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Abstract. We present a type system for checking object immutability, read-only
references, and class immutability in an open or closed world. To allow object
initialization outside object constructors (which is often needed in practice), im-
mutable objects are initialized in lexically scoped regions. The system is simple
and direct; its only type qualifiers specify immutability properties. No auxiliary
annotations, e.g., ownership types, are needed, yet good support for deep im-
mutability is provided. To express object confinement, as required for class im-
mutability in an open world, we use qualifier polymorphism. The system has
two versions: one with explicit specification commands that delimit the object
initialization phase, and one where such commands are implicit and inferred. In
the latter version, all annotations are compatible with Java’s extended annotation
syntax, as proposed in JSR 308.

1 Introduction

1.1 Motivation

Immutable data structures greatly simplify programming, program maintenance, and
reasoning about programs. Immutable structures can be freely shared, even between
concurrent threads and with untrusted code, without the need to worry about modifica-
tions, even temporary ones, that could result in inconsistent states or broken invariants.
In a nutshell, immutable data structures are simple. It is therefore not surprising that
favoring immutability is a recommended coding practice for Java [3].

Unfortunately, statically checking object immutability in Java-like languages is not
easy, unless one settles for supporting only a restricted programming style that can
be enforced through final fields. Clearly, objects are immutable if all their fields are
final and of primitive type. Additionally, one can allow final fields of immutable
types, this way supporting immutable recursive data structures. Thus, Java’s final
fields support a style of programming immutable objects that mimics datatypes in func-
tional languages and is advocated, for instance, by Felleisen and Friedman [15].

Many immutable objects, however, do not follow this style. A prominent example
are Java’s immutable strings. An immutable string is a wrapper around a character ar-
ray. While final fields can prevent that a string’s internal character array is replaced by
another character array, final fields cannot prevent that the array elements themselves
are mutated. Moreover, Java’s type system provides no means for preventing represen-
tation exposure of the character array, which would allow indirect mutation of a string

� Supported by IST-FET-2005-015905 Mobius project.

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 520–545, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Type-Based Object Immutability with Flexible Initialization 521

through aliases to its (supposedly) internal character array. Preventing this, not just for
arrays but for any internal mutable data structures, requires a richer type system with
support for object confinement.

It is also quite common to have immutable data structures that are not instances of
immutable classes. Examples include immutable arrays, immutable collections that are
implemented in terms of Java’s mutable collection classes (but are never mutated after
initialization), and immutable cyclic data structures, e.g., doubly linked lists, graphs or
trees with parent references. Concrete examples are given on pages 527, 529 and Figure 3.

This article presents the design of a pluggable type system for Java to specify and
statically check various immutability properties. A pluggable type checker operates on
Java’s abstract syntax trees and is optionally invoked after the standard type checker,
to ensure additional properties. A pluggable checker for object immutability guarantees
that immutable objects never mutate.

Syntactically, our immutability type system can be handled with Java’s extended an-
notation syntax as proposed by JSR 308 [19], to be included in Java 7, which allows
annotations on all occurrences of types. While in this paper we slightly deviate from
legal annotation syntax (for explanatory reasons), all proposed annotations are in syn-
tactic positions allowed by JSR 308.

1.2 Kinds of Immutability

The following classification of immutability properties has been used in various places
in the literature [34,22]:

– Object immutability: An object is immutable if its state cannot be modified.
– Class immutability: A class is immutable if all its instances in all programs are

immutable objects.
– Read-only references: A reference is read-only if the state of the object it refers to

cannot be modified through this reference.

Examples of immutable classes are Java’s String class and the wrapper classes for
primitive types, e.g., Integer and Boolean. All instances of immutable classes are
immutable objects.

Conversely, immutable objects need not be instances of immutable classes. For ex-
ample, immutable arrays are not instances of an immutable class, and neither are im-
mutable collections that are implemented in terms of Java’s mutable collection libraries.
Immutable objects that are not instances of immutable classes typically have public,
non-final fields or public mutator methods, but the pluggable type system disallows
assignments to these fields and calls to these methods.

An example for a read-only reference is the reference created by Java’s static method
Collection unmodifiableCollection(Collection c), which generates a wrap-
per around collection c. This wrapper refers to c through a read-only reference.

For class immutability, we further distinguish between an open and a closed world
[25]:

– Class immutability in a closed world assumes that all program components follow
the rules of the pluggable type system.
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– Class immutability in an open world assumes that immutable classes and the classes
they depend on follow the rules of the pluggable type system, but clients of im-
mutable classes are unchecked (i.e., they only follow Java’s standard typing rules).

Unchecked class clients may for instance be untrusted applets. Note that the closed
world assumption only makes sense if all code is checked with the additional type
rules. Java’s classes String, Integer and Boolean are immutable in an open world.
For class immutability in an open world it is essential that instances of immutable
classes encapsulate their representation objects. Open-world-immutable classes nec-
essarily have to initialize their instances inside constructors or factory methods, and
they should not provide accessible mutator methods or fields. Note also that, in an open
world, object immutability without class immutability can only be achieved for objects
that are never exposed to unchecked clients, because unchecked clients cannot be pre-
vented from calling mutator methods or assigning to accessible fields if these exist.
Similarly, in an open world, read-only references can only be achieved for references
that are never exposed to unchecked clients.

1.3 Specifying Immutability with Type Qualifiers

Following our earlier work [18], we support the distinction between mutable and im-
mutable objects through access qualifiers on types:

Access qualifiers:
p,q ::= RdWr read-write access (default)

Rd read-only access
. . .

Types:
T ::= q C C-object with q-access
C ∈ ClassId class identifiers

Objects of type RdC are called Rd-objects, and have immutable fields. Our type system
is designed to guarantee the following soundness property (see Theorem 2):

Well-typed programs never write to fields of Rd-objects.

For instance, the method bad() attempts an illegal write to a Rd-object and is forbidden
by our type system. On the other hand, good() legally writes to a RdWr-object:

class C { int f; }

static void bad(Rd C x) {

x.f = 42; // TYPE ERROR

}

static void good(RdWr C x) {

x.f = 42; // OK

}

An additional type qualifier, Any, represents the least upper bound of Rd and RdWr:

p,q ::= · · ·
Any “either Rd or RdWr”

Subqualifying:

Rd <: Any RdWr <: Any

Subtyping:

p <: q C <: D

p C <: q D

A reference of a type AnyC may refer to a Rd-object or a RdWr-object, so writes through
Any-references are forbidden. Beware of the difference between Rd and Any. A refer-
ence of type Any C is a read-only reference, meaning you cannot write to the object
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through this particular reference. A reference of type RdC is a reference to a read-only
object, i.e. to an object that nobody has write-access to.1

The following example shows how Any-references can be useful. The method m()
creates a RdWr-array and then applies the method foo() to the array. From the type of
foo() we can tell that foo() does not mutate the array: 2

interface Util {

void foo(int Any [] a);

}

static void m(Util util) {

int[] a = new int RdWr [] {42,43,44};

util.foo(a);

assert a[0] == 42;

}

In this example, we assume a closed world. In an open world, where there may be
unchecked classes that do not play by the additional rules our type system imposes,
there is still the possibility that foo() writes a to some heap location of type Any, so
that unchecked class could modify a[0] concurrently. Preventing foo() from writing
its parameter to the heap can be achieved by a more general method type that uses
qualifier polymorphism, as will be discussed in Section 2.3.

1.4 Flexible Object Initialization with Stack-Local Regions

A common problem of type systems for object immutability [4,18,34,22] and for non-
nullness (more generally, object invariants) [13,14,28] is object initialization. Whereas in
traditional type systems, values have the same types throughout program execution, this
is not quite true for these systems. Type systems for non-nullness face the difficulty that all
fields are initially null; type systems for object immutability face the difficulty that even
immutable objects mutate while being initialized. In these systems, each object starts out
in an uninitialized state and only obtains its true type at the end of its initialization phase.
Thus, objects go through a typestate transition from “uninitialized” to “initialized”.

Object initialization is often the most complicated aspect of otherwise simple type
systems, see for instance Fähndrich and Leino’s non-nullness type system [13]. Some of
the above type systems require that initialization takes place inside object constructors
[13,18,34]. Unfortunately, this does not really simplify matters because object construc-
tors in Java-like languages can contain arbitrary code (which may, for instance, leak
self-references or call dynamically dispatched methods). Moreover, initialization inside
constructors is often too restrictive in practice. For instance, cyclic data structures often
get initialized outside constructors, and array objects do not even have constructors.

One contribution of this paper is a simple but flexible object initialization technique
for immutability, using stack-local memory regions. Object initialization with stack-
local regions supports a programming style that is natural for programmers in main-
stream OO languages. In particular, programmers do not have to mimic destructive
reads, as required by type systems where object initialization is based on unique refer-
ences [4,22]. Statically checking object initialization with stack-local regions is simple,
as it does not require tracking aliasing on the heap, which is needed in more general

1 IGJ [34] uses the same three qualifiers, calling them @Mutable, @Immutable, and @ReadOnly

instead of Rd, RdWr and Any.
2 Following JSR 308 syntax, the qualifier of an array type C[] is written before the [].
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typestate-like systems based on static capabilities [10,29,6,11,5,7,2]. In order to facil-
itate modular static checking, these systems use additional program annotations in the
form of constraints, effects, or pre/postconditions. Our system, on the other hand, only
uses standard type annotations, largely hiding the typestate change from “uninitialized”
to “initialized” from programmers. To this end, we have designed an inference algo-
rithm that automatically infers the end of object initialization phases (see Section 3.4).

1.5 Object Confinement with Qualifier-Polymorphic Methods

A type system for class immutability in an open world must enforce several confine-
ment properties [3]. Specifically, it must guarantee that instances of immutable classes
encapsulate their representation objects and that their object constructors do not leak
self-references. In our earlier paper [18], we enforced these properties using two type-
based confinement techniques (in addition to the access qualifiers Rd and RdWr), namely
a dedicated ownership type system for enforcing encapsulation of representation ob-
jects, and so-called anonymous methods [32] for confining self-references during ob-
ject construction. Unfortunately, the resulting type system was more complex than one
would desire. One of the insights of this article is that, when combined with flexible
object initialization, the various confinement properties for class immutability can be
expressed in terms of methods that are polymorphic in access qualifiers.

To get an idea how polymorphism helps with confinement, consider the following
qualifier-polymorphic method signature:

<q> void foo(char q [] arg)

where <q> denotes universal quantification of the qualifier variable q, making the
method polymorphic in q. For a qualifier hierarchy without greatest element, this sig-
nature tells us that foo() does not write its parameter to a heap location, because the
type of such a location would need a single qualifier annotation that is greater than all
other qualifiers.3 This observation can be exploited to confine representation objects of
immutable objects and to confine self-references to constructors of immutable objects.

To support deep immutability we treat the access qualifier as an implicit class pa-
rameter. It is interesting that this single class parameter in combination with qualifier-
polymorphic methods and flexible object initialization suffices for satisfactorily encod-
ing class immutability. In particular, we do not need separate ownership annotations,
because the required confinement properties can be expressed in terms of these primi-
tives, in a similar way as in ownership type systems. Flexible initialization is a crucial
ingredient, as it allows us, for instance, to treat the internal character array of a string
as an immutable object (rather than as a mutable object that is owned by an immutable
one). This would not be possible if object initialization was tied to object constructors,
because then all arrays would necessarily be mutable4. As a result of treating the charac-
ter array inside a string as immutable, our type system can, for instance, easily support

3 Any is actually not the greatest element of our qualifier hierarchy, but the greatest qualifier for
initialized objects. We still name this qualifier Any (rather than Initialized). Fortunately,
qualifiers for uninitialized objects are inferred and never need to be written by programmers.

4 Supporting immutable arrays initialized by array initializers is not enough for the constructor
String(char[] c) of Java’s String class, because the length of c is not known statically.
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different strings sharing the same, immutable, character array for their representation,
which is often problematic with ownership types.

1.6 Summary of Contributions

Based on the ideas sketched in this introduction, we have designed a pluggable im-
mutability type system for Java-like languages. The primitives of the type language are
the type qualifiers Rd, RdWr and Any for specifying object access rights. The features of
the system are:

– expressiveness: the system supports object immutability, read-only references, and
class immutability in a closed and open world;

– simplicity and directness: the system only needs the type qualifiers Rd, RdWr and
Any plus qualifier polymorphism; its formal typing rules are simple; annotations are
only required on field types and in method signatures; no annotations are required
inside method bodies;

– flexible initialization: object initialization is not tied to object constructors; while
the type system is necessarily flow-sensitive in order to support object initialization,
it works for concurrency, too, because it enforces that threads only share initialized
objects and because types of initialized objects are persistent.

On the technical side, our contributions are:

– type system formalization and proof of soundness for object immutability: we for-
malize a subset of the type system for a small model language; this subset focuses
on what we believe is the most critical part of the system, namely, the initializa-
tion phase; we prove that the system is sound for object immutability: well-typed
programs never write to Rd-objects;

– a local annotation inference algorithm: we present a local annotation inference
algorithm that automatically infers the end of object initialization phases; we have
formalized this algorithm for our model language and proven it sound.

Outline. The rest of the paper has two parts. Section 2 informally discusses the type
system design. Section 3 contains the technical contributions: it formalizes the type
system for a small model language, presents the annotation inference algorithm, and
states soundness theorems, whose detailed proofs are contained in the companion report
[17]. Section 4 compares to related work and Section 5 concludes.

2 Informal Presentation

We carry on with the informal presentation, as started in Section 1.3.

2.1 Access Qualifier as Class Parameter

For aggregate object structures, it is desirable to associate a single access qualifier with
the entire aggregate, especially if the internal structure of the aggregate is hidden from
object clients. In order to support access control for aggregates through single access
qualifiers, we treat the access qualifier as an implicit class parameter. We have already
proposed this in [18] and so has IGJ [34]. Technically, we introduce a special access
variable myaccess that refers to the access qualifier of this. The scope of this variable
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is the entire class body. In particular, the myaccess variable can be used in field types
and signatures of methods and constructors. In the Square class below, myaccess an-
notates the type Point of its fields. Method m() takes an Any-square, so can neither
write to the Point-fields of the square, nor to the int-fields of its points.

class Point { int x; int y; }

class Square { myaccess Point upperleft; myaccess Point lowerright; }

static void m(Any Square s) {

s.upperleft = s.lowerright; // TYPE ERROR

s.upperleft.x = 42; // TYPE ERROR

}

It is also possible to assign a single access right to a cyclic structure. For instance:

class Person { myaccess Person partner; }

class Couple { myaccess Person husband; myaccess Person wife; }

Old-fashioned couples stick with each other forever: they have type Rd Couple. Modern
couples can divorce and the partners can re-marry: they have type RdWr Couple.

The access qualifier is a covariant class parameter. Generally, covariant class param-
eters are unsound, because upcasting a class parameter allows ill-typed writes to fields
whose types depend on this class parameter. Here, treating the access qualifier covariantly
is sound, because access qualifiers that permit write-access are minimal elements of the
qualifier hierarchy. Thus, upcasting access qualifiers makes object references read-only.

2.2 Flexible Initialization

For sound object initialization, we adapt a technique from region-based memory man-
agement [30], allowing initialization of immutable objects inside stack-local memory
regions (closely related to lexically scoped regions). A stack-local region is a part of the
heap that cannot be reached from the rest of the heap. All references into a stack-local
region are on the stack. Each stack-local region is owned by a method (or a constructor),
namely, the lowest method on the call stack that holds references into this region. All
objects inside a stack-local region have the same special type qualifier. The method that
owns the region (and only this method) is permitted to change this type qualifier to some
other qualifier, uniformly for all objects in the same region. When this typestate change
is performed, the owning method is on the top of the call stack, so all references into the
stack-local region come from local variables of this owning method. This means that all
references into the stack-local region at the time of the typestate change are statically
known: the static type system can easily modify the type qualifiers of these references.

Technically, to support flexible initialization, we add Fresh-qualifiers. These have a
name as an argument, which we call an initialization token.

p,q ::= · · ·
Fresh(n) fresh object under initialization

n ∈ Name token for initializing a set of related objects

An initialization token can be viewed as an identifier for a stack-local region that con-
tains Fresh(n)-objects. The token n is secret to the method that owns the associated
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region and grants permission to commit Fresh(n) to q, for any q. To syntactically
capture this semantics, we introduce two specification commands:

newtoken n create a new initialization token
commit Fresh(n) as q globally convert Fresh(n) to q

These are specification commands, i.e., they operate on auxiliary state (“ghost state”)
and have no runtime effect on concrete state or control flow. Our inference algorithm
can infer all specification commands, so they need not be written by the programmer.
In fact, all annotations inside method bodies can be inferred, so that programmers only
have to write qualifiers in field declarations and method signatures. In the examples
below, all inferred annotations are shaded gray.

The following method, for instance, creates an immutable array; it uses the flexible
initialization technique, to initialize the array r outside a constructor.

static char Rd [] copy (char Any [] a) {

newtoken n;

char[] r = new char Fresh(n) [a.length];

for (int i=0; i++; i < a.length) r[i] = a[i];

commit Fresh(n) as Rd;

return r;

}

To initialize immutable cyclic data structures, we use the same initialization token for
all members of the structure. Using the flexible initialization technique, we can set
cross-references (here husband and wife) after the constructors have been called:5

newtoken n;

Person alice = new <Fresh(n)>Person();

Person bob = new <Fresh(n)>Person();

alice.partner = bob; bob.partner = alice;

Couple couple = new <Fresh(n)>Couple();

couple.husband = bob; couple.wife = alice;

commit Fresh(n) as Rd;

Note that field types and method signatures cannot contain Fresh(n)-annotations,
because n is out-of-scope in field types and method signatures:

class C {

Fresh(n) D x; // TYPE ERROR: n out of scope

static Rd C commit(Fresh(n) C x) { // TYPE ERROR: n out of scope

commit Fresh(n) as Rd; return x; }

}

Because we do not allow methods that are parametrized by initialization tokens, each
initialization token is confined to a single method. As a result, only the method that
“owns” a Fresh(n)-region can commit it, which is crucial for the soundness of commit.

Figure 1 sketches a runtime configuration before a commit-statement. In this con-
figuration, the heap has three regions: a region of initialized objects, and two Fresh
regions with associated initialization tokens n1 and n2. The picture shows possible

5 Person() is a qualifier-polymorphic constructor, hence the angle brackets. See Section 2.4.
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RdWr-object
Rd-object
Any-object
Fresh(n1)-object
Fresh(n2)-object

Initialized
heap

stack-local region
Fresh(n1)

stack-local region
Fresh(n2)

top

rest
Stack

If the method that owns n1 “executes”
commit Fresh(n1) as Rd, then:

– the n1 region joins the initialized heap
– qualifiers of references into the n1 region

(by local variables of top frame) must be ad-
justed

Fig. 1. Committing the fresh region owned by the top stack frame

inter-region references. Importantly, the type system ensures that there are no incoming
references from the heap into Fresh regions. Furthermore, when the top of the stack
owns region n1, there are no references from the rest of the stack into this region. When
the commit-statement is executed, region n1 is merged with the initialized region. The
type system then has to adjust the qualifiers of all references into region n1. Fortu-
nately, this can be done statically, because all references into this region come from
local variables in its owning method.

2.3 Qualifier Polymorphism for Methods

Consider the following method:

static void copy(Point src, Point dst) {

dst.x = src.x; dst.y = src.y;

}

This method could accept both RdWr-points and Fresh-points as dst-parameters. To
facilitate this, we introduce bounded qualifier polymorphism for methods. The Hasse
diagram in Figure 2.3 depicts the qualifier hierarchy, including qualifier bounds. The
syntax for qualifier-polymorphic methods is as in Java Generics:

<ᾱ extends B̄> T m(T̄ x̄)q{ . . .} (method declaration)

We usually omit the qualifier bound Qual, writing <a extends Qual> as <a>. The
qualifier q is associated with the receiver parameter, that is, e.m() can only be called if
e’s access qualifier is a subqualifier of q. Receiver qualifiers are not present in static
methods. For subclassing, method types are treated contravariantly in the qualifiers on
input types (including the receiver qualifier) and covariantly in the qualifier on the out-
put type. These variances are as in IGJ [34]. We can now type copy() as follows:

static <a, b extends Writeable> void copy(a Point src, b Point dst) {

dst.x = src.x; dst.y = src.y;

}
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Rd

Any

RdWr Fresh(n) Fresh(m) · · ·

Qual

Writeable

Qualifier bounds:

B ::= Any | Writeable | Qual
α ∈ QVar (qualifier variables)
p,q ::= · · · | α

e : q C q extends Writeable

e. f =v : ok

Fig. 2. The qualifier hierarchy. Qual and Writable are qualifier bounds, not qualifiers, so they
cannot be used as type qualifiers, only in extends-clauses.

Note that Writeable can only be used as a qualifier bound, but not as a qualifier.
Allowing Writeable as qualifier would lead to unsoundness for two reasons: Firstly,
Writeable would be a non-minimal qualifier that allows writes, which would make
covariance of the myaccess class parameter unsound. Secondly, Writeable could be
used as an annotation on field types. This would open the door for violating stack local-
ity of Fresh-regions, which would make the typestate transition at commits unsound.

Signatures of qualifier-polymorphic methods tell us which method parameters are
potentially mutated by the method. In addition, they also provide information about
which method parameters are potentially written to the heap. For instance:

– static <a> void foo(int a [] x);

• does not write to object x through reference x
• does not write object x to the heap

– static void faa(int Any [] x);

• does not write to object x through reference x
• may write object x to the heap (into Any-fields)

– static <a extends Writeable> void fee(int a [] x);

• may write to object x through reference x
• does not write object x to the heap

The method foo(x) cannot write x to the heap, because the qualifier hierarchy does not
have a greatest element, which would be needed as the type of a location that x can be
written to. Similarly, fee(x) cannot write x to the heap, because there is no qualifier
that bounds all writeable qualifiers.

In the following example, we use the qualifier for the receiver parameter to dis-
tinguish between inspector and mutator methods. Inspectors can be called on any re-
ceivers, whereas mutators can only be called on writeable receivers:

class Hashtable<K,V> {

<a> V get(K key) a { . . . } // inspector

<a extends Writeable> V put(K key, V value) a { . . . } // mutator

}

To create an immutable hash table we can use flexible initialization outside the con-
structor:
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newtoken n;

Hashtable<String,String> t = new <Fresh(n)>Hashtable<String,String>();

t.put("Alice", "Female"); t.put("Bob", "Male");

commit Fresh(n) as Rd;

t.get("Alice"); // OK

t.put("Charly", "Male"); // TYPE ERROR

2.4 Constructors

Constructor declarations have one of the following two forms:

<ᾱ extends B̄> q C(T̄ x̄) p{ body } (caller-commit constructor)
<ᾱ extends B̄> q C(T̄ x̄){ newtoken n; body } (constructor-commit constructor)

Caller-commit constructors are more common. In their signature, p represents the
qualifier of this when the constructor body starts executing. The typechecker assumes
this qualifier initially when checking the constructor body, and enforces that constructor
callers, through super() or this(), establish this precondition. The postcondition q
represents the qualifier of this when the constructor terminates.

A typical instance of caller-commit constructors looks like this:

<α extends Writeable> α C(T̄ x̄)α{ . . . }

In particular, the default no-arg constructors have this form. Note that, if in the above
constructor signature α does not occur in any of the parameter types T̄ , then we know
that the constructor does not leak references to this6. This is often desired for construc-
tors. Constructors that deliberately leak this could have the following form (which
prevents the creation of immutable class instances):

RdWrC(T̄ x̄)RdWr{ . . . }

Constructor-commit constructors enforce that the object is committed inside the con-
structor. This is useful in an open world to prevent object clients from ever seeing an
uninitialized object. In constructor-commit constructors, the precondition is omitted.
Instead, the constructor begins by generating a fresh token n. The body then initially
assumes that this has qualifier Fresh(n). The scope of n is the constructor body,
and therefore n cannot be mentioned in the constructor postcondition. To establish the
postcondition, the body is forced to commit Fresh(n) before it terminates. The type
system disallows calling constructor-commit constructors through super() or this().
Therefore, constructor-commit constructors are particularly suited for final classes.

Figure 3 shows an example with a caller-commit constructor. An immutable tree
with parent pointers is constructed from the bottom up. A single initialization token
is used for all nodes and is committed only after the root node has been initialized.
This example is interesting because Qi and Myers [28] identify it as a problematic
initialization pattern for other type systems [14]. It causes no problems for our system.

6 If α occurs in T̄ , the constructor could for instance leak this to a field x. f of a constructor
parameter α Dx, in case f ’s type in C is annotated with myaccess.
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class Tree {

myaccess Tree parent, left, right;

<a extends Writeable> a Tree (a Tree left, a Tree right) a {

this.left = left; this.right = right;

if (left != null) left.parent = this;

if (right != null) right.parent = this;

}

}

newtoken n;

Tree left leaf = new <Fresh(n)>Tree(null, null);

Tree right leaf = new <Fresh(n)>Tree(null, null);

Tree root = new <Fresh(n)>Tree(left leaf, right leaf);

root.parent = root;

commit Fresh(n) as Rd;

Fig. 3. Bottom-up initialization of a tree with parent pointers

2.5 Class Immutability in an Open World

In his book “Effective Java” [3], Bloch presents rules that ensure class immutability.
These rules require that fields of immutable classes are private and final, that public
methods are inspectors, that methods and constructors do not leak representation ob-
jects, that public constructors do not leak this, and that the behaviour of instances of
immutable classes does not depend on overridable methods. Some of these rules (e.g.,
that all fields are private and final) can very easily be checked automatically. The con-
ditions that methods of immutable classes are inspectors, that instances of immutable
classes do not leak representation, and that constructors of immutable classes do not
leak this can be expressed and checked by our type system.

If we specify class immutability with a class annotation Immutable, we could for
instance declare an immutable String class like this:

Immutable final class String {

private final char myaccess [] value;

. . .
}

Semantically, the Immutable annotation is meant to specify that String is an im-
mutable class in an open world, i.e., that all instances of String are Rd-objects that
cannot be mutated by possibly unchecked clients. In order to tie the access modifier
for the value array to the access modifier for the enclosing string, it is important that
we annotate the value field with myaccess instead of Rd. In combination with the
requirements on method and constructor signatures below, this prevents representation
exposure of the character array.

The following rules guarantee class immutability:

– immutable classes must be final and direct subclasses of Object
– methods and constructors may only call static or final methods or methods of final

classes (transitively)
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static <a, b extends Writeable>

void arraycopy(a Object src, int srcPos, b Object dst, int dstPos, int l);

public <a> Rd String(char a value[]) {

newtoken n;

int size = value.length;

char[] v = new char Fresh(n) [size];

System.arraycopy(value, 0, v, 0, size);

this.offset = 0; this.count = size; this.value = v;

commit Fresh(n) as Rd;

}

Fig. 4. A constructor of Java’s immutable String class

– all fields must be final
– public constructors must have the following form:

<ᾱ extends B̄> RdC(T̄ x̄){ newtoken n; . . . ;commit Fresh(n) as Rd; }
where myaccess does not occur in T̄

– types of public methods must have the following form:

<α, β̄ extends B̄>U m(T̄ x̄)α{ . . .}

We use the String example to explain the constructor rule: The rule ensures that
public constructors do not assign previously existing character arrays to the string’s
value field. This would only be possible, if the class parameter myaccess occurred
in one of the parameter types T̄ , which is forbidden. For instance, the constructor
String(char value[]) is forced to make a defensive copy of its input parameter,
as shown in Figure 4. Furthermore, constructors can not assign this or this.value
to heap locations outside the stack-local Fresh(n)-region. This would only be possible
if one of the parameter types T̄ mentioned myaccess, or if the commit-statement were
executed somewhere in the middle of the constructor, in which case the constructor
could write this.value or this to the heap as a Rd-object after the commit.

As for the method rule, we have already argued that the above method type enforces
that m is an inspector. Furthermore, the type forbids that m assigns the value array to
the heap, because the qualifier hierarchy does not have a greatest element. Note that
method types of the form U m(T̄ x̄)Any{ . . .} do not prevent representation exposure,
because they enable writing the value array to Any-fields, which is dangerous in an
open-world. Similarly, if the value field were annotated with Rd instead of myaccess,
the value array could be written to Rd-fields or Any-fields.

2.6 Threads

For type soundness in multi-threaded programs, we must ensure that thread-shared ob-
jects are initialized, i.e., they must have types Rd, RdWr or Any, but not Fresh. This
suffices for soundness, because types of initialized objects never change. As all thread-
shared objects are reachable from the sharing Thread-objects and as the initialized
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region is closed under reachability7, it suffices to require that Thread-objects are ini-
tialized when threads get started. Furthermore, we must assume this fact as the precon-
dition for verifying the body of Thread.run():

class Thread {

void run() RdWr { }

void start(); // Treated specially. Type system uses run()’s type.

}

Subclasses of Thread may override run() with receiver qualifier RdWr or Any (by con-
travariance)8. Calling start() on a receiver o, whose static type is a subtype MyThread
of Thread, requires that o has run()’s receiver qualifier from MyThread. Note that
treating Thread.start() specially is not a random special case, because conceptually
Thread.start() is a concurrency primitive for dynamic thread creation (a.k.a. fork
or spawn), which is always treated specially in verification systems for concurrency.

3 The Formal Model

We formalize our system for a model language that is deliberately simple. The main
objective is to prove soundness of the flexible initialization technique in a very simple
setting, to describe the local inference algorithm in the small as a high-level blueprint
for an implementation, and to prove soundness of the inference algorithm. Our simple
language is based on recursively defined records with nominal types, recursive function
definitions, and a simple command language. We include conditionals and while-loops,
because the type system and the associated inference algorithm are flow-sensitive, and
so branching and repetition are interesting.

Mathematical Notation. Let X → Y be the set of functions from X to Y , and X ⇀ Y the
set of partial functions, and SetOf(X) the set of all subsets of X . Functions f ∈ X ⇀ Y
induce functions in f̂ ∈ SetOf(X)→ SetOf(Y ): f̂ (X ′) = { f (x) | x ∈ X ′ ∩dom( f )}. We
usually omit the hat when the context resolves ambiguities. For f ∈ X ⇀ Y and Z some
set, let f |Z be the restriction of f to Z: f |Z = {(x,y) ∈ f | x ∈ Z}. For f ∈ X ⇀ Y
and g ∈ Y → Z, let g ◦ f = {(x,g( f (x))) | x ∈ dom( f )}. Note that g ◦ f ∈ X ⇀ Z. For
f ,g ∈ X ⇀ Y , let f [g] = g∪ ( f |{x | x �∈ dom(g)}). Let x �→ y = {(x,y)}. We write
f ,x �→ y instead of f [x �→ y] when we want to indicate that x �∈ dom( f ). If f is a type
environment, we write f [x : y] and f ,x : y instead of f [x �→ y] and f ,x �→ y. We write π1

and π2 for the first and second projection that map pairs to their components.

3.1 A Model Programming Language with Access Qualifiers

Our model is based on records. We refer to named record types as classes, and to records
as objects. Record types are of the form q C, where q is an access qualifier and C a class
identifier. The void-type has only one element, namely null. We define a mapping

7 In this discussion, we ignore Java Generics. See [17] for a discussion of generics.
8 It would also be sound to use Rd as the receiver qualifier for Thread.run(). However, this

would be too restrictive, because it would globally enforce that threads never write to fields of
their Thread-objects.
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∆ ::= ε | ∆,α�B | ∆,n : Token (qualifier environments)
∆,α�B,∆′ � α�B ∆,n : Token,∆′ � n : Token

q <: Any

∆ � q�Any

∆ � q�B

∆ � q�Qual ∆ � RdWr�Writeable

∆ � n : Token

∆ � Fresh(n)�Writeable

Fig. 5. Qualifier typing, ∆ 	 q�B and ∆ 	 n : Token

that erases qualifiers from types: |q C| = C and |void| = void. Subqualifying is the
least partial order such that Rd <: Any and RdWr <: Any. Subtyping is the least partial
order such that p C <: q C for all p <: q. A class table is a set of class declarations for
distinct class identifiers. Class declarations may be (mutually) recursive. A method table
is a set of (mutually) recursive function declarations for distinct identifiers. The syntax
of the model language is shown below. The identifiers x and n in the forms (C x;e) and
(newtoken n;e) are binders with scope e, and we identify expressions up to renaming
of bound identifiers9. The judgment in Figure 5 formalizes boundedness (writing � for
extends) and ensures that arguments n of Fresh(n) represent initialization tokens.

n,o ∈ Name (names) α,β ∈QVar (qualifier variables, including myaccess)

p,q ∈Qual ::= Rd | RdWr | Any | Fresh(n) | α (access qualifiers)

f ,g ∈ FieldId (field identifiers) C,D ∈ ClassId (class identifiers)

class ::= classC { T̄ f̄ } (class declarations) T ∈ Ty ::= q C | void (types)

B ∈ QualBound ::= Writeable | Any | Qual (qualifier bounds)

m ∈MethodId (method identifiers) x ∈ Var (local variables)

method ::= <ᾱ� B̄> T m(T̄ x̄){e} (method declarations)

v ∈ OpenVal ::= null | n | x (open values)

e ∈ Exp ::= v | C x;e | newtoken n;e | h;e (expressions)

h ∈ HdExp ::= x=v | x=v. f | v. f =v | x=<q̄>m(v̄) | x=new q C |
if v e e | while v e | commit Fresh(n) as q

(head expressions)

Derived form, e;e′: v;e
∆= e (h;e);e′ ∆= h;(e;e′) (C x;e);e′ ∆= C x;(e;e′) if x not free in e′

(newtoken n;e);e′ ∆= newtoken n;(e;e′) if n not free in e′

Derived form, e; : e;
∆= e;null

Note that declarations of local variables associate a class C with the variable, but no
access qualifier q. The reason for this design choice is that local variables may change
their qualifier at commit-statements. We would find it misleading if our system fixed an
access qualifier for a local variable at its declaration site, even though later the variable
refers to objects with incompatible access qualifiers.

Our system also permits qualifier changes at assignments to local variables. This
seems a natural design choice, given that we have flexible qualifiers for local variables
anyway. When a local variable x is used, the type system assumes the access qualifier of
the object that most recently got assigned to x. For instance, assuming a context where
local variables r and w have types Rd Point and RdWr Point, respectively:

Point p; p=w; // now p has type RdWr Point

p.x=42; // this typechecks

p=r; // now p has type Rd Point

p.x=42; // type error: illegal write to Rd-object

9 See also the remark on the operational semantics of newtoken at the end of Section 3.2.
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3.2 Operational Semantics

Heaps are functions from names to objects. Each object is tagged with an access qual-
ifier. These tags are auxiliary state in the sense that they have no effect on concrete
program state or control flow, that is, they are erasable. The operational semantics also
tracks the pool of tokens that have so far been generated. Token pools are erasable.

ν ∈ Val ::= null | n obj ∈ Object
∆= Qual× (FieldId ⇀ Val) ::= q{ f̄ = ν̄}

h ∈ Heap
∆= Name ⇀ Object t ∈ TokenPool

∆= SetOf(Name)

Commit-environments are functions from names to access qualifiers. They are used to
track Fresh-qualifiers that have been committed.

δ ∈ CommitEnv
∆= Name ⇀ Qual

Commit-environments δ induce functions δ̂ in Qual → Qual, Ty → Ty and Object →
Object: δ̂(Fresh(n)) = q if δ(n) = q, δ̂(q) = q otherwise; δ̂(q C) = δ̂(q) C, δ̂(void) =
void; δ̂(q{ f̄ = v̄}) = δ̂(q){ f̄ = v̄}. If the context resolves ambiguities, we omit the hat.

A stack frame is a pair of a local store σ and an expression e:

σ ∈ Var ⇀ Val fr ∈ Frame
∆= (Var ⇀ Val)×Exp s ∈ Stack ::= nil | fr :: s

We extend the domain of functions σ to OpenVal, by setting σ(ν) = ν for ν ∈ Val.
Configurations are triples of stacks, heaps and token pools.

cfg ∈ Configuration
∆= Stack×Heap×TokenPool

The rules in Figure 6 define the small-step operational semantics on configurations. In
the rules (Red Dcl) and (Red New Token), we implicitly use a bound-variable conven-
tion that allows us to rename bound variables and names appropriately.

(Red Dcl)
(σ,C x;e) :: s,h, t → ((σ,x �→ null),e) :: s,h, t

(Red New Token) n �∈ t
(σ,newtoken n;e) :: s,h, t → (σ,e) :: s,h, t ∪{n}

(Red Set Local)
(σ,x=v;e) :: s,h, t → (σ[x �→ σ(v)],e) :: s,h, t

(Red Get) v �= null σ(v) = n
(σ,x=v. f ;e) :: s,h, t → (σ[x �→ π2(h(n))( f )],e) :: s,h, t

(Red Set) v �= null σ(v) = n
(σ,v. f =w;e) :: s,h, t → (σ,e) :: s,h[n �→ (π1(h(n)), π2(h(n))[ f �→ σ(w)] )], t

(Red Call) <ᾱ� B̄>U m(T̄ x̄){e′}
(σ,x=<q̄>m(v̄);e) :: s,h, t → (x̄ �→ σ(v̄),e′[q̄/ᾱ]) :: (σ,x=<q̄>m(v̄);e) :: s,h, t

(Red Return)
(σ,w) :: (σ′,x=<q̄>m(v̄);e) :: s,h, t → (σ′[x �→ σ(w)],e) :: s,h, t

(Red New) classC { T̄ f̄ } n �∈ dom(h)
(σ,x=new q C;e) :: s,h, t → (σ[x �→ n],e) :: s,(h,n �→ q{ f̄ =null}), t

(Red If True) σ(v) = null

(σ,(if v e e′);e′′) :: s,h, t → (σ,e;e′′) :: s,h, t
(Red If False) σ(v) �= null

(σ,(if v e e′);e′′) :: s,h, t → (σ,e′;e′′) :: s,h, t

(Red While True) σ(v) = null

(σ,(while v e);e′) :: s,h, t → (σ,e;(while v e);e′) :: s,h, t
(Red While False) σ(v) �= null

(σ,(while v e);e′) :: s,h, t → (σ,e′) :: s,h, t

(Red Commit) δ = (n �→ q)
(σ,commit Fresh(n) as q;e) :: s,h, t → (σ,e) :: s,(δ◦h), t

Fig. 6. Operational semantics
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3.3 Type System

A type environment is a function from variables and names to types.

ι ∈ Var∪Name Γ ∈ TyEnv
∆= (Var∪Name) ⇀ Ty

Let Γ <: Γ′ whenever dom(Γ) = dom(Γ′) and Γ(ι) <: Γ′(ι) for all ι in dom(Γ). We
extend the domain of type environments to include null: Γ(null) = void.

We define: ∆	 q : ok iff ∆	 q�Qual; C : ok iff C is declared; ∆	 q C : ok iff ∆	 q : ok
and C : ok; ∆	 void : ok always; ∆	 Γ : ok iff ∆	 Γ(ι) : ok for all ι in dom(Γ); ∆	 δ : ok
iff ∆ 	 n : Token and ∆ 	 δ(n) : ok for all x in dom(δ).

Typing judgments for expressions have the following formats:

Σ 	 {Γ,δ}e : T{Γ′,δ′} Σ 	 {Γ,δ}h{Γ′,δ′}
(Γ,δ) represents the configuration before executing the expression, and (Γ′,δ′) the one
afterwards. We refer to (Γ,δ) as the precondition of the expression, and to (Γ′,δ′) as its
postcondition. Recall that we permit local variables to change the qualifier components
of their types. This is why we need to include type environments in postconditions. We
write ∆;Γ 	 v : T to abbreviate ∆ 	 {Γ, /0}v : T{Γ, /0}.

Now we can present the typing rules for expressions:

(Null)
∆ 	 Γ,δ,T : ok

∆ 	 {Γ,δ}null : T{Γ,δ}

(Id)
∆ 	 Γ,δ : ok

∆ 	 {Γ,δ}ι : Γ(ι){Γ,δ}

(Sub)
∆ 	U,Γ′′ : ok T <: U ∆ 	 {Γ,δ}e : T{Γ′,δ′} Γ′ <: Γ′′

∆ 	 {Γ,δ}e : U{Γ′′,δ′}

(Dcl)
∆ 	 q C : ok δ(q) = q ∆ 	 {(Γ,x : q C),δ}e : T{(Γ′,x : U),δ′}

∆ 	 {Γ,δ}C x;e : T{Γ′,δ′}

(Seq) ∆ 	 Γ,δ : ok
∆ 	 {Γ,δ}h{Γ′,δ′} ∆ 	 {Γ′,δ′}e : T{Γ′′,δ′′}

∆ 	 {Γ,δ}h;e : T{Γ′′,δ′′}

(New Token)
∆ 	 Γ,δ,Γ′,δ′ : ok ∆,n : Token 	 {Γ,(δ,n �→ Fresh(n))}e : T{Γ′,(δ′,n �→ q)}

∆ 	 {Γ,δ}newtoken n;e : T{Γ′,δ′}

In the rule (Dcl), we assume that the newly declared local variable initially has type
q C, where q can be chosen appropriately. An automatic typechecker needs to delay
the choice of an appropriate q until the new variable first gets assigned to. This delayed
choice of q is subsumed by the inference algorithm in Section 3.4. The premise δ(q) = q
ensures that q is not a previously committed Fresh-qualifier.

In the typing rules for head expressions, note that we update the qualifiers of lo-
cal variables after assignments, implementing flexible qualifiers of local variables, as
discussed earlier. Crucially, the rule (Set) checks that the object is writeable:

(Set Local)
|Γ(v)|= |Γ(x)|

∆ 	 {Γ,δ}x=v{Γ[x : Γ(v)],δ}

(Get) classC {..T f ..}
Γ(v) = q C U = T [q/myaccess] |U |= |Γ(x)|

∆ 	 {Γ,δ}x=v. f{Γ[x : U ],δ}

(Set) classC {..T f ..}
Γ(v) = q C ∆ 	 q�Writeable ∆;Γ 	 w : T [q/myaccess]

∆ 	 {Γ,δ}v. f =w{Γ,δ}

(Call) <ᾱ� B̄>U m(T̄ x̄){e}
δ(q̄) = q̄ ∆ 	 q̄� B̄ ∆;Γ 	 v̄ : T̄ [q̄/ᾱ] V = U [q̄/ᾱ] |V | = |Γ(x)|

∆ 	 {Γ,δ}x=<q̄>m(v̄){Γ[x : V ],δ}

(New)
∆ 	 q C : ok δ(q) = q C = |Γ(x)|
∆ 	 {Γ,δ}x=new q C{Γ[x : q C],δ}

(If)
∆;Γ 	 v : T ∆ 	 {Γ,δ}e : void{Γ′,δ′} ∆ 	 {Γ,δ}e′ : void{Γ′,δ′}

∆ 	 {Γ,δ}if v e e′{Γ′,δ′}

(While)
∆;Γ 	 v : T ∆ 	 {Γ,δ}e : void{Γ,δ}

∆ 	 {Γ,δ}while v e{Γ,δ}
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Well-typed stack frames, ∆;∆′;Γ;Γ′ � fr : T and ∆;∆′;Γ;Γ′ � fr : T →U:

∆,∆′;Γ,Γ′ � σ : Γ′′ ∆,∆′ � {Γ′′,δ}e : T{Γ′′′,δ′} dom(δ) ⊆ dom(∆′) δ◦Γ′′ = Γ′′

∆;∆′;Γ;Γ′ � (σ,e) : T

fr = (σ,x=<q̄>m(v̄);e) ∆;∆′;Γ;Γ′ � fr : U <ᾱ� B̄> T m(V̄ x̄){e′}
∆;∆′;Γ;Γ′ � fr : T [q̄/ᾱ] →U

∆ � Γ : ok (∀x ∈ dom(σ))(∆;Γ � σ(x) : Γ′(x))
∆;Γ � σ : Γ′

Well-typed stacks, ∆;Γ � s : ok and ∆;Γ � s : T → ok:

∆ � Γ,T : ok

∆;Γ � nil : T → ok

∆;∆′;Γ;Γ′ � fr : T ∆;Γ � s : T → ok

∆,∆′;Γ,Γ′ � fr :: s : ok

∆;∆′;Γ;Γ′ � fr : T →U ∆;Γ � s : U → ok

∆,∆′;Γ,Γ′ � fr :: s : T → ok

Well-typed objects, ∆;Γ � obj : T :

classC { T̄ f̄ } ∆;Γ � ν̄ : T̄ [q/myaccess]

∆;Γ � q{ f̄ = ν̄} : q C

Well-typed heaps, ∆;Γ � h : ok:

dom(Γ) = dom(h) (∀n ∈ dom(h))(∆;Γ � h(n) : Γ(n))

∆;Γ � h : ok

Well-typed token pools, ∆ � t : ok:

dom(∆) = dom(t) (∀n ∈ t)(∆ � n : Token)

∆ � t : ok

Well-typed configurations, cfg : ok:

∆;Γ � s : ok ∆;Γ � h : ok ∆ � t : ok

s,h, t : ok

Fig. 7. Typing rules for configurations

(Commit)
δ(n) = Fresh(n) ∆ 	 q : ok δ(q) = q δ′ = n �→ q

∆ 	 {Γ,δ}commit Fresh(n) as q{δ′ ◦Γ,δ′ ◦δ}

In the (While) rule, note that the environments are an invariant for the loop body. Con-
sequently, it is disallowed to commit inside a loop body a token that was generated
outside the loop body (as this would modify the commit-environment). On the other
hand, it is allowed to commit tokens that were generated inside the loop body, because
the rule (New Token) removes such tokens from pre- and postcondtions.

For checking class and method declarations, we use the following rules:

(Class)
myaccess�Qual 	 T̄ : ok

classC { T̄ f̄ } : ok

(Method)
ᾱ� B̄ 	U, T̄ : ok ᾱ� B̄ 	 {x̄ : T̄ , /0}e : U{Γ, /0}

<ᾱ� B̄>U m(T̄ x̄){e} : ok

Soundness. We extend the type system to configurations, as shown in Figure 7. The
judgment for stack frames has the format ∆;∆′;Γ;Γ′ 	 fr : T . The type T is the type
of the return value. Whereas ∆ and Γ account for tokens and objects that are known to
stack frames below fr, the environments ∆′ and Γ′ account for tokens and objects that
have been generated in fr or in stack frames that were previously above fr and have
been popped off the stack. The premise dom(δ) ⊆ dom(∆′) in the first typing rule for
stack frames captures formally that the commit-environment for the top frame never
contains initialization tokens that have been generated in the rest of the stack. This is
important for the soundness of (Commit). Another judgment for stack frames has the
form ∆;∆′;Γ;Γ′ 	 fr : T →U . Intuitively, it holds when ∆;∆′;Γ;Γ′ 	 fr : U and in addition
fr currently waits for the termination of a method call that returns a value of type T .

We can now prove the following preservation theorem:

Theorem 1 (Preservation). If cfg : ok and cfg → cfg′, then cfg′ : ok.

The proof of the preservation theorem is mostly routine and contained in the compan-
ion report [17]. The following theorem says that the type system is sound for object
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immutability: well-typed programs never write to fields of Rd-objects. The theorem is a
simple corollary of the preservation theorem and the fact that a configuration is ill-typed
when the head expression of its top frame instructs to write to a field of a Rd-object.

Theorem 2 (Soundness for Object Immutability). If cfg : ok, cfg →∗ (σ,v. f =w;e) ::
s,h, t and σ(v) = n, then π1(h(n)) �= Rd.

3.4 Local Annotation Inference

Figure 8 presents the syntax for annotation-free expressions E , as obtained from the
expression syntax by omitting the specification statements newtoken and commit, as
well as the qualifier arguments at call sites and the qualifier annotations at object cre-
ation sites. The function e �→ |e| erases specification commands and annotations from
annotated expressions. This section presents an algorithm that infers the erased infor-
mation, deciding the following question: Given ∆,Γ,E,T such that ∆ 	 Γ,T : ok. Are
there e,Γ′ such that |e| = E and ∆ 	 {Γ, /0}e : T{Γ′, /0}?

We have proven that our algorithm answers this question soundly: if the inference
algorithm answers “yes”, then the answer to this question is indeed “yes”. We believe
that the converse also holds (completeness), but cannot claim a rigorous proof. The
algorithm constructs an annotated expression e whose erasure is E . An implementation
does not have to really construct e, because knowing that e exists suffices. There are, of
course, many annotated expressions that erase to the same annotation-free expression.
So what is the strategy for inserting the specification commands without restricting
generality? Conceptually, the algorithm parses the unannotated E from left to right,
inserting specification commands newtoken and commit as needed.

Inserting Commits. For commits, we use a lazy strategy and only insert a commit if
this is strictly necessary. For instance, we never insert commits in front of local variable
assignment, because commits and local variable assignments can always be commuted
without breaking well-typedness or changing the erasure. The spots where commits do
get inserted are: (1) in front of field assignments when a value of type Fresh(n) is
assigned to a field of type q where q �= Fresh(n), (2) in front of method calls when
the method signature forces to commit types of arguments, (3) in front of the return
value when the return type forces to commit the type of the return value, (4) at the
end of conditional branches to match commits that have been performed in the other
branch, (5) at the end of loop bodies (for tokens generated inside the loop) to establish
the loop invariant, and (6) in front of loop entries (for tokens generated outside the
loop) to establish the loop invariant. Consider the following example with a while-
loop:

void r(Rd C x); void w(RdWr C x); <a � Writeable> f (a C x);

C x; x = new C; while x ( f(x); w(x); );

Generated annotated expression:
newtoken m; newtoken n; C x; x = new Fresh(n) C;

commit Fresh(n) as RdWr; while x ( <RdWr>f(x); w(x); );

commit Fresh(m) as Any;



Type-Based Object Immutability with Flexible Initialization 539

E ∈ AfreeExp ::= v | C x;E | H;E (annotation-free expressions)

H ∈ AfreeHdExp ::= x=v | x=v. f | v. f =v | x=m(v̄) |
x=newC | if v E E | while v E

(annotation-free head expressions)

| · | : Exp → AfreeExp

|v| ∆= v |C x;e| ∆= C x; |e| |newtoken n;e| ∆= |e| |commit Fresh(n) as q;e| ∆= |e|
|h;e| ∆= |h|; |e|, if h �= commit Fresh( ) as

| · | : HdExp → AfreeHdExp

|x=<q̄>m(v̄)| ∆= x=m(v̄) |x=new q C| ∆= x=newC |if v E E ′ | ∆= if v |E| |E ′ |
|while v E| ∆= while v |E| |h| ∆= h, otherwise

Fig. 8. Annotation-free expressions and erasure

In the above expression, the method call w(x) inside the loop body forces a commit in
front of the loop.10 In contrast, the following expression does not typecheck, because
the loop body forces x to have both a Writeable type and type Rd, which is impossible.

C x; x = new C; while x ( f(x); r(x); ); // TYPE ERROR

One could deal with while-loops by a fixed point computation that requires two it-
erations over the loop body, one to discover a candidate loop invariant and another one
to check if the candidate grants the access permissions required by the loop body. Our
algorithm is syntax-directed, because this is simpler to implement on top of the JSR
308 checkers framework [23].

Generating Tokens. Concerning the generation of initialization tokens, there are two
questions to answer. Firstly, when does the algorithm generate new initialization tokens,
and secondly, where does the algorithm insert the newtoken statements that bind the
tokens. Generation happens (1) at variable declaration sites, (2) at object creation sites,
and (3) at call sites for instantiation of qualifier parameters that occur in the method
return type but not in the method parameter types. At such sites, the algorithm generates
a new token n and uses Fresh(n) as the type of the newly declared variable, the newly
created object or the method return value. In the above example, m and n are the tokens
that were generated at the variable declaration site for x and at the object creation site
that follows it. Note that tokens generated at variable creation sites often do not occur
in the program text. Using Fresh(n) as the qualifier for newly created objects (and
similarly for variable declarations and method returns) is no restriction, because the
following type- and erasure-preserving transformation replaces qualifiers q at object
creation sites by Fresh(n):

x=new q C → newtoken n;x=new Fresh(n)C;commit Fresh(n) as q

As for where to insert newtoken, observe that these can always be pulled out of
conditional branches by the following type- and erasure-preserving transformation:

if v (newtoken n;e) e′ → newtoken n;if v e (e′;commit Fresh(n) as δ(n);)
where δ is the commit environment in the postcondition of e (as found in the type derivation)

10 Technically, the inference algorithm delays the generation of the prefix
newtoken m;newtoken n; and the postfix commit Fresh(m) as Any. These get inserted at
the top level, see Theorem 3.
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f ;g f ;g ∆= (g◦ f )∪g if dom( f )∩dom(g) = /0

ts ∈ Scopes ::= t | t :: ts |t| ∆= t |t :: ts| ∆= t ∪|ts| rest(t) ∆= /0 rest(t :: ts) ∆= |ts|

newtokens(t);e ∆= newtoken n1; . . . ;newtoken nk ;e if t = {n1, . . . ,nk}
commit(δ) ∆= commit Fresh(n1) as q1; . . . ;commit Fresh(nk) as qk ; if δ = {n1 �→ q1, . . . ,nk �→ qk}

Fig. 9. Helpers

We cannot pull newtoken out of loops, though, because the typing rules prevent loop
bodies to commit tokens that were generated outside the loop. Consider the following
variation of the earlier example:

C x; while x ( x = new C; f(x); r(x); );

In contrast to the erroneous expression further up, this expression is well-typed. The
inference algorithm generates the following annotated expression for it:

newtoken m; C x; commit Fresh(m) as Rd; while x (

newtoken n; x = new Fresh(n) C; <Fresh(n)>f(x);

commit Fresh(n) as Rd; r(x); );

The newtoken command commutes with all other commands, and therefore the infer-
ence algorithm generates newtoken at the beginning of loop bodies only (leaving token
generation at the beginning of method bodies implicit).

Subqualifying Constraints. To deal with subqualifying the inference algorithm gener-
ates subqualifying constraints. We extend qualifiers by existential variables:

?α ∈ ExVar (existential variables) p,q ∈ Qual ::= · · · | ?α ∆ 	?α�Qual

We partition the set of qualifiers into the sets PQual of persistent qualifiers and TQual
of transient qualifiers:

TQual
∆= {Fresh(n) | n ∈ Name} PQual

∆= Qual\TQual

A substitution is a function from existential variables to closed persistent qualifiers:

ρ ∈ Subst
∆= ExVar ⇀ (PQual\ExVar)

Note that existential variables range over persistent qualifiers only. Substitutions ρ in-
duce functions ρ̂ in PQual → PQual: ρ̂(?α) = ρ(?α) if ?α ∈ dom(ρ); ρ̂(q) = q other-
wise. Let ρ̂(T ) (resp. ρ̂(e)) denote the type (resp. expression) obtained by substituting
all qualifier occurrences q by ρ̂(q). We omit the hat when no ambiguities arise.

A constraint set contains pairs of the forms (q,B) and (p,q):

C ∈ Constraints
∆= SetOf(PQual×QualBound ∪ PQual×PQual)

A ∆-solution of a constraint set C is substitution ρ such that ∆ 	 ρ(q) � B and ρ(p) <:
ρ(q) for all (q,B), (p,q) in C .
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Inference Algorithm. The inference judgment has the following format, where ts,Γ,δpre

and T are inherited attributes, and the other attributes are synthesized.

ts;Γ 	 E : T ⇓ (Γ′,δ, ts′,t,C ) for (δpre	e)

The synthesized annotated expression e is such that |E| = e. An implementation does
not need to compute e or track δpre, as the other attributes do not depend on them.

– (Γ,δpre) represents the precondition for e.
– (Γ′,(δpre;δ)) represents the postcondition for e.
– ts contains the tokens in scope before e. ts has a stack structure that reflects the

nesting of enclosing while loops.
– ts′ contains the tokens in scope after e.
– t contains all tokens n in rest(ts′) such that the type derivation for e has a leaf of

the form ∆ 	 Fresh(n)�Writeable. These tokens must be tracked because they
cannot be committed to Rd in front of enclosing while-loops. (See the example on
page 539.)

– C are the subqualifying constraints required for well-typedness of e.

For the details of the inference algorithm we refer to our report [17], where the follow-
ing soundness theorem is proven:

Theorem 3 (Soundness of Inference). Suppose ran(∆)⊆QualBound, (∆ 	 Γ,T : ok),
Γ, T do not contain existential variables, /0;Γ 	 E : T ⇓ (Γ′, , t, ,C ) for ( /0	e) and ρ ∆-
solves C . Then (∆ 	 {Γ, /0}newtokens(t);ρ(e);commit(δ) : T{(δ;ρ) ◦ Γ′, /0}) for δ =
{(n,Any) | n ∈ t, δ̂(n) = Fresh(n)}.

4 Related Work

Immutability. Our type system supports class immutability, object immutability, and
read-only references, allows flexible object initialization, and is simple and direct (build-
ing only on the access qualifiers Rd, RdWr and Any). To the best of our knowledge, no
existing type system for a Java-like language meets all these goals at once: Our earlier
system Jimuva [18] supports object immutability and open-world class immutability,
but requires immutable objects to be initialized inside constructors and does not meet
the goal of simplicity and directness, as it requires ownership types, effect annotations
and anonymity annotations in addition to access qualifiers. IGJ [34] is simple, direct and
supports both object immutability and read-only references, but requires immutable ob-
jects to be initialized inside constructors and its support for deep immutability is limited.
For instance, IGJ has no way of enforcing that the character array inside an immutable
string is part of the string and should thus be immutable. This would either require im-
mutable arrays or a special treatment of owned mutable subobjects, neither of which
IGJ supports11. SafeJava [4] and Joe3 [22] are ownership type systems that support
immutable objects with long initialization phases, where the transition from “uninitial-
ized” to “initialized” is allowed through unique object references. In order to maintain

11 IGJ supports immutable arrays initialized by array initializers. This is not enough to check the
String-constructor String(char[] c), because the length of c is not known statically.
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uniqueness they use destructive reads, which is a rather unnatural programming style in
Java-like languages. These systems build on top of expressive ownership type systems,
thus violating our design goals of simplicity and directness. Frozen objects [20] support
immutable objects with long initialization phases, but builds on the Boogie verification
methodology [1], so is not suitable for an independent pluggable type system. The Uni-
verse type system [21] features read-only references. In particular, Generic Universe
Types [12] support covariant class parameters if the main modifier of the supertype is
Any (which is essentially what we and IGJ [34] do).

Unkel and Lam [31] automatically infer stationary fields, i.e., fields that may turn
immutable outside constructors and after previous assignments, and thus are not neces-
sarily final. Their fully automatic analysis requires the whole program. It only detects
fields that turn stationary before their objects have been written to the heap, and is in
this respect more restrictive than our system, which can deal with stack-local regions,
as needed for initializing cyclic structures. On the other hand, our system only works
at the granularity of objects. Interestingly, non-final stationary fields are reportedly
much more common than final fields.

Our system does not address temporary immutability, which would require heavier
techniques in order to track aliasing on the heap. On an experimental level, statically
checking temporary immutability has been addressed by Pechtchanski and Sarkar [24].
On a theoretical level, it is very nicely supported by fractional permissions [5].

Object confinement and ownership. For open-world class immutability, we use qualifier
polymorphism to express several confinement properties. Firstly, we express a variant
of so-called anonymous methods [32] in terms of qualifier polymorphism. Anonymous
methods do not write this to the heap. Our variant of anonymity for constructors of
immutable classes is slightly weaker and forbids that this is written to the heap outside
the Fresh region in which the instance of the immutable class is constructed. Secondly,
by combining the myaccess class parameter with conditions on method types, we can
express that representation objects of immutable objects are encapsulated, thus avoiding
the need to include both access qualifiers and ownership annotations in the system. To
this end, we make use of qualifier-polymorphic methods, similar to owner-polymorphic
methods in ownership type systems [4,9,18,27,33].

It is not clear if the myaccess parameter alone is enough to express tree-structured
ownership hierarchies in general, as facilitated in parametric ownership type systems
(e.g., [8], [4]) through instantiating the owner class parameter by rep or this, and
in the Universe type system [21] through the rep-modifier. Potanin’s system FGJ+c
for package-level confinement [26] is based on a static set of owner constants (for-
mally similar to Rd and RdWr but without the additional access semantics). It seems that
very similar confinement properties as in FGJ+c could be expressed purely in terms of
qualifier-polymorphic methods and without the owner constants. A subtle difference,
however, is this: FGJ+c, as most ownership type systems, allows methods to return con-
fined objects, ensuring safety by preventing “outside” class clients from calling such
methods. Our system, on the other hand, prevents methods from returning confined ob-
jects in the first place. In an open world, where class clients may not follow the rules of
the pluggable type system, the latter is the only safe choice.
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Type systems for flexible object initialization. There are several articles on initialization
techniques for non-nullness type systems [13,14,28]. Fähndrich and Xia’s system of
“delayed types” [14] is most closely related to our work, like us using lexically scoped
regions for safe typestate changes, and using a class parameter representing a “delay
time”, similar to our myaccess parameter. Unlike us, Fähndrich and Xia do not address
local annotation inference. Our system is considerably simpler than theirs, because the
initialization problem for immutability seems inherently simpler than the initialization
problem for object invariants. Intuitively, there are two reasons for this: Firstly, whereas
for object immutability the end of the initialization phase is merely associated with the
disposal of a write permission, for object invariants it is associated with an obligation to
prove the invariant. Secondly, a major complication in [14] is the need to permit insert-
ing uninitialized objects into initialized data structures. This is essential to satisfactorily
support cyclic data structures, but requires the use of existential types. Fortunately, this
complication does not arise for immutability, because no objects (whether uninitialized
or not) ever get inserted into immutable data structures.

J\mask [28] is a type-and-effect system for reasoning about object initialization. It is
based on a rich language for specifying partial object initialization, including primitives
for expressing that fields may or must be uninitialized, as well as conditional assertions.
It is designed to guarantee that well-typed programs never read uninitialized fields. It
is not designed for immutability, and consequently offers no support for specifying
deep immutability or object confinement, as needed for object and class immutability.
J\mask (based on a rich specification language for partial object initialization) is quite
different in nature to Fähndrich and Xia’s delayed types (based on a variant of lexi-
cally scoped regions combined with dependent types). Qi and Myers rightly claim that
J\mask supports some initialization patterns that delayed types do not, giving bottom-
up initialization of trees with parent pointers as an example where delayed types cannot
establish object invariants in the required order. This example causes no problems for
our immutability system, see Figure 3. In fact, our annotations for this example avoid
conditional assertions and are thus simpler than J\mask’s (but this comparison is not
quite fair, as J\mask and our system have different goals).

Lexically scoped regions. Stack-local regions are closely related to lexically scoped
regions [30] for region-based memory management (see also [16]). Whereas, in region-
based memory management, lexical scoping is used to statically determine when mem-
ory regions can safely be deallocated, here we use it to statically determine when the
types of memory regions can safely be changed. Lexically scoped regions do not have
a separate commit-statement, but associate the end of region lifetimes with the end of
region name scopes. We opted for a separate commit-statement, because it simplifies
the description of our inference algorithm, which works by a left-to-right pass over the
abstract syntax tree, inserting commits when field or method types enforce this.

5 Conclusion

We presented a pluggable type system for immutable classes, immutable objects, and
read-only references. The system supports flexible initialization outside constructors
by means of stack-local regions. Our system shows, for the first time, that support for
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the various forms of immutability, including open-world class immutability, is possible
without building on top of an expressive ownership type system (though the class pa-
rameter myaccess effectively provides some notion of confinement) and without using
effect annotations or unique references. A lesson we have learned is that parametric
qualifier polymorphism is a very expressive tool, both for flexibility and confinement.

Acknowledgments. We thank the anonymous ECOOP referees and James Noble for their
careful reviews, and comments and critique that helped improve the paper.
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