
Are We Ready for a Safer Construction Environment?

Joseph (Yossi) Gil12 and Tali Shragai2

1 Google, Inc.
2 The Technion

“Unfortunately, the mainstream languages C# and Java give access to the
object being constructed (through this) while construction is ongoing.”

Fähndrich and Leino [12]

Abstract. The semantics of many OO languages dictates that the constructor of
a derived class is a refining extension of one of the base classs constructors. As
this base constructor runs, it may invoke dynamically bound methods which are
overridden in the derived class. These invocations receive an “half baked object”,
i.e., an object whose derived class portion is uninitialized. Such a situation may
lead to confusing semantics and to hidden coupling between the base and the de-
rived. Dynamic binding within constructors also makes it difficult to enhance the
programming language with advanced mechanisms for expressing design intent,
such as non-null annotation (denoting reference values which can never be null),
read-only annotation for fields and variables (expressing the intention that these
cannot be modified after they are completely created) and class invariants (part
of the famous design by contract methodology). A read-only field for example
becomes immutable only after the creation of the enclosing object is complete.

We investigate the current programming practice in JAVA of calling dynami-
cally bound methods. In a data set comprising a dozen software collections with
over sixty thousand classes, we found that although the potential for such a situ-
ation is non-negligible (prevalence > 8%), i.e., there are many constructors that
make calls to methods which may be overridden in derived classes, actual such
dynamic binding is scarce, found in less than 1.5% of all constructors, inheriting
from less than 0.5% of all constructors. Further, we find that over 80% of these
incidents fall into eight “patterns”, which can be relatively easily transformed into
equivalent code which refrains from premature method invocation.

A similar predicament occurs when a constructor exposes the self identity to
external code, which then invokes methods overridden in the derived class. Our
estimate on the prevalence of this exposition is less accurate due to the complex-
ity of interprocedural dataflow analysis. Although the estimate is high, there are
indications that it arises from a relatively small number of base constructors.

1 Introduction

Women who have given birth can testify that the process is not infinitesimally short.
Objects are no different than babies in this respect: it takes time to mature a raw memory
block into a live object, and during that time computation may occur.

Consider a class D which inherits from a class B. Then, in most OO languages the
construction of a D-object is what we call a refinement of the construction of a B object,
in that the body of any constructor of D is executed only after an explicit or implicit

,

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 495–519, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



invocation of one of the constructors of B. 1 What is the status of the D object in the
course of this invocation? On one hand, this object cannot be thought of as a mature,
ordinary object of class D, since D’s constructor was not invoked yet. On the other
hand, thinking of the object as an instance of class B, may lead to surprising results,
e.g., in the case that B is an abstract class. Concretely, suppose that B’s constructor
invokes a dynamically bound member function implemented in both B and D. The
dominating thesis, taken by languages such as JAVA [1] and C# [15], is that of dynamic
binding within constructors, i.e., D’s implementation is executed. The anti-thesis of
static binding, taken in languages such as C++ [26], dictates that B’s implementation
is executed.

This research sets its objective in understanding how such “half-baked” objects are
used in actual programs. Our research method is primarily empirical: Following the tra-
dition of works such as [5, 6, 2, 10] we apply static analysis techniques combined with
manual inspection to a large software data set. The interest in the study is raised by the
inherent limitations of both the dynamic- and the static- binding approaches. We briefly
describe here a synthesis of the approaches which addresses these limitations. But be-
fore this or any other new, competing proposal, can be considered, it must be evaluated
against the common programming practice which this research tries to discover.

1.1 The Static vs. the Dynamic Binding Semantics within Constructors

Object creation can be divided into three conceptual stages: (i) memory allocation,
(ii) preliminary field initialization, and (iii) establishing invariants. Allocation is often
automatic, especially in languages with memory management. Preliminary initializa-
tion also depends on the language model (vacuous in C++, as opposed to default zero
initialization in Java), and is not very interesting. What we are interested in here is the
final stage, that of establishing invariants, which often involves some computation. This
final stage is realized by the user-defined constructor. This section serves as a brief re-
minder of the distinction, in the context of constructors, between static- and dynamic-
binding semantics and its consequences.

Somewhat paradoxically, the static binding approach of C++ may compromise static
type safety, as demonstrated in Fig. 1. In the figure, we see an abstract class Shape

containing an abstract (“pure virtual” in the C++ jargon) function draw (Line 2) which
is then realized (Line 7) in the inheriting concrete class Circle. Instantiating Circle here
results in a runtime error: Circle’s constructor implicitly invokes the default constructor
of Shape, which in turn, as a consequence of the static binding semantics of C++, invokes
the pure virtual function Shape::draw.2 Clever compilers (GCC [25] is a case in point)
may detect and warn the programmer against this particular case in which the call to a
pure virtual function from within the constructor is so obvious. The general case, which
may involve a chain of aliases and virtual function calls is intractable [13].

1 It could be the case that this constructor of B invokes yet another constructor of B, which may
invoke yet another constructor B, or of a parent of B, in which case we say that the constructor
of D refines all of these constructors.

2 More precisely, the C++ semantics attributes this error to the attempt to dynamically invoke
a pure virtual function, rather than to the fact that this function has no body; for various rea-
sons, C++ allows defining pure-virtual functions with body, but the runtime error would have
occurred even if Shape::draw had body!

496 J. Gil and T. Shragai



The difficulty with this approach is that with modern software architectures, the pre-
defined state, i.e., null in all reference fields, 0 in numerical fields, etc., is too degenerate
to be useful. In our little example, it is not clear that a circle can be drawn before the
constructor of this class has set crucial data such as location and radius. More generally,
this predefined state contradicts non-null promises, final guarantees, etc.

Dynamic binding in
1 class Shape { public: Shape() { draw(); }
2 public: virtual void draw() = 0;
3 };

5 class Circle: public Shape {
6 public: Circle() { cout << "Circle::Circle()\n";}
7 public: void draw() { cout << "Circle::draw()\n";
}

8 };

Fig. 1. Pure virtual function call in C++

constructors means that
methods may be called
prematurely. When this
happens, methods are re-
stricted since they can-
not rely on any of the
fields of the derived class
for being properly ini-
tialized, and in general should be ready to deal with an object whose invariant was not
fully established. The working of the constructor is complicated by its coupling with
dynamically bound methods. The fact that the constructor is a method called precisely
once for each object, whereas other methods may be invoked any number of times may
add to the complexity.

Fig. 2 demonstrates the confusing situation of a prematurely called method in ac-
tual industrial code. In the figure we see (parts of) class Compiler, drawn from package
org.eclipse.jdt.internal.compiler of the Eclipse JDT. Note that the last statement of
the constructor of this class, calls function initializeParser, which as its name indi-
cates, is in charge of initializing instance variable parser.

1 public class Compiler {
2 public Parser parser;
3 public void initializeParser() {
4 this.parser = . . .;
5 }
6 public Compiler( . . . constructor’s arguments omitted for brevity . . . ) {
7 // create a problem handler given a handling policy
8 this.options = new CompilerOptions(settings);
9 // . . .

10 initializeParser(); // call to a non−final function
11 }
12 }

Fig. 2. A base class invoking a polymorphic function

The C++ design choice of static binding semantics within constructors is probably
due to the language defines no default initial value of data members. In languages with
such a default value, the dynamic binding approach makes sense: an object is in some
defined state even prior to actual invocation of the construction. The JAVA equivalent of
Fig. 1 behaves as follows when an instance of Circle is created: first the constructor of
Shape is invoked, which then invokes the Circle’s version of draw; then the constructor
of Circle is completed.

Consider now the implementation of the derived class CodeSnippetCompiler, as de-
picted in Fig. 3. We see in the figure (lines 3–6) that this class overrides function
initilializeParser, specializing the parser field with a parser suitable for parsing code

Are We Ready for a Safer Construction Environment? 497



1 public class CodeSnippetCompiler extends Compiler {

2 public void initializeParser() {
3 this.parser = new CodeSnippetParser(
4 this.problemReporter, this.evaluationContext,
5 this.options.parseLiteralExpressionsAsConstants,
6 this.codeSnippetStart, this.codeSnippetEnd);
7 }
8 EvaluationContext evaluationContext;
9 int codeSnippetStart, codeSnippetEnd;

11 public CodeSnippetCompiler( . . . initial arguments omitted for brevity . . .
12 EvaluationContext evaluationContext,
13 int codeSnippetStart, int codeSnippetEnd
14 ) {
15 super(environment, policy, settings, requestor, problemFactory);
16 this.parser = new CodeSnippetParser(
17 this.problemReporter, evaluationContext,
18 this.options.parseLiteralExpressionsAsConstants,
19 codeSnippetStart, codeSnippetEnd);
20 this.parseThreshold = 1;
21 }
22 }

Fig. 3. A derived class overriding a function called from the base constructor

function cannot complete its mission correctly, since the three data members it relies
on belong to the derived class and could not have been initialized yet.

In fact, we see that the constructor of CodeSnippetCompiler repeats (lines 16–19) the
body of function initializeParser (that is lines 3–6), immediately after the call to the
refined constructor. The fact that the constructor of CodeSnippetCompiler forgets to ini-
tialize the three said data members, even though it receives the values for these from its
arguments is probably an indication that the code was corrected after it was discovered
that the language does not support the design behind Compiler.

The “bad smell” code in figures 2 and other bugs (e.g., a call to an abstract function to
retrieve a member value—omitted from this excerpt) we found in our study show that
the dynamic binding is confusing. The fact that JAVA forbids making a call to a member
function when refining a base constructor or in delegating to another constructor of the
same class3 is also an indication that a call to an overridden function was not intended
to be allowed.

But, beyond the confusing semantics, and arguably more importantly, the dynamic
binding approach makes it difficult to introduce notions such as non-null [12, 6, 20],
immutability (e.g.,JAVARI [3, 28] and JAC [18]) and class invariant [22, 19] guaran-
tees into the language. Such guarantees are typically achieved by the constructor. But,

3 that is, the code class D extends B { D() {super(f()); }} is illegal if f is a function mem-
ber of either B or D

.

snippets. Three data members are passed to the constructor of of CodeSnippetParser in
the overridden version initilializeParser. These are: evaluationContext, codeSnippetStart
and codeSnippetEnd (defined in lines 8–9).

The constructor of this class starts by calling the base constructor in Line 15. This
refined base constructor calls the overridden version of initializeParser(), but this

498 J. Gil and T. Shragai



1.2 Hardhat Constructors and Destructors

Problems of this sort may occur not only when the constructor calls, directly or indi-
rectly, methods overridden in the derived class. It could also be the case that the con-
structor reveals this to code external to the class, either by passing it as a parameter to
an external function, or by storing it in an externally accessible field, making it possible
to invoke overridden methods before construction is complete. Detecting cases of this
sort could be difficult, especially in a multithreaded execution environment.

A similar problem occurs in C++ which imposes a refining semantics on destructors:
a class destructor implicitly invokes the destructor of the parent class after its body
completed execution. Runtime errors due to a call to a pure virtual function may thus
occur in the course of a destructor’s execution. The situation is exacerbated by the fact
that destructors are typically called implicitly, e.g., as part of stack unrolling due to
exception handling.

A natural and appealing resolution of the dilemma in choosing between the static and
dynamic approaches is in a synthesis which forbids the processes of object creation and
destruction from making any computation in which there is a difference between the
two binding semantics. (An interesting alternative is offered by EIFFEL [16] in which
the creation of a derived class does not involve a creation of a subobject of the base
class.) We propose a language model enforcing constructors and destructors in which
no polymorphic calls could be made, what we call hardhat execution. Thus, in this
model, the premature call to draw in Fig. 1 is simply signalled by the compiler. The
advantages should be clear:

1. Type Safety. The hardhat semantics avoids the type safety problem of the static
binding approach.

2. Reduced Coupling with Base Classes. A method defined in a class D can be certain
that it receives a D object (more precisely, an object for which a constructor of D
has at least begun its operation, or that the destructor of D has not finished its
execution.). This reduces and simplifies the dynamic binding’s typical coupling
between the class and its base, and makes the analysis of multithreaded programs a
bit easier.

3. Crisp Boundary Between Initialization and Use. Hardhat constructors are consis-
tent with the OO thinking by which objects are created and only then used. The
predicaments of a prematurely called method are avoided: a method should not be
aware of the fact that it may be called from a constructor of a base class, and the
analysis of multithreaded programs become

4. Simplified Language Extensions. With hardhat constructors the introduction of non-
nullity, immutability and invariant statement is simplified. (The problem in intro-
ducing these is not completely solved, since one still has to address the problem of
a method being called from a constructor of the class itself).

the possibility of methods being executed before the constructor even begun, makes
it impossible to rely on these guarantees. This is the reason that much of this work
introduces non-standard types and annotations to deal with half-baked objects, e.g.,
Fähndrich and Leino introduce [Raw] methods types [12] and Zibin and colleagues
@AssignsFields annotations [30].

Are We Ready for a Safer Construction Environment? 499



A constructor is hardhat if it is both monomorphic (that is, it does not make any
chain of of this method calls which raises the binding question) and modest
(that is, it does not expose the this reference by storing it in a variable or
passing it as an explicit parameter).

The auxiliary notions of monomorphism and modesty are explained in greater detail
below, but the intuition should be clear: The examples set in Fig. 1 and in Fig. 2 and
Fig. 3 demonstrate cases of polymorphic behavior during construction. To see why we
would like constructors to be “modest”, consider for example the standard JAVA class
Thread, depicted in part in Fig. 4.

1 public class Thread {
2 public Thread() {
3 init(null, null, "Thread-" + nextThreadNum(), 0);
4 }
5 private void init(ThreadGroup g, Runnable t, String n, long s) {
6 // . . .
7 setPriority(priority);
8 // . . .
9 }

10 public final void setPriority(int newPriority) {
11 checkAccess();
12 // . . .
13 }
14 public final void checkAccess() {
15 SecurityManager security = System.getSecurityManager();
16 if (security != null)
17 security.checkAccess(this);
18 // . . .
19 }
20 // . . .
21 }

Fig. 4. A constructor revealing a self reference

The no-arguments constructor invokes function init, which invokes setPriority which
then invokes function checkAccess. This calls’ chain poses no polymorphic construction
risk, since all functions in the chain are either final or private. But, further inspection
may be more difficult, since the runtime type of variable security is unknown: function
checkAccess() delegates (Line 17) part of its mission to an external class through the
security.checkAccess(this) call. The implementation of checkAccess in class SecurityManager
may choose to invoke methods on the passed parameter. If the invoked methods are
overridden in descendants of Thread, then they these may be surprised to find that their
receiver is an incomplete object.

This paper is concerned mostly with the cost to be paid in introducing hardhat con-
structors into languages such as JAVA. Towards this end, we try to estimate the preva-
lence of constructors which deviate from the hardhat model in existing code, and to
characterize the use of dynamic binding within constructors.

Our search for transgressing constructors in actual code relies on the following defi-
nition of hardhat execution:

To make constructors hardhat, we need to make a concrete language definition for-
bidding both polymorphic calls and identity exposition from within construction. There
is a variety of ways in which such concretization can be made: A naı̈ve, and probably

500 J. Gil and T. Shragai



A1 “The reference this can only be used for accessing fields and calling anonymous
methods of the current instance.”

A2 “Anonymity declarations must be preserved when overriding methods.”
A3 “The constructor called from an anonymous constructor must be anonymous as

well.”
A4 “Native methods must not be declared anonymous.”

An amalgam of the two extremes is in e.g., introducing of a new method tag init (which
could be realized as an annotation for example) which is to be used for a complete sep-
aration of the construction process from the invocation of methods on a constructed
object. The requirements are then that (i) init methods are called only by construc-
tors and other init methods; (ii) constructors and init cannot call non-init methods;
(iii) init methods cannot be overridden; and (iv) init are anonymous in the Bokowski-
Vitek sense. Or, one may also consider replacing requirement (iii) by the demand that
init methods “semi-static methods” (sometimes called raw in the literature), i.e., meth-
ods which are bound dynamically yet are not allowed to access neither this nor any
non-static fields or methods. (Obviously, in languages with destructors, there should
also be methods tagged as destruct, with similar requirements. But, for simplicity, we
shall henceforth concentrate in constructors.)

There is also an alternative perspective in which constraints are placed only on con-
structors which are invoked by constructors of a derived class; this requires a mecha-
nism for denoting a constructor as “final”, meaning that it cannot be refined in derived
classes. The language design space is further enriched by the many other variants for
providing the means that the self reference is not aliased: Bokowski and Vitek alone
enumerate and compare six different methods of alias control, and the body of liter-
ature on aliasing and ownership (see e.g., a dedicated journal issue [23] or a survey
in [29]) is still increasing at a staggering rate.

1.3 This Research

The evolution of programming language constructs tends to follow a three stage life
cycle: (a) intuitive understanding, (b) language legalese and (c) formalization. This re-
search begins from the premise that such concrete language definitions and placement
of restrictions on software designers require better understanding of how “half-baked”
objects are actually used in practice; our primary focus is on this study. Issues of the
actual language definition, and careful weighing of the relative merits of alternatives
sketched above and their formalization are left to future work.

This choice of ours is guided by our belief that greater care should be exercised before
introducing language constructs preventing self-aliasing in all constructors for example,
than in adding e.g., confined types which do not pertain to all code.

too restrictive, approach is to disallow any function calls from within constructors. A
more permissive alternative is to allow constructors to invoke only final methods which
are also anonymous, where anonymous methods are defined by Bokowski and Vitek’s
constraints [4]:

Are We Ready for a Safer Construction Environment? 501



help to evaluate the price of placing the hardhat requirement in a new language on the
customers..

Experiments were run in a software corpus comprising circa 75,000 JAVA user de-
fined types featuring some 85,000 class constructors assembled from a dozen different
collections drawn from a variety of application domains. Two principal kinds of mea-
sures are reported: First, our estimates on the number of cases of use of polymorphism
and immodesty should help in appreciation of the penalty designers have to pay if safe
constructors become in effect. A second kind of measure, should be indicative of the
amount of work required to correct and eliminate such unsafe behavior from the code.

It is difficult in general to define the relative size of a code fragment in which a certain
phenomena occurs. Cabral and Marques [5] relied on line counts for measuring the
relative code size dedicated to exception handling. Unfortunately, such a number may
be dependent on formatting style—the relative increase in line count due to a decision
to locate curly brackets on a separate line is not the same in small and large counts.
A better measure could be the number of tokens, but this number is still influenced
by style. More stable is the number of classes, functions and constructors; fortunately,
unlike the problem that Cabral and Marques [5] faced, this measure is suitable for our
case. This is the reason that our estimates of “unsafe” behavior are both class- and
constructor- based. We believe that both may be useful, and may be used together in
appreciating the tendency of unsafe constructors to accumulate in the same class.

Our investigation here concentrates on the occurrence of polymorphic behavior in
constructors. Nevertheless, we report quantitative data of immodest behavior in con-
structors and classes. As it turns out, our conservative estimates of the prevalence of
these are high, which made the task of manual analysis of these more difficult.
Outline. The remainder of this article is organized as follows: Sec. 2 describes the soft-
ware corpus used in our study. Sec. 3 presents our results on the prevalence of polymor-
phic behavior in constructors, while Sec. 4 describes the results of our manual analysis
of a large portion of these cases. Our finding on immodest constructors is presented in
Sec. 5. Sec. 6 concludes.

2 The Software Corpus

The software corpus used in our empirical study was assembled from the union of
collections used in the empirical study of Chalin and James [6] and that of Gil and
Maman [14]. We decided however to eliminate the SoenEA project from the ensemble
of Chalin and James in the interest of reproducibility—an official web page describing
the project could not be found. The impacts of this omission should be negligible since
this collection is relatively small (52 classes).

Accordingly, two hypotheses were initially set out for examination: (i) constructors
which are not hardhat in actual code are rarities, and (ii) most of these can be easily
made safe. Verification of the first conjecture should make the notion of hardhat con-
structors a candidate worthy of inclusion in new languages. Verification of the second
should help encourage changes in the semantics of current programming languages. Al-
ternatively, the understanding of actual use of non-hardhat constructors in code should

502 J. Gil and T. Shragai



Chalin and James [6], although, in contrast with their work which examined just the JDT
core, circa 1130 classes, we used the entire Eclipse implementation); Poseidon 2.5.1
community edition 7 (sources of were not available, binaries were apparently obfuscated
by an automatic tool); Tomcat 5.0.28 8; Scala 1.3.0.4 Just like Poseidon, sources of the
SCALA [24] distribution were largely unavailable, but this is because the compiler itself
is written in SCALA; JML 5.5 (a set of software tools used for the implementation of the
JAVA Modeling Language [19]); ANT 1.6.29; MJC 1.3 (MultiJAVA is a JAVA language
extension [7] which adds open classes and symmetric multiple dispatch to the language;
MJC is multiJAVA the compiler); JEdit 4.2; ESC 2.0b2 (the Extended Static Checker
programming tool that tries to check some of JML assertions through static analysis);
and Koa 10 (the Koa Tallying subsystem is a Dutch Internet voting application).

Tab. 2 summarizes the size properties of the software collections comprising our cor-
pus. Overall, we have more than 75,000 user defined types organized in some 3,500
packages. We also see that the total number of constructors is greater than 85,000 and
that there are a total of more than 66,000 classes.

Examining the table
Collection Packages Types Classes Interfaces Constructors Avg. No. of

Constructors
JBOSS 997 18,697 15,786 2,911 22,089 1.40
JRE 740 16,816 14,603 2,034 20,388 1.39
ECLIPSE 587 16,049 14,232 1,817 15,840 1.11
POSEIDON 593 10,045 8,686 1,359 11,078 1.28
TOMCAT 280 4,335 3,756 579 5,198 1.38
SCALA 96 3,379 2,754 625 3,144 1.14
JML 67 2,316 2,127 189 2,938 1.38
ANT 120 1,968 1,611 357 2,015 1.25
MJC 41 1,140 1,025 115 1,436 1.40
JEDIT 23 805 776 29 895 1.15
ESC 35 643 632 11 713 1.13
KOA 2 37 36 1 38 1.06
Total 3,581 76,230 66,024 10,027 85,772 1.30
Median 108 2,847 2,440 468 3,041 1.26

we see that the software
collections vary in size:
the largest collection is
JBoss with close to 16,000
classes, while the small-
est has less than forty
(the median size is 3,000
classes). We can also see
that the majority of the
code in our corpus is drawn
from three large collec-
tions: JRE, JBoss and Eclipse, which are of relatively the same size. The other collec-
tions are smaller.

7 http://www.gentleware.com
8 http://jakarta.apache.org
9 http://ant.apache.org

10 http://sort.ucd.ie

Overall, the corpus comprises twelve collections of JAVA code, all of which are freely
available on the web at least in binary form: JRE 1.6.0 01 4 (used in almost all empirical
studies of JAVA, e.g., [14, 8, 21, 2]); although naturally, each such experiment uses a
different version of the library); JBoss 3.2.6 5 (circa 1,000 packages of sources were
not available); Eclipse 3.0.1 6 (note that Eclipse was used in the empirical study of

4 http://download.java.net/jdk6
5 http://www.jboss.org
6 http://www.eclipse.org

The constructor count was produced by a binary analysis of the bytecode representa-
tion of the software. (In general, all automatic analysis reported in this work was done
on this representation. We turned to the source for manual inspection as necessary and
as described below.) In this representation, with the exception of interfaces, all classes

Table 1. Size statistics of the twelve collections in the corpus

Are We Ready for a Safer Construction Environment? 503



Tab. 2 shows how many base classes and how many “base constructors” were found
in the collections in the software corpus. That is to say, counts of the actual number of
classes that have subclasses in each of the collections, and the number of constructors
in those classes.

The three column groups
Internal External Total

Collection Classes Ctor’s Classes Ctor’s Classes Ctor’s
JBOSS 1, 809 2, 857 180 469 1, 989 3, 326
JRE 2, 212 3, 583 0 0 2, 212 3, 583
ECLIPSE 1, 537 1, 952 61 143 1, 598 2, 095
POSEIDON 1, 140 1, 714 308 689 1, 448 2, 403
TOMCAT 543 819 71 185 614 1, 004
SCALA 350 428 81 251 431 679
JML 391 578 70 211 461 789
ANT 230 328 39 102 269 430
MJC 149 233 63 195 212 428
JEDIT 41 66 71 223 112 289
ESC 106 126 31 91 137 217
KOA 2 2 13 39 15 41
Total 8, 510 12, 686 988 2, 598 9, 498 15, 284
Median 370.5 503 66.5 190 446 734

in the table demonstrate an
interesting experimental dif-
ficulty, raised in its full grav-
ity by this study. As might
be expected, other than the
JRE, software collections are
not self contained: inevitably,
there are classes in each such
collection which inherit from
classes found in other libraries
(most often the JRE). The in-

teraction between constructors of base classes found in one library with constructors of
derived classes found in another library may makes reasoning a bit more difficult.

As suggested by the table, our analysis considers also “external base classes”. In most
collections, the majority of base classes are internal. In JEDIT and in KOA however,
most base classes are external: JEDIT is a typical GUI application, with many of its
classes inheriting from the GUI classes of the JRE. KOA also relies on GUI and XML
processing services of the JRE, inheriting from the appropriate classes. We see that in
JEDIT the number of external bases is disproportionally large; in KOA, the number of
external base constructors is much greater than internal base constructors. This however
does not happen in other collections, and the relative number of external constructors
and external bases is typically small, with median and median value of the relative
number of external bases, both constructors and classes, is in the 1%–3% range.

It is a fundamental property of JAVA that every non-final class (with at least one
non-private constructor) may be subclassed. It is also fundamental that every such con-
structor may be refined. But, how many classes are subclassed in practice? How many
constructors are actually refined? Theoretically, the minimal number of classes with no
descendants and unrefined constructors is one. In practice, it can be inferred from Tab. 2

have at least one constructor, since a default, no-arguments constructor is generated by
the compiler for every class that has no programmer defined constructors.

Note that the number of constructors is close to the number of classes, but the num-
bers are not the same: a class has on average 1.3 constructors. This does not necessarily
mean that the relative number of constructors in which half-baked objects are used is
the same as the relative number of classes in which such objects are used.

As reported previously [14], there are inevitably duplications in the corpus: certain
classes occur more than once in the different collections. These repetitions are often
due to different versions of the same software base. There were even a few cases in
which the same class occurred more than once in the same collections. Nevertheless,
repetitions were not too frequent (less than 10%) and since we are trying to determine
the prevalence of a rather rare phenomena, the error in not eliminating these is small.

2. Base classes and constructors in the corpusTable

504 J. Gil and T. Shragai



considered, the average is still high: 1.49. If all bases, internal and external, are consid-
ered together, then the average is 1.61. We conjecture that this phenomenon is explained
by two properties of JAVA software (a) most classes are not intended to serve as bases
(as argued above), and (b) classes with more constructors are more likely to serve as
bases.

Applying the standard χ2-test to compare the distribution of the number of construc-
tors in classes with no children, and classes with children, supports claim (b). The test
reveals a significant difference between the two distributions and that the fraction of
classes with two constructors or more is significantly (99.99% confidence level) higher
in classes which serve as bases.

3 Polymorphic Constructors

Having described the data set, we turn now to the description of the research method
and results. This section is devoted to the study of the prevalence of polymorphic con-
structors. We say that a constructor is polymorphic if it may execute differently due to
overriding, that is if there is a chain of method calls with this as the receiver, starting at
the constructor which leads to a call to an overridden method.

In the following section we explain how such polymorphic behavior may be elimi-
nated. We exclude from our attention here and in the next section cases in which the
call to an overridden method occurs as a result of assigning this to a variable or passing
it as a parameter, and then using this variable or parameter as a receiver. This kind of
non-hardhat behavior is the subject of Sec. 5.

3.1 Definitions

As explained above, the polymorphic behavior during the construction process occurs
while a derived constructor refines a base constructor. To capture the subtleties of this
interaction we distinguish between three kinds of “polymorphic” constructors:

The observation that even in large software collections most classes do not have de-
scendants, and the majority of constructors are not refined guided our analysis and we
have separate measurements of constructors with potentially for non-hardhat behavior
and constructors in which this potential is realized.

Comparing the total number of external base classes (988) with the total number of
constructors found in these classes (2,598), we find that the average number of con-
structors in these classes is 2.63, i.e., much greater that the 1.30 average over all classes
(as can be computed in Tab. 2). If only internal base classes and base constructors are

hat about 15% of internal constructors are constructors of base classes. The fraction of
base constructors increases to about one in five if “external constructors” are included.
Also, even if a collection is augmented with all bases, only about one in seven classes
serves as a base for other classes.

Polymorphic Pitfall Constructors. Recall that only one in seven classes have descen-
dants, and that the majority of constructors are not refined at all. There are therefore
many constructors that bear the potential for polymorphic behavior, but the polymor-
phic behavior may, or may not be manifested, depending on whether the enclosing class

Are We Ready for a Safer Construction Environment? 505



Polymorphic Falls Constructors. The definition of polymorphic constructors puts the
“blame” on the polymorphic behavior on the refined constructor, which by definition
must be a polymorphic pitfall. Still, even though the fault occurs at the refined con-
structor; the problem is manifested only when the refining constructor is invoked. We
therefore say that a constructor of a derived class is a polymorphic fall if it refines
a polymorphic pitfall constructor, in such a way that the refined constructor makes a
method call chain in which a message, which is bound to different methods in the base
and in the derived classes, is sent to this. Again, determining whether a constructor is
a polymorphic fall can be decided by inspecting its enclosing class and all its bases.

The constructor Shape::Shape() in Fig. 1 is not a polymorphic fall since it refines
no other constructors. In contrast, the no-arguments constructor of the derived class,
Circle::Circle() is a polymorphic fall since it refines the polymorphic constructor
Shape::Shape() which calls method draw whose implementations in the base Shape and
the derived Circle are different. The constructor of class CodeSnippetCompiler is likewise
a polymorphic fall.

The case of abstract classes is somewhat special in that even if a constructor of such
a class may demonstrate polymorphic behavior, we classify it as a pitfall, since this
polymorphic behavior can only be realized if this constructor is refined.

With the above two definitions, we can give an alternative characterization of poly-
moprhic constructors: A polymorphic constructor is a polymorphic pitfall constructor
for which we found one or more refining polymorphic fall constructors. Thus, the deci-
sion of whether a polymorphic fall constructor is indeed polymoprhic is relative to the
code base.

3.2 Method

Our analysis was carried out first on the binary representation of the code, using the
Java Tools Language (JTL) [9]—a declarative language for code analysis. JTL itself is
implemented on top of the Byte Code Engineering Library (BCEL)11, formerly known
as JavaClass—a toolkit for static analysis and dynamic creation or transformation of
JAVA class files. The analysis was then completed by manual inspection of the source.

The JTL code in Fig. 5 demonstrates how the search for polymorphic fall constructors
was conducted. The unary predicate polymorphic_fall_constructor_class matches all
classes which have a polymorphic fall constructor. A constructor of a base class which
makes a call to a non-final non-static function, will thus be included in our report each
time a derived class overrides this function.

11 http://jakarta.apache.org/bcel/index.html

has any derived classes, and whether any of these derived classes overrides any of the
potentially polymorphic methods invoked by the constructor.

We say that a constructor of a certain class is a polymorphic pitfall if it calls, directly
or indirectly, a method of its class and of an ancestor class which might be overridden
in a derived class, i.e., a method which is non-final, non-static and non-private. De-
termining whether a constructor is a polymorphic pitfall, does not require whole-world
analysis; only the class itself and its ancestors must be inspected. In the example of
Fig. 1, the constructor Shape::Shape() is a polymorphic pitfall.

506 J. Gil and T. Shragai



were found, i.e., the accuracy of the analysis in this collection is about 90%. In 259
such cases inspected manually in the Eclipse collection, only one such false positive
was found. We therefore estimate the accuracy of the algorithm as being at least 85%.

The JTL equivalent for finding polymorphic pitfalls is much simpler and is not pro-
vided here. Polymorphic classes were found by analyzing the report of constructor falls.

3.3 Findings

Tab. 3 shows the prevalence of polymorphic behavior in constructors in each of the
collections in the software corpus.

base class is invoked for other purposes. Similarly, in tracing the chain of internal calls
by predicates internal_call* and internal_call, no attempt is made to ensure that these
are invoked on the implicit this parameter.

The analysis represented by Fig. 5 may therefore flag false positives, but it will not
allow any polymorphic fall constructors to go undetected. In our manual inspection of
226 cases of polymorphic falls in constructors found in the JRE only 24 false positives

this parameter. The predicate, however, also captures cases in which a constructor of a

It is important to note that the search is conservative: predicate refines is supposed
to match cases in which a constructor relies on a constructor of a base class to create its

The third column of the table tells us that in total, a polymorphic fall occurred in
only 1,200 constructors, which constitute slightly less than 1.4% of the total of 85,772
constructors in the corpus. The variety among the different collections is not too large:
in some collections no polymorphic construction behavior was found at all, and the
maximum ratio of such constructors is 2.91%, achieved at JEDIT. The relatively high
rate at this collection is explained by its heavy reliance and inheritance from GUI classes
with polymorphic behavior.

In the second column of the table we see the number of constructors which caused
these falls. In total, there were 390 such bad constructors, which make 0.45% of all
constructors. The second column in the table also shows the fraction of polymorphic
constructors from base constructors only. With 1.64% median value, even this fraction
is small.

polymorphic_fall_constructor_class := !abstract class {
exists constructor refines* C and infringes C;

};

refines* C := refines C | refines C’ and C’ refines* C;

refines C := invokespecial C, C constructor and
declared_in T, C declared_in T’, T extends T’;

infringes C :=
declared_in T, C internal_call* M, M overridden_in T;

internal_call* M := internal_call M
| internal_call* M’, M’ internal_call M;

internal_call M := declared_in T, invoke M, M declared_in T;

overridden_in T := T declares M, M overrides #;

Fig. 5. A JTL query for finding classes with polymorphic fall constructors

Are We Ready for a Safer Construction Environment? 507



Comparing the second and the third column we see that on average, every polymor-
phic pitfall is responsible to about three polymorphic falls..

The fourth column of the table gives the numbers of constructors (internals and ex-
ternals combined) which are polymorphic pitfalls, that is may cause a polymorphic fall
by descendants. We see that the numbers in this column are much higher, with median
prevalence exceeding 8%.

Every polymorphic constructor is necessarily a polymorphic pitfall, so it is no wonder
that the numbers in the fourth column are greater than those reported in the second. But,
a striking conclusion can be drawn from comparing the relative values: the density of
polymorphic constructors within base constructors is invariably smaller than the density
of polymorphic pitfalls among all constructors. For example, in Eclipse, only about
4% of base constructors created a polymorphic fall, whereas more than 10% of all
constructors in this collection have a polymorphic pitfall.

The fact that actual polymorphic behavior is smaller than what might be expected by
the potential for it can be attributed to two, non-mutually exclusive, reasons:

1. Few Descendants Conjecture. Classes with polymorphic pitfall constructors are less
likely to be extended

2. Unrealized Potential Conjecture. Potentially polymorphic constructors do not re-
alize this potential in full during inheritance, because the potentially polymorphic
methods invoked from a constructor of the base are not always overridden.

An experiment or measurement to verify the second conjecture is not simple. Our
research continued to test the first explanation against the null hypothesis by which the
occurrence of potentially polymorphic behavior within constructors does not change
the probability of a class serving as a base.

Consider now Tab. 4 which is similar to Tab. 3 except that it revolves around classes
instead of constructors. That is, in Tab. 4 we report on the number of classes whose con-
structors can be categorized according to the three varieties of polymorphic behavior.

Collection Polymorphic
Constructors

Polymorphic Fall
Constructors

Polymorphic Pit-
fall Constructors

JBOSS 70 (2.10%) 140 (0.63%) 1,570 (7.11%)
JRE 120 (3.35%) 396 (1.94%) 1,314 (6.44%)
ECLIPSE 86 (4.11%) 302 (1.91%) 1,671 (10.55%)
POSEIDON 55 (2.29%) 209 (1.89%) 1,281 (11.56%)
TOMCAT 12 (1.20%) 32 (0.62%) 335 (6.44%)
SCALA 9 (1.33%) 37 (1.18%) 259 (8.24%)
JML 25 (3.17%) 35 (1.19%) 260 (8.85%)
ANT 5 (1.16%) 10 (0.50%) 148 (7.34%)
MJC 7 (1.64%) 13 (0.91%) 141 (9.82%)
JEDIT 1 (0.35%) 26 (2.91%) 107 (11.96%)
ESC 0 (0.00%) 0 (0.00%) 27 (3.79%)
KOA 0 (0.00%) 0 (0.00%) 3 (7.89%)

Total 390 (2.55%) 1,200 (1.40%) 7,116 (8.30%)
Median 9 (1.48%) 32 (1.04%) 259 (8.07%)

3 Absolute and relative prevalence of polymorphic behavior in constructors (conservative
analysis)
Table .

508 J. Gil and T. Shragai



A comparison of the totals line in tables 3 and 4 shows that the relative prevalence of
constructors and classes is quite similar. The prevalence of polymorphic, polymorphic
falls and polymorphic pitfalls constructors is (respectively) 2.55%, 1.40%, and 8.30%
whereas the corresponding numbers for classes in which this behavior is found are
3.07%, 1.41% and 8.83%. The similarity also occurs in the median line, and (to a lesser
extent) in each of the prevalence values.

The similarity is a bit suspicious, since, as observed above (Sec. 2), classes which
serve as bases tend to have more constructors. We should therefore have expected that
base classes would be more prone to have at least one polymorphic constructor.

To better understand the situation, we applied a statistical test to check whether
classes with polymorphic behavior in one of their constructors have the same number
of descendants as other classes.

1. Classes with polymorphic pitfalls constructors tend to have more descendants than
classes without such constructors.

2. Classes with polymorphic constructors have a greater number of descendants than
other base classes.

Both results were found to be statistically significant (with confidence level of at least
99%) by a variant of the of the Mann-Whitney test for comparing ordinal non-normally
distributed unpaired data sets. These findings indicate that the second conjecture is more
likely to be true: polymorphic pitfalls are not realized as often as they can be during
inheritance.

Note again that the number of classes with polymorphic constructors is presented in
the table as a fraction of the total number of base classes. The 292 such classes are
however only 0.44% of the total of 66,024 classes of our corpus and only 0.38% of the
76,230 types in the corpus.

Also take note that each base class with a polymorphic constructor is, on average,
“responsible” for three classes in which an actual polymorphic call occurs.

Collection Classes with Poly-
morphic Construc-
tors

Classes with Poly-
morphic Fall Con-
structors

Classes with Poly-
morphic Pitfall
Constructors

JBOSS 44 (2.21%) 122 (0.77%) 1,192 (7.55%)
JRE 89 (4.02%) 262 (1.79%) 968 (6.63%)
ECLIPSE 67 (4.19%) 265 (1.86%) 1,498 (10.53%)
POSEIDON 43 (2.97%) 155 (1.78%) 1,119 (12.88%)
TOMCAT 9 (1.47%) 27 (0.72%) 256 (6.82%)
SCALA 9 (2.09%) 24 (0.87%) 236 (8.57%)
JML 18 (3.90%) 32 (1.50%) 199 (9.36%)
ANT 5 (1.86%) 10 (0.62%) 105 (6.52%)
MJC 7 (3.30%) 13 (1.27%) 124 (12.10%)
JEDIT 1 (0.89%) 18 (2.32%) 103 (13.27%)
ESC 0 (0.00%) 0 (0.00%) 24 (3.80%)
KOA 0 (0.00%) 0 (0.00%) 3 (8.33%)

Total 292 (3.07%) 928 (1.41%) 5,827 (8.83%)
Median 9 (2.15%) 24 (1.07%) 199 (8.45%)

4. Prevalence of classes with polymorphic behavior in their constructors (conservative anal-
ysis)

Table

Are We Ready for a Safer Construction Environment? 509



– About 98.6% of all constructors in the corpus do not have a polymorphic fall; also,
about 98.6% of all classes do not have a polymorphic fall.
The complement of this ratio is indicative of the total amount of work required to
eliminate such falls.

– These polymorphic falls are caused by the 390 polymorphic constructors; 99.55%
of all constructors are monomorphic; the ratio of classes with such behavior is
similar.
The complement of this ratio is indicative of the number of distinct cases to be
considered if such falls are to be eliminated. On average each such case involves
three descendant classes and four refining constructors.

– About 8% of all constructors are a polymorphic pitfall, that is, pose a risk to have
descendants with polymorphic falls. Still, even though classes with polymorphic
pitfall constructors tend to have more descendants, the fall is not realized in all of
these descendants.

Recall that these conclusions are drawn based on a conservative code analyzer, whose
errors are only false reports on polymorphic behavior. The true results are probably
(slightly) better, in the sense that polymorphic behavior is scarcer than the above num-
bers indicate.

3.4 Summary

Our experimental findings in this corpus show that polymorphic constructors are rather
rare—the prevalence of this phenomena is between 1% and 2%, depending on how the
measurements are made. More precisely, we found that:

4 Patterns of Polymorphic Behavior in Constructors

In order to better understand the nature of polymorphic calls in the code base, we con-
ducted a detailed manual inspection of 485 cases of polymorphic failures. A case of
polymorphic failure is defined as a triple of (i) a constructor of a base class, (ii) a re-
fining constructor of a derived class, and (iii) a method called by the base constructor
with different implementation in the base and the derived class. 226 of these cases were
drawn from the JRE; the remaining 259 cases were taken from Eclipse.

4.1 Polymorphic Solutions Patterns
Our manual inspection of the said cases revealed that the polymorphic behavior dur-
ing construction appears in a relatively small number of patterns. We have identified
those patterns and created a group of solutions targeted at each pattern: CONSTANT
INITIALIZER, SEMI-CONSTANT INITIALIZER, INITIALIZER OBJECT, FUNCTION OB-
JECT, MULTIFUNCTION OBJECT, FACTORY and INLINE DATA.

Fig. 6 depicts the relationship between these patterns. An arrow from one such pattern
to another indicates that the former generalizes the latter.

The most general pattern is MULTIFUNCTION OBJECT, while the most specific one is
CONSTANT INITIALIZER. Patterns FUNCTION OBJECT and INITIALIZER OBJECT both
generalize NON-CONSTANT INITIALIZER, while MULTIFUNCTION OBJECT general-
izes and unifies the behavior both. FACTORY and INLINE DATA are isolates in the sense
that they do not generalize, nor are being generalized by, any of the other patterns.

510 J. Gil and T. Shragai



1. CONSTANT INITIALIZER: the most common type of virtual methods called in-
side a constructor are methods that return a constant value, or a static field, that
is known in the subclass only, and needed by the superclass. Examples for this
type of behavior may be found in some of the large inheritance star shaped topolo-
gies such as those rooted by JRE’s com.sun.jmx.snmp.Enumerated and
com.sun.org.apache.xml.internal.security.utils.ElementProxy
and Eclipse’s org.eclipse.jdt.core.dom.ASTNode.
These virtual calls may be avoided by adding a parameter to the super constructor
and passing the constant value or static data member in the call to super(...).

2. SEMI-CONSTANT INITIALIZER: similarly to the previous case, a no-argument method
invoked from a superclass constructor may return different newly created objects,
depending on the subclass implementation. The overriding methods in each subtype
contain a single new statement to create and return a new object of a type specific
for each subclass. Furthermore, the constructor invocation uses no receiver fields.
An alternative for this is implemented as done for the CONSTANT INITIALIZER, by
making the new SomeField(...) expression a parameter of the super() call.

3. NON-CONSTANT INITIALIZER: a more general case requires the subclass to per-
form computation on its constructor arguments or static data members. As in the
previous case, this is performed inside the overridden method, resulting in a value
used for the superclass constructor.
Such polymorphism can be resolved as in the previous pattern: the computation
itself can be written as an argument in the call to super(...), thus passing the com-
puted value from the subclass to the superclass as a constructor parameter.

Fig. 6. Design patterns for devirtualization constructors

Constant 
Initializer

Initializer 
Object

Non-Const 
Initializer

Function 
Object

Multi-Func 
Obj

Semi-
Constant 
Initializer

Factory

Inline Delta

Are We Ready for a Safer Construction Environment? 511



JECT. The MUTLIFUNCTION-FUNCTION OBJECT is different than the FUNCTION
OBJECT because it externalizes more than just a single component initialization
method, and thus may be used for the setting of all the superclass’s data mem-
bers, as done by the INITIALIZER OBJECT for the simpler data members (which are
independent of other date members).

7. FACTORY: this solution is required when the construction process of the object
may conceptually be divided into two phases. The Factory is an auxiliary wrapper
class, which is responsible of creating and initializing objects of the superclass or
the subclasses types, without the need for their constructors to be public. Having
the construction wrapped by the Factory allows for the removal of polymorphic
initialization methods from the base constructor, as the Factory itself will handle
the second phase of the initialization.

8. INLINE DELTA: a derived class may refine a method invoked from its base class
for the purpose of adding on to the superclass functionality with initialization of
the derived class’s own data members. This implies that the fields of the subclass
are set during superclass construction, rather than during the construction of the
derived class itself. This case follows a pattern of an overriding method starting
by invoking the superclass’s version, and then adding a delta of subclass-specific
initialization. The solution for this type of polymorphic call is simply to inline the
section regarding the subclass into the subclass constructor, and thus avoid overrid-
ing the base class version of it.

An alternative is passing an INITIALIZER OBJECT as the super(...) parameter.
This object will be used to pass the setting values of multiple superclass fields.
Additionally, when creating the INITIALIZER OBJECT, its constructor may perform
any type of calculation on the values to be set in the superclass fields. In this manner,
any subclass may define an INITIALIZER OBJECT to meet its own needs, and use it
to set any number of fields in the superclass.

5. FUNCTION OBJECT: further generalization of the INITIALIZER OBJECT is targeted
at the setting of superclass data members that are composite components, and are
dependent on other data members. As a result, the computation of a dependent data
member needs to be delayed till the other data members are set.
This may be done using the FUNCTION OBJECT micro pattern [14]: the subclass
would call for super(...) with a new FUNCTION OBJECT. The creation of the Func-
tion Object may set some values from the subclass, that would be used for the su-
perclass data member computation. The superclass constructor will start by setting
independent data members. Next, it will invoke the main method of the FUNCTION
OBJECT, pass all the needed data members, and received the value of the composite
component as the return value of the FUNCTION OBJECT method.

6. MULTIFUNCTION OBJECT: finally, a combination of the INITIALIZER OBJECT
and the FUNCTION OBJECT can be implemented using a MULTIFUNCTION OB-

4. INITIALIZER OBJECT: the ability to write a computation as a function argument to
the super(...) call is limited to relatively short and simple expressions. Addition-
ally, passing a large number of parameters to the super(...) call may be inconve-
nient for the programmer.

512 J. Gil and T. Shragai



was found in 21.78% of the JRE cases, but only 10.85% of the Eclipse cases. The rest
of the patterns are less prevalent, and used to resolve a smaller number of specific cases.

Tab. 5 also includes some cases where the techniques described above were not ap-
plied:

1. A “code rewrite” solution applies for cases where the super constructor invokes a
public method that is part of the class interface. In such cases, the derived class
overrides the original implementation, but in fact, when invoked through the con-
structor of the base class, only the original implementation is executed. For exam-
ple, take class JDialog from the JRE’s javax.swing package. Its method setLayout()

is invoked (indirectly) through the constructor of class Window (from java.awt pack-
age). The implementation of the overridden version of setLayout() is depicted in
Fig. 7. This implementation queries a boolean data member in Line 9. This boolean

1 class JDialog {
2 protected boolean rootPaneCheckingEnabled = false;

4 protected boolean isRootPaneCheckingEnabled() {
5 return rootPaneCheckingEnabled;
6 }

8 public void setLayout(LayoutManager manager) {
9 if(isRootPaneCheckingEnabled())

10 getContentPane().setLayout(manager);
11 else
12 super.setLayout(manager);
13 }
14 }

Fig. 7. Overriding setLayout() in JDialog

is initialized to false, and is set only through the constructor of JDialog. As a result,
when JDialog::setLayout() is invoked through the super constructor, the value of

Collection JRE Eclipse Total
Constant-initializer 82 (40.59%) 110 (42.64%) 192 (41.74%)
Function-object 44 (21.78%) 28 (10.85%) 72 (15.65%)
Inline-delta 19 (9.41%) 59 (22.87%) 78 (16.96%)
Native 14 (6.93%) 0 (0.00%) 14 (3.04%)
Unresolved 14 (6.93%) 23 (8.91%) 37 (8.04%)
Non-constant-initializer 9 (4.46%) 5 (1.94%) 14 (3.04%)
Code-rewrite 9 (4.46%) 1 (0.39%) 10 (2.17%)
Semi-constant-initializer 5 (2.48%) 13 (5.04%) 18 (3.91%)
Redundant 5 (2.48%) 8 (3.10%) 13 (2.83%)
Multi-function-object 1 (0.50%) 1 (0.39%) 2 (0.43%)
Initializer-object 0 (0.00%) 5 (1.94%) 5 (1.09%)
Factory 0 (0.00%) 5 (1.94%) 5 (1.09%)

5. Applying the devirtualization design patterns on JRE and Eclipse

Tab. 5 depicts the prevalence of the various patterns found in our manual inspection.
The most common pattern is also the simplest— CONSTANT INITIALIZER, appearing

in over 40% of the cases in both JRE and Eclipse. The next most common pattern is the
FUNCTION OBJECT, which allows for a delayed execution of computation inside the
base constructor through an object that was passed by the derived class. This pattern

Table

Are We Ready for a Safer Construction Environment? 513



5 Immodest Constructors

Coding and maintenance is complicated when a constructor refines a polymorphic con-
structor, since in such a class methods may be executed before any of its own con-
structors started executing. Our search for polymorphic behavior during construction in
Sec. 3 was restricted to chains of direct message sends to the created object. But, such
half-baked objects can also be encountered through aliasing—an exposed reference can
be used to invoke dynamically bound methods on a half-baked object.

This section describes the results of our search for constructors which expose the
this-identity, what we call immodest constructors.

5.1 Definitions

Sec. 3.1 defined three varieties of polymorphic behavior during construction. The three
kinds of exposition defined are similar in nature.

Immodesty Pitfall Constructors. We say that a constructor is an immodesty pitfall if
it exposes the this identity, by assigning it into a variable, which may be accessed by
external code or serve as a target of an internal method, or by passing it as a parameter
to external code.

Immodest Fall Constructors. We say that a constructor is an immodest fall if it refines
a an immodesty pitfall constructor, and overrides a method defined by the class of the
pitfall constructor.

Immodest Constructors. A constructor is immodest if (i) it is an immodesty pitfall
constructor and (ii) it is a refined by an immodest fall constructor.

Consider for example the JAVA class Frame depicted in Fig. 8 (drawn from the java.awt

package). Then, both constructors of this class are immodesty pitfalls: The first since

the boolean data member will always be false, and so only the super version of
setLayout() is executed (Line 12).
The suggested code rewrite solution is done on the base class Window. An alter-
native to the invocation of setLayout() from the constructor of Window would be
to use a private method which contains the complete implementation of the orig-
inal setLayout(). Then, this private method may be invoked from both the public
setLayout() and from the constructor of Window.

2. A “native” case describes a case where the base class invokes an abstract method
whose implementation in a derived class is declared native. Since in these cases we
have no access to the native code, we could not analyze it. This case was encoun-
tered only in JRE and appeared in nine concrete subclasses of WComponentPeer
in sun.awt package (where the method create() is native), and in the superclass of
WCustomCursor from the same package (by invoking createNativeCursor()).

3. The “unresolved” cases are those where the overriding methods contains a complex
series of actions that are also very different than the original base implementation.
We marked 6.9% of the falls identified for JRE as “unresolved”, and less than 9%
in Eclipse.

514 J. Gil and T. Shragai



immodest falls since they necessarily refine one of Frame’s constructors which exposes
the this identity. If however, the said subclass overrides init, then all of its construc-
tors are by definition polymorphic falls (which would also make Frame’s constructors
polymorphic).

Note that the above reasoning also shows that there are constructors which are both
polymorphic and immodest. Since the overlap was small, we chose to categorize all
such cases as being polymorphic.

5.2 Method

What is known in the JTL jargon as pedestrian patterns were used to identify cases
in which constructors invoke, directly or indirectly, polymorphic member functions.
A more sophisticated analysis involving dataflow analysis (using scratches as they are
called in JTL), was used to identify cases in which constructors allow external code, i.e.,
code which is not part of the ancestors chain of a class, to access a half-baked object.

Our conservative search for incidents of immodesty used inexact yet conservative in-
terprocedural analysis starting at the base constructor and exact intraprocedural dataflow
analysis. The analysis was complemented by a laborious manual inspection of the vio-
lating code.

5.3 Findings

Tab. 6 shows the prevalence of immodest behavior in constructors in each of the collec-
tions in the software corpus.

Examining the second column of the table we see that there is a great variance in
the prevalence of immodest constructors, ranging from 0% to 9%; even the median
(2.42%) is very different from the average prevalence (5.94%). Comparing this average
with the average prevalence of polymorphic constructors (2.55% see Tab. 3) we see that
there are more than twice as many immodest constructors than there are polymorphic
constructors.

1 public class Frame {
2 public void init(String title, GraphicsConfiguration gc) {
3 this.title = title;
4 SunToolkit.checkAndSetPolicy(this, false);
5 }
6 public Frame(String title) throws HeadlessException {
7 init(title, null);
8 }
9 public Frame() throws HeadlessException {

10 this("");
11 }
12 }

Fig. 8. Constructors revealing a self reference in JAVA

it invokes method init which exposes the this pointer to an external class. The second
constructor is such pitfall since it delegates its construction task to the first constructor.
Observe however that both constructors are monomorphic.

To understand why immodesty is undesirable, consider again Fig. 8 and a subclass
of Frame. If this subclass does not override function init, then all of its constructors are

Are We Ready for a Safer Construction Environment? 515



These two phenomena occur also in the third column of the table: the prevalence of
immodest fall constructors is large (from less than 2% to almost 15%), and their total
number is greater than the number of polymorphic fall constructors by a factor greater
than 4.

Interestingly, the prevalence of immodest constructors with immodest behavior when
compared to the entire constructors population is still small and is equal to about 1.06%.
The prevalence of immodest pitfalls constructors is not quite as small: 5.64%.

Perhaps surprisingly, in examining the fourth column we find the number of immodest
pitfall constructors is smaller (!) than the number of polymorphic pitfall constructors.
But, the variety in this column is even greater than in the other columns (from less than
1.5% to more than 21%).

Tab. 7 shows the prevalence of classes with constructors with immodest behavior.

Collection Classes with Immodest Con-
structors

Classes with Immodest Fall
Constructors

Classes with Immodest Pit-
fall Constructors

JBOSS 61 (3.07%) 582 (3.69%) 650 (4.12%)
JRE 100 (4.52%) 894 (6.12%) 649 (4.44%)
ECLIPSE 117 (7.32%) 821 (5.77%) 1,374 (9.65%)
POSEIDON 115 (7.94%) 1,146 (13.19%) 1,018 (11.72%)
TOMCAT 7 (1.14%) 88 (2.34%) 61 (1.62%)
SCALA 43 (9.98%) 274 (9.95%) 312 (11.33%)
JML 9 (1.95%) 82 (3.86%) 98 (4.61%)
ANT 1 (0.37%) 15 (0.93%) 23 (1.43%)
MJC 4 (1.89%) 51 (4.98%) 74 (7.22%)
JEDIT 3 (2.68%) 123 (15.85%) 152 (19.59%)
ESC 1 (0.73%) 12 (1.90%) 15 (2.37%)
KOA 0 (0.00%) 4 (11.11%) 4 (11.11%)

Total 461 (4.85%) 4,092 (6.20%) 4,430 (6.71%)
Median 8 (2.68%) 105 (5.77%) 125 (7.22%)

7. Prevalence of classes with constructors with immodest behavior (conservative analysis)

Collection Immodest Constructors Immodest Fall Constructors Immodest Pitfall Constructors

JBOSS 129 (3.88%) 718 (3.25%) 957 (4.33%)
JRE 283 (7.90%) 1,111 (5.45%) 1,178 (5.78%)
ECLIPSE 186 (8.88%) 906 (5.72%) 1,704 (10.76%)
POSEIDON 215 (8.95%) 1,384 (12.49%) 1,351 (12.20%)
TOMCAT 10 (1.00%) 109 (2.10%) 81 (1.56%)
SCALA 53 (7.81%) 298 (9.48%) 402 (12.79%)
JML 15 (1.90%) 90 (3.06%) 183 (6.23%)
ANT 1 (0.23%) 18 (0.89%) 30 (1.49%)
MJC 6 (1.40%) 56 (3.90%) 130 (9.05%)
JEDIT 7 (2.42%) 131 (14.64%) 189 (21.12%)
ESC 3 (1.38%) 13 (1.82%) 21 (2.95%)
KOA 0 (0.00%) 4 (10.53%) 4 (10.53%)

Total 908 (5.94%) 4,838 (5.64%) 6,230 (7.26%)
Median 10 (2.16%) 109 (4.67%) 183 (7.64%)

6. Prevalence of immodest behavior in constructors (conservative analysis)Table

Table

516 J. Gil and T. Shragai



6 Conclusions and Further Research

Our main conclusion is that polymorphic construction is scarce, occurring in about
1.4% of all classes and 1.4% constructors. The base constructors and base classes re-
sponsible for this behavior are even scarcer; their prevalence is less than 0.5%. This
prevalence is in interesting contrast with the fact that the potential for such a poly-
morphic behavior occurs with at least 8% prevalence, and the fact that classes with
potentially polymorphic behavior tend to have (with statistical significance greater than
99%) more descendants.

It might be useful to repeat our study in a framework set of mind, That is, examine
polymorphic pitfall constructors manually, concentrating on those for which no corre-
sponding falls were found, in attempt to determine whether the pitfalls were intentional,
serving a “hot-spot” purpose.

Unfortunately, the results of the analysis of exposure were not as striking. We found
that there is a potential of leaking the this reference to external code in about 6% of
the constructors. It is not clear however whether this potential leakage is significant,
since it could be the case that the external code does not actually make use of this
reference. For example, this could be assigned to one of the class’s fields, as is often
done in initializing a circular linked list, but even though this field has default visibility,
no other class in the package uses it as a receiver, or even reads this field. Also, even if
the external code sends a message to the leaked this, this sending could be done only
after the class was fully constructed. Clearly, more work is required in this direction.

Based on an initial manual exploratory findings of immodest behavior we conjecture
that in the majority of immodesty cases, the external code does not send any messages
to the revealed reference, and if such messages are sent, they are rarely overridden in
any of the derived classes. If this conjecture is contradicted, and the incidents are found
to be of sufficient importance then perhaps the time is ripe for introducing two initial-
ization phases: one in which the object is constructed internally, and another in which
the object initial interconnection network is established. This second phase could be
useful e.g., for a model-view-controller architecture, in which the construction of each
view component includes storing its address in the update list of the model component.
We suspect however that such cases are rare, and could be addressed by construction
patterns tailored for this purpose.

The data in this table can be summarized as follows: The same phenomena we found
for immodest constructors in Tab. 6, including great variety in the prevalence of im-
modest and immodest falls types of behavior, and a higher incidence rate in these than
in their polymorphic counterpart.

The comparison of the finding regarding constructors and the findings regarding
classes indicate that an immodest constructor is “responsible” on average to almost six
actual immodesty falls, and that every class with immodest constructor has on average
almost 9 classes with immodesty pitfall constructors. This indicates that in immodest
constructors tend to be grouped together in a smaller number of classes.

We discussed alternatives for enforcing modest behavior on constructors (so to speak),
a prime alternative being a model similar to Bokowski and Vitek’s confined types. The

Are We Ready for a Safer Construction Environment? 517



only static and semi-static methods of the class. Semi-static methods are prohibited
from accessing instance methods and variables. A familiar example is JAVA’s getClass()
method. Such a feature is useful in constructors, as demonstrated by the construction
patterns that can be more readily implemented using this feature.

References

data we collected shows that the phenomena is sufficiently prevalent that designers of
new languages should consider appropriate way of addressing it.

In light of our finding regarding polymoprhic constructors, language designers should
consider introducing init (and destruct) methods is in setting a clear cut boundary
between between the construction (and destruction) process and the normal object’s
life time. The variety of ways of doing that are discussed briefly in the opening section
of this article. An inspection of the patterns of polymorphic behavior in constructors
and their coverage rate suggest that such semantics may be even feasible in existing
language with extensive code base (probably as compiler option or extension).

We also believe that the time may is ripe for introducing what we have called semi-
Static Methods, i.e., functions which are dynamically bound, but are allowed to invoke

1. Arnold, K., Gosling, J.: The Java Programming Language. The Java Series.
Addison-Wesley, Reading (1996)

2. Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H.,
Tempero, E.: Understanding the shape of Java software. In: Tarr and Cook [27]

3. Birka, A., Ernst, M.D.: A practical type system and language for reference im-
mutability. In: Vlissides, J.M., Schmidt, D.C. (eds.) Proc. of the 19th Ann. Conf.
on OO Prog. Sys., Lang., & Appl (OOPSLA 2004), Vancouver, BC, Canada, Oc-
tober 2004. ACM SIGPLAN Notices, vol. 39 (10) (2004)

4. Bokowski, B., Vitek, J.: Confined types. In: Proc. of the 14th Ann. Conf. on OO
Prog. Sys., Lang., & Appl (OOPSLA 1999), Denver, Colorado, November 1-5, 1999.
ACM SIGPLAN Notices, vol. 34 (10), pp. 82–96. ACM Press, New York (1999)

5. Cabral, B., Marques, P.: Exception handling: A field study in Java and.NET. In:
Ernst [11], pp. 151–175

6. Chalin, P., James, P.R.: Non-null references by default in Java: Alleviating the
nullity annotation burden. In: Ernst [11], pp. 227–247

7. Clifton, C., Millstein, T., Leavens, G.T., Chambers, C.: MultiJava: Design ra-
tionale, compiler implementation, and applications. ACM Trans. Prog. Lang.
Syst. 28(3) (May 2006)

8. Cohen, T., Gil, J.: Self-calibration of metrics of Java methods. In: Proc. of the
37th Int. Conf. on Technology of OO Lang. and Sys (TOOLS 2000 Pacific), Syd-
ney, Australia, November 20-23, 2000, pp. 94–106. Prentice-Hall, Englewood Cliffs
(2000)

9. Cohen, T., Gil, J.Y., Maman, I.: JTL—the Java tools language. In: Tarr and Cook
[27]

10. Eckel, N., Gil, J.: Empirical study of object-layout strategies and optimization
techniques. In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 394–421.
Springer, Heidelberg (2000)

11. Ernst, E. (ed.): ECOOP 2007. LNCS, vol. 4609. Springer, Heidelberg (2007)

518 J. Gil and T. Shragai



12 http://www.diva-portal.org/kth/theses/abstract.xsql?dbid=3956

12. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: Crocker, R., Steele Jr., G.L. (eds.) Proc. of the 18th Ann.
Conf. on OO Prog. Sys., Lang., & Appl (OOPSLA 2003), October 2003. ACM
SIGPLAN Notices, vol. 38 (11) (2003)

13. Gil, J., Itai, A.: The complexity of type analysis of object oriented programs. In:
Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 601–634. Springer, Heidelberg
(1998)

14. Gil, J., Maman, I.: Micro patterns in Java code. In: Johnson and Gabriel [17], pp.
97–116

15. Hejlsberg, A., Wiltamuth, S., Golde, P.: The C# Programming Language, 2nd edn.
Addison-Wesley, Reading (2003)

16. ISE. ISE EIFFEL The Language Reference. ISE, Santa Barbara, CA (1997)

17. Johnson, R., Gabriel, R.P.: Proc. of the 20th Ann. Conf. on OO Prog. Sys., Lang.,
& Appl (OOPSLA 2005), San Diego, California. ACM SIGPLAN Notices (2005)

18. Kniesel, G., Theisen, D.: JAC access right based encapsulation for Java. Softw.
Pract. Exper. 31(6), 555–576 (2001)

19. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering
Notes 31(3), 1–38 (2006)

20. Male, C., Pearce, D.J.: Non–null type inference with type aliasing for java. Tech-
nical report, Computer Science, Victoria University of Wellington, NZ (August
2007)

21. Melton, H., Tempero, E.: Static members and cycles in Java software. In: Inter-
national Symposium on Empirical Software Engineering and Measurement, pp.
136–145 (2007)

22. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

23. Noble, J., Lea, D.: Editorial: Aliasing in object-oriented systems. Soft. Practice &
Experience 31(6), 505 (2001)

24. Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., Mi-
haylov, N., Schinz, M., Stenman, E., Zenger, M.: An overview of the Scala pro-
gramming language. Technical Report IC/2004/64, EPFL Lausanne, Switzerland
(2004)

25. Stallman, R.M.: Using the GNU Compiler Collection (GCC): GCC Version 4.1.0.
Free Software Foundation (2005)

26. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley, Read-
ing (1997)

27. Tarr, P.L., Cook, W.R. (eds.): Proc. of the 21st Ann. Conf. on OO Prog. Sys.,
Lang., & Appl. (OOPSLA 2006), Portland, Oregon, October 22-26. ACM SIG-
PLAN Notices (2006)

28. Tschantz, M.S., Ernst, M.D.: Javari: Adding reference immutability to Java. In:
Johnson and Gabriel [17]

29. Wrigstad, T.: Ownership-Based Alias Managemant. PhD thesis, KTH, Computer
and Systems Sciences (May 2006)

30. Zibin, Y., Potanin, A., Ali, M., Artzi, S., Kieżun, A., Ernst, M.D.: Object and
reference immutability using Java generics. In: ESEC/FSE 2007: Proceedings of
the 11th European Software Engineering Conference and the 15th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, Dubrovnik, Croa-
tia, September 5–7 (2007)

Are We Ready for a Safer Construction Environment? 519

12


	Are We Ready for a Safer Construction Environment?
	Introduction
	The Static vs. the Dynamic Binding Semantics within Constructors
	Hardhat Constructors and Destructors
	This Research

	The Software Corpus
	Polymorphic Constructors
	Definitions
	Method
	Findings
	Summary

	Patterns of Polymorphic Behavior in Constructors
	Polymorphic Solutions Patterns

	Immodest Constructors
	Definitions
	Method
	Findings

	Conclusions and Further Research
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




