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Abstract. The primary goal of exception mechanisms is to help ensure
that when an operation fails, code that depends on the operation’s suc-
cessful completion is not executed (a property we call dependency safety).
However, the exception mechanisms of current mainstream programming
languages make it hard to achieve dependency safety, in particular when
objects manipulated inside a try block outlive the try block.

Many programming languages, mechanisms and paradigms have been
proposed that address this issue. However, they all depart significantly
from current practice. In this paper, we propose a language mechanism
called failboxes. When applied correctly, failboxes have no significant im-
pact on the structure, the semantics, or the performance of the program,
other than to eliminate the executions that violate dependency safety.

Specifically, programmers may create failboxes dynamically and exe-
cute blocks of code in them. Once any such block fails, all subsequent
attempts to execute code in the failbox will fail. To achieve dependency
safety, programmers simply need to ensure that if an operation B de-
pends on an operation A, then A and B are executed in the same failbox.
Furthermore, failboxes help fix the unsafe interaction between locks and
exceptions and they enable safe cancellation and robust resource cleanup.
Finally, the Fail Fast mechanism prevents liveness issues when a thread
is waiting on a failed thread.

We give a formal syntax and semantics of the new constructs, and
prove dependency safety. Furthermore, to show that the new constructs
are easy to reason about, we propose proof rules in separation logic. The
theory has been machine-checked.

1 Introduction

If a program is seen as a state machine, a programmer’s job may be seen as
writing code to deal with each of the states that the program may reach. How-
ever, programmer time is limited and some states are less likely to occur during
production than others. Therefore, in many projects it is useful to designate
the most unlikely states as failure states and to deal with all failure states in a
uniform way, while writing specific code only for non-failure (or normal) states.

An extreme form of this approach is to simply ignore failure states and not care
what the program does when it reaches a failure state (i.e., when it fails). This
� We used the term subsystems in preliminary work.
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is often what happens when subroutines indicate failure conditions as special
return values, and programmers have no time to write code at call sites to check
for them.

A major problem with this approach is that it is unsafe: a failure may lead to
the violation of any and all of the program’s intended safety properties. Specifi-
cally, the approach violates dependency safety, the property which says that when
an operation fails, code that depends on the operation’s successful completion
is not executed.

To fix this, modern programming languages offer constructs that make it easy
for programmers to indicate that a state is a failure state, and deal with failure
states by terminating the program by default. The underlying assumption is that
termination is always safe. For example, in Java, a failure state is indicated by
throwing an unchecked exception. We will focus on the Java language in this
paper; the related work section discusses other languages.

Whereas by default, when a program throws an exception it terminates im-
mediately, the programmer can override this default through the use of try-catch
statements and try-finally statements. Furthermore, in a multithreaded program,
when a thread’s main method completes abruptly (i.e., an exception was thrown
and not caught during its execution), only that thread, not the entire program,
is terminated. Also, when a synchronized block’s body completes abruptly, the
lock is released before the exception is propagated further.

These deviations from strict termination behavior are useful and are used for
two reasons. Firstly, not all exceptions indicate failure. Sometimes, programmers
throw and catch exceptions to implement the program’s functional behavior.
Typically, in Java, checked exceptions are used for this. Secondly, programmers
sometimes wish to increase the program’s robustness by not considering the
program to be a single unit of failure but rather by identifying multiple smaller
units of failure. Common examples are extensible programs, where poorly written
or malicious plugins (such as applets or servlets) should not affect the base
system; and command-processing applications (such as request-response-based
servers, GUI applications, or command-line shells) where a failure during the
processing of a command should simply cause an error response to be returned,
while continuing to process other commands normally.

However, by continuing to execute after a failure, the risk of safety violations
reappears. In particular, safety violations are likely if the code that fails leaves a
data structure in an inconsistent state and this data structure is then accessed
during execution of a finally block or after the exception is caught, or by another
thread. In other words, there is a safety risk if a try block manipulates an object
that outlives the try block. More generally, if we define dependency safety as
the property that if an operation fails, no code that depends on the operation’s
successful completion is executed, then dependency safety may be violated if
pieces of code outside a try block depend on particular pieces of code inside the
try block either not executing at all or executing to completion successfully. This
is the problem we address in this paper.
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To remedy this, we propose a language mechanism called failboxes. Program-
mers may create failboxes dynamically and execute blocks of code in them. Once
any such block fails, all subsequent attempts to execute code in the failbox will
fail. To achieve dependency safety, programmers simply need to ensure that if an
operation B depends on an operation A, then A and B are executed in the same
failbox. Furthermore, failboxes help fix the unsafe interaction between locks and
exceptions and they enable safe cancellation and robust resource cleanup. Fi-
nally, the Fail Fast mechanism prevents liveness issues in the presence of failure
in cooperating concurrent computations.

Failboxes are very lightweight: a failbox can be implemented as an object with
a boolean field indicating if the failbox has failed, and a parent pointer. Executing
a code block in a failbox essentially means that before and after executing the
block, the thread-local variable that designates the current failbox is updated,
and before a failbox is made current, it is checked that it has not failed.

We give a formal syntax and semantics of the new constructs, and prove
dependency safety. Furthermore, to show that the new constructs are easy to
reason about, we propose separation logic proof rules and prove their soundness.

The rest of the paper is structured as follows. In Section 2, we illustrate
the problem with an example and discuss existing approaches. In Section 3, we
introduce failboxes. We show additional aspects and benefits of the approach
for multithreaded programs in Section 4. Section 5 briefly discusses how the
approach enables safe cancellation and robust compensation. To show that it is
easy to reason about the new constructs, we propose separation logic proof rules
for the envisaged usage patterns in Section 6. We end the paper with sections
on implementation issues (Section 7), related work (Section 8), and a conclusion
(Section 9).

The theory of this paper has been machine-checked using the Coq proof as-
sistant [12].

2 Problem Statement

Consider the example program in Figure 1. It shows a program that continuously
receives commands and processes them. The code for processing commands is not
shown, except that it involves calls of compute and calls of addEntry on a Database
object db that is shared across all command executions. If the processing of a com-
mand fails, e.g. because it requires too much memory, the exception is caught, an
error message is shown to the user, and the next command is received.

This program is unsafe. Specifically, some executions of this program violate
the intended safety property that at the start of each loop iteration, object
db is consistent, i.e., satisfies the property that count is not greater than the
length of entries . In particular, consider an execution where method addEntry
is called in a state where entries is full. This means count equals entries .length.
As a result, after incrementing count , addEntry will attempt to allocate a new,
larger array. Now assume there is not enough memory for this new array and an
OutOfMemoryError occurs at location A. At this point, count is greater than the
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class Database {
int count ;
int[] entries := new int[10];
/* invariant: count ≤ entries.length */
void addEntry(int entry) {

count++;
if (count = entries .length + 1) {

int[] es := new int[count ∗ 2]; // *** A ***
System .arraycopy (entries , 0, es , 0, entries .length);
entries := es;

}
entries [count − 1] := entry ; // *** B ***

} . . . }
class Program {

public static void main(String [] args) {
Database db := new Database();
while (true)

/* invariant: db is consistent */
{

String cmd := readCommand();
try {

· · · compute(cmd); · · ·
· · · db.addEntry(· · ·); · · ·

} catch (Throwable e) { showErrorMessage(e); }
}} . . . }

Fig. 1. An unsafe program

length of entries and the Database object is inconsistent. Next, the exception is
caught in method main and the loop is continued, violating the safety property.

Note: In this case, the safety violation results in an ArrayIndexOutOfBounds-
Exception at location B in each subsequent call of addEntry ; however, in general,
safety violations might remain undetected and lead to data corruption, incorrect
results, or sending incorrect commands to hardware devices.
The following approaches exist to deal with this complication:

– Never catch unchecked exceptions. Never catching unchecked excep-
tions makes it easier to preserve safety properties, since the many implicit
control flow paths created by catching unchecked exceptions are avoided.
However, catching unchecked exceptions can be useful, as in the example.
Note also that try-finally blocks are equivalent to try-catch blocks that
catch unchecked exceptions; specifically, assuming S1 does not jump out of
the try block, a statement

try { S1 } finally { S2 }
is equivalent to

try { S1 } catch (Throwable t) { S2 throw t; } S2
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and is subject to the same complication: S2 might depend on the successful
completion of certain sub-computations within S1. Never catching unchecked
exceptions would imply never using try-finally blocks, or modifying their
semantics so that they ignore unchecked exceptions. The semantics of syn-
chronized blocks would need to be updated similarly.

– Always maintain consistency. It is often possible to ensure that objects
used across try-catch blocks, like the Database object in the example, are in a
consistent state at all times. Often it is sufficient to reorder assignments; e.g., in
the example, moving the count increment after the assignment to entries pre-
serves consistency. Another approach is to use a functional programming-like
approach, where a new object state is built up separately and then installed
into the object using a single assignment. In the example, method addEntry
would return a new Database object rather than updating the existing one.
Yet another approach is to use transaction-like technologies, such as software
transactional memory [19, 5]. However, these approaches either require the
programmer to perform non-trivial additional reasoning and/or programming
work, or impose a potentially significant performance overhead.

– Never fail during critical sections. It might be possible in some cases
to guarantee absence of failure at points where failure would violate safety.
This requires careful programming to avoid operations that might encounter
resource or implementation limitations, such as heap or stack memory al-
locations or operations on bounded integers, or to move these operations
out of the critical section. Furthermore, this might require virtual machine
support if the virtual machine may perform resource allocations implicitly.
For example, the .NET Framework’s JIT compiler may allocate memory at
any time to store a newly compiled piece of code. Therefore, starting with
version 2, the .NET Framework offers constructs to “prepare” a piece of
code that must execute without failure [21]. However, this approach imposes
a significant burden on the programmer.

– Ensure dependent code is not executed. In this approach, steps are
taken to ensure that if a computation fails with an unchecked exception,
then no computations that depend on the failed computation’s successful
completion ever get to run. There are at least two ways to achieve this:

• Use separate threads. In this approach, threads are adopted as the
units of failure. Within a thread, unchecked exceptions are never caught;
that is, an exception in the thread causes the entire thread to die. All
data structures are local to threads. Instead of running a block of code
in a try-catch block, it is run in a separate thread. During this time, the
original thread waits for the termination of the child thread; additionally,
the original thread may accept messages on a message queue. If the child
thread needs to perform an operation whose failure should cause the
parent thread to fail (such as an addEntry call on the Database object),
the child thread may perform a remote procedure call into the parent
thread via the parent thread’s message queue. This is more or less the
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approach used in operating systems, in the Erlang language [1], and in
the SCOOP multithreading approach for Eiffel [17].

• Guard dependent code manually. The programmer can manually
arrange to ensure that dependent code is not executed. For example, the
programmer could associate a boolean flag with each object used across
try-catch blocks that tracks whether the object is in a consistent state,
and check this flag before accessing the object [13]. If the flag is false, an
exception is thrown.

In this paper we present a new approach in the fourth category, which, like
the use of separate threads and manually guarding dependent code, supports
catching exceptions and does not require that consistency be maintained always
or that failures be avoided, but which has less programming and run-time over-
head than the use of separate threads and which has less programming overhead
than manually guarding dependent code.

3 Failboxes

In our approach, the language is extended with a notion of failboxes. Constructs
are added for creating a new failbox and for running a piece of code in a desig-
nated failbox. As soon as one such piece of code fails (i.e., completes abruptly
with an unchecked exception), any subsequent attempt to run code in the failbox
fails. To ensure dependency safety, the programmer simply needs to ensure that
if a computation B depends on a computation A, then A and B run in the same
failbox.

To facilitate composition of program modules, failboxes are ordered hierarchi-
cally. When creating a new failbox, a parent may be specified. If an exception
occurs in a failbox, both it and its transitive children are marked as failed.

3.1 Syntax and Semantics

The syntax of the new constructs is as follows:

s ::= . . .
| x := currentfb; | x := newfb; | x′ := newfb(x);
| enter (x) { s } catch { s′ }

where s ranges over statements, s ranges over sequences (i.e., sequential compo-
sitions) of statements, and x and x′ range over local variable names.

Note: For simplicity, we ignore checked exceptions and exception objects in
the formal developments.

A program state is a tuple of the form

(L, Σ, Φ, T )

where L, the lock map, is a partial function that contains a pair (o, t) if thread
t holds the lock of object o; Σ is a partial function that maps each allocated
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failbox to its parent failbox (and a root failbox to itself); Φ is the set of failed
failboxes ; and T is a partial function that maps each thread to its current state.
(We omit the heap since our constructs do not interact with it.)

A thread state is a tuple of the form

(f, V, s, b, F )

where f is the thread’s current failbox, V is a total function that maps each
variable name to a value, s, the continuation, is the sequence of statements to
be executed by the thread, b is the sequence of enclosing blocks, and F is the
sequence of enclosing activation records.

The syntax of an enclosing block is as follows:

b ::= enter (f) catch { s } s′ | synchronized (o); s

where an enclosing enter block records the failbox f that was current prior to
the enter statement (not the failbox that was entered), the catch block body
s, and the statements s′ that are to be executed after completion of the enter
statement; and an enclosing synchronized block records the object o whose lock
was acquired, and the statements s that are to be executed after completion of
the synchronized statement.

In the initial program state of a program with main method body s, the lock
map is empty, there is a single failbox f , whose parent is itself, no failbox is
marked as failed, and there is one thread t whose current failbox is f ; all of the
thread’s local variables are bound to null, and it has no enclosing blocks and no
enclosing activation records:

main s

initial (∅, {(f, f)}, ∅, {(t, (f, (λx.null), s, ε, ε))})
The statement x := currentfb; assigns the current failbox to variable x:

CurrentFB
(t, (f, V, x := currentfb; s, b, F )) ∈ T

(L, Σ, Φ, T ) → (L, Σ, Φ, T (t := (f, V (x := f), s, b, F )))

The statement x := newfb; creates a new root failbox and assigns it to x:

NewFB-Root
(t, (f, V, x := newfb; s, b, F )) ∈ T f ′ /∈ dom(Σ) Σ′ = Σ(f ′ := f ′)

(L, Σ, Φ, T ) → (L, Σ′, Φ, T (t := (f, V (x := f ′), s, b, F )))

If x is bound to a failbox f ′ and f ′ is not marked as failed, the statement
x′ := newfb(x); creates a new child failbox of f ′ and assigns it to x′:

NewFB-Child
(t, (f, V, x′ := newfb(x); s, b, F )) ∈ T

V (x) = f ′ f ′ /∈ Φ f ′′ /∈ dom(Σ) Σ′ = Σ(f ′′ := f ′)

(L, Σ, Φ, T ) → (L, Σ′, Φ, T (t := (f, V (x′ := f ′′), s, b, F )))
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If x is bound to a failbox f ′, and f ′ is not marked as failed, then statement
enter (x) { s′ } catch { s′′ } records the current failbox, the catch block body
s′, and the current continuation in a new enclosing block, makes f ′ the current
failbox, and starts executing the enter block body s′:

Enter
(t, (f, V, enter (x) { s′ } catch { s′′ } s, b, F )) ∈ T

V (x) = f ′ f ′ /∈ Φ b
′
= (enter (f) catch { s′′ } s) · b

(L, Σ, Φ, T ) → (L, Σ, Φ, T (t := (f ′, V, s′, b
′
, F )))

On normal completion of an enter block body, the former current failbox is
restored and the catch block is skipped, provided that the former current failbox
is not marked as failed:

Enter-Complete-Normal
(t, (f, V, ε, (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T f ′ /∈ Φ

(L, Σ, Φ, T ) → (L, Σ, Φ, T (t := (f ′, V, s′′, b, F )))

where ε denotes the empty sequence.
We model the occurrence of an exception as the replacement of the current

continuation with a throw statement. An exception can occur at any time; this
reflects the fact that in Java a virtual machine error can be thrown at any time
[10, §11.3.2].

Fail
(t, (f, V, s, b, F )) ∈ T s �= throw;

(L, Σ, Φ, T ) → (L, Σ, Φ, T (t := (f, V, throw; , b, F )))

If variable x is not bound to a failbox, or it is bound to a failbox but the failbox
is marked as failed, then both x′ := newfb(x); and enter (x) { s } catch { s′ }
throw an exception (of type FailboxException); this is covered by rule Fail.

On abrupt completion of an enter block body with an exception, the current
failbox and its descendants are marked as failed, the former current failbox is
restored, and the catch block is executed, provided the former current failbox is
not marked as failed:

Enter-Complete-Abrupt
(t, (f, V, throw; , (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T

Φ′ = Φ ∪ (Σ−1)∗(f) f ′ /∈ Φ′

(L, Σ, Φ, T ) → (L, Σ, Φ′, T (t := (f ′, V, s′ s′′, b, F )))

where (Σ−1)∗(f) denotes the set of f ’s descendants, including f itself.
On normal completion of an enter block body, if the former current fail-

box is marked as failed, it is restored but the catch block is skipped and a
FailboxException exception is thrown:

Enter-Complete-Normal-Fail
(t, (f, V, ε, (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T f ′ ∈ Φ

(L, Σ, Φ, T ) → (L, Σ, Φ, T (t := (f ′, V, throw; , b, F )))
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On abrupt completion of an enter block body with an exception, if after
marking the current failbox as failed, the former current failbox is marked as
failed, the former current failbox is restored but the catch block is skipped and
a FailboxException exception is thrown:

Enter-Complete-Abrupt-Fail
(t, (f, V, throw; , (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T

Φ′ = Φ ∪ (Σ−1)∗(f) f ′ ∈ Φ′

(L, Σ, Φ, T ) → (L, Σ, Φ′, T (t := (f ′, V, throw; , b, F )))

3.2 Syntactic Sugar

We remove try-catch statements and try-finally statements from the language
as separate statements. Instead, we define them as syntactic sugar over the new
constructs. Specifically, the statement

try { s } catch { s′ }

is defined as

x := currentfb; x′ := newfb(x); enter (x′) { s } catch { s′ }

where x and x′ are fresh. That is, a try-catch statement executes the try block
in a new child failbox of the current failbox.

The statement
try { s } finally { s′ }

is defined as
try { s } catch { s′ throw; } s′

This means that a try-finally statement executes its try block in a new child
failbox of the current failbox.

Furthermore, we define the following shorthands:

enter (x) { s } ≡ enter (x) { s } catch { throw; }
reenter (x) { s } ≡ enter (x) { s } catch {}

In words, an enter statement propagates exceptions, and a reenter statement
does not. Note: in real implementations, a reenter statement would not cause
exception information to be lost, since the exception object would be associated
with the failbox at the time the failbox is marked as failed, and an API would
be provided to retrieve the stored exception object of a failed failbox.

3.3 Terminology

We use the following terminology: We say that an event in a thread t occurs in a
failbox f or a statement is executed (or executes) in f if the event occurs or the
statement execution starts at a time when f is the current failbox of t. We say that
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a failure occurs in t when an unchecked exception is thrown (i.e., the continuation
of t is a throw statement). We say that a statement execution fails if it completes
abruptly because of an unchecked exception. We say that a failbox f fails when
a failure occurs in f . We say that an execution step enters a failbox f if f is the
current failbox after the step and was not the current failbox before the step. Sim-
ilarly, we say that an execution step leaves a failbox f if is not the current failbox
after the step and was the current failbox before the step.

3.4 Example

The approach is illustrated and motivated by the example in Figure 2. (Note:
In the examples we use a more conventional syntax.) It shows how the unsafe
program of Figure 1 can be made safe using failboxes. A failbox f is created and
then both the main loop and calls of addEntry are executed in f . This ensures
that if a call of addEntry fails, the main loop terminates.

root child

Failbox

class Program {
public static void main(String [] args) {

Failbox f := Failbox .getCurrent();
Database db := new Database();
while (true)

/* invariant: db is consistent */
{

String cmd := readCommand();
try {

· · · compute(cmd); · · ·
enter (f) {

db.addEntry(· · ·);
}
· · ·

} catch (Throwable e) {
showErrorMessage(e);

}
}

}
. . .

}

Fig. 2. The example of Figure 1, fixed using failboxes. When an addEntry call fails,
failbox f is marked as failed. When control subsequently exits the try block, this is
considered an attempt to enter f ; therefore, a FailboxException is thrown. As a result,
the catch block is skipped, the loop is exited, and the program terminates safely. The
sequence diagram shows the failbox transitions.
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The example motivates why on entry to a try block, the failbox in which the
try-catch statement executes is no longer considered the current failbox. This
ensures that failures in method compute are properly caught by the try-catch
statement, and do not cause the program to terminate.

4 Multithreading

4.1 Synchronized Statements: Safety Issues

One common way that the strict termination approach of dealing with failures is
overridden, is through the use of synchronized blocks. A synchronized (o) S
block in Java acquires the lock of object o, executes statement S, and then
releases the lock of o, even if S failed. This helps prevent deadlocks, but it
creates a safety risk. In particular, if a failure occurs while o is inconsistent, the
commonly intended safety property that shared objects whose lock is not held
are consistent, is violated.

The problem is illustrated by the example program in Figure 3. It is a multi-
threaded version of the original example in Figure 1. Rather than processing each
command before receiving the next command, the program receives a command,
spawns a thread to process it, and immediately receives the next command. The
Database object is shared by all command processing threads; accesses to the
object are synchronized using a synchronized block.

class Program {
public static void main(String [] args) {

final Database db := new Database();
while (true) {

final String cmd := readCommand();
new Thread() {

public void run() {
try {

· · · compute(cmd); · · ·
· · · synchronized (db) { db.addEntry(· · ·); } · · ·

} catch (Throwable e) { showErrorMessage(e); }
}

}.start();
}

}
. . .

}

Fig. 3. An unsafe program. A failure in compute is handled correctly, but if a failure
occurs in method addEntry while the Database object is inconsistent, the object’s lock
is released, causing threads that subsequently acquire the lock to see the object in an
unexpected state, violating safety.
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This program is unsafe. In particular, in some executions, the intended safety
property that whenever a shared object’s lock is not held by any thread, the ob-
ject is consistent, is violated. This property is relied on to guarantee that method
addEntry is called only on objects that are consistent. Specifically, suppose a fail-
ure occurs in method addEntry while the Database object is inconsistent. This
causes the lock to be released. Subsequent command processing threads that
acquire the lock will then see the Database object in an inconsistent state.

4.2 Failboxes Approach for Safe Synchronized Statements

Failboxes can be used to write safe lock-based multithreaded programs, by asso-
ciating each shared object with a failbox and running the code that accesses a
shared object within the associated failbox. This way, when a failure occurs, the
failbox is marked as failed, so that when another thread subsequently attempts
to enter the failbox in order to access the object, an exception is thrown and the
thread is prevented from seeing inconsistent state. The modified safety property
is that whenever no thread holds a shared object’s lock, either the object is
consistent or its associated failbox is marked as failed.

The approach is illustrated in Figure 4. It is the example of Figure 3, made
safe using failboxes. Specifically, the example uses an enter statement to execute
the addEntry calls in the main thread’s root failbox. When an addEntry call fails,
this failbox is marked as failed before the lock is released. When another thread

class Program {
public static void main(String [] args) {

final Failbox f := Failbox .getCurrent ();
final Database db := new Database();
while (true) {

final String cmd := readCommand();
new Thread() {

public void run() {
try {

· · · compute(cmd); · · ·
· · · synchronized (db) { enter (f) { db.addEntry(· · ·); } } · · ·

} catch (Throwable e) { showErrorMessage(e); }
}

}.startInCurrentFailbox ();
}

}
. . .

}

Fig. 4. The example of Figure 3, made safe using failboxes. If a call of addEntry fails,
failbox f is marked as failed and subsequent attempts by other threads to enter the
failbox will fail. Furthermore, by the Fail Fast feature, a stop f signal is sent to all
threads running in the failed failbox f or a descendant of f . In the example, this means
the program terminates.
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subsequently acquires the lock and attempts to enter the failbox, an exception
is thrown, so that the thread is prevented from unsafely calling addEntry .

4.3 Multithreaded Failboxes

In a multithreaded program, it is possible for computations in multiple threads
to be executing in the same failbox f concurrently. If this happens, we say
f is multithreaded. The question then arises as to what happens when one
of these computations fails. There are two distinct concerns involved in this
matter: preserving the program’s intended safety properties, and ensuring useful
progress.

4.4 Multithreaded Failboxes: Safety

In a well-written program, a failure in one thread should not have safety im-
plications for operations executing concurrently in other threads. Specifically,
in a data-race-free program, where the program synchronizes accesses to shared
memory using the language’s synchronization constructs, an operation can see
the data that was being manipulated by a computation that failed only if the
operation is not concurrent with the failure, i.e., the operation was synchronized
with the failed computation. (Formally, the failure happens-before the operation.)
Therefore, to ensure safety, it is sufficient that synchronization constructs per-
form the necessary failboxes bookkeeping to ensure that if a failure happens in
a failbox, no operation that is ordered after this failure through synchronization
runs in this failbox. To achieve this, we specify the semantics of synchronized
statements with respect to failboxes as follows: after acquiring the lock, the
statement checks that the current failbox has not failed; otherwise, it throws a
FailboxException . Furthermore, before releasing the lock, if the body completed
abruptly with an exception, the current failbox is marked as failed. The step
rules are shown in Figure 5.

4.5 Properties

We are now ready to state and sketch the proof of the main properties of the
failboxes approach.

We first define some terms. An execution is a finite or countably infinite
sequence of program states. An execution point is a nonnegative integer that
serves as an index into an execution. A thread execution point (k, t) is a pair of
an execution point k and a thread identifier t.

Definition 1 (Happens-Before). The happens-before relation hbE→ on thread
execution points of an execution E = C0, C1, . . . is the smallest transitive relation
that satisfies the following properties:

– Any thread execution point of a thread t happens-before any subsequent thread
execution point of t

k1 < k2 ⇒ (k1, t)
hbE→ (k2, t)
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Synchronized
(t, (f, V, synchronized (x) { s′ } s, b, F )) ∈ T

V (x) = o o /∈ dom(L) f /∈ Φ b
′
= (synchronized (o); s) · b

(L, Σ, Φ, T )
t:acq(o)→ (L(o := t), Σ, Φ, T (t := (f, V, s′, b

′
, F )))

Synchronized-Reentrant
(t, (f, V, synchronized (x) { s′ } s, b, F )) ∈ T V (x) = o (o, t) ∈ L

(L, Σ, Φ, T ) → (L, Σ, Φ, T (t := (f, V, s′ s, b, F )))

Synchronized-Complete-Normal
(t, (f, V, ε, (synchronized (o); s) · b, F )) ∈ T

(L, Σ, Φ, T )
t:rel(o)→ (L \ {(o, t)}, Σ, Φ, T (t := (f, V, s, b, F )))

Synchronized-Complete-Abrupt
(t, (f, V, throw; , (synchronized (o); s) · b, F )) ∈ T

Φ′ = Φ ∪ (Σ−1)∗(f) T ′ = T (t := (f, V, throw; , b, F ))

(L, Σ, Φ, T )
t:rel(o)→ (L \ {(o, t)}, Σ, Φ′, T ′)

Fig. 5. Step rules for synchronized statements

– If execution step k1 is a release of some lock o by some thread t1, and sub-
sequent execution step k2 is an acquire of o by some thread t2, then (k1, t1)
happens-before (k2 + 1, t2)

Ck1

t1:rel(o)→ Ck1+1 ⇒ Ck2

t2:acq(o)→ Ck2+1 ⇒ k1 < k2 ⇒ (k1, t1)
hbE→ (k2 + 1, t2)

– If at execution step k thread t starts a new thread t′ (see Figure 6), then
(k, t) happens-before (k + 1, t′)

Ck
t:fork(t′)→ Ck+1 ⇒ (k, t) hbE→ (k + 1, t′)

The Main Lemma states that once an exception occurs in a failbox, no code
executes in that failbox “afterwards”.

Lemma 1 (Main Lemma). Consider an execution E of a program π of the
extended language, and consider two thread execution points (k1, t1) and (k2, t2)
in E, such that (k1, t1) happens-before (k2, t2). If t1 is executing in some failbox
f1 in state k1, and t2 is executing in some descendant f2 of f1 in state k2, then
if t1 is failing in state k1, then t2 is failing in state k2.

exec(π, E) ⇒ (k1, t1)
hbE→ (k2, t2) ⇒

Ck1 = (L1, Σ1, Φ1, T1) ⇒ T1(t1) = (f1, V1, throw; , b1, F 1) ⇒
Ck2 = (L2, Σ2, Φ2, T2) ⇒ T2(t2) = (f2, V2, s2, b2, F 2) ⇒

f2 ∈ (Σ−1
2 )∗(f1) ⇒ s2 = throw;
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Proof. It suffices to prove for every prefix of some path from (k1, t1) to (k2, t2)
in the happens-before graph, that at the thread execution point (k3, t3) at the
end of the prefix, one or more of the following hold:

– the thread is failing and the current failbox is f1

– failbox f1 and its descendants have been marked as failed and one or more
of the following hold:
• the current failbox is not f1 or a descendant of f1, or
• the thread is failing.

This can be proved easily by induction on the length of the prefix and case
analysis on the last edge.

Now consider an execution E of a program π and a dependency relation D on
the thread execution points of E. We say E uses failboxes correctly with respect
to D, if whenever thread execution point p2 depends on thread execution point
p1, the current failbox at p2 is a descendant of the current failbox at p1. We
say E is dependency-safe with respect to D if whenever p2 depends on p1, and
p1 happens-before p2, and p1 is failing, then p2 is failing. We then have the
Soundness Theorem: if E uses failboxes correctly with respect to D, then E is
dependency-safe with respect to D. This follows directly from the Main Lemma.

A machine-checked proof of these properties is available online [12].

4.6 Multithreaded Failboxes: Ensuring Useful Progress

Even if a computation is safe, it might not be contributing to the useful work of
the application. Specifically, if multiple computations are running in the same fail-
box, then this is taken to mean that they depend on each other for useful progress.
As a result, if one of them fails, there is no point for the others to continue, so
they should be stopped to free up CPU cycles, memory, and other resources these
computations may be using. Therefore, in our approach, at the time a failbox f is
marked as failed, a stop f signal is sent to all threads currently running in f or a
descendant of f . When the signal arrives, this results in a FailboxException being
thrown in the target thread, provided it is still running in f or a descendant. To
allow efficient implementations, we do not impose timing constraints on the deliv-
ery of the signal, except that it must arrive eventually. We call this mechanism the
Fail Fast mechanism (after the Fail Fast principle [20]).

The usefulness of the Fail Fast mechanism is illustrated by the example in Fig-
ure 4. Once failbox f has failed, all subsequent attempts to access the database
fail. Assuming most commands access the database, this means the program’s
functionality is severely degraded. Therefore, it seems appropriate to escalate
the failure and terminate the program. This typically signals a system adminis-
trator or service management daemon to restart the program in a clean state,
hopefully restoring full service. In the example, this behavior is achieved by run-
ning not just the addEntry calls, but the main loop as well, in failbox f . When
an addEntry call fails, an asynchronous exception is thrown in the main thread,
which causes the loop to terminate.
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Fork
(t, (f, V, fork { s′ } s, b, F )) ∈ T

t′ /∈ dom(T ) T ′ = T (t := (f, V, s, b, F ), t′ := (f, V, s′, ε, ε))

(L, Σ, Φ, T )
t:fork(t′)→ (L, Σ, Φ′, T ′)

Thread-Complete-Abrupt
(t, (f, V, throw; , ε, ε)) ∈ T f /∈ Φ Φ′ = Φ ∪ (Σ−1)∗(f)

(L, Σ, Φ, T ) → (L, Σ, Φ′, T )

fork∗ { s } ≡ fork { x := newfb; reenter (x) { s } } where x is fresh

Fig. 6. Step rules for thread creation

In fact, since the existing command processing threads are unlikely to be able
to run to completion successfully, it makes sense to terminate these as well. This is
achieved in the example by running the command processing threads in failbox f
as well, by using method startInCurrentFailbox (added by our language extension)
instead of start to start these threads. (To ensure backward compatibility, method
start starts the new thread in a newly created root failbox, so that failure of the
new thread does not cause a stop signal to be sent to the original thread.)

In the example, the failbox hierarchy is as follows. Failbox f , a root failbox, has
one child for each try block execution. This ensures, as before, that exceptions
in method compute do not cause the program to terminate.

The step rules for thread creation are shown in Figure 6. In the formal
language, statement fork corresponds with method startInCurrentFailbox , and
fork∗ corresponds with method start .

4.7 Wait Dependency Safety

A sub-concern of the concern of ensuring useful progress is the concern of en-
suring progress. Specifically, one of the correctness properties that are difficult
to achieve in the presence of unchecked exceptions is wait dependency safety,
the property that if, in a given program execution, a wait operation W depends
on a computation A, then, assuming that W terminates if A does not fail, W
terminates. Analogously to the dependency relation used in the definition of de-
pendency safety, the wait dependency relation used here is an application-specific
relation; the intention is that if a wait operation W depends on a computation
A, this means that, abstractly speaking, W waits for a signal to be sent by A. In
Java, a typical example of this is when W is an Object .wait call on some object
o and A at some point performs an Object .notifyAll call on o.

Failboxes can be used to achieve wait dependency safety. We say that a
program uses failboxes correctly for the purpose of wait dependency safety if
whenever in a given program execution, a wait operation W depends on a com-
putation A, then A runs in a failbox f and W runs in a descendant of f . We
then have the property that if a program uses failboxes correctly for the purpose
of wait dependency safety, then the program is wait-dependency-safe. Indeed, if
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A fails, a stop signal is sent to the thread that is running W . As a result, when
the signal arrives, either W has already terminated, or W is terminated by the
FailboxException thrown by the Fail Fast mechanism. We call this property the
soundness of the Fail Fast mechanism.

A machine-checked proof of this property is available online [12].

5 Cancellation and Compensation

We propose the use of failboxes in programs to make them safe for failures. How-
ever, it turns out that if failboxes are applied correctly in a program, then this also
enables safe cancellation of computations, with no extra effort, and without the
need for polling, through the Fail Fast mechanism. In order to enable cancellation
of a computation, the program runs it in a dedicated failbox; to cancel the compu-
tation, it calls the Failbox object’s cancel method, which simulates the occurrence
of a failure in the failbox and triggers the Fail Fast mechanism. This achieves the
convenience of the deprecated Thread .stop approach, without the safety risk.

Consider for example the program of Figure 4. The main loop repeatedly
receives a command and starts a command thread to process it. The processing is
done inside a try-catch statement, and therefore in a per-command child failbox
of the root failbox. This program could be extended to enable cancellation of
commands as follows. In order to cancel a command, the program calls the
command failbox’s cancel method. If the command thread is executing in the
command failbox, it is stopped; however, if it is executing inside the database,
it is allowed to continue to execute until it leaves the root failbox and re-enters
the command failbox, at which point an exception is thrown. Contrast this with
calling stop on the command thread, which would stop the thread even if it was
running in the database, causing the entire program to fail.

The failboxes mechanism also enables safe compensation. By compensation, we
refer to the scenario where a client computation invokes a service offered by a
provider computation, which changes the provider’s state. This imposes the obli-
gation on the client to invokea compensating service to restore the provider’s state,
after the client is done using the service. The conventional approach to compensa-
tion is through try-finally statements. However, an unchecked exception can cause
the compensation action to be skipped, if the exception occurs after the action that
is to be compensated, but before the try block is entered, or if it occurs after the
finally block is entered, but before the compensation action completes.

This may be addressed using the failboxes mechanism by performing the fol-
lowing transformation:

init();
try {

// Use the service
} finally {

compensate();
}

⇒

enter (provider ) {
init();
reenter (client) {

// Use the service
}
compensate();

}
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Before invoking the service, the thread running the client computation enters
the provider’s failbox. After the service is invoked, it re-enters the client failbox
using a nested reenter statement where the client uses the service. When the
client is done using the service, it leaves the nested enter statement, causing
the thread to re-enter the provider failbox, perform the compensating action,
and finally leave the outer enter statement, re-entering the client failbox. This
approach guarantees that either the compensation occurs or the provider failbox
is marked as failed. If an exception occurs while the client uses the service, the
client failbox is marked as failed, but the exception is not propagated by the
reenter statement. This ensures that compensation is not skipped. When the
thread leaves the outer enter statement, it enters the client failbox, which was
marked as failed, and therefore the exception is propagated from that point, as
in the case of the try-finally statement.

6 Proof Rules

To show that it is easy to reason about programs that use failboxes, in this
section we propose separation logic proof rules for the main envisaged usage
patterns.

Recall the semantics of separation logic assertions: emp describes the empty
heap, and the separate conjunction P ∗Q describes a heap that can be split into
one that satisfies P and one that satisfies Q:

s, h � emp ⇔ h = ∅ s, h � P ∗Q ⇔ ∃h1, h2 •h = h1�h2∧s, h1 � P ∧s, h2 � Q

We extend the syntax of correctness judgments (but not the syntax of asser-
tions) to be failboxes-aware. Specifically,

Σ; f  {P} s {Q}

denotes the correctness of statement list s under commitment list Σ, current
failbox f , precondition P , and postcondition Q. The syntax of commitment lists
is as follows:

Σ ::= ε | Σ, f : P

We say that assertion P is committed to failbox f . Informally, this means that
to access the resources of P , f must first be entered. Failboxes are denoted using
logical variables.

The above correctness judgment implies the following validity statement:

�Σ� ∗ P ⇒ valid(s, �Σ� ∗ Q, �Σ� ∗ true)

(under the assumption that s does not assign to any variables that Σ depends
on) where Σ is here interpreted as a separation logic assertion as follows:

�ε� ≡ emp �Σ, f : P � ≡ �Σ� ∗ (f ∈ Φ ∨ P )
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i.e., for each commitment f : P , either P holds (and is owned by the current
thread) or f has failed. valid(s, Q, R) is true under a given heap, failed set, and
variable environment, if after executing s in this state, upon normal completion
Q holds and upon abrupt completion R holds.

A throw statement always satisfies partial correctness.

C-Throw

Σ; f  {P} throw; {Q}

For verifying a try-catch statement, the heap is split into two parts: part Pf

is accessed by the try block only inside enter (f) statements, and part P is
accessed freely. The second premise of the rule ensures soundness for normal
completion of the try block. The third is for the case where the try block fails.

C-TryCatch
∀f ′ • Σ, f : Pf ; f ′  {P} s {Q} Pf ∗ Q ⇒ Q′ Σ; f  {Pf} s′ {Q′}

Σ; f  {Pf ∗ P} try { s } catch { s′ } {Q′}

(under the assumption that Pf does not depend on any variables that s assigns
to).

An enter block can access the piece of heap associated with the failbox being
entered.

C-Enter
Σ; f  {P ∗ Pf} s {Q ∗ Pf}

Σ, f : Pf ; f ′  {P ∧ x = f} enter (x) s {Q}

The compensation pattern can be verified as follows.

C-Compensation
Σ; f  {P ∗ Pf} s1 {Q1 ∗ P ′

f ∧ y = f ′}
Σ, f : P ′

f ; f
′  {Q1} s2 {Q} Σ; f  {P ′

f } s3 {Pf}
Σ, f : Pf ; f ′ 
{P ∧ x = f} enter (x) { s1 reenter (y) { s2 } s3 } {Q}

(under the assumption that P ′
f does not care about any variables that s2 assigns

to). The compensation pattern allows the commitment f : Pf to be replaced
temporarily with the commitment f : P ′

f .
A machine-checked soundness proof of these proof rules is available online

[12].
We developed a prototype verifier based on these ideas [12].

7 Implementation Issues

We created a prototype implementation of the approach on the .NET Framework
as a C# 3.0 library. C# 3.0’s lambda expression syntax can be used to write
reasonably concise enter statements.
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A major complication for achieving a fully correct implementation of the
approach in the form of a library, is the fact that the .NET Framework Common
Language Runtime may throw an exception at any program point, due to an
internal resource limit being reached or an internal error being discovered within
the execution engine [21]. (The same holds for the Java Virtual Machine. See
the Java Virtual Machine Specification, Second Edition [14], Section 2.16.2.)
Specifically, if an enter block completes abruptly with an exception, no internal
exception must intervene between catching the exception and marking the failbox
as failed; otherwise, the enter statement completes without marking the failbox
as failed, breaking dependency safety.

Version 2.0 of the .NET Framework introduced constructs specifically for writ-
ing code that must execute reliably in the presence of internal exceptions [21].
We used these constructs in our prototype implementation to ensure that on
abrupt completion of the body of an enter statement, the failbox and its descen-
dants are marked as failed and stop signals are sent to other threads executing
in the failbox or its descendants. Specifically, we used the following API:

ExecuteCodeWithGuaranteedCleanup(t, c, u)

where t and c are delegates (similar to function pointers in C) and u is arbitrary
user data that is passed to t and c. The API first executes t. When t completes,
either normally or abruptly, the cleanup delegate c is executed. The API guar-
antees that no internal exceptions occur during the execution of c, provided that
c satisfies certain constraints, such as: no heap memory allocation, and no un-
bounded call stack memory allocation. Unfortunately, these constraints have not
been spelled out very precisely anywhere; we had to make some assumptions as
to what can reasonably be executed without the risk of internal exceptions.

We have performed a few microbenchmark performance tests. These indicate
the following approximate timings for the following statements:

Statement Timing Timing∗

try {} catch {} 13µs 1.9µs
try { enter (f) {} } catch {} 23µs 3.4µs

To measure the impact of the ExecuteCodeWithGuaranteedCleanup construct,
we replaced it with a dummy that uses a simple try-finally statement. The re-
sulting timings are shown in the third column. It turns out that the overhead of
this construct dominates the run time.

Even though the current performance is probably acceptable for most real-
world applications, we believe it can still be improved significantly, in particular
if the constructs are implemented directly in the virtual machine rather than as
a library. Performing such an implementation is future work.

We have also prepared a prototype implementation of failboxes as a library on
the Java virtual machine. However, due to the absence of constructs to prevent
internal or asynchronous exceptions on this platform, the implementation is not
safe in the presence of such exceptions.

The prototype implementations are available on line [12].



490 B. Jacobs and F. Piessens

8 Related Work

To the best of our knowledge, failboxes are the first approach for programmers
to achieve dependency safety of their Java-like programs that combines low pro-
gramming overhead, low performance overhead, and low reasoning overhead, and
is compositional (i.e. failboxes can be nested arbitrarily).

Languages as operating systems. Many extensions of Java have been proposed that
support running multiple programs or tasks in the same virtual machine. These can
typically be used to enforce dependency safety. However, in contrast to failboxes,
all of these have goals beyond dependency safety, typically including protection
againstmalicious code, and accounting of memory and other resources.As a result,
they impose greater programming and performance overhead on communication
between tasks than the overhead of switching between failboxes.

Perhaps the most closely related such system is Luna [11]. To support memory
accounting and immediate guaranteed memory reclamation when a task is killed,
the heap is logically partitioned among the tasks; the onlyway for one task to access
an object belonging to another task is through a remote pointer, which is distin-
guished from local pointers through its type. When a task is killed, remote pointers
pointing into it are revoked, so that if the task was holding a lock, other tasks do
not see inconsistent state. Failboxes offer no memory accounting or guaranteed
memory reclamation, but in turn impose a lower programming and performance
overhead. Specifically, passing data across tasks requires either copying or the use
of remote pointers, both of which incur a programming and performance overhead;
failboxes, in contrast, allow data to be passed around freely.

DrScheme [8, 7] is a Scheme environment designed for programs that serve as
platforms for other programs. In DrScheme, it is possible for two child programs
to share a mutable data structure and yet be killed independently. The solution
is to host the data structure in a separate thread, and to access it only via
message passing with this thread. DrScheme’s contribution is that it enables
two untrusted child programs to set up such a shared data structure without
circumventing resource policies and without the need for the shared structure
to be trusted by the kernel. However, from a dependency safety point of view,
the situation is as in Java: DrScheme requires either the use of message passing
between separate threads or manually guarding dependent code.

Erlang [1] is a language focused on reliability. Inconsistent data structures
within a process are ruled out because the language has no destructive up-
date. Processes communicate through asynchronous message passing. Fail-fast
is achieved by linking processes: when a process dies, an exit signal is sent to
linked processes, causing those to die as well by default.

Non-compositional approaches. Marlow et al. [16] propose an extension of con-
current Haskell with constructs that make it possible to write safe programs
where one thread throws an asynchronous exception in another thread. The
block e construct disables asynchronous exceptions during execution of e; e can
use unblock e′ to re-enable them during execution of a sub-expression e′. Unlike
failboxes, the block construct is not compositional; for example, in the program
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of Figure 4, the addEntry call could be protected against cancellation of jobs us-
ing block; however, imagine the command processing program is part of a larger
system. Then one may want to cancel the program as a whole, including any
addEntry calls. This is possible with failboxes (by cancelling failbox f , which
cancels its descendants as well), but not with the block construct. Also, the con-
struct does not help in dealing with failures; for example, a failure during the
addEntry call would not prevent further accesses to the database. However, the
block construct, or something similar, is useful and even necessary to be able to
robustly implement failboxes as a library in a given language.

Starting with version 2, the .NET Framework includes reliability features that
make it possible to write cleanup routines that are guaranteed to execute even
in the presence of failure or cancellation [21]. However, like the block construct,
the approach is not compositional: these cleanup routines cannot be cancelled;
furthermore, they must be carefully coded to rule out failures within the cleanup
routines themselves since those are not dealt with safely. The mechanism is
intended only for manipulation of execution environment resources; it is not for
general application use.

Three further reliability-related features in .NET Framework version 2 are
the following. Firstly, cancellation is disabled during finally blocks. This en-
ables safe cleanup in the presence of cancellation (but not failure). Secondly,
an unhandled exception in one thread kills all other threads, without executing
catch or finally blocks. However, in the thread that throws the unhandled ex-
ception, finally blocks are executed normally and locks are released, leaving a
time window between the release of the lock and the time the exception reaches
the toplevel (possibly after executing other finally blocks) where other threads
can see inconsistent state. Thirdly, a method Environment .FailFast was added,
which terminates the program immediately.

Rudys et al. [18] propose weaving code into an untrusted plugin (such as an
applet) that polls a cancellation request flag to enable forcibly cancelling the
plugin. The flag is also checked whenever the host system calls into the plugin.
In our approach, a thread running in one failbox may protect itself from cancel-
lation of its failbox by entering an ancestor failbox to which it has a reference;
however, separate techniques (e.g., perhaps by associating permissions with fail-
boxes) could be used to prevent this in case the thread is running untrusted
code.

The SCOOP multithreading approach for Eiffel [17] has a notion of subsys-
tems. A subsystem in SCOOP is a thread and a set of objects handled by that
thread. Brooke and Paige [3] suggest marking an object as “dead” when the
processing of an asynchronous incoming call fails, causing subsequent calls to
fail immediately. SCOOP subsystems cannot be nested.

Other related work. Garcia et al. [9] provide a survey of exception mechanisms.
However, the authors do not discuss the dependency safety issue. In fact, most
modern imperative and/or object-oriented languages have inherited the excep-
tion mechanism of CLU [15] and therefore suffer from the problems addressed
by our approach.
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Class-handlers, as proposed by Dony [4] and others, are exception handlers
associated with classes rather than blocks of statements; they apply to all meth-
ods of the class. They would facilitate manually guarding dependent code. For
example, a class-handler on the Database class could set a failed field to true
when an unchecked exception is caught and then re-throw the exception. The
field would still need to be checked manually on entry to each method.

Weimer and Necula [22] propose compensation stacks to make it easier to write
effective cleanup code. However, they do not address the safety issues identified
in Section 5.

Fetzer et al. [5] assume the viewpoint that “exception handling is only effective
if the premature termination of a method due to an exception does not leave
an object in an inconsistent state”. The paper proposes techniques to detect
and “mask” non-atomic exception handling, i.e. violations against failure atom-
icity. The paper assumes that after catching an exception, the entire application
should be in a consistent state, whereas we allow failed failboxes to remain in an
inconsistent state, while preventing control from entering a failed failbox. The
authors find a large number of Java methods that are not failure atomic. This
would strengthen the case for failboxes, because it indicates that exceptions do
indeed commonly leave objects in an inconsistent state.

An alternative way to deal with failures is to roll the state of the objects in-
volved back to a consistent state, through the use of transactions (e.g. Shavit and
Touitou [19], Welc et al. [23], Fetzer et al. [5]). However, this has a greater per-
formance overhead; also, it presents problems when the computation that failed
performed I/O. Our failboxes approach is more conservative from a semantic
and performance point of view.

This work was inspired by our research in program verification for Java-like
languages that is sound in the presence of failures. To the best of our knowledge,
no existing program verifiers for Java-like languages (including ESC/Java [6] and
Spec# [2]) have this property. In Jacobs et al. [13], we propose a verification
approach for Java programs where the programmer manually guards dependent
code using flag variables that track an object’s consistency. The present work
addresses the programming overhead of that approach.

9 Conclusion

We propose a language extension, called failboxes, that facilitates writing sequen-
tial or multithreaded programs that provably preserve intended safety properties
and that do not leak resources, even in the presence of failure, and that perform
safe cancellation of computations. To the best of our knowledge, it is the first
such extension of a Java-like language that combines low programming, perfor-
mance, and reasoning overhead, and that is compositional.

Future work includes gaining experience with our prototype implementation,
mainly to assess the applicability and the usability of the approach. We anticipate
the possible need to facilitate the placement of enter blocks, perhaps through
annotations on methods, classes, or packages, or through some inference scheme.
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Other work includes applying the failboxes idea to the problem of exception
handling in asynchronous and callback patterns.
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