a more
complex training algorithm can lead to satisfactory learning of nonadja-
cent dependencies.

1 Introduction

Statistical learning appears to be an important mechanism in language develop-
ment and processing. Humans exploit distributional cues at various levels that
help them discover structural dependencies in the language [1,2,3]. These pro-
cesses are likely to occur unconsiously in the form of implicit learning [4]. In
addition to adjacent dependencies, languages tend to comprise relationships be-
tween constituents that are conveyed in nonadjacent structure. For example in
English, these nonadjacent dependencies exist between subject nouns and verbs
in number agreement (e.g. the boys living next door are naughty), or between
auxiliaries and inflectional morphemes (e.g. is sleep-ing). Any mechanism used
broadly in language acquisition must therefore, in some way, be capable of learn-
ing nonadjacent regularities.

This problem was previously tackled using artificial languages (ALs) and
the evidence for tracking nonadjacent probabilities, at least in the continu-
ous streams of syllables, appears contrasting [5,6,7]. Earlier experiments with
learning ALs failed to show generalization from statistical information unless
additional perceptual cues (i.e. pauses between words or phonological features
of phonemes) were available, suggesting that distributional information alone is

� Supported by the grant 1/0361/08 of the Slovak Grant Agency for Science.
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not sufficient to support the discovery of the underlying grammatical-like reg-
ularity embedded in a continuous speech stream. With this evidence in mind,
Peña et al. [6] argued that generalization and speech segmentation are differ-
ent processes maintained by separate mechanisms: statistical computations are
used in segmentation, but these are distinct from algebraic rule-like computa-
tions that would account for generalizations of the distant structure. Peña et
al. experimented with learning the continuous stream of 3-syllable words of the
form AiXBi with i = 1, 2, 3 (and three Xs), where Ai exactly predicts Bi. The
participants preferred words AiXBi, over “part words” (PWs), such as BjAiX
or XAiBj (i.e. the triples crossing word boundaries), which was taken as an
evidence of successful word segmentation (because the subjects probably took
advantage of nonadjacent dependencies between syllables that helped them au-
tomatically segment the continuous stream). Next, they were tested whether
in addition to segmentation, they could also detect structural regularity in the
stream. For that purpose, Peña et al. introduced “rule words” (RWs), such as
AiXBi, where the intervening (embedded) X appeared in the stream but never
in mid-position (i.e. X ∈ {Aj , Bj |j �= i}). This makes RWs congruent with gen-
eralization: Unlike PWs, they have a novel surface form (but a familiar deep
form). When the subjects’ task was to decide between PWs and RWs, no pref-
erence for RWs was found, which was interpreted as no generalization (failure
to discover the underlying regularity).

However, as promptly suggested by Gómez [8], this could have been due to
low variability of X (henceforth, nX), because she had found that sufficiently
large variability (nX = 24) resulted in successful generalization to novel surface
structures (RWs). Onnis et al. [9,7] replicated this finding and the results of their
experiments led them to fine-tune the variability hypothesis by postulating that
generalization occurs at both extremes of variability – zero or large variability.
The hypothesis states that when large variability disrupts adjacent dependen-
cies, learners will seek alternative sources of predictability, such as nonadjacent
dependencies. In the zero variability case, the reversal effect is observed: the com-
mon elements X share the same contextual frames (e.g. don’t-eat-it, he’s-eat-ing).
Onnis et al. [7] showed that with sufficiently large nX , tracking nonadjacent de-
pendencies can result in simultaneous word segmentation and generalization of
the embeddings (at the absence of any additional cues). The segmentation of the
continuous stream is itself difficult because decreased transitional probabilities
(due to high nX) are known to lead to segmentation within word boundaries [1].

Here we model the effect of variability with a simple recurrent network (SRN;
[10] using Peña et al.’s data. SRNs have been successfully applied for various
sequential learning tasks, but, to our knowledge, not yet to this type of data
with nonadjacent dependencies. In an earlier paper, Garzón [11] used an SRN
in this specific task but he did not focus on the variability hypothesis. In experi-
ment 1, we show that generalization accuracy improves with larger variability of
embedding. In experiment 2, we simulate the same task in case of more realistic
dependencies – embeddings consisting of two syllables rather than one.
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2 Simulations

2.1 Experiment 1

Input data. We used streams composed of three different words generated by
ALs of the form AiXBi, where P (Bi|Ai) = 1. In each AL, the three frames
Ai Bi were combined with embedding X (hence forming various words) whose
variability nX was systematically manipulated. To avoid any biases caused by
specific frames, we ran multiple simulations for the same nX using different frame
triples. All three frames had the same probability of occurrence, and so had each
X , i.e. P (X |Ai) = 1/nX and P (Bi|X) = 0.33. Hence, all variability conditions
had the same transitional probabilities, except P (X |Ai) which depends on nX .
Each syllable was represented as a consonant-vowel pair, taken from the pool
of 8 consonants (b,d,g,p,t,k,r,l) and 5 vowels (a,e,i,o,u), respectively, amounting
to 40 possible syllables in total (e.g. ba, gi, ke). The 3 frames were randomly
chosen with the constraint that no consonant or vowel (except one vowel) was
repeated within the same AL (e.g. da te, pi gu, ro ka). Words had the embed-
ding formed by syllables that did not occur in the frames (set of size 34). Follow-
ing Peña et al., PWs had the form BjAiX or XBiAj . RWs contained embeddings
X in AiXBi taken from the remaining two frames, i.e. X ∈ {Aj , Bj |j �= i}. This
setup allows the following prediction: If a learner computes adjacent statistical
probabilities, he should prefer PWs over RWs, at least in the large variabil-
ity condition (because PWs imply higher transitional probabilities than RWs).
Conversely, if the learner computes nonadjacent dependencies he would rely on
the most statistically reliable ones, namely P (Bi|Ai), i.e., he would segment
correctly at word boundaries, and hence prefer RWs.

Method. We trained an SRN within the next-syllable-prediction paradigm in
the stream, given the current syllable at the input. In each simulation, the
weights were randomly initialized within [-.1,.1]. Learning rate was set to 0.1
and momentum to 0.8. Each syllable was represented as the concatenation of
two localist codes (a consonant and a vowel), to avoid any similarities within
consonants or within vowels that might introduce bias into computations. Hence,
the network had 13 input and 13 output units. We chose 20 hidden units and
20 context units. In each variability condition (given by nX), we ran 10 simu-
lations, each using different frames, implying different training and testing sets.
For training we used 100 concatenated words (the same words were necessar-
ily repeated within the given set, due to combinatorial limitations), randomly
ordered and without pauses. Each simulation lasted 600 epochs. Each testing
set contained 12 words. The next syllable (target) was considered to be pre-
dicted correctly if the location of both maxima on two output units (one for
the consonant and one for the vowel) matched those of the target. To assess the
performance of our SRNs, we had to come up with an appropriate procedure
that would correspond to the experimental design in Peña et al. In their exper-
iment 2, the subjects were asked to compare RWs and PWs, hearing one after
the other, and decide which of the two stimuli sounded more like a word. To
match this binary decision task, we compared the prediction errors for both RW
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Fig. 1. (a) Average generalization rate in unsegmented artificial languages of type
AiXBi. (b) Average errors for RWs and PWs, for predicting the X (index 2) and Bi

(index 3) syllables. Standard deviations (not shown) were below 20%.

and PW test sets in each simulation as follows: For both test sets we recorded
network prediction errors (squared Euclidean distance between the target and
the output vectors) in each prediction step. The word prediction error was taken
as the sum of prediction errors for the second (X) and the third syllables (Bi).
These summed errors for 12 RWs and 12 PWs were then sorted ascendingly. The
proportion of RW errors found in the first half of the sorted list was interpreted
as the generalization accuracy.

Results. As shown in Figure 1a, the generalization accuracy grows with increas-
ing variability of embedding. When nX ≥ 12, the network prefers RWs signifi-
cantly more often than PWs. Qualitatively, this result is in agreement with ex-
periment 2 in Onnis et al. (2004) although they reported a lower average rate for
nX = 24 (64% vs. 80% predicted by our networks). For nX = 3 they reported
42% average generalization rate, which is a very good match with the networks
(when considering the average for nX = 2 and 4). We can gain more insight into
the model behavior by looking at separate predictions of X and Bi (predictions
of the first syllables Ai are not informative and were observed to remain at ex-
pected rate 0.33). These SRN predictions for RWs (we will refer to them as RWs
of type1) and PWs (syllables X and B) are shown in Figure 1b. It can be seen
that whereas predictions within PWs do not improve with higher nX , predictions
of Bi in RWs (denoted as rule3) do significantly. This accounts for preference of
RWs over PWs for higher nX , expressed by lower summed errors in most cases.
Similar ascending curve was observed also in case of predicting Bi in RWs which
were constructed in a different way (as in Newport & Aslin, 2004) – using novel
X syllables that did not appear during training at all (henceforth, RWs of type2).
Whichever X is used in RWs, SRN is observed to predict the third RW syllable.
Gradual increase of accuracy in predicting Bi in RWs, combined with the previous
“input-buffering” step (remembering the first syllable) could be interpreted as the
computational implementation of the gradual switching from tracking adjacent to
remote dependencies, once the former become less reliable.
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Fig. 2. (a) Layout of hidden unit activations of a trained SRN projected by the principal
component analysis method. SRN was trained on language ko du, gi ba, te ro with
nX = 18. Zj denotes the input syllable Z presented at the j-th position within a word.
(b) Average prediction accuracy for Bi syllables in rule-words, in unsegmented artificial
languages of type AiXY Bi.

This invariant behavior with respect to RWs of both types can be seen if we
look at hidden unit activations of the SRN during testing. Figure 2a shows the
two-dimensional (linear) projections of these activation vectors, in case of large
variability of embedding (nX = 18). Activations corresponding to Ai syllables
are clearly separated, and so are the activations corresponding to Bi syllables.
The largest cluster (X) comprises hidden unit activations for intervening inputs,
covering syllables used during training (e.g. ta,de,ki,re), and also those used in
RWs of both type1 (e.g. ba,ro,gi,te) and type2 (ri,to,bu,ge). Clearly, hidden unit
activations document that the first and the last word syllables are distinctly
represented in SRN.

However, in case of nX < 12, such a distinction was observed to deteriorate.
Although cluster B remained fairly separated, clusters A and X tended to merge,
whereas the mutual distance between cluster A and X-B merged cluster became
tended to be smaller, too. This may be the reason for lower prediction rates.

Our results do not match the zero part of the variability hypothesis, because
preferences for RWs for nX = 1 are very low in Figure 1a. However, according to
Onnis et al. [9,7], high RW preference (and hence, generalization) in experiment
1 was only demonstrated in case of segmented artificial speech. If the zero-
variability hypothesis turned out to also apply to a continuous stream, it would
be a challenge to find a model that could account for that.

2.2 Experiment 2

Input data. To investigate whether an SRN can handle longer dependencies, we
created ALs of the type AiXY Bi, with three different frames per language, and
varying embeddings XY within the frames. We considered a simplified design
in that for given nX both X and Y syllables were taken from the same set and
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varied randomly (i.e. yielding n2
X combinations). In this experiment we focused

on predictions of RWs which were constructed using existing 3 frames combined
with 4 novel embeddings (i.e. 16 possible XY pairs). Out of all possible RWs, we
randomly chose 12 of them for testing in each simulation.

Method. Data representation was the same as in experiment 1, as well as the
network architecture. However, SRN trained for this task using standard er-
ror back-propagation algorithm failed to learn these more distant dependencies.
Hence, we used an online version of the real-time recurrent learning (RTRL; [12]
which is known to be a more powerful training algorithm for recurrent networks
[13]. In this case, SRN was set to have 18 hidden units, was trained for 500
epochs and the learning rate was decreased to 0.05. Other network parameters
were the same as in experiment 1.

Results. Figure 2b shows the prediction accuracy for Bi syllables within RWs
averaged over 10 simulations. This ability is interpreted as generalization ability
for novel words, although predictions of X and Y were very low, inversely related
to nX . Lower prediction accuracy and higher standard deviations compared to
previous case (see the rule3 curve in Figure 1b) suggest that this learning task
faces greater difficulty.

Peña et al. [6] and Onnis et al. [7] also used two-syllable embeddings in their
experiments, but they considered segmented rather than continuous speech. It
may be that due to segmentation cue, tested subjects do not find the two-
syllable embeddings more difficult in terms of learning generalization. However,
our simulations suggest that using two-syllable variable embeddings in case of
unsegmented stream does complicate learning. This network prediction could be
tested in an experiment with human subjects using unsegmented speech.

3 General Discussion

Statistical learning of dependencies between elements in a sequence is an auto-
matic process widely expoited by humans during processing of temporal struc-
tures. Earlier work showed that underlying computations are related to adjacent
elements, but more recent work suggests that they also pertain to nonadjacent
elements. The latter task appears to be more difficult, perhaps due to learner’s
bias towards adjacent transitional probabilities that could be perceptually easier
to track. In addition, with nonadjacent elements the learner faces a combinato-
rial problem, since the number of possible nonadjacent probabilities that can be
tracked grows exponentially with the length of the embedding. Therefore, it might
be that remote computations can only be carried out under certain conditions.

In search for these conditions, earlier research claimed that learning nonadja-
cent dependencies is only possible given the availability of additional cues. Peña
et al.’s conclusion was that pauses between words are necessary, Newport & Aslin
[5] stated that phonological cues are required, which explained their finding why
only nonadjacent segments could be learnt but not syllables. However, learning
nonadjacent dependencies can occur even in a continuous stream of data with-
out any additional cues, provided that the variability of embedding is sufficiently
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large [7]. Our experiment confirms this computational capability using a sequen-
tial learning device, Elman’s SRN, that only relies on the order of elements in a
sequence. This also implies that the system is capable of focusing on nonadjacent
regularities within the frames without having to apply higher algebraic rule-like
computations as hypothesized by Peña et al. Actually, the support for ubiqitous
associative learning mechanisms was also expressed in the follow-up work that
convincingly questioned the line od reasoning used in Peña et al. [14].

In experiment 2 we observed qualitatively the same behavior of SRN in case
of longer, two-syllable embeddings, but only if a more powerful RTRL train-
ing algorithm was substituted for standard error back-propagation. This more
realistic case is very relevant, since natural languages contain remote dependen-
cies, even with typically longer and varying span of embedding (such as AiXY Bi

and AiXY ZBi). Therefore, suitable experiments and computational simulations
should be the focus of subsequent research. In sequence learning literature, ear-
lier work had shown that nonadjacent dependencies spanning identical embedded
sequences (of 3 elements and more) are not learnt by human learners and provide
an especially difficult learning problem even for large SRNs [15].

On the other hand, tracking remote dependencies requires features reminis-
cent of learning context-free languages (CFLs). Recurrent neural nets have been
shown to have a potential to learn CFLs [16,17]. However, learning processes
in these cases are studied on a higher, more abstract level, typically employing
only a few symbols (such as the anbn language). This shifts the processing up
away from the syllable-based level that involves a considerably higher number
of elements.

In summary, tracking remote dependencies is a crucial linguistic ability, whose
underpinnings we are just starting to uncover. There are various questions that
remain unanswered, one of them being whether adjacent and nonadjacent de-
pendencies require separate learning processes, or the same general process can
be employed under a wide range of conditions. Previous results [8,7] and our sim-
ulations suggest that the learning system may be capable of various statistical
computations seeking the most reliable sources of information. This is consis-
tent with hypotheses of the “reduction of uncertainty” [18] and the simplicity
principle [19], stating that the learning system tends to choose the simplest hy-
pothesis about the available data by seeking its invariant patterns. When transi-
tional probabilities are high, adjacent elements are perceived as invariant. When
large variability disrupts adjacent probabilities, learners will tune to alternative
sources of invariance, potentially between remote elements.
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Abstract. Pulsed Neuron (PN) model was proposed as one of the sim-
plest models working by pulse trains. PN model has a membrane poten-
tial to deal with the temporal information, and the calculation process
is inexpensive. However, as the output function of PN model is an Unit
Step function, PN model cannot directly use the back-propagation (BP)
method. It would be possible to solve general pattern recognition prob-
lems if the PN model could be trained by the BP method. In this paper,
we propose a BP method for multilayer pulsed neural networks. The pro-
posed method uses the duality of PN model, in which the desired output
of hidden layer neuron is calculated from output layer neurons’ weights
and output. Experimental results show that the multilayer pulsed neural
networks can learn and recognize non-linear problems using the proposed
method.

1 Introduction

Artificial neural networks (ANN) are models intended to approximate the way
the human brain works. One of the most used methods, the multilayer perceptron
(MLP) trained by back-propagation (BP) method was proposed by Rumelhart
[1,2], and it is used to solve many pattern recognition problems such as voice
recognition.

A possible approach for processing temporal data is the use of ANNs based
on Pulsed Neuron (PN) models [3]. This type of neuron deals with input signals
on the form of pulse trains, using an internal membrane potential as a reference
for generating pulses on its output. PN models can directly deal with temporal
data and can be efficiently implemented in hardware, due to its simple struc-
ture. Furthermore, high processing speeds can be achieved, as PN model based
methods are usually highly parallelizable.

From this advantages, we implemented a PN based network on hardware
able to perform sound localization and recognition[4]. In [4], the PN models are
trained on software, as the used training algorithm required an weight normal-
ization which is and expensive operation to be implemented in hardware. And
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Simei et al [5,6] proposed a unsupervised training method for spiking (pulsed)
neuron model. This method includes the evolving process, it is difficult to be
implemented in hardware. Given this fact, there is the need for an training al-
gorithm suitable for hardware implementation. The BP method is well know as
a very effective supervised method to train neural networks. However, it cannot
be used on PN networks because the PN’s output is not differentiable. Sander
et al [7,8] proposed a BP method for spiking (pulsed) neuron model using tem-
porally encodings. This method works but is too complex to be implemented in
hardware.

This paper proposes a back-propagation method for the network, named Mul-
tilayer Pulsed Network (ML-PN), suitable for PN networks using the duality of
this neuron model [9]. By the duality, the neuron’s inputs can be changed with its
weights. This is equivalent to calculate the desired inputs and to update weights.
The desired inputs are training signals for previous neurons, and previous neu-
rons can learned. And it is a important purpose that the proposed method is
easily implemented in hardware. Experimental results show that the ML-PN
trained by the proposed method can efficiently recognize non-linear problem.

2 Pulsed Neuron Model

When processing time series data (e.g. sound), it is important to consider the
time relations and to have computationally inexpensive calculation procedures
to enable real-time processing, requirements fulfilled by the PN model.

Figure 1(a) shows the structure of the PN model. When an input pulse INn(t)
reaches the nth synapse, the local membrane potential pn(t) is increased by the
value of the weight wn. The local membrane potentials decay exponentially with
a time constant τn across time. The neuron’s output o(t) is given by:

o(t) = H(I(t) − θ) (1)

I(t) =
N∑

n=1

pk(t) (2)

pn(t) = wnINn(t) + pn(t − 1) exp(− t

τ
) (3)

where N is the total number of inputs, I(t) is the inner potential, θ is the
threshold and H(·) is the unit step function. The PN model also has a refractory
period tndti, during which the neuron is unable to fire, independently of the
membrane potential.

For the learning process, we add some components shown in Fig.1(b). Inpn(t)
is a local input potential, pO is an output potential and pT is a training potential
of this PN. If input pulses are applied to each synapse, the local membrane
potential pn(t) is increased by value of weight wn, and the local input potential
Inpn(t) is increased by a constant value 1.0. Output potential pO is increased
when the neuron fires. Training potential pT is increased by training pulses.
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Fig. 1. Pulsed neuron model

3 Proposed Method

3.1 Principle of Duality in Neuron Model

The output of the general neuron model is given by:

o = f(w, i,Θ) (4)

where w is weight vector, i is input vector, Θ is other parameters’ vector and
f(·) is the output function. The output of neuron is the same to the output of
its dual neuron, defined by changing w and i:

o = f(w, i,Θ) = f(i,w,Θ) (5)

Any neuron which output is obtained by the dot product between inputs and
weights presents duality. The PN model also have this property, as shown in
Eq.(1)-(3). Thus, it is possible to exchange wn and INn. Equation (6) is the
function used to update the weights. By duality it is possible to use the same
function to update the desired input values as shown in Eq.(7):

wnew = g(w, i,Θ) (6)

inew = g(i,w,Θ) (7)

If updating w to wnew is used to solve the input pattern problem, updating
the i to inew can also be used to update the dual neuron for solving the same
problem. Thus, the weight update for the dual neuron can be calculated using
the same equation used for the normal neuron. The desired input of a neuron is
the desired output used for training the previous neuron.

3.2 Neuron Model Learning Rule

Eq.(8) shows the function used to update weight wkj , which connects neuron j
from previous layer to neuron k on the current layer, in the supervised learning
rule for PN model:
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wkj(t + 1) = wkj(t) + α(pT
k (t) − pO

k (t)) · Inpj(t) (8)

where α is the learning rate. The membrane input potential Inpj(t) is updated
by:

Inpj(t) = INj(t) + INj(t − 1) · exp(− t

τ
) (9)

where INj(t) is the input pulse from previous neuron j. If τ is constant, β =
exp(− t

τ ) is also constant, thus:

Inpj(t) = INj(t) + βInpj(t − 1) =
Ts∑

a=0

βaINj(t − a)

and Eq.(8) changes to:

wkj(t + 1) = wkj(t) + α(pT
k (t) − pO

k (t))
Ts∑

a=0

βaINj(t − a) (10)

By duality, changing w to IN gives:

Tkj = Hj + α(pT
k (t) − pO

k (t))
Ts∑

a=0

βawkj(t − a)

Tj = Hj + α
K∑

k=1

{(pT
k (t) − pO

k (t))
Ts∑

a=0

βawkj(t − a)} (11)

where Hj is the output from previous neuron j, Tj is the desired output for
previous neuron j. The weights of neuron j can be updated by the training signal
Tj. Eq.(11) is not completely correct, because of w is update every interaction.
However, if the learning rate α is small and β < 1, Eq.(12) can be approximated
to:

Tj(t) = Hj + α

K∑
k=1

{(pT
k (t) − pO

k (t))wkj(t)} ≡ Hj + ∆Tj (12)

As Tj is a real number, it is difficult to be treated by a PN model. Therefore,
we define a following rule with learning threshold θlearn.

(a) If |∆Tj | < θlearn, it means Hj is similar to the desired output Tj. The neuron
j should keep this output, Tj = Hj .

(b) If ∆Tj < −θlearn, it means Hj is wrong output for neuron k. The neuron j
should not output, Tj = 0.

(c) If ∆Tj > θlearn, it means Hj should be 1. The neuron j should output 1,
Tj = 1.

This rule is simple to be calculated and can be implemented in hardware. The
structure of the learning rule calculating unit is shown in Fig.2.
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Fig. 2. Structure of Proposed Method
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Fig. 3. Input and Training Pulses on XOR Problem

4 Experimental Results

4.1 XOR Problem

At first, the proposed method’s efficiency was verified by solving a simple non-
linear problem, an XOR toy-data. Figure 3 shows the input and training pulses,
in which the x-axis is time, and y-axis is the neurons’ index. The gray level
represents the rate of the pulse train, with white corresponding to 0 (no pulse)
and black corresponding to 1 (pulse always). Bias pulses are always 1 and are
inputted at the same time. This data was used for training ML-PN, according
to the parameters shown in Table 1.

Fig. 4 shows the output result after learning. This network output presents the
same pulses as the training signal. Hence, the proposed method could successfully
learn the XOR problem.

Table2 shows the learning iteration number in each parameters. “×” means
it did not converge. When the learning rate αO is small and learning threshold
θlearn is big, this network don’t learn. Because of this, these parameters give
the effect to training pulses Hj . Hidden layer cannot learn correctly if training
pulses Hj don’t change.
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Table 1. Parameters of ML-PN for XOR Learning

Number of neurons
(Input - Hidden - Output) 3 - 4 - 2
Learning Rate αO / αM 3.0 × 10−4 / 3.0 × 10−6

Learning iteration 300
Learning Threshold θlearn 0.5
Sampling Frequency 16 kHz
Input Time Constant τ in 0.005
Output Time Constant τO 0.02
Training Time Constant τT 0.02
Training Weight Constant wT 0.063
Refractory Period tndti 0.001

Fig. 4. Output Pulses on XOR Problem

Table 2. The Learning Iterations Number on XOR Problem

Learning Threshold θlearn

Learning rate αO 0.3 0.4 0.5 0.6
2.5 × 10−4 101 209 × ×
3.0 × 10−4 136 550 296 ×
3.5 × 10−4 95 106 132 132
4.0 × 10−4 171 230 130 81

4.2 Sound Recognition Problem

In the next experiment, the proposed method was applied to a real-world prob-
lem of sound classification. Six different sound data sets were used on the exper-
iments: “alarm bell”, “interphone”, “kettle” (kettle’s neck sound when boiling
water), “phone” (telephone ring), “voice” (one vowel) and “white noise”.

Table 4 shows the accuracy obtained by the proposed method for each learning
dataset. The recognition rate is defined as the ratio between the number of
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Table 3. Parameters of ML-PN for Sound Learning

Number of neurons
(Input - Hidden - Output) 43 - 10 - 6
Learning Rate αO / αM 2.0 × 10−4 / 2.0 × 10−6

Learning Number 700
Learning Threshold θlearn 0.5
Sampling Frequency 16 kHz
Input Time Constant τ in 0.01
Output Time Constant τO 0.02
Training Time Constant τT 0.02
Training Weight Constant wT 0.0625
Refractory Period tndti 0.001

Table 4. The Results of Sound Recognition in Learning Dataset

Recognition Rate[%]
Input Sound alarm bell interphone kettle phone voice white noise
alarm bell 100.0 0.0 0.0 0.0 0.0 0.0
interphone 0.0 100.0 0.0 0.0 0.0 0.0

kettle 0.0 0.0 97.7 2.3 0.0 0.0
phone 0.0 0.0 0.0 97.7 2.3 0.0
voice 0.0 0.0 0.0 0.0 100.0 0.0

white noise 0.0 0.0 0.0 0.1 0.0 99.9

neuron’s firing corresponding to the sound and the total number of firings. The
correct sound source could be recognized with an average accuracy of 99.2%,
confirming the efficiency of the ML-PN model for complex real-world data.

5 Conclusions

This paper proposes a back-propagation method for PN model. The proposed
method calculates the desired output of the previous neuron from post neuron’s
weights and error using principle of duality of PN model. The previous neurons
learn with the desired outputs. The experimental results confirmed that the ML-
PN trained by the proposed method can recognize simple non-linear problems
as well as one real-world sound classification problem.

The proposed method consists of simple operations, but there are still mul-
tiplication operations in the weights updating process. Future works include
changing these multiplications to approximate operations and the implementa-
tion of all the learning processes in hardware.
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Abstract. One of the main reasons for the slow convergence and the suboptimal 
generalization results of MLP (Multilayer Perceptrons) based on gradient de-
scent training is the lack of a proper initialization of the weights to be adjusted. 
Even sophisticated learning procedures are not able to compensate for bad ini-
tial values of weights, while good initial guess leads to fast convergence and or 
better generalization capability even with simple gradient-based error minimi-
zation techniques. Although initial weight space in MLPs seems so critical there 
is no study so far of its properties with regards to which regions lead to solu-
tions or failures concerning generalization and convergence in real world prob-
lems. There exist only some preliminary studies for toy problems, like XOR. A 
data mining approach, based on Self Organizing Feature Maps (SOM), is in-
volved in this paper to demonstrate that a complete analysis of the MLP weight 
space is possible. This is the main novelty of this paper. The conclusions drawn 
from this novel application of SOM algorithm in MLP analysis extend signifi-
cantly previous preliminary results in the literature. MLP initialization proce-
dures are overviewed along with all conclusions so far drawn in the literature 
and an extensive experimental study on more representative tasks, using our 
data mining approach, reveals important initial weight space properties of 
MLPs, extending previous knowledge and literature results.   

1   Problem Statement and Previous Work 

BP training suffers from been very sensitive to initial conditions. In general terms, the 
choice of the initial weight vector w0 may speed convergence of the learning process 
towards a global or a local minimum if it happens to be located within the attraction 
basin of that minimum. Conversely, if w0 starts the search in a relatively flat region of 
the error surface it will slow down adaptation of the connection weights.  

Sensitivity of BP to initial weights, as well as to other learning parameters, was 
studied experimentally by Kolen and Pollack [1]. Using Monte Carlo simulations on 
feed forward networks trained with BP to learn the XOR function they discovered that 
convergence of these networks exhibits a complex fractal-like structure as a function 
of initial weights.  On the other hand, analytical studies for the same problem were 
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reported by Hamey [2] who reconsiders the XOR problem and provides a theoretical 
study of the error surface for the standard mean square error function. However, he 
notes the difficulty of having analytic solutions for the general pattern classification 
case as the study of the error surface is hampered by high dimensionality and because 
of the difficulty of theoretical analysis. In light of these results it seems that it is not 
possible, in general, to provide complete theoretical verification for a number of re-
search results claiming to cope effectively with the problem of weight initialization. 
This is, partially, due to the fact that an exhaustive study of the error surface and of 
the learning dynamics is almost unfeasible for the general case of the pattern classifi-
cation problem. On the other hand it is tempting to examine if the initial weight space 
possesses some kind of structure or if it is able to reveal features which may lead to an 
effective choice of initial weights. To this end, an effective means seems to be the 
analysis of the weight space of MLPs in different pattern classification problems. This 
also permits to gain significant evidence on the validity of different results having ei-
ther a theoretical basis or proven by experiments.  

In this paper we revisit the problem of weight initialization for neural networks 
trained with gradient descent based procedures. We verify, experimentally, a number 
of results reported by several researchers for the XOR-network and we extend these 
results to a well known problem, the IRIS classification problem. Our approach is 
based on clustering of the weight vectors after having trained an MLP with the BP 
procedure. Classification of the weight vectors into clusters is performed using  
unsupervised clustering of Kohonen’s self organizing feature maps, or simply self-
organizing maps (SOM). Results of our experiments not only reveal, as it was ex-
pected, the basins of attraction for the gradient descent learning algorithm, but also 
provide significant evidence that no inherent clustering exists for the initial weight 
space. Our approach consists in performing analysis of the weight space after having 
trained an MLP with the BP procedure for a significant number of weight vectors and 
for various different sets of training patterns. This approach has already been used by 
other researchers in the XOR problem, but what is new here is its application to a well 
known real life problem, the IRIS classification problem. Analysis of the weight 
space is done using a data clustering and visualization technique. We consider that 
this approach extends results obtained previously by other researchers. Main consid-
erations of these previous researches are presented hereafter.  

2   Analyzing the Weight Space for MLP Using Kohonen’s Self 
Organizing Feature Maps, as a Data Mining Tool for the 
Analysis 

Data clustering and visualization of the clusters, in this paper is based on Kohonen’s 
SOM. The SOM is a type of neural network which is based on unsupervised learning. 
Thus, unlike supervised learning methods, a SOM is able to perform clustering of data 
without any reference to the class membership of the input data.  

Training the map is an iterative process. At each step a sample vector x is ran-
domly chosen from the input data set and distances between x and all the codebook 
vectors are computed. Distances between codebook vectors and sample data corre-
spond to similarities between input data and units of the SOM. The best matching 
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unit (BMU), i.e. the most similar unit, is the map unit whose weight vector is clos-
est to x. The training algorithm updates the weight vector of the BMU and of those 
of its neighborhood so as to get these units move closer to the input vector x, i.e. 
diminish their distance to the sample vector [3,4,5]. More details on SOM can be 
found in [3]. 

The SOM algorithm performs a mapping from the high dimensional input space 
onto map units. This mapping preserves topology, in the sense that, relative distances 
between data points in the input space are preserved by distances between map units. 
This means that data points lying near each other in the input space will be mapped 
onto neighboring map units. The SOM can thus serve as a clustering tool of high di-
mensional data. Compared to standard techniques (k-means, ISODATA, competitive 
learning etc) SOM not only performs better in terms of effectively clustering input 
data to unknown clusters but also it is computationally more effective [3], [4]. Other 
comparisons and studies on the data mining capabilities of SOM can be found in the 
literature. We should mention here the use of the SOM Toolbox for SOM training, 
data visualization, validation and interpretation. SOM Toolbox was developed at Hel-
sinki University of Technology [5].  

We considered two classical benchmarks, the XOR function and the Iris classi-
fication problem. The XOR function was studied with a 2-2-1 network while the 
IRIS classification problem was investigated with two different network architec-
tures, one with 4-10-3 units and another one with 4-5-3 units. For all units the lo-
gistic sigmoid was used as an activation function. Experiments for both problems 
and for different network architectures were carried out according to the following 
steps:  
1. MLPs were trained with the on line BP learning algorithm. All experiments were 

carried out with the same training parameters, that is interval for initial weights    
[-2.0, 2.0], learning rate 0.9, max number of epochs 30000 and error between tar-
get and actual network output less than 0.01. 

2. A relatively large number of weight vectors, that is 5000, were chosen from the 
initial weight space. Weight vectors were randomly sampled in the interval [-2.0, 
+2.0] using uniform distribution. After training, the set of weight vectors was 
roughly divided into two distinct subsets, or categories, of weight vectors. One 
subset was made up from, those weight vectors for which both, training suc-
ceeded (the error goal was reached), and generalization performance was good, 
i.e. less than 20% of previously unseen patterns rejected per class. These vectors 
are called the successful weight vectors while those not meeting the above crite-
ria are called the failed weight vectors and they fall within the second category. 

3. For each weight vector 0
iw considered before training, the MLP was trained with 

the on-line gradient descent and a weight vector *
iw  after training was obtained. 

Thus, gradient descent is considered mapping the weight space before training W 
onto the weight space after training W’. Given the high dimensionality of these 
spaces we then used SOMs and projected each one of them on the 2-dimensional 
space. This approach is graphically depicted in Figure 1.  
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Fig. 1. How SOM could be used as a data mining tool for clustering weight space 

4. The 2-dimensional projections of W and W’ thus obtained presented the clusters 
of weight vectors being discovered by the SOM. Visual inspection of the map 
representing W’ permitted to draw some interesting qualitative information re-
garding the basins of attraction for the gradient descent procedure. Activation of 
the SOM units and visualization of the unified distance matrix (UM) to identify 
classification of weight vectors into different clusters. Details on these results are 
presented in the following section. 

5. We, finally, used the possibility offered by the SOM Toolbox to identify the 
weight vectors for which a unit of the SOM is activated to verify density of W re-
garding convergence and generalization. Actually, given a SOM node in a cluster 

of successful weight vectors we identified one weight vector before training 0
iw  

that gave after training a successful weight vector *
iw . By injecting additive 

noise, with normal distribution 2(0, )N σ , on 0
iw , we took a number of weight 

vectors in the vicinity of 0
iw . Retraining the MLP with the same BP procedure 

and mapping the weight vectors after training on the SOM we discovered that 
even for very small variance many of the noisy weight vectors did not behave the 

same way as 0
iw . 

3   Main Results and Discussion  

The tool for presenting results and analyzing them is the unified distance matrix 
(UM). UM represents the organization of the SOM units into groups, as uniform areas 
on the 2-dimensional grid.  
Result 1. Clustering of the weight vectors after training, which is performed by the 

SOM without any class membership information, depicts uniform regions 
of unit activity corresponding to clusters of successful weight vectors and 
thin borderline areas for the failed weight vectors. Figures 2, a and b, 
visualize clustering of the weights for the 4-10-3 IRIS classification net-
work, while Figures 2, c and d are representative for the 4-5-3 network. 

The clusters formed by the SOM correspond to the various minima reached by the 
gradient descent throughout each experiment. These minima can be global or local. In 
this sense and together with the topology preservation mapping of the SOM it is 
straightforward to assume that clusters indicate basins of attraction for the dynamics 
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of the learning procedure. This explains why the number of successful weight regions 
for the 4-5-3 IRIS network is less than the respective number for the 4-10-3 IRIS net-
work. This constitutes an experimental confirmation that as the number of unit in the 
hidden layer increases the number of basins of attraction increases and therefore the 
study of the weight space becomes more difficult; see Kolen and Pollack [1].  
Result 2. Execution of step 5, described above, for a number of different values of  

2σ  demonstrated that even for very small variance many of the noisy 

weight vectors did not behave the same way as the initial vector 0
iw , i.e. 

they did not result in successful training. Experiments showed that it is 
not possible to safely conclude on a minimum “size” for a neighbor of a 
successful weight vector in which gradient descent results in successful 
weight vectors. 

Though important the above results are of practical importance in terms of weight 
initialization. In order to acquire a better idea on how to deal with this matter we pro-
ceeded in a number of experiments using the 4-10-3 MLP for the IRIS problem. Dur-
ing these experiments we used values for the synaptic weight randomly chosen from 

intervals ,α α⎡ ⎤⎣ ⎦− + , with α varying from -6.0 up to +6.0, by a step of 0.20. Results 

of these experiments are stated hereafter. 
Result 3. Training seems to be very sensitive to the choice of the training patterns. 

For the same interval of initial weight vectors and even the same weight 
vectors, learning curves and subsequent generalization of BP are clearly 
different.  

However, during these trails we did not adopt some specific strategy on how to 
choose the training patterns and so it remains unclear what characteristic of the input 
space really biases the learning phase. A possible explanation relies on the inherent 
structure of the IRIS problem, where two classes are highly correlated. Finally, it 
seems that a good “strategy” to overcome this problem is to carry out training chang-
ing the set of training patterns every 50 or 100 initial weight vectors, these numbers 
chosen arbitrarily.   
Result 4. Training tends to be more successful when the weight vectors are chosen 

in an interval ],[ aa−  with 2
pα σ≈ , where 2

pσ  is the maximum 

variance of the variables of the input pattern space.  
While this result is in the same line with some previous research outcomes, it 

seems that it more accurately reflects a good strategy for weight initialization than 
previous similar results in the literature. This paper shows that it is not possible to be 
more specific in the weight initialization range than the above result. More experi-
ments, however, are needed to establish such an outcome. 
Result 5. While training seems to be more successful for values of the initial 

weights within some interval ],[ aa−  as described above, it is very 

likely for he BP to give a successful; learning curve for even greater val-
ues in intervals ]/,[],/[ kakakakakaka +∪−− , where k a natural 

number. 
Finally, figures 3,4 below demonstrate the validity of our results 4, 5 above by il-

lustrating how generalization performance is affected by the initialization range when 



 Revisiting the Problem of Weight Initialization for MLP Trained with BP 313 

this increases. In the six samples below we see that up to a variance point as indicated 
by the results 4,5 of the initialization range, there are possibilities for obtaining better 
generalization than in all other cases. Incrementing this range we find points in the 
weight space where no solution can be granted, but afterwards, again, there are solu-
tions but with less generalization capability than within the smaller range. This vali-
dates the view that even in larger ranges solutions exist, not so successful perhaps, but 
with less possibility than within the smaller initialization ranges.  
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Fig. 2a). Mapping of weight vectors for the 
Iris network. Mapping of the successful 
weight vectors for the 10 hidden units Iris 
network. 

Fig. 2b). Mapping of weight vectors for the 
Iris network. Mapping of the failed weight 
vectors for the 10 hidden units the Iris net-
work. 
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Fig. 2c). Mapping of weight vectors for the 
Iris network. Mapping of the successful 
weight vectors for the 5 hidden units Iris 
network. 

Fig. 2d). Mapping of weight vectors for the 
Iris network.Mapping of the failed weight 
vectors for the 5 hidden units Iris network. 
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Fig. 3a). How MLP Generalization is affected 
by initial weights distribution for the Iris net-
work. Misclassification results are shown for 
selection of the initial weights from the inter-
vals [-0.2  0.0] U [0.0  0.2](upper slide)  and 
[-1   -0.8] U [0.8   1] (lower slide). 

Fig. 3b). How MLP Generalization is af-
fected by initial weights distribution for the 
Iris network. Misclassification results are 
shown for selection of the initial weights 
from the intervals [-0.8 0.6] U [0.6   
0.8](upper slide) and  [-1.6    -1.4] U [1.4   
1.6] (lower slide). 

4   Conclusions and Future Trends 

This paper revisits MLP initialization problem in the case of BP training and extends 
literature results both in the description of the weight space as well as in the  
estimation of a good strategy for selecting weight initialization range. The analysis is 
performed on a complex classification task, like Iris problem, which is more represen-
tative of “real” world problems characteristics than benchmarks used so far in the lit-
erature. To this end, a data mining approach, based on Self Organizing Feature Maps 
(SOM), is involved in this paper. The conclusions drawn from this novel application 
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of SOM algorithm in MLP analysis extend significantly previous preliminary results 
in the literature. More detailed analysis on real world benchmarks is needed to estab-
lish better these results and more elaborate specification of the weight initialization 
range than the ones of results 4, 5 in this study are needed not, however, too “accu-
rate” as in previous studies. Previous studies have been misleading in this aspect not 
showing that the weight initialization space is not dense in solutions but it follows an 
almost fractal structure and, therefore, a probabilistic approach is more suitable in or-
der to find out a good strategy for MLP weight initialization. 
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Fig. 4a). How MLP Generalization is af-
fected by initial weights distribution for the 
Iris network.  Misclassification results are 
shown for selection of the initial weights 
from the intervals  [-1.8   -1.6] U [1.6     1.8]. 

Fig. 4b). How MLP Generalization is af-
fected by initial weights distribution for the 
Iris network. Misclassification results are 
shown for selection of the initial weights 
from the intervals [-2.4   -2.2] U  [2.2   2.4].  
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Abstract. In the past two decades, the use of the weight decay reg-
ularizer for improving the generalization ability of neural networks has
been extensively investigated. However, most existing results focus on the
fault-free neural networks only. This papers extends the analysis on the
generalization ability for networks with multiplicative weight noise. Our
analysis result allows us not only to estimate the generalization ability of
a faulty network, but also to select a good model from various settings.
Simulated experiments are performed to verify theoretical result.

1 Introduction

The weight decay regularizer for improving the generalization ability has been
investigated extensively[1,2]. In this approach, the most important issue is the
selection of the regularization parameter. If the value is too small, the trained
network well performs on the training set but not on unseen samples. On the
other hand, if the value is too large, the trained network cannot well capture the
information from the training set. One approach to select the parameter is to use
the testing set or cross-validation approaches. We train a number of networks
with different regularization parameters. Afterwards, we select the best trained
network based on the test set or cross-validation data. However, in many real
situations, data is very scarce and we may not have enough data for constructing
a test set. Also, the process to test the performance of the trained networks is
very time consuming.

Another approach to select the regularization parameter is final prediction
error (FPE)[1]. In this approach, we train a number of networks each of which
has its own regularization parameter. Afterwards, we predict the generalization
ability of these trained networks from the training error based on a so-called
prediction error formula. We then select the best trained network based on the
estimated FPE.

Although there are a lot of results related to the generalization ability, most of
them focus on faulty-free networks only. In the implementation of a neural net-
work, network faults can occur in many different form, such as weight noise[3]. To
the best of our knowledge, theoretical result of the generalization error on weight
decay trained networks with fault situation has not yet been explored. Hence, it
will be useful for estimating the generalization ability for faulty networks.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 316–323, 2009.
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In this paper, we will use the radial basis function (RBF) network model as
an example to develop the prediction error formula. The background on RBF
networks will be presented in Section 2. The fault model is then presented in
Section 3. The prediction error formula is then developed in Section 4. Section 5
presents the simulation result. Section 6 concludes our results and discuss the
possible extension for the general feedforward network.

2 Data Model and RBF Network with Weight Decay

Throughout the paper, we are given a training dataset,

Dt =
{
(xj , yj) : xj ∈ �K , yj ∈ �, j = 1, · · · , N.

}
,

where xj and yj are the input and output samples of an unknown system, re-
spectively. We assume that the dataset Dt is generated by a stochastic system[2],
given by

yj = f(xj) + ej (1)

where f(·) is the unknown system mapping, and ej’s are the random measure-
ment noise. The noise terms ej ’s are identical independent zero-mean Gaussian
random variables with variance equal to Se. In the RBF approach, we would like
to approximate the mapping f(·) by a weighted sum of basis functions, given by

f(x) ≈ f̂(x,w) =
M∑
i=1

wiφi(x), (2)

where w = [w1, · · · , wM ]T is the weight vector, φi(·)’s are the radial basis func-
tions given by

φi(x) = exp
(

−‖x − ci‖2

σ

)
, (3)

the vectors ci’s are RBF centers, and the positive parameter σ > 0 controls the
width of the RBFs. In the vector-matrix notation, (2) is written as

f̂(x,w) = ΦT (x)w, (4)

where Φ(x) = [φ1(x), · · · , φM (x)]T . Our learning task is to find out a weight
vector that best fits the observations. Adding a weight decay regularizer [1][4] is
a common technique in neural network learning. With a weight decay regularizer,
the objective function is given by

J (w, λ) =
1
N

N∑
j=1

(yj − ΦT (x)w)2 + λwT w, (5)

where λwT w is the regularizer term, and λ is the weight decay parameter. The
weight vector that minimizes the objective function is given by

w = (Hφ + λI)−1 1
N

N∑
j=1

Φ(xj)yj . (6)
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where I is the identity matrix, and

Hφ =
1
N

N∑
j=1

Φ(xj)ΦT (xj) . (7)

3 Fault Model

We consider the multiplicative weight noise case [3]. To implement a neural
network, the values of the weights must be obtained first. Usually, this is accom-
plished by running a computer program that executes the training algorithm.
Then, the trained weights are encoded using a digital implementation, like on
FPGA [5], to realize the neural network. However, this encoding will cause prob-
lems as the number representation in FPGA is a low precision floating point for-
mat [6], which is different from the format in a computer. The value of a trained
weight will have to be rounded to fit the format and then a rounding error will
occur. In accordance with the studies in [7], this rounding error is proportional
to the magnitude of the number encoded. Therefore, a digital implementation of
a computer simulated neural network will lead to a problem identical to adding
multiplicative weight noise to that neural network.

In multiplicative weight noise, each implemented weight deviates from its
nominal value by a random percent, i.e.,

w̃i,b = wi + bi wi ∀ i = 1, 2, · · · , M , (8)

where bi’s are identical independent mean zero random variables with variance
Sb. The density function of bi’s are symmetrical. In the matrix-vector form, the
output of a faulty network is given by

f̂(x, w̃b) = ΦT (x) w̃b . (9)

The training error of an implementation w̃b is then given by

E(Dt)b =
1
N

N∑
j=1

(yj − ΦT (xj) w̃b)2 . (10)

From (8), (10) becomes

E(Dt)b =
1
N

N∑
j=1

⎡⎣(yj −
M∑

i=1

φi(xj)wi

)2

+ 2

(
M∑

i=1

φi(xj)biwi

)(
yj −

M∑
i=1

φi(xj)wi

)

+
M∑

i=1

M∑
i′=1

φi(xj)φi′(xj)bibi′wiwi′

]
. (11)

Since bis are identical independent zero mean random variables with symmetric
density, the expectation value of E(w)b is equal to

Ē(Dt)b =
1
N

N∑
j=1

⎡⎣(yj −
M∑
i=1

φi(xj)wi

)2

+
M∑
i=1

Sbφ
2
i (xj)w2

i

⎤⎦ . (12)
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Ē(Dt)b is the expected training error over weight noise. Equation (12) can be
rewritten in a matrix-vector form:

Ē(Dt)b = E(Dt) + SbwT Gw (13)

where
G = diag(Hφ) (14)

In equation (13), the first term of the right hand side is the training error of a
fault-free network while the second term is the error created by the weight noise.

4 Mean Prediction Error

Minimizing the training square error does not mean that the network performs
well on an unseen test set. Estimating the generalization performance from the
training error is very important. It allows us not only to predict the performance
of a trained network but also to select the model from various settings. For the
faulty case, we are interesting in estimating the prediction error of the faulty
network from a trained network. With this estimation, we no need to use a test
set and to generate the possible faulty case to obtain the prediction error.

Let Dt = {(xj , yj)}N
j=1 and Df = {(x′

j , y
′
j)}N ′

j=1, be the training set and the
testing set, respectively. For a network with weight noise, the mean training error
(MTE) Ē(Dt)b and the mean prediction error (MPE) Ē(Df )b are given by

Ē(Dt)b =
〈
y2
〉
Dt

− 2
〈
yΦT (x)w

〉
Dt

+ wT (Hφ + SbG)w (15)

Ē(Df )b =
〈
y′2〉

Df
− 2
〈
y′ΦT (x′)w

〉
Df

+ wT
(
H′

φ + SbG′)w , (16)

where Hφ = 1
N

∑N
j=1 Φ(xj)ΦT (xj) , H′

φ = 1
N ′
∑N ′

j=1 Φ(x′
j)Φ

T (x′
j), G=diag(Hφ),

G′ = diag(H′
φ), and 〈·〉 is the expectation operator. Assuming that N and N ′

are large, H′
φ ≈ Hφ, G′ ≈ G and

〈
y2
〉
Dt

≈
〈
y′2〉

Df
. So, the difference between

Ē(Dt)b and Ē(Df )b lies in the difference between their second terms.
We assume that there is an optimal xo such that

yj = ΦT (xj)wo + ej ; (17)
y′

j = ΦT (x′
j)wo + e′j , (18)

where ej ’s and e′j ’s are independent zero-mean Gaussian random variables with
variance equal to Se. One should further note that w is obtained entirely by Dt,
which is independent of Df . Therefore, we can have

〈
y′φT (x′)w

〉
Df

=

⎛⎝ 1
N

N ′∑
k=1

y′
kφT (x′

k)

⎞⎠w . (19)
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The second term in Ē(Df )b can thus be given by

−2
〈
y′ΦT (x′)

〉
Df

w

= −2

⎛⎝ 1
N

N ′∑
j=1

y′
jΦ

T (x′
k)

⎞⎠ (Hφ + λI)−1

⎛⎝ 1
N

N∑
j=1

yjΦ(xj)

⎞⎠ . (20)

From (17) and (18), the second term in Ē(Df )b becomes

−2wT
o Hφ (Hφ + λI)−1 Hφwo .

Using a similar method, the second term in Ē(Dt)b is given by

−2
Se

N
Tr
{
Hφ (Hφ + λI)−1

}
− 2wT

o Hφ (Hφ + λI)−1 Hφwo.

As a result, the MPE of a faulty RBF network can be in terms of the MTE of
the faulty RBF network, given by

Ē(Df )b = Ē(Dt)b + 2
Se

N
Tr
{
Hφ (Hφ + λI)−1

}
. (21)

From (13), the MPE of a faulty RBF network can be in terms of the MTE of
the fault-free RBF network, given by

Ē(Df )b = E(Dt) + 2
Se

N
Tr
{
Hφ (Hφ + λI)−1

}
+ SbwT Gw. (22)

In (22), the term E(Dt) is the training error of the trained fault-free network and
it can be obtained from the training set. Besides, Hφ and G can also be obtained.
The weight noise Sb is assumed to be known. The only unknown variable is the
variance of the measurement noise Se but it can be estimated from the Fedorov’s
method [8], given by

Se =
1

N − M

N∑
j=1

(yj − ΦT (xj)H−1
φ

1
N

N∑
j=1

Φ(xj)yj)2 . (23)

5 Simulations

To verify our result, we consider RBF networks and two problems: (1) function
approximation problem and (2) nonlinear time series prediction problem.

The sinc function is a common benchmark [2] and its output is generated by

y = sinc(x) + e, (24)

where the noise term e is a mean zero Gaussian noise with variance σ2
e = 0.01.

A training dataset (200 samples) is generated. Also, a testing dataset (1000
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Fig. 1. Prediction error of sinc function example for faulty networks

samples) is generated. The RBF network model has 41 RBF nodes. The 41
centers are selected as {−5, −4.75, · · · , 4.75, 5}. The parameter ∆ is set to 0.1.

We consider the following nonlinear autoregressive time series[2], given by

y(i) =
(
0.8 − 0.5 exp(−y2(i − 1))

)
y(i − 1) −

(
0.3 + 0.9 exp(−y2(i − 1))

)
y(i − 2)

+0.1 sin(πy(i − 1)) + e(i), (25)

where e(i) is a mean zero Gaussian random variable that drives the series. Its
variance is equal to 0.09. One thousand samples were generated given y(0) =
y(−1) = 0. The first 500 data points, were used for training and the other 500
samples were used for testing. Our RBF model is used to predict y(i) based on
the past observations, y(i − 1) and y(i − 2). The prediction is given by

ŷ(i) = f̂(x(i),w) =
M∑

j=1

wjφj(x(i)), (26)

where x(i) = [y(i − 1), y(i − 2)]T . For this 2D input case, the Chen’s LROLS
is applied to select important RBF centers (basis functions) from the training
samples. The number of selected RBF nodes is 21.

In weight decay, the turning parameter is λ. We illustrate how the MPE can
help us to select an appropriate value of λ for minimizing the testing error of
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Fig. 2. Prediction error of the nonlinear autoregressive time series prediction for faulty
networks

faulty networks. We training a number of networks under different lambda val-
ues. Afterwards, we calculate the MPE based on our formula. To verify our
estimation, we also measure the testing error of faulty networks based on testing
sets. For the weight noise fault model, we randomly generate 10, 000 faulty net-
works for each weight noise level. The results from MPE (obtained from training
error of a fault-free network) and the true testing error (from the testing set)
are depicted in Figure 1- 2.

From the figures, we can observe that the MPE can accurately locate the
appropriate value of λ for minimizing the testing error of faulty networks. For
the sinc function example, with weight noise, when Sb = 0.01, from the test set
evaluation, the λ should be set to around 0.005. With our MPE formula, the
optimal λ should be set to 0.0047. When Sb = 0.1, from the test set evaluation,
the λ should be set to around 0.0078. With our MPE formula, the optimal λ
should be set to 0.0075. For the nonlinear autoregressive time series, we obtain
the similar result shown in Figure 2.

6 Conclusion

In this paper, the error analysis on the faulty RBF network is presented. Simu-
lation results show that the formulas can help us to select an appropriate value
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of λ for minimizing the testing error of faulty networks. Although our discussion
focuses on RBF networks, one can follow our derivation to handle multilayer
networks with other activations, such as sigmoid and hyperbolic tangent. Of
course, in such the extended case, we should use some linearization technique to
linearize the network function of a multilayer network.

Acknowledgement

The work is supported by the Hong Kong Special Administrative Region RGC
Earmarked Grants (Project No. CityU 115606).

References

1. Moody, J.E.: Note on generalization, regularization, and architecture selection in
nonlinear learning systems. In: First IEEE-SP Workshop on Neural Networks for
Signal Processing, pp. 1–10 (1991)

2. Chen, S., Hong, X., Harris, C.J., Sharkey, P.M.: Sparse modelling using orthogonal
forward regression with press statistic and regularization. In: IEEE Trans. Systems,
Man and Cybernetics, Part B, pp. 898–911 (2004)

3. Bernier, J.L., Ortega, J., Rodriguez, M.M., Rojas, I., Prieto, A.: An accurate mea-
sure for multilayer perceptron tolerance to weight deviations. Neural Processing
Letters 10(2), 121–130 (1999)

4. Leung, C.S., Young, G.H., Sum, J., Kan, W.K.: On the regularization of forgetting
recursive least square. IEEE Transactions on Neural Networks 10, 1482–1486 (1999)

5. Anitha, D., Himavathi, S., Muthuramalingam, A.: Feedforward neural network im-
plementation in fpga using layer multiplexing for effective resource utilization. IEEE
Transactions on Neural Networks 18, 880–888 (2007)

6. Moussa, M., Savich, A.W., Areibi, S.: The impact of arithmetic representation on
implementing mlp-bp on fpgas: A study. IEEE Transactions on Neural Networks 18,
240–252 (2007)

7. Kaneko, T., Liu, B.: Effect of coefficient rounding in floating-point digital filters.
IEEE Trans. on Aerospace and Electronic Systems AE-7, 995–1003 (1970)

8. Fedorov, V.V.: Theory of optimal experiments. Academic Press, London (1972)



On Node-Fault-Injection Training of an RBF
Network

John Sum1, Chi-sing Leung2, and Kevin Ho3,�

1 Institute of E-Commerce, National Chung Hsing University
Taichung 402, Taiwan
pfsum@nchu.edu.tw

2 Department of Electronic Engineering, City University of Hong Kong
Kowloon Tong, KLN, Hong Kong

eeleungc@cityu.edu.hk
3 Department of Computer Science and Communication Engineering,

Providence University, Sha-Lu, Taiwan
ho@pu.edu.tw

Abstract. While injecting fault during training has long been demon-
strated as an effective method to improve fault tolerance of a neural net-
work, not much theoretical work has been done to explain these results.
In this paper, two different node-fault-injection-based on-line learning al-
gorithms, including (1) injecting multinode fault during training and (2)
weight decay with injecting multinode fault, are studied. Their almost
sure convergence will be proved and thus their corresponding objective
functions are deduced.

1 Introduction

Many methods have been developed throughout the last two decades to improve
the fault tolerance of a neural network. Well known methods include injecting
random fault during training [20,4], introducing network redundancy [18], apply-
ing weight decay learning [7], formulating the training algorithm as a nonlinear
constraint optimization problem [8,17], bounding weight magnitude during train-
ing [5,12,14], and adding fault tolerant regularizer [2,16,21]. A complete survey
on fault tolerant learning methods is exhaustive. Readers please refer to [6] and
[23] for reference.

Amongst all, the fault-injection-based on-line learning algorithms are of least
theoretical studied. By fault injection, either fault or noise is introduced to a
neural network model before each step of training. This fault could either be
node fault (stuck-at-zero), weight noise or input noise. As many studies have
been reported in the literature on input noise injection [1,3,19,10,11], the primary
focus of this paper is on node fault injection. Our companion paper [13] will be
focus on weight noise injection.

Suppose a neural network consists of M weights. Let θ ∈ RM be the weight
vector of a neural network model and the update equation is given by
� Corresponding author.
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θ(t + 1) = θ(t) − F (x(t + 1), y(t + 1), θ(t)). The idea of node fault injection
is to mimic the network that is suffered from random node fault. Before each
step of training, each node output is set randomly to either normal or zero
(stuck-at-zero). Weight update is then based on this perturbed nodes’ output.
For simplicity, we let F̃ (·, ·, ·) be the function corresponding to this perturbed
network model. The update equation can readily be defined as follows :

θ(t + 1) = θ(t) − F̃ (x(t + 1), y(t + 1), θ(t)). (1)

Despite the technique of injecting node fault has appeared for almost two decades
[4,7,20], little theoretical analytical result is known about its convergence behav-
ior, the corresponding objective function to be minimized and its extension by
adding weight decay during training an RBF network.

In this paper, two node-fault-injection-based on-line learning algorithms,
namely (1) injecting multinode fault [4,20] during training and (2) weight decay
with injecting multinode fault [7], will be analyzed. Analysis on weight-noise-
injection-based training will be presented in another paper. Their corresponding
objective functions and their convergence properties will be analyzed analyti-
cally. The major technique is by applying the Gladyshev Theorem in the theory
of Stochastic Approximation [9]. The definition of a RBF model and the node
fault injection training algorithms will be introduced in the next section. Then,
the main results on their convergence properties and the objective functions will
be stated in Section 3. The proof of theorems will be presented in Section 4.
Section 5 will give a conclusion.

2 RBF Training with Node Fault Injection

Let M0 be an unknown system to be modeled. The input and output of M0 are
denoted by x and y respectively. The only information we know about M0 is a
set of measurement data D, where D = {(xk, yk)}N

k=1. Making use of this data
set, an estimated model M̂ that is good enough to capture the general behavior
of the unknown system can be obtained. For k = 1, 2, · · · , N

M0 : yk = f(xk) + ek, (2)

where (xk, yk) is the kth input-output pair that is measured from an unknown
deterministic system f(x) with random output noise ek, ek ∼ N (0, Se). To model
the unknown system, we assume that f(x) can be realized by an RBF network
consisting of M hidden nodes, i.e.

yk =
M∑
i=1

θ∗i φi(xk) + ek (3)

for all k = 1, 2, · · · , N and φi(x) for all i = 1, 2, · · · , M are the radial basis
functions given by

φi(x) = exp
(

− (x − ci)2

σ

)
, (4)
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where cis are the centers of the radial basis functions and the positive parameter
σ > 0 controls the width of the radial basis functions. Thus, a model M in Ω is
represented by an M -vector, θ∗ = (θ∗1 , θ∗2 , · · · , θ∗M )T and the model set Ω will be
isomorphic to RM .

2.1 Multinode Fault Injection Training

In conventional training by minimizing MSE, the update equation for θ(t) is
given by

θ(t + 1) = θ(t) + µt(yt − φT (xt)θ(t))φ(xt), (5)

where µt (for t ≥ 1) is the step size at the tth iteration. While an RBF network
is trained by multinode fault injection, the update equation is given by

θ(t + 1) = θ(t) + µt(yt − φ̃T (xt)θ(t))φ̃(xt), (6)
φ̃i = (1 − βi)φi, P (βi = 1) = p, ∀ i = 1, · · · , M. (7)

We assume that all nodes are of equal fault rate p, i.e.

P (βi) =
{

p if βi = 1
1 − p if βi = 0. (8)

for i = 1, 2, · · · , M , Besides, β1, · · · , βM are independent random variables.

2.2 Weight Decay-Based Multinode Fault Injection Training

The update equation for weight decay-based multinode fault injection training
is similar to that of simple multinode fault injection, except that a decay term is
added. For a RBF network, f(xt, θ(t)) = φ(xt)T θ(t), that is trained by injecting
multinode fault during weight decay learning,

θ(t + 1) = θ(t) + µt

{
(yt − φ̃T (xt)θ(t))φ̃(xt) − λθ(t)

}
, (9)

φ̃i = (1 − βi)φi, (10)

for all i = 1, · · · , M . The definition of the random variable βi is the same as
before. P (βi) = p if βi = 1 and (1 − p) otherwise.

3 Main Results

Theory of stochastic approximation has been developed for more than half a
century for the analysis of recursive algorithms. Advanced theoretical works for
complicated recursive algorithms have still been under investigation [15]. The
theorem applied in this paper is based on Gladyshev Theorem [9].
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Theorem 1 (Gladyshev Theorem [9]). Let θ(t) and M(θ(t), ω(t)) for all
t = 0, 1, 2, and so on be m-vectors. ω(t) for all t = 0, 1, 2, and so on are i.i.d.
random vectors with probability density function P (ω) 1. Consider a recursive
algorithm defined as follows :

θ(t + 1) = θ(t) − µtM(θ(t), ω(t)). (11)

In which, the expectation of M(θ, ω) over ω, i.e.

M̄(θ) =
∫

M(θ, ω)P (ω)dω, (12)

has unique solution θ∗ such that M̄(θ∗) = 0.
Suppose there exists positive constants κ1 and κ2 such that the following con-

ditions are satisfied :

(C1) µt ≥ 0,
∑

t µt = ∞ and
∑

t µ2
t < ∞.

(C2) infε<‖θ−θ∗‖<ε−1(θ − θ∗)T M̄(θ) > 0, for all ε > 0.
(C3)

∫
‖M(θ, ω)‖2P (ω)dω ≤ κ1 + κ2‖θ‖2.

Then for t → ∞, θ(t) converges to θ∗ with probability one.

Normally, the first condition can easily be satisfied. It is because the step size
µt could be defined as const

t for all t ≥ 1. Therefore, we skip the proof of
Condition (C1) in the rest of this section. For the sake of presentation, we let
Y = 1

N

∑N
k=1 ykφ(xk). Besides, we have M̄(θ) = −h(θ) and ω is a random vector

augmenting (xt, yt, β).

3.1 Multinode Fault Injection Training

Applying Galdyshev Theorem, the following theorem can be proved for injecting
multinode fault training.

Theorem 2. For injecting multinode fault during training an RBF network, the
weight vector θ(t) will converge with probability one to

θ∗ = [Hφ + p(Qg − Hφ)]−1
Y. (13)

Besides, the corresponding objective function to be minimized is given by

L(θ|D) =
1
N

N∑
k=1

(yk − f(xk, θ))2 + pθT (Qg − Hφ)θ. (14)

1 In the following convergence proof, ω(t) = (xt, yt, βt). Owing not to confuse the time
index t with the element index k, the subscript t is omitted. So that ω(t) = (xt, yt, β).
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3.2 Weight Decay-Based Multinode Fault Injection Training

For weight decay-based multinode fault injection training, we can have the fol-
lowing theorem.

Theorem 3. For injecting multinode fault during weight decay training an RBF
network, the weight vector θ(t) will converge with probability one to

θ∗ =
[
Hφ + p(Qg − Hφ) +

λ

1 − p
IM×M

]−1

Y. (15)

Besides, the corresponding objective function to be minimized is given by

L(θ|D) =
1
N

N∑
k=1

(yk − f(xk, θ))2 + θT

{
p(Qg − Hφ) +

λ

1 − p
IM×M

}
θ. (16)

4 Proof of Theorems

Next, we are going to apply the Gladyshev Theorem for the convergence proof.
Normally, the first condition can easily be satisfied. It is because the step size
µt could be pre-defined. So, we skip the proof of Condition (C1) for simplicity
and then prove only the Condition (C2) and (C3).

4.1 Injecting Multinode Fault (Theorem 2)

To prove the condition (C2), we need to consider the mean update equation
h(θ(t)). By taking the expectation of the second part of the Equation (6) with
respect to βi, xt and yt, h(θ(t)) will be given by

h(θ(t)) =

{
1
N

N∑
k=1

(yk − φT (xk)θ(t))φ(xk) − p(Hφ − Qg)θ(t)

}
. (17)

In which, the solution θ∗ is given by

θ∗ = [Hφ + p(Qg − Hφ)]−1
Y. (18)

Hence, for all ‖θ − θ∗‖ > 0, we have

−(θ − θ∗)T h(θ) = −(θ − θ∗)T (Y − [Hφ + p(Qg − Hφ)] θ) ,

which is greater than zero. Therefore, Condition (C2) is satisfied.
For Condition (C3), we consider the Equation (6). By triangle inequality, it

is clearly that

‖M(θ, ω)‖2 ≤ ‖y2
t φ̃T (xt)φ̃(xt)‖ + θT (φ̃(xt)φ̃T (xt))2θ. (19)
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Since, ∫
(φ̃T φ̃)φ̃φ̃T P (β)dβ ≤ φT φλmax

{∫
φ̃φ̃T P (β)dβ

}
≤ (φT φ)2. (20)

Putting Equation (20) into Equation (19), it is clear that∫ {
‖M(θ, ω)‖2

}
P (β)dβ ≤ ‖y2

t φ
T (xt)φ(xt)‖ + (φ(xt)T φ(xt))2‖θ‖2. (21)

Further taking the expectation of the above inequality with respect to xt and
yt, one can readily show that Condition (C3) can be satisfied and the proof is
completed.

With reference to Equation (17), the constant factor (1−p) can be put together
with µt and treated as a new step size. Hence, the objective function of the above
algorithm is given by

L(θ|D) =
1
N

N∑
k=1

(yk − f(xk, θ))2 + pθT (Qg − Hφ)θ. (22)

The proof for Theorem 2 is completed. Q.E.D.
It is worthwhile noted that Equation (14) is also identical to the objective

function derived for batch model in [16].

4.2 WD-Based Multinode Fault Injection Training (Theorem 3)

The corresponding h(θ(t)) will be given by

h(θ(t)) = (1 − p)

{
1
N

N∑
k=1

(yk − φT (xk)θ(t))φ(xk) − p(Hφ − Qg)θ(t)

}
− λθ(t).

(23)
In which, the solution θ∗ is given by

θ∗ =
[
Hφ + p(Qg − Hφ) +

λ

1 − p
IM×M

]−1

Y. (24)

Hence, for all ‖θ − θ∗‖ > 0, we have

−(θ − θ∗)T h(θ) = −(θ − θ∗)T

(
Y −

[
Hφ + p(Qg − Hφ) +

λ

1 − p
IM×M

]
θ

)
,

which is greater than zero. Therefore, Condition (C2) is satisfied.
For Condition (C3), we consider the Equation (9) and the similar technique

as for the case of injecting multinode fault, one can readily show that∫ {
‖M(θ, ω)‖2

}
P (β)dβ ≤ ‖y2

t φ
T (xt)φ(xt)‖ +

{
(φ(xt)T φ(xt))2 + λ2

}
‖θ‖2.

(25)
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Further taking the expectation of the above inequality with respect to xt and
yt, one can readily show that Condition (C3) can be satisfied and the proof is
completed.

With reference to Equation (23), the objective function is given by

L(θ|D) =
1
N

N∑
k=1

(yk − f(xk, θ))2 + θT

{
p(Qg − Hφ) +

λ

1 − p
IM×M

}
θ. (26)

The proof for Theorem 3 is completed. Q.E.D.
One should notice that the weight decay effect is scaled up when random node

fault is injected.

5 Conclusions

In this paper, proofs on the convergences of two node-fault-injection-based on-
line training RBF methods have been shown and their corresponding objective
functions have been deduced. For the injecting multinode-fault training, it is also
found that the objective function is identical to the one that is proposed in [16]
for batch-mode training an RBF to deal with multinode fault.

For the weight decay-based multinode fault injection training, two additional
regularization terms are obtained in the objective function. The first one is iden-
tical to the extra term obtained for pure multinode fault injection training. The
other is a weight decay term with a constant factor λ/(1−p) is depended on the
fault rate p. The constant factor can amplify the penalty of weight magnitude if
the fault rate is large.

It is worthwhile noted that for λ not equal to zero, regularization effect will
still exist in null fault rate situation. Generalization can be improved. So, it is
suspected that weight decay-based multimode fault injection training might lead
to network model with good generalization and multinode fault tolerance ability.
Further investigation along the line should be valuable for future research.
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Abstract. This paper presents a new approach to rule extraction from Support
Vector Machines (SVMs). SVMs have been applied successfully in many areas
with excellent generalization results; rule extraction can offer explanation ca-
pability to SVMs. We propose to approximate the SVM classification boundary
by solving an optimization problem through sampling and querying followed by
boundary searching, rule extraction and post-processing. A theorem and experi-
mental results then indicate that the rules can be used to validate the SVM with
high accuracy and very high fidelity.

1 Introduction

In recent years, artificial neural networks (ANNs) [2,3,8] have been utilised in many
applications offering excellent prediction results. In many cases, however, developers
prefer not to use ANNs because of their inability to explain how the results have been
obtained. Rule extraction addresses the above problem. By extracting rules from ANNs,
we can explain the reasoning process and validate the learning system. Rule extraction
helps, therefore, to integrate the symbolic and connectionist approaches to AI, offering
ways of combining the statistical nature of learning with the logical nature of reasoning.

Recently, SVMs started to be considered for rule extraction because of their excel-
lent generalization capability and classification accuracy. Angulo et al [10] used sup-
port vectors and prototypes to draw regions indicating equation rules or interval rules.
Barakat et al [9] used support vectors to construct synthetic data, feed the data into
a decision tree learner, and extract rules. Fung et al [4] extracted a set of rules that
approximate linear SVM hyperplanes.

In our opinion, a satisfactory extraction method, striking a balance between the need
for correctness and generalization, is still needed. In this paper, we tackle this issue by
proposing a new any-time rule extraction algorithm, which uses the SVM as an oracle
(black-box) and synthetic data for querying and rule extraction, thus making very few
assumptions about the training process and the SVM training data. Hence, the algorithm
does not depend on the availability of specific training sets; it captures the information
encoded in the geometry of the SVM classification boundary through querying, clus-
tering, and searching. It then performs rule extraction, solving an optimization prob-
lem, and rule post-processing. Also, our approach is not restricted to any specific SVM
classifier such as the linear classifier considered in [4]. It is in fact applicable to most
neural-network models. We have examined rule accuracy, fidelity and comprehensibil-
ity in three applications: the Monk’s problems, the iris flower dataset and the breast

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 335–343, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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cancer-wisconsin dataset. The results indicate the soundness of our approach through
maximum fidelity.

2 Support Vector Machines

We consider the problem of classifying n points in the m-dimensional input space Rm.
Consider the training data set {(xi, yi)}, i = 1, ..., n, yi ∈ {1, −1} and xi ∈ Rm.
In the case of linear SVMs the decision function is a separating hyperplane f(x) =
sign(w · x + b). The optimal classification hyperplane that maximizes the distance
between class A+ = 1 and A− = −1 can be found by minimizing 1/2‖w‖2 subject to
yi(w · xi + b) ≥ 1.

The Lagrangian J below has been introduced to solve this problem: J = 1
2wT w −

Σn
i=1αi(yi(w · xi + b) − 1), where αi ≥ 0 is known as the lagrange multiplier. With

respect to w and b, minimizing J leads to w = Σsv
i=1αiyixi and Σn

i=1αiyi = 0 where
sv is the number of support vectors [12]. By making some substitutions, the hyperplane
decision function (f(x) = sign(Σsv

i=1αiyi〈xi · xj〉 + b), j = 1, ..., n) can be obtained,
where 〈〉 denotes inner product. For nonlinear classification, the decision function can
be f(x) = sign(Σsv

i=1αiyiK(xi,xj) + b). See [12] for more on SVMs.

3 Geometric SVM Rule Extraction

Most rule extraction algorithms suffer from a lack of generality. In this section, we
present a novel algorithm called Geometric Oracle-Based SVM Rule Extraction (GOSE),
which is designed to alleviate this limitation. GOSE utilizes the points on the SVM clas-
sification boundary and synthetic training instances to construct a set of optimized hy-
percube rules. The area covered by those rules is maximized, and it can be proved that
the rules approximate the SVM.

GOSE aims to use the classification boundary and synthetic training instances to
extract the hypercube rules without considering the inner structure and the support
vectors. It treats the SVMs as oracles, 1 making few assumptions about the architec-
ture and training process, hopefully being applicable to other non-symbolic learning
methods. All that is assumed is that an SVM is given which we can query and find
the classification yi that it produces for input vectors xi. After querying, by means of
a kind of binary search, we look for the points P that lie on the SVM classification
boundaries. Subsequently, an initial optimal rule set can be extracted for the points in
P and the synthetic training instances by solving an optimization problem whereby
we attempt to find the largest consistent hypercubes in the input space. Finally, several
post-processing measures are applied to the rule set in order to derive (a relatively small
number of) generalized rules. In what follows, we explain each of the above steps.

Querying. GOSE is a general method because it uses a subset of synthetic training in-
puts to query the SVM and obtain the class labels for the inputs. We use a random data

1 The querying process makes our approach independent of any special training data, no as-
sumption is made about the structure of the network, and the approach can be applied to any
SVM classifier, regardless of the algorithms used to construct the classifier.
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generator to produce a large amount of inputs. Unlike TREPAN [8], GOSE uses mul-
tivariate kernel density estimates which take into account the relations within features.
The probability density function for inputs x is:

M(x) =
1

N

N∑
i=1

1∏m
j=1 hj

[
1

(
√

2π)m
e
− 1

2 (‖ x−Xi
h

‖)
]

where Xi are the training samples, 1 ≤ i ≤ N . h = [h1, h2, ...hm] is a vector of
bandwidth such that h = [ 4

(m+2)N ]
1

m+4 σ, where σ is the standard deviation of the
training samples. After obtaining those synthetic inputs {xi, i ≥ 1}, we treat them as
the inputs of the SVM, i.e. the SVM is used as an oracle.

One key issue in querying is how to know how many classes there are. GOSE gen-
erates a large amount of data j uniformly distributed in the input space. This dataset is
then given as input to the SVM to acquire class labels. For a large j, the dataset should
spread throughout the input space evenly. Then, a set of classes A = {Ak|1 ≤ k ≤
CN}, where CN is the total number of classes, can be obtained.

Clustering. Since there must be a classification boundary between different classes, we
can find the points lying on the boundary between pairs of data for different classes.
However, for a large number of training data, if we search each pair, this may lead to
computational complexity issues. Hence, we use clustering and search for the boundary
between pairs of data clusters instead. Our goal is to strike a balance between algo-
rithmic complexity and predictive accuracy. A cluster C can be defined as a subset of
training data S = {(xi, yi)}, with the same class yi.

We use hierarchical clustering on S. Our approach uses one of the following linkage
functions: single linkage, uses the smallest distance between data xr

i and xs
j in the

two clusters r and s; complete linkage, uses the largest distance between data xr
i and

xs
j . Given a set of clusters {rh, h = 1, 2, ..., q}, where the classes of the clusters are

identical, let the number of data points in each cluster rh be nrh . It is obvious that the
mean and variance of each cluster relate to the data xi, 1 ≤ i ≤ nrh . The mean mrh of
each cluster rh is mrh = 1

nrh

∑nrh

i=1 xi, and the variance srh = 1
nr

∑nrh

i=1(xi − mrh)2.
Hence, the intra-cluster deviation is:

sintra =

√√√√ q∑
h=1

(srh ∗ p(rh)) where p(rh) =
nrh∑q

h=1 nrh
(1)

and the inter-cluster mean and deviation are:

minter =
q∑

h=1

(mrh ∗ p(rh)) sinter =

√√√√ q∑
h=1

[(mrh − minter)2 ∗ p(rh)] (2)

Our stopping criterion is the rate between sintra and sinter . If sintra

sinter > ε, then GOSE
will stop clustering the data further. Note that ε is a user-defined parameter.

Searching. The searching step locates the points on the SVM decision boundaries.
Given clusters P1, P2, ...Pa which fall into class A+, and clusters N1, N2, ...Nb which
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fall into class A−, we use Zhang and Liu’s measure [14] to automatically look for the
points on the SVM’s decision boundary2.

We consider all pairs (p, n) s.t. p ∈ Pj(1 ≤ j ≤ a) and n ∈ Nk(1 ≤ k ≤ b). For
each p, we find a corresponding point n whose distance to p is minimum. And for each
n, we find a corresponding point p whose distance to n is minimum. Let d1 represent
the distance from p to the hyperplane and d2 represent the same for n. In order to find
the point lying on the hyperplane, a kind of binary search is performed on (p, n). In
other words, if |d1 − d2| > ε, the mid-point q between p and n is chosen. The SVM
classifies q and computes the distance between q and the hyperplane. If the class of q
equals that of p, then p is replaced by q; otherwise, n is replaced by q. The process
carries on until |d1 − d2| < ε is achieved, where ε denotes an arbitrary small number.

Extraction. The main idea of our approach is to find a set of optimal rules that (1)
covers a maximum area, and (2) covers the largest cardinality of synthetic instances.
Suppose that a set of points X lie on the SVM decision boundary, where X is the result
of searching, a set of synthetic training instances S for classes A = {Ap, 1 ≤ p ≤ CN}
has been generated from querying, and let f(x) be the SVM function. To realize the
first goal of the rule extraction algorithm, we try to solve the following optimization
problem:

maximize

m∏
i=1

(xi − x0i) (3a)

subject to l ≤ x ≤ u (3b)∫ u

l

(f(x) − Ap)dx = 0 (3c)

where x0i denotes the ith element of vector x0 ∈ X (x0 indicates a starting point), xi

is the ith element of x, l and u are the m-dimensional vectors giving lower and upper
bounds to this optimization problem.

The objective function (Equation 3a) aims to maximize the volume of the hypercube
that a rule covers, and it has two constraints. One is a bound constraint to limit the
optimal x∗ in a given area, while the other is a nonlinear constraint that is used to
exclude the points that have different class labels.

The values of l and u in Equation 3b can be calculated based on the lower and up-
per bounds of the input space. For example, suppose the scope of the input space is
[L1, L2] ≤ x ≤ [U1, U2], and x0 = [x01 ,x02 ] is a point lying on the SVM boundary.
When we change �x01 on x01 or − � x02 on x02 (�x01 , �x02 ≥ 0) the SVM classi-
fication is still class Ap. Hence, it is reasonable to assume that an optimal point can be
found in the rectangle between points x0 and [U1, L2]. l and u are then narrowed down
to l = [x01 , L2] and u = [U1,x02 ].

As presented in Equation 3c, the nonlinear constraint is a multi-dimension integral on
a linear/nonlinear function. GOSE uses quasi-Monte Carlo [13] to approximate the inte-
gration because it is a method with advantages such as improved convergence and more
uniformity. Therefore, the hypercube H is considered to be composed of the points that

2 Notice that for simplicity we have been considering two classes, but our extraction algorithm
is applicable to any number of classes.
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are uniformly distributed as: 1
n

∑n
i=1 |f(ai) − Ap| ≈

∫ u

l
|f(x) − Ap| dx, where ai is

a low-discrepancy sequence inside the hypercube [l, u], where 1 ≤ i ≤ n, and n here
means the number of points selected for approximation in H . The estimation error then
becomes ε =

∣∣∫ u

l
|f(x) − Ap| dx − 1

n

∑n
i=1 |f(ai) − Ap|

∣∣.
From the above, it can be shown that the larger n is, the closer the approximation gets

to the integral. It is clear that the complexity increases with n. Therefore, in order to
strike a balance between error estimation, fidelity, accuracy prediction and complexity,
a proper n has to be chosen. In the cross-validation experiments below, we found that
n = 1000 was a suitable number for the benchmark datasets.

Finally, the standard pattern search algorithm is applied to obtain a solution x∗ to
the optimization problem (see [1] for an analysis of generalized pattern search by evalu-
ating the objective function). After obtaining x∗, together with the starting point x0, the
antecedents of a rule can be constructed by picking the minimum and maximum values
of x∗ and x0. The set of rules covering all of the synthetic training instances can be
found by repeatedly applying Equation 3, but with x0 replaced by s ∈ S. The process
ensures that the extracted rules cover most of the training instances and the maximum
area for each rule.

Post-Processing. The rule set extracted above may still contain overlapping rules. The
purpose of post-processing is to prune rules with high error estimation and to construct
non-overlapping rules with high coverage/generalization rate.

Given two rules, r1 =
∧

(ai ≤ xi ≤ bi) → Ap and r2 =
∧

(ci ≤ xi ≤ di) → Ap,
r1 and r2 are said to be non-overlapping if bi ≤ ci or ai ≥ di for any i, 1 ≤ i ≤ m.

1) Rule Extending. Let the input space of a problem domain range from Li to Ui, and
consider rule r =

∧
(li ≤ xi ≤ ui) → Ap. The rule-extending step attempts to extend

the interval of r on each dimension into a larger scope. At the same time, the new rule
r′ still has to satisfy the constraint that the area covered by r′ belongs to class Ap.

The complexity of this step is exponential on the size of the input space. Hence,
in practice, another optimizing measure has been adopted. If the new region of a rule
consists of the points for another class when the rule is extended on a certain dimension
j then this dimension will be skipped in the rest of the iteration.

Finally, if the value of the ith dimension is extended up to the scope of the whole in-
put space, which is believed to be applicable throughout the range of the ith dimension,
GOSE then removes this dimension from the antecedent of the rule.

2) Rule Pruning. This step aims to prune the rules that have a relatively large es-
timated error. GOSE uses a t-test to analyze the null hypothesis that the mean of the
estimated value and the expected value of the integral of a rule r are equal to zero.
Morohosi and Fushimi [5] introduced a statistical method for quasi-Monte Carlo error
estimation. The rule pruning of GOSE is based on this method.

After the estimate of the mean Î and the variance σ̂2 are obtained,the t-test turns
out to be: t = Î

σ̂√
M

If t is larger than the standard value at the significance level set by

GOSE, the rule is rejected. Otherwise it is accepted. Those rejected rules are removed
from the rule set.

3) Non-overlapping Rule Construction. As mentioned above, there could exist over-
lapping rules. This step removes the intersections between rules to improve the com-
prehensibility of rules. We want at least one dimension of each of two rules not to
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intersect with each other. Let r1 be [a1, .., am] ≤ x ≤ [b1, ..., bm] → Ap and r2 be
[c1, ...cm] ≤ x ≤ [d1, .., dm] → Ap. If ai ≤ ci ≤ bi ≤ di, 1 ≤ i ≤ m, then the overlap
of r1 and r2 is {[c1, .., cm] ≤ x ≤ [b1, ..bm]}. Suppose r2 does not change and r1 has
to be divided. For each dimension i, a non-overlapping rule can be constructed in three
steps:

1. Keep the original value aj ≤ xj ≤ bj of r1, j < i.
2. Take the non-overlapping value ai ≤ xi ≤ ci, j = i.
3. Replace the original values with the overlapping values cj ≤ xj ≤ bj , j > i.
4) Rule Selection. The last step of post-processing is rule selection. This discards

those rules with zero coverage rate. This means that the rules predicting no data in our
experiments are removed.

Although the extraction algorithm is based on querying the SVM, the approximations
associated with Monte Carlo and post-processing may render it incomplete. We need to
make sure, however, that - as the rule extraction algorithm is applied - the set of rules
converges to the actual behaviour of the SVM, i.e. the rules approximate the SVM.
Since this is a geometric approach, it suffices to show that the area covered by the set
of rules approaches the area as classified by the SVM. We call this quasi-completeness.

Theorem (quasi-completeness): With an increasing number of rules, the rule set ap-
proximates the SVM. Let S denote the area covered by the non-overlapping rule set
R = {ri → Ap, i ≥ 1} and V represent the area of interest for the given SVM. When

the number of rules increases, S approximates V , that is |V −S|
V ≤ ε, where ε is an

arbitrary small number. Note that ri refers to an area where class Ap occurs.3

4 Experimental Results

We performed experiments using three datasets, all obtained from the UCI Machine
Learning repository: the Iris flower dataset, the Breast Cancer-Winsconsin dataset, and
the Monk’s problems. 5-fold cross validation has been used. For each fold:
1. We trained the SVM using different algorithms: DAGs-SVM [6] for the Iris dataset

and Monk-2, and SMO [7] for Breast Cancer, Monk-1 and Monk-3 problems.
2. We generated a number of training data and queried the trained SVM to obtain the

class labels.
3. We applied GOSE to datasets of varying sizes using varying numbers of clusters.
4. We measured rule accuracy with respect to the test set, rule fidelity to the SVM,

and rule comprehensibility w.r.t. the number of rules extracted and the number of
antecendents per rule.

Accuracy measures the ability of the rules in predicting unseen cases according to a
test set. The results show that when the data size4 N increases, the accuracy of the rules
increases, converging to that of the SVM as illustrated in Figure 1 (left). For example,
for the Iris dataset, when N equals 30, the accuracy is only 77.33%. However, 84.67%

3 Proofs of soundness and quasi-completeness can be found in a technical report which is avail-
able at http://www.soi.city.ac.uk/˜aag/papers/gose.pdf

4 The data set here indicates the synthetic set so that the data size is not limited to that of the
original training set.

http://www.soi.city.ac.uk/~aag/papers/gose.pdf
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is achieved when N equals 100. It finally reaches 89.33% at N = 300, which is a value
near to the accuracy of the SVM. The same behavior is verified for the breast cancer
dataset and Monk’s problems. For the breast cancer dataset, when N equals 50, the
accuracy is only around 60%. Although the rate of the increase reduces, the accuracy
finally reaches 90.14% at N = 200. For the Monk’s problem, when N reaches 100,
GOSE achieves 100% accuracy for Monk-1. For Monk-2, GOSE obtains 84.8% for a
200-size training set compared with the 85.7% accuracy classified by the SVM network.
GOSE also achieves an average 95% correctness for a 100-size training set in the case
of the Monk-3 problem, while the SVM obtains around 94% accuracy.

Figure 1 (right) shows that when the number of clusters increases, the accuracy in-
creases as well. As an example, in the Iris dataset, GOSE classifies only 56% instances
correctly when the cluster number is one. But it predicts 84% instances correctly when
the number of clusters goes to six. It is interesting to note that the value of 84%, clos-
est to the SVM accuracy of 89.33%, is obtained when the training set contains 300
instances and has one cluster for each class. The same convergence movement occurs
for the Breast Cancer dataset. An accuracy of only 62.23% is obtained when each class
has one cluster, but 87.55% of instances are predicted correctly when the number of
clusters goes to six. For the Monk’s problem, the accuracy is only 97%, 62% and 58%
respectively for Monk-1, Monk-2 and Monk-3, when the number of clusters is one.
However, the accuracy increases to 100% for Monk-1, 78% for Monk-2 and 90% for
Monk-3, when the number of clusters increases to 5. This is why we have chosen to use
the stopping criterion of Section 3 to find an appropriate cluster value.
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Fig. 1. Results of Iris by changing the dataset size & cluster number

Fidelity measures how close the rules are to the actual behavior of the SVM, as
opposed to its accuracy w.r.t a test set. The fidelity in Monk-1, Iris and Breast Cancer
problems has been 100%. Monk-2 and Monk-3 obtained 99.12% and 98.5% fidelity.

Comprehensibility measures the number of rules and the number of conditions per
rule. The following is an example of the extracted rules on the Iris dataset. GOSE ob-
tains on average ten rules for each class, with four conditions per rule.

sepal length= [4.3, 6.6]
∧

sepal width= [2.0, 4.0]
∧

petal length= [2.7, 5.0]
∧

petal
width= [0.4, 1.7] → Iris Versicolour

The rule above correctly predicts 45 out of 150 instances in the data set. Overall,
93% training and test examples in the Iris data set are predicted correctly.
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The following is an example of the extracted rules on Breast Cancer problem. GOSE
obtained on average 26 rules for class 1 and 81 rules for class −1, with an average 7.2
conditions per rule. The final rule set classifies 90.14% of the test cases and 93% of the
whole data set correctly.

a3 = [4, 9]
∧

a5 = [3, 9]
∧

a6 = [10, 10]
∧

a7 = [5, 9] → −1

For Monk-1, GOSE obtained four rules for all classes. On average, each rule has
2.37 conditions. This is from the 100 synthetic training instances, which cover 100%
of the test cases. For Monk-2, 38 rules were extracted, with around 4.1 conditions per
rule for class 1. For class 0, 24 rules with 5.8 conditions per rule were extracted. For
Monk-3, 11 rules were extracted, with around 3.4 conditions per rule for class 1, while
6 rules with 2.7 conditions per rule were extracted for class 0 (for example a1 = 1

∧
a2 = 1 → class = 1; in this case, a1 = 1 denotes that a1 is true).

5 Conclusion and Future Work

We have presented an effective algorithm for extracting rules from SVMs so that results
can be interpreted by humans more easily. A key feature of the extraction algorithm
is the idea of trying to search for optimal rules with the use of expanding hypercubes,
which characterize rules as constraints on a given classification. The main advantages
of our approach are that we use synthetic training examples to extract accurate rules,
and treat the SVM as an oracle so that the extraction does not depend on specific train-
ing requirements or given training data sets. Empirical results on real-world data sets
indicate that the extraction method is correct, as it seems to converge to the true ac-
curacy of the SVM as the number of training data increases and high fidelity rates are
obtained in every experiment. In future work, we may consider using different shapes
than hypercubes for the extraction of rules and compare results and further improve the
comprehensibility of the extracted rules.

Support Vector Machines have been shown to provide excellent generalization re-
sults and better classification results than parametric methods or neural networks as a
learning system in many application domains. In order to develop further the study of
the area, we need to understand why this is so. Rule extraction offers a way of doing
this by integrating the statistical nature of learning with the logical nature of symbolic
artificial intelligence [11].
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Abstract. In this paper, an asbestos detection method from microscope
images is proposed. The asbestos particles have different colors in two
specific angles of the polarizing plate. Therefore, human examiners use
the color information to detect asbestos. To detect the asbestos by com-
puter, we develop the detector based on Support Vector Machine (SVM)
of local color features. However, when it is applied to each pixel indepen-
dently, there are many false positives and negatives because it does not
use the relation with neighboring pixels. To take into consideration of
the relation with neighboring pixels, Conditional Random Field (CRF)
with SVM outputs is used. We confirm that the accuracy of asbestos
detection is improved by using the relation with neighboring pixels.

1 Introduction

It is reported that many employees of the company which was manufacturing
the materials using asbestos had passed away, and the influence on a human
body with asbestos came to be recognized widely. In Japan, the manufacture of
the asbestos content products was forbidden, and the amount of the asbestos
has been reduced. However, asbestos were used as building materials. There-
fore, we need to check whether asbestos are used or not when the buildings are
demolished. However, there are still few inspection organizations of asbestos in
building materials. Moreover, human examiners must check whether asbestos
are included or not, and the number of inspection per a day is also restricted.
We must develop an automatic asbestos detector using computers.

There are some automatic asbestos detection methods [10,11,12]. However,
they detect only at the atmospheric airborne asbestos. We pay attention to the
asbestos detection problem in building materials as opposed to atmosphere. The
asbestos detection in building materials is more difficult than that in atmo-
sphere because the specimen from the building materials includes various kinds
of particles. In near future, the asbestos detection problem in building materials
will become important more and more because the materials including asbestos
have been used in school and public buildings in Japan. This paper proposes an
automatic asbestos detection method based on statistical pattern recognition.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 344–352, 2009.
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The asbestos qualitative analysis by human examiners is called as the dis-
perse dyeing method. Disperse dyeing method prepares three specimens from
one sample, and 1000 particles are counted from by each specimen. When more
than four asbestos are contained in 3000 particles, it judged as dangerous. The
asbestos particles have different color in two specific angles of the polarizing
plate. Human examiners detect asbestos using the unique dispersion property of
asbestos. This property is also effective to detect asbestos by computer.

In the experiments, we use the two phase-contrast microscope images which
are set in two angles of the polarizing plate. By capturing images with two differ-
ent angles, the position gap between two images arises. At first, we must correct
the position gap. We can use the distance between two images. However, since
the asbestos particles have different color in two images, we must eliminate the
influence of asbestos in the evaluation measure. To do so, the distance between
two images is computed on several local regions instead of whole image. In order
to determine the characteristic local regions to compute the distance, Scale In-
variant Feature Transform (SIFT) [1] is used. The distance between two images
is calculated by using the selected local regions, and the position gap is corrected
so that the distance is minimized.

After correcting the gap, the asbestos particles are detected. Since the asbestos
particles have specific colors in two phase-contrast microscope images, local color
features are effective. We develop the detector using SVM [4,7] of local color
features. However, when the detector is applied to each pixel independently,
there are many false positives and negatives. This is because the relation with
neighboring pixels is not taken into consideration. In order to improve this,
CRF [6] with SVM outputs is used. By using CRF based on SVM outputs, the
accuracy of asbestos detection is improved.

In section 2, the proposed asbestos detection method is explained. Experi-
mental results are shown in section 3. Section 4 describes conclusion and future
works.

2 Proposed Asbestos Detection Method

This section explains how to develop a part of disperse dyeing method by com-
puter. At first, the outline of the disperse dyeing method is described in section
2.1. Section 2.2 explains the image matching method for correcting the position
gap. Next, the proposed asbestos detection method based on CRF based on SVM
outputs is explained in section 2.3. Section 2.4 explains details of the proposed
method.

2.1 Disperse Dyeing Method

In the disperse dyeing method, a human examiner observes the phase-contrast
microscope attached a polarizing plate to each of three specimens. The examiner
counts the particles. When a polarizing plate is adjusted, the particles whose the
color are changed are recognized as asbestos. In Japanese Industrial Standards,
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when more than four asbestos are included in 3,000 particles, it is judged as
dangerous. This paper proposes an automatic asbestos detection method from
two phase-contrast microscope images with difference angles of the polarizing
plate.

2.2 Image Matching for Correcting the Position Gap

In this paper, asbestos detection is carried out using the following two images.

Image 1 and 2. The image of a phase-contrast microscope which sets the po-
larizing plate as the angle θ1 and θ2

Figure 1 shows examples of image 1 and 2. The long and thin particles whose
color changes in two images are asbestos. The position gap of particles in two
images arises by changing the angle of a polarizing plate. Thus, we must correct
the gap in two images.

(a) Image 1 (b) Image 2

Fig. 1. Example of image 1 and 2

Figure 1 shows that the color of asbestos changes in two microscope images.
Therefore, if the distance of the whole image is used as the evaluation measure
to correct the gap, the gap is not corrected well. This is because the distance on
asbestos becomes large at the correct position. The distance is calculated using
some characteristic local regions instead of whole image. To do so, feature points
are detected from the image 1, and the distance is calculated using the detected
local regions. SIFT is used for detecting of feature points. Example of the de-
tected feature points from Figure 1 is shown in Figure 2. Red points represent
the detected feature points. Many points are selected on large particles. To com-
pute the distance using the various particles fairly, feature points are selected
at a certain interval so that the number of few points is 10. The distance of two
images is computed by using the color information (RGB) of the local region
with 21× 21 pixels whose center is the selected feature points. We evaluated the
distance while changing the position of image 2. When the distance is minimized,
we judge that the position gap is corrected. Then the difference image between
image 1 and 2 is computed at the corrected position, and the difference image
is binarized by a threshold (In experiments, threshold is set to 0.02. ). Example
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Fig. 2. Example of detected feature
points

Fig. 3. Example of binarized difference
image

of the binarized difference image is shown in Figure 3. The white pixels show
large color difference in two images, we consider that asbestos are included in
the white regions because asbestos have different colors in two images.

2.3 Asbestos Detector

An asbestos detector for classifying asbestos and other particles is trained using
the local color features of two matched microscope images. As described above,
the asbestos detector is developed using SVM of color features, and it is applied
to only the pixels with large difference shown in Figure 3.

The color features for SVM are defined as

– RGB values of feature point (x, y) and eight neighbors of it in image 1 and
2 (9 pixels × 3 colors × 2 images).

– The average RGB values of local 3×3 regions whose center is (x, y) in image
1 and 2 (3 colors × 2 images).

The dimension of features is 60 (= 9 × 3 × 2 + 3 × 2). The asbestos detector
is developed by SVM of the 60 dimensional color features. In the following ex-
periments, a normalized polynomial kernel [9] is used as a kernel function. The
kernel is defined as

K(x, z) =
(γ〈x · z〉 + r)d

‖ (γ〈x · x〉 + r)d ‖ · ‖ (γ〈z · z〉 + r)d ‖
(1)

where ‖ · ‖ represents norm and 〈·〉 represents inner product. The parameters
were set as γ = 1, r = 1 and d = 5 by preliminary experiment.

However, when the detector is applied to each pixel independently, there is
the case that an asbestos particle is classified as two different particles. This
increases false negatives. Moreover, there is also the case that non-asbestos par-
ticles and noise whose color is similar to asbestos are miss-classified as asbestos.
This increases false positives. The reason is that the relation with neighboring
regions is not used. To use the relation with neighboring regions, labels are es-
timated using CRF based on SVM outputs of each pixel. This corresponds to
Support Vector Random Field (SVRF) [5].
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Fig. 4. CRF. The bottom nodes represent the pixels in the image X. The top nodes
represent the label of the corresponding pixels. The edges represent the potential func-
tion.

CRF is succeeded in image labeling [2,3,5,8], and it models the posterior
probability P (Y |X) of the label set Y of the input image X directly. In CRF,
posterior probability is defined as

P (Y |X) =
1
Z

∏
i∈S

φ(yi, X)
∏
i∈S

∏
j∈Ni

ψ(yi, yj, X), (2)

where φ and ψ are the potential functions. S is a set of a node i. In experiments,
S corresponds to the number of pixels of an image. Ni is neighboring nodes of
node i.

Figure 4 explains CRF. The bottom nodes in Figure 4 represent the pixels in
the input image X . The top nodes represent the class labels of the corresponding
pixels. φ(yi, X) represents the relation of vertical direction. This is called as a
observed potential. ψ(yi, yj, x) represents the relation of horizontal direction.
This is called as a local consistency potential. As shown in equation (2), labels
are estimated using input image and neighboring labels.

2.4 Label Estimation by Support Vector Random Field

In this paper, the output of SVM at each pixel is used in the potential function
φ(yi, X). φ(yi, X) using SVM output is defined as

φ(yi, X) =
1

1 + exp(f(Υi(X)))
, (3)

where Υi(X) outputs the features of node i in image X . And f represents SVM
decision function. The initial labels are determined by SVM as

yi =
{

1 (if sgn[f(Υi(X))] = 1)
0 (if sgn[f(Υi(X))] = −1) . (4)
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The posterior probability is determined using the observation potential based
on SVM output and local consistency potentials ψ(yi, yj, x) as

P (Y |X) =
1
Z

exp

⎧⎨⎩∑
i∈S

log(φ(yi, fi(X)) −
∑
i∈S

∑
j∈Ni

ψ(yi, yj , X)

⎫⎬⎭ , (5)

Z =
∑
Y

exp

⎧⎨⎩∑
i∈S

log(φ(yi, Υi(X)) −
∑
i∈S

∑
j∈Ni

ψ(yi, yj, X)

⎫⎬⎭ , (6)

where Z is the normalization term. The local consistency potential is defined as

ψ(yi, yj, X) =

⎧⎨⎩
w1 if (yi �= yj) ∧ (yi = 1)
w2 if (yi �= yj) ∧ (yi = 0)
0 otherwise

(7)

Local-consistency potential should be small when label yi and neighboring label
yj are the same label. On the other hand, the potential should be large when
label yi is different from label yj. w1 is used when the label yi is asbestos and
neighboring label yj is not asbestos. Similarly, w2 is used when label yi is non-
asbestos and yj is asbestos. In this paper, local consistency potential is computed
within a square region of 5 × 5 pixels. However, the area of asbestos within a
square region is smaller than that of background because an asbestos particle
is long and thin. Thus, if we set the same value to w1 and w2, asbestos labels
tend to change to non-asbestos labels. To avoid this, w2 is set to larger values
than w1. In the experiments, w1 = 0.1 and w2 = 0.2 are used. Potential function
ψ in a equation (5) is based on the neighboring labels yj . This means that the
neighboring labels are required to estimate the label yi. Thus, the computational
cost becomes high. To reduce the cost, we use mean field approximation [6].

3 Experiments

The asbestos detector is applied to the while pixels in the binalized difference
image shown in Figure 3. The white pixels have large difference in two images.
First, we evaluate the accuracy of the detector based on only SVM. Next, the
detection method based on SVRF of local color features is evaluated.

The 11 sets of microscope images are used to train the SVM. Each set consists
of 2 microscope images captured with different angles of polarizing plate. The 21
asbestos particles are included in the 11 sets. The color features of 21 asbestos
and many non-asbestos particles are used to train SVM. The 55 sets are used in
evaluation. The 76 asbestos particles are included in the test images.

The evaluation result is shown in Table 1. The actual number is the number
of the actual asbestos particles. 76 asbestos particles are included in test images.
The number in the bracket is the true positive rate. False positive means that
non-asbestos particles are mis-classified as asbestos. Since the detector uses only
local color features, non-asbestos regions with similar color are miss-classified.
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Table 1. Performance of the proposed method

Actual number True positive (Rate) Number of false positives
SVM 76 54 (71.0%) 6
SVRF 76 60 (78.9%) 0

(a) The detection
result by SVM

(b) The detection
result by SVRF

(c) The detection
result by SVM

(d) The detection
result by SVRF

Fig. 5. Examples of results improved by SVRF

(a) (b)

Fig. 6. Example of detection result

This increases the false positives. Additionally, since the detector is applied to
each pixel independently, there is the case that all pixels on an asbestos particle
are not classified correctly.

Next, we evaluate the detector based on SVRF. Table 1 also shows the evalua-
tion result. SVRF decreases false positives and increases true positives. Figure 5
(b) shows the example in which false positive is improved by SVRF. By using the
relation with neighboring pixels, the false positive with small area is vanished.
Figure 5 (d) shows the example in which false negative is improved by SVRF.
Only the SVM based detector induces the case that an asbestos particle is de-
tected as several asbestos shown in Figure 5 (c). This is because all pixels on an
asbestos particle do not have the same color. By using SVRF, these asbestos re-
gions are merged and detected as an asbestos particle correctly. However, SVRF
can not recover all false negatives. For example, when the two regions with as-
bestos label are far, SVRF can not detect them as an asbestos particle. In this
paper, we evaluate the accuracy strictly. The accuracy of the current version
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may not be sufficient. However, this research is a first step for automatic dis-
perse dying method by computer. Since asbestos are used as building materials,
this research will contribute to people’s health in the world.

Finally, we show the examples of detection results in Figure 6. In Figure 6
(a), two asbestos are detected correctly while one asbestos at bottom left is
recognized as two asbestos. Note again that we evaluate the accuracy strictly.
This decreases true positive rate. In Figure 6 (b), all asbestos are detected cor-
rectly without false positives. These results show the possibilities of the proposed
method.

4 Conclusion

In this paper, we propose the asbestos detection method in building materials.
There are very few researches about asbestos detection in building materials.
Since asbestos are used as building materials, this research will contribute to
people’s health in the world.

In experiments, two phase-contrast microscope images to which different po-
larization was applied were used. First, the position gap of two images was
corrected, and SVM using local color features is applied to the pixels which have
large difference in two images. Only SVM induces many false positives and neg-
atives. Therefore, the labels are estimated by SVRF. Experimental results show
that SVRF improves accuracy. The accuracy may not be sufficient but this is a
giant step for automatic disperse dyeing method by computer.

The SVM based detector uses only local color features, and it can not give
positive values to asbestos particles with unclear color. Since SVRF is based on
the SVM outputs, it can not improve the case that SVM gives negative values to
many pixels on an asbestos particle. To improve the accuracy further, we should
use the shape features as well as color features. This is a subject for future works.
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Abstract. In this paper Gaussian process is applied to linear and non-
linear acoustic echo cancellation. Gaussian process is a kernel method
in which predictions to new inputs are made based on the linear com-
bination of kernel functions evaluated at each training data. First order
acoustic echo-path is modeled by a linear equation of input data and
second order acoustic echo-path is modeled by the second order polyno-
mials. The performance of the cancellation is evaluated by white signal,
stationary colored signal, non-stationary colored signal and real speech
data. It is shown that more than 70 dB echo cancellation can be acieved
within 400 ms.

1 Introduction

Acoustic echo cancellation is an indispensable component for a cellular phone to
achieve smooth communication between speakers. Since the sizes of speaker and
microphone become smaller and miniaturized, linear and nonlinear distortions
in an acoustic echo path become larger.

A lot of works on echo cancellers using adaptive filters have been proposed so
far [1]-[4]. It has been shown that an adaptive Volterra filter can eliminate non-
linear components effectively [5]-[8]. Volterra filter is a good nonlinear system
model and can improve acoustic quality by suppressing nonlinear distortions.
However, when the dimension of input becomes large and the degree of nonlin-
earity increases, the scale and the computational complexity of the filter also
increase and they may degrade its convergence characteristics. Statistical nature
of inputs also affects the performance of the filter.

Gaussian process is one of the stochastic processes that can be used to esti-
mate an output value for a new input from learning data. It is a kernel method
which assumes that the prior distribution over the parameter is a Gaussian dis-
tribution. The characteristic of its smoothness or periodicity is given by the
kernel function. To define the kernel function corresponds to create a distribu-
tion over the function directly. In this method, the output value is estimated by
the posterior distribution. Since this method does not use gradient information
given by error signals, it does not suffer from ill conditions such as eigenvalue
spread of a correlation matrix of input signals. Hence it is free from coloredness
and stationarity of inputs as shown in the results.
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2 Gaussian Processes

Gaussian process is defined as a probability distribution over functions y(x) such
that the set of values of y(x) evaluated at a set of point x1, · · · , xN jointly have
a Gaussian distribution. The joint distribution over N variables y1, · · · , yN is
characterized by its mean and covariance.

2.1 Linear Regression

Consider a linear model that the output is given by a linear combination of M
fixed basis functions denoted by a vector Φ(x) so that

y(x) = wT Φ(x) (1)

where x is input vector and w is M -dimensional weight vector. Suppose a prior
distribution over w is an isotropic Gaussian of the form

p(w) = N(w|0, α−1I) (2)

where α denotes a hyperparameter which represents the precision of prior dis-
tribution.

The probability distribution over the weight vector w defined by Eq.(2) derives
a probability distribution over functions y(x). The output vector y is given by

y = Φw (3)

where Φ is a design matrix with elements Φnk = φk(xn).
Since the output vector y is a linear combination of Gaussian distributed

variables given by the elements of w, the output y is also Gaussian. Its mean
and covariance are given by

E[y] = ΦE[w] (4)
cov[y] = E[yyT ] = ΦE[wwT ]ΦT = K (5)

where K denotes the Gram matrix with elements

Knm = k(xn, xm) =
1
α

Φ(xn)T Φ(xm) (6)

and k(x, x
′
) is a kernel function.

2.2 Gaussian Processes for Regression

The joint distribution over the outputs y1, · · · , yN is the Gaussian distribution,
so that the distribution is completely determined by its mean and covariance.

About the mean. There is no prior knowledge about the mean of y(x). Hence,
presume that the mean of y is zero. This is equivalent to choosing the mean of
the prior distribution over weight values p(w|α) to be zero.
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About the covariance. The covariance function is given by the kernel function.

E[y(xn)y(xm)] = k(xn, xm) (7)

We can define the kernel function directly. In this paper, we use linear kernel for
both linear components and nonlinear parts. The linear kernel is given by

k(xn, xm) = xT
n xm. (8)

2.3 The Predictive Distribution

We need to consider the noise on the observed target values as follows

tn = yn + εn (9)

where yn = y(xn). The second term εn in the right hand side is a random noise
variable which is given by a Gaussian distribution, so that

p(tn|yn) = N(tn|yn, β−1) (10)

where β is a hyperparameter and represents the precision of the noise. The joint
distribution of the target values t = (t1, · · · , tN )T conditioned on the values of
y = (y1, · · · , yN )T is given by a Gaussian.

p(t|y) = N(t|y, β−1IN ) (11)

where IN denotes an N × N unit matrix. In this conditions, the marginal dis-
tribution of t is given by

p(t) = N(t|0, C) (12)
where the covariance matrix C has elements

C(xn, xm) = k(xn, xm) + β−1δnm (13)

The joint distribution over t1, · · · , tN+1 is given by

p(tN+1) = N(tN+1|0, CN+1) (14)

where CN+1 is an (N + 1) × (N + 1) covariance matrix with elements given by
Eq.(13). To consider the conditional distribution p(tN+1|tN ), we partition the
covariance matrix as follows

CN+1 =
(

CN k
kT c

)
(15)

where k = k(xn, xN+1) for n = 1, . . . , N , and the scalar c = k(xN+1, xN+1) +
β−1. The conditional distribution p(tN+1|tN ) is a Gaussian distribution, and its
mean and covariance are given by

m(xN+1) = kT C−1
N t (16)

σ2(xN+1) = c − kT C−1
N k (17)

The vector k is a function of the input vector xN+1. Therefore, the predictive
distribution is a Gaussian distribution whose mean and variance both depend on
the input vector xN+1. That is, the mean and the variance of the output value
yN+1 are determined by the new input vector xN+1.
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3 Proposed Method

3.1 The Echo Canceller Using Gaussian Processes

We propose a new method which cancels acoustic echo by subtracting spurious
echo y(n) which is calculated by Gaussian processes from the desired response
(the echo) d(n), as illustrated in Figure 1. Since the desired response includes
linear components and nonlinear components, the input vector for Gaussian
processes must involve elements for both of them. Thus, we make higher order
components from the input vector. We assume that the degree of nonlinearity is
second order.

Fig. 1. Acoustic echo canceller using Gaussian processes

3.2 Updating of the Covariance Matrix

The newest N samples of the learning data are used for an N × N covariance
matrix, so that elements of the covariance matrix are generated by N samples.
Therefore, the estimated value is given after Nth sample. The estimated value
at the nth sample (n > N) is given by the nth input data xn, desired responses
dn−N , · · · , dn−1 and the covariance matrix generated by xn−N , · · · , xn−1. Then
we delete elements corresponding to the oldest learning data from the covari-
ance matrix, and update the covariance matrix by using the nth input data xn,
as illustrated in Figure 2. Estimation of the output value corresponds to ob-
taining the mean value m(xn). Hence, we take the mean value as the spurious
echo.

Fig. 2. Updating covariance matrix
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Table 1. Simulation conditions

Proposed method Adaptive Volterra filter
Linear acoustic echo-path NL 50

Nonlinear acoustic echo-path NNL 50 × 50
Size of covariance matrix 2500 × 2500 -

Learning method - RLS method (γ = 1)
Input signal White signal,Stationary colored signal

Non-stationary colored signal,Real speech data
Sampling frequency 8kHz

Time 5 second

Table 2. Parameters of the second order AR circuit

Parameter Stationary colored signal Non-stationary colored signal
r 0.9 0.9
θ 0 cos

(
2πn
L

)
, L = 50000

ω π
2

π
2

4 Simulation Results

We have simulated the proposed method for white signal, stationary signal, non-
stationary signal and real speech data which is spoken by a man. For comparison
adaptive Volterra filter was also simulated with the same set of inputs. Table 1
shows conditions of simulation, and the linear and the nonlinear acoustic echo-
path are illustrated in Figures 3 and 4 respectively.

Stationary colored signal and non-stationary colored signal are generated by
a second order AR circuit which is illustrated in Figure 5. We can generate both
stationary colored signal and non-stationary colored signal by entering white
signal to the second order AR circuit. Table 2 shows parameters of the second
order AR circuit. We introduce non-stationarity by moving the poles according
to cosine function as illustrated in figure 6. We set the size of covariance matrix
to 2500 × 2500 empirically.

4.1 Measure of Echo Suppression

Usually, speaking in a room generates echo but we cannot notice it because
the delay between the actual sound and the echo at our ears is small. As the
delay becomes large we can notice echo and it becomes difficult to maintain
smooth conversation. Therefore suppression of acoustic echo in cellular phone
is necessary because usually delay is large in telephone lines. The Echo Return
Loss Enhancement (ERLE) is used to specify required suppression level of echo
to maintain smooth conversation. The ERLE is defined by

ERLE[dB] = 10 log10

∑
{d(n)}2∑

{d(n) − y(n)}2
(18)
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Fig. 3. Linear acoustic echo-path Fig. 4. Nonlinear acoustic echo-path

Fig. 5. The second order AR circuit Fig. 6. The poles of the signal which are
moved to produce nonstationarity

where d(n) denotes desired response and y(n) denotes estimated output.
According to [9], the required ERLE is over 50dB when the delay time is

more than 300ms. In this paper, we suppose that the desired ERLE is 50dB.

4.2 Simulation Results

The performance of the proposed method is evaluated by a series of simulation
studies. The left hand side of Figure 7 shows the time variations of ERLEs for
adaptive Volterra filter using the RLS method for the suppression of echoes of the
following inputs: white signal, stationary colored signal, non-stationary colored
signal and real speech signal. The right hand side of Figure 7 shows the results
for our proposed method to the same inputs.

By this method, the ERLE of each input converges over 70dB (more than
the desired ERLE of 50dB) within 320 milliseconds. The initial convergence
ERLEs are better than those obtained by Adaptive Volterra filter using RLS
method. Moreover, the initial convergence characteristics of ERLE is not affected
by statistical natures of inputs such as coloredness and nonstationarity. For
stationary signals, the proposed method shows better convergence speed than
the Volterra filter with RLS method. For nonstationary signals including actual



Acoustic Echo Cancellation Using Gaussian Processes 359

Fig. 7. Result for adaptive Volterra filter using the RLS method (left) and for Gaussian
processes using linear kernel (right)

speech data, the proposed method shows better ERLEs at almost every period
after initial convergence.

5 Conclusion

Gaussian process is applied to acoustic echo cancellation. It is shown that the
echo which involves both linear components and nonlinear components can be
cancelled more than 70dB. The initial convergence speeds for statistically dif-
ferent inputs including real speech signal are almost identical as opposed to
previously proposed algorithms.

In our method, since the inverse of covariance matrix must be calculated, it is
difficult to run the algorithm in real-time especially when we consider nonlinear
components. We are looking for a way to reduce computation time.

We are also looking for a way to solve both double talk problem and noise
problem. When both speakers at their phones talk at the same time, the echo
signal of one speaker overlaps with the talk signal of another speaker and clean
learning signal for the echo cancellation cannot be obtained. Moreover, we cannot
catch clean learning signal when the noise signal becomes larger. Detection of
both double talk and noise signal and to stop learning during those periods will
be a possible solution.

The precision of estimation depends on kernel function. In this study, we use
a linear kernel for kernel function. We will study other kernel functions such as
exponential kernel and Gaussian kernel for improving the performance.
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Abstract. Asbestos-related illnesses become a nationwide problem in
Japan. Now human inspectors check whether asbestos is contained in
building material or not. To judge whether the specimen contains as-
bestos or not, 3,000 particles must be counted from microscope images.
This is a major labor-intensive bottleneck. In this paper, we propose
an automatic particle counting method for automatic judgement system
whether the specimen is hazardous or not. However, the size, shape and
color of particles are not constant. Therefore, it is difficult to model
the particle class. On the other hand, the non-particle class is not var-
ied much. In addition, the area of non-particles is wider than that of
particles. Thus, we use One-Class Support Vector Machine (OCSVM).
OCSVM identifies “outlier” from input samples. Namely, we model the
non-particle class to detect the particle class as outlier. In experiments,
the proposed method gives higher accuracy and smaller number of false
positives than a preliminary method of our project.

1 Introduction

Asbestos-related illnesses become a nationwide problem in Japan. Asbestos was
widely used as building materials in Japan after the high-growth period of the
1970s. However, the use of asbestos has been banned or limited worldwide since
the late 1980s, because it was discovered to cause cancer. Therefore, we need
to check whether asbestos is used or not in a building when the building is
demolished or renovated.

There are some automatic airborne asbestos detection methods [1,2,3]. In this
paper, we pay attention to asbestos detection problem in building materials not
atmosphere. Asbestos detection in building materials is more difficult than that
in atmosphere, because the specimen from building materials includes various
kinds of particles. In near future, asbestos detection problem in building materi-
als will become important more and more. The analysis by human inspectors is
called as disperse dyeing method. Disperse dyeing method prepares three spec-
imens from one sample, and 1,000 particles are counted from each specimen.
When more than four asbestos are contained in 3,000 particles, it is judged as
dangerous. The detection of individual particles from microscope images is a

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 361–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



362 H. Kuba, K. Hotta, and H. Takahashi

major labor-intensive bottleneck for human inspectors. Thus, we propose an au-
tomatic particle detection and counting method to realize the disperse dyeing
method by computer.

The particle detection problem is a binary classification between the particle
class and the non-particle class. However, the size, shape and color of particles
are not constant. Therefore, it is difficult to model the particle class. On the
other hand, the non-particle class is not varied much. In addition, the area of
non-particles is wider than that of particles. Thus, we model the non-particle
class to detect the particles as “outlier”. For this purpose, we use One-class
Support Vector Machine (OCSVM) [4,5,6] for outlier detection.

In the experiments, we use a background image as a preprocessing. The back-
ground image is captured without the specimen. We compute the difference be-
tween an input image and the background image. We expect that regions with
large difference contain particles. After computing the difference image, the pro-
posed method is applied to the difference image, and particles are detected and
counted. The proposed method has two steps. The first step is the detection of
particle regions from the difference gray scale image by OCSVM. The gray scale
image is divided into small regions without overlap, and we make a gray level
histogram of each region. The histograms are used as input features for OCSVM.
OCSVM determines that particles exist or not into small regions. The second
step is counting particles. It is expected that the non-particle regions contain
only the background. On the other hand, the regions which are classified as par-
ticle class may contain the particle and background, because we assign the label
(particle or non-particle) to the square regions by OCSVM. Thus, we must elim-
inate the background from the regions with the particles label. We binarize the
difference image using the higher and lower intensity values of regions with the
non-particle label as a threshold. By this binarization, the background is elimi-
nated from the regions with the particle label. Then the number of particles is
counted.

The 20 microscope images which include the particles and other particles of-
fered by RIKEN are used. We compared the proposed method with a preliminary
particle detection method of our project. The preliminary method is based on
the binarization of the difference image between an input and background im-
age. The proposed method gives higher accuracy and smaller number of false
positives than the preliminary method.

The remainder of this paper is organized as follows. Section 2 covers the
particle detection and counting by OCSVM. Section 3 gives the experimental
results, followed by conclusions in the last section.

2 Particle Detection and Counting by One-Class SVM

In this paper, we propose an automatic particle detection and counting method
based on OCSVM from microscope images. Figure 1 shows the examples of
particles in microscope images of building materials. We understand that the
size, shape and color of particles are not constant. It is difficult to model the
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Fig. 1. Example of particles in building materials

particle class. On the other hand, the non-particle class is not varied much. In
addition, the area of non-particles is wider than that of particles as shown in
Figure 4. Thus, we detect particles as “outlier” by OCSVM. The OCSVM is the
unsupervised learning for outlier detection. Although the SVM classifier needs to
train in advance, the OCSVM does not need. Therefore, the particle detection by
OCSVM is appropriate for practical system. Only one thing to do is to capture
a background image at the current environment. This is an advantage of our
method.

In section 2.1, we explain OCSVM. Section 2.2 describes the proposed particle
detection and counting method.

2.1 One-Class SVM

OCSVM is the method for detecting outliers from input samples. The OCSVM
maps an input sample into a high dimensional feature space F via a non-linear
mapping Φ and finds the maximum margin hyperplane which separates the input
sample between the origin and desired hyperplane. Figure 2 shows the outlier
detection by OCSVM. The 3 samples which are near to the origin are the outliers
in this example.

Fig. 2. Outlier detection by OCSVM

Let x1, . . . ,xn ∈ X are input vectors. In order to separate the data from the
origin, it needs to solve the optimization problem:

minimize :
1
2
||w||2+ 1

νn

n∑
i=1

ξi − ρ,

subject to : 〈w, φ(x)〉 ≥ ρ− ξi , ξi ≥ 0, i ∈ [n],

where φ is the non-linear transform, w and ρ denote a weight vector and a thresh-
old. ξi are slack variables that penalize the objective function with allowing some
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of the feature vectors to be located in between the origin and desired hyperplane.
ν ∈ (0, 1) is the trade-off parameter that controls between the margin and the
penalty. ν = 0 means OCSVM with hard margin.

The decision function f(z) by OCSVM is defined as

f(z) = sgn(〈w, φ(x)〉 − ρ)),

The dual problem of the optimization problem defined as

minimize :
1
2

n∑
i=1

n∑
j=1

αiαjK(xi,xj),

subject to : 0 ≤ α ≤ 1
νn

,

n∑
i=1

αi = 1,

where α are Lagrange multipliers and K is the kernel function.
In OCSVM, Gaussian kernel is frequently used to map outliers near to the

origin. We also use the Gaussian kernel defined as

K(x, y) = exp(−||x − y||2
σ2

),

where σ denotes the standard deviation.
In this paper, we used the LIBSVM [7]. The parameters are set as ν = 0.9, γ =

1, c = 1 by preliminary experiment.

2.2 Particle Detection and Counting Method

As a preprocessing, we compute the difference between an input image and a
background image. The background image does not include any particles. It was
captured without specimen. Although both the input and background images are
color, the difference image is the gray scale by computing the squared distance
of RGB signals of each pixel. The size of the difference image is equal to the
input image. The proposed method has two steps. First, the particle regions
are detected roughly by OCSVM. Second, particles are counted. Figure 3 shows
how to apply OCSVM. In the first step, the difference image is divided into
small regions without overlap. The size of small region is set to 10 × 10 pixels.
Therefore, when the size of an input image is 100 × 100 pixels, 100 local regions
are obtained. In this paper, we use histogram as a feature of each region because
the position of particles in a small region is not constant. The histograms of all
regions are fed into OCSVM, and the outliers (particles) are selected from 100
regions by OCSVM.

Figure 4-9 shows the flow of our approach. Figure 4 is an input image and
Figure 5 is a background image. In this paper, only one background image shown
in Figure 5 is used in the experiments. Figure 6 shows the difference image. The
difference image becomes grayscale by computing the squared distance of RGB
colors at each pixel. Particles have large difference values. We compute the his-
tograms of small regions of Figure 6, and they are fed into OCSVM. Then the
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Fig. 3. How to apply OCSVM. When the size of an input image is 100×100 pixels and
the size of a small region is set to 10×10 pixels (I = 10, J = 10), 100 local regions are
obtained (L = I × J = 100).

Fig. 4. Original image Fig. 5. Background image Fig. 6. Difference image

Fig. 7. Result by OCSVM Fig. 8. Result by OCSVM
on original image

Fig. 9. Final result

result shown in Figure 7 is obtained. White regions show the particle label and
black regions show the non-particle label. Since squared local regions are used
as input samples for OCSVM, the result like the block is obtained. In Figure 8,
the regions with the particle label which are shown as pink are overlapped to
Figure 4. Since OCSVM assigns labels to squared regions, the regions with the
particle label in Figure 8 contain both particles and background. We want to
eliminate this for counting particles correctly. To eliminate it, we use the in-
formation of the regions classified as background. We expect that the regions
with the non-particle label contain only background. Thus, we use the higher
and lower intensity values of the regions with non-particle label as a threshold.
The result is shown in Figure 9. It can be seen that the result of Figure 9 is
more precise than that of Figure 7. We count the particles by labeling from the
Figure 9.
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3 Experiments

The 20 microscope images which include asbestos and other particles offered
by RIKEN[11] are used. In the 20 images, 1,051 particles are included. The
size of the microscope images is 640×480 pixels. These are color images. As a
preprocessing, the difference grayscale image is computed. To obtain the input
features for OCSVM, the difference image is divided into the small regions of
10×10 pixels without overlap. Then we make the histogram of each region. The
histogram bin size is set to 30.

To show the effectiveness of the proposed method, we compared it with a
preliminary method of our project. The preliminary method has 3 steps. First,
the difference image between the input and background image is computed. Sec-
ond, it is binarized by Otsu’s binarized method [8]. Third, particles are counted
by labeling in the binarized image. We evaluate the methods by using the true
positive rate and the number of false positives. The true positive means that
particles are classified correctly. The false positive means that non-particles are
mis-classified as the particle class. Table 1 shows the results of our method and
the preliminary method. True positive rate of our method achieves 88 % while
that of the comparison method achieves only 58 %. In addition, the number of
false positive is smaller than the comparison method. These results show the
effectiveness of particle detection by OCSVM. Figure 10 shows the examples of
particle detection by our method.

Figure 10 (a) and (d) show the original input images. Figure 10 (b) and (e)
show the results by OCSVM of (a) and (d). The background is already eliminated
by the binarization. The regions with particle label are shown as pink. Figure
10 (c) and (f) show the final result of our method. The green rectangle shows
the one particle. The proposed method can detect particles with various sizes
correctly. This is a giant step to realize the automatic disperse dyeing method by
computer, because there are few researches about asbestos detection in building
materials by computer.

Since the proposed method is based on the difference image, it failed to detect
particles which have the close value to background. Almost of all false negatives
are this kind of error. In terms of the false positives, there are some error types.
The typical false positives are shown in Figure 11. Figure 11 (a) is air bubble
which is not a particle. In our method, the regions with large difference from
background are detected as particles. Thus, air bubbles are also detected. We
count them as false positives strictly. Figure 11 (b) is the example of overlap of
some particles. Our method detect it as one particle. It may need to the stereo-
scopic system. Figure 11 (c) shows the example of out of focus. The microscope
has shallow depth of field. Then the captured image come into focus, or out of
focus by location. The particles with out of focus are smoothed and have the
close value of background. Therefore, it failed to detect particle. Figure 11 (d)
is the example of a fiber with broken pieces. Human inspector can count this as
one particle, however the proposed method count it as some particles. We judge
them as false positives strictly. In this paper, the simple labeling algorithm is
used but this will be improved by using conditional random field [9].
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Table 1. Evaluation results

Number of particles True positive rate Number of false positive
Proposed method 1,051 88(%) 74

Preliminary method 1,051 58(%) 126

(a) Original image (b) Result by OCSVM of (a) (c) Final result of (a)

(d) Original image (e) Result by OCSVM of (d) (f) Final result of (d)

Fig. 10. Examples of particle detection by the proposed method. (a) and (d) Origi-
nal images. (b) and (e) The regions with particle label which are shown as pink are
overlapped to the original images. (c) and (f) The final results.

(a) (b) (c) (d)

Fig. 11. Example of false positive. (a) an air bubble (b) an overlap of particles (c) a
decoupling by the out of focus (d) a fiber with broken pieces
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4 Conclusion

In this paper, we propose an automatic particle counting method using OCSVM
for automatic disperse dyeing method from building materials by computer. We
detect particles from the microscope image as outliers by OCSVM. Experimental
results show the effectiveness of the proposed the particle detection method.
Although we use the histogram as features for OCSVM,the Gaussian kernel is
used in OCSVM. The kernel specialized for histogram may improve the accuracy
futher. The pyramid match kernel [10] may be used for this purpose. This is a
subject for future works.
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Abstract. Protein folding classification is a meaningful step to improve
analysis of the whole structures. We have designed committee Support
Vector Machines (committee SVMs) and their array (committee SVM
array) for the prediction of the folding classes. Learning and test data
are amino acid sequences drawn from SCOP (Structure Classification
Of Protein database). The classification category is compatible with the
SCOP. SVMs and committee SVMs are designed in an one-versus-others
style both for chemical data and sliding window patterns (spectrum ker-
nels). This generates the committee SVM array. Classification perfor-
mances are measured in view of the Receiver Operating Characteristic
curves (ROC). Superiority of the committee SVM array to existing pre-
diction methods is obtained through extensive experiments to compute
the ROCs.

1 Introduction

Learning machines have been presenting powerful methods to bioinformaticians.
Some of early tools already appear in monographs [1] and are accessible through
the Internet. Recent advancement of the learning algorithm is well-supported
by the enforcement of computing power. Among many bioinformatics fields, the
prediction1 of various structures from given {DNA, amino acid}-sequences is
considered to be an attractive target from the learning theory viewpoint. This
paper is compatible with this stance.

The protein function is strongly related to its folding pattern. But, there are
unknown structures overwhelmingly more than known ones which are assembled
in databases. Therefore, the prediction of the protein folding class in silico helps
wet biologists greatly so that haphazard experiments can be avoided. There-
fore, this paper addresses the protein folding classification using computationally
learned machines. The SCOP (Structure Classification Of Protein database) [2]
is the resource of training data, test data, and classification categories. Methods
presented in this paper are as follows.

1 In bioinformatics, this terminology is equivalently called recognition, estimation,
classification, etc.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 369–377, 2009.
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(1) SVMs (Support Vector Machines) on data reflecting chemical properties,
(2) SVMs on N-grams,
(3) A committee SVM array on chemical data,
(4) A committee SVM array on chemical data and N-grams.

All SVMs in this paper are designed in an one-versus-others style. This leads to
the array structure of (3) and (4). Each performance is evaluated by a Receiver
Operating Characteristic curve (ROC). Since data entities of (1) and (2) are very
different, the committee SVM arrays of (3) and (4) improve the classification
performance. Experiments on the protein folding classification show that the
committee SVM array of (4) has a superior performance to existing ones [3], [4],
[5], [6], [7] by revealing a balance at around (specificity, sensitivity)=(85.40%,
76.13%).

2 Protein Folding Classes, Feature Parameters, and
Structure Descriptors

2.1 SCOP Folding Classes

SCOP data set [2] contains 27 fold classes under 4 super families; α (6 types of
folds), β (9 types of folds), α/β (9 types of folds), and α + β (3 types of folds).
These names reflect the α-helix and the β-sheet of protein structures. The 27
fold types are indexed by {1, 3, 4, 7, 9, 11, 20, 23, 26, 30, 31, 32, 33, 35, 39, 46,
47, 48, 51, 54, 57, 59, 62, 69, 72, 87, 110}. On the list of the 27 types of protein
folds, readers are requested to refer to [5] since what we need are identifiers
alone.

2.2 Feature Vectors

There are several methods for the extraction of feature vectors which are fed into
a learning machine. Reasonable extraction of feature vectors leads to a reliable
performance on the fold classification.

Global Protein Structure Descriptor: For a sequence with 3-letter alpha-
bets, there is a method to generate a 21 dimensional feature vector. Another
protein structure descriptor is developed in the day of [3]. In this method,
each residue (amino acid symbol) is classified to types {A, B, C} according
to the amino acid attribute [4]. Then, frequencies of X and transitions from
X to Y (denoted by X-Y) or Y to X (denoted by Y-X) are computed as is
illustrated in Fig. 1. Here, X and Y are one of {A, B, C} with X�=Y. The
last column of Fig. 1 shows the frequencies giving a 6-dimensional sub-vector.
Furthermore, {the first letter, 25% frequency, 50% frequency, 75% frequency,
100% frequency} makes a 5-dimensional vector. Therefore, a 21-dimensional
feature vector (21=6+5×3) is obtained from each attribute.

CSHVPZ Vectors: Input vectors to SVMs are made from an amino acid se-
quence as follows [5].
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Fig. 1. Global protein structure descriptor

Fig. 2. Sliding window frequency

Symbol C : 20-dimensional vector is is obtained from frequencies of 20
amino acid symbols.

Symbol S : 21-dimensional vector is obtained by from three types of sec-
ondary structure prediction.

Symbol H : 21-dimensional vector is obtained from the hydrophobicity.
Symbol V : 21-dimensional vector is obtained from the normalized van der

Waals volume.
Symbol P : 21-dimensional vector is obtained from the polarity.
Symbol Z : 21-dimensional vector is obtained from the polarizability.
We call each of the above data C,S,H,V,P,Z vectors. If all feature vectors
are piled up, a 125-dimensional super vector is obtained. We call this data
CSHVPZ super vector.

2.3 Sliding Window N-Gram

A sliding window N-gram extracts a global pattern in a discrete symbol sequence.

c (σ,x) = (number of occurrence of σ in x)/(length of x). (1)
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Here, σ is an N-fold element in ΣN . In this paper, Σ is the set of 20 amino
acid symbols. From now on, k will be used for the length instead of N . Figure 2
illustrates the counting procedure of σ for k = 2. In later experiments, the cases
of k = 2 and k = 3 will be examined. Note that k = 3 reveals 8000-dimensional
vector data to be classified, which is a practical limit due to the machine learning
complexity.

The function c(σ,x) is used to derive the spectrum kernel [6] or the string
kernel [8]. Spectrum kernel elements are defined as follows.

K (x,x′) =
∑

σ∈Σk

c (σ,x) · c (σ,x′) (2)

But, it has been understood by our previous studies [9], [10], that the spectrum
kernel method alone does not show satisfactory classification performances. On
the other hand, however, this method has the capability of increasing the total
performance once combined with other methods.

3 Support Vector Machines and Committee SVM Array

3.1 Kernel Support Vector Machine

The support vector machine shows a high performance when an appropriate
nonlinear transformation of source data φi(x) is used. Here, i stands for the
index for different nonlinear transformations which will appear in committee
SVMs. Given a data vector x, each decision is made according to the margin.

fi (x) = wT
i φi (x) + bi. (3)

Here, wi and bi are learned values from training data. The nonlinear function
φi(x) needs to satisfy the kernel property so that direct computations of the
nonlinear transformation φi(x) can be avoided on the computation of the kernel

Ki(x,x′) = φi(x)T φi(x′). (4)

In later experiments, Ki(x,x′) will be radial basis functions with various dimen-
sions and parameters, as well as the counting kernel of Equation (1).

3.2 Committee SVM Array

It has been observed well that the support vector machine shows better recogni-
tion performance than the neural network. This is because the SVM is obtained
by the direct optimization of the performance measure. But, the SVM still has
inevitable weak points:

(1) Multi-class decisions require practically infeasible computation. In fact, open
SVM tools are mostly dichotomy machines. There are few examples for multi-
class machines, however, the number of classes is very limited due to the
complexity blow-up.
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Fig. 3. Committee SVM

(2) If an input vector is a composition of very heterogeneous sub-vectors and
has a high dimension, then the data space possesses many sparse sub-spaces.
If implicit connections were created between such sub-spaces, the generaliza-
tion performance would become low. This is a flaw common to large learning
machines.

By considering the above (1), we adopt the strategy of “one-versus-others.”
On item (2), we design committee SVMs, i.e., multi-level SVMs. In this pa-
per, they are two-level committee SVMs. Figure 3 illustrates the arrangement of
such committee SVMs. First-level SVMs work on heterogeneous data explained
in Section 2. At the second level, there are 27 SVMs prepared. Each SVM cor-
responds a specific feature vector or a spectrum kernel explained in Section 2.
Input vectors to the second-level SVMs are the set of normalized margins or soft
decisions from the first-level SVMs. The second level SVMs give decisions on
27 SCOP classes. Therefore, the committee SVMs of “one-versus-others” can be
interpreted as a committee SVM array.

4 Experiments

4.1 Method of Performance Measurement

ROC Curve: There are three authoritative performance figures {specificity,
sensitivity, precision}. They are defined as follows.

Specificity =
TrueNegative

T rueNegative + FalsePositive
(5)

Sensitivity =
TruePositive

TruePositive + FalseNegative
(6)
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Precision =
TruePositive + TrueNegative

TruePositive + FalseNegative + FalsePositive + TrueNegative
(7)

But, it is well-known that these figures are influenced by the ratio of positive
and negative data. Therefore, the Receiver Operating Characteristic curve (ROC
curve) is used as a more reliable performance measure. An ROC curve can be
obtained by shifting a decision threshold and plot a pair (1-specificity, sensitivity)
on an x-y plane.

Cross Validation: It is very likely that the content of positive and negative
data is statistically biased by wrong sampling. Therefore, we draw n sets of posi-
tive and negative data. This enables to perform experiments n times. This is the
n-fold cross validation. In our experiments, there are 694 data [5]. They are sep-
arated to 341 training data and 353 test data, which are generated by randomly
halving each 27 SCOP classes. Thus, n=10 sets of test data and training data
were generated. Finally, their average performance was computed as an ROC
curve.

4.2 Experiments on Single One-Versus-Others SVM
We performed experiments on one-versus-others SVMs on 27 SCOP classes. This
has the purpose of obtaining baseline performances for later experiments for the
committee SVM.

Figure 4 illustrates ROC curves using one of {C, S, H, V, P, Z}. Each curve
is the result of the average of 27 SCOP class decision. This illustration tells that
the ordering of the feature effectiveness is C>S>H>P>V>Z.

Fig. 4. ROCs of {C, S, H, V, P, Z}

4.3 Experiments Including CSHVPZ Super Vector

Figure 5 shows the ROC curve by the CSHVPS super vector which outperforms
any of single SVMs of {C, S, H, V, P, Z}. Note that the ROC curve by the



Protein Folding Classification by Committee SVM Array 375

Fig. 5. ROCs of CSHVPZ super vector SVM, C-SVM, kernel spectrum SVMs of
k = 2, 3

feature C is the same one in Figure 4. In Figure 5, the ROC curves by the
spectrum kernel SVMs of k = 2 and k = 3 are also illustrated. The comparison
of the super vector’s ROC and the ROC curve for the feature C appeals the
classification improvement by the super vector. The ROC curves by the spectrum
kernels of k = 2 and k = 3 are illustrated in this figure, not in Figure 4, because
the superposition of these curves would create a more confusing illustration of
Figure 4.

4.4 Experiments on Committee SVM Array: Final One

Since the entities of {C, S, H, V, P, Z} and the spectrum kernel are very different,
it becomes a good challenge to realize a total committee SVM array illustrated
in Figure 3 if this scheme is within the conventional computing resource. The
answer is yes. This is because each SVM is of one-versus-others type.

Figure 6 shows the following ROC curves which was obtained by using a
conventional desktop computer of 2.00 GHz.

CSHVPZ : A single SVM using super vector data of CSHVPZ which is the
ROC curve in Figure 5.

CM CSHVPZ : A committee SVM by {C, S, H, V, P, Z}.
CM CSHVPZK2 A committee SVM by {C, S, H, V, P, Z} and the spectrum

kernel of k = 2.
CM CSHVPZK3 A committee SVM by {C, S, H, V, P, Z} and the spectrum

kernel of k = 3.

Before analyzing Figure 6 in detail, we give a very important notice here: This
graph is a partial enlargement of ROC curves. This is because we need to
pay attention to the most meaningful part of the ROC curve and the diffence
in this part needs to be understood clearly. Figure 6 illustrates total types of
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Fig. 6. ROCs of committee SVMs

resulting ROC curves on protein folding multi-classification. In the region where
the specificity and the sensitivity are well-balanced, the committee SVM array for
CM CSHVPZK3 passes the point of (specificity, sensitivity)=(85.40%, 76.13%),
CM CSHVPZK2 goes through (87.2%, 74.4%), and the CM CSHVPZ passes
(83.3%, 76.67%). This shows a substantial improvement on the recognition of
the folding classification.

5 Conclusion

The prediction of protein folding class from amino acid sequences was addressed.
Since extracted features from one sequence are heterogeneous, a layered struc-
ture of support vector machines showed a substantial improvement on the clas-
sification performance over existing ones. The layered SVM, i.e., the committee
SVM array, can avoid designing a large monolithic multi-class SVM which is
practically infeasible to run on a conventional computer.
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Abstract. This paper presents a MLP kernel. It maps all patterns in
a class into a single point in the output layer space and maps different
classes into different points. These widely separated class points can be
used for further classifications. It is a layered feed-forward network. Each
layer is trained using the class differences and trained independently layer
after layer using a bottom-up construction. The class labels are not used
in the training process. It can be used in separating multiple classes.

1 Introduction

The support vector machine (SVM) [1] employs the Mercer kernel to map pat-
terns to the high dimensional space. Usually, the class information of the pattern
is not used in the design of the kernel function. The outcome of the mapping
relies on the choice and the setting of the kernel function.

This paper devises a method for the training of the MLP [7][8] and uses the
trained MLP as the mapping kernel to split different classes. This trained MLP
mapping kernel will be named ‘SIR kernel’ after the method in [7]. The SIR
kernel can be applied to multiple classes. The design idea of the SIR kernel is in
the following context.

Let the set of all patterns be X = {xp; p = 1, . . . , P}. Each pattern xp is a D-
dimensional column vector. The label function, C : R

n0 → N, maps each pattern,
xp, to its class identitynumber (or class label), cp. Let the setUci contain allpattern
pairs that belong to the same class ci, Uci = {(xp,xq) ; C (xp) = C (xq) = ci}. Let
the set Vci,cj contain all pattern pairs that belong to the different classes, Vci,cj =
{(xp,xq) ; C (xp) = ci, C (xq) = cj , ci �= cj}.

Suppose there are L hidden layers in the network. Let the column vector
y(p,m) be the output vector of all neurons in the mth layer, m ∈ {1, 2, ..., L},
when the pattern xp is fed to the input layer. y(p,m) is the internal representation
of xp in the mth layer. We set y(p,0) = xp. Let nm denote the total number
of neurons in the mth layer. The collection of all internal representations of
the mth layer is Ym =

{
y(p,m), p = 1, . . . , P

}
. The representations may be

the same, y(p,m) = y(q,m), for different patterns, xp �= xq. This is a many-
to-one mapping. Let ‖Ym‖ be the total number of distinct representations in

� Corresponding author.
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the set Ym. The internal representations of patterns, Ym, have been studied
in the work [6]. All patterns have their representations in each layer. These
representations are the output vectors of the layer for all input patterns. These
representations are all binary codes when the hard limiting activation function
is applied to all neurons. So, y(p,m) is a binary code. The decision hyperplanes
of all neurons in a layer divide its input layer space into nonoverlapped small
decision areas and code these areas with binary codes. For the first hidden layer,
each area has a polyhedral shape in the input pattern space. The inputs of the
second layer are the binary internal codes of the outputs from the first hidden
layer. Each of the codes, y(p,m), represents the all patterns in a single decision
area. According to the study in [6], the total number of representations will be
much reduced, generally, in a layer that is far from the input layer. This means∥∥YL

∥∥ � .. �
∥∥Y2

∥∥ �
∥∥Y1

∥∥ � P . This reduced number is very useful for
the separation of classes. Ideally, this number can be reduced to the number of
classes,

∥∥YL
∥∥ =total number of classes=‖C‖. This makes the design possible

for the SIR kernel.
The method in [5] devised a weight design for each layer. According to the

design, the upper bound of the number of neurons in the mth layer required for

solving a general-position two-class classification problem is
⌈

‖Ym−1‖
nm−1

⌉
≥ nm.

For the number of neurons in the first hidden layer, n1, the bound is
⌈

P
D

⌉
≥ n1.

With this weight design, the reduced number in the last layer L is guaranteed,∥∥YL
∥∥ = ‖C‖.

The work [6] also introduced a layered binary tree, named ‘AIR’ tree, that can
trace the error neurons in a latent hidden layer that is far from the output layer
and close to the input layer. The error neurons show that certain mixed patterns
from both classes are represented in a same code (or included in a decision area).
This means that a single code y(p,m), y(p,m) = y(q,m), represents different class
patterns, (xp,xq) ∈ Vci,cj . The joint nodes of the tree are the internal codes.
According to this tree, any BP algorithm cannot correct such latent errors by
adjusting its succeeding layers that near the output layer. The front layers must
be trained correctly in order to send right signals to their succeeding layers. This
suggests that one has to accomplish the MLP layer after layer using a bottom-up
construction.

The study in the work [6] further identifies the mechanism of the front layers
during the supervised BP training. It shows that categorization into different
classes is the main mechanism for those front layers. This means that the identity
of each class, the class label, is not used in the categorization. This suggests that
the front layers can be successfully trained by using the discrimination differences
between classes as the object function.

The SIR method in [7] provides such object function based on the differences
between classes. The front layers can be trained layer after layer using this
object function starting from the first hidden layer. Perfect categorization and
production of right signals can be accomplished for each layer [7][8]. These front
layers are served, suitably, as the SIR kernel. The SIR kernel will utilize the
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differences between classes to train the front layers. The kernel will not use the
class label information in its training process.

The work [6] also identifies the mechanism of the rear layers that are near the
output layer. It shows that labeling is the main mechanism. These front and rear
mechanisms complete the supervised MLP. We will include a labeling sector that
contains several layers after the SIR kernel. The object function for the labeling
sector is the class labels.

We will use the differences between classes to train each front layer starting
from the first hidden layer. A second hidden layer is added to the first hidden
layer when the outputs of the first hidden layer cannot produce well isolated
signals for each class. When a hidden layer can produce well isolated signals,
it will be served as the last front layer, L, and as the output of the kernel. We
expect that the number of reduced representations of the last front layer will be
equal to the number of classes,

∥∥YL
∥∥ = ‖C‖.

2 Method

Figure 1 shows the SIR kernel and the labeling sector. The SIR kernel consists
of layered neurons.

For the pair patterns in the same class, (xp,xq) ∈ Uci , each layer is trained
by using the energy function [8],

Eatt (xp,xq) =
1
2

∥∥∥y(p,m) − y(q,m)
∥∥∥2 , (1)

to reduce the distance between their output vectors,
∥∥y(p,m) − y(q,m)

∥∥. For the
pair, (xp,xq) ∈ Vci,cj , each layer is trained by using the energy function,

Erep (xp,xq) =
−1
2

∥∥∥y(p,m) − y(q,m)
∥∥∥2 , (2)

to increase the distance between their output vectors. The difference information
between classes is implicitly used in the two energies. Note that the class labels
are not used in these two object functions. The labels will be applied only in the
labeling sector.

The network is constructed layer after layer, starting from L = 1. A new
hidden layer is added, Lnew=Lold + 1, whenever Lold layers cannot accomplish
the isolation. All weights of the trained Lold layers are fixed during the training
of the added layer, m = Lold + 1.

The weight matrix which connects the output of the (m − 1)th layer and the
input of the mth layer, is denoted by Wm. The W1 connects the input layer and
the first hidden layer. In this paper, ‘Wm’ is used for representing the weight
matrix of the mth layer. Applying the gradient descent method to the added
layer, the two energies can be reduced efficiently during training iterations. The
successfully trained network is used as the SIR kernel to map the pattern, xp,
to the output space, y(p,L).
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Fig. 1. The SIR kernel and labeling sector

Algorithm. Each time a new hidden layer, Lnew = Lold + 1, is added, its
weights are adjusted by the gradient descent method using the energies (1) and
(2). The weights of all trained layers, Lold, are fixed. Suppose there are two
classes, {c1 = 1, c2 = 2}. The training algorithm is in the followings:

1. For the added layer Wm, Wm from W1 to WL

2. For limited epochs
3. Pick two patterns in the same class, xp and xq, which satisfy the

following condition

(xp,xq) = arg max
{(xi,xj)∈U1 or (xi,xj)∈U2}

∥∥∥y(i,m) − y(j,m)
∥∥∥2

. (3)

Among the pair patterns in the same class, either in U1 or in U2, the two
patterns (xp,xq) have the longest distance in the output space of the mth
layer.

4. Find the pair patterns, xr and xs in different classes, which satisfy

(xr,xs) = argmin
(xi,xj)∈V1,2

∥∥∥y(i,m) − y(j,m)
∥∥∥2 . (4)

The pair patterns (xr,xs) have the shortest distance in the output space of
the mth layer.

5. Adjust the weight Wm by

∇Wm ← ηatt ∂Eatt (xp,xq)
∂Wm

+ ηrep ∂Erep (xr ,xs)
∂Wm

Wm ← Wm − ∇Wm,

where ηatt and ηrep are learning rates.

3 Experimental Analysis

Two artificial datasets are used in the simulations. One is a two-class problem
and the other is a three-class problem. Three real world datasets are also used
in the simulations.
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Fig. 2. (a) The training result of MLP. (b) The result of SIR kernel. (c) The result of
SVM.

Two-Class Problem. Figure 2(b) shows the trained result for the two-class
patterns, ci ∈ {1, −1}, in the 2D plane, n0 = 2. The border of the two-class
patterns is (x1)

3 + 0.1x1 = x2. Pattern points with the same color are in the
same class. There are five neurons in each layer, {nm = 5, m ∈ {1, . . . , L}}. The
kernel is trained layer after layer until it produces well isolated signals for each
class. We set the isolation condition for inter-class representations as

min
(xp,xq)∈V1,2

∥∥∥y(p,L) − y(q,L)
∥∥∥2 ≈ 22 × nL, (5)

and the condition for intra-class patterns as

max
{(xp,xq)∈U1or (xp,xq)∈U2}

∥∥∥y(p,L) − y(q,L)
∥∥∥2

≈ 0. (6)

The learning rates are ηatt = 0.01 and ηrep = 0.1. The successful isolation is
reached when L = 2. We set one neuron, nc

1 = 1, in the labeling sector as the
output layer and use the class identities, ci ∈ {1, −1}, to train this neuron.
Figure 2(b) shows the trained result.

We also compare the result with those obtained by the MLP in Figure 2(a),
and SVM in Figure 2(c). The MLP is a multilayer perceptron with two hidden
layers, nMLP

1 = nMLP
2 = 5. This MLP is trained by the supervised BP. The

polynomial kernel, K (u,v) =
(
uT v + 1

)3, is used in SVM [2].
The boundary in Figure 2(b) is much more close to the intrinsic border than

the result of the supervised MLP in Figure 2(a). The boundary learned by SVM
in Figure 2(c) is also close to the intrinsic border. Using the Gaussian kernel,
the SVM learned a similar boundary as that in Figure 2(a).

Multiple-Class Problem. The training patterns sampled from three classes
separated by concentric circles, ci ∈ {1, 2, 3}, are used in this simulation, see
the right column in Figure 5. We train four SIR kernels with different number of
neurons in each layer, {nm = 5, nm = 7, nm = 9, nm = 11}. Each layer is trained
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Fig. 3. Recorded isolation conditions for the case nm = 5, MinInterClass (7) and
MaxIntraClass (8), for each layer, m = 1, 2, 3, 4

Fig. 4. The SOM used for visualization

with 1000 epochs. The isolation condition (6) is used in this simulation to stop
the addition of a new layer. The learning rates are ηatt = 0.01 and ηrep = 0.1.
The values of the isolation conditions of each layer

MinInterClass(m) = min
(xp,xq)∈{V1,2,V1,3,V2,3}

∥∥∥y(p,m) − y(q,m)
∥∥∥2 (7)

and
MaxIntraClass(m) = max

(xp,xq)∈{U1,U2,U3}

∥∥∥y(p,m) − y(q,m)
∥∥∥2 , (8)

are recorded and plotted for the case nm = 5 in Figure 3.
When the well isolation is reached, we set two layers in the labeling sector

with nc
1 = 2 and nc

2 = 3 and use the class identities to train these two layers. In
the layer nc

2 = 3, each neuron represents a single class.
We employ the SOM (Self-Organizing Map) [4] to visualize the output signals,

y(p,m), of each layer, to see the isolation of classes. The neurons of the SOM are
placed on regular points, see Figure 4. The SOM consists of 10 × 10 neurons.

Figure 5 shows the SOM results for all layers. Each pixel denotes a SOM
neuron. The pattern color is marked on its winner neuron. Figure 5 shows that
well isolated signals are gradually accomplished in the last few layers. The output
signals of the last layer have three concentrated points in the SOM.

Real Dataset. The iris dataset, Wisconsin breast cancer database, and Parkin-
son dataset will be used in the experiments. The iris dataset [3] contains 150
data items which belong to four classes. Each data is a four dimensional vec-
tor. The Wisconsin breast cancer database is a diagnostic dataset. Many useful
attributes are used for the prediction of benign or malignant, a two-class prob-
lem. The study in [11] reported a 95.9% testing accuracy. The breast cancer
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Fig. 5. The results of using the SOM to visualize the isolation of the output vectors
of each layer. The images on the right column display the mapping relation between
input patterns and output space.

Table 1. Parameters

SIR SVM MLP
(nm, Lmax) C gamma nMLP

1 nMLP
2

iris (11, 5) 50 0.05 20 10
Wisconsin Breast Cancer (30, 7) 50 0.05 30 10

Parkinson (20, 5) 50 0.05 30 10

Table 2. The accuracy on real dataset

Training Accuracy Testing Accuracy
SIR MLP SVM SIR MLP SVM

iris 100.00% 99.67% 97.50% 97.33% 94.66% 96.00%
Wisconsin Breast Cancer 100.00% 98.89% 97.53% 96.00% 95.57% 96.42%

Parkinson 100.00% 98.33% 99.87% 91.28% 88.20% 92.82%

dataset has 16 missing values. These missing values are set to zero. The Parkin-
son dataset [9] contains the biomedical voice measurement by healthy people
and parkinson patients.

Three machine learning techniques, SIR kernel, MLP and SVM, are compared
using the 5-fold cross-validation. The dataset is randomly split into five parti-
tions, four of them are used in the training process and the rest one is used in
the testing process. The result is the average of the 5-fold cross-validation. The
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labeling sector for the iris set is nc
1 = 5 and nc

2 = 3. The sector for the cancer
dataset is nc

1 = 5 and nc
2 = 1. The sector for the Parkinson dataset is nc

1 = 5
and nc

2 = 1. The largest value L among the five trials is listed in the Table 1
under the column marked ‘Lmax’. The parameters of SVM are the cost C for
the error tolerance and the gamma in the Gaussian kernel. The MLP has two
hidden layers. All parameters are listed in Table 1. The values of the input data
are normalized to the range [−1, 1].

Table 2 shows that the SIR kernel is competitive and practicable in real world
applications. The column ‘SIR’ contains the results of SIR kernel.
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Abstract. - Although Support Vector Machines (SVMs) have been successfully 
applied to many problems, they are considered “black box models”. Some 
methods have been developed to reduce this limitation, among them the 
FREx_SVM, which extracts fuzzy rules from trained SVMs for multi-class 
problems. This work deals with an extension to the FREx_SVM method, in-
cluding a wrapper feature subset selection algorithm for SVMs. The method 
was evaluated in four benchmark databases. Results show that the proposed ex-
tension improves the original FREX_SVM, providing better rule coverage and a 
lower number of rules, which is a considerable gain in terms of interpretability.  

1   Introduction 

Support vector machines (SVMs) are based on statistical learning theory [1, 2, 3] and 
have been applied with excellent generalization performance to a variety of applica-
tions in classification and regression [4, 5, 6].  

Despite their excellent performance, SVMs, as well as artificial neural networks, 
are “black box models”, i.e., models that do not explain clearly what leads to a given 
result. Algorithms whose purpose is to extract useful knowledge from a trained SVM 
have already been proposed, among them RulExtSVM [7] and SVM+Prototypes [8]. 
The algorithm RulExtSVM extracts IF-THEN rules with intervals, defined by hyper-
rectangular forms, in the rules’ antecedents. The SVM+Prototypes method calculates 
ellipsoids (called prototypes) based on the obtained support vectors of each class. 
These ellipsoids are also used in the rules’ antecedents. 

It must be stressed that the rules extracted from both methods generate, in their  
antecedents, intervals or functions. This fact reduces the interpretability of the generated 
rules and jeopardizes the capacity of knowledge extraction [9]. To increase the linguistic 
interpretability of the generated rules, the FREx_SVM method has been developed [9].  
It extracts fuzzy rules from trained support vector machines and is applicable to  
multi-class classification problems. The basic idea is that, by employing fuzzy sets in 
the rules' antecedents, the resulting rules will be more flexible and interpretable. The 
FREx_SVM method has already been successfully applied to several databases [9]. 
However, when the number of input attributes increases, the interpretability of the 
model decreases, since the generated rules have many variables in the antecedents. 
Therefore, this article proposes an extension to the original FREx_SVM by including a 
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wrapper feature selection algorithm [10, 11, 12] to select the most relevant input fea-
tures. Two feature selection algorithms, proposed in [10] and [12], were evaluated with 
FREx_SVM; however, preliminary results indicated that the former algorithm ([10]) 
provided better results with the original FREx_SVM. Therefore, the case studies carried 
out in this work were obtained with the feature selection algorithm presented in [10]. 

This paper is divided into five additional sections. Section 2 briefly describes the 
theory of support vector machines. The feature selection methods are presented in 
section 3. Section 4 briefly presents the method for extracting fuzzy rules from trained 
SVMs. First the method is presented for binary classification problems; then the fuzzy 
rule extraction model is extended to multi-classification applications. Section 5 pre-
sents the case studies, describing the benchmark databases employed and the per-
formance obtained with the fuzzy rule extraction method. Finally, discussion and 
conclusion are presented in Section 6.  

2   Support Vector Machines 

Consider a training set {(xi, yi)}, i ∈ {1, …, N}, where xi∈ n, yi∈{-1, 1}, and N is the 
number of patterns. SVM solves a quadratic programming optimization problem: 

maximize  ),(
2
1

1,1
jiji

N

ji
ji

N

i
i xxKyy∑ αα−∑α

==
 (1) 

subject to   0 ≤ αi ≤ C,  and  ∑α
=

N

i
ii y

1
= 0 . (2) 

The function K(xi, xj) = Φ(xi).Φ(xj) is a kernel function, where Φ(xi) represents the 
mapping of input vector xi into a higher dimensional space (called “feature space”). C 
is the regularization constant, a positive training parameter which establishes a trade 
off between the model complexity and the training error, and αi are Lagrange coeffi-
cients. In the solution of the previous problem, αi = 0 except for the support vectors, 
which are represented by si in order to distinguish them from other data samples. 
Methods for solving the above problem are described in [1, 2]. 

A data point x is classified according to the sign of the decision function: 

f (x) = bxsKy
Ns

i
iii +∑α

=1
),( , (3) 

where b is the bias and Ns is the number of support vectors.  
SVMs were originally defined for binary classification. There are basically two ap-

proaches to extend SVM for classification in k classes (k > 2): one that reduces the k-
classes problem to a set of binary problems; and one that involves a generalization of 
the binary SVM [13].   

A well known method based on the first approach is "one-against-all" [13]. This 
method is the most simple and most used in the multi-class classification with SVM, 
so it was chosen to be employed in this paper. This method builds k binary SVMs, 
each of them dedicated to separating each class from the others. The outputs of all 
SVMs are then combined to generate the final classification in k classes. The most 
common method for combining the k SVMs outputs, which will be used in the case 
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studies of this work, is to assign the input vector to the class that provides the largest 
value of the decision function. 

3   Feature Subset Selection Algorithms 

The algorithm for feature selection presented in [10] was designed specifically for 
support vector machines and employs the representation of the decision function 
given by equation 3.  

The main idea is to extract some measure from a trained SVM and use this infor-
mation to select the most relevant features in the training process. Then a new training 
phase is carried out with the input data containing the selected features. 

In order to find the most relevant features, a measure of the importance of each fea-
ture is needed. Consider the linear case where w is the normal vector of the separating 
hyperplane and {ei} is a basis for the input space. The importance of a feature Xl is 
defined by the amount of colinearity of el with w. In the nonlinear case, this measure 
consists of the decision function f given by equation 3. However, the influence of a 
feature depends on the other features. Therefore, for a given point x in the input space, 
the importance d of Xl is defined as the partial derivative of the decision function f  in 
relation to Xi: 

( )2

lx,l e),x(fd
rr

r ∇=           (4) 

To evaluate the former equation, some points from the input space must be cho-
sen, since it is impossible to evaluate the equation in all input points (there are infinite 
points). As the decision function depends only on the support vectors, these points 
will be selected.  

A good measure of the influence d of a feature Xl is the mean of its influence 
computed in the support vectors: 

where |sv| is the number of support vectors.   
Once the importance d of each feature is calculated, the features are ranked. Then 

several SVMs are trained, the first with the best ranked feature, the second with the 
two best ranked features and so on. The training stops when the accuracy of a SVM 
trained on a feature set stops increasing. 

In [12], authors proposed a prediction risk based feature selection method, which 
evaluates a feature by computing the change of training error when this feature is 
replaced by its mean value. The feature corresponding to the least change will be 
removed, since its change causes the least error indicating it is the least important one. 

4   Fuzzy Rule Extraction Methodology 

This paper concisely presents the method for extracting fuzzy rules from trained 
SVMs, called FREx_SVM. For further information, see [9]. The FREx_SVM method 
is divided in 3 steps: projection of support vectors, definition of fuzzy sets, and fuzzy 
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rule extraction. For the sake of simplicity, the FREx_SVM method is first described 
for a binary SVM. Then, in Section 4.2, it is extended to a multi-class SVM. 

4.1   FREx_SVM for Binary SVM 

In the first step of the algorithm, the support vectors obtained by the SVM are pro-
jected on the coordinate axes. There are as many projections as the input space di-
mension (number of input attributes of the data base under analysis).  

The next step consists of defining a number of overlapping fuzzy sets to each input 
variable. Each fuzzy set is labeled and assigned to a triangular membership function, 
usually with equal domain. Suppose that each attribute of an n-dimensional input 
space has been divided into m fuzzy sets. In this case, the fuzzy set Cij is the jth set 
defined for the ith coordinate, where i ∈ {1, …, n} and j ∈ {1, …, m}.  

Each support vector projection obtained in the previous step (one projection for 
each input variable) is then evaluated in all m membership functions, selecting the 
fuzzy set that provides the maximum membership degree.  

In the final step, each support vector generates a fuzzy rule, as described below. 

For each support vector x, let iij
C be the fuzzy set with higher membership degree for 

each xi coordinate, i = 1 ... n and ji = 1 ... m. The rule generated for support vector x is: 

IF x1 is 11j
C and … and xn is nnj

C THEN x = (x1,…,xn) belongs to the class defined 

by the support vector x.  
In order to evaluate each rule, two metrics - fuzzy accuracy and fuzzy coverage -

were defined to assess, respectively, how accurate the rule describes the data base and 
how many patterns are affected by the rule. Details of these proposed metrics are 
presented in [9]. 

4.2   FREx_SVM for Multi-class SVM 

Since the proposed method is based on the support vectors obtained after training all 
SVMs, the binary approach presented in the previous section can be easily extended 
to multi-class problems.  

As mentioned, the one-against-all method gives origin to k SVMs. If SVMi is the 
one that separates class i from all others, only support vectors from class i are  
considered in the generation of rules.  

5   Case Studies 

The goal of the case studies is to evaluate the impact of a good feature selection in the 
performance of FREx_SVM and, most importantly, its influence on the quality of the 
generated rules. Therefore, FREx_SVM is evaluated with and without the feature 
selection presented in [10]. Four benchmark databases, obtained from 
http://www.ics.uci.edu/~mlearn/MLRepository.html, have been used: Bupa Liver 
Disorders, Wisconsin Breast Cancer, Pima Indians Diabetes and Wine.  

All SVMs were trained with two different kernel functions: linear and RBF (Gaus-
sian functions). Three values for the regularization constant (parameter C, eq. 2) and 
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four values for the Gaussian standard deviation were used to train each SVM:     C = 
0.1, 1 and 10 and σ2 = 1, 5, 10 and 50. In the multi-class benchmark - Wine, the one-
against-all method is employed for classification. 

In order to evaluate the performance of FREx_SVM, two configurations of fuzzy 
sets (3 and 5 fuzzy sets), for each coordinate, were considered.   

In all experiments the databases were divided into two equal size disjoint sets. 
These two sets were interchanged for training and testing, in two different experi-
ments. The results presented in Table 1 and Table 2 are the average results in the test 
sets of these two experiments, with the best parameter configuration among all SVMs 
trained. The following performance metrics were used for comparing different con-
figurations: the percentage of test examples that are covered by the rules (Cov), the 
classification percentage error of the generated rules (Err) and the number of  
generated rules (NR) for 3 (Table 1) and 5 fuzzy sets (Table 2). The best average 
results for the SVM in the test sets of the two experiments for each database are  
presented in Table 3 with the same metrics. 

5.1   Bupa Liver Disorders 

This database consists of medical information related to liver disorders with six nu-
meric input attributes and one binary output.  

In Table 1, without feature selection, the best Coverage (95.94%) was obtained 
with 28 rules. With feature selection, the number of features is defined as four. The 
best Coverage (98.27%) was obtained with 3 fuzzy sets, with only 12.5 rules in  
average, that is, FREx_SVM combined with the feature selection method improves by 
02.33% the FREx_SVM Coverage, with less than half of the original number of rules. 
Besides, the error rate decreases by 05.23%.  

5.2   Wisconsin Breast Cancer 

This database, like Bupa Liver Disorders, consists of medical information related to 
breast cancer. There are nine numeric input attributes and one binary output.  

The best Coverage (77.90%) without feature selection was obtained with 3 fuzzy 
sets, resulting in 131.5 rules in average. With feature selection, the number of features 
is set as six. The best Coverage (91.22%) was obtained for 3 fuzzy sets, with only 
92.5 rules, that is, FREx_SVM combined with the feature selection method improves 
by 13.32% the FREx_SVM Coverage with fewer rules. The error rate increases, but 
only by 01.47%, which is less that 10% of the improvement in the Coverage.  

5.3   Pima Indians Diabetes 

This database is also related to medical information: analysis of diabetes. There are 
eight numeric input attributes and one binary output.  

Without feature selection, the best Coverage (99.09%) was obtained for 3 fuzzy 
sets, with 118 rules. With feature selection, the number of features is defined as four. 
The best Coverage (99.87%) was obtained for 3 fuzzy sets, with only 30 rules, that is, 
FREx_SVM with the feature selection method improves only by 00.78% the 
FREx_SVM Coverage, but with almost one fourth of the original number of rules. 
Besides, the error rate decreases by 02.60%.  
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5.4   Wine 

The last database tested is also a well known benchmark in pattern recognition litera-
ture. This database relates to three types of wine produced in a specific region of Italy. 
There are 13 numeric input attributes and, as usual, one classification output. 

As can be seen from Table 1, without feature selection the best result attained the 
coverage of 92.13%, with 84 rules.  

With feature selection, the number of features is defined as six. The best Coverage 
(97.75%) was obtained for 3 fuzzy sets, with only 44 rules, that is, FREx_SVM combined 
with the feature selection method improves 05.62% the FREx_SVM Coverage with al-
most half of the original number of rules. The error rate increases, but only 01.12%. 

It is worth mentioning that for the 5-fuzzy set case, shown in Table 2, FREx_SVM 
combined with the feature selection method improves 44.94% the FREx_SVM  
 

Table 1. Best Performance of FREx_SVM for 3 fuzzy sets 

 Bupa Liver 
Disorders 

Wisconsin 
Breast Cancer

Pima Indians 
Diabetes 

Wine 

Features 6 4 9 6 8 4 13 6 
 
Kernel 

  RBF  
σ2 = 50  
C = 0.1 

RBF  
σ2 = 1  
C =10 

 RBF  
σ2 = 1 
C = 0.1

 RBF  
σ2 = 50 
C = 0.1

RBF  
σ2 = 1 
C =0.1 

RBF  
σ2 = 1 
C =1 

RBF  
σ2 = 10
C = 0.1 

    RBF 
  σ2 = 10 
  C = 0.1 

Cov (%) 95.94 98.27 77.90 91.22 99.09 99.87 92.13 97.75 
Err (%) 47.25 42.02 02.49 03.96 29.17 26.57 07.87 08.99 
NR 28 12.5 131.5 92.5 118 30 84 44 

Table 2. Best Performance of FREx_SVM for 5 fuzzy sets  

 Bupa Liver 
Disorders 

Wisconsin 
Breast Cancer

Pima Indians 
Diabetes 

Wine 

Features 6 4 9 6 8 4 13 6 
 
Kernel 

  RBF  
σ2 = 10  
C = 0.1 

RBF  
σ2 = 50 
C =10 

 RBF  
σ2 = 1 
C = 0.1

 RBF  
σ2 = 50 
C = 0.1

RBF  
σ2 = 1 
C =0.1 

RBF  
σ2 = 1 
C =1 

RBF  
σ2 = 5 
C = 0.1 

    RBF 
  σ2 = 10 
  C = 0.1 

Cov (%) 85.51 94.50 63.98 72.62 83.46 98.83 51.69 96.63 
Err (%) 40.87 44.04 00.73 01.32 35.15 35.55 00.00 05.62 
NR 74 30 157 135.5 254 108 86 66 

Table 3. Best Performance of SVM  

 Bupa Liver 
Disorders 

Wisconsin 
Breast Cancer 

Pima Indians 
Diabetes 

Wine 

Features 6 4 9 6 8 4 13 6 
 
Kernel 

Linear,  
C = 0.1 

RBF  
σ2 = 1  
C =10 

Linear  
C = 10 

 RBF  
σ2 = 10 
C = 1 

RBF  
σ2 = 10 
C =1 

RBF  
σ2 = 10 

C =1 

RBF  
σ2 = 10
C = 10 

    RBF 
  σ2 = 1 
  C = 10 

Cov (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.19 
Err (%) 38.55 35.93 01.27 02.78 22.53 23.05 01.12 01.68 
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Coverage. The error rate increases 05.62%, but the gain in the Coverage is out-
standing, which greatly improves the interpretability of the relation between the input 
variables and the associated output classification. 

6   Conclusions  

This paper presented an extension of the FREx_SVM method, which extracts fuzzy 
rules from a trained SVM, with a wrapper feature subset selection algorithm for SVM.  

The main advantage of the FREx_SVM method is that the generated rules have 
fuzzy sets in their antecedents, which increases the linguistic interpretability. Addi-
tionally, the method can be applied to multi-class problems.  

It must be stressed that the main goal of FREx_SVM is to extract interpretable 
knowledge from a trained SVM. Therefore, although the percentage errors provided 
by FREx_SVM in the four benchmark datasets evaluated are larger than the values 
provided by the SVMs, they are not really relevant in terms of how well the extracted 
rules help understanding the relation between the input vector and the output  
classification.  

The extension of FREx_SVM, including a wrapper feature selection, increased the 
interpretability of the generated rules. The obtained results also provided a good im-
provement in rules Coverage (the percentage of test examples that are covered by the 
rules) and a remarkable reduction in the number of generated rules. Thus, the final 
model contains fewer rules, with fewer attributes in their antecedents, helping users´ 
understanding. 

As for future work, the proposed algorithm shall include adaptive fuzzy sets. This 
shall improve even further accuracy and coverage of fuzzy rules, and possibly reduce 
the final number of extracted rules. 
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Abstract. In this paper we present an evaluation of different approaches
to cross-language adaptation for Indian languages. We also propose a
method for cross-language adaptation of the SVM (support vector ma-
chine) based system. The proposed method gives approximately the same
performance as pooling, with a reduction in the training time. The adap-
tation methods such as Bootstrap, MAP (Maximum A Posterior) and
MLLR (Maximum Likelihood Linear Regression) have been used for
cross-language adaptation in the HMM (hidden Markov model) based
systems. We present a comparison of these adaptation techniques for
three Indian languages, Tamil, Telugu and Hindi. The results show that
the SVM based methods perform better than the HMM based methods
when the 2-best and 5-best performance is considered.

1 Introduction

Automatic speech recognition is essential for many spoken language applica-
tions, such as spoken document retrieval, speech summarization and browsing
of meeting records. However, developing these systems requires large amounts
of training data. Collection and annotation of large amount of speech data is
very expensive in terms of labour and cost. Sometimes we may need to de-
velop a speech recognition system for a language that has small amount of data.
Building a good speech recognition system using a small amount of data is not
possible. Cross-language adaptation is useful in such cases. In cross-language
adaptation technique, a well trained speech recognition system of one or more
languages will be adapted using a small amount of target language data, to build
a speech recognition system for the target language. The adapted system will be
used to recognize the speech of target language.

In order to adapt the speech recognition system of a source language to a tar-
get language, it is necessary to map the phonetic units of the target language to
those of the source language. This can be done by using the phonetic knowledge
like in IPA mapping [1], or a data-driven method or a combination of both. In
[2], cross-lingual recognition was used for recognizing the speech of a language
that was not used in training. The MLLR (Maximum Likelihood Linear Regres-
sion) technique, which was originally proposed for speaker adaptation [3], has
been used for non-native speech adaptation and was compared with the MAP
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(Maximum A Posterior) adaptation technique in [4]. It is shown that the MAP
technique performs better than the MLLR technique when large amount of data
is available for adaptation. In [5], Schultz and Waibel compared cross-lingual
recognition (without adaptation data), MLLR and bootstrap methods using dif-
ferent amounts of adaptation data. It was shown that the word error rate de-
creases as the amount of adaptation data increases. Zhao and Shaughnessy [6]
presented a comparison of the performance of MLLR and native speech train-
ing for different amounts of adaptation data and found that the native speech
training outperforms the MLLR adaptation, with training data of 12 minutes or
more.

There is a lack of work on comparison of different adaptation methods with
native speech training for Indian languages. This paper presents a comparison of
native speech training and different adaptation methods for recognition of sub-
word units of speech in Indian languages. We have built acoustic models for the
frequently occurring consonant-vowel (CV) units. The support vector machines
are well known for their ability to train with less data. But, there is a lack of
work on cross-language adaptation of the SVM based system. This paper stud-
ies the effectiveness of the SVMs for cross-language adaptation using pooling.
We also present a variation of the pooling method for cross-language adaptation
of an SVM based system. In the proposed method, the support vectors of the
source language system are pooled instead of the entire data of source language.
This results in a reduction in the time required for adaptation by a factor of 4.

2 Cross-Language Adaptation Methods

In cross-language adaptation, the model built for a language (source language) is
adapted to recognize the speech in a new language (target language) [2]. Figure 1
shows the block diagram of a cross-language adaptation system.

Some of the methods commonly used for cross-language adaptation are as
follows:

1. Bootstrap adaptation
2. Transformation based adaptation
3. Bayesian adaptation

for Language2

Speech Recognizer Speech Recognizer 

for Language1
Adaptation

for Language1
Training data Training data 

for Language2

Fig. 1. Cross-language adaptation system
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2.1 Bootstrap Adaptation

In this method, the well trained acoustic models of the source language are
taken as seed models and are then retrained using the target language data.
This method is suitable when large amount of target language data is available.
In [7], the cross-language seed models performed better than the flat starts or
random models.

2.2 Transformation Based Adaptation

If only a small amount of data is available, then the transformation based adapta-
tion is useful. The Maximum Likelihood Linear Regression (MLLR) [3] is the most
widely used method in this category. The MLLR computes a set of transforma-
tions to reduce the mismatch between the model set and the adaptation data. It
computes a set of linear transformations for the mean and covariance parameters
of Gaussian mixtures of an hidden Markov model (HMM) based system.

2.3 Bayesian Adaptation

In Bayesian adaptation, we use the prior knowledge about the model parame-
ter distribution to make a good use of the limited adaptation data. The most
popular implementation of Bayesian adaptation for speech recognition is to use
the maximum a posteriori (MAP) estimator [8]. A combination of MLLR and
MAP was used in [8] where the MLLR transformed models were used to seed the
prior distributions for MAP estimation. This combination has given an improved
performance for cross-language adaptation (English to Afrikaans) and also for
cross-database adaptation (SUN speech English to TIMIT English).

3 Proposed Method for SVM Based System Adaptation

The above mentioned methods are applicable only to HMM based systems as they
involve the updation of mean and covariance parameters of the models using adap-
tation data. As SVM based systems are discriminative models, they do not have
any such kind of parameters. So, we need to use different methods for adapta-
tion of SVM based systems. The proposed method for adaptation is a variation of
the pooling method. In pooling, we combine the adaptation data with the source
language data. This combined data is used to build an SVM model for each class
using the one-against-the-rest strategy to multiclass classification. This method
takes long time for adaptation. The source language speech recognition system
was built using the one-against-the-rest strategy to multiclass classification. For
the model of a particular class, the positive support vectors represent the exam-
ples of that class useful in discriminating the class from all the other classes. The
negative support vectors are the examples of all the other classes useful for dis-
criminating that class from the rest. The multiclass classification system using
the one-against-the-rest SVM for a synthetic data set is shown in Fig.2. It shows
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Fig. 2. Multiclass classification using support vector machines for synthetic data

the hyperplane separating the class1 from the remaining two classes and support
vectors corresponding to that classifier. It can be observed from the Fig.2 that the
number of support vectors is small compared to the number of total examples. In
the proposed method for adaptation, we combine the support vectors of the SVM
models for the source language with the adaptation data. The support vectors are
the only examples useful for discriminating the classes. So, they form the sufficient
examples to pool with the adaptation data instead of the entire data of source lan-
guage. And, the number of support vectors is small compared to the number of
total examples. Therefore, the models are expected to be adapted in less time. The
steps involved in the proposed method for adaptation are as follows:

1. Train the SVM system with multiclass classification for the CV units of the
target language using the adaptation data.

2. Identify the common CV units of the source and target languages. For each
common CV unit, follow the steps 3 to 5.

3. Combine the positive support vectors of the model of the unit in the source
language with the adaptation data of the corresponding unit.

4. Combine the negative support vectors of the model of the unit in the source
language with the negative support vectors of the model for the correspond-
ing unit in the target language.

5. Use these combined sets of examples to build an SVM for the CV unit to
obtain an adapted model for the unit.

The first step ensures that the models for CV classes of the target language
that are not present in the source language are trained against the other CV
classes in the target language.

4 Speech Database

The database used in our studies was the speech recordings of the Doordar-
shan (TV channel) news bulletins in three Indian languages Tamil, Telugu and
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Table 1. Description of the news database

Description
Language

Tamil Telugu Hindi

Number of bulletins 33 20 19

News readers (Male:Female) (10:23) (11:9) (6:13)

#Bulletins used for source language 27 16 16

#Bulletins used for testing 6 4 3

Number of CV units 110 134 98

Hindi. A description of the database is given in Table 1. The data was collected
from news bulletins, each of 10-15 minutes duration. Each bulletin was recorded
by a single speaker. The syllables are segmented and labeled manually. These
units have varying frequencies of occurrences in the database. In this work, the
speech recognition systems were built for recognizing CV units. A CV segment is
analyzed frame by frame. Each frame is represented by 12 MFCC coefficients, en-
ergy, and their first order and second order derivatives, thus by a 39-dimensional
feature vector.

5 Experiments and Results

5.1 HMM Based System Adaptation

In this work, the above mentioned cross-language adaptation methods have been
implemented. For each language, the HMM based speech recognition system
was built and then adapted to other languages. For building a system for the
source language, a 5-state, left-to-right, continuous density HMM using multiple
mixtures with a diagonal covariance matrix is trained for each CV unit having at
least 50 examples in the data. The performances of the source language systems
are, for Tamil 50.5%, for Telugu 46.5% and for Hindi 40.1%.

The speech recognition system for the source language is adapted to the tar-
get language by using the limited amount (2 bulletins) of adaptation data. For
target language, we built acoustic models for those CV units that have at least
5 examples in the adaptation data. Table 2 shows the performance of different
adaptation methods. The results given are the CV unit recognition accuracies
and are obtained without using any language models. It is seen that the combined
method of adaptation, i.e., MLLR+MAP, performs better than the individual
adaptation methods.

Table 3 compares the performance of the MLLR+MAP with the native speech
training (NST). Speech recognizers for Tamil and Telugu languages got a small
performance improvement when adapted from Telugu and Tamil respectively.
When adapted from Hindi, both the systems have shown a reduction in the
accuracy. Performance for Hindi language system was reduced when adapted
from Tamil or Telugu. The reason is that both Tamil and Telugu languages are
Dravidian languages, and Hindi is an Aryan language. It is seen from Table 3
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Table 2. Comparison of CV unit recognition accuracies for different adaptation meth-
ods

Source Target Adaptation method

language language Bootstrap MLLR MAP MLLR+MAP

Tamil Telugu 23.38 23.50 25.50 25.55

Telugu Tamil 27.69 25.60 29.04 29.20

Table 3. Comparison of CV unit recognition accuracies of native speech training
(NST), bootstrap and MLLR+MAP adaptation methods

Target language
NST

Adaptation Source language

(No. of CV units) Method Tamil Telugu Hindi

Tamil 25.57
Bootstrap - 27.69 27.73

(110) MLLR+MAP - 29.20 25.86

Telugu 23.64
Bootstrap 23.38 - 23.12

(134) MLLR+MAP 25.55 - 22.05

Hindi 35.54
Bootstrap 33.41 34.74 -

(98) MLLR+MAP 29.41 30.64 -

that when a language from one family is adapted from a language in the other
family, the bootstrap method performs better than the MLLR+MAP method.

5.2 SVM Based System Adaptation

We built the SVM based recognizers using the native speech training and pooled
adaptation. The SVM classifier requires a fixed length pattern representing a CV
utterance. For this purpose, the point where the consonant ends and vowel begins
in the CV utterance, called vowel onset point (VOP) is detected. Then the five
overlapping frames to the left of VOP and five frames to the right of VOP are
considered to represent a CV utterance. As before, each frame is represented by
a 39-dimensional feature vector. Thus, each CV utterance is now represented by
a 390-dimensional feature vector [9]. The performances of the source language
systems are, for Tamil 50.1%, for Telugu 50.6% and for Hindi 41%. The results
for the SVM based adaptation methods are given in Table 4. The performance
of the SVM based system is less in comparison with the HMM based system.
The reason for this reduction is that by simply pooling the data of different
languages, the confusability among classes will be increased and the SVMs are
more effected as they are discriminative in nature. The proposed method that
pools support vectors of models in source language system with adaptation data
has given approximately the same performance as pooling, with a reduction in
the training time by a factor of 4.

We also compared 1-best, 2-best and 5-best results for the native speech
training, HMM based MLLR+MAP adaptation and the proposed SVM based
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Table 4. Performance of SVM based adaptation methods for 2 bulletin adaptation
data

Target language
NST

Adaptation Source language

(No. of CV units) Method Tamil Telugu Hindi

Tamil 22.96
Pooling - 18.71 18.41

(110) Using SVs - 22.76 16.86

Telugu 19.29
Pooling 18.54 - 17.58

(134) Using SVs 18.33 - 16.66

Hindi 30.75
Pooling 25.12 25.39 -

(98) Using SVs 25.76 24.48 -

Table 5. Comparison of n-best performance for the HMM based systems using the
MLLR+MAP adaptation method and the SVM based systems using the proposed
adaptation method, for n=1, 2, 5 : B is the number of bulletins used for adaptation

Target Native Speech Source language system

language B System Training Tamil Telugu Hindi

(#Classes) 1 best 2 best 5 best 1 best 2 best 5 best 1 best 2 best 5 best 1 best 2 best 5 best

Tamil 2
SVM 23.0 33.4 49.2 - - - 22.8 33.1 48.1 16.9 27.3 44.5

HMM 25.6 29.7 34.3 - - - 29.2 33.6 39.5 25.9 29.9 34.9
(110)

4
SVM 33.1 45.0 61.2 - - - 26.5 38.7 55.9 26.7 37.9 54.3

HMM 39.2 45.6 51.7 - - - 32.0 38.0 45.1 33.4 39.1 45.7

Telugu 2
SVM 19.3 27.6 39.5 18.3 27.8 40.9 - - - 16.7 24.7 37.6

HMM 23.6 27.8 32.8 25.5 28.9 35.2 - - - 22.0 26.5 32.1
(134)

4
SVM 33.0 43.7 57.8 27.9 39.4 54.8 - - - 29.6 40.4 54.9

HMM 40.0 45.8 52.2 32.8 39.1 46.5 - - - 32.0 37.8 45.3

Hindi 2
SVM 30.7 41.6 55.0 25.8 35.5 50.1 24.5 35.0 49.2 - - -

HMM 35.5 39.1 43.7 29.4 33.7 39.5 30.6 34.5 39.6 - - -
(98)

4
SVM 28.1 37.9 53.2 26.2 36.5 50.5 25.7 35.1 49.0 - - -

HMM 34.1 37.7 41.9 26.1 30.1 35.5 26.9 31.3 36.2 - - -

adaptation methods. These results are given in Table 5. The 2-best and 5-best
results of SVM based methods are better than that of HMM based methods.

6 Conclusions

We compared the performance of various cross-language adaptation methods
for building speech recognition systems using small amount of data for Indian
languages. We proposed a variation of pooling method using support vectors of
models in the source language system for SVM based system adaptation and
compared it with native speech training and pooling methods. Though it did
not improve the performance, it reduced the training time significantly. The
SVM based methods performed better than the HMM based methods when the
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2-best and 5-best results are considered. The performance of adapted systems
with small amount of data is far less than that of corresponding systems built
from large amounts of native speech data. The usability of incremental SVM
learning for cross-language adaptation will be studied in the future work.
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Abstract. The early detection of subjects with probable Alzheimer
Type Dementia (ATD) is crucial for effective appliance of treatment
strategies. Functional brain imaging including SPECT (Single-Photon
Emission Computed Tomography) and PET (Positron Emission Tom-
ography) are commonly used to guide the clinician’s diagnosis.
Nowadays, no automatic tool has been developed to aid the experts to
diagnose the ATD. Instead, conventional evaluation of these scans often
relies on subjective, time consuming and prone to error steps. This pa-
per shows a fully automatic computer-aided diagnosis (CAD) system for
improving the accuracy in the early diagnosis of the ATD. The proposed
approach is based on the majority voting cast by an ensemble of Support
Vector Machine (SVM) classifiers, trained on a component-based feature
extraction technique which searches the most discriminant regions over
the brain volume.

1 Introduction

In the interpretation of cerebral functional images such as PET (Positron Emis-
sion Tomography) and SPECT (Single Photon Emission Computed Tomogr-
aphy), well-trained classifiers provide effectively diagnostic information. Both
SPECT and PET are non-invasive, three-dimensional functional imaging modal-
ities that provide clinical information regarding biochemical and physiologic
processes in patients, i.e. the regional blood flow (rCBF). Many studies have
examined the predictive abilities of nuclear imaging with respect to ATD and
other dementia illnesses. The evaluation of these images is usually done through
visual ratings performed by experts. However, maybe due to the large amounts
of data represented in comparison with the number of available imaged subjects

� This work was partly supported by the Spanish Government under the PETRI DEN-
CLASES (PET2006-0253), TEC2008-02113, NAPOLEON (TEC2007-68030-C02-01)
projects and the Consejeŕıa de Innovación, Ciencia y Empresa (Junta de Andalućıa,
Spain) under the Excellence Project (TIC-02566).

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 402–409, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Automatic Classification System for the Diagnosis of Alzheimer Disease 403

(typically <100), statistical classification methods have not been widely used in
this area.

Support Vector Machines (SVM) are a core machine learning technology [1].
They have strong theoretical foundations and excellent empirical successes. This
technique have been successfully applied to many fields including voice activ-
ity detection (VAD) [2], content-based image retrieval [3], and medical imaging
diagnosis [4]. Combining SVM with other techniques regarding more effective
training and decision making approaches [8], some usual problems related to
high data dimension and small sample size can be substantially improved.

This paper shows a computer aided diagnosis (CAD) system for the early
detection of ATD using SVM classifiers trained on several regions of the brain
image, obtained from a previous feature extraction phase. The resulting SVM
ensemble is combined under a pasting-votes strategy to give a final decision out-
put on the patient. The proposed method, tested over SPECT and PET images,
is developed with the aim of reducing the subjectivity in visual interpretation of
these scans by clinicians, thus improving the accuracy of diagnosing Alzheimer
disease in its early stage.

2 Background on SVMs

SVMs separate a given set of binary labeled training data with a hyperplane that
is maximally distant from the two classes (known as the maximal margin hyper-
plane). The objective is to build a function f : RN −→ {±1} using training
data, consisting of N -dimensional patterns xi and class labels yi:

(x1, y1), (x2, y2), ..., (xl, yl) ∈
(
RN × {±1}

)
, (1)

so that f will correctly classify new examples (x, y). When no linear separation
of the training data is possible, SVM can work effectively in combination with
kernel techniques using the kernel trick, so that the hyperplane defining the SVM
corresponds to a non-linear decision boundary in the input space. In this way
the decision function f can be expressed only in terms of the support vectors :

f(x) =
NS∑
i=1

αiyiK(si,x) + w0, (2)

where K(., .) is the kernel function, αi is a weight constant derived from the
SVM process and si are the support vectors [1].

2.1 SVM Ensemble

In SVM ensemble, individual SVMs are aggregated to make a collective deci-
sion in several ways such as the majority voting, least-squares estimation-based
weighting, and the double layer hierarchical combing [5]. The training SVM en-
semble can be conducted in the way of bagging or boosting. In bagging, each
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Fig. 1. Cross sections of: Left column: A normal patient. Central column: A DTA
patient. Right column: Averaged mask.

individual SVM is trained independently using the randomly chosen training
samples via a bootstrap technique. In boosting, each individual SVM is trained
using the training samples chosen according to the samples probability distri-
bution that is updated in proportion to the error in the sample. When memory
limitations exist, voting many classifiers built on small subsets of data (“pasting
small votes”) is an approach for learning from massive datasets [8]. SVM ensem-
ble is essentially a type of cross-validation optimization of single SVM, having a
more stable classification performance than other models.

In this paper the brain image of each patient is divided into components
with several shapes and sizes. These components are obtained after a feature
extraction process and then, an individual SVM is applied on each component.
This yields to a SVM ensemble for each brain image that can be used to grow a
global diagnostic of the patient.

3 Image Preprocessing

As in previous approaches [4] the classification task is based on the assumption
that the same position in the volume coordinate system within different volumes
corresponds to the same anatomical position. This makes it possible to do mean-
ingful voxel wise comparisons between images. However this assumption is not
met by the images without pre-processing: The subject who is being imaged is
not always positioned at the same position in the reference frame of the imaging
device and the anatomy does not always have the same shape and size between
different subjects. This means that registering the volumes spatially is needed.
This is done by an implementation of the algorithms proposed in [6]. On the
other hand, direct comparison of the voxel intensities between SPECT or PET
images, even between different acquisitions of the same subject, is not possible
without normalization of the intensities. For all the experiments, we normalize
the intensities by applying an affine transformation to the intensities as sug-
gested also in [6]. All the images of the database are transformed using affine
and non-linear spatial normalization, thus the basic assumptions are met.
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4 Feature Selection

A major problem associated with pattern recognition systems is the so-called
curse of dimensionality, that is, the number of available features for designing
the classifier can be very large compared with the number of available training
examples. There are clear motivations for reducing the dimensionality of the
feature space to a reasonable minimum: i) reduction of the computational cost
of the training and testing algorithms, ii) elimination of correlation between
features, and iii) selection of the most discriminant set of features.

Firstly, we construct a binary mask which selects the voxels of interest and
discards the rest. This is done by taking the voxels whose mean intensity value
averaged over all images exceeds the half of the maximum mean intensity value,
and this mask is applied to the original images. In the resulting averaged images
the irrelevant information has been removed or reduced. Fig. 1 shows an example
of a partial view of different cross sections of a norm subject, a patient with
a typical perfusion pattern of ATD and a mask obtained as an average image.
Secondly, the brain image obtained in the previous process is divided into several
parts or components (each one denoted by c). Such components, which will be
used as feature vectors for the SVM classification task, entail a dimensional
reduction in the feature space with respect to the Voxels-As-Features (VAF)
approximation [4], which we will use as a reference. Note that clinicians only
use some image components in the evaluation process of the subject, and this
approach aims at finding these parts automatically. These regions are called
regions of interest or ROIs.

Two different approaches to the brain division are carried out, depending on the
shape of the regions or components that the brain is divided into. The first one
divides the brain into components as chains of consecutive voxels. The voxels can
be consecutive in three orthogonal directions: coronal, axial or sagittal, so three
different implementations will be taken. The number of divisions of the brain will
vary from 15 to 25 components, with a consistent variation of the chain length
which ranges from 107 to 180 voxels approximately. Note that the dimension of
the feature vector has been drastically reduced, so the small size sample problem
is lightened. This elongated shaped division will be shifted in order to adjust the
artificial division to the natural shape of the image. The second way of dividing
the brain is thought to improve this adjustment, adapting the ROIs form to the
artificial segmentation by giving a cubic shape to the components. Also the cubic
components will be shifted and their size will be changed. Finally, the component
ensemble will serve us to construct a ROIs map.

5 Formation of the Component-Based SVM Ensemble by
ROIs

Component-based feature extraction process has actually been applied to the
face detection problem [7], centering the components on the eyes, nose and
mouth. Our approach does not search for any particular zone, but computes
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Fig. 2. Map of the Regions of Interest in SPECT images obtained by the values of Ai

a systematic scan of the whole brain image. For the analysis, let M be the num-
ber of patients, N the number of components the brain is divided into, and cij ,
i=1, 2, ..., N j=1,2, ..., M the component i of the patient j. Therefore, the whole
brain image Ij of the patient j is:

Ij = c1j ∪ c2j ∪ c3j ∪ ... ∪ cMj (3)

The image1 Ij will have an associated label yj , which will be +1 in case
the patient is ATD, and −1 in case the patient is NORMAL. Thus, this label
yj is shared with all the components of the image Ij (c1j , c2j , ..., cMj). Each
component cij is used as the feature vector input to train and test a single SVM
classifier by means of a Leave-One-Out cross-validation strategy, that is, the
classifier is trained on all but one component {ci1, ci2, ..., ciM−1}, categorizing
the remaining component ciM by a label �iM ∈ {±1}. This process will provide
as many SVM classifiers as components the brain is broken down into, being
each classifier trained only on its associated region of the brain volume. If the
information of a particular region is important with regard to the Alzheimer
disease diagnosis, the associated SVM classifier will have a good performance in
the classification task. In other words, after the training and testing stages, it is
possible to assign an accuracy rate Ai, i = 1, 2, ..., N , to each region according
to the number of correctly classified patients it provided.

The accuracy values Ai for SPECT images are represented in Fig. 2. The ROIs
correspond to the most discriminant components, near red colors, meaning dark
red a 100% accuracy in classification. In this figure the value of the accuracy
on each voxel is the mean of the different Ai values of every component that
contained that voxel during the scan. Fig. 3 shows a diagram of the process
steps given in this approach.

1 Note that cnj ∩ c(n+1)j �= �.
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Fig. 3. Steps of the classification process. In the feature extraction stage, both the mask
application and the brain division into smaller components face up to the small size
sample and high dimensional problems. Each component is used to train an individual
classifier which will cast a weighted vote on the patient state. The final decision is
taken by the most relevant components majority voting.

5.1 Decision

The SVM ensemble will serve us to define a new decision function based on the
pasting-votes technique [8]. The function defined as

F(Ij) =
N∑

i=1

�ij (4)

is an non-weighted sum of votes that each component casts and will classify the
patient j as NORMAL if F(Ij) < 0, and as ATD if F(Ij) > 0. An improvement
is easily introduced by assigning a weight to each vote, which defines a new
function:

G(Ij) =
∑N

i=1 �ijAi∑N
i=1 Ai

(5)

The definition of a decision function T based on the non-weighted sum of a
limited number S of votes will be determinant. S is chosen by setting a threshold
T in the accuracy values: only those components S ⊂ I whose values Ai are
higher than T are allowed to vote:

T (Ij) =
∑
i⊂S

�ij , S = {i \ Ai > T } (6)

As an example, taking T to be 80% will correspond to take S to be the red
colored regions in Fig. 2.
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Table 1. Accuracy results obtained from SPECT and PET images, considering differ-
ent shapes and functions

SPECT 15 Elongated 20 Elongated 25 Elongated Cubic

F function 83.5% 86.1% 87.3% 84.8%
G function 87.3% 87.3% 88.6% 86.1%
T function (T = 87) 94.9% 93.7% 94.9% 97.5%
PET 15 Elongated 20 Elongated 25 Elongated Cubic

F function 96.6% 98.3% 98.3% 93.3%
G function 96.6% 98.3% 98.3% 95%
T function (T = 97) 98.3% 98.3% 98.3% 100%

6 Evaluation Results

SPECT and PET images used in this work were taken with a PRISM 3000
machine and a SIEMENS ECAT 47 respectively. Initially they were labeled by
experienced clinicians of the “Virgen de las Nieves” Hospital (Granada, Spain)
and “Clinica PET Cartuja” (Seville, Spain) respectively. The database consists
of 79 SPECT patients (41 labeled as NORMAL and 38 labeled as ATD) and 60
PET patients (18 NORMAL and 42 ATD). The dimensionality reduction of the
original brain image 79 × 95 × 69 voxel sized was performed by averaging over
different sizes of voxels, ranging from 4× 4× 4 to 9× 9× 9. Different numbers of
elongated and cubic components were tested as well, in order to find the optimal
values.

Best accuracy values for SPECT images was found when a 7 × 7 × 7 initial
averaging was performed for 25 elongated components and a 4 × 4 × 4 voxel
sized cubic ones when the T function is used. For PET images, best results
were achieved when a 9 × 9 × 9 initial dimension reduction is applied for 25
elongated components and 4 × 4 × 4 again for cubic components. Making use
of the F function, only one patient, which was initially labeled as NORMAL,
is misclassified by the classifier. This misclassification is corrected by the use of
a T function. Clinicians have detected that, although it is a normal patient in
the sense that he does not present any sign of ATD, there is a peculiarity in his
thalamus metabolism. Different values for T ranging from 50 to 100 were evalu-
ated and finally 97.5% and 100% accuracy values ware attained for SPECT and
PET images respectively. Best accuracy results achieved with the corresponding
T values are summarized in Table 1, computed for each of the decision functions
defined in section 5.1, F , G, T . These results outperform the VAF approach,
which reaches 78.5% and 96.6% accuracy values for SPECT and PET images
respectively.

7 Conclusions

A computer aided diagnosis system for the early detection of the Alzheimer
disease was shown in this paper. The system was developed by exploring the
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masked brain volume in search of discriminant ROIs using different shaped sub-
sets of voxels or components. A single SVM classifier was trained and tested on
each component yielding to an ensemble of classification data. These data were
aggregated according to a pasting-votes technique by means of three different
sum functions. High dependence on the component size was found, contrary to
component shape, which had less influence. The best accuracy was obtained for
a pasting-vote function that combined the non-weighted sum of votes with the
relevant information contained in the ROIs. With this approach, the proposed
method provided 97.5% accuracy for SPECT images and a 100% accuracy for
PET images, outperforming the reference work results.
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Abstract. Alzheimer disease (AD) is a progressive neurodegenerative
disorder first affecting memory functions and then gradually affecting
all cognitive functions with behavioral impairments. As the number of
patients with AD has increased, early diagnosis has received more at-
tention for both social and medical reasons. However, currently, accu-
racy in the early diagnosis of certain neurodegenerative diseases such
as the Alzheimer type dementia is below 70% and, frequently, these do
not receive the suitable treatment. Functional brain imaging including
single-photon emission computed tomography (SPECT) is commonly
used to guide the clinician’s diagnosis. However, conventional evalua-
tion of SPECT scans often relies on manual reorientation, visual reading
and semiquantitative analysis of certain regions of the brain. These steps
are time consuming, subjective and prone to error. This paper shows a
fully automatic computer-aided diagnosis (CAD) system for improving
the accuracy in the early diagnosis of the AD. The proposed approach
is based on feature selection and support vector machine (SVM) clas-
sification. The proposed system yields clear improvements over existing
techniques such as the voxel as features (VAF) approach attaining a 90%
AD diagnosis accuracy.

1 Introduction

Alzheimer disease (AD) is the most common cause of dementia in the elderly
and affects approximately 30 million individuals worldwide. AD is a progressive
neurodegenerative disorder associated with disruption of neuronal function and
gradual deterioration in cognition, function, and behavior. With the growth of
the older population in developed nations, the prevalence of AD is expected to
triple over the next 50 years. The major goals in treating AD currently are to
recognize the disease early in order to initiate appropriate therapy and delay
functional and cognitive losses. In addition, as powerful antiamyloid therapies
are developed, there will be a need to monitor brain changes and treatment
efficacy at the earliest stages of the disease, perhaps even in prodromal patients.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 410–417, 2009.
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It is hoped that the widespread availability of newer markers will supplement the
strengths of the currently available structural and functional imaging techniques
in helping to achieve these goals.

During the last years, research in the field of nuclear medical diagnosis by
means of brain image tomography has been focused on new modalities or repre-
sentations which could ease an effective diagnosis and treatment of neurodegen-
erative diseases such as Alzheimer’s disease. Single Photon Emission Computed
Tomography (SPECT) is an emission-computed tomography imaging technique
that was initially developed in the 1960s, but was not widely used in clinical
practice until the 1980s. It is mainly used when structural information is not
enough to detect or monitor a functional disorder. Thus, SPECT is a noninva-
sive, three-dimensional functional imaging modality that provides clinical infor-
mation regarding biochemical and physiologic processes in patients. A study of
the regional cerebral blood flow (rCBF) of the brain is frequently used as a diag-
nostic tool in addition to the clinical findings. Many studies have examined the
predictive abilities of nuclear imaging with respect to AD and other dementing
illnesses. The evaluation of these images is usually done through visual ratings
performed by experts. However, statistical classification methods have not been
widely used in this area, quite possibly due to the fact that images represent
large amounts of data and most imaging studies have relatively few subjects
(generally <100) [1].

Since their introduction in the late seventies, Support Vector Machines (SVMs)
marked the beginning of a new era in the learning from examples paradigm [2].
SVMs have attracted recent attention from the pattern recognition community
due to a number of theoretical and computational merits derived from the Statis-
tical Learning Theory [3] developed by Vladimir Vapnik at AT&T. These tech-
niques have been successfully used in a number of applications including voice
activity detection (VAD) [4,5], content-based image retrieval [6], texture classifi-
cation [7] and medical imaging diagnosis [8].

This paper shows a computer aided diagnosis (CAD) system for the early de-
tection of Alzheimer type dementia (ATD) using SPECT images. The proposed
method combining SVM concepts and advanced feature extraction schemes is
developed with the aim of reducing the subjectivity in visual interpretation of
SPECT scans by clinicians, thus improving the accuracy of diagnosing Alzheimer
disease in its early stage.

2 Background on Support Vector Machines

SVM separate a given set of binary labeled training data with a hyperplane that
is maximally distant from the two classes (known as the maximal margin hyper-
plane). The objective is to build a function f : RN −→ {±1} using training data
that is, N -dimensional patterns xi and class labels yi:

(x1, y1), (x2, y2), ..., (xl, yl) ∈ RN × {±1}, (1)

so that f will correctly classify new examples (x, y).
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Linear discriminant functions define decision hypersurfaces or hyperplanes in
a multidimensional feature space, that is:

g(x) = wT x + w0 = 0, (2)

where w is known as the weight vector and w0 as the threshold. The weight
vector w is orthogonal to the decision hyperplane and the optimization task
consists of finding the unknown parameters wi, i= 1, ..., N, defining the decision
hyperplane.

Let xi, i=1, 2, ..., l, be the feature vectors of the training set, X. These
belong to either of the two classes, ω1 or ω2. When no linear separation of
the training data is possible, SVM can work effectively in combination with
kernel techniques so that the hyperplane defining the SVM corresponds to a
non-linear decision boundary in the input space. If the data is mapped to some
other (possibly infinite dimensional) Euclidean space using a mapping Φ(x), the
training algorithm only depends on the data through dot products in such an
Euclidean space, i.e. on functions of the form Φ(xi) ·Φ(xj). If a “kernel function”
K is defined such that K(xi,xj) = Φ(xi) ·Φ(xj), it is not necessary to know the
Φ function during the training process. In the test phase, an SVM is used by
computing dot products of a given test point x with w, or more specifically by
computing the sign of

f(x) =
NS∑
i=1

αiyiΦ(si) · Φ(x) + w0 =
NS∑
i=1

αiyiK(si,x) + w0, (3)

where si are the support vectors.

3 Image Acquisition and Preprocessing

Patients are comfortably positioned on the imaging couch with the head “im-
mobilized” in a radiolucent head holder. A gamma emitting 99mTc-ECD radio-
pharmeceutical is injected and the SPECT scan is acquired by a three-head
gamma camera Picker Prism 3000. A total of 180 projections are taken for each
patient with a 2-degree angular resolution. Finally, images of the brain cross sec-
tions are reconstructed from the projection data using the filtered backprojection
(FBP) algorithm in combination with a Butterworth noise removal filter. Such
images are 3-dimensional intensity distributions discretized into voxels. Each
voxel represents a grey level intensity, which is related to the rCBF pattern of a
patient. Each voxel represents a volume of 2.18×2.18×3.56 mm3.

The complexity of brain structures and the differences between brains of dif-
ferent subjects make necessary the normalization of the images with respect to
a common template [9]. This step allows us to compare the voxel intensities
of the brain images of different subjects. The SPECT images are first spatially
normalized using the SPM software [10] in order to ensure that the voxels in dif-
ferent images refer to the same anatomical positions in the brain. The normalized
method assumes a general affine model with 12 parameters and a cost function
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Source
Template Registered

Fig. 1. Three SPECT images. Left column: Source image. Central column: Template.
Right column: Transformed image.

which presents an extreme value when the template and the image are matched
together. After the affine normalization, the resulting image is registered using
a more complex non-rigid spatial transformation model. The deformations are
parameterized by a linear combination of the lowest-frequency components of
the three-dimensional cosine transform bases. A small-deformation approach is
used and regularization is achieved by the bending energy of the displacement
field. Fig. 1 shows an example of the operation of the normalization process
on SPECT images. Left column shows arbitrary source images in the dataset,
central column shows the template used for image registration, and finally the
corresponding normalized images are shown in the right column. It is clearly
shown that the transformed image matches the shape of the template.

After the spatial normalization, a 95×69×79 voxel representation of each sub-
ject is obtained. Finally, intensity level of the SPECT images is normalized to
the maximum intensity, which is computed for each volume individually by av-
eraging over the 3% of the highest voxel intensities.

4 Feature Selection

A major problem associated with pattern recognition systems is the so-called
curse of dimensionality, that is, the number of available features for designing
the classifier can be very large compared with the number of available training
examples. There are clear motivations for reducing the dimensionality of the
feature space to a reasonable minimum: i) reduction of the computational cost
of the training and testing algorithms, ii) elimination of correlation between
features, and iii) selection of the most discriminant set of features.

Features resulting from the first-order statistics provide information related to
the intensity level distribution of the image, but they do not give any information
about relative positions of the various intensity levels within the image. This
information can be extracted from the second-order statistics, where the pixels
are considered in pairs. A study was carried out in order to select the best
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Fig. 2. Standard deviation and correlation of sagittal, coronal and transversal sections
and Fisher discriminant ratio

discriminant set of features of the AD. The analysis considered first- and second-
order statistics of sagittal, coronal and transversal slices of the brain. The Fisher
linear discriminant ratio defined by:

FDR =
(µ1 − µ2)2

σ2
1 + σ2

2

(4)

was used as class separability measure where µ1 and µ2 denote the with-in class
mean value of the feature and σ2

1 and σ2
2 their variances.

Among all the features evaluated, the standard deviation and correlation were
found to be the most discriminant features of the Alzheimer disease. Fig. 2
shows a plot of the standard deviation and correlation for all the patients in the
dataset and all the x, y and z slices corresponding to the sagittal, coronal and
transversal views of the brain, respectively. The first row of each figure represents
the feature value for each patient and all the slices. Note that, normal and ATD
subjects are grouped and separated by an horizontal black line to easily observe
the differences among the two classes. It is expected that a careful selection of
the region of interest influenced by a discrimination analysis can improve the
classifier effectiveness significantly. The value of the Fisher linear discriminant
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Fig. 3. Accuracy and dimension of the feature space for a RBF SVM system trained
using the standard deviation and correlation of the slices with the normalized FDR
exceeding a given threshold

ratio is also plotted below each set of features. It can be concluded that not all
the slices in the volume element provide the same discriminant value. Moreover,
the standard deviation for the y slices and the correlation of the x slices are the
most discriminant features.

5 Evaluation Results

SPECT images used in this work were initially labeled by experienced clinicians
of the “Virgen de las Nieves” Hospital (Granada, Spain) using four different
labels: normal (NOR) for patients without any symptoms of ATD and possible
ATD (ATD-1), probable ATD (ATD-2) and certain ATD (ATD-3) to distinguish
between different levels of presence of typical symptoms of ATD. The database
consists of 52 patients: 23 NOR, 13 ATD-1, 12 ATD-2 and 4 ATD-3. We combine
the latter three labels and only use two classes: NOR and ATD.

Aiming at reducing the dimensionality of the feature space and further im-
proving the performance of the CAD system by means of more effective kernels, a
SVM-based classifier was developed using the most discriminant set of features:
standard deviation of coronal slices and correlation of sagittal slices. Dimen-
sionality of the feature space is reduced by considering only the features of the
slices with normalized Fisher linear discrimination ratio exceeding a threshold.
Fig. 3 shows the accuracy of the CAD system and the dimension of the feature
vector as a function of the threshold value when a RBF kernel is used. Note
that the accuracy of the system increases up to 90% as the threshold increases.
The best results are obtained for a two-dimensional feature vector consisting of
the standard deviation and correlation of the coronal and sagittal slices with
the highest value of the Fisher discriminant ratio as shown in figure 2. Note
that these results are in agreement with the SVM concept. In high dimensional
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Fig. 4. Decision functions in the input space for a two-dimensional feature vector con-
sisting of the most discriminant coronal standard deviation and sagittal correlation
slices

feature spaces, RBF kernels perform poorly. Meanwhile, reducing the dimension-
ality of the feature space by selecting the most discriminant slices in the volume
improves the accuracy of the system. The benefits are obtained as a result of
mapping the low-dimensional input space into a high-dimension feature space
where the data becomes linearly separable.

Fig. 4 shows the training patterns, their associated class labels as well as the
support vectors defining the SVM classification rule when linear, quadratic, RBF
and polynomial kernels are used for mapping into the feature space. It is clearly
shown that reducing the dimensionality of the input space to a two-coefficient
feature space yields high discrimination accuracy. Among all the experiments
carried out, RBF kernel functions yielded the best results with a 90.38% classifi-
cation accuracy. Meanwhile, linear kernels, that achieve the best results in a high
dimension input space such as in a voxel-as-feature (VAF) approach [8], yielded
just a 84.62% classification accuracy. Thus, the proposed features yielded bene-
fits over the VAF approach where the high dimension of the input space makes
unnecessary a non-linear mapping into the feature space as well as linear SVM
the most practical [8] over quadratic, RBF and polynomial kernels.

6 Conclusions

A computer aided diagnosis system for the early detection of the Alzheimer
disease was shown in this paper. The system was developed by exploring the
most discriminant set of features among first- and second-order statistics of the
human brain. Moreover, reducing the dimensionality of the input space to a two-
coefficient feature vector yielded high discrimination accuracy specially when a
RBF kernel is used. The experiments showed that the proposed features yielded
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significant improvements over recently developed VAF approaches where the
high dimension of the input space makes linear SVM the most effective when
compared to quadratic, RBF and polynomial kernels. With these and other
innovations, the proposed method provided a 90.38% accuracy for the early
diagnosis of the ATD.
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Abstract. This paper presents a computer-aided diagnosis technique
for improving the accuracy of the early diagnosis of the Alzheimer type
dementia. The proposed methodology is based on the combination of
support vector machine learning with linear kernels and classification
trees. The classification tree technique allows to choose wisely the most
discriminant set of voxels in the images. Thus, the classification tree pro-
duces a considerably improvement upon considering the support vector
machine classifier only.

1 Introduction

Distinguishing Alzheimer disease remains a diagnostic challenge specially during
the early stage of the disease. Furthermore, in this early stage, the disease offers
better opportunities to be treated.

Single photon emission computed tomography (SPECT) is a widely used tech-
nique to study the functional properties of the brain.

SPECT brain imaging techniques employ radioisotopes which decay emitting
predominantly a single gamma photon. When the nucleus of a radioisotope disin-
tegrates, a gamma photon is emitted with a random direction which is uniformly
distributed in the sphere surrounding the nucleus. If the photon is unimpeded
by a collision with electrons or other particles within the body, its trajectory will
be a straight line or ray. In order for a photon detector external to the patient
to discriminate the direction that a ray is incident from, a physical collimation
is required. Typically, lead collimator plates are placed prior to the the detec-
tors crystal in such a manner that the photons incident from all but a single
direction are blocked by the plates. This guarantees that only photons incident
from the desired direction will strike the photon detector. SPECT has become
an important diagnostic and research tool in nuclear medicine.

In SPECT images, the differences between different brains make necessary the
normalization of the images with respect to a reference template. The general
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affine model, with 12 parameters, is usually chosen as a first step in a nor-
malization algorithm before to proceed with a more complex non-rigid spatial
transformation model [1, 2].

This paper shows a computer aided diagnosis (CAD) system for the early
detection of Alzheimer Type Dementia (ATD) using Support Vector Machines
(SVM) classifiers applied to different components of the brain image. SVM is a
powerful tool which has been recently focused the attention for the classifica-
tion of tomography brain images [3, 4, 5]. The information obtained from the
components of the image is analyzed under a classification tree approach. The
proposed methodology allows us to choose the most relevant components of the
image or regions of interest. Furthermore, the classification tree improves the
accuracy of the diagnosis upon the use of support vector machines only.

This work is organised as follows: in section 2 we present an overview of the
support vector machines and the classification trees; in Section 3, the mate-
rial and methods are presented; Section 4 contains the results; and, finally, the
conclusions are drawn in Section 5.

2 Background

2.1 Support Vector Machines

Support vector machines is a powerful mathematical tool that is able to separate
a set of binary labelled training data with a hyperplane which is maximally
distant from the two classes. The objective is to build a function f : RN → {±1}
using training data consisting of N -dimensional patterns xi and class labels yi:

(x1, y1), (x2, y2), ..., (xl, yl) ∈ (RN × {±1}), (1)

so that f will correctly classify new examples (x,y).
Linear discriminant functions define decision hypersurfaces or hyperplanes in

a multidimensional feature space:

g(x) = wTx + w0 = 0 (2)

where w is the weight vector and w0 is the threshold. w is orthogonal to the
decision hyperplane. The goal is to find the unknown parameters wi, i = 1, ..., N
which define the decision hyperplane.

Let xi, i = 1, 2, ..., l be the feature vectors of the training set X . These be-
long to two different classes, ω1 or ω2. If the classes are linearly separable, the
objective is to design a hyperplane that classifies correctly all the training vec-
tors. This hyperplane is not unique and it can be estimated maximizing the
performance of the classifier, that is, the ability of the classifier to operate satis-
factorily with new data. The maximal margin of separation between both classes
is a useful design criterion. Since the distance from a point x to the hyperplane
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is given by z = |g(x)|/ ‖ w ‖, the optimization problem can be reduced to the
maximization of the margin 2/ ‖ w ‖ with constraints by scaling w and w0 so
that the value of g(x) is +1 for the nearest point in w1 and −1 for the nearest
point in w2. The constraints are the following:

wTx + w0 ≥ 1, ∀x ∈ w1 (3)

wTx + w0 ≤ 1, ∀x ∈ w2, (4)

or, equivalently, minimizing the cost function J(w) = 1/2‖w‖2 subject to:

yi(wT xi + w0) ≥ 1, i = 1, 2, ..., l. (5)

2.2 Classification and Regression Trees

Classification trees is a non-parametric technique that produces classification
of categorical dependent variables [6]. Binary tree structured classifiers are con-
structed by repeated splits of subsets of X into two descendant subsets, beginning
with X itself. This process is plotted in Figure 1 for a two classes tree. In the
figure, X2 and X3 are disjoint with X = X2 ∪ X3. Similarly, X4 and X5 are
disjoint with X4 ∪ X5 = X2. Those subsets which are not split, in this case X4,
X5, X6 and X7 are called terminal nodes. Each terminal node is designated by
a class label. There may be more than one terminal subset with the same class
label.

X

X3X2

X4 X5 X6 X7

Split 1

Split 2 Split 3

Class 1 Class 1Class 1 Class 2

Fig. 1. Hypothetical two-class tree

The first problem in tree construction is how to use the learning sample to
determine the binary splits of X into smaller pieces. In order to build a classi-
fication tree, three questions need to be solved: how to select the splits, when
to declare a node terminal or split and how to assign a class to each terminal
node. Once a good split of X is found, then a search is made for good splits of
each of the two descendant nodes. More information about how to use data to
construct classification (and regression) trees can be found in [6].
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3 Material and Methods

3.1 Image Acquisition and Preprocessing

79 Image files were taken from a concurrent study investigating the use of SPECT
as a diagnostic tool for the early onset of Alzheimer-type dementia. SPECT data
were acquired by a three head gammacamera Picker Prism 3000. The patient
is injected with a 99mTc-ECD radiopharmaceutical which emits gamma rays
that are detected by the detector. A total of 180 projections were taken with a
2-degree angular resolution. Images of the cross sections of the brain were recon-
structed from the projection data using filtered backprojection (FBP) algorithm
in combination with a Butterworth noise removal filter. Finally, a spatial nor-
malization process including affine and non-rigid transformations is performed
in order to correct the differences in position and angle of a subject with respect
to the SPECT camera in different acquisitions as well as to make anatomies
of different subjects correspond, respectively. The result is a 95x69x79 spatially
normalized voxel representation of each subject.

After that, the images are resampled to a smaller size (17x23x19). Further-
more, we construct a mask which selects the voxels whose mean intensity value
averaged over all images exceeds the half of the maximum mean intensity value.
These preprocessing steps reduce the number of voxels of the image.

3.2 SVM Classification

Firstly, we divide the brain image into several parts or components (each one
denoted by c).

We divide the brain into components as chains of consecutive voxels. The
voxels can be consecutive in three orthogonal directions; coronal, axial or sagittal,
so three different implementations will be taken. The number of divisions of the
brain will vary from 15 to 25 components, with a consistent variation of the
chain length. The elongated shaped division will be shifted in order to adjust
the artificial division to the natural shape of the image.

These components will be used as feature vectors for the SVM classification
task. Figure 2 shows different cross sections of a normal subject, an image of the
brain of a patient with a typical perfusion pattern of disease type Alzheimer and
the mask obtained as an average image.

The proposed methodology computes a systematic scan of the whole brain
image. For the analysis, let M be the number of patients, N the number of
components the brain is divided into, and cij , i = 1, 2, ..., N j = 1, 2, ..., M the
component i of the patient j, the whole brain image Ij of the patient j is:

Ij = c1j ∪ c2j ∪ ... ∪ cMj (6)

Each image Ij has an associate label yj , which is chosen to be 0 for Normal
patients and +1 for ATD. These images labels have been labelled by experienced
clinicians of the Virgen de las Nieves hospital in Granada, Spain. Thus, the
label yj is shared with all the components of the image Ij . Each component is
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Fig. 2. Left column: A normal patient. Central column: An ATD patient. Right column:
Averaged mask.

used as a feature vector input, therefore a SVM classifier with linear kernel is
trained and tested on each component cij using a leave-one-out cross validation
strategy. The classifier is trained in all but one component, categorizing the
remaining component by a label �ij ∈ { Normal,ATD}. After processing the
whole database, the outcome is an ensemble of individual SVM results which
will be used to construct a tree classifier.

3.3 Construction of the Tree Classifier

The second step of this work consists in using the learning sample given by the
results of the component-based SVM methodology to construct a tree classifier.
The training sample consists of data {cij , �ij}. This classification tree will allow
us to choose which components to use in the classification problem.

4 Results

In Figure 3(a), the classification obtained using support vector machines with
linear kernel for each of the components of the brain is plotted. 79 SPECT
images are placed in the x-axis (41 Normals and 38 ATD). The abscissa presents
each of the components which has been classified using SVM and a leave-one-out
methodology. Different colours have been used for Normal patients and ATD.
Let see that, roughly, a different colour density has been obtained for Normals
and ATD patients.

Figure 3(b) depicts the number of components which were found to be ATD
by the component-based SVM. A decision whether an image is Normal or ATD
can be given using this information. If more than half of the components in an
image is classified as Normal (or ATD), this image is automatically labelled as
Normal (or ATD) by the SVM classifier. This procedure give us an 84 % accuracy
in classification.

A more efficient way to select components for classifying the images can be
designed using classification trees [6]. The classification tree is designed to help
us to choose which sequence of components is optimal to consider them in the
classification task. Therefore, this can be seen as a procedure to select regions of
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Fig. 3. a) Classification results for each of the 600 components using component-based
SVM with linear kernel. Dark colour = Normal. Light colour = ATD. b) Number of
components which were found to be ATD using the linear SVM classifier for each
image. Rectangles: Missclassified images.

Component #393 = 0

Component #511 = 0

Component #396 = 0
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Fig. 4. Decision tree

(a) Sagittal plane. (b) Coronal plane. (c) Axial plane.

Fig. 5. Black: component #393

interest automatically. Figure 4 shows the decision tree which has been obtained
for the 79 SPECT images studied. This tree gives us a procedure to increase the
accuracy of the SVM classifier up to 90 %. The proposed classifier consists in
consider the component-based SVM decision using only the component #393 of
the brain. If the classification result is not equal to 0 the image is ATD, otherwise,
the component #511 is used in the classification. Again, if the classification result
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(a) Sagittal plane. (b) Coronal plane. (c) Axial plane.

Fig. 6. Black: component #511

Table 1. Accuracy rate using only Support Vector Machines with linear kernel (SVM)
and combining SVM with the construction of a Classification Tree (SVM-CT)

SVM SVM-CT
Accuracy 84% 90%

is not equal to 0 the image is ATD, and otherwise, the decision must be taken
studying the component #396.

Figures 5 and 6 show the spatial localization in the brain of components
selected by the first and second node of the tree structured classifier.

Table 1 gives the accuracy rate for the component-based support vector ma-
chine methodology (SVM) and combining the latter with the construction of a
classification tree (SVM-CT). It can be seen that the classification tree improves
the classification task.

5 Conclusion

In this work, a computer aided diagnosis system for detection of the Alzheimer
disease was presented. We put forward a methodology to classify whether a
SPECT image of the brain corresponds to a normal or a patient with Alzheimer
disease. The proposed methodology is based on the application of support vec-
tor machines to different set of voxels of the brain. The regions of interest are
computed constructing a classification tree based on the information given by
the SVM classification. The proposed methodology has been tested in 79 real
single photon emission computer tomography brain images initially labelled by
clinicians as 41 normals and 38 Alzheimer type dementia. The classification tree
allows to improve the classification accuracy considerably. Improving from 84 %
of accuracy using SVM to 90 % combining SVM and classification trees.
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Abstract. Electroencephalogram (EEG) is widely regarded as chaotic signal. 
Modeling and prediction of EEG signals is important for many applications. 
The method using support vectors machine (SVM) based on the structure risk 
minimization provides us an effective way of learning machine. The perform-
ance of SVM is much better than the traditional learning machine. Now the 
SVM is used in classification and regression. But solving the quadratic pro-
gramming problem for training SVM becomes a bottle-neck of using SVM be-
cause of the long time of SVM training. In this paper, a local-SVM method is 
proposed for predicting the signals. The local method is presented for improv-
ing the speed of the prediction of EEG signals. The simulation results show that 
the training of the local-SVM obtains a good behavior. In addition, the local 
SVM method significantly improves the prediction precision. 

1   Introduction 

The EEG signals are very complicated pseudo-random signals and serve as windows 
for us to understand the cerebral activities because these signals are the synthetical 
reflection of the electricity activities of cerebral tissue and brain function status. EEG 
plays a more and more important role in the study of brain mechanism and the clinical 
manifestations of brain diseases with the development of computer and signal proc-
essing technology. For example the analysis of cerebral diseases attack can help peo-
ple to better understand the pathophysiological and pharmacological basis, which is 
vital in the treatment of cerebral disease and providing useful information for clinic 
application. The most significant example is epilepsy detection and prediction [1]. It 
is generally regarded that the Lyapunov exponent of EEG signal varies when the 
epilepsy comes. At that time, the orderliness of signal is stronger and the chaos is 
weaker. If we can predict the variation of EEG signals, high-risk operation can be 
avoided when cerebral diseases happen to the patient [2]. 

In fact, EEG signal has the characteristics of chaos [1], i.e. EEG signal is a nonlin-
ear spatiotemporal chaotic sequence. According to the Takens’s embedded theorem 
[3], we can reconstruct phase space as long as we choose the appropriate parameters 
of time delay and embedding dimension. Then many nonlinear prediction techniques 
based on Volterra system [4], adaptive rational function filter [5], fuzzy logics [6] and 
learning machine [7] can be used to predict the EEG signal. The learning machine is a 
common technique for modeling and predicting the chaotic signal. In this paper, we 
are concerned with prediction performance of the learning machine. 
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The traditional learning machines, such as BP neural network and RBF neural net-
work, are based on the empirical risk minimization. In the case of finite training sam-
ples, there is a contradiction between the training precision and the generalization. 
Sometimes reducing the training precision would increase the prediction risk because 
of the over learning. Recent years, support vector machine (SVM), proposed by Vap-
nik [8] according to statistical theory, become a hot point and is widely used in classi-
fication and regression [9], [10]. SVM applies the structure risk minimization instead 
of the empirical risk minimization. So it has better characteristic feature of generaliza-
tion, global optimization and sparse solution. SVM avoids the method selection and 
over learning problems effectively and solves the problems of non-linear, dimension-
ality curse and local minimum efficiently. 

However in practice, it is of computational complexity to solve a linearly con-
strained convex quadratic programming problem for training an SVM. Training 
global SVM will meet great obstacle when the number of the training samples is 
large. To solve this problem, combining with some other optimization algorithms, we 
present a new method based on the idea of local method, namely the local SVM. This 
new method inherits characters of local method which has the advantage of small 
samples, simplicity and high precision [11]. Combined with these characters, an accu-
rate high-speed prediction method is expected to predict the EEG signals. 

This paper is organized as follows. In section 2, the ε -SVM for the prediction of 
chaotic signal was introduced. In the section 3, a local method was proposed to im-
prove the training speed of SVM in prediction. In section 4, the proposed method was 
applied to the Logistic chaotic sequence and real EEG signal. Conclusion was given 
in section 5. 

2   ε -SVM for Sequence Prediction 

Assuming the finite measured data samples 1 1( , ), , ( , ) ( )l ly y R∈ ×x x X  were ob-

tained from a sample set ( , )( , )mP y R y R∈ ∈x x , which follows a certain distribution. 

The regression of support vector machine is to find a real function 
( ) ( )if bφ= +x w xi  to fit these samples that make the risk function 

[ ] ( , , ) ( , )R f c y f dP y= ∫ x x  minimum. Where c  is the loss function. The error be-

tween the observed y  and prediction ( )f x  could be measured by a so called ε  

insensitive loss function described by equation (1): 

{ }( , ) max 0, ( , )i i i iy f y fε ε− = − −x x x x  (1) 

In other words, it may allow some errors. In most cases, the probability density 
( , )P yx  is not known. It can’t make the risk function minimum directly. Therefore the 

minimum problem of the following equation (2) is proposed to substitute the risk 
function.  

1

1 1
( ) ( ) ( , )

2

l

i i
i

E C y f
l ε

=
= + −∑w w w x xi  (2) 
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Where { }( , ) max 0, ( , )i i i iy f y fε ε− = − −x x x x  is the ε  insensitive loss function. 

The first term of right equation (2) represents the complexity of ( )f x , the second term 

represents the loss. C represents the compromise relationship between complexity and 
loss. It equivalents to 
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It can yield the dual optimization problem: 
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Where ( , ) ( ) ( )i j i jK φ φ=x x x x  is kernel. The linear kernels ( , )K x y xy= , polynomial 

kernels ( , ) ( 1)dK x y xy= +  and RBF kernels 
2 2

2
( , ) exp( / )K x y x y σ= − −  are com-

monly used. From equ.(4), we can get the optimal solutions of iα  and *
iα , denoted by 

* * *
1 1 2 2[ , , , , , , ]T

l lα α α α α α=α . Then the dynamic system model can be obtained by 

solving the dual optimization problem. For the input vector x , the prediction can be 
deduced from: 

*

1

( ) ( ) ( ) ( , )
l

i i i
i

f b K bφ α α
−

= ⋅ + = − +∑x w x x x  (5) 

Where b  can be gotten by equ.(6) or (7). If jα  is chosen, then 

*

1

( ) ( , ) (0, / )
l

j i i i j j
i

b y K C lα α ε α
=

= − − + ∈∑ x x  

 (6) 

If 
*
kα  is chosen, then  

**

1

( ) ( , ) (0, / )
l

kk i i i k
i

b y K C lα α ε α
=

= − − − ∈∑ x x  

 (7) 
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3   Local ε -SVM 

When the samples become large, training the SVM has become the bottle-neck of 
SVM application. Training algorithms for support vector machines is a research hot-
spot at present and new algorithms are proposed incessantly. Colin Campbell made an 
overview of existing training algorithms [12]. In that overview he mainly introduced 
the SVM light decomposition algorithms [13], sequential minimal optimization 
(SMO) algorithms proposed by Platt [14], the nearest neighbor algorithms proposed 
by Kerrthi [15] and the least squares support vector machine algorithms (LS-SVM) 
proposed by J. A. K. Suykens [16]. These algorithms aimed to improve the SVM 
training speed in the application of classification or regression. 

Sequential minimal optimization is based on the decomposition. It iteratively se-
lects two points and optimizing the target function with respect to them. Then the 
optimization problem becomes an analytic solution, so the problem of solving the 
quadratic programming is avoided. Although it needs more times of iteration, but the 
iteration spends less computing time. Therefore the total time consumed is reduced. 
The advantage of SMO is that there is no need to store the kernels matrix as well as 
use quadratic programming package. SMO algorithm will be used in this paper.  

Combining with the local method, this paper proposes a local ε -SVM. In the pre-
diction process, the local method selects the vectors which are close to the target vec-
tor. Meanwhile, it uses these vectors to train the SVM by SMO algorithm. This in-
creases the training speed because of the little samples. The following part introduces 
using the local ε -SVM for one-step prediction in chaotic signal.  

1,ix i

nx

1
n

n
p

x

x

( )x n T

 

Fig. 1. Local SVM for prediction 

1. For a chaotic sequence ( )x t , select embedding dimension m and delay time τ , 

reconstruct phase space according to the Takens’s embedding theorem. For the fi-
nal vector X(N) which is used as the input target vector to predict the next point of 
the sequence, compute the distance between the target vector and preformed N-1 
vectors as (8) 

( ) ( ) ( ) , 1,2,...... 1d i i N i N= − = −X X  (8) 

2. Select p distances that are most close to the vector X(N), then select p vectors and 
value Dr corresponding to the p distances. 

[ ( ), ( ), ( ( 1) )]n T
r r r rx t x t x t mτ τ= + + −X , 1, 2,r p=  (9) 
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( )r rD x t T= + , 1, 2,r p=  (10) 

For one-step prediction, rT t mτ= + . 

3. , 1n
r r p=X  are taken as the input vectors of the SVM and Dr , 1, 2,r p= is 

taken as the output values gained from training of the SVM. 
4. X(N) is used as an input vectors for the SVM, then the prediction value x (n+T) can 

be obtained. 
5. Iterate step 1-4 till obtaining all prediction values. 

Because the samples most close to the target vector are used for training the SVM 
at every time of iteration, the quadratic programming problem is then simplified. If 
combined with the SMO or LS-SVM methods, the SVM training speed will increase 
greatly. The disadvantage of the local method is that for the new input vectors 
X(N+1), it must select the local subset and train the SVM over again. That is to say, it 
just constructed a local dynamic system model. Therefore this method is not suitable 
for regression, although it has better performances than global SVM. 

4   Simulations and Application 

4.1   Local ε -SVM Prediction for Logistic Sequence 

To verify the prediction performance, a 1000 point Logistic signal was generated 
from equation (11) for modeling and predicting. 

( 1) ( )(1 ( ))x n ax n x n+ = −  (11) 

Initial value was 0.8 and a=4. The first 800 points were used for training the SVM, 
and the following 200 points were used for testing. According to the Takens’s  
theorem, the embedding dimension was set m=3 and the delay time was set τ =1 to 
reconstruct the phase space. The hidden center of BP neural network and RBF neural 
network were both set to 10 and the training precision was 0.005. The parameters 
were set as C=1000 and ε =0.01 in training the ε -SVM. In the local SVM training, 
close points was selected as p=20. The mean square error (MSE) was used here to 
evaluate the prediction performance as defined in equation (12): 

2

1

1
ˆ( ) ( )

N

MSE
k

e x k x k
N =

= −∑  (12) 

Table 1 lists the prediction MSE of four learning machines. It’s obvious that the 
MSE of SVM is less than the neural network. In fact, there is no way to compare the 
MSE between the neural networks and the SVM, because they have different training 
parameters. But if selecting smaller training precision, the prediction MSE of BP 
network and the RBF network increase inversely. It shows that the SVM, which is 
based on the structure risk minimization, performs better than the neural network 
which is based on the empirical risk minimization. 

On the Legend computer which has Pentium(R) 4 CPU 1.80GHz, 256M RAM 
memory, with the platform of matlab7.0, using the function “QUADPROG” which 
embed in the matlab7.0 to solve the global ε -SVM directly, the training time was  
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Table 1. MSE of four learning machine 

 BP RBF Global ε -SVM Local -SVM 
MSE 3.0882 e-4 3.1979 e-4 3.6377 e-5 3.0000 e-5 
Time(s) - - 24.13 11.97 
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Fig. 2. Prediction of logistic sequence based on local SVM 

more than 24 hours. In the same settings, training the local ε -SVM with the function 
“QUADPROG” needed 81 seconds. Also applying the SMO algorithm in the 
LIBSVM toolbox, the times for training global ε -SVM was 24.13 seconds. While for 
local ε -SVM, training 20 close samples only needed 0.0062 second, the total times 
for predicting 200 point include the time used in sorting and searching the close 
points is 11.97 seconds. Therefore we can conclude that local ε -SVM has not only 
smaller prediction MSE but also fast prediction speed. Figure 2 shows the result of 
prediction for logistic sequence. 

4.2   Local ε -SVM for Real EEG Prediction 

To evaluate the performance of the proposed method, EEG signal, taken from Mental 
Health Center in Shantou University, is analyzed. The EEG signal records were col-
lected from normal person who was closing his/her eyes and kept silent and level-
headed. Fourteen electrodes were placed according to the international standard 10-20 
system. In this section a segment of these real spontaneous EEG signal with 1000 data 
points was selected for the purpose. The first 800 points were used for training the 
SVM and the following 200 points were used for testing. The embedding dimension 
was selected as m=5 and delay time as τ =1. Then constructed phase space according 
to the Takens’s theorem. The training parameters C=1000 and τ =0.01 were set in 
both global ε -SVM and local ε -SVM. Close points was selected as p=25. 

Table 2 lists the training MSE of two SVM and its iterations times using SMO in 
the LIBSVM toolbox. Figure 3 shows the prediction result of global and local SVM 
and their prediction errors are depicted in figure 4. It’s easy to see from figure 3 that 
the prediction MSE of global SVM is 3.1084e-3 and the prediction MSE of local  
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Table 2. Prediction MSE and Training Iteration Times 

Method Globalε -SVM Localε -SVM 
MSE 3.1084 e-3 2.2000 e-3 

Time(s) 583.1 12.42 
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Fig. 3. The real EEG and its prediction 
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Fig. 4. Comparison of the prediction MSE of the local SVM with the global SVM 

SVM is 2.2000e-3. The local SVM improves the prediction precision. Also, in figure 
4, there are some sparkles of noise in the global prediction, and the prediction at some 
peak points is not good. This may be caused by the noise in the EEG, or different 
dynamic system model. In fact, the local method always selects the close points, that 
is to say it selects the same dynamic system model with the target vector X(N) more 
or less, therefore that its prediction MSE is less. In addition, because of the reducing 
number of the training samples in local method, the training time at every prediction 
is cut down. Although it’s necessary to train the SVM in every prediction process 
over again, it can still reduce the total training times. It shows that the time reduces 
almost 50 times from the table 2.  
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5   Conclusion 

This paper investigates the problem of prediction of EEG signals by using SVM 
method. A local SVM procedure was proposed to deal with the problem of training 
global SVM when it comes to a large of training samples. A local SVM based on the 
local procedures was proposed and combined with the existing training algorithms, 
such as SMO, to predict EEG signals. The simulation results indicated that the pre-
sented local SVM can not only increase the training speed but also effectively reduced 
the prediction MSE. 
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Abstract. Nowadays, it is possible to find out different viable architectures that 
implements P Systems in a distributed cluster of processors. These proposed  
architectures have reached a certain compromise between the massively paral-
lelism character of the system and the evolution step times. They are based in 
the distribution of several membranes in each processor, the use of proxies to 
control the communication between membranes and mainly, the suitable distri-
bution of the architecture in a balanced tree of processors. For a given P-system 
and K processors, there exists a great volume of possible distributions of  
membranes over these. The main disadvantage related with these architectures 
is focused in the selection of the distribution of membranes that minimizes the 
external communications between them and maximizes the parallelism grade. 
In this paper, we suggest the use of Self-Organizing Neural Networks (SONN) 
with growing capability to help in this selection process for a given P-system. 

1   Introduction 

Possibilities offered by Natural Computation and, specifically P-Systems, for solving 
NP-problems, have made researchers concentrate their work towards HW and SW 
implementations of this new computational model. Transition P-Systems were intro-
duced by Păun [1], and were inspired by "basic features of biological membranes". 
One membrane defines a region where there are a series of chemical components 
(multisets) that are able to go through chemical reactions (evolution rules) to produce 
other elements. Inside the region delimited by a membrane can be placed other mem-
branes defining a complex hierarchical structure that can be represented as a tree. 
Generated products by chemical reactions can remain in the same region or can go to 
another region crossing a membrane. 

A P-System is a computational device which is an abstract representation of a par-
ticular membrane structure. Each region is populated by a multiset of symbols. These 
multisets are materialized as strings of symbols. In addition, each region is associated 
with a set of rewriting rules. These rules are applied to the multisets (strings of sym-
bols) of certain compartments and, consequently, change the system’s configuration. 
The system configurations are determined by the membrane structure and multisets 
present inside membranes. The rules are applied simultaneously by observing the so-
called maximal parallelism principle, that is the rules are selected in such a way that 
only “optimal” output is yielded. When it is not possible to apply any rule, the  
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P-System halts. A designated compartment, called the output compartment, contains 
the output of the computation, which is equal to the cardinality of the multiset con-
tained in it. 

In the formal Transition P-Systems model can be distinguished two phases in each 
evolution step: rules application and communication. Once application rules phase is 
finished, then it begins communication phase, where those generated multisets travel 
through membranes towards their destination in case it is another region. These sys-
tems carry out computations through transitions between two consecutive configura-
tions, what turn them into a computational model with the same capabilities as Turing 
machines. 

Power of this model lies in the fact that the evolution process is massively parallel 
in application rules phases as well as in communication phase. The challenge for 
researchers is to achieve hardware and/or software implementations of P systems 
respecting the massively parallelism in both phases.   

Nowadays, it is possible to find out at least three different viable architectures that 
implements P Systems in a distributed cluster of processors: P2P [2], Hierarchical 
P2P [3] and Master-Slave [4]. These proposed architectures have reached a certain 
compromise between the massively parallelism character of the system and evolution 
step times. In particular, they have focused in the second phase of an evolution step 
and have obtained good results in the throughput in the external communication 
among processors and parallelization levels of the system. These architectures are 
based in the distribution of several membranes in each processor, the use of proxies to 
control the communication between membranes and mainly, the suitable distribution 
of the architecture in a balanced tree of processors. These solutions avoid communica-
tion collisions, and reduce the number and length for communication among mem-
branes. All this facts allows obtaining a better step evolution time than in others sug-
gested architectures congested quickly by the network collisions when the number of 
membranes grows. The main disadvantage related with these architectures is the great 
volume of possible combinations of membrane distributions over a number of proces-
sors that can vary from one to the number of membranes. If one processor is used, all 
of membranes run in the same processor, so external communications is reduced to 
zero but parallelization level disappears (all internal communications are sequential). 
On the other side, if each membrane runs in one processor, the better parallelization 
level is obtained but the increase of external communication produces network con-
gestion and the worst evolution step times. The best solution is the balanced one 
where internal and external communications remain equilibrated. 

In this paper, we suggest the use of Self-Organizing Neural Networks (SONN) 
with growing capability, based in Fritzke work [5], to help in the search and selection 
of the balanced distribution for a given P-system, with the purpose of obtaining as a 
final objective the reduction of the run times of each step of evolution in this P  
System. 

2   P System Communication Architectures 

The viable architectures that implements P Systems in a distributed cluster of proces-
sors are based on the following:  
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Membranes distribution: In each processor, K membranes are located that will 
evolve, at worst, sequentially. The value of K is determined by the relation between 
the number of membranes M and processors P, where K ≥ 1. The benefit obtained is 
that the number of the external communications decreases. The total number of com-
munications splits in two classes: a group of internal communications for pairs of 
membranes located in the same processor and another group of external communica-
tions to interchange information among pairs of membranes located in different proc-
essors. Therefore, the number of external communications against the previous model 
will always be smaller. Moreover, this is an important fact because the run time to 
carry out the internal communications will be negligible.  

For example, the 22 external communications performed by an architecture with a 
membrane located in each processor (figure 1.a) have been reduced to 10 in the archi-
tecture that has located 3 membranes in 4 processors (Figure 1.b). 

                                         (a)                                                                     (b)  

Fig. 1. (a) P system communications. (b) Communications with membranes distribution. 

Proxy for processor: When a membrane wants to communicate with another one 
located at a different processor, the first one uses a proxy (programs or device located 
in the processor that carries out an action in representation of another), instead of 
doing it directly. Therefore, the communications that use the common line (external 
communications to the processor) are carried out between proxies, not between mem-
branes. This intermediate element located between the bus and the membranes con-
centrates the information in two stages: 

a) N multisets of N membranes located in a processor that has a common father 
membrane in another processor, becoming integrated in a single multiset that 
is the one that will be sent.  

b) The S communication packet of L length necessary to communicate between 
S pairs of membranes located in 2 different processors are reduced to one 
single packet of S.L length. 

The benefit of using proxies in the communication among membranes against di-
rect communication is double: 

a) Due to the first stage previously described, the amount of information sent is 
smaller. This is produced by the fact that the N packet necessary to communi-
cate N membranes with the same father, are transformed into a single packet of 
the length of a single multiset. 
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b) Due to the second stage, the number of external communications is smaller al-
though packets are bigger. But, considering that the communication protocols 
penalize the transmission of small packets because to the data encapsulated 
processes and to the time safety intervals between future transmissions, it is 
better to send one packet of length equal S.L than S packets of length equal L. 

Figure 2.a shows that if proxies are introduced in the processors, then the number 
of external communications is reduced to 8. 

 
Tree topology of processors: In graph theory it is established that P −1 connections 
is the minimum number required to interconnect a connected graph of P processors. 
This restriction imposes on the graph a tree topology. The benefit obtained with the 
tree topology of processor is that it minimizes the total number of external communi-
cations made as the proxies interchange information only with its direct predecessor 
and its direct successors, and therefore the total number of external communications 
in each evolution step is 2(P − 1).  

Figure 2.b shows that external communications are reduced to 6 when a tree topol-
ogy of processors is used to connect them. 

                                           (a)                                                                        (b)  

Fig. 2. (a) Communications with a proxy for processor. (b) Communications using a tree 
topology. 

3   Fritzke’s Self-Organizing Neural Networks (SONN) 

Self-Organizing Map (SOM) is an artificial neural network model with competitive 
and unsupervised training. SOM network has two main characteristics: it makes pos-
sible obtaining a simplified model of the training data (normally high-dimensional) 
and it has the capacity to project them on a two dimensional map that shows the exist-
ing relations among them. In 1982, Kohonen [5] proposed first model of SOM, where 
the complete network structure had to be specified in advance and remained static 
during all the training process. When Kohonen’s SOM is used, the choice of inappro-
priate parameters to define the architecture can degrade the posterior performance of 
the network. In 1994, B. Fritzke [6] proposed a SOM model called Growing Cell 
Structure (GCS) where this static structure limitation was eliminated. In addition, the 
flexibility that offers the possibility of inserting and removing neurons on the output 
layer of the network during the training phase causes that the GCS network receives 
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better value associated to the topology preserving term, understanding this like the 
grade that defines the quality of the simplified model that the network represents. 
There exist other models of SOM networks that usually offer better topology preserv-
ing grades than GCS, as GNG[7] and ESOM[8], where there no exist so strict  
structural organization of the output layer. Nevertheless, this feature causes that they 
cannot be used directly to generate two-dimensional graphs to show the relations of 
the input patterns, being necessary using dimension reduction algorithms (like 
Sammon’s projection) to visualize the prototype nodes and their relations. With the 
purpose of exploiting this characteristic when the input patterns present more than 
two dimensions we decided to use GCS model. 

GCS is a two-layer architecture network (Fig 3). Neurons located at the input layer 
are fully connected with those in the output one. These connections have associated a 
weight, wij, where i identify the input neuron and j the output one. There exist as 
many input neurons as dimension has the input vectors. Neurons in the output layer 
have neighbor connections between them presenting a topology formed by groups of 
basic k-dimensional hyper-tetrahedrons structures. In order to facilitate the visualiza-
tion of the output layer, in this work a value of k=2 has been used, so output units are 
connected forming triangle groups.  

Every output c unit has an n-dimensional synaptic vector wc = (w1c, …, wnc) associ-
ated. This vector can be seen as the position of c in the input vector space. Each time 
a new input pattern e = (e1, …, en) is processed, only one output neuron is activated, 
called the best matching unit (bmu), that is the one with the synaptic vector that 
matches best with the input pattern. Formally: 
                                                   .minarg cbmu weS −=                                          (1) 

Thereby ǁ·ǁ denotes the Euclidean vector norm. By this the input vector space is 
partitioned into a set of regions, each consisting of the locations having a common 
nearest synaptic vector.  This way, the set of all synaptic vectors of the output layer 
can be seen as a simplified model of the input vector space.  

The training phase in GCS network adapts synaptic vectors looking for that each 
output neuron represents a group of similar input patterns. At the beginning of the 
training phase the output layer of the network has only three neurons interconnected 
via neighbor relations (k=2). During the training process a set of input patterns is 
presented to the network iteratively. In each adaptation step an input pattern is proc-
essed, the bmu is calculated and its synaptic vector and its topological neighbor’s 
synaptic vectors are modified using equations 1 and 2 respectively (where εb > εn).  

( ) .    
bmu

webbmuw −=∆ ε  (2) 

( ) .   ) ofneigbor   all(for   bmuc
c

wencw −=∆ ε  (3) 

After a fixed number of adaptation steps a new output unit is inserted and is con-
nected to other cells in such a way that the triangular groups of neighbor units are 
guaranteed. The place where new unit is inserted is determined using two different 
criteria: “looking for the unknown probability distribution of the input patterns” 
(LUPD) or “looking for equalize accumulated error measure” (LEAE) [6]. Periodi-
cally superfluous neurons are removed in order to obtain better results when input  
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Fig. 3. GCS network topology with k=2, N input neurons and 5 output units that exhibit 
neighbors connections in groups of figures of triangles 

space consists of several separate regions of positive probability density. An output 
neuron can be considered superfluous if it has a synaptic vector in a region with very 
low probability density (a region without any training pattern). A constant threshold, 
η, is used to eliminate those neurons with probability density below this value. The 
removal process ensures the triangular architecture of the output layer, but the output 
neighbor mesh can results broken in several sub-meshes. In this work the modifica-
tion of the GCS training algorithm proposed in [9] has been used in order to achieve a 
better interpretation of the removal parameters.  

In a trained network the output layer map can be seen as a projection of the input 
vector space in a bi-dimensional plane that exhibits the relations of the input patterns. 
Printing the output layer map data inherent knowledge can be discovered. 

4   Experiments and Results 

To test the system we have selected thirty P-System models generally used in the  
literature of P-System. Different membrane distributions between different number of 
processors have been generated for every P-System, observing how the resulting com-
munications of the distribution affect to the parallelization grade. For each data set asso-
ciated to a concrete P-System diverse GCS networks have trained with the intention of 
visualize the output layer and establish the optimal distribution, which will be the one 
that balances the degrees of external communications and parallelization. 

For space reasons in this section only the results of one of the multiple GCS trained 
networks is showed, in particular the one trained with the P-System of the fig. 1.a, 
with distributions that uses four processors. First of all, 15 feasible combinations of 
12 membranes have been generated in 4 processors that have resulted in 180  
bi-dimensional labeled vectors. Each vector maintains the volume of internal and 
external communications for a concrete membrane-processor-distribution and it has 
associate a label that identifies these three elements. With this patterns a GCS net-
work has been trained, with LEAE insertion criterion, εb = 0.06, εn = 0.002, µ  =0.006, 
and concluding when at least 6 isolated clusters of output units are obtained. After the 
training phase the output units of the network has been marked with the union of the 
labels of all those input patterns that fall inside its Voronoi region. Figure 4 shows the 
scattergram of this GCS network, where the position of each output unit is determined 
by the two components of its synaptic vector. X-axis coordinates indicates the internal  
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Fig. 4. Left: Scattergram of a GCS network. Points represent neurons and lines between them 
neighbor connections. Units are grouped in bad, medium and good classes on the basis of the 
external communication degree. Right: Distribution of membranes C13. 

degree of communications and Y-axis the external one. We have grouped the neurons 
into three classes: bad (from 1 to 11), medium (from 14 to 18) and good (from 19 to 
28). Within each of these three groups we have ordered neurons from highest to low-
est level of external communication and for those with a similar value, from highest to 
lowest level of internal communication. Based on this information has been deter-
mined that the best distribution is the C13, that contains 1 bad neuron, 4 medium 
neurons and 7 good neurons. Moreover, this distribution has one of the best ratios of 
communication (with a volume of 183 for internal communications and 83 for exter-
nal communications). 

5    Conclusions 

GCS networks have demonstrated to be a useful tool to P-System in the searching of 
membrane balanced distributions. Although the example that has been used to docu-
ment the methodology has a small volume of membranes, the feature of simplified 
model associated to GCS networks allows working with high volumes of membranes 
where the distribution possibilities go off.  

The analysis of the information of a GCS network could be automated for feeding 
a system of automatic membrane distribution over processors. In particular, this tool 
is being adapted to be used in the distributed system of membranes based on micro-
controllers exposed in [10][11]. 

Given the good results obtained in the experiments, as future extensions the possi-
bility of working with vectors of greater dimension is considered, what will allow to 
fit the search of suitable balanced P-System, for example generating a single vector 
for each membrane distribution or working with fuzzy values for determining the 
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degree of internal and external communications of a processor. This will require 
working with new visualizations of the output layer of the GCS network, such as 
those exposed in [12]. 
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Abstract. This paper presents the artificial neural network (ANN) that used to 
perform the short-term load forecasting (STLF). The input data of ANN is 
comprises of multiple lags of hourly peak load. Hence, imperative information 
regarding to the movement patterns of a time series can be obtained based on 
the multiple time lags of chronological hourly peak load. This may assist to-
wards the improvement of ANN in forecasting the hourly peak loads. The Le-
venberg-Marquardt optimization technique is used as a back propagation algo-
rithm for the ANN. The Malaysian hourly peak loads are used as a case study 
in the estimation of STLF using ANN. The results have shown that the pro-
posed technique is robust in forecasting the future hourly peak loads with less 
error. 

1   Introduction 

Load forecasting has always been an essential task for the electric utilities in which 
it may assist to an effective operational planning and security assessment of a power 
system. This is important to ensure that the electric utilities are operating in an 
economic, reliable and uninterrupted service to the customers [1]. With the advent 
of deregulation in electric utilities, load forecasting becomes even more important 
especially to the system operators and market participants whereby this may assist 
towards organizing appropriate strategies of risk management and competitive 
energy trading [1] and [2]. 

In this paper, ANN is used to perform the short-term load forecasting (STLF) for 
the next 24 hour. The ANN is an outstanding and promising approach for STLF com-
pared to other methods such as the autoregressive-moving average (ARMA) and re-
gression approach. The main strength of ANN is on its ability to model complex and 
non linear relationship of the network by training it with the historical data of hourly 
peak loads. The input data of ANN comprises of multiple lags of hourly peak load. 
The Malaysian hourly peak loads are used as a case study in the assessment of STLF 
using ANN model incorporating with the Levenberg-Marquardt (LM) back propaga-
tion algorithm. The performances of ANN model in forecasting is investigated based 
on the accurateness of forecasted hourly peak loads. 

                                                           
∗ Corresponding author. 
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2   Multiple Time Lags of Chronological Variables 

Improving the input variables of artificial neural network (ANN) plays an imperative 
role in order to produce accurate results of forecasting. Equation (1) is used to obtain 
an improved input data of ANN that takes into account the multiple time lags of  
chronological hourly peak load, Xt-k. By considering the multiple time lags of chrono-
logical variables in equation (1), this may assist the ANN to easily recognize the 
movement pattern of each variable at every time interval [3]. Hence, this may alle-
viate the performance of ANN in providing better results of forecasting. 

 

                                                                            
ktttk XXZ −−=,

                       (1) 
 

where, 
   Xt   : time series of hourly peak load. 

t : time interval. 
k : lagging time interval which is 1, 2, 3,…., K. 
K : total number of lagging time interval. 

 

By using equation (1), the input data of ANN is in a k-by-t matrix form. In this case 
study, each column of matrix is used by the ANN to forecast one variable at the next 
24 hour. Walczak et al. [3] explained that the total number of lagging time interval, K, 
is initially specified equivalent to the time interval of forecasted variable. In conjunc-
tion to the above mentioned explanations, the arrangement of ANN input data with 
respect to the observed data or targeted data is depicted in Figure 1. For instance, the 
first column of input data, Zk,t, is used by the ANN to forecast the targeted variable of 
X48 that is the peak load at the next 24 hour. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 1. The arrangement of input data and targeted data for the ANN training procedure 

3   Implementation of Artificial Neural Network 

In this paper, the ANN model consists of one input layer, two hidden layers and one 
output layer .The output layer of ANN is consisting of one neuron that is to provide 
the result of hourly peak load at the next 24 hour.  The linear activation function is 
used as a neuron in the output layer of ANN. In particular, the optimization process is 
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performed by using the Levenberg-Marquardt (LM) technique in which it is adapted 
as the back propagation algorithm of ANN. The LM is widely accepted as an efficient 
algorithm in terms of accuracy and it also give a good compromise between the speed 
of the Newton method and the stability of the steepest descent method [4]. 

The logistic tangent function is used as the neurons for each hidden layer since it 
process the input data that is in the range of 0 to 1 per unit (p.u.). The per unit value is 
obtained by the actual value of hourly peak load divided by the maximum value of 
hourly peak load.  

In order to avoid over-training of ANN therefore, cross-validation of ANN training 
procedure is performed to ensure accuracy of the results. The input data of ANN is 
divided into three sets whereby 80%, 10% and 10% of the ANN input data are used 
for training, validation and testing of ANN, respectively.  In the training algorithm of 
ANN, the network minimizes the error between the output and desired output by 
adjusting the weight and biases. The error minimization process is repeated until it 
converges to a predefined small value of error. Then, the training procedure of ANN 
is terminated once the minimum error becomes constant. 

The number of hidden layer is selected based on the fact that one hidden layer is 
enough to approximate any function, although two hidden layers may useful in some 
circumstances [5]. The choices of selecting the number of neurons in the hidden layers 
are made through cross validation of ANN training procedure which gives to a mini-
mum root mean square (rms) error of ANN output. Then, the testing procedure of ANN 
is performed in order to obtain the results of load forecasting for the next 24 hour. 

4   Results and Discussion 

The Malaysian hourly peak loads in the year 2002 are used as a case study in the 
assessment of STLF using the ANN. The hourly peak loads with the total time inter-
val of 8736 hour is shown in Figure 2 and it is divided into three sets for the training, 
validation and testing procedures of ANN. 

t, time 
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Fig. 2. The Malaysian hourly peak loads in the year 2002 
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The total number of lagging time interval should be initially specified to K = 24 
hour since the future hourly peak load is forecasted at the next 24 hour. The input data 
with K = 24 hour is used by the ANN which consists of 14 and 8 neurons in first and 
second hidden layers, respectively. The input data with K= 48 hour is used by the 
ANN which consists of 19 and 16 neurons in the first and second hidden layers, re-
spectively. Finally, the input data with K = 72 hour is used by the ANN that consists 
of 13 and 7 neurons in first and second hidden layers, respectively. The numbers of 
neurons in the first and second hidden layers are selected based on the minimum 
amount of rms output error obtained through the cross-validation of ANN as shown in 
Table1 and Table 2, respectively. 

Table 3 shows that the training and validation processes of ANN provide less out-
put error for K = 72 hour compared to K = 48 and K = 24 hours. The output results are 
obtained by considering different ANN architectures specified for K = 24 hour, K = 
48 hour and K = 72. It is observed that the total number of lagging time interval, K, 
significantly affect the performance of ANN in forecasting. It is obvious that the input 
data of K = 72 hour improves the ANN training and validation processes compared to 
the input data with K = 24 hour and K = 48 hour. 

Table 1. RMS error of ANN output subsequent to the increased number of neurons in first 
hidden layer 

  Lag 24     Lag 48     Lag 72   

Number 
of

Neurons 

Training Validation Number 
of

Neurons 

Training Validation Number 
of

Neurons 

Training Validation 

RMS Output Error RMS Output Error RMS Output Error 

11 0.0028 0.004 15 0.0012 0.0018 8 0.0006 0.001269

12 0.0028 0.0031 16 0.0012 0.0017 9 0.000583 0.001376

13 0.0022 0.0032 17 0.0012 0.0017 10 0.00027 0.000705

14 0.0019 0.0026 18 0.0012 0.0019 11 0.000239 0.000746

15 0.0018 0.0028 19 0.0011 0.0017 12 0.000271 0.000705

16 0.0017 0.0028 20 0.0012 0.0018 13 0.00023 0.00055

17 0.0019 0.0027 21 0.0011 0.0018 14 0.00028 0.000783

18 0.0017 0.0027 22 0.0011 0.0024 15 0.000334 0.001072  

Table 2. RMS error of ANN output subsequent to the increased number of neurons in second 
hidden layer 

  Lag 24     Lag 48     Lag 72   

Number 
of

Neurons 

Training Validation Number 
of

Neurons 

Training Validation Number 
of

Neurons 

Training Validation 

RMS Output Error RMS Output Error RMS Output Error 

5 0.0017 0.0024 12 0.0011 0.0016 4 0.000217 0.000384

6 0.0016 0.0026 13 0.0012 0.0018 5 0.000222 0.000375

7 0.0016 0.0028 14 0.0004 0.0008 6 0.000212 0.000381

8 0.0015 0.0023 15 0.0015 0.0025 7 0.0002 0.00038

9 0.0015 0.0025 16 0.0004 0.0007 8 0.000225 0.000472

10 0.0017 0.0027 17 0.0017 0.0018 9 0.000286 0.000682
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Table 3. Results of ANN considering K = 24 hour, K=48 hour and K= 72 

 

ANN input data 
with multiple 

time lags of K = 
24 hour 

ANN input data 
with multiple time 

lags of K = 48 
hour 

ANN input data 
with multiple 

time lags of K = 
72 hour 

Training sets  7000  

Validation sets  1016  

Testing Sets  720  
Number of input 

neurons 23 47 71 
Number of neurons 

in 1st hidden layer 14 19 13 
Number of neurons 

in 2nd hidden layer 8 16 7 

Number of output  1  

Learning rate 0.001 0.01 0.1 

Momentum 0.095 0.87 0.999 

Training function Levenberg-Marquardt  

Training rms error 0.0025 0.00035794 0.000201094 

Validation rms error 0.0024 0.00072269 0.000381081 

 
Figures 3, 4 and 5 represent the result of hourly peak loads forecasted consecutive-

ly for the next 24 hour. It is obtained during the testing procedure of ANN that takes 
into account the input data with K = 24 hour, K = 48 hour and K =72 hour, respective-
ly. The red and black lines represent as the output result of ANN and targeted output 
of ANN, respectively. Figure 3 represents the output results of ANN based on the 
input data with K = 24 hour. The multiple time lags should be initially specified to K 
= 24 hour so that it is equivalent to the 24 hour time interval of forecasted hourly peak 
load. It is obvious that the multiple time lags of chronological hourly peak load with 
K = 24 hour does not improve the performance of ANN in forecasting. Whereby, 
large error can be observed via comparison between the hourly peak loads forecasted 
by the ANN and the targeted hourly peak loads. Comparative study between the fore-
casted and actual hourly peak loads have shown that the input data with K= 72 hour 
alleviate the performance of  ANN to accurately forecast the future hourly peak loads 
at the next 24 hour with less error. This consensus was supported by the comparison 
between the results of forecasted hourly peak loads depicted in Figures 3, 4 and 5. 
The comparison results elucidate that the ANN input data with K = 72 hour improves 
the ANN performance which provide to a better result of STLF as compared to the 
result provided by the ANN considering the input data with K = 24 hour and  
K = 48 hour. 

The ANN testing procedure with three multiple time lags of chronological hourly 
peak load are further investigated by referring to the mean absolute percentage error 
(MAPE) of output results. The formulation of MAPE is given in equation (2). 

                                          ∑
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Fig. 3.  Comparison between the forecasted hourly peak loads and the actual values based on  
K = 24 hour 
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Fig. 4.   Comparison between the forecasted hourly peak loads and the actual values based on  
K = 48 hour 
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Fig. 5.   Comparison between the forecasted hourly peak loads and the actual values based on  
K = 72 hour 

 
 



 STLF Using ANN Based Multiple Lags of Time Series 451 

where, 
Yt   :  forecasted hourly peak load at time interval t. 
N   :  total number of time interval. 

 

In the testing procedure of ANN, the MAPE of forecasted hourly peak loads for 
each day is determined based on the three cases of ANN input data that is K = 24 
hour, K = 48 and K = 72 hour. The results of MAPE for each case are shown in  
Table 4. The ANN input data with K = 24 hour, K = 48 hour and K=72 hour causes 
the ANN to provide minimum MAPE values of 1.74% at day two , 0.92% at day two, 
and 0.50% at day two, respectively. This shows that the input data with K = 24 hour 
does not improve the ANN performance which provide large error in forecasting the 
future hourly peak loads. This consequence is similar to a case whereby ANN with K 
= 24 hour provides a large MAPE value of 19.71% at day 15 as compared to the 
8.99% at day 22 and 9.14% at day 17 for the ANNs with K = 48 hour and K = 72 
hour, respectively. On the other hand, the average MAPE values of 7.45%, 4% and 
1.95% are obtained based on the input data of ANN considering K = 24, K = 48 and K 
= 72 hours, respectively. It is obvious that the input data with K = 72 hour increases 
the performance of ANN in forecasting the future hourly peaks loads with less error 
as compared to the ANN considering the input data with K = 24 hour and K= 48 hour. 

The results showing that it is important to accurately specify the total number of 
lagging time interval, K, for the input data in which this may significantly affect the 
performance of ANN in obtaining the STLF. The advantage of utilizing the proposed 
approach is that the ANN able to perform STLF by considering only the input data of 
univariate time series that is the chronological hourly peak load. Furthermore, other 
factors such as the temperature, weather and energy market can also be included as 
the input data to improve the performance of ANN in STLF. However, this may 
yields to a large size of ANN input data. Indeed, it can be reduced by extracting or  
 

 

Table 4. MAPE of the forecasted hourly peak loads considering K=24 hour, K = 48 hour and 
K=72 for ANN 

Day

K = 24 
hour

K = 48 
hour

K = 72 
hour

Day

K = 24 
hour

K = 48 
hour

K = 72 
hour

MAPE 
(%) 

MAPE 
(%) 

MAPE 
(%) 

MAPE 
(%) 

MAPE 
(%) 

MAPE 
(%) 

1 14.73 4.97 0.68 16 5.59 2.75 1.45 
2 1.74 0.92 0.50 17 12.33 6.28 9.14 
3 9.17 7.85 8.50 18 5.18 2.57 1.17 
4 3.98 1.75 0.92 19 7.43 3.01 1.37 
5 3.83 1.86 0.84 20 6.26 3.60 1.24 
6 2.21 1.99 0.86 21 4.55 5.53 1.18 
7 1.79 3.33 0.75 22 22.23 8.99 1.96 
8 17.71 6.61 1.30 23 7.48 3.71 1.8 
9 4.08 1.98 1.12 24 8.26 6.79 2.92 
10 10.2 5.81 7.98 25 6.93 3.18 1.08 
11 4.28 1.99 0.91 26 4.37 2.53 1.4 
12 5.38 2.35 1.05 27 2.65 2.26 1.35 
13 3.82 2.75 0.97 28 1.94 3.62 0.82 
14 2.59 4.23 0.96 29 18.39 6.94 1.41 
15 19.71 7.64 1.62 30 4.61 2.24 1.24 
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selecting only the significant input features and this may further improve the perfor-
mance of ANN in STLF. 

5   Conclusion 

The application of artificial neural network (ANN) in performing the short-term load 
forecasting (STLF) has been presented. The Malaysian hourly peak loads have been 
used as a case study in the assessment of STLF using ANN. The univariate time series 
of hourly peak loads is converted to a multiple time lags of time series and it is then 
used as an input data of ANN. The transformation that improves the input data may 
alleviate the performance of ANN in forecasting the hourly peak loads. The Leven-
berg-Marquardt technique is used to optimize the weight of ANN network intercon-
nections. The results have shown that the proposed method is able to forecast the 
Malaysian hourly peak load for the next 24 hour with less error.  
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Abstract. We present a system for regression using MLP neural networks with 
hyperbolic tangent functions in the input, hidden and output layer. The activa-
tion functions in the input and output layer are adjusted during the network 
training to fit better the distribution of the underlying data, while the network 
weights are trained to fit desired input-output mapping. A non-gradient variable 
step size training algorithm is used since it proved effective for that kind of 
problems. Finally we present a practical implementation, the system found in 
the optimization of metallurgical processes.  

1   Introduction 

1.1   Data Distribution  

The standard approach to data regression using MLP networks is to apply a 3-layer 
MLP network with a linear input, logistic sigmoid or hyperbolic tangent (tanh) hidden 
and linear output units [1][2]. A good practice is to standardize the data before the 
training, e.g. according to the following formulae: 
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to make particular inputs influence independent of their physical range. It may be also 
be beneficial to remove the outliers from the training set. Moreover, a model with 
higher sensibility in the intervals with more dense data may be preferred. To address 
the problem, for example, the data can be transferred according to hyperbolic tangent 
(Fig. 1.): y=(1-exp(-βx))/(1+exp(-βx)). The other advantage of such a transformation 
is the automatic reduction of the outliers’ influence on the model. We do not consider 
the outliers as erroneous values and thus do not reject them [3], but rather reduce their 
influence on the final model. The neural network learns the optimal parameters of the 
transfer function during the training. 
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Fig. 1. The idea of transforming data from a Gaussian-like distribution to uniform distribution 

1.2   LHF Process  

The system (which is shortly outlined in the next chapter) is being implemented in 
one of the Steelworks in Europe. The metallurgical process consists of three stages. 
At the first stage an electric arc furnace (EAF) heats steel scrap with an electric arc. 
Once the temperature and chemistry are roughly correct, the steel is tapped out into a 
preheated ladle arc furnace (LHF) where various chemical elements (C, Si, Mn, P, …) 
are precisely added to obtained the desired, final properties of a given kind of steel. In 
the third step, the steel is formed into the shapes demanded by customers.  

The regression task refers to the LHF stage, which is the most difficult and most 
costly part of the process. Hundreds of variables are measured, including chemical 
analysis, temperatures, times and others. In the real system, the first feature selection 
is performed by an expert and then by either forward feature selection with beam 
search or a feature ranking [4]. For the purpose of the simplicity of this paper we 
preselected here 26 features and do not discuss the feature selection here.  

The task is to predict the quantity of particular elements that must be added to the 
steel to obtain the desired chemical composition and thus build an expert system that 
will suggest the proper quantities to the LHF operator. The human operator adds the 
elements based on combination of the measured quantities and his experience. How-
ever, the problem is that there are such elements, which once added in excessive amount 
can never be removed from the steel. To avoid wasting all the steel in the ladle in this 
way, the operator adds the elements iteratively, then the next chemical analysis is per-
formed and then the remaining elements are added. That can be repeated several times. 
There are usually no simple linear relations between the amount of the element added to 
steel and the amount present in the final product. Some portions the elements get burned 
or remain on the surface of the steel, other react with each other. In addition, all that 
depends on time, temperature and other factors. By a proper prediction we avoid exces-
sive number of iterations. That minimizes the time of the LHF process and that in turn 
reduces production costs [5-9]. The number of the outputs (number of normalized ele-
ments) and the required accuracy differs between various steel sorts, being usually be-
tween 5 and 10 and the required accuracy is at the level of 1-10%.  

2   Method 

2.1   System  

The system consists of four modules, as shown in Fig. 2. If data from many LHF 
processes is available for a given sort of steel, we build a separate model for it.  
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Fig. 2. The system for predictions of the amount of elements used in the LHF process 

However, in many cases there are only data from a few production cycles of a rarely 
produces sorts of steel. That does not allow for building a reliable model. Thus, the 
rarely sort are joined together and then using k-means weighted clustering (weights 
proportional to the input-output correlation on the whole data [10] Euclidean distance 
is used) they are grouped into bigger datasets, for which the regression models are 
built. If it happens that the prediction results for a given cluster are worse than for a 
whole dataset, then the model built for the whole dataset is used instead of a given 
cluster model. 

In this paper we concentrate on the neural network based regression block. In the 
real system we use forward feature selection with beam search o feature rankings [4]. 
Comparing to the 26 preselected features, the selection only slightly improves system 
generalization, but significantly improves the model readability and its understanding 
by experts, thus increasing the chance that the expert will approve that model. For 
example if the expert does not understand why some feature combination influences 
the result, the feature space must be modified even if the prediction results are satis-
factory. Additionally, the MLP network by its nature performs a kind of feature selec-
tion by setting the values of the weights that connect inputs from the non-meaningful 
variables to very small values. Principal Component Analysis is not a good choice 
here; first the consecutive eignevalues decrease very slowly for this data and second it 
makes the results very hard to interpret by an expert that must approve the model.) 

2.2   Neural Network Architecture 

The neural network we use for regression is a 3-layer MLP network with hyperbolic 
tangent activation functions in input, hidden and output layer. The adaptable parame-
ters are the weights and biases of the hidden and output layer neurons and the slope of 
tanh functions in input and output layer.  

The purpose of using tanh activation functions in the input layer neurons is to 
transform the data distribution, as discussed in the introduction. The purpose of using 
tanh activation function in the output layer neurons is to reduce the influence of out-
liers on the model outcome. Thus, the outliers can be retained in the training set; they 
can carry some useful information on rare data points. On contrary, with standard 
MLP network, the best approach would be rather to eliminate the outliers. 
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Fig. 3. Architecture of the MLP neural network 

The following network parameters are tuned in the system: 
• Input layer: β (slope of tanh function) or the power in the power function 
• Hidden layer: weight and biases 
• Output layer: weight, biases and β (slope of tanh function) or the power in the  

power function  
The slope of the activation function of the hidden layer neuron is fixed (β=1) to limit 
the number of parameters and keep the model simple as for now, however we con-
sider adjusting it in the future work. 

2.3   Training Algorithm 

For the network training we use a variable search step method (VSS) [11], because it 
has efficiency comparable to Levenberg-Marquardt algorithm and at the same time it 
is well suited for big networks due to low memory requirements.  

The basic VSS algorithm is very simple and is outlined in the following pseudo 
code: 

for i=1 to NumberOfEpochs do 
     for j=1 to NumberOfParameters do 
          find dwj that minimizes E(i,wj+dwj); 
          wj ← wj+dwj; 
    end     
    if E < Emin 
        break; 
    end 
end 

 
Parameters include weight, biases and here we extended the original method on slopes 
β also. Emin is the error (MSE) value at which the training stops; selecting the stopping 
criterion is not specific to VSS and can be done in the same way as for other MLP 
training algorithms.  

Any line search minimization method can be used to find the optimal dw, and the 
mean-square error (MSE) or any other error measure may be used as the optimization 
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criterion. However, to increase the computational efficiency of VSS algorithm special 
methods to compute dw and E(e,w+dw) maybe used, as outlined below. 

Because only one weight (or in general one parameter) is changed at a time the in-
put signals do not need to be propagated through the entire network to calculate the 
error. Propagation through the fragment of the network in which the signals may 
change as a result of the weight update is sufficient. The remaining signals incoming 
to all neurons of hidden and output layers are remembered for each training vector in 
an array called the “signal table”. After a single weight is changed only the appropri-
ate entries in the signal table are updated. The MSE error of each output neuron is 
also remembered and do not need to be recalculated again if a weight of another out-
put neuron is changed.  

The dimension of the signal table is NV(No+Nh), where NV is the number of vectors 
in the training set and Nh and No  are the numbers of hidden and output neurons, re-
spectively. For example, for a network with 30 neurons and 10,000 training vectors, 
storing variables in 8 bytes (double type) the signal table needs only 2.3 MB of mem-
ory, that is two or more orders of magnitude less than the memory requirements for 
the Levenberg-Marquardt (LM) algorithm, and also less than the requirements of 
Scaled Conjugate Gradient (SCG) algorithm 

The search algorithm should take advantage of the MLP error surface properties. 
The steepness of the error surface in different directions varies by orders of magni-
tude, and the ravines in which the MLP learning trajectories lay are usually curved, 
slowly changing their directions [12][13]. Therefore one can expect that an optimal 
change of weight value dw for the same weight in two successive training cycles will 
not differ much, while dw for different weights in the same training cycle may have 
values that differ on orders of magnitude. In each training cycle i the first guess of 
dw(w,i) for a given weight w might be the value dw(w,i−1) of the weight change in 
the previous training cycle. 

A more efficient, however also more complex line search method is described in 
our last paper [11]. 

3   Experimental Results 

The dataset on which the experiments were performed is available from 
http://www.kordos.com/datasets/steel26.zip. Because the data comes from a real 
steelworks, it is confidential and could not be released as it is. Thus, the 26 input 
variable names were replaced by x1, … x26, all other inputs were removed, only four 
most common elements (C, Si, Mn, P) were left and the data was standardized (zero 
mean and unit standard deviation).  

We tried different number of hidden units in the neural network. The best results 
were obtained for the number between 25 and 35. Thus, we finally used 28 hidden 
units for predicting the quantities of each element. 

The experiments with MLP neural network were performed with software created 
by us in Delphi. (http://www.kordos.com/mknn.html) 

The experiments with Support Vector Regression [14] were performed in the Sta-
tistica software, using RBF kernels with γ=0.056 and Regression Type 2 (that were 
the parameters giving the best results). Optimal C and nu parameters were determined 
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during the training individually for each element. SVR was chosen for comparison 
because it is an effective method, which even frequently performs better than MLP. 
However, on this data it did not, except for Silicon. 

10 runs of 10-fold crossvalidation were performed and the average results on the 
test part of the dataset are reported in Table 1 and Table 2. The MSE errors are always 
reported on the original output data (not on the data transformed by the tanh func-
tion). The standard deviations were usually of the order of 0.002-0.004 for between-
crossvalidation and 0.01-0.03 for within-crossvalidation runs. 

The training time of the network was of the order of tens of seconds up to single 
minutes, depending on the dataset size. However, the time of building a full model 
(for one sort of steel or for one cluster), including feature selection and selection of 
optimal neural network architecture (which can be different for each feature subset) 
can even be of the order of hours on a single processor. That is acceptable in our ap-
plication, since the model must be built only once. The system must only predict the 
data on the fly and the prediction is instantaneous.  

Table 1. Mean Squared Error of predicting the amount of elements to be added in the LHF 
process. Prediction  performed on the whole dataset. (“preproc.” means that the input and out-
put data was preprocessed prior to the training by a constant tanh function, selected manually to 
give the better transformation to a uniform data distribution.) 

 MLP+ATF  
26-28-1 

MLP  
26-28-1 

SVM (RBF, 
γ=0.056) 

MLP 26-28-1 
+ preproc. 

SVM (RBF, 
γ=0.056) + prep. 

C 0.0349 0.0409 0.0595 0.0362 0.0498 
Si 0.0728 0.0945 0.0650 0.0764 0.0650 

Mn 0.1055 0.1189 0.1635 0.1108 0.1543 
P 0.1342 0.1482 0.1849 0.1402 0.1422 

average 0.0869 0.1006 0.1182 0.0909 0.1028 

Table 2. Mean Squared Error of predicting the amount of elements to be added in the LHF 
process. Prediction performed on 5 clusters, as described in chapter 2.1  

 MLP+ATF  
26-28-1 

MLP  
26-28-1 

SVM (RBF, 
γ=0.056) 

MLP 26-28-1  
+ preproc. 

SVM (RBF, 
γ=0.056) + prep. 

C 0.0315 0.0377 0.0545 0.0341 0.0475 
Si 0.0692 0.0802 0.0640 0.0721 0.0764 

Mn 0.0978 0.1107 0.1509 0.1049 0.1470 
P 0.1256 0.1405 0.1723 0.1346 0.1362 

average 0.0810 0.0923 0.1104 0.0864 0.1018 

4   Conclusions  

A system for predicting the quantities of additives in the steel production process was 
presented. The pipeline consists of several blocks. The paper concentrated on the 
neural network based regression block. We proposed that the input and output vari-
able transformation from a Gaussian-like to uniform-like distribution be performed 
during the neural network training, incorporated in the VSS training method we use. 
That brings better results than preprocessing the data before the training, since it al-
low adjusting the distribution individually for each feature, without a strong a priori 
assumption that the optimal distribution is always uniform. As it can be seen from the 
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tables, MLP network with adaptable transfer function provides the best results, that 
probably could be further improved if the selection of the activation functions in the 
hidden layer be performed during the training [15] (we are planning to include this in 
our future work). 

The goal of the system is to shorten the LHF process time on average by at least 
5%, thus reducing the cost of a single melting and consequently to allow producing 
more steel monthly.  

To make the system easier to understand by experts, what is crucial in our applica-
tion (the experts don’t want to allow for a system they do not understand) we are 
currently working on one more block of the system, located between Regression and 
Expert Approval: Rule Extraction from Neural Network, using an adaptation of one of 
Setiono’s methods [16]. 
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Abstract. This paper evaluates the performance of the new hybrid neuro-fuzzy 
model, Reinforcement Learning Hierarchical Neuro-Fuzzy System (RL-HNFP), 
in a trade decision application. The proposed model was tested with the 
Euro/Yen negotiated in Foreign Exchange Market. The main objective of the 
trading system is to optimize the resource allocation, in order to determine the 
best investment strategy. The performance of the RL-HNFP was compared with 
different benchmark models. The results showed that the system was able to de-
tect long term strategies, obtaining more profitability with smaller number of 
trades. 

1   Introduction 

Financial markets are influenced by several factors, including economical, political and 
psychological issues. That is why its movements are extremely hard to forecast. During 
the last decades, research in this field has been growing very fast. These studies can be 
divided into two main areas: fundamental and technical analysis. The first is based on 
factors such as: company’s financial statements; management and competitive advan-
tages; competitors; and markets. On the other hand, technical analysis tries to predict 
the prices´ future direction based on the behavior of past market data [1]. 

Since the early 90s, neural networks models have been successfully applied to fi-
nancial time series forecasting [2-7]. The most popular model is the Multi-Layer Per-
ceptron (MLP) with backpropagation algorithm [8]. However, many researchers have 
suggested the use of reinforcement learning models to create trading strategies and to 
optimize asset allocation [9-12]. This type of learning works through an input-output 
mapping, built from the continuous environment interaction, trying to minimize a 
performance index [8]. 

One of the main advantages of RL in this kind of application is the fewer number 
of position changes or trades in the strategies. Generally, it results in less costs and 
higher profitability. For example, Neurier [9] states that a strategy to invest in the 
German Stock Index DAX based on RL attained better results than a MLP based 
model doing just 33% of the trades. The RL strategy kept the investment out of the 
market when there was not significant trend to follow.  

Therefore, this paper evaluates the performance of the new Reinforcement  
Learning Hierarchical Neuro-Fuzzy System (RL-HNFP) [13] as an intelligent agent 
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that learns the best trading strategy. The intelligent trading system was tested with the 
Euro/Yen exchange rate between 01/28/1999 and 05/18/2006. The performance of the 
RL-HNFP system was compared with different benchmark models: MLP neural  
network, Dynamic Regression, Box-Jenkins model, and the standard buy-and-hold  
strategy. 

This paper is divided into four additional sections. Section 2 summarizes the RL-
HNFP system, section 3 presents the proposed intelligent trading system and section 4 
discusses the results obtained. Finally, the conclusions that have been achieved from 
this study are presented in last section.  

2   RL-HNFP System 

The RL-HNFP model is composed of various standard cells called RL-neuro-fuzzy 
BSP (RL-NFP). These cells are arranged in a tree hierarchical structure. The cells 
outputs in the lower levels are the consequents of higher levels cells.  

An RL-NFP cell is a mini-neuro-fuzzy system that performs politree partitioning 
(2n partitions, where n = number of input variables) of a given space, using the com-
plementary membership functions described in equation (1) in each input dimension, 
where ρ(x) and µ(x) represent the low and high membership functions, respectively.  
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where b is the sigmoid inflexion point and α is the sigmoid inclination at x=b. 
The RL-NFP cell generates a precise output after defuzzification [14-15]. Each cell 

receives all inputs that are being considered in the problem. These inputs are inferred 
in the antecedents’ fuzzy sets (ρ (x) and µ (x)). Figure 1(a) depicts a cell with two 
inputs – x1 and x2 -, where each partitioning is generated by the combination of the 
two membership functions, ρ (low) and µ (high) of each input variable, and is associ-
ated with a set of actions (a1, a2 ... at). 

The consequents of the cell’s partitions may be a singleton or the previous level 
stage output. Although the singleton consequent is simple, it is not previously known, 
since each consequent is associated with an action that has not been defined a priori.  
 

      

Fig. 1. (a) Internal representation of the RL-NFP cell with two inputs; (b) Example of architec-
ture of the RL-HNFP model 
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Each partition has a set of possible actions, as shown in Figure 1(a), where each ac-
tion is associated with a Q-value function. The Q-value is defined as being the sum of 
the expected values of the rewards obtained by the execution of action a in state s, in 
accordance with a policy π [16]. 

By means of the RL-based learning algorithm, one action of each poli-partition (for 
example, ai, and aq) is selected as the one that represents the desired behavior of the 
system whenever it is in a given state. Thus, the consequents are the actions that the 
agent must learn along the process. 

The linguistic interpretation of the mapping implemented by the RL-NFP cell is 
given by fuzzy rules. Each rule corresponds to one partition generated by the politree 
partitioning and has the following structure:  

If x1 is low and …. xn is high then y = ai. 

RL-HNFP models can be created based on the interconnection of basic cells  
described above. The cells form a hierarchical structure that results in the rules that 
compose the agent’s reasoning. Figure 1(b) exemplifies this architecture. 

Neuro-fuzzy learning process is generally divided into two parts: structure identifi-
cation and parameter adjustment [17]. RL-HNFP performs these learning tasks in a 
single algorithm. Basically, each partition chooses an action from its set of actions; the 
resultant action is calculated by the defuzzification process and represents the action 
that will be executed by the agent’s output. After the resultant action is carried out, the 
environment is read once again. This reading enables calculation of the environment 
reinforcement value that will be used to evaluate the action taken by the agent. The 
reinforcement is calculated for each partition of all active cells, by means of its partici-
pation in the resulting action. Thus, the environment reinforcement calculated by the 
evaluation function is backpropagated from the root-cell to the leaf-cells. Next, the Q-
values associated to the actions that have contributed to the resulting action are up-
dated, based on the SARSA algorithm [16]. More details can be found in [15]. 

3   The RL-HNFP Trading System 

The RL-HNFP Trading System was built using the Euro/Yen exchange rate data, 
from 01/28/1999 to 05/18/2006. The series contained 2130 registers and the following 
variables were used: closing price in time t; difference between the 3 and 20-day 
moving averages; difference between the 5 and 20-day moving averages; 6-day mo-
mentum (difference between the price in t and t-6); 3, 5 and 20-day moving averages; 
open price; maximum and minimum prices; closing prices in t-1 and t-2; and the ne-
gotiated volume in t.  

The least-square estimator (LSE) [18] was used to evaluate the relevance of each 
input. After that, just 8 variables remained at the model and were used to define the 
state in t. In order of relevance, the variables considered were: closing price in t, dif-
ference between the 3 and 20-day moving averages, difference between the 5 and 20-
day moving averages, 6-day momentum, 5 and 3-day moving averages, closing prices 
in t-1 and maximum price in t. 

The RL-HNFP objective is to learn the best action to be taken at each state t, after 
receiving, as environment reward, the signal of the price variation. To avoid sending 
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undetermined signals and confusing the learning process, variations smaller than 
|0,3%| were changed to zero during the learning phase. 

Trading strategies were composed by a sequence of three possible actions (buy, sell 
and hold). The hold signals were generated when the output belongs to a certain 
threshold interval. For example, if the threshold is defined between -0.02 and +0.02, 
and during 5 periods of time the RL-HNFP’s output is 0.3, -0.2, 0.01, 0.25 and -0.01, 
then the system actions would be “buy”, “sell”, “hold sell position”, “buy” and “hold 
buy position”. 

4   Results 

The test set was composed of 213 patterns, corresponding to the interval 09/13/2005 
to 05/18/2006. The results obtained can be observed in Table 1. The only cost  
considered was the spread cost estimated in 0.04% (difference between the bid and 
ask prices). As expected, by increasing the threshold, a higher number of hold signals 
are generated. Consequently, fewer trades are performed. 

Without considering trading costs, the best performance was achieved by the strategy 
composed just by two actions (buy and sell) and no threshold. After 21 trades, the  
system reached profits of 7.52%, against 4.47% of a buy-and-hold benchmark strategy. 
However, if trading costs are included, the most profitable result was obtained by model 
3. In this strategy, when the output of the RL-HNFP is between -0.02 and 0.02, the hold 
action is chosen and the previous position is maintained. 

For a better understanding of the RL-HNFP Trading System’s results, Figure 2 
shows exactly when each decision of model 3 was taken. The value of +1 indicates a 
buy position and -1 a sell position. During a buy position, the investment return rate is 
the same as the Euro/Yen variation, and it can be positive or negative. In a sell posi-
tion, no return is obtained. As can be observed, the system detected long term trends, 
without considering so much short term variations. This characteristic made the model 
more profitable during high long term periods, such as 09/13/2005 to 10/06/2005, 
10/13/2005 to 11/18/2005, 11/27/2005 to 12/13/2005, and 01/08/2006 to 02/03/2006. 
The system indicated that the investor should be in a buy position during these inter-
vals. Also, a graph with the evolution of a hypothetical initial investment of $100 is 
shown in Figure 3. The graph shows a consistent increase of the value invested during 
the time. 

Table 1. RL-HNFP results: strategies with different actions and thresholds 

Model Actions Threshold # 
Trades 

% Profit         
(without costs) 

% Profit  
(with costs) 

Buy and 
Hold 

- - - 4,47% 4,47% 

1 -1, 1 - 21 7.52% 6.64% 
2 -1, 0, 1 ±0.01 19 7.43% 6.67% 
3 -1, 0, 1 ±0.02 17 7.53% 6.86% 
4 -1, 0, 1 ±0.05 15 4.66% 4.08% 
5 -1, 0, 1 ±0.10 9 0.68% 0.35% 
6 -1, 0, 1 ±0.15 5 3.30% 3.14% 



 Trading Strategy in Foreign Exchange Market Using RL-HNFP 465 

135
137

139
141

143
145

147

09
/1

3/
05

09
/2

8/
05

10
/1

3/
05

10
/2

8/
05

11
/1

3/
05

11
/2

8/
05

12
/1

3/
05

12
/2

8/
05

01
/1

2/
06

01
/2

7/
06

02
/1

2/
06

02
/2

7/
06

03
/1

4/
06

03
/2

9/
06

04
/1

3/
06

04
/2

8/
06

05
/1

4/
06

-1,1

-0,6

-0,1

0,4

0,9

Eur/Yen Predicted Direction

 

Fig. 2. RL-HNFP System strategy. +1 means a buy position and -1 a sell position. 
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Fig. 3. Hypothetical $100 investment evolution using the RL-HNFP System 
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Fig. 4.  MLP network strategy. +1 means a buy position and -1 a sell position. 
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Table 2. MLP results: strategies with different actions and thresholds 

Model Actions Threshold # Trades % Profit        
(without costs) 

% Profit      
(with costs) 

Buy and 
Hold 

- - - 4.47% 4.47% 

MLP 1 -1, 1 - 104 7.56% 4.99% 
MLP 2 -1, 0, 1 ±0.01 98 7.83% 5.42% 
MLP 3 -1, 0, 1 ±0.02 84 7.80% 5.64% 
MLP 4 -1, 0, 1 ±0.05 70 4.28% 2.40% 

BJ 1 -1, 1 - 102 -26.66% -30.15% 
BJ 2 -1, 0, 1 ±0.01 56 -24.02% -25.98% 
BJ 3 -1, 0, 1 ±0.02 18 -9.75% -10.41% 
BJ 4 -1, 0, 1 ±0.05 2 -0.54% -0.58% 
DR 1 -1, 1 - 71 2.43% -0.38% 
DR 2 -1, 0, 1 ±0.01 51 0.39% -1.62% 
DR 3 -1, 0, 1 ±0.02 38 1.96% 0.45% 
DR 4 -1, 0, 1 ±0.05 6 0.86% 0.62% 

 
For comparison purposes, a MLP network was developed. The test set and the in-

put variables were the same for both systems. The MLP architecture was composed of 
a single hidden layer. The transfer function in all layers was the hyperbolic tangent. 
Three different topologies were created, with different number of neurons in the hid-
den layer (7, 9 and 11). The final architecture was selected by a validation set. The 
learning process was interrupted after 3000 epochs or by the early stopping strategy. 
Table 2 shows its results. The best performance was obtained by the model with 9 
neurons in the hidden layer. So, this network was used for comparisons with the RL-
HNFP Trading System.  

Strategies based on Box-Jenkins ARIMA (BJ) and Dynamic Regression (DR) pre-
dictions were also developed using the same data. Results obtained are presented in 
Table 2. 

The strategies created by BJ and DR were worst than the buy-and-hold benchmark. 
This was already expected, since both are linear methods. Additionally, since BJ is an 
autoregressive model, other inputs were not considered, which could to improve the 
forecast. 

Analyzing the RL and MLP models, it can be verified that they provide a very dis-
tinct behavior. The number of trades of the RL-HNFP Trading System was signifi-
cantly smaller. This can be explained by the different learning methods used in the 
MLP and RL-HNFP models. While reinforcement learning works through an input-
output mapping, the supervised learning approximates the implicit function between 
the input variables and the output. The MLP model was also able to anticipate the 
price movement several times (see Figure 4), but the excessive number of operations 
made the system less profitable in long term trends. For example, during the intervals 
of 09/13/2005-11/02/2005 and 11/10/2005-12/13/2005 the gains were lower than in a 
buy-and-hold strategy. On the other hand, the strategy avoided loss in low trends, as it 
can be observed during the periods 11/02/2005-11/10/2005, 12/13/2005-12/26/2005, 
01/05/2006-01/12/2006, 02/03/2006-02/13/2006 and 02/21/2006-02/27/2006.  
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However, during undefined trends, for example between 12/18/2005 and 
01/18/2006, the MLP could take advantage of small variations. The MLP could also 
detect faster strong price falls, such as during the period of 12/13/2005-02/05/2006. 
Figure 4 shows actions taken by the system step by step. 

5   Conclusions 

In this paper, a Reinforcement Learning Hierarchical Neuro-Fuzzy System [14] was 
used for an investment decision problem. The main target was to optimize the re-
source allocation in defining the best Euro/Yen parity trade strategy. A MLP neural 
network was also developed, to be used as benchmark.  

The results showed that the RL-HNFP Trading System could reach a better per-
formance, doing just 20% of the trades done by the MLP model. When considering 
trading costs, it represents a significant profitability difference.  

As future works, tests with other time series can be done to evaluate the RL-HNFP 
model in investment allocation problems. Also, it could be considered more than one 
asset to invest, using more actions to be optimized. 
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Abstract. Combining multiple neural networks appears to be a very promising 
approach in improving neural network generalization since it is very difficult, if 
not impossible, to develop a solution that is close to global optimum using  
single neural network. In this paper, individual networks are developed from 
bootstrap re-sample of the original training and testing data sets. Instead of 
combining all the developed networks, this paper proposed backward elimina-
tion. In backward elimination, all the individual networks are initially aggre-
gated and some of the individual networks are then gradually eliminated until 
the aggregated network error on the original training and testing data sets can-
not be further reduced. The proposed techniques are applied to nonlinear proc-
ess modeling and application results demonstrate that the proposed techniques 
can significantly improve model performance better than aggregating all the in-
dividual networks. 

1   Introduction 

Artificial neural networks have been increasingly used in developing nonlinear  
models in industry and model robustness is one of the main criteria that need to be 
considered when judging the performance of neural network models [1, 2]. Model 
robustness is primarily related to the learning or training methods and the amount and 
representativeness of training data [3]. Even though neural networks have significant 
capability in representing nonlinear functions, inconsistency of accuracy still seems to 
be a problem where neural network models may not perform well when applied to 
unseen data. Lack of robustness in neural network models is basically due to the over-
fitting and poor generalization of the models [4]. Among those approaches for im-
proving neural network generalisation, the combination of multiple neural networks 
seems to be very effective. The individual networks in the multiple neural networks 
model the same relationship and are developed from different data sets and/or differ-
ent training algorithms. They can also have different structures. Instead of choosing 
the single “best” neural network model, all the individual neural networks are com-
bined. The main objective of this approach is to improve the generalization capability 
of the neural network models in such a way that it will guard against the failure of 
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individual component networks.  This is because of the fact that some of the neural 
networks will fail to deliver the correct results or output predictions due to network 
training converged to undesired local minima, over-fitting of noise in the data, or the 
limited training data set [5, 6].  

In most of the reported works on aggregating multiple neural networks, all the de-
veloped individual networks are combined. However, some neural networks may not 
contribute to improving model prediction performance when combined with other 
networks. This could be due to several reasons, such as these networks severely over-
fit the data or the information captured by these networks has already been repre-
sented by other networks included in the aggregated network. Perrone and Cooper [7] 
suggests a heuristics selection method whereby the trained networks are ordered in 
terms of increasing mean squared errors (MSE) and only those with lower MSE are 
included in combination. However, combining these networks with lower MSE may 
not significantly improve model generalisation since these networks can be severely 
correlated. In this paper, backward elimination (BE) methods in statistical regression 
[8] are proposed for selective combination of neural networks.  

Several literatures that employed the same method of combination can be found 
lately. Ahmad and Zhang [9] made a comparison between backward elimination and 
forward selection (FS) methods by using Bayesian method as combination method for 
the network ensemble. The ensemble networks have been tested on two case studies; 
1) modelling of pH neutralization process, and 2) modelling of reactant concentration 
in an irreversible exothermic reaction process. These combination schemes showed 
their superiority compare to other schemes that combine all the networks. Partalas et 
al [10] also applied BE and FS methods to two types of classifiers; neural networks 
and support vector machine (SVM). The schemes are applied to a model of water 
quality prediction. This paper on the other hand is merely focus on BE method testing 
on two distinctive neural network structures; fixed and various structure and also a 
comparison with other combination schemes. The case study is pH neutralization 
process. The paper is organized as follows. Section 2 presents BE selective combina-
tion methods for aggregating multiple neural networks. Section 3 presents the case 
study to test the proposed techniques. Some results and discussions on the case study 
are given in Section 4. Finally, the last section concludes this paper.  

2   Selective Combination of Multiple Neural Networks 

Suppose that neural network models are to be developed from the data set {X, Y}, 
where X∈RN×p is the input data, Y∈RN×q is the output data, N is the number of sam-
ples, p is the number of input variables, and q is the number of output variables. To 
develop an aggregated neural network model containing n individual networks, the 
original data set can be re-sampled using bootstrap re-sampling with replacement to 
form n replications of the original data set [15]. The n replications can be denoted as 
{X(1), Y(1)}, {X(2), Y(2)}, …, {X(n), Y(n)}, where X(i)∈RN×p, Y(i)∈RN×q, i=1, 2, …, n. A 
neural network model can be developed on each of these replications, which can be 
partitioned into a training data set and a testing data set if cross-validation is used in 
network training and network structure selection. If the predictions of these n net-

works on the original data set are denoted as 1̂Y , 2̂Y , …, nŶ , then the sum of squared 
errors (SSE) of the ith network can be calculated as 
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For the sake of simplicity in illustration, the simple average method is used in com-
bining the selected networks. If all n networks are combined, then the aggregated 
network output is: 
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2.1 Backward Elimination  

The BE approach was began with removing one network at a time from the aggre-
gated network until sum square error (SSE) of the training and testing data cannot be 
further reduced. The network deleted at each step is such selected that its deletion 
results in the largest reduction in the aggregated network SSE on the training and 
testing data. The BE method is summarized as follows: 

 

Step 1. Generate n replications of the original data set using bootstrap re-sampling, 
{X(1), Y(1)}, {X(2), Y(2)}, …, {X(n), Y(n)}, and develop a neural network on each repli-

cation. Denote the prediction of the ith network on the original data set as iŶ . Calcu-
late the SSE of these networks on the original data using Eq (1).  

 

Step 2. Set j=1 and denote I as a set containing the indices of the networks currently 
included in the aggregated network and I= [1, 2, …, n]. Denote J as a set containing 
the indices of the networks currently deleted from the aggregated network and J=[], 

i.e. J is initially empty. Denote jaY ,
ˆ  and SSE(j) as, respectively, the predictions and 

SSE of the aggregated network at stage j. 
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Step 3. If n-j=0, then go to Step 5, else, execute the computation of the prediction by 
using the following chronicles of equations: 

 

1+= jj  and for ,Ii ∈ calculate prediction of the output by using Eq (4) 
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k is the argument for removing an individual network from the aggregated 
networks. After removing a network from the aggregated networks, SSE 
value for the current aggregated networks is computed using Eq (6) 
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Step 4. If SSE(j) ≥ SSE(j-1), then go to Step 5, else remove the network, k  from the 
aggregated networks, I. The process can be described as,  

 kII −=  (i.e. remove k from I) 

 [ ]kJJ ,=  (indicate indices of deleted networks) 

 
Then, the process is reiterated from Step 3 onwards.  

 

Step 5. Stop 
 

Selection of networks using BE method is executed by the mean of observing SSE on 
training and testing data sets. The network is removed until the SSE value cannot be 
further reduced. Firstly, SSE value for 20 networks for fixed and various structures 
are summed respectively. Then, one individual network from each cluster (fixed and 
various structure) is withdrawn and the SSE value of these 19 networks is observed. 
The withdrawn network is placed back with the 19 networks and a different network 
is again removed from the network cluster and again SSE value is observed. The 
process is repeated until one network that gives the least value of SSE is permanently 
removed from the network cluster. These steps can be counted as one cycle of BE 
selective combination process. The process is done until all 20 networks is removed 
one by one and then placed back inside the network group. The process of withdraw-
ing networks is reiterated until the SSE value of both groups cannot be further re-
duced.    

3   Case Study 

The case study that was chosen is pH neutralization process. The neutralization proc-
ess takes place in a CSTR and there are two input streams to the CSTR. One is acetic 
acid of concentration C1 at flow rate F1 and the other is sodium hydroxide of concen-
tration C2 at flow rate F2 [11]. The mathematical equations of the CSTR can be found 
in reference [11]. To generate training, testing and validation data, multi-level random 
perturbations were added to the flow rate of acetic acid while other inputs to the reac-
tor were kept constant.  

The pH measurements were corrupted with normally distributed random noise with 
zero mean and a standard deviation of 0.2. The dynamic model representing the neu-
tralization process is of the form: 

 

       )]2t(u),1t(u),2t(ŷ),1t(ŷ[f)t(ŷ −−−−=          (7) 
 

where )(ˆ ty  is the pH prediction in the reactor at time t and u(t) is the acid flow rates 

at time t. For long range predictions or multi-step-ahead predictions, the current and 
past model predictions are used to predict the future values of the model outputs:  
 

           )]mt(u),......2t(u),1t(u),nt(ŷ),.......,2t(ŷ),1t(ŷ[f)t(ŷ −−−−−−=         (8) 

 

where the model prediction, )1(ˆ −ty to )(ˆ nty − , are used in place of the process 

outputs, ( )1−ty to ( )nty − , to predict )(ˆ ty as shown for pH prediction in Eq (7).  
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In this case study, 20 networks with fixed identical structure and 20 networks 
with various structures were developed and the individual networks were trained by 
the Levenberg-Marquardt optimisation algorithm with regularisation and “early 
stopping”. In this study, fixed structure can be signified as a network with a fixed 
number of hidden neurons while various structures refer to networks with variety 
numbers of hidden neurons.  The individual networks are single hidden layer feed 
forward neural networks. Hidden neurons use the sigmoid activation function 
whereas output layer neurons use the linear activation function. To cope with dif-
ferent magnitudes in the input and output data, all the data were scale to zero mean 
and unit standard deviation.  

Accurate long range predictions are much more difficult to achieve than accurate 
one-step-ahead predictions due to the accumulation of the errors in the recursive pre-
dictions. To obtain long range predictions from an aggregated network, two types of 
network with output feedback schemes can be used but only feedback before combi-
nation of individual network is implemented in this study. To test the performance of 
the proposed selective combination schemes, the following combination schemes are 
investigated:  

 

Median :  Median of the individual networks; 
Average :  Average of all networks;  
BE :  Average of selected networks using the BE method.  

 

Median of the individual networks can be described as the median of the SSE value 
of 20 networks, average of all networks is the SSE value of all networks that are com-
bined using averaging method and BE refers as the SSE value of the BE selected 
networks that commingled with averaging method.  

4   Results and Discussion 

It is well known that the dynamics of pH is highly nonlinear. In this case study 20 
networks with fixed number of hidden neurons (5) and 20 networks with varying 
number of hidden neurons (between 1 and 10) were developed. Again in the fixed 
structure, the number of hidden neurons was determined through cross validation. Fig. 
1 shows the long range prediction performance of individual neural networks. It can 
be seen from Fig. 1 that the individual networks give inconsistent long range predic-
tion performance on the training and testing data and on the unseen validation data. 
For example in Fig. 1 shows that network number 14 among the networks with vari-
ous structures gives the worst performance on the training and testing data. However, 
its performance on the unseen validation data is quite good. This demonstrates the 
non-robust nature of individual networks.  

Fig. 2 shows the SSE of long range predictions from aggregated neural networks 
with various structures. The aggregated networks under selective combination scheme 
give quite consistent prediction performance on the training and testing data and on 
the unseen validation data. This pattern was also observed for the fixed structure. 
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Fig. 1. SSE of long range predictions from individual neural networks in pH neutralization 
process 
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Fig. 2. SSE from aggregated neural networks with various structures in pH neutralization  
process 

Table 1 gives the SSE on the unseen validation data of different combination 
schemes. It can be seen that the worse one of BE selective combination schemes gives 
better performance than combining all the networks and the median of individual 
networks. In the BE selection methods 5 networks (networks 1, 6, 11, 14, and 17) and 
7 networks (networks 1, 5, 7, 11, 17, 18, and 20) were combined for fixed and various 
structures. The median of the individual network SSE on the unseen validation data 
for fixed and various structures are 90.44 and 90.52 respectively.  
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Table 1. Overall Results for pH Neutralization Process 

Combination schemes 
SSE on validation 

data 
90.44 

Median 
Fixed structure 

Various structures 90.52 
Fixed structure 57.31 

Average 
Various structures 43.84 

Fixed structure 41.77 
BE 

Various structures 37.44 

 
The best combination scheme in this case is “backward elimination method with fixed 
structures with feedback before combination” with an SSE of 37.44 on the unseen 
validation data.  

5   Conclusions  

Backward elimination methods for the selective combination of multiple neural net-
works are proposed in this paper in order to improve the model generalization per-
formance. In the BE method, initially all individual networks are included in the ag-
gregated network. Individual networks are then eliminated one at a time from the 
aggregated network until the aggregated network error on the original training and 
testing data cannot be further reduced. BE selective combination methods have shown 
their superiority compared to the combination of all networks and the median in this 
case study.  
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Abstract. The computational and power resource limitations applicable to intel-
ligent sensor systems in mobile implementations have gained much attention for
industrial and medical applications. Probabilistic Neural Networks (PNN) are one
of a successful classifier used to solve many classification problems. Currently,
in PNN all patterns of training set are used to estimate the probability density
function (pdf) of a given class as the sum of isotropic Gaussian kernels. How-
ever, the computational effort and the storage requirement of PNN method will
prohibitively increase as the number of patterns used in the training set increases.
In this paper, we propose as a remedy an Adaptive Resource-Aware Probabilistic
Neural Networks (ARAPNN) based on two optimization goals tackle by Particle
Swarm Optimization (PSO), which are finding the proper position and number
of prototypes (Michigan approach) as well as the best smoothing factor σ (Pitts-
burgh approach). Our proposed algorithm was be tested with five benchmark data
sets. The results show that the ARAPNN is able to find solutions with signifi-
cantly reduced number of prototypes that classify data with competitive or better
accuracy than the original PNN and Nearest Neighbor classifiers.

1 Introduction

Nowadays, intelligent sensor systems find rapidly increasing industrial interests and
applications. Wireless sensor network and Ambient Intelligence applications, such as
Assisted Living tasks, are common examples of application fields. The designing is-
sue of intelligent sensor systems demands to become more compact in size for easy
distribution and mobile implementations. However, size and cost constraints will re-
sult in corresponding constraints on resources such as energy, memory, computational
speed and bandwidth. As an example, an established sensor node configured as a wire-
less color sensor for color classification tasks is shown in Fig. 1(a), which stringently
requires low complexity of pattern classifier due to limited hardware resource.

In this paper, we focus on one task of our research activity on systematic develop-
ment of a methodology and framework for automated, application-specific design of
intelligent integrated/embedded sensor systems. This work is under special constraint
imposed by resource limitation in mobile and medical implementation. For decision
making, e.g., in ambient intelligent systems, classification techniques are very impor-
tant [8]. The goal of this paper is to contribute to the systematic design of lean but well
performing classifiers for resource- and power-aware implementation.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 477–484, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) remote color sensor (left) and
base-station (right)
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Fig. 1. An example of a wireless sensor node (MICA) and general structure of PNN

There are numerous related works previously focused on lean classifiers. In non-
parametric techniques, Hart proposed the pruning methods reduced the amount of data
which has to be stored for the nearest neighbor classifier called Condensed Nearest Neigh-
bor (CNN) [4]. Gates proposed a postprocessing step for the CNN pruning algorithm
called Reduced Nearest Neighbor (RNN) [3]. The Restricted Coulomb Energy (RCE)
is a three layer feedforward network, which gradually selects the prototypes in a only
growing approach and adjusts their radii until satisfactory training [9]. The limitations
of CNN, RNN, and RCE methods are: (1) their result strongly depends on presentation
order of training set and (2) prototypes are selected from training without any adjustment.
The work of Platt (1991) introduced Resource-Allocating Networks (RAN), which are
related to RCE and Radial Basis Function networks (RBF). The RAN method allows to
insert new prototypes for of Gaussian kernels, which will be adjusted as well as their
centers by gradient descent technique in training [7]. This attractive method is hampered
due to well-known gradient descent limitations. Improvementscan be found, e.g., in Cer-
vantes et al. proposing a new algorithm for nearest neighbor classification called Adaptive
Michigan PSO, which can find less number of prototypes and adjust their positions [2].
These adjusted prototypes using AMPSO can classify the input patterns better than CNN,
RNN, and RCE. The Michigan approach employed in this optimization technique is more
efficient and requires much less computational effort than the standard PSO.

Currently, Probabilistic Neural Networks (PNN) still incorporate all patterns of the
training set as classifier prototypes to estimate the probability density functions (pdf),
which is not suitable for mobile implementation of intelligent sensor systems. In this
paper, we propose an Adaptive Resource-Aware PNN (ARAPNN) algorithm based on
Michigan-Nested Pittsburgh Particle Swarm Optimization, which can determine the
proper number of prototypes required and adjusts them in their best positions. The
Michigan approach is applied in similar way to AMPSO, which represent the individ-
ual particle as one of prototypes. This particle representation has advantages compared
with original PSO, where particles have much lower dimension and less computational
effort, also flexibility in growing and reducing the number of prototypes. The Pittsburgh
approach represents the particles in similar way to original PSO. The smooth parameter
of PNN is found by this nested optimization for each of iteration in the main algorithm.
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Table 1. Four cases of different type of smoothing parameter

Type for all classes for all d features number of σ
PNN-CC common common 1
PNN-IC individual common L
PNN-CI common individual d
PNN-II individual individual L × d

2 Probabilistic Neural Networks (PNN) Model

The original PNN is a four-layer feedforward neural network, which is illustrated in
Fig. 1(b). The first layer of PNN, which is designated as an input layer, accepts the
input vectors to be classified. The nodes in the second layer, which is designated as
a prototype unit, are divided into L groups with regard to their class affiliation. The
active function used in second-layer node, the ith kernel in the jth group, is defined as a
Gaussian basis function:

pi j(xk) =
1

(2π)
d
2 σ2

j

exp(−‖xk − ci j‖2

2σ2
j

), (1)

where ci j is the ith training vector from class j, j = {1, ...,L}, assumed as a center
of a kernel function and σ j a smoothing factor of class j. Let the number of prototype
units for class j be Nj. The summation layer (third layer) estimates the class conditional
probability density functions f j(xk) of each class l j. A competitive layer (final layer)
makes the decision according to the Bayesian decision rule. Both third and fourth layer
are defined as following:

f j(xk) =
1

Nj

Nj

∑
i=1

pi j(xk) (2)

D(xk) = argmax
j

{P( j) f j(xk)}, (3)

where P( j) is the a priori class probability of class j.
Several authors [6,13] proposed the improvement of original PNN by applying dif-

ferent smoothing parameter summarized in Tabel 1. Yang and Chen [14] proposed Het-
eroscedastic PNN, where each particle has its own single smoothing factor σ . This idea
is adopted in our approach of ARAPNN.

3 Adaptive Probabilistic Neural Networks

3.1 Michigan-Nested Pittsburgh PSO Algorithm

In our algorithm, we apply two optimization processes based on two different ap-
proaches of PSO algorithm, i.e. Michigan and Pittsburgh approaches. The Michigan
approach placed as the main of optimization algorithm is used for finding the best po-
sition of prototypes and adjusting the number of prototypes. The Pittsburgh approach
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embedded inside the main algorithm as nested optimization procedure is used for ob-
taining the best smoothing factor for each set of prototypes. In the main algorithm of
PSO, each particle is interpreted as a single prototype with its class affiliation, which is
shown as a row vector:

xi = (xi1,xi2, ...,xid ,ci), (4)

where d denotes the number of attributes (variables or features), xi indicates the ith pro-
totype, and ci denotes the information of class. This class does not evolve, but remains
fixed for each particles. The attributes are normalized in the range [0,1], which are fixed
the minimum and maximum values for the particles in all the dimensions. In the second
stage of the nested PSO algorithm, the particles represent a set of solutions, which are
smoothing factors (σ ) of PNN. The overall stages are described below:

INITIALIZE: Insert N particles of each class from the training set. Randomize veloc-
ities of particles in search space. Randomize the smoothing factors σ .
REPEAT

Check for particle reproduction and reduction.
Collect which particles are in the competing and non-competing sets.
FOR EACH particle

Compute its local fitness.
Find the closest particle in the non-competing and competing set.
Update the particles.

Find the optimal smoothing factors σ applying nested PSO.
Assign classes and compute the classification success in the training set.
IF current global fitness larger than previous one THEN

Record the particles’ current positions as current best swarm.
UNTIL maximum iteration reached or saturation or success classification rate is 100%
Clean the useless particles from the best swarm without decreasing classification rate.

To influence the movement of each particle in each iteration, our algorithm adopts a
concept of using dynamic neighborhood for the movement of each particle [2], where
each particle may be influenced by different particles in both competing and non-
competing sets. The competing set is a collection of particles, which have the most
dominant pd f value for at least one pattern of same class. The non-competing set is a
collection of particles, which have the most dominant pd f value for at least one pattern
of different class.

3.2 Movement Equations of Particles

The movement concept of particles is based on sharing memory of their best positions
and the particles neighborhood. There are four parts, i.e., the momentum part, the cog-
nitive part, the attraction neighbor and the repulsion neighbor. The first two parts are
similar to the original concept of PSO [5,11]. The attraction neighbor is used for guiding
the search to the regions of a different class. This attracted neighbor is chosen accord-
ing to the closest distance from non-competing particles in the population. The aim of
using repulsion neighbor is to retain diversity and push each other to find new position
of their class in different region of the search space. The idea of the repulsion in PSO
have been introduced by other authors and can be found in [1,2,10].
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The movement concept of particles in Michigan approach is described below:

vt+1
i = ω ·vt

i + c1 · r1 · (Pt
i − xt

i)+ c2 · r2 ·Si · (attti − xt
i)+ c3 · r3 ·Si · (xt

i − rept
i) (5)

xt+1
i = xt

i + vt+1
i (6)

where vt+1
i denotes as the ith particle velocity in iteration t; xt

i is the particle position; Pt
i

is the best position achieved so far by the ith particle; ω is the inertia weight c1, c2, and
c3 are constant weight factors; r1, r2, and r3 is random factors in the range [0,1]; attt

i
denotes the attraction neighbor for the ith particle; attt

i denotes the repulsion neighbor
for the ith particle; and Si is an adaptation factor which is the inverse of the best local
fitness of particle i.

3.3 Reproduction and Reduction of Prototypes

For adjusting the number of particles (prototypes) and their classes to the problem’s
requirements, two rules (i.e., reproduction and reduction) are applied. These rules are
described below:

– A prototype has a chance to give birth to one prototype for each of classes in that
set, when it has the highest pd f values among other prototypes for patterns from
different classes. The chance of reproduction depends on the probability of repro-
duction Pa and their pd f value (pi j(xk) > 0.5). The new prototypes are placed into
the population and their velocities are generated randomly.

– Particles can face deletion, if they do not give highest pd f value for any pattern.
This deletion process depends on only the probability of reduction Pd , which grows
linearly from 0 to the maximum Pd value in the last iteration.

3.4 Local and Global Objective Function

As in Michigan approach, each prototype µ j has a local fitness value Fq, which measures
its performance independently of the other prototypes. Introducing the sets Sr

q and Sw
q ,

which include the patterns xr
k and xw

k for which µq provides the largest pdf value of all
prototypes, and also introducing Pr and Pw which are the corresponding accumulated
pd f values p(xr

k) and p(xw
k ), respectively, this local fitness function is computed as:

Fq =

⎧⎪⎨⎪⎩
0 i f Sr

q = Sw
q = /0

Pr
q

Nr
+ 1 i f Sw

q = /0
Pr

q−Pw
q

Nr+Nw
+ 1 otherwise,

(7)

with
Pr

q = ∑
k

p(xr
k) and Pw

q = ∑
k

p(xw
k ). (8)

Sr
q =

⋃
k

{xr
k} and Sw

q =
⋃
k

{xw
k } (9)
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Table 2. Four benchmark data sets used in the experiments

Name Patterns Features Classes Class Distribution

Bupa 345 6 2 200 / 145
Diabetes 768 8 2 500 / 268

Wine 178 13 3 59 / 71 / 48
Thyroid 215 5 3 150 / 35 / 30
Glass 214 9 6 70 / 76 / 17 / 13 / 9 / 29

Here, the index k is not contiguous, but assumes index value of those patterns, that cause
maximum pdf value generation by prototype µq on presentation. The global function
deals with two functions, i.e., maximizing the classification accuracy and minimizing
the number of prototypes. The global function is defined as:

Fglobal(t) = w1 ·Qp(t)+ w2 · Tp − Np(t)
Tp

, (10)

where w1 and w2 are weighting factors, Qp is the classification accuracy, Tp is the total
number of examples in training set, and Np is the number of prototypes.

4 Experiments and Results

In this section, we perform experimentation on five well-known real problems collected
from the UCI Machine Learning Repository. The five data sets are summarized in Table
2. All the data sets have real-valued features and are normalized in the range [0, 1]. We
divided randomly each data set into 60% for training set and 40% for test set propor-
tionally. In all the experiments, we repeated 20 runs for each of data sets and computed
the average results.

In the main algorithm, the swarm parameters with regard to computation time were
set as follows: for each class N = 3 patterns are randomly selected as initial particles
and the number of iteration was set to 50. The ω was set to 0.1; c1, c2, and c3 were
set 0.35, 0.35, and 0.1, respectively. The probability of addition Pa was set 0.01 with
linearly decreasing to 0 in the end of iteration. The probability of addition Pd was set
0.01 for final iteration with linearly increasing from 0 as initial value. For the nested op-
timization, the parameter settings was similar way to original PSO [11] with maximum
iteration set to 30.

The results of ARAPNN on all the data sets are summarized in Table 3, where
we compared our results with the results of original PNN with four different type of
smoothing factor σ and other classifiers, i.e., 1-NN, 3-NN, RNN, and SVM. The suc-
cess rate in terms of accuracy for ARAPNN is competitive and even better than the
results of 1-NN, 3-NN, and RNN and four types of PNN for Bupa, Thyroid and Di-
abetes problems. Only in Wine dataset, PNN-IC and PNN-II achieved slightly higher
results than ARAPNN. For all data set, SVM showed superior performance over all
other classifiers including ARAPNN but substantially higher cost. The performance of
ARAPNN on five benchmark data sets in training is shown in Fig. 2. In Table 4, we
compare the complexity of three classifier (i.e., RNN, SVM and ARAPNN) measured
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Fig. 2. Averaged fitness of 20 runs: (a) Bupa, Diabetes, and Glass and (b) Wine and Thyroid

Table 3. Averaged (standard deviation) classification accuracy (%) with five different benchmark
data sets using 20 repetitions

Data set Bupa Diabetes Wine Thyroid Glass

1-NN 61.63 (4.10) 69.54 (2.45) 95.70 (1.41) 96.05 (2.68) 67.62 (3.85)
3-NN 62.32 (4.00) 72.74 (1.68) 95.70 (1.61) 93.72 (1.82) 65.23 (3.38)
RNN 59.06 (4.15) 65.64 (2.52) 93.24 (2.36) 94.65 (1.86) 64.71 (3.69)

PNN-CC 62.93 (4.82) 73.92 (2.00) 95.14 (2.12) 95.87 (1.66) 66.10 (3.50)
PNN-IC 62.78 (4.47) 74.09 (2.50) 96.62 (1.96) 95.47 (1.88) 66.80 (2.96)
PNN-CI 61.20 (3.54) 75.26 (2.25) 95.28 (2.01) 95.81 (1.66) 67.79 (3.89)
PNN-II 61.70 (2.70) 75.50 (1.72) 96.48 (2.22) 95.06 (2.79) 67.91 (5.31)
SVM 66.67 (3.90) 75.91 (1.85) 96.90 (1.69) 96.57 (1.62) 68.13 (2.98)

ARAPNN 64.49 (3.16) 75.57 (1.69) 96.41 (1.68) 96.40 (1.96) 67.70 (2.15)

Table 4. The averaged (standard deviation) number of prototypes

Data set Bupa Diabetes Wine Thyroid Glass

RNN 123.75 (5.94) 233.20 (9.08) 19.05 (3.98) 20.55 (2.89) 65.25 (4.36)
SVM 140.20 (8.56) 237.65 (7.65) 35.75 (2.51) 27.30 (1.66) 136.85 (4.49)

ARAPNN 41.05 (7.39) 166.45 (8.69) 18.85 (3.80) 12.40 (2.74) 28.24 (4.04)

in terms of the average number of prototypes. The results in Table 4 show that ARA-
PNN has lowest complexity of all competitors.

5 Conclusion

The purpose of this paper is to develop an effective algorithm as a contribution for au-
tomated application-specific design of intelligent integrated/embedded sensor systems
with focusing on mobile sensor implementations. The requirement of lean method but
still well performing solutions for resource-aware system implementation is pursued.
The presented study was related to lean, yet well performing classification algorithms
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employing and extending PNN. In our new ARAPNN, there are two matters, which
have to be optimized, i.e., number of prototypes and the smoothing factor. We propose
an efficient algorithm based on Particle Swarm Optimization applying Michigan-nested
Pittsburgh approach. The Michigan approach takes each particle to represent a single
prototype, which produce a search space of low dimension. It is opposite to original
PSO, which straightforward encodes a set of prototypes in each particle that might hin-
der the swarm success due to high dimension. The optimization of smoothing factor is
then applied by nested Pittsburgh approach, which is standard PSO. In addition, par-
ticle reproduction and deletion give a great contribution for growing and reducing of
swarm size. The experiments show that our ARAPNN can produce a small represen-
tative set of prototypes and still perform well and achieve results close to SVM, but
substantially lower cost, showing that ARAPNN offers excellent trade-off of resource
requirements and performance. In future work, we will have more extensive statistical
analysis (k-fold cross-validation / leave-one-out) and consider to adapt the approach to
other kernel-based methods, e.g., RCE, RBF and SVM.
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Abstract. This paper presents a method of imputing missing data that combines 
principal component analysis and neuro-fuzzy (PCA-NF) modeling in conjunc-
tion with genetic algorithms (GA). The ability of the model to impute missing 
data is tested using the South African HIV sero-prevalence dataset. The results 
indicate an average increase in accuracy from 60 % when using the neuro-fuzzy 
model independently to 99 % when the proposed model is used. 

1   Introduction  

The missing data problem is a widely researched topic that has a huge impact on any 
field that requires the analysis of data in order to make a decision or reach a specific 
goal [1-7]. A number of methods have been investigated and implemented in order to 
deal with this problem, especially in large databases that require computational analy-
sis [1], [2], [3]. Traditionally, ad hoc methods have been used when dealing with 
missing data; these include mean substitution and the deletion of all data entries that 
contain missing variables. Although easy to implement, these methods often lead to 
loss of data resulting in a more biased database. This has led to the development of 
more advanced regression techniques and likelihood based approaches such as expec-
tation maximization (EM). Auto-associative neural networks (AANN) in conjunction 
with genetic algorithms have been employed and modified to improve the accuracy of 
computational methods in imputing missing data [1, 6]. This paper adds to this 
knowledge by employing principal component analysis, neuro-fuzzy modeling and 
genetic algorithms to impute missing data in the HIV sero-prevalence dataset. The 
backgrounds of the missing data problem, neuro-fuzzy computing and PCA are pre-
sented. The PCA-NF-GA method along with its testing data and measures are then 
presented followed by the results and discussions. 

2   Background 

The background of the missing data problem and its mechanisms is presented. 
Neuro-fuzzy networks, PCA and genetic algorithms are also briefly discussed. 
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2.1   Missing Data 

Missing data estimation, like any other data analysis method, depends on the knowl-
edge of how the data are missing. Three mechanisms of missing data have been 
documented [1-2], [4], [8-9] which include missing completely at random (MCAR), 
missing at random (MAR) and missing not at random (MNAR) also called the non-
ignorable case. MCAR occurs when the probability of the missing data variable is 
independent of the variable value itself or on any other values in the database. MAR 
occurs when the probability of the missing data variable is dependent on other vari-
ables in the database but not on the value of the variable itself. This means that there 
exists some complex relationship between the observed and missing data; i.e. the 
observed data can be used to approximate the missing data. When data are MNAR, 
the probability of the missing data variable is related to the missing data, this means 
that missing data variables cannot be predicted from the observed database. Dealing 
with this type of missing data is difficult and may involve imputing the missing vari-
ables based on external data not within the database [9]. Because it is often difficult to 
determine what mechanism brought about the missing data, artificial intelligence 
methods have been investigated to solve the missing data problem irrespective of its 
missing mechanism [2, 7]. 

2.2   Neuro-Fuzzy Computing and Genetic Algorithm 

The neuro-fuzzy architecture integrates the use of neural networks, which identify 
interrelationships and patterns in numerical datasets, and fuzzy systems, that incor-
porate expert knowledge and perform decision making [10]. This results in an infer-
ence system (as a result of fuzzy rules) that has the ability to learn and adapt 
through its environment (as a result of neural networks). A conventional fuzzy  
system uses expert knowledge to produce a linguistic rule base and reasoning 
mechanism for decision making. If artificial neural networks, together with an op-
timization technique, are incorporated into the fuzzy model to automatically tune 
the fuzzy parameters (antecedent membership functions and parametric consequent 
models), then the product is a neuro-fuzzy inference system [10-12]. In this paper, 
the Takagi-Sugeno fuzzy inference system is used because of its ability to generate 
fuzzy rules from an input-output dataset thus encapsulating expert knowledge that is 
otherwise lost when using traditional neural networks or autoencoders. The training 
of this system is performed on a structural and parametric level. Structural tuning is 
used to find the appropriate number of rules and partitioning of the input space by 
minimizing the sum of squares error function between the predicted and target val-
ues during training and the parametric tuning determines the optimum antecedent 
membership functions and consequent parameters. Genetic algorithms (GA) are 
inspired by the theory of evolution involving genetic processes such as mutation, 
selection and cross over [13]. The Genetic Algorithms Optimization Toolbox 
(GAOT) is used to optimize the value of an evaluation function [14]. When AANN, 
which recall the input, are used for missing data imputation, the GA attempts to 
minimize the error between the output and the input data.  
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2.3   Principal Component Analysis 

Principal Component Analysis is a statistical technique used for data dimension re-
duction and pattern identification in high dimensional data [15]. The PCA orthogo-
nilises the components of the input vectors to eliminate redundancy in the input data 
thereby exploring correlations between samples or records. It then orders the resulting 
components such that the components with the largest variation come first. The com-
pressed data (mapped into i dimensions) is presented by: 

ikkjij PCvectorXY ××× ×= . (1) 

Where the principal component vector, PCvector  is presented by the eigenvectors of 

the i largest eigenvalues of the covariance matrix of the input kjX ×  with k dimen-

sions and j set of records ).( ki ≤  

3   Proposed Method 

The method used to impute the missing data is presented. First the dataset as well as 
the data preprocessing are presented followed by the method used to impute the miss-
ing data. 

3.1   HIV Sero-Prevalence Data 

This dataset was obtained from the South African antenatal seroprevalence survey of 
2001 [16]. The data for this survey were collected from questionnaires answered by 
pregnant women visiting selected public clinics in South Africa and only women 
undertaking in the study for the first time were allowed to participate. This dataset has 
been used to investigate the effect that demographic information has on the HIV risk 
of an individual [17]. The data attributes used in this study are the HIV status, Educa-
tion level, Gravidity, Parity, the Age of the Mother (pregnant woman) and the Age of 
the Father responsible for the most recent pregnancy. The HIV status is represented in 
binary form, where 0 and 1 represent negative and positive respectively. The educa-
tion level indicates the highest grade successfully completed and ranges between 0 
and 13 with 13 representing tertiary education. Gravidity is the number of pregnan-
cies, successful or not, experienced by a female, and is represented by an integer  
between 0 and 11. Parity is the number of times the individual has given birth and 
multiple births (e.g. twin births) are considered as one birth event. It is observed from 
the dataset that the attributes with the most missing values are the age of the father 
(3972 missing values), the age of the mother (151 missing values) and the education 
level (3677 missing values) of the pregnant woman. In situations where an attribute is 
missing in the questionnaire, it is almost impossible to retrieve this information from 
the woman who supplied it due to the anonymity of the study. It is for this reason that 
missing data imputation methods are employed. 
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3.2   Data Preprocessing  

When fitting a model in order to solve a problem, it is necessary to prepare the data 
such that the essence of the data is captured by the proposed model. First the data 
entries are normalized within the range [0 1] in order to implement the neuro-fuzzy 
model and, secondly, the data entries that contain logical errors are removed. The data 
is then evaluated in order to see which attributes contribute the most outliers as shown 
in figure 1.  

Age of Mother  Education level Gravidity      Parity         HIV status     Age of Father  
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Fig. 1. HIV dataset outliers per attribute 

It is important to remove outliers because they often represent misplaced data points 
which result in longer training times and models that perform poorly. The crosses in 
the figure represent the outliers that are present as a result of each attribute, it is clear 
that the attributes that are more likely to be missing in the dataset i.e. the age of the 
mother, the education level and the age of the father, also produce the most outliers. 
The data is then arbitrarily partitioned into 9745 datasets to train the model and 2462 
testing datasets.  

3.3   Proposed Method and Simulation 

During training, PCA is employed to orthogonalize the data ensuring that the model is 
better trained. Performing PCA on the input data results in orthogonal data that has 
variance percentages as illustrated by figure 2. It is clear that a greater percentage (75 
%) of the variance in the principal components can be attributed to the first two prin-
cipal components illustrating the orthogonality of the training data. 

The compressed data is then used during training to model all three of the data at-
tributes that are likely to be missing. Figure 3 represents the proposed missing data 
imputation model. 
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Fig. 2. Variance of the training input data principal components 

 

Fig. 3. Flowchart of the proposed model for imputing missing data 

When an input matrix that contains a missing variable is fed into the proposed 
model, it is compressed and a previously trained neuro-fuzzy model is used to impute 
the variable. The error between the imputed missing values and those generated by 
the GA is used as the evaluation function that needs to be minimized. If the error is 
not minimal, the GA generates a new missing value that will minimize the error.  

4   Results and Discussions 

4.1   Results 

A test sample is first evaluated using the neuro-fuzzy model on its own to impute the 
father’s age without compressing the data. The father’s age is chosen as the test ex-
periment because it is the field with the most missing values. The results of this test 
experiment are shown in Figure 4. These results indicate that the neuro-fuzzy model 
is unable to impute the missing data with great accuracy. The age of the father can 
only be imputed with an accuracy of 60 % within a 10 % margin. At first glance these 
results might seem satisfactory due to the fact that people are usually classified within 
a certain age group (e.g. anyone from the ages of 13 and 19 years is considered a  
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Fig. 4. Neuro-Fuzzy imputation of the father’s age 
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Fig. 5. Proposed model’s imputation of the father’s age 

teenager etc), however, the measure used indicates poor performance since an older 
person is given a larger margin of error than a younger person (10 % of 50 is 5 
whereas 10 % of 16 is 1.6).  Similar results are observed when the N-F system and the 
GA are used independently without the compression of the data where an accuracy of 
65 % is observed when the age of the father is estimated within a 10 % margin. 

By employing a hybrid method such as the one proposed here, the accuracy of the 
imputation is expected to increase because of the ability of the hybrid system to cap-
ture hidden relationships in the dataset. Following the test experiment, the proposed 
model is then implemented to impute the missing data yielding the results shown in 
figure 5 for the age of the father. There is obvious correlation between the imputed 
and actual age of the father.  

The imputation results of the age of the mother also correlate quite well as indi-
cated by table 1. The accuracy of the mother or father’s age is measured within 1 and 
2 years. The imputed education level of the mother has no correlation at all with the 
actual level indicating a low accuracy value measured within 1, 2 and 5 grades. This, 
for example, means that the system has 98.99 % accuracy in estimating a woman’s 
age within ± 1 year. 
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Table 1. Percentage of data that are correctly imputed 

Attribute Exact   
Accuracy 
(within 0) 

Accuracy 
within 1 

Accuracy 
within 2 

Accuracy 
within 5 

Mother’s age 43.638 % 
 

98.99 % 
 

100 % 
 

- 
 

Father’s age 6 % 37.67 % 
 

99.9 % 
 

- 
 

Education 
level 

2 % 
 

9 % 
 

13 % 
 

26.7 % 
 

4.2   Discussion and Conclusion 

From Figure 1, it is deducible that the attributes with the most outliers are also the 
attributes that are likely to be missing. This is because both the missing data problem 
and the problem of outliers contain extreme values that provide erroneous information 
and modelling. This type of information is useful when building models that impute 
missing data. When the results in Figure 4 are compared with that of Figure 5 (impu-
tation of the age of the father), it is clear that using the hybrid method provides better 
accuracy in imputing the age. When the ability of the system to impute the age of the 
mother is compared to Figure 1, it is deducible that the less varied the outliers of a 
variable (such as the case with the age of the mother), the higher the imputation accu-
racy of the model for that variable. The inverse can thus be the reason for the low 
accuracy of the system to impute the education level which suggests that other meth-
ods be looked into for imputing variables that have varied outlier models. 
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Feature Selection Method with Multi-Population Agent 
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Abstract. The multi-population agent genetic algorithm (MPAGAFS) for 
feature selection is proposed. The double chain-like agent structure is intro-
duced to enhance the diversity of population. The structure can help to con-
struct multi-population agent GA, thereby realizing parallel searching for an 
optimal feature subset. The experimental results show that the MPAGAFS 
can not only be used for serial feature selection but also parallel feature se-
lection with satisfying precision. 

1   Introduction  

Because of its implicit parallelism, genetic algorithm (GA) is an effective search algo-
rithm for finding near–optimal solutions in complex search spaces of feature selec-
tion. However, the traditional GA is too dependent on initial population; the simple 
genetic operators lead to falling into local optimal feature subset more easily.  

In order to improve its performance, many researchers proposed some modified 
GAs. These improvements relate to genetic operators, population size, population 
structure, selection strategy, and so on [1-2]. Leung and Wang proposed an im-
proved genetic algorithm- the orthogonal genetic algorithm with quantization [1]. 
M. Srinivas el proposed an adaptive genetic algorithm [2]. Il-Seok Oh proposed hy-
brid genetic algorithm putting genetic algorithm and local optimization method 
together for improvment [3]. Agent is one unit can interact with the environment 
around it and is driven by certain purposes. Weicai Zhong [6] proposed a lattice-
like agent population structure to solve the problem. Currently, feature selection 
problems always are large scale, apparently one processor is not enough for running 
feature selection to meet the requirement of time cost. Therefore, parallelism is 
needed to be introduced into genetic algorithm of feature selection algorithm to 
speed up it. Nordine Melab proposed one parallel wrapper feature selection based 
on genetic algorithm [4]. Hugo Silva el proposed one parallel feature selection 
based on genetic algorithm [5].  

Based on the analysis above, this paper proposed one multi-population co-genetic 
algorithm for feature selection algorithm (MPAGAFS) inspired by our prevoious 
work[10].  
                                                           
∗ Corresponding author. 
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2   Introduction of Algorithm 

2.1   Agent Structure  

2.1.1   Closed Chain-Like Agent Structure Inside Subpopulation 
In the structure, all the agents live in a close chain-like environment, L . The size of 

L  is1 sizeL× , where sizeL  is an integer, 1 means one dimensional agent structure.   

Definition: Assuming that the agent that is located at ( )1, i  is represented 

as 1, , 1,2, ,i sizeL i L= L , the neighbors of 1,iL , 1,iNeibors  are defined as follows:  

{ }
1 21, 1, 1,,i i iNeibors L L=  (1) 

where 1

1 1

1size

i i
i

L i

− ≠⎧
= ⎨ =⎩

， 2

1

1
size

size

i i L
i

i L

+ ≠⎧
= ⎨ =⎩

. In the closed chain-like agent 

structure, the agent can interact with the left and right neighborhood ones. 

2.1.2   Multi-population Cycle Chain-Like Agent Structure  
Multi-population cycle chain-like agent structure means that the whole population is 
divided into some subpopulations; the neighboring subpopulations have common 
agents which are shared agents. Figure 1 shows the agent structure with 6 agents per 
subpopulation and 2 shared agents. They cooperate and compete with each other. 
Finally, the agent with low power will die, and new agent will occupy its position. 
The introduction of the shared agents will supply the genetic information of other 
subpopulations. Through the sharing of the agents, the genetic information can spread 
from some subpopulation to the neighboring subpopulations. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Multi-population cycle chain-like agent structure 

 

 

Agent  
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2nd  
subpopulation 

nth 
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2.2   Genetic Operators  

2.2.1   Dynamic Neighborhood Competition Selection Operator 
Suppose the order of competition selection is from left to right, the current agent 

is 1 ,
t

iL , the neighbors are 1,iNbs , { }1, 1, 1 1, 2
t t

i i iNbs L L= , 

1, 2......i popsize= . Updating of 1 ,
t

iL  is as the following formula: 

( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

1, 1, 1, 1, 1 1, 2

1, 1, 1, 1 1, 1 1, 2 1, 1 1, 1 1,

1, 1, 1, 2 1, 1 1, 2 1, 2 1, 2 1,

max ,

max , &

max , &

t t t
i i i i i

t t t t
i i i i i i i i

t t t t
i i i i i i i i

L L fitness L fitness L L

L L L L L L fitness L fitness L

L L L L L L fitness L fitness L

⎧ ⎫= >
⎪ ⎪
⎪ ⎪= = >⎨ ⎬
⎪ ⎪

= = >⎪ ⎪⎩ ⎭

o

o

 
(2) 

In the formula (2), o  means competition selection between agent 1 ,
t

iL  

and 1 , 1
t

iL , the two agents consist of lots of genes: 

( )1, ,1 ,2 , ,
t t t t t

i i i i j i leng thL c c c c= K K

( )1, 1 1,1 1,2 1, 1,
t t t t t

i i i i j i lengthL c c c c= K K  
(3) 

,
t
i jc  means jth  gene of 1 ,

t
iL , 1,

t
i jc  means jth  gene of 1 , 1

t
iL , length  

means number of genes of single agent. The o  processing is as follows: 

( )
t t t t
i,j i,j i,j i1,j

t t t
i,j i,j i1,j

c =c c =c

c =U 0,1 c c

⎧⎪
⎨ ≠⎪⎩

 (4) 

( )U 0,1  means random number generator and is within the domain [ ]0,1 . 

2.2.2   Neighborhood Adaptive Crossover Operator 
The crossover probability ,c ip  is calculated adaptively as formula (5):  

,c ip  means the probability of crossover between the 1,iL  and 1,iMax , '( , )GH i i  

means the distance between 1,iL  and 1,iMax , 'f  means the maximum value of all 

the individuals, maxf  means the maximum value of all the individuals in the current 

population, avef  mean the average fitness value of all the individuals.  

'

1
' ( , )

'max

, max

'1

GH i i
i

ave
c i ave

ave

f f
f fp f f

f f

⎧
⎛ ⎞−⎪⎪ ≥⎜ ⎟= ⎨ −⎝ ⎠⎪

<⎪⎩

 (5) 
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2.2.3   Adaptive Mutation Operator 
The mutation probability mp  is calculated adaptively based on the length of chromo-

some:
1

mp
n

= , where n  means number of genes (or features here). 

2.3   Local Search Operator 

The algorithm about local search operator is described as follows: 

Step 1: 0r ← ; 

Step 2: do dynamic neighborhood competitive selection and obtaining 1 2rL + ; 

Step 3: for each agent in 1 2rL + , do mutation processing on it, obtaining r
endL ; 

Step 4: find cr
bestind  in r

endL , if ( ) ( )1cr r
best bestEng ind Eng ind −> , 

 then r cr
best bestind ind← , else, 1r r

best bestind ind −← , 1r r
endL L+ ← . 

Step 5: if stop criterion is satisfied, then go the next generation of MPAGAFS_IN, 
else, 1i i← + , go to Step 2. 

Comment: rL  represents the agent chain in the ith  generation of local searching 

within some generation, 1 2rL +  is the mid-chains between rL  and 1rL + , r
endL is the 

agent chain after mutation processing in the ith  generation of local searching 

within some generation. r
bestind  is the best agent since initialization of population 

and cr
bestind  is the best agent in rL of local searching within some generation.  

2.4   Realization of MPAGAFS Algorithm 

The MPAGAFS algorithm can be divided into two parts: MPAGAFSFS inside sub-
population (MPAGAFS_IN) and MPAGAFS between subpopulations (MPA-
GAFS_BETWEEN).  

In MPAGAFS_BETWEEN, the major procedures are as follows: 

Step 1: the initial population is obtained. 
Step 2: the initial population is divided into M subpopulations with the size of L  
Step 3: each subpopulation evolves respectively.  
Step 4: judge whether all the subpopulations finish their one generation evolution, if 
so, the M  best individuals are obtained; if not, continue step 3. 
Step 5: The M best individuals can be judged and used to update the best individual 
in the whole population in the current generation.  
Step 6: judge whether the stop criterion is satisfied, if so, output the final best 
individual; if not, turn to step 3. 
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In MPAGAFS_IN, The major procedures are as follows: 

Step 1: initialize 0L , update 0
bestpop , and 0t ← ; 

Step 2: do dynamic neighborhood competitive selection processing and update tL , 

obtaining 1 3tL + ; 

Step 3: for each agent in 1 3tL + , do crossover processing on it, obtaining 2 3tL + ; 

Step 4: for each agent in 2 3tL + , do mutation processing on it, obtaining t
endL ; 

Step 5: find ct
bestind  in t

endL , if ( ) ( )1ct t
best bestEng ind Eng ind −> , then 

t ct
best bestind ind← , else, 1t t

best bestind ind −← , 1t t
endL L+ ← . 

Step 6: if stop criterion is satisfied, then output t
bestind , else 1t t← + , go to Step 

2. 

Comment: tL  represents the agent chain in the tth  generation, 1 3tL +  and 2 3tL +  

are the mid-chains between tL  and 1tL + , t
endL is the agent chain after mutation 

processing in the tth  generation. t
bestind  is the best agent since initialization of 

population, ct
bestind  is the best agent in tL . cp  and mp  are the probabilities to 

perform the neighborhood crossover processing and the mutation processing. 

3   Experiments and Analysis of Results 

From the agent structure of MPAGAFS, it is seen that the algorithm can realize multi-
subpopulation parallel feature selection, so the time cost can be reduced a lot. How-
ever, whether the MPAGAFS can obtain the satisfying feature selection precision is 
not for sure. The feature selection precision is important. In order to show the feature 
selection precision of the MPAGAFS, groups of experiments are reported here.  

In the following experiments, we set 6 as the size of subpopulation and 2 as the 
number of shared agents. The setup of other parameters is: the size of whole popula-
tion is 66, the initial probability of crossover and mjutation 

are 0.95cp = and 0.05mP =  respectively, the upper limit of evolution generation 

is 1000T = , TIMEs_OUT=10. The relevant condition about PC platform is: CPU 
with mainframe of 2.8GHz, memory of 0.99GB. 

The fitness function for feature selection here: Fitness function (evaluation crite-

rion): 
1

( ) 2
N

b
i

wi

Sfitness corrS
=

= −∑ , where, N : number of the features; 

bS :between-classes variance, ( )2

1 2bS m m= − ; 1m : the first class specimens un-

der some feature; 2m  : the second class specimens under the same feature; 

( ) ( )2 2

1 2w class classS σ σ= + ; 2corr  : correlation between features selected. 
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3.1   Feature Selection Experiments with Filter Methods 

Four genetic algorithms including AGA [2], MAGA [6], SFGA [7] and SGAE [8] are 
adopted to be compared with MPAGAFS for feature selection. The table 1 shows 
some information. The datasets Letter, Wave and Sonar are from UCI database [9]. 

The table 2 lists average experimental results of the 10 times experiments. From the 
table 2, it can be seen the average number of features from MPAGAFS is less than 
that from MAGA and SFGA, the variance of the average number of features from  
 

 
 

Table 1. Some information about datasets 

Datasets  Number 
of  
features 

Number of 
specimens 

Number 
of 
classes 

Population 
size 

Evaluation 
of feature  
subset 

Stop 
criterion 

Letter  16 1555 2 30 5-fold 
CV 

k>10 
or 1000 

Wave  40 2000 2 30 5-fold 
CV 

k>10 
or 1000 

Sonar  60 208 2 30 5-fold 
CV 

k>10 
or 

1000 
*Here the stop criterion is k>10 or maximum number of iteration is more than 1000. 

Table 2. Comparison of feature selection capability of five GAs 

DS  CP SGAE AGA SFGA MAGA MPAGAFS 
ANF 10.2, 

± 3.6 
9.9, 

± 2.7 
10.5, 

± 3.9 
11, 

± 2.8 
10.2, 

± 2.1 
ABF 17.6629, 

± 1.47 
17.6897, 
± 0.23 

17.9449, 
± 0.34 

17.7852, 
± 0.12 

17.9449,  
± 0 

Letter 

ACA 92.75, 
± 3.4 

95,  
± 2.4 

95,  
± 4.8 

93.5, 
± 3.1 

98,  
± 1.7 

ANF 18.4, 
± 4.8 

21.3, 
± 4.3 

18.4, 
± 4.4 

15.5, 
± 3.8 

14.9, 
± 3.6 

ABF -0.1269, 
± 0.13 

-0.5034, 
± 0.15 

0.4300, 
± 0.11 

1.5769, 
± 0.09 

1.5467, 
± 0.06 

Wave 

ACA 80.25, 
± 4.8 

74.25, 
± 5.4 

80.25, 
± 4.8 

77,  
± 2.8 

82.75, 
± 2.6 

ANF 25.7, 
± 3.4 

25.8 
± 4.5 

25.4 
± 4.7 

25.8 
± 2.8 

26.7 
± 2.4 

ABF 12.4563, 
± 0.15 

12.5634 
± 0.23 

12.7773 
± 0.17 

11.892 
± 0.19 

13.4572 
± 0.14 

Sonar 

ACA 89.9 92.9 92.6 95.5 95.6 
*ANF means average number of selected features, ABF means the average best fitness value, 
ACA means average classification accuracy of selected feature subset. 
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MPAGAFS is lowest. The average best fitness value from MPAGAFS is highest and 
most stable. The average classification accuracy from MPAGAFS is highest and the 
variance of the average classification accuracy is lowest.  

3.2   Comparison with Parallel Feature Selection Method  

Here, the parallel feature selection method [5] is compared with MPAGAFS. The rele-
vant papers do not state how to divide the feature space in detail, so we list two kind 
of division; they correspond to two kinds of methods (method 1 and method 2). For 
method 1, it fixes the former several features to divide the feature space into several 
subspaces; here we suppose the number of fixed features is 3, so the number of fea-

ture subspace is 32 =8 . For method 2, it fixes the latter several features to divide the 
feature space into several subspaces; here we suppose the number of fixed features is 

3, so the number of feature subspace is 32 =8  too. All the three feature selection 
method use the same classifier (BP neural network) for wrapper feature selection.  

Table 3. Comparison with parallel feature selection method 

DS  CP MPAGAFS 
(-BP) 

Method 1 
(-BP) 

Method 2 
(-BP) 

ANF 10,  
± 2.7 

12.1, 
± 4.3 

13.3, 
± 4.8 

Letter 
ACA 98.1, ± 1.7 92.1, 

± 3.1 
91.7, 

± 3.7 
ANF 14.9, ± 3.7 17.7, 

± 3.7 
18.1, 

± 4.5 
Wave 

ACA 89.3, 
± 2.4 

73.2, 
± 5.2 

78.2, 
± 4.8 

ANF 24.2, ± 3.4 28.9, 
± 4.4 

27.6, 
± 5.6 

Sonar  
ACA 97.7, ± 2.7 89.1, 

± 4.3 
89.8 

± 4.7 

 
The table 3 lists the experimental results. It shows that this algorithm MPAGAFS is 

better than other methods in terms of number of features and classification accuracy. 
According to the datasets, the MPAGAFS can obtain least features, and lowest vari-
ance. Besides, it can obtain best classification accuracy and lowest variance.  

4   Conclusions  

In this paper, the authors propose one novel agent genetic algorithm-multi-population 
agent genetic algorithm (MPAGAFS) to enhance the precision and time cost of fea-
ture selection. The experimental results show that the MPAGAFS can obtain more 
precise and stable feature selection precision than four other popular GAs. Future 
works are to apply the MPAGAFS into data mining, decision making, and so on. 
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Abstract. Fuzzy clustering helps to find natural vague boundaries in
data. The fuzzy c-means (FCM) is one of the most popular clustering
methods based on minimization of a criterion function because it works
fast in most situations. However, it is sensitive to initialization and is
easily trapped in local optima. Particle swarm optimization (PSO) and
differential evolution (DE) are two promising algorithms for numerical
optimization. Two hybrid data clustering algorithms based the two evo-
lution algorithms and the FCM algorithm, called HPSOFCM and HDE-
FCM respectively, are proposed in this research. The hybrid clustering
algorithms make full use of the merits of the evolutionary algorithms and
the FCM algorithm. The performances of the HPSOFCM algorithm and
the HDEFCM algorithm are compared with those of the FCM algorithm
on six data sets. Experimental results indicate the HPSOFCM algorithm
and the HDEFCM algorithm can help the FCM algorithm escape from
local optima.

1 Introduction

Fuzzy clustering algorithms aim to model fuzzy (i.e., ambiguous) unsupervised
(unlabeled) patterns efficiently, and one widely used algorithm is the fuzzy
c-means (FCM) algorithm[1]. The FCM algorithm is based on an iterative opti-
mization of a fuzzy objective function. Due to its efficacy, simplicity and compu-
tational efficiency, it is a very popular technique. However, the main drawback
of the FCM algorithm is that the cluster result is sensitive to the selection of
the initial cluster centers and may converge to the local optima.

In order to solve the problem of local optima encountered in the FCM algo-
rithm, one possibility is to use some stochastic search methods. Recently, many
fuzzy clustering algorithms based on evolutionary algorithms have been intro-
duced. For instance, Klawonn and Keller[2] optimized the FCM model with a ge-
netic algorithm. The particle swarm optimization(PSO) algorithm was applied to

� Corresponding author.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 501–508, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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cluster suppliers under fuzzy environments into manageable smaller groups with
similar characteristics[3]. Das et al. used an improved differential evolution(DE)
algorithm to automatically determine the number of naturally occurring clusters
in the image as well as to refine the cluster centers[4].

Experimental studies have shown that evolutionary algorithms improve the
performance of the FCM algorithm[2][3][4], but at the same time there are some
shortcomings such as slow convergence speed. The main goal of our study is to
investigate the way combining evolutionary algorithms with the FCM algorithm
to form hybrid fuzzy clustering algorithms. We combine PSO and FCM to form
the hybrid clustering algorithm HPSOFCM, and combine DE and FCM to form
the hybrid clustering algorithm HDEFCM. The experimental results on a vari-
ety of data sets provided from six artificial and real-life situations indicate the
HPSOFCM algorithm and the HDEFCM algorithm can help the FCM algorithm
escape from local optima.

2 The FCM Algorithm

In contrast to crisp clustering methods, which allocate each object to a unique
cluster, fuzzy clustering algorithms result in membership values between 0 and
1 that indicate the degree of membership for each object to each of the clus-
ters. In the fuzzy clustering algorithms, the most popular is the FCM algo-
rithm. The FCM algorithm to be focused on here is based on minimizing the
criterion[5][6]

J =
C∑

j=1

N∑
i=1

µm
ij d2

ij , m ≥ 1 . (1)

with respect to the membership values µij and the distance dij . The membership
values µij satisfy the stochastic constraints:

µij ∈ [0, 1], 1 ≤ j ≤ C, 1 ≤ i ≤ N . (2)
C∑

j=1

µij = 1, ∀i = 1, · · · , N . (3)

0 <

N∑
i=1

µij < N, ∀j = 1, · · · , C . (4)

Here N is the number of objects and C is the number of clusters. m is often
called the fuzzifier parameter and determines the fuzziness of the clustering. The
clustering becomes fuzzier for larger values of m. Usually m is set to equal to 2,
as this value has been proven to give good results with FCM. In the ordinary
FCM algorithm, the distance between object i and cluster j, dij , is defined as
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the Euclidean distance between xi and vj where xi denotes the data vector for
object i(i = 1, · · · , N) and vj denotes the prototype vector for cluster j(j =
1, · · · , C).

Applying derivative to Eqs. (1), (2), (3) and (4), one can derive the compu-
tational formulae of µij and vj as:

µij =
1∑C

k=1(dij/dik)2/(m−1)
, 1 ≤ j ≤ C, 1 ≤ i ≤ N, m > 1 . (5)

vj =
∑N

i=1(µij)mxi∑N
i=1(µij)m

, 1 ≤ j ≤ C . (6)

The termination criterion for the FCM algorithm is usually chosen as maxik

(|µ(l)
ik − µ

(l−1)
ik |) < ε, where l denotes the number of iterations. The FCM algo-

rithm converges to a local minimum of the c-means functional(1). Hence, differ-
ent initializations may lead to different results.

3 PSO and DE

3.1 PSO

PSO is a population based stochastic optimization technique inspired by the
social behavior of bird flock(and fish school, etc.), as developed by Kennedy
and Eberhart[7]. As a relatively new evolutionary paradigm, it has grown in
the past decade and many studies related to PSO have been published[8]. In
PSO, each particle is an individual, and the swarm is composed of particles.
The problem solution space is formulated as a search space. Each position in
the search space is a correlated solution of the problem. Particles cooperate to
find the best position(best solution) in the search space(solution space). Each
particle moves according to its velocity. In each iteration, the particle movement
is computed as follows:

xi(t + 1) = xi(t) + vi(t) . (7)

vi(t + 1) = ωvi(t) + c1r1(pbesti(t) − xi(t)) + c2r2(gbest(t) − xi(t)) . (8)

In Eqs.(7) and (8), xi(t) is the position of particle i at time t, vi(t) is the velocity
of particle i at time t, pbesti(t) is the best position found by particle i itself so
far, gbest(t) is the best position found by the whole swarm so far, ω is an inertia
weight scaling the previous time step velocity, c1 and c2 are two acceleration
coefficients that scale the influence of the best personal position of the particle
(pbesti(t)) and the best global position (gbest(t)), r1 and r2 are random variables
between 0 and 1.
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3.2 DE

DE was first introduced by Price and Storn in 1995[9] and has been drawing an
increasing attention recently[10][11]. DE is a population based global optimiza-
tion algorithm that uses floating-point encoding and combines simple arithmetic
operators with the classical events of mutation, crossover and selection to evolve
from a randomly generated initial population to a satisfactory one. DE starts
with the random initialization of a population of individuals in the search space
and creates a competitor for each individual by mutation and crossover. The
mutation is completed by the following formulation:

x̃i = x1 + F (x2 − x3) . (9)

where x1, x2 and x3 are three different individuals of the population, F is a
parameter between [0,1], and x2 − x3 denotes the differential item. Then a trial
vector yi as a competition to target point xi will be found from its parents xi

and x̃i using the following crossover rules:

yj
i =

{
x̃j

i if Rj ≤ CR or j = Ii

xj
i if Rj > CR and j �= Ii

. (10)

where Ii is a randomly chosen integer,i.e. Ii ∈ {1, 2, · · · , n}, where n is the
dimension of the vector; the superscript j represents the jth component of the
respective vector; Rj ∈ (0, 1), draw randomly for each j. The entity CR is a
constant. Then the population is updated by the following formulation:

xi(g + 1) =
{

yi(g) if yi(g) is better than xi(g)
xi(g) otherwise

. (11)

where g denotes the number of generations.

4 The Proposed Hybrid Clustering Algorithms

4.1 Encoding Mechanism

In the hybrid clustering algorithm, an individual represents the center points
of the clusters and is encoded into a string of real numbers. The real number
string has the form shown in Fig.1, where n is the dimension of the data to be
clustered, C is the number of clusters.

x11 · · · x1i · · · x1n · · · xj1 · · · xji · · · xjn · · · xC1 · · · xCi · · · xCn

Fig. 1. The representation of an individual
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1.Set the initial parameters including the maximum iterative count IterCount,
PsoCount, FcmCount, the population size Psize, ω, c1 and c2.
2.Initialize a population of size Psize.
3.Set iterative count Gen1= 0.
4.Set iterative count Gen2 = Gen3 = 0.
5.PSO Method
(1)Update the Psize particles according Eqs. (7) and (8).
(2)Gen2 = Gen2 + 1. If Gen2 < PsoCount, go to 5(1).

6.FCM Method
(1)Take the position of each particle i as the initial cluster center vector.
(2)Recalculate each cluster center vector using Eqs. (5) and (6).
(3)Gen3 = Gen3 + 1. If Gen3 < FcmCount, go to 6(2).

7.Gen1 = Gen1 + 1. If Gen1 < IterCount, go to 4, otherwise terminate.

Fig. 2. The HPSOFCM algorithm

1.Set the initial parameters including the maximum iterative count IterCount,
DeCount, FcmCount, the population size Psize, F and CR.
2.Initialize a population of size Psize.
3.Set iterative count Gen1 = 0.
4.Set iterative count Gen2 = Gen3 = 0.
5.DE Method
(1)Updating the Psize individuals according Eqs. (9), (10) and (11).
(2)Gen2 = Gen2 + 1. If Gen2 < DeCount, go to 5(1).

6.FCM Method
(1)Take each individual i as the initial cluster center vector.
(2) Recalculate each cluster center vector using Eqs. (5) and (6).
(3) Gen3 = Gen3 + 1. If Gen3 < FcmCount, go to 6(2).

7.Gen1 = Gen1 + 1. If Gen1 < IterCount, go to 4, otherwise terminate.

Fig. 3. The HDEFCM algorithm

4.2 The Proposed Hybrid Clustering Algorithms

The FCM algorithm tends to converge faster than the evolutionary algorithms
because it requires fewer function evaluations, but it usually gets stuck in local
optima. We integrate the FCM algorithm with the evolutionary algorithms to
form the hybrid clustering algorithms, which maintain the merits of the both
kinds of algorithms. More specifically, the hybrid clustering algorithms will apply
the FCM algorithm with m iterations to the individuals in the population every
l generations such that the fitness value of each individual is improved. We
combine PSO and FCM to form the hybrid clustering algorithm HPSOFCM,
and combine DE and FCM to form the hybrid clustering algorithm HDEFCM.
Fig. 2 and Fig. 3 outline the HPSOFCM algorithm and the HDEFCM algorithm
respectively. The objective function of the FCM algorithm J defined in Eq.(1)
is the fitness functions of the hybrid clustering algorithms.
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5 Experimental Results

5.1 Data Sets

Six data sets are employed to validate our methods. These data sets, named
ArtSet1, ArtSet2, Iris, breast-cancer-wisconsin (denoted as Cancer), Contracep-
tive Method Choice (denoted as CMC) and Wine, cover examples of data of low,
medium and high dimensions. All data sets except ArtSet1 and ArtSet2 are avail-
able at ftp://ftp.ics.uci.edu./pub/machine-learning-databases/. Table 1 summa-
rizes the characteristics of these data sets. ArtSet1 and ArtSet2 are artificial data
sets. ArtSet1 is a two-featured problem with three unique classes. The patterns
are drawn from three independent bivariate normal distributions, where classes

are distributed according to N2(µi =
(

µi1

µi2

)
, Σ =

(
1 0.04

0.04 1

)
), µ11 = µ12 =

−2, µ21 = µ22 = 1, µ31 = µ32 = 4, µ and Σ being mean vector and covariance
matrix respectively. ArtSet2 is a three-featured problem with three classes, where
every feature of the classes is distributed according to Class1 ∼ Uniform(5, 10),
Class2 ∼ Uniform(10, 15), Class3 ∼ Uniform(15, 20).

5.2 Experimental Results

We evaluate and compare the performances of FCM, HPSOFCM and HDEFCM
in terms of the fitness value, the Xie-Beni index[12] and the runtime. In our
experiments, m = 2 and ε = 0.001. The parameters shown in Table 2 are set.
Table 3 gives the means, the best values (in brackets) and standard deviations
(in square brackets) over 10 runs obtained for each of these measures. Bold face
and italic face indicate the best and the second best results out of the three
algorithms respectively. We can see that FCM is fastest, but it can not get the
best Xie-Beni index or the best fitness values. HDEFCM can always get the
best Xie-Beni index and better fitness values. HPSOFCM can always obtain the
best fitness values and is faster than HDEFCM. That is to say HPSOFCM and
HDEFCM improve the performance of FCM in terms of the fitness value and
the Xie-Beni index respectively.

Table 1. Characteristics of the data sets

Name of No. of No. of Size of data set
data set classes features (size of classes)
ArtSet1 3 2 300(100,100,100)
ArtSet2 3 3 300(100,100,100)

Iris 3 4 150(50,50,50)
Cancer 2 9 683(444,239)
CMC 3 9 1473(629,334,510)
Wine 3 13 178(59,71,48)

Table 2. The parameters setup

HPSOFCM HDEFCM
IterCount 5 IterCount 5
FcmCount 4 FcmCount 4
PsoCount 4 DeCount 4

Psize 20 Psize 20
ω 0.7298 F 0.5

c1 1.49618 CR 0.5
c2 1.49618
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Table 3. Experiment results of FCM, HDEFCM, and HPSOFCM clustering on two
artificial and four real data sets The quality of clustering is evaluated using the fitness
value, the Xie-Beni index and the runtime. The table shows means ,the best value(in
brackets) and standard deviations (in square brackets) for 10 independent runs. Bold
face indicates the best and italic face indicates the second best result out of the three
algorithms.

ArtSet1 FCM HDEFCM HPSOFCM
ObjValue 490.94(490.94) 490.75(490.73) 490.73(490.72)

[0.003] [0.011] [0.007]
Xie-Beni 8.9066(8.9063) 8.9033(8.9028) 9.0095(8.9810)

[0.000] [0.000] [0.015]
Runtime 0.0152(0.0150) 6.6022(6.5946) 1.5060(1.500)

[0.000] [0.005] [0.008]

ArtSet2 FCM HDEFCM HPSOFCM
ObjValue 1752.61(1752.60) 1752.54(1752.50) 1752.48(1752.46)

[0.001] [0.024] [0.014]
Xie-Beni 7.8882(7.8882) 7.8879(7.8878) 7.9055(7.8919)

[0.000] [0.000] [0.010]
Runtime 0.0150(0.0150) 9.4589(9.4370) 1.6451(1.6400)

[0.000] [0.015] [0.008]

Iris FCM HDEFCM HPSOFCM
ObjValue 67.82(67.82) 67.72(67.58) 67.53(67.50)

[0.002] [0.068] [0.028]
Xie-Beni 6.6182(6.6180) 6.6070(6.5947) 7.1171(6.7448)

[0.000] [0.007] [0.173]
Runtime 0.0166(0.0150) 4.8855(4.8750) 0.8870(0.8750)

[0.005] [0.007] [0.006]

Cancer FCM HDEFCM HPSOFCM
ObjValue 17190.42(17190.34) 17187.81(17184.82) 12289.61(11806.74)

[0.039] [1.767] [297.147]
Xie-Beni 42.0172(42.0164) 42.0093(42.0021) 162.7880(153.8223)

[0.000] [0.004] [4.640]
Runtime 0.0325(0.0310)] 13.3952(13.3590) 5.4077(5.3910)

[0.005] [0.037] [0.015]

CMC FCM HDEFCM HPSOFCM
ObjValue 19588.44(19588.26) 19586.11(19583.92) 19582.87(19582.06)

[0.265] [1.144] [0.363]
Xie-Beni 65.3895(65.3895) 65.3865(65.3509) 67.0668(66.6713)

[0.001] [0.027] [0.378]
Runtime 0.2812(0.2030) 53.5266(53.4690) 11.7093(11.7030)

[0.039] [0.039] [0.008]

Wine FCM HDEFCM HPSOFCM
ObjValue 709190.74(494465.19) 494390.23(494380.67) 494390.07(494379.36)

[452664.024] [7.210] [5.426]
Xie-Beni 9.8048(0.8841) 0.8840(0.8840) 0.8858(0.8841)

[18.807] [0.000] [0.002]
Runtime 0.0277(0.0150) 7.0994(7.0930) 1.7467(1.7340)

[0.010] [0.008] [0.010]
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6 Conclusion

This paper investigates the hybrid clustering algorithms based on the FCM al-
gorithm and the evolutionary algorithms. We combine PSO and FCM to form
the hybrid clustering algorithm HPSOFCM, and combine DE and FCM to form
the hybrid clustering algorithm HDEFCM. The experimental results indicate the
HPSOFCM algorithm and the HDEFCM algorithm can help the FCM algorithm
escape from local optima.
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Abstract. This paper proposed a simulation-optimization energy saving strat-
egy for heating, ventilating and air conditioning (HVAC) systems’ condenser 
water loop through intelligent control of single speed cooling towers’ compo-
nents. An analysis of system components has showed the interactions of control 
variables inside the cooling towers and between the cooling tower and chillers. 
Based on the analysis, a model based optimization approach was developed 
with evolutionary computation. A simulation application demonstrated the ef-
fectiveness of the proposed strategy. This strategy can also be easily modified 
and applied to single speed tools in the refrigerant loops. 

1   Introduction 

In modern HVAC systems, building cooling and heating sources consume the highest 
volume of the electricity. Consequently, the optimization of the building cooling and 
heating sources has been extensively studied in HVAC systems for more efficient part 
load operation using Variable Speed / Frequency drive (VSD/VFD). Global optimal 
control methods for plant cooling have been carried out by Sud [13], Lau et al. [9] and 
Johnson [8]. However those models are not for real time control. Braun et al. [2, 3, 4] 
has developed a strategy for optimal control of chilled water systems which was suit-
able for real time application. Yao et al. [15] has developed a mathematical model for 
optimizing cooling systems’ operation based on energy analysis of the main dynamic 
facilities. On the other hand, Lu et al. [10] developed a global optimization strategy 
for heating, ventilating and air conditioning systems. However, the models do not 
consider the time dependent characteristics of parameters. Chang [5] presented an 
approach using Lagrangian method to solve the optimizing chiller loading. Chow et 
al. [6] introduced a concept of integrating artificial neural network and genetic algo-
rithm optimization of absorption chillers. Fong et al. [7] introduced the evolutionary 
programming for optimizing chillers in the HVAC systems. Alcala et al. [1] devel-
oped a weighted linguistic fuzzy rules combined with a rule selection process for 
intelligent control of heating, ventilating and air conditioning systems concerning 
energy performance and indoor comfort requirements. Basically, most of the re-
searches focus on chillers. The researches on HVAC systems discussed mainly on the 
newer systems in manufacturing plants that come with VSD to optimize the chiller 
water pumps, condenser water pumps, chillers and cooling towers [16]. The cost  
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savings from VSD is very encouraging [14]. VFD is also used in dynamic Transient 
Simulation Program based simulation platform for alternative control strategies in-
cluding set-point control logics of the supply cooling water temperature and cooling 
tower fan modulation control methods as well as different number control means of 
cooling towers [4]. However, upgrading the older HVAC systems which use single 
speed controllers requires huge costs (approx. USD30K for complete installation of 
single VSD/VFD) depending on the number and type of drives. Hence our proposed 
approach focuses on energy savings on these single speed HVAC systems through the 
computational intelligence. Energy saving on HVAC through computational intelli-
gence optimization of cooling towers is feasible [10, 12]. Our main concern in model-
ing minimal power consumption for the whole condenser water loop is the single 
speed cooling tower fans and condenser water pumps.  

2   Our Optimization Target: Condenser Water Loop 

The main purpose of cooling towers is to supply condenser water to chillers using a con-
denser water loop. This is because the performance of a chiller is influenced by chilled 
water supply temperature (Tshws), condenser water supply temperature (Tcws) and cooling 
load (C).  For cooling towers, the power consumptions of pumps and fans are influenced 
by two parameters. mass flow rates of water and the pressure difference between the 
inlets and outlets. The characteristics of pumps and fans are very similar. The plant’s 
HVAC systems are simplified as shown in Fig. 1 with labels for components and meas-
ured readings. The main components are six cooling towers fans and six condenser water 
pumps servicing the whole chiller plant. The adjustment of single speed cooling tower 
fans and condenser water pumps has effects on the total water side heat load of cooling 
towers, H. Consequently, the heat load is affected by the mass flow and heat of water, 
condenser water temperature at inlet and outlet. Even though we aim to minimize the 
power consumption of cooling towers, the manipulation of the fans and pumps must be 
optimized to meet the cooling load of the chillers in the plant, C. The cooling load is 
measured from mass flow of chilled water, heat of water, chilled water supply and return 
temperatures. The chillers have two types of capacity, namely low temp and high temp. 
There are three low temp chillers which have a rated power of 1000 kW each and three 
high temp chillers which have a rated power of 750 kW each. The chillers and their 
chilled water pumps are controlled by variable speed drives. The total power consump-
tion for chiller side is 5700 kW per hour. On the other hand, the estimation of cooling 
load (Equation 1), C [12] of the chillers is 3415.5 tons when they are fully operated. mchw 
is the mass flow of chilled water, cp is the heat of water under constant pressure, hp is 
pounds of heat per galloon of water, Tchwr and Tchws are the chilled water return and sup-
ply temperatures. The chillers are set to perform at 80% of its designated capacity pres-
ently. Presently, the coefficient of performance, COP [12] of the low temp chiller is 2.00 
and high temp chiller is 3.20 calculated using Equation 2. Ec represents energy contrib-
uted in Btu/h and Pa is the power required in watts. However, the total power consump-
tion for the six cooling towers which consist of six single speed fans operating together 
with six single speed condenser water pumps are 715.2 kW per hour. Due to the mass 
flow of water at inlet (mw,i) and outlet (mw,o) has the same volume and makeup water (mm) 
is only 0.001% of the mass flow, Braun [2] model (εa) in Equation 3 is simplified. The 
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heat transfer effectiveness, µ based on Braun’s model is summarized in Equation 4. It 
utilizes the mass flow and temperature of water at both inlet and outlet. Ambient tem-
perature is measured by wet bulb at inlet i.e. 82.4OF. Hence the designated efficiency of 
the cooling tower based on Braun’s heat transfer effectiveness, µ is 0.6111. The cooling 
towers have the designated heat load capacity; H [11] is 8468.064 tons when they are 
fully operated. mw is the mass flow of condenser water, Tcwr and Tcws are the condenser 
water return and supply temperatures is shown in Equation 5. 
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Fig. 1. Schematic view of condenser water loop 

3   Objective Function 

Looking into the costs of investing in another dozen of VSD, and also the heat load, we 
probe into the possibility of modeling the single speed fans and condenser water pumps 
to meet the heat load and cooling load on real time basis. Experiments have been con-
ducted to find out the possible hazards of manipulating the single speed fans and pumps. 
Hence it is feasible as it does not trip or interrupt other equipments in the plant. The ob-
jective function is to minimize total power consumption of the condenser water loop 
where PCT is the measured total power consumption of cooling tower consists of con-
denser water pumps and cooling tower fans, PCH is the measured total power consumption 
of chillers and chilled water pumps in Equation 6. The chillers have variable speed drives 
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that control the individual cooling load based on the capacity, adjustment factor for part 
load and temperature as shown in the equation below. Hence the total power consumption 
of the chillers can be obtained directly from the controller. Due to the use of VSD, the 
chiller efficiency has been maximized based on various condenser water supply, chilled 
water supply and return temperatures. PCH [11] is measured by Qcap,i , nominal capacity, 
PLRi , part load factor and Ti , temperature factor of chiller i as in Equation 7. The model-
ing of cooling tower power consumption, PCT is determined by total power consumption 
by single speed pumps and fans, Ppump and Pfan as in Equation 8. The power consumption 
of condenser water pumps are calculated based on the rated power, measured and nominal 
mass flow of condenser water flow. Since it is a single speed pump, hence the power 
consumption is zero when it is turned off. ap is the pump mode, pm0 is the rated power, 
mw,p measures the mass flow of water and mwn,p measures the nominal mass flow of water 
of i-th pump as calculated in Equation 9. As for the power consumption of single speed 
cooling tower fan, the nominal and measured mass flow of air and rated power are calcu-
lated (Equation 10). Hence, if the fan is turned off, the power consumption is zero indi-
cated by fan mode, bp=0. fn0 is the rated power, ma,p measures the mass flow of air and 
man,p measures the nominal mass flow of air of i-th pump. 
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4   String Encoding 

In order to meet our objective function, we model a set of related variables for opti-
mization into a string which includes ),,,,,( CTTTba cwrcwswbpp  in Fig. 2. An initial 

population of random bit strings is obtained from the measured field data.  The field 
data of this initial population is evaluated for their fitness or goodness in solving the 
problem. The initial population is evaluated to minimize Pmin over the range of mini-
mum and maximum values discussed. As Pmin is nonnegative over the range, so it is 
used as the fitness of the string encoding.  

 

Fig. 2. Strings and chromosome 



 Intelligent Control of Heating, Ventilating and Air Conditioning Systems 513 

5   Fitness Function 

The fitness of a chromosome is evaluated based on the setting and fulfillment of the 
constraints. The fitness function, f is expressed in the following equation with penal-
ties Pe1 and Pe2. Pe1 assesses the chillers’ cooling load, C. Pe2 assesses the actual heat 
rejection capacity of cooling towers under the measured wet bulb, condenser water 
return and supply temperatures. The higher the fitness, f would signal the better the 
generation is. There are a few constraints that must be in place to validate the fitness 
function.  All the variables must fall within the minimum and maximum allowed 
values. 
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Constraint 1: The heat load is measured in ton which has a minimum of 1800 ton to 
a maximum of 10800 from the six cooling towers. On the hand, the cooling load of 
six chillers measured in tons has a minimum of 569.25 tons to a maximum of 3757.05 
tons. At any point of time, the heat load capacity must be larger than the cooling load 
performed by the chillers to prevent tripping. 
 

Constraint 2: The temperatures of condenser water (supply and return) and wet bulb 
fall within the range of minimum and maximum values in Fahrenheit. Presently, the 
designated temperature for web bulb at inlet, Twb is 82.40F, condenser water supply, 
Tcws is 88.70F and condenser water return, Tcwr is 98.60F. 
 

Constraint 3: The cooling towers' mass flow of condenser water and air are modeled 
in m3/h as mw and ma. They fall within the minimum and maximum designated capac-
ity for optimized set points. Maximum air flow is achieved when all fan mode is ‘on’ 
that is 538446 m3/h and water flow achieves its maxima when all pump mode is ‘on’ 
that is 5832 m3/h.  

 
After the initial population of 2160 chromosomes consists of the variables are evalu-
ated for fitness, new population is generated using three genetic operators that are 
reproduction, crossover, and mutation. Each gene mutates with a probability of 0.1 
and the crossover rate is 0.7. Once the operation setting of the single speed cooling 
tower fans and condenser water pumps have been optimized through the genetic op-
erations, they are compared with the existing operating setting before been put in 
force. This is a safety measure to prevent the uncertainties of the genetic algorithm 
due to insufficient evolution time. If such a condition occurs, the system will operate 
at present set points without any changes until the next sampling period. In our pro-
ject, the termination of genetic operations occur when there is NO better fitness value  
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Table 1. GA parameters setting 

Initial Population 2160 Crossover 0.7 
Mutation 0.1 No of generation 200 

 
(the most minimum power consumption achieved) obtained from a generation.  From 
our testing, we found out that a 200 generation would be when the fitness achieves its 
maxima. 

6   Experimental Results 

The simulation-optimization application focused on optimizing the control of the 
single speed cooling towers’ fans and condenser water pumps on real time basis while 
the VSD controlled chillers are not interfered. The control affects the mass flow of air 
and water at both inlet and outlet of cooling towers which change the heat transfer 
effectiveness of cooling towers. The experiment aims to observe the optimized setting 
of cooling tower fans and pumps throughout 24 hours of a day based on ambient tem-
perature, chillers’ cooling load and cooling tower’s heat transfer effectiveness. The 
average measured cooling tower efficiency based on Braun’s model that takes into 
account the average ambient temperature at different hours of the day is shown in Fig. 
3. All the data measured were displayed in a daily average because the tropical cli-
mate here does not have distinctive seasonal difference.  The averaged data is repre-
sentative for the whole year. However, the experiment has been simulated for daily 
data of three months. The ambient temperatures vary between 68.90F to 82.40F 
throughout 24 hours of a day. Due to the ambient temperature achieves its maxima 
from 13:00 to 17:00; the heat transfer effectiveness of the cooling towers is the high-
est at these hours. On the other hand, due to the efficiency of cooling tower vary 
throughout 24 hours; the chillers’ cooling load also varies accordingly where it 
achieves its maximum at 17:00. The ambient temperatures that change throughout the 
day have affected the chiller cooling load and cooling tower efficiency. This is due to 
higher ambient temperature at cooling tower inlet during day time has increased the 
condenser water supply temperature as well and vice versa during night time. We 
measure the wet bulb temperature at cooling tower inlet hourly throughout the day, 
and then measure the mass flow of air, mass flow of water, condenser water supply 
and return temperatures in the cooling towers. We optimized the mass flow and tem-
peratures based on the fitness value of the population through the operating state of 
the fans and pumps. The mass flows are optimized with the constraint that cooling 
load of chillers can be met by heat transfer capacity of the cooling towers at any hour 
of the day. When the ambient temperature is lower, the calculated efficiency of the 
cooling tower is lower assuming the condition that condenser water supply and return 
temperatures remain constant. However, the condenser water supply temperature also 
decreases when outdoor temperature decreases at any time of the day. With these 
temperatures drop, we optimize the mass flow of air and water of the cooling towers. 
With the optimization by evolutionary computation through genetic algorithm, we 
manage to optimize the operation state of six pumps and six fans within the condenser 
water loop. Fig. 3 also shows the hourly optimized power consumption of cooling 
towers (1st bar), chillers (2nd bar), optimized total power consumption (3rd bar), total 
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power consumption before optimization (4th bar).  The daily power consumption of 
these pumps and fans when fully operated is 17164.80kW daily which costs 
USD1716.48 (approx. USD 0.10 per kW presently) daily and USD626515.20 annu-
ally. With the optimization of these components, we are able to cut down the energy 
consumption by 5,960 kW daily and 2,175,400 kW annually. This will give a cost 
saving of USD217540 annually. This gives a 34.7% saving on the total cooling tower 
power consumption or 7% of total condenser water loop power consumption as com-
pare to fixed operation approach used previously. 
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Fig. 3. Hourly Ambient Temperature, Chiller Cooling Load, Cooling Tower Efficiency and 
Power Consumption  

7   Conclusions 

This paper discussed a cost saving strategy through cooling towers in the condenser 
water loop. This strategy focuses on single speed control components in the loop 
where chillers and chilled water pumps which have variable speed drives are not 
modeled. The optimization cooling towers’ water and air flows with fans and con-
denser water pumps through computational intelligence managed to cut down the total 
electricity consumed by cooling towers by 34.7% that is equivalent to USD 217,540 
annually. The field data collection needs to be carried out for a longer term to observe 
any unusual behaviors of the parameters within the condenser water loop. With the 
more field data, optimization can be enhanced. 
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Abstract. In this paper an investigation of the distribution of the weights
and the biases of the Multilayered Perceptron is conducted, in particular
the variance of the weight vector (weights and biases) with the aim of
indicating the existence of the structural diversity within the ensemble.
This will indicate how well the weight vector samples are distributed
from the mean and this will be used to serve as an indicator of the struc-
tural diversity of the classifiers within the ensemble. This is inspired by
the fact that many measures of ensemble diversity are focused on the
outcomes and not the classifier’s structure and hence may lose out in
diversity measures that correlate well with ensemble performance. Three
ensembles were compared, one non-diverse and the other two ensembles
made diverse. The generalization across all the ensembles was approxi-
mately the same (74 % accuracy). This could be attributed to the data
used. Certainty measures were also conducted and indicated that the
non-diverse ensemble was biased, even though the performance across
the ensembles was the same.

1 Introduction

The method of using more than one classifier has become an attractive method
for improving the classification generalization. This method has resulted in many
names such as, a committee of learners, mixture of experts, multiple classifier
systems, classifier ensembles, etc. This has also resulted in immense research
for proper aggregation schemes. A committee of classifiers has been found to
be more efficient as opposed to using one classifier [1], [2], [3]. The advantages
in ensemble systems is that the combination of classifiers improves upon the
generalization of a single classifier [4]. However this is believed to be done by
having individual classifiers that make different errors so that when they are
combined they produce a much lower prediction error. This means that an en-
semble that is composed of classifiers which have different decision boundaries
[4]. Such an ensemble is considered to be diverse, hence the concept of ensemble
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diversity. This concept has lead to research into measures of ensemble diversity
and has been noted as one of the key issues in improving ensemble performance
[5], [6].

One of the most popular view of ensemble diversity is the error diversity.
Whereby ensemble diversity is measured from the outcomes of the individual
classifiers and has produced excellent work. Such work include, empirical mea-
sures of error diversity and statistical measures, the Q-Static, Correlation coef-
ficient, the disagreement measure, double fault measure [7], the ambiguity de-
composition [8] among many. However some of these measures have produced
uncorrelated results when the performance of the ensemble is taken into account
[9]. One of the conclusion one could introduce might be that ensemble diversity
measures are meaningless, however this would be ignoring the fact that ensem-
ble diversity does not have a formal definition among other factors, even though
its been observed that many researchers focus on the outcomes for measures of
ensemble diversity. Immense research has been made to correlate the ensemble
diversity measures for building efficient ensembles [10], [9] among others and this
research is still an open topic.

This paper aims to introduce a new way of looking at ensemble diversity.
This is because the current view on ensemble diversity has not still produced a
robust generic measure of ensemble diversity that relates well with performance
of the ensemble. Measures of ensemble diversity still remain to be an attrac-
tive research area [9]. The ensemble diversity measure of concern, focuses at the
architectural parameters of the artificial neural network to indicate ensemble
diversity. Firstly this is inspired by the fact that current measures of ensemble
diversity when related to ensemble generalization have produced inconclusive
results when trying to use the diversity measures to build efficient ensembles
[9]. Secondly as mentioned ensemble diversity has no formal definition. Hence
Ensemble Structural Diversity (ESD) is proposed witch is hoped at broaden-
ing and bringing more knowledge to the scope of ensemble diversity measures.
ESD is when the ensemble is composed of different structural parameters of
the classifier within the ensemble. The ensemble could be composed of classi-
fiers with different hidden nodes, learning rates, different mapping functions,
etc. There has been other studies on structural diversity and ensemble gener-
alization, whereby ensemble structural diversity did improve ensemble general-
ization. The results also showed that high structural diversity could create poor
generalization [11].

This study analysis the distributions of the weight vectors (weights and bi-
ases) of the MLP’s composed within the ensemble. In particular the distribution
parameter of concern is the variance which also leads to knowledge of the stan-
dard deviation of the weight vector samples from the mean. This was inspired by
the fact that the number of hidden nodes controls the complexity of the Neural
Network (NN), which translates to the structure of the Multilayered Perceptron
(MLP). Aimed objectives of viewing ensemble diversity in terms of the structure
and not the outcomes is to: Broaden the research scope for ensemble diversity
measures, add new understanding to ensemble diversity and possibly lead to
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other measures not focused on the classifier’s outcomes to measure ensemble di-
versity, lead to a unique definition of ensemble diversity hence robust measures
for ensemble diversity. The rest of the paper attempts to meat these objectives.
A method of voting was used to fuse or aggregate the individual classifiers for a
final decision of the ensemble. The interstate conflict data was used for demon-
strating the concept of structural diversity in this paper. The sections of this
paper are organized as follows, the following section deals with, ensemble di-
versity induction, Structural diversity, methodology, results and discussion and
then the conclusion.

2 Ensemble Diversity

Two methods for inducing ensemble diversity of the classifiers are conducted. The
first method uses the Bagging algorithm, short for boostrap aggregation, and the
second method is by using classifiers with different number of hidden nodes, this
method is one of the basis of the concept of ESD. Bagging is considered to be
one of the earliest ensemble algorithm and one of the simplest to implement
[12]. The bagging algorithm trains the ensemble of classifiers by exposing the
individual classifiers to a randomly chosen sample from the training data. These
classifiers are normally known as hypotheses or base learners, usually referred
to as weak learners since they do not learn the whole data set but just a sample
of it [4]. In this way the classifiers learn different domains of the problem and
hence diversity can be induced.

Structural diversity would also imply that the classifiers have variations in
the distributions of the classifier weights. The weight vector samples of the MLP
are initialized from a Gaussian distribution and hence it will be expected that
initially the weight vector samples have the same variance and the mean. This
would mean that it is the training scheme of the ensemble that greatly influ-
ences the distribution parameters of the weight vector samples of the MLP.
Hence using different complexities will also affect the weight vector samples
differently and hence a study on the distribution of the weight vector might
shed light to how the parameters of the distributions relate to ensemble
generalization.

However within the ensemble diversity studies, it is not only the measures of
diversity that are of concern but also the aggregation methods. Kuncheva [5],
among many, has looked at the relationship between combination methods and
measures of diversity and has found that certain measures of diversity correlated
with certain aggregation schemes. It was also noted that the correlation observed
had strong dependency on the data used [5]. This shows the complexity of the
ensemble diversity studies which has also been noted by [8], [5], [13], [14], [3],
et al. This complexity is also expected for the ESD measures. This implies that
developing a good measure and having a good aggregation scheme does not
normally go hand in hand. However for the sake of prove of concept only the
majority vote scheme is considered due to its wide use.



520 L.M. Masisi, F. Nelwamondo, and T. Marwala

3 Methodology

From error diversity measures, it was found that diversity reduces the variance
in the decomposition of the error measure [8] and improves ensemble general-
ization. Two methods are used to induce diversity, the first one is by the use a
training algorithm (bagging) and the second one is by having a committee of
classifiers with different number of hidden nodes. Then a measure of diversity
that looks at the variances of the classifier weights vector (weights and biases) is
conducted. This measure is then compared to the generalization performance of
the ensembles. Figure 1 shows the steps taken for the process mentioned. Only
an ensemble containing five classifiers was used. Five classifiers were only consid-
ered so that computational cost was minimized and the number was made odd
so that there were no ties during voting, for the final decision. The classifiers
initially had 8 hidden nodes with a linear activation function. However when
inducing diversity via the architecture of the classifiers, the hidden nodes where
then varied randomly between 8 and 21. This was so that they were not biased.

Certainty or confidence measures on the individual outcomes of the classifiers
were done so that more knowledge could be gained on the generalization of the
ensembles. The variance of certainties from the five classifiers will be used to
give a more precise indication of the diversity of the ensemble. This means if
there is no variance then the ensemble is highly certain which means that it
could be highly biased. The certainties are measured from the outputs of the
individual classifiers for the outputs of the classifiers are taken as a probability
measure. Normally in a binary classification problem a 0.5 output is treated as
a 1. However, in this paper a 0.5 output was not immediately rounded off to
a 1, since its confidence measure is a zero, as can be seen from (1). The 0.5
output is taken as being the same as tossing a coin and thus its final outcome
would either be a 0 or a 1. The certainty is symmetrical about the 0.5 output
from the classifier. To illustrate equation (1), a 0.9 output from a classifier will
have a confidence of 0.8 and a final classification output of 1. An output of 0.4
will be assigned a confidence of 0.2 and would mean a 0 for the final outcome
(after rounding off). This equation is inspired from the Dynamically Averaging
Networks (DAN) by Daniel Jimenez [15] and it was modified in this paper.

C(f(xi)) = |2f(xi) − 1| (1)

Where, f(xi) is the immediate output from a classifier with input xi before being
processed into binary and C(f(xi)) is the certainty of the processed input data
to a certain class.

S(x) =

∑
f(xi)=yi

C(fi)∑
C(f)

(2)

Where, S is the sum of all the classifiers which won the vote for an input data xi,
yi is the correct output value from the data and the

∑
C(f) is the normalizing

factor. The last step is to calculate the variance of the S vector for all the data
samples that were correctly classified. Hence the variance of the distribution of
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Fig. 1. Flow diagram on diversity analysis

the certainties of the correctly classified data samples. See equation(2) for the
calculation of the certainty of the classifiers that won the vote. This certainty
is the confidence of the overall classifiers for that particular data sample. The
certainties were normalized between 0 and 1, representing high to low certainties
respectively. The tests were done on the interstate conflict data [16].

The data has 7 features and a binary output. A 0 represented a conflict and a
1 peace. The data was conditioned such that it had approximately 50/50 conflict
and peace cases. The training data was composed of 1006 and 869 for training
and testing respectively. The data was normalized between 0 and 1 so as to have
same weighting for all the input features. An ensemble would be considered
diverse if it had different variances on the distributions of the weights vector
(weights and biases) between classifiers. A Multi Layered Perceptron (MLP)
was used for all the experimentation. The certainty measures were conducted on
the test data set where else the weights vector variance measures, were conducted
after the classifiers were trained.

4 Results and Discussion

Two methods of inducing diversity have been studied, the Bagging and param-
eter change of the ensemble of classifiers. The structural diversity was observed
over the two diverse ensembles. The results on the accuracies do not show any
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much of a difference between the different ensembles. They all produced accu-
racies of approximately 74 %. However it is evident from the variances of the
weights vector that the ensemble is diverse. The variances on the weight vector
due to the bagging algorithm were still on a close range, see table 1. This showed
that less diversity was induced on this ensemble.

However the variances due to structural diversity (changing of hidden nodes)
produced classifiers that had thevectorweightvariaces significantlydifferentwithin
the committee, see table 1 on the second column. Intutively one would conclude
that this ensemble was more diverse as compared to the ensemble trained via bag-
ging. But the bagged ensemble produced better generalization performance, see
2, as compared to the other ensemble (diverse due to structure). This might mean
that the observing the vector weights as a measure of ensemble diversity might not
relate well with the generalization performance of the ensemble.

The significant weight vector variances on the ensemble (among the classifiers)
with different number of hidden nodes, can be attributed to the use of different
number of hidden nodes. This then shows that the use of the weight vector distri-
butions might not be a a good method to correlate diversity and generalization.
This is one of the biggest disadvantages of measuring diversity from the structural
point of view. For one can develop a good measure but then loose out on using the
measure to predict the generalization performance of the ensemble, as noted.

According to these results, see table 1 and 2, when the ensemble is non-diverse
then the variance of the certainties is zero. That means the non-diverse ensemble
is extremely certain that there is no variation. Intuitively this made sense for an
ensemble that is non-diverse due to the ensemble being biased. This means that
this certainty measure should not be confused with the confidence of reducing
risk in classification.

Table 1. Variances of the diverse and non diverse ensembles

Bagged(σ2) Nodes(σ2) Non-Diverse(σ2)
0.25915 0.4582 0.26391
0.30675 0.23119 0.26391
0.27167 0.22072 0.26391
0.23999 0.18754 0.26391
0.29347 0.16668 0.26391

The confidence in this context measured the extent to which the individual
classifiers believed to have been correct not necessary that the classification was
correct. This shows how structural diversity measures can better bring more
understanding to the classification problems. These results show that the data
used was not complex enough and one classifier would be adequate for this
problem. This is concurrent with literature that diversity can both be harmful or
beneficial [17]. Further work can be done by using different aggregation schemes
even the Dynamic Average Networks (DAN) for understanding the structural
variation of the classifiers. Structural diversity measures could also be attempted
in other artificial machines.
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Table 2. Acuracies and variance measures

Acc (Bagged) 74.914
Acc (Nodes) 74.569

Acc(nondiverse) 74.338
σ2(Cdiv(f(x))) 0.0064141

σ2(Cnon−div(f(x))) 0

5 Conclusion

This paper presented concepts inspired from statistical methods and certainty
to better understand the structural diversity of the ensemble. A different as-
sessment of ensemble diversity has been presented as opposed to looking at the
classifier outcomes to measure ensemble diversity. The weight vector of the classi-
fiers have been assessed for indicating ensemble diversity. Due to looking at the
outcomes and not at the structure misleading judgments about the ensemble
diversity might be taken and hence poor correlation judgments on the general-
ization of the ensemble and ensemble diversity. This was observed from having a
structurally diverse ensemble having almost the same generalization as the non-
diverse ensemble. However this could be attributed to the size of the data and
the data used. Certainty or confidence variance of zero was recorded due to a
non-diverse ensemble which indicated that the non-diverse ensemble was biased.
Knowledge on viewing ensemble diversity form structural point of view adds
more knowledge on distributions of the vector weights of the diverse ensembles
and hence on the ensemble diversity research community. Measuring ensemble
diversity from the vector of weights might be meaningful but correlating this
measure with ensemble generalization might not be meaningful. A formal defi-
nition of ensemble diversity still remains an open discussion. More work can still
be done in changing the number of the classifiers within a committee and by
using other data sets. Classifiers have a number of parameters depending on the
artificial machine used, which leaves the search for other methods of measuring
structural diversity for exploration.
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Dynamic Programming Stereo
on Real-World Sequences

Zhifeng Liu and Reinhard Klette
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Abstract. This paper proposes a way to approximate ground truth for
real-world stereo sequences, and applies this for evaluating the perfor-
mance of different variants of dynamic programming stereo analysis. This
illustrates a way of performance evaluation, also allowing to derive se-
quence analysis diagrams. Obtained results differ from those obtained for
the discussed algorithms on smaller, or engineered test data. This also
shows the value of real-world testing.

1 Introduction

Vision-based driver assistance is one of the largest challenges in current applied
computer vision. Algorithms have to process real-world stereo sequences (e.g.,
under all possible weather conditions) in real time. Car crash tests are performed
based on very strict international standards; the same is expected soon for tests
of vision-based driver assistance modules. This paper deals with real-world stereo
sequences.

There are not yet many reference sequences available for comparative perfor-
mance evaluation. We refer in this paper to Set 1 (provided by Daimler AG) of
the .enpeda.. sequences,1 as described in [4]. These seven stereo sequences are
taken with two Bosch (12-bit, gray-value) night vision cameras. Each sequence
contains 250 or 300 frames (640×481), and features different driving environ-
ments, including highway, urban road and rural area. Camera calibration is used
for geometric rectification, such that image pairs are characterized by standard
epipolar geometry as specified in [3].

Intrinsic camera parameters and extrinsic calibration parameters for left and
right camera (also in relation to the car) are provided. The vehicle’s movement
status is also given for each frame. We discuss a way to approximate partial
ground truth from these sequences.

2 Methodology

To evaluate the performance of a stereo algorithm, and understand how its pa-
rameters affect results, we need a quantitative way to measure the quality of
calculated stereo correspondences or motion vectors.
1 http://www.mi.auckland.ac.nz/EISATS
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Approximated ground truth. We assume a planar road surface for a selected
sequence of stereo frames. These can be short sequences of just (say) 20 stereo
frames. Here we illustrate for sequences of the given length of 220 to 300 frames. –
We consider the test sequences to be ego-motion compensated [2], which means
that the horizon is always parallel with the row direction in the images. We
conclude that pixels on the same image row have the same depth value if a
projection of the planar road surface.

y

P

O

H

f

p

Ad infinitum

Road surface

Image plane

Or

Pc

Fig. 1. Projection of a point P of the road surface

A side-view of the camera setting is shown in Figure 1, where θ is the known
tilt angle, P is a road surface point which is projected into p = (xp, yp) on the
image plane, H is the height of the camera. It follows that

Z = de(OPc) = de(OP ) cos ψ =
H

sin(θ + ψ)
cosψ (1)

According to standard stereo projection equations [3], the disparity d can be
written as

d =
b · f

Z
=

b · f
H

sin(θ+ψ) cosψ
(2)

where angle ψ can be calculated as follows, using focal length f and pixel coor-
dinate yp in the image:

ψ = arctan
( (yp − y0)sy

f

)
(3)

Here, y0 is the y-coordinate of the principal point, and sy is the pixel size in
y-direction. We can also compute the y-coordinate of a line that projects to
infinity

yinf =
y0 − f · tan θ

sy

This is the upper limit of the road surface, and points on it should have zero
disparity (if no objects block the view).

Figure 2 illustrates the process of generating an approximated disparity map
on road surface areas, also using manual input for a conservative outline of the
road area in a given image. In the given camera setting (of the seven sequences),
there is a yaw angle (0.01 radian) which makes the cameras looking a little bit



Dynamic Programming Stereo on Real-World Sequences 529

Fig. 2. Generation of a disparity mask: input image, manually generated mask, depth
map of a planar road, and resulting disparity mask

to the left. This angle can be ignored because it only defines the right camera
to be about 3 mm behind the left camera.

See Figure 2 and assume a given pair of corresponding points, with disparity
d. By Equation (2) we have that the tilt angle can be written as follows:

θ = arcsin
(H cosψ · d

b · f

)
− ψ (4)

where ψ is as given in Equation (3). Table 1 shows the estimated tilts for the
seven sequences.

Error metrics.The general approach of stereo evaluation is to compute error
statistics based on given ground truth. (Note that any ground truth comes with
some measurement error; ground truth is not truth.) We use the same error
measurements as on the Middlebury stereo website [6], namely the root mean

Table 1. Results of tilt angle estimation for the given seven sequences

Sequence name Tilt angle (radian)
1: Construction-Site 0.016
2: Save-Turn 0.013
3: Squirrel 0.021
4: Dancing-Light 0.061
5: Intern-on-Bike 0.062
6: Traffic-Light 0.069
7: Crazy-Turn 0.060
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squared error between the disparity map d(x, y) and the ground truth map
dT (x, y), defined as follows:

ER = (
1
n

∑
|d(x, y) − dT (x, y)|2) 1

2 (5)

where n is the total number of pixels, and the percentage of bad matching pixels,
defined as follows:

EB =
1
n

∑
(|d(x, y) − dT (x, y)| > δd) (6)

where δd is the threshold of disparity tolerance.

Tested approaches. We evaluate dynamic programming stereo, using varia-
tions of sources as available on [5]. We run a standard stereo dynamic program-
ming (DP) approach (e.g., see [3]) on the given seven sequences; see Table 2 for
evaluation results. Sequence 1 returns smallest RMS errors and bad matching
percentages. In contrast, Sequence 6 returns the largest error values out of the
seven sequences.

DP is then also modified by using some spatial propagation of disparities (from
previous row to the current row, with a weight of 20%) or some temporal prop-
agation of disparities (from the same row in the previous pair of frames, again
with a weight of 20%). Furthermore, we run Birchfield-Tomasi (BT, designed to
be an improvement of standard stereo DP).

3 Results and Discussion

The experiment on Sequence 7 is only performed on the first 220 frames, instead
of the total number of 250, because the road surface is reduced to a very small
area after the ego-vehicle makes a large turn to the left.

The DP algorithm with spatial propagation (DPs) takes 20% of the disparity
value from the previous scanline into the final result. In other words, we apply

d′y,t = (1 − λ1)dy,t + λ1dy−1,t where λ1 = 0.2

Table 2. Mean RMS error values (5) and mean bad matching percentages (6) for the
standard DP algorithm

Sequence name Number of frames RMS Bad matches
1: Construction-Site 300 0.020 2.7%
2: Save-Turn 300 0.023 8.5%
3: Squirrel 300 0.023 23.1%
4: Dancing-Light 250 0.068 21.4%
5: Intern-on-Bike 250 0.064 17.5%
6: Traffic-Light 250 0.072 44.8%
7: Crazy-Turn 220 0.056 35.8%
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Table 3. Mean RMS error values (5) and mean bad matching percentages (6) for DP
with temporal propagation

Sequence name Number of frames RMS Bad matches
1: Construction-Site 300 0.020 1.9%
2: Save-Turn 300 0.018 3.3%
3: Squirrel 300 0.022 17.8%
4: Dancing-Light 250 0.068 19.2%
5: Intern-on-Bike 250 0.064 16.4%
6: Traffic-Light 250 0.072 45.3%
7: Crazy-Turn 220 0.054 32.9%

Table 3 illustrates the DP algorithm with temporal propagation (DPt), which
uses

d′y,t = (1 − λ2)dy,t + λ2dy,t−1 where λ2 = 0.2

DP with temporal and spatial propagation (DPts) uses

d′y,t = (1 − λ1 − λ2)dy,t + λ1dy−1,t + λ2dy,t−1

where λ1 = 0.1 and λ2 = 0.1.
Figure 3 shows a comparison between DP and its variants, for all the frames

of Sequence 1. Result show that spatial propagation causes more errors than the
standard DP algorithm. Of course, the road surface is represented as a slanted
plane whose disparity map changes smoothly from 0 (at infinity) to about 50.
This particular geometry violates the assumption of spatial propagation. (Spatial
propagation might be still of interest within object regions.)

Time propagation shows (for all seven sequences) an obvious improvement
by keeping the RMS error about at the local minimum of the standard DP. Of

Fig. 3. Comparing RMS error (5) results between DP and its variants.
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Fig. 4. Percentages of bad matches (6) for DP and its variants

course, driving on a plane means that disparity values should remain constant,
and any deviation from this may be used to detect a change, such as a ‘bumpy’
road. DPts, the combined propagation method, shows a similar outcome as DP
without any propagation.

A comparison with respect to the second quality metric (percentage of bad
matches) is shown in Figure 4. Again, temporal propagation does have a positive
effect, and spatial propagation is worsening results. (Note that this evaluation
is only restricted to the road surface area.)

Now we discuss the Birchfield-Tomasi algorithm (BT). Table 4 shows evalua-
tion results of the BT algorithm (with an occlusion penalty of 25 and a reward
parameter of 5). Compared with DP techniques, the disparity maps and the qual-
ity metrics indicate bad results for BT; disparity values are typically incorrect
on the road surface.

This bad performance may be due to the following two reasons. First, the BT
algorithm is developed on the concept of the existence of depth discontinuities.

Table 4. Mean RMS error values (5) and mean bad matching percentages (6) for the
BT algorithm

Sequence name Number of frames RMS Bad matches
1: Construction-Site 300 0.09 61%
2: Save-Turn 300 0.11 97%
3: Squirrel 300 0.11 81%
4: Dancing-Light 250 0.13 99%
5: Intern-on-Bike 250 0.12 95%
6: Traffic-Light 250 0.14 100%
7: Crazy-Turn 220 0.11 99%
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Fig. 5. The performance of the BT algorithm depends on depth discontinuities. Up-
per left: left image of a stereo input pair. Upper right: road mask. Lower left: depth
discontinuity image. Lower right: calculated disparity map.

However, depth discontinuities may not exist in many real world situations, such
as on the road. For example, Figure 5 shows that there is no edge detected close to
the car.

Fig. 6. Upper row: a stereo input pair of the Tsukuba sequence. Lower left: depth
discontinuity image. Lower right: calculated disparity map using BT.
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Second, the BT algorithm uses a disparity propagation method to fill in untex-
tured areas, both in horizontal and vertical directions. However, within the road
surface area, the true disparities only change very smoothly in vertical direction.

We also run the BT algorithm (as implemented) on Middlebury stereo data,
see Figure 6 for the Tsukuba test sequences. The same problem, as widely visible
in the road scenes, occurs in the untextured area in the upper right corner.
Except of this minor image region, BT appears here to be of advantage in general.

4 Conclusions

The difficulty for the evaluation of stereo techniques on real-world sequences is
the lack of ground truth. This problem is partially solved by approximating the
3D geometry of the road.

The paper illustrated the use of these on-road estimates for evaluating the
performance of variants of dynamic programming stereo on real-world sequences.

Further approximate ground truth (such as estimated poses of simple objects,
such as rectangular faces in the scene) might be accumulated, to go, step by
step, towards a 3D modeling of the actually recorded real scene. Of course, some
objects or features are not of interest with respect to applications such as driver
assistance or traffic monitoring.

The order of the algorithms’ performance is clearly inconsistent to that re-
ported on the Middlebury stereo or optical flow website. This difference shows
the necessity for establishing performance evaluation methods on (various) real-
world sequences (‘Computer Vision beyond Middlebury’ - without neglecting the
very positive influence these engineered test examples had and have; but it is
certainly critical if overdoing one particular way of evaluation).
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Abstract. Currently human-computer interaction, especially emotional interac-
tion, still lacks intuition. In health care, it is very important for the medical ro-
bot, who assumes the responsibility of taking care of patients, to understand the 
patient’s feeling, such as happiness and sadness. We propose an approach to fa-
cial expression recognition for estimating patients’ emotion. Two expressions 
(happiness and sadness) are classified in this paper. Our method uses a novel 
geometric feature parameter, which we call the Emotion Geometry Feature 
(EGF). The active shape model (ASM), which can be categorized mainly for 
non-rigid shapes, is used to locate Emotion Geometry Feature (EGF) points. 
Meanwhile, the Support Vector Machine (SVM) is used to do classification. 
Our method was tested on a Japanese Female Facial Expression (JAFFE) data-
base. Experimental results, with the average recognition rate of 97.3%, show 
the efficiency of our method. 

1   Introduction 

During the past three decades, facial expression analysis has attracted more and more 
attention in the computer vision field for its many applications, such as human-
machine interaction, image understanding, synthetic face animation [1], and web 
services. Facial expressions reflect not only emotions, but also other mental activities, 
social interaction and physiological signals [2]. Therefore, in health care, it is impor-
tant for a medical robot that helps the patient, to recognize the patients’ emotion 
through facial expression [3]. 

Even though much work has been done, facial expression recognition with a high 
accuracy is very difficult due to the non-rigidity and complexity of facial expression. 
The facial expressions were generally defined by psychologists as a set of six basic 
facial expressions [4], including anger, disgust, fear, happiness, sadness, and surprise. 
In this paper we mainly recognize the happy expression and sad expression. 

Many research efforts have been put into facial expression recognition. A survey on 
the facial expression recognition can be found in [5] and [6]. In [6], Pantic and 
Rothkrantz surveyed the research work done in automating facial expression analysis. 
In [5], Fasel and Luettin introduced the most prominent automatic facial expression 
analysis methods and systems presented in the literature. In addition, they also dis-
cussed facial motion and deformation extraction approaches and classification  
                                                           
∗ Corresponding author. 
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methods in [5]. According to the approach used for facial-expression feature extrac-
tion, methods about facial expression recognition can be distinguished as the feature-
based method [7, 8] and the template-based method [9, 10].  

Since the Facial Action Coding System (FACS), which is a system designed to de-
scribe changes in the facial expression in terms of observable activations of facial 
muscles [12], was developed by Ekman and Friesen [11] to code facial expressions by 
Action Units (AUs), several research efforts [12, 13] have been made to recognize 
facial expression based on the Facial Action Coding System (FACS). The Active 
Shape Model proposed by Cootes [14], is one of the sophisticated deformable tem-
plate models to detect facial features [15]. However traditional facial features ex-
tracted by ASM cannot accurately represent facial expressions. 

So, motivated by FACS and ASM, we propose a model of facial expression recog-
nition for estimating patients’ emotion based on EGF, which we introduce in this 
paper. Emotion Geometry Feature (EGF) concentrates on expression features, rather 
than facial features, to form a facial recognition system.  

The rest of the paper is organized as follows. Section 2 introduces our facial ex-
pression recognition model. In this model, we introduce a novel expression feature 
recognizer, EGF. The Active Shape Model, which is used to locate Emotion Geome-
try Feature (EGF) points, is also described simply in Section 2. Using the Japanese 
Female Facial Expression (JAFFE) database as the test data, experimental results and 
analysis are shown in Section 3. Conclusions are drawn in Section 4. 

2   Our Facial Expression Recognition Approach 

Fig. 1 shows the flow diagram of the proposed model. Our model can be divided into 
three parts: one for the creation of The Active shape Model with a set of training 
images; two for the location of facial expression features; three for the extraction of 
EGF and the classification of two expressions.  

ASM created by the training samples can search new facial expression feature 
points in the testing images. After the location of feature points we make efforts to 
analyze the difference between happiness expressions and sadness expressions and 
extract EGF including shape coordinates, the distance between upper lip and lower lip 
and the geometric angle between the line

i iO A
uuuuuv

and the line 
i iO B

uuuuuv
(Fig. 3). Before ap-

plying SVM, it’s very important to scale the input parameters [16]. An important 
objective is to avoid numerical difficulties during the calculation [17]. Ultimately 
classified facial expressions are obtained. 

2.1   Overview of ASM 

Cootes et al. [14] introduced the Active Shape Model (ASM), a method of fitting a set 
of local feature detectors to an object. The ASM procedure starts with a prior knowl-
edge about the object shape, so that the model can extract the object shape in a new 
image by locating the outline of the object. So, we can divide the ASM procedure into 
two steps made up of modeling and matching.  

A linear shape model can be generated by a set of manually labeled training image 
points, the formula is,  
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s s= +x x Φ b , (1) 

where x  is the synthesized shape, x  is the mean of shapes, and sb  is a set of shape 

model parameters, and 
sΦ  is the matrix which consists of eigenvectors of the covari-

ance matrix of the training set, and is an orthogonal matrix. 
Virtually, the matching is to locate the outline points of the object by searching in 

the testing image by using the model built. In searching, we can obtain the optimal 
parameters for location and shape of the face by comparing the reference model from 
the training set to a new test image [24]. 

  
Fig. 1. The flow diagram of the proposed model 

 

Fig. 2. The examples of labeled training data, and each of them is labeled with 66 points around 
the mouth, the nose tip, eyes, and eyebrows 

2.2   Proposed Emotion Geometry Feature 

In this section we compare happiness expressions with sadness expressions, and in-
troduce the concept of the Emotion Geometry Feature (EGF) containing the angle and 
the distance, and the position of shape features. Here, the angle feature and the dis-
tance feature are the novel ones we mainly propose in terms of facial expression rec-
ognition in this paper, and the position information can be found in other papers. 

1). a and b in Fig. 3 illustrate that a mouth which is deformable in a happiness im-
age is wider than one in a sadness images, but the nose tip is rigid in different circum-
stances. So we consider the nose tip, and two corners of the mouth as three vertices of 
a triangle. The coordinates of three vertices are, 
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Fig. 3. Images a, b are labeled O, A, B on nose tip, and corners of mouth, respectively, and 
images c, d are labeled around the mouth. a and c are images with happiness expression, 
meanwhile, b and d are samples with sadness expression 

0 0 1 1 2 2=(x , ) , (x , ) , (x , ) , 1, 2, ,T T T
i i i i i i i i iy y y i N= = =O A B L , (2) 

where N is the number of facial images, x , , 0,1,2,j j
i iy j =  are the x, y coordinate of 

the three vertices in the ith images. 

We can obtain EGF by the angle iα  between the line 
i iO A

uuuuuv
 and the line 

i iO B
uuuuuv

to 

distinguish widths of the mouth with different expressions. And iα  can be calculated 

as, 

arccos( )i i i i
i

i i i i

α •= O A O B

O A O B

uuuuuv uuuuuv

uuuuuv uuuuuv , (3) 

where iα  is angle between line 
i iO A

uuuuuv
 and 

i iO B
uuuuuv

, ‘arccos’ is the arc cosine transfor-

mation function, ‘ • ’ is the inner product of two vectors. 
2). In Fig. 3, we obtain another EGF, which is denoted by the distance between up-

per lip and lower lip by four EGF points from images c and d. Because when you are 
happy or sad, your mouth is generally open or closed, respectively. The distance can 
be calculated by the difference of the coordinates of upper lip points and lower lip 
points. 

3). Fig. 2 shows four examples of labeled training data, and each of them is labeled 
with 66 points around the mouth, the nose tip, eyes, and eyebrows. Using these 66 
points can obtain a vector for planar image shapes, 

T
1 2 n 1 2 n = [x ,x , ... ,x ,y ,y , ... , y ]x , (4) 

where (xi, yi) represents the ith landmark point coordinate, n is the total number of 
points (n=66). After the the searching procedure using ASM, we can obtain a set of 
new shape positions represented by (4). As a position feature, the shape vector is also 
used as an input to SVM with other EGF. 

2.3   Overview of Support Vector Machine 

The Support Vector Machine is used to do classification of two expressions in this 
paper. Here we describe SVM simply. 
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The SVM algorithm [18] needs to solve the following optimization problem, 

, ,
1

1
min

2

l
T

ib
i

C ξ
=

+ ∑
w ξ

w w , (5) 

Subject to ( ( ) ) 1

0, 1, , .

T
i i i

i

y b

i l

φ ξ
ξ

+ ≥ −
≥ =
w x

L
, 

 

where C  is the term which penalizes the training error, b is the bias for the SVM, iξ  

is the ith slack variable vector, , 1, ,n
i R i l∈ =x L  is the ith training vector, 

{ }1,1 ,iy ∈ − is the ith class label, and φ  is a nonlinear mapping function by which 

training vector ix  is mapped into a higher dimensional space. 

Using a kernel function, SVM projects training samples onto a high dimensional 
feature space where these samples can be divided linearly. 

The decision function is given as, 

1

sgn( ( , ) )
l

i i i
i

y K bα
=

+∑ x x , (6) 

here, iα are the Lagrange multipliers of a dual optimization problem. Once (6) is ob-

tained, classification of unseen test data is achieved.  
The selection of a suitable kernel function is very important for the classification of 

SVM. The basic kernel is given as follows,  

1). Radial Basis Function (RBF) kernel:
2

( , ) exp( ), 0.i j i jK γ γ= − − >x x x x  

2). ‘ d ’ degree polynomial kernel: T( , ) ( ) , 0.d
i j i jK rγ γ= + >x x x x  

3). Sigmoid kernel: T( , )= tanh( ).i j i jK rγ +x x x x  

3   Experimental Results and Discussions 

In experiments, our method was applied to a Japanese Female Facial Expression 
(JAFFE) [19] database to evaluate the performance of classification of facial expres-
sions. The database contains 213 images of 7 facial expressions including 6 basic 
facial expressions and 1 neutral posed by 10 Japanese female models. Each image has 
been rated on 6 emotion adjectives by 60 Japanese subjects [19]. 

Because we concentrate on the classification of happiness expression and sadness ex-
pression, 60 images including happiness and sadness of the JAFFE database are selected 
for training and testing. Thus, of the 60 images, 30 are happiness images and another 30 
are sadness images, and 10 Japanese females are included for both expressions.  
The Active Shape Model is generated by 55 images randomly selected from 60 im-
ages. The EGF acquired from the shape coordinates of facial expression feature points 
obtained from the fitting of ASM are used as an input to SVM. An RBF kernel is our  
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Fig. 4. The x-axis represents the number of training samples used as a ratio of the 60 total 
available samples for both expressions, and the y-axis represents the overall average accuracy 
for 50 iterations 

first choice for the SVM system, and we use the cross-validation method to find the 
best parameters C andγ . 

In the training and testing of SVM, we randomly select training samples from the 
set of 30 for each expression and vary the number of training samples from 1 to 29 for 
each expression. So the total ordinal training samples are 2, 4, … , 58. The testing is 
done on the remaining unused samples. The procedure is repeated for 50 iterations for 
each training sample size. We obtain the overall mean accuracy for each respective 
training sample size and plot the mean accuracy as a function of training sample size 
in Fig. 4. And this figure shows that the more training samples that are used, the 
higher the accuracy that can be obtained. From the figure, if we select 80% or even 
more as the training sets, the overall average accuracy is very high and does not have 
large fluctuation. So, we see the 80% as a very important turning point. 

In experiments, ultimately 80% of samples for each class are used for training data, 
while the remaining samples form the test data. The overall mean accuracy using our 
proposed method is 97.3%. The happiness and sadness recognition rates are 98.5% 
and 96.1% respectively. Actually, 97.3% is one half of the sum of 98.5% and 96.1%. 

 In our experiments, we compare the classification performances of the proposed 
approach with other methods on the JAFFE database. For happiness expression rec-
ognition, the average accuracies in the papers [20], [21], [22] and [23] (six basic ex-
pressions are considered in these papers) are 50%, 50%, 30% and 70%, respectively, 
and the accuracy using our method is 98.5%. Meanwhile, for sadness expression rec-
ognition, the mean recognition rates in the above papers are 70%, 60%, 90%, and 
60% respectively, and the recognition rate based on our method is 96.1%. In the paper 
[20], [21], their methods are based on the person-similarity weighted expression fea-
ture, but the similarities of persons obtained by face recognition algorithm are rough, 
thus the “true expression” feature can not be estimated accurately [20]. Nevertheless 
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we extract distinguishable features, EGFs we propose, in terms of expression recogni-
tion in this paper. So we can get a relatively better result than theirs. 

4   Conclusions 

Experimental results based on the Japanese Female Facial Expression (JAFFE) data-
base show that the approach to facial expression recognition for estimating patients’ 
emotion we proposed in this paper, can classify happiness and sadness expressions 
with high accuracy. In this approach, we introduce a novel geometry feature, Emotion 
Geometry Feature (EGF), and Active Shape Model is used to extract the Emotion 
Geometry Feature points, and SVM ultimately classifies happiness and sadness ex-
pressions. We plan to extend happiness expression and sadness expression to six basic 
expressions further by adding more expression features to EGF. 
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Abstract. In this paper, at first a new line symmetry based distance is proposed
which calculates the amount of symmetry of a point with respect to the first
principal axis of a data set. The proposed distance uses a recently developed
point symmetry based distance in its computation. Kd-tree based nearest neigh-
bor search is used to reduce the complexity of computing the closest symmetric
point. Thereafter an evolutionary clustering technique is described that uses this
new principal axis based line symmetry distance for assignment of points to dif-
ferent clusters. The proposed GA with line symmetry distance based (GALS)
clustering technique is able to detect any type of clusters, irrespective of their ge-
ometrical shape and overlapping nature, as long as they possess the characteristics
of line symmetry. GALS is compared with the existing well-known GAK-means
clustering algorithm. Three artificially generated and three real-life data sets are
used to demonstrate its superiority.

1 Introduction

Partitioning a set of data points into some nonoverlapping clusters is an important topic
in data analysis and pattern classification [1]. It has many applications, such as code-
book design, data mining, image segmentation, data compression, etc. Many efficient
clustering algorithms [1] have been developed for data sets of different distributions in
the past several decades. Most of the existing clustering algorithms adopt the 2-norm
distance measure in the clustering process.

In order to mathematically identify clusters in a data set, it is usually necessary to
first define a measure of similarity or proximity which will establish a rule for assign-
ing patterns to the domain of a particular cluster centroid. The measure of similarity
is usually data dependent. It may be noted that one of the basic features of shapes and
objects is symmetry. As symmetry is so common in the natural world, it can be assumed
that some kind of symmetry exists in the clusters also. Based on this, a point symmetry
based distance was developed in [2]. Kd-tree based nearest neighbor search is used to
reduce the complexity of computing the point symmetry based distance. It is then used
to develop a genetic algorithm based clustering technique, GAPS [2]. From the geomet-
rical symmetry viewpoint, point symmetry and line symmetry are two widely discussed
issues. Inspired by this, a line symmetry based distance was proposed in [3]. But the
proposed distance had several drawbacks. The major shortcoming of the old line sym-
metry based distance was that its application is limited to two-dimensional data sets
only. In this paper we have modified the line symmetry based distance proposed in
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[3]. The motivation of our present paper is as follows: to develop a new line symmetry
based distance measure that removes the limitations of [3], and to incorporate it in a ge-
netic clustering scheme that preserves the advantages of the previous GAPS clustering
algorithm [2].

The proposed line symmetry based distance calculates the amount of symmetry of a
point with respect to the first principal axis of the data points in a cluster. Principal com-
ponent analysis (PCA) [4] is used to find the first principal axis of a dataset. The data
set has a maximum amount of variation along the first principal axis. In the proposed
clustering technique we have assigned a particular point to that cluster with respect to
whose principal axis its line symmetry based distance is the minimum. Thus it can de-
tect any shaped cluster which is symmetric with respect to its principal axis. K-means
is a widely used clustering algorithm that has also been used in conjunction with the
point-symmetry based distance measure in [5]. However K-means is known to get stuck
at sub-optimal solutions depending on the choice of the initial cluster centers. In order
to overcome this limitation, genetic algorithms have been used for solving the underly-
ing optimization problem [6]. Genetic Algorithms (GAs) [7] are randomized search and
optimization techniques guided by the principles of evolution and natural genetics, and
having a large amount of implicit parallelism. GAs perform search in complex, large
and multimodal landscapes, and provide near-optimal solutions for objective or fitness
function of an optimization problem. In view of the advantages of the GA-based clus-
tering method [6] over the standard K-means, the former has been used in this article.
The proposed GA with line symmetry distance based clustering technique (GALS) is
able to detect both convex and non-convex clusters of any shape and sizes as long as
the clusters do have some line symmetry property. A Kd-tree based nearest neighbor
search is utilized to reduce the computational complexity of computing the line sym-
metry based distance. The effectiveness of the proposed algorithm is demonstrated in
identifying line symmetric clusters from three artificial and three real-life datasets. The
clustering results are compared with those obtained by the well-known GAK-means
clustering algorithm [6].

2 Newly Developed Line Symmetry Based Distance

Given a particular data set, we first find the first principal axis of this data set using
Principal Component Analysis [4]. Let the eigen vector of the co-variance matrix of the
data set with highest eigen value be [eg1 eg2 eg3 eg4 . . . egd], where d is the dimension
of the original data. Then the first principal axis of the data set is given by:

(x1 − c1)
eg1

=
(x2 − c2)

eg2
= . . . =

(xd − cd)
egd

where the center of the data set is c = {c1, c2, . . . , cd}.
The obtained principal axis is treated as the symmetrical line of the relevant cluster,

i.e., if the data set is indeed symmetrical then it should also be symmetric with respect
to the first principal axis of the dataset identified by the principal component analysis
(PCA). This symmetrical line is used to measure the amount of line symmetry of a
particular point in that cluster. In order to measure the amount of line symmetry of a
point (x) with respect to a particular line i, dls(x, i), the following steps are followed.
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1. For a particular data point x, calculate the projected point pi on the relevant sym-
metrical line i.

2. Find dsym(x, pi) as:

dsym(x, pi) =
∑knear

i=1 di

knear
(1)

where knear unique nearest neighbors of x∗ = 2 × pi − x are at Euclidean dis-
tances of dis, i = 1, 2, . . .knear. ANN (Approximate Nearest Neighbor) library
[8] utilizing Kd-tree based nearest neighbor search is used to reduce the complex-
ity of computing these dis (as described in Section 2.1). Then the amount of line
symmetry of a particular point x with respect to the symmetrical line of cluster i, is
calculated as:

dls(x, i) = dsym(x, pi) × de(x, c) (2)

where c is the centroid of the particular cluster i and de(x, c) is the Euclidean
distance between the point x and c.

It can be seen from Equation 1 that knear cannot be chosen equal to 1, since if x∗

exists in the data set then dsym(x, pi) = 0 and hence there will be no impact of the
Euclidean distance in the definition of dls(x, i). On the contrary, large values of knear
may not be suitable because it may underestimate the amount of symmetry of a point
with respect to the first principal axis. Here knear is chosen equal to 2. It may be noted
that the proper value of knear largely depends on the distribution of the data set. A
fixed value of knear may have many drawbacks. For instance, for very large clusters
(with too many points), 2 neighbors may not be enough as it is very likely that a few
neighbors would have a distance close to zero. On the other hand, clusters with too few
points are more likely to be scattered, and the distance of the two neighbors may be too
large. Thus a proper choice of knear is an important issue that needs to be addressed in
the future.

It is evident that the symmetrical distance computation is very time consuming be-
cause it involves the computation of the nearest neighbors. Computation of dls(x, i) is
of complexity O(N). Hence for N points and K clusters, the complexity of computing
the line symmetry based distance between all points to different clusters is O(N2K). In
order to reduce the computational complexity, an approximate nearest neighbor search
using the Kd-tree approach is adopted in this article.

2.1 Kd-tree Based Nearest Neighbor Computation

A K-dimensional tree, or Kd-tree is a space-partitioning data structure for organizing
points in a K-dimensional space. A Kd-tree uses only those splitting planes those are
perpendicular to one of the coordinate axes. ANN (Approximate Nearest Neighbor) is
a library written in C++ [8], which supports data structures and algorithms for both
exact and approximate nearest neighbor searching in arbitrarily high dimensions. In
this article ANN library utilizing Kd-tree for nearest neighbor search is used to find dis,
where i = 1, . . . , knear, in Equation 1 efficiently. Thus, it requires the construction
of a Kd-tree consisting of N points in the data set, where N is the size of the data set.
The construction of Kd-tree requires O(NlogN) time and O(N) space [9]. Friedman et
al. [10] reported O(logN) expected time for finding the nearest neighbor using Kd-tree.
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3 GALS Clustering: Genetic Line Symmetry Distance Based
Clustering Technique

In this section, a genetic clustering scheme, along the lines of the newly developed ge-
netic clustering technique with point symmetry based distance (GAPS) [2], is proposed.
Unlike GAPS, here the newly defined line symmetry based distance is used for cluster
assignment and for calculation of fitness function. A brief overview of the basic steps
of GALS are enumerated below. Given a particular value of the number of clusters, K ,
GALS partitions the data in K line symmetrical clusters.

3.1 String Representation and Population Initialization

The basic steps of GALS closely follow those of the conventional GA. Here center
based encoding of the chromosome is used. Each string is a sequence of real numbers
representing the K cluster centers and these are initialized to K randomly chosen points
from the data set. This process is repeated for each of the Popsize chromosomes in the
population, where Popsize is the size of the population. Thereafter five iterations of
the K-means algorithm is executed with the set of centers encoded in each chromosome.
The resultant centers are used to replace the centers in the corresponding chromosomes.
This makes the centers separated initially.

3.2 Fitness Computation

In order to compute the fitness of the chromosomes, the following steps are executed.
•Find the first principal axis of each cluster using principal component analysis [4].
This first principle axis is treated as the symmetrical line for each cluster.
• For each data point xi, i = 1, . . .N , where N is the total number of points present
in the data set, calculate the projected point pki on the first principal axis of cluster Ck,
k = 1, . . .K , where K is the total number of clusters. Then compute dls(xi, k) using
Equation 2.
• The point xi is assigned to cluster k iff dls(xi, k) ≤ dls(xi, j), j = 1, . . . , K, j �= k
and dsym(xi, pki) ≤ θ. For dsym(xi, pki) > θ, point xi is assigned to some cluster
m iff de(xi, cm) ≤ de(xi, cj), j = 1, 2 . . .K, j �= m. In other words, point xi is
assigned to that cluster with respect to whose principal axis its LS-distance is the min-
imum, provided the total “symmetricity” with respect to it is less than some threshold
θ. Otherwise assignment is done based on the minimum Euclidean distance criterion as
normally used in [6] or the K-means algorithm.

The value of θ is kept equal to the maximum nearest neighbor distance among all the
points in the data set [2].

After the assignments are done, the cluster centres encoded in the chromosome are
replaced by the mean points of the respective clusters. Subsequently for each chro-
mosome clustering metric,M, is calculated as: M =

∑K
i=1

∑ni

j=1 dls(x
j
i , i), where ni

denotes the number of points in ith cluster, and xj
i denotes the jth point of the ith clus-

ter. Then the fitness function of that chromosome, fit, is defined as the inverse of M ,
i.e., fit = 1

M . This fitness function, fit, will be maximized by using genetic algorithm.
(Note that there could be other ways of defining the fitness function).
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3.3 Genetic Operators

Roulette wheel selection is used to implement the proportional selection strategy. Here,
we have used the normal single point crossover [7]. Each chromosome undergoes mu-
tation with a probability µm. We have used the mutation operation similar to that used
in GA based clustering [6]. In GALS, the processes of fitness computation, selection,
crossover, and mutation are executed for a maximum number of generations. The best
string seen upto the last generation provides the solution to the clustering problem.
Elitism has been implemented at each generation by preserving the best string seen upto
that generation in a location outside the population. Thus on termination, this location
contains the centers of the final clusters.

4 Implementation Results

The experimental results comparing the performances of GALS and GAK-means clus-
tering algorithms are provided for three artificial and three real-life data sets. For the
newly developed GALS clustering, a value of θ is determined from the data set as
discussed in Section 3.2. For both the genetic clustering techniques, GAK-means and
GALS, the following parameter values are kept: population size=100, number of gen-
erations=30, probability of crossover = 0.8, probability of mutation=0.1. Increasing the
number of generations did not improve the performance of any of these algorithms.
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Fig. 1. (a) Line 2 2 (b) Partitioning obtained by GAK-means algorithm for K = 2 (c) Partitioning
obtained by GALS clustering algorithm for K = 2
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Fig. 2. (a) Mixed 3 2 (b) Partitioning obtained by GAK-means algorithm for K = 3 (c) Parti-
tioning obtained by GALS clustering algorithm for K = 3
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Fig. 3. (a) Ring 2 2 (b) Partitioning obtained by GAK-means algorithm for K = 2 (c) Partition-
ing obtained by GALS clustering algorithm for K = 2

• Line 2 2: This data set, used in [2], consists of two bands as shown in Figure 1(a),
where each band consists of 200 data points. The final clustering results obtained by
GAK-means and GALS clustering techniques are provided in Figures 1(b) and 1(c),
respectively. As expected GAK-means performs poorly for this data since the clusters
are not hyperspherical in nature. Our proposed GALS is able to detect the proper parti-
tioning from this data set as the clusters possess the line symmetry property.

• Mixed 3 2: This data set, used in [11] is a combination of ring-shaped, compact and
linear clusters shown in Figure 2(a). The total number of points in it is 350. The final
clustering results obtained after application of GAK-means and GALS are shown in
Figures 2(b), and 2(c), respectively, where GAK-means is found to fail in providing the
proper partitioning. The proposed GALS is able to detect the proper partitioning.

• Ring 2 2: This data set is distributed on two crossed ellipsoidal shells, shown in Fig-
ure 3(a). This is a non-convex symmetrical data set, used in [2]. The final clustering
results corresponding to GAK-means and GALS are shown in Figures 3(b) and 3(c),
respectively. GAK-means again fails here in detecting ellipsoidal shaped clusters. But
as the clusters present here are line symmetric, the proposed GALS is able to detect the
clusters well.

•Two leaves1: Most of the natural scenes, such as leaves of plants, have the line symme-
try property. Figure 4(a) shows the two real leaves of Ficus microcapa and they overlap
a little each other. First the sobel edge detector [12] is used to obtain the edge pixels in
the input data points which is shown in Figure 4(b). The obtained partitionings after ex-
ecution of both GAK-means and GALS clustering techniques are shown in Figures 4(c)
and 4(d), respectively. The proposed GALS again demonstrates a satisfactory clustering
result.

•Iris: This data set, obtained from [13], represents different categories of irises charac-
terized by four feature values [14]. It has three classes: Setosa, Versicolor and Virginica.
It is known that the two classes (Versicolor and Virginica) have a large amount of over-
lap while the class Setosa is linearly separable from the other two. As this is a higher
dimensional data set, no visualization is possible. In order to measure the segmentation
solution quantitatively, we have also calculated Minkowski Score(MS) [15]. This is a
measure of the quality of a solution given the true clustering. For MS, the optimum
score is 0, with lower scores being “better”. The proposed GALS clustering technique
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Fig. 4. (a) Two leaves1 data (b) Edge pixels of leaves as input data points (c) Partitioning obtained
by GAK-means for K = 2 (d) Partitioning obtained by GALS for K = 2

obtains a MS score of 0.603745±0.02 for this data set while the MS score correspond-
ing to the partitioning provided by GAK-means algorithm is 0.6256 ± 0.013.

• Cancer: Here we use the Wisconsin Breast Cancer data set, obtained from [13]. Each
pattern has nine features corresponding to clump thickness, cell size uniformity, cell
shape uniformity, marginal adhesion, single epithelial cell size, bare nuclei, bland chro-
matin, normal nucleoli and mitoses. There are two categories in the data: malignant and
benign. The two classes are known to be linearly separable. Again for this data set the
performance of GALS-clustering is slightly better than that of GAK-means in terms of
mean MS. GALS clustering technique attains MS-score of 0.353192 ± 0.011 for this
data set while GAK-means attains MS score of 0.367056 ± 0.024.

5 Discussion and Conclusion

In this paper a new line symmetry based distance is proposed which measures the to-
tal amount of symmetry of a point with respect to the first principal axis of a cluster.
Kd-tree based nearest neighbor search is used to reduce the complexity of symmetry
based distance computation. A genetic clustering technique (GALS) is also proposed
here that incorporates the new line symmetry based distance while performing clus-
ter assignments of the points and in the fitness computation. The major advantages of
GALS are as follows. Like GAK-means, use of GA enables the algorithm to come out
of local optima, making it less sensitive to the choice of the initial cluster centers. The
proposed clustering technique can cluster data sets with the property of line symmetry
successfully. The effectiveness of the proposed algorithm is demonstrated in detecting
clusters having line symmetry property from three artificial and three real-life data sets.
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Other than the clustering experiments using the leaf example, it is an interesting future
research topic to extend the results of this paper to face recognition.
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Class-Dependent Feature Selection for Face
Recognition
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Abstract. Feature extraction and feature selection are very important
steps for face recognition. In this paper, we propose to use a class-
dependent feature selection method to select different feature subsets
for different classes after using principal component analysis to extract
important information from face images. We then use the support vector
machine (SVM) for classification. The experimental result shows that
class-dependent feature selection can produce better classification ac-
curacy with fewer features, compared with using the class-independent
feature selection method.

1 Background

Automatic face recognition has experienced a relatively long process from the
1960s until now. In the 1960s, the first semi-automated face recognition system
was developed [1]. The recognition process of this system included the location
of features like eyebrows, eyes, noses and so on, calculation of distances and
ratios to a common reference point and template matching. Later in the 1970s,
some subjective features like hair color and lip thickness were developed by
Goldstein et al. [2] to automate the recognition system. However, these two early
solutions have one drawback, namely manually computing the measurements and
locations. In order to deal with this problem, in the 1980s, Kirby and Sirovich [3]
applied principal component analysis (PCA) to extract important information
by singling out important face features. This application was thought of the first
successful example of automatic face recognition systems. Following that, more
feature extraction techniques like independent component analysis (ICA) [4] and
linear discriminant analysis (LDA) [5], [6] were proposed.

Face recognition has three basic sequential processes: preprocessing, feature
extraction or selection, and recognition. For different images or databases, pre-
processing can vary from noise removal, normalization, to space transformation,
e.g., Fourier transformation [7]. Since a large amount of information is stored in
images and it is impractical to use all information in computation, feature ex-
traction or feature selection [8], [9] is very necessary. Various feature extraction
techniques, for example, PCA [10], [11], [12] and its variants [13], [5], fisher linear
discriminant analysis (FLDA) [5], [6], [7], general tensor discriminant analysis

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 551–558, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



552 Z. Nina and L. Wang

(GTDA) [14], and ICA [4], have been used to extract face features [7]. Feature
selection is another way of obtaining compact face information. This involves
first determining some characteristics of faces, such as the distance between
eyes, the width of nose, and the length of jaw line [15], [16], then combining
all those information to form a feature vector. Although features obtained by
this method can be easier to interpret than those by feature extraction, it is not
cost-effective work to determine which features are desirable for face images and
then compute those features. In this case, feature extraction is more reliable to
obtain fully representative information of face images, which will be our first
step in dimensionality reduction. Recognition of faces also has many kinds of
techniques, such as template matching [1], [11] and various classifiers [17], [18],
[19], [20], [21].

Considering the possibility that different features have different classification
power for different classes, in this paper, we propose to adopt the class-dependent
feature selection [22], [23], [24] method for further dimensionality reduction in
the second step. Class-dependent feature selection chooses a feature subset for
each class, i.e., different feature subsets for different classes. The usual class-
independent feature selection method chooses a common feature vector for all
classes. This is an novel application which is not to show that our method out-
performs all other existing methods on classification performance, but intends to
show that class-dependent feature selection is better than class-independent fea-
ture selection. Therefore, this application will provide the possibility to employ
the idea of class-dependent feature selection with many other feature extraction
methods.

This paper is organized as follows. In section 2, we briefly review PCA and
then describe the class-dependent feature selection method. In section 3, we
utilize the SVM to realize the classification on the ORL data set [25] and com-
pare results of class-dependent feature selection method with those of class-
independent feature selection method, and also some published results. In section
4, we make a discussion about the present work.

2 Methodology

As an efficient dimensionality reduction technique in data analysis and pattern
recognition, PCA [10], [13], [11], [7], [26] has already been widely used in face
recognition systems. PCA [27], [10], [12] computes principal components of im-
ages, thereby transforming training images (denoted as matrix X with N samples
in rows and p features in columns) into a new space of the principal components.
The basic steps are: (1) calculating the covariance matrix of data matrix X ; (2)
determining eigenvalues and eigenvectors of this covariance matrix; (3) selecting
m (m < p ) significant eigenvectors to form transformation matrix T with the
first row corresponding to the most important eigenvectors; and (4) obtaining
the projected images by calculating Y T = TXT , here Y is a matrix with N rows
and m columns. Through PCA, the dimension of original images is reduced to
m . The dimension of kept components decides the amount of information lost.
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After feature extraction, we propose to select class-dependent features from
obtained principal components. For the case of high-dimensional features, it is
impractical for us to sequentially add all features and evaluate all feature subsets.
Since in this paper we will adopt the ORL face database [25] which has a very
high dimension in our experiment, each time we will add 3 features into the
previous feature subset and stop at a predetermined threshold of the dimension,
e.g., 30. Each feature subset is evaluated by the SVM and the feature subset with
the highest classification accuracy is chosen as the superior one of the current
class.

The class-dependent feature selection is described as follows:

1. Based on the strategy of ”one-against-all” [28], [29], we convert a multi-
class problem into several two-class problems. For example, the problem of
classifying face images is converted into 2-class classification problems, where
each problem only includes two classes, i.e., one being the original class and
the other one consisting of all the other classes.

2. For each 2-class problem, we adopt the class separability measure (CSM)
[30], [29] to evaluate features’ ranking for each class. The CSM evaluates how
well two classes are separated by a feature vector. The greater the distance
between different classes, the easier the classification task. For example, if Sw

denotes the within-class distance and Sb denotes the between-class distance,
the ratio Sw/Sb can be used to measure the separability of the classes. The
smaller the ratio, the better the separability. The importance of a feature
may be evaluated by ratio Sw/Sb calculated after the feature is removed
from the data set, i.e., S′

w/S′
b. The greater S′

w/S′
b is, the more important

the removed attribute is. Hence we may evaluate the importance level of
the attributes according to the ratio Sw/Sb with an attribute deleted each
time in turn. Each class will have a feature importance ranking list. For
example, for problem 1, its ranking list of features measures the importance
of features in classifying class 1 from the other classes. Therefore, this feature
importance ranking list is specific to class 1. Likewise for class 2, class 3,. . .,
and class C.

Sw =
C∑

c=1

Pc

nc∑
j=1

[
(Xcj − mc) (Xcj − mc)

T
]1/2

(1)

Sb =
C∑

c=1

Pc

[
(mc − m) (mc − m)T

]1/2

(2)

Here Pc is the probability of the c-th class, and nc is the number of samples
in the c-th class. Xcj is the j-th sample in the c-th class, mc is the mean
vector of the c-th class, and m is the mean vector of all samples in the data
set.

3. According to feature importance ranking lists obtained in step 2, we need to
determine a feature subset for each class. We can choose a classifier, e.g., the
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SVM, to evaluate feature subsets and determine the most contributive one.
For each class, each feature subset is formed by sequentially adding one or
several features into the previous subset. The feature subset with the highest
classification accuracy is chosen as the most contributive one. Usually, we
ranked all d features and formed all d feature subsets as follows. The top 1
feature consists of the first feature subset. The second feature subset consists
of the top two ranked features. The d-th feature subset includes all features.
Whereas, in practical situation, e.g., for the case of high-dimensional fea-
tures, it will be computationally expensive for us to sequentially form all
feature subsets and evaluate them. In this paper, we will adopt ORL face
database [25] which has a very high dimension in our experiment. Each time
we will try add 3 features into the previous feature subset and stop at a
predetermined threshold of the dimension, e.g., 30. We also evaluated all 30
feature subsets, i.e., top first, top first and second feature, ...., top 30 features
and found that accuracies are increasing. When more features are added, the
accuracies of the formed feature subsets keep stable. Each feature subset is
evaluated by the SVM and the feature subset with the highest classification
accuracy is chosen as the superior one of the current class.

In order to conveniently describe the class-dependent feature subset, we at-
tempt to use a feature mask to express the state of each feature. The feature
mask only has two elements ’0’ and ’1’, in which ’0’ represents the absence of
a particular feature and ’1’ represents the presence of the feature. For example,
considering a data set with 5 features {x1, x2, x3, x4, x5} , if the optimal feature
subset obtained is with the second and forth features deleted, the feature mask
for this feature subset should be {1, 0, 1, 0, 1}.

After selecting class-dependent feature subsets, we adopt the SVM with RBF
kernel [30], [29] for the classification because of many advantages of the SVM,
such as fast speed, high recognition rate. Since class-dependent features can not
directly be input into the original SVM, we adopt the class-dependent SVM clas-
sifier as [29] described. Based on the class-dependent feature mask, we construct
a classifier model for each class, i.e., forming class-dependent models. Each model
is trained using feature subsets specific to the corresponding class. Each testing
data is filtered by the feature mask of the corresponding class before input into
one model. The maximum value of all models’ outputs determines the class of
the testing data.

3 Experiments

3.1 Data Description and Preprocessing

In this experiment, we selected the Cambridge ORL face database [25] as our
experimental data. It includes 40 subjects (faces or classes), each of which has 10
slightly different face images. Therefore, the total number of face images is 400.
Each face image is in gray scale and has 112 by 92 pixels. For processing conve-
niently, we reshaped each original image matrix into a column vector, which has
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the dimension 10304. All image vectors constitute a new image matrix with 400
samples in rows and 10304 features in columns. Considering the effect of illumi-
nation on different face images, we adopted the normalization as [7] described,
i.e., subtracting the mean of each image and divide by the variance. After that,
all images were equally distributed in terms of energy [7].

3.2 Implementation and Results

Since normalized face images have a high dimension, PCA is adopted to extract
principal components for each face image. The dimension of the original face im-
age is reduced to 399 by PCA. The class-dependent feature selection method is
used to further reduce features for each class. Before feature selection, we sepa-
rate all 400 images faces into 200 training images and 200 testing images. For the
training set, we calculate features’ importance ranking for each class. Although
principal components (i.e., features obtained from PCA) are sorted according
to another importance measure, i.e., the eigenvalue, we believe that features’
ranking for different classes are different. In Table 1, we provide the number of
features selected for each class. We can see that class-dependent feature selection
method selected rather different features for different classes, i.e., as many as 8
features for several classes and as few as 1 features for other classes (See Table 1).
When combining features subsets of all classes in Table 1, we include 26 different
features in the union set. Through the SVM, we obtained different feature masks
for different classes. For example, in Table 2, we provide feature masks of the first
5 classes. For classification, the 200 testing samples were processed in the same
way as the training set and tested on a class-dependent SVM classifier to pro-
duce a 98% classification accuracy, which is better than the classification result
by the class-independent feature selection method (see Table 3). Table 3 provides
classification results of different number of features (principal components) by
using normal class-independent feature selection method. The class-independent
feature selection method selected 30 features to produce classification accuracy
97.5%. Finally we compared our result with that of some existing methods in Ta-
ble 4. All those experiments were done on the ORL database but with different
recognition methods. The result shows that our method is very comparable.

4 Summary and Discussion

In this paper, we applied the class-dependent feature selection methods [29] on
face recognition problems, after processing the whole data set using PCA. Al-
though many fully-fledged feature extraction techniques like PCA, LDA and
elastic bunch graph matching [31] exist and have good successful experiences in
face recognition, we still proposed this novel application on face recognition to
detect if our proposed class-dependent method has advantages in classification
performance over the class-independent feature selection method. In the process
of experiments, PCA was used as a preprocessing step to extract face features.
Then both class-dependent and class-independent feature selection were used to
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Table 1. Number of features selected for each classes

Class No. 1 2 3 4 5 6 7 8 9 10

Number of features 2 3 4 7 3 1 3 2 3 2

Class No. 11 12 13 14 15 16 17 18 19 20

Number of features 3 3 1 2 4 5 3 2 1 5

Class no. 21 22 23 24 25 26 27 28 29 30

Number of features 2 2 3 1 6 3 2 8 2 1

Class no. 31 32 33 34 35 36 37 38 39 40

Number of features 2 5 3 2 6 8 5 4 3 8

Table 2. Feature masks of the first 5 classes

Class 1 1 1 0 0 0 0 0 0

Class 2 1 1 1 0 0 0 0 0

Class 3 1 1 1 1 0 0 0 0

Class 4 1 1 1 1 1 1 1 0

Class 5 1 1 1 0 0 0 0 0

Table 3. Classification accuracy for variant numbers of features using class-
independent feature selection method (10 fold cross validation)

Number of components
(features)

5 10 15 20 25 30

Accuracy 80.50% 87.50% 92.00% 94.75% 95.25% 97.50%

Table 4. Comparisons of classification accuracies with existing methods

Method Proposed Class-
independent
after PCA

Kim et al.’s
[13]

Lu et al’s [6]

Classifier SVM with RBF
kernel

SVM with RBF
kernel

Linear SVM Nearest
Neighbor

Number of se-
lected features

26 30 120 22

Accuracy 98.0% 97.5% 97.5% 96.0%
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select features for recognition. The classification results showed that the intro-
duction of our proposed method selected features specific for each class (face).
Therefore, the feature dimension of each class is less than that produced by the
class-independent feature selection. Also a better classification performance is
obtained compared to normal class-independent feature selection methods. Be-
sides, the corresponding face recognition system after class-dependent feature
selection has one more advantage over the normal face recognition system: when
adding one more class (face) into the existing system, class-dependent recogni-
tion system does not need to re-train whole system [22]. However, the recognition
system based on class-independent feature selection needs to re-train the whole
system if one more class is added.

Noticeably the class-dependent feature selection method is likely to be more
computationally expensive than other conventional feature selection methods.
However, the extra computational cost may be worthwhile in certain applications
where improvements of accuracy or reduction of data dimensionality are very
important and meaningful.
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Abstract. Magnetic resonance imaging (MRI) is a imaging and diag-
nostic tool widely used, with excellent spatial resolution, and efficient in
distinguishing between soft tissues. Here, we present a method for semi-
automatic identification of brain tissues in MRI, based on a combination
of machine learning approaches. Our approach uses self-organising maps
(SOMs) for voxel labelling, which are used to seed the discriminative
clustering (DC) classification algorithm. This method reduces the inten-
sive need for a specialist, and allows for a rather systematic follow-up of
the evolution of brain lesions, or their treatment.

1 Introduction

Magnetic resonance imaging (MRI) is a widely used clinical imaging technique.
Advantages over other methods include its non-invasiveness, the ability to dis-
tinguish between soft tissues, and an excellent spatial resolution [1]. Depending
on the type of evaluation required [2,3], a number of possible acquisition setups
can be used. In most clinical applications, several such sequences are acquired.

Here, we propose a technique for MRI semiautomatic analysis. The goal is to
improve tissue segmentation, allowing for an easier detection and follow up of
brain pathologies. This method should reduce the workload of medical doctors,
as well as enable systematic screening of large groups of patients. Simple human
interaction is used to select relevant clusters.

In [4] we observed that a reliable use of independent component analysis (ICA,
[5]), used as a pre-processing technique, improved the analysis of MR images. Due
to a clear increase in tissue contrast, the components offer themselves, by simple
visual inspection, valuable segmentation information. Subsequent segmentation
was then based on self-organising maps (SOM, [6]).

This study builds on previous results, in a more systematic way of classifying
brain tissues and moreover, the ability to obtain partial volume information
(PVI). Emphasis is put on analysing degenerative diseases, such as multiple
sclerosis (MS).

We used discriminative clustering (DC, [7]) to perform the classification of
the brain tissues. Since DC is a supervised method, it requires labelled training
1 We acknowledge Aarto Klami for his support in the DC implementation.
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data. Yet, the targeted classification task was unsupervised, i.e., no labelled data
was available. A set of labelled data was then produced based on a boosting
combination of ICA and SOM, following the procedure in [4].

The method was evaluated in a simulated brain, to obtain a quantitative
performance evaluation. The results are then compared to the ones obtained in
a recent voxel classification method proposed by Tohka et al. [8]. The method
from Tohka et al. uses finite mixture models to do brain image classification,
where the parametric form of a tissue pdf is assumed to be known.

Our basic assumption is that each image can be considered as a linear combi-
nation of contributions from each tissue present. Although not strictly correct,
this assumption has proven to be a rather good first approximation.

2 Data

We used two sets of simulated MRI from the BrainWeb database [9,10], with 1mm3

of spatial resolution and no intensity nonuniformity. The first set, henceforth called
normal-set, contained T1, T2 and proton density (PD) sequence images, with 3%
of noise. The only tissues retained for analysis were white- and grey-matter and
cerebrospinal fluid (CSF). The second set (lesion-set, see Fig. 1) was generated
using the noiseless moderate MS phantom. It consisted of 13 images with various
echo and repetition times, TE and TR respectively. The time of echo (TE) and
repetition (TR) were chosen so that the typically used T1, T2 and PD images were
included [11]. The remaining 10 images were obtained so that (TE,TR) were dis-
tributed between T1 and PD (3 images) and PD and T2 (7 images).

3 Methods

With the objective of obtaining the PVI of the different voxels, a method provid-
ing voxel memberships to different classes is needed. Furthermore, since MS is a
degenerative disease, it is valuable to evaluate its various stages, as well as the di-
rections of progression of the disease. Discriminative clustering is perfectly suited
for this task. To estimate the needed DC label information, we run a consistency
study based on SOM. To obtain better results, we also denoised the SOM input
data with ICA. In the following, we will review each step of the analysis method.

3.1 Independent Component Analysis on the Innovation

We assume the observation vector, x, to be generated as a linear combination of
statistically independent sources s, i.e., x = As. ICA estimates s by optimising a
number of possible contrast functions, typically based on high-order statistics [5].

ICA on the innovations was derived in [12] to deal with time-dependent stochas-
tic processes. Innovation is defined as the error between a stochastic process and
its best prediction given its past,i.e. it contains all the process information not
explained by a predictive model. The benefit of applying ICA on the innovation
process rather than on the original data is that the innovations are usually more
independent and more non-gaussian than the original processes [12].



Partial Clustering for Tissue Segmentation in MRI 561

Fig. 1. Simulated brain MR images used in this study

The FastICA algorithm [13] was run one hundred times with different initiali-
sations, to obtain a reliable set of ICs (see [14] for a description of such consistency
approaches). From this set, only the first components are selected as SOM inputs.

3.2 Self-Organising Maps

The self-organising maps perform a lattice projection that preserves similarity
information from the input space, through competitive and Hebbian learning
rules [6]. After training, the spatial locations of the neurons in the lattice are
indicative of the intrinsic statistical features contained in the input patterns; the
continuous input space is mapped on a discrete set of prototype vectors. Yet,
results may vary for different initialisations of the lattice.

To produce quantitative descriptions of data properties, interesting groups of
map units, i.e., clusters, must be selected [15]. Clustering map units, instead of
the original data has the significant advantage that the set of prototypes can be
significantly smaller than the original data set, resulting in a computational cost
reduction. In clustering based on local minima, the centroids of the clusters are
chosen to be the local minima of the SOM [15]. A map unit is a local minimum
if its average distance to its neighbouring map units is larger than any of the
corresponding distances to its neighbours. The rest of the map units are then
assigned to the cluster of the nearest centroid in the Euclidean sense.

SOM representations of the data may vary for different initialisations of the
lattice. In order to find a set of training labels, we exploited this variability. After
training multiple randomly initialised SOMs, voxels that grouped consistently
together were selected as representing stable properties in the input space. This
is followed by a very limited human interaction, to join groups corresponding
to identical tissue types, hence creating a set of labelled “super voxels”. This
improves the performance by reducing the number of clusters used in the classi-
fication, without any major change in the overall outcome.
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3.3 Discriminative Clustering

DC [7] is used in the final voxel classification. It assumes that data comes in pairs
(x, c). During learning, the primary data vectors x ∈ Rn are paired with aux-
iliary label data c, i.e. the “super-voxels” found with SOM. DC is particularly
suited to obtain a good evaluation of degenerative lesions, where there is a con-
tinuous transition between healthy and lesioned tissues, like demyelinated white
matter in MS. Such is made possible through a distance measure within the
clusters. This technique is also different from classification in that the number
of clusters is not constrained to be equal to the number of classes c. The combi-
nation of these properties – the distance measure and the ability to have more
clusters than classes – makes DC perfect for tissue segmentation problems, since
different combinations of tissues in a voxel occur, especially on tissue borderlines.
Other classification techniques were experimented, for instance support-vector
machines ([16]), but their results were far less impressive than the ones obtained
with DC. For this reason and due to the limited space avaliable, these results
are not presented here.

The label data is used to define relevance in the primary data space [7].
DC partitions this space by interesting variation, with the latter measured by
homogeneity of the auxiliary data [17]. Important variations in x are revealed
by the conditional density. The goal is then to partition the primary data space
into clusters that are local and homogeneous in terms of their auxiliary data [7].
Locality is enforced by defining the clusters as Voronoi regions in the primary
data space: x ∈ Vj , if ‖x − mj‖ ≤ ‖x − mk‖ for all k. The Voronoi regions
are uniquely determined by the parameters {mj}. Homogeneity is enforced by
assigning a distributional prototype ψji = p(ci|x, x ∈ Vj) to each Voronoi region
j, and by searching for different sets of partitions, capable of predicting auxiliary
data with the prototypes.

The resulting model is a piecewise-constant generative model for p(c|x), where
its logarithmic posterior probability is maximised [17]. The cluster “membership
function” can be of a gaussian-like form [7], where the smoothness is controlled
by the standard deviation σ. It was set to 0.3.

A problem with pure DC is that the categories may over-fit to apparent depen-
dencies in a small data set. One of the regularisation methods for DC consists in
favouring equal distribution of data into the clusters [18]. This allows to reduce
the over-fitting and to overcome the ”dead unit“ problem, common in k-means
after bad initialisation. In order to get the best results, the same amount of
“super-voxels” is used for every tissue, avoiding biased results. The regularising
parameter was also chosen through cross-validation.

The DC classification was done with three (normal-set) and four (lesion-set)
cluster prototypes, corresponding to the number of tissues present in the data,
leading to the best visual data representation. If the number of prototypes is too
high, the distinction of the different tissues would lead to imperceptible visual
results. On the other hand, if the prototype number is low, the clusters would
start to join different classes, rendering the classification useless. The initial
points for the prototypes of the discriminative clustering were calculated using
k-means.
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Fig. 2. Independent components obtained from the lesion-set. Each image highlights
a particular tissue: lesion on the left, CSF in the centre and grey matter on the right.

Table 1. Numerical results of the ”super-voxels“ in the lesion-set

Tissue CSF White Gray MS Lesion
normal # of ”super-voxels“ 1134/1438 6464/9369 3841/7213 –

set Correct classification 100% 99.9% 99.5% –
lesion # of ”super-voxels“ 901/2944 4526/9429 2706/6855 102/57
set Correct classification 100% 100% 100% 50%

4 Results

4.1 Image Pre-processing

After masking and registration, ICA on innovations was run in the 13 images
of the lesion-set, to verify if the method provides good results in these cases.
Fig. 2 shows the components found. In the case of the normal-set, since only
three sequences were avaliable, ICA was not used.

4.2 Super-Voxels

After pre-processing, the “super-voxels” were obtained by sorting the grouped re-
sults of multiple SOM runs. In the lesion-set, the accuracy of the selection falters
only for the MS lesion. This lower reliability may be due to its degenerative nature.

Using only three sequences from the lesion-set (PD, T1 and T2), it is impos-
sible to find lesion ”super-voxels“. This fact corroborates the claim that multi-
spectral images are of great importance in lesion detection.

4.3 Tissue Classification

We start by analysing the results in the normal-set. The results are measured
in terms of the misclassification rate, i.e., the ratio between the correctly clas-
sified voxels and the total number of voxels classified. In order to calculate this
measure, we used a ”hard“ classification setting where one voxel belongs to the
class with more contribution in that voxel, i.e. p(x ∈ ck) > p(x ∈ ci,∀i	=k).

Normal-set:The results for the normal-set are shown in Fig. 3 and in Tab. 2.
From visual inspection, it is clear that the DC results are consistent and with a
good correspondence to the tissues. Examining the numerical results, the method
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Fig. 3. Classification result for each class in the normal-set. CSF, white and grey matter
from left to right. The classification is shown overlaying a T2 sequence. Voxels in black
correspond to the voxels that have most of their membership in that class.

Table 2. Numerical results of the DC classification. The percentages shown correspond
to the amount of voxels correctly classified.

Tissue CSF White Gray MS Lesion Misclassification rate
normal-set 99.70% 97.05% 96.42% – 3.11%
lesion-set 96.61% 98.90% 98.26% 34.38% 2.61%

achieves very good results, with a small percentage of error 3.11%, lower than the
best result obtained using the method [8], where data with 5% of noise was used.

Lesion-set: The classification results for the lesion-set are presented in Tab. 2
and Fig. 4(a). DC reaches a global misclassification rate of 2.61%. This result
is in accordance with the one obtained in the normal-set, since there is no noise
but there is an extra class (MS lesion). Looking only at the results of the lesion
voxels (34.38%), it seems that the method does not perform particularly well for
this tissue type. Since PVI for all the tissues was avaliable in the ground-truth,
we analysed the causes for such a poor classification rate.

One of the great advantages of DC is the membership classification for each
voxel to each class. Since the misclassification rate ignores PVI, taking into
account only the class with more contribution in each voxel, we used the root

mean square (RMS) error instead [3]
(
rms errork =

√∑
i (x̂ik − xik)2/N

)
to

evaluate the results, where x̂ik and xik are the estimated and true partial volumes
of the class k at voxel i, and N is the number of voxels with nonzero partial
volume for the class k. We compared the RMS error for each class, when doing a
hard comparison, i.e. each voxel is assigned only to one class, and when doing a
soft comparison, i.e. each voxel can have contributions from several classes. This
comparison is depicted in Tab. 3. The results obtained with this measure are
elucidative about the importance of using a classification method that provides
partial volume estimation. The error in the lesion decreased by more than 70%,
while also decreasing in the other classes.

Of surmost importance is that the error of the MS lesion came to the same
level as all the other tissues. This means that, by outputting membership in-
formation for each voxel, DC permits to better evaluate tissue transitions. This
corroborates our statement that the DC algorithm is a suitable algorithm for
tissue classification and particularly for lesion detection.
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Table 3. RMS error in the lesion-set

Tissue CSF White Gray MS lesion

RMS error hard 0.6198 0.4026 0.5502 1.2776
soft 0.4119 0.3159 0.3941 0.3790

(a)

(b)

Fig. 4. DC (top) and ground-truth (bottom) partial volume information for each voxel,
surrounded by a brain outline. The darkness in each voxel is directly proportional to
the percentage of tissue in that voxel (except for the outline). It can be easily seen that
all the voxels classified as lesion in DC have a high contribution of lesion, indicating
the tendency of the algorithm to show the lesion and it’s directions of propagation.

In Fig. 4(b) it is possible to observe the contribution of the lesion to each
voxel. It is easily observed that the voxels considered by DC as lesion are voxels
that have a large percentage of lesion. This explains the abrupt decrease in the
RMS error for the lesion exhibited in Tab. 3 and is a very good indicator since
provides information about possible spreading directions of the lesion.

5 Discussion and Conclusion

The semiautomatic tissue segmentation approach uses consistent ICA on inno-
vation as a denoising method. This is followed by creating multiple randomly
initialised SOMs, used to estimate a set of labelled data for classification training.

The results of the normal-set demonstrate the robustness of the algorithm in
correctly classifying different tissues. Also, in the lesion-set, all the tissues are
well discriminated, and the direction of progress of the disease can be determined.

Another important factor is that human interaction was kept minimal. It was
only needed to select the final set of the “super voxels”, by analysing all the
clusters obtained by SOM and grouping them to the corresponding tissues.

Several assumptions made in this work may be questioned. Yet, the results
attained support the use of multi-resolution MRI data and the proposed method-
ology for the isolation of pathologies. One future step might be to evaluate which
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sequences are most important for MS lesion detection, which would help in se-
lecting the MR sequences to be used in real world applications.

The soft classification ofDC makes it perfectly suited to evaluate different stages
of lesions, allowing a better and more refined way to analyse them than typical tis-
sue classification methods. Using the DC results, together with the original and
ICA images, experts have a method that allows for better diagnoses and may
help dissipating more dubious evaluations. Further research would also address
the need for volumetric data, as well as follow-up of pathologies and treatment.
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Abstract. This paper’s intention is to adapt prediction algorithms well
known in the field of time series analysis to problems being faced in the
field of mobile robotics and Human-Robot-Interaction (HRI). The idea
is to predict movement data by understanding it as time series. The pre-
diction takes place with a black box model, which means that no further
knowledge on motion dynamics is used then the past of the trajectory it-
self. This means, the suggested approaches are able to adapt to different
situations. Several state-of-the-art algorithms such as Local Modeling,
Cluster Weighted Modeling, Echo State Networks and Autoregressive
Models are evaluated and compared. For experiments, real movement
trajectories of a human are used. Since mobile robots highly depend on
real-time application, computing time is also considered. Experiments
show that Echo State Networks and Local Model show impressive re-
sults for long term motion prediction.

1 Introduction

For autonomous robots, like SCITOS [1], it is important to predict the motion
of people and other robots in their environment, for example to avoid collisions.
Hence, further actions can be planned more efficiently. Most approaches in this
field focus on optimal navigation strategies [2,3]. This paper suggests to spend
more effort into prediction of the motion of the dynamic objects (i. e. in most
cases the motion of humans in the scene) instead. Often, only linear approxima-
tions or linear combinations are used to solve this problem.

Plenty of algorithms exist for time series analysis and prediction. Their fields
of application reach from prediction of economic data to climate and biologic
data, such as neural activities [4]. The new approach is the interpretation of
movement data as time series to perform a long-term prediction. For this pre-
diction, an assortment of time series analysis algorithms has been implemented
and comparatively tested.

For this, it is necessary to know the motion trajectories of the surrounding
dynamic objects. For simplification, a tracker is assumed, which is able to provide
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Fig. 1. The observed trajectory (green) is to be predicted (red) for up to 500 time
steps (about 8.3 sec. at 60 Hz). This is achieved only by exploiting the past trajectory’s
characteristics using a window (yellow) of D points equally spaced with interval T .

such trajectories in real-time. A possible tracker to be used is presented in [5]. In
this case, the given trajectory of the motion can be interpreted as a time series
T with values si for time steps i = 0, 1, . . . , n − 1: T = (s0, s1, . . . , sn−1).

The next section introduces our time series analysis approach to mobile robotics
and techniques chosen to be tested. In section 3 the comparing experiments with
their conditions and results are presented, while the paper concludes in section 4.

2 Time Series Prediction

The algorithms presented in this paper are intended to be used for motion predic-
tion to enable a more anticipative mobile robot navigation in dynamic environ-
ments. Basically, for all presented algorithms the prediction for each future point
on the trajectory is done iteratively for up to 500 time steps (this corresponds
to about 8.3 sec. of motion with a sampling frequency of 60 Hz) (Fig. 1).

The prediction in general takes place with the so-called black box model which
means that no further background information or knowledge about the motion
dynamics is used than the past trajectory itself. The aspired prediction is to
follow the trajectory’s characteristics, only, which can be found in their past.
Furthermore, no explicit trajectory models are given, to be able to freely adapt
to yet unknown situations.

2.1 Echo State Networks

For prediction of time series, Echo State Networks are often used [6]. They have
some specific features which differ from ”standard” neural networks: The hidden
layer consists of neurons which are randomly connected. When the connectivity
is low, this layer provides independent output trajectories. For this reason, the
hidden layer is also called ”reservoir”. Furthermore, there are neurons which are
connected to loops in the reservoir, so that past states ”echo” in the reservoir.
That is the reason, why only the actual time series value is needed as input.

Another characteristic of Echo State Networks is that only the output weights
are adapted and learned. All other weights (input, reservoir, feedback) are chosen
randomly and stay statically. For training, the net is randomly initialized, and
the training time series is used as net input step by step.
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This paper suggests to use multiple instances of the network, as a kind of
simple stochastic search in the parameter space. The fixed weights are initialized
differrently in a random manner. All instances are trained using the same input
data. During the training process, the output of each network is compared with
the corresponding values of the training trajectory. The network showing the
best prediction results for the yet unknown training data is then selected for
further application.

2.2 Autoregressive Models

The next type of time series analysis algorithms introduced here are Autoregres-
sive Models (AR). These models assume a linear relation in the time series which
means that any time series value can be determined by using a linear combina-
tion of p previous values. The coefficients of the linear combination – the AR
coefficients – have to be calculated to predict future values. Several Algorithms
exist to determine these coefficients, e. g. Wiener Filter [7], Durbin-Levinson [8],
and Yule-Walker [8].

2.3 Embedding Space

For applying the approaches in sections 2.4 and 2.5, an embedding in a higher
dimensional space is necessary. This embedding can be regarded as a kind of
the well known sliding window approach. An observation window with size
T · D is put on the trajectory (Fig. 1). Each T -th time step from this win-
dow is used to generate this regular embedding. So the time series is trans-
formed into a D-dimensional space - the embedding space. To each embedding
et =

(
st, st−T , st−2T , . . . , st−(D−1)T

)T belongs an output ot, which stands for
the successor st+1 of the selected window.

The two introduced parameters T and D don’t need to be defined by hand.
Time series analysis offers techniques to automatically determine these parame-
ters [4]. In our work, we used genetic algorithms to find the best suited embedding
dimension.

2.4 Local Modeling

Local Modeling, which is described in [9], is based on the aforementioned regular
embedding. The principle idea is a simple nearest neighbor search in the embed-
ding space of the last point in the time series en−1 for which the prediction needs
to be calculated.

In the general case, a polynomial is estimated for prediction describing the re-
lationship between embedding ei and output oi. The nearest neighbors are used
to decide the polynomial’s coefficients v applying linear regression. In practice,
the polynomial degree g is usually low. Often it is enough to use g = 0 (Local
Averaging Model) or g = 1 (Local Linear Model).

After determining the coefficients, the prediction is calculated using the same
polynomial interpolation. To get good prediction results, it is crucial to choose
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Fig. 2. Example of movement data from the University of Glasgow. Data is available
for the body limbs shown in (a) and an exemplary trajectory of the movement of the
left ankle while walking in circles (b).

proper parameters, such as the embedding parameters T and D and the num-
ber of the nearest neighbors N . Especially with higher polynomial degrees, the
algorithm is extremely sensitive to the choice of these parameters. Therefore, an
evolutionary algorithm was implemented which often leads to good results as
recommended in [9].

2.5 Cluster Weighted Modeling

The Cluster Weighted Modeling, which is described in [9], is also operating in the
embedding space. The viewpoint lies not on single embedding points like in the
LocalModeling.Now the embedding space is clusteredandcoveredwithGaussians.

An Expectation-Maximization-algorithm (EM-algorithm) can be used to op-
timize most of the algorithm’s parameters. The whole algorithm can be found
in detail in [9]. Only the number of clusters and the cluster function remain to
be chosen manually. All other parameters are initialized randomly and adapted
using the optimization. As cluster function, similar functions like the Local Mod-
eling polynomials, can be used. Since, calculation time strongly depends on the
number of clusters, the values of these parameters should not be too high for an
online application.

3 Motion Prediction

The algorithms presented in this paper are intended to be used for motion predic-
tion to enable a mobile robot navigating in dynamic environments. To be com-
parable and reproducible, movement data taken from the University of Glasgow
[10] is used. This benchmark data is available as 3D coordinate representation
for each limb of a human performing a certain action, e. g. walking (see Fig.
2). Using this data is even more challenging, because several basic motions are
combined (i. e. intrinsic movement, e. g of the foot combined with the walking
direction). The data set consists of 25 trajectories containing 1,500 up to 2,500
sampled points in Cartesian space.

3.1 Test Conditions

The movement data has a resolution of 60 time steps per second, so that an
average prediction horizon of about 500 steps corresponds a prediction of 8.3
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seconds into the future at 60 Hz. Present movement prediction techniques are
designed to predict an objects position for the next time frame or at least to gap
a loss of the object during a only a few frames.

Quality Measures. For comparing the prediction results, some kind of quality
measures for comparison are necessary. The used quality measures are based on
the normalized mean square error NMSE. Hence, the standard mean square
error is normalized using the variance σ2 of the time series.

NMSE =
1

N · σ2

N∑
i=1

(spred
i − sorig

i )2 =
MSE

σ2
(1)

Since the trajectories are three-dimensional and dimensions with greater differ-
ence suppose to be more important, the highest variance of all dimensions is
used as normalization.

Two different kinds of the defined measure are used. The first one, the short
term error STE, is responsible for evaluating a short period of the prediction. It
uses the first N = 75 prediction steps (which means 1.25 sec) with a weighting of
1
f for the f -th prediction step. On the other hand, the performance is evaluated
using the long term error LTE, which uses all prediction steps with a weighting
of 1/

√
f , since some of the algorithm show the tendency to drift away

Reference Algorithms. Additional simple reference algorithms were used that
should be outperformed clearly to get a useful prediction. The first algorithm is
a simple repetition of the last time series value and is called constant algorithm
in the following. Also a linear algorithm is used as reference. This algorithm
simply does a linear approximation in the last two points in the time series. The
result of the better one is used as reference.

3.2 Experimental Results and Comparison

The following tests show the advantages and disadvantages of the different al-
gorithms presented here. For the application, a number of parameters had to
be decided to apply the algorithms. The values presented in the following are
chosen after extensive test, which are not discussed here.

Especially for Echo State Networks the choice of the parameters is important.
It has shown that the scaling of the weights is essential. The feedback weights
wback must be scaled very low (ca. 10−20) to guarantee stable networks dynamics.

As input for the Wiener Filter the embedding presented in section 2.3 is
used instead of only using the last p values. Experiments show that using the
embedding leads to better results. For the other Autoregressive Models values
around p = 100 for AR depth often lead to the best results.

For generating the embedding, the number of histogram bins for calculating
the mutual information has to be specified. Proper values are between 15 and
30. In most cases, the smaller value is used to keep the calculation time low. To
fasten the whole embedding procedure, not every embedding point is used for
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Fig. 3. The graphs shows the STE (a) and LTE (b) plotted for each of the investigated
algorithms. The ordinate is scale logarithmically. Hence, lower values mean a better
prediction. The error bars represent the standard deviation from the mean. For the
STE, all results lie relatively close together while the reference algorithm (red line)
can only beaten clearly by the Echo State Networks. Longer predictions show more
differences in the results of the algorithms. Also the mean errors are higher than STE,
as being expected in longer predictions. The reference is beaten more clearly in general.
Local Average Models (LAM) and Echo State Networks show the best results.

the classification in true and false neighbors, but a random selection of around
5-10% of the time series embedding points.

In the prediction of movement data, the Echo State Networks lead to the best
results for the STE as it is shown in Fig. 3(a), while for long term prediction
Local Models have slightly better results (Fig. 3(b)). The Autoregressive Models
perform barely better than the reference. Here the Durbin-Levinson algorithm
achieves the best prediction quality. Cluster Weighted Models show the worst
performance, and their mean errors stay even behind the simple reference algo-
rithms. The best algorithms still beat the simple references clearly and are able
to predict movements for several seconds (about 100 prediction steps) very well.

The choice of the number of neurons in the Echo State Network reservoir,
for example, has only a minor effect. In tests the difference in the prediction
results of movement data between 25 and 250 neurons were insignificant. It can
be presumed that the structure of the movement data does not allow a higher
accuracy in the prediction unlike other chaotic time series [6].

The evaluation discussed in the previous paragraphs used a time horizon of
1000 time steps for training. Towards, online application such a long training
phase would mean to observe the person for several seconds. Since, this is not
possible in most cases, the tests depicted in Fig. 4 are tested with less data.
Only 300 time steps of the trajectory are used now. Those 300 points in time are
subsampled for the three left most results in Fig. 4(a) and Fig. 4(b), as it would
be the case when using a slow tracker. As it can be expected, the prediction
quality significantly decreases (compared to the three right most results in 4(a)
and Fig. 4(b)). A logical step at this point is to use interpolation to fill the
missing gaps. A spline interpolation is used for the test in Fig. 4 to gain 300
time steps of training data again. The results can be compared to the ones using
the original trajectory (see the three midway results in 4(a) and Fig. 4(b)).
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Fig. 4. The graphs show the STE (a) and LTE (b) plotted for the most promising
algorithms of the previous tests (Local Average Model (LAM), Local Linear Model
(LLM), and Echo State Networks ESN) in a similar fashion as in Fig. 3. Each plot is
separated into 3 sections. From left to right, these sections show the results for the test
with the subsampled trajectory, the interpolated trajectory, and the comparison with
the normal trajectory.

Calculation Time. For any online application, the calculation time plays a big
role, since the movement is supposed to be predicted before it continues. Since,
only MatLab implementations were tested on time series with lengths around
1,000 till 2,500 time steps, only a first hint can be given here.

Autoregressive Models and Echo State Networks with lower number of neurons
show a calculation time of about 3-10 ms per prediction step. This is absolutely
complying with online requirements.

Local Models and Cluster Weighted Models need longer calculation times
between 50 and 250 ms. In the first case (Local Models), most calculation time
is spend on the search for the nearest neigbors in the high number of training
data. The Cluster Weighted Models are slow because of a long optimization time
(the EM-algorithm).

4 Conclusions and Future Works

The intention of this paper was to connect the well-known field of time series
prediction and movement data handling from robotics in a consistent way. Dif-
ferent behaviors from the tested time series analysis algorithms were observed.
Generally, it can be said that movement data behaves different than periodical
and chaotic time series.

The tested algorithms show very good results in predicting several seconds of
the movement data. Echo State Networks and Local Models pointed out to ba
a suitable algorithm for movement prediction

Autoregressive Models and again Echo State Networks are able to predict
fast enough for an online application without any further adaptation. From the
current point of view, Echo State Networks are the ”winning” approach which
is able to solve the problem best. Hence, further analysis should have the focus
on this approach and on additional improvements.
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The other algorithms can be upgraded as well. Local Models can be a good
alternative to Echo State Networks if they could be accelerated without loss
of quality. Besides this, enhanced versions of the Autoregressive Models such
as ARMA or ARIMA Models could be tested. Furthermore, the usage of an
irregular embedding is imaginable.

As a next step, an adequate navigation strategy exploiting the prediction re-
sults needs to be investigated. One drawback for predicting motion data is the
fact that human beings may perform unexpected motion. Since the discussed
algorithms rely on the known characteristics, it is possible to use them for de-
tection of such unexpected behavior.
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Abstract. This paper discloses a method for simple and efficient optical cou-
pling of a robotic arm with a tool with unknown location without exerting 
forces to the tool. Current solutions involve moving the robot in force-control 
mode and coupling by means of a manual gripper. This poses the problem with 
the transfer of unwanted forces to the tool while attempting to secure the de-
sign. With the intrinsic solution presented here, the camera is placed on the 
coupling axis and thence measures the distance and orientation to the target, the 
user will have the ability to safely guide the robotic arm towards the tool and 
smoothly couple the tool with the robot’s end effector. The mechanical proto-
type is not here described; this paper emphasizes the image processing, conse-
quent data interpretation and general approach. After the explanation of the 
technique, its theoretical performance limit was examined and confirmed 
against the practically achieved performance.   

1   Introduction 

A number of medical robotic tasks require a robot to connect with a patient; this indi-
vidual task however is not simple and implies a number of constraints for this func-
tion to be completed safely. Primarily, this coupling process needs to minimize any 
forces applied to the patient. The concept pursued in this paper can be transferred to 
other application areas outside the medical arena, where similar requirements exist: 
couple and secure a robot arm with a tool / device, in a semi-determined position, 
without the exertion of forces on the tool or target object.  

Several extrinsic solutions based on optical / electromagnetic navigation systems 
have been previously developed [1] [2] [3], but the use of extrinsic solutions do not 
offer enough flexibility. Instead requiring a high level of prior knowledge of the 
workspace, including the location of tools and robot herein; requiring additional 
tracking hardware, and clear line of sight (in the optical tracking case); they do not 
allow an easy user-friendly coupling; and finally manual grippers are usually hard to 
manipulate, requiring additional information on not only target object location, but its 
exacting structure and precise orientation. These solutions may allow an automatic 
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coupling solution, but forces are applied on the tool and may be measured to assert a 
correct coupling of both robot and patient-bounded tool. However, these contact 
forces are also applied to the patient, increasing therefore the hazard of patient 
trauma. 

Here we present a single camera-based solution that allows both automatic and 
semi-automatic zero force coupling of a robot and target object. With specific graphi-
cal symbols placed on the target tool, the camera can measure the distance and orien-
tation to the target. This allows the user the ability to safely guide the robotic arm 
towards the patient-bound tool with constantly updated trajectory information, thus 
allowing a constrained path profile minimizing the risk to the patient and allowing a 
smooth coupling of the tool at the robot’s end effector with the target object. This 
continuous real-time image processing allows corrections in robotic movement and 
guidance, particularly when the target is not fixed in space.  

The mechanical prototype was presented in [4]. This paper's focus within the general 
approach is the camera's image processing, and subsequent data and error interpretation.  

2   Method Overview 

In order to implement this concept, particular camera specifications are required: the 
selected lens must be able to focus at a close range (5-8cm away) and have an  
acceptably wide view-angle to capture the whole target area without cropping the 
markers once coupled; the aperture should be small, to obtain a large enough depth-
of-field; the light source should be powerful enough to illuminate the target suffi-
ciently, even with a small aperture. The selected lens was a Cinegon 8mm F1.41, the 
camera a Basler A101f2. The lens is not auto-focus and the light source is provided by 
a built-in LED ring with diffuse filter.  

The robot end effector consists of a fixating ring, camera and a Force-Torque Sen-
sor. The Force-Torque Sensor allows the user to maneuver the robot arm as he / she 
sees fit, thus allowing someone to move the end-effector to a gross start position state. 
The moment the target and its symbols are visible and recognized, restrictions on 
possible robot movement are immediately applied to ensure the robot moves only 
within its planned path profile; the restricted movements are either movement along 
the trajectory to the target and coupling, or away from the target uncoupling. This is 
the semi-automatic coupling concept. 

On a flat surface of the target tool a visual pattern consisting of four circles in a 
known size and configuration is placed. The circles are painted with black non-
reflective matt paint, producing a high-contrast optical tracking target for the image 
processing and are presented in figure 1. 

By definition, in close-range photogrammetry the distance from the camera to the 
object of interest is between one meter to 300 meters [5]. In this application the dis-
tance is very close; the markers here are in the range of 3 to 8cm. 

The reduction of a three-dimensional object to a two-dimensional image implies a 
loss of information. Object areas which are not visible in the image cannot be  
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Fig. 1. Left: Target detected and applied filter; Right: Target identified and processed 

reconstructed from it. This not only includes hidden parts of the tracking target but 
also regions which can not be recognized due to lack of contrast or limiting size. Cir-
cular flat objects in 3D are viewed as ellipses on a 2D image plane; however, their 3D 
positions can be computed from their projections [6].  

2.1   Calibration and Undistortion  

A real and practical photogrammetric camera will differ from the traditional pinhole 
camera model, as presented in figure 2. The necessity of using a relatively complex 
objective lens, a camera box with an aperture which is not pinhole and the fact that 
the target will not be parallel to the image plane gives rise to departures from the ideal 
linear image geometry.  

 . 
(1) 

In fact, practical observations note that with the change of depth (h) the scale factor 
(m) is not constant. For this reason several calibration and undistortion algorithms 
have been developed and are now common practice [7] [8] [9]. However instead of 
undistorting these images, in accordance with common practice, the followed  
 

 
Fig. 2. Pinhole camera model  
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approach uses the information contained within the distorted image, and expected 
non-linearity of the circles area to calculate the depth / distance to the target.  

The robot was moved in small steps while keeping the image plane parallel to the 
target plane, several points at different distances from the target where collected and a 
trend line was calculated using the circle’s area in relationship to the distance. To 
determine the effective distance in mm between the image plane and the target a 
Platinum FaroArm3 was used.  

With the circle’s area and previous knowledge of the target’s distance we calculate 
a polynomial function of second degree, as shown in figure 3. 

Fig. 3. Relationship between circle area and distance in millimeters 

3   Results and Error Analysis 

The concept was programmed and tested using OpenCV’s4 Computer Vision libraries, 
supported by Willow Garage (Menlo Park, USA), which offers an ellipse fitting algo-
rithm based on least squares. Although it is not the most accurate algorithm it is very 
fast and allows real-time processing [10]. The ellipse fitting error was calculated and 
used to differentiate the detected contours. Only shapes that have a fitting error under 
a certain threshold are considered part of the markers. 

In average the detected ellipses had a fitting error of 0.166 pixels, where in 95% of 
the acquired samples the error lies lower than 0.170 pixels. The relationship between 
the circles size in pixels and mm, is given by a simple function that refers to the 
known geometry of the object and its perceived size.  

 
(2) 

A fitting error of 0.166 pixels corresponds in our case to 0.0026mm in the coupled 
position. This intermediate result is satisfactory given that the used robot, a Stäubli 
RX90CR [11], has a repeatability error of 0.02mm, almost ten times larger. 

                                                           
3 www.faro.com 
4 http://opencv.willowgarage.com/ 
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At points further away from the image plane the mm to px relationship is increas-
ingly larger, growing therefore the theoretical error achieved with this method. How-
ever, this coplanar error does not grow out of proportion in smaller tilting angles. In 
larger angles the highest measurable error was 0.00325mm, which is still very accept-
able to our application. 

Over 200 collected points in space were collected and calculated to determine this 
error. The graphical representation is done in figure 4, where these positions are char-
acterized by individual arrows representing the normal of the image plane (camera) 
and how it perceives the target. The color of the arrow represents the amount of error 
in that position with that tilt angle. 

 

 

Fig. 4. X & Y position error growth with the camera distance and orientation  

A logical conclusion is that the bigger the circles are perceived in the image plane, 
the lesser the error. That includes skewed circles (ellipses) in disadvantageous positions, 
which lower the area and amount of data points in the edge of the detected ellipse. 

Method used to calculate the depth (distance to the target) is slightly different from 
the usual methods; the basis for the depth calculation is the use of the previously ac-
quired relationship between the circle's area and its actual distance to the target. Fig-
ure 3 illustrates the acquired data and adapted trend line for the larger central circle. 
Similar data interpretation was done for the 3 smaller circles, obtaining therefore the 
distance at which each circle is from the image plane. This information is then stored 
and used to minimize the difference between the expected (target) result and the cur-
rent image frame.  

The image processing calculated values were compared against measured values,  
obtained using a FaroArm measuring tool, which has a known inaccuracy of  
0.013mm [12]. 

The analysis of these errors has shown that the coupling axis contains the lower er-
rors, in the range of 0.1mm, where as the points further away from this path and tilted 
regarding the target plane can go up to 3.5mm, confirming that this method is valid 
and functional.   
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Fig. 5. Depth error growth with the camera distance and orientation  

The coplanar angle was also analyzed and shares the same characteristics as the 
measured inaccuracies of the depth and x/y values. The central axis has the lowest 
error, 0.1º, while the highest error of 1º can be found in extreme positions, as shown 
in figure 6.  

The low errors in the x/y values and depth values, compared with the slightly 
higher inaccuracies in the angle value, then supports the chosen approach of the sys-
tem, already shown before, that the angular error is removed first, in order to achieve 
higher coupling accuracies overall. 

 
Fig. 6. Angle error growth with the camera distance and orientation 

Concluding, the best approach path for the coupling of the tool and robot arm is 
initially correcting the coplanar angle while driving the arm towards the coupling 
axis, and then moving forwards towards the target. This path has the lesser error in all 
three analyzed cases. 
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4   Conclusion and Discussion 

This prototype and required image processing was first engineered to assist in the 
medical area with the coupling of a robotic arm to a human patient-bounded tool, in a 
way that sensitive areas do not receive undesired forces from the robot. The concept 
pursued in this paper can be transferred to other application areas outside the medical 
arena, where similar requirements exist: couple and secure a robot arm with a tool / 
device, in a semi-determined position, without the exertion of forces on the tool or 
target object. It eases the human-robot interaction by enabling the user to maneuver 
the robot arm as he / she sees fit, thus allowing someone to move the end-effector to a 
gross start position state. The designed robot end effector simply contains a camera, 
lens, light source and a force-torque sensor. On a flat surface of the target tool a visual 
pattern consisting of four circles in a known size and configuration is placed. The 
circles are painted with black non-reflective matt paint, producing a high-contrast 
optical tracking target for the image processing. 

The approach presented in this article was able to calculate the distance correctly 
and guide the robot arm safely to the couple position without a requirement to cali-
brate the camera by conventional methods or undistort the acquired image frame.  

The error analysis has shown that the Least Squares algorithm available in 
OpenCV, achieved an error of nearly two tenths of a pixel, corresponding to 
0.0026mm in the coupled position. The depth error was considerably larger, from 
0.1mm to 3.5mm (depending on the distance from target) where as the coplanar angle 
error was in turn between 0.1º to 1º within the visible area of the target. 

The error analysis concluded as well that the optimal approach path which mini-
mizes all these three errors is the coupling axis with the image plane parallel to the 
target plane, and hence this action is completed by the robot first.  

The real time trajectory optimization through a single camera can reliably track a 
2D marker pattern with enough accuracy to be able to conduct zero force coupling 
onto a patient bound tool, with no prior knowledge of the robots environment, only 
the target tool. 

Further improvements to this concept include the miniaturization of the target to a 
more easily handled tool. The use of a smaller target will potentially increase position 
errors; however, this can be compensated with a higher zoom lens where the targeted 
circles would be proportionally increased in the image plane. It is acknowledged that 
complications can arise from this approach requiring the camera and lens to be placed 
further away from the target, leading to more restrictions on the end effector design. 

Secondly, in order to increase the accuracy and stability of the measurements a 
fifth or sixth circle could be added. Using concentric circles, as suggested by Estaña 
[13], can as well improve the results. Specifically to increase the accuracy of the 
depth measurement one could refer to neural networks as another possible path opti-
mization approach. 
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Abstract. This paper describes an automatic plaque boundary extrac-
tion in the intravascular ultrasound image by a fuzzy inference. In the
proposed method, the membership functions in the antecedent parts of
the fuzzy rules are adaptively allocated by using the information of the
seed points given by a medical doctor. The present method not only im-
proved the accuracy of plaque boundary extraction but also reduced the
workload of medical doctors.

1 Introduction

Intravascular ultrasound (IVUS) method is one of the tomographic imaging tech-
niques. The IVUS method, which provides a real-time cross-sectional image of
a coronary artery in vivo, is employed for a visualization of an atherosclerotic
plaque for a diagnosis of the acute coronary syndromes (ACS) [1]. In the diag-
nosis of ACS, a precise boundary extraction of plaque is strongly required.

Usually, medical doctors trace the boundary by hand and evaluate the area
of plaque for a lot of images. The extraction of plaque boundary is a hard and
time-consuming work for a medical doctor. Furthermore, the extraction work is
very troublesome because IVUS image is so grainy due to the blood speckle noise.
Hence, an automatic precise boundary extraction of plaque is strongly desired.

In the representative conventional boundary extraction method, the seed
points given by a medical doctor are interpolated by a spline function [2]. This
method can reduce slightly the workload of a medical doctor. However, the ac-
curacy of the interpolation is considerably affected by the number of the seed
points and/or a distance between those points.

On the other hand, the methods which are based on automatic search al-
gorithms, e.g., an active contour (snake) model, genetic algorithm, and so on,
have been proposed so far [3]. However, those methods involve some iterative
processes and take plenty of computing time. To meet with a practical demand
in clinic, a quick and automatic boundary extraction by a small number of seed
points is definitely necessary.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 583–590, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b)

Fig. 1. IVUS B-mode image. (a) The dotted lines show luminal boundary (LB) and
adventitial boundary (AB) to be extracted. (b) Transformed B-mode image into the
Cartesian coordinates.

The authors have proposed a plaque boundary extraction method [4] by em-
ploying a statistical discriminant measure (being called separability [5]) and
Takagi-Sugeno (T-S) fuzzy model [6]. The method realizes a fast, precise and ro-
bust extraction of the boundary of a plaque. Furthermore, the method does not
include any time-consuming iterative processes as in the conventional methods.

Our previous method [4] has however the following drawbacks; membership
functions (MSFs) are allocated uniformly at even intervals, which may cause
a bad extraction accuracy; the number of MSFs is decided in a trial-and-error
fashion for each IVUS image, which is troublesome for a lot of IVUS images.

In this study, we propose an automatic allocation method of MSFs. In the
present method, the number, the widths and the positions of MSFs are decided
adaptively according to the complexity of a plaque boundary. The validity and
the effectiveness of the proposed method have been verified by applying it to the
practical problem of plaque boundary extraction in clinic.

2 Proposed Plaque Boundary Extraction Method in
IVUS Image

2.1 Plaque Boundary Extraction by Fuzzy Inference

The image shown in Fig. 1(a) is called “B-mode image.” This is a cross-sectional
image of coronary artery obtained by IVUS method. The following two bound-
aries are extracted. One is a luminal boundary (LB) between the lumen and the
plaque, and the other is an adventitial boundary (AB) between the plaque and
the vascular wall as shown in Fig. 1(a).
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Fig. 2. (a) Discriminant image of the transformed image by using separability. (b) A
primitive boundary and a specified search area for the objective boundary.

In this paper, the fuzzy-inference-based boundary extraction method proposed
in [4] is improved. In that method, a plaque boundary is approximated by piece-
wise polynomials inferred by Takagi-Sugeno (T-S) fuzzy model. The boundary
extraction procedure is summarized as follows:

1. Seed points are marked on the B-mode image by a medical doctor. The image
is then transformed into the Cartesian coordinates as shown in Fig. 1(b).

2. A statistical discriminant measure of separability of the image [5] is calcu-
lated. The separability takes a large value around the regional-edge of the
image. The brightness of each pixel in the discriminant image is a value of
separability for that pixel. Fig. 2(a) shows a discriminant image of Fig. 1(b).
That is, a chain of white light pixels can then be a candidate of a boundary.

3. The seed points are first linearly interpolated on the Cartesian coordinates to
obtain a primitive boundary (the bold dotted line shown in Fig. 2 (b)). The
true boundary is then searched by starting from this primitive boundary.
The search area is shown in Fig. 2(b) by the thin dotted lines.

4. The objective true boundary is inferred by T-S fuzzy model, which is piece-
wise approximated by the polynomials in the Cartesian coordinates by a
series of the following fuzzy if-then rules:

IF xi is A� THEN f�(xi) = a�xi + b�,

where A� is a fuzzy set with membership function µ� shown in Fig. 3. xi cor-
responds to the angle index, and f�(xi) is a linear function. The �-th rule thus
stands for the piecewise approximation of the boundary by a linear function
in the interval [t�−1, t�+1]. The objective boundary ŷ(xi) is inferred by:

ŷ(xi) = µ�(xi)f�(xi) + µ�+1(xi)f�+1(xi). (1)

The optimum coefficients a∗
� and b∗� of the �-th fuzzy if-then rule are de-

termined with use of the weighted least square method (WLSM) so as to
minimize the following weighted error criterion:
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E =
J−1∑
j=0

I−1∑
i=0

η2
ij{yj − ŷ(xi)}2, (2)

where ηij is a separability of pixel (i, j) [4,5]. In this method ηij only inside
the boundary search area, being enclosed by the thin dotted lines in Fig. 2(b),
are used as the weights of WLSM.

In the next section, the adaptive allocation of the above MSFs are discussed.

2.2 Adaptive Allocation of Membership Functions

Let θn (n = 1, . . . , N) be a specified angle at the n-th seed point as shown
in Fig. 4. If all θn are obtuse angles, four complementary triangular MSFs are
uniformly allocated over the interval of concern. A plaque boundary is then
extracted by the T-S fuzzy model. In that case, a smooth plaque boundary is
depicted along the obtuse seed points with a small number of MSFs.

In other cases, i.e., acute and obtuse angles exist in the interval of concern,
the following procedures are applied for the seed points with acute angles. The
seed points with obtuse angles are left unprocessed.

1. Let pn be an angle index of the n-th seed point, and d
(R)
n and d

(L)
n be the

length between pn and pn+1, and between pn−1 and pn, respectively. Note
that the right-hand side edge and the left-hand side edge of the plaque
boundary in Fig. 4 are linked.

2. Two complementary and triangular MSFs are allocated on either side of each
seed point. Let z

(R)
n and z

(L)
n be the tentative peak positions of the MSFs

on the right-hand side and the left-hand side of pn, which are given as:{
z
(R)
n = pn + (1 − ρn)[d(R)

n /{2 + β(d(R)
n )}]

z
(L)
n = pn − (1 − ρn)[d(L)

n /{2 + β(d(L)
n )}],

(3)
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Fig. 4. Procedure of adaptive allocation of membership functions. Some θi angles look
like to be obtuse, but they are acute. This is because of the length and width ratio of
the Cartesian coordinates of the figure.

where ρn is a sharpness of the angle θn defined by:

ρn =
{

1 − θn/T for θn < T
0 for θn ≥ T .

(4)

T is a constant value. The function β(·) compensates the peak position of
d
(·)
n when extremely large, and is defined by:

β(dn) = 1/[1 + exp{−a(dn − c)}], (5)

where a and c are parameters to fix the shape of β(·). Eq. (3) specifies that
when θn is small, the MSFs are allocated close to the n-th seed point. This
means that the MSFs around pn are allocated densely, because when θn is
small, the plaque boundary is complex. The MSFs’ allocation map at the
upper row in Fig. 4 is thus obtained.

3. The tentatively allocated MSFs above are merged if the following three con-
ditions are satisfied at the same time; (1) the seed point position pn and the
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Boundary extraction results. × : Given seed points for AB (Adventitial Bound-
ary). ◦: Given seed points for LB (Luminal Boundary). (a) B-mode image. (b) An
objective true boundary to be extracted. (c) Extracted boundary (using 10 fixed MSFs
uniformly allocated). (d) Extracted boundary (using 15 fixed MSFs uniformly allo-
cated). (e) Extracted Boundary (using 20 fixed MSFs uniformly allocated). (f) Ex-
tracted boundary by the proposed method (using 6 MSFs for AB, and 9 MSFs for LB,
adaptively allocated).

peak position of its right-hand side MSF z
(R)
n are apart enough each other;

(2) the seed point position pn+1 and the peak position of its left-hand side
MSF z

(L)
n+1 are apart enough each other; (3) the positions of the peaks z

(R)
n

and z
(L)
n+1 are close each other.

We now define the following criterion to reflect the above three merging
conditions:

f1 = 2‖pn − z(R)
n ‖/d(R)

n . (6)

f2 = 2‖pn+1 − z
(L)
n+1‖/d(R)

n . (7)

f3 = max(1 − 2‖z(R)
n − z

(L)
n+1‖/d(R)

n , 0). (8)
Smerge = f1 · f2 · f3. (9)

If Smerge is greater than 0.5, the peaks z
(R)
n and z

(L)
n+1 are merged. An example

of merging is shown in the MSFs’ allocation map at the bottom row of Fig. 4.
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Table 1. Root-mean-square errors (RMSEs) of extraction results

(µm)
Image 1 Image 2 Image 3 Image 4 Image 5

AB LB AB LB AB LB AB LB AB
Proposed Method 41.3 33.2 27.3 44.5 46.4 30.6 34.5 72.7 29.4

10 Fixed MSFs 92.4 41.7 31.6 49.3 47.8 48.3 44.3 95.6 48.6
15 Fixed MSFs 97.5 48.4 37.1 44.3 50.3 37.6 40.4 83.1 51.7
20 Fixed MSFs 99.5 46.8 35.9 48.0 59.1 31.6 37.8 91.8 58.5

Table 2. Smoothness evaluation of the extracted boundaries

Image 1 Image 2 Image 3 Image 4 Image 5
AB LB AB LB AB LB AB LB AB

Proposed Method 0.15 0.02 0.07 0.95 0.26 0.85 0.64 1.09 0.72

10 Fixed MSFs 0.30 0.24 0.14 0.68 0.41 0.79 0.65 1.31 0.83
15 Fixed MSFs 0.48 0.40 0.48 0.94 0.70 0.95 0.91 1.37 0.87
20 Fixed MSFs 1.14 0.45 0.71 1.39 1.51 1.28 1.23 2.16 1.36

3 Experimental Results

The proposed method is applied to five IVUS B-mode images (Image 1 through
Image 5). Extraction results are compared to those by the conventional method
with fixed MSFs allocated at even intervals. In the experiments, the param-
eters in Eqs. (4) and (5) are empirically assigned to be T=45, a=0.05 and
c=150.

The parameter T must be tuned by considering the figures of the boundaries
of the objective IVUS images. In this experiment, T = 45 is employed. On
the other hand, the parameters a and c in Eq. (5) are not so sensitive for the
extraction of plaque boundaries. This is because a function β(·) is used only for
a compensation of a peak position of the MFS.

Fig. 5 shows the boundary extraction results for Image 5, one of the five
IVUS images employed for the experiments. The results show that the proposed
method works very well compared to the conventional method with fixed MSFs
uniformly allocated.

The root mean square errors (RMSEs) between the objective boundary y∗(xi)
and the extracted one ŷ(xi) are shown in Table 1. The objective boundary is
calculated by a parametric spline-interpolation using a lot of seed points given.
It is observed that the proposed method gives better extraction results than the
conventional methods with fixed MSFs uniformly allocated.

Further, in order to evaluate the smoothness of the extracted boundaries, the
mean of the absolute values of the second order derivatives of the extracted
boundary is calculated. The results are shown in Table 2. The superiority of the
proposed method is also seen.

Table 3 shows the RMSEs of boundary extraction results in the case of using
the same number of MSFs in comparison with the method with fixed MSFs
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Table 3. Comparison of RMSEs of boundary extraction results under the same number
of MSFs

(µm)
Image 1 Image 2 Image 3 Image 4 Image 5

AB LB AB LB AB LB AB LB AB
Number of MSFs 4 4 3 10 4 12 9 9 6
Proposed Method 41.3 33.2 27.3 44.5 46.4 30.6 34.5 72.7 29.4

Fixed MSFs 61.6 33.2 43.3 49.3 68.3 38.0 41.9 89.9 78.8

and the method with MSFs adaptively allocated (the proposed method). This
implies that the position of each MSF is important for an accurate boundary
extraction.

With those results the effectiveness of the proposed method has been verified.

4 Conclusion

We have proposed an automatic plaque boundary extraction in IVUS image by a
fuzzy inference. In the present method, the membership functions are adaptively
allocated by using the information of the seed points. The present method has
shown a better extraction performance than the conventional method in terms
of the accuracy and the reduction of the workload of medical doctors.

This work was supported in part by “Knowledge Cluster Initiative,” for 2004-
2009, funded by Ministry of Education, Culture, Sports, Science and Technology
of Japan.
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Abstract. This research focuses on utilizing the biometrics recognition to trig-
ger the speech expresser. Our selected biometric is facial expression. Though 
CPC have no verbal language ability, they have facial expression ability that 
can be interpreted to relate to their voice speech needs. However facial expres-
sion of a CPC may not be exactly identical at all times. Furthermore CPC are 
unique and require special speech profiles. After a thorough research in face 
recognition and artificial intelligence domain, neural network coupled with Ga-
bor feature extraction is found to outperform others. A Neural Network with 
Gabor filters is built to train the facial expression classifiers. This research has 
proven successful to help CPC to express their voice speech through software 
with 98% successful facial recognition rate. 

1   Introduction 

Biometrics is concerned with the automatic recognition of individuals based on their 
physiological or behavioral characteristics. Among the many body characteristics that 
have been used, facial expression is one of the most commonly used characteristics 
and has been studied across a number of research fields, e.g. computer vision, pattern 
recognition [5, 11, 12]. Facial expression recognition is a non-intrusive method that 
captures human subjects’ facial expressions through still images and/or video se-
quences in both controlled static environment and uncontrolled cluttered environment. 
There are two interdependent subtasks in any automated facial expression recognition 
that include Detection (with rough normalization) and Extraction. First, a facial  
expression recognition system detects a face within the captured image or video se-
quence; then it extracts features from potential face for recognition. Many face detec-
tion methods have been published in recent years, such as the Adaboost approach, 
neural network, support vector machine (SVM) and distribution-based approach [12]. 
Most of the methods do not provide good performance in real time applications. This 
is due to the scale of the faces cannot be predefined gives rise to computation com-
plexity and time consumption. However, for our cerebral palsies, it is possible for us 
to capture at a fixed scale as they do not have much movement. Furthermore, we 
adapt the facial expression system to their wheelchairs with a fixed image capturing 
distance. In this research, we focus on developing a speech expression system for the 
severe palsies who could not form understandable speeches. Though CPC have little 
verbal language ability, they have the abilities to show various facial expressions. The 
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expressions can be analyzed and interpreted to relate to their voice speech needs. 
However facial expression of a CPC may not be exactly identical at all times.  
Furthermore each CPC is unique and requires special speech profiles. We aim to 
understand then assist the CPC to express their desires by incorporating present facial 
expression recognition technology into our system. Why do we choose facial expres-
sions? According to psychologist, facial expression provides information about emo-
tional states as well as cognitive activities [4]. Emotions are revealed earlier through 
facial expression than people verbalize or even realize their emotional state [12]. 
Emotions can be classified under six basic categories by the renowned psychologist, 
Paul Ekman [4] that is fear, anger, sad, surprise, disgust, happy. Some psychologists 
also concluded that cognitive interpretations of emotions from facial expressions are 
innate and universal to all humans regardless of their culture [11, 12]. 

 

Fig. 1. Proposed system flow 

2   Facial Expression Recognition 

At this initial stage of development, our proposed CPC speech expression system 
performs under controlled indoor and outdoor scenes. We have selected a few coop-
erative CPC (with permissions from their guardians) to capture their proper 2D frontal 
images. As you can see in Fig. 1, a CPC on the wheelchair has his 2D frontal image 
taken from a digital camera attached to a fixed location. Ideally, the whole system 
should be mounted on the wheelchair to go along with the CPC. Our system does the 
face detection to determine whether there is a face in a given image and extract the 
location and extent of the face. The extracted face image is processed in real time 
basis with our proposed hierarchical detection scheme performing a guided coarse-to-
fine search so that the system efficiency could be improved. There are two main  
aspects our facial expression recognition. First of all, Gabor features extraction is 
performed on the training images in the database, for each image of each human sub-
ject, a set of unique features are extracted. Each set of unique features is globalized 
into one feature vector to represent a human subject. Consequently, all the global 
feature vectors obtained from our human subjects are supplied as input to train a back 
propagation neural network. The rationale of utilizing neural network in our facial 
expression recognition model is due to our human subjects cannot control their facial 
expression to be exactly the same at all time, some variances can occur. However, our 
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study found out that the variations are within a range that can be trained and modeled 
through neural network. Hence a back propagation neural network is fed with those 
variations for each human subject. The output of the neural network is a set of trained 
facial expressions and non facial expressions for each human subject. Our system 
starts matching a detected face from a captured 2D frontal image to the stored facial 
expression collections. Once a detected face is matched with a stored facial expres-
sion in our collection, a speech may be expressed through the speakers attached to our 
system accordingly. For instance, if a facial expression is matched to Child A’s 
tagged expression for hungriness in the our database, then a voice representing Child 
A will be played through the loud speaker, “I am hungry, I want to eat now!”, hence 
the caretakers, parents or teachers can obtain the message clearly from a far, and at-
tend to the CPC with his food. Presently, our targeted CPC is the most severe one 
with very weak hand coordination skills to touch any device; however he has the 
ability to swing his neck and make some significant facial expression and sounds 
when he has a need.  As for the context, the CPC are most probably being seated in a 
wheel chair or laid on the bed at all times as they have little physical mobility. 

2.1   Face Image Preprocessing 

The captured images from our human subjects are transformed into gray scale images. 
The centers of two eyes on each gray scale image are used as the centers for rotation, 
translation, scaling and cropping. Each processed image has a size of 256×256 pixels. 
The preprocessed images are then subject to contrast/illumination and histogram 
equalization. Contrast is a measure of the human visual system sensitivity. The face 
recognition process in different lighting conditions with different illumination and 
contrast has different level of efficiency and psychologically meaningfulness. Hence, 
for our CPC application, all images are processed with same illumination and root 
mean square (RMS) contrast. The RMS contrast metric is equivalent to the standard 
deviation of luminance [9]. xi is a normalized gray-level value such that 0 < xi < 1 and 
x is the mean normalized gray level. With this normalization, images of different CPC 
faces have the same contrast as long as their RMS contrast is equal. RMS contrast 
does not depend on spatial frequency contrast of the image or the spatial distribution 
of contrast in the image. All the faces are maintained with the same illumination and 
same RMS contrast where α is the contrast and β is the brightness to be increased or 
decreased from the original image f to the new image g as in Equation 2. On the other 
hand, Histogram equalization is used to compensate the lighting conditions and en-
hance the contrast of the image. This is due to the CPC face images may encounter 
poor contrast because of the limitations of the lighting conditions especially indoor.  
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2.2   Gabor Feature Extraction from Face 

Basically, we proposed to divide a face image into two portions only that is left and 
right face as shown in Fig. 2. Right face consists of right mouth, right cheek and  
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Fig. 2. Hierarchical feature extractions from a face 

right eye whereby left face consists of left mouth, left cheek, and left eye. In our facial 
expression extraction, Principal Component Analysis (PCA) method is applied. Mul-
tiple Essential Feature Points (ESP) are located by a hierarchical component-based 
feature recognizer which will provide the coordinate location.  
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From the analysis we have conducted, we found out that CPC produces significant 
Gabor features on the parts indicated in Fig. 2 due to their physical inability in con-
trolling the face muscle. The location points of the eye, cheek and mouth are being 
derived from the location of the center, top, bottom, left and right corners respec-
tively. A pre-defined global filter based on the two-dimensional Gabor wavelets g(x, 
y) are defined as in Equation 3 and 4 [7]. K is the total number of orientations, and s is 
the number of scales in the multi-resolution decomposition. Uh and Ul is the lower and 
upper center frequencies respectively. The mean and standard deviation of the convo-
lution output is used as the representation for classification. Given an image I(x, y), 
the Gabor wavelet transformed is defined as Wmn in Equation 5. The localized Gabor 

Face 

Left face Right face

Left eye Left cheek Right eye Right 
cheek

Left mouth Right 
mouth 
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Feature F(xF , yF ) can be expressed as a sub-matrix of the holistic Gabor wavelet 
output from Equation 3 where s defines the size of the feature area. The xF and yF can 
be defined respectively as cxx RFF +=  and cyy RFF += with 1020 pc≤−  where 

the subscript “RF” refers to the relative center location coordinates for the eyes, cheek 
and mouth as in Equation 6. The Localized Gabor Feature (LGF) vector of each of the 
image can be formed as in Equation 7. Each of feature point F is the sub-matrix of the 
convolution output for the image with the Gabor features bank.  

3   Back Propagated Neural Network (NN) 

Our facial expression recognition is achieved by employing a multilayer perceptron 
with back propagation algorithm as shown in Fig. 3. The architecture of the neural 
network is illustrated in Fig. 4. The input layer receives Gabor features detected as its 
input. The number of nodes in Gabor layer equals to the dimension of the feature 
vector incorporating the Gabor features. The number of nodes in the output layer 
equals to the number of individual faces the network is required to recognize. The 
number of epochs for this experiment was 10,000 and the goal was 0.01. The back 
propagated neural networking training algorithm is shown in Fig. 5. In the  
 

 

Fig. 3. Gabor features extraction Layer 

 

Fig. 4. Gabor features based Back Propagated Neural Network 
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Fig. 5. Back propagation algorithm 

initialization stage, all the weights and threshold values of the network are set to ran-
dom numbers within (–Fi, +Fi) where Fi represents the sum of neurons, i in the net-
work. In the activation stage, the network is activated by applying the inputs x1(t), 
x2(t),…, xn(t) and the desired outputs y1(t), y2(t),…, yn(t). The actual outputs in the 
training and output layers are calculated.  In the weight training stage, all weights are 
updated, and the errors associated with the output neurons are propagated backward. 
Iteration, t is increased by 1. If termination does not occur, then the back propagation 
iterates again. 

4   Testing and Evaluation 

In order to evaluate the effectiveness of the proposed method, experiments were car-
ried out for real images. The CPC face database is tested and discussed here in com-
parisons to some commercially available face database. The testing and evaluation 
has been performed on two face databases that are AT&T and JFFE (Japanese Female 
Facial Expression) before implemented on the CPC as a pilot study. AT&T has a total 
of 400 2D frontal face images from 40 human subjects. On the other hand JFFE has a 
collection of 213 2D frontal face images posed by 10 female human subjects. The 
AT&T database is tested first with our facial expression recognition using Gabor 
features based back propagated Neural Network. AT&T database contains 10  
different images of 40 distinct human subjects in 5 different illumination conditions. 
Originally, each image is 92x112 pixels with 256 grey levels per pixels. The image is 
resized to 256 x 256 pixels to maintain consistency to our second face database test. 
For some human subjects, the images were taken at different times, varying lighting, 
facial expressions and facial details (glasses/no-glasses).  All the images are taken 
against a dark homogeneous background and the subjects are in up-right, 2D frontal 
position with a tolerance for some side movement. This mimics the context of our 
CPC image setting where most of illuminations are due to sunlight and indoor light-
ing. The CPC are either in the care centre, home or school due to mobility restrictions. 
A 10% of the 400 images in the database were used as a training dataset and the re-
maining images were used as probe images in the facial expression recognition test. 
All images were subjected to Gabor filters discussed above and were convolved with 
Gabor filters. We used 10% that is 40 basis vectors of the 400 basis vectors represent-
ing 400 images. To each face image, the output equals to the number of individual 
faces the network is required to recognize which records the magnitudes of the Gabor 
filter response. The AT&T images are fully tested for face detection and facial ex-
pression recognition from database. The testing was performed with Pentium 4 

Yes 

No 

Start Initialization Activation Weight training 

Iteration Terminate? Stop 
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3.00GHz CPU, 1 GB RAM, at the average running time for a face on an image to be 
detected and recognized (matched) is averagely 10 seconds for all the 40 human sub-
jects tested. Table 1 shows accuracy of face recognition rate from each human sub-
ject. Averagely, AT&T achieves an average of 95.5% recognition rate. From our 
analysis on CPC face images, we found that CPC have more expressions through their 
mouth and cheek movements. The AT&T faces do not provide us with plenty of facial 
expressions that emphasized on these two locations on the face. Hence, the JFFE 
database [6] is used to validate the model is useful for more significant or stronger 
facial expressions. JFFE contains 213 images of 7 facial expressions posed by 10 
Japanese female models. Each image has been rated on 6 emotion adjectives by 60 
Japanese subjects. However we only selected 200 images by 10 models with 6 sig-
nificant expressions each. We create a speech expression to relate to each model’s 
facial expression. Hence the right match of facial expression will trigger speeches 
from the sound database to signal caretakers of a CPC’s feelings or demands. The 
average recognition rates from the JFFE, 96.5% is better than what we have obtained 
in the testing of AT&T database. The main reason behind this is the facial expressions 
for each human subject are more distinctive causing less mismatched. However we do 
take into account the lack of gender difference in JFFE as it consists of all females. 
Furthermore, the database contains fewer images, 200 as compared to 400 2D frontal 
images. Table 1 also summarizes the 40 CPC face images we have. Obviously, our 
proposed Gabor features that focused on eye, mouth and cheek have achieved higher 
success rate on CPC face images as compared to ordinary human subjects in AT&T 
and JFEE. This shows that by utilizing the main features from eye, cheek and mouth 
is sufficient to detect the facial expressions on CPC. 

Table 1. Facial expression recognition results for 200 images from JFEE 

5   Conclusion 

This research has developed a facial expression recognition system for severe CPC’s 
speech expression and communication purpose. Two commonly used face databases 
i.e. AT&T and JFFE are used in our research due to difficulty in getting sufficient 
cooperative CPC. Through our testing, we found out that the proposed system that 
uses facial expression recognition to trigger speech for communication is feasible. 
Our proposed model has achieved an average of 96.4% recognition rate for the 600 
images we tested. When applied to the four CPC, the facial expression recognition has 

 AT&T JFEE CPC 
Facial 

expressions 
class 

Average 
recognition 

rate (%) 

Standard 
Deviation 

Average 
recognition 

rate (%) 

Standard 
Deviation 

Average 
recognition 

rate (%) 

Standard 
Deviation 

Hungry 96.5 0.48 97.1 0.50 98.5 0.51 
Like 96.1 0.54 96.5 0.52 99.0 0.53 

Dislike 95.8 0.52 96.1 0.49 97.8 0.49 
Fear 96.5 0.46 97.0 0.50 98.5 0.48 
Tired 97.1 0.47 96.2 0.51 98.8 0.49 
Bored 95.6 0.51 96.1 0.51 98.1 0.53 
Mean 96.3 0.5 96.5 0.51 98.5 0.51 
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98.5% success rates. Our CPC have difficulty in the muscle coordination which 
mainly on either left or right of the face. Our proposed feature points to be used in the 
CPC are lesser than for the ordinary human subjects. 
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Abstract. There has been a significant drop in the cost as well as an increase in 
the quality of imaging sensors due to stiff competition as well as production 
improvements. Consequently, real-time surveillance of private or public spaces 
which relies on such equipment is gaining wider acceptance.  While the human 
brain is very good at image analysis, fatigue and boredom may contribute to a 
less-than-optimum level of monitoring performance. Clearly, it would be good 
if highly accurate vision systems could complement the role of humans in 
round-the-clock video surveillance. This paper addresses an image analysis 
problem for video surveillance based on the particle swarm computing para-
digm.  In this study three separate datasets were used. The overall finding of the 
paper suggests that clustering using Particle Swarm Optimization leads to better 
and more consistent results, in terms of both cluster characteristics and subse-
quent recognition, as compared to traditional techniques such as K-Means. 

1   Introduction 

Security surveillance systems are becoming very common nowadays especially in 
public spaces where personal safety is of utmost importance [1].  Conventional secu-
rity surveillance systems require the constant attention of security personnel, to moni-
tor several locations concurrently [2][3]. This is a difficult and error-prone task in dire 
need of automation. Hence, the advancement of image processing techniques has 
become an important tool in the video surveillance system’s arsenal where they can 
help improve the operational aspects of monitoring through closed circuit cameras. 

One of the basic building blocks of such systems consists of the ability to identify 
and classify patterns of interest (e.g. humans, weapons and suspicious behaviours).  In 
multi-class shape recognition, the task is to classify the feature space into more than 
two regions using a set of discriminate functions, in which each region corresponds to 
a pattern class.  More specifically, given n vectors of instances x = (x1, x2, …, xn) 
drawn from feature space Ω , a multi-class classifier has to classify the inputs into k 
pre-defined classes C = (C1, C2, …, Ck), where Ca ≠ Cb for a ≠ b and k > 2.  A number 
of studies have been carried out in the area of multi-class classification [4][5][6]. 

There are two main approaches to image classification: supervised learning (classi-
fication) and unsupervised learning (clustering).  Clustering divides objects into clus-
ters based on the mutual similarity of objects [7].  Each cluster then contains patterns 
representing objects that are similar according to the selected object description and 
similarity criteria (features). 
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Our approach to do this is based on a population based stochastic optimization ap-
proach, namely particle swarm optimization [8] (PSO). In this paper, we present a 
standard PSO implementation to cluster objects into their appropriate classes. The 
experimental results indicate that PSO is capable of delivering better clusters as com-
pared to a conventional approach known as K-Means. 

The rest of the paper is organized as follows. Section 2 introduces the experimental 
setup. Section 3 describes and briefly discusses the results and finally section 4 gives 
the conclusion of the entire study. 

2   Particle Swarm Optimization (PSO) 

Particle Swarm Optimization or PSO was developed by Eberhart and Kennedy in 
1995 after they were inspired by the social behaviour of a flock of birds [8]. In the 
PSO algorithm, the flock of birds is symbolically represented as a set of particles and 
these particles represent agents flying and searching through a problem space for the 
best solution. A particle’s location in the multi-dimensional problem space represents 
one solution to the problem. When a particle moves to a new location, a different 
solution is generated and will be compared with the other particles. The interim solu-
tion achieved is then evaluated by using a fitness function where it provides a meas-
urable quantitative value which will range from 0 to 1. Theoretically, after all of the 
particles have been compared with one another by using this fitness function, the 
particle with the best solution will be the reference where all the other particles refer 
to and “move” towards, while searching for other better solutions at the same time. 

Technically, the Particle Swarm Optimization algorithm may be represented by 
equations (1) and (2): 

 
 Vid = K*[Vid + (C1*rand1*(Pid - Xid)) + (C2*rand2*(Pgd - Xid)) (1) 

 

where id
old
id

new
id VXX +=  (2) 

 

and K = 
|42|

2
2 ϕϕϕ −−−

, where ϕ  = c1 + c2 , ϕ  > 4 (3) 

 
Vid determines the velocity of a swarm and therefore controls the movement and 

the updating magnitude for a particle.  Xid, in equation (2) is used to update the current 
position of a particle to a new position after it “moves”.  When the best location of the 
particle is found, this location will be stored away as Pbest..  On the other hand, Pgd  

indicates the best location from all the best locations found by each individual particle 
and is normally denoted as Gbest or the global best.  C1 and C2 are acceleration coeffi-
cients whereas rand1 and rand2 are random values that vary from 0 to 1 [8]. 

3   Experimental Setup 

Three different data-sets were used to test the PSO clustering technique. The first one 
came from the popular Iris flower dataset [9]. This basically contains 150 samples of 
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measurements from the Iris flower consisting of a total of 4 features each with two 
measurements taken from the petals and sepals. 

The second data-set used is somewhat larger and is based on the features extracted 
from four separate classes of objects (human, animal, luggage, and vehicle) which 
make up the key objects in the video surveillance system that we are developing. 

The third data-set, consists of 193 shapes in 8 categories. The dataset was selected 
from [10] and the MPEG-7 test database. Unlike the previous data-sets, this data-set 
was characterized as imbalanced because some of the classes are represented by a 
significantly larger number of instances as compared to the other classes. 

Our implementation of PSO was typically run with 10 randomly initialized parti-
cles and was defined to stop after 300 iterations. It is common in the literature for 10 
to 60 particles to be used. The PSO algorithm was run 30 times in order to character-
ize its performance. At the end of each run, the best fitness value was chosen. The 
main fitness function being optimized by our PSO implementation was: 
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where xi represents a particular PSO particle (i.e. a set of centroids), Zi consists of a 
matrix representing the pattern-to-cluster assignments for particle i, maxd  represents 
the maximum average Euclidean distance of patterns to their associated cluster cen-
troids, 

mind  refers to the minimum total Euclidean distance of the data to its respective 

cluster centroid, 
kC  represents the kth cluster, 

kn  refers to the number of objects that 

belong to a particular cluster k, and the function d denotes the distance between two 
arguments (e.g. the distance between a cluster pattern and the cluster’s centroid). This 
fitness function is a useful measurement of the quality of the clustering algorithm in 
terms of compactness. 

As already mentioned, the performance of our PSO implementation was compared 
with K-Means [11]. This is a well-known clustering technique which will cluster n 
objects based on attributes into k partitions, where k < n. It is similar to the expecta-
tion-maximization algorithm for mixtures of Gaussians in that they both attempt to 
find the centers of natural clusters in the data. It assumes that the object attributes 
form a vector space. The objective it tries to achieve is to minimize total intra-cluster 
variance, or, the squared error function, viz. 
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where there are k clusters Si, i = 1, 2, ..., k, and µi is the centroid or mean point of all 

the points xj ∈ Si. 



602 E.L. Ng et al. 

4   Results and Discussion 

The quality of the clusters generated by the PSO algorithm is based on the overall 
fitness value as determined by Equations 4 and 5. The fitness value can also give a 
quantitative measure of each cluster’s compactness. The smaller the fitness value, the 
more compact the clusters and vice versa. Over time, PSO is capable of generating 
more compact clusters as the fitness value can be seen to decrease. 

The charts in Fig. 1 show the results for both PSO and K-Means for the 3-class, 4-
class and 8-class data-sets. The values reported here are taken over a total of 30 simu-
lations for each clustering technique.  As a partitional clustering technique, K-Means 
tends to converge faster but usually produces a range of clusters since it tends to lo-
cate centroids based on the initial random cluster configuration.  In contrast, the clus-
ters obtained by PSO were of consistently lower fitness values. 

 

Fig. 1. From left to right the charts depict performance measures for the 3-class, 4-class and 8-
class data-sets respectively. The x-axes consist of fitness values, and the y-axes consist of the 
numbers of solutions found for particular fitness values. 

Table 1 summarizes the results obtained by each of these clustering techniques. For 
the two balanced data sets (i.e. 3-class and 4-class), PSO was able to search through 
the solution space to come up with clusters which are far better than K-Means.  Here, 
even the worst clusters are better than those found by K-Means.  Now even though 
PSO was able to generate better clusters than K-Means, on the average, the best solu-
tions found by the latter are comparable to those from PSO. 

Another measure of the quality of the clusters is the inter- and intra-cluster dis-
tances. The intra-cluster distance ensures compact clusters with little deviation from 
the cluster centroids, while the inter-cluster distance ensures larger separations be-
tween the different clusters.  The inter- and intra-cluster distances are summarized in 
Table 2. 

Table 1. Total Quantization Error for each Clustering Technique 

K-Means PSO Data 
Min Avg Max Min Avg Max 

3-class 0.054209 0.091321 0.213260 0.040000 0.040301 0.042231 
4-class 0.065390 0.094999 0.125980 0.040002 0.041477 0.046155 
8-class 0.134830 0.554610 1.172200 0.091212 0.107645 0.199400 

(© 2008 MIMOS Bhd.).  
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Table 2. Cluster quality comparisons for K-Means and PSO. 

K-Means PSO Data 
Intra-cluster Inter-cluster Intra-cluster Inter-cluster 

3-class 0.0597± 0.0130 0.6730± 0.0687 0.4677±0.3958 2.0537±1.6064 
4-class 0.0641±0.0016 0.5478±0.0545 0.9026±0.7312 3.6482±2.9789 
8-class 0.0256±0.0130 0.7980±0.2423 0.1049±0.0623 1.3792±0.6134 

(© 2008 MIMOS Bhd.).  
 
With reference to this particular criterion, PSO was capable of clustering patterns 

such that there are significantly larger separations between them. Nevertheless, it 
seems that the clusters occupy a larger space as indicated by the intra-cluster distances 
obtained. 

Another quality metric is to adopt a “visual inspection” for each and every ob-
ject (or image) that has been grouped together within the cluster.  This would give 
us another indication of how well the data has been clustered. This is possible 
because we do in fact know the class labels beforehand. Fig. 2 summarizes how 
well PSO and K-Means have grouped each of the objects from the perspective of 
accuracy. 

The results indicate that PSO is able to generate clusters which are significantly 
better compared to K-Means, especially when the clusters are balanced (Fig. 2, top 
row). We know that there is significant class imbalance in the third data set con-
sisting of 8-classes1. Here the performance of PSO is significantly poorer when 
compared with the clusters identified by K-Means (bottom-left chart in Fig. 2). 

As a subsequent experiment, we wanted to study the performance of PSO on the 
third data-set when the class data is better balanced.  However, if we were to have 
a balanced data set here, it would mean that each class would only contain 12 ob-
jects, meaning that from an initial total of 193, the data set would now contain 96 
instead.  Alternatively, we removed class #5 thereby allowing each class to contain 
only 19 images, to generate a 7-class data set.  The results are shown in the bot-
tom-right chart of Fig. 2. The reason why we chose to remove class #5 as opposed 
to any other class, was that this led to the overall maximum number of samples in 
the data-set. 

We also experimented with re-balancing the third data-set by adding several 
new samples and removing others such that each class was represented by 19 sam-
ples (total of 152 samples). The resulting average PSO fitness value was 0.151942, 
which represents a significant improvement relative to the average K-Means fit-
ness value of 0.752349. On the downside, the average PSO accuracy, compared to 
K-Means, was slightly lower, i.e.: 72.6% vs. 74.1%. The maximum accuracy was 
also slightly lower for PSO, i.e.: 88.8% vs. 90.1%. The average inter and intra-
cluster distances were larger for PSO (1.46 and 0.14) compared to K-Means (0.81 
and 0.019). Table 3 shows the minimum, maximum and average fitness values, for 
the two approaches. 

 

                                                           
1 Class #1 to class #8 are known to contain 50, 19, 33, 20, 12, 20, 19 and 20 samples respec-

tively. 
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Fig. 2. Fitness versus accuracy for all data-sets. The x-axes for all charts consist of fitness 
values and the y-axes consist of accuracy values. 

Table 3. K-Means and PSO fitness values for the 19 samples per class 8-class data-set 

8 Classes Balanced (19 samples per class) 

K Means PSO 

Min Avg Max Min Avg Max 

0.345950 0.752349 1.477800 0.108960 0.151942 0.279690 
(© 2008 MIMOS Bhd.).  

Fig. 3 illustrates an interesting contrast between the best solutions generated by 
both approaches. On one side, K-Means produces solutions which tend to exhibit low 
average intra-cluster distances, but which exhibit a large variability of fitness values, 
whereas on the other side, PSO produces the converse pattern, i.e.: solutions with a 
large variability of average intra-cluster distances which nevertheless tend to have low 
fitness values. This contrast is most likely due to the fact that both approaches are 
optimizing different cost functions. 

As a final experiment, we allowed PSO to optimize a fitness function more closely 
related to the one implicitly being optimized by K-Means (i.e. intra-cluster variance). 
To be more precise the fitness function we selected essentially consisted of the mean 
of the sum of intra-class distances for each cluster. When optimizing this function, 
even when applied to the original unbalanced 8-class data-set, PSO was found to 
outperform K-Means. Table 4 provides us with a concrete idea of the average, best 
and worst performances for each approach, using this fitness function, on all of the 
three original data-sets. It is clear here, that optimizing intra-cluster variance using 
PSO is superior to implicitly doing this via a traditional K-Means implementation. It  
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Fig. 3. The relationship between average intra-cluster distances and fitness values for both K-
Means and PSO 

Table 4. Performance (accuracy) of the intra-cluster variance function on the three data-sets 

K-Means PSO Data Set 
Min Avg Max Min Avg Max 

3-class 57% 80% 89% 57% 86% 90%
4-class 52% 60% 65% 50% 60% 75%
8-class 49% 65% 77% 62% 74% 87%

(© 2008 MIMOS Bhd.).  
 

is interesting to note that, for the 8-class data-set, the correlation between fitness and 
accuracy values (data not shown) for the K-Means case was -0.9044 while that for 
PSO was -0.25813. It should be interesting to investigate the reason behind PSO’s 
relatively weak correlation, in this case. 

5   Conclusions and Further Work 

In this paper, we have applied a population based stochastic optimization technique to 
perform unsupervised clustering of multi-class images. The results were compared 
with a well known clustering technique known as K-Means. Unlike K-Means, PSO is 
an optimization technique inspired by swarming phenomena found in nature. Based 
on the cost function defined in equations (4) and (5), our standard PSO implementa-
tion was found to perform significantly better than K-Means. However, we also com-
pared the resulting fitness values to their corresponding accuracy values and noted 
that clearly, there were further differences in terms of cluster memberships and corre-
lation patterns between fitness and accuracy that warranted further investigation. 

The paper has revealed the potential of PSO for its ability to recognize multi-class 
images. Nevertheless, it does not seem to perform quite as well for imbalanced class 
data-sets.  This problem was shown to be rectified by using a fitness function which is 
closer to what K-Means is implicitly optimizing, as Table 4 demonstrates. In the  
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future, we would like to conduct a thorough investigation into how PSO performs 
with different fitness functions.  One interesting question pertains to which functions 
lead to larger accuracy variances for individual fitness values. 

Acknowledgements. The authors wish to acknowledge Li Zhi Yuan, Wong Chin Pin 
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Abstract. Coloured network motifs are small subgraphs that enable to discover 
and interpret the patterns of interaction within the complex networks. The 
analysis of three-nodes motifs where the colour of the node reflects its high – 
white node or low – black node centrality in the social network is presented in 
the paper. The importance of the vertices is assessed by utilizing two measures: 
degree prestige and degree centrality. The distribution of motifs in these two 
cases is compared to mine the interconnection patterns between nodes. The 
analysis is performed on the social network derived from email communication. 

1   Introduction 

The investigation of the communication patterns in the complex social networks is a 
very resource-consuming task. The methods that are quite useful and effective in 
small and medium sized social networks fail while applying them to the complex 
networks. In the case of large networks the solution to the complexity problem, which 
occurs when the models of interaction are studied, can be the analysis of the local 
network structures, also known as network motifs. Motif analysis stems from bioin-
formatics and theoretical biology [10],[13], where it was applied to the investigation 
of huge network structures like transcriptional regulatory networks, gene networks or 
food webs [7],[8]. Although the global topological organization of metabolic net-
works is well understood, their local structural organization is still not clear. At the 
smallest scale, network motifs have been suggested to be the functional building 
blocks of network biology. So far several interesting properties of large biological 
network structures were reinterpreted or discovered with help of motif analysis 
[14],[16].  

In this work we apply this biologically-inspired set of methods to the analysis of 
email-based social network of the size similar to many networks observed in nature. 
Motif analysis offers low computational overhead and opportunity to gain an insight 
into the local structure of huge networks which otherwise would require prohibitive 
computations to investigate. Moreover, we go one step beyond the classic motif 
analysis and propose distinguishing network nodes with respect to their unique prop-
erties, in this case centrality values (as defined in social sciences). The discovered 
motifs and their numbers enable to assess which patterns of communication appear 
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often in the large social networks and which are rather rare. The former ones can be 
seen as these which come into existence in a natural way whereas the latter ones can 
be treated as the artificial and unnatural. Moreover, the nodes of these subgraphs can 
be divided into different classes based on the values of various kinds of measures 
used in social network analysis. These additional information can be used in order to 
mine new knowledge from the data about interaction between users. The outcomes of 
the research on two–coloured, three–nodes network motifs (triads) detection and 
analysis in large email–based social network of the Wroclaw University of Technol-
ogy (WUT), consisting of over 5,700 nodes and 140,000 edges are presented in this 
paper. The colours were assigned to the vertices in such a way that the black colour of 
the node reflects its low centrality whereas the white colour its high centrality. The 
frequency of occurrence and the distribution of the individual motifs serve as the basis 
to define the interaction patterns between users. Moreover, depending on the values of 
centrality measures, we can investigate in what kind of motifs (patterns of relations) 
people are embedded. 

2   Related Work 

2.1   Network Motifs 

Complex networks, both biological and engineered, have been shown to display so–
called network motifs [10]. They are small (usually 3 to 7 nodes) subgraphs which 
occur in given network far more/less often then in corresponding random networks. In 
order to evaluate the distribution of motifs their concentration is measured for a set of 
random networks then compared with the network being investigated. For computa-
tional complexity reasons, the size of the random network set should be as small as 
possible. For example, our former research has revealed that 100 random networks 
provide sufficient accuracy of calculations in the case of the WUT social network [5]. 
The statistical significance of a given motif is defined by its Z–score ZM: 
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where: nM  is the number of occurrences of motif M in the network, rand
Mn  and 

rand
Mσ are the mean and standard deviation of its appearances in the set of random 

networks [4]. The calculated for each motif Z–score measure forms the basis to create 
the significance profile (SP) of the network. It has been recently shown that distribu-
tion of network motifs may help to distinguish and classify complex biological,  
technical and social networks [9]. Each class of these networks has its own specific 
significance profile. Two methods of motif detection can be utilized. The first one 
assumes exhaustive enumeration of all subgraphs with a given number of nodes in the 
network. Note that, their computational cost dramatically increases with the network 
size. The second one is to use random sampling to effectively estimate concentrations 
of network motifs. The algorithm presented in [6] is asymptotically independent of 
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the network size and allows fast detection of motifs in very large networks (hundreds 
of thousands of nodes and larger). 

Network motifs can be used to describe both topological and functional properties 
of various networks. For biological networks it was suggested that network motifs 
play key information processing roles [13]. For example, so–called Feed–Forward 
Loop (motif number 5 on Fig. 1) has been shown both theoretically and experimen-
tally to perform tasks like sign–sensitive filtering, response acceleration and pulse–
generation [7]. Such results show that, generally, we may reason about function and 
properties of very large networks from their basic building blocks [8]. In another 
work by Chung-Yuan at al. motif analysis was proved to have the ability of fast detec-
tion of the small–world and clustering properties of a network [3]. Within the area of 
computer science and social networks very little work has been done with motifs. In 
[9] SPs for small (below 100 nodes) social networks were demonstrated. Counting 
3.5x105 nodes WWW network described in [2] was used to show the effectiveness of 
sampling algorithm in [6]. First results for large e-mail based network were presented 
in [5]. 

2.2   Centrality Measures in Social Network 

Both the nodes and the edges of the network motifs can be divided into different 
classes (colours) based on the freely chosen measure. In this research the nodes will 
be coloured with respect to their centrality. Two methods – degree centrality and 
degree prestige – will be utilized to colour the vertices in the e-mail social network in 
the process of triads detection. Degree centrality DC(x) of a member x takes into ac-
count the number of outdegree of member x [11], [12]. It means that a node is more 
important than another one when it communicates with greater number of network 
members. It is usually expressed by the number of neighbours that are adjacent to the 
given person. The degree prestige is based on the indegree number so it takes into 
account the number of members that are adjacent to a particular member of the com-
munity [15]. In other words, more prominent people are those who received more 
nominations from members of the community [1]. The degree prestige DP(x) of a 
member x is the number of members from the first level neighbourhood that are adja-
cent to x. 

3   Coloured Motifs Analysis 

3.1   Data Preparation and Plan of the Experiments 

The experiments were carried out on the logs from the Wrocław University of  
Technology (WUT) mail server, which contain only the emails incoming to the staff 
members as well as organizational units registered at the university. Based on the 
information about the communication between the employees at the WUT the e-mail 
based social network was extracted. In such a network the nodes are unique e-mail 
addresses and the edges reflect the fact that there exists any communication between 
two distinct e-mail addresses. First, the data cleansing process was executed. Only 
emails from and to the WUT domain were left. After that the centrality of vertices 
was assessed. In order to perform that task, two methods were utilized: degree  
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centrality and degree prestige which were calculated as the number of respectively 
outgoing and incoming edges from or to the given node. In the next phase, the values 
of each calculated centrality measure were assigned to one of two classes. These 
classes were created based on the mean value of the given centrality measure evalu-
ated for WUT social network. In both cases of degree centrality and degree prestige it 
was 25 (see Table 1). Note that around 70% of WUT employees have the degree 
centrality lower than the mean value and around 62% have the degree prestige lower 
than the mean value (Table 1). 

Table 1. The number of nodes in each of the created classes 

Degree Centrality DC(x) Degree Prestige DP(x)  
DC(x)>25 DC(x)≤ 25 DP(x)>25 DP(x)≤ 25 

No. of nodes 1736 4047 2165 3618 
% of all nodes 30.02% 69.98% 37.44% 62.56% 

 
The further stages of experiments were divided into two parts. Each of the parts 

is concerned with one of the centrality measure. To each network node one of two 
colours: white or black, was assigned. The black colour is assigned to the vertices 
that degree centrality is lower or equal 25 whereas the white colour to vertices with 
degree centrality higher than 25. The analogous procedure was applied in the case 
of the degree prestige. After that the process of detecting triads within the WUT 
email social network was performed. Basically, there are 13 different motifs that 
consist of three nodes each (Fig. 1). Their ID=1,2,…,13 are used in the further de-
scriptions interchangeably with the corresponding abbreviations M1, M2,…, M13. 
The main part of the experiments took into consideration motifs with two coloured 
vertices, in consequence for each of the 13 motifs four classes of motifs can be 
enumerated i.e. motifs with all vertices white, motifs with two vertices black and 
one white, with two vertices white and one black, and finally three black vertices. 
As an example see Fig. 2, where M5 is presented together with all possible motifs 
that have two-coloured vertices and have been built upon the M5. The outcomes of 
experiments, the goal of which was to detect the described two-colored motifs and 
determine the role of the nodes with high DC and DP in the social network, are 
presented in the Sec. 3.3. 

1 2 3 4 5 6 7 8 9 10 11 12 13

 

Fig. 1. Directed triads and their IDs that can exist within the social network 

 one black and two white all black two black and one white all white
5

 

Fig. 2. Classes of the motifs 
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3.2   Distribution of Network Motifs in WUT Social Network 

Triad Significance Profile (TSP) for WUT network presented in Fig. 3 was computed 
using the set of 1000 random networks. The considered network reveals the typical 
property of social networks – the small–world phenomenon. Loosely connected mo-
tifs with only 2 edges, like M2, M3, M4, M7 and M10 occur less frequently in com-
parison to the random networks. As expected, it shows a high clustering level, i.e. 
high probability that two neighboring nodes have connected neighbors. The only 
exception is 1 which occurs relatively often. This reflects specific property of large 
mail–based social network: there are relatively many broadcasting nodes which 
spread messages (news, announcements, bulletins) which are never answered. 
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Fig. 3. Triad Significance Profile (Z-score values) of the WUT email-based social network for 
1000 numbers of random networks 

3.3   Analysis of the Coloured Network Motifs  

The very interesting fact can be noticed while observing the motifs where all nodes 
are black, i.e. all users have low centrality. Their number is minimal (Fig. 4 and 5), 
although almost 70% of people have low degree centrality and 62% low degree pres-
tige. Based on these results we may infer that there are no sparse structures and 
loosely connected cliques in the investigated network – nodes connect always with 
network hubs, direct communication between low-centrality nodes is present, but it 
does not shape the local structure of the network. 

Table 2. Distribution of coloured network motifs for degree centrality 

Motif ID 1 2 3 4 5 6 7 8 9 10 11 12 13 

3 white 12,8 26,4 26,5 18,9 23,3 18,4 60,6 64,6 59,4 60,3 64,2 69,5 79,0 
2 white  
1 black 

44,6 57,5 57,9 56,1 62,8 73,3 33,0 29,7 31,9 33,0 29,6 26,6 17,9 

1 white  
2 black 

42,4 15,4 15,3 22,3 13,4 7,7 6,1 5,3 7,9 6,4 6,0 3,6 2,9 

3 black 0,2 0,7 0,3 2,6 0,5 0,6 0,2 0,5 0,8 0,4 0,2 0,3 0,3 
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Interesting conclusions come from comparison of topological neighbourhood of 
the hubs (nodes with high DP and DC). When we compare the motif distribution for 
DC and DP (Fig. 4 and 5) it can be noticed that in case of DC the mixed motifs, i.e. 
these with two nodes in one colour and one in another colour, occur more often, espe-
cially in the case of motifs containing two edges (i.e. with nodes belonging to differ-
ent clusters). In this way high-DC nodes (“DC hubs”) tend to link low-centrality 
nodes with the core network, which is generally formed by hubs with high DP – 37% 
of network nodes with high DP constitute (alone) up to 50% of all network triads the 
effect of which is not seen in the case of DC (30% occurrence, forming up to 25% of 
all triads). This is an important conclusion suggesting that dense cliques in social 
network are bridged and created via nodes with high DP (more often than in the case 
of these with high DC), communicating with each other. 

0%

20%

40%

60%

80%

100%
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3 white 2 white, 1 black 1 white, 2 black 3 black  

Fig. 4. Distribution of coloured network motifs for degree centrality 

The bridging effect of DP hubs is indicated by high percentage of white (3 white 
nodes) motifs. Even taking into account that the sets of nodes with high DC and DP 
partially overlap (there are obviously nodes which share high DC and DP) the prevail-
ing role of DP hubs in local topology is clearly visible. 

In the case of DP, for almost all (excluding M1) motifs at least half of them consist 
of only white nodes, i.e. of people who have the prestige higher than the mean value 
for the network. Note also that, the more connected the motif is the larger number of 
motifs with three white nodes occur. This is true for both DP and DC (see Table 3 and 
4). For example for both DP and DC three white nodes motifs constitute 80% occur-
rences of fully connected motif M13. It shows that the important people tend to create 
cliques within the social networks whereas people who are at the periphery of the 
network and are less important do not interact with each other. 
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Fig. 5. Distribution of coloured network motifs for degree prestige 

Table 3. Distribution of coloured network motifs for degree prestige 

Motif ID 1 2 3 4 5 6 7 8 9 10 11 12 13 

3 white 31,9 48,0 50,4 52,0 60,0 71,0 64,3 70,8 64,2 58,1 64,5 76,0 82,6 
2 white  
1 black 

45,5 40,3 40,0 38,0 31,5 23,8 30,3 24,4 27,9 34,8 29,1 20,4 14,5 

1 white  
2 black 

21,0 10,9 9,1 9,3 7,8 4,6 5,2 4,2 7,3 6,6 5,8 3,2 2,5 

3 black 1,6 0,8 0,4 0,7 0,7 0,7 0,3 0,5 0,7 0,5 0,6 0,4 0,4 

4   Conclusions and Future Work 

The motif analysis enables detection of the communication patterns within complex 
social networks. The approach presented in this paper extends existing motif analysis 
techniques by taking into account the properties (centrality) of network nodes. This is 
a continuation of results presented in [5], where the influence on the communication 
intensity on the local network topology was investigated. The obtained results re-
vealed unknown properties of local topology of social networks, like differences be-
tween the role of DC and DP hubs, invisible for simple TSP analysis. They also form 
a basis for entirely new set of large dynamic social network analysis methods which 
build on several unique properties of motif analysis: 
• Promising computational cost – even for huge networks TSPs can be obtained 

with fast sampling algorithms which offers possibility of frequent tracking of so-
cial network evolution processes.  

• Possible integration with soft computing methods – colouring approach which attrib-
utes network nodes and edges with the values of arbitrary parameters coming from 
social network theory allows association of fuzzy variables (like “average DP”) with 
local network structures/nodes. Future network mining methods may build on this. 
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• The possibility of developing algorithms for inferring global properties (like 
clustering coefficient) of the network from the TSP – first promising results were 
presented in [3] for simple Watts-Strogatz social network structures. 

The next research steps will include motif analysis with respect to more sophisti-
cated parameters of social network nodes (like social position and betweenes central-
ity). Also the dynamics of the network will be addressed through: a) the influence of 
local topology changes on the network; b) the consequences of attaching/deleting 
nodes and edges; and c) the analysis of changes in the WUT social network during 
academic year – in order to check how known periodic changes in University’s busi-
ness profile and users’ activity affect the local topology of its social network. 
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Abstract. It is well known that the clusters produced by a clustering
algorithm depend on the chosen initial centers. In this paper we present
a measure for the degree to which a given clustering algorithm depends
on the choice of initial centers, for a given data set. This measure is cal-
culated for four well-known offline clustering algorithms (k-means Forgy,
k-means Hartigan, k-means Lloyd and fuzzy c-means), for five benchmark
data sets. The measure is also calculated for ECM, an online algorithm
that does not require the number of initial centers as input, but for which
the resulting clusters can depend on the order that the input arrives. Our
main finding is that this initialization dependence measure can also be
used to determine the optimal number of clusters.

1 Introduction

Clustering is the partitioning of a data set into subsets (clusters), so that the
data elements in each subset are similar to each other and dissimilar to the data
elements in other subsets. Similarity and dissimilarity are defined in terms of a
distance measure.

Many clustering algorithms start with initial centers and repeat a given rule
to transform these centers to representatives of clusters. Ideally the clusters that
are recognized in a given data set depend only on the structure of the data set
and the chosen distance measure. However it is known that the choice of initial
centers influences the resulting clusters and consequently research concentrates
on decreasing the degree of dependence on initial centers [1,2,3,4]. However little
research has taken place that actually explores the degree to which clustering
algorithms are initialization dependent. This is probably caused by the lack of
a suitable measure for initialization dependence (hereafter shortened as ID). In
this paper we present such a measure. We start from the idea that a clustering
algorithm itself acts as a deterministic function between random initializations
of the algorithm (e.g. initial centers, order of data input) and the resulting set of
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cluster centers. A resulting set of clusters, hereafter called a clustering, can thus
be viewed as a generalization of a random variable. In section 2 we describe this
statistical view in more rigorous terms and extend the basic statistical notion of
the dispersion of a random variable, the variance, to a measure for the dispersion
of a random clustering. In section 3 we present experimental results and notice
that the ID measure reaches minimal values when the number of clusters equals
the optimal number. This suggests the use of the ID measure as an optimization
tool for the number of clusters, which is explored in section 4. In section 5 we
conclude our findings.

2 Material and Methods

2.1 Initialization Dependence Measure

Suppose a data set D = {a1, . . . , an} that is to be clustered by a given hard
clustering algorithm, i.e. an element either belongs to a cluster or does not
belong to it. A clustering produced by this algorithm can be represented by
a matrix C with elements C(i, j), i, j = 1, . . . , n, where C(i, j) = 1 if ai and
aj belong to the same cluster, and C(i, j) = 0 if ai and aj belong to different
clusters. We call such a matrix a cluster matrix. Obviously there is a unique
correspondence between a clustering and a cluster matrix which implies that the
terms clustering and cluster matrix can be used interchangeably.

The elements C(i, j) can be interpreted as the random outcomes associated
with random variables A(i, j), their distribution determined by the given clus-
tering algorithm. The matrix A with elements A(i, j) is then called a random
clustering. The notation C is used for a random outcome clustering, i.e. a ma-
trix that contains outcomes of the random variables in A. One execution of a
clustering algorithm, yielding one random outcome clustering, is called a run.

We use the notations pij(0) and pij(1) to denote the probability that A(i, j)
is 0 and A(i, j) is 1 respectively. The expected value of A(i, j), E[A(i, j)], is
thus pij(0) × 0 + pij(1) × 1 = pij(1). The variance of A(i, j), Var(A(i, j)), is
given by E[(A(i, j) − E[A(i, j)])2]. This simple statistical framework allows us
to extend the expected value of a random variable to the expected value of a
random clustering. We simply define the expected clustering E[A] as the matrix
with element E[A(i, j)] on position (i, j). The variance of a random clustering A,
Var(A), is defined as the matrix with elements Var(A(i, j)). This matrix provides
information about the dispersion of a random clustering. A matrix norm is useful
to reduce the information in this matrix to one real value. We thus define the ID
of a random clustering A as ||Var(A)|| for some matrix norm ||.||. We will use

||Var(A)|| =
1

n(n − 1)

n∑
i=1

n∑
j=1

Var(A(i, j)) (1)

The motivation for dividing by n(n − 1) rather than by n2 is that the elements
on the diagonal are always 1, and thus contain no relevant information.
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2.2 Clustering Algorithms and Parameters

In section 3 we apply the ID measure (1) to five clustering algorithms: k-means
[5] with the implementations of Forgy, Hartigan and Lloyd, the fuzzy algorithm
c-means [5] and ECM [6]. K-means is a hard clustering algorithm for which
the cluster matrix representation of section 2.1 is suitable. However fuzzy c-
means is a soft algorithm: a set of clusters is produced and each element is given
a membership value between 0 and 1 in each cluster. An explicit relationship
between two given elements is not established and the matrix representation
is therefore not directly applicable. To solve this representation problem we
construct the matrix C in an alternative way. The c-means algorithm gives as
output λ(ai, Kl), the membership value of ai in a cluster Kl, for all data elements
ai and all clusters Kl produced by the algorithm. We convert the degrees to which
elements belong to each cluster, λ(ai, Kl), to degrees to which two given elements
belong together (which will be used as the needed values C(i, j)), as follows.
Suppose that λ(ai, Kl) = λ(aj , Kl) = 1 and λ(ai, Kp) = λ(aj , Kp) = 0 for all
p �= l. This corresponds with the hard clustering case where ai and aj belong to
the same cluster, i.e. C(i, j) = 1. Suppose now that λ(ai, Kl) = 1, λ(ai, Kp) = 0
for all p �= l, λ(aj , Kr) = 1 with r �= l and λ(aj , Kt) = 0 for all t �= r. This
corresponds with the hard clustering case where ai and aj belong to different
clusters, i.e. C(i, j) = 0. We notice that in both cases C(i, j) corresponds with the
maximum of the set {min(λ(ai, Kp), λ(aj , Kp))} over all clusters Kp produced
by the soft algorithm. We use this observation as definition for C(i, j):

C(i, j) = max{ min
Kp is a cluster

{λ(ai, Kp), λ(aj , Kp)}} (2)

ECM is an online algorithm that produces hard clusters and so the matrix rep-
resentation is suitable. Euclidean distance was used as distance metric for all
algorithms. The initial centers were chosen to range from 2 to 14. We make an
exception for spaeth2 04, because it only consists of 10 data points. The number
of initial centers for this data set was chosen to range from 2 to 5.

ECM does not require to predefine the number of initial centers, but it does
require to set a radius parameter r. This parameter determines when a new
cluster has to be created for an incoming data point. This parameter was cho-
sen to range from 0.025 to 0.5 in steps of 0.025. Because of the evolving nature
of ECM the input order of the given dataset is relevant and impacts the clus-
ter generation. In our experiments the data order was varied in each run of
ECM.

In theory we have to calculate Var(A) for a random clustering A to obtain the
ID measure (see section 2.1). However because the distribution of the random
variables in this matrix is not known, we have to rely on approximation tech-
niques. Therefore a sample S of N clusterings S = {C1, . . . , CN} is generated
and we calculate an approximation for the ID measure, ˆID, using this sample.
If we use the notation C̄ for the average cluster matrix consisting of elements
C̄(i, j) = 1/N

∑N
k=1 Ck(i, j), we define ˆID = ||V̂ar(A)||. V̂ar(A) is a matrix with

element 1/(N − 1)
∑N

k=1(C̄(i, j)−Ck(i, j))2 on position (i, j). The matrix norm
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(a) The spaeth 02 data set
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(b) The spaeth 04 data set

Fig. 1. Data sets from the SPAETH library. In a) no clear clusters can be identified,
while b) seems to contain three clusters.

||.|| is given by (1). Just as Var(A) is an extension of the variance of a random
variable, V̂ar(A) is an extension of the unbiased estimator of the population
variance. The parameter N was chosen as 400.

2.3 Data

Five data sets were used for the experimental results in section 2.2. Two of these
data sets are taken from the UCI Machine Learning Repository [7] which con-
tains real life data sets. The first is the iris data set which is ideally clustered
in 3 groups. The second is the glass identification data set which contains 7
different glass types. However if the data set is viewed at a higher level it only
contains 5 classes, because we can expect that the differences between ”windows
for buildings - float processed” and ”windows for buildings - non float processed”
are minor, and also for ”windows for vehicle - float processed” and ”windows for
vehicle - non float processed”. Two other data sets are spaeth 02 and spaeth2 04
taken from the SPAETH [8] and SPAETH2 [9] library respectively, which con-
tains artificial data sets to test clustering algorithms. Each data item in these
sets contains two numerical attributes which allows plotting the data, see Fig. 1.
It seems that spaeth2 04 contains 3 clusters, but that in spaeth 02 no reasonable
clusters can be detected. We also generated a random uniform data set, consist-
ing of 50 instances with two attributes. Each attribute was uniformly generated
between 0 and 10.

3 Experimental Results

We applied the five clustering algorithms (see section 2.2) to the five data sets
(see section 2.3), where the parameters were set to the values mentioned in
section 2.2 and calculated ˆID. The results are shown in figure 2.

The X-axis contains the number of clusters, except for ECM. The results for
ECM have been put in one figure, with the X-axis containing the radius.

We first concentrate on the offline algorithms. It is clear that Forgy and Lloyd
give very similar values for the ID measure, whereas the Hartigan implementa-
tion is less sensitive for initial values. However the fuzzy algorithm c-means is for
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(c) Spaeth 02
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(d) Spaeth2 04
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Fig. 2. Evolution of the ID measure for the tested data sets. In (a)-(e) a data point cor-
responds to the ID measure of a given clustering method for a defined cluster number.
(f) presents the results for ECM, here each trajectory corresponds to a data set.

most data sets and for most number of clusters considerably less initialization
dependent. This suggests that soft clustering algorithms have the advantage of
being less sensitive for the choice of initial centers than hard clustering algo-
rithms.

Consider now the ID measure when the number of clusters equals the optimal
number. For iris this optimum is 3 (see section 2.3), and Fig 2a shows that
the ID is also minimal there for all clustering algorithms. For glass the correct
number of classes is 5 or 7 depending on the level we view the data set. The
algorithms agree that for 5 clusters the sensitivity for initial centers is very low.
The difference between ”float processed” and ”non float processed” is apparently
too small to be noticed by any of the algorithms. Spaeth 02 is a data set for which
it is difficult to recognize clusters, see Fig 1a. However Hartigan and c-means are
able to group the data well in 2, 4 and 5 clusters. Forgy and Lloyd are not able
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to cluster this data set with a small sensitivity for initial centers. The values for
their ID measure exceed 0.03. This is large compared to their minimum values
(below 0.01) for iris, glass and spaeth2 04. spaeth2 04 is a data set that suggests
3 clusters, see Fig 1b. All algorithms agree that this number of clusters gives
a minimal dependence on initial centers. For the random, uniform data set it
is expected that no reasonable clusters can be found. Again, Hartigan and c-
means are able to recognize groups in this data set with little sensitivity to
initial centers. The behavior of Forgy and Lloyd is to be compared with their
behavior for spaeth 02: for all numbers of initial centers the ID is high. This
analysis suggests that the ID measure can be used to determine the optimal
number of clusters. We explore this idea in section 4.

ECM generally reports a higher ID measure on all data sets, which is due
the fact that the number of evolved clusters can vary for a specific parameter r.
This is quite in contrast to the other clustering methods, where the exact cluster
number is specified beforehand. For small values (r ≤ 0.075) many samples are
likely to be clustered into individual clusters, which results in a small ID measure.
On the other hand it seems that for large r all samples belong to one single
cluster, which is also reflected by a minimal ID measure. The local minima in
between these trivial solutions are expected to represent the optimal parameter
configuration for ECM. This is in particular true for the spaeth2 04 data set:
Setting r = 0.125 and r = 0.15 results on average in the evolution of exactly
three clusters in each of the 400 independent runs. As expected ECM can not
identify any cluster in the uniform data set. The spaeth 02 data has apparently
very similar characteristics as the uniform data, since both ID measure profiles
show similar trajectories and both lack an additional local minimum. For the
iris and the glass data sets the situation is less clear. Both ID measure profiles
have local minima at r = 0.175. We have determined how many clusters have
been on average obtained by ECM when choosing r = 0.175: For the glass data
this setting corresponds to approximately 11.08 clusters (0.810), while for the
iris data on average 5.6 (0.819) cluster were evolved (values in brackets present
the standard deviation). A closer analysis of the obtained clusters showed that
ECM could distinguish between the expected clusters, but additionally evolved
several sub-clusters within these expected clusters. The sub-clusters displayed
large variations between independent runs, which results in an increased ID
measure for larger radius values 0.2 ≤ r ≤ 0.35. Choosing a suitable radius
seems a non-trivial task, especially for data sets containing overlapping clusters,
as in the case for the iris and glass data.

4 Use of ID Measure to Find Optimal Number oF
Clusters

The analysis in section 3 for the offline algorithms suggests that the initialization
dependence of clustering algorithms is small (if not minimal) when the number
of initial centers equals the optimal number of clusters. Furthermore, if the data
set can not be clustered in a reasonable way (in this case spaeth 02 and the
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uniform data set), the ID of several clustering algorithms is high for all numbers
of initial centers. This was especially true for Forgy and Lloyd.

It is traditional practice that cluster validity measures, e.g. the Davies-Bouldin
index [10], are used to determine the optimal number of clusters. An important
disadvantage of these cluster validity measures is that they favor certain spe-
cial forms of clusters, especially ’circle shaped’ clusters. More general forms of
clusters typically result in poor values for these validity measures (even if the
separation between the clusters is high). This disadvantage is due to the fact that
these validity measures rely on a given distance metric to measure the within-
cluster scatter and the between-cluster separation. The use of a distance measure
presupposes that we have an idea of how the data is distributed, because the
distance measure determines the meaning of similarity between elements and
thus the meaning of a qualitative cluster.

Our above analysis proposes that the ID measure can be used as an alternative
tool to determine the optimal number of clusters, because the ID is low for
the optimal number of clusters. This measure has the advantage that it is not
restricted to certain data distributions. Whatever the distribution is, if the data
set can be optimally clustered in m clusters and the clustering algorithm is
able to recognize these m clusters, it is expected that the good separation of the
clusters ensures a large insensitivity for initial centers. This will then be revealed
by the low value of the ID measure for m clusters. Of course, if the algorithm
is only able to recognize a few typical data distributions, the ID measure will
also not be able to give the optimal number of clusters if the data set has
another distribution, but this deficiency is due to the algorithm and not to
the ID measure. Furthermore we can get round this deficiency by plotting the
ID measure for several clustering algorithms (possibly with different distance
measure).

Another advantage of the ID measure is that it is able to indicate that a given
data set can not be clustered by means of a given distance measure. This is clear
when the values for ˆID for spaeth 02 and the uniform data set are compared with
those for iris, glass and spaeth2 04. For the ECM it was found that the bevahior
of the ID for the uniform and spaeth 02 data sets (linear increase-linear decrease)
was rather different from the bevahior of the other three data sets.

However if the ID measure is used to determine a good number of clusters,
we should keep in mind that the figures suggest to calculate the ID measure for
several algorithms. The combination of the several plots gives a rather accurate
view on the optimal number of clusters whereas this is not necessarily valid if
we restrict us to one clustering algorithm. For example c-means indicates that
the glass data set can be clustered in any number of clusters (ranging from 2 to
14), and k-means Lloyd suggests that the uniform data set can equally well be
clustered in 2, 3 or 5 clusters. If however all algorithms have a fairly low value
for a given data set for a certain number of clusters, we can be rather sure that
this number of clusters is optimal (or near-optimal) for the data set.

The analysis in section 3 also reveals an unexpected advantage of algorithms
that are rather sensitive to initial centers, like Forgy and Lloyd. Fig. 2 and the
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analysis in section 3 suggest that Forgy and Lloyd are better indications of the
inability of the algorithm to cluster a given data set. For these algorithms the
values of the ID measure for spaeth 02 and the uniform data set are considerably
higher than for the other data sets, and this is true for all considered numbers of
initial centers. We can thus not state that algorithms with a high ID are inferior
to those with a low ID. Section 3 suggests that they are complementary and
that their combination can give a reliable answer to two questions: a) Can the
given data set be clustered in a satisfactory way, and b) if the data set can be
clustered, what is the optimal number of clusters?

5 Conclusion

In section 2.1 a measure for the dependence of clustering algorithms on initial
centers was presented. This measure was applied to five data sets for five clus-
tering algorithms in section 3. It was experimentally found that the measure has
minimal or near-minimal values when the number of clusters equals the opti-
mal number, which suggests the use of this measure to find the optimal number
of clusters. This idea was explored in section 4. Further research is needed to
confirm this experimental observation. Two advantages of this initialization de-
pendence measure over classical cluster validity measures in selecting the optimal
number of clusters are a) the developed measure is distribution-free and b) it is
able to indicate that a given data set can not be clustered in a satisfactory way.
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Abstract. In this paper, we propose a method to detect object bound-
aries from spectral information. Previous image boundary detection tech-
niques draw their attention on spatial image features such as brightness,
color and texture. Different from traditional feature descriptor methods,
we started from the analysis of natural image statistics in spectral do-
main and proposed a method to detect image boundaries by analyzing
log spectrum residual of images. We find that the spatial transform of
log spectrum residual of images are qualified as boundary maps. In the
experiment section we show that our results are similar to human seg-
mentations compared to common methods like the Canny detector.

1 Introduction

Boundary detection has been an active research topic in computer vision. In
general, boundary is referred to a contour in the image that represents a change
of pixel ownership from one object to another. Boundary detection is a low-
level task in both human vision systems and computer vision applications. It is
substantial to some mid-level and high-level tasks such as image segmentation
and object detection. In this paper, we propose a new approach to detect object
boundaries without concerning how to use this model in further mid-level and
high-level applications.

The most commonly used boundary detection algorithms focus on the discon-
tinuity in image brightness, such as the Canny detector [1]. These algorithms
are inadequate models since they fail to recognize the texture patterns in the
image and fire wildly inside these regions. To improve the performance, some
other image features are computed, such as color, texture or even some high-
level cues like shape. Texture analyze is the most discussed one among them.
Various texture descriptors have been introduced, such as [2, 3]. However, while
they work well on pure texture-texture boundaries in the images, some simple
brightness change are neglected due to the limited information contained in mere
texture. In [4], the author proposed a framework for boundary detection which
combines many image features: local brightness, color and texture cues. The cue
combination is modeled as a supervised learning problem, enables the algorithm
to learn the cue combination rules from the human segmentation as ground
truth data provided by the Berkeley Segmentation Dataset [5]. The authors also
propose a precision-recall benchmark algorithm to evaluate their boundary de-
tection framework, which we also adopt in this paper. However, their method
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relies on prior knowledge about the feature combination (human segmentation
as ground-truth data for machine learning), and the complicated framework is
difficult to implement.

In this paper, a boundary detection method which conducts spectral informa-
tion is proposed. In Section 2, the model of spectral residual is introduced, which
is the model we used in this paper to generate image boundaries. We start from
analyzing natural image statistics and their log spectrum features, and then we
obtain the spectral residual in the frequency domain and transform it into spa-
tial domain to obtain boundaries in the image. In Section 3, we introduce the
benchmark method we adopt from [4] and provide the experiment result of our
algorithm.

2 Image Boundaries from Spectral Residual

2.1 The Log Spectrum Representation

One invariant feature of natural image statistics that has been widely studied is
scale invariance [6, 7], which is known as 1/f law. It concludes that the average
Fourier transform of a large group of images obey the distribution:

E{A(f)} ∝ 1/f (1)

This feature can be easily recognized from the log-log spectrum of images
(See Fig.1.(5)). However, this linear feature in log-log spectrum cannot be used
to analyze single image, since the log-log spectrum pattern of a single image
is not a straight line in most cases (Fig.1). Moreover, the sampling points are
not well proportioned in the log-log spectrum: the high-frequency parts draw
together, which leads to noise [8]. To overcome this defect, the author in [9]
proposed the model of log spectrum, the comparison of log spectrum and log-log
spectrum is shown in Fig.1. By analyzing the log spectrum of natural images,
the author in [9] finds that the spectral residual in log spectrum domain has
some special features in its spatial transform. The spectral residual is defined as
following, given an input image Im(x), we have:

A(f) = �(F [Im(x)]) (2)

As the amplitude (real) part of Im(x)’s fourier transform and:

P (f) = �(F [Im(x)]) (3)

As the Phase (Imaginary) part of the Im(x)’s fourier transform.

L(f) = log(A(f)) (4)

R(f) = L(f) − Avglog(f) (5)

Rsd(x) = F−1[exp(R(f) + P (f))] (6)
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Fig. 1. log spectrum and log-log spectrum representation. (1)single image (2)log spec-
trum of the single image (3)log-log spectrum of the single image (4)log spectrum of
300 images (5)log-log spectrum of 300 images.

For each input image Im(x), we compute the amplitude and phase of its Fourier
Transform, A(f) and P (f), then we obtain the log spectrum residual by sub-
tracting the average log spectrum Avglog(f) from the input image’s log spec-
trum log(A(f)). After that, an inverse Fourier Transform is conducted to get
the spatial image of the spectral residual. This procedure is illustrated in Fig 2.

2.2 Spectral Residual to Object Contour

The authors in [9] used this special feature of the spectral residual map to
generate saliency map as a computational model of visual attention. From Fig.
2 we can clearly see that the bright pixel clusters are located definitely at the
proto-objects in the images. After a large amount of experiments on the spectral
residual model, we find that the spectral residual map can be used to generate
more meaningful maps - the boundary maps, which points out the objects in the
image more accurately by figuring out their contours rather than point out proto-
object locations. However, the raw result of spectral residual cannot be directly
used as the result of boundary maps because it is only a group of discreet and
randomly distributed bright pixels lies near the object boundaries in the image
(See Fig.2). To make the result more like continuous boundary contours, we
should smooth these bright pixels into lines and curves, and we find the Gestalt
psychology quite applicable here.
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Fig. 2. Spatial feature of log spectrum residual. Left column: The input image. Middle
column: The log spectrum of input image(blue), the average log spectrum(green), the
log spectrum residual(red). Right column: Inverse Fourier Transform of the spectral
residual into spatial images with boundary features.

The Gestalt psychology starts from the research of visual grouping in human
vision systems [10] and is concluded into a series of laws that can predict the
human vision behavior, called the Gestalt laws. One of these laws, the law of
continuity points out that human beings tend to recognize continuous contours
from the visual input, and this law has become the guiding rule of many computer
vision applications [11]. Figure 3 shows one hundred 13 × 13 patches, which are
the most common image boundary patches computed from 300 human segmented
images, the Berkeley Segmentation Database [12]. These 100 patches account
for 74.78% boundary patches in more than 10,000 patches we obtained from the
database. We can see clearly that most of the boundary patches are direct lines
with different orientations. Based on this statistics, we have designed a group
of linear filters to smooth the raw result of spectral residual image, as shown
in Fig.4. These filters are similar to line detectors in ordinary image processing
techniques, such as Gabor filters. In this task, they are quite qualified to smooth
the discreet bright pixels in our raw spectral residual map into continuous lines.
The procedure of smoothing is illustrated as blow:

The spectral residual map Rsd(x) is convoluted with each line detector patch
P (x)i to obtain several direction maps D(x)i:

D(x)i = P (x)i ∗ Rsd(x) (7)

The orientation map O(x) is defined as the max value among different direction
maps:

O(x) = max
i

D(x)i (8)
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Fig. 3. The 100 most frequent image boundary patches computed from 300 natural
images in [12]

Fig. 4. The filters to smooth the raw image results

Fig. 5. The result after smoothing

Moreover, the number i of D(x)i that has the max convolution value is defined
as the direction of each pixel, named as the orientation label map OL(x):

OL(x) = arg max
i

D(x)i (9)

The final boundary map B(x) is the product of orientation map O(x) and length
map L(x):

B(x) = O(x) × L(x) (10)

The length map L(x) is defined as the number of same direction pixels in the
13 × 13 patch centered at the position x in the orientation label map OL(x).

The result of our boundary detection algorithm after smoothing is illustrated
in Fig 5.
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Fig. 6. The result of our boundary detection algorithm (upper Column 2) compared
to MATLAB Canny detector with automatic parameters (upper Column 3) and hu-
man segmentations (upper Column 4) and the precision-recall curves of these images
(bottom-left). More results with our boundary detection method(bottom-right)

3 Experiment and Benchmark

In [4], the authors proposed a precision-recall framework to evaluate different
boundary detection algorithms using human labeled segmentation as ground
truth data. In their framework, the precision denotes the fraction of detected
boundaries that are true positives and the recall denotes the fraction of true
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boundaries that have been detected. The precision-recall curve is a curve con-
necting a group of points with different thresholds applied on the final boundary
map. Fig 6 illustrates the result of our boundary detection algorithm with its
comparison to the common Canny detectors and human segmentations, all the
images are from the Berkeley Segmentation Database. We can see that our re-
sults are close to human segmentation results. And in the second part of Fig. 6
we provide the precision-recall curve of each image above. From the experiment
results and the benchmark curves, we conclude that our method provides high
precisions while it is difficult for our boundary map to reach high recall area in
the precision-recall curve, this phenomenon is mainly because the unbalanced
proportion of brightness distribution introduced by the spectral residual model:
only a small amount of pixels have very high brightness values while most pixels
in the image have a value close to zero. This special feature also makes sense
in the threshold determination issue of our method: The boundaries and non-
boundaries are naturally divided due to the discontinuous brightness distribu-
tion. To better illustrate this feature, we compute the corresponding F-measure
values of our precision-recall curves [4], which is very helpful for us to determine
the optimal threshold from existing P-R curves. The F-measure is defined as

F = PR/(αR + (1 − α)P ) (11)

It captures the trade-off between Precision and Recall by a relative cost α. The
point along the precision-recall curve which has the greatest F-measure values
provides us the optimal detector threshold for our boundary map. The detection
results shown in Fig 6 are all conducted by this optimal threshold. Note that
in this paper, we set our α to 0.5, which means that precision and recall are
equally important in the determination of thresholds. From the result, we find
that among the 300 images in the database, the optimal threshold for images are
ranged in a relatively small area(0.03 - 0.1). This special feature enables us to
define a global threshold without the need to conduct some learning procedures
while preserving the quality of the result at the same time.

4 Discussions

In this paper, we proposed a new method to detect image boundaries which
conduct information in frequency domain rather than spatial domain. The result
of our experiment shows that our boundary maps are close to human labeled
boundaries. However, there are still some limitations in our algorithm. First, the
algorithm don’t work well on random textures with large brightness changes.
For example, see the trees in the left image of Fig.5, we can see that the method
fire falsely inside these areas. To overcome this defect, we should integrate more
cues into the boundary detection framework, such as texture cues. We believe
that the combination of information from spatial and frequency domain can lead
to better performance in this task. Moreover, it is difficult to make use of our
low level boundary map in mid-level and high-level computer vision tasks, such
as image segmentation and object recognition. This is what we will emphasis in
our future research work.
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Abstract. Practical Recurrent Learning (PRL) has been proposed as a
simple learning algorithm for recurrent neural networks[1][2]. This algo-
rithm enables learning with practical order O(n2) of memory capacity
and computational cost, which cannot be realized by conventional Back
Propagation Through Time (BPTT) or Real Time Recurrent Learning
(RTRL). It was shown in the previous work[1] that 3-bit parity problem
could be learned successfully by PRL, but the learning performance was
quite inferior to BPTT. In this paper, a simple calculation is introduced
to prevent monotonous oscillations from being biased to the saturation
range of the sigmoid function during learning. It is shown that the learn-
ing performance of the PRL method can be improved in the 3-bit parity
problem. Finally, this improved PRL is applied to a scanned digit pat-
tern classification task for which the results are inferior but comparable
to the conventional BPTT.

1 Introduction

The significance of recurrent neural networks (RNNs) is expected to grow more
and more hereafter for developing higher functions due to its ability of purpo-
sive learning to memorize information or events that have occurred earlier in
a sequence. Currently, there are two popular learning algorithms for recurrent
neural networks, BPTT[3] and RTRL[4], that have been widely used in many ap-
plication areas. However, the critical drawback of the conventional algorithms is
that they suffer from the necessity of large memory capacity and computational
cost.

BPTT requires O(n2T ), order of computational cost and O(nT ), order of
memory capacity where n is the number of nodes and T is the number of steps
for tracing back to the past. That means the past T states of the neural network
have to be stored and the learning is done by using them. However, if T is small,
it is worried that sufficient learning according to the past state cannot be done.
On the other hand, RTRL needs as large as O(n3) for memory capacity, and
O(n4) for computational cost, in order to modify each connection weight without
tracing back to the past. Using RTRL in a large scale network is impractical
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because of the explosion in necessary memory capacity and computational cost.
So far, many researches such as [5] have been done based on BPTT and RTRL.

S. Hochreiter and J. Schmidhuber[6] have proposed a special network archi-
tecture that has some memory cells that enables constant, non-vanishing error
flow within the memory cell. They used a variant RTRL and only O(n2) of com-
putational cost is required. However, special structure is necessary and it cannot
be applied to the general recurrent neural networks.

Therefore, clearly, a practical learning algorithm for recurrent neural networks
that need O(n2) or less memory and O(n2) or less computational cost is required
where n2 is equivalent to the number of synapses. PRL is an algorithm that ca-
pable to keep the order of memory size and computational cost as low as O(n2),
by introducing some variable to hold some past states which enables constant
memory and local computation to be assigned at each synapse. Therefore, this
does not only reduce the memory capacity and computational cost drastically,
but also increases the feasibility as a hardware system. In the previous work, it
was shown that benchmark problems (sequential EXOR and 3-bit parity prob-
lem) could be learned successfully by PRL even though the learning performance
was often quite inferior to the conventional BPTT.1

This paper presents an extension of the PRL method. The target is to make
PRL perform equivalently to or outperform the conventional methods, consid-
ering that PRL already excels in computational cost and memory size. The ex-
tension is made by adjusting hidden nodes’ output to prevent monotonous and
biased oscillation during learning as will be described in the next section. Finally,
we apply this extended PRL method to a more difficult task and compare it to
BPTT.

This paper is organized as follows. In section 2, the extended of PRL method in
the discrete time domain is introduced. Section 3 presents the improved result for
3-bit parity and the application to a pattern recognition task. Section 4 presents
the conclusion of this paper.

2 Practical Recurrent Learning (PRL)

This section briefly recounts the PRL method in the discrete time domain as
proposed in [1] at first. The forward calculation is the same as a regular neural
network[3] in which each node computes weighted sum of its inputs and non-
linear transformation by sigmoid function. The basic idea is, some variables
that are allocated to each synapse and hold the past information are introduced,
considering the relationship between the outputs of post and pre-synaptic nodes.
The connection weights between the nodes are modified by using the variables
and propagated error signal. In order to keep the memory size and calculation
time small, the error is propagated backwards like conventional BP[3] without
tracing back to the past. In the past work[2], in the continuous time domain,
1 Comparison to the RTRL is not shown in this paper, considering that RTRL is less

practical than BPTT in terms of memory capacity and computational cost in larger
networks.
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three kinds of variables to hold the following items of the past information were
introduced intuitively based on trials and errors.

1. the latest outputs of pre-synaptic nodes,
2. the outputs of pre-synaptic nodes that change recently among all the inputs

to the post-synaptic node,
3. the outputs of the pre-synaptic node that caused the changed in the post-

synaptic node’s output.

These information are held by some variables named pji, qji and rji respectively.
However, even a sequential EXOR problem could not be learned.

Then, for easy analysis, the algorithm is converted into the discrete time
domain and only variable rji was used in the previous work[1]. Among the three
variables, rji is particularly important because rji does not change when the
output of post synaptic node does not change and is useful for the problems
that need to memorize some past information before a long time lag. rji in the
discrete time domain is updated at each time step as

rji,t = rji,t−1(1 − |∆xj,t|) + f ′(Sj,t)xi,t|∆xj,t| (1)

where f ′(Sj) is the derivate of the sigmoid function of j-th post-synaptic node,
xi, xj is the output of the pre- and post-synaptic node respectively and ∆xj,t=
xj,t − xj,t−1.

The important feature of rji is that, it holds the information about the out-
put of the pre-synaptic node that caused the change of the pre-synaptic node’s
output. Each synaptic weight is updated as

� wji = ηδjrji (2)

where η is a learning rate and δj is propagated error of the post synaptic nodes.

2.1 Improvement of the PRL Method

Prevention of monotonous and biased oscillation in hidden nodes. By
observing and analyzing the result from the previous work[1], it is shown that
there is some monotonous oscillation in the change of hidden nodes’ output for
PRL during the learning phase. Fig.1 shows the change of the hidden node’s
output during the learning for BPTT and PRL whose connection weight to the
output node is the largest. Almost half of the nodes’ outputs in the hidden layer
for PRL oscillate monotonously in some biased range of value. The net value of
this output lies around the saturation range of the sigmoid function. It is well
known that when the net value lies around the saturation range, the learning
does not progress and it largely affects the learning performance.

Then, in order to accelerate learning, the output of hidden nodes is adjusted
by moving the value to the vicinity of 0 when the output of the node oscil-
lates around the saturation range of the sigmoid function. At first, the temporal
average of the output is calculated in each epoch by
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Fig. 1. The change of the output of the hidden node who has the largest connection
weight to the output node for both methods. The left side is for BPTT, and the right
one is for PRL.

ōj =
∑T

τ=0 oj,τ

T
, (3)

where oj is the average of hidden jth output, T indicates the number of time
steps for one epoch. Then the value of oj,n is compared to average of oj,n−1 in
the previous epoch according to the following equation.

� oj,n = oj,n − oj,n−1. (4)

Then, if the difference of average value | � oj | was below 0.1 and the state
continued for 8 epochs, the hidden node’s output is adjusted to the vicinity of
0 by the following equation before starting the next epoch. Here, we used the
sigmoid function whose value range from -0.5 to 0.5.

oj,t = oj,t − oj,t−1. (5)

3 Experimental Results

In this section, two different experiment results are presented to show the per-
formance of the proposed extension PRL. The first experiment is the 3-bit parity
problem as a benchmark test to show that modification of oscillated hidden neu-
rons’ output could improve the learning performance. The second experiment is
a pattern classification task which is used to test whether PRL can perform in
a more practical task.

Here, the network architecture used in this paper is an Elman-type RNN.
Conventional BP method is used for the learning between hidden and output
layers, and PRL is used for the learning between input and hidden layers.

3.1 3-Bit Parity Problem

In the preceding work[1], it was shown that 3-bit parity problem could be learned
by PRL, but the learning performance is quite inferior to the BPTT method.
RNN with 1 output, 20 hidden units and 4 input signals is used here. 3 of the
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inputs are the input signals to calculate the parity, and is given at t=5, 10, 15
sequentially. The other one is given to distinguish the starting time of one epoch
and it is always 1 at t=0.

Table.1 summarizes some improving results of the PRL method. Here, suc-
cessful learning is clarified when a squared error of less than 10−3 is continues
for 100 patterns. In terms of success ratio, it is shown that PRL can perform
better than before and similar to BPTT even though no trace back is done in
this method. Although conventional BPTT performs better, in PRL, the average
success iteration can be improved more than 50% compared to before.

In addition, Fig.2 shows the change of hidden node’s output that have been
adjusted to the vicinity of 0, resulting in faster learning than before.

Table 1. Comparison results of learning success and average success iterations

Learning rate Learning success Average
of variable r (/100times) success iteration

Before modification
1 99 33,107
2 85 29,737
4 42 33,666
10 7 17,331

After modification
1 100 24,703
2 98 19,576
4 100 15,199
10 95 11,628

BPTT 100 6,297
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Fig. 2. The change of hidden node’s output after introducing the method to move the
value to the vicinity of 0

3.2 Pattern Classification Task

A critical test of the presented algorithm is to directly deal with high-dimensional,
multimedia data, such as images or speech. Here, we carry out a handwritten
digit recognition to investigate the performance of the proposed PRL.

The experiment was conducted on a digit database whose samples were col-
lected by using a pen tablet as shown in Fig.3. Each of 10 different people wrote
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each of 10 numbers from 0 to 9 twice. Thus, 200 images were collected for train-
ing in total. In addition, we added 3 sample sets from 3 other people for test
data as shown in Fig.3 to observe the generalization ability of both method.
Each image has 100 rows and 100 columns, and each of 10,000 pixels has binary
value. Considering the introduction of continuous-value inputs and effective gen-
eralization, the size of the image was reduced to 20 × 20 pixels by calculating
the average of every 5 × 5 pixels. Then, in order to enter this digit image signals
into a recurrent neural network, it is scanned column by column, resulting in 20
inputs per each step as shown in Fig.4. In addition, the number of steps is set
to 20 in one iteration to represent 20 rows, and the training signal is provided
only at t=20.

Fig. 3. Examples of handwritten 0∼9 digit numbers

Fig. 4. A recurrent neural network with a handwritten digit image input by scanning
column by column in each step

The task here is to classify the digit images into 10 classes. For instance, if an
images of the number ’1’ is set as training data, the training signal for the 1st
node in the output layer is 0.4, while the others will be -0.4. Furthermore, Table
2 shows the other parameter setup of the task.

Table 3 summarizes the comparison results for both methods. Here, the con-
dition of successful learning is that the corresponding output to the presented
image is the maximum among all the output nodes for every presented im-
age. From the results, it is shown that the improved PRL could work even
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Table 2. Parameter setups

Nodes in input layer 20 hidden’s layer nodes
Nodes in output layer 10
Nodes in hidden layer 40

Range of sigmoid function -0.5∼0.5
Initial weight of 4.0
(self-feedback)
Initial weight 0.0

(non-self feed-back)
Initial weight random number of -1.0∼1.0

(input to hidden layer)
Initial weight 0.0

(hidden to output layer)

+

Table 3. Comparison results of learning success ratio and average success iterations
in the handwritten digit classification problem

Method Learning success Average
(/10 times) success iteration

PRL 10 25,973
BPTT 10 14,666
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Fig. 5. The right side is the change in the outputs of 0th node and 6th node for an
image of pattern ’0’ and the left side is the change for the image of pattern ’6’

in the hand-writing recognition task with almost continuous-value inputs that
is more difficult compared to the parity problem. It is also shown here that
in terms of success ratio, PRL can perform almost as good as BPTT, but
conventional BPTT still performs better in the number of average success
iteration.

In order to show how the RNN classifies the images, two samples output
changes in one epoch are shown in Fig.5 for presence of ’0’ and ’6’. The left half
of ’0’ and ’6’ is similar to each other. It can be seen that the change of output
in 0th and 6th node is similar at the early times, but the corresponding output
is increases after the latter half of the epoch.

In order to observe the generalization ability of both method, the performance
for the test data is examined. It is shown that all of the test data could be
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classified by the PRL method while 15 from 30 images in BPTT. PRL could
recognize all the images in test samples, though further experiments are required
to validate the results of generalization ability between both methods.

4 Conclusion

One extension are introduced here in order to improve performance of the PRL
method that capable to keep the order of memory size and computational cost
as low as O(n2), which are not realized by BPTT and RTRL. By preventing
the oscillated hidden node’s output from being biased to the saturation of the
sigmoid function, it was shown that the learning performance of PRL in 3-
bit parity problem could be improved. Furthermore, it was shown that PRL
works in scanned digit pattern classification task that is more practical than
the parity problem. However, since PRL is still inferior to BPTT in the average
number of iteration for learning, future investigations for further improvement
and application to more practical tasks are required.

Acknowledgement. A part of this research was supported by JSPS Grant
in-Aid for Scientific Research and �19300070.

References

1. Samsudin, M.F., Hirose, T., Shibata, K.: Practical Recurrent Learning (PRL) in
the Discrete Time Domain. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa,
T. (eds.) ICONIP 2007, Part I. LNCS, vol. 4984, pp. 228–237. Springer, Heidelberg
(2008)

2. Shibata, K., Okabe, Y., Ito, K.: Simple Learning Algorithm for Recurrent Networks
to Realize Short-Term Memories. In: Proc. of IJCNN Intl. Joint Conf. on Neural
Network, vol. 98, pp. 2367–2372 (1998)

3. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by errorpropagating. In: Parallel Distributed Processing, vol. 1, pp. 318–362. MIT
Press, Cambridge (1986)

4. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural network. Neural Computation 1, 270–280 (1989)

5. Song, Q., Wu, Y., Soh, Y.C.: Robust Adaptive Gradient-Descent Training Algorithm
for Recurrent Neural Networks in Discrete Time Domain. IEEE Transactions on
Neural Networks 19(11), 1841–1853 (2008)

6. Hochreiter, S., Schimidhuber, J.: Long Short Term Memory. Neural Computation 9,
1735–1780 (1997)



M. Köppen et al. (Eds.):  ICONIP 2008, Part II, LNCS 5507, pp. 639–646, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

An Automatic Intelligent Language Classifier 

Brijesh Verma1, Hong Lee1, and John Zakos2 

1 School of Computing Sciences, CQUniversity 
Rockhampton, Queensland, Australia 

{B.Verma,H.Lee1}@cqu.edu.au 
2 MyCyberTwin, Gold Coast, Queensland, Australia  

Abstract. The paper presents a novel sentence-based language classifier that 
accepts a sentence as input and produces a confidence value for each target lan-
guage. The proposed classifier incorporates Unicode based features and a neural 
network. The three features Unicode, exclusive Unicode and word matching 
score are extracted and fed to a neural network for obtaining a final confidence 
value. The word matching score is calculated by matching words in an input 
sentence against a common word list for each target language. In a common 
word list, the most frequently used words for each language are statistically col-
lected and a database is created. The preliminary experiments were performed 
using test samples from web documents for languages such as English, German, 
Polish, French, Spanish, Chinese, Japanese and Korean. The classification accu-
racy of 98.88% has been achieved on a small database.  

1   Introduction 

Automatic language classification systems are needed in many real world applications 
such as web based communication, multilingual document classification, medical 
cross-language text retrieval systems, helpdesk call routing  and spoken language 
classification  just to mention a few. 

Automatic language classification is the problem of identifying in which language 
a given sample text has been written.  Living in a global community, we are  
surrounded by multi-lingual environments such as web documents, speeches, etc. 
Especially, global advances in the Internet communities have imposed a great deal of 
importance for language classification problem due to the huge amount of web docu-
ments published in multi-languages. Successful research outcomes can affect many 
industrial sectors. A multi language translation technique [1, 2] is one of the exam-
ples, where the input language needs to be classified prior to the translation to a target 
language. Also, the language identification plays a key role in the internet search 
engines by identifying the language of the search keys [3]. Researchers have found 
[4] that text-to-speech applications heavily depend on the language identification 
performances in multi-lingual environments. 

Language classification tasks based on the written mono text (single language 
document) has been regarded as a relatively simple problem for small number of 
languages and when a large amount of sample texts in the identification stage are 
available. However, the task of language classification is very difficult and challeng-
ing when we have multi-language documents and large number of languages to  
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classify. The complexity of the problem solving significantly increases [5] with the 
size of input text. 

The main goal of the research presented in this paper is to investigate a novel clas-
sifier that accepts a sentence including multilingual/small sentence as input and pro-
vide a confidence value for each language. The paper is divided into five sections. 
Section 2 presents existing techniques for language classifiers, limitations and diffi-
culties.  Section 3 presents the proposed research methodology. The experimental 
results and analysis are presented in Section 4. Finally, a conclusion is presented in 
Section 5. 

2   Background 

The standard framework involved in language identification is modeling and classifica-
tion. In language modeling stage, the most discriminative features of each target language 
is extracted and stored in its language model. During classification, similar feature extrac-
tion process is performed on input texts. Based on the models of each language and input 
text, the distance of similarity or dissimilarity is measured and the input text is identified 
according to the score. In [6], a language identification system has been presented which 
can achieve accuracy of 93% with as little as a three-word input. 

There has been some research conducted in the area of automatic classification of 
languages and some papers have been published in recent years. In [3], an approach is 
proposed which can classify input texts’ language by finding the maximum frequency 
of input words in each dictionary of Spanish, French, English, Portuguese, German 
and Italian. To identify the input language, heuristics are employed into the decision 
making process. The methodology is effective to classify input texts’ language as 
accurate as 88% on randomly selected web pages and 99% on randomly selected 
well-formatted texts. In [5], a decision tree scheme for common letters of language in 
documents is used to identify Arabic from Persian. The decision tree is defined as a 
series of questions about the context of the current letter. If a common but discrimi-
nant letter from the other language is found, the classification is made on the incident. 
The experiment result shows that average of around 98.8% accuracy was achieved to 
identify 240 web documents (120 for Arabic and 120 for Persian). In [6], each lan-
guage is modeled from a corpus of training documents on features extracted based on 
common words and N-gram methods. The features extracted by the common words 
are the probability distribution of the frequency of the most common words in the 
training documents in a language. Likewise, features of character N-gram is measured 
to reflect the frequency score and the rank of N-gram instances are stored. During 
classification, rather than modeling the whole input text, features of random sub-
sections of the input texts are extracted to minimize the computational time. The ran-
dom sampling is performed until the standard error of the random samples is larger 
than a threshold. The Monte Carlo method with N-gram and common words was 
tested on Danish, Dutch, English, French, German, Italian, Norwegian, Portuguese, 
Spanish, and Swedish from ECI database. However, it doesn’t report the numerical 
data on the performance of the classification apart from the comparative graph be-
tween difference methods. In [8], two identification methods, enhanced N-gram prob-
abilities and decision tree are proposed to compare the performance of classification 
accuracy. The authors enhanced N-gram feature extraction technique by decomposing 
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each word into three parts, head, body and tail. The decision trees are to identify the 
most likely language for each letter in the input word. The experiment results on local 
in-house guest names in four languages reported that 71.8% and 66.1% average iden-
tification accuracies were achieved by N-gram and decision tree methods accordingly. 
Vector-space based identification approach was proposed in [9] for 13 Latin character 
based languages. Features included in vectors were N-gram frequencies and word 
sizes with inverse document frequency weight incorporated. Between models and an 
input, cosine values are calculated and used to classify the input text. Experiment 
results report various performance accuracies depending on the input text size, which 
produced 100% accuracy on web documents with 1000 bytes. In [10], the authors 
incorporated feature extraction technique of the common words in a language, known 
as stop words like ‘the’, ‘of’ and ‘to’, to identify the language from scanned document 
images written in multi-lingual environments. In their research, the stop words, their 
frequency and word shape code are used as key feature vectors to classify the lan-
guage which input documents were written in. The approach was as effective as 
96.75% of accuracy rate at best on locally prepared database. In [11], Artemenko et 
al. evaluated performances of four different identification methodologies in two sepa-
rate experiments of mono-lingual and multi-lingual web documents on 8 languages. 
Identification methods used in the experiments were Vector space cosine similarity, 
‘out of place’ similarity between rankings and Bayesian classifier on N-gram feature 
spaces. A word frequency based classification was added to the comparison. The 
research inferred that N-gram based approach outperforms the word frequency based 
methods for short texts. The researchers were able to achieve 100% and 97% accura-
cies on mono and multi lingual documents accordingly. In [12], an approach was 
proposed which can count common words and character sequences of N-gram  
methods for a language. Then, the frequency was used as the key information to dis-
tinguish the input documents against models. The performance was measured on 
Europarl corpus test sets, and was satisfactory, 97.9% on German language was 
achieved. In [13], an algorithm is presented which extends the common N-gram cor-
pus analysis complemented with heuristics. Classification was to measure the similar-
ity between input text and model languages. The literature reports the performance on 
12 languages of 6000 web documents was 100% accurate at most. Rendering charac-
ter sequence into HMM language model was manipulated as a key ingredient for 
language classification task in [14]. The identification accuracy of 95% was achieved 
in their proposal. In [15], term frequency and its weight by entropy method over 
documents were used as feature for neural networks to categorize the web documents. 
In [16], an approach was proposed which uses tri-gram and frequency language mod-
elling technique to identify the origin of names written-in-Latin, Japanese, Chinese 
and English. An accuracy of 92% was achieved to distinguish Japanese names from 
the others. 

3   Proposed Research Methodology 

The proposed research methodology is described in details in this section. Foremost, 
an overview of the proposed technique is presented, followed by analysis of language 
specific Unicode. The proposed feature extraction and classification algorithms are 
described at the end of this section. 
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Fig. 1. Proposed methodology 

3.1   Overview 

The proposed approach shown in Fig. 1 takes an UTF8 formatted sentence as an in-
put. The irrelevant Unicodes from the input sentence, are removed through a preproc-
essing module before feature extraction. Based on the preprocessed input, Unicodes 
for each language are counted and divided by the total number of Unicodes. The sec-
ond feature is to extract and count the language specific Unicodes for each language. 
Again, the count for exclusive Unicode of each language is divided by the total num-
ber of Unicodes in the preprocessed input sentence. The final feature is related to 
identifying each segment or word separated by a space. There are two different meth-
odologies suggested for identification of each segment or word. Firstly, Latin charac-
ter-based languages like English, German, Polish, French, Spanish, etc. put spaces 
between words. However, it is not true for Chinese, Japanese, Korean, etc. to distin-
guish words by spaces. So, it is more appropriate to call a component in a sentence 
separated by spaces a “segment”. To identify each segment composed of Latin  
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characters, a dictionary matching method is proposed. Heuristics are employed to 
identify each segment composed of Unicodes from Chinese, Japanese and Korean. 
Finally, the features are fed to a classifier to decide which language the input sentence 
belongs to and provide confidence values. 

3.2   Unicode and UTF8 

Unicode is a standard representation of characters to be expressed in computing [17]. 
UTF8 (8-bit Unicode Transformation Format) is a preferred protocol to encode the 
Unicode characters for storing or streaming them electronically [18, 19]. Characters 
for all languages are defined as ranges in UTF8 format [20]. 

3.3   Feature Extraction 

The proposed methodology utilizes three features related to Unicode components in 
the pre-processed sentence. The three features are Unicode, exclusive Unicode and 
segments for each language. 

3.3.1   Unicode Feature 
FU = {u1, u2, …, un}, um = , m = 1…n,  where n is the number of languages, g(m) 

is the total number of Unicodes for language m, and t is the total number of Unicode 
in an input sentence. 

Example: 

Input sentence: ‘My name is 이상민 in Korean’ 
Unicode distribution:  
English, German, French, Spanish, and Polish: M, y, n, a, m, e, i, s, i, n, k, o, r, e, 

a, n (Total: 16) 
Chinese and Japanese: 0 

Korean: 이, 상, 민 (Total: 3) 
Total Unicode in the input sentence: 19 
FU = {16/19, 16/19, 16/19, 16/19, 16/19, 0, 0, 3/19} 

3.3.2   Exclusive Unicode Feature 

FX = {u1, u2, …, un}, um = , m = 1…n,  where n is the number of languages, g(m) 

is the total number of exclusive Unicode for language m, and t is the total number of 
Unicode in an input sentence. 

3.3.3   Segment feature 

FW = {S1, S2, …, Sn}, Sm = , m = 1…n, where n is the number of languages, y is 

the total number of space-separated segments/words, and f(m) is the total number of 
space-separated segments/words identified by dictionary matching in a pre-processed 
input sentence.  
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3.4   Classification 

The weighted sum feature classification and neural network based classification as 
described below have been investigated in this research.  

3.4.1 Weighted Sum Feature Classification (WSFC) 
The three features described in previous sections are extracted from the input sen-
tence. The features are multiplied by a preset weight and sum of weighted features is 
calculated. The language with highest weighted feature value is selected.  

3.4.2 Neural Classification (NC) 
An overview of neural classification process is shown below in Fig. 2. The three fea-
tures are extracted from the input sentence and fed to a neural classifier. The classifier 
fuses the features and gives the final confidence for each language. The final output 
contains the total score for each language. The neural network based classifier is 
trained using artificially generated training set before it is used for testing.  

Fig. 2. Overview of neural network classification process 

4   Experiments and Results 

The proposed methodology has been implemented in Java programming language. 
The experiments were conducted using weighted sum feature classification (WSFC) 
and neural classification (NC). 

A small database of sentences with less than 10 words taken from web pages has been 
created. A news article for each language is selected and input samples for testing has 
been prepared by segmenting the article into sentences by finding a period symbol “.” at 
the end of sentence. One hundred sentences for each language were collected, which give 
the total of eighty hundred sentences, and stored in an input file with UTF8 format. 

The classification accuracies for experiments are shown in Table 1. The proposed ap-
proach has been compared to other methods in the literature. The proposed approach 
shows the similar performance over methodologies in [5, 8, 11, 12], but they are lower 
than the results from [9, 13]. However, considering the input language mode and the size 
of the input data, it is fair to conclude that the proposed approach were competitive to the 
existing approaches. Unlike the proposed approach, experimental results from [9] used 
longer input data size. The method in [11] has achieved the higher accuracy than the 
proposed approach on only mono input lingual mode. Finally, the approach in [13] 
achieved 100% accuracy on only English input documents.  
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Table 1. Experimental results 

Technique Number of Sentences 
Accuracy on Test 

Data [%] 
Proposed approach with 

WSFC 
98.88 

Proposed approach with 
NC  

800 
98.88 

5   Conclusions and Future Research 

In this paper, a novel approach for language classification has been presented and 
investigated. UTF8 encoding scheme has been used to construct the features for clas-
sification. The Unicode, exclusive Unicode and word matching score features in con-
junction with a neural network are used to classify a language of an input sentence. 
Word matching score was extracted against a common word list of each language, 
rather than full length dictionaries, to simplify the computational searching cost. The 
experiments with the proposed approach produced very competitive results, consider-
ing the limited length of input sentences. In our future research, the focus will be on 
improving the training data for neural network and testing on shorter sentences.  
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Abstract. Most of the existing gender classification approaches are
based on face appearance only. In this paper, we present a gender clas-
sification system that integrates face and hair features. Instead of using
the whole face we extract features from eyes, nose and mouth regions
with Maximum Margin Criterion (MMC), and the hair feature is repre-
sented by a fragment-based encoding. We use Support Vector Machines
with probabilistic output (SVM-PO) as individual classifiers. Fuzzy in-
tegration based classifier combination mechanism is used to fusing the
four different classifiers on eyes, nose, mouth and hair respectively. The
experimental results show that the MMC outperforms Principal Compo-
nent Analysis and Fisher Discriminant Analysis and incorporating hair
feature improves gender classification performance.

1 Introduction

Gender classification is a high-level field in computer vision and is very important
since its widespread applications in human-computer interaction and services
that depend on it, such as demographics. There are many gender classification
methods based on appearance [1,2,3,4,5]. Most of the existing approaches only
utilize the internal facial information. We’ve conducted a psychological exper-
iment: 16 participants were asked to do the gender classification task on 200
images. They were divided into two groups: Group A were fed with complete
faces, and Group B were given images with only inner faces (See Fig. 1(a)).
The accuracy of Group A is 100%, while the average accuracy of Group B is
92.5%. Fig. 1(b) shows images misclassified by more than 5 people of Group B.
From this experiment we conclude that hair, can provide discriminative clues,
especially when the face is somewhat neutral.

Following the above discussion, it is natural to expect better performance by
combining face and hair information. In [6], Ueki et al. divided an image into
face, hair, and clothing regions, and a model was learned independently for each
region. The final classification of the face image was made by combining these
models using a Bayesian approach.
� Corresponding author. This research was partially supported by the National Nat-

ural Science Foundation of China via the grant NSFC 60773090.
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(a) (b)

Fig. 1. Psychological experiment about gender classification: (a)experimental data;
(b)images misclassified by more than 5 people of Group B

In this paper, we propose a gender classification system which makes decisions
by integrating face and hair information. To represent the face information, we
only use the local facial features, that is, we extract the eyes, nose and mouth
regions of a face and discard the rest part. Hair is hard to represent due to its
large variation. Lapedriza et al. [7] proposed a fragment-based method which is
relatively insensitive to illumination changes. We adopt this method and modify
it to reduce the influence of background.

In the literature of pattern recognition, there are generally two categories of
information integration approaches. One is feature combination and the other is
classifier combination. We choose a fuzzy-integration-based classifier combina-
tion method. Four classifiers are trained for eyes, nose, mouth and hair features
separately. Fuzzy integral is then used to combine the decisions of these classi-
fiers into a single composite score with respect to a designated fuzzy measure.
The whole process is illustrated in Fig. 2.

The remaining part of the paper is organized as follows: in section 2, face
representation based on local features is introduced. In section 3, we describe
the hair feature extraction method in details. Experiments and analysis are
conducted in section 4, followed by conclusion and discussion in the last
section.

Fig. 2. The proposed gender classification system by combining four different SVMs
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2 Facial Feature Representation

In this section, we introduce the local-feature-based face representation method.
Unlike most of the methods which use the whole face, we only consider the fa-
cial components: eyes, nose and mouth. Local features are believed very robust
to the variations of facial expression, illumination, and occlusion [8]. Further-
more, psychological experiments showed that individual features (brows, eyes,
nose, mouth, and chin), when seen in isolation, carried some information about
gender [9].

To obtain the facial components, we adopt Active Shape Model (ASM) [10],
a statistical model of the shape of the deformable object, to get the locations of
eyes, nose and mouth, and then extract the rectangles centered at them respec-
tively.

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA)
are two most widely used linear subspace learning approaches in face recogni-
tion. PCA simply performs a coordinate rotation that aligns the transformed
axes with the directions of maximum variance. It ignores the class label infor-
mation and therefore is not optimal for general classification tasks. LDA, or
Fisher Discriminant Analysis (FDA), is to pursue a low dimensional subspace
that can best discriminate samples from different classes It requires that the
within-class scatter matrix is not singular. Hence LDA is not stable facing the
small sample size problem which is very common in face recognition and gender
classification tasks. When applying LDA, we often have to preprocess the data
with PCA.

Maximum Margin Criterion (MMC) is a recently proposed supervised feature
extraction criterion [11]. Using the same notation as LDA, the goal of MMC is
to maximize the criterion J(W ) = WT (Sb − Sw)W . The projection matrix W
can be obtained by solving the following eigenvector decomposition problem:

(Sb − Sw)w = λw (1)

where w is the desired projection and Sb,Sw are between- and within- class
scatter matrix respectively. Note that MMC does not have inverse operation
and hence does not suffer from the small sample size problem.

We apply MMC to the extracted facial components. As gender classification
is a 2-class problem, the resulted vector is one dimension.

3 Hair Feature Representation

Hair is represented by a fragment-based encoding. We describe the algorithm
briefly. Given a collection of aligned face images C and a collection of non-face
images C, a representative set of image fragments called Building Blocks set
(BBS) is constructed by select K most discriminative fragments among all frag-
ments generated from regions in each image of C that contains hair. A fragments
is discriminative if it appears often in C but seldom in C. Some examples are
shown in Fig. 3. To represent an unseen image I from BBS, for each element fi of



650 X.-C. Lian and B.-L. Lu

BBS a black image Bi with the same size as I is constructed. Then fi is located
on Bi where it best matches. The similarity of two images p and f is computed
by Normalized Cross Correlation (NCC). These Bi images constitute the basis
and the image I is represented by linear combination of them I �

∑K
i=1 wiBi. To

make the combination having sense, the coefficients wi are required non-negative.
It is apparently a quadric programming aiming to minimizing the reconstruction
error (I −

∑K
i=1 wiBi)2 under the constrains wi ≥ 0(i = 1, . . . , K). The resulted

coefficient vector W = {w1, . . . , wK} encodes the hair information.

Fig. 3. Some of the building blocks

(a) (b) (c)

Fig. 4. Illustration of the improvement

This algorithm has a problem: some fragments might be put on the back-
ground region: as shown in Fig. 4(b), there are many misplaced fragments (ones
marked with green rectangles) produced by the original method with misplaced.
This happens when a fragment is more similar to background than to hair in
that image. Based on our experience with the implementation, the mean value
of all fragments’ NCC values with non-face images of C is 0.563 and the stan-
dard deviation is 0.001, and the mean value of all fragments’ NCC values with
face images of C is 0.818 and the standard deviation is 0.003. That means the
distribution of NCC values with background and the distribution of those with
hair region are separated. Therefore we discard the Bis with NCC values less
than 0.750. Our modification reduces the influence of complex background (Fig.
4(c)).

4 Classifier Combination Mechanism

The concept of fuzzy integral was originally introduced by Sugeno [12] and has
become increasingly popular for multi-attribute classification [13]. In this section
we briefly review the concepts of fuzzy measure and fuzzy integral, and then
describe how it can be applied to classifier combination.

4.1 Fuzzy Measure and Fuzzy Integral

Fuzzy measure is a extension of the classical measure where additivity property
is relaxed.
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Definition 1. A fuzzy measure µ defined on X = {x1, . . . , xn} is a set function
µ : P(X) → [0, 1] satisfying
(1) µ(∅) = 0, µ(X) = 1.
(2) A ⊆ B ⇒ µ(A) ≤ µ(B)
P(C) indicates the power set of X.

Fuzzy integrals are integrals of a real function with respect to a fuzzy measure
(by analogy with Lebesgue integral). There are several forms of fuzzy integrals.
The one adopted here is the Choquet integral proposed by Murofushi and Sugeno
[14].

Definition 2. Let µ be a fuzzy measure on X. The discrete Choquet integral of
a function f : X → R

+ with respect to µ is defined by

Cµ(f(x1), . . . , f(xn)) �
n∑

i=1

(
f(x(i)) − f(x(i−1))

)
µ(S(i)) (2)

where ·(i) indicates that the indices have been permuted so that 0 ≤ f(x(1)) ≤
· · · ≤ f(x(n)) ≤ 1. And S(i) � {x(i) . . . , x(n)}.

4.2 Classification by Fuzzy Integral

Fuzzy integral has two advantages. One is that a number of combination mecha-
nism are special cases of it, e.g., weighted sum, min and max rules; The other is
that we can represent the importance of individual classifier and interactions (re-
dundancy and synergy) among any subset of the classifiers using an appropriate
fuzzy measure.

We describe how fuzzy integral is applied in classification tasks. Suppose T =
{t1, . . . , tm} is a set of given classes. Let X be the set of classifiers and µ, a fuzzy
measure defined on X , represent the contribution of each subset of X in final
decision. For an unknown sample A, let hj(xi) be the confidence of “A belongs
to class tj” given by classifier xi. Then the global confidence of “A belongs to tj”
is given by Cµ(hj(x1), . . . , hj(xn)). We denote it by Cj

µ(A). Finally, A is given
the class with highest confidence.

As mentioned above, fuzzy measure represents the contributions of classifier
subsets, hence determining the fuzzy measure is a crucial step when applying
fuzzy integral. For a n-classifier combination problem, we have to determine
2n − 2 values (fuzzy measure on empty set and X are known). These values can
be learned from training data. Suppose that (zk, yk), k = 1, . . . , l are learning
data of a 2-class problem. For simplicity, we assume that yk = 1 for k = 1, . . . , l1
and yk = −1 for k = l1 + 1, . . . , l2 and l = l1 + l2. We try to identify the best
fuzzy measure µ so that the squared error is minimized

J =
l1∑

i=1

(
C1

µ(zi) − c2
µ(zi) − 1

)2
+

l2∑
i=l

(
C2

µ(zl+i) − c1
µ(zl+i) − 1

)2 (3)

It can be solved under quadratic program form.
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Fuzzy integral requires that the output of the classifiers should be some con-
fidence form. We choose SVM-PO with RBF kernel[15] (for the one-dimension
facial features, it is equivalent to the posterior probability estimation under the
assumption that the data distribution for each gender is Gaussian).

5 Experiments

The experimental data come from frontal faces of four database with different
races (See Tab. 1). We first evaluated PCA, FDA and MMC using face features
(See Tab. 2). The signal-to-noise ratio of PCA was set to be 9 : 1. And the data
were preprocessed by PCA for FDA. MMC utilizes the label information and
therefore outperformed the other two.

Our hair feature extraction method are compared the other two methods. The
first one [18] extracted the geometric features from profile of hair and the other
one [6] applied gaussian mixture model on the 32 × 32 hair-only images. The
result is shown on Tab. 3.

To investigate the relationship between fuzzy measure values and classifiers’
performance, we randomly picked one fifth of training data as the validation
set and computed the fuzzy measure by minimizing (3) on the validation set.
Accuracy of individual classifiers on validation set is shown in Tab. 4 (Here C(·)
denotes the classifier using a particular feature). Ceyes performs best and the
accuracy of Cnose is lowest. Intuitively, in the final decision the contributions
of these classifiers should be proportional to their accuracy. Fuzzy measures
illustrated in Tab. 5 support this intuition: the order of fuzzy measure values on

Table 1. Experimental data

Training data Test data
Database female male Database female male
FERET 490 718 Postech PF01 [17] 51 54
CAS-PEAL [16] 445 595 AR 45 64
Total 935 1313 Total 96 118

Table 2. Gender classification performance of PCA, FDL and MMC

face eyes nose mouth
SVM 87.85% 85.98% 66.82% 82.71%
PCA 84.03% 84.04% 64.79% 80.75%
FDA 81.69% 83.10% 61.03% 79.34%
MMC 87.32% 85.86% 65.38% 81.69%

Table 3. Gender classification performance using hair feature extraction methods

Methods Ours ICCV’05 ICPR’04
Accuracy 81.60% 79.59% 72.66%
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Table 4. Accuracy of individual classifiers on validation set

Classifier Ceyes Cnose Cmouth Chair

Accuarcy 84.25% 70.94% 78.94% 75.41%

Table 5. Fuzzy measure values of classifier subsets

Classifier subset µ Classifier subset µ

{∅} 0.000 {Ceyes} 0.691
{Cnose} 0.100 {Cmouth} 0.640
{Chair} 0.148 {Ceyes,Cnose} 0.691
{Ceyes,Cmouth} 0.909 {Ceyes, Chair} 0.883
{Cnose,Cmouth} 0.640 {Cnose,Chair} 0.148
{Cmouth,Chair} 0.742 {Ceyes,Cnose,Cmouth} 0.909
{Ceyes,Cnose,Chair} 0.883 {Ceyes,Cmouth,Chair} 1.000
{Cnose,CmouthChair} 0.742 {Ceyes,Cnose,Cmouth,Chair} 1.000

Table 6. Accuracy of gender classification with various methods

Fuzzy integral Weighted sum Product CCA Face
90.61% 88.73% 87.63% 74.76% 87.32%

individual classifiers is µ({Ceyes}) > µ({Cmouth}) > µ({Chair}) > µ({Cnose});
The better a individual classifier performs, the larger fuzzy measure value on a
subset containing it we obtain.

Finally, we compared gender classification performance of our method with
the methods using only face information. We also compared different combi-
nation methods. Besides fuzzy integral, we chose two classifier combination
mechanisms–weighted sum and product rule –and one widely used feature com-
bination method exploiting Canonical Correlation Analysis (CCA). The results
are shown in Tab. 6. The last column is the performance with MMC using only
face features. Fuzzy integral produced highest accuracy among these combination
methods. And integrating face and hair feature through fuzzy integral improved
the gender classification performance.

6 Conclusions and Future Work

One major contribution of this paper is integrating hair and face features through
fuzzy-integration-based classifier combination approach. Moreover, instead of us-
ing the whole face, we extract features of facial components by MMC. The ex-
perimental results show that MMC outperforms PCA and FDA, and the gender
classification benefits from incorporation of hair. A future extension of our work
is to utilize clothing information. We plan to extract the profile, texture and
color distribution information.
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Abstract. Face perception and text reading are two of the most devel-
oped visual perceptual skills in humans. Understanding which features
in the respective visual patterns make them differ from each other is very
important for us to investigate the correlation between human’s visual
behavior and cognitive processes. We introduce our fuzzy signatures with
a Levenberg-Marquardt optimization method based hybrid approach for
recognizing the different eye gaze patterns when a human is viewing
faces or text documents. Our experimental results show the effectiveness
of using this method for the real world case. A further comparison with
Support Vector Machines (SVM) also demonstrates that by defining the
classification process in a similar way to SVM, our hybrid approach is
able to provide a comparable performance but with a more interpretable
form of the learned structure.

1 Introduction

Human eyes and their movements are tightly coupled with human cognitive
processes, which have been found to be very informative and valuable in various
kinds of research areas. Furthermore, previous research has shown that human
eye gaze patterns for observing different objects are also quite significant for the
understanding of cognitive and decision-making processes.

We have been working on developing effective, efficient and robust approaches
to generally provide a clear recognition or unambiguous interpretation of human
eye gaze patterns in a variety of settings. In [4], we have successfully shown a
sophisticated use of eye gaze information for inference of a user’s intention in a
game-like interactive task, which effectively eliminates the need of any physical
control from the human’s side, efficiently improving the communication between
the user and the virtual agents.

In this paper, we introduce our hybrid fuzzy approach: hierarchical fuzzy
signature construction with Levenberg-Marquardt learning of the generalized
Weighted Relevance Aggregation Operator (WRAO) for modeling recognition
of human eye gaze patterns between face scanning and text scanning.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 655–662, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Hierarchical Fuzzy Signatures

Hierarchical fuzzy signatures are fuzzy descriptors of real world objects. They
represent the objects with the help of sets of available quantities which are
arranged in a hierarchical structure expressing interconnectedness and sets of
non-homogeneous qualitative measures, which are the interdependencies among
the quantities of each set.

The fuzzy signature concept is an effective approach to solve the problem of
rule explosion in traditional fuzzy inference systems: constructing characteristic
fuzzy structures, modeling the complex structure of the data points (bottom up)
in a hierarchical manner [6, 3, 11].

Fuzzy signatures start with a generalized representation of fuzzy sets which
are regarded as Vector Valued Fuzzy Sets (VVFS) [6]. A Fuzzy Signature is a
recursive version of VVFS where each vector can be another VVFS (called a
branch) or an atomic value (called a leaf):

A : X → [ai]
k
i=1 (1)

where ai =
{

[aij ]
ki

j=1 ; if branch

[0, 1] ; if leaf
(2)

Generally, fuzzy signatures result in a much reduced order of complexity, at
the cost of slightly more complex aggregation techniques. Unlike conventional
rule based hierarchical fuzzy systems, each branch in a fuzzy signature uses a
different aggregation function to represent the importance of that branch to
its parent, which is a final atomic value called ”degree of match”. Moreover,
fuzzy signatures are different to conventional decision trees as well. They use a
bottom up inference mechanism so that even with missing or noisy input data,
this structure is still able to find a final result.

The fuzzy signature concept has been successfully applied to a number of
applications, such as cooperative robot communication [14], personnel selection
models [8], etc. Figure 1 is an example of a fuzzy signature structure which was
constructed for a SARS pre-clinical diagnosis system [12].

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fever

⎡⎢⎢⎣
8a.m.
12a.m.
4p.m.
8p.m.

⎤⎥⎥⎦
BloodPressure

[
Systolic
Diastolic

]
Nausea
AbdominalPain

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1. A Fuzzy Signature Exam-
ple

Fig. 2. An Arbitrary Fuzzy Signature
Structure
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3 Levenberg-Marquardt Learning of WRAO for Fuzzy
Signatures

The Weighted Relevance Aggregation Operator (WRAO) [9] is derived from the
generalization of the weights and aggregations in Weighted Relevance Aggre-
gation (WRA), which introduces the weighted relevance of each branch to its
higher branches of the fuzzy signature structure. In this way, WRAO is able
to enhance the accuracy of the results of fuzzy signatures by allowing better
adaptation to the meaning of the decision making process [10], and it can help
to reduce the number of individual fuzzy signatures by absorbing more patterns
into one structure.

The generalized Weighted Relevance Aggregation Operator (WRAO) of an
arbitrary branch aq...i with n sub-branches, aq...i1, aq...i2,..., aq...in ∈ [0, 1], and
weighted relevancies, wq...i1, wq...i2,..., wq...in ∈ [0, 1] (see Figure 2), for a fuzzy
signature is a function g: [0, 1]2n → [0, 1] such that,

aq...i =

⎡⎣ 1
n

n∑
j=1

(aq...ij · wq...ij)
pq...i

⎤⎦
1

pq...i

(3)

The Levenberg-Marquardt (LM) method is not only a major learning algo-
rithm in neural network training functions, but also a widely used advanced
approach that outperforms simple gradient descent and gradient methods for
solving most of the optimization based problems. This algorithm is a Sum of
Squared Error (SSE) based minimization method that is the function to be min-
imized is of the following special form [7]:

f (s) =
1
2

n∑
i=1

(ti − si)
2 =

1
2

‖ t − s ‖ (4)

where t stands for the target vector, s for the predicted output vector of the
fuzzy signature, and ‖‖ denotes the 2 − norm. Also, it will be assumed that
there are m parameters to be learned and n records in the training data set,
such that n > m. The next update of the LM is the following equation:

u [k] = par [k] − par [k − 1] (5)

where the vector par[k] contains all the parameters to be learned, i.e. all the ag-
gregation factors and weights of WRAO in the equation (3) for the kth iteration.
Then the next update of u[k] is defined as:(

JT [k] J [k] + αI
)
u [k] = −JT [k] e [k] (6)

where J stands for the Jacobian matrix of the equation (4), I is the identity
matrix of J , and α is a regularization parameter, which control both search
direction and the magnitude of the next update u[k].
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4 Eye Gaze Data Collection

An eye gaze data collecting experiment was conducted. Ten volunteers (Gender: 5
male, 5 female; Occupation: 2 academic staff, 6 postgraduates, 2 undergraduates)
from the Australian National University community participated in the study.

Two sets of human face pictures, 20 in each, were selected for the face scanning
experiment. Another 5 text only documents with different lengths (minimal half
page, maximal one page) were also shown. In the experiment, all the face pictures
and documents were demonstrated as full screen scenes on a monitor.

Every participant was firstly asked to view one set of human face pictures
with about 5 seconds on each. The second stage of the experiment was to read
the 5 text documents to determine which were the most important sentences in
each one, no time restriction was imposed for the reading test so the participants
could conduct the reading with their usual speed. In the ranking of sentences
phase, only 1 participant ranked all the sentences, most participants ranked
only 3 sentences so we conclude that our instructions were interpreted as a text
scanning task. After that, the face scanning test was performed again with the
other set of pictures as the last stage.

There was no time break between any two stages, all the eye movement data
was collected by using a Seeingmachines eye-tracking system with FaceLAB
software (Version 4.5, 2007) through the entire session of the experiment.

5 Fuzzy Signature Construction for Recognition of Eye
Gaze Pattern

Since people tend to concentrate their gaze fixations onto the interesting and
informative regions in the scene [13], we further filtered the original collected gaze
points into fixations which offered a much easier and more interpretable form
for the later data process. In addition, instead of considering all the fixations on
each of the test cases (either face scanning or document scanning), we only use
the first five fixations from every case. The reason for this is that it is possible
to interpret a plausible eye gaze pattern from the early stage of face viewing
(as early as the first five fixations) [1]. Moreover, the time period for scanning a
document was obviously much longer than viewing a face in the data collecting
experiment, so the decision to use only the first five fixations also maintains a
more similar pattern for the future structure construction.

To construct the fuzzy signature structure for learning, it is necessary to
figure out which essential feature in both of the possible patterns can show the
difference for recognition. Figure 3 illustrates the first five fixations for two eye
gaze patterns from face viewing as well as text scanning respectively. The two
cases are obvious samples and this is actually not the usual source in all the data
records we collected in the experiment.

From these two cases, we can easily find the most obvious difference be-
tween them is in the geometrical shapes, which shows that compared with face
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Fig. 3. Two Samples of First Five Fixations Only Eye Gaze Patterns

scanning, participants’ gaze fixation locations for text scanning follow a very
clear horizontal pattern. On the other hand, although it is still difficult to address
a common gaze pattern for the face scanning, the plausible pattern has a much
more complicated geometrical shape than the simple form from text scanning,
because the informative regions (eyes, nose, mouth and cheeks, etc) in which an
observer is interested in a face are not aligned horizontally as are the sentences
in a document.

According to the above point, we can further discover that the actual feature
in both of the patterns rests on the vertical difference between two fixations
which are adjacent on time. Consequently, the constructed fuzzy signatures for
the recognition of two patterns can be formed to the structure in Figure 4.

The leaves of each sub-signature in the structure represent the fuzzy value
calculated by using the Fuzzy C Mean (FCM) clustering method based on the
vertical difference between two adjacent fixations.

|y1−y2|

|y2−y3|

|y3−y4|

|y4−y5|
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.........

Eye Gaze

Pattern

Short

Moderate
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Fig. 4. Fuzzy Signature Structure for Eye Gaze Pattern
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Table 1. Fuzzy Signatures Results for Eye gaze Pattern Recognition

Experiment Mean Squared Error (MSE) Classification Error (CLE)
Training 0.0605 19.77%

Test 0.0641 20.00%

6 Evaluation and Comparison

According to the constructed fuzzy signature structure for the recognition of
these two different patterns, we performed experiments to learn the weights and
aggregations by applying the Levenberg-Marquardt optimization method as we
explained in the previous section. The following table shows the results of Mean
Squared Error (MSE) and Classification Error (CLE) for learning the weights of
WRAO for the training and test experiments respectively.

We need to clarify that the way we calculate the Classification Error (CLE)
for the fuzzy signature structure is actually based on the degree of difference (d)
between the predicted value and the initial desired value. In our eye gaze pattern
case, we set three classes according to the degree of difference: Good (|d| ≤ 0.2,
not an error), Bad (0.2 < |d| ≤ 0.5, count 0.5 error) and Very Bad (|d| > 0.5,
count 1 error). So the final classification error rate would be the sum of all the
error numbers divided by the total number of records in the data set.

Table 1 shows that our hybrid fuzzy approach can perform around 80% accu-
rate predictions for the recognition of different eye gaze patterns between face
and text scanning.

Furthermore, in order to have a performance comparison, the Support Vector
Machines (SVM) [5] based classifier was chosen to run through the same eye gaze
fixation data set. Since the classification problem here is only for the recognition
between two different eye gaze patterns, we constructed a simple SVM based
classifier using a linear kernel to classify the data of vertical difference between
two adjacent fixations as we used in the previous experiment. For our fuzzy
signature structure, we also reduced the number of classes from previous three
(Good, Bad and Very Bad) to two (Good |d| ≤ 0.5 and Bad |d| > 0.5). Table 2
demonstrates the results of the experiments between fuzzy signatures and SVM.

From the above results we can see for this particular pattern recognition prob-
lem, the simple SVM based classifier constructed by using a linear kernel gives
highly accurate classification results. Comparatively, by reducing the number of
classes for the fuzzy signatures from previous three (Good, Bad and Very Bad)
to two (Good |d| ≤ 0.5 and Bad |d| > 0.5), the classification error rate reduces
and is comparable to that of SVM.

Table 2. CLE Comparison Between Fuzzy Signatures and SVM

Experiment FS (3 classes) FS (2 classes) SVM (2 classes)
Training 19.77% 3.04% 1.18%

Test 20.00% 5.00% 4.55%
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Beyond the results comparison, we also find that the way fuzzy signatures
model the classification problem is different from the way SVM models a classifi-
cation problem. SVM approaches the classification problem through the concept
of margin, that is equal to the smallest distance between the decision boundary
and any of the samples [2]. It computes the maximum margin hyperplane that
best defines the decision boundary. The samples that are closest to the decision
boundary lie on this maximum margin hyperplane and are know as support vec-
tors. Any other sample point in the data set plays no role in the classification
problem and is discarded. Once the decision boundary is known, the new data
points can be classified according to which side of the hyperplane it lies. On the
other hand, the construction of fuzzy signature is based on the expression of the
domain knowledge. Further, both the weight and aggregation learning processes
for WRAO offer us a clear view of what exactly produces the results inside the
structure, for instance, which aggregation functions are learned for each branch.
In addition, the value generated after every aggregation actually represents the
degree of match as the importance of the current branch to its parent, which is
also useful to discover which sub-branch makes the most contribution and which
are not significant factors from the domain for the problem modeling. So fuzzy
signatures provide a more interpretable expression of how well the output of the
structure approaches the target value or classification.

7 Conclusion

A fuzzy signature with a Levenberg-Marquardt learning based hybrid approach
has been introduced for modeling a real world study: recognizing human eye gaze
patterns to distinguish between face scanning and text scanning. The constructed
structure shows significant performance for the recognition in the experiment
results.

From the further discussion of performance comparison with linear SVM, we
suggest that our structure is capable of producing a comparable result for the
classification, but as an effective approach, it can provide a more interpretable
representation signature pattern of a real world object from its construction as
well as the learning process.
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Abstract. Kyushu Electric Power Co.,Inc. collects different sensor data
and weather information (hereafter, operation data) to maintain the
safety of hydroelectric power plants while the plants are running. It is
very rare to occur trouble condition in the plants. And it is hard to con-
struct an experimental power generation plant for collecting the trouble
condition data. Because its cost is too high. In this situation, we have to
find trouble condition sign. In this paper, we consider that the rise incli-
nation of special unusual condition data gives trouble condition sign. And
we propose a trouble condition sign discovery method for hydroelectric
power plants by using a one class support vector machine and a normal
support vector machine. This paper shows the proposed method is useful
method as a method of risk management for hydroelectric power plants.

Keywords: Data Mining, Trouble Condition Detection, Support Vector
Machine, Hydroelectric Power Plant.

1 Introduction

Recently, electric power companies have begun to try to shift a Time Based
Maintenance (hereafter, we use TBM) to a Condition Based Maintenance (here-
after, we use CBM) for electric equipment management to realize an efficient
maintenance and reduce the cost of maintenance[1,2]. TBM is to check and
change the equipment based on the guaranteed term recommended by makers.
And CBM is to check, repair and change the equipment based on the condition
of equipment[3]. The condition consists of the present state of equipment, the
operation term of equipment, the load in an operation, and etc[3]. Therefore, this
CBM is a kind of risk management for electric power companies’ management.

It is important for electric power companies to collect the data of equipment
to realize the CBM. Especially, it is necessary to collect and analyze past trouble
condition data for discovering a trouble condition sign of power equipment[4,5].
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Table 1. Outline of a targeted Hydroelectric Power Plant

Generated Output 18,000kW

Working Water 45.00m3/s
Effective Head 46.30m
Turbine Type Vertical Shaft Francis Turbine
Rated Revolutions Per Minute 240rpm

Upper Bearing Oil Self Contained Type Segment Bearing(Natural Cooling)
Bearing Bottom Bearing Oil Self Contained Type Segment Bearing(Natural Cooling)
Type Turbine Bearing Oil Self Contained Type Cylindrical Bearing(Natural Cooling)

Thrust Bearing Oil Self Contained Type Pivot Spring Bearing(Natural Cooling)
Operation Pattern Process Control Operation

(An operation pattern is generated at everyday.)

For instance, power companies want to develop a trouble condition sign discov-
ery method from operation data, which consists of sensor information of the
hydroelectric power plant and weather information. However, it is hard to col-
lect the trouble condition data in the plant in Japan. Because power companies
have changed the power plant equipment in certified term by makers for the
conventional maintenance and it is rare to occur a trouble condition. Instead of
collecting the trouble condition data from real hydroelectric power plants, we
can consider that we collect the trouble data from an experimental hydroelectric
power plant. But it is hard to construct it, because its cost is too high. Therefore,
it is impossible to acquire the operation data in the trouble condition.

Kyushu Electric Power Co.,Inc. and Central Research Institute of Power In-
dustry are researching the discovery of the trouble condition signs based on an
unusual condition detection for the bearing vibration using the operation data,
now. In our research, we consider that the rise inclination of special unusual
condition data gives trouble condition sign, because we can measure the regular
condition data only from hydroelectric power plants and both the trouble con-
dition and the special unusual condition are very rare cases. The special unusual
condition data will be described in the section 3.

In this paper, we describe the operation data for a hydroelectric power plat
briefly in the next section. In the third section, we briefly explain our proposed
method to discover a trouble condition sign for bearing vibration. The experi-
mental results are shown in the forth section. Finally, we conclude our research
and describe our future work.

2 Measurement Data

Table 1 shows the outline of a hydroelectric power plant. The hydroelectric
power plant has various sensors to measure data related to bearing vibration.
In this paper, the operation data is collected from the hydroelectric power plant
and analyzed by our proposed method. The operation data, which is related to
bearing vibration, is collected from April 1, 2006 to January 31, 2008.

One operation data has been composed of the sensor and weather data on
44 measurement items for five seconds the measurement interval. All operation
data is regular condition data and does not include an trouble condition data.
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3 Trouble Condition Sign Detection Approach

In this section, we describe the outline of our meted of discovery of the trouble
condition sign using the special unusual condition data.

Generally, the discovery of an trouble condition sign is to detect a peculiar
case, which appears only before a trouble condition, by comparing between reg-
ular condition data and trouble condition data. It is a fact that there is little
data of a trouble condition data in the electric power plants, because the elec-
tric power plants is designed with the high safety factor. Currently, our bearing
vibration data of the hydroelectric power plant also does not have trouble condi-
tion data. Therefore, it is impossible to discover the peculiar case before trouble
condition data happen. Then, we think the relation between the peculiar con-
dition before a trouble condition data happen (hereafter, we call it the trouble
condition sign) and special unusual condition data as the following relation.

The trouble condition sign ≈ The strongly rise inclination
of special unusual condition data.

It is possible to change the discovery of the trouble condition sign to the detection
of the special unusual condition data in the regular condition data under this
assumption. In other words, we supposes that the special unusual condition data
has low probability of existing in the regular condition data has high probability
of trouble condition sign.

Our proposed trouble condition sign discovery method integrates the detection
method of special unusual condition data and the trace method of the trend of gen-
erating special unusual condition data. The figure 1 shows an image of the trou-
ble condition sign discovery for the condition based maintenance of hydroelectric
power plants. Our proposed trouble condition sign discovery method is an inter-
active method. The system consists of two approaches mainly. One is an selection
method of the special unusual condition data, which relate to trouble condition
sign. The method consists of two phases. One phase is the unusual condition data
detection phase based on a One-Class Support Vector Machine(hereafter, we call
1-SVM) and the next phase is the special unusual condition data selection. The de-
tected unusual condition data by 1-SVM may include sensor fault data and miss-
ing value data and so on. These data are definitely scrap condition data. In the
other phase, human experts can detect these scrap condition data by using their
expertise and operation reports etc, and select the data related to trouble condi-
tion sign in the detected unusual condition data by 1-SVM. This selected unusual
condition data is defined as the special unusual condition data. And the other ap-
proach is the generation trend tracing method based on a normal Support Vector
Machine(hereafter, we call SVM). The experts can teach the special condition data
to the computer. After that, the computer has the usual condition data and the
special condition data. The computer can generate an optimal hyper plane, which
can classify the two classes, by using a SVM. The hyper plane classifies unseen
data and finds some data which are similar to the special selected unusual condi-
tion data. Therefore, the computer can trace the trend of the generation of the
special unusual condition data.
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Fig. 1. Image of Trouble Condition Sign Discovery

In our research, we used the LIBSVM. This is an integrated tool for support
vector classification and regression which can handle One Class SVM using the
Schölkopf etc algorithms. The LIBSVM is available at http://www.csie.ntu.edu.tw
/˜cjlin/libsvm.

4 Trouble Condition Sign Detection Experiment

In this section, we describe our experiment by using the operation data, which is
explained in section 2. Especially, we briefly introduce our experimental setup,
our experimental results and the evaluation.

4.1 Experimental Setup

Our experiment analyzed the operation data, which is explained in section 2.
The operation data is composed of 44 measurement items. However, in order to
detect the unusual condition data of the bearing, we extracted the related mea-
surement items to the bearing vibration from all measurement items. Therefore,
13 measurement items were selected by the expertise of the bearing vibration
of the experts to analyze the unusual condition data for the starting condition
and the parallel off condition except for the generated output. The two condi-
tion do not generate output. 14 measurement items were selected for the parallel
condition. Table 2 shows these selected 14 measurement items.

The power generator operation consists of the starting condition, the parallel
condition, the parallel off condition and the stopping condition. The starting
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Table 2. Measurement Items

Measurement Items for Detection Analysis

A. Generated Output(MW) B. Revolutions Per Minute
C. Upper Bearing Oil Tempe. - D. Turbine Bearing Oil Tempe.( C̊)

Oil Cooler Inlet Air Tempe.( C̊)
E. Thrust Bearing Tempe.( C̊) F. Bottom Oil Tank Oil Tempe.( C̊)
G. Bottom Bearing Inlet Air Tempe.( C̊) H. Turbine Shaft Vibration(X axis)(µm)
I. Upper Bearing Vibration(horizon)(µm) J. Upper Bearing Vibration(perpendicular)(µm)
K. Bottom Bearing Vibration(horizon)(µm) L. Bottom Bearing Vibration(perpendicular)(µm)
M. Turbine Shaft Vibration(horizon)(µm) N. Turbine Shaft Vibration(perpendicular)(µm)

condition data and the parallel off condition data are very few in our data set
relatively. The parallel operation condition data are very large. If we analyze the
all operation data to detect the unusual condition data, the detected unusual
condition data are the starting condition data or the parallel off condition data.
This is not good situation for our analysis. Therefore, the all operation data is
divided into the following four conditions by expertise of experts.

Starting condition:
Generator Voltage(V-W) < 10kV and Guide Vane Opening ≥ 10% and Rev-
olutions Per Minute ≥ 200 rpm.

Parallel operation condition:
Generator Voltage(V-W) ≥ 10kV and Revolutions Per Minute ≥ 200 rpm.

Parallel off condition:
Generator Voltage(V-W) < 10kV and Guide Vane Opening < 10% and Rev-
olutions Per Minute ≥ 200 rpm.

Stopping condition:
Otherwise.

These conditions are defined by the expertise of the experts. The data were
measured from April 1 in 2006 to January 31 in 2008.

In the stopping condition, the bearing does not rotate. This group data were
omitted from the analyzed data. In order to ignore the different measurement
units, the operation data is normalized by the the following equation at each
measurement item.

value = −actual value − min. value
max. value − min. value

+ 1

For hydroelectric power plant, high value of each sensor denotes unsafety. There-
fore, our method adopted the normalization.

In order to evaluate our proposed method for trouble condition sign discovery,
we need two data sets. One data set is for the detection of unusual condition
data and the selection of special unusual condition data. The other is for tracing
the trend of the special unusual condition data generation. In this research, the
operation data is divided two data sets. One data set is from April 1 in 2006 to
March 31 in 2007 for the detection and the selection. The other data set is April
1 in 2007 to January 31 in 2008 for the tracing the trend.
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4.2 Experimental Results

Experimental Results for Unusual Condition Data Detection. The un-
usual condition data were detected in each condition data of the starting con-
dition, the parallel condition and the parallel off condition by applying 1-SVM.
And the trend of special unusual condition data generation is traced in each
condition. In order to detect unusual condition data, this experiment used the
operation data measured from April 1 in 2006 to March 31 in 2007. In our ex-
periment, about 15 unusual condition data were detected from each condition
data of the starting condition, the parallel condition and the parallel off condi-
tion. The number of the detected unusual condition data is determined by the
expertise of human experts. It is easy for human experts to explain that the
data, which are more than 15, are usual data. Therefore, we set the number of
the detected unusual data to 15.

The number of the starting condition data is 6,279. The parameter ν of 1-
SVM was set to 0.0024 to detect the unusual condition data from the starting
condition data. This parameter denotes a detection rate. The number of the
parallel condition data is 1,285,023. The parameter ν of 1-SVM was set to 1.17×
10−5 to detect the unusual condition data from the parallel condition data. The
number of the parallel off condition data is 627. The parameter ν of 1-SVM was
set to 0.24 to detect the unusual condition data from the starting condition data.
After all, our proposed method could detect 16 unusual condition data from each
condition data of the starting condition, the parallel condition and the parallel
off condition. These detected unusual condition data were checked by human
experts. The human experts selected the all detected unusual condition data as
special unusual condition data, which may indicate the trouble condition sign.

Experimental Results for Trouble Condition Sign Discovery. SVM gen-
erated a discriminate function, which can classify between the special unusual
condition data and usual condition data in each operation condition. The oper-
ation data, which were measured from April 1 in 2007 to January 31 in 2008,
are input into the discriminate function. And our proposed method computed
the generation rate of the special unusual condition data from April 1 in 2007 to
January 31 in 2008. The table 3 shows the generation rate of the special unusual
condition data in the starting condition data for each month. The table 4 shows

Table 3. The generation rate of the special unusual condition data in the starting
condition data

Month April May June July August September

No. of generation data 2 8 9 33 29 9
No. of data 1203 503 630 106 125 330
Generation rate(%) 0.166 1.59 1.43 31.13 23.2 2.73

Month October November December January Average

No. of generation data 1 0 0 0 9.1
No. of data 576 682 612 657 542.40
Generation rate(%) 0.17 0.00 0.00 0.00 1.68



Interactive Trouble Condition Sign Discovery for Hydroelectric Power Plants 669

Table 4. The generation rate of the special unusual condition data in the parallel
condition data

Month April May June July August September

No. of generation data 1 0 2 197 5 0
No. of data 86485 154839 113963 168666 168599 129222
Generation rate(%) 0.0012 0.0000 0.0018 0.1168 0.0030 0.0000

Month October November December January Average

No. of generation data 0 0 0 0 20.50
No. of data 64788 47352 22438 51209 100756.10
Generation rate(%) 0.0000 0.0000 0.0000 0.0000 0.0203

Table 5. The generation rate of the special unusual condition data in the parallel off
condition data

Month April May June July August September

No. of generation data 7 5 12 4 3 4
No. of data 128 54 68 10 15 31
Generation rate(%) 5.47 9.26 17.65 40.00 20.00 12.90

Month October November December January Average

No. of generation data 4 1 0 1 4.10
No. of data 60 75 69 61 57.10
Generation rate(%) 6.67 1.33 0.00 1.64 7.18

Fig. 2. The time series data of bearing vibration

the generation rate of the special unusual condition data in the parallel condition
data for each month. The table 5 shows the generation rate of the special unusual
condition data in the parallel off condition data for each month.

From tables 3, 4, 5, we can find a high value of the generation rate in July for each
operation condition.This value of the generation rate is muchhigher than the value
of the detection rate.Except for July, the generation rates is similar to the detection
rate for each month. The special unusual condition data in July were measured in
July 15th. Figure 2 shows time series data of the bearing vibration in July 15th and
July 3rd. In the figure, In the figure, the left side figure shows time series data of
the bearing vibration in July 15th, and the right side figure shows time series data
of the bearing vibration in July 3rd and the regular bearing vibration data.

We can find high values of bearing vibration from 10 a.m. to 11 a.m. in the
left side figure. The bearing vibration data were classified to the special unusual
condition data. The left side figure is different from the right side figure. The right
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side figure shows the regular bearing vibration data in the parallel condition. The
left side figure is not regular. We could investigate that this operation kept 20-30
% of generated power in operation records. This operation is very strange and
very rare case. Therefore, our proposed method can discover strange and rare
data, which may indicate the trouble condition.

5 Conclusion

In this paper, we proposed the interactive trouble condition sign discovery method
based on the unusual condition detection. The proposed method detects the un-
usual condition data of bearing vibration in hydroelectric power plants base on the
1-SVM, primarily. Then our proposed method selects the special unusual condition
data, which may indicate the trouble condition sign, by using expertise of human
experts. And our method traces the trend of the special unusual condition data gen-
eration in unseen data. If the generation rate of the special unusual condition data
is increasing strongly, a trouble condition is coming, our method think so.

In this paper, we applied our method to the operation data of a real hydro-
electric power plant. And our experiment showed that our method can discovery
strange and rare data, which may indicate a trouble condition sign.

References

1. Yamana, M., Murata, H., Onoda, T., Oohashi, T., Kato, S.: Comparison of pattern
classification methods in system for crossarm reuse judgement on the basis of rust
images. In: Proceedings of Artificial Intelligence and Applications 2005, pp. 439–444
(2005)

2. Jardine, A.K.S.: Repairable system reliability: Recent developments in CBM opti-
mization. In: 19th International Congress and Exhibition on Condition Monitoring
and Diagnostic Engineering Management (COMADEM), Luleä, Sweden, June 13-15
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Abstract. In this paper, an asbestos counting method from microscope
images of building materials is proposed. Since asbestos particles have
unique color and shape, we use color and shape features for detecting and
counting asbestos by computer. To classify asbestos and other particles,
the Support Vector Machine (SVM) is used. When one kernel is applied
to a feature vector which consists of color and shape, the similarity of
each feature is not used effectively. Thus, kernels are applied to color
and shape independently, and the summation kernel of color and shape
is used. We confirm that the accuracy of asbestos detection is improved
by using the summation kernel.

1 Introduction

In the last decade, health damages by asbestos become a big problem in the
world. Asbestos is a fibrous mineral. It is nonflammable, durable and inexpensive.
Therefore, it is especially suitable as insulation and is easy to handle. From such
reasons, asbestos was widely used as building materials in Japan after the high-
growth period of the 1970s. However, the use of asbestos has been banned or
limited worldwide since the late 1980s, because it was discovered to cause cancer.

However, asbestos remains in buildings built in the past yet. We need to
check whether asbestos are used or not when buildings are demolished. Now, a
human investigator checks the specimen of building materials by watching the
microscope images. This method is not only inefficient, but human burden is
large. Therefore, we desire the system which carries out automatic counting of
asbestos particles.

The asbestos analysis by human investigators is called as a disperse dyeing
method. In disperse dyeing method, an investigator prepares three specimens
from one sample, and counts 1000 particles from by each specimen. When more
than four asbestos are contained in 3000 particles, it is judged as hazardous.
There is no hazardous in asbestos particles itself and only asbestos whose shape
is needle-like (aspect ratio is more than 3:1) is hazardous. The needle-like shape
is a criterion for counting asbestos particles. Asbestos particles have another
property. That is the polarization property in which asbestos particles emit
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particular color. The investigators count asbestos using both color and shape
properties. Therefore, it is considered that image recognition is most appro-
priate method for detecting and counting asbestos particles automatically by
computer.

In this paper, we propose the automatic asbestos detection and counting
method by computer. By using image recognition technique based on statistical
methods, we achieved accurate detection results. Since the asbestos detection
from microscope images is the two classification problem such as face or pedes-
trian detection [6,7,8,9], we use SVM [2] which is a binary classifier with high
generalization ability. Figure 1 shows the overview of the proposed method. To
train the detector, we use the many asbestos and non-asbestos images. Since
the size of asbestos is not constant, we judge whether a local region with M×M
pixels contains asbestos or not. From the classification results of local regions,
we detect and count asbestos. Since the asbestos particles have characteristic
shape and color, we use those features. However, when one kernel is applied to
a feature vector which consists of color and shape, the similarity of each feature
is not used effectively. Thus, we apply kernels to color and shape feature inde-
pendently, and the outputs of kernels are integrated by summation. We show
that this kernel improves the accuracy. In detection and counting process, the
detector is adopted to every local region in a test image, and a Map image in
which white pixels show high SVM output and black shows low SVM output
is obtained. The Map image is binarized, and asbestos particles are counted by
labeling.

This paper is organized as follow. In section 2, we describe the color and
shape feature for counting asbestos particles with specific polarization. Section
3 describes the asbestos detection method which is based on SVM with the
summation kernels [1]. The asbestos counting method is explained in section
4. Experimental results are shown in section 5, followed by the conclusions in
section 6.

2 Features for Asbestos Detection

Since asbestos particles emit a particular color with specific polarization. There-
fore, it is considered that color information is important. However, the direction
or position of asbestos particles in a local region are not constant. In order to be
robust to these changes, we use histogram of RGB color information. However,
when only color feature is used, asbestos particles are not detected accurately in
experiments because there is the case that non-asbestos particles have the color
histogram similar to asbestos’s histogram. Therefore, we focus the needle-like
shape of asbestos particles. However, the position of asbestos in a local region is
not constant. Thus, we calculate an average of edge in a local region. The edges
are calculated by Sobel filters of four directions which are shown in Figure 2.
Since the direction of asbestos is not constant, the variance of four directional
edges may be more effective, and we also use the variance. These features show
rough shapes overall. In this paper, we use both color histogram and shape
feature for detection.
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Fig. 1. Overview of asbestos counting system

3 Asbestos Detection

In SVM, we can adopt one kernel to a feature vector which consists of color and
shape. However, in that case, the similarity of each feature is not used effectively.
To avoid this, we use the summation kernel [1,3] of color and shape. By assigning
kernels to each feature and calculating the summation of each output, we obtain
a new kernel function which uses the similarity of each feature effectively. The
new kernel function Knew is defined as

Knew(x, z) = Kc(xc, zc) + Ks(xs, zs), (1)

where Kc and Ks are the kernels for color and shape, x and z are the input
vectors. To integrate both kernels fairly, the normalized polynomial kernel [4]
which normalizes the norm of mapped feature is used. The kernel is defined
as

K(x, z) =
φT (x)φ(z)

‖φ(x)‖‖φ(z)‖

=
(1+ < x, z >)d√

(1+ < x, x >)d
√

(1+ < z, z >)d
. (2)

By normalizing the output of standard polynomial kernel, the kernel output is
between 0 and 1. In [1], all kernels are integrated with equal weights. However,
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Fig. 2. Direction of Sobel filter. The 1st row shows the 4 different directions, and the
2nd row shows the operators of Sobel filter corresponding to the direction. The shape
feature is calculated using the operators.

the summation kernel with non-negative weight also satisfies Mercer’s theorem
[5]. In this paper, we use the weight to integrate the two kernels.

Knew(x, z) = αKc(xc, zc) + (1 − α)Ks(xs, zs), (3)

where α is a constant between 0 and 1. In the following experiments, we set
the parameters as d = 3 and α = 0.6 by preliminary experiment. An asbestos
detector based on SVM with the weighted summation kernel is trained using
many asbestos and non-asbestos images.

4 Asbestos Counting

In counting process, our goal is to count the asbestos particles from the Map
image. The Map image is a grayscale image whose intensity is the output of the
asbestos detector based on SVM. In the Map image, the high pixel value means
that the probability of asbestos particle’s existence is high. Figure 3 shows how
to obtain the Map image. We assign the output of the asbestos detector to the
center pixel in a local region. This process is repeated over a whole image. A
pixel value of the Map image shows the degree of asbestos particle’s existence.
Therefore, we can divide the Map image into the two regions by a threshold, the
regions which probably contain an asbestos particle and the regions which do not
contain. Then we obtain the binary image from the Map image. The threshold
for the binarization is set to zero which corresponds to the boundary between
positives and negatives in SVM. We count asbestos particles by labeling in the
binarized image.



An Asbestos Counting Method from Microscope Images 675

Fig. 3. How to obtain the Map image. In every local region, we assign the output of
asbestos detector to the center pixel of the local region.

5 Experiments

This section shows experimental results. First, we describes image dataset in
section 5.1. Evaluation results are shown in section 5.2. The effectiveness of the
summation kernel is demonstrated by the comparison with a kernel of only color
feature and a kernel of joint feature of color and shape.

5.1 Image Dataset

In the experiments, we use 120 microscope images which contains 154 asbestos
particles. To train the detector based on SVM, we pick up 21 images for training.
The 600 positive examples are extracted from these 21 images. The 6000 negative
examples without asbestos particles are also extracted from 21 images. The test
set contains 137 asbestos particles in 99 images. Figure 4 shows the examples of
training set. We understand the color with specific polarization and the needle-
like shape of asbestos. On the other hand, the non-asbestos class includes various
kinds of shapes and colors.

In this paper, the size of train images is set to 40×40 pixels. Thus, the size
of detector is also 40×40 pixels. Our method determines that a local region
of 40 × 40 pixels contains asbestos or not, and a Map image is constructed
by the output values. If a test image contains asbestos particles of more than
40×40 pixels, the detector gives high output value when a part of large asbestos
particle is included in a local region. Thus, the large asbestos particle appears
in the Map image, and we can count the asbestos particles with various sizes
accurately.

5.2 Evaluation Results

The evaluation result for the test set is presented in Table 1. The 1st row is
the result of the proposed method based on the summation kernel of color and
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(a) Examples of asbestos class

(b) Examples of non-asbestos class

Fig. 4. Examples of training images

Table 1. Evaluation result

# Asbestos particles # True positive (Rate) # False positive
Proposed method 137 122(89.1%) 15

Joint feature 137 115(83.9%) 19
Only color feature 137 105(76.6%) 27

shape, and the 2nd row is for the detector using a kernel of joint feature of
color and shape. The 3rd row shows the detector using only color histogram. #
Asbestos particles shows the number of asbestos in test images. True positive
means that an asbestos particle is classified correctly. The number in bracket
shows the true positive rate. False positive means that a non-asbestos particle
is mis-classified as the asbestos class. The detector with only color feature gives
the worst result. By adding shape feature, the accuracy of counting is improved.
However, the detector with a kernel of joint feature can not use the similarity of
each feature effectively. Thus, the detector using the summation kernel shows the
best performance. The accuracy of the proposed method achieves 89.1% while
the number of false positives is the least. This shows the effectiveness of the
detector with the summation kernel.

Figure 5 shows the examples of detection and counting result. The 1st row
shows the detection results and the 2nd row shows corresponding Map
images. Red rectangles are put to the asbestos particles detected by our de-
tector. We understand that asbestos particles with various sizes are detected
accurately.

Figure 6 shows a typical failure case by our approach. In Figure 6 (b), our
method gives high values to two asbestos particles. However, since the two as-
bestos are too near, two particles are counted as one asbestos particle. In the
detecting process, there is little case that our detector overlooks asbestos parti-
cles. Almost all of false negatives are classified into this kind of error. This shows
the potential of our method. The improvement of counting process is a subject
for future work.



An Asbestos Counting Method from Microscope Images 677

Fig. 5. Examples of detection and counting

(a) Detection result (b) The corresponding Map image

Fig. 6. Typical failure case of our approach

6 Conclusion

In this paper, we have shown the automatic asbestos detection and counting
method by computer. Since asbestos particles have a property in color and
needle-like shape, we use color and shape feature. To use the similarity of each
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feature effectively, the kernels are applied to each type of feature independently,
and the outputs of them are integrated by summation. The experimental results
demonstrate that the proposed method gives the best result. It achieves about
90% with smallest number of false negatives. Since there are few researches about
asbestos detection in building materials, this research will be very important for
human health in the world.

Our method detects the asbestos particle with high probability. However,
there is the case that failures are generated in counting process. The improvement
of counting process is a subject for future work.
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Abstract. The prediction accuracy of QRS wave that show electric excitement 
by the ventricle of the heart is low in linear predictions of electrocardiogram 
(ECG) used a conventional linear autoregressive model, and it is a problem that 
the prediction accuracy is not improved even if the prediction order is set  
second and third or more. The causes are that QRS wave generated by the 
nonlinear generation mechanism and the nonlinear components which the linear 
models cannot predict is included in ECG. Then, Non-recursion type 1st-order 
Volterra neuron network (N1VNN) and Non-recursion type 2nd-order Volterra 
neuron network (N2VNN) were evaluated about nonlinear prediction accuracies 
for ECG. The results of comparing nonlinear predictions of both networks 
showed that N2VNN is 17.6 % smaller about the minimum root mean square 
error indicating prediction accuracy than N1VNN. 

1   Introduction 

About the predictive coding of electrocardiogram (ECG), it is pointed out that the 
prediction error hardly decreases even if the prediction order is set second and third or 
more and that the compression performance is not improved. The cause is that it is not 
to be able to express the signal generation model by linear autoregressive models, for 
nonlinearity of ECG. Therefore, the nonlinear prediction based on nonlinear signal 
generation models is needed for the prediction of ECG. 

For that reason, the prediction of ECG came to be done using Volterra functional 
series and neuron networks etc. which were nonlinear autoregressive models as the 
generation model for a nonlinear signal of ECG. However, these cannot finish de-
creasing sufficiently the prediction error in QRS wave which the nonlinearity is 
strong, for these are that capabilities of adaptation and learning are low in general. 

It is known that the nonlinear time series signal is expressible by Volterra functional 
series consisting of addition of the calculated value using the time series signal value 
from past to present and the error which cannot be expressed by it. In the one that this is 
applied, there is a Volterra filter. Furthermore, there is a Volterra neuron network con-
structed of Volterra neurons with a built-in Volterra filter in an artificial neuron. The 
Volterra neuron network has been proposed as a neuron network which the processing 
performance of time series signals with strong nonlinearity is high by one of the authors, 
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and the effectiveness has been confirmed by researches applied to each control of a 
humanoid robot [1], a myoelectric hand [2], skid of a car [3] and length system attitude 
of an aircraft [4] and elimination of artifacts in electroencephalogram etc. 

Therefore, we propose a new neuron network for the nonlinear prediction of ECG 
in this paper. The prediction accuracy is evaluated by the experiment on nonlinear 
prediction for ECG using Non-recursion type 1st-order Volterra neuron network 
(N1VNN) and Non-recursion type 2nd-order Volterra neuron network (N2VNN). 

2   Volterra Neurons 

An artificial neuron with a built-in 1st-order Volterra filter is called non-recursion type 
1st-order Volterra neuron (N1VN), and an artificial neuron with a built-in 2nd-order 
Volterra filter is called non-recursion type 2nd-order Volterra neuron (N2VN). These 
neurons use a similarity mapping as a judgment mapping as well as an artificial  
neuron. 

2.1   I/O Characteristics of N1VN 

Fig. 1 shows N1VN. The I/O characteristics of this neuron are shown in formulae 
from (1) to (3). 
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where xi is the ith input signal, wi is the ith connection weight, Q is the filter order, σ p  

is the prediction coefficient corresponding to the signal obtained from between from 
the 1st delay element input to the Qth delay element output. w i , h  and σ p  are changed 
by training. 
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Fig. 1. N1VN 
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2.2   I/O Characteristics of N2VN 

Fig. 2 shows N2VN. The I/O characteristics of this neuron are shown in the formulae 
from (4) to (6). 
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where σ 1 (p )  is the prediction coefficient of the 1st-order term corresponding to the 
signal obtained from between from the 1st delay element input to the Qth delay ele-
ment output, σ 2 (p ,  q )  is the prediction coefficient of the 2nd-order term correspond-
ing to the product of all combinations of two signals included in combinations of the 
same signal obtained from between from the 1st delay element input to the Qth delay 
element output. wi , h,  σ 1  and  σ 2  are changed by training. 
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Fig. 2. N2VN 
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3   Nonlinear Predictions of ECG 

The experiment for the evaluation of nonlinear prediction accuracies for ECG of two 
types which are N1VNN using N1VNs and N2VNN using N2VNs is performed. The 
experiment method and the results are shown as follows. 

3.1   Experiment Method 

1) The experiment for the evaluation of nonlinear prediction accuracies of networks 
of two types of N1VNN and N2VNN for ECG is performed. Fig. 3 shows a three- 
layer N1VNN or N2VNN of one input one output. 

2) Each neuron network is trained using combinations of an input signal x(τ) in the 
time series pattern of one dimension in space direction and a teacher signal y(τ) = 
x(τ+1). And the root mean square error (RMSE) calculated from the difference be-
tween the teacher signal and output signal of each neuron network is evaluated. 

3) ECG signal of a healthy subject at rest is used for their training. Fig. 4 shows the 
ECG signal. This waveform is 415 data that are obtained from sampling frequency 
100Hz. A pair of the input signal and the teacher signal is given once after 229  
initial data are inputted into a neuron network at the training. This process is de-
fined as one training cycle. 

4) Table 1 shows the conditions of experiment for prediction accuracies evaluation of 
N1VNN and N2VNN. The initial values of the prediction coefficients use the ex-
ponential smoothing and the other initial values are decided by random numbers at 
the training process a time. The learning rule for each neuron network is the learn-
ing rule for the Volterra neuron network using gradient descent method. 
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Fig. 3. Non-recursion type Volterra neuron network 
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Fig. 4. ECG signal for the training 
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Table 1.  Conditions of experiment for prediction accuracies evaluation of the neuron networks 

10- 6
～1

10 times

30,000

3

-0.3～0.3

-0.3～0.3

0

Prediction
coefficents

 0.7× 0.3p

2～30

2

N1VNN

Learning cycles

Learning
reinforcement

coefficients
Interval

Range

Processing times

Learning rules Learning rule for the Volterra neuron network

Connection weights

Thresholds

Momentum

Gradient-based
method

Initial
conditions

Filter length
Interval

Range

N2VNN

σ 2

σ p, σ 1

0.7× 0.3p
× 0.7× 0.3q

TypesItems of conditions

2～50

2
Middle layer elements

Interval

Range

 

5) The training is performed as an experiment condition setting parameters which are 
the middle layer elements, the filter length and the learning reinforcement coeffi-
cient. And averages of RMSEs obtained from search training of three times are 
compared. 

3.2   Experiment Results 

The Fig. 5 or 6 shows the minimum RMSEs in the search range of learning rein-
forcement coefficient and the standard deviations on the combination of the middle  
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Fig. 5. RMSEs and the standard deviations of N1VNN 
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layer elements and the filter length of N1VNN or N2VNN obtained from the  
training. 

The Fig.7 or 8 shows the output signal of N1VNN or N2VNN at the condition of 
the minimum RMSE obtained from the training. Table 2 shows the minimum RMSE 
and the condition which are obtained after the search training of N1VNN or N2VNN. 
This table shows that N2VNN is 17.6 % smaller about the minimum RMSE than 
N1VNN. As a result, it can be said that prediction capability of N2VNN is higher than 
one of N1VNN with the given ECG signal. 
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Fig. 6. RMSEs and the standard deviations of N2VNN 
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Fig. 7. The output signal of N1VNN at the condition of the minimum RMSE 
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Fig. 8. The output signal of N2VNN at the condition of the minimum RMSE 
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Table 2.  The minimum RMSEs and the conditions of N1VNN and N2VNN 

N1VNN N2VNN

RMSE

Types
Items of data

% of RMSE based on N1VNN

Standerd deviation

4.50× 10- 25.46× 10- 2

7.70× 10- 4 2.30× 10- 3

100 82.4

Filter length

Learning reinforcement coefficient

2 6

1× 10- 2 1× 10- 2

Middle layer elements 42 10

 

3.3   Discussion 

The prediction accuracy when the minimum RMSE is obtained is considered. When a 
nonlinear output is expressed by the Volterra functional series, the expression error of 
this series becomes small as the degree of this series increase. Therefore, it is thought 
that the prediction accuracy of N2VNN improved because the expression capability 
for the nonlinear output of the built-in Volterra filter is higher. 

The middle layer elements of N2VNN are a fewer than one of N1VNN. It also is 
thought that N1VNN covers the decrease in expression capability for the nonlinear 
output with increasing middle layer elements for the degree of the 1st-order Volterra 
filter is low though N2VNN can be few the middle layer elements because the 2nd-
order Volterra filter is high performance. 

The filter length of N2VNN is longer than one of N1VNN. This shows that the de-
pendancy to the past data of the 2nd-order Volterra filter is higher. In addition, the 
expression error of a nonlinear output of the Volterra functional series becomes small 
as the filter length increases. However, the filter length of both NNs is short. The 
range of the effective past data to generate the prediction output is limited because the 
production mechanism in each part of ECG waveform is different respectively. There-
fore, the prediction accuracy is down because the past data accumulated in the filter 
become noise components even if the filter length is lengthened, and the filter length 
shortened. 

From above-mentioned, it is shown that the prediction capability of N2VNN is 
higher than one of N1VNN with the given ECG signal. 

4   Conclusions 

Result of comparing prediction capabilities of N1VNN and N2VNN using ECG of a 
healthy subject at rest, it is shown that the minimum RMSE of N2VNN is 17.6 % 
smaller and the prediction capability is higher than those of N1VNN. 
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Abstract. A novel neural network design–the adaptive resonance theory least 
mean square (ART-LMS) neural network–is proposed for the restoration of im-
ages corrupted by impulse noise. The network design is based on the concept of 
counterpropagation network (CPN). There is a vigilance parameter the ART 
network uses to automatically generate the cluster layer node for the Kohonen 
learning algorithm in CPN. In addition, the LMS learning algorithm is used to 
adjust the weight vectors between the cluster layer and the output layer for the 
Grossberg learning algorithm in CPN. The advantages of the ART-LMS net-
work include an effective solution to the initial weight problem and a good abil-
ity to handle the cluster layer nodes for the CPN learning process. Experimental 
results have demonstrated that the proposed filter based on ART-LMS outper-
forms many well-accepted conventional as well as new filters in terms of noise 
suppression and detail preservation.  

1   Introduction 

Efficient removal of impulse noise from digital images has been important preproc-
essing tasks that must be carried out without harming the image details [1]. Neural 
networks have been a growing research interest in recent years, especially when it 
comes to nonlinear filtering techniques for image restoration. The network models 
include the backpropagation (BP), self-organizing feature map (SOFM) and counter-
propagation network (CPN) models, etc. [2-6].  

The competitive learning algorithm of the CPN Kohonen layer is a gradient-based 
unsupervised learning algorithm. It works best when the patterns are tightly clustered 
in distinct groups. However, under such a design, a neuron’s initial weight vector can 
be located so far away from any input vectors that it is far from being competitive and 
therefore never learns. To make a difference, in this paper, we shall propose a new 
neural network called ART-LMS where the Kohonen layer and Grossberg layer in 
CPN are replaced by the adaptive resonance theory (ART) and least mean square 
(LMS) algorithm, respectively [7-8].  

Since the center weighted median (CWM) filters fail to suppress noise to a satis-
factory degree while preserving image details [10], we propose a neural-based CWM 
(NCWM) filter with an adjustable center weight. The adaptive weight for efficient 
removal of impulse noise without distorting image details that the proposed filter 
features is controlled by the ART-LMS neural network. The ART-LMS neural network 
is employed to obtain the optimal center weight. Experimental results demonstrate 
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that the new filter based on the ART-LMS neural network outperforms many well-
accepted conventional as well as new filters in terms of both noise suppression and 
detail preservation. 

The rest of this paper is organized as follows. Section 2 is the illustration of the 
ART-LMS neural network. Section 3 describes how ART-LMS works to achieve im-
age restoration. Then, Section 4 presents the results of some extensive experiments. 
Finally, Section 5 offers our conclusions. 

2   ART-LMS Neural Network  

Based on the framework of the CPN, we have developed the ART-LMS network to 
design the weight controller of the proposed NCWM filter. Figure 1 shows the topol-
ogy of a three-layered ART-LMS network. The first layer is for input, the second is 
the competitive layer (ART layer), and the third is the layer of output nodes (LMS 
layer).The nodes in each layer are as Fig. 1 shows, fully interconnected to the nodes 
in the adjacent layer. The cluster layer can determine whether a new training pattern 
should be classified into a specific cluster or a new node should be automatically 
generated depending on the vigilance parameter. This way, unlike what happens with 
conventional unsupervised learning algorithms, the appropriate initial weights can be 
automatically obtained [11]. 
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Fig. 1. the architecture of ART_LMS 

The ART-LMS learning procedure includes two training processes. ART-LMS si-
multaneously trains the two weights through the three layers. The following is the 
ART-LMS algorithm.  

Algorithm. 

(1) Set the initial weights (first input vector and first target vector) and the learning 
rate. 
Set vigilance .δ  
Set the maximum epoch ,T  cluster node M and threshold .θ  
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(2) Do 
(a) Compute similarity jS of each cluster node 

       
1

1 jj wxS −−= . 

(b) Decide the winner node ,p where p  is the largest .jS  

(c) If ( δ≥pS ) OR (number cluster nodes > )M  

then update weights. 
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(d) If ( δ<pS ) AND (number cluster nodes < )M   

then add one cluster node .J  

      ).,,1(, Zixw iJi L==  

      =Jv  target vector ).,,1(, Liyi L=  

(e) Increase epoch number n . 

Compute average difference of the distortion mean square error 

)(

|)1()(|

nMSE

nMSEnMSE
AMSE

−−= . 

While ( epoch number Tn ≤  OR θ>AMSE ) 

In the ART-LMS learning algorithm, the first training vector x  )( iji xw =  and the 

target value kjv  are used directly to establish the first cluster node. Then, the next 

input training vector is compared with the first cluster node. It is assigned to the first 
cluster node if its similarity is larger than the vigilance parameter. Otherwise, a new 
cluster node is generated. That is, ART-LMS places the input vector into the most 
similar cluster node. This process is repeated for all training input vectors. Ultimately, 
ART-LMS can classify the X  input patterns into M clusters (in general, XM < ). 

The nodes in the cluster layer compete (winner-take-all) for the input vector to be 
classified. The node with the largest similarity jS is the winner and sends a signal 1 to 

the output layer. Then, only the weight vector piw  from the winner ( p -th node) in 

the cluster layer to the input layer is updated by using the following learning rule. 
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where the learning rate )(nα  is a function of the learning epoch n , such as 

)1()( 0 T

n
n −= αα , defined with a predetermined constant 0.10 0 ≤< α  and the total 
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number of learning epochs .T  Notably, the weight vectors to the loser nodes stay 
unchanged.  

Meanwhile, only the weight in the output layer connected to the winner node is 
updated by using the least mean square (LMS) learning algorithm. The learning rule 
updates the weight kpv  from the output layer to the cluster node as follows.  
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where the learning rate )(nβ  is also a function of the learning epoch ,n  such as 

)1()( 0 T

n
n −= ββ , defined with a predetermined constant 0.10 0 ≤< β  and the total 

number of learning epochs .T  The variable x  is the real corresponding input value, 
and the error )(te  is the difference between the desired output d  and the physical 

output .ky  In order to improve the convergent speed, the algorithm iterates the proc-

ess until the average difference of the distortion mean square error ( AMSE ) falls 
below a threshold .θ  

3   Image Restoration by ART-LMS  

3.1   The Structure of the NCWM Filter   

Let }1,1|),{( 2121 WkHkkkC ≤≤≤≤=  denote the pixel coordinates of the noisy 

image corrupted by impulse noise, where H  and W  are the image height and width, 
respectively. Let )(kx  represent the input pixel value of the noisy image at location 

.Ck ∈ At each location ,k  the observed filter window }{kw  whose size is 

12 += nN ( n  is a non-negative integer) is defined in terms of the coordinates sym-
metrically surrounding the input pixel )(kx . 

},,,1,,,2,1:)({}{ Nnnfkxkw f LL +==                     (3) 

where the input pixel )()( 1 kxkx n+=  is the center pixel. The output of the CWM filter 

is }),{()( kwMEDky cc = where MED  denotes the median operation and odd c  

),,5,3,1( Nc L=  denotes the center weight. Now we have 

)},(,),(),(),(,),({}{ 211 kxkxkxckxkxkw Nnnnc LL ++◊=          (4) 

where ◊  represents the repetition operation. That is, the CWM filter outputs the  
median value of those cn +2  pixel values. However, the non-adaptive CWM filter 
processes the whole noisy image in a uniform way, making room for excessive or 
insufficient smoothing. To fix the drawback of lack of flexibility, the center weight c  
in ],0[ N  is made adjustable within the filter window }{kwc  by using the proposed 
ART-LMS network. 

The framework of the proposed NCWM filter is illustrated in Fig. 2. It is composed 
of three parts: an observation vector for feature extraction, an ART-LMS weight con-
troller, and a CWM filter. At first, according to the feature extraction result for the 
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input vector, the ART-LMS weight controller gives the weight c  to the CWM filter. 
To improve the filtering performance, the noise filtering procedure is progressively 
applied through several iterations.  
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Fig. 2. The structure of NCWM filter 

3.2   The ART-LMS Weight Controller  

The following three variables can be defined to generate a feature vector }{kF  as the 

input data of the ART-LMS weight controller.  

Definition 1: .}){()()( kwMEDkxka −=                                                                   (5) 

Definition 2: 
2

)()()()(
)( 21 kxkxkxkx

kb cc −+−
= ,                                                (6) 

where inikxkxkxkxkxkx icc ,121,)()()()()()( 21 +≤≤−≤−≤−  is not equal to 

2,1,1 ccn +  [1, 12, 13].  

Definition 3: }{)()( 3 kwkxkl −= .                                                                            (7) 

Notably, the values of )(1 kxc  and )(2 kxc  are selected to be the two closest pixel 

values to )(kx  in the filter window }.{kw In this paper, with the above three feature 

variables )(),( kbka and )(kl playing their due roles, the feature vectors are given by 

)}(),(),({}{ klkbkakF = .                                              (8) 

To decide the adaptive weight c , we offer the ART-LMS weight controller that is put 
together on the basis of the ART-LMS network. It classifies the input feature vector 
and gives the weight jv  to its corresponding cluster according to the cluster layer and 

the output layer only one node in the ART-LMS network. Finally, the ART-LMS 
weight controller outputs the weight .c  

The design of the optimal weight Mjv j ,,2,1, L=  for the NCWM filter con-

cerns mainly with minimizing the mean square error (MSE). Here, M is the maximum 
cluster node in the training cluster layer. The learning rule updates the weights from 
the cluster layer to input layer using equation 1. The value of jv  can be trained inde-

pendently by carrying out the LMS algorithm that is capable of minimizing the error 
function with respect to the cluster j [8]. The learning rule updates the weight jv  

from the output layer to the cluster layer as follows.  
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            (9) 

The learning of ART-LMS can quickly converge toward the solution [9, 13]. 

4   Experimental Results 

To demonstrate the effectiveness of the proposed NCWM filter based on ART-LMS 
network, some experiments have been conducted to check out the image restoration 
results. The random-valued impulse uniformly distributed over the range of [0, 255] is 
considered in 8-bit gray-scale images. Extensive experiments have been conducted on a 
variety of 512512 ×  test images to evaluate the performance of the proposed NCWM 
filter. The mean squared error (MSE) and the mean absolute error (MAE) have been 
employed to measure the restoration performance quantitatively. Smaller MSE and 
MAE values indicate better noise removal and image-detail preservation, respectively. 

In the ART-LMS network training process, a training image ‘Couple’ corrupted by 
20% impulse was used in the experiments. The network dynamically generated the 
cluster layer nodes in the training process. Figure 3 shows the relationship between 
MSE values and the number of nodes in the cluster layer of the ART-LMS network. The 
maximum number of clusters was set as 55 as Fig. 3 suggests. Figure 4 shows the train-
ing processes for different epoch numbers and their corresponding MSE values. The 
ART-LMS network converged when the number of training epochs reached six.   

Table 1 compares the MSE and MAE results of removing impulse noise at 20%. As 
the table shows, the MSE and MAE values the NCWM filter gave are relatively much 
lower than those provided by the other filters for all test images. Notably, throughout 
all the experiments we collected the results after two iterations. Apparently, the 
NCWM filter is capable of producing better visual quality restored image by offering 
more noise suppression and detail preservation.  

Table 1. Comparative restoration results in MSE and MAE for 20% impulse noise 

Images 

Goldhill Boat Lake Couple Lena Filters  

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

MED 69.51 4.84 62.89 3.92 106.69 5.71 99.11 5.43 43.69 3.46 

CWM [10] 71.31 3.72 69.23 3.12 107.02 4.34 93.15 4.23 51.86 2.76 

FM [12 ] 43.25 3.05 44.24 2.73 73.33 3.68 70.81 3.48 32.34 2.43 

PFM [1] 36.76 2.52 36.05 2.24 62.81 3.16 64.94 2.86 24.66 1.94 

ACWM [13] 36.08 2.41 35.31 2.05 61.48 2.89 61.43 3.02 25.26 1.81 

CPN [4] 50.84 3.68 47.41 3.02 82.58 4.40 84.02 4.40 30.84 2.58 

NCWM 35.14 2.35 34.12 2.00 58.74 2.79 59.92 2.98 23.42 1.74 
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Fig. 4. MSE versus epoch number for the training process 

5   Conclusions  

In this paper, a novel neural network for image restoration is proposed, and a new 
filter built on top of the proposed ART-LMS network is presented to preserve more 
image details while effectively suppressing impulse noise. ART-LMS is a self-
organizing neural network on the basis of adaptive resonance theory (ART) and least 
mean square (LMS) algorithm. ART-LMS uses the vigilance to dynamically create the 
cluster layer nodes. Thus, LMS algorithm is employed to obtain the optimal center 
weight for each cluster independently. Owing to the optimal weight of each cluster, 
the mean square error of the filter output can be minimized. The experimental results 
have demonstrated that the new NCWM filter is superior to a number of conventional 
as well as new filters in terms of the noise suppression and image detail preservation. 
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Abstract. For particle filtering tracking method, particle choosing is random to 
some degree according to the dynamics equation, which may cause inaccurate 
tracking results. To compensate, an improved particle filtering tracking method 
is presented. A moving vehicle is detected by redundant discrete wavelet trans-
forms method (RDWT), and then the key points are obtained by scale invariant 
feature transform. The matching key points in the follow-up frames obtained by 
SIFT method are used as the initial particles to improve the tracking perform-
ance. Experimental results show that more particles centralize in the region of 
motion area by the presented method than traditional particle filtering, and 
tracking results of moving vehicles are more accurate. The method has been 
adopted by Tianjin traffic bureau of China, and has a certain actual application 
prospect. 

1   Introduction 

Video surveillance system is an important part of Intelligent Transportation System 
(ITS). Detecting and tracking moving vehicles from video sequences is one of the 
important tasks in video surveillance system. Recently, many approaches have been 
proposed in this field. Ref.[1-2] use a template matching method to track the target. 
The blobs correspond to the moving target in the video sequences. But the method is 
difficult in handling scale change of the target, and threshold is subjectively deter-
mined with less robustness. Ref.[3] uses a snake model based tracking method which 
can reduce computational complexity and improve tracking accuracy. But it is sensi-
tive to initialization and is difficult for actual application. Ref.[4-5] present a mean-
shift method for motion tracking. Mean-shift method manifests high efficiency for 
target tracking with low complexity. But as a hill climbing algorithm, it may fall into 
a local minimum and lose the motion target when occlusion occurs. Ref.[6] uses Par-
ticle filtering to track moving targets; it is a successful numerical approximation tech-
nique for Bayesian sequential estimation with non-linear, non-Gaussian models. The 
basic Bayesian filtering is a recursive process in which each iteration consists of a 
prediction step and a filtering step. In this paper, the positions of particles are deter-
mined by key points obtained by scale invariant feature transform (SIFT) to improve 
the tracking efficiency, and we organize the paper as follows. A brief introduction on 
RDWT motion detection is given in Section 2. Scale invariant feature transform 
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method is described in Section 3. The improved particle filtering tracking method is 
described in Section 4. Experimental results are reported in Section 5. Finally conclu-
sions are summarized in Section 6. 

2   Moving Vehicle Detection 

In this paper, moving vehicles are detected by redundant discrete wavelet transforms 
(RDWT) [7], which conquer the drawback of time-domain methods. The RDWT is an 
approximation to the continuous wavelet transform that removes the down-sampling 
operation from the traditional critically sampled DWT to produce an over-complete 
representation. The shift-variance characteristic of the DWT arises from its use of 
down-sampling; while the RDWT is shift invariant since the spatial sampling rate is 
fixed across scale. As a result, the size of each sub-band in an RDWT is the exactly 
the same as that of the input signal.  

Because the coefficients of the sub-bands of the redundant wavelet transform are 
highly correlated, and the direction and size are the same as the image, also, there is 
no translation in the sub-band; this paper uses the method which is based on redun-
dant wavelet transforms to obtain the motion area. First, if the two adjacent frames are 

1f  and 2f , we use the equation (1) to obtain the ( , )MAS x y : 
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The J0 and J1 are the starting and ending scales. We can obtain the motion area ac-
cording to equation (2): 
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T is the threshold which can be obtained automatically by otsu [8] method, then the 
mathematical morphology is used to remove noise points. The binary motion mask 
obtained from the redundant wavelet transforms can be considered as the original 
mask of the moving object. As the inner district of the object is usually flat and the 
characteristic is not obvious, this paper uses an assimilation method [9] to fill the 
mask. Figure 1 shows the motion vehicle detection result. 

  

Fig. 1. Motion vehicle detection 
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3   Key Points of Vehicle Obtained 

After getting the vehicle region, we use scale invariant feature transform (SIFT) to 
obtain the key points in the vehicle region. As SIFT transforms image data into scale-
invariant coordinates relative to local features, an important aspect of this approach is 
that it generates large numbers of features that densely cover the image over the full 
range of scales and locations [10-11]. 

For image matching and recognition, SIFT features are first extracted from a set of 
reference images and stored in a database. A new image is matched by individually 
comparing each feature from the new image to this previous database and finding 
candidate matching features based on Euclidean distance of their feature vectors. 
There are four steps for this method. 
1) Find Scale-Space Extrema. The only reasonable kernel for scale-space (continuous 
function of scaleσ ) is Gaussian: 

2 2) 2( ) / 2
2

1
( , , )

2
x yG x y e σσ

πσ
− += . (3) 

For two-dimensional image, ( , , ) ( , , ) ( , )L x y G x y I x yσ σ= ∗ . Experimentally, 

Maxima of Laplacian-of-Gaussian: 2 2Gσ ∇  gives best notion of scale. As LoG is 

expensive, we define Difference-of-Gaussians (DoG) instead: 

( , , ) ( ( , , ) ( , , )) ( , )

( , , ) ( , , )

D x y G x y k G x y I x y

L x y k L x y

σ σ σ
σ σ
= − ∗

= −
. (4) 

The smoothed images need to be computed in any case for feature description, but in 
application we need only to subtract two images, and then choose all extrema within 
3x3x3 neighborhood. 
2) Remove the Instable and Edge Points. Take Taylor series expansion:  

( )
2

2

1

2

T T
TD D

D x D x x x
x x

∂ ∂= + +
∂ ∂

r r r r
r r . (5) 

Minimize it to get true location of extrema:  
2 1

2
ˆ D D

X
X X

−∂ ∂= −
∂ ∂

, where 
11ˆ ˆ( )

2

D
D X D X

DX

−∂= + .  

We remove the instable points by the rule: ˆ( ) 0.03D X < , and also reject points 

which do not satisfy the equation (6):  

2 2( ( )) ( 1)

( )

Tr H r

Det H r

+< . (6) 

where ( ) xx yyTr H D D= + , 2( ) ( )xx yy xyDet H D D D= − , r =10. 
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3) Orientation Assignment. We use scale of point to choose correct image: 

( ) ( ) ( ), , , * ,L x y G x y I x yσ= . (7) 

Compute gradient magnitude and orientation using finite differences: 

( ) ( ) ( )( ) ( )( )2 2
, 1, 1, , 1 ( , 1)m x y L x y L x y L x y L x y= + − − + + − − . (8) 

( ) ( )( )
( ) ( )( )

1
, 1 ( , 1)

, tan
1, 1,

L x y L x y
x y

L x y L x y
θ −

⎛ ⎞+ − −
= ⎜ ⎟⎜ ⎟+ − −⎝ ⎠

. (9) 

4) Obtain the Matching Points. The error of SIFT descriptors of the extrema points of 

image 1 and 2: 2( 1 2)error F F= −
) )

 can be used to obtain the matching points.  

Figure 2 and 3 show the key points with orientation and SIFT matching result of a 
vehicle. 

                                 

         Fig. 2. Key points with orientation                   Fig. 3. SIFT matching result 

4   Active Particle Filtering Combined with SIFT 

Particle filtering [12-15] essentially combines the particles at a particular position into 
a single particle, giving that particle a weight to reflect the number of particles that 
were combined to form it. This eliminates the need to perform redundant computa-
tions without skewing the probability distribution. Particle filtering accomplishes this 
by sampling the system to create N  particles, then comparing the samples with each 
other to generate an importance weight.  After normalizing the weights, it resamples 
N  particles from the system using these weights. This process greatly reduces the 
number of particles that must be sampled, making the system much less computation-
ally intensive. 

Particle Filtering estimates the state of the system, x and t , as time t  as the Poste-

rior distribution: 0( | )t tP x y − . Let 0( ) ( | )t tEs t P x y −= , (1)Es  can be initialized 

using prior knowledge Particle filtering assuming a Markov Model for system state 
estimation. Markov model states that past and future states are conditionally inde-
pendent given current state. Thus, using Markov model, observations are dependent 
only on current state: 
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0( ) ( | )t tEs t P x y −= 0 1 0 1( | , ) ( | )t t t t tP y x y P x y− − − −= 1 1 0 1( | ) ( | ) ( | )t t t t t tP y x P x x P x y− − − −=  

1( | ) ( | ) ( 1)t t t tP y x P x x Es t−= − . 
     (10) 

Final Result:  

1( ) ( | ) ( | ) ( 1)t t t tEs t P y x P x x Es t−= − .      (11) 

Where: ( | )t tP y x is observation model and 1( | ) ( 1)t tP x x Es t− −  is proposal 

distribution. The basic model usually consists of a Markov chain X  and a possibly 
nonlinear observation Y with observational noise V  independent of the signal X . 

System Dynamics Motion Model is 0: 1( | )t tP x x − , and Observation Model 

is ( | )t tP y x , Posterior Distribution is 0( | )t tP x y L . Proposal Distribution is the 

Motion Model Weight, tW = Posterior / Proposal = observation. Given N particles 
( ) ( )

0: 1 0: 1 1{ , }i i N
t t ix z− − =  at time 1t − , approximately distributed according to the dis-

tribution ( ) ( )
0: 1 0: 1 1: 1( , | )i i

t t tP dx z y− − − , particle filters enable us to compute N  particles 
( ) ( )

0: 0: 1{ , }i i N
t t ix z =   approximately distributed according to the posterior distribu-

tion ( ) ( )
0: 0: 1:( , | )i i

t t tP dx z y . In video tracking, we do as follows: for each particle at 

time t , we sample from the transition beforehand. For each particle, we evaluate and 
normalize the importance weights, then multiply or discard particles with respect to 

high or low importance weights ( )i
tW  to obtain N  particles. This selection step is 

what allows us to track moving objects efficiently. The state space is represented in 
the spatial domain as: ( , )X x y= . We have initialized the state space for the first 

frame automatically by using the matching key points obtained by SIFT. A second-
order auto-regressive dynamics is chosen on the parameters by SIFT matching to 

represent the state space ( , )x y . The dynamics is given as: 1 1t t tX Ax Bx+ −= + . 

Matrices A  and B  could be learned from a set of sequences where correct tracks 

have been obtained. In this paper,
1

0 1
A
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σ σ
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, where 

3σ = , and 0.35α = . The observation ty  is proportional to the histogram distance 

between the color window of the predicted location in the frame and the reference 

color window: ( , )XDist q q , Where q  = reference color histogram, Xq = color 

histogram of predicted location. The following pseudo code depicts the overall struc-
ture of our tracking system. 
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Table 1.  Pseudo code of tracking system 

At time 1t + , construct the thn of N samples as follows: 

1. Generate a random number [ ]1,0∈r , uniformly distributed. 
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Figure 4 shows the results of particle filtering tracking which uses SIFT key points as 
initial particles.  

   

       
Frame 1            Frame 5              Frame 8 

Fig. 4. Particle filtering tracking based on SIFT matching 

5   Experimental Results 

In traditional particle filter tracking method, particle choosing is random according to 
the dynamics equation in some degree, which may cause inaccurate tracking results. 
In this section, we compare the tracking results between traditional particles filtering 
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and our method showed in figure 5 and 6. The video is sampled at a resolution of 
768x576 and a rate of 25 frames per second. The algorithms are tested on a 1400 
MHz Celeron CPU, and software environment is VC++ 6.0. From the results we can 
see that when the scale of vehicle changes drastically, the particles still locate in the 
region of vehicle by our method; while for traditional particle filtering, particles obvi-
ously deviate from the vehicle which causes inaccurate results. The blue cross sign 
shows the particle, and red curve shows the motion track. We also sample 15 frames 
from the video sequence and compare the runtime of traditional particle filtering and 
our method (SIFT Particle Filtering), showed in figure 7; the difference is about 0.15s 
which can be ignored in actual application. 

 

Fig. 5. Traditional particle filtering tracking (Frames 10, 24, 39, 56, and 60 are displayed) 

 

Fig. 6. Particle filtering tracking combined with SIFT by our method (Frames 10, 24, 39, 56, 
and 60 are displayed) 

 

Fig. 7. Runtime comparison 

6   Conclusions 

In this paper, a novel moving vehicle tracking method based on particle filtering and 
SIFT is presented. First, the motion vehicle is detected by redundant discrete wavelet 
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transforms, and scale invariant feature transform is used to extract the key points of 
vehicle; then according to SIFT matching, initial positions of particles can be ob-
tained. By actively choosing the particles, tracking performance can be significantly 
improved. Our method has been adopted by traffic bureau, and has a certain actual 
application value. 
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Abstract. This paper presents a two stage diagnosis system that consists of 
Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ) subsys-
tems for diagnosis of fundus images. The first stage performs clustering and 
pseudo-classification of the input feature data by a SOM. The use of the 
pseudo-classes is able to improve the performance of the second stage consist-
ing of a LVQ codebook. The proposed system has been tested on real medical 
treatment image data. In the experiments we have achieved a maximum accu-
racy rate of 71.2%, which is comparable to other results in literature. 

1   Introduction 

Fundus inspection is widely carried out to discover early stages of eye diseases such 
as glaucoma and retinal detachment. A survey report for 3,021 persons says that the 
frequency of such eye diseases reaches 5.5% in the male and 6.1% in the female [1]. 
The glaucoma results from increase of the intraocular pressure in excavation of the 
optic nerve papilla part and the papillae abnormality of the fundus. As a consequence 
it ends in blindness at the worst. For this reason, the glaucoma is a serious disease and 
becomes one of the important problems to be solved in the aging society to come. For 
the diagnosis of glaucoma, a general clinical method is the direct observation of the 
fundus or the observation of their photograph of the patient. Skills of a medical doctor 
are necessary for the decision of glaucoma, but it is still difficult for even an experi-
enced doctor to diagnose accurately the condition of many examinees within a short 
time. Therefore, a quick and reliable diagnosis method is desired. Two samples of 
fundus images are shown in Figure 1. Up to now, attempts that try to detect from 
fundus images for the early stage of the glaucoma by image processing techniques 
have been made. We have earlier been developing a diagnosis system to detect  
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excavatio papillae nervi optici from fundus images by an image processing technique 
[2]. Related studies on machine learning classifiers for diagnosing glaucoma have 
been made e.g. at University of California [3]. However, there is a problem that the 
detection often fails in the previous methods when the overlap between the classes of 
normal and abnormal data is large. This is often the case when there is no retina nerve 
bunch visible and the setting of a threshold is therefore difficult.  

In this paper, we propose a technique that can steadily diagnose the glaucoma by 
the Learning Vector Quantization with aid of a clustering acquired on the Self-
Organizing Map. The diagnosis is made by using feature vector data that can be sim-
ply gathered from the fundus images. The organization of this paper is as follows: 
Section 2 briefly describes the proposed diagnosis system. The Self-Organizing Map 
and the Learning Vector Quantization are described in Section 3. Experiment data, 
features and method parameters are described in Section 4. Experimental results are 
shown and the problems in the classification are discussed in Section 5.  Finally, in 
Section 6 conclusions are drawn. 

 

                    

Fig. 1.  Fundus images. Left is a normal fundus and right is an abnormal one. 

2   Overview of Proposed Diagnosis System 

The proposed diagnosis system has two stages. In the first stage, the Self-Organizing 
Map is used to cluster the feature vectors extracted from the training data. We then 
observe the clusters of the normal and abnormal samples on the SOM surface and 
define their division into pseudo-classes, currently two pseudo-classes for the normal 
and one for the abnormal fundus images. In the next stage, the medical treatment data 
is diagnosed with the help of that pseudo-class classification by using the Learning 
Vector Quantization method. The flow chart of the system is depicted in Figure 2.  

The use of the pseudo-classes in classification is motivated as follows: The prob-
ability of abnormality rises if the size of the optici part is generally large. However 
the range of the extractable feature values of the normal samples is considerably lar-
ger than their mean values. This correlates with the complex distribution of the nor-
mal class on the SOM maps. We assume that the development of glaucoma is not a 
process where a member of a single normal group moves to one of a few abnormal 
groups. It is natural to recognize that it is rather a process where two or more kinds of 
normal and abnormal groups are involved.  
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Fig. 2. Flow chart of the proposed system 

3   Self-Organizing Map and Learning Vector Quantization 

The Self-Organizing Map (SOM) of Kohonen [5] is a nonlinear projection of a high-
dimensional input data into a low-dimensional space. Many studies have been made 
on the clustering, visualization, and data mining capabilities of the SOM. These capa-
bilities of the SOM attribute to acquiring useful information also in the medical area. 

SOM is an unsupervised learning algorithm with a two-layer structure where all 
units in the self-organization layer are connected to all units in the input layer. Each 
input vector is during the training mapped to one of the output units placed in a two-
dimensional grid. In the SOM training, the best-matching map unit, whose weight 
vector is nearest to the input vector, and its nearby units learn iteratively: 
 

     )]()()[()()1( tmtxthtmtm iciii −+=+                                (1)  

 
where mi(t) is the weight vector of the map unit i at time t, x(t) is the input vector with 
n-dimensions and hci(t) is a neighborhood function, which includes the learning rate 
coefficient: 
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Nc is the neighborhood of the best-matching map unit, and α(t) is the learning rate 
factor. As a result of the learning, the self-organizing layer forms a two-dimensional 
similarity relation which clusters the mutually similar feature vectors. 

The Learning Vector Quantization (LVQ) [5] is a supervised version of vector 
quantization and aims at optimal classification of patterns in the input feature data. It 
moves the weight-vectors or prototypes to define optimal decision borders between 
the classes. In LVQ the prototype that most strongly reacts to the input data is trained. 
In the training, the class label of the trained prototype is compared with the class label 
of the input data vector. If the labels match, the prototype is moved towards the train-
ing sample, otherwise it is moved away from it. Both updates follow the formalism of 
Eq. (1), but now α(t) is negative for non-matching class labels and there is no 
neighborhood involved. The optimal classification borders are achieved by repeating 
the operation. 

4   Experiment Data, Features and Method Parameters 

4.1   Experimental Data, Feature Extraction and Selection 

A series of experiments was conducted with fundus images produced by a clinical 
doctor.  The total number of images is 133:  91 normal subjects and 42 abnormal 
ones. This data was divided into two separate subsets. The first subset for training 
consists of 46 normal persons and 21 abnormal ones and the other subset for classifi-
cation test consist of 45 normal persons and 21 abnormal ones.  

Colored fundus photographs of 24 bit RGB bitmaps were acquired with a scanner. 
The data used in our experiments are the R-, G- and B-pixel values of the fundus 
image on a horizontal line through the nipple center as shown in Figure 3. The scan 
lines consisted of 256 pixels. The white horizontal line in the center of the left image 
shows the scan line.  These curves in the right graph show the values of the R-, G-, 
and B-pixels scanned on the horizontal line. The reason why we used such data is that 
it is easy to measure but bears relevance to a C/D ratio: The C/D ratio is often used in 
the conventional diagnosis of fundus images. It is the ratio of the diameter of the 
excavation cup and diameter of the optic nerve disk.  

Different feature extraction methods were first applied to the 256-dimensional scan 
line pixel data. The best ones among these features were then selected by using leave 
one out (LOO) cross-validation in the training set and observing the equal error rate 
(EER) and the area under curve (AUC) values of the receiver operating curve (ROC). 
This step was performed by using the PicSOM system [7] in which parallel SOMs are 
used for scoring the similarity of image classes. 

The B-pixel normalized value, G-pixel normalized value and the Fourier coeffi-
cient of the vectorial of the R- , G- and B-pixel were found to be the best features as 
the result of the cross validation test.  
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Fig. 3. Data sampling along the horizontal scan line 

4.2   Parameters of SOM and LVQ 

For the training of the SOM, we used the SOM Toolbox for Matlab 5 [8]. The pa-
rameters were automatically selected by the SOM Toolbox. For the classification, we 
used LVQ_PAK program package Version 3.1 [6], from which we used the programs 
LVQ2 and LVQ3. The main parameters used in our experiments are listed in Table 1. 

Table 1. Parameters in LVQ 

Number of codebook vectors 9 
Running length in training 5,000 
Initial learning rate 0.1 
Window width in LVQ2  0.2 
Number of neighbors in KNN classification 3 

5   Results and Discussion 

In this section, we will first show the results of data clustering with SOM maps and 
classification by LVQ. Then we will compare our system’s performance with that of 
other relevant methods. 

5.1   Clustering and Defining Pseudo-Classes with SOM Maps 

Figure 4 shows a SOM map created with SOM Toolbox from normalized B-pixel 
values of the scan images.  

The map can be interpreted as follows: (1) as a result of quantization, there exist units 
which consist of a single class and units consisting of overlapped classes. 14 units con-
tain only the normal class, 8 units contain overlapped class, and 8 units contain only 
abnormal class. (2) There is an expanse area where only the normal class gathers in the 
region a little below the center of the map. Moreover, there is an area where the abnor-
mal class gathers in the bottom left of the map. (3) On the other hand, some abnormal 
data are scattered in the upper part of the map which is overwhelmingly occupied by the 
normal class. These findings confirm our prior assumptions concerning the complex 
distribution of both the normal and the abnormal data, made in Section 2.  
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Fig. 4. SOM maps( size:6 x 8)  distribution of normalized B-pixel data by SOM toolbox. The 
large ‘N’s indicate normal data samples, small ‘a’s abnormal ones. 

5.2   Classification by LVQ 

In our experiments, the maximum total accuracy was 71.21% in the proposed method 
case when two pseudo-classes were used for the normal class and one real class for 
the abnormal. In detail, the specificity (the accuracy for the normal class) was 97.78% 
and the sensitivity (the accuracy for the abnormal class) 14.29%. The total accuracy 
was also 69.7% in the case when the specificity was 91.11% and the sensitivity 
23.81%. On the other hand, the total accuracy was 71.21% in the case when the 
pseudo-classes were not used. The specificity was 100.0% and then sensitivity was 
9.52%. From these results, it seems evident that the use of the pseudo-classes contrib-
utes to the increased classification performance, especially for the relatively smaller 
class of abnormal data.  

5.3   Selecting the Number of Pseudo-Classes 

When the training data is divided into the pseudo-classes, we need a criterion for how 
to select the number of pseudo-classes separately for both the normal and abnormal 
real classes. The number of pseudo-classes should be larger than one for the pseudo-
class technique to be effective. In our current experiments we have, due to the limited 
number of data available, used only two pseudo-classes for normal of the training 
classes. If more data were available, more pseudo-classes could be used. The division 
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of pseudo-classes has been based on the result of one-dimensional SOM with two 
nodes. The size of each pseudo-class should be as equal as possible for improving the 
total accuracy. 

5.4   Comparison with Other Methods for Diagnosis 

The same or similar data has been used for evaluating the performance of different 
diagnosis systems. The accuracy values attained so far have been collected in Table 2. 
The value of SVM was obtained from the real medical treatment image data by sup-
port vector machines (SVM) (Kernel type of radial basis function was used). The 
specificity was 100.0%, but sensitivity was 0.0%.  

The value of the method 1 was obtained by machine learning classifiers, such as 
Multilayer perceptrons, SVM, and mixtures of Gaussians. The results of two glau-
coma experts were judged against the machine classifiers [3]. The value of the 
method 2 was obtained by SVM under the condition of 102 glaucoma fundus images 
and 54 normal ones [4]. It is difficult to directly compare the performance of our 
proposed diagnosis system with the accuracy of the conventional systems due to the 
differences in the data size, the features and analysis methods. The degradation 
mainly depends on not the adopted method itself, but on the data themselves. In par-
ticular, because of no screening of fundus images in our study, we used only a small 
quantity glaucoma data, and also other abnormalities such as ocular hypertension 
were contained in the abnormal class. 

Table 2. The comparison with other methods 

Method 
Size of 

data sets 
Total accuracy Specificity  Sensitivity  

Proposed method 133 0.697 0.911 0.238 

SVM(RBF) 133 0.682 1.00 0.0 

Two experts  1/2  [3] 345 0.843/0.749 0.75/0.88 0.96/0.59 

Method 1 in [3] 345 0.839 0.790 0.900 

Method 2 in [4] 156 0.855 0.764 0.904 

6   Conclusions 

In this paper, a two-stage diagnosis system that consists of SOM and LVQ was pre-
sented for diagnosis of fundus images. The first stage performs a pseudo-
classification of feature values extracted from fundus images on the map. In the next 
stage, the fundus images were classified by LVQ as either normal or abnormal with 
aid of the information of the pseudo-classification. The performance of our system for 
diagnosis was verified by the actual diagnosis and treatment image data. Whenever 
the overlap between classes is large, the proposed system can increase classification 
performance, especially for the smaller class data.  
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Facial Expression Recognition Techniques Using
Constructive Feedforward Neural Networks and

K-Means Algorithm
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Abstract. In this paper two facial expression recognition (FER) tech-
niques are proposed. Lower-frequency 2-D DCT coefficients of binarized
edge images are utilized in both methods as features for recognition. The
first approach uses a constructive one-hidden-layer (OHL) feedforward
neural network (OHL-NN) and the second approach is based on the K-
means algorithm as classifiers. The 2-D DCT is used to compress the
binarized edge images to capture the important features for recognition.
Facial expression “neutral” is regarded as a subject of recognition in addi-
tion to two other expressions, “smile” and “surprise”. The two proposed
recognition techniques are applied to two databases which contain 2-D
front face images of 60 men (database (a)) and 60 women (database (b)),
respectively. Experimental results reveal that the proposed two tech-
niques yield performances that are comparable to or better than that
of two other recognition methods using vector matching and fixed-size
BP-based NNs, respectively. The first proposed method yields testing
recognition rates as high as 100% and 95%, and the second one achieves
as high as 100% and 98.33%, for databases (a) and (b), respectively.

1 Introduction

Facial expressions play an important role in human communications, since they
carry much information about humans, such as one’s feelings, emotions and
so on. Computer-based automatic facial expression recognition (FER) can help
to create human-like robots and machines that are expected to enjoy truely
intelligent and transparent communications with humans. To date, many FER
methods have been proposed in the literature (see for example, [1]-[10] and the
references therein). A good review can be found in [4] and [5].

Ekman developed a facial action coding system (FACS) [1] for facial expression
description, which is a pioneer system that has brought great influence on later
research and development in the field. The FACS deals with 3-dimensional (3-D)
facial models where the entire face is divided into 44 action units (AUs), such
as nose, mouth, eyes, etc.. The muscles movements of these feature-bearing AUs
are used to describe any human facial expression of interest. A drawback of the
FACS is that it requires 3-dimensional measurements and is thus too complex
for real-time processing. A modified FACS processing only 17 important AUs

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 711–719, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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is proposed in [2] for facial expression analysis and synthesis. However, 3-D
measurements are still needed.

Recently, FER using 2-D digital images has been a focus of research [3]-[10]. In
[3], a radial basis function (RBF) neural network (NN) is proposed for FER based
on motion. The 2-D discrete cosine transform (2-D DCT) is used to compress
an entire difference face image between a “neutral” and an expression image,
and the resulting lower-frequency 2-D DCT coefficients are used to train a one-
hidden-layer NN (OHL-NN) using BP-based training algorithm or constructive
algorithm in [6,7]. In the above FER methods, the facial expression, “neutral”, is
usually not regarded as a subject of recognition. Instead it is used as a reference
for the detection of motion of other expressions such as “smile”, “surprise”, etc.
As reference the neutral images can significantly facilitate the recognition of
other expressions. However, “neutral” should be a subject of recognition as it
represents the same importance and amount of information as other expressions
do in human communications. When “neutral” is considered as a subject of
recognition task, the above-mentioned techniques are no longer applicable, or
present very poor performance. Refer to [10] where the recognition of “neutral”
is considered and a vector matching based technique was proposed.

More recently, an interesting FER technique is proposed in [5] that uses the
line-based caricatures. In this method, the normally binarized edges of facial
images are connected and thinned to generate a line edge map (LEM) which is
compared with the line-based caricatures pre-sketched manually to perform the
recognition task. The expression “neutral”, “smile” and “surprise” are considered
as subjects of recognition. The technique is computationally efficient but the
performance needs to be improved, as the averaged recognition rate is only 86.6%
for the AR face database [5] which is almost the same in size as the databases
that are used in our work.

The recognition methods using fixed-size NNs have been found to be partic-
ularly promising [3,6,4], However, determining a proper network size has always
been a frustrating and time consuming experience for NN developers. Construc-
tive NNs have been used to overcome this difficulty [11,12,13]. In the constructive
training of a OHL-NN, a small network with a few hidden units, say one or two,
is first trained by a BP-type algorithm, and then new hidden units are added to
the existing network one at a time until the network performance is maximized.
See [11,12,13] for other constructive NNs concepts and architectures.

In normal vector matching, only a single standard vector is extracted for each
expression category. According to our experience this usually can not handle
the varieties of an expression [8]. This may become more significant when the
neutral images are regarded as subjects of recognition rather than reference
images for forming difference images [7]. Using multiple standard vectors for an
expression may mitigate this problem. The K-means algorithm is a powerful tool
for identifying multiple standard vectors.

In this paper, we propose two new FER techniques that use the binary edge
images, 2-D DCT, a constructive OHL-NN and the K-means algorithm as clas-
sifiers, respectively. The two proposed recognition techniques are applied to two
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databases which contain 2-D front face images of 60 men (database (a)) and
60 women (database (b)), respectively. Experimental results reveal that the pro-
posed techniques are comparable to or better than two other recognition methods
that use normal vector matching and fixed-size BP-based NNs, and the K-means
based classifier outperforms the OHL-NN based technique. The former method
yields testing recognition rates as high as 100% and 95%, and the latter tech-
nique achieves recognition rates as high as 100% and 98.33%, for databases (a)
and (b), respectively.

2 Two Novel Facial Expression Recognition Techniques

New recognition techniques that use binary edge images, 2-D DCT and con-
structive OHL-NNs and K-means are depicted in Fig. 1. Feature extraction at
each preprocessing step and classification process are described in detail below.

Neutral  or
expression
facial image
 (N-by-N)

Edge detection

Edge image
 (N-by-N)

Binarization

Binary edge
image
 (N-by-N)

2-D DCT

2-D DCT
coefficients
 (N-by-N)

lower
frequency
block
(Lx-by-Ly)

Features for recognition
(Matching, NN, constructive NN, etc.)

Lx

Ly

Fig. 1. Feature extraction flow of the proposed technique

(A) Edge detection

Facial expressions are embodied by the AUs movements which are mainly char-
acterized by the movements of edges within the images. These edges are expected
to contain much information useful for the identification of facial expressions.
Detection of edges from facial images is the first step towards the recognition
stage. In general, any edge detector may serve this purpose. In this work we



714 L. Ma

utilized the Sobel filter. The horizontal and vertical edges at pixel (i, j) are de-
noted by gh(i, j) and gv(i, j), respectively. Our experiments have shown that the
following edge definition tends to produce the best recognition results

g(i, j) = max(|gh(i, j)| , |gv(i, j)|) (1)

(B) Binarization of edge images

The detected edges could be used as is for our recognition purpose, but extensive
experiments have revealed that this is not a good idea since the recognition
rates obtained by vector matching are extremely poor. The detected edges are
therefore binarized by using a proper threshold, which is calculated over those
non-zero pixels of the edge image.

(C) Application of 2-D DCT and features for recognition

The binarized edges detected as features for our recognition purpose are repre-
sented by a large number of binary data (N-by-N) where many of these data may
provide no contribution to the recognition performance and should therefore be
filtered out and screened in a proper way. Consequently, we propose to apply
the 2-D DCT to compress the binary edge images and use the lower-frequency
DCT coefficients as the processed final features for the classification that fol-
lows. A lower-frequency block of size Lx × Ly is utilized. A vector arranged
from this block is normalized and arranged as a feature vector for classification.
The block size that leads to the best recognition rate may be searched and chosen
experimentally.
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Fig. 2. Structure of a constructive OHL-NN with nonlinear output nodes (solid lines
indicate the trained and then fixed weights, dotted lines indicate the weights to be
trained in the input-side and output-side training phases)

(D) An FER technique based on constructive OHL-NN

A block diagram for our proposed constructive OHL-NN is shown in Fig. 2. The
input vector to the network is denoted by xj = (xj

1, x
j
2, · · · , x

j
I)

T , and the output
target of the network is denoted by dj = (dj

1, d
j
2, · · · , d

j
N0

)T , j = 1, 2, · · · , P ,
where I (= Lx × Ly) and N0 are dimensions of input and output vectors of the
network, respectively, and P is the number of training samples. In this paper, the
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sigmoidal function f(·) is used as the activation function of both the hidden and
the output units of the OHL-NN. The input-side training of the n-th hidden unit
is accomplished based on maximizing the following correlation-type performance
index [12]

Jinput =
N0∑
o=1

∣∣∣∣∣∣
P∑

j=1

(ej
n−1,o − ēn−1,o)(f(sj

n) − f̄)

∣∣∣∣∣∣ (2)

where ej
n−1,o = yj

o(n−1)−dj
o, ēn−1,o = 1

P

∑P
j=1 ej

n−1,o, and f̄ = 1
P

∑P
j=1 f(sj

n).
The “quickprop” algorithm [12] is used to obtain the maximization of the above
objective function. The output-side training is performed by minimizing a
summed squared error criterion. A second-order algorithm, such as the Quasi-
Newton algorithm [11,13] may be used to solve this nonlinear optimization prob-
lem. Following the above two training phases, the testing data that is unseen
in the training phase is fed to the trained network to evaluate its generalization
capabilities. “Winner-take-all” criterion is applied to the output nodes to obtain
classification. That is, a node that achieves the largest value is regarded as the
winner, and the category of the input image being considered will be classified
as the expression the winner node corresponds to.

(E) An FER technique based on K-means algorithm

Classification may be simply performed based on vector matching, with the
squared errors being used as criterion. A standard vector is obtained in training,
which is a global centroid of training vectors of the same expression category.

Our extensive experimental simulations have revealed that the expressions of
interest may have many distinct subgroups (clusters), and their recognition may
be improved if one categorizes these subgroups or their corresponding standard
vectors into the classification process. To this end, one needs to use a tool to
specify or search for the members of each subgroup. In this work, the K-means al-
gorithm is used for this purpose. In each search, the initial vectors (centroids) for
each subgroup are randomly selected from the training vectors, and the nearest-
neighbor (minimum distance) rule is utilized in classifying the group members.
For a user-specified number of subgroups, a number of independent search runs
are performed, and the outcome of a run with minimum summed distance is
taken as the search result. The number of independent search runs is set suffi-
ciently large such that the outcome remains unchanged. Because the dimension
of training vectors is small, the K-means algorithm converges very fast. The cen-
troids for all the subgroups are regarded as the standard vectors for recognition.
It should be noted that in this work the global centriod for each expression is
used as the first standard vector without exception.

3 Experimental Results

In this work, four (4) recognition techniques are applied to two databases,
namely database (a) and (b) that have front face images of 60 men and 60
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women, respectively. The first is a normal vector matching classifier (Method
A), the second is implemented by fixed-size BP-based NNs (Method B), the
third is our first new technique based on the constructive OHL-NNs (Method
C), and the fourth is the second new method based on K-means algorithm
(Method D).

Three facial expression images (“neutral”, “smile”, and “surprise”) of size
128 × 128 for each individual are the subjects of recognition. Sample images
from databases (a) and (b) are given in Fig. 3, where their edge and binarized
edge images are also provided. For each database the images of the first 40
individuals are used for training and the remaining images for 20 individuals
are used to test the trained recognition system. Some typical results are shown
below.

(a)  Original facial images
smileneutral surprise

smileneutral surprise

smileneutral surprise

(b)  Edge images

(c)  Binary edge images

(I) Database (a)

(a)  Original facial images
smileneutral surprise

smileneutral surprise

smileneutral surprise

(b)  Edge images

(c)  Binary edge images

(II) Database (b)

Fig. 3. Samples from databases (a) and (b) and their edge and binarized edge images

The mean testing recognition rates produced by Methods C for databases (a)
and (b) are provided in Fig. 4 versus the the block size and the number of hid-
den units. Fig. 5 presents similar results by Method D for databases (a) and (b)
versus the block size and the number of standard vectors. Comparisons among
the four methods are indicated in Fig. 6, where the maximum rates of testing
are shown (for Method A, maximum rates are the same as the mean ones). In
Method C, for each block size and each number of hidden unit(s), 20 networks
with different random initial weights were generated. Similarly, in Method D,
for each block size and each number of standard vector(s), the K-means algo-
rithm was run 20 times from different random initial centroids. The mean and
maximum recognition rates for training and testing are extracted from these net-
works and runs. From Figs. 4-6, one sees that the proposed techniques (Methods
C & D) provide results that are better than or similar to those produced by
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Fig. 4. Mean testing recognition rates of Method C versus the block size and the
number of hidden unit(s)
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Fig. 5. Mean testing recognition rates of Method D versus the block size and the
number of standard vector(s)
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Fig. 6. Maximum testing recognition rates of Methods A-D versus the block size (K=1:
a single standard vector; K=5: five standard vectors, for each expression)
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Methods A & B. It should be noted that the performance of Methods B, C, and
D tends to be influenced by the training parameter settings and data arrange-
ments. Further detailed experimental trials are needed to fully evaluate these
results.

4 Conclusions

In this paper, two novel facial expression recognition methods are proposed,
where “neutral” is treated as a subject of recognition in addition to two other ex-
pressions “smile” and “surprise”. The proposed techniques have been compared
to vector matching and the fixed-size BP-based NNs. These four (4) recogni-
tion methods have been applied to two databases, and it has been discovered
that the proposed techniques present some performance advantage over other
two methods. Future topics include 1) performing further detailed experimen-
tal trials, 2) investigating the capabilities of the proposed methods in case of
larger number of facial expressions, and 3) applying the proposed techniques
to other images such as the AR face database etc. to conduct a comparative
study.
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Francesco C. Morabito, and Mario Versaci

University Mediterranea of Reggio Calabria, DIMET,
Via Graziella Feo di Vito, I-89100 Reggio Calabria, Italy
{matteo.cacciola,maurizio.fiasche,giuseppe.megali,

morabito,mario.versaci}@unirc.it

Abstract. Living cells possess properties that enable them to withstand
the physiological environment as well as mechanical stimuli occurring
within and outside the body. Any deviation from these properties will
undermine the physical integrity of the cells as well as their biological
functions. Thus, a quantitative study in single cell mechanics needs to
be conducted. In this paper we will examine fluid flow and Neo-Hookean
deformation. Particularly, a mechanical model to describe the cellular
adhesion with detachment is proposed. Restricting the interest on the
contact surface and elaborating again the computational results, it is
possible to develop our idea about to reproduce the phases coexistence
in the adhesion strip. Subsequently, a number of simulations have been
carried out, involving a number of human cells with different mechanical
properties. All the collected data have been used in order to train and test
a suitable Artificial Neural Network (ANN) in order to classify the kind
of cell. Obtained results assure good performances of the implemented
classifier, with very interesting applications.

1 Introduction

In order to model and determine the effect of the blood flow in presence of a
human cell, a Finite Element Method (FEM)-ANN-based approach has been ex-
ploited. FEM model requires the geometrical and physical definition of the blood
vessel, the cell and flow parameters. For our purpose, we verify cell deformation
under actual conditions. Thus, a brief description of the theoretical framework
for the mechanical is given. Then, we describe the exploited approach through
FEM analysis simulating the human cell and the blood flow, and so modeling
an endothelial wall cross of a blood flow and the topological structure of the
implemented ANN and finally, the obtained results. The goal of the paper was
to focus the contact part among cell and endothelial wall about the deformation
field. Our opinion is that the simulation notice the deformation inhomogeneity
namely different concentration areas with different deformation values. This im-
portant observation should be connected with a specific form of the stored energy
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deformation that, in this case, loses the standard convexity to show the a non-
monotone deformation law. Consequently, we have local minima and the varia-
tional problem seems more difficulty. Solutions through minimizing sequence are
applied and this relieve microstructure formation. A number of simulations have
been carried out, involving a number of human cells with different mechanical
properties. All the collected data have been subsequently used in order to train
and test a suitable ANN. The proposed ANN-approach has been exploited in
order to classify the type of cell. Final results are satisfying: the approach is able
to recognize the kind of cell.

2 Theoretical Approach: Problem Modeling

In this section of the paper we show how to simulate the effect of a blood flow
in presence of a cell in a blood vessel. Using our FEM package [1,2,3], the blood
flow and pressure drop across human cell have been studied and a mathemati-
cal model of the process has been constructed and analyzed. It consists of the
equations of continuity (representing conservation of mass), motion (represent-
ing conservation of momentum) for the flow of blood through human cell [4] (see
Fig. 1). These equations are supplemented by appropriate models which repre-
sent the stress/strain behavior of human cell [5]. Simulation of fluid-structure
interaction is a challenging problem for computer modelers. In this work we
exploited a FE approach to solve the developed mathematical 2D model repre-
senting the operations of human cell. 2D geometry represents a vertical section of
the general 3D problem. According to our purposes, it represents a good trade-off
between the analysis of stresses and the reduction of computational costs, thus
assuring the achievement of our goals. For our aims, the Comsol Multiphysics�
package has been exploited. Computer modeling can help in this context if it is
based on an appropriate mathematical model and an accurate reliable solution.
So it is needed to fit a model to the problem and get a satisfactory solution.
Since the requirements about the length of the paper, please refers to [6] for the
closed form of the analytic model.

 

Fig. 1. 2D-view of cell deformation in presence of blood flow at t1=0.125 (s)

3 FEM Approach

We modeled a horizontal flow channel (rectangular profile) in the middle of which
there is a human cell (circular profile). For considering the deformation of the
flow on the cell, we exploited the arbitrary Lagrangian-Eulerian technique [7,8,9].



722 M. Cacciola et al.

The cell forces the fluid into a narrower path in the upper part of the channel,
thus imposing a force on the structure’s walls resulting from the viscous drag
and fluid pressure. The cell structure, being made of a Neo-Hookean hyperelastic
material, bends under the applied load. Consequently, the fluid flow also follows
a new path, so solving the flow in the original geometry would generate incorrect
results. The Navier-Stokes equations that solve the flow are formulated for these
moving coordinates. The simulations exploit the FEM and require geometrical
and physical definition of the blood flow and the human cell [10]; the latter has
been modeled as a circumference with a portion of perimeter adherent to the ve-
nous paries. In this example the flow channel is 100 (µm) high and 300 (µm) long.
The cell structure has a radius of 1.25 (µm), and is adherent 1 (µm) long at the
channel’s bottom boundary. Particularly, we propose the results for a red blood
cell analysis. Assume that the structure is along the direction perpendicular to
the image. The fluid is a water-like substance with a density ρ=1000 (kg/m3)
and dynamic viscosity η=0.001 (Pa·s). To demonstrate the desired techniques,
assume the cell structure consists of a Neo-Hookean hyperelastic material with
a density ρ=7850 (kg/m3) initial tangent E=80 (kPa). The model consists of a
fluid part, solved with the Navier-Stokes equations in the flow channel, and a
structural mechanics part, which you solve in the human cell. Transient effects
are taken into account in both the fluid and the cell structure. The structural
deformations are modeled using large deformations in the Plane Strain appli-
cation mode. The displacements and displacement velocities are denoted u, v,
ut, and vt, respectively. Fluid flow is described by the Navier-Stokes equations
for the velocity field, u = (u, v), and the pressure, p, in the spatial (deformed)
moving coordinate system:{

ρ∂u
∂t − ∇

(
−ρI + η

(
∇u + (∇u)T

))
+ ρ ((u − um) · ∇)u = F

−∇ · u = 0
(1)

In these equations, I denotes the unit diagonal matrix, T the stress tensor and F
is the volume force affecting the fluid. Assume that no gravitation or other vol-
ume forces affect the fluid, so that F = 0. The Navier-Stokes equations are solved
in the spatial (deformed) coordinate system. At the inlet, the model uses a fully
developed laminar flow. Zero pressure is applied at the outlet. No-slip boundary
conditions, that is u = 0, are used at all other boundaries. Note that this is a valid
condition only as long as you are solving the stationary problem. In this transient
version of the same model, with the cell starting out from an undeformed state,
it is necessary to state that the fluid flow velocity be the same as the velocity of
the deforming obstacle. The coordinate system velocity is u = (um, vm). At the
channel entrance on the left, the flow has fully developed laminar characteristics
with a parabolic velocity profile but its amplitude changes with time. At first,
flow increases rapidly, reaching its peak value at 0.215 (s); thereafter it gradually
decreases to a steady-state value of 3.33 (cm/s). The centerline velocity in the
x direction, uin, with the steady-state amplitude U comes from the equation
uin = U·t2√

(0.04−t2)2+(0.1t)2
, where t must be expressed in seconds. At the outflow

(right-hand boundary), the condition is p = 0. On the solid (non deforming)
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Fig. 2. Simulated flow and cell deformation at time instant t0=0 (s) and t1=0.215 (s)

 

 

Fig. 3. Simulated flow velocity and geometry deformation at t=4 (s). The vectors
indicate the flow direction and the color scale indicates flow-velocity magnitude (m/s).

walls, no-slip conditions are imposed, u = 0, v = 0, while on the deforming
interface the velocities equal the deformation rate, u0 = ut and v0 = vt. For
boundary conditions, the cell is fixed to the bottom of the fluid channel, so that
it cannot move in any direction. All other object boundaries experience a load
from the fluid, given by FT = −n ·

(
−ρI + η

(
∇u + (∇u)T

))
, where n is the

normal vector to the boundary. This load represents a sum of pressure and vis-
cous forces. With deformations of this magnitude, the changes in the fluid flow
domain have a visible effect on the flow and on the cell, too (see Fig. 3). Fig. 3
shows the geometry deformation and flow at t=4 (s) when the system is close
to its steady state. Due to the channel’s small dimensions, the Reynolds number
(R) of the flow is small (R � 100), and the flow stays laminar in most of the area.
The swirls are restricted to a small area behind the structure. The amount of de-
formation as well as the size and location of the swirls depend on the magnitude
of the inflow velocity. Fig. 4 further illustrates this point; it compares the average
inflow velocity to the horizontal mesh velocity and the horizontal mesh displace-
ment just beside the top of the structure at a generic physical point. For the
fluid domain, the following settings are applied. For the boundary settings, we
imposed a inlet condition with a mean velocity equal to uin (set to 3.33 (cm/s)).
For the sides we apply condition of wall with sliding absent; for the boundary
(δΓ ) on the right we imposed type of outlet with a condition of pressure and no
viscous stress with p0 = 0. The edges of the cell are characterized by conditions
wall mobile dispersant (structural displacement) with the exception of the base
cell which is fixed and not involved in the dynamic physical process, according
to n ·

(
η1

(
∇u1 + (∇u1)T

)
− ρI − η2

(
∇u2 + (∇u2)T

)
− ρ2I

)
= 0. Our stud-

ies have been based on a discrete domain with 231 elements. The number of
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Fig. 4. Inflow velocity, horizontal mesh velocity, and mesh deformation. The curve
with triangles shows the average x direction velocity at the inflow boundary (m/s); the
curve with circles shows 104*mesh displacement in the x direction (m) at the generic
geometry point; and the curve with squares shows 103*mesh velocity in the x direction
(m/s), also at the same point.

degree of freedom is 1984. Mesh has been generated with triangular elements,
having a geometric side of 5∗10−4 (mm) for vessel and cell. We exploited a FEM
implementation utilizing a time-dependent direct linear solver with parallel cal-
culation [11]. Subsequently, we present final simulations in order to stress and
strain results.

4 The Inverse Problem and Its Neural Network Based
Regularization

The problem of estimate the kind of cell within the model starting from simulated
measurements can be solved as a typical inverse problem of pattern recognition
starting from available measurements. The proposed approach, useful to regu-
larize the ill-posed problem and thus to discriminate the kind of cell, exploits
Artificial Neural Network (ANN), particularly Multi-Layer Perceptron (MLP),
trained with Levenberg-Marquardt method. Database used for our experimen-
tations have been collected in our laboratory, by means of results obtained ana-
lyzing a number of human cells with the previously proposed FE based system.
Human cells have the same dimensions, but with different mechanical properties.
For each cell, a simulation has been carried out, in order to obtain the stress
map according the specific properties. The collected database is composed by: 21
FEM maps equally distributed for the considered different kind of cells (i.e., kera-
tocytes, leukocytes, red blood cells) and analyzed with different blood velocities;
more other 21 FEM maps equally distributed for the considered different kind of
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(a) Example map of the Von Mises
stress in a red blood cell

(b) The non-monotone deformation law
for a red blood cell

Fig. 5. Some results of the numerical modeling

cells, analyzed with the same blood velocity but with different mechanical and
constitutive quantities. Then, in our experimentations, we considered only the
areas depicting the adhesion strips. In order to set training signals, we made a
trade-off between the requirements of an as large as possible training subset and
a significant availability of testing signals. The training set has been composed
by randomly selected sub-areas from each map of the collected database. On the
other hand, the testing subset is represented by the whole adhesion strips. In this
way, the so called inverse crime is avoided, since there are samples in the testing
subset not included in training subset. Proposed computational intelligence ap-
plication exploits an ANN as heuristic pattern reconstructor. ANN’s inputs are:
indices of cell mechanical properties (elastic modulus, viscosity), uin, considering
for the blood velocities, ρ and E; the average, standard deviation, skewness and
kurtosis of the i-th point on computed map of the cell. The ANN’s output is
the kind of cell according to our database. The ANN based system was trained
using Back-Propagation (BP) algorithm with adaptive rate of learning during a
period of 600 epochs. The ANN, according to Kurková [12], has a hidden layer
with 19 neurons; activation functions are: tan-sigmoid between input and hidden

 
Fig. 6. Structure of the implemented ANN: b{1} and b{2} represent the biases of input
and hidden layers respectively; IW{1, 1} and LW{2, 1} represent the weights for the
input and the hidden layers respectively. 9 is the number of ANN-inputs (i.e., neurons
in the input layer), 19 is the number of hidden neurons and 2 is the number of the
ANN-outputs (i.e., output neurons)
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Keratocytes 

Leukocytes 

Red blood cells 14 
14 

7                                          14 

# Observed Maps Classified by ANN 

12 
14 

16 
14 

Fig. 7. Observed classes of map and results obtained by ANN

layer, and pure linear between hidden and output layer (see Fig. 6). After the
training phase, the ANN has been tested; final results are shown in Fig. 7.

5 Conclusions

Proposed method provides a good overall accuracy, so our FEM-ANN pack-
age was very successfully in simulating fluid-structure interaction in the human
blood vessel. Our interest was to point out the concentration or inhomogeneity
of the deformation on the cell-wall contact area. This particular result open the
way to simulate the adhesion-detachment problem through more sophisticated
model (i.e. functional analysis tools) such that microstructural characterization
can be emphasized. With these information, an ANN-based approach has been
exploited in order to estimate the kind of human cell starting from signals ob-
tained by computer simulations. Stress FEM maps have been used to train the
ANN-based classifier. The proposed method provides a good overall accuracy in
distinguishing the different kind of cell, as our experimentations demonstrated.
At the same time, the procedure should be validate for cell with different shape
and with different mechanical properties. Anyway, the presented results suggest
the possibility of increasing and generalizing the performance of the ANN-based
classifier; in this way it could be possible to refine its training step, for instance,
including FEM’s maps able to portrait cells with different spatial extension,
making the training algorithm and finally the ANN more robust and flexible for
other kind of cells. The authors are actually engaged in this direction.
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Abstract. This paper employs pattern classification methods for as-
sisting contact centers in determining caller interaction at a ’Say ac-
count’ field within an Interactive Voice Response application. Binary
and real coded genetic algorithms (GAs) that employed normalized geo-
metric ranking as well as tournament selection functions were utilized to
optimize the Multi-Layer Perceptron neural network architecture. The
binary coded genetic algorithm (GA) that used tournament selection
function yielded the most optimal solution. However, this algorithm was
not the most computationally efficient. This algorithm demonstrated ac-
ceptable repeatability abilities. The binary coded GA that used normal-
ized geometric selection function yielded poor repeatability capabilities.
GAs that employed normalized geometric ranking selection function were
computationally efficient, but yielded solutions that were approximately
equal. The real coded tournament selection function GA produced clas-
sifiers that were approximately 3% less accurate than the binary coded
tournament selection function GA.

1 Introduction

This research focuses on a pattern classification problem utilized within an appli-
cation that could assist contact centers in determining customer activities within
their Interactive Voice Response (IVR) systems. During the last 5 years, the
South African contact centre industry has experienced exceptional growth [1].
In order to gain a competitive advantage, contact centers are to fulfill customer
expectations efficiently with informed responses and actions while discovering
techniques to reduce overall cost of providing such a service [2]. It is therefore
essential that contact centers evaluate the performance of their solutions in re-
lation to customer interaction. This will assist in quantifying the self-service
customer perception.

Customers want to resolve problems on their first call. They want convenient
and reliable information fast. IVR systems can provide this. An IVR system
is an automated telephony system that interacts with callers, gathers relevant
information and routes calls to the appropriate destinations [2]. The inputs to the
IVR system can be voice, Dual Tone Multi-Frequency (DTMF) keypad selection
or a combination of the 2.
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The aim of this research is to develop a field classification application, using
computational intelligent methods, which could assist companies in quantifying
customer activities within their IVR systems.

IVR applications are developed in Voice Extensible Markup Language (VXML).
VXML applications are voice-based dialog scripts that consist of form or dialog
elements. The form or dialog elements are used to group input and output sections
together. A field element is used to obtain and interpret user input information.
As a result, the form or dialog elements contain field elements [3].

The classification system developed categorizes caller behaviour at a field
within the IVR applications into specific interaction classes. As a result, these
interaction classes can assist in determining trends of caller behaviour within the
self-service systems. For example, the field classification application can identify
areas within the self-service applications that experienced the most caller dis-
connects. Thereafter, analysts can listen to a sample of these calls and determine
the reason for this. The field classification system can also identify the fields that
resulted in the majority of the callers transferring to a Customer Service Agent
(CSA) due to difficulties experienced.

In order to develop such an application, the classification of data must be
accurate. This paper details the development of artificial neural network (ANN)
field classifiers using Multi- Layer Perceptron (MLP) neural network and genetic
algorithms (GAs). GAs employing floating-point and binary representations are
considered. Detailed explanations on these ANN architectures can be found
in [4].

GAs are known to be robust optimization procedures based on the mechanism
of the natural evolution. GAs have the capability of locating a global optimum
as these procedures do not use any derivative information and GAs search from
multiple points. In traditional GAs, binary representation has been used for
chromosomes. Floating-point representation, real-coded GAs, of parameters as
a chromosome has also been used [5].

The classification of data into various classes has been an important research
area for many years. Artificial neural networks (ANNs) have been applied to
pattern classification [6][7][8]. Fuzzy systems [9] and neural networks constructed
using GAs have been utilized [10].

The section to follow provides a brief explanation of the field classification sys-
tem. Thereafter, the implementation methodology is described. The paper ends
with the comparison of the various field classifiers developed and the selection
of the superior networks.

2 The Developed System

As the developed system is to be used to identify trends of caller behaviour at
a field within the IVR VXML applications, the system is trained based on data
extracted from IVR log event files. These files are generated by the IVR platform
as specific events occur during a call to the system. Events such as call begin,
form enter, form select, automatic speech recognition events, transfer events and
call end events are captured in the logs [11].
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Table 1. The inputs and outputs of the field classifier

Inputs Outputs Output
interaction class

Confidence Field performance Good, acceptable,
bad

No matches Field transfer reason Unknown, difficult
No inputs Field hang-up reason Unknown, difficult
Max speech timeouts Field duration High, medium, low
Barge-ins Field recognition level High, medium, low
Hang-ups
Transfer to Customer Service Agent
Duration

Table 1 shows the inputs and outputs of the field classification system. These
specific inputs have been selected to characterize the caller difficulty experienced
at a field within a VXML application. The outputs of the classifiers summarize the
caller field behaviour through the use of interaction classes. The confidence input
illustrates the IVR speech recognition probability. The value is a percentage. A
caller may answer a question the VXML application poses with a response the ap-
plication did not anticipate. These events are represented by the no match inputs.
Callers may reply to VXML applications by talking beyond the allocated time-
out period of the field. These events correspond to the maximum speech timeout
input parameters of the field classifiers [12]. When a question is presented by the
automated application, a caller may remain silent. No input events represent these
occurrences. In general, most self-service applications accommodate 3 of the above
events per field. On the third attempt, if the caller is unsuccessful in completing
the field, the caller is usually transferred to a CSA. These inputs are important as
they assist in identifying difficulties experienced at the field.

The duration input parameter illustrates the time the caller consumed com-
pleting the VXML application field. The barge-in input parameter illustrates
whether or not a caller interrupted the application while the automated question
prompted played. Caller disconnects and transfers to Customer Service Agents
(CSAs) are represented by the hang-up and transfer to agent input parameters,
respectively. These inputs can also assist in determining the level of difficulty
the caller experienced in the field.

The field performance output interaction class of the classifier will illustrate
whether the caller behaviour is good, acceptable or bad. The field transfer reason
and field hang-up reason interaction classes attempt to identify the motivation
for the transfer to CSA or caller disconnect, respectively. The field duration as
well as field recognition level classes illustrate 3 categories of performance, low,
medium and high. As a result, these output parameters will assist in character-
izing the caller experience at a VXML field.

Once the field classification system has been employed to assess the perfor-
mance of various interaction areas within the VXML applications, the caller
perception of the solution can be determined. For example, after analyzing the
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outputs of the classifiers, it is determined many callers are disconnecting due
to difficulties experienced during the preliminary fields of an application, it can
be concluded that the callers are frustrated with the system. In order to reduce
the caller dissatisfaction, it would be essential to optimize the various grammars
that interpret the caller responses.

3 Implementation Methodology

The development process was divided into various stages. The remainder of this
section will elaborate on these stages of implementation The following procedure
has been pursued in the creation of the various classifiers employed:
1. Selection and pre-processing of data to be used by the classifiers.
2. Optimization of the classifier architectures using GAs.
3. Comparison of the various GAs developed and the selection of the superior
network.

3.1 Selection and Pre-processing of Data

The data utilized in developing the ANNs is based on data extracted from IVR
log event files. A parsing application that extracted information such as recogni-
tion confidence values, caller barge-in information has been utilized to generate
the data sets. This application also executed specific instructions in the creation
of the data sets. Rules such as if 3 occurrences of no inputs, no matches or
maximum speech timeouts occur within the caller interaction to a particular
field and a transfer occurs thereafter, the field transfer reason computed will be
’difficulties’ were followed.

In order to present the no match, no input and maximum speech timeout in-
formation to the field classifiers, a binary notation has been employed. These in-
puts are presented by 3 digit binary words. For example, if a no match 1 and a no
match 2 occur at a field, the binary notation will be ’011’. A similar binary notation
is employed for the no input and maximum speech timeout classifier inputs. The
barge-in, hang-up and transfer to CSA input information were represented by bit
binary words. A similar binary notation scheme has also been utilized to interpret
the interaction classes outputted. The data is divided into training, validation and
test sets. The validation data set is used to assess the network and the test data is
used to confirm the classification capability of the developed networks.

The confidence and duration input parameters of the classifiers were precon-
ditioned by normalizing the data. Due to the binary word representation utilized
to present the remaining inputs, normalization of these input parameters is not
necessary.

3.2 Optimization of Classifier Architecture Using Genetic
Algorithms

This stage of implementation involved the optimization of the ANN architec-
tures. As a result, this step of development involved the identification of the
correct number of hidden neurons that would yield the most accurate results.
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Binary and real coded GAs were employed to optimize the field classifier
architecture. Populations of MLP ANNs were generated by the GAs. Due to
the MLP ANN non-linear capabilities, they are said to be excellent universal
approximators that provide highly accurate solutions. As a result, these networks
produce very practical tools for classification and inversion problems [4].

It has been stated that a network with 1 hidden layer, provided with suffi-
cient data, can be used to model any function [4]. Therefore, the MLP ANNs
employed consisted of only 1 hidden layer. The MLP ANN hidden layer consists
of non-linear activation functions. The choice of the activation function is largely
dependent on the application of the model [4]. However, it has been found that
the hyperbolic tangent activation function offers a practical advantage of faster
convergence during training [6]. As a result, this function has been employed
within the MLP network. The most appropriate selection of the output layer
activation function for a classification problem is the logistic sigmoidal function
[6]. Therefore, this function has been employed within the output layer of the
MLP network.

An error function that mapped the number of hidden nodes to the accuracy
of the developed network was used as the evaluation function for the GAs. The
fitness of the individuals within a population was determined by calculating the
accuracy of the ANNs when presented with validation and test data sets. The
minimum value of these accuracies determined the fitness of the individual.The
outputs of the ANNs were interpreted by utilizing a classification threshold value
of 0.5. This value proved to be adequate for the MLP ANN implementations. A
confusion matrix is utilized to identify the number of true and false classifications
that are generated by the models developed. This is then used to calculate the
true accuracy of the classifiers, using the following equation:

Accuracy =

√
TP ∗ TN

(TP + FN) ∗ (FP + TN)
(1)

where
TP is the true positive (1 classified as a 1),
TN is the true negative (0 classified as a 0),
FN is the false negative (1 classified as a 0),
FP is the false positive (0 classified as a 1).

The GAs produced 25 generations of 10 MLP ANN individuals within the
population. The GAs were limited to produce MLP ANN individuals with the
number of hidden nodes between 5 and 100. Networks with hidden nodes greater
than 100 were not developed due to the generalization capabilities reducing as
the number of intermediate units increase [13].

In order to produce successive generations, the selection function determines
which of the individuals will survive to the next generation. Roulette wheel se-
lection, scaling techniques, tournament, normal geometric, elitist models and
ranking methods are examples of selection functions used [5]. The selection ap-
proach assigns a probability of selection to each individuals based on its fitness
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value. This research compares solutions produced by GAs that employ normal-
ized geometric ranking and tournament selection functions.

3.3 Comparison of the Various Genetic Algorithms and Selection of
the Superior Model

The binary and real coded GAs were compared in terms of their repeatability,
computational efficiency as well as quality of the solution.

Repeatability is defined as the number of repetitions that returned the same
optimal number of hidden nodes. Repeatability has been demonstrated by exe-
cuting 8 repetitions of the binary and real coded GAs. This investigation revealed
that the binary coded ranking selection GA returned different number of hidden
nodes with different fitness values on each execution of the algorithm. Figure
1 also illustrates that the remaining GAs returned the same number of hidden
nodes with the same fitness value for a number of the repetitions.

Computational efficiency, in this context, is defined as the number of gen-
erations the GA utilized to converge to the most optimal number of hidden
nodes. Figure 1 illustrates that, the real coded tournament selection GA is most
efficient. In the majority of the repetitions, this GA converged to an optimal
solution before 9 generations. In the majority of the investigations, the binary
coded ranking and the binary coded tournament selection GA converged to an
optimal solution before 10 generations. However, the real coded ranking selection
GA, in majority of the repetitions, converged before generation 13. Figure 1 also
illustrates that the binary coded tournament selection GA resulted in the most
accurate MLP ANNs with accuracies of approximately 96.45%. This algorithm
returned the same fitness value for 2 of the 8 repetitions. The number of hidden
nodes corresponding to this accuracy is 5. However, the algorithm converged to
this solution at generation 23.

Quality of the GA solution is the verification that the number of hidden nodes
returned by the GA is really the most optimal value. It has been determined that
5, 6, 7 and 9 number of hidden nodes resulted in the most accurate MLP classi-
fiers. This has been determined by identifying the most accurate MLP classifiers
generated from the 8 GA repetitions executed. These number of hidden nodes
were identified by the binary coded tournament, real coded ranking, binary coded
ranking and real coded tournament selection GAs, respectively. In order to de-
termine the quality of the GA solutions, MLP classifiers were created containing
these number of hidden nodes. The accuracy of these networks was determined
by using equation 1. The sensitivity and false positive ratio were also calculated
to measure the true performance of the networks. Table 2 illustrates the results
of the quality of solution investigation. As illustrated, the number of hidden
nodes that resulted in the most accurate MLP classifier is 5. This number of
hidden nodes creates a network that performs accurately on both the validation
and test data sets. As a result, the classifier has good generalization capabilities,
as compared to the other MLP classifiers that perform approximately 4% more
accurately on the test data set. The sensitivity and false positive ratio values
also support these findings.
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Fig. 1. This figure shows the Fitness vs. Generation for all 8 repetitions

Table 2. This table illustrates the various models that were created. Accuracies are
presented as percentages.

Hidden Accuracy Accuracy Hit Rate Hit Rate False Alarm False Alarm
Nodes (Validation) (Test) (Validation) (Test) Rate (Validation) Rate (Test)
5 96.36 96.80 95.02 95.12 0.023 0.015
6 93.73 98.17 90.12 97.08 0.025 0.007
7 93.68 98.00 89.98 96.75 0.025 0.007
9 93.60 97.98 89.83 96.74 0.025 0.008

4 Conclusion

This research entailed the development of a ’Say account’ field classification
system. MLP networks were used to classify caller interactions. Binary coded and
real coded GAs that utilized ranking as well as tournament selection functions
were also employed to optimize the classifier architecture.

The development methodology utilized for creating all the networks involved,
initially, pre-processing the data sets. This ensured that the classifiers would
interpret the inputs proficiently. Thereafter, the numbers of hidden nodes were
optimized utilizing the GA algorithm. This resulted in creating acceptable net-
work architecture. GA results were compared in terms of computational efficient,
repeatability and the quality of the solution. These analyses assisted in deter-
mining the algorithm that was most suited to this application and the algorithm
that yielded the most accurate classifier. Acceptable classification accuracies
were achieved. The most accurate network that illustrated excellent generaliza-
tion capabilities yielded accuracies of approximately 96%. This illustrates that
MLP ANNs are proficient in classifying field caller interaction.
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The binary coded GA that utilized tournament selection yielded the most
accurate MLP classifier. The algorithm yielded the same result on 2 of the 8
repetitions. The number of hidden nodes of 5 returned by the algorithm was
confirmed to be the optimal in the quality of the solution investigation. However,
the algorithm converged at this solution at generation 23 of 25 generations. As a
result, it can be concluded that this GA is most suited to this application in terms
of optimal solution, but it is not the most computational efficient algorithm.

References

1. The first major South African Contact Centre and BPO Market Quantifica-
tion study in over 5 years, http://www.contactindustryhub.co.za/research.php
(last accessed August 17, 2008)

2. Nichols, C.: The Move from IVR to Speech – Why This is the Right Time to Make
the Move to Speech Applications in Customer-Facing Operations. Intervoice (2006)

3. VoiceXML 2.0/VoiceXML 2.1 Reference,
http://developer.voicegenie.com/voicexml2tagref.php (last accessed August
17, 2008)

4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

5. Houck, C.R., Joines, J.A., Kay, M.G.: A genetic algorithm for function optimiza-
tion: a Matlab implementation. NCSU-IE Technical Report. North Carolina State
University (1995)

6. Nabney, I.T.: Netlab: Algorithms for Pattern Recognition. Springer, Heidelberg
(2002)

7. Patel, P.B., Marwala, T.: Neural Networks, Fuzzy Inference Systems and Adaptive-
Neuro Fuzzy Inference Systems for Financial Decision Making. In: King, I., Wang,
J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4234, pp. 430–439.
Springer, Heidelberg (2006)

8. Marwala, T.: Fault classification using pseudo-model energies and neural networks.
American Institute of Aeronautics and Astronautics 41, 82–89 (2003)

9. Russo, M.: FuGeNeSys A fuzzy genetic neural system for fuzzy modeling. IEEE
Transaction on Fuzzy Systems 6, 373–388 (1998)

10. Abdella, M., Marwala, T.: The use of genetic algorithms and neural networks to
approximate missing data in database. Computing and Informatics 24, 1001–1013
(2006)

11. VoiceGenie Technologies Inc. VoiceGenie 7 Tools Users Guide. VoiceGenie Tech-
nologies Inc. (2005)

12. VoiceXML properties,
http://community.voxeo.com/vxml/docs/nuance20/VXMLproperties.html (last
accessed August 25, 2008)

13. Baum, B.E., Haussler, D.: What size net gives valid generalization? Neural Com-
putation 1, 81–90 (1989)

http://www.contactindustryhub.co.za/research.php
http://developer.voicegenie.com/voicexml2tagref.php
http://community.voxeo.com/vxml/docs/nuance20/VXMLproperties.html


M. Köppen et al. (Eds.):  ICONIP 2008, Part II, LNCS 5507, pp. 736–744, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

A Robust Technique for Background Subtraction in 
Traffic Video  

Tao Gao1, Zheng-guang Liu1, Wen-chun Gao2, and Jun Zhang1 

1 School of Electrical Engineering and Automation, Tianjin University,  
Tianjin, 300072, China  

2 Honeywell (China) Limited, Tianjin, 300042, China 
gaotao231@yahoo.cn 

Abstract. A novel background model based on Marr wavelet kernel and a 
background subtraction technique based on binary discrete wavelet transforms 
are introduced. The background model keeps a sample of intensity values for 
each pixel in the image and uses this sample to estimate the probability density 
function of the pixel intensity. The density function is estimated using a new 
Marr wavelet kernel density estimation technique. Since this approach is quite 
general, the model can approximate any distribution for the pixel intensity 
without any assumptions about the underlying distribution shape. The back-
ground and current frame are transformed in the binary discrete wavelet do-
main, and background subtraction is performed in each sub-band. Experiments 
show that the simple method produces good results with much lower computa-
tional complexity and can effectively extract the moving objects, even though 
the objects are similar to the background, thus good moving objects segmenta-
tion can be obtained.  

1   Introduction 

Identifying moving objects from a video sequence is a fundamental and critical task in 
many computer-vision applications. Background subtraction [1, 2] is a method 
typically used to detect unusual motion in the scene by comparing each new frame to 
a model of the scene background. In traffic video surveillance systems, stationary 
cameras are typically used to monitor activities on the road. Since the cameras are 
stationary, the detection of moving objects can be achieved by comparing each new 
frame with a representation of the scene background. This process is called 
background subtraction and the scene representation is called the background model. 
Typically, background subtraction forms the first stage in automated visual 
surveillance systems. Results from background subtraction are used for further 
processing, such as tracking targets and understanding events. A mixture of Gaussians 
is used in [3] to model each pixel’s intensity. The models are learned and updated for 
each pixel separately. A mixture of three normal distributions is used in [4] to model 
the pixel value for traffic surveillance applications. The pixel intensity is modeled as a 
weighted mixture of three normal distributions: road, shadow and vehicle distribution. 
An incremental EM algorithm is used to learn and update the parameters of the 
model. In [5, 6] kalman and wiener filtering are performed at every pixel. Foreground 
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is detected when the observed intensity is different than the predicted intensity. Ref. 
[7] modifies the background image that is subtracted from the current image so that it 
looks similar to the background in the current video frame. The background is up-
dated by taking a weighted average of the current background and the current frame 
of the video sequence. In this paper, we propose a new model for background mainte-
nance and subtraction. A sample of intensity values for each pixel is kept and used to 
estimate the Marr wavelet probability density function of the pixel intensity. After 
background modeling, binary discrete wavelet transforms is used for background 
subtraction. In our experiments about the video surveillance on urban road, the model 
can solve the problem of gradual change of illumination and it can detect both moving 
vehicles and foot passengers.  

2   Previous Background Modeling Methods  

Background modeling is at the heart of any background subtraction algorithm. Sev-
eral models have been put forward for background maintenance and subtraction de-
scribed in introduction. In this paper, we focus only on the two most commonly used 
techniques, and exclude those which require significant resource for initialization or 
are too complex. 

2.1   Frame-Difference Background Modeling  

Frame-difference method [7, 8, 9] obtains the background image as follows: 
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The histogram of the difference image will have high values for low pixel intensities 
and low values for the higher pixel intensities. To set the threshold A , a dip is looked 
for in the histogram that occurs to the right of the peak. Starting from the pixel value 
corresponding to the peak of the histogram, we search toward increasing pixel intensi-
ties for a location on the histogram that has a value significantly lower than the peak 
value (using 10% of the peak value). The corresponding pixel value is used as the 
new threshold A . The background
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Then 
iB  is the background image. The weight a  assigned to the current and instanta-

neous background affect the update speed, empirically determined to be 0.1.  

2.2   Mixture of Gaussians Background Modeling  

In Mixture of Gaussians (MoG) [10], each pixel location is represented by a number 
(or mixture) of Gaussians functions that sum together to form a probability distribu-
tion function F : 



738 T. Gao et al. 

,
1

( ) ( , )
k

t i t
i

F i µ ω η µ σ
=

= = ⋅∑  
(3) 

To determine if a pixel is part of the background, we compare the input pixels to the 

means iµ  of their associated components. If a pixel value is close enough to a given 

component's mean, that component is considered a matched component. Specifically, 
to be a matched component, the absolute difference between the pixel and mean must 
be less than the component's standard deviation scaled by a factor 
D :

, 1i i ti Dµ σ−− ≤ ⋅ . Then we update the component variables (ω , µ , and σ ) to 

reflect the new pixel value. For matched components, a set of equations increase our 
confidence in the component (ω increases, σ decreases, and µ  is nudged towards 

the pixel value). For non-matched components, the weights decrease exponentially 
( µ  and σ  stay the same). How fast these variables change is dependent on a learn-

ing factor p  present in all the equations. Then we determine which components are 

parts of the background model. First, we order the components according to a confi-
dence metric /ω σ , which rewards high ω  and low σ . We do this because we 
want to keep only the M most confident guesses. Second, we apply a threshold to the 
component weights ω . The background model is then the first M  components (in 

order of highest to lowest /ω σ ), whose weight ω  is above the threshold. M is the 
maximum number of components in the background model, and reflects the number 
of modes we expect in the background probability distribution function F . Last, we 
determine foreground pixels. Foreground pixels are those that don't match any com-
ponents determined to be in the background model.  

3   A Robust Background Modeling Method  

Marr wavelet [11] is the second derivative of Gaussian smooth function 
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The coefficient 1
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π  is a guarantee of normalization of ( )tψ : 2

1ψ = . Marr 

wavelet is widely used in visual information processing, edge detection and other 
fields. The difference of Gaussians (DOG) is a good approximation to Marr wavelet. 
In practice, we use DOG to approximate Marr wavelet: 
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The first frame can be set as the initial background. Considering the dithering of cam-
era, the bias matrix should be obtained before background modeling. We mainly  
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concern the up-down, left-right plane dithering. If the background is B  and current 
frame is f , they are firstly processed with two or three level Gaussian pyramid de-

composition: 
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Where 1n = 2n =3, and σ  is 0.5. Supposing the bias matrix is [ , ]v h , v  and h  rep-

resentative the vertical and level dithering parameters. If the size of 
1nf −  is M N× , 

the n-1 level initial bias matrix is 
1 1[ , ]n nv h− − , and the maximum pixel value is 

maxf , 

minimum is 
minf , so the bias function is as follows: 
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Where α  is 0.3, and σ  is 2
m a x m in( )f fβ ⋅ − , β =0.01, ( , )x y∆ ∆ is the offset dis-

tance. The ( , )x y∆ ∆  is changed to obtain the maximum value Ds  according to 

1lo g ( ) / n
M N

D s M o f −= ∑ ∑ , and thus to get the best offset distance 

( , )b e s t b e s tx y∆ ∆ . The 
1 1[ , ]n best n bestv x h y− −+ ∆ + ∆  is used as the initial bias matrix for 

next level
nf . By the iterative process, the dithering distance can be finally deter-

mined. If the original background after offset correction is ( , )B i j , and current frame 

is ( , )f i j , we define the probability distribution of deviation between background and 

current frame is: 
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The updating weight for background pixel is as follows: 
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The iterative process for updating background is: 
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i  is the iteration number, N  is the frame number. Then 
iB  is the final background. 
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4   BDWT Based Background Subtraction  

One dimension signal ( )f t , the binary discrete wavelet [12] transforms are as follows: 
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2
( )jS f t is the projection of ( )f t  in the 

jV space, and 
2

( )jW f t is the projection of ( )f t  

in the 
jW space. In frequency domain: 
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So formula (11) (12) can be rewritten as: 
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For a digital signal
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Because the coefficients of the sub-bands of the BDWT are highly correlated, and 
the direction and size are the same as the image, also, there is no translation in the 

sub-bands; we define the difference between digital signal 1( )d n and 2 ( )d n as: 
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The J0 and J1 are the starting and ending scales. For a two dimensions digital im-
age, we perform the BDWT to the rows and then the columns. After acquiring the 
DE  between two frames, the motion area is obtained by setting a threshold which can 
be obtained automatically by otsu [13] method. The noise can be removed by mathe-
matical morphology method. In application, one of the two frames is a background 
image; the other is the current frame.  
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5   Experimental Results  

In this section, we compare the performance of some background modeling tech-
niques: frame-difference, MoG, and our method with uses BDWT based motion seg-
mentation to perform background subtraction. The video sequences used for testing 
were taken from urban traffic monitoring cameras. The video was sampled at a reso-
lution of 768x576 and a rate of 15 frames per second. Once the frames were loaded 
into memory, our algorithm averaged 18 frames per second on a 1400 MHz Celeron 
CPU. Although we used grayscale video as input, and output a grayscale background 
model, it is straightforward to extend the algorithm to use color images.  

We use the error measurement quantify how well each algorithm matches the 
ground-truth. It is defined in our context as follows: 

Number of foreground pixels identied by the algorithm - Number of foreground pixels in ground-truth

Number of foreground pixels in ground-truth

error =  

Figure.1 shows three sample frames of each test video, and the background modeling 
results for every video sequence. The frame number of video “road” and “car” is 
respectively 160 and 224. Figure.2 shows the background subtraction by our method. 
Figure.3 shows background subtraction by frame-difference, and Figure.4 shows 
background subtraction by MoG. Figure.5 and Figure.6 shows the error measurement 
of each method for video sequence “road” and “car”. From the experiments we can 
see that the frame-difference method has two drawbacks: first, as the foreground ob-
jects may have a similar color as the background, these objects can not be detected by 
threshold. Second, the method is only slowly adapting to slightly changing environ-
mental conditions. Thus, faster changes as a flashlight signal or fluttering leaves in the 
wind can not be modeled. Also, in practice, modeling the background variations with 
a small number of Gaussian distribution will not be accurate. Furthermore, the very 
wide background distribution will result in poor detection because most of the gray 
level spectrum would be covered by the background model. Experiments show that 
our method is more robust against changes in illumination. While some complicated 
techniques can also produce superior performance, experiments show that our simple 
method can produce good results with much lower computational complexity. 

  
Frame 5            Frame 10         Frame 15     frame difference      MoG            our method 

Background modeling for video sequence “road” 

   
Frame 28           Frame 51         Frame 172     frame difference     MoG         our method 

Background modeling for video sequence “road” 

Fig.1. The comparison of background modeling 
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Frame 5     Frame 10         Frame 15        Frame 21         Frame 40       Frame 94     

Background subtraction for video sequence “road” 

 
Frame 51     Frame 64       Frame 81       Frame 172       Frame 186     Frame 212    

Background subtraction for video sequence “car” 

Fig. 2. Background subtraction by our method 

 
Frame 5    Frame 10          Frame 15        Frame 21       Frame 40        Frame 94     

Background subtraction for video sequence “road” 

 
Frame 51    Frame 64      Frame 81        Frame 172      Frame 186      Frame 212    

Background subtraction for video sequence “car” 

Fig. 3. Background subtraction by frame-difference 

 
Frame 5    Frame 10         Frame 15         Frame 21         Frame 40       Frame 94     

Background subtraction for video sequence “road” 

 
Frame 51    Frame 64         Frame 81        Frame 172       Frame 186    Frame 212    

Background subtraction for video sequence “car” 

Fig. 4. Background subtraction by MoG 
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Fig. 5. Error measurement of sequence “road”    Fig. 6. Error measurement of sequence “car” 

6   Conclusion  

In this paper, we introduced a novel background model and a background subtraction 
technique based on wavelet theory. The model keeps a sample of intensity values for 
each pixel in the image and uses this sample to estimate the Marr wavelet probability 
density function of the pixel intensity. The density function is estimated using Marr 
wavelet kernel density estimation technique. Background subtraction is based on 
binary discrete wavelet transforms. Experimental results show that our method is 
robust against environmental noise and illumination change, and can segment the 
whole parts of foreground successfully. 
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Abstract. The two groups of popularly used texture analysis techniques for 
classification problems are the statistical and signal processing methods. In this 
paper, we propose to use a signal processing method, the Gabor filters to  
produce the feature images, and a statistical method, the covariance matrix to 
produce a set of features which show the statistical information of frequency 
domain. The experiments are conducted on 32 textures from the Brodatz texture 
dataset. The result that is obtained for the use of 24 Gabor filters to generate a 
24 × 24 covariance matrix is 91.86%. The experiment results show that the use 
of Gabor filters as the feature image is better than the use of edge information 
and co-occurrence matrices.  

1   Introduction 

Texture classification has been studied for years because of its usefulness in many 
computer vision applications. In these applications, the texture analysis helps to recog-
nize the images through its texture information [1], such as wood species recognition 
[2][3], rock classification [4], face detection [5] and etc. 

The texture classification methods can be divided into five main groups in general, 
namely the; 1) structural; 2) statistical; 3) signal processing; 4) model-based stochastic 
[1] and; 5) morphology-based methods [6]. The statistical and signal processing meth-
ods are most widely used because they can be used on general textures while other 
methods have more restriction on the characteristics of the textures that they can be 
implemented on. Some of these methods can be combined for better performance. 

In our previous work [7], a combination of a statistical method, the grey level co-
occurrence matrices (GLCM) and a signal processing method, the Gabor filters is used. 
The combination here is to append both the GLCM and Gabor features as a single fea-
ture vector. In this paper, we propose a combination method where the signal processing 
method, the Gabor filters are used as the feature images to generate the covariance ma-
trix which is a statistical method. 

Section 2 shows the Gabor filters and the covariance matrix algorithms used in the 
paper. Section 3 shows the dataset and settings used in the experiments conducted. 
Section 4 shows the experiment results and analysis. Section 5 shows the conclusion 
and future works. 
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2   Gabor Filters and Covariance Matrix 

The Gabor filters is a type of signal processing method while the covariance matrix is a 
statistical method. In this paper, the Gabor filters are used as feature images, which are 
images or two-dimensional matrices produced by a feature extraction algorithm, that 
are used to generate a covariance matrix. 

2.1   Gabor Filters 

The Gabor filters is also known as the Gabor wavelets [5]. The method extracts features 
through the analysis of the frequency domain rather than the spatial domain.  

The Gabor filters is represented by Equation (1) where x and y represent the pixel po-
sition in the spatial domain, ω0 represents the radial center frequency, θ represents the 
orientation of the Gabor direction, and σ represents the standard deviation of the Gaus-
sian function along the x- and y- axes where σx = σy = σ [5]. 
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The Gabor filter can be decomposed into two different equations, one to represent the 
real part and another to represent the imaginary part as shown in Equation (2) and Equa-
tion (3) respectively [5] while it is illustrated in Figure 1. 
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where 
x' = x cosθ + y sinθ  y' = -x sinθ + y cosθ 

 
Fig. 1. Real part (left) and imaginary part (right) of a Gabor filter [8] 
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In this paper, we used σ = π / ω0. Gabor features are derived from the convolution of 
the Gabor filter Ψ and image I as shown in Equation (4) [5]. 

( ) ( )θω ,,,, 0yxyxIC I Ψ∗=Ψ  (4) 

The term Ψ(x, y, ω0, θ) of Equation (4) can be replaced by Equation (2) and Equation 
(3) to derive the real and imaginary parts of Equation (4) and is represented by CΨI

r and 
CΨI

i respectively. The real and imaginary parts are used to compute the local properties 
of the image using Equation (5) [5]. 

22

0 ),,,( i
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II CCyxC ΨΨΨ +=θω  (5) 

The convolution is performed using a fast method that differs from the traditional 
convolution achieved through scanning windows by applying a one time convolution 
with Fast Fourier Transform (FFT), point-to-point multiplication and Inverse Fast Fou-
rier Transform (IFFT). It is performed on different radial center frequencies or scales, ω0 
and orientations, θ. In this paper, the radial center frequencies and orientations are repre-
sented by θm in Equation (6) where n ∈  {0, 1, 2} and m ∈  {0, 1, 2, …, 7} [5]. 
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2.2   Covariance Matrix 

A covariance matrix shows the covariance between values. In this paper, we use the 
fast covariance matrix calculation using integral images that is proposed in [9] to gen-
erate the covariance between different feature images to be used as the features for our 
algorithm. 

The covariance matrix can be represented as. 
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where z represents the feature point and µ represents the mean of the feature points for n 
feature points [9]. 

Integral images are used for faster computation. They will pre-calculate the summa-
tions for each pixel of the images from the origin point, so it is faster for the calculations 
of the sum for a region within the images. The calculations of the term P and Q which 
are two tensors for the fast calculation of the covariance matrix are shown below: 
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where F represents the feature images and d represents the dimension of covariance 
matrix which is also the number of feature images. 
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The covariance matrix is then generated using P and Q where ( )yx ′′,  is the upper 

left coordinate and ( )yx ′′′′ ,
 

is the lower right coordinate of the region of interest as 
below [9]: 
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2.3   Nearest Neighbor 

The nearest neighbor algorithm calculates the distance from the test sample against all 
the training samples. The best neighbor or best neighbors will be selected where a 
winning class is determined when it is the majority of the selected classes. In standard 
k-Nearest Neighbor (k-NN), the Euclidean distance is used as the metric calculation.  

However, the covariance matrix does not lie on the Euclidean space, so the Euclidean 
distance is not suitable to be used as the metrics calculation for this case. The metrics 
calculation that is adopted here is using the generalized eigenvalues which is first pro-
posed by Forstner and Moonen [10]: 

( ) ( )∑
=

=
n

i
i CCCC

1
21

2
21 ,ln, λρ  (11) 

where λi(C1,C2) represents the generalized eigenvalues of C1 and C2, which is computed 
from 

dixCxC iii ...1021 ==−λ  (12) 

where xi ≠ 0 [9]. 

3   Experiment Settings 

In this work, the 32 textures used are from the Brodatz texture dataset [11]. This data-
set were used in [7][12][13] and is shown in Figure 2. The entire Brodatz texture data-
set is not used as the problem is harder to be solved for large number of classes with a 
limited sample size for each class respectively. 

Each of the textures is separated into 16 partitions of size 64 × 64, each of the parti-
tion has four different variations, i.e. the original image, a rotated image, a scaled image 
and an image both rotated and scaled. Therefore there are a total of 16 sets for each 
texture with four samples in each set. For the training purpose, eight sets are randomly 
selected while the remaining eight sets are used for testing. 

For the Gabor filters, a 31×31 filter was used with three radial center frequencies and 
eight orientations. The 24 Gabor filters are then used as the feature images to generate a 
24 × 24 covariance matrix. 

All experiments were tested on ten different training and testing sets which are ran-
domly chosen using the criteria as mentioned at the first paragraph of this section. 
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Fig. 2. 32 textures from the Brodatz texture dataset [12] 

4   Results and Analysis 

Three different experiments are conducted. The first experiment is done by using in-
tensity image and its edge-based derivative images as the feature images. The second 
experiment is done by using four different GLCM as the feature images. The last ex-
periment is our proposed method of using Gabor filters as the feature images. 

4.1   Experiment Result for Edge-Based Derivative as Feature Images 

The first experiment uses the five feature image as proposed in [9] which includes the 
intensity image, first derivative with respect to x using [-1 2 -1]T filter, second derivative 
with respect to x, first derivative with respect to y using [-1 2 -1] filter and second de-
rivative with respect to y. The feature images contain edge-based information on the 
vertical and horizontal directions. It generates a 5×5 covariance matrix. The accuracy 
achieved using this method is 84.65%. 

4.2   Experiment Result for GLCM as Feature Images 

The second experiment uses four GLCMs as the feature images. The GLCMs are hav-
ing spatial distance of one pixel and four orientations which are 0°, 45°, 90° and 135° 
[13]. It generates a 4 × 4 covariance matrix. The experiment is conducted for different 
numbers of grey level which are 8, 16, 32, 64, 128 and 256. The results are shown in 
Table 1 where the horizontal bar shows the number of grey level. 

Table 1.  Recognition results for different numbers of grey level 

(%) 8 16 32 64 128 256 
Accuracy 74.56 79.94 75.61 69.21 56.67 41.03 
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The best recognition rate is 79.94% for number of grey level of 16. When the number 
of grey level is high, the accuracy is very much lower. At a higher number of grey lev-
els, the variance of the GLCM within samples of the same class can vary in a greater 
scale due compared to those with a lower number of grey levels since similar grey val-
ues are regarded as one at lower number of grey levels, reducing the variance within 
samples of the same class. 

4.3   Experiment Result for Gabor Filters as Feature Images 

The last experiment uses the Gabor filters as the feature images for the covariance ma-
trix. There are 3 radial center frequencies and 8 orientations used for the experiment, 
therefore having 24 feature images. It generates a 24 × 24 covariance matrix. Another 
experiment is done for only 4 orientations, therefore only generates a 12 × 12 covari-
ance matrix. The results are shown in Table 2. 

Table 2.  Recognition results for Gabor filters as feature images 

(%) 12 Gabor Filters 24 Gabor Filters 
Accuracy 89.74 91.86 

 
The best recognition rate is 91.86% for 24 Gabor filters. When fewer Gabor filters 

are used, the features are less and therefore the accuracy is slightly lower. The results are 
much better compared to the two previous experiments because the Gabor filters is able 
to extract frequency images in larger number that feeds in more information for the 
generation of covariance matrix compared to the previous techniques. 

4.4   Analysis 

From the results that are obtained from this paper, we compared it with the recognition 
rates that are achieved in our previous works as shown in Table 3. 

Table 3.  Comparison of recognition rates 

(%) Accuracy 
GLCM features 85.73 
Gabor features 79.87 
GLCM + Gabor features 91.06 
Raw GLCM 90.86 
Covariance Matrix (Edge-based Derivatives) 84.65 
Covariance Matrix (GLCM) 79.94 
Covariance Matrix (Gabor filters) 91.86 

 
From the results, we can observe that Gabor filters are not powerful enough to  

discriminate textures to a high accuracy when it is working by itself, but when it is com-
bined with other techniques; it helps to improve the accuracy. For the GLCM the accu-
racy is higher when it works independently but when it is used to generate a covariance 
matrix, feature are lost as the covariance matrix is only having the size of 4 × 4 with 
only 10 features. Therefore, the GLCM is not suitable to be used here. 
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5   Conclusion 

The results shows that the use of Gabor filters as the feature image for the covariance 
matrix is much useful than the use of edge-based derivatives or co-occurrence matrices 
as the feature image for the texture classification problem. The Gabor filters which are 
not performing as good when used independently can however produce a useful co-
variance matrix that can produce a better result. 
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Abstract. This paper presents a method of determining whether demo-
graphic properties such as education, race, age, physical location, gravid-
ity and parity influence the ability to classify the HIV status of a patient.
The degree to which these variables influence the HIV classification is
investigated by using an ensemble of autoassociative neural networks
that are trained using the Bayesian framework. The HIV classification
is treated as a missing data problem and the ensemble of autoassocia-
tive neural networks coupled with an optimization technique are used to
determine a set of possible estimates. The set of possible estimates are
aggregated together to give a predictive certainty measure. This measure
is the percentage of the most likely estimate from all possible estimates.
Changes to the state of each of the demographic properties are made and
changes in the predictive certainty are recorded. It was found that the
education level and the race of the patients are influential on the pre-
dictability of the HIV status. Significant knowledge discovery about the
demographic influences on predicting a patients HIV status is obtained
by the methods presented in this paper.

1 Introduction

Neural networks and evolutionary programming have successfully been used to
model various nonlinear problems in the field of medical informatics. Compu-
tational intelligence and artificial intelligence have been used successfully for
decision making, clinical diagnosis, prognosis and prediction of outcomes. One
such problem in this field is for better understanding the HIV/AIDS pandemic.
Some of the research on this problem include investigating the causes the HIV
AIDS virus [1,2], predicting the HIV status for risk analysis purposes [3,4] and
to better understand the risks of such a virus [5]. In the field of bioinformatics
HIV classifications using neural networks are presented in [5,6,7,8].

In this paper the demographic influences on a patients HIV status are investi-
gated by using the computational intelligence missing data estimation method.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 752–759, 2009.
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The predictive certainty of the HIV status is found by using an ensemble of
autoassociative neural networks. Using the ensemble of classifiers for obtaining
a set of possible solutions allows for obtaining predictive certainty measures
as suggested in [9]. The Bayesian approach will be used for training to obtain
an ensemble of neural networks. The estimate from each autoassociative neural
networks is aggregated using a voting scheme and the predictive certainty is
measured by giving the percentage of the most likely estimate. The change in
predictive certainty is measured for adjustments made to the possible states of
the different demographic properties of the patients. The changes in predictive
certainty will help one better understand the demographic influences on classi-
fying a patients HIV status. A background on Bayesian autoassociative neural
networks and the computational intelligence method for missing data estimation
is presented. The method of investigation is then given. The results are discussed
and conclusions are made.

2 Background

2.1 Bayesian Autoassociative Neural Networks

Autoassociative neural networks are neural networks that have fewer hidden
nodes than input nodes [10]. This implies that the inputs to the network are
projected to a smaller dimension. This dimensionality reduction is particularly
applicable to data that has been encoded using a unary coding scheme.Hence the
feed foward network architecture autoassociative neural network is guaranteed
of removing the redundancy of using such coding schemes [10]. The autoassocia-
tive bottle-neck structure can be thought of as reducing dimensionality of the
input data by taking account of the covariance and correlation of the various
dimensions of data [11].

Neural Networks can be trained using a variety of methods. Scaled Conjugate
Gradient Methods and Quasi-Newton Methods are used to obtain the maximum
likelihood weight values. An alternate approach to training the neural networks
is using the Bayesian Approach. Extensive work has been done by [12,13] to
train neural networks using the Bayesian approach. The problem of identifying
the weights (w) is posed in Bayesian form as follows [12]:

P (w|D) =
P (D|w)P (w)

P (D)
(1)

where P(w) is the probability distribution function of the weight-space in the
absence of any data, also known as the prior probability distribution function,
and D ≡ (y1, , yN) is a matrix containing the output data for the neural network.
The quantity P (w|D) is the posterior probability distribution after the data have
been seen and P (D|w) is the likelihood probability distribution function, while
P (D) is the normalization factor. Following the rules of probability theory, the
distribution of output vector y may be written in the following form:

P (y|D) =
∫

P (y|w)P (w|D)dw (2)
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The distribution in equation 2 is estimated using Markov Chain Monte Carlo
(MCMC) method. In this paper, the Hybrid Monte Carlo (HMC) MCMC method
is used.

2.2 Computational Intelligence Missing Data Estimation Method

Many methods are used for estimating missing data which include zero substitu-
tion, mean substitution, look up tables and statistical regression. Other missing
data estimation methods are found in [14,15]and [16].The Computational In-
telligence method for estimating missing data is initially presented in [17]. A
review of this method is given in [18]. The general method to estimate missing
data consists of an autoassociative neural network (or any other autoassociative
model such as decision tree) coupled with an optimization technique . Suppose
known data are denoted by XK and data that is unknown or missing are denoted
by XU . The optimization technique is used to minimize an error function of the
estimated unknown value X

′
U and the corresponding output F

{
X

′
U

}
from the

autoassociative neural network. The autoassociative neural network F {} is a sys-
tem that recognizes patterns or interrelationships of variables in the data. The
flow diagram of this computational intelligence missing data estimation method
is shown in figure 1.This identification system is obtained by training on a set of
complete data so that the dynamics of the system are identified. When a min-
imum error is calculated the corresponding X

′
U is stored as the estimate value.

The error of the predicted output of the identification system is calculated as
follows:

error =
([

XK

XU

]
− F

{[
XK

XU

]})2

(3)

where the matrix
[

XK

XU

]
is representative of a single record of known and un-

known data. Optimization techniques such as Genetic Algorithm, Particle Swarm
Optimization or any other stochastic optimization techniques can be used to find
X

′
U that minimizes the error in equation 3. This estimation method is not de-

pendent on how many variables are missing or which variables are missing. This

Fig. 1. Flow Diagram of Computational Intelligence Missing Data Estimation Method
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method is found to work more accurately than using neural network classifiers
because errors are computed for a higher dimension. If the search space for XU

is small (for example when only 1 variable is missing), a brute force approach to
evaluating the error for all possible estimations can also be used.

3 Method

The data used for the investigation as well as the training of the neural networks
are further discussed. The optimization method for determining the missing data
is also discussed.

3.1 HIV Dataset

The dataset used to carry out this investigation is that of demographic proper-
ties from the South African antenatal seroprevalence survey. The different fields
of data for each record includes age of patient, age of partner, provincial location,
race group, maximum education level achieved, gravidity, parity, Rapid Plasma
Reagin(RPR) testing result and HIV status. A simple unary coding scheme was
used to create binary inputs for the fields such as province, race, education, HIV
status and RPR test. Hence 4 binary inputs were used to represent maximum ed-
ucation level, 9 binary inputs are used to represent province, 5 binary inputs are
used to represent race group and a single binary bit is used to represent HIV status
and another bit is used to indicate whether a patient has taken a RPR test.

3.2 Network Training

The Multi Layer Perceptron (MLP) architecture is used for the autoassociative
neural network investigated in this paper. Considering the unary coding scheme
used, the autoassociative neural network has 23 inputs. As explained in section
2.1 the HMC training method gives a set of possible weights for certain number
of hidden nodes. The weights were initially trained using the scaled conjugate
gradient method to the early stopping point. The benefits of setting the weights
to this prior value are discussed in [19]. The burn in period was set to 300 cycles
and samples were drawn from the following 200 cycles. Duplicate samples were
removed so that the ensemble contained only unique samples. The ensemble
of autoassociative neural networks was obtained by collecting a set of possible
weights for MLP neural networks trained with 15 to 23 hidden nodes in order
to increase the structural diversity [9].

3.3 Missing Data Estimation

For purposes of investigation in this paper the HIV status of each record in
the test set will be assumed missing and the method described in section 2.2
is used to estimate the HIV status of each patient. A similar investigation to
classify the HIV status using computational intelligence method was done in
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[3] and [4]. This investigation differs in that it is done using the ensemble of
trained autoassociative neural networks. There is no need to use a complicated
optimization technique because the possible state of the missing variable is either
1 for HIV positive or 0 for HIV negative. Hence the error function in equation
(3) is evaluated for both possible states and the state that yields the minimum
error is used as the optimum estimate.

This brute force approach for obtaining the optimum state to minimize the
error is used for each of the autoassociative neural networks from the ensemble.
The estimates are aggregated together by selecting the most popular estimate.
The predictive certainty measure of the estimate is given by calculating the
percentage of the most dominant estimate from the set of possible estimates.

3.4 Influences for HIV Classification

The demographic influences of the HIV virus are investigated by means of a
sensitivity analysis. In sensitivity analysis we compare the model output with
the produced output for the modified input parameters. The sensitivity analysis
done in this chapter measures the changes the change in predictive certainty
with a change of state of the various demographic influences. In this paper the
sensitivity analysis is done for records that can be predicted with a high predic-
tive certainty. The changes in predictive certainty obtained when changing the
variables helps understand the impact each variable has on classifying a patients
HIV status.

4 Results and Discussion

A set of 120 autoassociative neural networks were obtained using the HMC train-
ing. The predictive capabilities of these networks were tested using a validation
dataset. It was found that the accuracy of these networks range between 77%
and 96%.

The ensemble of neural networks was used together with the brute force op-
timization algorithm to yield an overall accuracy of 68% for the missing data
estimation. This overall prediction accuracy exceeds the accuracy achieved in
[3]. It was found that only 40% of the HIV status could be estimated with a
predictive certainty greater than 70%. For the records that could be estimated
with a predictive certainty of 70% it was found that 88% of these records were
correctly estimated. The method disscussed in section 3.4 is used for determin-
ing how the patients maximum education achieved, race group, age of husband,
gravidity, parity and provincial location influenced the HIV classification. These
results are presented in tables 1 to 6.

From table 1 to 6 it is evident that there is a bigger change in predictive
certainty for patients that are classified as HIV positive. This is because there are
fewer cases where patients are classified as HIV positive. A change in predictive
certainty of greater than 40% would result in the patients HIV status changing.
These large changes in predictive certainty are evident in the tables 1, 2 and 7.
Therefore there is allot of uncertainty for predicting a patients HIV status when
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Table 1. Average change in Predictive Certainty(%) for HIV positive and HIV negative
patients for changes in maximum education level achieved

HIV status uneducated primary seondary tertiary
Negative 39 11 3 15
Positive 18 12 0 42

Table 2. Average change in Predictive Certainty(%) for HIV positive and HIV negative
patients for changes in Race Type(RT)

HIV status RT1 RT2 RT3 RT4
Negative 33 2 9 24
Positive 2 41 58 51

Table 3. Average change in Predictive Certainty(%) for HIV positive and HIV negative
patients for changes in patients partner age group(GP)

HIV status GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8
Negative 2 1 2 2 4 7 11 15
Positive 4 2 2 5 11 17 23 27

Table 4. Average change in Predictive Certainty(%) for HIV positive and HIV negative
patients for changes in gravidity ranging from 0 to 5

HIV status 0 1 2 3 4 5
Negative 11 6 3 2 2 5
Positive 9 1 9 20 25 31

Table 5. Average change in Predictive Certainty(%) for HIV positive and HIV negative
patients for changes in parity ranging from 0 to 5

HIV status 0 1 2 3 4 5
Negative 6 3 3 6 10 12
Positive 1 10 20 25 21 34

Table 6. Average change in Predictive Certainty(%) for HIV positive and HIV negative
patients for changes in Province(P)

HIV status P1 P2 P3 P4 P5 P6 P7 P8 P9
Negative 19 47 51 14 24 2 20 29 23
Positive 2 2 15 15 3 33 24 28 31
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using education level, race group and provincial location. Given the high degree
of uncertainty when using these variables and their particular state, one should
be less confident at classifying such a patients HIV status.

This research was aimed at better understanding the demographic influences
for HIV classifications. Although all the demographic variables influence the
ability to classify a patients HIV status, the research shows that certain variables
such as race group, educational level and provincial location influence the ability
to classify a patients HIV status with high degree of uncertainty. Similar research
was done in [1], where inverse neural networks were used for adaptive control
of the HIV virus. In [1] gravidity and educational level were assumed influential
and used to build inverse neural networks that helped determine how they affect
the risk of being HIV positive. The research in this paper verfies this and also
shows that some of the other variables are influential to such an extent that
there is a high uncertainty in predicting a patients HIV status.

5 Conclusion

The demographic influences for classifying patients HIV status was investigated
using using Bayesian autoassociative neural networks with computational in-
telligence missing data estimation methods. The high variability in predictive
certainty shows that the HIV system being investigated performs classification
with a high degree of uncertainty. It is evident that changing the demographic
properties of HIV positive patients has more variability in predictive certainty.
It was found that education elevel,race group and provincial location are the
most influential for the HIV status classification and the age of mother and
patient of partner have minimal influence on classifying a patients HIV status.
The methods applied in this paper help with knowledge discovery regarding the
demographic influences for HIV classification.
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Abstract. This paper presents how hardware-based machine learning models
can be designed for the task of object recognition. The process is composed of
automatic representation of objects as covariance matrices follow by a machine
learning detector based on random forest (RF) that operate in on-line mode. We
describe the architecture of our random forest (RF) classifier employing Logarith-
mic Number Systems (LNS), which is optimized towards a System-on-Chip (Soc)
platform implementation. Results demonstrate that the proposed model yields in
object recognition performance comparable to the benchmark standard RF, Ad-
aBoost, and SVM classifiers, while allow fair comparisons between the precision
requirements in LNS and of using traditional floating-point.

1 Introduction

Random forests (RFs) [8], a representative decision tree-based ensemble learning tech-
nique has been emerging as a principle machine learning tool combining properties of
an efficient classifier and feature selection. In addition to its popularity in classification
and regression applications, RF also has been applied to object recognition [3, 6] but
only for a relatively small number of classes. Despite of the appearance success of RF
little work has been done exploring this technique into on-line settings, virtually no
work has been done to map from its ideal mathematical model to compact and reliable
hardware design. In this paper we extend this technique into on-line mode [4, 5], and
then present our object recognition system which is optimized to be easily integrated in
a System-on-Chip (SoC). As can be seen in Fig. 1 the recognition process is composed
of automatic representation of objects as covariance matrices follow by random forest
(RF) detector that operate in on-line mode. A random forest detector is designed us-
ing Logarithmic Number Systems (LNS) yielding in a considerable hardware savings
with no significant degradations in recognition accuracy. The architecture comprises
several computation modules, referred to as ‘Covariance Matrices’, ‘Tree Units’, ‘Ma-
jority Vote Unit’, and ‘Forest Units’. However, it should be noted that the number of
these Units that can be accommodated depends on the hardware platform. We present
results obtained using examples from GRAZ02 dataset [2] and compares with state of
art machine learning classifiers.
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Fig. 1. Object Recognition based on RF-LNS which is optimized to be easily integrated in a
System-on-Chip (SoC) platform implementation

2 Proposed Object Descriptor Method

We have used bag of covariance1 matrices, to represent an object region. Let I be an
input color image. Let F be the dimensional feature image extracted from I

F (x, y) = φ(I, x, y) (1)

where the function φ can be any feature maps (such as intensity, color, etc). For a given
region R ⊂ F , let {fj}j=1···n be the d dimensional feature points inside R. We repre-
sent the region R with the d × d covariance matrix CR of feature points.

CR =
1

n − 1

n∑
j=1

(fj − μ)(fj − μ)T (2)

where μ is the mean of the point. Fig.1 (i) depicts the points that must be sampled
around a particular point (x, y) in order to calculate the histograms of Local Binary
Patterns (LBP) at (x, y). In our implementation, each sample point lies at a distance of 2
pixels from (x, y), instead of the traditional 3×3 rectangular neighborhood, we sample
neighborhood circularly with two different radii (1 and 3). The resulting operators are
denoted by LBP8,1 and LBP8,1+8,3, where subscripts tell the number of samples and
the neighborhood radii. In Fig.1 (ii), different regions of an object may have different
descriptive power and hence, difference impact on the learning and recognition.

2.1 Labeling the Image

We gradually build our knowledge of the image, from features to covariance matrix to a
bag of covariance matrices. Our first step is to model each covariance matrix as a set of

1 Basically, covariance is a measure of how much two variables vary together.
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image features. Next, we group covariance matrices that are likely to share common label
into a bag of covariance matrices. We follow [9] and represent an image objects with five
covariance matrices Ci=1···5 of the feature computed inside the object region, as shown
in the second row of Fig.1. A bag of covariance which is necessary a combination of
Ohta color space histogram (I1 = R +G+B/3, I2 = R−B, I3 = (2G−R−B)/2),
LBP and appearance model of different features of an image window is presented in
Fig.1 (iii). Then estimate the bag of covariance matrix likelihoods and the likelihood that
each bag of covariance matrices is homogeneously labeled. We use this representation
to automatically detect any target in images. We then apply on-line RF learner to select
object descriptors and to learn an object classifier, as can be seen in the last row of Fig.2.

2
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Fig. 2. (i) Points sampled to calculate the LBP around a point (x, y). (ii) Rectangles are examples
of possible regions for histogram features. Stable appearance in Rectangles A, B and C are good
candidates for a car classifier while regions D is not. (iii) Any region can be represented by a
covariance matrix. Size of the covariance matrix is proportional to the number of features used.
Second row shows an object represented with five covariance matrices.

3 Hardware Architecture

Details discussion of Breiman’s random forest (RF) [8] learning algorithm is beyond the
scope of this paper. We refer the reader to [4, 5] for a good introduction to the on-line
setting of random forest and the details of solutions to classification and vision.

3.1 Logarithmic Number Systems (LNS)

LNS are alternative to fixed-and floating-point arithmetic. Within logarithm domain,
multiplication and division can be treated simply as addition or subtraction, the num-
ber of bits and the frequency of their switching are significantly reduces. Hardware
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computation of these operations is significantly faster with reduced complexity. Unlike
Floating-Point (FP) systems, the relative error of LNS is constant and LNS can often
achieve equivalent signal-to-noise ratio with fewer bits of precision relative to conven-
tional FP architectures. Similar to FP architectures, LNS implementations can represent
numbers with relative precision; numbers closer to zero, are represented with better pre-
cision in LNS than FP systems. LNS are particularly cost effective when an application
performs acceptably with reduced precision.

3.2 RF-LNS

The Covariance Unit in Fig. 1 contains all the features extracted from an image in a
form of bag of covariance matrices. To obtain RF-LNS, each base learner (decision
trees) is treated as a Tree Unit, estimated by a single covariance matrix selected from
bag of covariance. Each least node in the tree is associated to a given object class. Ba-
sically the decision trees consist of two types of nodes: decision nodes and least nodes,
which correspond to all possible covariance features that can be taken. In a decision
node a decision is taken about one of the input. Each least node stores the values for
the corresponding region in the image, meaning that a least node stores a value for
each relevant covariance matrix that can be taken. The tree starts out with only one leaf
that represents the entire image region. So in a least node a decision has to be made
whether the node should be split or not. Once a tree is constructed it can be used to map
an input vector to a least node, which corresponds to a region in the image. Each tree
gives a unit vote for its popular object class. The object is recognized as the one hav-
ing the majority vote. Forest Unit is ensemble of trees grown incrementally to a certain
depth.

3.3 RF-LNS Implementation

In regard to implementation, the final decision function requires at least on multiplica-
tion and one addition for each decision tree. Within the logarithmic domain, multipli-
cation and division can be treated simply as addition or subtraction. Hardware compu-
tation of these operations is significantly fast with reduced complexity.

4 Object Recognition

Given a feature set and a sample set of positive (contains the object relevant to the
class) and negative (does not contain the object) images, to detect a specific object,
e.g. human, in a given image, the main difficulty is to train a classifier with relevant
features toward accurate object recognition. The adoption of RF learner and its ability
to measure feature importance relief us from this challenge. We train a random forests
learner (detector) offline using covariance descriptors of positive and negative samples.
We start by evaluation feature from input image I after the detector is scanned over it
at multiple locations and scales. This has to be done for each object. Then for feature
in I , we want to find corresponding covariance matrix for estimating a decision tree.
Each decision tree learner may explore any feature f , we keep continuously accepting
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or rejecting potential covariance matrices. We then apply the on-line random forests
at each candidate image window to determine whether the window depicts the target
object or not. The on-line RF detector was defined as a 2 stage problem, with 2 possible
outputs: In the first stage, we build a detector that can decide if the image contains an
object, and thus must be recognized, or if the image does not contain objects, and can
be discarded, saving processing time. In the second stage, based on selected features the
detector must decide which object descriptor should be used. There are two parameters
controlling the learning recognition process: The depth of the tree, and the least nodes.
It is not clear how to select the depth of the on-line forests. One alternative is to create a
growing on-line forests where we first start with an on-line forest of depth one. Once it
converges to a local optimum, we increase the depth. Thus, we create our on-line forest
by iteratively increasing its depth.

4.1 Detection Instances

Next, when detecting a new instance, we first estimate the average margin of the trees
on the instances most similar to the new instance and then, after discarding the trees
with negative margin, weight the tree’s votes with the margin. Then the set of classifiers
is updated. For updating, any on-line learning algorithm may be used, but we employ
a standard Karman filtering technique [7] and build our updated model by estimate the
probability P (1|fjx) with mean μ+ and standard deviation σ+ for positive samples and
P (−1|fj(x)) by N(μ−, σ−) for negative samples similar way as we do in the off-line
case.

4.2 Dataset

We now demonstrate the usefulness of this frame work in the area of recognition generic
objects such as bikes, cars, and persons. We used data derived from the GRAZ022

dataset [2], a collection of 640 × 480 24-bit color images. As Fig.3 illustrates, the
GRAZ02 database contains variability with respect to scale and clutter. Objects of in-
terest are often occluded, and they are not dominant in the image. According to [1] the
average ratio of object size to image size counted in number of pixels is 0.22 for bikes,
0.17 for people, and 0.9 for cars. Thus this dataset is more complex dataset to learn
detectors from, but of more interest because it better reflects the real world complexity.
This dataset has three object classes, bikes (365 images), cars (420 images) and persons
(311 images), and a background class (270 images).

4.3 Experimental Settings

Our RF-LNS is trained with varying amounts (10%, 50% and 90% respectively) of ran-
domly selected training data. All image not selected for the training split were put into
the test split. For the 10% training data experiments, 10% of the image were selected
randomly with the remainder used for testing. This was repeated 20 times. For the 50%
training data experiments, stratified 5 × 2 fold cross validation was used. Each cross

2 Available at http://www.emt.tugraz.at/∼pinz/data/
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Fig. 3. Examples from GRAZ02 dataset [2] for four different categories: bikes (1st pair), people
(2nd pair), cars (3rd pair), and background (4th pair)

validation selected 50% of the dataset for training and tested the classifiers on the re-
maining 50%; the test and training sets were then exchanged and the classifiers retrained
and retested. This process was repeated 5 times. Finally, for the 90% training data sit-
uation, stratified 1 × 10 fold cross validation was performed, with the dataset divided
into ten randomly selected, equally sized subsets, with each subset being used in turn
for testing after the classifiers were trained on the remaining nine subsets.

5 Performances

GRAZ02 images contain only one object category per image so the recognition task can
be seen as a binary classification problem: bikes vs. background, people vs. background,
and car vs. background. Generalization performances in these object recognition exper-
iments were estimated by statistic measure; the Area Under the ROC Curve (AUC) to
measure the classifiers performance. The AUC is a measure of classifier performance
that is independent of the threshold: it summarizes not the accuracy, but how the true
positive and false positive rate change as the threshold gradually increases from 0.0 to
1.0. An ideal, perfect, classifier has an AUC value 1.0 while a random classifier has an
AUC of 0.5.

5.1 Finite Precision Analysis

The primary task here is to analyze the precision requirements for performing on-line
RF classification in LNS hardware. The LNS precision in the RF algorithm was varied
to ascertain optimal LNS precision and compare them against the cost of using tradi-
tional floating-point architectures. Tables 1 gives the mean AUC values across all runs
to 2 decimal places for RF-LNS and training data amount combinations, for the bikes,
cars ad people datasets. The performance of RF-LNS is reported with weight quantized
with 4, 8, and 16 bits, and for different depths of the tree from depth = 3 to depth = 7.
In order to maintain acceptable performance, 16 bits of precision are sufficient for all
the datasets. In order to evaluate the efficiency of an LNS-based RF classifier, it is nec-
essary to compare it against a traditional standard. To that extent, 10- and 20-bit Fixed
Point (FX) implementations were synthesized, and the resulting numbers of slices are
shown in Table 2. It is note worthy that on most datasets; the fully functional LNS
version takes roughly the same number of slices as the inadequate 10-bit FX version.
When compared against the more realistic 20-bit FX version, the LNS classifiers are
about one-half the size of the FX classifiers. Such area savings should translate into
equivalent reduction in power consumption.
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Table 1. Mean AUC performance of RF-LNS on the Bikes vs. Background, the Cars vs. Back-
ground, and Persons vs. Background dataset, by amount of training data. Performance of RF-LNS
is reported for different Depths, with weight quantized with 4, 8, and 16 bits.

Bikes vs. Background
RF-LNS (4-bit Precision) RF-LNS (8-bit Precision)

Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.79 0.79 0.77 0.81 0.81 0.81 0.81 0.80 0.83 0.83
50% 0.86 0.86 0.82 0.81 0.83 0.88 0.89 0.85 0.88 0.86
90% 0.80 0.81 0.81 0.83 0.88 0.87 0.87 0.87 0.88 0.90

RF-LNS (16-bit Precision)
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.83 0.83 0.81 0.84 0.83
50% 0.90 0.90 0.86 0.89 0.89
90% 0.90 0.91 0.90 0.90 0.90

Cars vs. Background
RF-LNS (4-bit Precision) RF-LNS (8-bit Precision)

Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.66 0.70 0.70 0.75 0.71 0.68 0.73 0.73 0.76 0.73
50% 0.77 0.78 0.77 0.77 0.79 0.79 0.80 0.79 0.81 0.81
90% 0.77 0.75 0.75 0.73 0.79 0.81 0.81 0.78 0.78 0.82

RF-LNS (16-bit Precision)
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.71 0.75 0.75 0.77 0.75
50% 0.81 0.80 0.81 0.82 0.83
90% 0.83 0.83 0.81 0.80 0.85

Persons vs. Background
RF-LNS (4-bit Precision) RF-LNS (8-bit Precision)

Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.66 0.70 0.70 0.75 0.71 0.68 0.73 0.73 0.76 0.73
50% 0.77 0.78 0.77 0.77 0.79 0.79 0.80 0.79 0.81 0.81
90% 0.77 0.75 0.75 0.73 0.79 0.81 0.81 0.78 0.78 0.82

RF-LNS (16-bit Precision)
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.71 0.75 0.75 0.77 0.75
50% 0.81 0.80 0.81 0.82 0.83
90% 0.83 0.83 0.81 0.80 0.85

Table 2. Slices used for different Tree Units for each dataset during

Bikes Cars Persons
Tree 16bit 10FX 20FX Tree 16bit 10FX 20FX Tree 16bit 10FX 20FX

3 315 219 576 3 277 283 603 3 336 318 409
4 498 407 713 4 297 476 783 4 534 535 657
5 611 622 878 5 536 694 866 5 765 689 845
6 823 835 1103 6 784 943 1002 6 878 926 1127
7 1010 974 1345 7 989 1287 1311 7 1123 1158 1287
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6 Conclusions and Future Works

Efficient hardware implementations of machine-learning techniques yield a variety of
advantages over software solutions: increased processing speed, and reliability as well
as reduced cost and complexity. This paper describes preliminary research towards the
development of robust, friendly hardware-based solutions utilizing RF for Object recog-
nition task. Our hardware-friendly algorithm that has been described here is general
towards the implementation of on-chip learning, which is efficient in terms of hard-
ware complexity. Our future goals are expanding LNS hardware architectures to other
machine-learning algorithms.
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Abstract. A novel neural oscillation model is proposed to perform the contour 
detection and separation for color images. The model improves the prototype of 
relaxation oscillation and combines four kinds of image features as the external 
stimulation, in order to control the oscillation. Experimental results show that 
the contours of different objects can be detected by oscillation and separated by 
desynchronization. This model may help to promote the investigation on the 
mechanism of the neural system.  

1   Introduction 

The visual system has the ability of grouping different kinds of features, which under-
lie a variety of tasks such as image segmentation, contour detection and object recog-
nition. The principle of this ability has been assumed differently and many different 
theories are built to describe it. In the 1980s, Von der Malsburg proposed the tempo-
ral correlation theory to explain the feature grouping. The theory considered that an 
object is represented by the temporal correlation of the firing activities of scattered 
cells which code different features [1]. Later in 1989, the coherent oscillation phe-
nomenon was discovered in the visual cortex of the cat [2, 3]. This discovery not only 
strongly supported the assumption of temporal correlation theory, but also aroused the 
interest of investigating relevant computational models for the coherent oscillation 
phenomenon. Von der Malsburg proposed a neural oscillation model showing that 
segmentation is expressed by both the synchronization within segments and the de-
synchronization between segments [4]. After that, many similar models were also 
investigated. In 2005, Wang [5] surveyed the prominent types of oscillator models: 
Wilson-Crown, relaxation, and spike oscillators. These models have different charac-
teristics and can accomplish different tasks. For example, the LEGION model by 
Wang et al. [6] can perform the image segmentation. A contour integration model by 
Li [7] can mimic the segmentation process of the primary visual cortex. Other kinds 
of oscillation models have also been designed to fulfill the tasks such as the data clus-
tering [8], the visual attention selection [9], and the audio attention selection [10]. 
These models revealed the way in which oscillation operates in different tasks  
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especially the ones relevant to machine vision. However, there have not been effec-
tive oscillation model that can handle color information well to separate the contours 
in color images. We propose a neural oscillation model to implement the contour 
separation for color images. The model can implement both the contour detection and 
the contour separation by detecting the synchronization and desynchronization of 
neural oscillations. It can exploit color information rather than just the gray-level 
information. In Section 2, the model details are described. In Section 3, experiments 
and results are shown. The discussion and conclusions are given in Section 4. 

2   The Neural Oscillation Model 

The structure of the model, shown in Figure 1, is similar to the one of the relaxation 
oscillation model defined in [11]. Each position in an image correlates to a recipro-
cally connected pair of neurons: the excitatory neuron xi and the inhibitory neuron yi. 
Their dynamic properties are described as 

iiiiiiii IyxxIyxfx +−+−=+= 23),( 3&  (1) 

)))/tanh(1((),( iiiii yxyxgy −+== βαε&  . (2) 

Here, Ii denotes the external stimulation to the oscillator, and ε, α and β are the oscil-
lation parameters. These are the classical relaxation oscillation equations whose dy-
namic property was elaborated in [11]. In the equations, the definition of Ii is the key 
to its capability. If Ii >0, the corresponding oscillators can be stimulated to the active 
state, otherwise the oscillators will be silent. As a result, Ii is the predominant issue in 
the oscillation and should be selected carefully according to the required task. 

 

Fig. 1. The structure of the model 
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2.1   Total External Stimulation 

The contour separation task can be seen as a two-step process: detecting the contours 
of different objects and separating them. From the viewpoint of oscillation, the pur-
pose can be achieved by synchronization and desynchronization, in which the external 
stimulation Ii plays an important role. We analyze the requirement of contour segmen-
tation and define four kinds of components for Ii. First, the local contrast is a domi-
nant factor for contour detection. The excitatory units in the positions with higher 
local contrast should be easier to induce oscillation in. Second, there may be several 
contour elements whose local contrast is low. These elements should also be regarded 
as belonging to the required objects but they may not be excited only by the local 
contrast. However, these weak edge elements usually have similar local distribution 
features to their neighboring strong edge elements. As a result, the coupling stimulus 
between the edge elements is chosen as another kind of oscillation factor. Two types 
of coupling are defined here: the color similarity coupling and the orientation continu-
ity coupling. Third, to separate the contours of different objects, desynchronization 
should be considered. In previous models, desynchronization was achieved by global 
inhibition from the active neurons. Here the local excitation and the global inhibition 
are achieved by a uniform global mode. Fourth, the irregular noise was found to be 
able to facilitate the desynchronizaition in the experiments [12]. Thus it is also con-
sidered as one component of the external stimulation. In all, there are four aspects 
constituting the external stimulation as shown in Figure 1: local contrast Si, neighbor-
ing coupling stimulus Ci, global inhibition Zi, and noise Pi: 

Ii=Si+Ci+Zi+Pi . (3) 

2.2   Local Contrast 

For color images, the local contrast is defined by the average edge strength of three 
color channels. The Sobel derivative operator is used to filter each channel and then 
the root-mean-square of the three filtering results is computed. It is labeled as Ei after 
being normalized to a value between 0 and 1. To ensure the strong edges oscillate and 
the others do not, there is a threshold TS to make Si positive or negative: 

Si=Ei-TS . (4) 

2.3   Neighboring Coupling Stimulus 

With only the local contrast, the actual but weak edge elements are given the same 
treatment as the non-edge elements. To activate them, the coupling stimuli from their 
nearby strong edge elements are necessary. It means active neurons can send their 
stimuli to their nearby neurons. The coupling strength between each two neurons 
depends on their connection probability, which reflects their connectivity and feature 
similarity. 

In Li’s model [7], the orientation continuity between edge elements is considered as 
the main aspect of contour integration. Two edge elements with good connectivity can 
form an excitatory connection and enhance the activity of each other. As a result, the 
edge elements belonging to one regular object can have similar oscillation frequency 
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and phase. With this model, the salient contours in one image can be detected by thresh-
olding the average oscillation activity, and then some top-down mechanisms can be 
used to separate the contours of different objects. Actual results verified that the orienta-
tion continuity may play an important role in contour integration. In our model, the 
orientation continuity is selected as one of the coupling aspects. They are calculated in 
the following way. The orientation of each position is computed using the orientated 
DOG (Derivative of Gaussian) filter banks. In detail, the image is filtered by the filter 
banks with 16 different preferred orientations. The orientation of position i, denoted as 
Oi, is the one that corresponds to the maximum filtering response among all the orienta-
tions. In a neighboring area of position i, each position j has a direction angle Dij against 
i, which is only determined by their relative position. If this direction angle is consistent 
with the orientation of j (denoted as Oj), the position i may receive the coupling from j. 
The orientation coupling from j to i is defined as 

⎪⎩

⎪
⎨
⎧

>

≤+
=

6/0

6/)2.0/(2.0

π
π

ij

ijij

ij A if                       

A if   A
CO  , (5) 

where Aij=|Oj-Dij|. This formula means that one neuron may receive the coupling 
stimulus from its neighboring neurons that have good orientation continuity with it. 
Meanwhile, the coupling strength relies on the orientation continuity. 

Except for the orientation continuity, the feature similarity is another aspect of cou-
pling, which is represented by the color similarity between the neighboring areas of 
two positions. The three-channel color histograms are computed in the neighboring 
area of each position. Then the distances of the three color histograms between posi-
tions i and j are computed respectively. The root-mean-square of the three values is 
computed as Bij and the color similarity CCij is defined as 

)2.0/(2.0 ijij BCC +=  . (6) 

The total coupling strength for each position comes from all its neighboring active 
neurons: 

∑
∈

⋅+⋅=
)(

)]()([
iNj

jijijji

c

xCCCOxC δ  , (7) 

where Nc(i) denotes the neighboring area of i, and δ(xj) is the step function which 
equals to one for active neurons and zero for the others. A neuron i is called ‘active’ if 
xi is larger than the threshold Ta. Finally, the received coupling strength of all the 
positions is normalized to the range between 0 and 0.5. 

2.4   Global Inhibition 

With the local contrast and the neighboring coupling stimulus, the condition for the 
synchronization of oscillation is provided. However, they do not operate in desyn-
chronization. In Wang’s model, the locally excitatory and globally inhibitory mecha-
nism was used for desynchronization. Here we design a uniform one for both local 
excitation and global inhibition: 
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Z

d

i TeZ zim −= − 22 /σ
 , (8) 

where dim
 is the distance between the position i and the position with the globally 

maximum oscillation strength, while σz and Tz are two parameters determining the 
range and degree of the excitation or inhibition. In the experiments, σz is changed with 
respect to the image size, while Tz is set as 0.8 to limit Zi between -0.8 and 0.2. 

2.5   Noise 

The last issue is the irregular noise Pi. Although it was verified to be able to facilitate 
the desynchronization, we have not found any obvious effect in our model. It is re-
served in the formula to keep the completeness of the oscillation equation but the 
actual influence of the noise will be investigated in further research. 

3   Experiments and Results 

Although the structure and composition of the model is determined, many parameters 
still need to be adjusted by analysis and comparison. The parameters not given in the 
forgoing parts are listed here. In the relaxation oscillation equations, the parameters 
are set according to previous work, i.e. ε=0.02, α=0.005, β=0.1. Their slight variance 
does not influence the results much. The edge strength threshold Ts=0.5 and the activ-
ity threshold Ta=1.5. The neighborhood is 5-by-5 for coupling and 7-by-7 for calculat-
ing the color histograms. 

To observe the oscillation situation of the model, several color images with obvi-
ously separable objects are used. Figure 2(a) shows a 9-by-32 image which contains 
three blocks with different colors (red, green, and blue). We use the model and get the 
average oscillation strength for 10000 iterations, as shown in Figure 2(b). The con-
tours of the blocks have much higher oscillation strength than others, meaning that the 
model can detect salient contours. Figure 2(c)~(k) show the detailed oscillation proc-
ess for each position. Each sub-figure corresponds to one row of the original image 
from the top down. In each sub-figure, the 32 waveforms show the oscillation strength 
for the 32 points of the corresponding row in the 10000 iterations. 

First, the oscillation effect is apparent as seen from the figure: 1) the neurons in the 
background positions do not oscillate in the entire process; 2) the neurons correspond-
ing to the contours oscillate and have relatively high oscillation frequency; 3) the 
neurons corresponding to the positions near the contours also have oscillation phe-
nomenon but the frequency is lower. 

Second, the synchronization and desynchronization effect can be observed: the po-
sitions of one object contour have the similar oscillation phase, while the positions of 
different object contours have different oscillation phases. For example, it is seen in 
Figure 2(e)~(j) that the excitation of the green object happens after the excitation of 
the red one, and before the excitation of the blue one. It should be noticed that the 
model does not have color preference and the phase is determined by several other 
aspects such as the initialization and the noise. Another way of observation is shown 
in Figure 2(l), which depicts the temporary oscillation strengths of the whole image at 
the iterations of 6000, 6300, 6600, 6900, 7200, 7500, 7800, 8100, 8400, 8700, 9000 
and 9300 respectively. 
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(a)                                       (b) 

 

   
                   (c) Row 1                           (d) Row 2                             (e) Row 3 

   
                   (f) Row 4                            (g) Row 5                             (h) Row 6 

   
                    (i) Row 7                            (j) Row 8                             (k) Row 9 

 

      
t=6000         t=6300           t=6600           t=6900      t=7200        t=7500 

 

      
t=7800         t=8100          t=8400         t=8700        t=9000       t=9300 

(l) 

Fig. 2. One example of the results, (a)original image, (b)average oscillation strength in 10000 
iterations, (c)~(k)oscillation results for the nine rows of the original image from the top down, 
(l)the temporary oscillation strengths at the iterations of 6000, 6300, 6600, 6900, 7200, 7500, 
7800, 8100, 8400, 8700, 9000 and 9300 respectively 

Another example is shown in Figure 3. The natural image as Figure 3(a) contains 
four objects with different colors. Figure 3(b) shows the average oscillation strength 
in different time periods. The selected time periods are representative but not uni-
formly sampled because the oscillation frequency of each object is not the same. For 
the same reason, there also exist overlaps between different contours in certain time 
periods. In spite of these, the synchronization and desynchronization of the oscillation 
can be observed. 
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                   (a)                                                               (b) 

Fig. 3. One example of the results, (a)original image, (b)average oscillation strength in different 
time periods 

4   Discussion and Conclusions 

The proposed neural oscillation model can implement the contour separation for color 
images. The synchronization and desynchronization of the oscillation are controlled 
by the external stimulation which comes from the image. The external stimulation 
comprises four parts: the local contrast, the coupling from neighboring positions, the 
global inhibition, and the noise. The structure of the model is similar to several previ-
ous models. However, this model utilizes the color information reasonably and effec-
tively, conquering the difficulty of investigating the oscillation in color images. The 
two coupling aspects for oscillation also make it distinct from others. 

The model also has some problems to be solved. First, the individual role of the 
four components of the external stimulation is not yet explicit, especially the role of 
the noise. We have analyzed the results when each aspect operates individually and 
found part of the answer, but more experiments are needed to clarify it further. Sec-
ond, the performance of this model is influenced by the complexity of the image. It 
performs well in the locally homogenous images but may have a failure when used 
for complex images. Third, there are many adjustable parameters in the model. The 
best choice of these parameters is still being explored. 

In spite of these problems, the model successfully uses the oscillation in the con-
tour detection and separation for color images. It can help to better investigate both 
the contour separation methods and the neural mechanisms of it. 
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Abstract. A Pulse Coupled Neural Network (PCNN) is a kind of nu-
merical model of cat visual cortex and it can explain synchronous dy-
namics of neurons’ activity in the visual cortex. On the other hand, as an
engineering application, it is shown that the PCNN can applied to the
image processing, e.g. segmentation, edge enhancement, and so on. The
PCNN model consists of neurons and two kind of inputs, namely feeding
inputs and linking inputs with leaky integrators. These inputs lead to
discrete time evolution of its internal state and neurons generate spike
output according to the internal state. The linking and feeding inputs are
received from the neurons’ receptive field which is defined by excitatory
synaptic weights. In this study, we propose a PCNN with inhibitory con-
nections and describe an application to a color image segmentation. In
proposed model, inhibitory connections are defined by negative synaptic
weights among specific neurons which detect RGB component of partic-
ular pixel of the image. Simulation results show successful results for the
color image segmentation.

1 Introduction

A Pulse Coupled Neural Network (PCNN) is proposed as a model which can
explain synchronous dynamics of neurons’ activity in cat visual cortex[1]. The
PCNN model consists of neurons and two kind of inputs, namely feeding inputs
and linking inputs with leaky integrators. These inputs lead to discrete time
evolution of neurons’ internal state and neurons generate spike output corre-
sponding to the internal state. The linking and feeding inputs are received from
neurons’ receptive fields which is defined by synaptic weight and directly from
the environment.

On the other hand, from the engineering point of view, PCNN is considered
as a temporal pulse coding system which shows a synchronous pulse dynamics in
a network and it is known that the most significant characteristics of PCNN is
its rich power of pulse coding expression. A lot of applications to the engineering
field are proposed, especially in the field of image processing, e.g. segmentation,
edge enhancement, and so on[2][3][5]. Also, hardware implementation of PCNN
is described in recent study[6] and digital spike neuron[7][8], PCNN like sys-
tem, which consists of shift-register array had been proposed. As shown in these
studies, It has been expected that an application of PCNN scheme broads to the
various fields of engineering.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 776–783, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A pattern segmentation is one of the most significant issue in the image pro-
cessing and an application of the PCNN for pattern segmentation is proposed[2].
To achieve a pattern segmentation, 2D-PCNN which has latticed connection has
been used and one neuron in the network corresponds to one pixel of the im-
age to be processed. In conventional studies, the target image is assumed as a
gray-scale image, namely, the neuron in the PCNN receives a intensity value of
a pixel of the image.

A color image processing using PCNN is also studied recently[9][10][11]. In
these studies, a sampling component of color image, e.g. intensity, saturation,
hue, is used as a external input to PCNN. In other words, some information
of color component is lost through the processing. Also, to achieve pattern seg-
mentation of color images, Multi-channel PCNN system had been proposed[12].
This enhanced model for color image processor consists of plural PCNNs and
extra processing unit. However, the system requires decision of particular target
color according to the image and external calculation unit for image processing.

In this study, we propose a PCNN with inhibitory connections and describe
an application to color image segmentation. Our proposed Inhibitory Connected
PCNN(IC-PCNN) has three types of neuron. We assume that each type of neu-
ron can detect RGB component of the image as observed in vivo retinal cone
cell[13]. In our proposed model, inhibitory connections are defined by negative
synaptic weight among specific neurons which detect RGB component of same
pixel of the image. Where we assume that the spike inputs via inhibitory con-
nections inhibit R-, G-, and B-type neuron each other according to its negative
synaptic weight. In this paper, We also show an implementation of our pro-
posed IC-PCNN to the color image segmentation. Most remarkable issue of our
proposed IC-PCNN is that the IC-PCNN requires no additional system which
cannot be observed in vivo system to achieve color image processing.

2 PCNN Model

2.1 Conventional Model of PCNN

PCNN is a model of cat visual cortex proposed by Echorn et.al.[1] and a lot of
applications in engineering field has been proposed especially in image processing
[2][3][4]. Figure 1 shows a schematic of PCNN. The model consists of the dendrite
model and the soma model. In the PCNN, dendrite model forms connections
among neurons and input from an environment and soma model is functioning
as a spike generator.

In general, the PCNN for the image processing has two dimensional structure
with lattice connection among neurons and each neuron in the PCNN receives
information from each corresponding pixel via feeding input. The two dimen-
sional PCNN model is mathematically described as follows. The internal state
of the neuron ij, namely membrane potential in biological model, is given by,

Uij(t) = Fij(t)(1 + βijLij(t)). (1)
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Fig. 1. The schematic model of Pulse Coupled Neural Network (PCNN)

Note that the indices i, j denote neuron number in the two dimensional PCNN.
In the PCNN model, there are two kinds of inputs which are propagated via
different connections. One is a feeding input and the other is a linking input.
Each input is described as follows, respectively.

Fij(t + 1) = Fij(t) exp (−1/αF ) + VF

∑
k

∑
l

Mij,klYkl(t) + Iij , (2)

Lij(t + 1) = Lij(t) exp (−1/αL) + VL

∑
m

∑
n

Wij,mnYmn(t). (3)

Where Mij,kl and Wij,mn are synaptic weights which define a receptive field of
the neuron, Iij is constant inputs to the neuron, and Ykl(t) and Ymn(t) are spike
output of neuron kl and mn, respectively. This spike output is defined as a step
function which is given by,

Ykl(t) =

{
1 if Ukl(t) > Θkl(t)
0 else

. (4)

In Eq.(4), Θkl(t) is a threshold of the action potential of the neuron kl which is
given by,

Θkl(t + 1) = Θkl(t) exp(−1/αT ) + VT Ykl(t) (5)

Through Eq.(1)−Eq.(5), parameters, βij , αF , αL, αT , VF , VL, and VT are de-
cided appropriately.

2.2 Introducing Inhibitory Connections to the PCNN

In this study, we extend a ”monochrome PCNN” to a ”color PCNN” by introduc-
ing inhibitory connections. To achieve color image processing, we first assumed
that the ”color PCNN” has three neurons per pixel and each neuron detect each
RGB component of the pixel color. It is known that in vivo retinal cone cell
can detect specific wavelength of lightwaves. Actually, human retinal cone cell
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shows three types of spectral response and each of them can detect one of RGB
components of the color[13]. Therefore, it is considered that the structure of the
color PCNN is not contrary to biological assumptions.

Further, we assumed that the ”color PCNN” has inhibitory connections among
neurons which correspond to the same pixel. Where inhibitory connections are
defined as follows.

Γ ij =

⎛⎝ 0 γGR γBR

γRB 0 γGB

γRG γBG 0

⎞⎠ . (6)

Where the parameters γ has negative value, and all the parameters of γ is
defined appropriately to lead effective characteristics of the color PCNN for
the application, such as segmentation, edge detection, and so on.

Based on these assumptions of inhibitory connection, in this study, we propose
an Inhibitory Connected Pulse Coupled Neural Network (IC-PCNN) for color
image segmentation. The schematic model of proposed IC-PCNN is illustrated
in Figure 2. The feeding input and linking input of proposed IC-PCNN is given
by,⎛⎝Fij,R(t + 1)

Fij,G(t + 1)
Fij,B(t + 1)

⎞⎠ =

⎛⎝Fij,R(t)
Fij,G(t)
Fij,B(t)

⎞⎠ exp(−1/αF ) + VF

∑
k,l

Mij,kl

⎛⎝Ykl,R(t)
Ykl,G(t)
Ykl,B(t)

⎞⎠
+VF Γ ij

⎛⎝Yij,R(t)
Yij,G(t)
Yij,B(t)

⎞⎠+

⎛⎝ Iij,R

Iij,G

Iij,B

⎞⎠ , (7)

⎛⎝Lij,R(t + 1)
Lij,G(t + 1)
Lij,B(t + 1)

⎞⎠ =

⎛⎝Lij,R(t)
Lij,G(t)
Lij,B(t)

⎞⎠ exp(−1/αL) + VL

∑
m,n

Wij,mn

⎛⎝Ymn,R(t)
Ymn,G(t)
Ymn,B(t)

⎞⎠
+VLΓ ij

⎛⎝Yij,R(t)
Yij,G(t)
Yij,B(t)

⎞⎠ . (8)

Where Fij,R, Fij,G, Fij,B ,Lij,R, Lij,G, and Lij,B is feeding or linking input of
R-type, G-type, and B-type neuron of pixel ij. Also, we assume that the internal
state of the neuron ij is given by,

Uij(t) =

{
Fij(t)(1 − βijLij(t)) if Fij < 0 and Lij < 0
Fij(t)(1 + βijLij(t)) else

. (9)

3 Simulation Results

3.1 Pattern Segmentation of Color Test Images

In this section, we show simulation results of our proposed IC-PCNN. We first
show the results of the segmentation of color test images. Here, we use an Ishihara
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Fig. 2. The schematic model of Inhibitory Connected Pulse Coupled Neural Network
(IC-PCNN) is illustrated. The IC-PCNN has neurons for each RGB component and
inhibitory connections are defined among neurons in same pixel.

color test[14][15] that is used in the test of color blindness. Figure 3 shows a
sample image of the color test1 which indicates a character ”74” in the circle.
However, as shown in Figure 3(a), we cannot recognize a character ”74” in
the circle from the gray-scaled image because the intensity difference of each
pixel in the circle of the image does not form the character ”74”. Each of RGB
component of this image is shown in Figure 3(b) (c) (d), respectively. From these
image, we can find that the red component image indicate the character ”74”
comparatively to the other component images, but the image doesn’t indicate
the character obviously. From this peculiar characteristics of the color test image,
it is clearly considered that conventional PCNN method concerning an intensity
of the image cannot achieve segmentation of this character. This estimate is
confirmed in Figure 4.

Then, we try to achieve a segmentation of the test image by using each RGB
component image which is shown in Figure 3(b) (c) (d). The simulation results
are shown in Figure 5. As shown in Figure 5, almost of results does not show
successful segmentation. In the case that the red component of the test image is
used, which is shown in Figure 5(upper row), we can find a segmented character
”74” comparatively to the other trials. However, to obtain this result of segmen-
tation, a PCNN requires additional prior information which color component of
the image shows characteristics of the pattern that is to be segmented. Then we
can conclude that the segmentation of the color test image is hardly to achieve
using conventional PCNN.

1 Here we cannot show an actual color image of the color test because this manuscript
will be published in monochrome. However, we can easily find this color test on
webpage[15].
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Figure 6 shows the results of segmentation by proposed IC-PCNN. Target
image of segmentation is also shown in Figure 3, and all of the RGB component
of the image, that are shown in Figure 3(b)(c)(d), are used as inputs to the IC-
PCNN. The simulation results show that the segmentation of the character ”74”
is indicated in several time step. Here, considering that the proposed IC-PCNN
requires no additional processing unit and artificially decided information from
images to achieve segmentation, we conclude that the IC-PCNN has the qualities
for the color image segmentation essentially.

Note that, through the simulations, a pixel size of the picture shown in
Figure 3(a) is 128×128, the conventional PCNN has 128×128 neurons and con-
nections, and the proposed IC-PCNN has 128×128×3 neurons and connections.

(a) (b) (c) (d)

Fig. 3. Ishihara color test: images are color images in reality. In this figure, we show
(a)gray scale image, (b) red component of the image, (c) green component of the
image, and (d) blue component of the image. Purpose of the segmentation is to make
a segmentation of character ”74”.

t=4 t=6 t=7 t=12 t=14

Fig. 4. Simulation results of the segmentation by a conventional method using PCNN.
The input image is gray-scaled image (only intensity of the image is considered) which
is shown in fig.3 (a). No characters or significant segments are shown in any time step.

3.2 Pattern Segmentation of Photo Images

In previous section, we show the results of peculiar test image. Then, in this sec-
tion, we show an example of color image segmentation using relatively common
image. Figure 7(upper row, left) shows the input image to be segmented and the
image shows four deferent color files. As shown in Figure 7, proposed IC-PCNN
achieves segmentation of all color files in several time steps. Also in these sim-
ulations, IC-PCNN does not require artificially decided information except that
the parameters for PCNN. Therefore IC-PCNN is able to work as a complete
system for pattern segmentation of color images.

Note that, in the simulation, a pixel size of the picture shown in Figure 7 is
100×60 and the IC-PCNN has 100×60× 3 neurons and connections.
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t=8 t=14 t=22 t=24

t=8 t=15 t=21 t=25

t=0

t=0

t=0 t=8 t=10 t=21 t=23

Fig. 5. Simulation results of the segmentation by a conventional method using PCNN.
Upper row: the input image is red component of the image which is shown in Figure3
(b). Middle row: the input image is green component of the image which is shown in
Figure 3 (c). Lower row: the input image is blue component of the image which is shown
in Figure 3 (d). The target character ”74” is ”comparatively” segmented by using red
component input image, but ”obvious” segmentation does not achieved in any input
images.

t=6 t=11 t=13 t=23t=10

Fig. 6. Simulation results of the segmentation by our proposed IC-PCNN. The input
image is full color image. The target character ”74” is segmented as shown in several
time steps.

t=12 t=13 t=14 t=17 t=28

t=8input image t=9 t=11

Fig. 7. Test image and simulation results of the segmentation by our proposed IC-
PCNN. Upper row, left: Deferent color of four files. The input image is full color image
in reality. Each color is violet, green, blue, and yellow. Upper row, right and lower
row: Simulation results of the segmentation by the proposed IP-PCNN. Each file is
segmented in several time steps.
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4 Conclusion

In this study, an Inhibitory Connected Pulse Coupled Neural Network (IC-
PCNN) is proposed and its application for the color image segmentation is pre-
sented. Our proposed IC-PCNN requires no extra processing unit in the system
and a component of IC-PCNN is not contrary to biological assumptions. In other
words, the IC-PCNN is considered as a biologically plausible system. We showed
successful simulation results of color image pattern segmentation by using IC-
PCNN, while it cannot be achieved by conventional methods using PCNN. In
this study, an appropriate parameters were empirically decided in simulations,
and the problem of parameter optimization will be solved in our future works.
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Generating Saliency Map Related to Motion
Based on Self-organized Feature Extracting

Satoru Morita
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Abstract. A computational theory concept generating saliency maps
from feature maps generated in the bottom-up using various filters such
as Fourier transformation was discussed. We proposed saliency map re-
lated to motion based on self-organized feature extracting not using gen-
eral filter such as Fourier transform. We introduce the ICA base function
to realize the self-organized Saliency Map. We extend the ICA base func-
tion estimation to apply for the non-uniform positioned photoreceptor
cells which receives the current image and the previous image to get the
motion information. We show the effectiveness of our model by applying
this model for real images.

1 Introduction

Marr showed a calculation model of the initial vision that extracts a feature in
the bottom-up from the image[1]. Koch and Ullman proposed a computation
model computing the saliency map which shows a saliency in two-dimensional
plane from the feature map generated in the bottom-up[2]. Itti and Koch dis-
cussed the computation model which can be applied to the image analysis[3].
The filter is the feature extraction of the multiresolution, and it is constructed
using general Fourier transformation and a rotation filter. Because these use a
more general filter, it is necessary for the image to be uniformly arranged. Fourier
transformation and Wavelet were proposed to extract a feature in the bottom-up
from the image[4]. The information related to the frequency by convoluting a
sine wave in the original signal can be gotten it by the Fourier transformation. A
base function becomes a sine wave here. The information related to the frequency
by convoluting a mother base function in the original signal can be gotten it us-
ing Wavelet. The technique is based on the base function. On the other hand,
the method how to extract a feature signal by estimating a ICA base[5] was
discussed. ICA is an abbreviation of the independent component analysis. An
adaptation example is application to the signal and the image arranged uni-
formly. In this paper, the defined general filter such as Fourier transform isn’t
used, but the self-organizing filter generated only from the observation of the
image is used. Therefore the general idea of the ICA base estimation is intro-
duced in the model which generates a saliency map. The receptive field of the
human vision has the arrangement which isn’t especially uniform. For exam-
ple, the density of the receptive field is high in the center, and is low in the
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circumference with a foveated vision. Our model is expanded so that the filter
with the receptive field has a non-uniform arrangement like human.

Hubel and Wiesel discovered that there was a neuron which reacts to the
slit light of the specifical inclination in the visual cortex of the cerebral mem-
brane of the cat[6] . Such a cell is called a feature extracting cell. The cells
which react to the optical motion are observed. Blakemore and Cooper found
that the feature extracting cell who responded to the horizontal slit light was
not formed, but the feature extracting cell which responded to the vertical slit
light was formed[7] . Hubel and Wiesel explained how a discovered neuron was
arranged with Malsburg by the neural network model that a Hebb learning was
adopted[8]. Willshaw and Malsburg showed the structure that the combination
of the topological mapping seen in the living body was formed by learning by
using the neural network model[9]. Kohonen expanded the interpretation of the
neural network model of the topological mapping from the position of the infor-
mation processing[10]. The function of the vision system surveyed here is realized
in this paper.

The self-organizing filter which can be computed to the receptive field which
has such arrangement which isn’t uniform is generated from only observing.
When a saliency map is specially generated, it pays attention to the important
motion, and a initial vision is modeled. This problem of motion was not discussed
in saliency map[2][3].

2 A Requirement for the Vision

[1 ] The feature which is dependent on the input conditions should be detected.
[2 ] The input sensor arrangement of the position which is not uniform should

be allowed such as retina.
[3 ] The information that the retina receives should be only analyzed.
[4 ] The feature should be detected without depending on the order observing

the image.

To realize the requirement [1], we introduce ICA base function estimation to
generating the saliency map. To realize the requirement [2], our model is ex-
panded the input for the ICA base function estimation can be applied to the
arrangement which isn’t uniform as shown in figure 1(a) and (b). To realize the
requirement [3], information to receive is restricted to the minimum information
which a living body receives. The requirement [4] can be realized by the feature
extraction based on ICA.

[5 ] The motion should be distinguished.
[6 ] An edge should be distinguished.
[7 ] A texture should be distinguished.

We make the receptive field to receive the local intensity information which is
invariant for the position and the direction to realize the requirement [5]. We
make the receptive field to receives the neighbor information which is needed
for the texture analysis and the edge detection at the same time to realize the
requirements [6] and [7]. It tries so that receptive field is arranged spatially.
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[8 ] The various filters of a person’s living body should be generated.

The requirements [8] is discussed after a result of an experiment.

3 Saliency Map and Self-organized Filters Based on ICA
Base Function Estimation

The method that an ICA base function is estimated from the image and the
signal was discussed. The self-organization of the feature extracting cell of the
motion are modeled based on the ICA base function estimation in this paper. The
feature is detected such that the data projected to the subspace is independent
and distributed. When the data that Xl = {xl1, xl2, · · · , xln} is centering, Yl is
defined in the following as

Yl = WlXl, (1)

where Yl = {yl1, yl2, · · · , yln} and Wl = {wl1, wl2, · · · , wln}. The saliency map
and the ICA base function are estimated for the lth data Xl. The independence
J0l of Yl is evaluated as

J0l = Σi,j(i	=j)E{yli · ylj}. (2)

The degree of the distribution J1l of Yl is evaluated as

J1l =
1

ΠiE{yli · yli}
, (3)

where,
|wli| = 1(l = 1, · · · , m, i = 1, · · · , n). (4)

The general evaluation Jl is defined as

Jl = k0 · J0l + k1 · J1l, (5)

where Jl(l = 1, · · · , m) which is saliency map value based on the J value of the
m individual. It returns in the problem which Wl is decided as so that Jl may
become the smallest. It becomes the base function which Wl is estimated at. It
is solved by the method of steepest descent.

When the input data that Xl equals {xl1, xl2, · · · , xln} is centering, Yl equals
{yl1, yl2, · · · , yln} and Wl equals {wl1, wl2, · · · , wln}. The feature Yl of the n in-
dividual is extracted from the input data of the n individual using equation (1).
The salience map is defined based on the feature value Sal = max{yl1, · · · , yln}
and the feature number Sbl = Σn

i=1f(yli), where a function f used step func-
tion. A saliency map based on the feature value is generated by using Sal(l =
1, · · · , m). A saliency map based on the number of features is generated by using
Sbl(l = 1, · · · , m). The parameter k0 and k1 are defined as k0 = 1 and k1 = 0
simply not using distribution but using only independency. It is known that
the arrangement of the receptive field is the circle and the rectangle and so on.
Generally it is seldom arranged by the receptive field of the biological system
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uniformly. The receptive field is arranged according to the probability distribu-
tion which is dense in the center and is sparse in the periphery. Because the input
sensor position of the image is in two dimensions, a probability density function
is defined in the two dimension, too. The receptive field is input generally. If
the number of the receptive field is 10, n in X which equals {x1, x2, · · · , xn}
becomes 10. In a cell to react to the motion, n is 10 · 2 = 20 because a cell re-
ceives two values from the intensity images at a current time and and a previous
time.

4 Generating Saliency Map Related to Motion

An optical flow is proposed to detect the motion of the light in the computer
vision field[11]. The intensity of the current time and the intensity of the pre-
vious time are at least necessary to calculate an optical flow. The inputs which
receptive field receives are the intensity of the current time and the intensity of
the previous time to interpret the motion of the light. A photoreceptor receives
18 inputs. The probability of that arrangement that receptive field exists in the
center is high, and probability in the periphery lowers. Figure 1(a) and (b) show

(c) (d)

Fig. 1. Two layers photoreceptors to detect motion. (a) A photoreceptor for the previ-
ous image. (b) A photoreceptor for the current image. (c) The probability distribution
of the receptive field of the foveated vision (d)This brain model is the process between
eye to vision first field.

photoreceptors for the previous image in a layer and the current image in an-
other layer to detect motion. It was arranged in accordance with the probability
distribution of figure 1(c). This brain model is the process between eye to vision
first field as shown in figure 1(d). Figure 2 shows the flow from the photoreceptor
which reacts to the motion to the primary visual cortex.

– A photoreceptor receives the intensity of the current time and the intensity
of the previous time.

– A feature by multiplying the estimated base function in the intensity of the
previous time and the current time is gotten.

– Saliency map value is calculated from the feature value and the number of
features.

– Event map is calculated from competitive learning of the detected feature
value.
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Fig. 2. Flow from the photoreceptor which reacts to the motion to the primary visual
cortex

(a)

(b)

Fig. 3. (a) 36 base functions for the intensity of the current time. (b) 36 base functions
for the intensity of the previous time.

Figure 5(a) and 5(b) shows two sheets of images such as laboratory including
chairs and desks. The image size is 512 × 512. The next viewpoint is decided
using the probability from the whole of the image simply in this method. The
receptive cell receives 18 inputs from the intensity images of the current time
and the previous time. Figures 3 (a) and 3 (b) show 36 base functions of the
receptive cells which receive the intensity of the current time and the previ-
ous time. Figure 4 shows 36 feature images. The feature extracting cells which
are black in the center, and white in the periphery are found. On the other
hand, the feature extracting cells which are white in the center, and black in
the periphery are found. The feature extracting cells which are white only in a

Fig. 4. 36 feature images
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certain direction are found. The various filters which a person’s living body has
should be generated. The requirement [8] is satisfied in the experiment. There
are relations as for the two images in the neighbor. The base function is the
reverse of a certain base function. These cells are seen by the receptive field of
the ganglion cell and the primary visual cortex. There are relations in a cell to
react to the stimulus to move to an on-center off-surround form cell, a off-center
on-surround form cell and the cell of the orientation sensitivity and the specif-
ical direction which it has strongly. A more remarkable base function becomes
clear by increasing the number of the receptive cell. It is meaningful that the
self-organizing cell which is common with the actual receptive field is generated.
Figures 5 (c) and 5 (d) show a saliency map based on the feature value and

(a) (b) (c) (d) (e)

Fig. 5. (a) (b) Two images which receptive field receives. (c) A saliency map based
on the feature value. (d) A saliency map based on the feature number. (e) An event
map classified the detected features.

the number of features respectively. Figure 5 (e) shows the event map classified
features using competitive learning. From figures 5 (c) and 5 (d), it is found that
the part which changes from the light place to the dark place , and the part
which changes from the dark place to the light place is classified. It is found that
many feature extracting cells which perceive a change of the brightness in the
image exist.

Figures 8(a) and 8(b) show the image of driver’s view which receptive field
receives. The method which the next viewpoint is decided using the probability
from the whole of the image and so on was used for simply here. A receptive cell
receives 12 inputs from the intensity images of the current time and the previous
time. Figures 6 (a) and 6 (b) show 24 base functions of the receptive cells which
receive the intensity of the current time and the previous time. Figure 7 shows
24 feature images. Figures 8 (c) and 8 (d) are based on each of the feature value
and the number of features. Figure 8 (e) shows the event map classified features
using competitive learning. From figures 8 (a), 8 (b) and 8 (c), it is found that

(a)
(b)

Fig. 6. (a) 24 base functions for the intensity of the current time. (b) 24 base functions
for the intensity of the previous time.
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Fig. 7. 24 feature images

(a) (b) (c) (d) (e)

Fig. 8. (a) (b) Two images which receptive field receives. (c) A saliency map based on
the feature value. (d) A saliency map based on the feature number. (e) An event map
classified the detected features using competitive learning.

(a) (b) (c) (d)

Fig. 9. Base functions of (a) and (b) to react to the motion are included in figure 3(a)
and (b). Base functions of (c) and (d) to react to the motion are included in figure 6(a)
and (b). Two base functions of the current time and the previous time are shown.

the part of the sky and the road line and the part of moving cars, road signs
and townscape are classified. It is found that many feature extracting cells
which perceive a change in the brightness in the image exist from figure 6. Base
functions of figures 9 (a) and 9 (b) to react to the motion are included in figures
3(a) and 3(b). Base functions of figures 9 (c) and 9 (d) to react to the motion
are included in figures 6(a) and 6(b). Two base functions of the current time and
previous time are shown. The black changes white and the white changes black
at a time in the base function to react to the motion. The high level process
following with the low level process and the event analysis of the task can be
managed because the classification image of a motion is similar to the event map
based on the detected features. The input which receptive field receives is made
intensity, and the intensity of the previous time here to interpret the motion of
the light. The motion is detected by two layers that a layer of photoreceptor
receives a previous image and another layer of photoreceptor receives a current
image as shown in figures 1(c) and 1(d).
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5 Conclusion

The self-organization of the feature extracting cell which reacts to the motion
of the local intensity was modeled based on the ICA base function estimation.
The arrangement of the receptive field isn’t uniform, and the various remarkable
cells is generated by a self-organization filter. It is an effectiveness as a model
because the method is simple.
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Abstract. Content-based Image Retrieval (CBIR) systems have been rapidly de-
veloping over the years, both in labs and in real world applications. Face Image
Retrieval (FIR) is a specialised CBIR system where a user submits a query (im-
age of a face) to the FIR system which searches and retrieves the most visually
similar face images from a database. In this paper, we use a neural-network based
similarity measure and compare the retrieval performance to Lp-norm similarity
measures. Further we examined the effect of user relevance-feedback on retrieval
performance. It was found that the neural-similarity measure provided significant
performance gains over Lp-norm similarity measures for both the training and
test data sets.

1 Introduction

Content-based image retrieval (CBIR) aims to retrieve images from a database that
match a users query based on image content. The past decade has seen rapid develop-
ments in CBIR research. With many techniques being developed to solve problems in
medical imaging, art, culture, and web-based image retrieval [1]. In the special case of
Face Image Retrieval (FIR), a user wishes to find similar faces to a mental image of
a person they have seen or imagined. The user can submit a query in the form of an
image (query-by-example), sketch or description. FIR can be used in law enforcement
agencies needing to search large databases of faces for a suspect, casting agencies for
finding suitable looking cast, or for an individual to search their own photo albums of
friends and family.

The first step in FIR systems is to extract features from the images that are low di-
mensional and capture the visual content of the images. However, this is challenging due
to the variations in appearance of faces in images. A face can appear at different scales,
head poses, facial expressions, occlusions (such as eyewear or facial hair), background
clutter, illumination variation and rotation of the face along the optical axis of the cam-
era. To simplify the problem, researchers have used “well-framed” frontal images of
faces. Where “well-framed” means that the object of interest must have small variations
in its location, orientation and size in each image [2]. One of the most common feature
extraction method is the eigenface method where principle component analysis (PCA)
is applied to well-framed images. The resulting eigenvectors are used to transform the
images into a lower dimensional space where they are compared using a similarity mea-
sure (e.g. Euclidean) [3]. Eigenface-based methods have been enhanced by using Linear
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Discriminant Analysis, which considers class information to help distinguish the faces
of different people in the feature space [4]. The recently developed eigenpaxel method
transforms small windows of pixels to a lower dimensional space by apply PCA locally
rather than on the whole image as is the case for the Eigenface method. The eigenpaxel
method is analogues to how the local receptive fields in the visual system of mammals
function [5].

Relevance feedback (RF) [6] aims to refine the retrieved images according to the user
indicating to the system which images are relevant or not. Even if automatic extraction
of high level concepts is possible, it’s impossible to capture all concepts that will satisfy
all users over time as each users wishes are different and can vary over time. Hence, RF
has the advantage of being able to adapt to each user and situation.

The use of Neural Network (NN) based RF in CBIR has been widely used by re-
searchers [7,8], whilst very little research has been conducted in FIR. The goal of this
paper is to present a neural network based Intelligent FIR (IFIR) system using RF that
accepts images as the query (query-by-example). We examine the recognition power of
the eigenpaxel feature extraction method and explore the effect of RF on performance.
Section 2 presents a detailed description of our IFIR system. Section 3 presents the
results of the proposed system and discussion. Section 4 concludes the paper.

2 System Description

2.1 Overview

Figure 1 presents the overall design of the IFIR system presented in this paper.

Fig. 1. Overall design of the IFIR system, with off-line neural network training. On-line feature
extraction and image retrieval. Finally there is neural network re-training with RF from the user.

The system has three components, the first is the training of the neuro-similarity
measure NN using pairs of image features Xi,Xj with associated target values Ti,j

(not in diagram). The second is image retrieval where feature extraction is performed



794 P. Conilione and D. Wang

on the query image, yielding Xq , which is compared to feature vectors of the i-th image
in the database Xi using the trained NN. The resulting output from the network Rq,i

is a measure of relevance and is used to rank the images, which are then displayed to
the user. For RF, the user can select images as being “similar” or “different” and this
information is used to re-train the NN. The updated NN replaces the old NN and the
similarity between the query image and the database images are recalculated, with the
newly ranked images displayed to the user.

2.2 Neural Similarity

The NN can be used as a similarity function where the input is the combined feature
vectors of the query and database images (Xq,Xi) and the output is the relevance Rq,i

between the two images. The first stage in the IFIR system is the off-line training of
the neural network. This is achieved by presenting a set of image feature vector pairs
(Xi,Xj) with associated degree of similarity Ti,j . Where T is assigned by the designer
for off-line training.

2.3 User’s Relevance Feedback

Once the images are ranked by relevance, the user marks a number of retrieved database
images as “similar” or “different”. Each selected image, s, is assigned a target value for
a given query image q by Tq,s = 0 if “similar” and Tq,s = 0 if “different”. Where s
is the indices of database images selected by the user. The neural network is retrained
with the feature vectors from the query/database image pairs (Xq,Xs) and associated
target values Tq,s. The original NN is replaced with the updated NN and the database
images are re-ranked. RF process can be repeated until the user has found the face(s)
they are seeking.

2.4 Feature Extraction

A 2D image can be viewed as having N -dimensional point in the image space (N =
width×height). The aim of the Eigenpaxel feature extraction is to map these points to a
lower dimensional space, using neighbouring pixel information for the transformation
[5]. From Alg. 1 the Eigenpaxels UD with ρ principle components are derived using
Alg. 2, where D is the training set of d images (w × h pixels) and N is the number of
paxels randomly selected from each image. Then the images are eigenfiltered using UD

with s% overlapping windows and averaged with non-overlapping window α, Alg. 3.
Finally, PCA is then applied to the eigenfiltered and averaged training images to yield
the eigenvectors VD for the top ρ principle components for feature vector compression.

Feature extraction for database or query images is performed by applying eigenpaxel
filtering, Alg. 3 using UD and then apply PCA to S with VD for data compression to
yield the final feature vector X.

2.5 Training and Performance Evaluation

Face Image Data Set. The AR data set [9] used in this work consists of photographs of
people taken over two sessions, two weeks apart. The first session (session 1) had 135
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Algorithm 1. Eigenpaxel creation and Feature Vector Compression.
1: procedure CREATEEIGENPAXELEIGENVECTOR(D, N , p, q, ρ, s, α, τ )
2: UD = {CALCULATEEIGENPAXELS(Di, p, q, N , ρ)} |1,...,d

3: SD = {EIGENPAXELFILTER(Di, UD, s, α)} |1,...,d

4: V = {Vi} |i=1,...,τ set of eigenvectors from apply PCA to set of paxels SD

5: return UD, VD

6: end procedure

Algorithm 2. Eigenpaxel algorithm [5].
1: procedure CALCULATEEIGENPAXELS(D, N , p, q, ρ)
2: P = [P1, . . . ,P(N×d)] ← randomly selected paxels from D.

[Pi,j ]p×q → [Pk]1×(p×q) is reformatted into a column vector.
3: U = {Ui}, i = 1, ..., ρ set of eigenvectors from apply PCA to set of paxels P
4: return U
5: end procedure

people, then two weeks later, 120 people from first session were photographed again
(session 2). There were no restriction on individuals to keep their hairstyle, cloths or
makeup the same between sessions.

During both session 1 and session 2, each person was photographed 13 times with
different expressions, lighting conditions, and with and without sunglasses or scarf. The
original images were 768 x 576 in 24 bit colour, but were cropped and rescaled to 101
x 120, 8 bit gray scale images for this paper.

Feature Extraction Parameters. Using 16 x 16 paxels, with N = 50 randomly se-
lected paxels per image, the eigenpaxels UD with ρ = 20 principle components, were
derived using the method in Alg. 2. The training set, D, composed of 135 images of 135
people with neutral expression from session 1 of the AR database. The eigenvector for
feature vector compression VD with τ = 100 principle components was derived from
the Eigenfiltered images using a sliding window with s = 75% overlap and averaging
window size of α = 2. The features where then extracted from all images from session
1 and session 2 data sets using UD eigenpaxels and VD.

Neural Network Parameters. The feedforward neural network consisted of a fully
connected three layer network with a single output neuron and all neurons used the
logarithmic sigmoid activation function. The number of hidden neurons in the single

Algorithm 3. Eigenpaxel filtering and Averaging algorithm [5].
1: procedure EIGENPAXELFILTER(I, U, p, q, s α)
2: P = {Pi,j}, paxels from s% overlapping sliding window at positions i, j from I .
3: Q =

{
Qk
} |k=1,...,ρ, where Qk

i,j = UT
k Pi,j , and Uk is the k-th eigenpaxel.

4: S = {Sk} |k=1,...,ρ is the set of averaged Qk, where SI,k = 1
α2

∑i+α,j+α
i,j |QI,k

i,j |
5: return S
6: end procedure
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hidden layer was varied between 30 to 150, and the performance was measured using
average mean-rank (1) and overall precision (2). The network weights were initialised
using the Nguyen and Windrows algorithm. For initial off-line training the resilient-
backpropagation algorithm was used with 80% of the training data used for training
and 20% used for validation. Once the validation mean-square-error reached 0.001,
training was stopped.

Off-line Training Data Set. For off-line training of the neuro-similarity measure we
created a training set from session 1 images. Which consisted of image feature-vector
pairs with an associated target (similarity) value, [XiXj ], Ti,j . As each feature-pair
has 200 elements the neural network had 200 input nodes. Two types of pairs were
generated, intra-pairs which are from the same person, and inter-pairs that are from
different people. For images i, j that belong to the same person (intra-pairs), the target
value Ti,j was randomly assigned a value in the range [0.0, 0.1]. If images i, j are of
two different people (inter-pairs) then Ti,j was randomly assigned a value in the range
[0.9, 1.0]. A total of ≈16,000 intra-pairs were created from session 1 as examples of
similar images for training. Whilst approximately 62,000 inter-pairs were generated
from session 1 as examples of dissimilar images. The intra-class and inter-class pairs
were combined to produce ≈78,000 pairs for training the neural network.

Neural Network Training for RF. The neural-similarity with RF allows the user to
label images over 5 feedback loops. The neural network was updated using the gradient
decent with moment training algorithm and was trained for 300 epochs with a learning
rate of 0.001 and momentum term of 0.9. We used a network with 50 hidden neurons,
as it was found to have the best mean-rank of the topologies tested. The effect of the
number of feedback images per RF session on retrieval performance was explored by
allowing the user to select 1 to 5 true-positive (TP) images (relevant images labelled as
“similar”), 1 to 5 true-negative (TN) images (irrelevant images labelled as “different”),
or 1 to 5 each of TP and TN examples over the course of a single RF session.

Retrieval Performance and Comparison to Lp-norm. Performance evaluation was
done by comparing each image in a query set to all database images using trained neu-
ral network. The query and database sets were created from the session 1 and session 2
images of the AR database. From session 1 the query set had 135 images of 135 peo-
ple with neutral expression and the remaining 1620 images were used for the database
(denoted DB1-Q1 ). Query set from session 2 had 120 images of 120 people with neu-
tral expression and the remaining 1200 images were used for the database (denoted
DB2-Q2).

We compared the retrieval performance of the IFIR and L1-norm, L2-norm (Eu-
clidean) and L∞-norm distance-based similarity measures. The Lp-norm distances are

defined as d(Xq, Xi)L1 =
∑100

k=1 |X i
k − Xq

k |, d(Xq, Xi)L2 =
√∑100

k=1

(
X i

k − Xq
k

)2
and d(Xq, Xi)L∞ = max(|X i

1 − Xq
1 |, ..., |X i

100 − Xq
100|) where q is the query image,

i is the i-th database image and k is the k-th feature.
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Performance Metrics. The performance was measured by using the average mean-
rank (1) and overall precision (2). Where µq is the mean-rank for a given query q, and
rq,i is the rank of relevant database image i in the returned results. µq is sensitive to
the ranking order of the relevant images. The higher the rank of relevant images from
the database, the closer µq is to 1. Whilst the lower the rankings of relevant retrieved
images, µq approaches 0.

µ =
Q∑

q=1

µq where µq =
Nq (Nq + 1)

2
∑Nq

i=1 rq,i

(1)

The overall precision is the percentile of database images that are relevant with re-
spect to the query image in the first 12 retrieved images. Where pq is the precision for a
query image q, Nq is the number of relevant images in the database for query image q
and is equal to 12.

p =
1
Q

Q∑
q=1

pq where pq =
1
12

⎛⎝ 1620∑
i=1,rq,i≤12,Tq,i=0

1

⎞⎠ . (2)

3 Results and Discussion

3.1 Training Performance

Table 1 shows the resulting average mean-rank and overall precision for networks of
varying topology for DB1-Q1 and DB2-Q2. The best overall results were achieved
using networks with 50 neurons in the hidden layer. There was a significant drop in
performance for networks with over 100 neurons in the hidden layer.

Table 1. Retrieval performance of trained neural networks using DB1-Q1 and DB2-Q2 respec-
tively

Data set DB1-Q1 DB2-Q2
Performance µ p µ p

30 0.9555 0.9614 0.2390 0.4755
50 0.9568 0.9583 0.2485 0.5161
70 0.9399 0.9447 0.2305 0.4195
100 0.9518 0.9534 0.2845 0.5168
120 0.9280 0.9328 0.1724 0.3536
150 0.8846 0.8937 0.1732 0.3508

Clearly the images from session 1 (DB1-Q1) have significantly better results than
those from session 2 (DB2-Q2). This is expected given session 1 images were originally
used to create the data set of image-pairs for network training and the images in Q1 were
used to derive the eigenpaxels U and eigenvector V.
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Table 2. Comparison between neuro-similarity and Lp-norm similarity results using DB1-Q1 and
DB2-Q2

Data set DB1-Q1 DB2-Q2
Performance µ p µ p

NN-50 0.9568 0.9583 0.2485 0.5161
L1-norm 0.1306 0.4728 0.0802 0.4262
L2-norm 0.1241 0.4355 0.0879 0.4208
L∞-norm 0.0700 0.3486 0.0589 0.3565

3.2 Comparison of Lp-Norm and Neural-Based Retrieval

Table 2 compares the performance of the NN with 50 neurons in the hidden layer, which
had the best retrieval results of network topologies and the Lp-norms for DB1-Q1 and
DB2-Q2.

From Tab. 2 the neural similarity retrieval provides better average mean-rank and
precision compared to the Lp-norm methods for both data sets. Given the retrieval
performances of DB2-Q2 is significantly lower compared to DB1-Q1 both neural-
similarity and Lp-norm similarity measures. It would imply that the generalisation abil-
ity of eigenpaxel feature extraction method is poor, rather than a problem with the sim-
ilarity measure itself.

3.3 Relevance Feedback Performance

Using the NN with 50 neurons in the hidden layer for RF experiments, Fig. 2(a) and Fig.
2(b) plots the average mean-rank results of RF over 5 iterations using the DB1-Q1 and
DB2-Q2 data sets respectively. The number of TP and TN examples can be grouped
into three types of feedback. Those with 1 to 5 TP examples (solid line), 1 to 5 TN
examples (dashed line) and 1 to 5 each of TP and TN examples (dotted line).
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Fig. 2. Feedback performance of IFIR system with µ vs number of feedback loops

For both DB1-Q1 and DB2-Q2 data sets, it is clear that having a user select both TP
and TN examples for re-training the NN provides significant improvement in retrieval
performance compared to feedback using only TP or TN examples.
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4 Conclusions

We tested the eigenpaxel based feature extraction method for our neural-similarity
based Intelligent Face Image Retrieval (IFIR) system. We found that the eigenpaxel
based feature extraction method generalised poorly for face images that were not used
for calculating the original eigenpaxels or eigenvectors for feature compression. How-
ever, the neural-similarity measure had significantly better retrieval results compared
to L1-norm, L2-norm and L∞-norm for both training and test data sets. The neural-
similarity with relevance feedback was found to be very effective at improving retrieval
performance as measured with mean-rank and precision. However, this was only the
case when the user provides both true positive (TP, relevant image labelled as “simi-
lar”) and true-negative (TN, irrelevant image labelled “different”) examples for feed-
back. Otherwise selecting either TP or TN examples only during a feedback session
resulted in only a small improvement, or even a drop in performance.
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Abstract. Recently, it was shown how some metaphors, adopted from the in-
fant vision system, were useful for face recognition. In this paper we adopt 
those biological hypotheses and apply them to the 3D object recognition prob-
lem. As the infant vision responds to low frequencies of the signal, a low-filter 
is used to remove high frequency components from the image. Then we detect 
subtle features in the image by means of a random feature selection detector. At 
last, a dynamic associative memory (DAM) is fed with this information for 
training and recognition. To test the accuracy of the proposal we use the Co-
lumbia Object Image Library (COIL 100). 

1   Introduction 

Object recognition is one of the most researched areas in computer vision. Most of the 
reported methods can be categorized as geometric-based or appearance-based. Ap-
pearance-based methods have attracted much attention in the last years. They learn a 
model of the object's appearance in a two-dimensional image under different poses 
and illumination conditions. 

Several appearance-based methods have been proposed to recognize 3D objects. In 
[2], the authors show that 3D objects can be recognized from the raw intensity values 
in 2D images (pixel-based representation). In [3] and [4], Murase and Nayar devel-
oped a parametric eigenspace method to recognize 3D objects directly from their ap-
pearance. A support vector machine is applied in [6] to recognize 3D objects from 2D 
images. In [6] SVMs are also used for 3D object recognition. Experiments are pre-
sented a subset of the COIL-100 data set [8]. Recently, in [14] the authors proposed a 
new technique where they give a partial solution to the 3D object recognition problem 
(subset of COIL-100 from 0 to 100 degrees) combining some aspects of the infant vi-
sion system with associative memories. 

It is well known that during early developmental stages, there are communication 
pathways between the visual and other sensory areas of the cortex, showing how the 
biological network is self-organizing. It has been hypothesized that the functional role 
of perception is to capture the statistical structures of the sensory stimuli such that 
corresponding actions could be taken to maximize the chances of survival (see [10] 
for details). Barlow hypothesized that for a neural system, one possible way of captur-
ing the statistical structure was to remove the redundancy in the sensory outputs [10].  
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Taking into account these theories and adopting the ideas described in [13], we ex-
tend the appearance-based method, proposed in [14], for giving a full solution (from 0 
to 360 degrees) to 3D object recognition problem based on some biological aspects of 
infant vision [8] and [11]. A dynamic associative memory (DAM) is used as a learn-
ing device to recognize different objects from different points of view. Due to the in-
fant vision responds to low frequency signals, a low-filter is first used to remove high 
frequency components from the image. Then we detect subtle features in the image by 
means of a random selection of stimulating points. At last, the DAM is fed with this 
information for training and recognition. To test the accuracy of the proposal, we use 
the Columbia Object Image Library (COIL 100). 

The DAM can be seen as a particular kind of neural network specially designed to 
recall output patterns in terms of input patterns that might appear altered by some 
kind of noise. This model is not an iterative model as Hopfield’s model. The principal 
difference of this model against other classic models is that once trained, during re-
calling phase the synapses’ values could change as a respond to an input stimulus. 
The formal set of propositions that support the correct functioning of this model and 
the main advantages against other classical models can be found in [15].  

2   The Infant Vision System 

Categorization is a fundamental information processing capability that allows reliable 
recognition and response to novel examples of familiar category members. Categori-
zation of objects enables people to allocate cognitive resources efficiently. Because of 
the adaptive nature of categorization, it is not surprising that categorization abilities 
emerge early in infancy. Children have several capabilities such as learning, memory 
and recognition. Children emerge from the infancy period with the ability to form and 
retain explicit memories of past events, recent research has made clear that even very 
young infants have the capability to retain information over long delays [9]. 

Scientists used to believe that the newborn’s brain was just a smaller version of the 
adult’s brain, which was completely “wired” at birth. Today we know that the baby’s 
brain is a dynamic structure; it makes many new connections each day as it grows. 
Researchers have established that infants appear to recognize familiar stimuli early in 
the first year of life (e. g. a mother’s face). There are several evidences that indicate 
the infants are capable to efficiently perform two of the most challenging and com-
plex problems in pattern recognition: face and 3D object recognition [8]. 

Vision is limited at birth (Fig. 1), such that only low spatial frequencies are proc-
essed [1]. The Linear System Model (LSM) proposed by Banks and Salapatek, is 
based on the assumption that newborns prefer to look at what they better see. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 1. Images perceived by an infant. (a) Newborn. (b) 8-week old. (c) 16-week old. (d) 3-
month old. (e) 6-month old. (f) Adult. 
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3   Description of the Proposal 

The proposal consists of a DAM used to recognize different 3D objects; some inter-
esting applications of this model are described in [12], and [13]. As the infant vision 
responds to low frequency signals, a low-filter was first used to remove high fre-
quency components from the image. We proceeded to detect subtle features in the im-
age by means of a random selection of stimulating points. At last, the DAM was fed 
with this information for training and recognition, see Fig. 2.  

  
(a) (b) 

Fig. 2. A general schema of the proposal. (a) Building phase. (b) Recall phase. 

It is important to mention that instead of using a filter that exactly simulates the in-
fant vision system behavior at any stage we use a low-pass filter (average filter) to 
remove high frequency. As equal as the infant vision system, this filter eliminates 
high frequency components from the pattern. 

To simulate the hypothetical idea of how an infant detects subtle features, some 

pixels (stimulating points) of pattern kx  are random selected, where k defines the 
class of the pattern. These stimulating points SP are used by the DAM to determine 

an active region and are given by { }c+∈sp �  where c  is the number of used SP. 

( ) , 1, ,isp random n i c= = K  where n  is the size of the pattern.  To determine the 

active region, the DAM stores during training phase an alternative simplified version 

of each pattern kx  given by:  

( ) { }
1

 , ,
c

k k k k k
sp spss x x= = =spss x x K  (1) 

During recalling, each element of an input simplified pattern k
spx% excites some of 

these regions and the most excited region will be the active region. To determine 
which region is excited by an input pattern we use: 

( )
1

arg min
p

k
iik

b ss
=

= −⎡ ⎤⎣ ⎦x ss  (2) 

For each element of k
spx%  we apply eq. 2 and the most excited region (the region 

that more times was obtained) will be the active region. 
We supposed that the most relevant information that best describes an object in an 

image is concentrated in its center. In general, when humans pay attention to a  
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particular object, most of the time humans they focus their sight in the center of the 
field vision. Trying to simulate this, we use a Gaussian random number generator. 

Building of the DAM is done as follows: 

Let  
k
xI  and  k

yI  an association of images and c  be the number of stimu-

lating points. 

1. Take at random a stimulating point , 1, ,isp i c= K . 

2. For each association: 

a. Select filter size and apply it to the stimulating points in the 
images. 

b. Transform the images into a vector (
kx ,

ky ) by means of the 

standard image scan method. 

3. Train the DAM and compute the simplified patterns by using eq. 1. 
 

Pattern k
yI  can be recalled by using its corresponding key image k

xI  or distorted 

version k
xI%  as follows: 

 

1. Use the same stimulating point, , 1, ,isp i c= K  and filter size as in 

building phase. 

2. Apply filter to the stimulating points in the images. 

3. Transform the images into a vector by means of the standard image 
scan method 

4. Determine active region using equation 2. 

5. Recall the output image as described in recalling procedure [15]. 

4   Experimental Results 

To test the accuracy of the proposal, we have used the COIL 100 database composed 
by 100 objects (72 images per object). We have used different subsets of COIL 100 
for training (T1, T2, T4 and T8) and recognition (R90, R180, R270 and R360). T1 is 
composed by 1 image of each object at 0°. T2 is composed by 2 images of each object 
at 0° and 180°. T4 is composed by 4 images of each object at 0°, 90°, 180° and 270°. 
T8 is composed by 8 images of each object at 0°, 45°, 90°, 135°, 180°, 225°, 270° and 
315°.  R90 is composed by 18 images of each object from 0°-85°. R180 is composed 
by 36 images of each object from 0°-175°. R270 is composed by 54 images of each 
object from 0°-265°. R360 is composed by 72 images of each object from 0°-355°. 
     Before training the DAM, each image was transformed into an image pattern. For 
this, each bmp file was read from left to right and up and down; each RGB pixel 
(hexadecimal value) was transformed into a decimal value. Finally the information 
was stored into an array. The DAM was trained in the auto-associative way using the 
building procedure described in section 3. Once trained the DAM we proceeded to 
test the proposal with three sets of experiments. We have trained the DAM using each 
subset for training and we have tested the accuracy of the proposal using each subset 
for recognition (2400 experiments were performed divided in three sets). At last, we 
tested the accuracy using three different numbers of SPs. 
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First set of experiments. In this set of experiments we compared the accuracy of the 
proposal using four different random number generators. The first generator generates 
uniformly distributed random numbers (uniform 1) in intervals.  The second generator 
also generates uniformly distributed random numbers (uniform 2). The third and forth 
ones generate Gaussian random numbers based on the polar form of the Box-Muller 
transformation. For the third generator, we generated random numbers over the image 
transformed into a vector using a mean of 8191.5 and a standard deviation of 4729.6. 
For the forth generator we generated random numbers over axis x and y of the image 
by using a mean of 63.5 and a standard deviation of 37.09. By using this generator we 
tried to approximate the way humans focus their sight to the center of the field vision.   
 

Discussion 1.  In average, the accuracy of the proposal when using the first two gen-
erators was of 27%. For Gaussian generators, the accuracy of the proposal was of 
36% and 44% respectively. Despite of the accuracy obtained, we observed that the re-
sults were better using Gaussian random numbers over axis x and y on an image than 
other generators. In this experiments we tested only with 1000, 2000 and 3000 stimu-
lating points and accuracy obtained converged almost to the same results. 

 

         
(a)     (b) 

Fig. 3. (a) Average accuracy of the proposal using different random selection techniques. (b) 
Behavior of the proposal using the different sets for training and recalling. 

On the other hand, we supposed that if we increased the number of images during 
training the accuracy of the proposal could be increased. However, the results ob-
tained indicated that if the number of images is increased during training, the accu-
racy diminishes; refer to Fig. 3 (a). Furthermore, the accuracy for R90-R360 when us-
ing T1 was so different, high accuracy for R90 and low accuracy for R360. This is a 
normal result because we could not expect recognizing something that we would 
never have seen before. However, if T2-T8 is used, the accuracy of the proposal is 
almost the same for R90-R360; see Fig. 3(b).  

 

Second set of experiments. In this set of experiments we modified the value of the 
standard deviation of generator Gaussian 2D. When using this generator we increased 
the accuracy of the proposal and we also approximated how a person focuses his sight 
at the center of the field vision. When humans focus their sight, they also perceive in-
formation from the periphery to the center field vision. We could control the radius of 
the center to the periphery by adjusting the value of standard deviation.  
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Discussion 2. In the previous set of experiments a standard deviation of 37.09 was 
used, this means that SPs where generated from the whole image. The reduction of 
the standard deviation caused that SPs get concentrated in the center of the image. In 
Fig. 4 we show the accuracy of the proposal when varying the value of standard de-
viation (due to space limitations we only report the results using R360). SD-x is the 
value of the standard deviation 37.09 minus the value of x. As can be appreciated 
from this figure, when the standard deviation is reduced, the accuracy of the proposal 
increases, but when the stimulating points are too concentrated in the center of the 
image the accuracy of the proposal tends to decrease. This result could well describe 
the behaviour of humans when they watch an object. For example, if the person is far 
away from an object, then the person could see the object but it could be difficult to 
recognize it due to some distractions (noise); if the person gets closer (diminishing the 
standard deviation) the person could see and recognize the object without distractions; 
but if the person gets so closer (diminishing so much the standard deviation) the per-
son could see the object but it could be difficult to recognize it due to he needs more 
information of the object. The two best accuracies, changing the value of the standard 
deviations, were of 94% and 96% when using SD-20 with T4 and T8 respectively. 
 

 

Fig. 4. Accuracy of the proposal using different standard deviations and different sets for train-
ing and recognition 

Third set of experiments. In this set of experiments we removed the high frequen-
cies of the images in order to improve the accuracy of the proposal. By removing high 
frequencies, as we will see, unnecessary information is eliminated; with the help of 
the DAM efficient object recognition can be attained. Although this is not a plausible 
solution to model the infant vision system, as we previously said, we have used an av-
erage filter. In this set of experiments we applied the filter to the stimulating point in 
the images. We tested different sizes of the filter (1-39) combine with different SD-x. 
 

Discussion 3. As can be appreciated from Fig. 5(a) and Fig 5(b), the accuracy of the 
proposal when using SD-5, SD-10 and SD-15 increases when the size of the filter is 
increased. For SD-20, SD-25 and SD-30 the accuracy of the proposal slightly de-
creases when the size of the filter increases. The two best accuracies obtained with T2 
were of 93% and 92% using SD-5 and SD-10 respectively. The two best accuracies 
obtained with T4 were of 98% and 97% using SD-5 and SD-10 respectively. 

In average, by removing high frequencies and by selecting at random stimulating 
points, and by using a Gaussian number generator over axis x and y, contributes to elimi-
nating unnecessary information; with the help the DAM efficient object recognition can  
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(a)     (b) 

Fig. 5. Accuracy of the proposal simulating the behavior of the infant vision system. (a) Behav-
ior obtained using T2 and different SDs. (b) Behavior obtained using T4 and different SDs. 

 
be obtained. In general, the accuracy of the proposal surpasses the 90% of recognition 
and with some configurations we up-performed this result until 99%. 

The results obtained with the proposal through several experiments were compara-
ble with those obtained by means of a PCA-based method (99%). Although PCA is a 
powerful technique it consumes a lot of time to reduce the dimensionality of the data. 
Our proposal, because of its simplicity in operations, is not a computationally expen-
sive technique and the results obtained are comparable to those provided by PCA. An 
analysis of the computational complexity of random selection requires only ( )O rn  

whereas PCA  requires ( ) ( )2 3O p n O p+ . 

5   Conclusions 

In this paper we have shown that by applying some aspects of the infant vision system 
it is possible to enhance the performance of an associative memory. Also we show 
that is possible its application to complex problems such as 3D object recognition.  

The biological hypotheses of this method are based on the role of the response to 
low frequencies at early stages, and some conjectures concerning how an infant de-
tects subtle features (stimulating points) in objects. We used a DAM to recognize dif-
ferent images of a 3D object. As the infant vision responds to low frequency signals, a 
low-filter is first used to remove high frequency components from the image. Then 
we detect subtle features in the image by means of a random selection of stimulating 
points. At last, the DAM is fed with this information for training and recognition.  

Through several experiments (using different training sets and simulating the behavior 
of the infant vision system) we have shown how the accuracy of the proposal can be in-
creased by using a Gaussian number generator over axis x and y on an image. The way as 
we humans focus our sight to the center of the field vision and perceive information from 
the periphery to the center field vision could be simulated by adjusting the value of stan-
dard deviation. 

By removing high frequencies and by randomly selecting of stimulating points contrib-
utes to eliminate unnecessary information and with the help of a DAM object recognition 
can be very efficient. Important to mention is that, to our knowledge, nobody has reported 
results of this type using an associative memory for 3D object recognition. These  
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encouraging results suggest that the study of the behavior and neural process of the human 
brain could provide bio-inspired ideas to solve complex problems in pattern recognition.  

The results obtained with the proposal were comparable to those obtained by 
means of a PCA-based method. Although PCA is a powerful technique it consumes a 
lot of time to reduce the dimensionality of the data. Our proposal, because of its sim-
plicity in operations, is not a computationally expensive technique and the results ob-
tained are comparable to those provided by PCA.  

This is just the first step. Nowadays we are investigating other aspects of the infant 
vision system such as attention, learning and feature extraction in order to give a more 
general solution to this complex problem. We are sure that the study of human brain 
could provide us of some useful cues to solve this and other complex problems.  
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Abstract. This paper presents a method for defining one or more virtual re-
stricted zones within a surveillance area which is observed with stereo cameras. 
When an object enters a restricted zone, the system highlights the object shown 
in the monitoring screen or triggers other devices to produce a visual or audi-
tory alarm. The proposed method works by extracting the foreground objects 
for both the left and the right images from their respective stereo cameras. Then 
it estimates the object's position in terms of depth plane using image shifting 
and number of overlapping pixels. Finally, it determines whether there is a col-
lision between objects and restricted zones in order to trigger an alarm where 
necessary. The algorithm has been tested with a series of stereo videos, in 
which samples of it are presented in this paper.  

1   Introduction 

The ever-changing climate of public safety has always been the utmost concern of any 
society. However, it has become increasingly difficult to maintain safety in the face of 
growing uncertainty and unorthodox threats. Technological advances afford us the 
ability to extend our sensory reach and vigilance to close the gap on security risks. 
Nowadays it is not enough to simply detect for security events but to identify poten-
tial risks before it manifests itself into a dangerous security event. 

Intelligent visual surveillance systems [1] are currently adopted by many to 
counter these security risks. Even the basic task of monitoring an area is being rede-
fined with automatic intrusion detection. 

Under human visual perception, objects located nearer to a viewpoint tend to ap-
pear larger than objects located far away from that same viewpoint. However, this 
assumption is not always accurate, as a child standing near and an adult standing 
further away from a camera may look similar in size from the camera’s image where 
in actual fact they are not. Instinctively humans are able to differentiate this but such 
problem presents a significant challenge for automated visual surveillance systems. 
Thus, machine understanding of our 3-dimensional (3D) world and the relative spaces 
that we have occupied are required to solve this problem.  

This paper proposes a surveillance system that can automatically detect when an 
object enters a virtual restricted 3-dimensional zone as illustrated in Fig. 1. The pro-
posed system employs two cameras to capture stereo images. With this system, the 
perspective problem is solved by deriving an object's 3D coordinates to detect intru-
sions and to aid automated visual surveillance systems. 
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Fig. 1. Apparatus setup for virtual fence for a surveillance system 

In stereo vision, solving the correspondence problem is a key point. Searching for 
correspondence points or features is required as the inputs for the matching process in 
order to calculate the parallax [2][3][4]. The processing time for this process increases 
when the number of objects increases or the objects having similar feature properties 
increases. This will affect the overall processing time in detection for a surveillance 
system, which is time-critical. In addition, the performance of this method depends a lot 
on the resultant image quality from the pre-processing stage, such as foreground extrac-
tion. For example, features such as blob area or centroid for the same object may vary 
between left and right images under different brightness condition. As a result, objects 
may not be matched or the parallax information may be wrongly calculated. 

The proposed method estimates the parallax using image shifting and number of 
overlapping pixels. This method does not require any matching process, and thus, it 
reduces the processing time and the dependency on the pre-processed image quality is 
not that critical.  

This paper is divided into 6 sections. Section 2 gives an overview on parallax 
whereas Section 3 demonstrates the proposed algorithm in detail. The experimental 
system setup is illustrated and explained in Section 4. A few experiments have been 
conducted using stereo surveillance video. Due to the limitation on results presenta-
tion, some video frames are extracted and presented in Section 5 as images. The paper 
ends with conclusion and future work as described in Section 6. 

2   Parallax 

Human eyes are horizontally separately and thus each eye has a slightly different view 
of the world. This difference in the sensed image is called binocular parallax [5][6], 
which is the most important depth cue for human. Stereo imaging system that mimics 
human eyes employs this theory to extract depth information from the left and the 
right (stereo) images.  

 

Processing unit and display 
device in a control room 

Surveillance area 

 Restricted 
        Zone 

Stereo 
camera 



810 Y.S. Yong et al. 

Fig. 2 illustrates the concept of stereo imaging system. Object placed at different 
depth plane produces different separation in the stereo images. Therefore, this separa-
tion, called parallax, can be used to estimate the object's position in terms of depth 
plane.  

The known parameters of camera setting and calibration can be applied to estimate 
the 3D coordinate. However, as shown in Fig. 1, the depth plane size increases as it 
further away from the cameras. Therefore the precision for the 3D coordinate de-
creases as the object placed further away from the camera. 

 

 
Fig. 2. Concept of stereo capturing system 

3   The Proposed Algorithm 

The complete algorithm for the system can be broadly divided into two sections. The 
pre-processing is the preparation whereas the main processing is the core of the algo-
rithm that detects the intrusion into the restricted zone. 

3.1   Pre-processing 

There are two tasks in the pre-processing stage:  
• Collect background model and  
• Determine the border parallax value and the parallax list. 

To perform foreground extraction, the process requires a background model. There 
are many methods to model a background [7]. 

The border parallax value, PF, is a user defined parallax value that falls on the bor-
der of two zones. Another set of parallax values, Pn, stored in a list, is required for the 
process of image shifting. These parallax values, Pn, and the number of parallax val-
ues, N, are determined by the user. The more borders are defined, the longer the list.  

Depth 
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Fig. 3. Flowchart for intrusion detection 

 

N = total number of parallax value in list 
I = total number of labeled blob 
Pn = nth parallax value 
parallax[i] = parallax value assigned to blob i 
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3.2   Main Processing 

The main algorithm, as illustrated in Fig. 3, starts with image acquisition. Stereo im-
ages are captured and processed separately. 

For foreground extraction, colour image subtraction between background image 
and current image is performed followed by grey-scale conversion. The grey-scale 
conversion is adopting a simple equation as follow:  

3

),(),(),(
),(

yxByxGyxR
yxG

++=  (1) 

where G(x,y), R(x,y), G(x,y) and B(x,y), are the grey-scale, red-plane, green-plane and 
blue-plane for pixel (x,y) respectively.  

Then, thresholding is applied to the grey-scale stereo images to produce binary 
foreground stereo images where the background pixels are assigned to 0 whilst the 
foreground pixels are assigned to 1. 

The binary left image is labeled and kept as reference image whereas the right im-
age is translated in x-axis to find the optimum parallax value for each blob. The val-
ues, Pn, listed in the parallax list are used as x-axis translation parameter. Then the 
labeled left image and shifted right image are multiply together to count the overlap-
ping area between two images while maintaining the blob labeling number. If the 
overlapping area is greater than the area stored in maxArea, then the value of max-
Area is substituted by the current area, area, and the current parallax shift value, Pn, is 
recorded in correspondence parallax.  

After performing the shifting for every value in the parallax list, the parallax shift 
that having maximum overlapping pixels for the particular blob, parallax[], is taken 
as its parallax value. This value is compared with the predefined border parallax 
value, PF, to determine its zone and thus, making decision on whether an action 
should be taken. 

4   Experiment Setup 

4.1   System Setup 

The proposed system consists of a pair of stereo cameras, a frame grabber with two 
inputs, a processor and a display device. The two cameras are placed side-by-side 
such that the captured stereo images look similar. The hardware setup is similar to the 
setup illustrated in Fig. 1. 

In the experiment, the surveillance zone, lobby, is divided into three different 
zones: free zone, warning zone and restricted zone as illustrated in Fig. 4. It is prefer-
able to place the camera within the restricted zone as illustrated in Fig. 1. As men-
tioned before, the depth plane size increases as it further away from the camera. Since 
the restricted zone in this system covers a smaller area, it is easier to define the 
boundary parallax if the camera is placed within this restricted zone.  

The experiment is tested using an Intel Core2 CPU at 1.83GHz with 1.99GB of 
RAM. The input video is an AVI file with the resolution of 640x480. 
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Fig. 4. Defining warning zone and restricted zone in a surveillance zone 

4.2   Pre-processing 

In this paper, the background model is the first image captured by the camera prior 
to the main algorithm starts. The scene is clear during the background model  
capturing.  

As mentioned before, two virtual fences are defined in experiment presented in this 
paper and thus it requires four parallax values, Pn, as illustrated in Fig. 5. The bound-
ary parallax values, PF at the virtual fences are set to 0 and 2 whereas the parallax list 
values are {-1, 1, 3}. However, users are free to define the number of zone and the 
sensitivity of the program by modifying the PF and Pn values. 

5   Experimental Results 

A few sets of experimental results are presented in this paper. The object that enters to 
the warning zone is indicated by a small solid box whereas the object that enters to 
the restricted zone is indicated by a bounding box.  

More than thousands of video frames are experimented. Fig. 5 illustrates two sam-
ple video frames extracted from the experimental results.  

Table 1 summaries some experimental results. The same set of image sequence is 
tested using three methods to determine the occupied zone for each person. The first 
method is the proposed algorithm with dense list of parallax values (Pn = {-3, -2, -1, 
0, 1, 2, 3, 4, 5, 6}). The second method is the proposed algorithm with sparse list of  
 

Table 1.  Accuracy measurement and time taken for three experiments (total of 1000 frames) 

Algorithm Accuracy Time taken  Frame rate  
Dense parallax list 81.73% 91.45s 10.93fps 
Sparse parallax list 84.52% 64.27s 15.56fps 
Feature-based (Centroid) 60.99% 67.14s 14.89fps 
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Fig. 5. Extracted video frames from the experimental results with sparse parallax list 

parallax values (Pn = {-1, 1, 3}) whereas the third method is using centroid to calcu-
late its parallax value. The accuracy is calculated as follow: 

 

accuracy = 100
#...1#

#...1#
x

npersonforframepersonforframe

npersonforframecorrectpersonforframecorrect

++
++

   (2) 

6   Conclusion and Future Work 

This paper presented a method to find the depth of objects of interest and more par-
ticularly to be applied in surveillance system. Using a simple background reference 
model, simple foreground extraction algorithm and image subtraction, the proposed 
method was able to perform well and provide acceptable results.  

Although errors are detected, it can be further improved through future work by 
employing more robust foreground subtraction algorithm to provide more reliable 
input This can then be tightly integrated with the method for improved accuracy and 
detection.  
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Abstract. The internal load in humans caused by an external exposure is differ-
ent in each person and mainly depends on metabolism. Using the recently pro-
posed method of mnSOM we are able to describe the human metabolism using 
a functional module (linear or nonlinear) for each individual.mnSOM enables 
us to subdivide individuals into classes based on the functional description of 
each individuals metabolism. Furthermore the shown approach is able to show 
dependencies between external exposure and internal load in humans. In envi-
ronmental epidemiology this will be used to establish links between external 
exposure and internal load patterns to gather clinical relevant information for 
practitioners. 

1   Introduction 

To gather deeper knowledge about human diseases potential influenced by exposures 
it is necessary to associate external and internal load patterns as well as binary out-
come variables on the health state of individuals. The palette of external exposure 
patterns embraces environmental factors as well as socio-economic factors. 

This paper describes an approach for associating external and internal load patterns 
in order to recognize patterns in these combined patterns. These patterns are used to 
deduce on the relationships and processes behind. 

The main focus of this investigation is to classify individuals into several typical 
clusters of similar behaviour in terms of metabolism and subsequently to find core 
features of these clusters. 

2   Material and Methods 

The internal load resulting from an external (environmental) exposure depends on the 
metabolism capacity of the individual person. To gather deeper knowledge about 
these links, it is necessary to look behind the scenes and to find out which variables 
affect each other as well as which groups of individuals can be described. 
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Environmental exposure is described by variables like concentration of several 
chemical compounds, traffic intensity or socioeconomic parameters. They are gath-
ered by measurement and through structured questionnaires.  

Internal load patterns are described by both the resulting dose of the original sub-
stance and the metabolites which are generated during metabolism inside the human 
body. Information on human health is collected from physicians diagnose as well as 
from structured questionnaires. 

Although internal load patterns contain a lot of useful information about the current 
state of the individual of origin, it is very difficult to handle these extremely large data 
sets with traditional statistical methods. The use of principal component analysis 
(PCA) is very common. 

However, these methods assume a linear relationship between the measured sam-
ple and the converted principal component. Because in biological processes this linear 
relationship can not be assumed in general, errors are not controllable. Therefore it’s 
crucial to have a method, which is able to map non-linear dynamics, in oder to repre-
sent the relationships and transformations in human metabolism. Furthermore, PCA 
requires prior definition of a particular number of factors, which is not known in most 
cases. 

We decided to use a clustering method based on self organizing maps (SOM) [1;2]. 
They provide an efficient way to map from an n-dimensional space to a two-
dimensional space and to visualize multivariate data. The self organizing map is a 
member of the class of the unsupervised artificial neural network algorithms. In con-
trast to supervised artificial neural network algorithms, self organizing maps are able 
to extract typical features without any prior knowledge about the structure of the data. 

The extension mnSOM (modular network self-organizing map) proposed by Furu-
kawa et al. [3;4] enhances the SOM with functional modules (FM) inside each neuron 
in order represent non-linear functions between independent and dependent variables 
(nonlinear input-output functions). as well as to map the objects under consideration 
(humans in our case) using the SOM algorithm. mnSOM enables us to subdivide 
individuals into classes based on the functional description of each individuals me-
tabolism. Furthermore prediction of selected outcome variables as well as missing 
values is possible after training of the mnSOM network. 

2.1   Application of mnSOM 

The main advantage of self organizing maps is their ability to map a high-dimensional 
data set onto a lower dimensional (usually two-dimensional) space while preserving 
the original topological relationship between the objects in the data set. [1;5]. This 
advantage is used in mnSOM to map the objects onto a two dimensional space in 
order to show their similarities. Details of the original SOM algorithm can be found in 
[5] for theoretical considerations. The concept of mnSOM was first published by 
Furukawa et al. [6]. 

For mapping the dependencies of the metabolisms inside the human body, the 
functional modules multi layer perceptron (MLP) of the mnSOM are in use. 

The mnSOM consists of two layers: the input layer and the Kohonen layer which 
holds the functional modules. Both layers are fully interconnected. The lattice type of 
the Kohonen layer can be taken as rectangular or hexagonal [5]. 
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The topology of the MLP depends on the data structure under consideration. There 
is a input neuron needed for every variable in the environmental exposure vector. 
Also for the vector representing the internal load profile one neuron for every variable 
is needed. 

Variables representing the exposure situation of an individual and genetic informa-
tion, which can also be incorporated into the functional module, form the information 
on the input side of the functional module. 

Information on human health as well as information on internal load forms the in-
formation on the output side of the functional module (dependent variables). 

Sample data in the form 

),...,1(,...,1)}(,{( NjMiyxD ijiji ===  (1) 

is known for each individual. 
Using a MLP the internal relationships in each individual are trained into node 

weigths of the MLP’s inside the functional modules. The metabolism as a transforma-
tion from environmental exposure to internal load can be described as a functional 
dependency of the internal load on the exposure scenario. Because of this functional 
dependency, we propose the use of MLP as functional module inside the mnSOM for 
mapping of the functional dependencies of human metabolism. These MLPs are 
trained using exposure variables as input and the internal load variables as output. 

Using the mnSOM algorithm the similarities between the individuals can be repre-
sented inside the mnSOM after trainig. The result is a topology preserving mapping of 
all individuals onto a two-dimensional plane. 

2.2   Normalization of Metric Variables 

Metric variable values are normalized to a closed {0;1}-interval before processing [7]. 
This is done by the following assignment: 

)min()max(
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jj
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−
−
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with i as the variable index and j as the case index. These combined data vectors are 
fed into a self organizing map. The number of functional modules in the mnSOM 
predicts the maximum number of clusters simultaneously. 

After the training steps each functional module represents the centre of a cluster. 
Each cluster contains a typical set of cases with typical properties. These properties 
are best represented by the data vector of the functional module in the center of each 
cluster. Therefore the values of the data vectors of each functional module can be 
taken into account as best describing the environmental exposure situation in relation-
ship to the outcome situation found in the cases of this cluster. 

2.3   Training of the mnSOM and its Functional Modules 

Exposure variables are fed into MLP of the functional modules as inputs; variables 
describing internal load as well as outcomes are fed into models as output vectors as 
shown in fig. 1. The link between is undefined at the beginning. After training of the  
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external exposure vector

internal load profile vector

kohonen layer after
training (with clusters)

Initial kohonen layer
(3x3 lattice)

This structure exists once for every individual

Each module is an element of the SOM

MLP generates a relationship between exposure and 
internal load profile for each individual

external exposure profile for each individual

internal load profile for
each individual

 

Fig. 1. Overall system architecture 

functional modules MLP the link is described by a functional dependency stored in 
the weights of each perceptron. According to Furukawa’s idea, all functional modules 
are organized in the mnSOM. 

The data set for training of the MLP is randomly chosen out of the dataset of all 
individuals at the beginning. All functional modules are trained by backpropagation. 

The winner neuron in the mnSOM is selected by measuring the distance between 
the individuals data set and the set of functional modules inside the mnSOM. The 
functional module which is closest to the data set under consideration is trained by a 
higher learning rate, whereas functional modules farther away are trained by a lower 
learning rate. Therefore an adaptation of the mnSOM on the dataset is achieved. The 
mnSOM learning process is described in detail in [6] 

The training process includes multiple training steps with the data set of this indi-
vidual. Therefore the MLP fits very good to this single individual after training proc-
ess. If an overfitting of the MLP happens, this doesn’t matter, because overfitting 
comes along with a high accuracy of the fitted MLP to the individuals data set. 

As mentioned above, mnSOM is capable to map from an n-dimensional attribute 
space to a lower dimensional (typically 2-dimensional) attribute space. To find class 
assignments it is necessary to add some calculations. 

For clustering purposes we need a mnSOM with less nodes than individuals under 
consideration. So some of the nodes are able to map one or more individuals on them. 

Class assignment for each individual can be determined by calculating the distance 

)),(ˆ(2 k
i MDOL  (3) 

of the dataset iD  against the weight vector of each module kM  after training using 

equation 4: 
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X and Y represent the weight vectors for measuring the distance in between. P 

stands for the number of dimensions of both vectors. k
jie ,  denotes the error between 

data vector jir ,  and the output of the k  -th functional module [8]. Different metrics 

can be used [9]. 
The functional module with the least euclidean distance is the center of the class, 

the case in doubt belongs to. One can count the number of assigned cases for each 
Kohonen neuron. Kohonen neurons with large numbers of assigned cases represent 
class centers. 

2.4   Estimation of Class Properties by Calculation of Parameter Values for 
Functional Modules 

As proposed in [12] for the classical SOM approach it is also possible for the mnSOM 
to calculate the class properties of each class by calculation of parameter values for 
the functional module behind each class. 

For the analysis of the results of clustering it is important to gather deeper knowl-
edge about the variable values behind each class. as well as the relation of these val-
ues compared to all classes. Each class is represented by a functional module. There-
fore all properties of a class are stored in the representing functional module. 

As an extension to the classical SOM there is not only a weight vector, but there is 
also a functional dependency, described by e.g. a MLP in each functional module. 

Because of the fact that the weight vectors of the functional modules contain nor-
malized values in a closed {0;1}-interval these values must be ‘denormalized’ be 
before considering on them. Denormalization means the opposite transformation than 
normalization and transforms the values in the functional module back to the original 
co-domain of the underlying variable using the following equation: 

)min())min()(max(*( jjjijij xxxnormxx +−=  (5) 

We use a visualization scheme for this purpose, which shows the values of a vari-
able for all functional modules simultaneously. Each functional module is visualized 
by a bar, which is color coded and labeled with the denormalized value of the selected 
variable. Using these denormalized values the distribution of values can be inspected 
for each variable. The values behind functional modules which are not assigned as 
class centers are unimportant and can be removed from further inspection. Values 
behind functional modules representing class centers are at the same time the ap-
proximated values for the respective variable in this class. 

2.5   Visualization of the Class Assignment 

To estimate the goodness of classification, it is necessary to inspect the number of 
cases, which are assigned to each functional module. This approach is a modified 
version of the visualization of the U-matrix first described by Ultsch [10], who uses a  
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Fig. 2. Graphical representation of case assignment for a 5x5 Kohonen layer 

two-dimensional visualization and colour coding of data density. The graphical repre-
sentation of the case assignment is shown in figure 2. 

The topological position of the functional module on the map is given by the num-
bers on x- and y-axis. The height of each bar is equal to the number of cases which 
are assigned to this neuron. Additionally the case-identifier and variable values be-
hind each functional module can be obtained. 

During several learning cycles a selected case can be assigned to different func-
tional modules. This is a result of the random initialized weight vectors in the Koho-
nen layer and the subsequent evolving process. If the same group of cases is assigned 
to different functional modules this is no problem at all. It is also no big deal if sev-
eral cases jump from one to another group. Difficulties arise if the group members 
change rapidly. Measuring of the permanence of class assignment of a single case 
over several learning cycles is necessary, but remains a task for future development. 

Comparing clustering solutions generated by different mnSOM topologies with 
possibly different class numbers can be done by applying Davies Bouldin Index [11]. 

2.6   Prediction of Variable Values 

Variable value prediction can be subdivided into prediction of missing variable values 
and prediction of future outcome variables. 

Most data sets in epidemiology do have missing values. Using a trained mnSOM, it 
is possible to calculate the most probable value for the missing variable value out of 
the weights of the functional module which is closest to the case under consideration. 

Another area for application the proposed mnSOM architecture is the prediction of 
future outcome variables. This is very close to classification, because it will enable us 
to predict future health state of study participants from the already present measure-
ments. It is necessary, that outcome variables for at least some cases are known. 

For prediction of outcome variables we trained the self organizing map with cases 
which outcomes were known. In a second step the unknown cases for prediction were 
fed into the map. The Euclidean distance against each Kohonen neuron is calculated 
as described above. The Kohonen neuron with the least distance represents the best 
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matching scenario. Its value for the outcome variable under consideration is the most 
probable future value for the selected case. 

For evaluation purposes the calculation of a correct prediction rate is essential. 
This can be done by dividing a given data set into a training set and a test set which 
are nearly equal sized. The training set is used to train the SOM to a stable state. Af-
terwards the test set is used to verify the outcomes prognosed by the SOM. During the 
forecasting process it is important not to use the outcome variables for calculation of 
the euclidean distance. This means with n variables (dimensions) and k outcome vari-
ables to predict, the euclidean distance is only calculated from the n-k remaining 
variables. 

3   Results 

The approach presented here, integrates data vector normalization, MLP training, 
mnSOM training, class finding, visualization and variable prediction. 

In a first step we were able to determine settings for mnSOM parameters, which 
guided us to a stable configuration. We were able to clearly see the fact, that the 
mnSOM algorithm does not force all functional modules to be populated with data 
from individuals. Consequently there is an upper limit for the number of functional 
modules in each dimension of the mnSOM. We examined this limit by visual inspec-
tion and gradually lowering the number of functional modules in each dimension of 
the mnSOM. 

If the number of functional modules is too high, then a significant number of mod-
ules remains unassigned. These unassigned modules can be perceived as borders 
between the classes. Simultaneously the number of assigned cases to each assigned 
functional module is relatively low. Typically one can observe several contiguous 
functional modules with only slight differences. By reducing the number of functional 
modules these minor differing neurons will be summarized into one module repre-
senting the respective class. This process of reconfiguration and visual inspection is 
supported by indicators for classification quality such as Davies-Bouldin-Index. Fu-
ture planning includes automation of this process using computer grid technology. 

4   Discussion 

Using this approach we are able to 
a) recognize dependencies between external exposure and internal load situation 

using mnSOM with the functional module MLP, 
b) cluster individuals into groups and recognize similarities between them, 
c) predict missing values, 
d) predict the probabilistic value of an outcome variable for a given environmental 

load situation. 
In environmental epidemiology this will be used to establish links between external 

exposure and internal load patterns to gather clinical relevant information for practi-
tioners. 
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In consequence the shown approach is easy to handle and does not require complex 
equipment for analysis. It can therefore be established in nearly every laboratory pro-
vided with state-of-the-art computational equipment. 

Examinations with data from different studies realized at our department have 
shown the usefulness of this approach. Future plannings include the application of this 
method to data from longitudinal studies from birth cohorts to gain knowledge about 
critical time windows in childhood development. 

References 

1. Kohonen, T.: Self Organizing Maps. Series in Computer Sciences edn. Springer, Heidel-
berg (1997) 

2. Zampighi, L.M., Kavanau, C.L., Zampighi, C.A.: The Kohonen self-organizing map: a tool 
for the clustering and alignment of single particles imaged using random conical tilt. Jour-
nal of Structural Biology 146, 368–380 (2005) 

3. Tokunaga, K., Furukawa, T.: Modular Network SOM: Theory, Algorithm and Applica-
tions. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, 
vol. 4232, pp. 958–967. Springer, Heidelberg (2006) 

4. Tokanuga, K., Furukawa, T., Yasui, S.: Modular network SOM: Extension of SOM to the 
realm of function space. In: Proceedings of WSOM 2003, pp. 173–178 (2003) 

5. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, New York (2000) 
6. Tokanuga, K., Furukawa, T.: Generalized Self-Organizing Maps (mnSOM) for Dealing 

with Dynamical Systems. In: Proceedings of the 2004 International Symposium on 
Nonlinear Theory and its Applications (NOLTA 2004), pp. 231–234 (2004) 

7. Zupan, J., Gasteiger, J.: Neural Networks in Chemistry and Drug Design. Wiley-VCH, 
Weinheim (1999) 

8. Tokanuga, K., Furukawa, T.: Generalization of the Self-Organizing Map: From Artificial 
Neural Networks to Artificial Cortexes. In: King, I., Wang, J., Chan, L.-W., Wang, D. 
(eds.) ICONIP 2006. LNCS, vol. 4232, pp. 943–949. Springer, Heidelberg (2006) 

9. Zell, A.: Simulation neuronaler Netze. Oldenbourg, München (2000) 
10. Ultsch, A.: Self-organizing Neural Networks for Visualization and Classification. In: 

Opitz, O., Lausen, B., Klar, R. (eds.) Information and Classification, pp. 307–313. 
Springer, Berlin (1993) 

11. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. 
Machine Intell. 1(4), 224–227 (1979) 

12. Roeder, S.W., Rolle-Kampczyk, U., Herbarth, O.: Visualization of Depending Patterns in 
Metabonomics. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, 
vol. 4234, pp. 278–284. Springer, Heidelberg (2006) 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Part VI 
 

Neuromorphic Hardware and Embedded 
Neural Networks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



M. Köppen et al. (Eds.):  ICONIP 2008, Part II, LNCS 5507, pp. 827–834, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Automated and Holistic Design of Intelligent and 
Distributed Integrated Sensor Systems with Self-x 

Properties for Applications in Vision, Robotics, Smart 
Environments, and Culinary Assistance Systems 

Andreas König 

Institute of Integrated Sensor Systems, TU Kaiserslautern 
67663 Kaiserslautern, Germany 
koenig@eit.uni-kl.de 

Abstract. The ongoing advance in micro technologies gives rise to increasingly 
versatile and capable sensors as well as unprecedented computational power 
and communication options in diminishing scale. The notion of smart dust 
summarizes ubiquitous computing and sensing application systems, which can 
serve for local as well as global information acquisition and decision making.  
For off-the-shelf-nodes, and  even more for dedicated physical designs, the sys-
tem design process becomes increasingly challenging and potentially intracta-
ble. Automated design methods emerging for intelligent systems are introduced 
as a remedy. These considerations will be extended to variations, that multiple 
system instances have to face in real-world applications and potential compen-
sation by incorporation of self-x properties. These concepts are elucidated for 
the case of reconfigurable and evolvable sensor electronics. Finally, an applica-
tion perspective of the presented approach for integrated distributed sensing in 
home automation, assisted living, and in particular, smart kitchen applications, 
denoted as culinary assistance systems will be presented. 

1   Introduction 

The incessant advance in micro and nano technologies paves the way to increasingly 
versatile and capable sensors, powerful communication capability, abundant computa-
tional power, efficient energy harvesting schemes, and affordable MEMS system 
integration. Complementing these physical benefits with the power of computational 
intelligence (IMEMS) gives rise to innovative solutions for many applications, e.g., in 
vision, robotics [3], biometrics, automotive, and automation [1,2]. The design of such 
systems, even restricted to off-the-shelf (OTS) components, imposes a severe load on 
the designers. Scene, sensors, and methods choice and parameterization are a tedious 
and time-consuming task, requiring expert skills and commonly producing moderate 
quality results at high cost and design effort (Fig.1a)). 

2   Intelligent System Design Automation 

Design automation techniques and a holistic view are salient here (Fig. 1 b)) and a  
methodology with corresponding tool implementation is pursued in our research for 
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vision tasks, , e.g., visual inspection, texture analysis, and other sensor applications 
for more than a decade. Our QuickCog system  (Fig. 1 c)) [6] was our first framework 
to implement the devised architecture. Automation was limited to the level of dimen-
sionality reduction and classification. Other design activities were interactively sup-
ported, e.g., based on effective data visualization. The architecture has been extended 
to feature computation level for image processing and texture analysis [7] and to 
multi-sensor system design, e.g., for gas sensor data analysis or automotive tasks 
[8,9]. The research comprised development and application of suitable assess-ment 
measures and optimization strategies, e.g., support-vector-machines (SVM) and parti-
cle swarm optimization (PSO). The results in image and sensor applications showed, 
that our design automation approach helps less skilled users to find practical solutions 
with less effort and even can beat expert solutions. In more recent activities multi-
objective optimization is investigated to achieve well performing but lean systems, 
i.e., resource-aware realizations for embedded/integrated sensor systems. 

 

 

     
 

Fig. 1. Issues of and architectures for intelligent system design automation 

3   Instance-Specific Adaptation in Multi-Site Deployment 

While visual inspection systems commonly feature small lot sizes, e.g., lot size one, 
in robotics or driver or live assistance systems large lot sizes can be expected, giving 
rise to special considerations on instance specific deviation compensation and utmost 
resource-efficiency (Fig. 2a)), motivating methodology extensions. Inspired by  
concepts of intrinsic evolution in microelectronics and evolvable hardware, Machine-
In-the-Loop-Learning (Fig. 2b)) [3] has been introduced to achieve adaptation for 
compensation and robustness increase as well as to some degree fault-tolerance and 
applied to the case of  a commercial laboratory robot system (Fig. 2c)).  In this work, 
the initially devised system, based on the techniques introduced in the previous  
 

a) 

d) 

b)

c) 
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Fig. 2. Intelligent system performance preservation for multi-site deployment in medical robot 

 

section, is kept re-trainable so that site-specific deviations or aging effects can be 
compensated [3]. The approach is well accepted in industrial use and sees extension. 

4   Inclusion of Self-x Properties  

Further needed increase of system flexibility, robustness, and fault-tolerance will be 
added by adaptive, self-x features on the hardware level itself. Our research deals with 
reconfigurable and evolvable sensor electronics (Fig. 3)). A redundant analog array 
was designed in this work, that can be reconfigured by programmable switches. The 
switch patterns can be adapted or optimized under the control of, e.g., a PSO algo-
rithm. For the special case of sensor signal conditioning special chips and system 
prototype have been developed [10-12]. In intrinsic, multi-objective evolution the 
hardware performance can be tuned and retained in the face of static or dynamic in-
fluences and deviations.  Fig.3 a) shows achieved intrinsically evolving sensor elec-
tronics and Fig.3 b) the aspired system concept, that complements the approach of 
section 3 for improved robustness and fault-tolerance in intelligent systems. 

5   Extension to SmE, AmI, and Culinary Assistance Systems 

The ongoing advance in Micro/Nano-technologies, commonly elucidated by Moore’s 
law, adds unprecedented computational power,  capable sensors in rich variations, and 
(wireless) communication options. Distributed sensing based on cooperating (multi) 
sensor nodes offers the baseline for more powerful smart environments.  Smart or 
sensate floors, e.g., based on capacitive sensor principles [4],  are one prominent ex-
ample of distributed, large area sensing, contrasting the diminishing sensor sizes in 
MEMS, and provide context awareness in many applications. However, sensor tech-
nology is heterogeneous & differs from main stream (CMOS) integration activities. 
So, the common extrapolation of Moore’s law to this domain is not fully justified.  
Collectively collaborating sensing and processing nodes are the baseline for SmE, 
such as smart homes (home automation), smart offices, smart hospitals/health care, 
smart cars (Automotive, Driver-Assistance-Systems, engine monitoring and control, 
..), smart streets (traffic monitoring and control), smart factories, smart classrooms (E-
Choke), or smart shops. Such new application domains add complexity, challenges, 
and opportunities. The extension of our described design approach to such distributed, 
networked systems of ubiquitous computing, SmE, and AmI based on IMEMSis  
 

a) b) c)
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Fig. 3.  a) Intrinsically evolvable sensor electronics, b) evolvable concept for complete system  

currently pursued in our research to answer the emerging design challenges for collec-
tive and holistic intelligent system design. This is particularly demanding, as the 
cross-disciplinary integration of skills and technologies from artificial/computational 
intelligence, human-computer-interaction, sensor & actuators, power consumption 
minimization and energy harvesting, chip/MEMS-based system integration as well as 
advanced communication and networking techniques is required.  The field of AmI 
(or ubiquitous computing) has received considerable attention in the last five years 
and is pursued in numerous national and international programs. A common AmI-
definition is: “An intelligent & adaptive electronic environment that proactively, but 
sensibly assists people in their daily life” [1]. This includes the aspects of enhancing 
human abilities (General Assistance-Systems), restoring & preserving human abilities 
(assisted-living/home care), unobtrusive systems (often today’s off-the-shelf solutions 
are insufficient for this aim,  requiring dedicated solutions, .e.g., MEMS), networked 
systems (wireless, wired (KNX-bus, or power grid)), context-aware systems (requir-
ing complex object/ event recognition & tracking capability), personalizable, adaptive 
& anticipatory systems (dito !), as well as robust, reliable & low-power autonomous 
operation. In some activities in excess to body-areas-networks, commonly related to 
RF-ID or medical activities,  implants in the human body are advocated by the com-
munity. The vision of such an emerging cyborg is reminiscent of a well-known sci-
ence-fiction plot of StarTrek. The borg civilization introduced there gives a warning 
of potential loss of privacy and even individuality and control due to the omnipresent 
scrutiny by such systems. Clearly, new rules and practices have to be established to 
avoid abuse and infringement of human rights by the entering in home and body of 
this more and more powerful technology.Research on Smart Homes or Intelligent 
Houses unifies automation and AmI R&D, with the focus on increasing comfort, 
energy efficiency, safety and last not least to provide life assistance to challenged or 
elderly people (AAL). World-wide numerous activities can be found, e.g., the Fraun-
hofer IMS Duisburg intelligent house, the GatorTech smart house, Samsung Hauzen, 
Philipps home lab, NTT com lab world of mushrooms, AmI lab at the University of 
Madrid, or Microsoft lab can be named as prominent representatives. As in industrial 
automation scenarios, the human living environment, house or apartment, is instru-
mented, i.e., equipped with sensors and processing/communication facilities com-
monly backed up by a central automation server and software. Again, it seems fancy 

a) b)
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inspirations from the world of movies have come to life, if numerous activities are 
compared, e.g., with the devices and automation state of the home of famous Wallace 
and Grommit characters. Due to its cultural and social importance and technical chal-
lenges, the kitchen has received special attention in the last years. An early activity of 
DIAS GmbH, Dresden, and Siemens, designing an IR-sensor-based overcook moni-
toring system can be mentioned here [16]. Prominent recent activities are the Counter 
Intelligence project by MIT [2], TU Munich’s smart kitchen [5], General Electrics 
kitchen of the future, IBM’s smart kitchen, or DFKI’s Shared Life project activities 
[14,15]. Smartness of existing devices, e.g., refrigerator or dishwasher, is enhanced by 
additive intelligent sensing systems or new devices and functionalities are conceived, 
e.g., MIT’s heat sink, up-down sink, smart spoon, and graphical user interfaces [2],  
TU Munich’s smart knife [5], DFKI’s intelligent fridge and semantic cookbook, or 
LMU’s living cookbook. In many cases, known approaches from professional food 
production and processing in industry and restaurants are just adapted for home use. 
For instance the established commercial ChefTec Software of CSS offers numerous 
features of extendable hierarchical recipe database and annotation options by  
recording of cooking activities along with storage and utensils management and nu-
trintional analysis for quite some time now [13]. Summarizing,, current activities 
predominantly rely on networked off-the-shelf sensor & RFID tags, hardware & 
automation equipment. A strong emphasis on multi-media & networking with con-
ventional home automation in newly-raised buildings can be observed. Definitely, the 
low hanging fruits in smart kitchen activities have been collected and promising ideas, 
e.g., MIT’s heat sink, have already found commercialization. However, numerous 
issues still can be raised, that demand for more sophisticated research activities. The 
issue of actual  intelligent, appreciated proactive and also feasible behavior tentatively 
is illustrated by Fig. 4 a)  for the notion of an intelligent fridge. 

 

             
[ 

Fig. 4. a) Issues of intelligent, appreciated  behavior and b) perception in smart kitchens 

A further issue is, that the majority of homes is seasoned, which requires special 
effort for cost effective integration of concepts and systems in the existing environ-
ment. Wireless (NFC/RFID) or power-line based communication offer feasible op-
tions. A key issue, however, is the fact, that successful concepts based on RFID tag-
ging cannot be so easily copied from industry to home.  Fresh ingredients and home 
made food (sub recipes) are not RFID tagged, i.e., require more capable integrated 
sensing and  recognition.  

This gives rise to a research activity and the notion of Culinary Assistance Systems 
(CAS), targeting on average home inhabitants’ support with regard to comfort, life- 
style improvement, economy, and security, by augmenting sensory, cognitive, and  

a) b)
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organizational skills. CAS are hardware/software hybrids which shall provide economic 
use of resources (food, energy, etc.), extend quality of life (chef experience to the 
home), and augment and preserve sensing and assessment capabilities. The last feature 
requires CAS to be able to deal with arbitrary appearance independent of RFID tags, to 
detect potential food pollution and decay, to detect potentially dangerous ingredi-
ents/contaminants, and to assist in better understanding and measuring of dynamic 
preparation states, depending on volume V, (distributed) temperature T, color, and other 
information, by multi-sensor annotation. Clearly, CAS shall serve to deal with hard 
multi-sensorial recognition as well as embedding/integration problems (IMEMS).  

These intelligent system design challenges for various tasks of food storage, con-
trol, and preparation stimulate our methodology’s extension for distributed sensing by 
networked OTS system  or self-x IMEMS. 

One simple example of a CAS will be presented in the following. Mushrooms are a 
delicacy esteemed in cuisines world-wide. However, classification of self-collected 
mushrooms from the woods and meadows into poisonous and edible ones as well as 
assessment of the state with regard to freshness or decay is a challenging task requir-
ing either expert knowledge or appropriate assistance (see Fig. 5).  

 

   

Fig. 5. Concept of mushroom identification CAS 

Numerous static classification features, some time-dependent ones, e.g., cut trunk 
and see, whether it turns bluish, black, or is unchanged. Thus, interaction is required 
in the analysis process. The CAS will alleviate interactive inspection of features ac-
cording to database of expert knowledge. The knowledge of literally thousands of 
mushroom/toadstool  species and instance variations, commonly reflected in books, 
will be incorporated in the CAS and made available to  the home.  MushID CAS is an 
applicable and needful example for intelligent system design automation, e.g., the 
texture analysis approach of section 2 can serve both for type and state identification 
(see Fig. 6). This straightforward CAS can be achieved with standard camera, but 
other similar tasks, e.g., measuring temperature profiles or detecting  surface/skin 
color  for perfect crispy but unscorched meat, poultry, or fish in roasting or frying 
processes or other examples. Many more could be conceived in food preparation 
processes.  In particular, state-of-the-art video recording of cooking processes will  be 
some help in simple cases, but will be insufficient for proper repetition, because im-
portant information will be missing, e.g., due to video sensor limitation (s. Fig. 4b)) 
and changing context. Additional sensorial context and sophisticated recognition/ 
assessment will be needed to support unskilled as well as challenged persons for a 
safe, more affordable, and better life. 
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Fig. 6. Mushroom classification based on texture analysis 

6   Conclusions 

The paper motivated the technological as well as application potential of intelligent 
systems, in particular focusing on underlying design challenges which can be met by 
the pursued design automation. The regarded approach and its extension to achieve 
improved robustness by the introduction of self-x capabilities in soft- and hardware 
was summarized for vision and other sensorial modes. A new rich application field in 
the context of SmE/AmI was presented and a first example for  the proposed Culi-
nary-Assistance-Systems was given. In our future work, merging long term engineer-
ing and culinary experience and interests, the CAS concept will be pursued in smart 
kitchen context to restore, preserve, and enhance human abilities both to bring chef 
quality to the home, safe resources, give safety, and keep cost in check.  
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Abstract. This paper discusses the hardware design and implementa-
tion of a hand sign recognition system with a simplified discrete Fourier
transforms (DFTs) that calculate the magnitude spectrum. Two alterna-
tive hardware design solutions that implement the system are proposed.
One uses parallel classifier network, the other uses serial one. With the
parallel network, the circuit size of the recognition system is over 280,000-
gate while the system with the serial classifier network requires about
90,000-gate of hardware resources. Regarding the operating speed, it has
been revealed that the operation speed of the both system is quick enough
to process NTSC video frame in real time.

1 Introduction

The use of hand gesture provides an attractive alternative to cumbersome in-
terface devices for human-computer interaction (HCI) and many hand gesture
recognition have grown in recent years [1]. Generally hand gestures are either
static hand postures[2][3] or dynamic hand gestures[4][5].

In [6], hardware friendly hand sign recognition system has been proposed. In
the system, input images are preprocessed through horizontal/vertical histogram
calculations followed by discrete Fourier transform (DFT) that calculate the
magnitude spectrum, which is used as the feature vector. Use of the magnitude
spectrum makes the system very robust against the position changes of the
hand image. Our objective is to develop a hardware-based posture classification
system, but the use of DFT is not suitable for the hardware implementation.
In order to reduce the circuit size, another hand sign recognition system with a
simplified DFT is proposed in [7].

This paper is focused on the hardware design of the recognition system
and two alternative solutions that implement the classifier network have been
proposed.

2 Hand Posture Recognition System

Input image is P × Q pixels, RGB color format and the input image is pre-
processed to obtain feature vectors. The feature vector is fed to the classifier
network which finally identifies the hand sign.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 835–842, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2.1 Preprocessing

First, the input color image is converted to a binary image. The proposed system
requires users to wear a red glove so that the background image is removed and
the hand portion can be extracted easily. The extraction and binary quantization
is done by,

I(x, y) = g( Red(x, y), Green(x, y) + Blue(x, y) ) · g( Red(x, y), ρ ) (1)

where, I(x, y) is the binary pixel value, while Red(x, y), Green(x, y) and
Blue(x, y) are red, green and blue color levels at (x, y), respectively. ρ is a
threshold parameter and g(·) is a threshold function. I(x, y) is then used to
obtain horizontal and vertical histograms, PH(y) and PV (x).

PH(y) =
P−1∑
x=0

I(x, y), PV (x) =
Q−1∑
y=0

I(x, y) (2)

Ten the DFTs convert PH(y) and PV (x) into the magnitude spectrums FH(n)
and FV (n), respectively. FH(n) and FV (n) of the same hand posture images
placed in different positions are identical, therefore the system is very robust
against the position change between the training and input images. However, the
conventional DFT is not suitable for hardware implementation as they include
complex functions and multiply operations. To simplify the equations, cos(·) and
sin(·) functions are replaced by tcos(·) and tsin(·), respectively.

Â(k) =
N−1∑
n=0

x(n) · tcos(
2πnk

N
) (3)

B̂(k) =
N−1∑
n=0

x(n) · sin(
2πnk

N
) (4)

As shown in Fig. 1, tcos(·) and tsin(·) are the heavily quantized (tri-state) ver-
sion of cos(·) sin(·) functions taking only three values, i.e., −1, 0 or +1. The
calculation of the magnitude is also simplified as,

X̂(k) = | Â(k) | + | B̂(k) | (5)

-1

-0.5

 0

 0.5

 1

π/2 π 3π/2 2π

COS(X)
TCOS(X)

-1

-0.5

 0

 0.5

 1

π/2 π 3π/2 2π

SIN(X)
TSIN(X)

Fig. 1. Tri-state tcos, tsin functions
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2.2 Classifier Network

The input to the network is a D-dimensional vector x from the preprocessing,
which is fed to all neurons. Each input vector element xi is taken from FH(n)
and FV (n),

xi =
{

FH(i) 0 ≤ i < D/2
FV (i − D/2) D/2 ≤ i < D

(6)

Each neuron is associated with one of the hand sign classes, and it evaluates if
the input vector is in their assigned sign. The neuron output E(s) is,

E(s) =
M∑

m=1

D∑
n=1

r(s)
nm( xn ) · wm (7)

where, wnm is a weight, and r
(s)
nm(xn) is range test function,

r(s)
nm(xn) =

{
1 if U

(s)
nm > xn > L

(s)
nm

0 otherwise
(8)

U
(s)
nm and L

(s)
nm are upper lower limits of the range in which the vector element

x
(s)
n is expected to be in, where s denotes the hand sign class. M upper and

lower limit sets are defined for each vector element. U
(s)
nm = µ

(s)
n + αm · σ

(s)
n ,

L
(s)
nm = µ

(s)
n −αm ·σ(s)

n , m = 1, 2, · · · , M . µ
(s)
n and σ

(s)
n are the mean and standard

deviation of the n-th vector element in the training vectors belonging to class
s. αm is a coefficients to adjust the upper and lower limits. The weight value in
eq. (7) is determined by considering the size of the range.

Each neuron performs eq. (7). Winner-takes-all competition by the maximum
value finder circuit is employed for the final classification.

3 Simulation

Computer simulations were conducted to verify the feasibility of the system.
With the preliminary test, we decided to use the following parameters, ρ = 150,
M = 2, α1 = 1.0, α2 = 0.4, w1 = 1 w2 = 3 and D = 22.

3.1 Effect of the Simplified DFT on the Recognition

The effect of the new DFT was investigated by using hand images made of 41
classes, each of which consists of 100 images. The data set is made of two groups,
LT and RB groups. The LT group consists of images in left-top corner of the
frame, while the RB have only images in right-bottom corner. The difference
among images belonging to the same class is their positions, and their hand
shapes are identical. For training the network, three types of learning data, RB,
LT, MIX are used.

RB : randomly selected 20 images from RB group,
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Fig. 2. Position change vs. recognition rate, (A) with conventional DFT, (B) with new
DFT

Fig. 3. Input image examples

LT : randomly selected 20 images from LT group,
MIX : 10 images are randomly selected from the both groups.

Recognition rates were obtained using test data sets with different ratio of
RB group images. Fig. 2(A) shows that the recognition rate of the system with
conventional DFT is 100%. This is because the effect of the position difference is
removed by the DFT. Fig. 2(B) shows the relation between the recognition rate
of the new DFT and P , which shows the correlation with the input data and the
training data set. Trained with RB or LT data set, the worst recognition rate is
about 97%, while the recognition rate of the system trained with the MIX data
set, deterioration is only 1%.

3.2 Recognition of 41 Hand Signs

The proposed system was tested by 41 static Japanese hand signs. Some exam-
ples used for the experiment are shown in Fig. 3. As this figure shows, the sizes
and shapes of the images are different even though they belong to the same class.

The results is summarized in Table 1. As the images used in the training are
different in positions and shapes, the difference between the recognition perfor-
mance between the systems with conventional and new DFTs is only about 1%
as the previous simulation indicated.

Table 1. Average recognition rates

system with conventional DFT system with new DFT
Average recognition rate(%) 93.46 92.49
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Fig. 4. Block diagram of the hand sign recognition system

4 Hardware Design

4.1 System Configuration

Fig. 4 shows the block diagram of the hand posture recognition system consisting
of a binary quantizer, two memories, TDFT22 that performs simplified 22-point
DFT, the classifier network and signal generator. The input signal are the RGB
color signals (Red, Green, Blue) of a pixel with its coordinate x, y.

4.2 Preprocessing Hardware

Block diagram of the binary quantizer is shown in Fig. 5. The circuit performs
eq. (1) and it picks up the red grove portion and binary quantizes it. The his-
togram is calculated by accumulating the pixel values with the same x or y
coordinate. After the histogram calculation, the contents of the memories, i.e.,
histogram data is sequentially sent to the DFT unit.

Fig. 6(A) shows the 22-point DFT unit containing 22 TDFTS units, each of
which does one-point DFT calculation, i.e., equations (3) ∼ (5). Fig. 6(B) shows
the TDFTS unit which includes a direct digital frequency synthesizer (DDFS)
that generates tcos() and tsin(), and the rest of the circuit performs the DFT
calculation. The DDFS is made of an adder, register and phase-amplitude con-
verter. Synchronized to the clock pulse, frequency control word k is accumulated
in the register. Using the upper 3-bit of the register as a phase S, the phase-
amplitude converter generates tsin(S) and tcos(S). Conventional DDFS uses
read-only memory to generate more precise sin(S) or cos(S), but the proposed
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Fig. 6. DFT unit. (A) TDFT22 (22-point DFT), (B) TDFTS (a single point DFT).
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Fig. 7. Neuron. (A) Neuron unit, (B) Range check function circuit.

system uses combinatorial logic. Output frequency of the DDFS, fDDFS is given
by the following equation.

fDDFS =
K

2L
· fCK (9)

L is the bit length of the register, fCK is the frequency of the clock signal.
The calculations of Â(k) and B̂(k) are carried out by the Add-Sub-Zero unit

and register. The proposed DFT uses the Add-Sub-Zero circuit instead of the
multiplier and it performs following operation.

O =

⎧⎨⎩ I1 + I0 if ASZ = “01′′

I1 − I0 if ASZ = “11′′

I1 otherwise
(10)

4.3 Classifier Network Hardware

The hardware neuron is shown in Fig. 7(A), which is made of range check
function circuit and the circuit to calculate the weighted sum of the function
values. The range check function circuit is depicted in Fig. 7(B). As the system
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Fig. 8. Classifier network. (A) Parallel network, (B) Serial network.

is configured with M = 2, the neuron unit contains two circuits that calculate
E

(s)
0 and E

(s)
1 and the sum of them is given as E(s) for the class s.

The classifier network can be implemented with either a parallel or a serial
architecture. Fig.8(A) shows the parallel network. The network includes 41 neu-
rons, each of which is assigned to different class and all neurons work in fully
parallel. The input vector is fed to all neurons simultaneously, and their outputs
are fed to max value find circuit to find the hand sign index s by searching for
the neuron that gives the largest estimate value E(s).

The serial classifier network is made of a single neuron unit, a memory, a
counter and a serial max value find circuit as shown in Fig. 8(B). The upper and
lower limits data are loaded into the neuron from the memory, and the estimate
values are obtained sequentially, thus the network requires 41 clocks to perform
the recognition. The counter gives the memory address that is also treated as
the class index s. In the max value find circuit, the new E(s) is compared to the
reference value that is the largest one at that time. If the new one is larger than
the reference, then the new E(s) and s are stored in the registers as the reference
and its class index s.

4.4 Circuit Size and Speed

The two systems were designed by VHDL and the circuit sizes are estimated
by logic synthesis. EDA tool from XILINX corporation is used to synthesize the
logic. Before the logic synthesis, VHDL simulations were carried out to verify
that the designs are correct. Specifically, all FH(n), FV (n), E(s) and classifier
results are compared to those from C simulations, and it was verified that all of
them are identical to the C simulation results.

Tab. 2 summarizes the circuit sizes of the systems. The recognition system
with the serial network uses 90,000-gate while the system with the parallel net-
work requires 280,000-gate equivalent hardware resources. The maximum fre-
quencies of the clock signal for the systems are 52 MHz for the system with the
serial network, and 24.5 MHz for the system with the parallel network.
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Table 2. Circuit sizes

Circuit type Gate count Clock freq.
Recognition system with serial classifier 89,695 51.2 MHz
Recognition system with parallel classifier 282,341 24.5 MHz

5 Conclusions

This paper has described the hardware design of a hand sign recognition sys-
tem with a simplified DFT. The new DFT uses heavily quantized version of
sine/cosine functions. The use of the simplified DFT reduces the hardware cost
of the system at a cost of slight degradation in performance. The simulation
results shows that the degradation of the performance can be suppressed by
training the classifier network with the images in various positions.

The hardware design of the recognition system was conducted to estimate
the circuit size and operating speed. With the parallel classifier network, the
circuit size of the recognition system is over 280,000 gate while the system with
the serial classifier network requires about 90,000 gate of hardware resources.
Regarding the operating speed, it has been revealed that the operation speed
of the both system is fast enough to process NTSC video frame in real time.
Thus the proposed hardware recognition system can be extended so that it can
recognizes the video sequence, i.e., gesture recognition.

This work was supported by KAKENHI (19500153).
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Abstract. We investigated the performance of a blind source separation (BSS) 
system based on stochastic computing in the case of an aperiodic source signal 
by both simulation and a field programmable gate array (FPGA) experiment. 
We confirmed that our BSS system can successfully infer source signals from 
mixed signals. We show that the system succeeds in separating source signals 
from mixed signals after about 3.7 seconds at a clock frequency of 32 MHz on 
an FPGA.  

1   Introduction 

The rapid development of very large scale integration (VLSI) technologies and the 
miniaturization of metal oxide semiconductor field effect transistors (MOSFETs) 
means for new challenges in noise filtering, which cannot be handled by conventional 
deterministic computing systems. In order to overcome such problems, stochastic 
computing (SC) systems, which are inspired by neurons, have been studied [1], [2], 
[3], [8]. These systems compute by utilizing pulse sequences related to analog quanti-
ties and offer various advantages including robustness in the presence of noise. Espe-
cially appealing properties of SC systems are the feasibility for simple circuitry and 
utilization of conventional digital elements. Therefore, SC systems have been applied 
to massive circuits such as artificial neural networks. 

Recently, blind source separation (BSS) systems have become of interest in the 
field of soft computing. These systems can infer source signals from mixed signals 
when received by sensors. They are expected to apply to signal detection technologies 
in various fields like biomedical signal analysis. One particular method using a neural 
network has been proposed by Cichocki and Unbehauen [4]. This method succeeds in 
separating source signals from mixed signals even under even poor conditions. How-
ever, the synaptic weights incorporated can become arbitrary real numbers that are 
unpredictable. Consequently, if this method is implemented in hardware, there is the 
possibility that the synaptic weights fall outside the range over which hardware can 
operate correctly. Therefore, we previously proposed an improved method based on a 
SC system and investigated the case of periodic signals as source signals. We con-
firmed that this system could separate source signals from mixed signals on a field 
programmable gate array (FPGA) [6]. Here, we extend the previous study by investi-
gating aperiodic source signals on an FPGA. 
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2   Blind Source Separation Using Stochastic Arithmetic 

First, we describe the framework for BSS. We assume that the source signals sj(t) (j = 
1, 2, ..., n) are unknown, mutually independent and have zero-mean signals. The 
mixed signals observed by the sensors are xi(t) (i = 1, 2,…, n). Moreover, for simplic-
ity, we assume that the number of source signals is equal to the number of mixed 
signals, namely the number of sensors, and that there is a linear relation between the 
observed mixed signals and the source signals, 

)()( tt ASX =  , (1) 

where X(t) = [ x1(t), x2(t),…, xn(t)]
T is the vector of mixed signals, S(t) = [ s1(t), 

s2(t),…, sn(t)]
T is the vector of source signals, and A = [aij] is the mixing matrix in 

which aij are unknown real mixing parameters. We assume that A is nonsingular, 
namely det(A) ≠ 0. The system uses a neural network algorithm to output the inferred 
signals Y (t) = [y1(t), y2(t),…, yn(t)]

T in real time. Y (t) can be of arbitrary amplitude 
and does not necessarily correlate to the index of the source signal. Therefore, the 
system succeeds in separating source signals from mixed signals if the output signals 
have the following combination of source signals, 

)()( tt DQSY =  , (2) 

where D is a diagonal scaling matrix that represents the scales of amplitudes of in-
ferred output source signals with nonzero entries, and Q is any permutation matrix in 
which the order of the inferred output source signals is taken into account. 

Next, we explain the learning algorithm that Cichocki and Unbehauen proposed. 
They considered a single layer neural network consisting of n linear neurons as fol-
lows, 

)()()( ttt XWY =  , (3) 

where W (t) = [wij] is the matrix of the adjusted synaptic weights. The learning algo-
rithm that Cichocki and Unbehauen proposed was, 

[ ] [ ]{ } )()()(Λ)(
)(

tttt
dt

td T Wygyf
W

−= µ
 , 

With 00 ≠)(W  and 00 ≠)(det W  , 
(4) 

where µ(t) > 0 is the learning rate, and Λ  = diag{λ1, λ2,…, λn} is a diagonal matrix 
with amplitude scaling factors (λi > 0). Moreover, f[y(t)] and g[y(t)] are the vectors of 
nonlinear functions of which parameters are the output signal, i.e., f[y(t)] = [ f[y1(t)], 
f[y2(t)],…, f[yn(t)]]

T and g[y(t)] = [ g[y1(t)], g[y2(t)],…, g[yn(t)]]
T. We can find a sta-

tionary solution using the learning algorithm if the following conditions are satisfied, 

{ } 0=)]([)]([ tygtyfE ji  for  i ≠ j , (5) 

and 

{ })]([)]([ tygtyfE iii =λ  for  i = j . (6) 
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However, synaptic weights in (4) can become unpredictable, arbitrary real numbers. 
During learning, the values of the synaptic weights can fall outside the designed range 
in which the circuits can process them correctly. This makes it difficult to implement 
the Cichocki and Unbehauen system in actual circuits. To resolve this problem, we 
proposed that synaptic weights and the amplitude scaling factors are multiplied by an 
updating weight, α (0 < α < 1), if the values of the synaptic weights fall outside the 
designated range in the designed circuits [6]. The method is as follows. If one of the 
synaptic weights, wij (j = 1,2,…,n), in an output signal, yi(t), falls outside the designed 
range, we multiply all wij (j = 1,2,…,n) in yi(t) and the amplitude scaling factor, λi, by 
an updating weight, α, i.e., 

ijij ww α⇒  and ii αλλ ⇒  (j = 1,2,…,n) . (7) 

Moreover, updating yi(t) is independent of updating yj(t) (i ≠ j). As a result, the system 
can separate source signals from mixed signals with the synaptic weights remaining in 
the designed range. It is our expectation that this system can be applied to mobile 
electric devices like a hearing aid.  

We confirmed that our system can separate source signals from mixed signals in-
cluding only periodic source signals when using appropriate synaptic weights on an 
FPGA [6]. In this paper, we extend that previous work by investigating aperiodic 
source signals on an FPGA. The block diagram of the circuit and algorithm are shown 
in Fig. 1 and 2, respectively. In Fig. 1, mixed signals x1(t) and x2(t), both of which are 
digital signals, are converted into pulse sequences by stream generators, which are SC 
elements that convert a digital quantity into a stochastic pulse sequence [7]. These 
pulse sequences are then individually multiplied by the pulse sequences of the synap-
tic weights using SC multipliers and are added by SC adders. The system outputs the 
pulse sequences of the inferred signals, y1(t) and y2(t). Using these pulse sequences, 
the synaptic weights are adjusted according to the learning algorithm we proposed 
based on SC. In Fig. 2, we show the block diagram of the learning algorithm for the  
 

 

Fig. 1. Block diagram of a circuit for BSS based on a SC system 
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Fig. 2. The learning algorithm of a BSS circuit based on the SC system in Fig. 1 

circuit in Fig. 1. The pulse sequence y1(t) and y2(t) is injected into nonlinear convert-
ers, which convert the input signals into output pulses according to nonlinear function 
elements that consist of a counter and a register storing the nonlinear functions. 
Stream generators then convert the output of the nonlinear converters into pulse se-
quences. We then arrange SC multipliers, SC adders, registers which store the ampli-
tude scaling factors and a learning rate, and inverters in a way to satisfy eqn. 4. Fi-
nally, SC integrators output the pulse sequences with synaptic weights w11, w12, w21, 
and w22. A SC integrator is constructed by an up-down counter. It can execute time 
integration by counting pulses. It should be noted that the bit accuracy of up-down 
counters in SC integrators is related to the convergence of the circuit. Next, we con-
figure threshold checkers and SC constant multipliers. When any synaptic weights 
reach the maximum or minimum of the up-down Counters in the SC integrators, the 
SC constant multipliers appropriately multiply an updating weight by the amplitude 
scaling factor and the values of the up-down Counters in the SC integrators. As a 
result, the synaptic weights are able to converge and remain in the designed range and 
can separate source signals from mixed signals. 

Next, we show the simulation results of our SC system based BSS circuit for an 
aperiodic source signal. We assumed the system had two sources for simplicity. 
Therefore, the system had two inputs and two outputs. The source signals were, 

)sin()sin(
1024

302
1024

21

kk
s ××××= ππ

 , 

     
1)UR(-1 signal) random uniformUR2 ≤≤= (s

 ,
 

(8) 

where k is the time step, the mixing matrix is 
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 .

 (9) 
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Fig. 3. Simulation results of the learning process for the algorithm in the case of an aperiodic 
source signal. (a) synaptic weight w11, (b) waveform of output signal y1(t), (c) waveform of 
output signal y2(t). 

Moreover, we assumed f[y(t)] = y(t)2sign(y(t)) and g[y(t)] = tanh(10 y(t)). To simplify 
the circuit implementation, we assumed µ(t) = 1. Fig. 3(a) represents the synaptic 
weight w11, and Fig. 3(b) and (c) are waveforms for the inferred signals y1(t) and y2(t), 
respectively, during learning. We can see that our system can separate source signals 
from mixed signals when updating the synaptic weights. Then, we investigated the 
convergence of our system using the commonly used performance index E1 described 
in ref. [5] as follows, 
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= == =
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 (10) 

where pij is the product of the matrix of synaptic weights and the mixing matrix as 
follows, 

AWP )(][ tpij ≡=  .
 (11) 

If the system separates the source signals from mixed signals completely, E1 is zero, 
which is its minimum value. In Fig. 4, we show the simulation result for average E1 
after 50 trials with bit accuracy for the SC integrators in the circuit. When the bit 
accuracy of the SC integrators in the circuit is less than 17 bits, the value of E1 is 
unstable. On the other hand, the number of cycles at the convergence point of E1 is 
large when the bit accuracy of the SC integrators in the circuit is larger than 19 bits. 
Therefore, we chose the bit accuracy of the SC integrators to be 18bits. We can see 
that the number of cycles at the convergence point reaches about 200,000 for 18bits 
accuracy. We confirmed that our SC circuit can separate source signals from mixed 
signals even when the mixed signals include an aperiodic source signal. 
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Fig. 4. The dependence of the performance index E1 during learning in a SC system with bit 
accuracy for the SC integrators. The line represents the average E1 after executing 50 trials. 
Error bars show standard deviation. 

3   FPGA Implementation 

We implemented our circuit onto an FPGA board. The design has been described in 
Verilog-HDL. The FPGA device model employed was a Xilinx Spartan 3 (XC3S400), 
the clock frequency was 32 MHz, the rate injecting the digital values of the mixed 
signals into our circuit was 15.6 kHz, and the bit accuracy of the Digital-to-Analog 
Converter (DAC) was 10 bits. The digital values of the mixed signals were 7bits, SC 
Integrators were 18bits, registers storing the amplitude scaling factors were 18bits, 
 

 

Fig. 5. FPGA experimental results (a) input signal x1(t), (b) input signal x2(t), (c) output signal 
y1(t), (d) output signal y2(t), (e) synaptic weights w11 and w12 during learning 
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nonlinear converters were 10bits, and the updating weight was 0.5. Fig. 5(a) and (b) 
show the input signals, namely mixed signals. In Fig. 5(e), we represent the synaptic 
weights w11 and w12 during learning. The maximum and minimum voltages of the 
designed range were 4.16 V and -5.32 V, respectively. We can see that the synaptic 
weights can converge with updating on the case that the voltages of synaptic weights 
reach the maximum or minimum, and are within the desired boundary. The waveform 
of the output signals after learning are shown in Fig. 5(c) and (d). Finally, the per-
formance index E1 of our circuit from FPGA experiment is seen in Fig. 6. E1 con-
verges at about 3.7 seconds. We confirmed our system operates correctly in an FPGA 
board even for an aperiodic source. 

 

Fig. 6. FPGA results of the performance index E1 during learning 

4   Conclusions 

We investigated the performance of a BSS system for the case of an aperiodic source 
signal through simulations and on an FPGA board. We found that synaptic weights 
converge at about 200,000 cycles and that our system can separate source signals 
from mixed signals even when they include an aperiodic source signal. We also con-
firmed that the circuit we proposed can operate correctly on an FPGA board and that 
the performance index E1 converges at about 3.7 seconds at a clock frequency of 32 
MHz. 
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Abstract. We previously proposed a neural segmentation model suit-
able for implementation with complementary metal-oxide-semiconductor
(CMOS) circuits. The model consists of neural oscillators mutually cou-
pled through synaptic connections. The learning is governed by a sym-
metric spike-timing-dependent plasticity (STDP). Here we demonstrate
and evaluate the circuit operation of the proposed model with a network
consisting of six oscillators. Moreover, we explore the effects of mismatch
in the threshold voltage of transistors, and demonstrate that the network
was tolerant to mismatch (noise).

1 Introduction

One of the most challenging problems in sensory information processing is the
analysis and understanding of natural scenes, i.e., images, sounds, etc. These
scenes can be decomposed into coherent ”segments”. The segments correspond
to different components of the scene. Although this ability, generally known as
sensory segmentation, is performed by the brain with apparent ease, the problem
remains unsolved. Several models that perform segmentation have been proposed
[1]-[3], but they are often difficult to implement in practical integrated circuits.
In [4] we proposed a simple neural segmentation model that is suitable for analog
CMOS circuits. The model consisted of mutually-coupled neural oscillators. The
oscillators were coupled with each other through positive or negative synaptic
connections.

In this paper, we demonstrate and evaluate the circuit operation of the pro-
posed model with a network consisting of six oscillators. Moreover, we conduct
Monte-Carlo simulations to study the effects of threshold mismatch among tran-
sistors in our network using three oscillators, and we demonstrate that the net-
work is tolerant to the mismatch (noise).

2 The Model

Our segmentation model is shown in Fig. 1(a). The network has N Wilson-
Cowan type neural oscillators (ui output of i-th activator and vi output of i-th

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 851–858, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. a) Network construction of segmentation model, and b) learning circuit model

inhibitor). The oscillators are coupled with each other through resistive synaptic
connections. The dynamics are defined by

τ
dui

dt
= −ui + fβ1(ui − vi) +

N∑
j 	=i

W uu
ij uj, (1)

dvi

dt
= −vi + fβ2(ui − θi) +

N∑
j 	=i

W uv
ij uj , (2)

where τ represents the time constant, N is the number of oscillators, θi is the
external input to the i-th oscillator, and fβi(x) is the sigmoid function defined
by fβi(x) = [1 + tanh(βix)]/2. Also, W uu

ij represents the connection strength
between the i-th activator and j-th activator, and W uv

ij the strength between
the i-th activator and the j-th inhibitor. Each neuron accepts external inputs,
e.g., sound inputs, and oscillates (or does not oscillate) when the input amplitude
is higher (or lower) that a given threshold. For a more detailed explanation, refer
to [4].

The easiest way to segment neurons is to connect the activators belonging
to the same (or different) group with positive (or negative) synaptic weights.
However, circuits that implement positive and negative weights may occupy a
large area on analog LSIs, which prevents us from implementing large-scale net-
works. Therefore, instead of using negative weights, we used positive synaptic
weights between the activator and inhibitors [4]. These weights are updated by
learning circuits. As shown in Fig 1(a), the learning circuits (LCs) are located
between two activators. Each of them consists of a correlation circuit and an
interneuron circuit (see Fig. 1(b)). Therefore, let us start with the explana-
tion of the correlation circuit. In our model, neurons should be correlated (or
anti-correlated) if they receive synchronous (or asynchronous) inputs. Based on
this assumption, the synaptic weights are updated on the basis of symmetric
spike-timing-dependent plasticity (STDP) using Reichardt’s correlation neural
network [5]. The basic unit is illustrated in Fig. 2(a). It consists of a delay
neuron (D) and a correlator (C). The delay neuron produces blurred (delayed)
output Dout from spikes produced by activator (ui). The dynamics are given
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Fig. 2. a) Basic unit of Reichardt’s correlation network, b) Reicherdt’s network op-
eration, c) unit pair, d) correlation circuit, e) model of interneuron circuit, and f)
input-output characteristics of piecewise linear functions (fuu and fuv)

by τd1dDout/dt = −Dout + ui, where τd1 represents the delay time constant.
The correlator accepts Dout and spikes produced by activator (uj), and outputs
Cout (≡ Dout × uj). The operation is illustrated in Fig. 2(b). Since this basic
unit can calculate correlation values only for positive inter-spike intervals ∆t, we
used a unit pair consisting of two basic units, as shown in Fig. 2(c). The out-
put (U) is obtained by summing the two Couts. Through temporal integration
of U , we obtained a Gaussian-type response for ∆t [4]. The sharpness of this
response increased as τd1 →0, so introducing two unit pairs with different time
constants, e.g., τd1 and τd2 (τd1 � τd2), we obtained two responses for U and V
with different sharpness. Then, the weighted subtraction (U −αV ) produced the
well-known Mexican-hat characteristic that we used as STDP in the oscillator
network [4]. The correlation circuit is shown in Fig. 2(d).

The two outputs (U and V ) of the correlation circuits are given to the in-
terneuron circuit shown in Fig. 2(e). Interneuron W receives outputs of the
correlation circuit (U and V ), and performs the weighted subtraction (U −αV ).
When U−αV is positive, neurons ui and uj in Fig. 2(d) should be correlated, and
the weight between activators (W uu

ij ) should be increased. On the other hand,
when U − αV is negative, the neurons should be anti-correlated, and the weight
between the activator and inhibitor (W uv

ij ) should be increased. The output of
interneuron W is given to two additional interneurons (fuu and fuv). The input-
output characteristics of these interneurons are shown in Fig. 2(f). The outputs
of these interneurons are given to the weight circuit (represented by resistors
in the model; Fig. 1(a)) in order to modify the positive resistances. For a more
detailed explanation and simulation of the model refer to [4].

We newly carried out numerical simulations to evaluate the ”segmentation
ability,” which represents the number of survived segments after the learning.
The number of segments as a result of the network’s learning strongly depends
on the STDP characteristic as well as the input timing of neurons (∆t). Let us
remember that neurons that fire ”simultaneously” should be correlated. ”Simul-
taneously” is to be defined by some ”time windows of coincidence” that we call
σSTDP. Thus, neurons that receive inputs within the time windows should be
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Fig. 3. Simulation results showing segmentation ability of the network

correlated. Simulation results are shown in Fig. 3. The number of neurons (N)
was set to 50. The neurons received random inputs within time tmax

in (maximum
input timing). We observed that when σSTDP was 1 and neurons received their
inputs within time 2, the number of segments was about 2. The contrary was
observed when σSTDP was 0.1 and tmax

in was 10, where the number of segments
was about 35.

3 CMOS Circuits

Construction of a single neural oscillator is shown in Fig. 4(a). The oscillator
consists of two standard differential amplifiers (a differential pair and a current
mirror) and two additional capacitors C1 and C2. A circuit implementing Re-
ichardt’s basic unit (see Fig. 2(a)) is shown in Fig. 4(b). The circuit has a delayer
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Fig. 4. a) Neural oscillator circuit [6], and b) Reichardt’s basic unit circuit [6]
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and a correlator. The delayer consists of a bias current source (I1), current mir-
rors (m1-m2 and m5-m6) and a pMOS source-common amplifier (m2-m4). The
correlator consists of three differential pairs (m12-m13, m14-m15 and m16-m17),
a pMOS current mirror (m19-m20), a bias transistor (m18) and a bias current
source (I2). We employed floating gate MOS FETs for m12, m14 and m17 to
decrease the gain of the differential pairs. Detailed operations and simulation
results of these two circuits are explained in [6].

A basic circuit implementing the interneurons (W , fuu and fuv) is shown
in Fig. 5. The circuit consists only of current mirrors. Input current U (from
Reichardt’s circuit; correlation circuit) is copied to m3 by current mirror m1-m3,
and is copied to m8 by current mirrors m1-m2 and m7-m8. At the same time,
input current V is copied to m6 by current mirror m4-m6, and is copied to m12

by current mirrors m4-m5 and m11-m12. Recall that we need the subtraction of
U −αV to produce the Mexican-hat characteristic. Therefore, we set the weight
(α) as α ≡ W5/L5 · L4/W4 = W6/L6 · L4/W4, where Wi and Li represent the
channel width and length of transistor mi , respectively. So, when current U is
higher than current αV , current fuu is outputted by current mirror m13-m14.
Otherwise, current fuv is outputted by current mirror m11-m12.

4 Simulation Results

First we carried out circuit simulations for the interneuron circuit. The param-
eters used for the transistors were obtained from MOSIS AMIS 1.5-µm CMOS
process. Transistors sizes (W/L) were 4 µm/1.6 µm for m1-m4, 10 µm/1.6 µm
for m5 and m6, 4.5 µm/16 µm for m8 and m12, 3.5 µm/16 µm for m13, and 4
µm/16 µm for the rest transistors. The supply voltage was set to 5 V. Input
current V was set to 100 nA, and input current U varied from 0 to 200 nA. The
simulation results are shown in Fig. 6. When U + ∆I < V where ∆I ≈ 20 nA,
output current fuv flowed and fuu was 0. When U − V < ∆I, both fuu and fuv

were 0. When hen U − ∆I > V , fuu flowed while fuv remained at 0.
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Next, we carried out circuit simulations of the circuit network with N = 6.
Transistor sizes (W/L) for the Recichardt’s basic circuit (see Fig. 4(b)) were 4
µm/1.6 µm for nMOS transistors and m20, and 4 µm/16 µm for the rest of the
transistors. Voltages Vb2 and Vb3 were set to 550 mV and 4.08 V respectively,
while Vb1 was set to 510 mV for delay τd1, and was set to 430 mV for delay τd2.
With these settings, we obtained positive W (U −αV ; see Fig. 2(e)) for |∆t| ≤ 1
µs, and obtained negative W for |∆t| > 1 µs. In other words, when |∆t| ≤ 1
µs, neurons should be correlated, otherwise, they should be anti-correlated, as
explained before.

The normalized time courses of uis (i = 1 ∼ 6) are shown in Figs. 7(a) and
(b). As shown in Fig. 7(a), at t = 0, external inputs θi (i = 1 ∼ 6) were 2.5
V, which is equivalent to ∆t=0. We observed that all neurons were gradually
synchronized. On the contrary, Fig. 7(b) shows that at t = 0 external inputs
θ1,2,3 were set to 2.5 V, and inputs θ4,5,6 were set to 0. Then, at t = 3 µs
θ4,5,6 were set to 2.5 V, which is equivalent to ∆t = 3 µs. We observed that
u1,2,3 and u4,5,6 were desynchronized without breaking synchronization among
neurons in the same group that were gradually synchronized. This indicated that
segmentation of neurons based on the input timing was successfully achieved.
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Fig. 9. Correlation values between neurons u1 and u3 for different σVT

To consider the noise tolerance of the network, we carried out Monte-Carlo
simulations in our circuit network with N = 3. The parameter Vth (threshold
voltage) of all transistors was varied using Gaussian noises with standard de-
viation σVT. When t = 0, external inputs to neurons (θ1, θ2, θ3) were set to
(2.5,0,0)V. Then, at t = 1 µs, (θ1, θ2, θ3) were set to (2.5,2.5,0)V, whereas they
were set to (2.5,2.5,2.5)V at t = 2.4 µs. In other words, neurons u1 and u2 should
be synchronous with each other, and they should be asynchronous with u3 be-
cause of ∆t=1.4 µs. To evaluate the performance of the network, we calculated
correlation values Cij between neurons ui and uj given by

Cij =
〈uiuj〉 − 〈ui〉〈uj〉√

〈u2
i 〉 − 〈ui〉2

√
〈u2

j〉 − 〈uj〉2
. (3)

We calculated C12 and C13 to evaluate the synchronicity between segments.
Figures 8 and 9 show the simulation results. As observed in the figures, when
σVT <10 mV neurons u1 and u2 were correlated, while the correlation value
(C13) between neurons u1 and u3 was low, i.e., they were anti-correlated. Due to
imperfections of the CMOS fabrication process, device parameters, e.g., thresh-
old voltage, etc., suffer large variations [7]. These variations among transistors
cause a significant change in general analog circuits. Nevertheless, the results
obtained in Figs. 8 and 9 showed that our network successfully segmented neu-
rons for σVTs lower than 10 mV, which indicated that the network is tolerant
to threshold mismatch among transistors.
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5 Conclusion

Previously, we proposed a neural segmentation model that is suitable for analog
VLSIs using conventional CMOS technology. We proposed a novel segmenta-
tion method based on a symmetric spike-timing dependent plasticity (STDP)
using Reichard’s correlation neural networks. In this paper, we evaluated the
segmentation ability of the network through numerical simulations. In addition
we proposed and evaluated basic circuits for constructing segmentation hard-
ware. We demonstrated the operation of the circuit network using six neurons.
Finally, we explored the effect of threshold mismatches among transistors in our
network with three oscillators, and showed that the network was tolerant to
device mismatches.
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Abstract. Several applications would emerge from the development of
efficient and robust sound classification systems able to identify the na-
ture of non-speech sound sources. This paper proposes a novel approach
that combines a simple feature generation procedure, a supervised learn-
ing process and fewer parameters in order to obtain an efficient sound
classification system solution in hardware. The system is based on the
signal processing modules of a previously proposed sound processing
system, which convert the input signal in spike trains. The feature gen-
eration method creates simple binary features vectors, used as the train-
ing data of a standard LVQ neural network. An output temporal layer
uses the time information of the sound signals in order to eliminate
the misclassifications of the classifier. The result is a robust, hardware
friendly model for sound classification, presenting high accuracy for the
eight sound source signals used on the experiments, while requiring small
FPGA logic and memory resources.

1 Introduction

By the information provided from the hearing system, the human being can
identify any kind of sound (sound recognition) and where it comes from (sound
localization) [1]. If this ability could be reproduced by artificial devices, many
applications would emerge, from support devices for people with hearing loss to
safety devices.

In contrast to sound localization, systems capable of identifying the nature
of non-speech sound sources were not deeply explored. Some authors study the
application of speech-recognition techniques [2], while others attempt to divide
all possibly mixed sound sources and apply independent techniques for each kind
of signal [3]. Sakaguchi, Kuroyanagi and Iwata [4] proposed a sound classification
system based on the human auditory model, using spiking neural networks for
identifying six different sound sources.

Due to its high computational cost, sound classification systems are often
implemented in hardware for real-time applications. A preliminary hardware
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implementation of the model proposed in [4] was presented in [5], while a full
system implementation, including the signal processing modules, was proposed
in [6]. The spiking neurons based model proposed in [4,5], although presenting
acceptable results, requires the adjustment of several critical parameters, while
requiring a large FPGA area, in spite of claims of implementation efficiency of
spiking neural networks in digital hardware.

This paper proposes a new approach for sound classification and its corre-
spondent hardware implementation. While still based on spikes, a new feature
generation method enables high accuracy with an efficient implementation in
hardware. The proposed method also presents few non-critical parameters on
the learning process.

The organization of the paper goes as follows: a short description of the signal
processing and pulse generation modules is presented in Section 2, and Section
3 introduces the proposed model, which hardware implementation is presented
in Section 4. Section 5 presents experimental results, and Section 6 concludes
the paper with analysis of the results and suggests possible future extensions.

2 Signal Preprocessing and Spikes Generation

The main structure of the sound classification system is shown in Figure 1(a),
with its first block is detailed in Figure 1(b). The use of spikes is required due
to the use of the proposed method in a larger system, described previously in
[6], which also includes sound localization and orientation detection, in which
sharing of signal processing modules is mandatory.

The sound signal is sampled at 48kHz, converted to single-precision floating-
point representation and sent to the filter bank module, which divides it in N
frequency channels. After, the signals’ envelops are extracted and their amplitude
used for controlling the period of the spikes generators. All spike trains pn (t)
(n = 1 . . .N) become the input data of the sound classification module.

Sound
Classification

Signal Acquisition 
and

Preprocessing

Post-processing
and

Communication

(a)

spike train

Signal Acquisition and Preprocessing

Analog-to-Digital
Conversion

Bandpass Filtering
(IIR filter bank)

Hair-cell non-linear 
function and 

Lowpass filtering

Spike
Generation

(b)

Fig. 1. Sound classification system (a) main structure and (b) signal processing
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Fig. 2. Spike map for a segment of the interphone sound signals

3 Proposed Model

The previous sound classification model proposed in [4,5] presents several pa-
rameters that must be correctly tuned in order to obtain a good accuracy. The
tuning process is not straightforward and requires several retrials. Moreover, as
the model is based on a non-supervised learning model, a successful learning
cannot be always guaranteed and the training process is very time-consuming.

The approach proposed in this paper combines a simple feature generation
procedure, a supervised learning process and fewer parameters in order to ob-
tain an efficient sound classification system solution. This solution presents high
accuracy and uses small resources (e.g. FPGA area and memory). The following
sections present each of the modules in details.

3.1 Feature Generation

As the firing rate of the spike trains corresponds to the amplitude of the signal,
a straightforward approach for detecting the energy xn (t) of each nth frequency
channel is to count the number of spikes in a time window of length W :

xn (t) =
W−1∑
i=0

pn (t − i) (1)

where pn (t) is the spike train value on time t, n = 1 . . .N . The vector x hence
represents the sound pattern in time t. Figure 2 shows the plot of the number of
spikes per time window for the sound signal interphone, used on the experiments
in Section 5.

If this vector is naively used as the input sample z for the classifier, different
signal amplitudes would result in different patterns, what is not desirable. A
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Fig. 3. Binary features for the (a) interphone and (b) fire truck sound signals

different approach is to consider the highest firing rate channels’ indexes as the
feature vector for the classifier:

zm = arg max
n

mpn (2)

where arg maxi represents the index of the ith highest element in a vector, m =
1 . . .M and M is the number of features (number of channels to be considered).
The drawback of this approach is that, due to the use of the channels’ indexes,
small frequency shifts result in large vectorial distances. Therefore, standard
distance measurements cannot be applied for comparing the patterns.

Even though the order of the highest firing rates may contain information
about the pattern, a very robust set of features can be obtained by ignoring this
information. Thus, the new feature vector becomes a binary vector defined as:

zn =

{
1 if pn ≥ max

i

Mpi

0 otherwise
(3)

where maxi represents the ith highest element in a vector. Figure 3 shows the
binary features of the interphone and fire truck sound signals.

3.2 Classification

The standard Learning Vector Quantization (LVQ) neural network [7] was used
as the classifier. The learning rate α was reduced linearly along the training
epochs by a β factor. The clusters centers were initialized using the Max-Min
Distance clustering algorithm [8].

As the patterns were reduced to simple binary vectors, they can be compared
by Hamming distance:

d (z, ω) =
N∑

i=1

|zi − ωi| (4)
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Fig. 4. Sound classification system’s state machines

where the elements of sample z and weight ω, during the training process, are
converted to binary values only for distance calculation.

3.3 Time Potentials

In the feature generation process, no feature extraction or selection procedure
is being used in order to “clean” the patterns. Although such techniques would
avoid misclassifications by the LVQ neural network, they also would add more
parameters to the system and increase the training complexity.

Up to the LVQ neural network, no time information had been used for the
classification. It can be assumed that the sound sources being recognized will not
present instant changes, i.e. they last for periods of time much larger than the
size of the time windows. Thus, by the use of potentials similar to the membrane
potential of spiking neurons, one can remove the instant errors from the LVQ
neural network without modifying the training process. The time potentials are
defined as:

uk (t) =

{
min (umax, uk (t − 1) + γ) if k = y (t)

max (0, uk (t − 1) − 1) if k �= y (t)
(5)

where uk is the potential of the kth category, γ is the increment for the winner
category and umax is the maximal potential. Hence, the winner category at time
t is the one with higher uk (t) value. It must be noted that, by setting the umax

parameter, the increment γ does not need to be adjusted. In the experiments of
this paper, γ was set fix to 2.
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4 Hardware Implementation

The state machine of the sound classification system is shown in Figure 4. The
spike counting happens as an independent process, which transfer the total num-
ber of spikes to the feature generation process when a full window is completed.
The feature generation module sequentially searches the M largest spike rates
and send this result to the classification module, which searches for the cluster(s)
with the smallest distance to the feature vector. Finally, a winner-takes-all voting
is performed and the final label is sent to the output.

The circuit was implemented in an Altera Stratix II EPS260F484C4, which
contains 48352 Adaptive Look-Up Tables (ALUT) and more than 2M bits of
internal memory. The proposed method (with 9 features, 1000 clusters per class
and a 1000 samples time window) uses a total of 2136 ALUTs, 1206 dedicated
logic registers (DLR) and 184K bits of memory (for storing the reference vectors
of the LVQ neural network). The size of the memory scales linearly with the
number of clusters per class and the number of categories, while the number of
ALUTs and DLRs presents small increases for larger values of R and number
of categories. The number of clusters per class and number of features do not
significantly increase the number of ALUTs and DLRs.

For this same configuration, the average processing time for the feature ex-
traction and classification procedures are, respectively, is 3.74µs and 42.16µs.
The classification processing time grows linearly with the total number of clus-
ters. Considering a 48kHz sampling rate, these timings enable the use of a much
larger number of categories and reference vectors.

5 Experiments

Eight sound signals were used on the experiments: alarm bell, ambulance, fire
truck, interphone, kettle, phone ring, police car and human voice. The databases
where split in training and test sets in a 2:1 rate. The voice database contains
several individuals’ voice signals, thus, presenting a larger number of samples.

The LVQ network was trained with α0 = 0.1, β = 0.995 and a maximal
of 1000 learning epochs. Figure 5 shows the test accuracy for several training

Table 1. LVQ neural network confusion matrix

Original Recognition Result
alarm ambulance fire truck interphone kettle phone police voice unknown

alarm 1512 0 0 1 13 0 0 2 0
ambulance 0 3543 1 870 0 0 18 1 91
fire truck 42 6 4349 7 16 28 96 0 40
interphone 0 121 6 1985 0 0 4 0 22

kettle 40 0 0 0 1479 0 0 0 1
phone 1 0 1 0 0 1765 0 0 1
police 11 106 147 565 13 46 4039 0 181
voice 59 902 202 1850 1 70 62 6931 387
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Fig. 6. Time potentials and final sound classification results

parameters, and Table 1 shows the confusion matrix of the chosen parameters
set (9 features, 1000 neurons per class and 1000 samples time window).

The accuracy values presented in Figure 5 and Table 1 are the raw classifi-
cation result of the LVQ neural network. Figure 6 show the results when calcu-
lating the time potentials, for a maximal potential umax equal to 192. All the
misclassifications were eliminated, with the the drawback of a small delay intro-
duced on the response of the system.



866 M. Kugler et al.

6 Discussion and Conclusions

This paper proposed a new method for implementing a sound recognition system
in an FPGA device. A novel and robust feature generation approach permits
the use of a very simple classifier, a standard LVQ neural network, while an
independent temporal layer eliminate the misclassifications.

The obtained classification accuracy is encouraging. When running in the
FPGA, the proposed model showed to be very robust and insensitive to back-
ground noise. On the case of the human voice database, several individual’s voice
not used on the training set were successfully recognized. An improved version
of the time potential layer with a better response time is being developed.

Future works include the use of a larger filter bank in order to increase the
system’s accuracy. Several more sound sources will be used in order to deter-
mine the limits os accuracy of the proposed system. The implementation of the
learning system in hardware would permit several new applications, as well as
increasing the system’s flexibility.
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Abstract. This paper proposes a complex valued generalized product
neuron (GPN) which tries to incorporate polynomial structure in the ag-
gregation of inputs. The advantage of using this model is to bring in the
non-linearity in aggregation function by taking a product of linear terms
in each dimension of the input space. This aggregation function has the
ability to capture higher-order correlations in the input data. Such neu-
rons are capable of learning any problem irrespective of whether the multi
dimensional data is linearly separable or not which resembles higher or-
der neurons. But these neurons do not have combinatorial increase of
the number of weights in the dimensions of inputs as higher order neu-
rons. The learning and generalization capabilities of proposed neuron are
demonstrated through variety of problems. It has been shown that some
benchmark problems can be solved with single GPN only without hidden
layer.

1 Introduction

The spatial integration of synapses on the dendritic tree reflects the computa-
tion performed by a neuron. Over the years, a substantial body of evidence has
grown to support the non-linear integration of signals in biological neuron cells
[1]. The well known artificial neuron models that provide higher order correla-
tion among input signals are higher order neurons [2] and polynomial neurons
[10]. All these structures have increased the computational power but they suffer
from combinatorial increase in the number of weights. Further pi-sigma network
was proposed in [14] which needs smaller number of weights as compared to
other higher order neurons but much more than conventional summation neu-
rons. This paper explores a neuron model which incorporates the higher order
correlation among input components but the number of weights needed are same
as in summation neurons. The primary motivation is to develop a higher order
neuron model which will serve as a basic unit for multi layer network. Multiplica-
tive operation being the most basic of all non-linearities, is the natural choice
to include non-linearity in neural networks at the time of aggregation. Michel
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Schmitt study [8] shows that this operation can be used to implement second
and higher order polynomial relation among set of inputs. In this paper we pro-
pose a non-linear aggregation function which is the product of linear functions
in different dimensions of the input space. This function can represent simple
polynomial relation among set of inputs. Thus, the proposed generalized prod-
uct neuron (GPN) produces sum of all possible products of the weighted inputs
in aggregation process. The superior convergence speed, reduction in learning
parameters and ability to learn two dimensional motion naturally in complex
valued neural network [11,12] have motivated to implement proposed neuron in
complex domain. The empirical evaluation of this model has been carried out as
single unit as well as in network with other conventional neurons. It has proved
to be more efficient than other neuron models in real and complex domain.

The rest of the paper is organized as follows : section 2 introduces the struc-
ture of generalized product neuron, section 3 presents the learning rules based
on complex back-propagation algorithm, section 4 examines the capability of
new structure in function approximation, classification and functional mapping
problems. Finally we discuss conclusions and ideas for future work in section 5.

2 Generalized Product Neuron (GPN)

In various neurons in human nervous system, neuro-biologists have also observed
multiplicative way of aggregation. Various authors in past [3,9] have discussed
the relevance of product operations, its power and advantage over traditional
summing operation. Product operation captures second and higher order re-
lation among set of inputs and for neurons to respond strongly to correlation
among input pairs or groups one must include product terms in the model which
one intends to develop [8]. The product operation proposed here for aggregation
process is not simple multiplication of weighted inputs but it performs multipli-
cation of linear terms in each dimension of the input space, as

L∏
l=1

(wlm zl + 1) (1)

Where wlm zl ∈ C. The C is the set of complex numbers. wlm is the weight
that connects lth neuron to mth neuron and zl is output of lth neuron. Thus,
the generalized product operation captures polynomial relation among set of
input signals and yields the sum of all possible products of weighted inputs. The
generalized product operation in Eq.(1) can also be expressed as -

n∏⊕

l=0

wlmzl (2)

= Sum of the products of all combinations of weighted inputs

= w0m + w1mz1 + w2mz2 + ... + w1mz1 × w2mz2 + w1mz1 × w3mz3 +
... + w1mz1 × w2mz2 × w3mz3 + ... + w1mz1 × w2mz2 × ... × wLmzL (3)
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The number of learning parameters in GPN are same as that of summa-
tion neuron which are significantly less than that of other higher order neurons
but GPN constructs higher order terms in aggregation function by considering
the simple combinations of all the weighted inputs. Thus proposed structure
form a polynomial of inputs, Eq.(3), by performing multiplication operation
over linear functions of different inputs Eq.(1). The order of polynomial de-
pends on the number of inputs to the neuron. In this paper, the network of
only summation neurons with non-linear activation function is referred as multi-
layered perceptron (MLP) and equivalent complex valued network is referred
as C-MLP.

3 Learning Rule

In a multi layer network of the generalized product neuron in complex domain
(C-GPN), all synaptic weights, bias and input-output signals are complex num-
ber. The activation function (fC) for C-GPN is defined as 2-D extension of real
activation function (f), as in [5,11]. Let V = �(V ) + j × �(V )1 be the net
potential of a neuron then output of the neuron is defined as :

y = fC(V ) = f(�(V )) + j × f(�(V )) (4)

In complex theory, Liouville’s theorem states that if a function fC is regular
at all z ∈ C and bounded then fC is a constant function. Hence we have to
select either regularity or boundedness. Expression (4) is non regular because
the Cauchy-Reimann equation does not hold for this, so boundedness is chosen.
Note that −1 < � [fC] , � [fC] < 1. The simulations in this study are performed
either with single C-GPN or with a three layered network (L-M-N), taking M
proposed neurons in hidden layer and N summation neurons in output layer. The
learning rules for this C-GPN network is derived using gradient descent method
by minimizing mean square error (MSE) :

E =
1

2PN

P∑
p=1

N∑
n=1

|ep
n|2 (5)

ep
n ∈ C is the difference between actual and desired output of nth neuron

for pth pattern in output layer. P is the number of patterns in training set. Let
η ∈ [0, 1] is learning rate, f

′
is derivative of function f and z is complex conjugate

of z. The complex back-propagation algorithm (C-BP) minimizes cost function
E by recursively altering the weight coefficients based on gradient descent, as -

wnew = wold − η �w E (6)

1 
 and � stands for real and imaginary components of complex value. j is imaginary
unity.
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Where the gradient �wE is derived with respect to both real and imaginary
parts of complex weights.

∆w = −η �w E = −η �(w) E − j η ��(w) E

= −η

(
∂E

∂�(w)
+ j × ∂E

∂�(w)

)
(7)

Let Vn is net potential of nth output neuron (n = 1..N) and Ym be the output
of mth neuron (m = 1..M) in hidden layer. For any weight w = wmn in output
layer, from Eq.(7)

∆wmn =
η

N
Y m (�(en) f ′(�(Vn)) + j × �(en) f ′(�(Vn))) (8)

Let net potential in a generalized product neuron at hidden layer is V π
m and

l, k, h = 1...L. This net potential can be expressed term wise from Eq. (2, 3)

V π
m =w0mz0+

L∑
l=1

wlmzl+
L∑

l,k=1
l�=k

wlmzl × wkmzk+
L∑

l,k,h=1
l�=k �=h

wlmzl × wkmzk × whmzh+...(9)

For w = wlm, the gradient of cost function (E) can be obtained by following
the chain rule of derivation in Eq.(7) :

∆wlm =
η

N
(�(Γ π

m) + j × �(Γ π
m))
(

∂(�(V π
m))

∂�(wlm)
− j × ∂(�(V π

m))
∂�(wlm)

)
(10)

Where

�(Γ π
m)=f ′(�(V π

m))
N∑

n=1

{�(en)f ′(�(Vn))�(wmn)+�(en)f ′(�(Vn))�(wmn)}(11)

�(Γ π
m)=f ′(�(V π

m))
N∑

n=1

{�(en)f ′(�(Vn))�(wmn)−�(en)f ′(�(Vn))�(wmn)}(12)

∆wlm =
η

N
zl Γ π

m

⎛⎜⎜⎝1 +
L∑

k=1
k 	=l

wkmzk +
L∑

k,h=1
k 	=h 	=l

wkmzk × whmzh + ...

⎞⎟⎟⎠ (13)

4 Results and Discussion

4.1 Performance Evaluation with Single Neuron System

All the real domain problems discussed in this section are encoded for complex
domain by assigning the input-output data to real part and zero to imaginary
part of complex data, except detection of symmetry which has different encoding
scheme.
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Table 1. Simulation results for detection of symmetry problem

S.No. Network Neuron Type Algorithm Success Average Target Parameters
rate Epochs Error

1 3-2-2 Real MLP Real-BP 89% 2484 0.1 14
2 3-1-1 C-MLP C-BP 75% 326 0.1 12
3 3-1-1 C-MLP Improved C-BP 89% 190 0.1 12
4 3-4-2 Real MLP Real-BP 100% 1491 0.1 21
5 3-2-1 C-MLP C-BP 100% 268 0.1 22
6 3-2-1 C-MLP Improved C-BP 100% 130 0.1 22
7 3-1 C-GPN C-BP 100% 188 0.01 08

The Detection of Symmetry. The real domain input-output mapping of
this popular benchmark problem has been encoded for complex domain setup in
[13]. This problem is solved in [13,4] with different three layered networks using
conventional and improved back-propagation algorithms. The proposed single
neuron is able to solve this encoded problem [13] without any hidden layer using
conventional C-BP. Table 1 presents the comparative analysis of results described
in [13] and with C-GPN. The results bring out the facts that proposed neuron
is most efficient with least number of parameters.

The Iris Data Problem. The Fisher’s Iris flower dataset is a well known 3-
class problem. The classes are flower types and every pattern has four features of
flower. The training was performed with 75 data points and testing on another
75 data points. The performance results using different networks are presented
in Table 2. Results show that only one C-GPN is able to achieve test error of
2.7% with least average epochs and learning parameters.

Box Jenkins Gas Furnace Dataset. In Box Jenkins gas furnace air and
methane were combined in order to get a mixture of gases containing CO2. In
this dataset [6], gas flow rate x(t) is input and the CO2 concentration is furnace
output y(t). The furnace output y(t + 1) is modeled as a function of the previous
output y(t) and input x(t-3). Half of the dataset is used for training and rest
half for testing. The performance of single proposed neuron for this dataset
is presented in Table 3 and Fig.(1). The Single generalized product neuron in
complex domain is far efficient than other three layered network.

Table 2. Training and testing performance for Iris dataset

S.No. Network Neuron Type Average Epochs MSE Parameters Testing
1 4-4-1 Real-MLP 20000 0.0056 25 2.7%
2 4-2-1 C-MLP 15000 0.0033 26 2.7%
3 4-1 C-GPN 7000 0.0035 10 2.7%
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Table 3. Performance comparison with Box Jenkins gas furnace dataset

S. No. Network Neuron Type Parameters MSE (Training) MSE (Testing) Epochs
1 2-2-1 Real-MLP 9 8.2 × 10−3 2.2 × 10−2 5000
2 2-1-1 C-MLP 10 4.02 × 10−4 2.3 × 10−3 2000
3 2-1 C-GPN 6 5.65 × 10−4 1.91 × 10−3 500

Fig. 1. Performance of C-GPN for Box
Jenkins Gas Furnace dataset

Fig. 2. Performance of C-GPN for Mackey
Glass time series

Mackey Glass time series. The Mackey Glass time series [7] is widely used
for testing the performance of neuron models. This series presents a model for
white blood cell production in leukemia patients and also has nonlinear oscil-
lations. This is a chaotic time series which makes it an universally acceptable
representation of nonlinear oscillations of many physiological processes. The MG
delay difference equation is given as -

y(t + 1) = (1 − b) y(t) + a
y(1 − τ)

1 + y10(t − τ)
(14)

where a = 0.2, b = 0.1 and time delay τ = 17. This series predict the value y(t+1)
based on four previous measurements y(t), y(t− 6), y(t− 12) and y(t− 18). The
proposed neuron is trained with 450 samples and its prediction ability is tested

Table 4. Performance comparison with Mackey Glass time series data

S. No. Network Neuron Type Parameters MSE (Training) MSE (Testing) Epochs
1 4-3-1 Real-MLP 19 3.0 × 10−3 3.8 × 10−3 5000
2 4-1-1 C-MLP 14 9.3 × 10−4 1.02 × 10−3 2000
3 4-1 C-GPN 10 9.65 × 10−4 1.23 × 10−3 600
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on other 500 samples. The performance of single proposed neuron for training
and prediction data is presented in Fig.(2). Table 4 demonstrates that single C-
GPN outperform the two three layered network in terms of number of learning
parameters and average training epochs.

4.2 Performance Evaluation with Three Layered Network

C-XOR Problem. A set of training patterns using two rules in the experiment-
2 of [11] has been described for performance evaluation of the 2-4-1 complex
valued network comprising of summation neurons (C-MLP). We pose here his
definition as C-XOR problem. The comparative performance of different network
structures for this C-XOR problem is shown in Table 5 and in Fig.(3).

Functional Mapping. The general structure of mapping which is a composi-
tion of the three basic class of 2D transformations (Scaling, Rotation and Trans-
lation) is of the form :

Ψ(z) = Az + B (15)

Where z, A, B ∈ C. Evidently, this is an expansion or contraction by a factor
|A| and rotation through an angle equal to ArgA in counterclockwise direction,
followed by translation in a direction defined by the ArgB through a distance
equal to |B|. Learning and generalization of 2D transformations are only possible
in complex valued neural network [11]. The three examples are presented in this
section to validate the performance of generalized product neuron with complex
back-propagation algorithm. We have taken 2-M-2 network where first input is
a set of points lying on locus of a curve and second input is the reference point
of input curve, similarly the first output neuron gives the locus of transformed
curve and second output is its reference point. The hidden layer contains M
proposed neurons. Transformations of the curves are shown in various figures in
this section, Black color represents the input test figure, desired output is shown
in dashed Blue color and actual output is shown in Red color.

Example 1. This example considers an experiment in which the points on a circle
in z-plane get mapped to points on an image circle in w-plane. This mapping
is used to study viscous flow across bodies with different cross-section. A 2-2-2
network is trained with 36 learning patterns. These 36 input data points are on

Table 5. Comparison of training and testing performance for C-XOR-problem

Target error (MSE) = 0.0001
S.No. Hidden Neurons Average Epochs Parameters Misclassification

1 4-Sum 10000 34 0%
2 2-GPN, 2-RBF 9000 30 0%
3 4-GPN 6500 34 0%
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Fig. 3. Learning curves of three differ-
ent 2-4-1 networks for C-XOR

Fig. 4. Generalization performance of
C-GPN network for mapping in Eq. (16)

a circle |z| = 0.62 referenced at origin and output points are corresponding value
of w defined by following equation :

w =
(0.2z + 0.2 + 0.3i)

(i + 0.4)
(16)

The trained network is able to generalize this mapping from z-plane to w-
plane over varying value of radius of circles. Testing input patterns contain six
circles of varying radius from 0.2 to 0.9 in regular interval and Fig.(4) presents
the transformed result of these circles in w-plane.

In [11] author presented generalization ability of C-MLP for each basic class
of transformations but in our experiments we have considered the composition of
two or three basic transformations. In examples (2) and (3), the 2-2-2 network
is trained for input-output mapping, Fig.(5a), over a set of points lying on a
line passing through a reference point (mid of line, may be origin) and gener-
alization of this trained network is tested over other standard geometric curves
like circle, ellipse, parabola; Fig.(5 b,c). The input training patterns are set of
points of radius vector reiϑ. The corresponding output patterns are set of points
(α r ei (ϑ+ν) + β ei σ) representing the composition of three transformations, as
in Eq.(15). All the points in training and testing patterns are with in a circle of
unit radius centered at origin (0 ≤ r ≤ 1) and all angles vary from 0 to 2 π. The
author, in [11], discussed the generalization error and derived the equation for
this error of transformation. The error increases as distance between the input
test and training points increases and decreases as they become closer.

Example 2. Translation and Rotation
Here we investigate the behavior of the network which learned the composition
of rotation and translation. From Eq.(15) :

Ψ1(z) = Az + B where |A| = 1 (17)

The mapping Ψ1 rotates the vector z by ArgA in counterclockwise direction and
displaces by vector B.
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(a) (b) (c)

Fig. 5. (a) Learning patterns for analysis, mapping shows scaling by factor α, angle
of rotation τ and displacement by distance β in direction of σ (b) 2D Transformation
(Translation and Rotation) with C-GPN (c) 2D Transformation (Scaling, Translation
and Rotation) with C-GPN

The learning patterns z are rotated counterclockwise over π/2 radians and
translated by B = (0 + j × 0.2). So such 19 training inputs lie on the line
y = x, (−0.636 ≤ x ≤ 0.636) and training output lie on the line y = −x + 0.2,
(−0.636 ≤ x ≤ 0.636). Fig.(5b) shows the generalization of trained network
over parabola. Test input points lie on the parabola y2 = 4px with vertex at
origin and focus at distance p = 0.2, test output should map on the parabola
x2 = 4p(y − 0.2), which is due to rotation by π/2 and translation by (0,0.2).

Example 3. Scaling, Rotation and Translation
This example investigates the behavior of the network which learned the com-
position of all three transformations defined in Eq. (15). In this example the
mapping Ψ performs scaling by factor α = 1/2, rotation by π/2 radians counter-
clockwise and translation by B = (−0.1 + j × 0.2). The training set input have
21 patterns lying on line y = x, (−1/

√
2 ≤ x ≤ 1/

√
2) referenced at origin and

training output patterns lie on the line y = −x + 0.1, (−0.453 ≤ x ≤ 0.253).
The input test points lying on the ellipse x2

a2 + y2

b2 = 1 would hopefully be

mapped to points lying on (x+0.1)2

(b/2)2 + (y−0.2)2

(a/2)2 = 1 at reference (-0.1,0.2), where
a = 0.8, b = 0.4. Fig.(5c) shows this generalization using C-GPN neuron based
network.

5 Conclusion

In this study we have developed a complex valued generalized product neuron
(C-GPN) based on polynomial aggregation function. The proposed neuron is
simpler and reduces the complexity of learning parameters when used in complex
valued neural network in compare to existing higher order neuron models. The
proposed neuron model has been exploited as single neuron and as well as in
the three layered network. All the simulations with C-GPN demonstrate the
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significant improvement in the performance as compared to conventional neurons
in terms of network structure, learning parameters and convergence speed. It
is also observed that this single proposed neuron is able to solve many hard
problems. This computational model may further be improved for better learning
and approximation accuracy using efficient learning techniques.
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Abstract. In recent years, synaptic plasticity, which is dependent on the order 
and time interval of pre- and post-synaptic spikes, has been observed by physio-
logical experiments. There are two types of STDP which are characterized by an 
asymmetric time window and a symmetric time window (mexican hat type win-
dow). A symmetric time window especially depends on the influence of an in-
hibitory neuron. In this paper, we investigate the synaptic circuit and the synaptic 
weight control circuit using STDP by inhibitory interneuron input or no input. As 
a result, we show that the synaptic circuit using STDP with the time windows of 
these two types could be constructed with a simple circuit configuration consid-
ering an inhibitory interneuron by using the circuit simulator PSpice. Further-
more, we show the characteristic of reinforcement and suppression. 

1   Introduction 

In the brain, the learning is effected by the synaptic plasticity, which modulates and 
holds the connection weight. The brain has a superior information processing function 
when learning. For instance, the associative memory is one example. On the other 
hand, the present Neumann-type computer doesn't have a superior learning function 
like the brain. Then, an artificial neural network that performs similarly to the human 
brain would be required to construct a brain-type information processing system using 
analog VLSI technology [1].  

Our purpose is to develop a brain-type information processing system using analog 
VLSI technology. Recently, the form of synaptic plasticity was seen to be dependent 
on the order and time intervals of pre- and postsynaptic spikes (STDP: spike timing 
dependent synaptic plasticity [2]) has been observed in the hippocampus and cerebral 
cortex [3, 4]. In general, STDP manifests itself as the potentiation of a synapse if the 
presynaptic spike precedes the postsynaptic spike and as depression if the presynaptic 
spike follows the postsynaptic spike (an asymmetric time window). In addition, it has 
been reported that the depression caused when the presynaptic spike precedes the 
postsynaptic spike (a symmetric time window) depends on the influence of an  
inhibitory neuron [5]. Namely, it has been reported that are two types of STDP which 
are characterized by an asymmetric time window and a symmetric time window (a 
                                                           
∗ Corresponding author. 
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mexican hat type window). Furthermore, it has been reported that recall of two states 
(autoassociative and heteroassociative) using the two time windows in the mathemati-
cal model [6] exist. We focus on the technological applications of the synaptic plastic-
ity, we would like to develop on associative memory which makes use of the store and 
recall functions inherent in temporal sequences patterns, using the two time windows. 
Recently, it has been reported that a triplet rule, i.e. a rule which considers sets of 
three spikes [7] exists. 

On the other hand, hardware neuron models with STDP have been proposed based 
on the results of physiological experiments [8, 9]. However, these models require 
either complex circuits or mixed signal circuits. 

We previously proposed a simple cell body circuit of a pulse-type hardware neuron 
model (P-HNM) using CMOS that approximately simulates pulse signals as the means 
of information transmission in the brain [10, 11]. And so, we proposed an asymmetric 
type of STDP hardware model. Moreover, we studied the robustness of this circuit. As 
a result, we showed that it was able to make IC implementation [12, 13]. 

In this paper, we focus on the inhibitory inter neuron. We propose a pulse-type 
hardware neural network with two time windows in STDP by using circuit simulator 
PSpice. 

2   Construction of Neural Network with STDP 

Figure 1 shows a construction of a Neural Network with STDP. It shows a pre-
synaptic cell Npre, a post-synaptic cell Npost, and an inhibitory cell Ni between Npre and 
Npost. Open circles indicate excitatory connections while solid circles indicate inhibi-
tory connections. Also, stimulation currents ipre and ipost flowing into Npre and Npost, 
respectively, and Wpost, pre, the weight of the synaptic connection between Npre and 
Npost, are controlled by VWpost, pre from the synaptic weight generation circuit. 

 

Fig. 1. Construction of a Neural Network with STDP 

Figure 2 shows the circuit of a pulse-type hardware neural network with STDP. We 
used P-HNMs [10, 11] for Npre, Ni and Npost. These P-HNMs have a threshold, an 
action potential, and a refractory period characteristic. And, Npre, Ni and Npost are 
simple circuits because each circuit consists of four MOSFETs and two capacitors. 
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Furthermore, the substrate of Mc1, Mc4, and the gate terminal of Mc2, Mc3 are con-
nected to GND, because it receives the negative resistance characteristics [10, 11]. 
The circuit in Fig. 2 has two types of synaptic circuits, equivalent to the synaptic part 
in Fig. 1. These synaptic circuits have temporal summation characteristics. When 
voltage pulses vNpre output from the pre-synaptic cell are input, the pulses have a first-
order delay and are transmitted to Mes1, Mes2 and Mes3, to generate iout and iNi. More-
over, the current iout can be adjusted by the voltage VWpost, pre, which is the output 
voltage of the synaptic-weight generation circuit. As well as the excitatory synaptic 
circuit, when the voltage pulses vNi output from the inhibitory synaptic cell are input, 
the pulses have a first-order delay and are transmitted to Mis1, Mis2 and Mis3, to gener-
ate iin. In other words, iin suppresses the pulse (vout) output by a P-HNM. In a synaptic 
weight generation circuit, Dpre is similar to Dpre in the excitatory synaptic circuit of 
Fig. 2, Di is the same as Di in the inhibitory synaptic circuit of Fig. 2, and Dpost simi-
larly shows the temporal summation of the input pulses. Whenever Npre and Npost 
produce vNpre and vNpost, the voltage difference of capacitors Cpre, Ci, and Cpost in Dpre, 
Di, and Dpost changes. They adjust the magnitude of the output currents from Mpre2, 
Mi2, and Mpost2. Moreover, a multiple of the current in Mpre2 flows through Mpre3 and 
Mpre6, a multiple of the current in Mi2 flows through Mi3, and a multiple of the current 
in Mpost2 flows through Mpost3; in other words, they have current mirror structures. In 
addition, if vNpre or vNpost is inputted to the gate terminal, Mpre7, Mi4, and Mpost4 are 
switched ON. Therefore, VWpost, pre is the output voltage of this circuit and is the pa-
rameter that controls the synaptic weight between the pre- and post-synaptic cells. 
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Fig. 2. Circuit of a pulse-type hardware neural network with STDP 
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3   Simulation Result 

Figure 3 shows an example of two time windows in STDP. (a) ~ (d) show the timing 
of the pulse that the P-HNM used as each output voltage. Also, the output pulses of 
Npre and Npost depend on the input timing of ipre and ipost. The horizontal axis 
 

 
(e) Asymmetric time window                              (f) Mexican-hat time window 

Fig. 3. Example of two time windows in STDP 
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is time, and the vertical axis is the output voltage of each P-HNM. (e) and (f) show 
the behavior of VWpost, pre in the synaptic-weight generation circuit. The horizontal axis 
is the time interval ∆t, which is the time difference of the post-synaptic pulse and the 
pre-synaptic pulse, and the vertical axis is the amount of voltage change ∆VWpost, pre. 
Here, VWpost, pre increases after pulses are generated in the pre- and post-synaptic cells. 
The circuit parameters used were as follows: for Mpre1, Mpre2, Mpre4, Mpre7, Mi1, Mi2, 
Mi4, Mpost1, Mpost2, and Mpost4, W/L=1.0; for Mpre3, Mpre5, and Mpost3, W/L=1.1; for 
Mpre6 and Mc3, W/L=0.1; for Mi3, W/L=0.8; for Mc1 and Mc2, W/L=10; for Mc4, 
W/L=0.3; and Cpre=Ci=Cpost=10 pF, CWpost, pre=15 pF, Cg=4 pF, Cm=1 pF, VA=1.95 V, 
and Vdd=3 V. (a) and (b) show the suppression and reinforcement fields in Fig. (e), 
respectively. Furthermore, (a), (c) and (d) show the suppression (∆t=minus), rein-
forcement and suppression (∆t=plus) fields in Fig. (f), respectively. We showed that 
the circuit controls the synaptic weight, which is dependent on the order and the time 
interval of pre- and post-synaptic cell spikes, and we showed a similar characteristic 
to the asymmetric time window and the Mexican-hat time window found in the brain 
of a living body. Especially, the Mexican-hat time window is caused by an inhibitory 
interneuron lying between the pre- and post-synaptic cells. 

Figure 4 shows VWpost, pre vs. (a) output current iout, (b) sink current iin and (c) output 
voltage vout, respectively. The horizontal axis is VWpost, pre, and the vertical axes are iout, 
iin and vout, respectively. 

Figure 4(a) shows the amplitude characteristic of the output current iout that flows 
from the excitatory synaptic circuit to the post-synaptic cell when the pre-synaptic 
cell generates the pulse to control the voltage of VWpost, pre. The circuit parameters used 
were as follows: for Mpre1 and Mpre2, W/L=1.0; for Mes1, W/L=0.2; for Mes2 and Mes3, 
W/L=0.1; Cpre=10 pF; and Vdd=3 V. It shows that iout does not flow gradually as the 
control voltage of VWpost, pre increases. At this point, iout has a very low value (µA 
order), we can make a large scale neural network. 

Figure 4(b) shows the amplitude characteristic of the sink current iin that flows 
from the inhibitory synaptic circuit to the post-synaptic cell when the pre-synaptic cell 
generates the pulse to control the voltage of VWpost, pre. The circuit parameters used 
were as follows: for Mi1 and Mi2, W/L=1.0; for Mis1, W/L=0.3; for Mis2 and Mis3, 
W/L=0.5; Ci=10 pF; and Vdd=3 V. It shows that the amplitude of iin decreases by 
about VWpost, pre, or 1.5 V, and iin gradually becomes steady as the control voltage of 
VWpost, pre increases. 

Figure 4(c) shows the amplitude characteristic of the post-synaptic cell to control 
the voltage of VWpost, pre. It shows that the amplitude characteristic of the post-synaptic 
cell decreases gradually as the control voltage of VWpost, pre increases.  

As a result, we show two types of synaptic circuits, namely, an excitatory synaptic 
circuit and an inhibitory synaptic circuit, which can control iout and iin as the control 
voltage of VWpost, pre changes. This shows that it is possible to control vout, that is, the 
pulses output from the post-synaptic cell, with iout and iin. 

Next, we discuss the characteristics of reinforcement and suppression of synaptic 
plasticity by using Fig.2. The signal of the next expression was used as a train of 
pulses that the cell body circuits Npre and Npost output. 
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        (a) Characteristic of Vwpost,pre vs. Iout             (b) Characteristic of Vwpost,pre vs. Iin 

 

                                             (c) Characteristic of Vwpost,pre vs. vout 

Fig. 4. Characteristics of current and voltage in proposed circuit 
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In these equations, vpre,i represents the amplitude of the pulses of the i-th output 
from Npre, and vpost,j, and shows the amplitude of the pulses of the j-th output from 
Npost. T is the period of the pulse, and dt indicates the delay time of the pulse train of 
Npost outputs to the pulse train of Npre outputs. Based on the asymmetric time window, 
T=10 µs and dt=1 µs are used as a reinforcement pattern, while T=10 µs and dt=-1 µs 
are used as a suppression pattern. 

  Here, SNpre represents the periodic pulse train that Npre outputs, and SNpost shows 
the periodic pulse train that Npost outputs. First, vNpre, i is the amplitude of the i-th pulse 
that Npre outputs, and vNpost, j is the amplitude of the j-th pulse that Npost outputs. T is 
the pulse period, and ∆t is the delay time between the j-th pulse that Npost outputs and 
the i-th pulse that Npre outputs. Examples of the time-varying characteristics in the 
weight increasing and decreasing process for ∆t=0.5 µs (Fig. 5A), ∆t=-0.5 µs (Fig. 
5B), and ∆t=1.5 µs (Fig. 5C) are shown in the Mexican-hat time window. We used a 
pulse period T=10 µs.  

These results show that the synaptic weight of the excitatory synaptic circuit be-
tween the pre- and post-synaptic cells is increased or decreased by the control voltage 
of the synaptic-weight generation circuit.  
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                                                 (a) Vwpost,pre                                (b) iout 
Fig. 5A. Time transition in the increment process of ∆t=0.5 [µs] 

 
 

 
 

                                              (a) Vwpost,pre                                 (b) iout 

Fig. 5B. Time transition in the inhibition process of ∆t=-0.5 [µs] 

 
                                                   (a) Vwpost,pre                              (b) iout 

Fig. 5C. Time transition in the inhibition process of ∆t=1.5 [µs] 

4   Conclusion 

In this paper, we investigated a pulse-type hardware neural network with two time 
windows in STDP. We showed a pulse-type hardware neural network can be con-
structed STDP with an asymmetric time window and a Mexican-hat time window. 
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Especially, we show that a pulse-type hardware neural network using STDP with a 
Mexican-hat time window can be constructed with a simple circuit configuration 
incorporating an inhibitory interneuron part.  

In our future work, we will construct an integrated circuit with a pulse-type hard-
ware neural network with STDP synapses. Furthermore, we will use the two time 
windows, we will construct a store and recall system of temporal sequences. 
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Abstract. A continuous time neural network of Hopfield type is consid-
ered. It is a W(inner) T(akes) A(ll) selector. Its inputs are capacitively
coupled to model the parasitics or faults of overcrowded chip layers. A
certain parameter setting allows the correct selection of the maximum
element from an input list. As processing time is a performance crite-
rion, we infer upper bounds of it, explicitly depending on circuit and
list parameters. Our method consists of converting the system of nonlin-
ear differential equations describing the circuit to a system of decoupled
linear inequalities. The results are checked by numerical simulation.

1 Introduction

The neural idea of properly connected simple cells performing complicated
tasks, continues to attract and expand. In particular, continuous time Hop-
field networks [1] [2] have proved their ability to process analog signals [3], [4],
[5]. Having multiple stationary states which are stable and attainable by con-
trollable dynamics, this type of circuits attracts equally circuit theorists and
practitioners.

In this paper we consider a W(inner) T(ake) A(ll) circuit, i.e. a selector of a
maximal element from a list. If the rank of the largest element of the input list
is σ (1), then the only output voltage above a positive threshold has the same
rank σ (1) [6]. In order to compete well with its digital counterparts, this circuit
has to be able to signal fast “the winner” of a certain list then quickly reset
and admit a new list. Setting up a proper clock is desirable and difficult as well.
It requires an explicit time dependence on circuit and list parameters. To this
goal, rate convergence estimations as they appear in stability studies, [7], [8] are
not enough. Instead, recent developments deal with the individual component
transient evolution [9], [10], [12], [13]. Our present paper extends these results
by adding the capacitive coupling of the inputs to the original Hopfield model.

Motivated either by the parasitics inside the crowded VLSI chips or by possible
faulty layers, the coupling capacitors strongly affect the processing speed [11].
We derive below analytical formulae of the switching time as functions of all
circuit and list parameters and verify the results by numerical simulations [13].

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 885–892, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Preliminaries

We have N amplifiers with sigmoidal characteristics vi = Bg (λui) where g is the
tanh function. The gain λ is essential here. The cells are recurrently connected
Fig. 1 - by the p value conductances gathered in the interconnection matrix
T with Tii = 0 and Tij = p. C0 collects the ground capacitances Cint of all
interconnections arriving at each input: C0 = (N − 1)Cint. All pairs of inputs
(ui, uj) are also connected by the cross-coupling capacitors δ. The matrix C with
Cii = C0 +(N − 1) δ and Cij = −δ describes the capacitive part of the network.

If u = (u1, u2, · · · , uN)T , v = (v1, v2, · · · , vN )T , b = (d1 + M, d2 + M, · · · ,
dN + M)T , l =

1
ρ

+ (N − 1) p then the network is described by

C
d

dt
u = −lu − Tv + b (1)

Very useful here is the ”difference equation”

Cn
d

dt
uij = −luij + pvij + dij (2)

where Cn = C0 + Nδ, uij (t) = ui (t) − uj (t) and similarly for vij and dij .
When S is in ”1” the list d = (d1, d1, · · · , dN )T and the bias current M are

simultaneously applied to all N inputs. All through the Tp seconds - see Fig 2
- the network selects the maximal element of the list d. (The reasoning and the
parameter restrictions leading to this WTA behavior are not detailed here - see
[12] and [13].) This means that if d1 > d2 > · · · > dN , after Tp second we will
have

v1 (Tp) > ξ > −ξ > v2 (Tp) > · · · > vN (Tp) (3)

and

u1 (Tp) > β > −β > u2 (Tp) > · · · > uN (Tp) (4)

where ξ = Bg (λβ).
Once the result (3) or (4) has been read at Tp, the clock switches S in ”2” and

keeps it there Tr seconds until the voltages ui go beneath a threshold η. Below we
only show how Tp is computed. However the η value is taken such that Tr + t12

0

M
S1

2 1/ρδ δ δ

p p p

1/r

i

di

C 0

−vi

u1 u2 uN

−v1 −v2 −vN

ui

Fig. 1. The i-th cell with all its interconnections
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current list

2

processing
next list 
processingresetting

di
u i

Tp Tr Tp

+v i

−v i

M

S
i

S in "1" S in "2" S in "1"

1/r
1

Fig. 2. The clock cycle

is the shortest possible - [10], [13]. Each list (d1, d2, · · · , dN ) is defined by its
”separation” ∆ = min|di − dj |, i.e. the shortest distance between two elements.
If the admission interval is [0, dmax] then we define the ”relative separation” as

z =
∆ (N − 1)

dmax
a parameter between 0 and 1 describing ”how crowded” are the

list elements in [0, dmax]. Obviously the processing time depends on z. A value
of Tp should be valid for any list having the relative separation higher than a
limit zmin. Similarly the same clocking time Tp should work for any defect (or
parasitic) capacitance smaller than a limit δmax.

3 Computing the Processing Time

Once a list arrives at t = 0 the network voltages ui (t) and vi (t) start to move
towards the new steady state ui and vi. Those stationary values are ordered
according to the di elements and the winner is above the value β while the losers
lie under −β. In fact, the network reaches its WTA state at a certain moment
tp, following one of the two ways exposed in Fig. 3 and 4. If all other parameters
are constant, tp varies with:

– the defect (or parasitic) capacitance δ;
– the list separation ∆ (or z);
– the size and succession of list elements at the same separation.

t12

tα
t p

u1

u1
u2

u2

time

−β

β

−η

η

α

Fig. 3. The processing phase - case 1. The u1 winner surpasses the threshold β after
the moment when the losers u2 > u3 > · · · > uN fall under −β.
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tα

tpt12

u1

u2
u1

u2

−η time

η

β

−β
α

Fig. 4. The processing phase - case2. The u1 winner goes above β before the moment
when −β = u2 > u3 > · · · > uN .

In order to cover all these possibilities, the clock time Tp should be an upper
bound of all times tp with respect of all lists having z ∈ [zmin, 1] and δ ∈ [0, δmax]
where zmin and δmax are given. As a matter of fact we split the ”real” processing
time tp in three parts:

tp = t12 + (tα − t12) + (tp − tα) (5)

give an upper bound of each term (as explained below) and sum them up to
obtain the desired Tp:

Tp = t12 + tα − t12 + tp − tα (6)

Let us proceed explaining the three intermediate times in (5).

1. The first one begins at time zero when the new list arrives. There, ui (0)
values are inherited from the previous list. The voltages evolve towards the
new order. On their way, the moment tij when ui (tij) = uj (tij) after ui (0) <
uj (0) and before ui (tp) > uj (tp), is an important one. By the method in
[13] we can show that tij is unique. Also, from the difference equation (2)
we can find an upper bound of t12

t12 =
Cmax

n

λpB − l
ln

1

1 − λpB − l

l − l

(7)

Here Cmax
n = C0 + Nδmax and l =

1
ρ

+
1
r

+ (N − 1) p.

2. If α ∈ [0, 2β] is arbitrary, let us denote by tα the moment after t12 when one
of the following happens: (see Figs 3 and 4)

u1 (tα) = β − α and u2 (tα) = −β

or

u2 (tα) = −β + α and u1 (tα) = β

The difference equation yields a bound of tα − t12:

tα − t12 =
Cmax

n

l
ln

∆min

∆min − l (2β − α)
(8)

where ∆min corresponds to zmin.
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3. Referring to the first case of the tα definition, we briefly explain below how
we bound the tp − tα interval. The first equation in (1) can be written as

C0
d

dt
u1 = −lu1 − δ

N∑
j=1

d

dt
u1j − p

N∑
j=2

vj + d1 + M (9)

The terms
d

dt
u1j are evaluated from (2) written for i = 1. We get

d

dt
u1j ≤ d1j − l (2β − α)

Cn
exp
[
− l

Cn
(t − tα)

]
+

2aB

Cn
(10)

On [tα, tp] interval we have{
−B < v1 < ξ
−B < v2, · · · , vN < −ξ

(11)

With (11) and (10), (9) gives the following linear differential inequality

C0
d

dt
u1 ≥ −lu1 − A exp

[(
− l

Cmax
n

)
t

]
+ R1 (12)

where A =
δmax

Cmax
n

exp
(

l

Cmax
n

tα

) N∑
j=2

[dmax − (N − j) ∆min − l (2β − α)], R1 =

− δmax

Cmax
n

2pB (N − 1) + pξ (N − 1) + zmindmax + M.

After solving (12) we obtain

F1 (tp − tα) ≤ 0 (13)

where

F1 (s) =
(

R1

l
− β

)[
exp
(

l

C0
s

)
− 1
]
−Q1 (α)

[
exp
(

l

C0
− l

Cmax
n

)
s − 1

]
−

α and Q1 (α) =
1

lN

N∑
j=2

[dmax − (N − j)∆min − l (2β − α)]. An entirely par-

allel procedure for the second case of tα definition leads to

F2 (tp − tα) ≤ 0 (14)

F2 has the form of F1 where R1 and Q1 are replaced by R2 = − δmax

Cmax
n

2pB

(N − 1) − p (N − 2)B + pξ − dmax + ∆min − M and

Q2 (α) =
1

lN

⎧⎨⎩dmax − (N − 2) ∆min − l (2β − α) − Z (α)

N∑
j=3

[2pB + (j − 2) ∆min]

⎫⎬⎭ where

Z (α) =
[
1 − l (2β − α)

∆min

] [
1 − λpB − l

l − l

] l

λpB − l .
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Let us suppose

R1,2

l
− β > 0 (15)

Then, from (13) and (14) we obtain an upper bound of tp − tα

tp − tα = max (s1, s2) (16)

where s1 and s2 are roots of F1 and F2 i.e. F1 (s1) = 0 and F2 (s2) = 0.
If we consider the parameters N , p, ρ, C0, zmin and δmax as given, and we
suppose

δmax ≤ C0

N − 2
(17)

then the restrictions (15) result in computable intervals for choosing M , β, λ,
ξ and dmax. (Those formulae are omitted for lack of space - see [13]). Once
these have settled, we have designed a circuit which correctly selects the
maximal element and its computing time is related to parameters through
(7), (8) and (16).

4 Examples

Let us consider our circuit with N = 30, p = 0.1, ρ = 100, B = 10, C0 = 1,
zmin = 0.8, δmax = 0.017. We compute M1 = −27.659, M2 = −31.504 and we
choose M ∈ [M1, M2] as M = −31. Further on β1 = 1.28×10−2, β2 = 1.32×10−2

and we choose β ≤ min (β1, β2) as β = 1.28 × 10−2. Then λ = 638.06, ξ =
9.9999985, dmax = 3.39. For each of the 11 values of α = (2β/10) × n ∈ [0, 2β]
we successively compute the bounds t12, tα − t12 from (7) and (8). Then we
compute Q1,2 (α) for each of α values and R1,2 as given in the preceding section.
Then, for each α we solve the equations F1,2 (s) = 0 and find s1 and s2. By
(16) we find tp − tα and by (6) we obtain Tp for each α. The maximal Tp is
the true one, Tp = 3.34. At this stage, all parameters (including the clock time
Tp) have settled. We have built a circuit capable to select in Tp = 3.34 units of

Table 1. Successive steps in finding out Tp

n 0 1 2 3 4 5 6 7 8 9 10

α(×10−2) 0 0.25 0.51 0.77 1.02 1.28 1.54 1.80 2.05 2.31 2.57

t12 8.33 × 10−5

tα − t12 0.94 0.71 0.56 0.44 0.35 0.27 0.20 0.14 0.09 0.04 0

R1 5.29 × 10−2

Q1(×10−1) 6.21 6.24 6.26 6.29 6.31 6.34 6.36 6.39 6.41 6.44 6.46

s1 2.40 2.40 2.40 2.41 2.41 2.41 2.41 2.42 2.42 2.42 2.42

R2 4.44 × 10−2

Q2(×10−1) -8.95-9.05-9.15-9.26-9.36-9.46-9.57-9.67-9.78-9.88-9.98

s2(×10−1) 0 3.32 4.91 5.98 6.77 7.41 7.95 8.40 8.80 9.16 9.48

max (s1, s2) 2.40 2.40 2.40 2.41 2.41 2.41 2.41 2.42 2.42 2.42 2.42

Tp 3.34 3.12 2.97 2.85 2.76 2.68 2.62 2.56 2.51 2.46 2.42



Time Evaluation for WTA Hopfield Type Circuits 891

Table 2. Tp for various (zmin, δmax, N)

zmin ↓
δt

C0
→ 0.1 0.5 1

N = 10 3.29 8.34 8.46

0.8 N = 30 1.93 3.34 1.21

N = 50 1.23 1.82 1.30

N = 10 7.74 6.64 6.79

0.5 N = 30 0.60 3.40 0.74

N = 50 0.26 2.46 1.33

N = 10 6.36 8.43 7.58

0.2 N = 30 1.10 0.91 1.25

N = 50 0.35 1.71 1.39

Table 3. tp from numerical simulation ODE solving

zmin ↓
δt

C0
→ 0.1 0.5 1

N = 10 1.50 1.74 0.44

0.8 N = 30 5.21 × 10−1 4.29 × 10−1 2.30 × 10−3

N = 50 2.94 × 10−1 2.39 × 10−1 9.16 × 10−4

N = 10 1.01 0.49 0.098

0.5 N = 30 4.40 × 10−2 1.41 × 10−1 1.35 × 10−3

N = 50 1.40 × 10−2 7.85 × 10−2 6.72 × 10−4

N = 10 0.47 0.18 0.053

0.2 N = 30 1.52 × 10−2 1.60 × 10−3 8.19 × 10−4

N = 50 4.80 × 10−3 2.22 × 10−2 3.26 × 10−4

time the maximal element from any list of 30 elements with z ≥ 0.8, even if the
inputs suffer any δ ≤ 0.017 capacitive defect. Let us verify that our circuit works
correctly. We take a list of 30 elements with ∆ = ∆min = 9.35 × 10−2 given by
di = (2i − 1)∆ for i ∈ 1, 15 and di = (i − 16) 2∆ for i ∈ 16, 30. Our circuit has a
capacitive coupling of δ = δmax. By running the ODE113 routine of MATLAB
we found that u15 wins in tp = 0.42992 units of time. This encodes the fact that
d15 is the largest element of the list, a correct answer.

Tables 2 and 3 contain Tp and respectively tp for circuits with different pa-

rameters, namely N = 10, 30, 50, zmin = 0.2, 0.5, 0.8 and δmax =
0.1
29

,
0.5
29

,
1
29

.

(Note that δt = (N − 1) δmax). All our examples confirm a correct WTA behav-
ior in Tp units of time and Tp > tp everywhere. Sometimes in these examples
the clock time Tp is much larger than the real time tp. This does not mean a
”waste of time” simply because different z and δ parameters can give a tp closer
to Tp. Indeed we are certain that Tp will exceed tp regardless of z ≥ zmin and
δ ≤ δmax.

5 Conclusion

This paper evaluates the processing time Tp for an analog WTA circuit by taking
into account its capacitive coupling between input terminals.

The explicit formulae or simple equations relating different parts of Tp to
circuit and list parameters are the main achievement here, hardly expected for
such an intricate model. While t12 and tα − t12 can be evaluated os in (7) and
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(8), tp − tα is bounded in (16) where s1 and s2 must be numerically computed
from F1 (s) = 0 and F2 (s) = 0.

The result presented here suggests a procedure to set up the parameters (bias,
threshold, gain, admission interval) enabling the circuit to correctly process lists
of any density in Tp units of time regardless a capacitive defect δ ≤ δmax.

The results are limited by the supposition that the δ capacitance is the same
between all pairs of inputs.
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Abstract. P systems or Membrane Computing are a type of a distributed, mas-
sively parallel and non deterministic system based on biological membranes. 
These systems perform a computation through transition between two consecu-
tive configurations. As it is well known in membrane computing, a configura-
tion consists in a m-tuple of multisets present at any moment in the existing m 
regions of the system at that moment time. Transitions between two configura-
tions are performed by using evolution rules which are in each region of the 
system in a non-deterministic maximally parallel manner. This article shows the 
development of a hardware circuit of selection of active rules in a membrane of 
a transition P-system. This development has been researched by using the Quar-
tus II tool of Altera Semiconductors. In the first place, the initial specifications 
are defined in orfer to outline the synthesis of the circuit of active rules selec-
tion. Later on the design and synthesis of the circuit will be shown, as well as, 
the operation tests required to present the obtained results. 

1   Theoretical Preliminaries on P-Systems 

The Membrane Computing or P Systems (created by Păun [1], [2], [3]) are computa-
tion systems based on the biomolecular processes of living cells. According to this, 
the investigations are based on the idea of the imitation of the procedures that take 
place in Nature, and their application to machines, can lead to discover and to develop 
new computation models which will give place to a new generation of intelligent 
computers. There are many papers about software tools implementing different P-
system variants [4], [5] and [6]. However, they are very interesting in order to define 
hardware implementation of these kinds of systems. Moreover, evolution of transition 
P- systems is very complicate to be translated into hardware devices due mainly to the 
membrane dissolving or membrane division capabilities of rules.  

Besides that, the non-deterministic maximally parallel manner in which rules are 
applied inside membranes is more appropriated to be implemented in digital hardware 
devices. In the case of P-systems hardware implementations only a few papers can be 
found: a Hardware Circuit for Selecting Active Rules [7], a Cluster of Computers [8], 
a Master-Slave Distributed Architecture [9] or hardware architecture based on micro-
controllers [10]. 

This article development a FPGA circuit for to select the active rules in a transition 
P-system membrane, by using the Quartus II tool of Altera Semiconductors [11]. In 
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the first place, the initial specifications are defined to outline the circuit of the selec-
tion of active rules synthesis. Later on, the circuit synthesis will be shown as well as 
the functioning tests necessary to present the results we have reached. 

The definition, according to formal notation, of the membrane system used for the 
implemented prototype is shown in the following expressions: 

 

Π = (V,µ,ω1,...ω4, (R1,ρ1),...,(R4,ρ4),4) 
V = {a,b,c,d,e} 

µ = [1[2[3]3]2[4]4]1 

ω1 = aac 

R1 = {r1: c (c,in4), r2: c (b,in4), r3: a (a,in2)b, r4: dd (a,in4)} 

ρ1 = { r1>r3,  r2 > r3} 

ω2 = a  
R2 = {r1: a (a,in3), r2: ac δ} 

ρ2 = 0 

ω3 = cd 

R3 = {r1: a  δ} 

ρ3 = 0 

ω4 = λ 
R4 = {r1: c (d,out), r2: b b} 

ρ4 = 0 
 

The circuit to be carried out obtains the region 1 active rules. The region 1 input 
values will be the objects multiset w1, the group of rules R1, the priority relationships 
among rules ρ1 and the inner adjacent regions number (two regions in this case). The 
objects number V is 5 with decimal multiplicity (0 - 9), therefore, we will need 4 bits 
to represents each object. And so, a word representing the multiplicity of the 5 objects 
will occupy 20 bits. The rules group is formed by 4 rules which will be stored in the 
device memory.  

Each of the 4 rules we need to store in the memory will be coded with 64 bits. This 
is,  20 bits for the antecedent, 20 bits for each consequent of the two inner interior 
regions, plus 4 remaining bits used to code the priorities mask of each rule with re-
gard to the other ones. The rules are stored, therefore, in a ROM 4x64 bits memory. 

2   Hardware Implementation of Active Rules 

The logical circuit general description is obtained by means of the conjunction of 
certain fundamental elements. These elements have been denominated basic Func-
tional Units (FU's). These FU’s controls the positive validation of a certain evolution 
rule in function of its applicability, utility and activation properties. The Fig. 1 show 
the general outline of the circuit based on these functional units. 



 Circuit FPGA for Active Rules Selection in a Transition P System Region 895 

 

Fig. 1. Scheme general of the circuit to obtain the active rules of a membrane region 

Basically, the global circuit inputs are composed by the region objects multiset of 
the membrane to be evaluated, the ini bits to determine the interior regions existence, 
an input clock that allows going on reading and processing the memory rules and a set 
input to initialize the active rules register of the circuit. The register output shows, in 
positive logic, the active rules of the region, after processing all the ROM memory 
rules. 

In the circuit operation, the memory words will be sequentially read and the differ-
ent parts that compose each word will be separate. Each different part will be used in 
the corresponding functional unit or sub-circuit. A counter circuit is needed to read 
sequentially the memory words. A distributor circuit will be used to separate the dif-
ferent groups of each word. 

The usable rule condition is checked by the Useful Functional Unit circuit. Ac-
cording to this condition, this particular circuit should check, in each rule, whether the 
consequent v of the rule has some objects which are sent to the inner adjacent regions. 
In this case, the interior region should exist. The applicability condition of an evolu-
tion rule is performed by the Applicable Functional Unit circuit. According to the 
which, the objects of its antecedent should exist in the region multiset in the same or 
bigger multiplicity.  

The Active Functional Unit is the part of the circuit in charge of evaluating the pri-
orities among all the existing rules in the membrane region. The result obtained in this 
unit is a N bits output vector (being N the number of rules). This vector contains the 
rules potentially active (bit=1) and the rules that should be inhibited in the case of 
being useful and applicable a rule of more priority that disables it (bit=0). 
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3   Experimental Results 

Next we will present the results of simulating the selection of active rules circuit of 
the P system example presented in the section 1. For this example, the circuit will 
obtain the active rules of the region 1, being its two interior regions the 2 and the 4 
ones.  

On the other hand, the software Quartus II of Inc Altera includes a simulator that 
can be used to verify as much the behavior as the yield of the carried out designs. The 
Quartus II simulator allows defining input vectors that will serve as stimulus to the 
circuit inputs. The application of the input vectors in the simulation allows checking 
the state of the exits of the circuit, verifying the validity, functionality and effective-
ness of the circuit this way. 

In Quartus II, we can perform functional simulations, where the circuit output ex-
clusively depends on the inputs values, or we can carry out simulations of a major 
complexity and depending on time, where one or more clock signals are defined. In 
our particular case, we are carried out the sequentially reading of the rules defined in 
ROM memory, with the help of a system clock implemented for that purpose.  

To be able to simulate the circuit, the previously described steps for the Design and 
Synthesis of the Circuit of Active Rules must be fulfilled completely: 

 

• Creation of the project “ActiveRules” 
• Inclusion in the project of all the files with VHDL descriptions of the differ-

ent elements of the design. 
• Inclusion in the project of the schematic blocks files with the design of the 

circuit. 
• Election of the device destination: Cyclone II EP2C35F672C6. 
• Circuit Compilation (Synthesis). 

 

As a previous step to the simulation execution, it is necessary to load in the ROM 
memory system the code of the defined rules for the P system region that is going to 
be simulated. In this case, the information relative to the rules group R1, as well as the 
priorities ρ1 will be recorded in the ROM memory circuit. The consequents of the 
regions here and out, are not necessary for the functionality of the circuit, since they 
are not evaluated to determine whether a rule is applicable or not. 

The information needed to code the region rules, for a certain state, will loaded in 
words of 64 bits, according to the following distribution: 

 

1. The 20 bits most significant (bits 63 to 44) contain the rule antecedent.  
2. The following 20 bits (bits 43 to 24) contain the consequent for the inner re-

gion 1. 
3. The next 20 bits (bits 23 to 4) contain the consequent for the inner region 2. 
4. The last 4 bits of each word of the ROM are used to establish the mask of 

priorities among the rules defined in the membrane. 
 

In the circuit operation phase, once all the rules have been read sequentially and its 
evaluation (several clock pulses are needed to address the memory ROM words) has 
been completed, the Active Functional Unit circuit will be responsible for the com-
posing of all the priorities among the rules defined in the system, and for the the  
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Fig. 2. Shows the method adopted to stored information into the 4x64 ROM memory of the 
rules  R1 and the priorities masks of the region 1 in the membrane example 

building up of a final mask of priorities, which will be applied to the output vectors 
proceeding from the other two functional units. 

Finally, to check the behavior of the designed circuit, the simulation ('waveforms') 
vectors are created. They represent the type, the forms and the characteristics of the 
input signals. In the same way, in the simulation vector the signals representing the 
output of the circuit we want to evaluate are identified. The simulator applies the test 
vectors to the compiled design and determines the resulting values in the system  
outputs. 

The next step is to include the circuit inputs and outputs going to be simulated: 
 

• ‘Set’: (input, 1 bit). Initialization input of circuit components (ROM, rules 
counter, Functional Units....) 

• ‘In1’: (input, 1 bit). Existence of internal region 1. 
• ‘In2’: (input, 1 bit). Existence of internal region 2. 
• "w_a", "w_b", "w_c", "w_d", "w_e": (input, unsigned decimal, 4 bits).  Input 

Multiset elements. 
• ‘Clk’: (input, 1 bit). System clock. 
• ‘Activas’: (output, 4 bits). Exit of the system representing the active rules. 
• ‘Salida Activa’ (output, 1 bit). Flag determining when the active rules output 

is stable. 
The test case shown corresponds with a computation model in which the circuit of 

active rules works together with other elements that were changing their conditions 
according to the temporary evolution of the system. So, we can introduce new alea-
tory values in the input vectors, by using the 'Set' flag.  

We can check how the 'SalidaActiva' is validated in irregular periods (due to the 
'Set' activations), and how it becomes stable when there are not new loads of data. 
The chronogram appeared in figure 3 shows the variation of the inputs signals and the 
outputs result. 

The initial values are: 
 

• w_a [3..0] = 2 (decimal) --> Applicable r3 
• w_c [3..0] = 1 (decimal) --> Applicable r1 and r2 
• w_d [3..0] = 3 (decimal) > Applicable r4 
• w_b, w_e = 0 
• In1 = 1 (Region 1 Exists) --> r3 is Useful 
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Fig. 3.  Inputs-output signals variation 

• In2 = 1 (Region 2 Exists) --> r1, r2 and r4 are Useful 
• Clock --> Cycle 10ns  

Therefore, in accordance with these conditions, the rules r1, r2, r3 and r4 are all use-
ful and applicable initially. The priorities mask will be 1101, this mask disables r3. 
The initial active rules output will have the 1101 value after 5 clock periods showing 
that the r1, r2, and r4 rules are actives. 

An external initialization ('Set') changing the input vectors values to w_d [3..0] = 
0, would make r4 not applicable. In this case, the signal 'SalidaActiva' is annulled by a 
new change of the 'Set' signal and the load of new input values. It can be proved how, 
once the 50ns necessary to complete a new calculation have passed, the change takes 
place in the vector 'Activas' and one period later it becomes valid with a 1 in the 'Sali-
daActiva' signal. The obtained values remain stable until a new activation of 'Set' is 
produced. 
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4   Conclusions and Future Remarks 

This paper presents a direct way to obtain a FPGA circuit capable to select the active 
rules inside the P-system membrane. The final step is to implement a hardware circuit 
accomplishing the outlined initial requirement. That is, given an initial multiset of 
objects, a finite set of evolution rules and an initial Active Rules, the circuit provides 
the set of rules to be applied to a membrane. The development of the digital system 
can be carried out by using hardware-software architectures as schematic blocks or 
VHDL language. The physical implementation can be accomplished on hardware 
programmable FPGA’s devices.  

When analyzing the objectives reached, it can be proved that both the designs as 
much as accomplished synthesis, allow to obtain a hardware system for a general 
model of P transition system. This means that we can reach the behavior of a region 
of any membranes system with the obtained circuit. The only limitation is the maxi-
mum size of certain parameters, such as the number of rules, the multiplicity of the 
objects or the number of interior adjacent regions.  

The obtained circuit behaves based on the evolution rules stored in memory (which 
do not change during the system evolution process) and the inputs, which correspond 
with the values of the region state (reflected in its objects multiset).  

If the conditions of the region change, the circuit modifies its outputs being ad-
justed to the new values. This feature is of a supreme importance in order to integrate 
this circuit as a module that works cooperatively together with other circuits. These 
circuits can carry out the rest of the tasks needed to complete the evolution of a transi-
tion P system. 
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Abstract. AdaBoost is being used widely in information systems, ar-
tificial intelligence and bioinformatics, because it provides an efficient
function approximation method. However, AdaBoost does not employ
either the maximum likelihood method or Bayes estimation, and hence
its generalized performance is not yet known. Therefore an optimization
method for the minimum generalization error has not yet been estab-
lished. In this paper, we propose a new method to select an optimal
model using formal information criteria, AIC and BIC. Although neither
AIC nor BIC theoretically corresponds to the generalization error in Ad-
aBoost, we show experimentally that an optimal model can be chosen
by formal AIC and BIC.

1 Introduction

AdaBoost is a learning algorithm enabling the construction of an optimal en-
semble of weak classifiers for minimum training errors. Since it performs well in
function approximation, it is being used in pattern recognition, artificial intel-
ligence, and bioinformatics[2][4]. AdaBoost reduces the training error; however
this fact does not necessarily imply that the generalization error is also small.
The generalization performance of AdaBoostis still unclear, because it is the
different algorithm from the maximum likelihood method and Bayes estimation.

In this paper, we propose that formal AIC and BIC can be used as infor-
mation criteria for AdaBoost model selection, based on the idea that the risk
function used in AdaBoost is a kind of probabilistic learning machine. The for-
mal information criteria AIC and BIC are defined by the assumption that the
optimized ensemble constructed using AdaBoost approximately minimizes the
risk function. Although such an assumption is not satisfied in general, we show
experimentally that the proposed method yields an appropriate model with a
small generalization error. Using the formal AIC, the average generalization er-
ror is reduced, whereas with the formal BIC, the worst generalization error is
reduced.
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2 AdaBoost Algorithm

AdaBoost is one of the forward stagewise modeling, which adds a new decision
(classifier) at each stage to the latest results so as to obtain an optimal decision.
The algorithm is derived from successive minimization of the risk function using
the coordinate descent method[4]. Although AdaBoost is generally presented
as a two-class classifier, we describe here AdaBoostMlt, which is an algorithm
for a version of AdaBoost with multi-class classification[2] and we also use this
algorithm for the experiments that we examine later.

Firstly, we denote Wmlt = {hmlt : X → 2Y } as the set of maps from the input
data set x ∈ X ⊂ R

n to the power set 2Y of the output class Y = {1, · · · , K};
then we define the set of weak classifiers

W = {h : X × Y → R | h(x, y) = [y ∈ hmlt(x)], hmlt ∈ Wmlt},

where [·] is a function which returns 1 if ”·” is true, and returns 0 in other
cases. We also consider the following empirical distribution of training data
(x1, y1), · · · , (xN , yN), defined by

p0(x, y) =
{

1
N (x1, y1), · · · , (xN , yN )
0 (other) .

and we define

p0(x, y, y′) =
1

K − 1
p0(x, y)

as the extended joint probability which is extended formally to the error class y′.
In addition, we define the classification error function e(h, p) of a weak classifier
h, the total score of correct and incorrect classifications p+(h, p), p−(h, p) and
the risk function L as follows:

e(h, p) =
∑

x,y,y′
p(x, y, y′)(I(h(x, y) − h(x, y′)),

p+(h, p) =
∑

x,y,y′
p(x, y, y′)[h(x, y) − h(x, y′) > 0],

p−(h, p) =
∑

x,y,y′
p(x, y, y′)[h(x, y) − h(x, y′) < 0],

L(f) =
1

m(K − 1)

∑
1≤i≤m

∑
y′ 	=yi

E(xi, yi, y
′),

where we are using

I(z) =

⎧⎨⎩
1 (z > 0)
0 (z = 0)
−1 (z < 0)

and
E(xi, yi, y

′) = exp{−(f(xi, yi) − f(xi, y
′)} .
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Finally, we denote the classifier resulting from a linear combination of weak
classifiers h1, · · · , hT (T :learning times) thus:

fλ(x, y) = λ1h1(x, y) + · · · + λT hT (x, y) .

Then the algorithm of AdaBoost is given by Fig.1. It is clear from the algorithm
that AdaBoost is applicable to any set of weak classifiers. This means that to
apply the algorithm requires us to construct a set of weak classifiers in advance.
To assist us, we can utilize the decision stumps, which is a useful method for con-
structing weak classifiers. The decision stumps are weak classifiers which decide
the classification result by the value along one dimension of the training data
vector. We provide an explanation of the decision stumps in the next section.

1. Input: n samples {(x1, y1), · · · , (xn, yn)};
2. Initialize : λ0 = (0, · · · , 0). Set p0 as the extended joint probability;
3. Do the process below for t = 1, · · · , T :

1) Select the weak classifier ht with minimum error e(ht, pt−1);
2) λt ← λt−1 + (0, · · · , αt, · · · , 0) for αt = 1

2
log p+(ht;pt−1)

p−(ht;pt−1)
;

3) If L(fλ) does not chenge then break;
4) Update the extended joint probability pt:

pt(xi, yi, y
′) ← 1

Z
exp

fλt
(x, y′) − fλt

(x, yi)

m
(Z : normalizing constant);

5) t ← t + 1;
4. Output: p(y|x) = 1

Z
e

fλt
(x,y)

;

Fig. 1. AdaBoostMlt algorithm

3 Weak Classifiers Using the Decision Stump

The decision stumps are one of the simplest weak classifiers which make a deci-
sion based on one element xi of the input vector x = (x1, · · · , xn). For instance,
if the value of xi is more than a certain threshold value, then the classifier judges
this data to be a member of class k. Therefore the decision stumps are denoted
by h+

i,th,k, h−
i,th,k, where i is coordinate of focus, th is threshold value, k is an

index of class and ”+” means when xi ≥ th then x ∈ class k ,”-” means when
xi < th then x ∈ class k .

In this paper, to simplify discussion, we adopt models which are given a thresh-
old at constant intervals ∆. In this case, selecting a smaller value for ∆ makes it
possible to fit further training data. Namely, we can adjust the model complexity
by using ∆. In the following section, we call ∆ the complexity parameter.

The decision stump enables us to create weak classifiers directly from training
data. This means that the decision stumps are effective for practical applications.
Hence, the model selection method of AdaBoost with the decision stumps has
great importance for applications to real problems.
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4 Information Criteria for Model Selection

AIC (Akaike information criterion) and BIC (Bayesian information criterion)
have consistently been used as good criteria to select an appropriate model from
a group of models of varying complexity. AIC is derived as an unbiased estimator
about the mean value of the KL divergence, by applying asymptotic normality
to model parameters, and is given by the following formula:

AIC = −2
N∑

i=1

log p(xi; θ̂) + 2d,

where θ̂, d, N are maximum likelihood estimator(MLE), dimension of parameters
and the number of instances of training data, respectively.

On the other hand, BIC is calculated from the negative value of the Laplace
approximation of posterior probability and is given by the following formula:

BIC = −2
N∑

i=1

log p(xi; θ̂) + d log N,

where θ̂ is the MLE as well as AIC; however, this model selection is also ap-
plicable to Bayes estimation as MAP estimation. The difference between these
criteria is only a compensation term for likelihood, and both model selections
are carried out by selecting minimum values. Therefore, we see from the above
formulas that BIC results in a larger penalty for model complexity than AIC.
It is well known that these criteria yield strong results for variable selection in
regression models. However, the following condition is required in order to apply
these criteria.
Uniqueness of parameters: Regularity of the model is presupposed in the

derivation of AIC. Consequently, parameters must correspond to those of
the probability model in a one-to-one fashion.

Differential of p(x; θ) : The estimation of θ̂ is by MLE or MAP estimation;
these criteria are then derived using the following equation ∂p(x;θ)

∂θ

∣∣∣
θ=θ̂

= 0 .

These are intrinsically necessary conditions for application of AIC or BIC. How-
ever, these criteria have also been applied to singular models such as neural
networks, which do not satisfy the above conditions, and even for these situa-
tions it has been reported that good results were obtained.

The parameters of AdaBoost using the decision stumps are given by coeffi-
cients of linear combinations of weak classifiers and the probability distribution
is described by

p(y|x; λ) =
1
Z

exp
{
fλ(x, y)

}
(Z : normalizing constant) .

In this case, model parameters correspond one-to-one to probability distributions
by normalization of the probability model1.
1 If we are considering linear combinations of n weak classifiers, the model space can

be identified with part of real projective space P n−1D.
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On the other hand, AdaBoost decreases successively the KL divergence with
respect to the empirical distribution. This means that we can consider a prob-
ability model with sufficient learning times as an approximation of the MLE.
The differential ∂p(x;θ)

∂θ therefore becomes very close to 0. In this paper, when
the change of risk function L(fλ) becomes less than 1.0 × 10−5, we consider
the classifier obtained by AdaBoost as an approximation of the MLE. Strictly
speaking, ∂p(x;θ)

∂θ �= 0 but when the above condition is satisfied, we apply AIC
and BIC to AdaBoost and study their performance.

5 Dimension of Parameters

The weak classifiers utilized for the final probability distribution are usually a
very small subset of the entire set of weak classifiers. For this reason, we cannot
regard the number of weak classifiers as the dimension of the model space. On
the other hand, there are many studies about the model selection problem of
suitably choosing k parameters from n (k ≤ n) parameters. A decisive solution
has not yet been obtained. However, as an example, the method which takes
the minimum AIC model among k parameter models as the representation of
all k parameters models is generally accepted. This method is based on the
notion that the largest likelihood model is best among a set of models all having
the same number of parameters, and the information criterion is applied only
to models which have a relation of inclusion. If the models have a relation of
inclusion, it is known that model selection by AIC can be regarded as model
selection based on the likelihood ratio test using significance levels concerning
the model’s dimension. This fact shows the relevance of the above notion.

Complexity of models is described by ∆ in this paper. If the complexities
of two models have the relation ∆1 = k∆2, (k ∈ Z+) and the sets of models
which have these complexities are denoted by M∆1 , M∆2 , then these two sets
of models have the relation of inclusion, and therefore: M∆2 ⊂ M∆1 . We can
also give meaning to an intermediate complexity of such models for M∆3 , with
complexities related by ∆2 < ∆3 < ∆1.

The AdaBoost algorithm determines the N weak classifiers which comprise
the final classifier. These N classifiers are selected to minimize the KL divergence
between the predictive distribution and empirical distribution, so we regard this
final classifier as the largest likelihood model among all of the classifiers com-
posed as linear combinations of N weak classifiers. From the above discussion,
we suggest adjusting the complexity of the probability model by varying ∆
and selecting a suitable model by using the number of weak classifiers of the
final classifier as the dimension of parameters. We use, under the above assump-
tions, notations AICboost,BICboost as AIC and BIC for AdaBoost in the following
sections.

6 Experiment

We give the Gaussian mixture model p(x, y) =
∑3

i=1 aiφi(x, y; µi, Σi) as
the true distribution. In addition, we suppose that each normal distribution
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φi(x, y; µi, Σi) determines a class and that data x are generated from each nor-
mal distribution. We set the coefficients above as follows:

a1 = 0.3, a2 = 0.5, a3 = 0.2 ,

µ1 =
(

0
3

)
, µ1 =

(
3
0

)
, µ1 =

(
−1
0

)
Σ1 =

(
1 0
0 1

)
, Σ2 =

(
2 0
0 1

)
, Σ3 =

(
1 0
0 1

)
.

We studied the behavior of information criteria for various complexities ∆ with
n = 500 training data generated from the above distribution.

The KL divergence and misclassification rate are calculated using 10000 test
data in the following.

Minimum AIC_boost model

Difference of KL divergence
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Fig. 2. Distribution of misclassification rate and KL Divergence (n = 500)

The upper row of Fig.2 shows the average difference in misclassification rate
from 100 experiments between the model selected by AICboost,BICboost and the
actual minimum misclassification model, and the lower row shows a similar dis-
tribution about the KL divergence. We can see from Fig.2 that AICboost results
in better estimation than BICboost with respect to the misclassification rate and
yields a closer model to the true distribution than BICboost with KL divergence.
However we also find that AICboost has selected a large KL divergence model in
two experiments. This result illustrates that BICboost is superior to AICboost in
respect of stability. KL divergence is considered to be a more accurate estima-
tor than the misclassification rate; therefore the smallest misclassification rate
classifier is not generally the best with respect to KL divergence. These results
mean that we can observe in more detail the instability of AICboost through the
KL divergence.

The relations between the number of instances of training data and the mis-
classification rate or the KL divergence are shown in Fig.3. The data from the
most complicated model (∆ = 0.1) are inserted as a reference. We can find
the efficacy of AICboost and BICboost by comparison with the most complicated
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Fig. 3. Relation between the number of instances of training data and accuracy

model. Furthermore, Fig.3 illustrates that AICboost chooses on the average a bet-
ter model than BICboost for large training datasets; in contrast, BICboost yields
a more stable result for small training datasets.

7 Discussion

The relations between the average number of weak classifiers adopted by Ad-
aBoost and complexity ∆ with respect to the number of instances of training
data are plotted in Fig.4. We see that the number of weak classifiers increases
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exponentially as the complexity increases. This result indicates that choosing a
smaller interval for thresholds as the complexity parameter goes down enables
selection of a more detailed model. At the same time, the number of weak clas-
sifiers increases logarithmically as the amount of training data increases. Here,
we conjecture that the number of weak classifiers should converge to the number
of weak classifiers which are needed to approximate the true distribution.

In line with this, we found that the model dimension used in this paper is
applied to the AICboost and BICboost after adjusting the penalty term exponen-
tially with respect to complexity and adjusting logarithmically for the number
of instances of training data.

8 Conclusion

We introduced the threshold interval ∆ of weak classifiers as a model complexity
parameter for AdaBoost using the decision stumps and examined the possibility
of model selection. In addition, we proposed formal information criteria AICboost

and BICboost using the number of weak classifiers adopted by the AdaBoost as
the dimension of parameters. We also investigated their efficiencies and char-
acteristics experimentally. Giving theoretical meaning to the results we have
obtained is a topic for future research.
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Abstract. The concept of Ensemble Learning has been shown to increase
predictive power over single base learners. Given the bias-variance-
covariance decomposition, diversity is characteristic factor, since ensem-
ble error decreases as diversity increases. In this study, we apply Bagging
and Random Subspace Method (RSM) to ensembles of Local Linear Map
(LLM)-type, which achieve non-linearity through local linear approxima-
tion, supplied with different vector quantization algorithms. The results
are compared for several benchmark data sets to those of RandomForest
and neural networks. We can show which parameters are of major influ-
ence on diversity in ensembles and that using our proposed method of LLM
combining RSM we are able to achieve results obtained by other reference
ensemble architectures.

1 Introduction

Ensemble Learning was paid much attention in the literature recently. The out-
put of several learning algorithms is combined to build powerful learning ma-
chines. This concept has been proven to increase predictive power over single
base learners for a great variety of classification and regression problems. Given
a set of observations T = {(x1, y1), . . . , (xn, yn)}, the problem in regression en-
sembles is to select a set of appropriate predictors H = {f1, . . . , fM} from the
base hypothesis space H and to aggregate the outputs of the M predictors to
one ensemble vote:

F (x) =
M∑

m=1

wmfm(x), with
∑
m

wm = 1,

where F is given as a convex combination of the component estimators.
Krogh et al. proved in [1] that the ensemble error is guaranteed to be less

than or equal to the average quadratic error of the individual components. The
quadratic error of the ensemble ē can be decomposed into two terms similar to
the bias-variance decomposition for one single learner. To capture the covariance

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 911–918, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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in ensembles, one additional term is introduced leading to the bias-variance-
covariance decomposition [2]:

ē = (F − y)2 =
M∑

m=1

wm(y − fm)2 −
M∑

m=1

wm(fm − F )2.

The first term is the average error of individual predictors, while the second
measures how much each single ensemble member diverges from the ensemble
output F , the so called diversity. For a given fixed mean error of individual
predictors, the ensemble error rate is reduced when increasing the diversity.
This leads to two potentially conflicting targets of minimizing the error of each
ensemble member and maximizing the diversity of the ensemble. In the following,
we give a short introduction in the sources of diversity:

Bagging One well-studied and intuitive way of combining the component predic-
tors is simple averaging (wm = 1/M). The method of Bagging was introduced by
Breiman [3]. He proposed aggregating a set of predictors generated from boot-
strapped samples T1, . . . , Tm, randomly selected N patterns with replacement
from the original set of N training patterns.

From the training set T , M bootstrap training sets Tm are generated and the
constructed regressors f(x, Tm) = fm(x) are used to form the bagged predictor
F . The bootstrap training sets Tm contain about a fraction (1 − 1/M)M ≈ 0.63
of the original N instances. Therefore about one-third of the patterns are left
out in every bootstrapped sample and are called ”out-of-bag” (OOB) data. The
out-of-bag estimates are given by aggregation over the regressors fm which do
not contain pattern (x, y) ∈ T . This OOB estimates tend to overestimate the
test error rate for the prediction is based on only one-third of the M regressors.
The error rate decreases with an increasing number of regressors in ensembles.

Random Subspace Method Following [4], one way to manipulate the set of hy-
potheses accessible to a learner is to supply each learner with a slightly altered
different training set to generate diverse ensemble members. While Bagging is
one implicit method to build altered learners, other resampling methods sup-
ply each member with all N patterns, but with different subset of variables.
The Random Subspace Method (RSM) [5] was proposed for classifier of multiple
trees constructed in randomly chosen subspaces.

A few studies exist, which propose to combine Bagging with RSM in regression
context. When supplying the resampling methods, it is expected that every single
predictor is to adapt to different parts of the same learning task. In our study,
we apply a regression ensemble, namely the Local Linear Map [6], a type of
artificial neural net, supplied with different vector quantization (VQ) algorithms.
It combines an unsupervised VQ with supervised linear learning principles. The
LLM can learn global non-linear regression functions by fitting a set of local
linear functions to the training data. It is very efficient (i.e. fast training and
adaptation to addition data, and low memory-usage) and offers transparency.
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2 Combining Bagging with RSM in LLM Ensembles

Local Linear Map: Motivated by the Self-Organizing Maps (SOM) [7], an LLM
consists of a set of nl regular ordered nodes vi, i = 1, . . . , nl, which are con-
nected to each other via a two-dimensional grid structure, defining a neighbor-
hood between the nodes and a topology in feature space. Each node consists of
a triple vi = (win

i ,wout
i ,Ai). The vectors win

i ∈ IRdin are used to build proto-
type vectors adapting to the statistical properties of the input data xξ ∈ IRdin .
The vectors wout

i ∈ IRdout approximate the distribution of the target values
yξ ∈ IRdout . The matrices Ai ∈ IRdin×dout are locally trained linear maps from
the input to the output space. In the unsupervised training phase, the proto-
type vectors win

i are adapted following the SOM learning rule: the vectors win
i

are pulled towards the input pattern xξ according to the distance between the
input pattern and the corresponding closest prototype in input space win

κ , with
κ = argmin

i

{
‖xξ − win

i ‖
}
. After unsupervised adaptation and tessellation of the

input space, an input feature vector is mapped to an output by the correspond-
ing local expert: C(x) = wout

κ +Aκ

(
xξ − win

κ

)
. The weights wout

i and the linear
map Ai are changed iteratively by the gradient descent learning rules.

We also applied Growing Neural Gas (GNG) [8], Neural Gas (NG) [9] and
Fuzzy C-means (FCL) [10] clustering instead of SOM in the input space for
comparison. The concept of approximating nonlinear functions by fitting simple
models to localized subsets of the data is related to other regression approaches
like Locally-Weighted Regression [11] and to radial basis functions [12].

We propose an ensembles architecture supplying Local Linear Maps, namely
the 2DELL (2-dim. Ensemble learnining with LLM):

Algorithm 1. 2DELL(M=100, k=d, VQ(”SOM”, 2 × 5))
Require: Training set T = {(x1, y1), . . . , (xN , yN )} with d variables
Require: M, the number of predictors in the ensemble
Require: k, the size of random subspaces (k<d)

for m = 1 to M do
Create bootstrapped samples Tm with replacement of size N from training data
T
Take random subset of variables of size k (without replacement)
Train LLM model fm with training data of size N × k
Determine mean error (MSE) for each ensemble member:

MSEm =
1
N

∑
n

(fm(xn) − yn)2, where (xn, yn) ∈ Tm

end for
Calculate OOB estimates by:

MSEoob =
1
N

∑
n

( ∑
i∈Smn

1
|Smn|fi(xn) − yn

)2

, with Smn = {m|(xn, yn) �∈ Tm}
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3 Empirical Results

We examined which parameters influence the diversity in regression tasks in
the context of Local Linear Maps. Parameters evaluated are: Local Linear Map
underlying VQ-algorithm (GNG, SM, NG and FCL), number of variables k ∈
4 : max, number of maps M ∈ {1, 2, 10, 25, 100}. We then compare the resulting
generalization performance of the proposed ensemble to Random Forests and
MLP-based ensembles.

Datasets. In our study, we use five different benchmark data sets, artificial as
well as real-world ones to allow a general comparison to other regression and
ensemble architectures applied to these problems.

1. Friedman#1: This artificial data set has ten independent variables uniformly
distributed over [0,1], while only five out of these ten are used to define y.
y = 10 sin(π · x1 · x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + e, where e is N(0, 1).

2. Friedman#2: Second artificial data set corresponds to input vectors uni-
formly distributed over the ranges 0 ≤ x1 ≤ 100, 40π ≤ x2 ≤ 560π,
0 ≤ x3 ≤ 1, 1 ≤ x4 ≤ 11:
y = (x2

1 + (x2 · x3 − (1/(x2 · x4)))2)0.5 + e, where e is N(0, 125).
3. Friedman#3: Inputs are 4 independent variables uniformly distrtibuted as

above but the outputs are generated according to:
y = arctan

(
(x2 · x3 − (x2 · x4)−2) · x−1

1

)
+ e, where e is N(0, 0.1).

4. NO2: The data are a subsample of 506 observations from a data set with 7
variables, that originate in a study where air pollution at a road is related
to traffic volume and meteorological variables, collected by the Norwegian
Public Roads Administration [13].

5. AAindex: This in-house data set is one small, noisy, high-dimensional data
set from mass spectrometry (MALDI mass spectra) with 372 peptides. The
feature vectors are built from the peptide sequences by physico-chemical in-
formation about the amino acids constituting the peptide. The feature vec-
tors are attributes taken from the amino acid index database [14](aaindex)
extended by peptide length, mass, and numbers and fractions of acidic, basic,
polar, aliphatic and arginine residues, yielding 531-dimensional vectors.

All data sets are of small size and low-dimensional, except for the last one, AAin-
dex, where the dimensionality even exceeds the number of available patterns. We
put aside randomly selected 10% of the input patterns for testing and the re-
maining 90% are used to build the predictors. Tab. 1 gives on overview on the
studied data sets. The error rates are averaged over 100 repetitions. All variables
are centered and normalized prior to training.

3.1 Ensemble Regression Results

We are interested in further insights into the interdependencies between the
evaluated parameters of our proposed LLM-architecture combining Bagging and
RSM and resulting diversity. It is worth noting, that the ensemble error rate
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Table 1. Data set survey

Data set Friedman#1 Friedman#2 Friedman#3 NO2 AAindex
# variables 10 4 4 7 531
# Training 200 200 200 450 372
# Test 2000 2000 2000 10% 10%

ē is given by the difference between mean error per map and diversity, if not
explicitly mentioned. We denote this by ē = (F −y2) = MSEmaps −Div, where
MSEmaps =

∑
m 1/M(y−fm)2. The results are measured concerning MSEmaps

and diversity Div.

Diversity vs the size of networks. First we varied the number of nodes or the
size of the network when the other parameters are kept fixed. The default call
to 2DELL() is done by (M = 100, k = d, V Q(.)). For VQ ∈ NG or FCL, we
tried reasonable network sizes 2 ≤ nl ≤ 15, while two dimensional SOM-grid is
expanded from (1, 2) up to (5, 7). The optimal network size is determined by the
best test error rate over 10 iterations.

Increasing size of networks leads to loss in generalization performance, since
every net gets too specialized to the presented subtask. As expected, powerful
ensembles are generated with small nets. Change in test error rate is quite stable
for small sizes (3 up to ≈ 10). At least for the small data sets, roughly speaking,
this means that the gain in diversity is abrogated by the increase in MSEmaps.

Diversity vs the size of ensemble (M). When varying the size of ensemble, the pa-
rameter M is in focus. Given the previously determined optimal number of nodes
for each type of VQ algorithm, they were kept fixed as constants. We analyzed
the error rates of ensembles of size M ∈ {1, 2, 10, 25, 100}. In Fig. 1 the mean
error rate per map MSEmaps is plotted against the corresponding diversity Div
for Friedman#1 data set. The first two figures on the right give an overview over
the two mentioned measures, when varying the number of ensemble NG or SOM
members. The very left points correspond to results when all ten (k = d) variables
are supplied to training (k indicated by small digit nearby). Apart from a small
spread in MSEmaps, the data points yield a vertical trajectory. With an increasing
number of ensemble members, the mean OOB and test error decrease. Therefore,
the decrease in error rate can be traced back only to the gain in diversity.

Combining Bagging and Random Subspace method. We evaluate the change of
diversity and ensemble error rate when applying RSM. Randomly selected vari-
ables uniformly distributed build up the feature space. Every ensemble member
is generated with only a subset of training patterns and supplying only a subset
of variables. Every component is expected to adapt to different parts of the same
learning task. The evaluation of the 2DELL varying over the parameters k and
M yields the following best results given in Tab. 2. For comparison purposes, the
resulting best performances of RandomForests (RF) [15] are mentioned, and addi-
tionally the results of artificial neural network of MLP-type with 5 hidden nodes.
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Table 2. Test error (MSE), averaged over 100 iterations. The results for Friedman#2
are given in units of 10+3, while those for Friedman#3 in unit of 10−3. * Results are
taken from [15]. ** The MLP results are given by M = 5 with 5 hidden nodes.

GNG NG SOM FCL RF ANN**
Friedman#1 6.19 5.71 5.47 7.19 5.7* 6.26
Friedman#2 21.9 19.3 18.9 36.6 19.6* 191.7
Friedman#3 41.5 30.9 27.6 54.0 21.6* 19.6

NO2 0.287 0.247 0.239 0.267 0.216 0.277
AAindex 1.86 1.05 1.01 1.55 1.26 1.48

In case of Friedman#1, Friedman#2 and AAindex the proposed SOM-LLM
based regression ensembles outperform every other applied method. For the other
data sets the 2DELL with SOM as VQ-algorithm performs second (third) best.
From Tab. 2 it can be observed that SOM-LLM ensembles yield the best gener-
alization performance compared to every other VQ-algorithm.

In Fig.1 (left column) the OOB error estimate, the test error and the diversity
is given for data set Friedman#1 for varied size k of Random Subspace. The
OOB error rate overstimates the test error. Both are decreasing rapidly when
enlarging the number of randomly selected variables. Diversity is maximum if
k = 6 with SOM-LLM and decreases nearly linear if k > 6.

Fig.1 (right column) accounts for different ensembles sizes M and at the same
time varying number of variables k for RSM. For this purpose, the MSEmaps is
plotted against the diversity (Div = MSEmaps − ē). Every point represents one
combination of (M, k). Points are connected to each other if they belong to the
same ensemble size. The connected lines can be seen as one trajectory through
hypotheses space.

While the components diversity and MSEmaps should be balanced against
each other, the points minimizing error rate and also maximizing diversity are
optimal in that sense, and build a so called pareto-front. The pareto-front is
shifted continuous against an optimum, towards the upper left corner, until a
local maximum is reached for M = 100. In case of NG as well as SOM, from
the perspective of Div and MSEmaps, the point (M = 100, k = 9) is optimal.
Varying the number of variables selected, the gradient of Div and MSEmaps

is greater 1, since the diversity decreases more slowly than MSEmaps in this
region. Applying Random Subspace method with (k=9) yields better general-
ization performance than without (k=10).

Comparison of learning algorithms encouraging diversity. Neural Gas and SOM
show similar behaviour in terms of error rates, performance and diversity. FCL
and GNG in general represent other groups regarding this context. While FCL
shows small MSEmaps and low diversity, the loss in generalization performance
with GNG may be due an overadaptation to the presented resampled subtask
yielding high average error rate with high variance, though striking diversity.
For hybrid ensembles, set of applied VQ algorithms should be combined with
respect to similar MSEmaps-diversity behaviour.
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Fig. 1. (Left) OOB, test error rate and diversity for Friedman#1 data set when varying
over the number of variables. (Right) Plot MSE per map (MSEmaps) against diversity
for Friedman#1 in case of NG(a), SOM(b), and AAindex data set(c). Every point
represents one combination of (M, k). Points are connected to each other if they belong
to the same ensemble size (M).
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4 Conclusion

In Ensemble Learning, the output of several learning algorithms is aggregated
to build powerful learning machines. This concept has been proven to increase
predictive power over single base learners. We proposed a regression ensemble
learning with combining resampling methods Bagging and Random Subspace
Method and evaluation from a perspective of diversity. The proposed Local Lin-
ear Map (LLM) Ensemble is applied to different benchmark data sets and com-
pared to Random Forest and ANNs regarding generalization performance with
comparable results. LLM ensembles were found to be sufficient, appropriate pre-
dictors. We evaluated the change in diversity when varying the parameters of
ensemble and show that powerful ensembles are generated with small nets. We
demonstrated the usefulness of combining Bagging with Random Subspace in
terms of diversity. The factor mostly increasing diversity and predictive power
is found to be the supplied VQ-method, among the number of variables building
Random Subspaces, followed by number of ensemble members.
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Abstract. While injecting weight noise during training has been pro-
posed for more than a decade to improve the convergence, generalization
and fault tolerance of a neural network, not much theoretical work has
been done to its convergence proof and the objective function that it is
minimizing. By applying the Gladyshev Theorem, it is shown that the
convergence of injecting weight noise during training an RBF network is
almost sure. Besides, the corresponding objective function is essentially
the mean square errors (MSE). This objective function indicates that
injecting weight noise during training an radial basis function (RBF)
network is not able to improve fault tolerance. Despite this technique
has been effectively applied to multilayer perceptron, further analysis on
the expected update equation of training MLP with weight noise injec-
tion is presented. The performance difference between these two models
by applying weight injection is discussed.

1 Introduction

Many methods have been developed throughout the last two decades to improve
the fault tolerance of a neural network. Well known methods include injecting
random fault during training [25,5], introducing network redundancy [23], ap-
plying weight decay learning [9], formulating the training algorithm as a nonlin-
ear constraint optimization problem [10,22], bounding weight magnitude during
training [7,15,17], and adding fault tolerant regularizer [2,19,27]. A complete
survey on fault tolerant learning methods is exhaustive. Readers please refer to
[8] and [29] for reference.

Amongst all, the fault-injection-based on-line learning algorithms are of least
theoretical studied. By fault injection, either fault or noise is introduced to a
neural network model before each step of training. This fault could either be
node fault (stuck-at-zero), weight noise or input noise. As many studies have
been reported in the literature on input noise injection [1,4,24,13,14], the primary
� Corresponding author.
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focus of this paper is on weight noise injection. Our companion paper [28] will
be focus on node fault injection.

Suppose a neural network consists of M weights. Let θ ∈ RM be the weight
vector of a neural network model and the update equation is given by θ(t+1) =
θ(t) − F (x(t + 1), y(t + 1), θ(t)). The idea of weight noise injection is to replace
θ(t) in the factor F (·, ·, θ(t)) by F (·, ·, θ̃(t)). Here the elements of θ̃(t) is of the
form θ̃i(t) = θi(t) + ∆θi(t). The factor ∆θi(t) is the weight noise injected. The
update equation is thus defined as follows :

θ(t + 1) = θ(t) − F (x(t + 1), y(t + 1), θ̃(t)). (1)

Despite injecting weight noise to improve convergence ability, generalization and
fault tolerance have long been investigated [20,21,16,11] for MLPs and recurrent
neural networks, and theoretical analysis on applying such technique to MLP
has been reported [1], little is known about the effect of injecting weight noise
during training an RBF network.

In this paper, an analysis on weight-noise-injection-based training will be pre-
sented. In the next section, the convergence proof and the objective function of
RBF training with on-line weight injection will be analyzed. Section 3 will show
the analysis on the case of MLP. The conclusion will be presented in Section 4.

2 RBF Training with Weight Noise Injection

2.1 Network Model

Let M0 be an unknown system to be modeled. The input and output of M0 are
denoted by x and y respectively. The only information we know about M0 is a
set of measurement data D, where D = {(xk, yk)}N

k=1. Making use of this data
set, an estimated model M̂ that is good enough to capture the general behavior
of the unknown system can be obtained.

For k = 1, 2, · · · , N , we assume that the true model is governed by an unknown
deterministic system f(x) together with mean zero Gaussian output noise :

M0 : yk = f(xk) + ek, (2)

Besides, we assume that the unknown system f(x) can be realized by an RBF
network consisting of M hidden nodes, i.e.

yk =
M∑
i=1

θ∗i φi(xk) + ek (3)

for all k = 1, 2, · · · , N and φi(x) for all i = 1, 2, · · · , M are the radial basis
functions given by φi(x) = exp

(
− ‖x−ci‖2

σ

)
, where cis are the centers of the

radial basis function and the positive parameter σ > 0 controls the width of the
radial basis functions. In vector form, Equation (3) can be rewritten as follows :

yk = φ(xk)T θ∗ + ek, (4)

where φ(·) = (φ1(·), φ2(·), · · · , φM (·))T and θ∗ = (θ∗1 , θ
∗
2 , · · · , θ∗M )T .
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2.2 Weight Noise Injection Training

While a network is trained by the idea of weight noise injection, the update
equation will be given by

θ(t + 1) = θ(t) + µt(yt − φT (xt)θ̃(t))φ(xt), (5)

where µt is (for t ≥ 1) the step size at the tth iteration,

θ̃i(t) =
{

θi(t) + βi for additive noise injection,
θi(t) + βiθi(t) for multiplicative noise injection. (6)

βi for all i = 1, 2, · · · , M are independent mean zero Gaussian noise with variance
Sβ . Normally, it is assumed that the value of Sβ is small. Although the theoretical
proof presented later in this paper applies to any bounded value, it is meaningless
to consider a large value of Sβ .

2.3 Convergence and Objective Function

Theory of stochastic approximation has been developed for more than half a
century for the analysis of recursive algorithms. Advanced theoretical works for
complicated recursive algorithms have still been under investigation [18]. The
theorem applied in this paper is based on Gladyshev Theorem [12].

Theorem 1 (Gladyshev Theorem [12]). Let θ(t) and M(θ(t), ω(t)) for all
t = 0, 1, 2, and so on be m-vectors. ω(t) for all t = 0, 1, 2, and so on are i.i.d.
random vectors with probability density function P (ω)1. Consider a recursive
algorithm defined as follows :

θ(t + 1) = θ(t) − µtM(θ(t), ω(t)). (7)

In which, the expectation of M(θ, ω) over ω,

M̄(θ) =
∫

M(θ, ω)P (ω)dω, (8)

has unique solution θ∗ such that M̄(θ∗) = 0.
Suppose there exists positive constants κ1 and κ2 such that the following con-

ditions are satisfied :

(C1) µt ≥ 0,
∑

t µt = ∞ and
∑

t µ2
t < ∞.

(C2) infε<‖θ−θ∗‖<ε−1(θ − θ∗)T M̄(θ) > 0, for all ε > 0.
(C3)

∫
‖M(θ, ω)‖2P (ω)dω ≤ κ1 + κ2‖θ‖2.

Then for t → ∞, θ(t) converges to θ∗ with probability one.

1 In the following convergence proof, ω(t) = (xt, yt, βt). Owing not to confuse the time
index t with the element index k, the subscript t is omitted. So that ω(t) = (xt, yt, β).



922 K. Ho, C.-s. Leung, and J. Sum

Applying Gladyshev Theorem, the following theorem can be proved for injecting
weight noise.

Theorem 2. For injecting (additive or multiplicative) weight noise during train-
ing an RBF network, the weight vector θ(t) will converge with probability one
to

θ∗ =

(
1
N

N∑
k=1

φ(xk)φT (xk)

)−1

1
N

N∑
k=1

ykφ(xk). (9)

Proof. For a RBF network that is trained by injecting multiplicative weight
noise,

θ(t + 1) = θ(t) + µt(yt − φT (xt)θ̃(t))φ(xt), (10)
θ̃i = (1 + βi)θi, βi ∼ N (0, Sβ), ∀ i = 1, · · · , M. (11)

Suppose Sβ is small. Taking expectation of the second term in right hand side
of the first equation with respect to β, it can readily be shown that∫

Ωθ̃(t)

(yt − φT (xt)θ̃(t))φ(xt)dθ̃(t) = (yt − φT (xt)θ(t))φ(xt).

Further taking expectation of the above equation with respect to xt and yt,
h(θ(t)) will be given by

h(θ(t)) =
1
N

N∑
k=1

(yk − φT (xk)θ(t))φ(xk), (12)

Therefore, the solution θ∗ is θ∗ = H−1
φ Y .

Next, we are going to apply the Gladyshev Theorem for the convergence proof.
Normally, the first condition can easily be satisfied. It is because the step size
µt could be pre-defined. So, we skip the proof of Condition (C1) for simplicity.

To prove Condition (C2), we first note that M̄(θ) = −h(θ). We further let
Y = 1

N

∑N
k=1 ykφ(xk) and ω = (xt, yt, β). Hence, for all ‖θ − θ∗‖ > 0, we have

−(θ − θ∗)T h(θ) = −(θ − θ∗)T (Y − Hφθ), which is greater than zero.
To prove Condition (C3), we consider the Equation (10). By triangle inequal-

ity,

‖M(θ, ω)‖2 ≤ ‖ytφ(xt)‖2 + ‖φ(xt)φ(xt)T θ‖2 + ‖φ(xt)φ(xt)T Aθβ‖2, (13)

where Aθ = diag {θ1, θ2, · · · , θM}. Clearly, the first term in the RHS of the
inequality is a factor independent of θ. We let it be K(xt, yt) as before. The
second term is θT (φ(xt)φ(xt)T )2θ. In which the matrix (φ(xt)φ(xt)T )2 is sym-
metric and of bounded elements. Therefore, its largest eigenvalue must also be a
bounded nonnegative number, say λ(xt). Taking expectation of the third term
with respect to β,

‖φ(xt)φ(xt)T Aθβ‖2 = Sβ

M∑
i=1

θ2
(
φ(xt)φ(xt)T φ(xt)φ(xt)T

)
ii

,

≤ Sβ max
i

{(φ(xt)φ(xt)T φ(xt)φ(xt)T )ii}‖θ‖2.
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As a result,∫
‖M(θ, ω)‖P (β)dβ ≤ K(xt, yt) + Sβ(λ(xt)max

i
{(φ(xt)φ(xt)T )2ii})‖θ‖2.

Further taking the expectation of the above inequalitywith respect toxtand yt, one
can readily show that Condition (C3) can be satisfied and the proof is completed.

To prove the convergence of injecting additive weight noise, simply defining
θ̃(t) in Equation (10) by θ(t)+β and Aθ in Equation (13) by an M ×M identity
matrix. It will be clearly that h(θ(t)) will be identical to Equation (12) and
the third term will be independent of θ. The proof of Condition (C3) will be
accomplished. Q.E.D.

As the solution θ∗, by either injecting additive weight noise or multiplicative
weight noise, is identical to the solution obtained by the ordinary pseudo-inverse,
the following theorem can be implied.

Theorem 3. The objective function of injecting (additive or multiplicative)
weight noise during training an RBF is identical to the mean square errors.

L(θ|D) =
1
N

N∑
k=1

(yk − f(xk, θ))2. (14)

3 MLP Training with Weight Noise Injection

3.1 Injecting Multiplicative Weight Noise

Consider a nonlinear neural network g(x, θ), where both its gradient vector
gθ(x, θ) and Hessian matrix gθθ(x, θ) exist. Similar to that of RBF learning,
the online weight noise injection learning algorithm for g(x, θ) given a dataset
D = {(xk, yk)}N

k=1 can be written as follows :

θ(t + 1) = θ(t) + µt(yt − g(xt, θ̃(t)))gθ(xt, θ̃(t)). (15)
θ̃(t) = θ(t) + Aβθ(t). (16)

Here, Aβ = diag{β1, β2, · · · , βM}, βi ∼ N (0, Sβ). For small Sβ , one can
assume that θ̃ is close to θ and then apply Taylor expansion to g(·, ·) and gθ(·, ·)
and get that

g(xt, θ̃(t)) ≈ g(xt, θ(t)) + gθ(xt, θ(t))T Aβθ(t), (17)

gθ(xt, θ̃(t)) ≈ gθ(xt, θ(t)) + gθθ(xt, θ(t))Aβθ(t). (18)

Putting the above approximations into Equation (15) and taking expectation
over β, it is readily shown that

h(θ(t)) =
1
N

N∑
k=1

(yt − g(xt, θ(t)))gθ(xt, θ) − Sβ

N

N∑
k=1

Ψ(xt, θ(t))ϑ(t), (19)

where ϑ = (θ2
1 , θ

2
2, · · · , θ2

M )T and Ψ(xt, θ(t)) = gθθ(xt, θ(t))diag{gθ(xt, θ(t))}.
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Clearly, the first term on the RHS of Equation (19) is proportional to the
negative gradient of the MSE term. However, the anti-derivative of the second
term is difficult. The corresponding objective function and the convergence proof
can hardly be analyzed.

Except the case when the MLP output is linear, i.e. g(x, w, v) =
∑

i wiTi(x, v),
where w is the output weight vector and v is the input weight vector. Ti(·, ·) is
the output of the ith hidden unit. In such case, ∂2

∂wi∂wj
g(xt, w, v) = 0. Therefore,

enhancing fault tolerance of a MLP with linear output nodes cannot be achieved
by simply adding noise to the output weights during training.

3.2 Injecting Additive Weight Noise

For the case that the injection weight noise is additive, the corresponding h(θ)
can readily be obtained by replacing Aβθ(t) in Equation (16), Equation (17) and
Equation (18) to β. Then,

h(θ(t)) =
1
N

N∑
k=1

(yt −g(xt, θ(t)))gθ(xt, θ)− Sβ

N

N∑
k=1

gθθ(xt, θ(t))gθ(xt, θ(t)). (20)

Clearly, the objective function minimized by h(θ(t)) will be given by

1
2N

N∑
k=1

(yt − g(xt, θ(t)))2 +
Sβ

2N

N∑
k=1

‖gθ(xt, θ(t))‖2. (21)

Suppose the MLP is of linear output and additive weight noise is added only
to the output layer, this objective function will become

1
2N

N∑
k=1

(yt − g(xt, θ(t)))2 +
Sβ

2N

N∑
k=1

∑
i

T 2
i (x, v). (22)

The second term plays the role controlling the magnitude of the output of the
hidden nodes.

Remark: One should note that the analysis in this section is purely heuristic,
not analytically. Our analysis is focus on the expected updated equation, not
the actual update equation. The reason is because the convergence proof for
nonlinear system is not straight forward. As mentioned in [18], to prove the
convergence of a nonlinear stochastic gradient descent algorithm, one needs to
show that either (i) θ(t) can always be bounded or (ii) θ(t) can visit a local
bound region infinite often. The two conditions are not easy to prove. Although,
simulation results can also show that θ(t) is bounded for all t. Analytical proof
has yet to be shown.
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4 Conclusions

In this paper, analysis on the behavior of weight-noise-injection training has been
presented. In contrast to the approach taken by An [1], we focus on the actual
on-line update equation. From this, the convergence of weight-noise-injection
training applying to RBF is proved analytically and the true objective function
being minimized is revealed. Either for adding multiplicative or additive weight
noise, it is found that the objective function being minimized is actually the mean
square errors. Therefore, adding weight noise during training a RBF network can
neither improve fault tolerance nor generalization.

For MLP, due to its nonlinearity, boundedness on θ(t) has yet been proven.
Therefore, only analysis on the properties of the expected update equations has
been presented. For the case of adding additive weight noise during training, it
is shown that the objective function consists of two terms. The first term is the
usual mean square term. But the second plays a role to regularize the magnitude
of the output of the hidden units.

Acknowledgement. The research work reported in this paper is supported in
part by Taiwan NSC Research Grant 97-2221-E-005-050.
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Abstract. This paper proposed a simulation-optimization energy saving strat-
egy for heating, ventilating and air conditioning (HVAC) systems’ condenser 
water loop through intelligent control of single speed cooling towers’ compo-
nents. An analysis of system components has showed the interactions of control 
variables inside the cooling towers and between the cooling tower and chillers. 
Based on the analysis, a model based optimization approach was developed 
with evolutionary computation. A simulation application demonstrated the ef-
fectiveness of the proposed strategy. This strategy can also be easily modified 
and applied to single speed tools in the refrigerant loops. 

1   Introduction 

In modern HVAC systems, building cooling and heating sources consume the highest 
volume of the electricity. Consequently, the optimization of the building cooling and 
heating sources has been extensively studied in HVAC systems for more efficient part 
load operation using Variable Speed / Frequency drive (VSD/VFD). Global optimal 
control methods for plant cooling have been carried out by Sud [13], Lau et al. [9] and 
Johnson [8]. However those models are not for real time control. Braun et al. [2, 3, 4] 
has developed a strategy for optimal control of chilled water systems which was suit-
able for real time application. Yao et al. [15] has developed a mathematical model for 
optimizing cooling systems’ operation based on energy analysis of the main dynamic 
facilities. On the other hand, Lu et al. [10] developed a global optimization strategy 
for heating, ventilating and air conditioning systems. However, the models do not 
consider the time dependent characteristics of parameters. Chang [5] presented an 
approach using Lagrangian method to solve the optimizing chiller loading. Chow et 
al. [6] introduced a concept of integrating artificial neural network and genetic algo-
rithm optimization of absorption chillers. Fong et al. [7] introduced the evolutionary 
programming for optimizing chillers in the HVAC systems. Alcala et al. [1] devel-
oped a weighted linguistic fuzzy rules combined with a rule selection process for 
intelligent control of heating, ventilating and air conditioning systems concerning 
energy performance and indoor comfort requirements. Basically, most of the re-
searches focus on chillers. The researches on HVAC systems discussed mainly on the 
newer systems in manufacturing plants that come with VSD to optimize the chiller 
water pumps, condenser water pumps, chillers and cooling towers [16]. The cost  
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savings from VSD is very encouraging [14]. VFD is also used in dynamic Transient 
Simulation Program based simulation platform for alternative control strategies in-
cluding set-point control logics of the supply cooling water temperature and cooling 
tower fan modulation control methods as well as different number control means of 
cooling towers [4]. However, upgrading the older HVAC systems which use single 
speed controllers requires huge costs (approx. USD30K for complete installation of 
single VSD/VFD) depending on the number and type of drives. Hence our proposed 
approach focuses on energy savings on these single speed HVAC systems through the 
computational intelligence. Energy saving on HVAC through computational intelli-
gence optimization of cooling towers is feasible [10, 12]. Our main concern in model-
ing minimal power consumption for the whole condenser water loop is the single 
speed cooling tower fans and condenser water pumps.  

2   Our Optimization Target: Condenser Water Loop 

The main purpose of cooling towers is to supply condenser water to chillers using a 
condenser water loop. This is because the performance of a chiller is influenced by 
chilled water supply temperature (Tshws), condenser water supply temperature (Tcws) 
and cooling load (C).  For cooling towers, the power consumptions of pumps and fans 
are influenced by two parameters. mass flow rates of water and the pressure differ-
ence between the inlets and outlets. The characteristics of pumps and fans are very 
similar. The plant’s HVAC systems are simplified as shown in Fig. 1 with labels for 
components and measured readings. The main components are six cooling towers 
fans and six condenser water pumps servicing the whole chiller plant. The adjustment 
of single speed cooling tower fans and condenser water pumps has effects on the total 
water side heat load of cooling towers, H. Consequently, the heat load is affected by 
the mass flow and heat of water, condenser water temperature at inlet and outlet. Even 
though we aim to minimize the power consumption of cooling towers, the manipula-
tion of the fans and pumps must be optimized to meet the cooling load of the chillers 
in the plant, C. The cooling load is measured from mass flow of chilled water, heat of 
water, chilled water supply and return temperatures. The chillers have two types of 
capacity, namely low temp and high temp. There are three low temp chillers which 
have a rated power of 1000 kW each and three high temp chillers which have a rated 
power of 750 kW each. The chillers and their chilled water pumps are controlled by 
variable speed drives. The total power consumption for chiller side is 5700 kW per 
hour. On the other hand, the estimation of cooling load (Equation 1), C [12] of the 
chillers is 3415.5 tons when they are fully operated. mchw is the mass flow of chilled 
water, cp is the heat of water under constant pressure, hp is pounds of heat per galloon 
of water, Tchwr and Tchws are the chilled water return and supply temperatures. The 
chillers are set to perform at 80% of its designated capacity presently. Presently, the 
coefficient of performance, COP [12] of the low temp chiller is 2.00 and high temp 
chiller is 3.20 calculated using Equation 2. Ec represents energy contributed in Btu/h 
and Pa is the power required in watts. However, the total power consumption for the 
six cooling towers which consist of six single speed fans operating together with six 
single speed condenser water pumps are 715.2 kW per hour. Due to the mass flow of 
water at inlet (mw,i) and outlet (mw,o) has the same volume and makeup water (mm) is  
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Fig. 1. Schematic view of condenser water loop 

only 0.001% of the mass flow, Braun [2] model (εa) in Equation 3 is simplified. The 
heat transfer effectiveness, µ based on Braun’s model is summarized in Equation 4. It 
utilizes the mass flow and temperature of water at both inlet and outlet. Ambient tem-
perature is measured by wet bulb at inlet i.e. 82.4OF. Hence the designated efficiency 
of the cooling tower based on Braun’s heat transfer effectiveness, µ is 0.6111. The 
cooling towers have the designated heat load capacity; H [11] is 8468.064 tons when 
they are fully operated. mw is the mass flow of condenser water, Tcwr and Tcws are the 
condenser water return and supply temperatures is shown in Equation 5. 
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3   Objective Function 

Looking into the costs of investing in another dozen of VSD, and also the heat load, we 
probe into the possibility of modeling the single speed fans and condenser water pumps 
to meet the heat load and cooling load on real time basis. Experiments have been con-
ducted to find out the possible hazards of manipulating the single speed fans and pumps. 
Hence it is feasible as it does not trip or interrupt other equipments in the plant. The ob-
jective function is to minimize total power consumption of the condenser water loop 
where PCT is the measured total power consumption of cooling tower consists of  
condenser water pumps and cooling tower fans, PCH is the measured total power  
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consumption of chillers and chilled water pumps in Equation 6. The chillers have variable 
speed drives that control the individual cooling load based on the capacity, adjustment 
factor for part load and temperature as shown in the equation below. Hence the total power 
consumption of the chillers can be obtained directly from the controller. Due to the use of 
VSD, the chiller efficiency has been maximized based on various condenser water supply, 
chilled water supply and return temperatures. PCH [11] is measured by Qcap,i , nominal 
capacity, PLRi , part load factor and Ti , temperature factor of chiller i as in Equation 7. 
The modeling of cooling tower power consumption, PCT is determined by total power 
consumption by single speed pumps and fans, Ppump and Pfan as in Equation 8. The power 
consumption of condenser water pumps are calculated based on the rated power, measured 
and nominal mass flow of condenser water flow. Since it is a single speed pump, hence 
the power consumption is zero when it is turned off. ap is the pump mode, pm0 is the rated 
power, mw,p measures the mass flow of water and mwn,p measures the nominal mass flow of 
water of i-th pump as calculated in Equation 9. As for the power consumption of single 
speed cooling tower fan, the nominal and measured mass flow of air and rated power are 
calculated (Equation 10). Hence, if the fan is turned off, the power consumption is zero 
indicated by fan mode, bp=0. fn0 is the rated power, ma,p measures the mass flow of air and 
man,p measures the nominal mass flow of air of i-th pump. 
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4   String Encoding 

In order to meet our objective function, we model a set of related variables for opti-
mization into a string which includes ),,,,,( CTTTba cwrcwswbpp  in Fig. 2. An initial 

population of random bit strings is obtained from the measured field data.  The field 
data of this initial population is evaluated for their fitness or goodness in solving the 
problem. The initial population is evaluated to minimize Pmin over the range of mini-
mum and maximum values discussed. As Pmin is nonnegative over the range, so it is 
used as the fitness of the string encoding.  

 

Fig. 2. Strings and chromosome 
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5   Fitness Function 

The fitness of a chromosome is evaluated based on the setting and fulfillment of the 
constraints. The fitness function, f is expressed in the following equation with penal-
ties Pe1 and Pe2. Pe1 assesses the chillers’ cooling load, C. Pe2 assesses the actual heat 
rejection capacity of cooling towers under the measured wet bulb, condenser water 
return and supply temperatures. The higher the fitness, f would signal the better the 
generation is. There are a few constraints that must be in place to validate the fitness 
function.  All the variables must fall within the minimum and maximum allowed 
values. 
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Constraint 1: The heat load is measured in ton which has a minimum of 1800 ton to 
a maximum of 10800 from the six cooling towers. On the hand, the cooling load of 
six chillers measured in tons has a minimum of 569.25 tons to a maximum of 3757.05 
tons. At any point of time, the heat load capacity must be larger than the cooling load 
performed by the chillers to prevent tripping. 
 

Constraint 2: The temperatures of condenser water (supply and return) and wet bulb 
fall within the range of minimum and maximum values in Fahrenheit. Presently, the 
designated temperature for web bulb at inlet, Twb is 82.40F, condenser water supply, 
Tcws is 88.70F and condenser water return, Tcwr is 98.60F. 
 

Constraint 3: The cooling towers' mass flow of condenser water and air are modeled 
in m3/h as mw and ma. They fall within the minimum and maximum designated capac-
ity for optimized set points. Maximum air flow is achieved when all fan mode is ‘on’ 
that is 538446 m3/h and water flow achieves its maxima when all pump mode is ‘on’ 
that is 5832 m3/h.  

After the initial population of 2160 chromosomes consists of the variables are 
evaluated for fitness, new population is generated using three genetic operators that 
are reproduction, crossover, and mutation. Each gene mutates with a probability of 
0.1 and the crossover rate is 0.7. Once the operation setting of the single speed cool-
ing tower fans and condenser water pumps have been optimized through the genetic 
operations, they are compared with the existing operating setting before been put in 
force. This is a safety measure to prevent the uncertainties of the genetic algorithm 
due to insufficient evolution time. If such a condition occurs, the system will operate 
at present set points without any changes until the next sampling period. In our pro-
ject, the termination of genetic operations occur when there is NO better fitness value 
(the most minimum power consumption achieved) obtained from a generation.  From  
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Table 1. GA parameters setting 

Initial Population 2160 Crossover 0.7 
Mutation 0.1 No of generation 200 

 
our testing, we found out that a 200 generation would be when the fitness achieves its 
maxima. 

6   Experimental Results 

The simulation-optimization application focused on optimizing the control of the 
single speed cooling towers’ fans and condenser water pumps on real time basis while 
the VSD controlled chillers are not interfered. The control affects the mass flow of air 
and water at both inlet and outlet of cooling towers which change the heat transfer 
effectiveness of cooling towers. The experiment aims to observe the optimized setting 
of cooling tower fans and pumps throughout 24 hours of a day based on ambient tem-
perature, chillers’ cooling load and cooling tower’s heat transfer effectiveness. The 
average measured cooling tower efficiency based on Braun’s model that takes into 
account the average ambient temperature at different hours of the day is shown in 
Fig.3. All the data measured were displayed in a daily average because the tropical 
climate here does not have distinctive seasonal difference.  The averaged data is rep-
resentative for the whole year. However, the experiment has been simulated for daily 
data of three months. The ambient temperatures vary between 68.90F to 82.40F 
throughout 24 hours of a day. Due to the ambient temperature achieves its maxima 
from 13:00 to 17:00; the heat transfer effectiveness of the cooling towers is the high-
est at these hours. On the other hand, due to the efficiency of cooling tower vary 
throughout 24 hours; the chillers’ cooling load also varies accordingly where it 
achieves its maximum at 17:00. The ambient temperatures that change throughout the 
day have affected the chiller cooling load and cooling tower efficiency. This is due to 
higher ambient temperature at cooling tower inlet during day time has increased the 
condenser water supply temperature as well and vice versa during night time. We 
measure the wet bulb temperature at cooling tower inlet hourly throughout the day, 
and then measure the mass flow of air, mass flow of water, condenser water supply 
and return temperatures in the cooling towers. We optimized the mass flow and tem-
peratures based on the fitness value of the population through the operating state of 
the fans and pumps. The mass flows are optimized with the constraint that cooling 
load of chillers can be met by heat transfer capacity of the cooling towers at any hour 
of the day. When the ambient temperature is lower, the calculated efficiency of the 
cooling tower is lower assuming the condition that condenser water supply and return 
temperatures remain constant. However, the condenser water supply temperature also 
decreases when outdoor temperature decreases at any time of the day. With these 
temperatures drop, we optimize the mass flow of air and water of the cooling towers. 
With the optimization by evolutionary computation through genetic algorithm, we 
manage to optimize the operation state of six pumps and six fans within the condenser 
water loop. Fig.3 also shows the hourly optimized power consumption of cooling 
towers (1st bar), chillers (2nd bar), optimized total power consumption (3rd bar), total 
power consumption before optimization (4th bar).  The daily power consumption of 
these pumps and fans when fully operated is 17164.80kW daily which costs  
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Fig. 3. Hourly Ambient Temperature, Chiller Cooling Load, Cooling Tower Efficiency and 
Power Consumption  

USD1716.48 (approx. USD 0.10 per kW presently) daily and USD626515.20 annu-
ally. With the optimization of these components, we are able to cut down the energy 
consumption by 5,960 kW daily and 2,175,400 kW annually. This will give a cost 
saving of USD217540 annually. This gives a 34.7% saving on the total cooling tower 
power consumption or 7% of total condenser water loop power consumption as com-
pare to fixed operation approach used previously. 

7   Conclusions 

This paper discussed a cost saving strategy through cooling towers in the condenser 
water loop. This strategy focuses on single speed control components in the loop 
where chillers and chilled water pumps which have variable speed drives are not 
modeled. The optimization cooling towers’ water and air flows with fans and con-
denser water pumps through computational intelligence managed to cut down the total 
electricity consumed by cooling towers by 34.7% that is equivalent to USD 217,540 
annually. The field data collection needs to be carried out for a longer term to observe 
any unusual behaviors of the parameters within the condenser water loop. With the 
more field data, optimization can be enhanced. 
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Abstract. We discuss Bregman divergences and the very close relation-
ship between a class of these divergences and the regular family of expo-
nential distributions before applying them to various topology preserving
dimension reducing algorithms. We apply these to multidimensional scal-
ing (MDS) and show the effect of different Bregman divergences. In par-
ticular we derive a mapping similar to the Sammon mapping. We apply
these methods to face identification.

1 Introduction

Visualizing high dimensional data is problematic since we are not equipped with
senses appropriate for this task. Indeed, even the task of converting two dimen-
sional representations on our retina to the three dimensional representations our
brain makes of the world is an inverse problem which is impossible to solve with
100% accuracy. Therefore we search for low dimensional representations of high
dimensional data which capture some intrinsically interesting properties of the
data. One such property is capturing the local distances in the high dimensional
data and trying to maintain these relationships in a low dimensional projection
of the data [4].

Bregman divergences have recently received a great deal of interest recently in
terms of clustering and finding unsupervised projections of a data set [2,6,5,3,1].
In this paper, we investigate three groups of algorithms which use Bregman di-
vergences as the distance measures. The first is multidimensional scaling (MDS),
a standard technique in the literature. We show that Bregman divergences give
a simple bridge between classical MDS and the popular Sammon mapping.

2 Bregman Divergences

Consider a strictly convex function F : S → � defined on a convex set S ⊂ �d.
A Bregman divergence between two elements, p and q, of S is defined to be

dF (p, q) = F (p) − F (q) − 〈(p − q), ∇F (q)〉 (1)

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 935–942, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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where the angled brackets indicate an inner product and ∇F (q) is the derivative
of F evaluated at q. This can be viewed as the difference between F (p) and its
truncated Taylor series expansion around q. Thus it can be used to ‘measure’ the
convexity of F : Figure 1 illustrates how the Bregman divergence is the difference
between F (p) and the value which would be reached from F (q) with a linear
change for ∇F (q).
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Fig. 1. The divergence is the difference between F (p) and the value of F (q) + (p −
q)∇F (q)

Example 1. The squared Euclidean distance is a special case of the Bregman
divergence in which F (.) =‖ . ‖2

dF (x,y) = ‖ x ‖2 − ‖ y ‖2 −〈x − y, ∇F (y)〉
= ‖ x ‖2 − ‖ y ‖2 −〈x − y, 2y〉
= ‖ x − y ‖2

Example 2. The Kullback-Leibler divergence is another special case in which
F (p) =

∑d
j=1 pj log pj . Consider two discrete probability distributions, p and q.

dF (p,q) =
d∑

j=1

pj log2 pj −
d∑

j=1

qj log2 qj − 〈p − q, ∇F (q)〉

=
d∑

j=1

pj log2 pj −
d∑

j=1

qj log2 qj

−
d∑

j=1

(pj − qj)(log2 qj + log2 e)
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=
d∑

j=1

pj log2

pj

qj
− log2e

d∑
j=1

(pj − qj)

=
d∑

j=1

pj log2

pj

qj
= K.L.(p ‖ q)

since
∑d

j=1 pj =
∑d

j=1 qj = 1. This divergence can be used with general vectors
(i.e. not necessarily probability distributions) and then we get the Generalised I-
divergence, dF (p,q) =

∑d
j=1 pj log pj

qj
−
∑d

j=1(pj−qj). Other divergences include
the Itakura-Saito divergence, the Mahalanobis distance and the logistic loss,
corresponding to F (x) = log(x), F (x) = xΣ−1x, with Σ the data covariance
matrix, and F (x) = x log x + (1 − x) log(1 − x) respectively.

2.1 Properties of Bregman Divergences

First note that, in general, dF (p,q) �= dF (q,p). However we can create sym-
metric divergences:

SF (p,q) =
1
2
(dF (p,q) + dF (q,p))

=
1
2
〈p − q, ∇F (p) − ∇F (q)〉

This gives us a divergence measured on the space S and its derivative space ∇S.
All Bregman divergences satisfy

Non-negativity dF (p,q) ≥ 0 with equality if and only if p = q.
Convexity but only guaranteed in the first parameter.
Linearity daF1+bF2(p,q) = adF1(p,q) + bdF2(p,q)

A fuller description of the properties of Bregman divergences can be found in [2].
However, this leaves open the question as to which Bregman divergence is

the best one to use for any particular data set, something which will inevitably
depend on the distribution of the data set. To find an answer to this, we digress
to re-state the properties of the exponential family of distributions.

3 The Exponential Family

[2] have shown that there is bijection between a set of Bregman divergences
and members of the regular exponential family of probability distributions. The
exponential family of distributions is a surprisingly wide family whose members
have distributions of the form

pG,θ(x) = exp(〈t(x), θ〉 − G(θ))p0(t(x)) (2)

where t(x) is known as the natural statistic, θ is known as the natural parameter
and G(θ) is the cumulant function which defines the exponential family. An
example of the exponential family are
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The 1 dimensional Gaussian with unit variance

pG,θ(x) =
1√
2πσ

e(− (x−µ)2

2 )

=
e−x2

√
2π

exµ−µ2

2

So that t(x) = x

θ = µ

and G(θ) =
θ2

2
=

µ2

2
Other well known members of this family are the bernoulli, multinomial, beta,
Dirichlet, Poisson, Laplace, gamma and Rayleigh distributions. In the remainder
of this paper, we consider only regular exponential families in which t(x) = x.

We define the expectation of X with respect to pG,θ to be

µ = EpG,θ
[X ] =

∫
d

xpG,θ(x)dx (3)

It can be shown [2] that there is a bijection between the set of expected values,
µ, and the set of natural parameters, θ. In fact, let dF be the Bregman divergence
corresponding to the distribution, pG,θ. Then let g() = ∇G and let f = ∇F .
Then µ = g(θ) and θ = f(µ), which is readily verified for the distributions above.

Consider a member of the regular exponential family with known cumulant
function, G(θ). Then G(.) is a closed convex function. Define its conjugate func-
tion as

F (x) = sup
θ

{〈x, θ〉 − G(θ)} (4)

Then there is an unique θ∗ which attains the supremum and F () is also a convex
function. If the domain of F is S and the domain of G is Θ, then (S, F ) is
the Legendre dual of (Θ, G). In particular, there exists a θ such that F (µ) =
〈µ, θ〉 − G(θ). Differentiating and setting the derivative to 0, we see that g(θ) =
µ and f(µ) = θ; then since G() is strictly convex, F () is too and so can be
used to define a Bregman divergence. Consider two members of an exponential
family with natural parameters, θ1 and θ2, and expectations, µ1 and µ2. Then
it can be shown that minimising the Bregman divergence with respect to the
cumulant function between the natural parameters is equivalent to minimising
the Bregman divergence with respect to the dual function (but in the opposite
direction) between the expectations. Also it can be shown that maximising the
likelihood of a data set is equivalent to minimising the associated Bregman
divergence between the mean of the distribution and the data.

In practical terms, we might fit a particular member of the exponential family
to a data set which means we have determined the cumulant function, G(.). We
then identify the dual function, F (.), based on which we can find the Bregman
divergence dF (.) knowing that minimising the Bregman divergence between the
mean of the distribution and its natural statistics maximises the log likelihood
of the distribution under this probability density function.
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4 Multi-dimensional Scaling

We illustrate the behaviour of the Bregman divergences with the Sammon map-
ping. Multidimensional scaling (MDS) finds a low dimensional (typically two
dimensional) representation of each data point such that the distances in this
representation which we will call latent space are as close to the original (Eu-
clidean) distances as possible. Thus if we wish the latent points xi to represent
the data points yi, we wish the distance dij between latent points xi and xj to
be as close as possible to the distance, δij , between data points yi and yj . Thus
the performance function for classical metric MDS is

JMDS =
N∑

i,j=1

(dij − δij)2 (5)

There is a well-known close relationship between the xi and Principal Component
Analysis (PCA) in that the final values of the xi are the projections of the yi

on the principal axes found by PCA. Thus there are some important statistical
properties associated with classical MDS.

The Sammon mapping weights each difference in (5) by the inverse of the
distances in data space so that presevation of small distances is more impor-
tant than preservation of distances between points which are very far apart. Its
performance function is given by

JSammon = C

N∑
i=1,i<j

(dij − δij)2

δij
(6)

where C = 1∑N
i=1,i<j δij

is a normalising constant. Both the distances in data

space and distances in latent space are often Euclidean. This algorithm has
proved very popular in practice since it emphasises the maintenance of local
distance relations at the expense of loosening constraints which are determined
by data points far from one another. We will show that a Bregmanised version
of classical MDS (5) has properties very similar to the Sammon mapping (6).
However first we will investigate Bregman divergences in data space.

4.1 Simulations

We create 100 samples of 105 dimensional data. Each data sample is a noisy
version of binary data with 95 zeros and 10 ones so that yi has a 1 at positions
i, i + 1, i + 2, i + 3, i + 4 and at j, j + 1, j + 2, j + 3, j + 4 where the starting
point j is randomly chosen from a permutation of 1,...,100. Thus the ith data
sample will have an overlap of at least 4 with the (i +1)th and (i − 1)th samples
(when they exist) and could have an overlap of up to 8. Thus a two dimensional
representation should reveal this. One sample of the dataset is shown in Figure
2: the 31st sample has 1s at positions 31-35 and 98-102.

The KL and GI divergences are more informative than the Euclidean distance
in this case though we do not wish to state that this will always be the case for
all datasets.
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Fig. 2. Top left: one sample of the noisy binary data: it has two contiguous blocks each
of 5 inputs which have value 1 while the remaining inputs each have small random
values. The other 3 diagrams show Sammon mapping representations using different
underlying Bregman divergences.

4.2 Alternative Mappings

In the previous section, we have illustrated Bregman divergences on data space
but retained Euclidean distances in the latent space. However we can easily con-
ceive of Bregman divergences in latent space. Thus we would be retaining the
pseudo metric on the space while reducing the dimensionality of the space. In-
deed we can conceive of a mapping which minimimises the Bregman divergence
between the divergences between the two spaces. Thus a fully Bregmanised mul-
tidimensional scaling would minimise

JBMDS =
N∑

i,j=1

dF1(dF2(xi,xj), dF3(yi,yj)) (7)

For example, we may choose to have the Itakura-Saito divergence for F1 i.e.
F1() = − log() . Thus using, as before, dij for the divergence between latent
points xi and xj , i.e. dij = dF2(xi,xj) and δij for the divergence between data
points yi and yj i.e. δij = dF3(yi,yj), we have

dF (dij , δij) = log
(

δij

dij

)
+

dij − δij

δij
(8)
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We note the automatic scaling by δij for MDS with Bregman divergences which
the Sammon mapping heuristically inserts. δij appears first inside a logarithm of
the cost function and thus large values have less effect than they would otherwise
and secondly it appears as a normalising term in the second part of the cost
function and so makes differences between large distances in data space less
important.

We can then create the update rule

∆dij ∝ −∂dF (dij , δij)
∂dij

=
1

dij
− 1

δij
(9)

If we retain an Euclidean distance in latent space, we may use the incremental
update rule

∆xi = η
N∑

j=1

(xi − xj)(
1

dij
− 1

δij
), ∀i (10)

where η is a learning rate, and alternate this with a re-calculation of the distances
between the points in latent space. We call this pseudo metric multidimensional
Scaling. Note that this can be used regardless of which divergence is used in data
space which needs only be calculated once. Thus (10) can be used whenever we
have the Itakura-Saito divergence as F1, the Euclidean distance as F2 and any
divergence for F3.

5 Conclusion

We have reviewed Bregman divergences and shown the very close relationship
between these divergences and the exponential family of probability density func-
tions: if we know the pdf of a data set, we can choose the optimal divergence
associated with that dataset.

In particular we have applied Bregman divergences to multidimensional
scaling. We have shown multidimensional scaling mappings with Bregman di-
vergences determining the ‘distances’ between points; we further showed that,
starting with classical MDS but using the Itakura-Saito divergence between the
distances, we create a mapping which is not unlike the Sammon mapping and
has certainly interesting visualization properties.
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Abstract. In this paper, we propose a new method called collective ac-
tivations to realize self-organizing maps. We suppose that all neurons col-
lectively respond to input stimuli, and this collectiveness is represented
by the sum of all neurons’ activations. Learning consists of imitating
these collective activations as much as possible. We applied the method
to artificial data and a broadband survey problem. In all these problems,
we could obtain self-organizing maps similar or, in some cases, superior
to those obtained by conventional SOM. Thus, the present study is con-
sidered to be the first step toward more realistic self-organizing maps.

1 Introduction

In this paper, we present a new method called collective activations to realize self-
organizing maps without competitive learning by the winner-take-all algorithm.
Competitive learning has been used as the base for many learning methods.
The self-organizing map by Kohonen, especially, has attracted much attention,
because it has given strong visualization performance. The conventional SOM
is based upon the winner-take-all algorithm. However, it is not plausible that
this winner-take-all mechanism is built in living systems. It seems to us that the
softer mechanism of competition and cooperation should be developed.

Many attempts have been made to formulate more realistic procedures for
competitive learning as well as self-organization. Among them, due attention has
been paid to the information-theoretic approach for self-organizing maps [1], [2],
[3], [4]. Linsker, especially, tried to formulate self-organizing maps by maximizing
mutual information between input and output signals. These studies have shown
that competitive learning is only one aspect of mutual information maximization
[2], [3], [4]. However, in Linsker’s methods, only complicated learning rules were
formulated, and they have not been used in practical applications.

To overcome the shortcoming of Linsker’s maximum information principle, we
propose a method called collection activations to replace the common term ”lat-
eral interaction” and to stress that this collectiveness is one of the key elements
in formulation. We suppose that all neurons collectively respond to input stimuli.
This collectiveness is realized by summing all competitive unit activations. The
summation is actually a weighted sum of all neurons. One of the main points
for our model is that learning consists of imitating these collective activations.
Usually, this collectiveness is realized by a Gaussian neighborhood function.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 943–950, 2009.
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2 Theory and Computational Methods

2.1 Collective Activations

In this paper, we suppose that all neurons collectively respond to input stimuli.
This phenomenon has been well known as lateral interaction among neurons. Lat-
eral interactions or cooperation among neurons is adjacent or peripheral to com-
petition among neurons. Our main point is that this lateral interaction should
be imitated by competitive processes. As already mentioned, we used collective
activations to stress the importance and the priority of lateral interaction.

Now, let us explain collective activations. Figure 1 shows a network architec-
ture that is composed of a competitive and a collective layer. In the network,
xs

k denotes the kth element of the sth input pattern, wjk represents connection
weights from the kth input unit to the jth competitive unit and L is the number
of input units. An output from an individual competitive unit can be computed
by

vs
j = exp

(
−
∑L

k=1(x
s
k − wjk)2

2σ2

)
, (1)

where σ denotes a Gaussian width. Figure 1 shows that the jth neuron cooperates
with all the other neurons on the map and responds to input patterns. We
realize this cooperation by summing all neighbors’ unit activities. Then, we have
collected activations

V s
j =

M∑
m=1

Wjmvs
m, (2)

where Wjm denotes connection weights from the mth competitive unit to the
jth competitive unit, and M is the number of competitive units. We can imagine
many kinds of collectiveness on the map. We usually use the distance between
competitive units for expressing collectiveness; for example, when competitive
units are closer to their neighbors, they should be linked to them more intensely.

L input units

M competitive units

s

wjk

x
k

s
v

j

s
Vj

s
v

m

Collective layer

Competitive layer

Collective
activations

Fig. 1. Network architecture and how to compute collective activations
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A distance function between two neurons can be defined by

Wjm = exp
(

− (rj − rm)2

2σ2

)
, (3)

where rj denotes a position of the jth unit and rm denotes a position for the
mth neighboring neuron. Thus, we have

V s
j =

M∑
m=1

exp
(

− (rj − rm)2

2σ2

)
vs

m. (4)

We can compute a normalized activity

q(j | s) =
V s

j∑M
m=1 V s

m

. (5)

This normalized activity is considered to represent collective firing rates.

2.2 Imitating Collective Activations

We have defined collective activations, and now what we have to do is to obtain
update rules to realize these collective activations. Suppose that p(j|s) denotes
a firing probability of the jth neuron. Therefore, we should make these probabil-
ities as close as possible to the firing probabilities of collective neurons or firing
rates. Thus, we have an objective cross entropy function defined by

S =
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)
q(j | s)

. (6)

It is possible to differentiate this cross entropy to obtain update rules, as Linsker
did [3]. However, as is the case with Linsker’s formulation [3], the rules become
complicated update rules with heavy computation for computing conditional
probabilities. Fortunately, we can skip complicated computation of conditional
entropy by introducing the free energy used in statistical mechanics [5], [6], [7],
[8], [9], [10], [11]. Following statistical mechanics, let us introduce free energy or
a free energy-like function defined by

F = −2σ2
S∑

s=1

p(s) log
M∑

j=1

q(j | s) exp

(
−
∑L

k=1(x
s
k − wjk)2

2σ2

)
. (7)

An optimal state specifies the actual output

p(j | s) =
q(j | s) exp

(
−
∑L

k=1(xs
k−wjk)2

2σ2

)
∑M

j=1 q(j | s) exp
(
−
∑L

k=1(x
s
k
−wjk)2

2σ2

) . (8)
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(a) SOM (b) Collective activations

Fig. 2. Artificial data with final connection weights in black plus symbols by SOM (a)
and collective activations (b)

Then, putting p(j | s) into the cross entropy, we have

F =
S∑

s=1

p(s)
M∑

j=1

p(j | s)
L∑

k=1

(xs
k − wjk)2

+2σ2
S∑

s=1

p(s)
M∑

j=1

p(j | s) log
p(j | s)
q(j | s)

. (9)

Thus, to decease the free energy, we must decrease the cross entropy and the
corresponding error function. By differentiating the free energy, we have update
rules

∆wjk = β

S∑
s=1

p(s)p(j | s)(xs
k − wjk), (10)

where β is a learning rate and p(s) is set to 1/S for all experiments discussed
below.

2.3 Cooling Processes

One of the easiest ways to decrease the free energy is to decrease the Gaussian
width. This is called a cooling process. We use a method from the SOM toolbox1,
and we decrease the parameter σ by

σ(t) = σ(0)
(

0.005
σ(0)

) t
T

+
1

σ(0)
, (11)

and the learning rate β is decreased by

β(t) = σ(0)
(

0.005
σ(0)

) t
T

, (12)

1 http://www.cis.hut.fi/research/som-research.
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where t is a learning epoch. The maximum number of epochs T is set to 1,000.
The parameter σ(0) is set to half of the map size. The term 1/σ(0) is introduced
to stabilize learning.

3 Results and Discussion
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(a) SOM (b) Collective activations

Fig. 3. Sammon map obtained by SOM(a) and by collective activations (b)

3.1 Artificial Data

For this experiment, we used random vectors in three Gaussian kernels, the cen-
ters of which are at (0, 0, 0), (3, 3, 3) and (9, 0, 0)2. Figure 2 shows data with
final connection weights in plus symbols produced by SOM(a) and by collective
activations (b). As can be seen in Figure 2(a), final connection weights in plus
symbols are fairly well located in three groups. However, several weights seem
to be outside of the three groups. On the other hand, when we use the collection
activations in Figure 2(b), final connection weights in plus symbols are com-
pletely located inside the three groups. Figure 3 shows Sammon maps obtained
by SOM (a) and by collective activations (b). With SOM, the Sammon map is
widely distributed. On the other hand, by using the collective activations in Fig-
ure 3(b), three groups are clearly separated. Finally, Figure 4 shows U-matrices
and component planes produced by SOM (a) and by collective activations (b).
Comparing the U-matrix produced by collective activations with those produced
by SOM, we can say that with the use of collective activations, boundaries are
clearer, meaning that the U-matrix obtained by the collective activations can
divide input patterns into three groups more clearly. When we compare compo-
nent planes obtained by collective activations and by SOM, we can also clearly
see that the collective activations more explicitly detect the characteristics of
input patterns.

2 http://www.cis.hut.fi/research/som-research.
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(a1) U-matrix (a2) X-coord (a3) Y-coord (a4) Z-coord

 

(a) SOM

(b1) U-matrix (b2) X-coord (b3) Y-coord (b4) Z-coord

(b) Collective activations

Fig. 4. U-matrices and component planes obtained by SOM (a) and collective activa-
tions (b). Warmer and cooler colors represent higher and lower values, respectively.
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(a1) DSL (a2) Cable (a3) Optical (a4) Others

(a) SOM

(b1) DSL (b2) Cable (b3) Optical (b4) Others

(b) Collective activations

Fig. 6. Component planes obtained by conventional SOM (a) and collective activations
(b)

3.2 Broadband Statistics

In this section, we examine the number of broadband access methods in OECD
countries3. Figure 5(a) shows a U-matrix and labels obtained by conventional
SOM. We cannot see any explicit boundaries in the U-matrix. On the other
hand, by using collective activations, as shown in Figure 5(b), clearer bound-
aries, though their intensity is low, in light blue, can be detected. By examining
component planes in Figure 6(a) and (b), we can see that, by those boundaries,
countries are classified into four groups based upon the corresponding four access
methods, that is, optical, cable, DSL and others.

4 Conclusion

We suppose that all neurons collectively respond to input stimuli. This collec-
tiveness is realized by summing all neurons’ activities. We train networks to
imitate these collective activations in learning. We have proposed a new method
called collective activations to realize self-organizing maps. When we applied
the method to artificial data and a broadband problem, in all three cases, we
obtained self-organizing maps comparable or superior to those obtained by con-
ventional SOM. One of the major problems is how to cool learning processes.
Depending upon different cooling processes, different final representations could
be obtained. Thus, we should more exactly examine relations between cooling
processes and final representations. Finally, some have already noticed close re-
lations between our method (Linsker-like) and self-organizing mixture networks
[12]. Thus, we should mathematically examine those relations for future devel-
opment of this study.

3 http://www.e-stat.go.jp/SG1/estat/eStatTopPortal.do.
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Abstract. Several researchers have recently proposed alternative esti-
mation methods of Boltzmann machines (BMs) beyond the standard
maximum likelihood framework. Examples are the contrastive divergence
or the ratio matching, and also a rather classic pseudolikelihood method.
With a loss of statistical efficiency, alternative methods can often speed-
up the computation and/or simplify the implementation. In this article,
as an extreme of this direction, we show the parameter estimation of BMs
can be done even with a closed-form estimator, by recasting the problem
into linear regression. We confirm our estimator can actually approach
the true parameter as the sample size increases, while the convergence
can be slow, by a simple simulation experiment.

1 Introduction

Boltzmann machine [1] (BM) is a classic model of neural computation to learn
multivariate probability distributions from data. It is closely related to the Ising
model in statistical physics, or to the Markov random field (MRF) often used in
image analysis. Although being classical, BMs and its related models have still
been an active research target (e.g., [5]), yielding many important applications.

Several authors have recently proposed new estimation methods of BMs be-
yond the standard maximum likelihood (ML) framework [4,7,8,12]. As is well
known, the major difficulty of ML in BMs is its high computational burden
caused by intractable calculation of the normalization constant. An another
difficulty is that, while not often considered, the implementation can become
quite involved due to the need for “inference” about each variable even in the
“fully-visible” cases (i.e, no hidden variables). Recent advanced techniques of
probabilistic inference is not so easy for non-experts to effectively implement.
Alternative methods are useful in that they can often speed-up the computa-
tion as well as simplify the implementation, by admitting a loss of statistical
efficiency as ML performs.

In this article, as an extreme of such a direction to seek light and convenient
estimation schemes, we present a closed-form estimator of BMs, while all of the
existing approaches normally do not have such explicit forms. Although being
closed-form do not necessarily mean its computational efficiency, it will still

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 951–959, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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significantly simplifies the implementation. We present the basic idea and show
empirical results, focusing on fully-visible BMs.

2 Brief Review of Boltzmann Machines

Let x = (x1, x2, . . . , xm)� ∈ {−1, 1}m be an m-dimensional binary random
vector. BM defines a probability distribution of x typically in the form

p(x | W,b) =
1

Z (W,b)
exp
(

1
2
x�Wx + b�x

)
, (1)

where

Z (W,b) =
∑

x∈{−1,1}m

exp
(

1
2
x�Wx + b�x

)
(2)

is called a partition function. The weight matrix W is usually assumed as sym-
metric (wij = wji) and having zero diagonal elements (wii = 0). Then, Eq. (1)
can be written as

p(x | W,b) =
1

Z (W,b)
exp

⎛⎝∑
i>j

wijxixj +
∑

i

bixi

⎞⎠ . (3)

2.1 Maximum Likelihood

Given a dataset D = {xn}N
n=1, where n is the sample index, the log-likelihood

function of parameters W and b is given by

L(W,b) = N

⎛⎝∑
i>j

wij〈xixj〉ρ(x) +
∑

i

bi〈xi〉ρ(x) − log Z (W,b)

⎞⎠ (4a)

where 〈·〉p(x) denote the expectation with respect to p(x) and ρ(x) =
1
N

∑N
n=1 I (x = xn) is an empirical distribution of x1. The gradient of the log-

likelihood is also given by

∂

∂wij
L(W,b) = N

(
〈xixj〉ρ(x) − 〈xixj〉p(x|W,b)

)
, (5a)

∂

∂bi
L(W,b) = N

(
〈xi〉ρ(x) − 〈xi〉p(x|W,b)

)
. (5b)

This involves intractable summations over 2m states of x and thus some approx-
imation is needed.
1

I(·) is the indicator function taking 1 (0) if the argument is true (false).
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A standard approach to this approximation is to use a Markov chain Monte
Carlo method, typically the Gibbs sampling, which iteratively generates a sample
from the conditional distribution:

p(xi | x\i,W,b) =
exp (xiξi)∑

zi∈{−1,1} exp (ziξi)
, ξi =

∑
j 	=i

wijxj + bi, (6)

where x\i is all the variables except for xi, and the summation
∑

j 	=i is taken
over j ∈ {1, 2, . . . , i−1, i+1, . . . , m}. A “naive” mean-field approximation [13] of
the gradient is also popular in which the single Gibbs sampling step is replaced
by taking the conditional expectation

x̄i = E
[
xi | x\i

]
=

exp (ξi) − exp (−ξi)
exp (ξi) + exp (−ξi)

= tanh (ξi) . (7)

After converged to equilibria x̄∗
i ’s, the expectations 〈xi〉p(x|W,b) and

〈xixj〉p(x|W,b) are approximated respectively by x̄∗
i and x̄∗

i x̄
∗
j . More advanced

mean-field techniques can also be used [9]. However, they require the MCMC or
mean-field iterations to be converged in each single step of gradient evaluation2;
approximate ML estimations are thus essentially heavy in computation.

2.2 Maximum Pseudolikelihood and Related Methods

Recently, several alternatives to the ML have been proposed. Such methods
include the contrastive divergence (CD) [4], the ratio matching [8] (a discrete
analog of the score matching [6] of the same author), multi-conditional learn-
ing [12], etc. They are appealing both in their computational efficiency and also
in the relative ease of implementation.

Although their forms are different from each other, many existing approaches
in this direction can be regarded as variants of, or at least being closely related
to, the rather old principle of maximum pseudolikelihood (MPL) [2], or more
generally the composite likelihood [11,15,14], as recently suggested by several
authors [7,10]. Thus, we here only describe MPL.

The estimator by MPL is obtained by maximizing the log-pseudolikelihood.
In the case of BMs, this is given by

Lp(W,b) = N

m∑
i=1

〈
log p(xi | x\i,W,b)

〉
ρ(x)

(8a)

= N
m∑

i=1

(
〈xiξi〉ρ − 〈log cosh (ξi)〉ρ + log 2

)
, (8b)

where 〈xiξi〉ρ =
∑

j∈V\i
wij〈xixj〉ρ + bi〈xi〉ρ. The gradient of the log-

pseudolikelihood is then given by

2 But see [9] for efficient special cases.
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∂

∂wij
LP (W,b) = N

(
〈xixj〉ρ(x) −

(
〈x̄ixj〉ρ + 〈xix̄j〉ρ

)
/2
)

, (9a)

∂

∂bi
LP (W,b) = N

(
〈xi〉ρ − 〈x̄i〉ρ

)
. (9b)

This can be easily evaluated without any iterative computations. Hyvärinen [7]
has showed the consistency of the MPL estimator in fully-visible BMs.

3 Proposed Method

Let p(x) be the target (true) distribution of discrete random vector x. We denote
a model as qθ(x) which has the form

qθ(x) =
q̃θ(x)
Z(θ)

, (10)

with a partition function Z(θ) =
∑

x q̃θ(x). Our objective is to estimate such a
θ that the model qθ(x) becomes a good approximation to the target p(x).

3.1 Basic Idea

Our starting point is a simple observation about the sufficient condition to attain
qθ(x) = p(x): This only requires q̃θ(x) to be proportional to p(x), since the
normalization condition

∑
x p(x) =

∑
x qθ(x) = 1 then automatically makes

qθ = p. Equivalently, this means that any function r(x) that depends only on
the ratio q̃θ(x)/p(x) should be constant for any x.

We now assume r(x) = log(q̃θ(x)/p(x)). Note that r(x) is a function of x
and thus is a random variable under x ∼ p(x). Then, r(x) becomes constant
over the support of p(x) (i.e., region of non-zero probabilities) if and only if its
variance is zero. If the support is sufficiently large within the overall domain of
x, so as for the zero-variance condition to offer enough constraints on r(x), then
r(x) becomes constant for overall domain of x. A lower variance also implies the
function is nearly constant in a similar way. Thus, one can possibly measure the
discrepancy between the two distributions by

D[p(x)‖qθ(x)] ≡
〈(

log
p(x)
q̃θ(x)

−
〈

log
p(x)
q̃θ(x)

〉
p

)2〉
p

= Vp

[
log

p(x)
q̃θ(x)

]
, (11)

where Vp[·] is the variance under the distribution p. This measure is com-
pletely independent of Z(θ). We also note the above quantity is also equal
to Vp[log(p(x)/qθ(x))], since the variance is unchanged by adding a constant
log Z(θ).

To estimate θ from data based on this measure, we replace p(x) by the em-
pirical ρ(x) as usual, and then minimize it with respect to θ. One may concern
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about the existence of log ρ(x) in the above measure, which may cause trouble-
some log-of-zeros. However, this is not true because ρ(x), i.e., the normalized
counts, is evaluated only at sampled points (where ρ is always positive)3.

Although ρ(x) with small sample sizes usually contains zero-probabilities and
thus a zero variance does not necessarily assure qθ(x) = ρ(x). However, in the
asymptotic limit (N → ∞), ρ(x) has a sufficiently large support if the target
p(x) is actually so; the zero variance then implies qθ(x) = ρ(x) = p(x). Thus, we
can expect this scheme will produce a consistent estimator of the BM parameter,
when the target is actually given in the BM family of finite parameter values
(where p(x) > 0 always holds).

3.2 Closed-Form Estimator for BMs

Now consider that the model qθ(x) is a BM. For convenience, we use the expo-
nential family formulation of BM:

q̃θ(x) = exp
(
θ�φ(x)

)
, (12)

where

θ =
(

b
vech (W)

)
and φ(x) =

(
x

vech
(
xx�)) (13)

are the canonical parameter and sufficient statistics, respectively. Here we de-
noted vech(A) as a column vector that stacks the lower-triangle off-diagonal
elements of matrix A.

Let h(x) = log ρ(x), then the empirical version of Eq. (11) is given by

D[ρ(x)‖qθ(x)] = Vρ

[
h(x) − θ�φ(x)

]
(14a)

= Vρ

[
θ�φ(x)

]
− 2Cρ

[
h(x), θ�φ(x)

]
+ const. (14b)

= θT Hθ − 2θ�u + const., (14c)

where Cp[·, ·] denote the covariance under p and we defined

H =
〈
φ(x)φ(x)�

〉
ρ

− 〈φ(x)〉ρ 〈φ(x)〉�ρ , (15a)

u = 〈φ(x)h(x)〉ρ − 〈φ(x)〉ρ 〈h(x)〉ρ . (15b)

Note that H is the covariance matrix of φ(x) and u a vector of cross-covariances
between φ(x) and h(x). The estimator of θ, i.e., the minimum of Eq. (14c), is
thus given in a closed-form:

θ̂ = H−1u, (16)

by solving the stationary condition ∇θD = 2(Hθ − u) = 0.
3 However, if x is continuous (with the summation replaced by integration), the vari-

ance diverges since ρ(xn) usually have infinite point density.
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3.3 A View from the Least Square Regression

The derivation above has a simple interpretation as a least square problem. Let
a scalar β be an auxiliary parameter to form a linear model:

yn = gθ(xn) + β + εn, (17)

where we denoted yn = h(xn) = log ρ(xn) and gθ(x) = log q̃θ(x); εn is the
residual error. With a straightforward calculation, we can see the mean squared
error: 〈

(h(x) − gθ(x) − β)2
〉

ρ
=

1
N

N∑
n=1

(yn − gθ(xn) − β)2 , (18)

is equal to Eq. (11) by plugging in the least square estimator of β, that is,
β̂ = 1

N

∑N
n=1 (yn − gθ(xn)).

Thus, our estimation scheme is basically solving a least square problem in
which a target yn is artificially created from an input xn by using h(x) = log ρ(x)
as a “true” target function; gθ(x) is the regression function with a bias parameter
β. In the exponential family case, since gθ(x) = log q̃θ(x) = θ�φ(x), the problem
is thus simplified into a linear least square for which a closed-form estimator
exists.

3.4 Implementation Issue

We conveniently implement our estimator by utilizing the above interpretation
as linear regression, instead of directly calculating Eq. (16). The linear model in
the vector notation is

y = Xω + ε, (19)

where y = (y1, y2, . . . , yN)� and ε = (ε1, ε2, . . . , εN )� are the target and residual
vectors. The design matrix X and coefficient vector ω are defined respectively
as

X =

⎛⎜⎜⎜⎝
1 φ(x1)�

1 φ(x2)�
...

...
1 φ(xN )�

⎞⎟⎟⎟⎠ , ω =
(

β
θ

)
. (20)

By solving the least square problem ω̂ = argminω ‖y − Xω‖2 with any standard
techniques, we can obtain θ̂ by simply discarding the first element of ω̂ (= β̂,
while this may be useful as an approximate value of − logZ(θ̂))4.

4 The explicit form of ω̂ is ω̂ =
(
X�X

)−1
X�y; one can easily confirm the result is

equivalent to Eq. (16), by utilizing a formula of block matrix inversion [3].
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In practice, however, the design matrix X often has a degenerate column rank
so that a unique solution ω̂ does not exist. As in the standard recipe of linear
regression, we typically employ the pseudo-inverse X† to obtain the solution of
minimum Euclid norm by ω̂ = X†y, or explicitly add a quadratic regularizer to
the cost function to have a “ridge” estimator ω̂ =

(
X�X + λI

)−1
X�y, with an

appropriate setting of λ > 0. In the experiment of Sec. 4, we used the former
scheme.

4 Simulation Results

We conducted an simulation experiment to empirically examine the basic prop-
erty of our method in a similar setting to that used in [7]. Our method was
compared to both ML and MPL, as well as a standard MAP (maximum-a-
posteriori) estimation, i.e., a penalized ML with a quadratic regularizer5. The
data were artificially generated from BMs with m = 5 and 8 which were small
enough to allow exact sampling of data as well as to compute ML (and MAP)
estimates exactly. The sample size N was varied as 10, 50, 100, 500, 1000, 2000,
4000, 8000, 16000, 32000 and 64000, in each of which ten different datasets were
created by randomly setting the true parameter {wij} and {bi} each generated
from a Gaussian N(0, 0.52).

Figure 1 shows the mean squared errors (MSEs) between the estimated and
true parameters, where each line shows the median of the ten runs with each er-
rorbar indicating the upper and lower quartiles. In large sample sizes (say, ≥ 100
for m = 5 or ≥ 500 for m = 8), we can confirm the MSE of our estimator mono-
tonically decreases as the sample size increases. The error was comparable to the
others when m = 5, while was larger when m = 8. In contrast, in smaller sam-
ple sizes, our estimator initially exhibited lower errors than both ML and MPL,
but the error did not decrease until enough amount of samples were collected.
Similar improvements in small sample sizes were found in the MAP results.

5 Discussion

In this article, we have presented a new method to estimate the parameter of
BMs, based on an idea to minimize the variance of log(ρ(x)/q̃θ(x)). This can also
be interpreted as a least square problem. This interpretation offered a convenient
implementation of our method. However, if we start from this regression view,
the squared error may not be the best to explain the difference between the
empirical and true log-probability functions. Extension to other error functions
will be an interesting direction of future study, while the solution may have no
closed-form instead.

Although our estimation scheme is probably new, its practical availability
would be currently questionable. As demonstrated, the speed of convergence to
(possibly) the true parameter can be quite slow even in comparison to MPL.

5 This maximize L(θ) − η‖θ‖2 where η is set here at 0.01.
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Fig. 1. MSE for m = 5 (left) and m = 8 (right). Both axes are in logarithmic scales.

From the regression view, we conjecture that a sparse “input” distribution ρ(x)
could cause this slowness. Then, the success of our method will be limited to such
cases that there are sufficiently large data points as well as the target distribution
is not too sparse, while the complementary cases are of major concern in practice.
Relaxing this limitation by, for example, introducing a suitable regularization to
our method is remained for future study.
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Abstract. The non-negative matrix factorization (NMF) is capable of
factorizing strictly positive data into strictly positive activations and base
vectors. In its standard form, the input data must be presented as a batch
of data. This means the NMF is only able to represent the input space
contained in this batch of data whereas it is not able to adapt to changes
afterwards. In this paper we propose a method to overcome this limita-
tion and to enable the NMF to incrementally and continously adapt to
new data. The proposed algorithm is able to cover the (possibly grow-
ing) input space without putting further constraints on the algorithm.
We show that using our method the NMF is able to approximate the
dimensionality of a dataset and therefore is capable to determine the
required number of base vectors automatically.

1 Introduction

The NMF has been introduced by Lee and Seung [1,2] as an unsupervised fac-
torization method for decomposing multi-variant data under the constraint of
non-negativity. By only allowing the additive combination of components, the
method generated a parts-based representation. In its standard form, the NMF
works as a batch algorithm, i.e. the whole dataset is presented at once and has
to cover the desired input space entirely. Changes in that space can only be
incorporated by restarting the learning process from scratch, using the new and
the old data samples together to represent the new input space. This requires an
enormous amount of memory and computational effort, because all data samples
seen so far have to be stored, and the base vectors have to be recomputed once
a new sample is presented. An additional drawback of the NMF and batch algo-
rithms in general is that we have to specify the number of base vectors a priori.
This poses a hard problem for many real-world datasets, because the intrinsic
dimensionality of those datasets is not known.

Cao et al. developed an online variant of the NMF [3] trying to overcome the
mentioned limitations. In their approach it is possible to add new data samples
to the representation later, making it possible to adapt to temporally changing
data. Nevertheless, it is necessary to put an orthogonality constraint on the
learning process in order to obtain a proper representation of the input space.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 960–969, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Furthermore, both the initial number of vectors and the number of additionally
available vectors for new learning cycles still have to be specified beforehand.

We propose a method to learn the available data sequentially and hereby to
incrementally adapt the base vectors to represent the input space. By doing so,
the algorithm is able to autonomously approximate the intrinsic dimensionality
of the input data, rendering it unnecessary to specify the number of base vectors
in advance. By assuming to only see one new data sample at a time we, contrary
to [3], do not need to put further constraints on the learning process.

In Sect. 2 we briefly review the standard NMF algorithm and its update
procedure, before we describe the idea of the incremental NMF (iNMF) in Sect. 3.
Then we present our results (Sect. 4) using the bar dataset and the Essex face94
dataset [4]. Finally, we discuss the results and give an outlook on future work.

2 Standard NMF Review

The NMF algorithm as described by Lee and Seung [1,2] is based on a distance
measure between the input dataset V and the reconstruction R. We here focus
on the Euclidian distance measure

F (W,H) = ||V − R||2 , (1)

where the reconstruction is calculated by the linear superposition of the base
vectors W weighted with their corresponding activation H

V ≈ R = WH . (2)

Lee and Seung have shown that one can derive the following multiplicative up-
date rules for W and H to minimize the error function of Eq. 11

H ← H� WTV
WTR

(3)

W ← W � VHT

RHT
(4)

By alternately performing the update steps for H and W, the algorithm is able
to find at least a locally optimal solution for Eq. 1 (see [2]). The final update
schema for the NMF reads as follows:

1. Calculate the reconstruction according to Eq. 2.
2. Update the activations using Eq. 3.
3. Calculate the reconstruction according to Eq. 2.
4. Update the base vectors using Eq. 4.
5. Repeat step 1 to 4 until convergence.

1 � and ·
· denote componentwise operations: a � b := Ai · Bi, ∀i.
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a)

learned base vectors

covered spaceb)

Fig. 1. While learning a dataset a), the base vectors are adapted to cover at least the
space spanned by the data samples b)

The matrix V contains a set of data samples vi as column vectors, representing
the input space that should be covered by the base vectors (see Fig. 1a for an
example). The available number of base vectors is mainly responsible for the
learning result and must be defined a priori. If the number of the base vectors
is greater or equal to the intrinsic dimensionality of the data, the NMF learns
base vectors that cover at least the space spanned by the data samples (see
Fig. 1b). If their number is too low, the NMF will not be able to derive sensible
base vectors and will end up with a high reconstruction error for all input data.
Another problem related to the NMF and batch algorithms in general is that it
is impossible to adjust the representation of the input space to subsequent and
new information, after the learning process took place.

3 Incremental NMF Algorithm (iNMF)

To overcome the mentioned limitations, we propose to incrementally extend
the representation of the input space and enable the algorithm to add further
base vectors if necessary. The learning process, as schematically described in
Fig. 2, starts with only one base vector. In each learning cycle the incremental
NMF(iNMF) only sees one data sample at a time. For the first data sample we
perform a NMF learning (see section 2) with the single base vector. The resulting
base vector, as shown in Fig. 2b, represents all points along its extension, lying
on a straight line and hence covering a 1D-space. To start the next learning cycle
using a new data sample d(t), we have to make sure that the already acquired
information is preserved. Here we exploit the fact that the learned base vector
represents all information about the previously seen data samples (see [5] and
Eq. 2), which is the basic idea of our method. So all we need to do is to append
the new data sample d(t) to the previously learned base vectors W(t − 1) in
order to obtain the new NMF input vector V(t)

V(t) = {d(t),W(t − 1)} . (5)

With the new V(t) we now perform a new learning cycle equivalent to the NMF
update schema (see section 2). For the example shown in Fig. 2c, both the new
sample and the previous base vector are already covered by the set of base vectors
W(t − 1), so there is no need for adaptation.
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a) c)

sample from
previous base vector

previous sample

d)

adapted base vector

e) covered space

added base vector

f)

adapted base vector

b) covered space

learned base vector

current sample

Fig. 2. The learning and adding of base vectors in the iNMF shown as: a) the available
data samples. b) the learned base vector from the first data sample covering a 1D-space.
c) a new data sample and the learned base vector as a virtual sample (containing the
first sample shown). Both data points are inside the covered 1D-space, allowing for
the reconstruction using a single base vector. d) the third data sample being outside
the covered 1D-space. Even adapting the available base vector leads to a large recon-
struction error. e) by adding and adapting a base vector both the virtual sample and
the new data sample can be reconstructed. As a result a 2D-space is covered. f) by
adapting the two base vectors a larger region of the 2D-space can be covered. Here the
intrinsic number of dimensions (two) is found by the iNMF.

If we provide a data sample beyond the covered space, a reconstruction of
both the new data sample and the previous base vector is not longer possible. In
Fig. 2d this is due to the fact that the data samples span a 2D-space, but only a
1D-space can be covered with a single vector. Although the NMF tries to adapt
the existing vector to minimize the reconstruction error F (W,H) (see Eq. 1), a
high error will remain. We know that the NMF is able to reconstruct all data
samples in an n-dimensional space if the number of base vectors is at least equal
to the dimensionality of that space (see [5] and Fig. 2 for illustration). So a high
reconstruction error indicates that the dimensionality of the space spanned by
the data samples must be higher than the number of currently available base
vectors. Because we provide the iNMF only with one new data sample at a
time, we know that the dimensionality also must have increased by one and
hence requires one additional base vector. By providing this vector it is possible
to span a 2D-space and to reach a good reconstruction quality by repeating
the NMF learning cycle (see Fig. 2e). The dataset used for our illustration (see
Fig. 2a) is 2D, it will be possible to reconstruct all further data samples provided
to the iNMF by adapting the two available base vectors as shown in Fig. 2f. By
successively applying our method, the iNMF algorithm is able to approximate
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the dimensionality of the input data by itself. We can formulate the update
schema for the iNMF in the following pseudo code:

1. Randomly initialize a single base vector w0 and set W(t − 1) = {}.
2. Take the next data sample d(t) and construct the input vector

V(t) = {d(t),W(t − 1)} as described in Eq. 5.
3. Set W(t) = W(t − 1) to initialize the base vectors.
4. Initialize the activation matrix H randomly.
5. Perform a NMF learning cycle:

(a) Calculate the reconstruction according to Eq. 2.
(b) Update the activations using Eq. 3.
(c) Calculate the reconstruction according to Eq. 2.
(d) Update the base vectors using Eq. 4.
(e) Repeat step 5a to 5d until convergence.

6. If the reconstruction error F (W,H) (Eq. 1) is low, continue with step 2.
Otherwise provide an additional base vector W(t) = {W(t−1),Wnew} and
a corresponding activation. Continue with step 4.

4 Results

4.1 Bar Dataset

The bar dataset we have used consists of 162 images with a size of 32x32 pixel.
Each of the images is a superposition of up to four horizontal and vertical bars.
A horizontal bar can be applied to four different horizontal positions; the vertical
bar to four different vertical positions. Complete overlapping of two bars is not
allowed. We permute the original dataset (see e.g. Fig 3) in order to destroy a
potential order (from single bars to many bars) in the dataset and remove all
images containing only a single bar. This prevents the iNMF from focusing on the

Fig. 3. Here you can see the 153 images of the permuted bar dataset
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Fig. 4. After about 20 images, the iNMF reaches the final number of base vectors,
which are adapted afterwards. Due to visibility reasons, we only show the first 50
images

t

d(t)

W (t)0

W (t)1

W (t)6

Fig. 5. While provided with the first ten images (top), the iNMF algorithm generates
seven base vectors (bottom). The first seven input images are simply stored one-to-one
in the base vectors. After this phase, the base vectors are adapted and become less
complex and sparser.

trivial cases where solely the initial eight vectors are sufficient to learn the input
space. Figure 4 shows the massive necessity to add base vectors within the first 7
images. During this phase the algorithm copies the data samples one-to-one into
base vectors as shown in Fig. 5. Afterwards, the number of vectors stays constant
for about 10 input images. Here, the reconstruction of the input data is achieved
by adapting the already existing vectors and thus removing redundancy in the
set of base vectors. This can be interpreted as a specialization of the vectors,
resulting in a lower complexity, lower redundancy and higher sparsity.

If we compare the base vectors after presenting 20 images with the final base
vectors (see Fig. 6), we see that the final shape of the base vectors has already
emerged. Merely the amplitude of some pixels is different. So already at this
early point the input space is covered to a very large degree. We have tested
ten different permutations of the bar dataset and found that the final number
of vectors is reached between the 9th and 76th image. This also implies that
the dimensionality of the input dataset was correctly estimated. In all cases the
iNMF algorithm is able to find the correct base vectors out of the randomly
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Fig. 6. A comparison between the vectors after 20 images (top) and the final vectors
after 153 images (bottom) shows that the final shape of the base vectors has already
emerged after 20 images
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Fig. 7. The error function over the presented images shows characteristic peaks if
the number of base vectors is insufficient. A vector is added if the error exceeds the
threshold = 0.005 (dashed), increasing the reconstruction quality drastically. We only
show the first 50 images here.
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Fig. 8. Mean and standard deviation (scaled by 3 for visualization) in the first and
last 10 steps of the bar dataset reconstruction. The iNMF and the NMF perform
comparably good.

ordered samples that dot not contain the initial vectors. A typical development
of the error function over the presented images is shown in Fig. 7. In the diagram
one can see sharp rises of the reconstruction error, which are characteristic for
an insufficient number of base vectors. If such a peak is detected, a new base
vector will be added and we can observe a drastic drop in the reconstruction
error. This results from the fact that the iNMF algorithm is now able to place
the new base vector pointing into the direction of the current sample and thus
leading to a nearly perfect reconstruction. In our case we have chosen a fixed
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threshold to detect the critical reconstruction error. The threshold itself can be
varied in a large range (from 0.0001 to 0.01), assuring an easy handling.

4.2 Comparison to Batch NMF

To compare the iNMF to the NMF we apply both algorithms to the bar dataset
(see Fig. 3). Afterwards we use the final base vectors of both algorithms to
reconstruct the dataset to evaluate how much information is stored in the base
vectors. During this phase we do not adapt the base vectors, but keep them
fixed. Each algorithm is started with 10 randomly chosen initial activations.
In Fig. 8 you can see the resulting mean and standard deviation comparison
of the reconstruction quality between the NMF and the iNMF. As you can
see, the incrementally learned base vectors of the iNMF exhibit a comparable
reconstruction quality on the dataset with respect to the base vectors learned
by the batch NMF algorithm.

4.3 Essex Face94 Dataset

The Essex face dataset [4] contains images of 152 individuals at 20 different
postures with a size of 180 by 200 pixels. For our experiments we have only used
a part of the dataset comprising 780 face images including 19 female and 20 male
individuals at 20 different postures (see Fig. 9). For the test on the face dataset
the same error threshold was chosen as for the bar data.

The effect of adding a base vector at the 260th image is shown as an example
in Fig. 10. Here you can see a drastic improvement in the reconstruction quality
after adding a new base vector. The older base vectors W0 to W3 are already
very sparse and specialized for certain face regions. The new base vector first
points directly in the direction of the current image. After a few iterations, the
vector also gets less complex and sparser.

Fig. 9. The part of the Essex face94 dataset we have used includes the 39 individuals
depicted here. For each individual 20 different postures are available.
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Fig. 10. The reconstruction error before adding a base vector (top) is very high. After
adding the base vector w4(t) (bottom), the reconstruction quality increases drastically.
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Fig. 11. The error for the insufficient number of base vectors stays high (dashed),
whereas after adding a vector (solid) it drops to nearly zero

In Fig. 11 we show the error function before and after adding the base vector.
Both curves show a similar development, but only with the additional vector a
sufficiently good reconstruction quality can be reached, whereas before, the error
could not fall below a certain value.

Figure 12 depicts the final six base vectors and six randomly selected data
samples d with their corresponding reconstruction R. It strikes that the vec-

Wfinal

R

d

Fig. 12. Here you can see the final base vectors generated by the iNMF (top) and the
reconstruction (middle) of selected faces (bottom)
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tors represent ”parts” of a face. Furthermore, one can see that the information
about the input space is preserved to a large degree in the base vectors, as the
reconstructions show. In this case, the iNMF also finds the number of base vec-
tors by itself, starting with only one vector.

5 Discussion

In this paper we have shown that the incremental NMF is able to handle both
artificial and real-world data in a sequential manner. We exploit the fact that
the base vectors themselves already represent all previously shown data samples.
Starting from only one single base vector the iNMF decides autonomously if and
when an additional base vector is required to reconstruct the input space. The
presented algorithm overcomes the need to choose the number of base vectors a
priori. This eases the use of the iNMF, especially if the intrinsic dimensionality
of the dataset is not known, which is often the case for real-world data. Never-
theless the reconstruction quality of the iNMF is comparable to the NMF (see
Sect. 4.2). Furthermore it is possible to perform both online computation and
long-term adaptation and at the same time reduce the memory and computa-
tional requirements. These reduced requirements make the processing of huge
real-world datasets possible in the first place. Since the proposed principle is
not tailored to the NMF only, we propose to investigate ways to transfer the
presented incremental schema to other factorization methods.
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Abstract. For the progress in developing human-like intelligence in
robots, autonomous and purposive learning of adaptive memory function
is significant. The combination of reinforcement learning (RL) and recur-
rent neural network (RNN) seems promising for it. However, it has not
been applied to a continuous state-action space task, nor has its internal
representations been analyzed in depth. In this paper, in a continuous
state-action space task, it is shown that a robot learned to memorize
necessary information and to behave appropriately according to it even
though no special technique other than RL and RNN was utilized. Three
types of hidden neurons that seemed to contribute to remembering the
necessary information were observed. Furthermore, by manipulate them,
the robot changed its behavior as if the memorized information was for-
gotten or swapped. That makes us feel a potential towards the emergence
of higher functions in this very simple learning system.

1 Introduction

It goes without saying that it is important to memorize useful information from
time series of sensor signals and utilizing it when required. If such functions could
be learned autonomously, it would be a great progress in developing human-like
intelligence in robot. In reinforcement learning (RL) research, such functions
have been discussed as one of the ways to solve POMDP (Partially Observable
Markov Decision Problem) or perceptual aliasing problems. Many techniques
have been proposed to solve this problem by introducing some memory system,
and among them, utilizing a recurrent neural network (RNN) seems the most
promising way because of its autonomous ability to extract important infor-
mation effectively and to utilize it. After the proposition of the “Recurrent-Q”
technique[1], several works have followed[2][3]. Most of them deal with tasks with
a discrete state space. Against such a trend, there are some works which tackled
to the continuous state space problems[4][5][6]. Onat et al.[4] showed that a dy-
namical system could be controlled without perceiving velocity information. In
the work of Bakker et al[5], a robot learned to memorize and utilize important
binary information to get a reward in a T-maze problem even though it had to

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 970–978, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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make another decision before it made the decision that required the memorized
information. They also showed that their method worked on an experiment us-
ing a real robot[6]. However, the action space is still discrete and the memorized
information was not investigated in much depth.

In this paper, we applied RL with a RNN to a robot navigation task in which
a robot has to choose one of two goals according to the flag signals perceived on
a switch. The situation is similar to that in [5], but the exploration field is a two-
dimensional free space, and the robot, goals, and switch are located randomly
in the field at every episode. The state and action spaces are both continu-
ous. Another big difference is that the processing system is as simple as just a
RNN trained by RL, while in [5], special technique named “ARAVQ” was used
to extract events in episodes. A significant point in this paper is that without
employing any special techniques, interesting contextual behaviors are acquired
through learning. In order to extract important events from episodes, some rel-
evant criterion to judge the importance is usually introduced. However, when
considering that RL has its criterion for the system optimization to increase its
reward and decrease its punishment as much as possible, the criterion should be
consistent in one system. We think that we should leave as much of robot pro-
cess as possible to the autonomous learning by the combination of RL and NN.
Furthermore, the hidden representation acquired through learning is observed,
and an examination of the change in contextual behavior through manipulations
of the outputs of hidden neurons allows us to investigate the properties of the
memorized information in depth.

2 Learning System

The learning system is very simple. From sensors to motors, there is only one
popular Elman-type recurrent neural network (RNN)[7] whose hidden outputs
are fed back to the input layer at the next time step. It is trained by popular re-
inforcement learning (RL) technique, that is Actor-Critic with TD-Learning[8].
The present observation vector xt is the network input. The output neurons are
divided into one critic (state value) output and the other actor (motor com-
mands) outputs. The motor command vector Ãt is derived by adding an uni-
form random number vector rndt to the actor output A(xt). After the robot
has moved according to Ãt, a new observation vector is obtained. After forward
computation of the RNN for the new input signals xt+1, the training signal Cd,t

for the critic and Ad,t for the actor output vector for the previous time step are
generated autonomously based on Temporal Difference learning as

Cd,t = C(xt) + r̂t = rt+1 + γC(xt+1) (1)

Ad,t = A(xt) + (Ãt − A(xt))r̂t = A(xt) + rndt · r̂t (2)
r̂t = rt+1 + γC(xt+1) − C(xt) (3)

where rt is a given reward, γ is a discount factor, r̂t is the TD error, and C is the
critic output. After one more forward computation for the input signals at the



972 H. Utsunomiya and K. Shibata

Flag 1 is

perceived

Flag 2 is

perceived

goal1 goal2

switch
start

goal1 goal2

switch

goal1 goal2

switch

reward
reward

flag

Fig. 1. The mission of the robot is to step on the switch at first and then to go to the
correct goal according to the flag signals that can be perceived only on the switch

previous time step, the training signals are given to the corresponding output,
and the network is trained by BPTT (Back Propagation Through Time)[9]. The
output function used in the hidden and output neurons is the sigmoid function
whose value ranges from -0.5 to 0.5, and the training signals are bounded from
-0.4 to 0.4. To adjust the offset between actual critic and network output, they
are shifted up or down by 0.5. The network output 0.0 corresponds to critic 0.5.

3 Experimental Results

In this experiment, a task in which a robot requires contextual behavior was
employed. As shown in Fig.1, on a two dimensional 15 × 15 continuous, flat
square space of arbitrary distance units, the robot, one switch and two goals are
located randomly at the beginning of every episode. They do not overlap with
each other. The goals and switch are circles of radius 0.5. At first, the robot has
to step on a switch before it approaches to a goal. Only when the robot is on the
switch, it can perceive the two flag signals, and one of them chosen randomly is
1 and the other is 0. When the robot is not on the switch, they are always 0.
At each episode, the robot can know from the flag signals which goal it should
go to.

As shown in Fig.2, the observation vector has 13 elements in total. 5 signals
represent the distances to the objects and wall. 6 signals represent the angles
to the objects. 2 signals represent the flag information. A transformation using
the exponential function on the distance signals magnifies the range for small
distances. The signals are input into the RNN. Before learning, the robot does
not know the meaning of the switch, goals, or flag signals. The robot has two
wheels. It can rotate its right and left wheels separately, and so the robot can
move any directions except sideways. Each element of At multiplied by 1.25
indicates the distance that each wheel moves in one time step. The value is
bounded from -0.5 to 0.5. The interval between two wheels is 0.32. The robot
can move up to 0.5 forward or backward, and can rotate up to 180 degrees in
one time step. Whether the robot steps on a goal or switch is judged actually
by whether the center of the robot is on the area of goal or switch.

The task is episodic. Before each episode, all the hidden outputs are reset to
0.0, and the critic value after reaching a goal is 0.0. Only when the robot steps on
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Fig. 2. Input and output signals of the recurrent neural network

the correct goal after stepping on the switch it can get a reward r = 0.9, and the
episode terminates. However, when the robot goes to the incorrect goal or goes
to the correct goal before stepping on the switch, it does not get any reward,
but a penalty of r = −0.1, and the episode does not terminate. Moreover, if the
robot bumps a wall, it also gets a penalty of r = −0.1.

The task is divided into 3 levels, and the learning becomes increasingly difficult
as shown in Table 1. Initial location range means all the objects are located in
this area. Exploration range means the range of the random numbers in rnd
that is added to the actor output as trial and error factors. If the condition
that the robot reaches the correct goal within 50 time steps is satisfied for 100
successive episodes, the robot moves to the next level. The learning terminates
when the robot is in the level 3 and the condition is satisfied for 100 episodes.

The RNN has three layers and 50 hidden neurons. The maximum time steps
traced back through time for BPTT is 20. The discount factor γ is 0.96. The
initial weight for each hidden-output connection is 0.0 and that for each non-
feedback input-hidden connection is chosen randomly from -1.0 to 1.0. For the
self-feedback connections, the initial weight is 4.0, while that for the other

Table 1. Incremental learning difficulties. x indicates the number of episodes in the
level.

Level1 Level2 Level3

Initial location range 2 × 2 3 × 3 4 × 4
Exploration range ± 1

2
e−5×10−5x ± 2

5
e−5×10−5x ± 3

10
e−5×10−5x

Upper bound of episode length 10000 5000 3000
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(c) The actor output (flag 1 is on)
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(d) The actor output (flag 2 is on)

Fig. 3. A sample of the learning result for both flag states after learning

feedback connection is 0.0, which makes the learning of memory function easy.
The learning constant is 0.05 for the feedback connections, and 0.2 for the oth-
ers. More than 10 runs with different random number sequences were performed,
but the learning results were similar to each other. One of them is introduced in
the following.

Learning terminates after 31131 episodes. The robot can go to the switch at
first, and then it can approach the correct goal corresponding to the flag signals
perceived only at the switch for any initial locations such as Fig.3 (a). In Fig.3
(b), the critic output increases in both cases, but in Fig.3 (c) and (d), we can
see big differences in the actor outputs especially on the switch that make the
difference in the direction of the robot’s approach after stepping on it.

4 Contextual Behaviors and Hidden States: Tests and
Observations

How the robot remembers the information of flag signals in the RNN after learn-
ing is analyzed here. First, we observed the temporal change of each hidden
neuron during one episode for several switch and goal configurations. There are
three types of hidden neurons that are considered to contribute to remembering
the flag signals after leaving the switch. Fig.4 shows the response of a hidden
neuron for each type to each flag state in the example of Fig.3. The type 1 neu-
rons changed its output only when the flag 1 was on, and the type 2 neurons
changed its output only when the flag 2 was on. On the other hand, the type 3
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Fig. 4. Three types of hidden neurons that seem to contribute to keeping the flag state

neurons changed its output at the switch for both cases. There are 7 type 1, 4
type 2, and 4 type 3 neurons out of the total of 50 hidden neurons.

4.1 Manipulating of Hidden State during an Episode

In order to make sure that these neurons remember the flag state, the hidden
neuron outputs were manipulated. Before the robot reached the switch, the out-
puts of type 1 hidden neurons that respond only to the flag 1 were stored, and
after leaving the switch, the outputs of type 1 hidden neurons were reset to those
stored before the switch.

When the flag 1 was on, the robot returned to and stepped on the switch
again and then approached the goal 1 as shown in Fig.5 (a). However, when the
flag 2 was on, the value of the hidden neuron did not change noticeably after the
resetting. The robot’s trajectory did not seem to change, and it went to the goal
2 without returning to the switch. When the outputs of type 2 hidden neurons
that respond only to the flag 2 were stored and reset, the robot returned to the
switch when the flag 2 was on, but when the flag 1 was on, it approached to the
goal 1 without returning to the switch. It is thought that the division of roles in
memory among hidden neurons was acquired through RL.

Next, in only one of the type 1 hidden neurons, the value was stored be-
fore stepping on the switch and was reset to the stored one afterwards. Then,
soon after the reset, the hidden neuron retrieved the value just before the reset,
and the robot’s trajectory does not change noticeably. It is thought that the
robot memorized the information about the flag with a distributed represen-
tation among some neurons, and the function of associative memory using the
recurrent structure emerged through RL.

In the third test, the flag 1 was on at first. After the robot left the switch, the
outputs of all the three types of hidden neurons were stored. Then the robot was
taken back to the initial location with all hidden neurons being reset to 0.0 and
began to move again. However, this time, the flag 2 was on and the flag 1 was
off on the switch. As shown in Fig.6(a), after stepping on the switch, it began
to approach the goal 2 because the robot perceived the flag 2 on the switch, but
after that, the outputs of all the three types of hidden neurons were reset to
the stored ones when the flag 1 had been on. After that, the robot changed its
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(a) (b)

Fig. 5. (a) Robot’s trajectory when the output of type 1 hidden neurons were reset to
those stored before stepping on the switch and (b) output change of one of the type 1
hidden neurons for the case of (a)

direction to the goal 1. However, since that was not the correct goal, no reward
was given and the episode did not terminate there. Surprisingly, as shown in
Fig.6(b), the robot then returned to the switch again and approached the goal
2 that is the correct one.

(a) (b)

(c)

on the switchon the switch

on the goal1

reset

(d)

Fig. 6. Robot’s trajectory (a) until it arrived at the incorrect goal and (b) after the
arrival, when the flag 2 was on and the hidden neuron outputs were reset to those
stored when the flag 1 had been on. Output change of (c) critic and (d) a type 1
hidden neuron for the case of both (a) and (b).
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As shown in Fig.6(c) and (d), it is interesting that when the episode did not
terminate on the goal 1, the outputs of the critic and type 1 hidden neurons that
respond only to the flag 1 decreased suddenly. In the robot’s experiences, when
it stepped on the switch beforehand and went to the correct goal, the episode
always terminated with a reward. When the episode did not terminate, it had
missed to step on the switch in advance or had arrived to the incorrect goal.
It is suggested that due to the generalization from such experiences, the robot
misunderstood that it had forgotten to step on the switch even though it actually
had. Such behaviors seem very human-like. The intelligent behaviors seem to be
controlled depending on the abstract state that is constracted by memorizing
the flag signals in the RNN based on understanding of their importance. We
suppose it shows the potential toward the emergence of higher functions that
the proposed very simple learning system has.

5 Conclusion

A robot with a very simple learning system consisting of a recurrent neural net-
work trained using reinforcement learning without any other special techniques
learned a continuous state-action space task that requires a memory function.
After learning, it was observed that replacement of the hidden states in the
middle of one episode lead to sudden change of the contextual behavior. It was
also observed that no termination of one episode caused a misunderstanding in
the robot, which behaved as if it had forgotten to take the necessary action,
and returned to perform the action again. We think that the learning system
is so simple and general that it can be applied widely to many tasks. The ob-
served interesting behaviors suggest that the learning system is very simple but
promising towards the emergence of higher functions.
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Abstract. Does Independent Component Analysis (ICA) denature
EEG signals? We applied ICA to two groups of subjects (mild Alzheimer
patients and control subjects). The aim of this study was to examine
whether or not the ICA method can reduce both group differences and
within-subject variability. We found that ICA diminished Leave-One-
Out root mean square error (RMSE) of validation (from 0.32 to 0.28),
indicative of the reduction of group difference. More interestingly, ICA
reduced the inter-subject variability within each group (σ = 2.54 in the
δ range before ICA, σ = 1.56 after, Bartlett p = 0.046 after Bonfer-
roni correction). Additionally, we present a method to limit the impact
of human error (� 13.8%, with 75.6% inter-cleaner agreement) during
ICA cleaning, and reduce human bias. These findings suggests the novel
usefulness of ICA in clinical EEG in Alzheimer’s disease for reduction of
subject variability.

1 Introduction

Independent component analysis (ICA) is a method for recovering underlying
signals from linear mixtures of those signals. Independent component analysis
(ICA) is especially useful to reject EEG artifacts [1], exploiting statistical inde-
pendent criteria to separate EEG sources, which allows to remove artifacts and
clean EEG [2,3,4]. Therefore, it has been used for analysis of various physiological
time series including the EEG. However, whether the ICA alters the EEG distri-
butions or not is unclear. In addition to instrumental noise and environmental
noise, movement and other physiological noise (ocular, electromyographic, elec-
trodermal, electrovascular, and respiratory signals) may interfere with the EEG
in the form of artifacts. Artifacts in the EEG can be defined as any potential
difference due to an extra-cerebral source [5]. Particularly, muscle artifacts are
especially problematic, because they can appear in EEG patterns which are
very hard to differentiate from the EEG signals: the frequency range of muscle
artifacts and the EEG overlap to a high degree [6].
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The aim of this study was to address the significant question: is it a valid
approach to improve EEG signals using Independent component analysis (ICA)?
We investigated the effects of ICA cleaning on a database recorded from patients
with Alzheimer’s disease (mild AD, early stage) and healthy control subjects. It
is of importance to investigate the possible application of ICA to AD, because
the early diagnosis of AD using EEGs is very critical [7]. Previous studies used
ICA to enhance differences between control subjects and Alzheimer patients, but
the effect on EEG quality was only assessed by estimating the group separation
(see e.g. [3,8,9] - which is not sufficient to prove that ICA preserved EEG data.
In this study, we used the ICA to show the following results:

1. Human performance displayed a high variability. We used a simple method
to combine signals cleaned without concertizing by three scientist, which
provided us with an optimally cleaned database (in respect to an Euclidean
distance).

2. With proper precautions, ICA cleaning did not denature EEG signals.

Using the simple cleaning rules introduced in this study, it shall be possible to
design a semi-automatic method to improve EEG quality.

2 Methods

Computations were done with Matalb (The MathWorks, Inc.), ICA cleaning
was performed using ICALAB ver. 3 with automatic sorting of independent
components [10].

2.1 EEG Data - Patients with MildAD

These data were obtained using a strict protocol from Derriford Hospital, Ply-
mouth, U.K. and had been collected using normal hospital practices [11]. EEGs
were recorded during a resting period with various states: awake, drowsy, alert
and resting states with eyes closed and open. All recording sessions and ex-
periments proceeded after obtaining the informed consent of the subjects or
the caregivers and were approved by local institutional ethics committees. EEG
dataset is composed of 24 healthy control subjects (age: 69.4+11.5 years old; 10
males) and 17 patients with mild AD (age: 77.6+10.0 years old; 9 males). The
patient group underwent full battery of cognitive tests (Mini Mental State Ex-
amination, Rey Auditory Verbal Learning Test, Benton Visual Retention Test,
and memory recall tests). The two groups are not perfectly age-matched, which
might pose bias later on, but it was shown that no major effect was found due to
this disparity [11]. The EEG time series were recorded using 19 electrodes dis-
posed according to Maudsley system, similar to the 10-20 international system,
at a sampling frequency of 128 Hz. EEGs were band-pass filtered with digital
2nd order Butterworth filter (forward and reverse filtering) between 0.5 and 30
Hz (a sampling rate of 128 Hz means that frequencies above 25 Hz cannot be
reliably studied [12]).



Improving the Quality of EEG Data in Patients 981

2.2 Independent Component Analysis

Blind Source Separation (BSS) consists in recovering a set of unknown sources
from their observed mixture x. The linear and instantaneous models of BSS can
be formulated as:

x = As, (1)

where s represents a data matrix having as rows the observed signals, and A
is the mixing matrix. According to the currently prevailing view of EEG signal
processing, a signal can be modeled as a linear mixture of a finite number of brain
sources, with additive noise(see e.g. [2,3,4]). Therefore, blind source separation
techniques can be used advantageously for decomposing raw EEG data to brain
signal subspace and noise subspace. If sources are supposed to be independent,
then BSS can be called ICA.

The Second-Order Blind Identification (SOBI) algorithm is a well-known blind
source separation (BSS) method for source signals with temporal structures and
distinct spectra (AR processes). It already proved to be useful in many biomedi-
cal applications. A weight adjusted version of SOBI was suggested in [14]. SOBI
jointly (approximately) diagonalizes time-delayed covariance matrices for many
time delays. However, SOBI algorithm does not specify how many and which
time delays to choose. An efficient weight adjusted variant of SOBI called IWA-
SOBI [13,15] was recently developped to solve this problem. The original weight
adjusted SOBI used a standard AJD (Approximative Joint Diagonalization) al-
gorithm.IWASOBI uses instead an AJD based on family of WEDGE1 algorithms
[13]. For IWASOBI the number of jointly diagonalized covariance matrices can
be relatively low in comparison to the standard SOBI while performance can be
considerably higher. This algorithm allows reliable separation of 100+ sources
with temporal structure (autoregressive sources) in order of seconds. In our ex-
periments we used the IWASOBI algorithm implemented in ICALAB ver.3 [10].

2.3 Cleaning Rules

Three EEG researchers visually inspected EEGs, and chose the least corrupted
(artifact-clean) continuous 20 sec interval of each recording for the analysis. Each
trial was then decomposed using ICA. Sources were ordered using a kurtosis
measure, and the researchers cleared up to seven sources per trial corresponding
to artifacts (eye movements, EMG corruption, EKG, etc), using three criteria
(see Fig.1):

1. Abnormal scalp distribution of the reconstructed channels (only a few elec-
trodes contribute to the source, with an isolated topography)

2. Abnormal wave shape (drifts, eye blinks, sharp waves, etc.)
3. Source of abnormally high amplitude (≥ 100 µV)

We have focused our attention mainly on the smallest and largest values of
kurtosis (i.e. a measure of sparsity and distance to Gaussianity), which are more
1 Weighted Exhaustive Diagonalization using Gauss itEration.
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Fig. 1. Examples of artifacts. (a) abnormal scalp distribution of the reconstructed
channels; (b) abnormal wave shape; (c) source of abnormally high amplitude.

likely to be representative of artifacts. After this step, the remaining sources
were back-projected onto the scalp, yielding an artifact clean data.

2.4 Optimal Combination of Three Cleanings

Each of the three researchers cleaned, with the above rules, raw data from all
subjects (EEG from mildAD patients or control subjects) sn with n ∈ [1 −
41]. This produced three cleaned databases: D1,D2 and D3. Our objective was
to combine efficiently these Di databases into one optimal database Ω. Each
database Di includes cleaned EEG2 ci,n with n ∈ [1 − 41]. We computed for all
ci,n the averaged Fourier relative power Φ(i, n, f) over all E electrodes:

Φ(i, n, f) =
1
E

E∑
e=1

Φi,n(e, f). (2)

Where Φi,n(e, f) is the Fourier relative power of the electrode e with frequencies
f in F = [1 − 25] Hz, for the cleaned EEG ci,n. Fourier power was computed
using the Welch method (1 sec. Hanning windows with 50% overlap). We then
computed for each pair of cleaned EEG (ci,n, cj,n) the Euclidian distance ∆:

∆(n, i, j) =
√∑

finF

[Φ(ci,n, f) − Φ(cj,n, f)]. (3)

This distance is symmetric, with values in R
+, and ci,n � cj,n ⇒ ∆(n, i, j) � 0.

∆ was used to evaluate significant differences between cleanings. To this end we
used a Monte-Carlo approach to estimate the distribution of randomly matched
surrogate data. The surrogate database was constituted of r = 10000 draws of
randomly matched data from the three cleaned databases. We computed the r
distances ∆(r, 1, 2) of each pair, which allowed us to estimate the distribution
of non-matched data. We fixed the significance threshold τ = 1.1%, as the fifth
percentile of this distribution (if ∆(n, i, j) ≤ τ , we reject the hypothesis of having
a significant difference between cleaners i and j for subject sn with a probability
p = 0.053).
2 Corresponding to the raw data of sn: for each subject sn exist three cleaned EEG,

c1,n, c2,n, and c3,n.
3 A probability p = 0.01 corresponds to a threshold τ = 0.89%.
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For each of subject sn, n ∈ [1 − 41], we iteratively selected the best candidate
ωn ∈ Ω within the corresponding cleaned EEG triplet [c1,n, c2,n, c3,n] using the
following decision rule:

1. Equivalent case: if ∀(ci,n, cj,n),∆(n, i, j) < τ , we select randomly the cleaned
EEG ωn.

2. Consensus case: if ∀(ci,n, cj,n), ∃ only (cu,n, cv,n),∆(n, u, v) ≥ τ (or con-
versely ∆(n, v, u) ≥ τ), we select the remaining cleaned EEG ωn = cw,n

with w � [u, v] (cw,n is a consensus of the two others cleaned EEG).
3. Error case: if ∃u, ∀i,∆(n, u, i) ≥ τ , we select randomly ωn = cv,n with v �= u

(cu,n is identified as an error).
4. Reject case: if ∀(ci,n, cj,n),∆(n, i, j) ≥ τ , the subject sn has to be rejected.

3 Results

3.1 Variability between Cleaners

The cleaned data were distributed in the four above categories as follows: 75.6%
equivalent cases, 17.1% consensus cases, 7.3% error cases and 0% reject cases4. In
other words, we could clean 100% of the database without rejection. From these
numbers we can also obtain an approximate estimation of variability between
human cleaners:

– Inter-cleaner agreement � 75.6%
– Human error rate for one isolated cleaner � 13.8%.
– Expected cleaning error % between two persons � 10.6%.

This indicates that EEG data containing a significant number of subjects,
cleaned by only one or two persons, is not so reliable.

Table 1. Mann-Whitney Zscore before and after ICA, for each frequency range (com-
paring mildAD patients vs. control subjects). Higher absolute value of z-score means
that p-value is lower (i.e. that data is better separated).

Data δ (1-4 Hz) θ (4-8 Hz) α (8-12 Hz) β (12-25 Hz)

Before ICA 3.68 2.83 -4.39 -3.78

After ICA 3.76 4.82 -4.58 -4.42

3.2 Group Differences

Mann-Whitney z-scores were estimated before and after ICA cleaning. We ob-
served, for all frequency ranges, that the differences between mildAD patients

4 This result is off course dependant on the threshold τ .
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Fig. 2. Boxplot of Fourier relative power before and after ICA. Central line represents
the median, dashed lines covers inter-quartile range, cross are outliers. ICA magnified
the group differences.

and control subjects were magnified by ICA (see Table 1 and Fig.2). We ag-
gregated the Fourier power into five regions (frontal, temporal left and right,
central and occipital). Linear discriminant analysis was applied before and after
ICA cleaning. We estimated Leave-One-Out root mean square error (RMSE) of
validation: it dropped from 0.32 to 0.28 (training RMSE dropped from 0.30 to
0.26). This shows that the topography of EEG relative powers after ICA cleaning
was more consistent than those before cleaning.

3.3 Inter-subject Variability

After ICA cleaning, we examine if EEG was not denatured. This can be observed
through the distribution of Fourier power in the two groups: did the subjects of
control and patient group resembled each-other more after ICA, or instead did
they differ more (in this case, EEG is denatured).

We evaluated the inter-subject variability in both groups, by comparing their
variance using a Bartlett test for homoscedasticity (before vs. after ICA). Vari-
ance was never shown to increase (even without Bonferroni correction), instead
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subject (circle) and mildAD patient (cross) are plotted a spatial representation of their
Fourier power in the three lower frequency ranges - δ (1-4 Hz), θ (4-8 Hz) and α
(8-12 Hz). Not only were subjects regrouped in their respective classes by ICA, but
separation between the two groups was improved.
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a significant decrease was found in the δ range for the control group (standard
deviation σ = 2.54 before ICA, σ = 1.56 after, Bartlett p = 0.046 after Bonfer-
roni correction). This decrease in inter-subject variability is also found generally:
ICA subjects became closer to their group’s mass centers (see Fig.3).

4 Discussion and Conclusion

We found that ICA cleaning improved the separation between mildAD patients
and control subjects (confirming previous studies [4,8,9]). Moreover, we found a
more consistent topographical distribution of EEG power after ICA. We could
conjecture two possibilities concerning the effect of ICA on EEG quality:

1. Fourier power distribution changed after ICA, the variability in at least one
group increased (i.e., the variance of Fourier power increased in one group).
In this case, ICA cleaning denatured EEG signals, as the data quality was
lowered.

2. Fourier power distribution changed after ICA, the variability did not in-
crease, and eventually decreased (i.e., the variance of Fourier power remained
stable in both groups or decreased). In this case, ICA cleaning improved the
quality of EEG signals.

We found the second situation, as a variance decrease in the control group was
the only significant effect. We can therefore conclude that ICA cleaning does
not denature EEG signals, and instead improves their quality. This results was
however obtained with a combined cleaning done by three independant persons.
Without such combination, human error might compensate with the benefits of
ICA (error rate � 13.8%). Other ways to combine cleaning obtained from several
persons could be imagined. We also attempted to average spectrograms of each
database: i.e. averaging each subject’s three occurrences instead of selecting
one occurrence. This led to very similar results, EEG data was not denatured.
However, we believe that averaging does not prevent the intrusion of seriously
flawed data, whereas our selection approach is more preemptive.

These results suggests a new direction for EEG studies using ICA: developping
organized methodologies of cleaning, i.e. coordinated semi-automatic methods
of EEG cleaning. In other words, instead of only developing new algorithms,
we should endeavor to find markers of artifacts and semi-automatic methods of
cleaning. An ideal toolbox should provide synthetic information about each ICA
sources (indicating for instance a pre-diagnostic of anomalies); human cleaners
would then perform a cleaning based on this information (a semi-automatic
cleaning).
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Abstract. The Nonnegative Matrix Factorization (NMF) is a widely
used method in approximating high dimensional data. All the NMF type
methods find only the local minimizers. In this paper, we use filled func-
tion method to find the global minimizer of the Projective Nonnegative
Matrix Factorization optimal problem.

Keywords: Projective Nonnegative Matrix Factorization, global opti-
mization, filled function.

1 Introduction

Non-negative Matrix Factorization (NMF) by Lee and Seung [1] has been a very
useful technique in approximating high dimensional data where the data are
comprised of non-negative components. A large number of algorithms have been
developed using NMF method. From the ideas of Singular Value Decomposition
(SVD) and NMF, we have proposed the Projective Non-negative Matrix Factor-
ization (P-NMF) [7], for learning spatially localized, parts-based representations
of visual patterns. For the given nonnegative m × n matrix V, find the nonneg-
ative m × r matrix W (r << m, n), such that it solves the following optimal
problem

min
W≥0

||V − WWT V||. (1)

All the NMF type methods find the local minimizers. Althogh many mathe-
matical methods have been proposed to search for a globally optimal solution of
a given function, the computational problem due to the high dimention of the
data set is the main issue. In this paper, we will solve the global minimizer of
the equation (1) using the filled function method.

2 The Filled Function

The idea of using filled functions to solve the unconstrained global minimization
of a continuous function F (x), x ∈ Rn comes from R.P. Ge([2] [3] [4]). Let X be a
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closed and bounded nonempty set which contains a finite number of minimizers
of the function F (x), and x∗

k ∈ X be a known local minimizer of F (x) with
F (x∗

k) > F ∗ = min{F (x)|x ∈ X}. The basic idea of the filled function methods
is to construct an auxiliary function, called filled function of F (x), such that
minimizing the filled function will generate a point xk+1 in a basin (a particular
connected domain around a local minimizer, see Definition below) of F(x) lower
than the basin Bk of F (x) at x∗

k. Then the minimization of the function F (x) can
be restarted at the point xk+1 to generate a new minimizer x∗

k+1 of F (x) with
F (x∗

k+1) < F (x∗
k). Repeat the process until a global minimizer of F (x) is found.

The filled function is updated at successively local minimizers of F (x). The filled
function at a local minimizer x∗

k of F (x) is required to reach its maximum at
x∗

k, to have neither a minimizer nor a saddle point in the basin B∗
k and in any

basin of F (x) higher than B∗
k, and to have minimizers or saddle points in basins

of F (x) lower than B∗
k.

2.1 Essentials of the Filled Function

The filled function method is concerned with finding the global minimizer of a
multi-variable function f on Rn, under the following assumptions

1. f is continuously differentiable,
2. f has only a finite number of minimizers,
3. f(x) → ∞ as ||x|| → ∞.

These assumptions imply that there exists a closed bounded domain Ω, called
operating region, and it contains all the minima of f(x).

To analyze the filled function method, we need the following concepts [2]:

Definition 1. A basin of f(x) at an isolated minimizer x1 is a connected do-
main B1 which contains x1 and in which starting from any point the steepest
descent trajectory of f(x) converges to x1, but outside which the steepest descent
trajectory of f(x) does not converge to x1.

Definition 2. A hill of f(x) at x1 is the basin of −f(x) at its minimizer x1, if
x1 is a maximizer of f(x).

Definition 3. A local minimizer X2 is said to be higher than x1 if and only if
f(x2) > f(x1), and for this case, B2 is said to be higher basin than B1.

Definition 4. A function F (x) is called a filled function of f(x) at x1 if
(1) x1 is a maximizer of F (x) and the whole basin B1 becomes a part of a hill

of F (x);
(2) F (x) has no stationary points in any Bhs;
(3) There is a point x′ in a Bl (if such a basin exists) that minimizes F (x)

on the line through x and x1

In the context of numerical optimization, the filled function method consists
of a two-phase iterative approach called the sequential alternated minimization
technique:
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1. Local minimization: In this phase, a local minimizer x1 of f(x) is found.
Any available local minimization method such as NMF, PNMF or the quasi-
Newton method can be used to find a minimizer.

2. Filling: In this phase, a filled function F (x) is constructed at the point x1,
and the minimization procedure is applied to the filled function. F (x) has no
stationary points in any higher basins Bh and does have a minimizer point
in a lower basin Bl (if it exists). Then minimization of F (x) starts from a
point near x1. Phase 2 ends when such an xs is found that xs is in a Bl. Then
reenter phase 1, with xs as the starting point, to find a new local minimizer
x2 of f(x) (if such one exists), and so on.

The above process is repeated until the global minimizer is found.
Several popular filled functions have been proposed [2] [3] [4]:

P (x, r, ρ) = exp(−||x − x1||2/ρ2)/(r + f(x)) (2)

G(x, r, ρ) = −{ρ2 ln(r + f(x)) + ||x − x1||p} (3)

Q(x, a) = −[f(x) − f(x1)] exp(a||x − x1||p) (4)

where p = 1, 2. r and ρ are the adjustable parameters, and a is an adjustable
positive weight factor.

2.2 Properties of the Filled Function

Consider the optimal problem (1), define the function

f(W) = ||V − WWT V||2. (5)

In the paper, we will use the one parameter filled function which is defined as
[6]:

F (W) = − 1
(f(W) − f(W0))1/2

− a||W − W0||2, (6)

where a is a positive real weight factor, W0 is a local minimizer of the function
f(W).

Following the definition of F (W), it is easy to see that the local minimizers
of f(W) are the local maximizers of F (W). We also have

Theorem 1. Given direction d ∈ Rmr and f(W) > f(W0), if
Σijdij(�f(W))ij ≥ 0 and Σijdij(W − W0)ij > 0, or Σijdij(�f(W))ij > 0
and Σijdij(W − W0)ij ≥ 0, then d is a descent direction of F (W) at point W.

Define
al(W) = − Σijdij(�f(W))ij

4(f(W) − f(W0))3/2Σijdij(W − W0)ij
(7)

We have

Theorem 2. If f(W) > f(W0) and Σijdij(�f(W))ij < 0 and Σijdij(W −
W0)ij > 0, then the sign of Σijdij(�F (W))ij is that of al(W) − a.
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These results clearly characterize the filling property of the the function F (W).
Particularly, in the ascent region of the current basin B1 or a higher basin than
B1, d is always a descent direction of F (W). On the other hand, in the descent
region of a higher basin than B1, d is still a descent direction of F (W) provided
that the weight factor a is sufficiently large. Furthermore, in a lower bassin than
B1, d may become an ascent direction of F (W) and this possibility does exists.
Therefore, F (W) must have a stationary point along d.

The behavior of the filled function may be well interpreted graphically
for one variable function f(x), see Figure 1. Function f(x) has three basins,
B1 = (0.5, 2), a higher basin BH = (2, 4), and a lower basin BL = (4, 6). The
filled function starts from the basin B1, and descends along the positive x-axis in
this basin. It continues decreasing in the higher basin BH for a sufficient large a.
When it arrive a lower basin BL, it has a stationary point, which is a local mini-
mizer of the filled function. From this stationary point, minimizing the function
f(x) will reach a lower minimizer of the function f(x).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
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Filled function

Function f

Fig. 1. Plot of the function and the related filled function

The weight factor a plays a crucial role in a filled function. Theoretically,
the value of a must be sufficietly large to preserve a desirable filling capability.
Computationally, the value of a should be small to make the numerical proce-
dures healthy, because there is a product of a and the norm in the formation.
Therefore, a filled function is a robust one if the value of al(W) is small for the
given particular W.
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3 Algorithm

To use the filled function, we first need to prove that all the minimizers of the
function are isolated.

Theorem 3. The minimizers of the function f(W) = ||V − WWT V||2 are
isolated.

Proof. If there exists one point W that is not isolated minimizer, that is, there
is a series of nonnegative matrices Wn �= W, Wn ≈ W as n → ∞, such that
f(X) = f(Wn). Since the minima W, Wn of the optimal problem 1 satisfies

trace(WWT VVT ) = trace(WWT VVT WWT ). (8)

trace(WnWT
n VVT ) = trace(WnWT

nVVT WnWT
n ). (9)

Let ∆Wn = Wn − W, we have

0 = f(X) − f(Wn)
= 2tr(∆WnWT VVT ) + tr(∆Wn∆WT

n VVT )

holds for all n. Since ∆Wn → 0 as n → ∞ and ∆Wn �= 0, so for the second
term of the above equation, we have tr(∆Wn∆WT

nVVT ) = O(||∆Wn||2) if
tr(∆Wn∆WT

nVVT ) �= 0 for n large enough. However, 2tr(∆WnWT VVT ) =
O(||∆Wn||), their sum cannot be equal to zero. This is not true from the above
equation. Therefore, we conclude that tr(∆Wn∆WT

nVVT ) = 0 as n → ∞. This
means that ||∆WT

n V||F = 0, with the assumption that V is a full rank matrix,
we have ∆Wn = 0 for n large enough. Thus W is isolated, and the theorem is
proved.

Now we can use the filled function to calculate the global minimizer of the
function f(W). According to the properties of the filled function, we have the
following algorithm to solve the optimal problem (1)

1. Initialization. Specify W0, a, fmin.
2. Finfing local minimizer of f(W). Starting from W0, find the local minimizer

W1. This can be done by, for example, PNMF algorithm. If f(W1) ≤ fmin,
then f(W1) → fmin; otherwise, 2a → a.

3. Find the minimizer of filled function. Starting from W1, activate the lin-
ear search procedure to minimize the filled function, arrive at point W. If
f(W) < f(W1) or W is the minimizer of the filled function, then W → W0,
goto step 2.

4. Stop when the global minimum found.

4 Simulation

4.1 Vector Case and Low Dimention Case

In the vector case, the minima W of the optimal problem 1 satisfies

trace(WWT VVT ) = trace(WWT VVT WWT ). (10)
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If W is a vector, then the minima of the optimal problem (1) is equivalent to
the maximizer of the following optimal problem

max
W≥0,||W||=1

trace(WWT VVT ) (11)

It is easy to see that the function trace(WWT VVT ) is a polynomial with
power 2 and nonnegative coefficients. It is a convex function in the domain
0 ≤ ||W|| ≤ 1. The local optimal solutions of the above optimal problem are
also the global solutions.

As an example, consider a simple case, the vector W = (w1, w2)T , the function
f(W) as

f(W) = ||V − WWT V||2 (12)

where V is a 2 × 3 matrix.
Running both PNMF and global algorithms obtained the same optimall point.
Figure 2 shows the function f(W).
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Fig. 2. Plot of the function f(W)

For the low dimention case, we have tested some functions. For example, V
is a 3 × 3 identity matrix, W is a 3 × 2 matrix, the function f is
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f(W) =
∑
ij

w4
ij + 2w2

11w
2
12 + 2w2

11w
2
21 + 2w2

11w
2
31 + 2w2

21w
2
22 + 2w2

21w
2
31

+ 2w2
12w

2
22 + 2w2

12w
2
32 + 2w2

22w
2
32 + 2w2

31w
2
32 + 4w11w21w12w22

+ 4w11w31w12w32 + 4w21w31w22w32 − 2
∑
ij

w2
ij + 3.

The values of the function f by P-NMF and the filled function method are 1.0019
and 1.0000, respectively.

4.2 Image Data

We used face images from the MIT-CBCL database as experimental data. The
training data set contains 2429 faces. Each face has 19×19 = 361 pixels and has
been histogram-equalized and normalized so that all pixel values are between 0
and 1. Thus the data matrix V which now has the faces as columns is 361×2429.
This matrix was compressed to rank r = 49 using P-NMF expansions and the
filled function method.

The P-NMF gives a local minimizer W, the value of function f at W is
2.3768e + 08. The filled function method gives the global minimization value
2.3460e + 08.

5 Conclusion

In this paper, the filled function method is used to find the global minimization
of the PNMF optimal problem. The experiments show that the filled function
method works and it is computable. For the original NMF problem, we can also
find the global minimizer similarly using filled function method.
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Abstract. For extracting sparse structures in images adaptively, the prior prob-
abilities over the coefficients are modeled with a flexible parametric Cauchy 
density, which can describe a class of super-Gaussian distributions by varying 
the steepness and the scale parameters in the density function. The derivatives 
of the sparseness cost function are continuous at each point of its domain, 
which is convenient for gradient techniques based learning algorithms, and may 
provide a better approximation of the volume contribution from the prior. The 
performance of the flexible prior is demonstrated on a set of natural images. 

1   Introduction 

Previous work [1,2] using sparsity criteria have suggested that the basis functions may 
best encode natural images in terms of sparse, independent components, for such 
basis functions are comparable with the receptive fields of simple cells in mammalian 
primary visual cortex, which are spatially localized, oriented, and band-pass in spatial 
frequency [3-5]. Unlike the ICA [6,7] techniques, the sparse coding strategies can be 
combined with overcomplete representations [8-10], which allows for a better ap-
proximation of the underlying statistical distribution of the data. The research on 
sparse coding is hereby helpful for both vision research and image processing.  

Essentially, the probabilistic inference of sparse coding is according to Bayes’ 
theorem [11]. The main advantage of such a probabilistic decision is that it is allowed 
to incorporate prior knowledge into the data analysis, in order to bias the interpreta-
tion of the data in the direction of expectation. However, the coefficient prior distribu-
tions, ( )iP s , in most of the previous sparse coding models [1,8,9,2] are assumed to be 

fixed, not adapted to the data being analyzed, which may lead to an inaccurate prior 
assumption.  

It has been observed that the sparse distributions over wavelet coefficients of im-
ages can be well modeled with a generalized Laplacian density (GLD) [12], or called 
generalized Gaussian density (GGD) [13]. Thus one possibility for improving the 
prior in sparse coding is to model ( )iP s  with a GGD function. By varying the  

shape parameter in the GGD model, a wide class of statistical distributions can be 
                                                           
∗ Supported by the Science Foundation of Nanjing University of Information Science and 

Technology. 
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characterized, including Gaussian, Laplacian, and some other super- and sub-
Gaussian densities. However, when the shape parameter is equal to or less than the 
value of one, the derivative of the sparseness cost function, or log ( )iP s , at zero is not 

continuous, which will be troublesome for gradient techniques based learning algo-
rithms for finding the most probable coefficients [9]. 

In this work, the prior distributions ( )iP s  are characterized by a parametric 

Cauchy density (PCD) function. By varying the steepness and the scale parameters in 
the PCD model, a class of super-Gaussians can be characterized. Such a sparseness 
property makes the PCD model suitable for the sparse coding framework, and makes 
the priors adaptive to the data being analyzed. Moreover, compared with the GGD 
model, the derivatives of log ( )iP s  in the PCD model are continuous everywhere in 

its domain. Such a smoothness property may provide a better approximation of the 
volume contribution from the prior, and allows for gradient descent solutions when 
seeking to maximize the posterior distribution over the coefficients. 

The rest of the paper is organized as follows: Section 2 shows two properties of the 
proposed PCD model, including sparseness and smoothness; and gives a simple 
method to estimate the values of the steepness and the scale parameters. In Section 3, 
we inference the gradient learning rules for the coefficients and the basis functions, 
when applying the PCD model into the sparse coding framework. Section 4 reports 
experiments carried out on a set of natural images and the results. Section 5 presents 
the conclusions. 

2   Parametric Cauchy Density  

Before discussing the PCD model, we firstly introduce the GGD model briefly. A 
GGD function with zero mean is usually given by [13] 

( )( ) exp
q

P x W x θ⎡ ⎤= −⎣ ⎦  (1)  

The logarithm is 

( )log ( ) log
q

P x W x θ= −  (2)  

where x  is the random variable; the parameters 0q >  and 0θ >  are called the shape 

parameter and the scale parameter, respectively; W  is a normalization constant to 

ensure that ( ) 1P x dx =∫ . 

The derivative function ( ) log ( )d x P x x= ∂ ∂  is 

1 1
( ) sgn( ) sgn( )

q qqd x x x q x xθ− −= − ∝ −  (3)  

where sgn( )x  is the sign function of x . Especially, when ( )P x  is a Gaussian density 

( 2q = ), we have ( )d x x∝ − ; when ( )P x  is as sparse as a near-delta function 

( 0q → ), we have 1( )d x x−∝ − . 
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2.1   Sparseness 

The PCD function, in this work, is given by 

( )( )2
( ) exp log 1P x C xβ α⎡ ⎤= − +

⎣ ⎦
 (4)  

The logarithm is 

( )( )2
log ( ) log log 1P x C xβ α= − +  (5)  

in which the parameters α  and β  are both larger than zero; and 

( ) ( ( 1 2))C β α π β= Γ Γ −  is used to normalizing the density function, where ( )Γ ⋅  

is a Gamma function. It is obvious that the PCD model contains the standard Cauchy 
distribution as a special case, when 1α =  and 1β = . 

When the density ( )P x  is characterized by the PCD model, the derivative function 

is 

( )
2

2
( ) 2

1

x
d x

x

αβ
α

= −
+

 (6)  

If xα  or 1x α , we will have 

2( ) 2d x x a xβ≈ − ∝ −  (7)  

which indicates that the PCD model is close to a Gaussian. Meanwhile, if xα  or 
1x α , we will have 

1 1( ) 2d x x xβ − −≈ − ∝ −  (8)  

which suggests that the PCD model becomes a near-delta function at zero. Thus it can 
be seen that the PCD model can describe a class of statistical distributions including 
Gaussian and super-Gaussian densities by varying the values of α . Hereby we named 
α  the steepness parameter, which mainly controls the decreasing rate of the PCD 
peak. The parameter β  is mainly relative to the variance of the random variable, 

therefore referred to as the scale parameter. 

2.2   Smoothness 

Obviously, for a GGD function with 1q ≤ , the derivative function ( )d x  has a discon-

tinuity at 0x = . When the distribution ( )P x  is characterized by the proposed PCD 

model, however, the derivative function ( )d x  are continuous at each point of its do-

main, for  

lim ( ) ( )
x a

d x d a
→

=  (9)  

where a  is an any point in the domain of d .  
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In other words, the derivative function ( )d x  is a smooth function, when the distri-

bution ( )P x  is characterized by a PCD model. Furthermore, when the prior distribu-

tions over sparse coefficients are modeled with the PCD function, the derivatives of 
the sparseness cost function are continuous at each point of its domain, which may 
provide a better approximation of the volume contribution from the prior [9], and 
allows for gradient descent solutions when seeking for the most probable coefficients. 

2.3   Estimating α  and β  

Given the observations [ ]1, , nx x x= , estimating the values of α  and β  is accom-

plished by finding the values that maximize the log-likelihood function 

( )( )2

1

( , ) log exp log 1
n

i
i

L C xα β β α
=

⎛ ⎞⎡ ⎤= − +⎜ ⎟⎣ ⎦⎝ ⎠
∏  (10)  

The gradients in the directions of α  and β  are  

( ) 2 2
1

( , ) 2
2 1  

n

i i

L n

x

α β αα β β
α α α=

∂Δ = = − −
∂ +∑  (11)  

[ ] ( )2 2

1

( , )
( ) ( 1 2) log 2log  

n

i
i

L
n x

α ββ β β α α
β =

∂ ⎡ ⎤Δ = = Ψ − Ψ − − + −⎣ ⎦∂ ∑  (12)  

where ( )Ψ ⋅  is the derivate of the Gamma function ( )Γ ⋅ . 

Then the optimal values for α  and β  can be obtained by employing the gradient 

techniques based learning algorithms. Fig. 1 shows an example of a histogram to-
gether with the fitted PCD using the ML estimators. The histogram is of the coeffi-
cient samples for a learned basis function with the sparse coding strategy in [8]. The 
estimated parameters are: 0.2701α =  and 2.0395β = . The fits are generally good. 

As a result, with the parameters α  and β  for the PCD model, we can accurately 

capture the distributions of the sparse basis coefficients. 

Fig. 1. Sparse basis coefficient histogram fitted with a PCD 
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3   Application to Sparse Coding 

3.1   Principles of Sparse Coding 

The basic assumption of sparse coding is that an image can be represented by a linear 
superposition of basis functions plus noise [8,2] 

= +I As N  (13)  

where T
1[ , , , ]j LI I I=I  is an -L element input image, A  is an L M×  matrix 

whose columns 1, , ,i MA A A  are the basis functions, T
1[ , , , ]i Ms s s=s  is a 

-M element coefficient vector, and N  represents a noise sampled from a Gaussian 
distribution. The two-fold goals of sparse coding are to find a good matrix, A , for 
coding the entire input images, and to infer the proper coefficients, s , for each indi-
vidual image.  

Based on the Bayes’ theorem, one probabilistic approach to inferring the coeffi-
cients is to find a coefficient vector, ŝ , such that  

( ) ( )
2

2
1

ˆ arg max log | , log arg min log ( )
2

M

i
iN

P P P s
σ =

⎡ ⎤−
= + = −⎡ ⎤ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
∑

I As
s I A s s

ss
 (14)  

Here  

( )2 2( | , ) exp 2 NP σ∝ − −I A s I As  (15)  

is the probability of the image under the generative model given the coefficients, in 
which Nσ  is the standard variance of the additive noise. Meanwhile, 

( ) ( )i
i

P P s= ∏s  (16)  

is the prior distribution over the coefficients. Obviously the concept of statistical in-
dependence is incorporated into the image model since ( )P s  is a factorial distribu-

tion. The concept of sparseness is also incorporated into the model by assuming that 
the probability distribution of each coefficient, ( )iP s , usually has a sparse shape. 

The basis functions are then adapted by maximizing the average log-likelihood of 
the images at the posterior maximum [8,2]. In another word, the goal is to find a set of 

basis functions, Â , such that 

( )
2

2

ˆˆ ˆarg max log | , arg min
2 N

P
σ

−
= = =

I As
A I A s s

sA
 (17)  

where the brackets  mean “averaged over all images”. 

3.2   Improving Prior 

In this work, the prior distributions ( )iP s  are characterized by the proposed PCD 

model and in the form of 
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( )( )2
( , ) exp log 1i i i i i iP s C sα β β α⎡ ⎤= − +

⎣ ⎦
 (18)  

Along with the adaptation of the basis functions, the values of iα  and iβ  for each is  

can be updated during learning. Thus the priors can be adaptive to the input data.  
Suppose iks  be the response of -i th basis function to the -k th input image. Then 

the vector [ ]1, , , ,i ik ins s s  can be regarded as a set of observations for the -i th 

coefficient variable, is . Once the observations for is  are obtained, the values of iα  

and iβ  can be estimated by employing the method mentioned in section 2.3. Note that 

the values of iα  and iβ  should be (re)estimated periodically during learning. It is not 

wise to adjust iα  and iβ  every time when the basis functions are updated. In this 

work, the values of iα  and iβ  are updated per 1000 updates of the basis functions. 

The gradient descent learning rule for the coefficient is  is then 

( )T
2 2 2

21 i i
i i

N i i

s
s A

s

β
σ α

∆ = − − +
+

I As  (19)  

The learning rule for the basis functions via the natural gradient algorithm [14] is  

( ) T

2

T

ˆˆ ssAI
AA

A −−=∆
Nσ

 (20)  

Note that the basis functions must be rescaled [8,2] after each learning step in order to 
ensure that they do not grow without bound. 

In summary, the whole processing of learning can be concluded as follows: 
Step 1: Let 0t = ; For each [1, ]i M∈ , let i aα = , i bβ = , where a  and b  are the 

initial values of iα  and iβ , respectively; and let A  be a random L M×  

matrix. 
Step 2: For each [1, ]i M∈ , infer the optimal coefficient îs  given A , iα  and iβ , 

based on eq. (19). 
Step 3: Update A  based on eq. (20). 
Step 4: Let 1t t= + . If 1000t m= ( 1,2,3,m = ), then go to Step 5. Otherwise, go 

to Step 2. 
Step 5: Compute the observations [ ]1, , , ,i ik ins s s  for each is , and then update 

the values of iα  and iβ . 

Step 6: Stop or go to Step 2. 

4   Experiments and Results 

The images for training are ten 512 512×  whitened images in the dataset of [8]. The 
basis functions were trained on two data sets, which were obtained by extracting 8 8×  
and 12 12×  image patches randomly from the ten whitened images, respectively. 
Note that the patches were repeatedly resampled throughout training to avoid reuse of 
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any one set of patches. Meanwhile, the basis matrix A  was adapted using eq.(20) on 
blocks of 200 patches. Here we learned complete and 2× ’s overcomplete representa-
tions of the two data sets. For both data sets, the initial values a  and b  were 0.316 
and 2.2, respectively; the initial basis functions were generated by setting the basis 
elements to random values between [-0.5, 0.5], and scaling each basis function to 
have one variance. In addition, the standard variance Nσ  was set to be 0.01. And the 

learning stopped when 10000t = . Namely, the values of iα  and iβ  were updated ten 

times during learning. Every time when we updated the values of iα  and iβ , we 

firstly extracted 2000 patches at random from the ten whitened images (200 patches 
per image), and then computed the observations vector [ ]1, , , ,i ik ins s s  ( 2000n = ) 

for each is  using eq.(19). Given the observations, the values of iα  and iβ  could be 

estimated and updated.  
Fig. 2 shows the learned basis functions training from the 12 12×  data set when the 

code was 2× ’s overcomplete. Obviously, like the Gabor functions[15], the basis 
functions obtained with the proposed PCD prior model were also localized, oriented, 
and band-pass. Namely, the learned basis functions were comparable with the recep-
tive fields of simple cells in mammalian primary visual cortex. 

To make a comparable analysis, we also learned complete and 2× ’s overcomplete 
representations on the two data sets when the prior was fixed. The imposed prior was 
chosen to be a Cauchy density in the form of eq.(18), too, but the values of iα  and iβ  

were not updated during learning, and fixed at 0.316 and 2.2 (as same as the initial 
values for the adaptive prior), respectively. The posterior distributions over four coef-
ficients were shown in Fig. 3 (upper). The two left ones were from the complete and 
2× ’s overcomplete representations for the 8 8×  data set, respectively; while two 
right ones were from the complete and 2× ’s overcomplete representations for the 
12 12×  data set, respectively. The overlaid dashed line in each subplot was the im-
posed sparse prior. It was obvious that coefficients didn’t fit the imposed prior very 
well. While Fig. 3 (lower) shows the posterior distributions over four coefficients 
from the complete and 2× ’s overcomplete sparse representations for the two data 
sets, respectively, when the prior was adaptive to the data. The resulting priors 
learned from the data were overlaid (dashed line), too. The posteriors closely matched 
the priors, indicating that the proposed model may be a reasonable fit to the image 
data.  

 

Fig. 2. Learned basis functions from training 2× ’s overcomplete basis functions on the 12 12×  
data set  
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Fig. 3. Posterior distributions (solid lines) of coefficients with corresponding priors (dash 
lines). The priors in the upper graphs were fixed while the priors in the lower were adaptive to 
the input data. The y-axis in each subplot was plotted on a log scale. 

Since our image model is in the probabilistic framework, it is not difficult to evalu-
ate the coding cost of the representation. The estimated coding costs in Table 1 were 
calculated using the entropy method described in [9], the nature of which was to 
quantize the coefficients to a noise level and then calculate the total coefficient en-
tropy. For each representation from Table. 1, the noise level for quantization was set 
to 0.01, as same as that used during the learning.  

Table 1. Estimated coding efficiencies (bits per pixel) for different representations 

 Adaptive prior Fixed prior 
1× ’s 3.7122 ± 0.4017 4.0229 ± 0.3846 

8 8×  
2× ’s  3.0116 ± 0.2894 3.5373 ± 0.3302 
1× ’s 3.7476 ± 0.3423 4.4093 ± 0.3126 

Dataset 
12 12×  

2× ’s  3.2270 ± 0.2392 3.6529 ± 0.2207 

 
The table shows that the overcomplete image codes have lower coding cost, de-

spite the fact that there are more coefficients to code. Moreover, the table suggests 
that the image model in eq.(13) with an adaptive PCD prior on the basis function 
coefficients gives lower coding cost than that with a fixed prior, which indicates that 
the adaptive prior can improve the coding efficiency.  
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Abstract. In this paper, a one-layer recurrent neural network is pro-
posed for solving non-smooth convex optimization problems with linear
equality constraints. Comparing with the existing neural networks, the
proposed neural network has simpler architecture and the number of
neurons is the same as that of decision variables in the optimization
problems. The global convergence of the neural network can be guaran-
teed if the non-smooth objective function is convex. Simulation results
are provided to show that the state trajectories of the neural network can
converge to the optimal solutions of the non-smooth convex optimization
problems and show the performance of the proposed neural network.

1 Introduction

Consider the following nonlinear programming (NP) problem:

minimize f(x),
subject to Ax = b,

(1)

where x ∈ R
n, f(x) : R

n → R is convex continuous function but not smooth
(i.e., not continuously differentiable), A ∈ R

m×n is a full row-rank matrix (i.e.,
rank(A) = m), and b ∈ R

m.
Convex programming has many applications in scientific and engineering ar-

eas, such as signal and image processing, manufacturing, optimal control, and
pattern recognition. Non-smooth optimization has been widely utilized to mini-
max problems, parameter estimation and support vector machine learning. Re-
current neural networks based on hardware implementation are effective for on-
line solutions of convex programming problems [1,2,3,4,5,6,7,8,9,10]. In 1986,
Tank and Hopfield [1] first proposed a neural network for solving linear pro-
gramming problems, which motivated the development of neural networks for
� The work described in this paper was supported by a grant from the Research

Grants Council of the Hong Kong Special Administrative Region, China (Project
no. CUHK417608E).
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solving linear and nonlinear programming problems. Kennedy and Chua [2] pre-
sented a neural network for solving nonlinear programming problems by utilizing
the finite penalty parameter method and the network is convergent to an approx-
imate optimal solution, and this neural network has an implementation problem
when the penalty parameter is very large. Zhang and Constantinides [11] pro-
posed the Lagrangian network which has two-layer structure and can be utilized
to solve some strictly convex programming problems. Wang and Xia [5] proposed
a primal-dual neural network and it can be utilized to some convex quadratic
programming problems. Recently, the projection neural networks were proposed
for solving general nonlinear programming problems, and these neural networks
have well convergence properties and can globally converge to an exact opti-
mal solution for convex programming problems [12][13]. In [10][14], we proposed
some one-layer recurrent neural networks for solving linear and quadratic pro-
gramming problems. In [15][16], the non-smooth optimization was investigated.
In [15], a neural network model was proposed for solving non-smooth convex
optimization subject to bound constraints. In [16], a two-layer recurrent neural
network was constructed for solving non-smooth convex optimization subject to
linear equality and bound constraints. In this paper, a one-layer recurrent neural
network is proposed for solving non-smooth convex programming problem (1).
Comparing with the existing neural networks for non-smooth convex optimiza-
tion, this new neural network has a simpler structure, but can be utilized to
solve more general convex programming problems.

2 Model Description

In this section, a one-layer recurrent neural network is constructed for solving
programming problem (1).

Definition 1. [17] Suppose E ⊂ R
n. F : x �→ F (x) is called a set-valued func-

tion from E ↪→ R
n, if to each point x of a set E, there corresponds to a nonempty

closed set F (x) ⊂ R
n.

Definition 2. [18] Let V (x) be a function from R
n to R. For any x ∈ R

n,

DV (x)(v) = lim
h→0+

V (x + hv) − V (x)
h

.

We say that DV (x)(v) is the derivative from the right of V at x in the direction
v. If DV (x)(v) exists for all directions, we say that V is differentiable from the
right at x. We say that the closed convex subset (possibly empty)

∂V (x) = {ξ ∈ R
n : ∀v ∈ R

n, ξT v ≤ DV (x)(v)}

is the sub-differential of V at x. The element ξ of ∂V (x) is called the sub-gradient
of V at x.
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Theorem 1. x∗ is an optimal solution of problem (1) if and only if there exists
y∗ ∈ R

m such that (x∗T , y∗T )T satisfies the following equations

0 ∈ ∂f(x) − AT y, (2)

0 = Ax − b. (3)

Proof: See Theorem 1 in [16].

Next, according to Equations (2) and (3), the one-layer recurrent neural network
model will be induced.

From (2), for any γ ∈ ∂f(x), we have

x = x − γ + AT y. (4)

Substituting (4) into (3), it follows that

A(x − γ + AT y) − b = 0, ∀γ ∈ ∂f(x).

That is
AAT y = Aγ − Ax + b, ∀γ ∈ ∂f(x).

Since A is full raw-rank, AAT is invertible. Then

y = (AAT )−1(Aγ − Ax + b), ∀γ ∈ ∂f(x). (5)

Substituting (5) into (2), for any γ ∈ ∂f(x), we have

γ − AT (AAT )−1(Aγ − Ax + b) = 0. (6)

Let P = AT (AAT )−1A and q = AT (AAT )−1b, then, (6) can be written as

Px + (I − P )γ − q = 0, ∀γ ∈ ∂f(x), (7)

where I is identity matrix. The matrix P , called the projection matrix, is sym-
metric and satisfies P 2 = P .

Based on Equation (7), the proposed recurrent neural network model is de-
scribed by the following differential inclusion:

dx

dt
∈ λ[−Px − (I − P )∂f(x) + q], (8)

where λ is a positive scaling constant.

Definition 3. x∗ is said to be an equilibrium point of neural network (8) if there
exists γ∗ ∈ ∂f(x∗) such that

−Px∗ − (I − P )γ∗ + q = 0. (9)

From above analysis, the following theorem obviously holds.

Theorem 2. x∗ is an optimal solution of problem (1) if and only if it is an
equilibrium point of neural network (8).
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3 Global Convergence

In this section, the global convergence of the recurrent neural network (8) is
analyzed. Throughout this paper, we always assume that the optimal solution
set (denoted as Ω∗) of problem (1) is not empty and there always exists a finite
x∗ ∈ Ω∗. Then the equilibrium point set (denoted as Ωe) of neural network (8)
is nonempty.

Definition 4. The neural network (8) is said to be globally convergent to an
optimal solution of problem (1) if for any trajectory x(t) of the neural network
with initial point x(t0) ∈ R

n, there exists an optimal solution x∗ ∈ Ω∗ such that
limt→+∞ x(t) = x∗.

Theorem 3. The neural network (8) is stable in the sense of Lyapunov and
globally convergent to an optimal solution of problem (1).

Proof: Assume x∗ being an equilibrium point of neural network (8), then there
exists γ∗ ∈ ∂f(x∗) such that

−Px∗ − (I − P )γ∗ + q = 0.

By substituting it into Equation (8), it can be rewritten as

dx

dt
∈ λ[−P (x − x∗) − (I − P )(∂f(x) − γ∗)]. (10)

Consider the following Lyapunov function

V (x) = λ[f(x) − f(x∗) − (x − x∗)T γ∗ +
1
2
‖x − x∗‖2

2], (11)

We have
∂V (x) = λ[∂f(x) − γ∗ + x − x∗].

By using the chain rule [19], it follows that V (x(t)) is differentiable for a.a.
t ≥ 0 and it results in

V̇ (z(t)) = ξ(t)T ẋ(t), ∀ξ(t) ∈ ∂V (x(t)).

Let
ξ(t) = λ[γ(t) − γ∗ + x(t) − x∗],

where γ(t) ∈ ∂f(x(t)). Then

V̇ (x(t)) ≤ λ2 sup
γ∈∂f(x)

[γ − γ∗ + x − x∗]T [−P (x − x∗) − (I − P )(γ − γ∗)]

= λ2 sup
γ∈∂f(x)

[−(γ − γ∗)T (I − P )(γ − γ∗) − (x − x∗)T P (x − x∗)

−(x − x∗)T (γ − γ∗)]. (12)



A One-Layer Recurrent Neural Network 1007

Since f(x) is convex, for any γ ∈ ∂f(x), (x − x∗)T (γ − γ∗) ≥ 0 holds. Then

V̇ (x(t)) ≤ λ2 sup
γ∈∂f(x)

[−(γ − γ∗)T (I − P )(γ − γ∗) − (x − x∗)T P (x − x∗)]

= −λ2 inf
γ∈∂f(x)

[(γ − γ∗)T (I − P )(γ − γ∗) + (x − x∗)T P (x − x∗)].(13)

On the other hand, for any γ ∈ ∂f(x),

‖ẋ‖2
2 = λ2[−P (x − x∗) − (I − P )(γ − γ∗)]T [−P (x − x∗) − (I − P )(γ − γ∗)]

= λ2[(x − x∗)T P (x − x∗) + (γ − γ∗)T (I − P )(γ − γ∗)]. (14)

From (13) and (14), it follows that

V̇ (x(t)) ≤ − inf
γ∈∂f(x)

‖ẋ‖2
2

= −λ2 inf
γ∈∂f(x)

‖Px + (I − P )γ − q‖2
2. (15)

From (11), we have V (x) ≥ λ‖x − x∗‖2
2/2. Let L(x0) = {x ∈ R

n : V (x) ≤
V (x0)}, then L(x0) is bounded. From (15), x(t) is also bounded and it follows
that the solution x(t) exists on [t0, +∞). V (x) is a Lyapunov function of (8) and
neural network (8) is stable in the sense of Lyapunov.

Define Γ (x) = infγ∈∂f(x) ‖Px+(I −P )γ−q‖2
2. If x∗ ∈ Ωe, we have Γ (x∗) = 0.

Conversely, if there exists x̂ ∈ R
n such that Γ (x̂) = 0, combining that ∂f(x) is

a compact convex subset in R
n, then there exists γ̂ ∈ Γ (x̂) such that

P x̂ + (I − P )γ̂ − q = 0.

Therefore, Γ (x) = 0 if and only if x ∈ Ωe.
As the rest proof is similar to that of Theorem 1 in [10], it is omitted here.

4 Simulation Results

In this section, two examples are given to demonstrate the effectiveness of the
recurrent neural network proposed in this paper for solving the constrained least
absolute deviation and nonlinear curve-fitting problems.

Example 1. Consider the following constrained least absolute deviation problem:

minimize ‖Cx − d‖1,
subject to Ax = b,

(16)

where x = (x1, x2, x3, x4)T and

C =
(

4 2 −1 2
1 3 2 −1

)
, d =

(
−3
5

)
, A =

(
4 1 −2 1
1 3 1 −1

)
, b =

(
−2
4

)
.

This problem has a unique optimal solution x∗ = (0.5, 0.125, 1, −2.125)T . Let
λ = 106, the simulation results are shown in Fig. 1 with 10 random initial values.
We can see that the state trajectories of neural network (8) is globally convergent
to the unique optimal solution.
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Fig. 1. Transient behavior of the neural network (8) in Example 1

Example 2. Nonlinear Curve-Fitting Problem
Let us consider a constrained nonlinear least absolute deviation curve-fitting
problem: Find the parameters of the combination of exponential and polynomial
function y(x) = a4e

x +a3x
3 +a2x

2 +a1x+a0, which fits the data given in Table
1 and subjects to the equalities y(1.2) = −7.8 and y(4.6) = −3.4. This problem
can be formulated as follows:

minimize ‖Cx − d‖1,
subject to Ax = b,

(17)

where x = (x1, x2, x3, x4, x5)T = (a4, a3, a2, a1, a0)T and

C =

⎛⎜⎜⎜⎜⎝
1 1.649 2.718 4.482 7.389 12.183 20.086 33.116 54.598 90.017
0 0.125 1 3.375 8 15.625 27 42.875 64 91.125
0 0.25 1 2.25 4 6.25 9 12.25 16 20.25
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
1 1 1 1 1 1 1 1 1 1

⎞⎟⎟⎟⎟⎠
T

,

d =
(
−8.6 −8.2 −7.9 −9 −7 −6.2 −3 −3.8 −2.8 −3.8

)T
,

A =
(

3.32 1.728 1.44 1.2 1
99.484 97.336 21.16 4.6 1

)
, b =

(
−7.8
−3.4

)
,

By utilizing the neural network in (8) for solving this problem, the simulation
results are shown in Fig. 2(a) with λ = 106 and 10 random initial points, from
which we can see that the neural network is globally convergent to the optimal
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Table 1. Nonlinear fitting data for Example 2

x 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
y −8.6 −8.2 −7.9 −9 −7 −6.2 −3 −3.8 −2.8 −3.8
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curve−fitting results
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Fig. 2. (a) Transient behavior of neural network (8) in Example 2; (b) Comparison of
the two nonlinear curve fitting methods between the LA and LS in Example 2

solution x∗ = (−0.21, 0.32, −0.55, 1.26, −8.39)T or (a4, a3, a2, a1, a0) = (−0.21,
0.32, −0.55, 1.26, −8.39). The curve fitting is drawn in Fig. 2(b) for l1-norm (solid
line) and l2-norm (dashed line). It shows that least absolute (LA) has better
fitting performance than least square (LS) in dealing with outliers.

5 Conclusions

In this paper, a one-layer recurrent neural network has been proposed for solv-
ing non-smooth convex programming problems with linear equality constraints.
Comparing with other neural networks for convex optimization, the proposed
neural network has lower architecture complexity with only one-layer structure
and less neurons. However, it is efficient for solving both smooth and non-smooth
optimization problems. The global convergence of the neural network are proved
based on the Lyapunov theory. Furthermore, the proposed recurrent neural net-
work is efficient for solving the constrained least absolute deviation and nonlinear
curve-fitting problems. Simulation results show the performance and effective-
ness of the proposed neural network.
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Abstract. Recently, a lot of research on a Brain Computer Interface
(BCI) which enables patients like those with Amyotrophic Lateral Scle-
rosis to control some equipment or to communicate with other people
has been reported. One of the problems in BCI research is a trade-off
between the speed and the accuracy. In the field of data transmission,
on the other hand, Reliability-Based Hybrid ARQ (RB-HARQ) has been
developed to achieve both of the performances. In this paper, therefore,
BCIs are considered as communications between users and computers,
and Reliability-Based ARQ, similar to RB-HARQ, is applied to BCIs.
Through simulations and experiments, it is shown that the proposed
method is superior to other methods.

1 Introduction

Recently, a lot of research on a Brain Computer Interface (BCI) which records
brain activities, discriminates the thoughts, and then enables patients like those
with Amyotrophic Lateral Sclerosis (ALS) to control some equipment or to com-
municate with others has been reported. The authors also have been studying on
a BCI based on Electroencephalogram (EEG), which is considered as one of the
most reasonable measurements since it is non-invasive and costs less [1]. In fact,
EEG-based BCIs have been researched well; for example, Thought Translations
Device (TTD) [2] by Birbaumer et al.; and Graz-BCI [3] by Pfurtscheller et al.
[3], which employs the band power from 8 to 13 Hz (alpha band) as the feature
of EEG, and applies Linear Discriminant Analysis (LDA) [4] to it. The accuracy,
however, is not high since biological signals such as EEGs contain much noise,
partly due to users’ physical or mental conditions. On the other hand, it also
has been suggested that the longer EEG data is used for one discrimination, the
more accuracy could be achieved [3,5,6]. It could be possible to say that high
accuracy can be gained in exchange for speed in those methods; here seems a
trade-off between the accuracy and the speed. The purpose of this study, there-
fore, is to develop a BCI which accomplishes both the accuracy and the speed
simultaneously.

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 1013–1020, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Shannon’s Communication Model

In the field of data transmission, there are some error control methods; for in-
stance, Forward Error Correction (FEC), which allows the receiver to detect and
correct errors; Automatic Repeat reQuest (ARQ), which asks the transmitter to
repeat code words; and Hybrid ARQ (HARQ), which is a combination of ARQ
and FEC. In the past several years, Reliability-Based Hybrid ARQ (RB-HARQ)
has been proposed [7]. This method is a variation of HARQ, in which the re-
quests are based on reliability of each bit in code words. It also has been reported
that RB-HARQ can provide performance close to the channel capacity. In this
paper, BCIs are considered as communications between users and computers
or other people, are modeled using Shannon’s communication model, and then
Reliability-Based ARQ (RB-ARQ) is applied to BCIs. This paper compares the
proposed method with other possible methods and it shows that the proposed
method is effective for BCIs in terms of both the accuracy and the speed.

2 Proposed Method

2.1 Modeling of BCIs

In EEG-based BCIs, firstly scalp potentials, which reflect the users’ will, are
recorded. Then the recorded EEG data is classified by statistical classifiers such
as LDA, and translated into commands to control some equipment or to com-
municate with others. In these processes, distractions such as hunger, sleepi-
ness, fatigue, and electric noises would affect the EEG data, which leads mis-
classifications or mistranslations as a result. Figure 1 shows Shannon’s Commu-
nication Model. BCIs could be regarded as communications between users as
information source and computers as destination when nerves, electrodes, ca-
bles, and classifiers are regarded as channels. Note that users also take a role of
a transmitter and computers take that of a receiver in Fig. 1.

2.2 Applying RB-ARQ to BCI

Automatic Repeat reQuest (ARQ) is an error control method for data trans-
mission, in which the receiver requests the transmitter to send the data again if
errors are detected. In this paper, a method requesting a retransmission based on
the reliability is called RB-ARQ, and the RB-ARQ is applied to BCIs. Note that
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RB-ARQ does not include FEC because the process of FEC would be difficult
for users, who take the role of the transmitter.

Suppose users have one thought in their mind out of two (i.e. binary selection),
and p-dimensional feature vector is obtained from EEG data. Corresponding to
these, let ui ∈ {0, 1} be the ith information bit and yt

i ∈ R
p be the received

analog information at time t. Suppose fk(y) is the class-conditional probability
density function of y in ui = k. Then, the log-likelihood ratio can be obtained
as follows:

λt
i = ln

Pr
(
ui = 0|y1

i , . . . , yt
i

)
Pr (ui = 1|y1

i , . . . , yt
i)

(1a)

=
t∑

j=1

ln
f0(y

j
i )

f1(y
j
i )

. (1b)

|λt
i| represents the reliability; the larger it is, the higher the probability of correct

decoding is. Hence, when a certain λ is given and |λt
i| < λ is true, the receiver re-

quests the same information and decodes it again; otherwise the ith information
bit can be estimated as follows:

ûi =

{
0 λt

i ≥ 0
1 otherwise.

(2)

The proposed method assumes that f0(y), f1(y) are p-dimensional Gaussian dis-
tributions with mean vector: µ0, µ1, covariance matrix: Σ0 = Σ1 = Σ, because
of their simplicity and less computational cost. Especially when λ = 0, this is
identical to LDA. Equation (3) is called discriminability, representing how easily
the data can be discriminated [8],

d =
|µT

0 w − µT
1 w|√

wT Σw
, (3)

where w = Σ−1(µ0 − µ1).

2.3 Comparison of Methods in Theoretical Value

The proposed method was compared with two possible methods. The first one
can be called Constant ARQ requesting n times constantly regardless of the
reliability. The second one can be called Basic RB-ARQ taking λ(t) obtained
from (4).

λt
i = ln

Pr (ui = 0|yt
i)

Pr (ui = 1|yt
i)

(4)

Suppose both f0(y) and f1(y) obey p-dimensional Gaussian distributions with
Σ = Σ0 = Σ1. Figure 2 describes the relationships between the accuracy and
the transmission time (i.e. speed), comparing the proposed method (RB-ARQ)
with the two methods mentioned above. The figure shows that the longer the
transmission time is, the better the accuracy is. It also clearly shows that RB-
ARQ is superior to the others in terms of both performances.
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Fig. 2. Comparison of Methods (Theoretical Value)

3 Experiments

3.1 Experimental Settings

According to the international 10-20 system [9], electrodes were places on Pz,
and A2 as a reference. Then, EEGs were recorded with 1000 Hz sampling rate
using Polymate AP216 manufactured by Degitex co, ltd. One trial consisted of
10-second measurement and 10-second break, and one run consisted of 12 trials.
Four runs in one session, which were two runs for being relax called thought A
and two runs for mental arithmetic called thought B, were performed by each
subject. Six subjects in their early 20’s participated in two sessions, however one
session was excluded out of 12 sessions because of a lack of data. One dataset
was 1-second EEG data; therefore 480 datasets were obtained for each session.
The Fast Fourier Transform (FFT) was applied to the datasets and they were
transformed into the band-power of alpha band (i.e. from 8 to 13 Hz).

3.2 Test of Fitness to Gaussian Distribution

In the proposed method, a band power of EEG is assumed to be normally dis-
tributed. In order to verify this assumption, the chi-square goodness of fit test
was applied to the band power from 8 to 13 Hz, and the null hypothesis that it
was normally distributed was not rejected at statistically significant level of 0.05.
Figure 3 shows the histograms of a band power from 8 to 13 Hz when a subject
had thought A and B in his mind, and the Gaussian distributions corresponding
to the data, respectively.

3.3 Application of RB-ARQ

The averages and variances were estimated using the first half 240 datasets (120
datasets from each thought) as training data (note that equal variances were
assumed). Then, the rest 240 datasets were applied to the three methods as test
data as follows:
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Step 1. Set l = i = t = 1.
Step 2. Let xl be the lth dataset and yt

i be the received analog information of
the ith information bit at time t corresponding to xl

Step 3. Calculate λt
i based on (1a)

Step 4. If |λt
i| < λ, add 1 to both l and t, and go to step 2; otherwise go to the

next step
Step 5. Estimate ûi, add 1 to both i and l, substitute Ti (the transmission time
for ith information bit) for t, t for one, and go to step 2
After these procedures, let NV be the number of information bits, NC be the
number of them which fulfill ûi = ui. The accuracy and the transmission time
are defined as follows:

Accuracy[%] = NC/NV × 100, (5)

T ime[sec] =
NV∑
i=1

Ti/NV. (6)

Figure 4 shows the relationships between the accuracies and the transmission
times at certain λ (for RB-ARQ and Basic RB-ARQ) or n (for Constant ARQ)
along with figures showing the 20 datasets’ simple moving averages and the
discrimination boundaries (i.e. λt

i=0).

4 Discussions

Firstly, the test of fitness could not reject the null hypothesis that the data used
in this experiment did not follow the Gaussian distribution; therefore, it is not
unreasonable to employ the Gaussian distribution. However, it does not mean
that the data follow it. To make the distribution more closed to the Gaussian,
it might be better to use the logarithm of the band power [10].

Figure 4(a) shows a case where the performance of RB-ARQ was roughly
equal to that of Basic RB-ARQ and both of them were superior to Constant
ARQ. In this case, the assumption about distributions was reasonable because



1018 H. Takahashi, T. Yoshikawa, and T. Furuhashi

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 70  75  80  85  90  95  100

T
im

e 
[s

ec
]

Accuracy [%]

Constant ARQ
Basic RB-ARQ

RB-ARQ

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 70  75  80  85  90  95  100

T
im

e 
[s

ec
]

Accuracy [%]

Constant ARQ
Basic RB-ARQ

RB-ARQ

(a) Accuracy and Transmission Time
(Subject A)

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0  20  40  60  80  100

A
m

pl
itu

de
 [u

V
]

Data Number

Thought A
Thought B
Boundary

(b) Moving Average and Discriminant
Line (Subject A)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 65  70  75  80  85  90  95  100

T
im

e 
[s

ec
]

Accuracy [%]

Constant ARQ
Basic RB-ARQ

RB-ARQ

(c) Accuracy and Transmission Time
(Subject B)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0  20  40  60  80  100

A
m

pl
itu

de
 [u

V
]

Data Number

Thought A
Thought B
Boundary

(d) Moving Average and Discriminant
Line (Subject B)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 30  35  40  45  50  55

T
im

e 
[s

ec
]

Accuracy [%]

Constant ARQ
Basic RB-ARQ

RB-ARQ

(e) Accuracy and Transmission Time
(Subject C)

 5

 6

 7

 8

 9

 10

 11

 12

 0  20  40  60  80  100

A
m

pl
itu

de
 [u

V
]

Data Number

Thought A
Thought B
Boundary

(f) Moving Average and Discriminant
Line (Subject C)

Fig. 4. Comparison of Methods (Experimental Value)

of the result of the fitness test and that the averages and the variance of learning
data, µ0 = 3.51, µ1 = 3.18, σ = 3.35, were nearly equal to those of test data,
µ0 = 3.34, µ1 = 2.88, σ = 3.35. RB-ARQ, therefore, should be superior to the
other two methods theoretically as shown in Fig. 2.

Figure 4(c) shows another case where RB-ARQ was superior to the rest.
According to Fig. 4(d), it can be seen that the moving average of thought B
moved dynamically. The datasets from data sequence 0 to 20 could be classified
correctly without combining datasets, in other words, requesting next dataset,
because distances between the moving average and the boundary was large;
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requesting a certain number of datasets, Constant ARQ has a disadvantage in
terms of transmission time in those datasets. Around data sequence 30 to 60,
it was expected to discriminate them correctly by combining datasets because
the moving average of thought B was close to the boundary; not combining
datasets, Basic RB-ARQ has a disadvantage in terms of accuracy. On the other
hand, RB-ARQ has an advantage especially when the moving average moves
like this case because it classifies combined datasets based on the reliability, i.e.
the distance from the boundary. Some methods which adjust the discrimination
models since the optimal model would change as time passes because of the
instability of EEGs [11,12] have been proposed so far. These reports indicate
that the proposed method could be improved by adjusting the averages or the
variances in response to the changing EEGs.

Figure 4(e) also shows another case where Constant ARQ was superior to the
others. Since the magnitude relation between averages of thought A and B in
test data was different from that in learning data, accuracies were below 50 %.
According to Fig. 4(f), the reverse of the magnitude relation is obvious especially
after data sequence 80.

5 Summary

In this paper, BCIs were regarded as communications between users and com-
puters based on Shannon’s communication model, and a thought recognition
method based on RB-ARQ was proposed in order to improve the speed and the
accuracy simultaneously. Some simulations and experiments were performed,
which showed that the proposed method was superior to other possible meth-
ods. In some of experiments, however, the average of the EEG’s band power had
changed through the experiment, which lowered the accuracies. A method which
is adaptive to the changes, therefore, seems necessary to make the performance
better.
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Abstract. Saccade-related electroencephalogram (EEG) signals have
been the subject of application oriented research by our group toward de-
veloping a brain computer interface (BCI). Our goal is to develop novel
BCI based on eye movements system employing EEG signals on-line.
Most of the analysis of the saccade-related EEG data has been performed
using ensemble averaging approaches. In signal processing method for
BCI, raw EEG signals are analyzed. In ensemble averaging method which
is major EEG analysis is not suitable for processing raw EEG signals. In
order to process raw EEG data, we use independent component analysis.
This paper presents extraction rate of saccade-related EEG signals by
four ICA algorithms and six window size. In terms of extracting rates
across ICA algorithms, The JADE and Fast ICA have good results. As
you know, calculation time in Fast ICA is faster than calculation time in
JADE. Therefore, in this case, Fast ICA is the best in order to extract
saccade-related ICs. Next, we focus on extracting rates in each window.
The windows not including EEG signals after saccade and the windows
which has small window size has better extracting rates.

1 Introduction

Brain-computer interfaces (BCIs) have been the subject of research efforts for
several decades [1][2]. The capabilities of BCIs allow them to be used in situations
unsuitable for the conventional interfaces. BCIs are used to connect a user and a
computer via an electroencephalogram (EEG). The EEG is related to emotion,
motion, and thought. Therefore, there is the potential that BCIs can be used to
connect normal and mobility-impaired persons to computers in such a way that
no movement on the part of the user is required. Moreover, the Quality of Life

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 1021–1028, 2009.
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for severely handicapped users is expected to be improved by using BCIs to
connect these users to computers.

EEG related to saccadic eye movement have been studied by our group toward
developing a BCI eye-tracking system operated by using saccade-related EEG
[3]. In previous researches, EEG data were analyzed using the ensemble averaging
method. Ensemble averaging is not suitable for analyzing raw EEG data because
the method needs many repetitive trials.

Recording EEG data repetitively is a critical problem to develop BCIs. Over-
coming this critical problem is essential to realize a practical use of BCIs for
single trial EEG data.

Recently, the independent component analysis (ICA) method has been intro-
duced in the field of bio-signal processing as a promising technique for sepa-
rating independent sources. The ICA method can process raw EEG data and
find features. Therefore, ICA overcomes the problems associated with ensemble
averaging, and it observes the waveforms of the EEG data.

There are many algorithms that are used in the field of ICA[4]. In previous
researches, I analyzed saccade-related independent components by only one algo-
rithms; FastICA. However, it is important to check which ICA algorithms have
best performance for extracting saccade-related EEG signals.

In order to extract independent components from EEG signals, we must decide
a window size to analyze EEG signals. It is important to decide an appropriate
window size to get good independent components.

In this paper, we pick up four algorithms; FastICA[5], NG-ICA[7], AMUSE[6],
JADE[8]. We check which algorithms can get the best extracting rate of saccade-
related independent components and what window size have good performance
to extract saccade-related independent components.

2 Independent Component Analysis (ICA)

The ICA method is based on the following principle (See Fig. 1). Assuming that
the original (or source) signals have been linearly mixed, and that these mixed
signals are available, ICA recognises in a blind manner a linear combination of
the mixed signals, and recovers the original source signals, possibly re-scaled and
randomly arranged in the outputs.

The s = [s1, s2, · · · , sn]T means n independent signals from mutual EEG
sources in the brain, for example. The mixed signals x are thus given by x = As,
where A is an n × n invertible matrix. A is the matrix for mixing independent
signals. In the ICA method, only x is observed. The value for s is calculated by
s = Wx (W = A−1). However, it is impossible to calculate A−1 algebraically
because information for A and s are not already known. Therefore, in the ICA
algorithm, W is estimated non-algebraically. The assumption of the ICA algo-
rithm is that s is mutually independent. In order to calculate W, different cost
functions are used in the literature, usually involving a non-linearity that shapes
the probability destiny function of the source signals.
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Fig. 1. Conceptual ICA algorithms

2.1 FastICA

High-order statistics, such as the kurtosis, are widely used as well. The kurtosis
shows how independent the signal is because the kurtosis is the classical measure
of nongaussianity [5]. The Fast ICA [5] which is one of the ICA algorithms, is
based on a cost function minimization or maximization that is a function of the
kurtosis ( κ(wTx) = E{(wTx)4} − 3[E{wTx}2]2 = E{(wTx)4} − 3 ‖w ‖4; w
is one of the rows of W). Then the Fast ICA changes the weight w to extract
an independent component with the fixed-point algorithm.

2.2 AMUSE

When the time-lagged covariances are all zero, each signal have mutual indepen-
dence. The AMUSE uses the time-lagged covariances to calculate independence
of each signals. The procedure of AMUSE algorithm is in following.

1. Whiten the (zero-mea) data x to obtain z(t).
2. Compute the eigenvalue decomposition of Cz

τ = 1
2 [Cτ + CT

τ ], where Cτ =
E{z(t)z(t − τ)} is the time-lagged covariance matrix, for some lag τ .

3. The rows of the separating matrix W are given by the eigenvectors.

2.3 NG-FICA (Natural Gradient Flexible ICA)

NG-FICA[7] uses kurtosis as an independence criterion and uses a natural (rel-
ative) gradient approach. The update functions of NG-FICA are based on the
following learning formula:

∆W = η
(
I −

〈
yyT − {ϕyT + yϕT }

〉)
W (1)

ϕi = |yi|αi−1sign(yi) (i = 1, 2, · · · , n) (2)
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where η is the appropriate learning rate (constant number), y is the temporary
estimated signal (= Wx), and sign(yi) is the signum function of yi. The Gaussian
exponent αi is derived based on the kurtosis κi

(
=
〈
yi

4
〉
/
〈
yi

2
〉2 − 3

)
of yi: (1)

αi = 0.8 if κi > 20; (2) αi = 1 if 0 < κi ≤ 20; (3) αi = 4 if κi ≤ 0.

2.4 JADE (Joint Approximate Diagonalization of Eigenmatrices)

One approach for estimation of ICA consists of using high-order cumulant tensor.
We can use the eigenvalue decomposition of the covariance matrix to whiten the
data. In another word, we transform the data so the second-order correlations are
zero. As a generalization of this principle, we can use the fourth-order cumulant
tensor to make the fourth-order cumulants zero, or at least as small as possible.

In order to calculate the fourth-order cumulant tensor, calculation method of
the eigenvalue decomposition of the tensor is important. There are some methods
to compute the eigenvalue decomposition of the tensor. One of the methods is
JADE (Joint Approximate Diagonalization of Eigenmatrices).

The algorithm of JADE uses forth-order cumulant tensor and uses JADE to
calculate the eigenvalue decomposition of the tensor.

3 Experimental Settings

There are two tasks in this study (See Fig. 2). The first task is to record the
EEG signals during a saccade to a visual target that is his right side or left
side. The second task is to record the EEG signals as a control condition when a
subject dose not perform a saccade even though a stimulus has been displayed.
First task and second task are called visual experiments. Each experiment has
50 trials in total: 25 on the right side and 25 on the left side.

The EEG signals are recorded through 19 electrodes (Ag-AgCl), which are
placed on the subject’s head in accord with the international 10-20 electrode po-
sition system. The Electrooculogram (EOG) signals are simultaneously recorded
through two pairs of electrodes (Ag-AgCl) attached to the top-bottom side and
right-left side of the right eye.

Recorded EEG signals are calculated by four ICA algorithms; FastICA,
AMUSE, NG-FICA, JADE. In order to calculate independent components, we
must clip EEG signals into specific size (We call clipping EEG signals “window-
ing”). Therefore, in this paper, there are 6 size windows in following.

1. Window A: -999[ms] ∼ 1000[ms]
2. Window B: -499[ms] ∼ 500[ms]
3. Window C: -349[ms] ∼ 350[ms]
4. Window D: -999[ms] ∼ 0[ms]
5. Window E: -499[ms] ∼ 0[ms]
6. Window F: -349[ms] ∼ 0[ms]
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0[ms] indicates starting point of saccade, and minus means the time before sac-
cade. In these windows, there are two categories; Window A ∼ C include EEG
signals after saccade and window D ∼ E do not include EEG signals after sac-
cade.

In using four algorithms and six windows, we calculate saccade-related inde-
pendent components.

4 Experimental Results and Discussion

4.1 Results of FastICA

Fig.4 shows the experimental results obtained when a subject moves his eyes
toward a visual target on the right side. These data are processed using the Fas-
tICA against the raw EEG data. The results shown are for Subject A, Trial #1.
Top boxes represent the shapes of reference signals and bottom boxes indicate
the amplitude of the ICs obtained by using the FastICA. The horizontal axes in
these graphs represent the time course, where 0 [ms] indicates the start point of
eye movement.

The results show that the amplitude of the signal obtained by the FastICA
is sharply changed just before eye movements. The shape of the IC resembles
the shape obtained with the ensemble averaging method (See Fig.3 and 4). The
IC which has a peak just before eye movements bears a resemblance to the
features of ensemble averaging in respect to the time when the potential incurs a
sharp change. In the case of all subjects and trials, this component is extracted.
Therefore, we conclude that this pre-movement component is related to the
saccade-related EEG signals.
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4.2 Extraction Rate

We will determine how many the saccade-related ICs are obtained by using four
ICA algorithms.

We make assumption that saccade-related IC has one big peak from -50 [ms]
∼ -1 [ms]. The peak-amplitude n is larger than 3; n = x̄−µ

s ; where x̄ is a mean of
EEG potentials during 1000 [ms] before a saccade, µ is a maximum amplitude,
and s is the standard deviation during 1000 [ms] before saccades.
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Table 1. Extracted rate by four ICA algorithms

AMUSE FastICA NG-FICA JADE
Right Left Right Left Right Left Right Left

A 24% 4% 100% 96% 29% 36% 100% 100%
B 12% 20% 84% 80% 16% 16% 92% 96%
C 36% 24% 92% 96% 8% 32% 88% 100%
D 32% 28% 96% 100% 20% 52% 96% 100%
E 20% 28% 96% 92% 28% 40% 96% 96%

Ave. 22.8% 93.2% 27.2% 96.4%

Table 1 represents the rate for extracting saccade-related ICs from the raw
EEG data by each algorithm. The extraction rate is defined by ratio:
(the number of trials in which saccade-related IC are extracted)
/ (The total number of trials).

In the AMUSE, the lowest rate was 4%. However, the rate for most of the
subjects was over 20% and the highest rate was 36%. The average rate was
22.8%. In the FastICA, the lowest rate was 80%. However, the rate for most of
the subjects was over 90% and the highest rate was 100%. The average rate was
93.2%. In the NG-FICA, the lowest rate was 8%. However, the rate for most of
the subjects was over 20% and the highest rate was 40%. The average rate was
27.2%. In the JADE, the lowest rate was 88%. However, the rate for most of
the subjects was over 90% and the highest rate was 100%. The average rate was
96.4%.

From these results, the FastICA and JADE yield good performances of ex-
tracting saccade-related independent components. Calculation time in Fast ICA
is faster than calculation time in JADE[4]. Therefore, in this case, Fast ICA is
the best in order to extract saccade-related ICs.

Next, we focused on the extracting rates in each windows (See Table 2). From
Table 2, the windows not including EEG signals after saccade and the windows
which has small window size had better extracting rates.

In the case of the windows including EEG signals after saccade, noise by
saccade interfered with extracting of saccade-related ICs because amplitude of
noise by saccade had very huge amplitude against the amplitude of another EEG
signals.

Table 2. Extracted rate by six window size

FastICA JADE
-999 ∼ 1000 [ms] 37.2% 38%
-499 ∼ 500 [ms] 29.6% 27.2%
-349 ∼ 350 [ms] 22.4% 26.4%
-999 ∼ 0 [ms] 90% 93.6%
-499 ∼ 0 [ms] 93.2% 96.4%
-349 ∼ 0 [ms] 99.4% 99.2%
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In the case of the windows which had a small window size, EEG signals
cut by small windows included the small number of independent components.
Therefore, it was easy to extract saccade-related ICs.

5 Conclusion

This paper presents the extraction rate of saccade-related EEG signals by four
ICA algorithms and six window sizes. In terms of extracting rates focused on
ICA algorithms, the JADE and Fast ICA have good results. The reason why the
AMUSE and NG-FICA do not have good results is unknown. In the next step,
we must check the reason why the AMUSE and NG-FICA do not have good
results is unknown.

As results of the extracting rate focused on the window sizes, the window
F (-349[ms] ∼ 0[ms]) have good results. In the case of the windows A, B, and
C, EEG signals cut by small windows include the small number of independent
components. Therefore, it is easy to extract saccade-related ICs in the case of
small window size.
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Abstract. The potential market of robots that can helpfully work at home is in-
creasing, and such robots are required to possess force and tactile sensors achiev-
ing dynamic and cooperative interactions with their users. Virtual realization of
force/tactile sensors in robots, using user’s biological signals such as EMG and
postural information, is a versatile solution allowing high spatial resolution and
degrees of freedom. In this paper, however, we first show the virtual force sens-
ing approach does not work for a three-dimensional cooperative task in which
the user is requested to move a load by an upper-limb of the user cooperatively
with the robot, and discuss about inevitable problems. We then propose to apply
policy gradient learning to overcome the problems, and demonstrate preliminary
but promising learning results.

1 Introduction

The potential market of robots that can helpfully work at home is increasing due to, for
instance, the aging population combined with a diminishing number of children. Such
robots are required to possess not only visual and auditory perception but also force
and tactile sensors achieving dynamic and cooperative interactions with their users. If
this technology is established, the humans’ affinity for welfare, livelihood-support and
entertainment robots could be greatly increased. The force/tactile sensors have been
usually realized by mounting force/tactile sensors over the robot’s body (e.g., [1] [2]).
The use of such an approach, however, is generally limited because of low spatial res-
olution, small degrees of freedom (DOF) of each sensor, complicated wiring, necessity
of repairing, and so on. In contrast, Tamei, et al. proposed an approach whose key is the
virtual realization of force/tactile sensors in robots by user’s biological signals such as
EMG and postural information [3]. More specifically, under a condition that a user and
a robot are physically interacting, the force vector exerted by the user to the robot is esti-
mated and transferred to the robot controller, which works as virtual force sensing. They
further demonstrated a cooperative holding task in which the user is requested to move
a heavy load by an upper limb of the user cooperatively with the robot vertically, armed
with one-dimensional virtual force sensing perpendicular to the back of the user’s hand.
A natural extension of this work is to make the sensing and interaction more compli-
cated. We then had tried three-dimensional cooperative holding task. It, however, was
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found that the accuracy enough for the three-dimensional cooperative task could not be
achieved by a linear function estimator, even if the enough accuracy was achieved. One
possible reason could be the function approximator for virtual force sensing. In [3], a
simple linear function was employed. One would argue that employing nonlinear ones
could solve this problem. They, however, made sure that the performance of the linear
function approximator was as good as nonlinear ones, and it was even good enough
for the test dataset in the calibration procedure. Instead, there could be two inevitable
problems on this matter. First, EMG patterns can be different between in the calibra-
tion stage and in the actual task, because closed-loop feedback systems can be different
between in the calibration stage using real force sensing and in the actual task using
virtual force sensing. Second, the muscle coordination can vary due to, for instance,
fatigue. Therefore, in this study, we introduce reinforcement learning because it can
make the robot controller adaptive to the changes in the EMG pattern and the muscle
coordination in an on-line fashion without an explicit teacher signal, e.g., force sensor
output, and conduct experiments in which a subject moves a heavy load to a specified
target point cooperatively with a robot. Experimental results demonstrate the feasibility
of our method.

This article is organized as follows. The next section describes our approach. Section
3 first shows a simple application of the virtual force sensing to the three-dimensional
cooperative hold task does not work. Section 3.3 then describes an application of policy
gradient learning to this task and demonstrates its feasibility. Section 4 concludes this
study with a future direction.

2 Approach

To achieve the three-dimensional cooperative holding task, accurate estimation of the
three-dimensional force vector exerted by the user’s hand is required. It, however, ap-
pears inherently difficult because (1) EMG patterns can be different between in the cal-
ibration stage using real force sensing and in the actual task using virtual force sensing,
and (2) the muscle coordination can vary. One could argue that some on-line learning
of a function approximator would help. It, however, cannot be employed in our study,
since an actual force sensor which provides a teacher signal for the learning is not al-
lowed to use in the actual task. Therefore, we introduce reinforcement learning because
it enables the robot controller to be adaptive to the changes in the EMG pattern and
the muscle coordination in an on-line fashion without an explicit teacher signal. Fig. 1
illustrates our approach to applying of reinforcement learning to a cooperative interac-
tion with a robot. The general goal of policy optimization in reinforcement learning is
to optimize the policy parameters so that the expected reward is maximal. There are
two conditions for applying reinforcement learning in our approach. First, a computer
agent and a user should share the same goal represented as a reward function. Second,
the environment should include the user; Not only the robot’s state but also the user’s
state should be observed as much as possible. If these conditions are satisfied, the whole
process would be well-approximated as an Markov decision process (MDP) which can
be solved by reinforcement learning. There have been a couple of related studies that
apply reinforcement learning for the interaction between a robot and a human [4] [5].
These studies, however, did not deal with or focus on physical interactions.
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Fig. 1. Reinforcement learning of cooperative interactions with a robot

3 Experiments

In this section, we first describe experimental setup. Then, experimental results of the
cooperative holding task are presented and discussed. Finally, we investigate whether
policy gradient learning can overcome the problem of the task.

3.1 Experimental Setup

Fig. 2 depicts the experimental setup. As shown in this picture, a user was requested to
move a heavy load using one arm and hand with a robot in a cooperative fashion. The
system was comprised of a robot, a surface electromyograph and an optical motion cap-
ture device. EMG signals and markers’ positional information were sent to the standard
PC for controlling the robot in real time. The robot was an industrial six-DOF ma-
nipulator, PA10 (Mitsubishi Heavy Industries, Ltd.) which possessed no force sensors.
EMG signals were measured by a compact-electromyograph BA1104 with active-type
electrodes and the telemeter unit TU-4. Both devices are Digitex Laboratory Co., Ltd.
The motion capture device was Mac3D system (Motion Analysis Corp.). The EMG sig-
nals were input to the A/D converter of Mac3D. The sampling frequency was 200 Hz
for both the EMG signals and the motions. The control frequency for PA10 was also
200 Hz.

The muscles each at which EMG was recorded were Deltoid-clavicular part (DELC),
Deltoid-acromial part (DELA), Deltoid-scapular part (DELS), Biceps brachii long head
(BB), Pectralis major Clavicular head (PM), Triceps brachii lateral head (TB), Flexor
carpi radialis (FCR) and Extensor carpi radialis longus (ECRL) (Fig. 3(a)). Six markers
for motion capture were attached on the left shoulder, right side of the shoulder, elbow,
wrist, and the back of the hand (Fig. 3(b)). The controlled joints of PA10 were θR1, θR2,
θR3 and θR4, as shown in Fig. 4.

3.2 Cooperative Holding by Virtual Force Sensing

In this study, we first attempted to extend the work of Tamei, et al. [3] in which one-
dimensional cooperative holding task was achieved by virtual force sensing. Virtual
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Fig. 2. Example view of the experiment

(a) Front view (b) Side view

Fig. 3. Electrodes and markers in the experiment

force sensing basically assumes the situation where a user and a robot are physically in-
teracting, and estimates the force exerted by the user using the user’s biological signals
without real force sensors. We developed three-dimensional version of the cooperative
holding task in which the user was asked to use only its right upper extremity. Fig. 4 is
an overview of this task. For this task, we developed a three-dimensional force-vector
estimator as follows. The applied force to the user’s hand, fest(t) ∈ R3×1, was lin-
early estimated based on EMG signals m(t) ∈ R8×1 were preprocessed by full-wave
rectification and low-pass filtering (cutoff frequency of 3.6 Hz), subject’s joint angle
vector θ ∈ R5×1 consisting of three-dimensional rotation of shoulder, on-dimensional
rotation of both elbow and wrist, which were calculated from the captured motion in-
formation, as,

f est(t)
T = [θ(t)T , θ̇(t)T , θ̈(t)T , m(t)T , m(t − 1)T , · · · , m(t − 29)T ,1T ]T W . (1)

Parameters in W ∈ R256×3 were obtained by fitting to the data acquired when the sub-
ject moved the load cooperatively with the robot using a force sensor in the calibration
stage. We used EMG signals with 30 tapped-delay lines corresponding to the period of
150 ms so that a suitable filter for each task would be learned. The reason is that it is
known that there is a delay between an EMG signal input and the corresponding muscle
contraction, and that the delay time varies to the muscle shortening velocity [6].

Fig. 4. Overview of the experiment
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In the calibration stage, the force was measured by a force sensor and was used for
controlling the robot. In one trial, the force and motion were recorded for 40 seconds,
and ten trials of data were collected in total. We confirmed that the trained linear esti-
mator was well-generalized for the data, which was a part of the collected data, through
the validation test with the training and test datasets. Fig. 5 shows the performance for
the test data. Root-mean-square (RMS) errors in each direction were 0.699, 0.561 and
0.750 [N], respectively.

The dynamics of the robot hand in the each-direction is given by

MRp̈R(t) + CRṗR(t) + KRpR = A(f inp(t) − fu), (2)

where MR, CR, KR and A are the mass, viscosity, spring properties set to the robot hand
and the amplification constant, respectively. We set these four parameters to 0.2 [kg],
1.0 [N · s/m], 0.1 [N/m], and 2.0, respectively. pR = [xR yR zR]T is the Cartesian
coordinates of the robot hand. The desired velocity of the robot hand ˆ̇pR was determined
by the difference between the target value of the force applied to the subject’s hand, fu,
and the force input to the controller, f inp(t). We assumed to be fu = [0 0 − M

2 (g+z̈)]T

and set M = 2 [kg]. g and z are the gravity acceleration and the z-coordinate of the

load, respectively. The angular velocities, ˆ̇θR1, ˆ̇θR2 and ˆ̇θR3, sent to the robot for control,

were calculated as [ ˆ̇θR1
ˆ̇
θR2

ˆ̇
θR3]T = J(θR)−1[ˆ̇xR

ˆ̇yR
ˆ̇zR]T . and θ̂R4 was obtained by

θ̂R4 = −θ̂R2 − θ̂R3, so that the robot hand be kept horizontally.
Fig. 6 presents an example result in which the experiment was conducted as

f inp(t) = f est(t). The top panel shows the changes of the estimated force applied
to the subject’s hand, fest(t). The second to the bottom panel show the trajectory of the
load with the target points indicated by circles, in each direction. These figures show
that the load could not be moved to the target points successfully even though the vir-
tual force estimation was good enough for the test dataset in the calibration procedure,
cf. Fig. 5.

3.3 Policy Gradient Learning of the Cooperative Holding Task

As discussed before, our desire was to achieve an accurate three-dimensional cooper-
ation holding task. Because no explicit teacher signal could be given, this problem is
formulated as a reinforcement learning problem. The overview of reinforcement learn-
ing of the task is illustrated in Fig. 7. The computer agent observes the user’s EMG and
motion signals and optimizes the policy a as the additional term to the estimated force.
That is, the force input to the impedance controller (cf. Eq. (2),) is calculated by

f inp = fest + a. (3)

As stated in Section 2, the user and the robot should share the same goal. For this, the
task was redefined as a reaching task, i.e., the user and the robot was requested to move
a load cooperatively to a specified location in specified time. That is, the spatiotemporal
specification was the shared goal.

We employed the on-line version of GARB algorithm [7] for reinforcement learn-
ing. The on-line GARB is a policy-gradient method which is suitable for robot learning
problem. The advantages of the policy gradient method are that the policy represen-
tation can be chosen so that it is meaningful for the task and can incorporate domain
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Fig. 5. Validation of the linear estimator
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Fig. 6. Results of the 3D cooperative holding
task

knowledge, that often fewer parameters are required in the learning process than in
value-function based methods. In addition, the policy gradient methods can be used
model-free.

The state s ∈ R8×1, policy a ∈ R3×1 and reward r ∈ R were defined as

s ≡ (m, pR, θR), (4)

ai ∼ π(ai|s, wi) = N (ai|µi, σi), (5)

µi =
NEMG∑

j

wijmj ,

σi =
1

1 + exp −wi9
, (i = x, y, z),

r =
1

(2π)2 |Σ|1/2
exp
{

−1
2
(x − d)T Σ−1(x − d)

}
(6)

−γA

NθR∑
k

exp (−θ̈ 2
Rk ) − γEMG

NEMG∑
j

mj , (7)

where wi is the parameter vector which were learned by reinforcement learning. NθR(=
4) and NEMG(= 8) are the number of controlled joint of the robot and the measured
EMG signals, respectively. The reward function consists of three terms; The first term
represents the reaching accuracy in time and space, the second term for smoothness
in robot motion, and the third term for energy efficiency. The first term was a normal
probability density function in which d is the desired load state specified in time ttarget
[s] and the target position in the world coordinates (xtarget, ytarget and ztarget [m]).
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Fig. 7. Implementation of reinforcement learning in the experiment
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Fig. 8. Learning curve obtained in task 1
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Fig. 9. Learning curve obtained in task 2

x is the current load state. Σ is a diagonal matrix whose elements were set to 0.2 and
0.002. mj is the EMG signal of j-th muscle. γA and γEMG are constants balancing the
contribution of the three terms, and both were empirically set to 0.1.

We selected the current EMG signals m for the agent’s state s, based on an offline
analysis; the EMG signals had the largest coefficient of determination responsible for
the force estimation error with linear approximation function, compared to other signals
such as the joint motion and hand tip motion of the subject. The parameters αp and β
for GARB were configured to 10−6 and 0.99, cf., Appendix.

We conducted two tasks seven times (seven episodes). The desired load state d(=
[ttarget xtarget ytarget ztarget]T ) is [2.0 0.2 0.0 0.0]T and [2.0 0.0 0.0 0.2]T in task 1
and task 2, respectively. In each trial, the task was terminated in 2.5 [s].

Fig. 8 and 9 show learning curves, i.e., mean and standard deviation of the accu-
mulated reward over seven episodes, obtained in task 1 and 2, respectively. As shown
in these figures, policy gradient learning of each cooperative holding task was quickly
accomplished.
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4 Conclusion

In this study, a cooperative holding task was first attempted based on the virtual force
sensing approach [3]. The force estimation was achieved by linear function approxi-
mation from the motion and EMG signals of the user’s upper-limb. Although it was
found that this simple linear estimation worked well, even for test data, in the calibra-
tion phase, we found that it did not work in the actual task, probably due to two major
reasons: (1) EMG patterns were different between in the calibration stage and in the
actual task, (2) the muscle coordination varied, e.g., it is known that many muscles con-
tribute to shoulder motion, and that torque vector of each muscle changes dramatically
according to the shoulder posture [8] [9]. We then introduced a policy gradient method,
which is a reinforcement learning method, as it has a possibility to make the robot con-
troller cope with the changes in the EMG pattern and the muscle coordination in an
on-line fashion without an explicit teacher signal. The goal shared by the user and the
computer agent as a reward function was quickly and stably achieved through learning
experiments.

Note that, as stated in section 2, our approach is not confined to the cooperative
holding task. Application of our approach to other tasks such as motor learning and
rehabilitation is our future work.
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Appendix: GPOMDP Algorithm

(1) The agent observed the state st from the environment and take action at based on
probabilistic policy π(at, st, w(t)),
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(2) is given reward rt and observed the next state st+1.
(3) update action selection probability

ei(t) =
∂

∂wi(t)
ln (π(at, st, w(t)))

Di(t) = ei(t) + βDi(t)

b(t) = b(t − 1) +
1
t
(r(t) − b(t − 1))

∆wi(t) = (r(t) − b(t))
w(t + 1) = w(t) + αp∆w(t)

ei(t) and Di(t) are eligibility and eligibility trace. w(t) = (w1(t), w2(t), · · · , wl(t))
is parameters. β (0 < β < 1) and αp are discount ratio of eligibility trace and learning
ratio, respectively.
(4) set a time t forward and return to step (1).
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Abstract. Online artifact rejection, feature extraction, and pattern recognition 
are essential to advance the Brain Computer Interface (BCI) technology so as to 
be practical for real-world applications. The goals of BCI system should be a 
small size, rugged, lightweight, and have low power consumption to meet the 
requirements of wearability, portability, and durability. This study proposes and 
implements a moving-windowed Independent Component Analysis (ICA) on a 
battery-powered, miniature, embedded BCI. This study also tests the embedded 
BCI on simulated and real EEG signals. Experimental results indicated that the 
efficacy of the online ICA decomposition is comparable with that of the offline 
version of the same algorithm, suggesting the feasibility of ICA for online 
analysis of EEG in a BCI. To demonstrate the feasibility of the wearable em-
bedded BCI, this study also implements an online spectral analysis to the resul-
tant component activations to continuously estimate subject’s task performance 
in near real time. 

1   Introduction 

Brain Computer Interface (BCI) technology is a research field that has emerged and 
grown rapidly over the past 15 years [1-2]. The EEG-based BCI system comprises a 
set of EEG sensors and signal processing components that acquire and analyze brain 
activities to directly establish a reliable communication channel between the brain and 
an external device. One of the biggest challenges in an EEG-based BCI system lies on 
the contaminations from pervasive EEG artifacts from eye movements, blinks, mus-
cle, heart, and line noise. Independent Component Analysis (ICA) [3] is a novel sta-
tistical technique that aims at finding linear projections of the data that maximize their 
mutual independence. ICA has been proven to be an effective technique to remove 
various types of artifacts [4]. ICA has also been used to extract informative features 
from the data [1][4-5]. Hill et. al. [7-9], for example, demonstrated the use of ICA in 
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an EEG-based BCI. However, ICA and other signal-processing functions were per-
formed offline on a personal computer in most of these studies, which hinders the 
wearability, portability and practical use of the systems in operational environments. 
Given the recent development of embedded system and signal processing techniques, 
it is now practical to implement these sophisticated algorithms in real-time embedded 
systems for on-line EEG monitoring and/or BCI. This study details the design and 
testing of a near real-time embedded BCI featuring online ICA and spectral analysis 
for continuously monitoring cognitive states of participants performing realistic driv-
ing tasks in a virtual reality-based dynamic driving environment. 

2   Materials and Methods 

2.1   Simulation Dataset 

To test and optimize the online ICA, we first generated simulation dataset by sum-
ming three super-Gaussian and a uniformly distributed white noise signals. 

2.2   Subjects and Driving Task Experiments 

Four subjects participated in a Virtual-Reality (VR)-based highway driving experi-
ment, in which they were instructed to put forth their best effort to keep their lane 
position. An actual automobile was mounted on a 6- DOF Stewart platform, which 
provides translational and rotational movement and vibratory feedback to simulate 
actual driving conditions. The 360o projection of driving scenery is updated synchro-
nously with deviations caused by wheel/paddle movement by the subjects or by road 
conditions. Every 3-7 seconds the car was linearly pulled towards the curb or into the 
opposite lane, with equal probability. Subjects were instructed to compensate for the 
drift by steering a vehicle wheel. The EEG data were recorded at Fp1, Fpz, Fp2 and 
midway between Fpz and nasion, referentially against a right-mastoid reference by a 
Neuroscan amplifier. The EEG data were sent to a PC or a miniature embedded BCI 
for further analysis. Driving performance was measured by the distance of lane devia-
tion, which was small when the subject was alert, and vice versa. The driving parame-
ters (lane position and wheel rotation) were in sync with the EEG acquisition system. 

2.3   Independent Component Analysis 

Given a N-dimension data vector X(t)=[χ1(t), …, χN(t)]T observed at each time point, 
the goal of ICA is to find a linear  unmixing matrix such that the unmixed compo-
nents,  Y(t) [y1(t), …, yN(t)]T of the linear transform, Y(t)=WX(t), of are statistically 
independent. The ICA methods were extensively applied to blind source separation 
problem since 1990s [3]. 

Figure 1 shows the flowchart of ICA. The observed data matrix was first processed 
by “centering” to remove the means of each variable (rows of the data matrix). After 
centering, whitening transformation was used to make the zero-mean time series un-
correlated and having equal variances. The resultant data were then decomposed by 
“infomax” ICA [10]. 
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Fig. 1. The flowchart of the “infomax” ICA algorithm 

2.4   Online Independent Component Analysis Implementation 

ICA was successively applied to EEG data of 5-sec (320-points) windows with a 3-
sec (192-point) overlap. Figure 2 depicts the differences between offline and online 
ICA methods. To ensure the near real-time ICA processing, we limited the numbers 
iteration and the convergence tolerance of training weights in the infomax algorithm. 
To test the effects of these parameters on training time and performance, we stopped 
the ICA training when the weights changes are less than, 0.00002 (setting 1), 0.0002 
(setting 2), and 0.002 (setting 3). 

2.5   Moving-Average Power Spectral Analysis 

Moving-averaged spectral analysis of the EEG data was accomplished using a 64-
point Hanning-window with 25% overlap. Windowed 32-point epochs were extended 
to 64 points by zero-padding. Median filtering using a moving 3-s (192-pt) window 
was used to further minimize the presence of artifacts in the EEG records. 

Data

ICA(Window:5s , Overlap :3s)

Times….....

ICA

Times

Data

Offline 

Online 

Every 2s  updates  ICA  result2s

5s

3s

 

Fig. 2. Comparison of offline and online ICA implementations 
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The moving-averaged EEG power spectra were further converted to a logarithmic 
scale prior to further analysis. Logarithmic scaling linearizes the expected multiplica-
tive effects of sub-cortical systems involved in wake-sleep regulation on EEG ampli-
tude [11]. Several studies have reported that EEG power spectra at theta (4~7Hz) 
band [12-13], and/or alpha power (8~12) band [14-15] were associated with human 
drowsiness, and the relationship between EEG log power and subject task perform-
ance was largely linear. We thus used the resultant alpha and theta log power time 
series at 2-sec step in this study. Figure 3 illustrates the spectral analysis. 

The time series of recorded behavior data (driving performance measured by the 
distance of lane deviation) and alpha & theta log spectra were smoothed using a 
causal 90-s square moving-averaged filter advancing at 2-sec steps to eliminate vari-
ance at cycle lengths shorter than 1-2 minutes since driving performance becomes 
erratic at cycle lengths of 4 minutes and longer [12-13]. The correlation coefficients 
between the smoothed subjects’ driving error and the subband log power spectra of all 
ICA components at each frequency band were calculated to assess the relationship 
between subject task performance and EEG log spectra. 

 

Fig. 3. Moving Average Power Spectrum for ICA components 

2.6   Embedded Brain Computer Interface System 

To be practical for operational environments, the BCI must be light-weight, portable, 
wearable and battery-powered. We developed a portable and wearable embedded BCI 
platform (as shown in Figure 4) accommodating the online ICA and signal processing 
methods mentioned above. The core processor selected for this BCI system platform 
is ADSP-BF533 by Analog Devices Inc. The maximum high performance of BF533 
processor can reach 600MHz. It has two 16-bit MACs, two 40-bit ALUs, four 8-bit 
video ALUs, and 40-bit shifter. Besides the Blackfin processor, the embedded BCI 
system platform includes: 

 16 MB SDRAM (64M x 16 bits) and 4 MB FLASH memory 
 RS-232 serial interface 
 6 keypads and 240 by 320 pixels LCD 
 JTAG interface for debug and FLASH programming 
 Bluetooth transceiver module 
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Fig. 4. The Picture of DSP Platform (Dimension: 64 x 45 mm2) 

3   Experimental Results 

3.1   Experimental Results in Simulation Dataset 

Figure 5 shows the original simulated source and mixture signals. Figures 6-8 show 
the results of the offline ICA, online ICA on a PC and online ICA on the embedded 
DSP platform, respectively. The resultant component activations from 3 implementa-
tions were very comparable (Pearson correlations all above 0.87). 

Table 1 shows the effects of ICA training stopping parameter (weight changes) on 
the convergence iteration and time. Figure 9 shows the resultant component activa-
tions an obtained with different settings (0.00002, 0.0002, and 0.002). As can be seen, 
the results are very comparable (Setting 1 vs 2, r = 0.87-0.995; Setting 1 vs 3, r = 
0.94 – 0.98). 

 
(a)                                                                         (b) 

Fig. 5. (a) The simulated sources of Gaussian signals, (b) random mixing signals 

Table 1. The Experimental Results of Online ICA 

Online ICA weight change in 1 min data Setting 1 
0.00002 

Setting 2 
0.0002 

Setting 3 
0.002 

Average Process Time 10.26s 3.78s 0.7s Simulated 
Signals Average Iteration Cycles 47 18.7 3 

Average Process Time 8.78s 3.29s 0.77s Real EEG 
Signals Average Iteration Cycles 48.86 17.89 3.64 
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 (a)                            (b)                                   (a)                                 (b) 

 

 

 
     (a)                                (b) 

Fig. 8. Experimental Results of Online ICA Implementation in the DSP Platform, (a) Four 
Sources of ICA Components, (b) Power Spectra of the Component Activations 

3.2   Subject Performance Estimation by Using the Embedded BCI 

In this study, ICA and moving spectral analysis implemented on the wearable embed-
ded BCI were continuously applied to the ongoing EEG while the participants were 
performing lane-keeping driving tasks. Table II shows the correlation coefficients 
between the smoothed time series of and subject driving performance and the theta 
and alpha power of most task-performance-related components. The correlations, in 
general, were very high, consistent with our previous results [11] using a PC as a BCI 
platform. 

Fig. 7. Experimental Results of Online ICA 
Implementation in a PC, (a) Four Sources of 
ICA Components, (b) Power Spectra of the 
Component Activations 

Fig. 6. Experimental Results of Offline ICA 
Implementation in a PC, (a) Four Sources of 
ICA Components, (b) Power Spectra of the 
Component Activations 
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(a)                                                                (b) 

Fig. 9. (a) Four component activations in setting 2 over-plotted in setting 1 (red). (b) Four 
component activations in setting 3 over-plotted in setting 1 (red). 

Table 2. The Correlation Results of Four Subjects 

Subject S1 S2 S3 S4 

Theta 0.7316 0.8978 0.1835 0.8506 
Offline 

Alpha 0.019 0.8686 0.8271 0.3693 

Theta 0.8395 0.7574 0.4728 0.6952 
Online 

Alpha 0.6848 0.7527 0.7823 0.4621 

4   Discussions and Conclusions  

The unavailability of a BCI capable of online signal processing and artifact correction 
or separation has long limited the use of BCI in operational environments. This study 
implemented a moving-windowed online ICA and spectral estimation on a miniatur-
ized, battery-powered and light-weight embedded BCI. Our empirical results showed 
that the efficacy of online signal separation was comparable to that of the offline 
implementation. The remaining issue is to develop an algorithm to automatically 
select the performance-related independent component(s).  

In conclusion, this study demonstrated the feasibility of online signal processing 
and source separation on a wearable miniature embedded BCI. This demonstration 
could lead to a practical wearable BCI for the monitoring of the brain functions of 
unconstrained participants performing normal tasks in the workplace and home. 
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Abstract. This paper describes the design automation issues and techniques 
used to design a massively parallel processing platform – SpiNNaker – from a 
hardware and systems design perspective. The emphasis of this paper is ad-
dressing the key problem of resource mapping, where multiple threaded pro-
grams are to be targeted onto a hardware platform that consists of multiple 
ARM cores and other resources such as memory and networks. In addition, the 
design environment is considered to ensure that a designer can program applica-
tions onto this environment in a practical manner. 

1   Introduction 

SpiNNaker is a massively parallel multi-core computing engine, consisting of a vast 
array of ARM cores and a fast interconnect fabric. Although strictly a clocked system, 
each ARM core is effectively decoupled from its peers, and individual processors 
communicate with each other by means of packets; a packet incident upon a processor 
causes an interrupt which handles the packet. The system has been designed to sup-
port the real-time simulation of large aggregates of spiking neurones. The develop-
ment strategy is coarsely incremental, but the final goal is to be able to simulate ag-
gregates of a billion neurones, where each of a million processors is supporting the 
emulation of a thousand neurones. 

Various aspects of the system (physical architecture and interconnect fabric, neural 
and synaptic models) have been described in detail elsewhere 1.2.3. The overall struc-
ture of the system is shown in figure 1. This paper describes some of the problems 
associated with mapping the abstract neural connection topology (which may, but is 
not required to be, three dimensional) onto a physical two dimensional array of proc-
essors. The requirements are highly analogous to the automated place and route 
(APR) problem experienced in chip design, and the evolution of those problems al-
most identical. In the world of IC design, components representing the realisation of a 
circuit (transistors, resistors, vias and so on) have to be laid out on a two dimensional 
silicon die, and then the geometry of the interconnect defined. In the early days of IC 
design, this could be done by hand, but as the size and complexity of systems grew, 
design automation - initially a luxury - became a necessity. Today, it is simply not 
possible to lay out a state-of-the-art IC (5mm x 5mm die, feature size O(100nm)) by 
hand. So it is with SpiNNaker: the neural systems we wish to simulate are vast to-
pologies of interconnected neurones, which have to be mapped onto our array of 
processors. The situation is actually worse than in the electronic counterpart: in  
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electronic designs, design automation tools and techniques capitalise heavily on a 
hierarchical input description, an advantage that is largely denied us in the current 
problem domain. This paper describes the development strategy for a suite of APR 
tools designed to be used to load the SpiNNaker data structures with large (O(109)) 
interconnected neurones. 

2   The Hardware Platform 

2.1   The Chip 

The internal architecture of the SpiNNaker chip is depicted in figure 1. Each chip 
contains 20 ARM processors (with a small amount of local memory in a Harvard 
configuration) and 6 bi-directional inter-chip link ports. These are interconnected by 
an on-chip network. External interfaces are also provided to a single bank of chip-
local DRAM and Ethernet. 

The chips themselves are connected (via the inter-chip link ports) in a hexagonal 
mesh, mapped onto the surface of a toroid. This conveniently avoids edge effects, 
although it requires that the notion of geometric hop distance be handled rather care-
fully. However, this particular design decision is one of the more easily overturned: 
The economics of getting silicon right first time are significantly different to changing 
the inter-chip layout on a PCB. 

Neurones are mapped statically onto an individual ARM processor, and the internal 
state of the neurones mapped onto each die is held in the associated DRAM. When a 
spike arrives at a processor, it fetches the state of the relevant neurone from the 
DRAM, processes the incoming spike, updates the state of the neurone in the DRAM 
and may broadcast spikes of its own. 

 

Fig. 1. A single SpiNNaker node internals 
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3   Place and Route 

3.1   A Traditional Methodology 

The APR problem is conventionally broken down into the sub-problems of place-
ment, global and detailed routing.  

3.1.1   Placement 
Placement (in the context of SpiNNaker) involves choosing a mapping between the 
neurones of the abstract topological circuit and the fixed geometry of the processor 
array. This placement is only weakly influenced by the properties of the interconnect.  

 Neurone aggregate 

SpiNNaker array 

 

Fig. 2. Fascicle mapping 

3.1.2   Routing 
The routing problem is concerned with finding a route between a set of points, round 
a set of obstructions (placed modules) on a two-dimensional plane. The routing prob-
lem is generally decomposed into global and detailed routing, the difference being the 
granularity of the analysis.  

Routing algorithms are even more diverse and numerous than placement, and offer 
the usual spectrum of reliability and quality-of-solution vs. speed. One of the earliest - 
and possibly most versatile - is a graph-searching algorithm, known as Lees'  
maze-runner 6. The algorithm can be used at arbitrary levels of granularity, and is 
guaranteed to find a solution for a given single route if it exists. On the other hand, it 
is relatively slow, and the overall success in finding a solution for a set of routes is not 
guaranteed. Numerous enhancements to reduce memory footprint and runtime exist, 
but the algorithm in its simplest form is widely applicable to all manner of graph-
searching problems. 
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3.2   SpiNNaker-Specific Issues 

The APR problem in the context of the SpiNNaker system may be summarized by 
figure 2: a fragment of circuitry, comprising six neurones, is to be mapped onto the 
fixed array of processing nodes. Each node can accommodate around 1000 neurones. 
Having decided upon this mapping, the routes (the sequences of nodes between 
source and target) must be established, and the routing tables defined in each node. 
What is different about the SpiNNaker context? 

3.2.1   Data Size 
Conventional processing speeds have increased by many orders of magnitude over the 
past few decades, but even this is not enough to overcome polynomial complexity in 
an algorithm when the input datasets become large. APR of electronic circuits con-
taining a billion components is feasible today in reasonable timescales, but these cir-
cuit descriptions are highly hierarchical, the decomposition being determined and 
fixed by human input. 

The discussion of where we actually get (meaningful) circuits of a billion neurones 
has yet to be published, but irrespective of whether these circuits are generated semi-
automatically or stochastically generated, the APR task will be formidable. 

● 32 bit machines can only address four billion memory locations; it will not 
be possible to even hold (let alone process) the entire datastructure at one time in an 
APR machine. 
    ● Even O(n3) algorithms - generally considered to be acceptable for APR prob-

lems - will be unusable. 
The unavoidable outcome of these points is that aggressive hierarchical decompo-

sition of the neural aggregate descriptions is an absolute necessity. 

 
 

S 1 2

3

4

T

Route 
inflection 

 

Fig. 3. Chip level SpiNNaker interconnect 

3.2.2   Chip Level Topology 
The SpiNNaker chips have been designed with six bidirectional I/O ports each, lend-
ing themselves naturally to a hexagonal placement on a two-dimensional plane. Six  
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links were chosen to support a measure of fault tolerance in the final system, by pro-
viding a simple triangular bypass to each link if one fails. Identifying opposing edges 
of the array of chips folds the system naturally onto a toroid. 

Point-to-point packet routing only requires routing table entries in certain nodes. 
Consider figure 3: a packet is to be sent from node S to node T; the route has been 
chosen to be S-1-2-3-4-T. The only nodes that require a routing table entry are S (this 
is from me), 2 (turn a corner) and T (this is for me). Packets incident on nodes with no 
corresponding routing table entry are simply passed through in a 'straight line' - the 
default route. 

Force K-L 
down one 

level 

Input neural 
netlist 

Neurone to 
fascicle map 

Output routing 
tables and 

SDRAM maps 

Try each 
route in 

turn 

Input 
SpiNNaker 
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connectivity 

density 
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Build routing 
tables 

OK?

OK?

no 

no 

yes

fb2

fb3

fb4

(Force-directed)

Force K-L 
down one 

level 

 

Fig. 4. APR heuristic 

It is necessary to define some terminology before going further: A fascicle is the 
collective noun for a set of neurones. Other than to note that no neurone can be a 
member of more than one fascicle, the term defines nothing about any connectivity. 
There is an implication (and an efficiency assumption) that the neurones in a fasci-
cle share common input fascicles (probably sparsely connected) and common out-
put target fascicles (again, probably sparsely connected). There is no implication 
that they are interconnected with each other, though they can be (or not). However, 
none of this is required - it just makes the datastructure packing more efficient if it 
holds. 
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3.3   The Framework 

A Fascicle Processor is a single physical ARM core on a SpiNNaker chip. It may be 
host to zero, one or more fascicles in the simulation process. The intention is that of 
the n ARM cores on a chip, n-1 will be Fascicle Processors. (The other ARM will be 
used for housekeeping functions.) 

The overall APR structure is fairly conservative, and outlined in figure 4. It is a 
heuristic; the size of the datasets makes iteration a very expensive operation, and so 
the design intention is that a neural circuit will pass through the design flow only 
once. Feedback of any kind is to be avoided, but if this is not possible, the feedback 
loops have been arranged in order of computational expense: 

fb1: Should never be necessary anyway. 
fb2: Is cheap and may never even be necessary - see later. 
fb3: Is cheap, but the usefulness is dubious. 
fb4: The Loop of Last Resort: expensive, but allows the system to expand onto un-

used SpiNNaker chip sites if any exist. 

3.3.1   Neurone to Fascicle Mapping 
Here we take the input neurone circuit (figure 2, for example), and partition it be-
tween the Fascicle Processors. In outline, the algorithm - based on the Kernighan-Lin 
partitioning scheme 7 - is as follows: 

 
1. The input graph G is bisected randomly (in terms of synapse count) into two 

subgraphs, A and B. (These are potential fascicles - we note that, in general, each 
will be far too big to fit into a single SDRAM, certainly for the first few recur-
sion levels of the algorithm). 

2. Define some size limit, h, corresponding to the approximate capacity of a Fasci-
cle Processor. 

3. Find the neurone (in A or B) that (a) is unflagged, and (b) that would make the 
biggest improvement (which may, actually, be the smallest degradation) to the 
penalty function d() if it were to be moved to the opposite subgraph. 

 If ∆d() is an improvement, and does not violate the fascicle size limit h, then 
{move it and flag it, return to the start of step 3} 

 // Only here if the best ∆d() is actually a degradation 
 If it was the first attempt (i.e. no neurones are flagged) then stop, else clear flags 

and return to the start of step 3. 
4. Recursively apply step 3, replacing G with A and B at each level. The size of G 

will (approximately) halve at each recursion level; a recursive branch can termi-
nate when h < SDRAM size (i.e. we have created a fascicle that will fit into a 
node SDRAM). 

 
The nature of the penalty function, d(), is worthy of some comment. In the tradi-

tional (electronic) context, it will represent the number of interconnects that cross the 
subgraph partition (i.e. pass between A and B). Here, however, because of the way the 
data is packed into the SDRAM, we are not attempting to minimise the cut intercon-
nects, we are attempting to even out the density of fascicle-fascicle interconnect. In 
essence, we look at each neurone in turn (subject to the restrictions in step 3 above), 
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and see what effect would be had on the cut-line count if it were to be moved to the 
opposing subgraph. The neurone that is chosen is the one that minimises the total 
standard deviation of the cut-line counts. 

3.3.2   SDRAM Data 
The output from the algorithm of the previous section is a set of bitmaps, which rep-
resent the connectivity of the neural circuitry, plus the state. These are loaded into the 
SDRAM of figure 1. 

3.3.3   Fascicle to Fascicle Processor Mapping 
Having partitioned the neural network into fascicles, it is now necessary to map these 
onto the individual fascicle processors, as in figure 2. The partitioning achieved by the 
last algorithm simply divided the neural aggregate up into fascicles, but the attributes 
of geometric position were not assigned to the neurones. This is done using a combi-
nation of Lees algorithm and force-directed placement. 

The force-directed algorithm is ideal for this; it has approximately linear complex-
ity and delivers an acceptable placement extremely quickly  

3.3.4   Routing Geometry 
The derivation of the individual packet trajectories over the system is simple. For a 
given point-to-point route, there will be a maximum of six 'shortest' routes (recall that 
the toroidal layout has no edges) and an arbitrary number of longer possibilities. The 
only real selection criterion here is the capacity of the routing tables at the inflection 
nodes. Each route is examined in turn, and that with the lowest line integral of routing 
table occupancy chosen 8. Thus the interconnect route density is kept as even as pos-
sible over the routing surface. 

3.3.5   Routing Tables 
The final step in the process of loading the SpiNNaker ensemble is the generation of 
the data to be contained in the routing tables. A 32-bit source key is input to a 1024 x 
32 bit tristate CAM. Hits are written to a 1024 x 1 bit hit register. All but the most 
significant single bit in this register are discarded, and this single remaining bit treated 
as a 1024 bit 1-hot and passed into an address encoder. This generates a 10 bit binary 
equivalent, which drives a 1024 x 26 bit lookup RAM. The 26 bit word so generated 
consists of a 6-bit nibble and a 20-bit nibble. The 6-bit nibble represents an n-hot 
external link indicator (0-5) to which the packet is forwarded (for example 010110 
would cause the packet to be routed to external links 1, 2 and 4). The 20-bit nibble 
represents an n-hot internal Fascicle Processor address (0-19) to which the packet will 
be forwarded, triggering an interrupt as it arrives. (For example, 
00001000100100000000 will cause packets to go to Fascicle Processors 8, 11 and 15 
on the current chip. It is easy to see how packets may be duplicated by this mecha-
nism. The 1024 x 32 bit tristate CAM is implemented as a 1024 x 32 bit binary CAM 
and a 1024 x 32 bit binary RAM. The RAM simply holds a bit mask indicating the 
position of the "don't cares" in the CAM. The corresponding bits in the CAM will 
actually be '0' or '1', but will never be read.  
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4   Final Remarks 

The design, development and realisation of a customised APR tool suite for the 
SpiNNaker system is a significant undertaking, requiring resources comparable to that 
of the hardware design. Like the hardware, the system is not yet complete, although 
the hope and intention is that the alpha release will coincide with the delivery of the 
prototype silicon. 

The detailed design and development of the SpiNNaker hardware is an extremely 
complicated piece of electronic design, and this naturally makes heavy use of EDA 
tool suites. A simulation model of the chip has been built, but unfortunately (perhaps 
not unsurprisingly) this is unable to cope with the simulation of neural systems of any 
realistic size or complexity. It should be noted, however, that the datastructures re-
quired to support a bespoke behavioural simulator are all present in the tools de-
scribed here; the addition of a behavioural simulation capability is not seen as a vast 
undertaking. 
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Abstract. Real-time modelling of large neural systems places critical
demands on the processing system’s dynamic model. With spiking neu-
ral networks it is convenient to abstract each spike to a point event. In
addition to the representational simplification, the event model confers
the ability to defer state updates, if the model does not propagate the ef-
fects of the current event instantaneously. Using the SpiNNaker dedicated
neural chip multiprocessor as an example system, we develop models for
neural dynamics and synaptic learning that delay actual updates until
the next input event while performing processing in background between
events, using the difference between “electronic time” and “neural time”
to achieve real-time performance. The model relaxes both local memory
and update scheduling requirements to levels realistic for the hardware.
The delayed-event model represents a useful way to recast the real-time
updating problem into a question of time to the next event.

1 Real-Time Neural Networks: The Update Timing
Challenge

Accurately modelling the continuous-time behaviour of large neural networks in
real time presents a difficult computational choice: when to update the state?
Conventional sequential digital processing usually prohibits real-time updates
except on the largest, fastest computers, but dedicated parallel neural network
hardware needs some time model. Broadly, two different architectures have be-
come popular. One, the neuromorphic approach, e.g. [1], circumvents the state
update problem altogether by using continuous-time analogue circuitry - at the
price of hardwiring the model of computation into the system. The other, the
parallel neurocomputer approach, e.g. [2] retains general-purpose digital process-
ing but attempts to use a neural-specific, multiprocessor architecture - with some
loss of speed and accuracy of state update. An ideal approach would combine
the process abstraction capabilities of digital devices with the asynchronous-time
model of analogue devices. SpiNNaker, a chip using event-driven asynchronous
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digital circuitry timed by its input rather than by an instruction clock, makes
this feasible for spiking neural networks having real axonal and synaptic delays,
by abstracting a spike to an event. During the time between events, it is in
effect “outside time”, and can perform necessary background processing with-
out affecting the model update. Having previously demonstrated a basic neural
implementation on SpiNNaker, here we present a general method to maintain
accurate temporal dynamics by deferring pending updates until the next input
event. The method realises a solution to the update scheduling problem that
suggests the possibility of practical large-scale, real-time neural simulation.

2 Deferred Update Dynamics

Real dynamic properties of neural networks allow us to relax the timing re-
quirements dramatically. Most models, whether using temporal [3] or rate cod-
ing [4], [5], assume that the spike timing irrespective of shape determines the
information coding. A typical active neuron fires at ∼10-20 Hz up to a maximum
of ∼100 Hz [6]. Only a small number of a given population of neurons, typically
∼1-0.1%, will be active at any time, with 10% a reasonable upper limit. For a
“typical” neuron containing 5000 dendritic connections with 1% activity, spiking
at 10 Hz, we therefore expect an average input rate of 500 events (input spikes)
per second, requiring an update rate of only 2ms. A worst-case situation: 100k
inputs, 10% activity, 100 Hz firing rate, would require 1µs update rate. These are
leisurely rates for typical digital processors running at hundreds of MHz. With
real neurons having axonal delays, usually of the order of 1-20 ms, if the proces-
sor can propagate the required updates following an event in less time than the
interval between events that affect a given output, it can use that time differ-
ence to defer the event processing until the occurrence of the next event. Simple
time-domain multiplexing [7] is an established approach, but in addition, the
processor can make use of the “dead space” to wait on contingent input events
that may likewise affect the output. By performing temporal reordering of input
events, it can ignore the fine-grained order of inputs. In Fig. 1, axons have finite
delays. The processor schedules the updates, and the neuron can respond to fur-
ther potential future input events with nonzero axonal delays, reordering them
as necessary so that the neuron exhibits the proper dynamic behaviour even with
nondeterministic input order. Delayed event processing thus allows more than
time multiplexing; it decouples the temporal dynamics of the processing system
from the temporal dynamics of the model.

3 Implementation of a Neuron and Synapse on
SpiNNaker

3.1 The SpiNNaker Hardware System

We have developed a universal spiking neural network chip multiprocessor, SpiN-
Naker (fig. 2), to support large scale real-time simulation [8]. 20 ARM968 proces-
sor cores with dedicated 64KB local memory implement neurons and their asso-
ciated dendrites. A large off-chip SDRAM memory device stores synaptic data,
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Fig. 1. Deferred Event Processing. At top is a very simple network, with schematic
event spike trains at the bottom. The spike trains further show time before the current
event (dark regions), time to process the current event (medium regions), and time
when the processor can defer the processing (light regions). Neuron J2 receives inputs
from two other neurons I1 and I2 with delays of 13 ms and 10 ms respectively. Suppose
that the processor performing the modelling can propagate the output in 1 µs. Neuron
I1 fires first in the model, with I2 following close behind it after a 1 µs delay. Thus the
corresponding events arrive at J2 after 1 µs and 2 µs respectively. But because of the
real delays in the model, the processor will not actually need the input from neuron I1
for another 12.999 ms. Thus at 1 µs, it need do nothing with that input event other
than record it. In particular, it can wait for input I2, and when that event occurs at 2
µs, it can schedule its update event 9.999 ms into its future, with the update event for
input I1 still 12.998 ms in the future.
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Fig. 2. SpiNNaker design, showing router, processors, and internal NoC components

made to appear “virtually local” to the processor using an optimised DMA con-
troller in concert with a 1Gb/s internal asynchronous Network on Chip (NoC) [9].
A configurable 6Gb/s per node global asynchronous packet-switching network,
using an on-board source-based associative router together with an event-driven
communications controller, implements axons and the associated connectivity
map [10]. Using the “address-event representation” (AER) format [11], SpiN-
Naker signalling abstracts the neural action potential into a single discrete point
event happening in zero time, a “spike”. An AER packet simply records the
source of the spike (and optionally an extra “payload” data field), to route it to
target neurons potentially distributed over a system of up to 64K chips. Both the
physical and temporal details of SpiNNaker hardware are invisible to the neu-
ral network model, allowing the device to be loaded and configured to support
virtually any model of dynamics with any topology [12].

3.2 Neuron

As a SpiNNaker case study, we have implemented the Izhikevich model [13] neu-
ron because it is simple, instruction-efficient, and exhibits most of the dynamic
properties of biological neurons. Since the ARM968 processor cores contain no
floating-point support, and studies [14], [15], [16] indicate that 16-bit precision
is adequate for most purposes, we represent all variables and parameters with
16-bit fixed-point variables. A 16-element array (fig. 3) represents input stimuli.
Each element, representing a time bin having model axonal delay from 1 ms to
16 ms, carries a stimulus. When a spike packet with a delay of δm ms arrives
at tn ms, the processor increments the value in the tn+δm ms time bin by the
connection weight of the input synapse, deferring the neural state update until
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Fig. 3. SpiNNaker Neuron Binned Input Array. Inputs arrive into the bin corresponding
to their respective delay. Output is computed from the bin pointed to by “Now”.

the global simulation time reaches tn+δm - the time when the input “actually”
arrives. During state update, we extract the accumulated stimulus for the cur-
rent time bin from the data structure of one neuron and pass it along with the
(static) parameters to the two Izhikevich equations, storing the new neural state
values back to the data structure. For each update, we test the value of the mem-
brane potential. If it reaches its reset value, the neuron fires and the processor
will issue a multicast packet including the processor ID and the neuron ID. The
processor maintains real-time accuracy as long as its neurons can be updated
before shifting to the next bin position - nominally 1 ms intervals in our model.

3.3 Synapse

For the synapse, we have used the exponential spike-timing dependent plasticity
(STDP) model [3]. Weight updates exploit the fact that the updated value will
not be required until the input event after the current one. Each source neuron
has an associated “row” in SDRAM containing a time stamp and target-indexed
weight entries only for those target neurons on the local processor with nonzero
weights (fig. 4), permitting a single table lookup per input event to retrieve the
synapse data. For the time stamp we have used a 64 ms two-phase time window
comparable to the ∼ 50 ms experimentally observed STDP time window [17],
permitting 4 ms spike-time resolution within a 32K × 64ms coarse time period,
enough to capture about 35 minutes without time rollover. With the arrival of
an input, we update the time stamp and compute the previous weight update as
follows: Retrieve the synapse row. For each connected neuron, compare its local
coarse time stamp (postsynaptic spiking times) against the retrieved time stamp
(presynaptic activation times). If the coarse time stamp matches, perform the
weight update rule the model specifies, using the fine time stamp. (By coding the
weight update as the power-of-2 bit-position in the fine time stamp, the processor
can compute the update with a series of simple shift-and-add operations). If the
neuron fires, update its local time stamp. If the delayed input time is within a
synaptic window of the current time stamp, place a 1 in the stored (presynaptic)
time stamp at the bit position corresponding to the time offset. Write back the
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Fig. 4. Synapse Data Format. Each of the data words is 32 bits wide. Synapse rows
in global memory have multiple weights and a time stamp word. Weights contain a
16-bit weight field and a 16-bit parameter field. In our experiments we used 4 bits of
the parameter field to represent synaptic delays and 11 to index the target neuron.
Each row in SDRAM has one time stamp (time of last presynaptic event), and each
neuron in local memory a second (time of last postsynaptic spike). The time stamp
has 2 fields, a fine and coarse time stamp. The fine time stamp is bit-mapped into
16 equal time segments with resolution Iw

16
, where Iw is the total length of the time

window, containing a 1 if there was an input activation at that real-time point within
the interval. The coarse time stamp is an integer with a resolution of Iw

φ
, where φ is

a (small) power-of-2 constant representing a time phase within the window Iw. The
model updates this time stamp if a transmission event tnew occurs at tnew−tlast ≥ Iw

φ
,

where tlast is the current value of the coarse time step.

updated synapses and time stamp to memory. The essential timing requirement
is that the update computation takes less time than the time between inputs on
the same synapse.

4 Application to System Modelling

We have created a complete system-level simulation modelling multiple SpiN-
Naker chips using SystemC, and a cycle and ARM Instruction Set accurate
simulation using ARM SoC designer, to verify the design, support early appli-
cation development, and test the overall chip/system behaviour. We calibrated
cycle-accurate SystemC behaviour of modelled chip components against their
Verilog-based simulations used for chip fabrication. We performed case studies
to test the functionality of the chip, the routing fabric, and the system under
various scenarios. To verify the delayed-event model we implemented the Izhike-
vich [13] neural dynamic model using Xin Jin, et al.’s scheme [14] and successfully
tested a small population of neurons (fig. 5). We tested the physical delays of the
neurons in the population to determine the time margin a typical input would
have to complete its processing (fig. 5). According to our simulations the update
time for one neuron is about 240 ns. With 1000 neurons, this corresponds to
a total update time of 0.24 ms - comfortably within the worst-case 1 ms delay
margin even with nondeterministic arrival times. By delaying the state update,
we effectively compress these computations into the time immediately after an
update event, releasing the slack for further processes such as synaptic updating.
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Fig. 5. Neuron spike traces (L) and delay margins (R). Traces are the output response
to delayed inputs. The bars show the time difference between the modelled axonal
delay and the hardware delay, measured from spike packet transmission time to packet
reception time. Worst-case delay margin is 1 ms. Mean delay margin is 7.93 ms.

5 Conclusions

We have developed a model capable of achieving biologically realistic real-time
performance on event-driven neural network hardware, with nondeterministic
signal timing. The deferred-update model permits not only real-time signal tim-
ing resolution but also more efficient processor utilisation, since each processor
can schedule its updates according to the model-time rather than the hardware-
time event sequence. SpiNNaker has three dimensions of configurability, letting
the user specify the topology, processing dynamics, and temporal dynamics ac-
cording to the needs of the model, rather than those of the hardware. Such a
“neuromimetic” system mitigates both against instant hardware obsolescence
and the need to make hard decisions about what neural models to experiment
with in view of the hardware available. It is, perhaps, therefore a more viable ar-
chitecture for future neural systems than approaches that impose hard physical
constraints. Our hope is that SpiNNaker might encourage dialogue between the
biological scientists and the computer scientists, to link phenomenological ob-
servations to behavioural models of computation. Such systems could promote a
two-way flow of learning, discovering on the one hand more about how the brain
functions and on the other new and alternative computing models.
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Abstract. We introduce a processing performance of Particle Swarm Optimiza-
tion with SIDM-oriented Fast Mersenne Twister on the Cell Broadband Engine. 
Extreme-high processing performance is demanded for solving very complex 
optimization problem in a small amount of time. In this research, we verified 
the effectiveness of employing SIMD-oriented Fast Mersenne Twister on the 
Cell Broadband Engine for the processing of Particle Swarm Optimization by 
numerical simulations. 

1   Introduction 

Optimization problem is the problem of finding out the best solution from all feasible 
solutions. Particle Swarm Optimization (PSO) [1], which is a meta-heuristic inspired 
by a swarm of insects or a pod of fish, shows excellent performance for optimization 
problems and has been successfully applied to function optimization [2] and neural 
network training [3]. PSO achieves to search the best solution by using several parti-
cles that represent candidate solutions. PSO has a good feature that the algorithm is 
described by simple equations that update positions of the particles using a pseudo 
random number. However, its computational cost drastically increases according to 
the number of the particles, search dimensions and search trials. PSO requires vast 
amount of calculations including a generation of pseudo random number. The genera-
tion of pseudo random number is very important to the performance of PSO and rela-
tively occupies a large amount of processing time in PSO processing. Thus, a fast 
generation method of the pseudo random number is essential for improvement of PSO 
in aspect of the processing time. 

SIMD-oriented Fast Mersenne Twister (SFMT) is designed for fast generation of 
the pseudo random number using Single Instruction Multiple Data (SIMD) operation 
and multi-stage pipelines of modern CPUs. SFMT generates pseudo random numbers 
extremely fast compared with conventional ones. Furthermore, quality of the gener-
ated numbers is superior as random numbers. In order to bring out the performance of 
PSO with SFMT, a suitable processing unit should be used. In this paper, we propose 
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to apply the Cell Broadband Engine (Cell/B.E.) processor to PSO with SFMT. The 
Cell/B.E. processor is a heterogeneous processor that targets video games, multimedia 
applications, and scientific computation. The Cell/B.E. has excellent floating-point 
processing performance compared with other old supercomputers.  

Additionally, the Cell/B.E. is available for a scientific research with a reasonable 
price because it is mounted on the game console, PLAYSTAION3. In this paper, we 
implement PSO algorithm with SFMT on the Cell/B.E. processor for speed-up of 
PSO. Finally, we show that the Cell/B.E. effectively perform PSO with SFMT com-
pared with a general processor. 

2   Implementation of Particle Swarm Optimization with SIMD-
Oriented Fast Mersenne Twister on the Cell Broadband Engine 

2.1   Particle Swarm Optimization and DeJong’s Benchmark 

Fig. 1 shows the schematic picture of PSO. Each individual in the particle swarm is 
composed of three d-dimensional vectors, where d is the dimensionality of the search 
space. The current position, the previous best position and the velocity are denoted by 
xi, pi and vi, respectively. Here, i is index of the individual. In the particle swarm 
optimization process, the velocity of each particle is iteratively adjusted so that the 
particle stochastically oscillates around pi and pg. pg is the best of all pi. At each step, 
the desired optimization fitness function in d variables is evaluated, then, pi and pg are 
renewed. The equation of PSO is described as follow, 

 

vi
k+1 = γvi

k + c1U 0,φ1( )⊗ pi
k − x i

k( )+ c2U 0,φ2( )⊗ pg
k − x i

k( ),
x i

k+1 = x i
k + vi

k .

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

 
Here, gamma = 0.99, C1 = 0.9 and C2 = 0.9 are parameters which govern search 
policy of each particle. k is time step. U() is a vector of pseudo random numbers uni-
formly distributed in [0, φ]. ⊗ is component-wise multiplication. 

As a benchmark of PSO, DeJong’s benchmarks [4] were used. In the experiments, 
100 and 500 iterations were performed for F1-F3 and F4-F5, respectively. 2400 trials 
were done in each benchmark.  

2.2   SIMD-Oriented Fast Mersenne Twister 

SFMT is proposed by M. Matsumoto and M. Saito in 2006 [5]. SFMT is a linear feed 
back shift register type pseudo random number generator. SFMT is designed consid-
ering new features of modern CPUs, such as Single Instruction Multiple Data (SIMD) 
operation and multi-stage pipeline processing. 

We coded SFMT for the Cell/B.E. by modifying SFMT version 1.3.3 for PowerPC 
Altivec provided on the website [6]. In the case of using SFMT on the Core 2, SIMD 
processing was disabled. The fill_array32 function was used in SFMT for batch proc-
essing of pseudo random number generation. The rand() function of standard library 
of ANSI C was used for performance comparison with SFMT. 
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Fig. 1. The schematic picture of PSO. Particles represented as circles that search the optimum 
value in cooperation with other particles. 

2.3   Cell Broadband Engine Processor 

The Cell/B.E. is a heterogeneous microprocessor that results from a joint effort 
among the Sony Group, Toshiba and IBM. The Cell/B.E. has a PowerPC processor 
Element (PPE) designed for general-purpose processing and 8 Synergistic Processor 
Elements (SPEs) designed for high performance floating-point computation [7]. In the 
Linux programming environment of PLAYSTATION3, the one PPE and the six SPEs 
of the Cell/B.E. are available. The peak performance of the Cell/B.E. processor of 
PLAYSTATION3 is about 200 GFLOPS. In this research, we mainly used the SPEs 
for PSO processing except for starting and ending process of the SPE threads by the 
PPE. Numerical calculation was performed with single precision. Table.1 shows 
equipment of the Cell/B.E. Machine and Core 2 Machine.  

Table 1. The equipment of the Cell/B.E. Machine and the Core 2 Machine 

 Cell/B.E. Machine: PLAYSTATION3 PC: IBM PC/AT Compatible 

CPU Cell B.E. 3.2 GHz (PPE +6SPE) Core 2 Duo 2.66GHz (1core usage) 

Memory XDR 256MB DDR2 2GB 

OS FedoraCore6 (kernel 2.6.18-53.1.4.el5) CentOS5 (kernel2.6.18-53.1.4.el5) 

Compiler GCC 4.1.1 for Cell B.E (-O3) Intel Compiler ICC (-O3) 

Library Cell SDK 2.1, libspe2, SIMD Math 

Library 

 

 



1068 J. Igarashi, S. Sonoh, and T. Koga 

 

Fig. 2. The reduction of processing time by using SIMD processing on the one SPE in De-
Jong’s benchmark 

3   Experimental Results and Discussions 

First, we compared the processing time using the one SPE of the Cell/B.E. with that 
using the Core 2 processor when the rand() function of ANSI C was used for pseudo 
random number generation in PSO processing. Fig. 2 shows the results of DeJong’s 
benchmarks of PSO using the one SPE with SIMD instructions, the one SPE without 
SIMD instructions and the Core 2 with normal C program. In the SIMD processing, 4  
 

 

 

Fig. 3. The performances calling with increase in the number of SPE 
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Fig. 4. Pie charts for processing time ratios 

trials were assigned to each element of one vector, and performed in parallel. In the 
all benchmarks, by using SIMD, the processing times of Cell/B.E. were shortened 
more than 5 times. These were because of parallelism effect by SIMD instruction and 
efficient execution of intrinsic functions for the SIMD instruction. The processing 
times using the one SPE with SIMD instructions took twice as much as that of the 
Core2. 

Fig. 3 shows the results of DeJong’s benchmarks of PSO when the one SPE, the 
six SPEs or the Core 2 was used with the rand() function. The six SPEs computed 
PSO 6 times faster than the one SPE. This performance scaling occurred due to paral-
lel execution of independent trials on the six SPEs. As compared with the Core 2, the 
six SPEs took 1/7 to 1/3 of processing time. Fig. 4 shows a pie chart showing process-
ing time ratio. PSO processing mainly consisted of 4 parts, updating of particle posi-
tion, evaluation, finding of the best value and updating of velocity. The longest time 
in all benchmarks was taken in the part of updating of velocity that mainly performed 
pseudo random number generation. Speeding up of random number generation should 
be effective for shortening processing time of PSO. 

Table 2. The processing time ratios between the Cell/B.E. and the Core 2 with SFMT or the 
rand() function 

 F1 F2 F3 F4 F5 

Core 2-rand/ 
Cell-SFMT 

41.4 42.0 29.1 33.5 13.9 

Core 2-SFMT/ 
Cell-SFMT 

13.9 15.0 13.7 12.1 12.0 

Core 2-rand/ 
Cell-rand 

3.0 3.3 3.5 3.3 7.2 
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Fig. 5. The high speed processing of PSO by the Cell/B.E. with SFMT 

Next, we introduced SFMT into PSO processing. Fig. 5 shows processing times of 
DeJong benchmarks of PSO using the six SPE of the Cell/B.E. or the Core 2. In the 
cases, SFMT or rand() function was used for pseudo random number generator. In the 
both case of the Cell/B.E. and the Core 2, processing times were drastically shorten 
by employing SFMT as compared with the rand() function. Combination of SFMT 
and the Cell/B.E. performed fastest computation in the all benchmarks. Table 2 shows 
processing time ratios between the Cell/B.E. and the Core 2 shown in Fig. 5. The 
combination of the Cell/B.E. and SFMT were approximately 14 to 42 times faster 
than the combination of the Core 2 and the rand() function (see Table 2 row 1). Table 
2 also shows effectiveness of combination of SFMT and the Cell/B.E. When the 
rand() function was used for both processors, the Cell/B.E. calculated faster just 3 to 7 
times than the Core 2 (see Table 2 row 3). On the other hand, when SFMT was used 
for the both processors, the Cell B.E. calculated 12 to 15 times faster than the Core 2 
(see Table 2 row2). This result suggests that SFMT brought out high floating-point 
performance of the Cell/B.E. because of its optimization for SIMD and pipeline fea-
ture, comparing with the rand() function that performed scalar instruction and was not 
specially designed for pipeline features. 

4   Conclusion 

In this paper, we showed that fast processing of PSO using SFMT on the Cell/B.E.. 
By only applying multi-core processing and SIMD processing technique of Cell/B.E. 
for PSO processing, PSO processing by the Cell/B.E. were from 3 to 7 times faster 
than the general processor, Core 2. Furthermore, by applying SFMT on the Cell/B.E., 
the Cell/B.E. calculated PSO processing faster from approximately 14 to 42 times 
than Core 2 using rand() function. 
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Abstract. DNA computing-inspired pattern classification based on the
hypernetwork model is a novel approach to pattern classification prob-
lems. The hypernetwork model has been shown to be a powerful tool for
analysis of gene expression data. However, the ordinary hypernetwork
model has limitations, such as using only binary data and operating
sequentially. In this paper, we propose an improved method to process
four-level data and to implement a hardware circuit for DNA computing-
inspired pattern classifier. We show simulation results of multi-class
cancer classification from the DNA microarray data for performance
evaluation. Experiments show competitive diagnosis results over other
conventional machine learning algorithms. Our four-level data approach
also results stable and improved performance over the ordinary hyper-
network model.

1 Introduction

DNA computing, also known as molecular computing, is a new approach to
massively parallel computation based on innovative work by Adleman. It has
been applied to resolve problems in various areas [1]. In recent years, there has
been novel approaches to pattern classification using the DNA computing-based
molecular evolutionary learning model that uses only primitive DNA computing
operations, such as hybridization and duplication, to automatically build a pat-
tern classifier from a set of reference data [2]. However, implementation of DNA
computing in vitro has certain difficulties. For example, the set of experimental
constraints including temperatures, molecule densities, and salt concentrations,
should be controlled strictly for precise simulation of in vitro reaction [3]. So,
some alternative methods have been suggested to approximate the problem,
such as probabilistic library model and hypernetwork model. These are simu-
lated DNA computing approaches in silico [4].

DNA computing-inspired pattern classifier(DCPC) is based on the previous
in silico approach using the hypernetwork model and its application to various
areas, such as recognition of handwritten digits data and cancer classification,
text classification, etc [5][6][7]. The DNA computing model shows competitive
performance over other conventional algorithms, such as Support Vector Ma-
chine, k-Nearest Neighbor, Artificial Neural Network, etc. However, the ordi-
nary models have some limitations. First of all, they are designed to use only

M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 1072–1079, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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binary data for processing. But, the binaryzation becomes cause of performance
degradation because binarization process inevitably results in information loss.
Secondly, using random masks in library creation process generates large vari-
ance of classification accuracy and causes unreliable diagnosis. Although the
DNA computing approach has feature of massively parallel computation, the
ordinary DNA computing models have been run on sequential machines.

In this paper, to overcome the above problems, we propose an improved
method to process four-level data based on two data bits and implementing
the DNA computing-inspired pattern classifier circuit on FPGA in order to pro-
vide massively parallel computation ability. We also show simulation results
of multi-class cancer classification using DNA microarray data for analysis. It
shows better performance than the ordinary method using binary data and has
more competitive performance comparing with other algorithms. It also show
stabilized classification accuracy and fast processing time.

2 DNA Computing-Based Pattern Classifier

2.1 Hypernetwork Model

The DNA computing-inspired pattern classifier is based on the hypernetwork
model [8]. The hypernetwork model has a random graph structure consisting of
a large number of hyperedges. The hyperedges represent feature combinations
and are sampled from the reference data. For each reference data, make d library
elements of order k by random sampling the feature subsets of the reference
data including class labels. The library of hypernetwork model includes multiple
copies of each hyperegde and the number of copies means the importance of the
hyperedge for the class.

For pattern classification problems, the model determines the closest classes
by choosing the maximum matched hyperedge of the given test data. Here, the
matching means that the values in a hyperedge are equal to the values of corre-
sponding indices of the given test data. The classification of the hypernetwork
model can be explained to the conditional probability of each class on the test
data. Given test data x, the class y∗ is predicted by computing the conditional
probability of each class, and then selecting the class which has the highest
conditional probability, as follows :

y∗ = arg maxP (Y |x)
Y ∈{0,1,..,n}

= arg max
Y ∈{0,1,..,n}

P (Y, x)
P (x)

(1)

where P (Y, x) = P (Y |x)P (x) and Y represents the candidate classes. More the-
oretical background of the hypernetwork model is found in [8]. The classification
procedure is summarized as follows :

1. Present a test data x.
2. Extract all hyperedges that are matched to the test data x.
3. Count the number of each class in the extracted hyperedges.
4. Classify the given test data x as the class that counted most frequently.
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(a) (b)

Fig. 1. (a) Four-level data structure, (b) 2-bit matching table

2.2 Proposed Method

To overcome the limit of the previous DNA computing-based pattern classifier
that use only binary data, we proposed a new method that is capable of using
four-level data on the DNA computing-based pattern classifier. Before its de-
scription, we present new data structures on Fig. 1 (a). Let R = {R1, R2, ..., Rn}
be the reference dataset. For k dimensionality of an input space, each reference
data Ri = {ri1 , ri2 , ..., rik

, yi} consists of k components based on two bits fea-
ture where rij = {rij1rij2} ∈ {00, 01, 11, 10} and the class label y ∈ Y . The new
data structure will also apply equally to the test dataset T = {T1, T2, ..., Tc}.
To encode the four-level data with two bits, we use an empirical discretization
method that described in section 4.

To determine whether the four-level data is matched or not, we propose a
2-bit matching table as shown in Fig. 1 (b). The rows and columns represent
the feature variables of reference data and test data. The value on intersection
of a column and a row means that whether corresponding feature variable is
matched or not. For example, let one feature of reference data is ‘01’ and the
corresponding feature of test data is ‘01’. In this case, the value ‘1’ on intersection
of column ‘01’ and row ‘01’ means matched. One the other way, let one feature
of reference data is ‘01’ and corresponding feature of test data is ‘10’, the value
‘0’ on the intersection of column ‘01’ and row ‘10’ means mismatched.

And also, the proposed matching table allows that the adjacent data is
matched. For example, the values ‘00’ and ‘01’ are not same but regarded as
matched because the two are adjacent. One benefit of the proposed 2-bit match-
ing table is obtaining an effect of improving noise tolerance. As a result, we
acquire the improved performance with robust to approximation. The matching
table is simply represented using boolean algebra as follows:

Matching result = rij1 tij1 + rij2 tij2 + rij1

′
tij1

′
(2)

And a modified matching comparator can be implemented simply based on equa-
tion (2) using AND, OR, NOT gates as shown in Fig. 4.
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3 Implementation of Hardware Architecture

3.1 System Overview

The hardware architecture, which is composed of the test data register, control
block, processing block(consist of the reference memory, random mask gener-
ator, compare block, summation block) and maxfit block, is shown in Fig. 2.
The processing blocks are operated separately for reference data of each class.
And the parallel operation in each compare block generates high throughput.
The extension of the processing block is also possible, when other dataset with
numerous classes are given to classify.

Operating phases of the hardware consists of loading, comparing, counting
and prediction. In the loading and comparing phase, the test data is given to
each compare block concurrently through a common bus with the reference data
and random masks of each class. And the matched results from each compare
block are counted in the summation block. At last, the most frequently counted
class is chosen as the classification result out from the maxfit block.

3.2 Building Blocks

As shown in Fig. 2, this system has N memories storing the reference data
for each class. The reference data are compared with given test data using the
proposed 2-bit comparator(see Fig. 4) in the compare block. As mentioned in
section 2.2, if the 2-bit comparator has adjacent input values, the output result
is ‘1’ otherwise, the output result is ‘0’. These compare operations processed
massive-parallel on the compare block. For example, if the reference data has N

Fig. 2. The hardware scheme
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Fig. 3. Random Mask Generator

Fig. 4. Compare Block

classes and M feature variables per data, then M × N compare operations are
processed concurrently. After then, the compared output results are randomly
selected using random mask data created by a random mask generator(RMG)
as shown in Fig. 3. The RMG was designed in order to select the proper number
of order using preset selection ratio. The RMG is composed of 32-bit random
number generator(RNG) that is based on a combination of linear feedback shift
register(LFSR) and a cellular automata shift register(CASR) as presented in
[9], and each created random number has value in eight bits width (0 to 255).
For example, 30 of 32-bit RNG is needed to create random masks of 120 bits
because one RNG creates four random mask bits. Using the proposed RMG, the
system has some advantages, such as reduction of RAM usage and generalization
capacity to change data, in comparison with the previous studies [6][10].

When all of the inverted results from the 2-bit comparators and mask values
of corresponding indices of the random mask data are assigned to each NAND
gate, if all outputs of the NAND gates are the same value of 1, it means that the
given test data and the hyperedge are matched. The counted matched results
from each summation block are used in order to predict the classification result
on the maxfit block. The comparing and counting operation on the processing
block are repeated as the multiplied number by the number of reference data
and created random masks for each class.

Processes of the above building blocks emulate effectively the massively par-
allel molecular operation of the DNA computing-inspired pattern classification
in vitro.
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Table 1. Multi-class cancer datasets

Dataset No. of
classes

No. of genes No. of samples No. of selected
geneReference Test

Subtype of ALL 6 12558 163 85 90
SRBCT 4 2308 63 20 120

Lung cancer 5 12600 136 67 150
Leukemia 3 7129 38 34 90

Table 2. Diagnostic accuracy

Dataset
DNAC-inspired pattern classifier(%)

SVM(%) ANN(%) kNN(%)
binary(SD) four level(SD)

Subtype of ALL 93.57(1.48) 98.34(0.67) 98.00 98.50 97.16
SRBCT 93.80(3.70) 100.0(0.00) 100.0 91.03 86.90

Lung cancer 89.31(1.47) 94.03(0.00) 96.05 87.80 89.64
Leukemia 94.76(2.11) 98.58(1.69) 97.50 76.61 83.57

Average 92.86(2.19) 97.74(0.59) 97.88 88.49 89.32

4 Experiments

4.1 Multiclass Cancer Classification

To evaluate the usefulness of the proposed method, we carries out experiments
on the following four public datasets of microarray data for the multiclass can-
cer classification. The subtypes of ALL dataset contains six subtypes of acute
lymphoblastic leukemia(ALL) [11]. The small round blue cell tumors(SRBCT)
dataset contains four different childhood tumors [12]. The lung cancer dataset
contains four subtypes of lung cancer and normal sample [13]. The leukemia
dataset contains three subtypes of leukemia [14]. Above four datasets are sum-
marized in Table 1.

4.2 Data Preprocessing and Experimental Setup

As shown in Table 1, large number of genes together with relatively small number
of samples is one characteristic of gene expression data available for cancer clas-
sification problems. Such characteristic induces that gene selection is a necessary
procedure for cancer classification with gene expression data to ensure reliable
and meaningful classification results along with other benefits such less data
storage and computation cost. In our experiments, we use the signal-to-noise
statistic (µ0 − µ1)/(σ0 + σ1), where µ and σ represent the mean and standard
deviation of gene expression values, respectively, for each class [14]. The gene
selection is performed based on the reference data to avoid overfitting. Each
sample is normalized to have standard distribution before being processed.
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In addition, it is necessary to discretize the gene expression value for using
the DNA computing-based pattern classifier. We determine a threshold using
mean of the whole genes that belongs to the same sample for the previous DNA
computing model that uses binary data. And we determine three threshold values
(high, mid, low) by experiments in order to apply the proposed method that uses
four-level data. Using three threshold values, we discretize the gene expression
value into four-level data (00, 01, 11, 10).

To assess the performance of classifiers, the partition of datasets used in the orig-
inal papers into training and test data is used in our experiment. And we figure out
the optimum number of order and random masks of classifiers for each dataset by
experiment. After that, we measure the accuracy of classification for each dataset.
The accuracy of classification is averaged of 100 iterations. The results of previous
studies [11][12][13][14] are compared to assess the performance of classifications.

4.3 Results

Table 2 shows the comparison of the classification accuracies of the proposed
method and previously published studies using other conventional machine learn-
ing methods. It shows the difference between the standard deviations of the pre-
vious methods and the proposed method. The proposed method shows 97.74%
of average accuracy. It is better than the ordinary DNA computing model, the
ANN, and the k-NN, while providing competitive or better performance over the
SVM. Also The proposed method shows lower standard deviation(SD) than the
previous DNA computing model. It means that the proposed method has more
stable performance.

4.4 Implementation on FPGA

The hardware is applied to the SRBCT dataset. The DNA computing-inspired
pattern classifier for the SRBCT datset is designed with VerilogHDL and imple-
mented on Xilinx Virtex-4 LX FPGA XC4VLX200. The implemented hardware
contains 480 of 2-bit comparator, 4 of RMG each has 30 of 32-bit RNG, 4 of
reference data RAM each is 242 bits wide. When synthesized for target device,
the whole system uses 11511 slices that is 12% of the device capacity. The im-
plemented hardware runs at 100 MHz with throughput of 3.62 × 104 data/s for
classfication process. The number of clock cycles needed for one data classifica-
tion is 2760. And it takes nearly 27.6 micro seconds to process one data.

5 Conclusion

In order to overcome the limits of the ordinary DNA computing model that uses
only binary data, we propose the improved method which utilizes four-level ex-
pression data. The proposed method is applied to four cases of multi-class cancer
classifications. The results show that our method outperforms conventional ma-
chine learning algorithms in terms of diagnostic accuracy. It also produces more
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stable and improved performance than the previously developed models of DNA
Computing. We also propose the new hardware architecture of DNA computing-
inspired pattern classifier, designed on XILINX Virtex-4 LX platform, which is
suitable for multi-class cancer classifications. The speed of this hardware is fast
enough to comply point-of-care diagnostic purpose.
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Prudêncio, Ricardo B.C. II-45
Puntonet, C.G. II-402, II-410, II-418

Quek, Chai I-1137

Ralescu, Anca L. I-453
Ramı́rez, J. II-402, II-410, II-418
Ramanathan, Kiruthika I-428
Rast, Alexander II-1057
Raszkowsky, J. II-575
Rebhan, Sven II-960
Ren, Lu II-335
Reyes, Napoleon H. I-1071, I-1079
Ribeiro, Bernardete I-723, II-97
Ribeiro, Marcelo N. II-45
Richter, Matthias II-816
Roeder, Stefan W. II-816
Rosen, Alan I-794
Rosen, David B. I-794
Rossi, André L.D. II-252
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Solé-Casals, Jordi I-224, II-979
Solgi, Mojtaba I-80
Soltic, Snjezana I-1129
Song, Qun I-1204, I-1221, I-1245
Sonoh, Satoshi II-1065
Sossa, Humberto II-800
Souza, Renata M.C.R. de II-11, II-19
Stroobandt, Dirk I-56
Sudo, Tamami I-377
Suemitsu, Atsuo I-384
Suetake, Noriaki II-583
Suetsugu, Ken I-494
Suh, Il Hong I-64, I-747
Sum, John II-324, II-919
Sum, Pui Fai II-316
Sun, Lisha II-426
Sun, Tieli II-501
Sung, Andrew H. I-723
Susnjak, Teo I-945
Suzuki, Kenji II-244
Suzuki, Michiyasu I-369
Suzuki, Takeshi I-259

Tabata, Yusuke I-14
Tagawa, Yoshihiko I-494
Tajima, Fumiaki II-703
Takahashi, Haruhisa II-344, II-361,

II-671
Takahashi, Hiromu II-1013
Takata, Mika II-369
Takazawa, Kazuhiro I-444
Takeda, Taichi I-851
Takeuchi, Johane II-228
Takeuchi, Jun’ichi I-579
Takumi, Ichi II-1021
Tamada, Hirotaka I-715
Tamei, Tomoya II-1029
Tanaka, Toshihisa I-453
Tanaka, Toshiyuki II-155
Tanaka, Yuji I-867
Taniguchi, Tadahiro I-953
Tanino, Tetsuzo I-970
Tanscheit, Ricardo II-386
Tatsumi, Keiji I-970
Tay, Yong Haur II-745
Then, Siu Jing II-808
Theng, Lau Bee II-509, II-591, II-927
Timm, Wiebke I-513
Ting, K.H. I-436
Togashi, Yuki I-293
Tohru, Yagi II-1021
Toledo, Franklina M.B. de I-461
Tomita, Jyun-ichiro II-353
Torikai, Hiroyuki I-145, I-208
Tou, Jing Yi II-745
Tovar, Gessyca Maria II-851
Tran, Ha Nguyen I-851
Tripathi, B.K. II-867
Trujillo, Marcelo I-1211
Tsai, I-Ling II-1038
Tsuboyama, Manabu I-32
Tsuda, Ichiro I-72, I-423
Tsujino, Hiroshi II-228
Tsukada, Minoru I-72, I-416, I-423
Tsukada, Yuki I-469
Tung, Sau Wai I-1137

Uchibe, Eiji I-22
Uchino, Eiji II-583
Ueda, Michihito II-843
Uezu, Tatsuya II-195



Author Index 1087

Uota, Shiori I-240
Utsunomiya, Hiroki II-970

Vasilyev, Vladimir II-131
Vázquez, Roberto A. II-800
Vellasco, Marley II-386, II-461
Vellasco, Pedro II-461
Verma, Anju I-1204
Verma, Brijesh II-639
Versaci, Mario II-720
Verstraeten, David I-56
Vialatte, François-Benoit I-177, I-224,

I-318, I-400, I-469, II-979
Vieira, Armando II-97, I-723
Vieira, V.M.M. II-575
Vigário, Ricardo II-559
Vijaya Rama Raju, A. II-394
Villaverde, Ivan I-1021, I-1045
Villmann, Thomas II-61
Vrahatis, Michael N. II-308

Wagatsuma, Hiroaki I-119, I-859, I-1087
Wakita, Toshihiro I-293
Wang, Chen-Cheng I-647
Wang, Dianhui I-478, I-521, II-792
Wang, Fuxiang I-737
Wang, Hongjiang II-316
Wang, Jun II-1003
Wang, Linlu II-535
Wang, Lipo II-551
Wang, Shiyu I-1188
Wang, Xuebing I-779
Wang, Yuanyuan II-535, II-768
Watanabe, Kazuho I-655
Watanabe, Sumio I-688, I-696, II-903
Watts, Michael J. I-901, I-909
Weber, Theophane I-177, I-318
Weng, Juyang I-80
Wersing, Heiko I-805, I-813
Widiputra, Harya I-1237
Willert, Volker I-275
Wilson, Peter II-1049
Wimalaratna, Sunil II-979
Wong, Kok Wai I-638
Wong, Wei Kin I-1103
Worner, Sue P. I-901, I-909
Wu, Tony I-194
Wu, Yongjun I-129

Xiu, Jie I-1188
Xiu, Yan I-1188
Xu, Qiuliang I-563

Yamada, Kazuhiro I-978
Yamagata, Masaya I-579
Yamaguchi, Yoko I-186, I-859
Yamaguti, Yutaka I-72, I-423
Yamakawa, Takeshi I-369, I-962
Yamakawa, Toshitaka I-369
Yamasaki, Hironobu II-663
Yamauchi, Koichiro I-293, I-1154
Yamazaki, Keisuke I-629
Yang, Fengqin II-501
Yang, Fu-Shu II-1038
Yang, Haiqin II-53
Yano, Masafumi I-259
Yao, Xin I-216
Yeh, Chien-Ting II-687
Yeh, Chung-Hsing I-647
Yi, Chuho I-747
Yokoi, Hirokazu I-240, II-679
Yonekawa, Masato II-776
Yong, Yen San II-808
Yoshikawa, Tomohiro II-1013
Yoshino, Tetsuma I-621
Yoshioka, Katsunari I-579
Yoshioka, Taku I-336
Yu, Yan I-571
Yuan, Zhijian II-987
Yun, Yeboon I-995

Zakos, John II-639
Zender, Paul M. II-70
Zeng, Xiaoping II-493
Zhang, Changhai II-501
Zhang, Chen I-275
Zhang, Jun I-737, II-695, II-736
Zhang, Kau I-1163
Zhang, Liming I-251, II-535
Zhang, Ping I-529
Zhang, Qi I-392
Zhao, Zhonghua I-563
Zhu, Dingyun II-655
Zorkadis, Vasilios C. I-595
Zulueta, Ekaitz I-1053
Zuppicich, Alan I-1129


	Title Page
	Preface
	Organization
	Table of Contents
	Part I Neural Network Based Semantic Web, Data Mining and Knowledge Discovery
	A Novel Method for Manifold Construction
	Introduction
	Method
	Experiments on Artificial Data
	Swiss Roll Dataset
	S-Curve

	Experiments on Real Data
	Phylogenetic Tree
	Summary

	References

	A Non-linear Classifier for Symbolic Interval Data Based on a Region Oriented Approach
	Introduction
	Symbolic Interval Data
	A Region Oriented Classifier for Interval Data
	Learning Step
	Allocation Step

	The Monte Carlo Experiences
	Concluding Remarks
	References

	A Symmetrical Model Applied to Interval-Valued Data Containing Outliers with Heavy-Tail Distribution
	Introduction
	Interval-Valued Data
	Synthetic Interval-Valued Data Sets Containing Outlier Rectangles

	Symmetrical Linear Regression Models
	Symmetrical Linear Regression Models for Classical Data
	Construction of the Symmetrical Linear Regression Models for Interval-Valued Data
	Rule of Prediction

	Performance Analysis
	Results for Synthetic Interval Data Sets

	Conclusions
	References

	New Neuron Model for Blind Source Separation
	Introduction
	Generalized Harmonic Mean Neuron Model
	Blind Source Separation
	Learning Algorithm
	Results
	Example 1
	Example 2
	Example 3

	Conclusions
	References

	Time Series Prediction with Multilayer Perceptron (MLP): A New Generalized Error Based Approach
	Introduction
	New Error Measures
	Multi-Layer Perceptron
	Training Algorithm of MLP
	Results
	Short-Term Internet Incoming Traffic
	Financial Time Series
	Petroleum Sales
	Box-Jenkis Gas Furnace
	Australian Monthly Electricity Production
	Cow Milk Production

	Conclusions
	References

	Local Feature Selection in Text Clustering
	Introduction
	Text Clustering
	Feature Selection for Text Clustering
	Criteria for Ranking Features
	Global and Local Feature Selection

	Proposed Method
	Experiments and Results
	Experiments Description
	Results and Discussion

	Conclusions
	References

	Sprinkled Latent Semantic Indexing for Text Classification with Background Knowledge
	Introduction
	Related Works
	Latent Semantic Indexing
	Sprinkling

	Our Approach
	Experiments
	Experimental Setup
	Data Sets
	Experimental Results

	Conclusions
	References

	Comparison of Cluster Algorithms for the Analysis of Text Data Using Kolmogorov Complexity
	Introduction
	Theoretical Background
	Algorithms
	Median k-Means
	Median Neural Gas
	Relational Neural Gas
	Spectral Clustering
	Affinity Propagation

	Experiments and Results
	Measures for Comparing Results
	’Eurovoc’ Documents
	Psychotherapy Transcripts
	Conclusions

	References

	Neurocognitive Approach to Clustering of PubMed Query Results
	Introduction
	Neurocognitive Inspirations in Information Retrieval
	Methods
	Results
	Conclusion
	References

	Search-In-Synchrony: Personalizing Web Search with Cognitive User Profile Model
	Introduction
	Search-In-Synchrony - Architecture of Proposed Personalized Search Agent
	Re-ranking of Page-Ranked Results Using User Profile Model
	Performance Evaluation of Search-in-Synchrony
	Conclusions
	References

	Neurocognitive Approach to Creativity in the Domain of Word-Invention
	Introduction
	Algorithmic Considerations
	Word Rank Function
	Results
	Conclusions
	References

	Improving Personal Credit Scoring with HLVQ-C
	Introduction
	Dataset
	Feature Selection

	Models Used
	Usefulness of a Classifier

	Results
	Conclusions
	References

	Architecture of Behavior-Based Function Approximator for Adaptive Control
	Introduction
	Random-TD Architecture
	A Hybrid MDP
	Random Forests in Reinforcement Learning
	On-Line RF
	Learning Value Function

	Random-TD Policy Evaluation
	Empirical Evaluations
	Experimental Results and Discussion

	Conclusion
	References

	On Efficient Content Based Information Retrieval Using SVM and Higher Order Correlation Analysis
	Introduction
	The Proposed Neural Based Document Classification System Involving SVM and Higher Order Correlation Analysis of Semantic Categories
	Experimental Study and Results
	Conclusions and Prospects
	References


	Part II Neural Networks Learning Paradigm
	A String Measure with Symbols Generation: String Self-Organizing Maps
	Introduction
	String Measure
	Different Length on Strings

	String Self-Organizing Maps
	Conclusions and Future Work
	References

	Neural Network Smoothing of Geonavigation Data on the Basis of Multilevel Regularization Algorithm
	Introduction
	Generalized Algorithm of Smoothing Neural Network Design on the Basis of Multilevel Regularization
	Structure of the Smoothing RBF Network
	Method of RBF Network Parameters Ranking
	Algorithm of Smoothing RBF Network Design on the Basis of Multilevel Regularization
	Conclusions
	References

	Knowledge-Based Rule Extraction from Self-Organizing Maps
	Introduction
	Related Work
	Finding Boundaries from a One-Dimensional Trained SOM
	Selecting Significant Attributes
	Generating Symbolic Rules
	Experimental Results
	Conclusions
	References

	A Bayesian Local Linear Wavelet Neural Network
	Introduction
	Local Linear Wavelet Neural Network (LLWNN)
	Bayesian Design Method for LLWNN
	Bayesian Method
	Proposed Bayesian Design Method

	Computer Simulation
	Summary
	References

	Analysis on Equilibrium Point of Expectation Propagation Using Information Geometry
	Introduction
	Information Geometrical View of EP
	Accuracy of Estimates
	Properties of Equilibrium
	Small Model
	Large Model
	Comparison of Estimation Errors

	Numerical Example
	Formulation
	Results

	Conclusion
	References

	Partially Enhanced Competitive Learning
	Introduction
	Theory and Computational Methods
	Partial Enhancement
	Enhanced Information for Input Units
	Enhanced Learning

	Results and Discussion
	Iris Problem
	Air Pollution Problem

	Conclusion
	References

	Feature Detection by Structural Enhanced Information
	Introduction
	Theory and Computational Methods
	Enhancement and Relaxation
	Structural Enhanced Information
	Structural Enhanced Information for Input and Competitive Units
	Iris Problem

	Conclusion
	References

	Gradient Learning in Networks of Smoothly Spiking Neurons
	Learning in Networks of Spiking Neurons
	A Feedforward Network of Smoothly Spiking Neurons
	The Back-Propagation Rule
	Preliminary Experiments and Future Work
	References

	Orthogonalization and Thresholding Method for a Nonparametric Regression Problem
	Introduction
	Formulations of Machine and Training Procedure
	Learning Machine
	Transformation of $G$
	Estimation of Orthogonal Coefficient Vector
	Thresholding of Orthogonal Coefficient Vector

	Thresholding Levels
	Statistical Property of ${\hat \nu}$
	Thresholding Operation with Threshold Levels

	Implementations
	Estimation of Noise Variance
	Orthogonalization Procedure
	Modifications of HTED and HTGS
	Numerical Stability Problem

	Numerical Experiments
	Conclusions
	References

	Analysis of Ising Spin Neural Network with Time-Dependent Mexican-Hat-Type Interaction
	Introduction
	Model Definitions
	Replica Calculation of the Free Energy and Order Parameters
	Results
	Temperature Dependence of Order Parameters
	Phase Diagram and Order Parameters

	Conclusions
	References

	Divided Chaotic Associative Memory for Successive Learning
	Introduction
	Divided Chaotic Associative Memory for Successive Learning
	Structure of DCAMSL
	Pattern Search Stage
	Distributed Pattern Generation Stage
	Learning Stage

	Computer Experiment Results
	Successive Learning and One-to-Many Associations
	Storage Capacity

	Conclusions
	References

	Reinforcement Learning Using Kohonen Feature Map Associative Memory with Refractoriness Based on Area Representation
	Introduction
	Kohonen Feature Map Associative Memory with Refractoriness Based on Area Representation
	Structure
	Learning Process
	Recall Process

	Reinforcement Learning Using KFMAM-R-AR
	Actor Network
	Reinforcement Learning Using KFMAM-R-AR

	Computer Experiment Results
	Conclusion
	References

	Automatic Model Selection via Corrected Error Backpropagation
	Introduction
	Preliminaries
	Regression Problems
	Neural Networks

	Corrected Error Backpropagation
	Corrected Log-Likelihood
	Corrected Error Backpropagation
	Annealing Optimization
	Optimal Annealing

	Computer Simulations
	Boston House Price Estimation with Linear Regression Model
	Delve Datasets with Multi Layered Perceptron

	Conclusion
	References

	Self-Referential Event Lists for Self-Organizing Modular Reinforcement Learning
	Introduction
	Background
	Self-Referential Event List
	Evaluation
	Discussion
	References

	Generalisation Performance vs. Architecture Variations in Constructive Cascade Networks
	Introduction
	Method
	Neural Network Topology
	Data Set
	Training Methodology

	Experimental Results
	Conclusion and Future Work
	References

	Synchronized Oriented Mutations Algorithm for Training Neural Controllers
	Introduction
	General Principle
	Oriented Mutation Operator
	Synchronized Oriented Mutations

	Experiments
	Minimizing Equation
	Training Artificial Neural Networks

	Conclusion and Future Work
	References

	Bioinspired Parameter Tuning of MLP Networks for Gene Expression Analysis: Quality of Fitness Estimates vs. Number of Solutions Analysed
	Introduction
	Experimental Methodology
	Optimization Problem
	OptimizationMethodology

	Experimental Results
	Comparison of Optimization Methods Using the 10/10 Fitness Estimation Process
	Effect of Simplifying the Fitness Estimation Process

	Conclusions
	References

	Sample Filtering Relief Algorithm: Robust Algorithm for Feature Selection
	Introduction
	Hepatitis B Dataset
	Methods for Outlier Filtering
	Experimental Results
	Outlier Filtering
	Classification Results

	Conclusions and Future Research
	References

	Enhanced Visualization by Combing SOM and Mixture Models
	Introduction
	Theory and Computational Methods
	Mixture Model and EM Algorithm
	Computational Procedures

	Results and Discussion
	Iris Problem
	OECD Classification

	Conclusion
	References

	Genetic Versus Nearest-Neighbor Imputation of Missing Attribute Values for RBF Networks
	Introduction
	RBFNetworks
	Nearest-Neighbor Imputation of Missing Values
	Genetic Imputation of Missing Values
	Experiments and Results
	Final Remarks
	References

	Combination of Dynamic Reservoir and Feedforward Neural Network for Time Series Forecasting
	Introduction
	Combination of Dynamic Reservoir and Feedforward Neural Network
	Comparison of Two Different Approaches
	Experiments
	Conclusions
	References

	Learning Nonadjacent Dependencies with a Recurrent Neural Network
	Introduction
	Simulations
	Experiment 1
	Experiment 2

	General Discussion
	References

	A Back-Propagation Training Method for Multilayer Pulsed Neural Networks Using Principle of Duality
	Introduction
	Pulsed Neuron Model
	Proposed Method
	Principle of Duality in Neuron Model
	Neuron Model Learning Rule

	Experimental Results
	XOR Problem
	Sound Recognition Problem

	Conclusions
	References

	Revisiting the Problem of Weight Initialization for Multi-Layer Perceptrons Trained with Back Propagation
	Problem Statement and Previous Work
	Analyzing the Weight Space for MLP Using Kohonen’s Self Organizing Feature Maps, as a Data Mining Tool for the Analysis
	Main Results and Discussion
	Conclusions and Future Trends
	References

	Analysis on Generalization Error of Faulty RBF Networks with Weight Decay Regularizer
	Introduction
	Data Model and RBF Network with Weight Decay
	FaultModel
	Mean Prediction Error
	Simulations
	Conclusion
	References

	On Node-Fault-Injection Training of an RBF Network
	Introduction
	RBF Training with Node Fault Injection
	Multinode Fault Injection Training
	Weight Decay-Based Multinode Fault Injection Training

	Main Results
	Multinode Fault Injection Training
	Weight Decay-Based Multinode Fault Injection Training

	Proof of Theorems
	Injecting Multinode Fault (Theorem 2)
	WD-Based Multinode Fault Injection Training (Theorem 3)

	Conclusions
	References


	Part III Kernel Methods and SVM
	Symbolic Knowledge Extraction from Support Vector Machines: A Geometric Approach
	Introduction
	Support Vector Machines
	Geometric SVM Rule Extraction
	Experimental Results
	Conclusion and Future Work
	References

	Asbestos Detection from Microscope Images Using Support Vector Random Field of Local Color Features
	Introduction
	Proposed Asbestos Detection Method
	Disperse Dyeing Method
	Image Matching for Correcting the Position Gap
	Asbestos Detector
	Label Estimation by Support Vector Random Field

	Experiments
	Conclusion
	References

	Acoustic Echo Cancellation Using Gaussian Processes
	Introduction
	Gaussian Processes
	Linear Regression
	Gaussian Processes for Regression
	The Predictive Distribution

	Proposed Method
	The Echo Canceller Using Gaussian Processes
	Updating of the Covariance Matrix

	Simulation Results
	Measure of Echo Suppression
	Simulation Results

	Conclusion
	References

	Automatic Particle Detection and Counting by One-Class SVM from Microscope Image
	Introduction
	Particle Detection and Counting by One-Class SVM
	One-Class SVM
	Particle Detection and Counting Method

	Experiments
	Conclusion
	References

	Protein Folding Classification by Committee SVM Array
	Introduction
	Protein Folding Classes, Feature Parameters, and Structure Descriptors
	SCOP Folding Classes
	Feature Vectors
	Sliding Window N-Gram

	Support Vector Machines and Committee SVM Array
	Kernel Support Vector Machine
	Committee SVM Array

	Experiments
	Method of Performance Measurement
	Experiments on Single One-Versus-Others SVM
	Experiments Including CSHVPZ Super Vector
	Experiments on Committee SVM Array: Final One

	Conclusion
	References

	Implementation of the MLP Kernel
	Introduction
	Method
	Experimental Analysis
	References

	Fuzzy Rules Extraction from Support Vector Machines for Multi-class Classification with Feature Selection
	Introduction
	Support Vector Machines
	Feature Subset Selection Algorithms
	Fuzzy Rule Extraction Methodology
	FREx_SVM for Binary SVM
	FREx_SVM for Multi-class SVM

	Case Studies
	Bupa Liver Disorders
	Wisconsin Breast Cancer
	Pima Indians Diabetes
	Wine

	Conclusions
	References

	An SVM Based Approach to Cross-Language Adaptation for Indian Languages
	Introduction
	Cross-Language Adaptation Methods
	Bootstrap Adaptation
	Transformation Based Adaptation
	Bayesian Adaptation

	Proposed Method for SVM Based System Adaptation
	Speech Database
	Experiments and Results
	HMM Based System Adaptation
	SVM Based System Adaptation

	Conclusions
	References

	Automatic Classification System for the Diagnosis of Alzheimer Disease Using Component-Based SVM Aggregations
	Introduction
	Background on SVMs
	SVM Ensemble

	Image Preprocessing
	Feature Selection
	Formation of the Component-Based SVM Ensemble by ROIs
	Decision

	Evaluation Results
	Conclusions
	References

	Early Detection of the Alzheimer Disease Combining Feature Selection and Kernel Machines
	Introduction
	Background on Support Vector Machines
	Image Acquisition and Preprocessing
	Feature Selection
	Evaluation Results
	Conclusions
	References

	Computer Aided Diagnosis of Alzheimer Disease Using Support Vector Machines and Classification Trees
	Introduction
	Background
	Support Vector Machines
	Classification and Regression Trees

	Material and Methods
	Image Acquisition and Preprocessing
	SVM Classification
	Construction of the Tree Classifier

	Results
	Conclusion
	References

	Modeling and Prediction of Nonlinear EEG Signal Using Local SVM Method
	Introduction
	ε -SVM for Sequence Prediction
	Local ε -SVM
	Simulations and Application
	Local ε -SVM Prediction for Logistic Sequence
	Local ε -SVM for Real EEG Prediction

	Conclusion
	References


	Part IV Neural Networks as a Soft Computing Technology
	Suitability of Using Self-Organizing Neural Networks in Configuring P-System Communications Architectures
	Introduction
	P System Communication Architectures
	Fritzke’s Self-Organizing Neural Networks (SONN)
	Experiments and Results
	Conclusions
	References

	Short Term Load Forecasting (STLF) Using Artificial Neural Network Based Multiple Lags of Time Series
	Introduction
	Multiple Time Lags of Chronological Variables
	Implementation of Artificial Neural Network
	Results and Discussion
	Conclusion
	References

	Neural Network Regression for LHF Process Optimization
	Introduction
	Data Distribution
	LHF Process

	Method
	System
	Neural Network Architecture
	Training Algorithm

	Experimental Results
	Conclusions
	References

	Trading Strategy in Foreign Exchange Market Using Reinforcement Learning Hierarchical Neuro-Fuzzy Systems
	Introduction
	RL-HNFP System
	The RL-HNFP Trading System
	Results
	Conclusions
	References

	Improving Multi Step-Ahead Model Prediction through Backward Elimination Method in Multiple Neural Networks Combination
	Introduction
	Selective Combination of Multiple Neural Networks
	Backward Elimination

	Case Study
	Results and Discussion
	Conclusions
	References

	A Novel Adaptive Resource-Aware PNN Algorithm Based on Michigan-Nested Pittsburgh PSO
	Introduction
	Probabilistic Neural Networks (PNN) Model
	Adaptive Probabilistic Neural Networks
	Michigan-Nested Pittsburgh PSO Algorithm
	Movement Equations of Particles
	Reproduction and Reduction of Prototypes
	Local and Global Objective Function

	Experiments and Results
	Conclusion
	References

	Imputation of Missing Data Using PCA, Neuro-Fuzzy and Genetic Algorithms
	Introduction
	Background
	Missing Data
	Neuro-Fuzzy Computing and Genetic Algorithm
	Principal Component Analysis

	Proposed Method
	HIV Sero-Prevalence Data
	Data Preprocessing
	Proposed Method and Simulation

	Results and Discussions
	Results
	Discussion and Conclusion

	References

	Feature Selection Method with Multi-Population Agent Genetic Algorithm
	Introduction
	Introduction of Algorithm
	Agent Structure
	Genetic Operators
	Local Search Operator
	Realization of MPAGAFS Algorithm

	Experiments and Analysis of Results
	Feature Selection Experiments with Filter Methods
	Comparison with Parallel Feature Selection Method

	Conclusions
	References

	Particle Swarm Optimization and Differential Evolution in Fuzzy Clustering
	Introduction
	The FCM Algorithm
	PSOandDE
	PSO
	DE

	The Proposed Hybrid Clustering Algorithms
	Encoding Mechanism
	The Proposed Hybrid Clustering Algorithms

	Experimental Results
	Data Sets
	Experimental Results

	Conclusion
	References

	Intelligent Control of Heating, Ventilating and Air Conditioning Systems
	Introduction
	Our Optimization Target: Condenser Water Loop
	Objective Function
	String Encoding
	Fitness Function
	Experimental Results
	Conclusions
	References

	Investigating Ensemble Weight and theCertainty Distributions for Indicating Structural Diversity
	Introduction
	Ensemble Diversity
	Methodology
	Results and Discussion
	Conclusion
	References


	Part V Neural Networks and Pattern Recognition
	Dynamic Programming Stereo on Real-World Sequences
	Introduction
	Methodology
	Results and Discussion
	Conclusions
	References

	Happy-Sad Expression Recognition Using Emotion Geometry Feature and Support Vector Machine
	Introduction
	Our Facial Expression Recognition Approach
	Overview of ASM
	Proposed Emotion Geometry Feature
	Overview of Support Vector Machine

	Experimental Results and Discussions
	Conclusions
	References

	A New Principal Axis Based Line Symmetry Measurement and Its Application to Clustering
	Introduction
	Newly Developed Line Symmetry Based Distance
	Kd-tree Based Nearest Neighbor Computation

	GALS Clustering: Genetic Line Symmetry Distance Based Clustering Technique
	String Representation and Population Initialization
	Fitness Computation
	Genetic Operators

	Implementation Results
	Discussion and Conclusion
	References

	Class-Dependent Feature Selection for Face Recognition
	Background
	Methodology
	Experiments
	Data Description and Preprocessing
	Implementation and Results

	Summary and Discussion
	References

	Partial Clustering for Tissue Segmentation in MRI
	Introduction
	Data
	Methods
	Independent Component Analysis on the Innovation
	Self-Organising Maps
	Discriminative Clustering

	Results
	Image Pre-processing
	Super-Voxels
	Tissue Classification

	Discussion and Conclusion
	References

	Time Series Analysis for Long Term Prediction of Human Movement Trajectories
	Introduction
	Time Series Prediction
	Echo State Networks
	Autoregressive Models
	Embedding Space
	Local Modeling
	Cluster Weighted Modeling

	Motion Prediction
	Test Conditions
	Experimental Results and Comparison

	Conclusions and Future Works
	References

	Error Analysis of a Sub-millimeter Real-Time Target Recognition System with a Moving Camera
	Introduction
	Method Overview
	Calibration and Undistortion

	Results and Error Analysis
	Conclusion and Discussion
	References

	Automatic Plaque Boundary Extraction in Intravascular Ultrasound Image by Fuzzy Inference with Adaptively Allocated Membership Functions
	Introduction
	Proposed Plaque Boundary Extraction Method in IVUS Image
	Plaque Boundary Extraction by Fuzzy Inference
	Adaptive Allocation of Membership Functions

	Experimental Results
	Conclusion
	References

	Gabor Neural Network Based Facial Expression Recognition for Assistive Speech Expression
	Introduction
	Facial Expression Recognition
	Face Image Preprocessing
	Gabor Feature Extraction from Face

	Back Propagated Neural Network (NN)
	Testing and Evaluation
	Conclusion
	References

	Investigations into Particle Swarm Optimization for Multi-class Shape Recognition
	Introduction
	Particle Swarm Optimization (PSO)
	Experimental Setup
	Results and Discussion
	Conclusions and Further Work
	References

	Patterns of Interactions in Complex Social Networks Based on Coloured Motifs Analysis
	Introduction
	Related Work
	Network Motifs
	Centrality Measures in Social Network

	Coloured Motifs Analysis
	Data Preparation and Plan of the Experiments
	Distribution of Network Motifs in WUT Social Network
	Analysis of the Coloured Network Motifs

	Conclusions and Future Work
	References

	Initialization Dependence of Clustering Algorithms
	Introduction
	Material and Methods
	Initialization Dependence Measure
	Clustering Algorithms and Parameters
	Data

	Experimental Results
	Use of ID Measure to Find Optimal Number oF Clusters
	Conclusion
	References

	Boundary Detection from Spectral Information
	Introduction
	Image Boundaries from Spectral Residual
	The Log Spectrum Representation
	Spectral Residual to Object Contour

	Experiment and Benchmark
	Discussions
	References

	Improvement of Practical Recurrent Learning Method and Application to a Pattern Classification Task
	Introduction
	Practical Recurrent Learning (PRL)
	Improvement of the PRL Method

	Experimental Results
	3-Bit Parity Problem
	Pattern Classification Task

	Conclusion
	References

	An Automatic Intelligent Language Classifier
	Introduction
	Background
	Proposed Research Methodology
	Overview
	Unicode and UTF8
	Feature Extraction
	Classification

	Experiments and Results
	Conclusions and Future Research
	References

	Gender Classification by Combining Facial and Hair Information
	Introduction
	Facial Feature Representation
	Hair Feature Representation
	Classifier Combination Mechanism
	Fuzzy Measure and Fuzzy Integral
	Classification by Fuzzy Integral

	Experiments
	Conclusions and Future Work
	References

	A Hybrid Fuzzy Approach for Human Eye Gaze Pattern Recognition
	Introduction
	Hierarchical Fuzzy Signatures
	Levenberg-Marquardt Learning of WRAO for Fuzzy Signatures
	Eye Gaze Data Collection
	Fuzzy Signature Construction for Recognition of Eye Gaze Pattern
	Evaluation and Comparison
	Conclusion
	References

	Interactive Trouble Condition Sign Discovery for Hydroelectric Power Plants
	Introduction
	Measurement Data
	Trouble Condition Sign Detection Approach
	Trouble Condition Sign Detection Experiment
	Experimental Setup
	Experimental Results

	Conclusion
	References

	An Asbestos Counting Method from Microscope Images of Building Materials Using Summation Kernel of Color and Shape
	Introduction
	Features for Asbestos Detection
	Asbestos Detection
	AsbestosCounting
	Experiments
	Image Dataset
	Evaluation Results

	Conclusion
	References

	Evaluation of Prediction Capability of Non-recursion Type 2nd-order Volterra Neuron Network for Electrocardiogram
	Introduction
	Volterra Neurons
	I/O Characteristics of N1VN
	I/O Characteristics of N2VN

	Nonlinear Predictions of ECG
	Experiment Method
	Experiment Results
	Discussion

	Conclusions
	References

	A New ART-LMS Neural Network for the Image Restoration
	Introduction
	ART-LMS Neural Network
	Image Restoration by ART-LMS
	The Structure of the NCWM Filter
	The ART-LMS Weight Controller

	Experimental Results
	Conclusions
	References

	Moving Vehicle Tracking Based on SIFT Active Particle Choosing
	Introduction
	Moving Vehicle Detection
	Key Points of Vehicle Obtained
	Active Particle Filtering Combined with SIFT
	Experimental Results
	Conclusions
	References

	Classification of Fundus Images for Diagnosing Glaucoma by Self-Organizing Map and Learning Vector Quantization
	Introduction
	Overview of Proposed Diagnosis System
	Self-Organizing Map and Learning Vector Quantization
	Experiment Data, Features and Method Parameters
	Experimental Data, Feature Extraction and Selection
	Parameters of SOM and LVQ

	Results and Discussion
	Clustering and Defining Pseudo-Classes with SOM Maps
	Classification by LVQ
	Selecting the Number of Pseudo-Classes
	Comparison with Other Methods for Diagnosis

	Conclusions
	References

	Facial Expression Recognition Techniques Using Constructive Feedforward Neural Networks and K-Means Algorithm
	Introduction
	Two Novel Facial Expression Recognition Techniques
	Experimental Results
	Conclusions
	References

	A Neural Network Based Classification of Human Blood Cells in a Multiphysic Framework
	Introduction
	Theoretical Approach: Problem Modeling
	FEM Approach
	The Inverse Problem and Its Neural Network Based Regularization
	Conclusions
	References

	Caller Interaction Classification: A Comparison of Real and Binary Coded GA-MLP Techniques
	Introduction
	The Developed System
	Implementation Methodology
	Selection and Pre-processing of Data
	Optimization of Classifier Architecture Using Genetic Algorithms
	Comparison of the Various Genetic Algorithms and Selection of the Superior Model

	Conclusion
	References

	A Robust Technique for Background Subtraction in Traffic Video
	Introduction
	Previous Background Modeling Methods
	Frame-Difference Background Modeling
	Mixture of Gaussians Background Modeling

	A Robust Background Modeling Method
	BDWT Based Background Subtraction
	Experimental Results
	Conclusion
	References

	Gabor Filters as Feature Images for Covariance Matrix on Texture Classification Problem
	Introduction
	Gabor Filters and Covariance Matrix
	Gabor Filters
	Covariance Matrix
	Nearest Neighbor

	Experiment Settings
	Results and Analysis
	Experiment Result for Edge-Based Derivative as Feature Images
	Experiment Result for GLCM as Feature Images
	Experiment Result for Gabor Filters as Feature Images
	Analysis

	Conclusion
	References

	Investigating Demographic Influences for HIV Classification Using Bayesian Autoassociative Neural Networks
	Introduction
	Background
	Bayesian Autoassociative Neural Networks
	Computational Intelligence Missing Data Estimation Method

	Method
	HIV Dataset
	Network Training
	Missing Data Estimation
	Influences for HIV Classification

	Results and Discussion
	Conclusion
	References

	Hardware-Based Solutions Utilizing Random Forests for Object Recognition
	Introduction
	Proposed Object Descriptor Method
	Labeling the Image

	Hardware Architecture
	Logarithmic Number Systems (LNS)
	RF-LNS
	RF-LNS Implementation

	Object Recognition
	Detection Instances
	Dataset
	Experimental Settings

	Performances
	Finite Precision Analysis

	Conclusions and Future Works
	References

	A Neural Oscillation Model for Contour Separation in Color Images
	Introduction
	The Neural Oscillation Model
	Total External Stimulation
	Local Contrast
	Neighboring Coupling Stimulus
	Global Inhibition
	Noise

	Experiments and Results
	Discussion and Conclusions
	References

	A Color Image Segmentation Using Inhibitory Connected Pulse Coupled Neural Network
	Introduction
	PCNNModel
	Conventional Model of PCNN
	Introducing Inhibitory Connections to the PCNN

	Simulation Results
	Pattern Segmentation of Color Test Images
	Pattern Segmentation of Photo Images

	Conclusion
	References

	Generating Saliency Map Related to Motion Based on Self-organized Feature Extracting
	Introduction
	A Requirement for the Vision
	Saliency Map and Self-organized Filters Based on ICA Base Function Estimation
	Generating Saliency Map Related to Motion
	Conclusion
	References

	Intelligent Face Image Retrieval Using Eigenpaxels and Learning Similarity Metrics
	Introduction
	System Description
	Overview
	Neural Similarity
	User’s Relevance Feedback
	Feature Extraction
	Training and Performance Evaluation

	Results and Discussion
	Training Performance
	Comparison of Lp-Norm and Neural-Based Retrieval
	Relevance Feedback Performance

	Conclusions
	References

	The Role of the Infant Vision System in 3D Object Recognition
	Introduction
	The Infant Vision System
	Description of the Proposal
	Experimental Results
	Conclusions
	References

	Virtual Fence for a Surveillance System
	Introduction
	Parallax
	The Proposed Algorithm
	Pre-processing
	Main Processing

	Experiment Setup
	System Setup
	Pre-processing

	Experimental Results
	Conclusion and Future Work
	References

	Application of mnSOM on Linking External Exposure to Internal Load
	Introduction
	Material and Methods
	Application of mnSOM
	Normalization of Metric Variables
	Training of the mnSOM and its Functional Modules
	Estimation of Class Properties by Calculation of Parameter Values for Functional Modules
	Visualization of the Class Assignment
	Prediction of Variable Values

	Results
	Discussion
	References


	Part VI Neuromorphic Hardware and Embedded Neural Networks
	Automated and Holistic Design of Intelligent and Distributed Integrated Sensor Systems with Self-x Properties for Applications in Vision, Robotics, Smart Environments, and Culinary Assistance Systems
	Introduction
	Intelligent System Design Automation
	Instance-Specific Adaptation in Multi-Site Deployment
	Inclusion of Self-x Properties
	Extension to SmE, AmI, and Culinary Assistance Systems
	Conclusions
	References

	Hardware Design of Japanese Hand Sign Recognition System
	Introduction
	Hand Posture Recognition System
	Preprocessing
	Classifier Network

	Simulation
	Effect of the Simplified DFT on the Recognition
	Recognition of 41 Hand Signs

	Hardware Design
	System Configuration
	Preprocessing Hardware
	Classifier Network Hardware
	Circuit Size and Speed

	Conclusions
	References

	Blind Source Separation System Using Stochastic Arithmetic on FPGA
	Introduction
	Blind Source Separation Using Stochastic Arithmetic
	FPGA Implementation
	Conclusions
	References

	Noise-Tolerant Analog Circuits for Sensory Segmentation Based on Symmetric STDP Learning
	Introduction
	The Model
	CMOS Circuits
	Simulation Results
	Conclusion
	References

	A Novel Approach for Hardware Based Sound Classification
	Introduction
	Signal Preprocessing and Spikes Generation
	ProposedModel
	Feature Generation
	Classification
	Time Potentials

	Hardware Implementation
	Experiments
	Discussion and Conclusions
	References

	The Generalized Product Neuron Model in Complex Domain
	Introduction
	Generalized Product Neuron (GPN)
	LearningRule
	Results and Discussion
	Performance Evaluation with Single Neuron System
	Performance Evaluation with Three Layered Network

	Conclusion
	References

	Pulse-Type Hardware Neural Network with Two Time Windows in STDP
	Introduction
	Construction of Neural Network with STDP
	Simulation Result
	Conclusion
	References

	Time Evaluation for WTA Hopfield Type Circuits Affected by Cross-Coupling Capacitances
	Introduction
	Preliminaries
	Computing the Processing Time
	Examples
	Conclusion
	References

	Circuit FPGA for Active Rules Selection in a Transition P System Region
	Theoretical Preliminaries on P-Systems
	Hardware Implementation of Active Rules
	Experimental Results
	Conclusions and Future Remarks
	References


	Part VII Machine Learning and Information Algebra
	Model Selection Method for AdaBoost Using Formal Information Criteria
	Introduction
	AdaBoost Algorithm
	Weak Classifiers Using the Decision Stump
	Information Criteria for Model Selection
	Dimension of Parameters
	Experiment
	Discussion
	Conclusion
	References

	The Diversity of Regression Ensembles Combining Bagging and Random Subspace Method
	Introduction
	Combining Bagging with RSM in LLM Ensembles
	Empirical Results
	Ensemble Regression Results
	Conclusion
	References

	On Weight-Noise-Injection Training
	Introduction
	RBF Training with Weight Noise Injection
	Network Model
	Weight Noise Injection Training
	Convergence and Objective Function

	MLP Training with Weight Noise Injection
	Injecting Multiplicative Weight Noise
	Injecting Additive Weight Noise

	Conclusions
	References

	Intelligent Control of Heating, Ventilating and Air Conditioning Systems
	Introduction
	Our Optimization Target: Condenser Water Loop
	Objective Function
	String Encoding
	Fitness Function
	Experimental Results
	Conclusions
	References

	Bregman Divergences and Multi-dimensional Scaling
	Introduction
	Bregman Divergences
	Properties of Bregman Divergences

	The Exponential Family
	Multi-dimensional Scaling
	Simulations
	Alternative Mappings

	Conclusion
	References

	Collective Activations to Generate Self-Organizing Maps
	Introduction
	Theory and Computational Methods
	Collective Activations
	Imitating Collective Activations
	Cooling Processes

	Results and Discussion
	Artificial Data
	Broadband Statistics

	Conclusion
	References

	A Closed-Form Estimator of Fully Visible Boltzmann Machines
	Introduction
	Brief Review of Boltzmann Machines
	Maximum Likelihood
	Maximum Pseudolikelihood and Related Methods

	ProposedMethod
	Basic Idea
	Closed-Form Estimator for BMs
	A View from the Least Square Regression
	Implementation Issue

	Simulation Results
	Discussion
	References

	Incremental Learning in the Non-negative Matrix Factorization
	Introduction
	Standard NMF Review
	Incremental NMF Algorithm (iNMF)
	Results
	Bar Dataset
	Comparison to Batch NMF
	Essex Face94 Dataset

	Discussion
	References

	Contextual Behaviors and Internal Representations Acquired by Reinforcement Learning with a Recurrent Neural Network in a Continuous State and Action Space Task
	Introduction
	Learning System
	Experimental Results
	Contextual Behaviors and Hidden States: Tests and Observations
	Manipulating of Hidden State during an Episode

	Conclusion
	References

	Improving the Quality of EEG Data in Patients with Alzheimers Disease Using ICA
	Introduction
	Methods
	EEG Data - Patients with MildAD
	Independent Component Analysis
	Cleaning Rules

	Results
	Variability between Cleaners
	Group Differences
	Inter-subject Variability

	Discussion and Conclusion
	References

	Global Minimization of the Projective Nonnegative Matrix Factorization
	Introduction
	The Filled Function
	Essentials of the Filled Function
	Properties of the Filled Function
	Algorithm

	Simulation
	Vector Case and Low Dimention Case
	Image Data

	Conclusion
	References

	Learning Sparse Representations Using a Parametric Cauchy Density
	Introduction
	Parametric Cauchy Density
	Sparseness
	Smoothness
	Estimating α and β

	Application to Sparse Coding
	Principles of Sparse Coding
	Improving Prior

	Experiments and Results
	References

	A One-Layer Recurrent Neural Network for Non-smooth Convex Optimization Subject to Linear Equality Constraints
	Introduction
	ModelDescription
	GlobalConvergence
	Simulation Results
	Conclusions
	References


	Part VIII Brain-Computer Interface
	A Study on Application of Reliability Based Automatic Repeat Request to Brain Computer Interfaces
	Introduction
	ProposedMethod
	Modeling of BCIs
	Applying RB-ARQ to BCI
	Comparison of Methods in Theoretical Value

	Experiments
	Experimental Settings
	Test of Fitness to Gaussian Distribution
	Application of RB-ARQ

	Discussions
	Summary
	References

	Analysis on Saccade-Related Independent Components by Various ICA Algorithms for Developing BCI
	Introduction
	Independent Component Analysis (ICA)
	FastICA
	AMUSE
	NG-FICA (Natural Gradient Flexible ICA)
	JADE (Joint Approximate Diagonalization of Eigenmatrices)

	Experimental Settings
	Experimental Results and Discussion
	Results of FastICA
	Extraction Rate

	Conclusion
	References

	Policy Gradient Learning of Cooperative Interaction with a Robot Using User’s Biological Signals
	Introduction
	Approach
	Experiments
	Experimental Setup
	Cooperative Holding by Virtual Force Sensing
	Policy Gradient Learning of the Cooperative Holding Task

	Conclusion
	References

	Real-Time Embedded EEG-Based Brain-Computer Interface
	Introduction
	Materials and Methods
	Simulation Dataset
	Subjects and Driving Task Experiments
	Independent Component Analysis
	Online Independent Component Analysis Implementation
	Moving-Average Power Spectral Analysis
	Embedded Brain Computer Interface System

	Experimental Results
	Experimental Results in Simulation Dataset
	Subject Performance Estimation by Using the Embedded BCI

	Discussions and Conclusions
	References

	Part IX Neural Network Implementations
	SpiNNaker: The Design Automation Problem
	Introduction
	The Hardware Platform
	The Chip

	Place and Route
	A Traditional Methodology
	SpiNNaker-Specific Issues
	The Framework

	Final Remarks
	References

	The Deferred Event Model for Hardware-Oriented Spiking Neural Networks
	Real-Time Neural Networks: The Update Timing Challenge
	Deferred Update Dynamics
	Implementation of a Neuron and Synapse on SpiNNaker
	The SpiNNaker Hardware System
	Neuron
	Synapse

	Application to System Modelling
	Conclusions
	References

	Particle Swarm Optimization with SIMD-Oriented Fast Mersenne Twister on the Cell Broadband Engine
	Introduction
	Implementation of Particle Swarm Optimization with SIMD OrientedFast Mersenne Twister on the Cell Broadband Engine
	Particle Swarm Optimization and DeJong’s Benchmark
	SIMD-Oriented Fast Mersenne Twister
	Cell Broadband Engine Processor

	Experimental Results and Discussions
	Conclusion
	References

	DNA Computing Hardware Design and Application to Multiclass Cancer Data
	Introduction
	DNA Computing-Based Pattern Classifier
	Hypernetwork Model
	Proposed Method
	Implementation of Hardware Architecture
	System Overview
	Building Blocks

	Experiments
	Multiclass Cancer Classification
	Data Preprocessing and Experimental Setup
	Results
	Implementation on FPGA

	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




