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Abstract. Contemporary refactoring tools for JAVA aiding in the restructuring 
of programs have problems with respecting access modifiers such as public 
and private: while some tools provide hints that referenced elements may be-
come inaccessible due to the intended restructuring, none we have tested pre-
vent changes that alter the meaning of a program, and none take steps that 
counteract such alterations. To address these problems, we formalize accessibil-
ity in JAVA as a set of constraint rules, and show how the constraints obtained 
from applying these rules to a program and an intended refactoring allow us to 
check the preconditions of the refactoring, as well as to compute the changes of 
access modifiers necessary to preserve the behaviour of the refactored program. 
We have implemented our framework as a proof of concept in ECLIPSE, and 
demonstrated how it improves applicability and success of an important refac-
toring in a number of sample programs. That our approach is not limited to 
JAVA is shown by comparison with the constraint rules for C# and EIFFEL. 

“Moving state and behavior between classes is the very essence of refactoring.” [4] 

1 Introduction 

In object-oriented programming languages like C++, JAVA, and C#, information hid-
ing [17] is supported by access modifiers such as public and private. Their disciplined 
use contributes to modularization and, thus, the design of a program. 

Refactorings change a program’s design without altering its (externally visible) be-
haviour [4]. Insofar as the change affects the division of the program into modules, 
access modifiers must be updated during the refactoring process to reflect the new 
modularization. However, while insufficient accessibility is routinely reported by the 
compiler, excessive accessibility is usually not and therefore often forgotten [1]. 
Worse still, in JAVA the change of access modifiers can have an effect on static and 
dynamic binding, changing the meaning of a program [1, 14, 19].  

Refactoring tools are metaprograms aiding the programmer in the often tedious and 
error-prone refactoring process. Contemporary IDEs such as ECLIPSE [3], NETBEANS 
[15], and INTELLIJ IDEA [9] come with various refactoring tools, usually including 
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support for renaming program elements, moving elements, and modifying the type 
hierarchy. However, as we will see, when it comes to maintaining accessibility most 
refactoring tools are flawed, not only in rare corner cases. As we will also see, the 
problem is not caused by negligence of the programmers who implemented the tools, 
but the tremendous complexity of the programming languages used today, and the 
myriad of different constructions they allow. 

In this paper, we present a constraint-based approach to modelling the access con-
trol1 rules of JAVA that makes it easy for a refactoring tool to respect them. In particu-
lar, we show how a change of accessibility of a declared entity, as well as how a 
change of location of a declared entity and its contained references, propagate through 
a program, and how these changes are constrained by references to the declared enti-
ties and by other declarations. This enables us to enhance important refactorings such 
as MOVE TYPE/MEMBER and PULL UP/PUSH DOWN MEMBER by adding necessary 
preconditions that are currently unconsidered, and also by adding mechanics enabling 
applications that currently lead to failure. Our approach is analogous to that taken by 
the type-related refactorings described in [22], but remains completely orthogonal in 
the problems it addresses. Also, our definition of foresight rules anticipating the 
changes performed by an intended refactoring appears to be novel. 

The remainder of this paper is organized as follows. In Section 2, we motivate our 
work by presenting a number of basic problems current refactoring tools have, and by 
arguing why existing related work does not address them sufficiently. In Section 3, 
we develop our formal framework of accessibility constraints and present the con-
straint rules that model JAVA’s access control. In Section 4 we show how these con-
straints and their generation integrate into the refactorings we aim to improve. Section 
5 presents the implementation of our framework in ECLIPSE’s JAVA DEVELOPMENT 

TOOLS (JDT) and shows how we have tested and evaluated it. Section 6 discusses our 
work, its limitations, and its potential for performing systematic programming lan-
guage comparisons. 

2 Motivation 

2.1 Problems 

Moving a class without adapting accessibility can break the code. For instance, mov-
ing class B in the JAVA program 

package a; 
class A { 
  B b; 
} 
 
package a; 
class B {} 

to another package with the corresponding refactoring tools of ECLIPSE, NETBEANS 
and IDEA will produce a compilation error, since for the class B to be accessible from 
other packages, it needs to be declared public, which the tools ignore (only IDEA 
                                                           
1  not to be confused with access rights [11] 
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issues a warning that B will become inaccessible for A). Note that this is not a problem 
of JAVA’s language design, but a necessary consequence of modularization: access 
across packages should be restricted to elements declared public. Moving B therefore 
either breaks the designed modularization and should be prevented, or it constitutes a 
design change that should be reflected in a change of the corresponding access modi-
fiers. 

While the above problem is detected by the compiler and easily responded to, the 
situation becomes more complex when members of B are accessed. For instance, 
moving class B in 

package a; 
public class A { 
  void n() { (new B()).m("abc"); } 
} 
 
package a; 
public class B { 
  public void m(Object o) {…} 
  void m(String s) {…} 
} 

to another package will not produce a compilation error, but instead change the mean-
ing of the program: rather than the method n in A calling m(String) in B as before the 
change, m(Object) gets invoked instead. The corresponding refactoring tool of 
ECLIPSE performs the change without warning; NETBEANS displays that B.m(String) is 
referenced and IDEA warns that it becomes inaccessible from A, but neither indicates 
that the refactoring will change the meaning of the program. 

The change of meaning can be detected by observing that the static binding of the 
method call has changed. However, this alone is not sufficient, as the following ex-
ample shows:  

package a; 
public class A { 
  void m(String s) {…} 
  void n() { ((A) new B()).m("abc"); } 
} 
 
package a; 
public class B extends A { 
  void m(String s) {…} 
} 

Again, moving B to another package changes the meaning of the program, yet this 
time not because the binding changes, but because m(String) in A changes its status 
from being overridden in B to not being overridden, so that calling m(String) on a 
receiver of static type A is no longer dispatched to the implementation in B. In 
ECLIPSE and NETBEANS, this change of meaning goes unnoticed, IDEA notes that 
class A contains a reference to class B, but this is not indicative of the problem. 

While all the above sample problems can be easily fixed by adapting the accessi-
bility of members to preserve program meaning, in real programs there may be ripple 
effects that are difficult to oversee, and also unobvious conditions that prevent such 
changes. For instance, if  

package a; 
public class C extends B { 
  void m(String s) {…} 
  public void m(Object o) {…} 
} 
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is added to the previous example, the accessibility of m(String) in B cannot be in-
creased to public without also increasing its accessibility in C. However, increasing 
accessibility of m(String) in C may be contraindicated, as it can change meaning of 
another call: 

package b; 
class D { 
  void n() { (new C()).m("abc"); } 
}   

Although all three IDEs offer a refactoring for changing accessibility of methods (as 
part of changing their signature), none of them notes the change of binding this en-
tails. 

It should be clear from these examples that for larger programs, the situation 
quickly becomes unmanageable for a human programmer. Reliable tool support is 
therefore needed. 

2.2 Related Work 

That moving classes, fields, and methods of an object-oriented program can be a non-
trivial problem was already recognized by Opdyke in his doctoral thesis [16]. How-
ever, despite a presentation of formal preconditions, these seem to be only loosely 
related to a concrete language (C++), and do not seem to be thoroughly checked for 
completeness. For instance, the preconditions for pulling up a member variable (field) 
state that “the variable is defined identically in all subclasses where it is defined” and 
that “the variable isn’t already defined locally in (as a private member of) the super-
class” [p. 73]. However, if one of the subclasses has another superclass with a vari-
able of the same name (that was previously hidden), an ambiguity arises for accesses 
of the variable from the subclass (cf. Section 3.1, Inh-2). Also, Opdyke’s treatment of 
access modifiers and how they are to be handled in refactorings is only cursory. 

Contemporary refactoring tools such as those integrated in the ECLIPSE JDT [3], in 
NETBEANS [15], and in IDEA [9] all include some basic precondition checking (in 
IDEA including the issuing of warnings when a declared entity is moved out of 
reach), and some (notably IDEA) also present a list of references potentially directly 
affected by a refactoring, but none of them correctly predicts the change of semantics 
provoked by the examples of the previous subsection and the subsections that follow, 
and none offers a change of access modifiers that would prevent such changes or 
avoid compilation errors. The understanding of the consequences of such refactorings 
is therefore the duty of the programmer. 

The problem of maintaining accessibility is related to, yet sufficiently different 
from, making sure that all bindings are preserved under the RENAME refactoring [18]. 
It is similar in that each reference must refer to the same declared entity before and 
after a refactoring (or otherwise the meaning of the program changes). It is different 
in that maintaining static binding alone is not enough (as the above example with the 
lost dynamic binding suggests), and that it is not achieved by changing references to a 
declared entity (by renaming them as well, or by adding necessary qualification [18]), 
but by changing the (accessibility of) the declared entity itself. Also, as the last of the 
above examples suggested, changes of accessibility may be constrained by the acces-
sibility of other declared entities, so that the refactoring may have ripple effects. In-
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version of the lookup of a declared entity as resorted to in [18] does not point to these 
indirect constraints and is therefore insufficient to solve our problem. 

That reverse lookup is indeed insufficient became clear to us during the develop-
ment of our ACCESS MODIFIER MODIFIER (AMM), a smell detection and refactoring 
tool that marks all methods with excessive accessibility and offers its reduction to the 
lowest level tolerated by the program [1]. The AMM maintains reverse lookup tables 
for every method, pointing from that method to its references. However, to deal with 
the binding problems sketched above, we had to implement additional lookups and 
checks reflecting the relevant rules of the language specification. Since the checks and 
lookups were hard-coded for a specific problem, namely the independent change of 
accessibility of a single method, retrofitting them to a different purpose (such as pre-
condition checking for general MOVE refactorings), or even to a different target lan-
guage, amounts to rewriting them. Because the problem itself seems rather general, 
we thought that a more generic, problem-independent formulation of the conditions 
under which accessibility could be changed would be desirable. 

Such a formulation has been delivered as part of a formal model of JAVA written 
for the theorem prover ISABELLE/HOL [19]. Using this formalization, some interest-
ing runtime properties of JAVA programs concerning access integrity could be shown. 
However, both model and theorem prover are rather heavy-weight and have to our 
knowledge not yet been utilized in refactoring tools. 

A much lighter declarative approach to controlling access has been pursued in 
KACHEK/J, a tool that infers object encapsulation properties for JAVA programs [7]. 
KACHEK/J uses constraints to express a set of rules that allow the inference of con-
finement, i.e., that no aliases to instances of a confined type exist outside its defining 
package. The constraints basically make sure that confined types are neither declared 
public nor cast to non-confined supertypes, that they cannot be the types of public or 
protected members, and that methods inherited by them cannot leak aliases to the this 
pointer. While these constraints add confinement as a new property to the language 
(rather than model existing ones, as we intend), to improve this property in existing 
programs the first author of [7] has developed the JAVA ACCESS MODIFIER INFERENCE 

TOOL (JAMIT) [7, 8], which also builds on constraints. However, the constraints of 
JAMIT model only those aspects of JAVA access modifiers that are relevant to the 
virtual machine (JAMIT operates on byte code), and do not deal with possible changes 
of bindings that result from moving program elements. 

3 

Following the approach of JAMIT [8], we model the access control rules of JAVA using 
constraints, making our above identified refactoring problems solvable by constraint 
programming. Constraint programming usually consist of two parts: 
1. the generation of the constraints describing the problem, and 
2. constraint satisfaction, i.e., the computation of a solution for the generated con-

straints. 
Each generated constraint constrains one or more variables by setting up relations 
between them or assigning constant values to them. Through shared variables, the 
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generated constraints form a network, referred to as constraint set hereafter; the solu-
tion of a constraint set consists of assignments to the variables that satisfy all con-
straints. Generally, a constraint set can have arbitrarily many (including no) solutions; 
in case more than one solution exists, one is usually interested in one that satisfies 
certain additional conditions (not expressed as constraints). Although the solution of a 
constraint set is generally problem-independent, the additional conditions can lead to 
algorithms finding the best solution efficiently. 

The constraints describing a particular refactoring problem are usually generated 
from the program to be refactored by applying a set of constraint generating rules, or 
constraint rules for short [22]. The variables in the generated constraints represent 
those parts of the program that can be changed to solve the problem. Constraint gen-
eration also assigns the variables of the constraints initial values; these values reflect 
the program as it is at the outset of the problem (when the constraints were gener-
ated), that is, before the refactoring is performed. 

A constraint set generated from a (syntactically and semantically) correct program 
always has a solution, and in particular all constraints are satisfied by the initial vari-
able assignments, or otherwise the constraint rules are inconsistent. Vice versa, any 
assignment to variables that solves the constraint set must represent a correct pro-
gram, or otherwise the constraint rules are incomplete. Therefore, given a complete 
set of constraint rules, if another than the initial solution has been found, adapting the 
original program to the changed variable values (so that constraint generation would 
have extracted these values as initial had it been applied to the adapted program) will 
lead to a (syntactically and semantically) correct program. We refer to adapting the 
program so as to reflect the variable values of a new solution as writing back the solu-
tion. 

3.1 

Basics For our purposes, an object-oriented program consists of a set, D, of declared 
entities [6, §6.1] d, d1, etc., and a set, R, of references r, r1, etc. referring to declared 
entities. The set of declared entities D is partitioned into a set of classes, C, a set of 
interfaces, I, a set of methods (including constructors), M, and a set of fields, F.2 D 
also contains a subset of declared entities (including all constructors) declared as 
static, S. We express the binding of a reference r to a declared entity d by a function 

 : R  D (binding) 

where (r) = d means that reference r binds to declared entity d. One common invari-
ant of refactorings is that bindings are not changed. 

A program is further divided into a set, L, of locations l, l1, etc. Each d  D is de-
clared, and each r  R resides, in a location l  L.3 In languages allowing nesting of 
declarations, the location is conveniently expressed by a path expression involving all 

                                                           
2  The set of variables (temporaries and formal parameters) is not contained in D, since their 

access cannot be modified. 
3  The location of a declaration element is sometimes referred to as its declaration space [13], 

and is not to be confused with its scope. 
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containing declarations. To facilitate reading, we tag declared entities and references 
in the code we are referring to using comments, as in 

package a; class /*d1*/A { /*r1*/B b; } 

We refer to the location of so tagged entities and references by the function 

 : D  R  L (location) 

For instance, the location of d1 (class A) in the above program, (d1), is a (the contain-
ing package) and that of r1, (r1), is a.A (the containing class). 

In JAVA the accessibility of a declared entity is determined by an access modifier 
preceding its declaration. We write d  for the declared access modifier of d. The set 
of available access modifiers, A, is { public, protected, package, private}.4 Its ele-
ments are totally ordered: public > protected > package > private, where > means 
granting greater access. As usual, we write  to denote greater than or equal. 

Whether a reference can access a declared entity is determined by the access rules 
of the language. In order to maintain a certain language independence (and also be-
cause they are quite intricate in the case of JAVA), we model the access rules as a 
function 

 : L  L  A (required access modifier) 

where the first argument is the location of the reference, the second is the location of 
the referenced declared entity, and where ((r), (d )) computes the smallest access 
modifier for d granting r access to d.  may be considered an inverse of the so-called 
accessibility domain [13], mapping a declared entity and its declared accessibility to 
all locations in the program text in which access to the member is permitted. We 
model  as a function of a pair of locations rather than of R  D since the access 
modifier required for accessibility does not depend on individual references or de-
clared entities, but where they are located.5 Also, as we will see, not the references or 
declared entities, but their locations are the variables of our constraints. 

For a declared entity d that is a member of a type, the location of a reference r to d 
may be insufficient to determine d ’s accessibility — the (static) type through which d 
is accessed is also significant. We model this through a function 

 : R  L (receiver) 

computing the location corresponding to the body of the receiver type. For instance, 
in the program 

class A { 
  B b = new B(); 
 int i; 
 void m() { /*r1*/i = 1; /*r2*/b.i = 2; } 
class B extends A {} 

(r1) evaluates to A and (r2) evaluates to B. 
We are now equipped to state our first constraint rule. 

                                                           
4  Not every declaration element can use every access modifier — the domain of legal access 

modifiers depends on the kind of element that is declared, and where it is declared. As will 
be seen below, we model this as a constraint rule. 

5  The one exception, access to protected members, is modelled as a constraint rule (Acc-2). 
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Accessing Accessing a declared entity d via a reference r requires that the declared 
accessibility of d, d  (its access modifier) is equal to or greater than the accessibility 
required by the language’s access rules. To express this, we introduce the following 
constraint rule: 

 (r) = d  d   ((r), (d )) (Acc-1) 

Applied to the JAVA program 
package a; class A { /*r1*/B b; } 
package a; class /*d1*/B {} 

we obtain the constraint d1  ((r1), (d1)). The variables of the constraint are:  
 d1, the declared access modifier of d1, 
 (r1), the location of r1, and 
 (d1), the location of d1.6 
As noted above, for the initial assignments of the variables derived from a syntacti-
cally and semantically correct program, constraints are always solved; note how this 
is indeed the case for the above example, in which d1 = ((r1), (d1)) = package. 

Now a refactoring may change the values of one or more variables, possibly violat-
ing the constraint. For instance, when class A is moved to another package, (r1) 
changes its value so that  evaluates to public and the constraint is no longer satisfied. 
To satisfy it, either the declared access modifier d1 has to be changed to public, or 
class B has to be moved to the same location.7 While the constraint itself is neutral to 
the chosen solution, the constraint satisfaction algorithm can be adapted to compute 
the one that is required (or makes most sense) for the given refactoring. 

In the special case of protected access, it must be made sure that a “protected 
member or constructor of an object may be accessed from outside the package in 
which it is declared only by code that is responsible for the implementation of that 
object” [6, §6.2.2]. This is achieved by the additional constraint rule 

 (r) = d  ((r), (d )) = protected  d  S  (r)  subclasses((r))  {(r)}  
  d  = public (Acc-2) 

in which subclasses((r)) represents the union of the locations corresponding to the 
bodies of (true) subclasses of the class whose body corresponds to (r). Note that 
Acc-2 does not replace Acc-1 in case of accessing protected members — it only adds 
a stronger constraint. 

Inheritance JAVA’s access rules require accessibility of an inherited member as if it 
were accessed as a member of the base class [6, 14, 19]. Therefore, Acc-1 covers 
access of inherited members as well. For instance, in 

                                                           
6  Note that in JAVA, the default constructor of a class may be implicitly accessed by its sub-

classes’ constructors. In these cases, corresponding constraints must be created without pres-
ence of explicit references. 

7  Note that if class B is moved first, the constraint generated from Acc-1 only requires that r1 is 
also moved. Other rules of the language may require that r1 must remain within the body of 
its owning class, so that class A must be moved with it. However, this constraint is unrelated 
to access control and therefore out of scope. We will return to this issue in Section 3.2. 
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package a; class A {} 
package b; class B extends a.A { protected /*d1*/void m() {…} } 
package b; class C { void n() { (new B()).m(); } } 

pulling up d1 is correctly prevented by Acc-1 (but nevertheless performed without 
warnings by ECLIPSE, NETBEANS, and IDEA). However, Acc-1 is insufficient to 
maintain inheritance under refactoring, as the following example shows (note how i 
can be accessed from B even though i is protected and B is in a different package): 

package a; 
public class A { 
  protected /*d1*/int i; 
  void n() { /*r1*/(new b.B()).i = 1; } 
} 
 
package b; 
public class B extends a.A {} 

Here, reducing the declared accessibility of d1 produces an error, even though 
((r1), (d1)) = private. The reason for this is that after the reduction, B, the type 
through which i is accessed, no longer inherits i. The reduction of accessibility and the 
concomitant loss of inheritance are prevented by the constraint rule 

 (r) = d  (r)  (d )  d   ((r), (d )) (Inh-1) 

which, in the above example, requires at least protected for d . As above, Inh-1 does 
not replace Acc-1 in case of accessing inherited members — it adds to it, effectively 
requiring that d  is greater than the maximum of ((r), (d )) and ((r), (d )). 

However, there is another problem with inheritance, namely that access of a static 
field can become ambiguous if it is inherited both from a superclass and from an 
interface [6, §8.3.3.3]. For instance, in 

class A { private /*d1*/static int i = 1; } 
interface I { /*d2*/static int i = 2; } 
class B extends A implements I {void m() { int j = /*r1*/i; } } 

in which (r1) = d2, the accessibility of d1 must not be increased. While the compiler 
detects and denies such ambiguous access, a refactoring changing the accessibility of 
the field in the superclass so that it is inherited by the subclass (where it was not prior 
to the refactoring) must foresee this problem and refuse its application. This is 
achieved by the constraint rule 

 {d, d' }  F  S  (d ) = (d' )  (r) = d  (d' )  superclasses((r))  
 d'  < ((r), (d' )) (Inh-2) 

in which (d ) refers to the unqualified identifier (simple name) of d and super-
classes(.) has the obvious meaning (analogous to subclasses(.) in Acc-2). Note that for 
qualified references r to d, (r) corresponds to an interface, so that Inh-2 is not appli-
cable (because superclasses((r)) is undefined). Also note that d'  depends on (r), 
not (r), since access, not inheritance, may become ambiguous. 

There is a variant of the above example in which d1 does not exist in class A prior 
to the refactoring, for instance because it is yet to be pulled up from a subclass. To 
prevent such a refactoring (which would affect the binding of r1), Inh-2 must be ap-
plied to a declared entity d' (d1 in the above example) that is not yet there (or, rather, 
that has as yet another location), so that r cannot yet bind to it. We call such constraint 
rules, which anticipate a refactoring, foresight rules. They can only be applied when 
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Subtyping A rather straightforward constraint rule expresses that in JAVA, the ac-
cessibility of an overriding or hiding method must not decrease ([6, §8.4.8.3]). This is 
expressed by the constraint rule 

 {d, d' }  M  (overrides(d', d )  hides(d', d ))  d'   d  (Sub-1) 

in which overrides(.,.) and hides(.,.) have the obvious meanings. Note that the subtyp-
ing rule does not apply to fields in JAVA; however, as we will see below, hiding (in-
cluding that of fields) gives rise to another constraint rule. Also note that, as for Inh-2 
above, there is a foresight application of this rule, namely when the method d is pulled 
up from a sibling class. 

A rather subtle implication of subtyping in JAVA is that a method inherited by a 
class that implements an interface requiring that method must remain publicly acces-
sible. This is expressed by the constraint rule 

 {d, d' }  M  subsignature(d', d )  {c, c' }  C  i  I  (d ) = i  (d' ) = c' 
   implements(c, i )  inherits(c, d', c' )  d'  = public (Sub-2) 

in which subsignature(.,.) is defined as in [6, §8.4.2] and implements(.,.) as well as 
inherits(.,.,.) have their obvious meanings. 

Dynamic binding Since constraints work in both directions, the above subtyping 
constraint rule Sub-1 equally states that the access modifier of an overridden method 
must always be less than or equal to that of the overriding method. Thus, if the access 
modifier for an overriding method should be decreased for any reason, the access 
modifier of the overridden method may also have to decrease. 

There are however bounds to this decrease, set by JAVA’s rules for dynamic bind-
ing. For example, given the JAVA code 

class A { 
  /*d1*/void m() {…} 
  void n() {/*r1*/m();} 
} 
class B extends A { 
  /*d2*/void m() {…} 
} 

changing accessibility of d1 to private is syntactically correct, but changes the mean-
ing of the program, since the call of m() in n() is no longer dispatched to the imple-
mentation of m() in B, if n() is invoked on an instance of B. Therefore, we add a con-
straint rule 

 overrides(d', d )  d   ((d' ), (d )) (Dyn-1) 

This models the requirement that for a method to be overridden, it must be accessible 
from the overriding subclass [6, §8.4.8.1]. Note that whether the loss of dynamic 
binding actually leads to a change of meaning of the program depends on the dynamic 
types of the receiver objects, and thus on conditions that cannot generally be decided 
statically. Therefore, Dyn-1 is a conservative rule that prohibits illegal refactorings, 
but may also prevent legal ones. 
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Accidentally losing overriding and dynamic binding has a converse problem, 
namely accidentally introducing it: if in the program 

class A { 
  private /*d1*/void m() {…} 
  void n() {/*r1*/m();} 
} 
class B extends A { 
  /*d2*/void m() {…} 
} 

accessibility of d1 is increased to package, the meaning of the program changes for 
invocations of n() on instances of B. This is prevented by the constraint rule 

 (d )  superclasses((d' ))  subsignature(d', d )  overrides(d', d )   
 d  < ((d' ), (d )) (Dyn-2) 

Note that Dyn-1 and Dyn-2 are not only useful for preventing a change of access 
modifiers that changes the status of dynamic binding — they are also capable of cor-
recting access modifiers when moving subclasses to other packages, so as to maintain 
(absence of) overriding. For instance, Dyn-1 requires increasing the access modifier 
of d1 in  

public class A { 
 /*d1*/void m() {…} 
 void n() { 
  A a = new B(); 
  /*r1*/a.m(); 
 } 
}  
public class B extends A { 
 /*d2*/void m() {…} 
} 

to protected when class B is moved to another package, which otherwise would pre-
vent execution of d2 (example adapted from [14]). Note that the concomitant required 
increase of the accessibility of d2 is mandated by Sub-1, requiring that d2  d1. 

Further note that because Dyn-1 and Dyn-2 have mutually exclusive antecedents, 
they can never introduce a direct (i.e., not involving other declared entities or refer-
ences) contradiction. This is different, however, for Sub-1 and Dyn-2: since their 
antecedents can both be fulfilled for the same pair (d, d' ), one might be concerned 
about unforeseen interactions. However, due to the declarative nature of constraints, 
this is not necessary: if all rules are correct, the result of their combined application is 
also correct (even if the resulting constraints are unsolvable; see below for an example 
of this). Constraints are inherently modular. 

Overloading In addition to overriding, JAVA allows overloading, which poses its 
own problems. For example, in the JAVA program 

class A { 
  /*d1*/void m(Object o) {…} 
} 
class B extends A { 
  /*d2*/void m(String s) {…} 
} 
class C { 
  void n() { /*r1*/(new A()).m("abc"); } 
} 
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where all classes reside in the same package, (r1) = d1. However, when d2 is pulled 
up from B to A, the binding of r1 changes to d2, changing the meaning of the program. 

The problem here is similar to that of inheriting two static fields (Inh-2) in that nei-
ther reference r nor declared entity d of an existing binding (r) = d changes location 
or accessibility — instead, a new declared entity d' becomes accessible, affecting the 
binding of r. Therefore, as with Inh-2 we have to create a constraint limiting the ac-
cessibility of the new declared entity d' (or a declared entity in a new location) so that 
it remains inaccessible for references that would otherwise be re-bound to d'. This is 
done by the constraint rule 

 {d, d' }  M  overloads(d', d )  (r) = d  (d' )  superclasses((r))  {(r)}    
 d'  < ((r), (d' )) (Ovr) 

in which overloads(d', d ) is defined as in [6, §8.4.9]. As for Inh-2, a constraint gener-
ated from Ovr constrains accessibility of a declared entity in a constraint set in which 
variable values have been updated to reflect the refactoring (in the above exam-
ple,(d2) has changed to a new location). The constraint may be invalid before the 
refactoring in the sense that it does not adequately reflect the program as is (in the 
above example, there is no reason to restrict, on the basis of r1, accessibility of d2 
where it is located). Because its application must foresee the refactoring to be per-
formed, Ovr is a foresight rule that, like Inh-2 and Hid, can only be applied to a pro-
gram when the planned refactoring is known.8 

The overloading constraint rule Ovr has an interesting consequence: it can require 
access modifiers to be less than private, which basically means that the so modified 
entity must not be there. While this may seem paradoxical, it makes perfect sense in 
certain situations: for instance, if (r1) in the above example were class A, Ovr would 
produce d2 < private, meaning that m(String) must not be declared in A (which is the 
only correct solution to the problem). In order for all constraints generated by our 
rules to be satisfiable, we introduce a new value to our set of access modifiers, A, 
which is smaller than private. We call this access modifier absent.9 Note that a con-
straint requiring an existing declared entity to be absent can only be generated by 
foresight rules (because otherwise the program from which it were created, having an 
entity it must not have, would be incorrect), and that no constraint variable can have 
the initial value absent. 

Hiding The overloading rule Ovr has another interesting application: if we extended 
the antecedent to cover overriding methods, Ovr could prevent the pulling up of d2 in 

class A { 
  /*d1*/void m() {…} 
} 
class B extends A { 
  void n() { /*r1*/m(); } 
} 

                                                           
8  Note that the converse problem, namely that binding of r to d' is redirected to d because d' 

became inaccessible, is prevented by Acc-1. 
9  Satisfiability with abnormal values like absent is different from lack of satisfiability, since it 

provides a diagnosis of the problem and points to a possible solution. Cf. Section 6.1 for a 
discussion. 
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class C extends B { 
  /*d2*/void m() {…} 
} 

which would lead to a change of binding of r1. The pulling up would be prevented by 
Ovr because its application would produce the constraint d2 < ((r1), (d2)), which 
is at conflict with the constraints generated by Sub-1, d1  d2, and Acc-1,  
d1  ((r1), (d1)) (= ((r1), (d2))), so that the refactoring would lead to an un-
solvable constraint set (meaning that pulling up d2 is not allowed). 

Rather than extending Ovr as suggested above, we introduce a separate constraint 
rule that also covers static methods and fields, whose introduction in a type can like-
wise lead to a change of binding (called hiding in [6] or hiding through inheritance in 
[13]). However, other than with overloading, with hiding there will never be solutions 
consisting of reducing accessibility of the hiding declared entity to a level above ab-
sent. Therefore, the new constraint rule reads 

 (d ) = (d' )  (r) = d  (d' )  (superclasses((r))  {(r)}) \ superclasses((d )) 
  d'  = absent (Hid) 

where (d ) = (d' ) means that d and d' have the same name or are override-equivalent 
[6, §8.4.2]. Again, that a declared entity that hides must be absent may seem para-
doxical, but just as with inheritance (Inh-2) and overloading (Ovr), Hid is not applied 
to a program as is, but rather to the changes introduced by the refactoring were it 
performed (a kind of internal preview). It is thus a foresight rule, here one preventing 
that a certain declared entity is introduced, or moved, to a certain location. 

Note that so-called shadowing and obscuring [6] (called hiding by nesting in [13]) 
cannot be prevented by adjusting access modifiers and are therefore out of scope for 
this paper. 

Miscellaneous A number of constraints follow directly from the JAVA language 
specification (JLS) [6] and are easily formalized: 
 The accessibility of an array type equals the accessibility of its element type [6, 

§6.6.1]. 
 The accessibility of all fields declared in the same field declaration must be equal 

[6, §8.3]. 
 All main methods must be publicly accessible [6, §12.1.4]. 
 Only that top level type of a compilation unit whose name equals the name of the 

compilation unit may be declared public [6, §7.6].10 
 A singly imported type and imported static members must be accessible by the 

importing compilation unit [6, §7.5]. 
Not so easily formalized (and omitted here for spatial reasons) is the rule that for 
multiple on-demand imports [6, §7.5], if a simple name in the importing compilation 
unit refers to a declared entity imported by one of the imports, the same entity must 
not be accessible through any of the other on-demand imports [6, §6.5]. 

For open programs (libraries, frameworks, etc.) it is necessary to keep other entry 
points than the main methods accessible. We therefore interpret certain annotations as 
constraints keeping the accessibility of the annotated entity constant; the @API annota-

                                                           
10  Note that in our formalization, compilation units have not been included as locations. 
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Last but not least (and as announced in Footnote 4), the set of admissible access 
modifiers for a declared entity depends on its kind and where it is declared, which is 
modelled by a corresponding constraint rule. Note that the allowable modifiers of d 
may change should the location of d change, for instance when d is a method pulled 
up to an interface.  

3.2 

Solutions to finite constraint sets over variables with finite domains are trivially found 
by generating all possible variable assignments and by testing for each assignment 
whether it solves the constraint set. Clearly, the computational complexity of such a 
procedure is exponential in the number of variables, and therefore rarely acceptable. 
However, while general constraint satisfaction problems are known to be NP-com-
plete, in practice, highly efficient algorithms that can solve finite domain constraint 
satisfaction problems such as ours with thousands of variables in acceptable time are 
available off the shelf (see, e.g., [5]), so that we will not go into details here. With one 
notable exception. 

Since our constraint rules only model one aspect of JAVA, namely its access con-
trol, the constraints generated from these rules cannot be expected to prevent changes 
to programs violating syntactic or semantic rules unrelated to accessibility (examples 
of this are given in Footnote 7 and in Section 6.3). In particular, generated constraint 
sets may have solutions involving the changed location of elements that translate to 
incorrect programs, even if no access constraint is violated. Therefore, we restrict 
constraint solving to computing new values for the variables representing the declared 
access modifiers of entites, ., and keep the variables representing locations of de-
clared entities and references, (.), constant (unless of course the change of location is 
the purpose of a refactoring). Since the sets of possible locations for references and 
declared entities are usually large, this reduces the complexity of our constraint satis-
faction problems considerably. 

4 

Traditionally, the specification of a refactoring consists of a set of preconditions and 
an algorithmic part that describes its “mechanics” [4].11 The preconditions are 
checked before the refactoring is performed; their purpose is to exclude applications 
of the refactoring to constellations in which the refactoring cannot work. 

For constraint-based approaches to refactoring, precondition checking and mechan-
ics rely on the same characterization of the problem: precondition checking amounts 
to finding out whether a generated constraint set with the intended changes applied is 
solvable, and performing the mechanics amounts to writing a solution of the con-
straint set (i.e., the found variable values) back to the program. If checking solvability 

                                                           
11  Being an algorithm, the complete specification of a refactoring would also involve a set of 

postconditions. However, postconditions of refactorings are rarely found in the literature. 
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and finding a solution are considered one, refactoring with constraints consists of four 
steps: 
1. the generation of constraints and initial variable values from the program to be 

refactored (resulting in a solved constraint set); 
2. a change of variable values and the addition of foresight constraints reflecting the 

planned refactoring (possibly resulting in an unsolved constraint set); 
3. the solution of the constraint set under the side conditions of the refactoring (in-

cluding which constraint variables are fixed and which can be changed as part of 
the solution); and 

4. the writing back of the found solution, if any. 
The refactoring may involve user interaction, namely answering questions as to 
whether certain changes should be allowed (such as the change of access modifiers 
due to ripple effects). Since the constraints required for each particular refactoring, 
which variables of these constraints are actually changeable, and the possible user 
interaction depend on the concrete refactoring, we clarify these issues separately for 
each refactoring. 

4.1 The C

The most primitive refactoring relating to accessibility is changing the access modi-
fier of a declared entity. It is a refactoring because, as noted in the introduction, the 
change represents a change of design and because it requires a careful prior analysis 
(it can change the meaning of the program, which a refactoring must not do). 

The constraints to be generated for this refactoring are those involving the entity d 
whose declared accessibility d  is to be changed, and recursively all those that are 
directly or indirectly (through shared constraint variables) related to it. If the user 
chooses that no other declared entities d'  may be touched in the course of the refactor-
ing, the set of constraints needing to be generated is reduced to the ones in which d is 
directly involved; the declared access modifiers d'  of the d' participating in these 
constraints are then marked as constant. 

The computation of the solution is initiated by assigning the constraint variable d  
representing the declared accessibility of the entity d to be refactored the value corre-
sponding to the target accessibility. If the new value leaves the constraint set solved, 
the changed value can be written back and the refactoring is performed. If it is un-
solved, a new solution must be computed. To express that the solution should involve 
as few and as small changes as possible (a side condition of the refactoring), the num-
ber of changes must be counted and the constraint solver instructed to find a solution 
that minimizes this count. If no solution exists, the refactoring must be refused; oth-
erwise, the solution is written back and the refactoring performed. 

Regarding the foresight rules preventing a change of binding (Inh-2 and Ovr; Hid 
is irrelevant here, because it can only prevent changes of location), only those con-
straints need be generated that constrain declared entities d whose accessibility may 
change during the course of the refactoring. For Inh-2, this amounts to checking all 
superclasses of (r) for all r with (r) = d, for the presence of a static field with the 
same name as d. If present, a corresponding constraint is added. For Ovr, the check is 
analogous, but limited to overloaded methods. For instance, if in the program 
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package a; 
public abstract class A { 
  protected /*d1*/abstract void m(String s); 
} 
 
package a; 
public class B extends A {  
  public /*d2*/void m(Object o) {…}  
 protected /*d3*/void m(String s) {…} 
} 
 
package b; 
public class C { 
  void n() { /*r1*/(new a.B()).m("abc"); } 
} 

accessibility of d1 is to be increased to public, application of Ovr adds the constraint 
d3 < ((r1), (d3)) (because Sub-1 inserted d3  d1, implying a change of d3). 
Since ((r1), (d3)) = public, the refactoring is prevented. 

A special case of changing accessibility is the HIDE METHOD refactoring, which 
suggests making “each method as private as you can” [4]. In previous work of ours, 
we have implemented a refactoring that attempts to hide all methods of a program in 
one step [1]. However, due to the imperative character of the implementation (cf. 
Section 2.2), it did not consider ripple effects (i.e., one reduction that required another 
reduction as a prior step), so that it had to be repeated after each application to see 
whether any new reductions had become possible. By contrast, the constraint ap-
proach we are presenting here addresses this chaining through constraint propagation, 
so that accessibility of all declared entities can be reduced to their smallest possible 
levels in a single refactoring step. 

4.2 The M

As far as accessibility is concerned, there is no difference between moving and pull-
ing up or pushing down members (a distinction that is made in [4] and also in many 
refactoring tools): the constraint rules to be applied are precisely the same. The differ-
ence lies in which other elements must be moved as well, but this is independent of 
access modification and hence outside the scope of our work (cf. Sections 3.2 and 
6.3). Therefore, we do not distinguish between these refactorings here. 

Moving one or more declared entities d means that the constraint variables repre-
senting their locations, (d ), are assigned new values. If the declared entities contain 
references r, their locations (r) change as well. All constraints directly or indirectly 
involving the changed (d ) or (r) must be generated. If the user selects that no ac-
cess modifiers may be changed as part of the refactoring, the set of constraints to be 
generated is restricted to the ones directly involving the moved locations and the 
values of all variables d  are considered constant. All this is more or less analogous 
to the CHANGE ACCESSIBILITY refactoring (cf. above). 

The situation is significantly different, however, for the foresight rules: here, Inh-2, 
Sub-1, Ovr, and Hid must be applied to the moved program elements, referring to 
their updated locations. This implies that search for overloaded or override-equivalent 
methods and for fields of the same name must be commenced in the target, rather than 
the original, location. For instance, if the intended refactoring for the program 

434 F. Steimann and A. Thies 

OVE TYPE/MEMBER and PULL UP/PUSH DOWN MEMBER Refactorings 



package a; 
public class A { 
  public /*d1*/void m(Object o) {…} 
  void n() { /*r1*/(new b.B()).m("abc"); } 
} 
 
package b; 
public class B extends A {} 
 
package a; 
public class C extends B { 
  public /*d2*/void m(String s) {…} 
  void n() { /*r2*/(new C()).m("abc"); } 
 
} 

is to pull up d2 to class B, application of Ovr to r1, d1, and d2 in its new location, class 
B, produces the constraint d2 < ((r1), (d2)) (= public; note that this constraint is 
not justified for the program before the refactoring). Since application of Acc-1 pro-
duced d2  ((r2), (d2)) (= protected ), the pulling up of d2 is possible, but only if 
d2 is reduced to protected. Since we restricted the moving of program elements to 
the ones the user required to be moved (cf. Section 3.2), for all others the foresight 
rules must be applied as if the refactoring were CHANGE ACCESSIBILITY (because this 
is all that can happen). In the above example, there are no other foresight rules to be 
applied. 

4.3 

A number of standard refactorings have the potential to change bindings. Perhaps the 
most prominent is the RENAME refactoring, which has to deal with issues such as 
hiding, shadowing, and obscuring [6, 18]. In certain cases, a change of accessibility 
can prevent such changes of binding, but these cases are rather rare. Also, the choice 
of names should not have an impact on accessibility and thus modularity, so that we 
do not pursue this further here. 

Somewhat related is the problem of changed bindings due to a change of method 
signatures, either due to user request or as a side effect of refactorings such as GEN-

ERALIZE DECLARED TYPE or USE SUPERTYPE WHERE POSSIBLE [21]. In languages with 
single dispatch, the change of binding is limited to overloaded methods, and therefore 
can be dealt with using our constraint rules (in particular Ovr). However, as will be 
discussed in Section 6.2, other means of preventing or solving such problems may be 
more adequate. 

4.4 

Although not themselves concerned with changing access modifiers, some refactor-
ings have preconditions requiring a certain level of accessibility of involved declared 
entities. For instance, the REPLACE INHERITANCE WITH DELEGATION [10] refactoring 
requires that the inheriting class or its subclasses do not need access to protected 
members inherited before the refactoring (because these are no longer accessible after 
inheritance has been replaced by delegation). A corresponding case study showed that 
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in more than 15% of all inheriting classes, this precondition was violated [10]. In-
creasing accessibility of the (formerly) inherited member to public would satisfy the 
precondition; however, this presupposes that such a change does not change the 
meaning of the program. This can easily be checked by our constraints. 

5 Implementation 

As a proof of concept, we have implemented our constraint-based model of accessi-
bility in JAVA as a plug-in to ECLIPSE’s JDT, and tested and evaluated it by using it as 
the basis of several systematic refactorings of a set of sample programs. 

5.1 

Section 4 described in abstract terms how the constraints required for a specific refac-
toring are determined. Basically, an implementation would have to start with an initial 
set of variables whose change of value models the intended refactoring, generate all 
constraints from the program that constrain these variables, add their other (change-
able) variables to the variable set, and so forth until no more constraints can be added. 
For instance, if the declared accessibility d  of an entity d is to be changed, the pro-
gram must be scanned for matches of the preconditions of all constraint rules contain-
ing d. For Acc-1 with precondition (r) = d this means that all references r binding to 
d must be found, for Inh-1 that additionally the static type of the receiver must be 
looked up, and so forth. As it turns out, the required searches and lookups can be quite 
expensive, especially if the AST does not maintain inverted indices pointing from 
declared entities to their references (cf. the discussion in Section 2.2). Since the space 
and time requirements for building and keeping such indices can be substantial (see 
[1] for some measurements), and since the JDT’s search functions also rely on scan-
ning the AST (so that successive searches for references to different declared entities 
are rather expensive), we decided to generate all constraints in a single sweep of the 
AST, regardless of whether they are actually needed by the concrete refactoring prob-
lem. As can be seen from Table 1, this poses some non-negligible spatial and tempo-
ral limits on our implementation. 

Table 1.  Space and time requirements of the approach as currently implemented (see text). 

 SPACE TIME 
 No. of Avg. Time$ in msec to 
Project (.) . Constraints Build Check* Solve* 

Avg. No. of 
Steps to Solve*

JUNIT 3.8.1 2553 1332 4949 10593 30 599 5293360 
JESTER 1.37b 1475 761 2293 1127 9 81 6837 
JHOTDRAW 6.01b 9594 4995 26816 21246 199 6452 25582800 
APACHE.IO 1.4 4315 2181 12877 17843 129 2486 57052 
$  on a contemporary Wintel machine with 2GHz clock speed and 1GB of main memory for the JVM 
*  averaged over the refactorings performed to obtain the data of Table 2 
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5.2 

Except for , the auxiliary functions and predicates occurring in the antecedents of 
our constraint rules (namely , , , , subclasses, superclasses, implements, inherits, 
hides, overrides, overloads, and subsignature) are implemented using corresponding 
API methods of the JDT. The function  computing the required accessibility level 
for a reference to a declared entity is unpleasant to specify (as was its extraction from 
the JLS [6]); because it is of no theoretical interest, we do not present it here. 

5.3 

For constraint set solution, we adopted Naoyuki Tamura’s class library for constraint 
programming in JAVA, called CREAM [20]. CREAM offers various implementations of 
efficient solvers for finite domain (especially integer) constraint satisfaction prob-
lems, of which our accessibility constraint sets (with the finite and totally ordered A as 
their domain) are a special case. As can be seen from Table 1, CREAM is capable of 
computing a new solution for a constraint set invalidated by the change of variable 
values and the addition of foresight constraints modelling an intended refactoring in 
acceptable time. However, better performance can be expected from creating fewer 
constraints (cf. Section 5.1), and from devising problem-specific constraint solvers. 

5.4 Testing 

In the absence of a formal proof of the completeness and correctness of our constraint 
rule set, we tested it thoroughly, exploiting the invariants mentioned at the end of the 
introduction to Section 3. In particular: 
1. We generated all constraints and initial variable values from existing programs and 

checked whether the resulting constraint sets were solved given the initial assign-
ments. This gave us an idea of the correctness of our constraint rules. 

2. We computed all solutions for constraint sets generated from programs covered by 
test suites and wrote back the solutions to the code, checking whether the programs 
still compiled and their test suites still passed. This gave us an idea of the com-
pleteness of our constraint rule set. Note that, because behaviour-preserving change 
of location is not only constrained by accessibility (cf. Sections 3.2 and 6.3), we 
only computed new values for the variables . representing the declared access 
modifiers.12 

3. We automatically performed refactorings enhanced with accessibility constraints 
for precondition checking and for computing the necessary mechanics on several 
programs covered by accompanying test suites, and checked whether the refactor-
ings left the meaning of the programs (as specified in the test cases) unchanged. 

                                                           
12  Due to the exponentially growing number of possible solutions, we had to limit testing to 

small programs (mostly variants of the programs used as examples in this paper, but also 
subsets of JUNIT and other small programs). We complemented these tests by tests on much 
larger programs, in which we changed only one access modifier at a time. 
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All three approaches contributed to identifying and shaping our constraint rules, 
whose original extraction from the JLS [6] turned out to be difficult and error-prone. 

For the automated application of refactorings to sample programs, we used our 
REFACTORING TOOL TESTER (RTT) program. RTT is an ECLIPSE plugin that auto-
matically applies a given ECLIPSE refactoring tool to all those elements of a test pro-
gram for which it is intended, and checks whether the program still compiles after the 
refactoring and whether its unit tests still pass (approximating behaviour preserva-
tion). In its purpose, RTT competes with ASTGEN [2], but its design is different in 
that it uses existing, rather than specially generated, programs. Using the RTT on a 
large set of test programs increases the likelihood of covering rare cases (the design-
ers of the generators for ASTGEN may not even have conceived of). However, since 
this approach primarily tests the refactorings and only indirectly the constraints used 
to compute preconditions and necessary changes, and because these refactorings have 
bugs unrelated to accessibility, the results of this automated testing require a careful 
interpretation. We defer this to the next subsection. 

5.5 Evaluation 

Although our examples of Section 2.1 should have provided sufficient evidence for 
the usefulness of a formal capture of accessibility and its integration into refactoring 
tools, we have also conducted some experiments using real programs, giving us an 
impression of how often a user of these tools will actually benefit. For this, we have 
adapted our above described RTT to apply two ECLIPSE refactoring tools, MOVE 

CLASS and PULL UP METHOD, in three variants to a set of sample programs: variant 1 
(pure) applies the refactorings as they are currently deployed with [3] (including their 
built-in precondition checking); variant 2 (prec) enhances them with our constraint-
based precondition checking allowing no changes of access modifiers, and variant 3 
(mech) enhances them with precondition checking and constraint-solution based me-
chanics adjusting access modifiers so as to make the refactoring possible. Thus, we 
get for each potential application (appl ) of a refactoring six outcomes, namely for 
each variant one pair stating whether it passed the preconditions (p) and whether it 
was successful (s). The counts of these outcomes for the sample programs are summa-
rized in Table 2. 

Due to the nature of the problem, we can expect the number of precondition passes, 
p, to decrease from pure to prec, and the number of successes, s, to stay the same (if it 
decreased, our preconditions would likely be too strong). Thus, the relative number of 
successful applications should increase. When moving from prec to mech, p should 
increase, as should s. However, because the refactorings can fail for other reasons (see 
below), the relative number of successful applications can change in either direction. 

For MOVE CLASS, the results from Table 2 confirm our expectations: the passing of 
preconditions drops by 15% on average when moving from pure to prec13, and in-
creases by 17% when moving from prec to mech. This means that if the refactoring is 
allowed to change access modifiers, preconditions predict that it can be applied in 
99% of all cases, compared to 85% if no changes are allowed. The success rate, which 

                                                           
13  The inhibiting constraint rules were Acc-1 (52), Dyn-1 (7), and Inh-1 (4). 
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is only 86% for pure, increases to 100% for prec and mech. The decrease of success-
ful applications from pure to prec by 2% in the case of JHOTDRAW turned out to be 
due to measurement error: the five surplus applications of pure changed the meaning 
of the program (an were thus in fact unsuccessful), but this was neither caught by the 
compiler (in the form of compile-time errors) nor by the test cases. The two illegal 
applications of pure that could not be legalized by mech (both from JUNIT) were due 
to unsatisfiable constraints introduced by application of Acc-1 and Dyn-2. 

The picture is rather different for PULL UP METHOD: while applicability also de-
creases from pure to prec (by 24% on average14), the loss of applicability is not re-
verted by mech: of the 58 applications inhibited by prec, only 27 could be legalized 
by adapting access modifiers. The remainder was prevented by unsatisfiable con-
straints of the above kind, and also by the 16 constraints introduced by Hid (cf. Foot-
note 14), which are generally unsatisfiable for referenced entities (cf. Section 3.1). 
The high success rate of pure (95%) is explained by the fact that the original refactor-
ing tool changes the access modifier of the pulled up method if this is deemed neces-
sary (which avoids many compile-time errors), and that introduced binding errors are 
not caught by tests (recall that Dyn-1 and Dyn-2 may be too strict so that their viola-
tion may not even present an error). The eight unsuccessful applications for prec and 
mech are caused by errors introduced by the pure refactoring tool that are unrelated to 
accessibility (and thus can neither be prevented by prec nor fixed by mech), such as 
disregarding the changed type of this (cf. Section 6.3) and the incompatibility of ex-
ceptions thrown by the pulled up method and an override-equivalent method in a 
sibling class. 

6 Discussion 

6.1 

The existence of absent as an access modifier allows the elegant formulation of cer-
tain preconditions of refactorings as solvable constraints (cf. Footnote 9). For in-

                                                           
14 with Ovr (365), Acc-1 (125), Sub-1 (18) and Hid (16) inhibiting the application 

Table 2.  Number of passed (p) and successful (s) refactorings as applied to several test pro-
jects (see text). 

 MOVE CLASS PULL UP METHOD 
 appl pure prec mech appl pure prec mech 
Project  p s p s p s  p s p s p s 
JUNIT 3.8.1 38 38 23 23 23 36 36 148 20 20 14 14 20 20 
JESTER 1.37b 31 31 26 26 26 31 31 5 3 3 3 3 3 3 
JHOTDRAW 6.01b 235 235 213 208 208 235 235 1167 199 187 147 139 168 160
APACHE.IO 1.4 73 73 64 64 64 73 73 102 14 14 14 14 14 14 
total 377 377 326 321 321 375 375 1422 236 224 178 170 205 197
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stance, if a foresight constraint requires that a certain entity’s declared accessibility 
must be less than private, and if no other constraint requires that it must be at least 
private (because the entity is never referenced), the constraint solver will assign it the 
value absent, suggesting that the element should be (and can be!) deleted. Without 
absent, the constraint set would be unsolvable and the possible solution, the removal 
of a declared entity, would remain unconsidered. 

Beyond this, absent also has its own value. Analogous to JAMIT [8], our constraint 
rules are capable of detecting dead code, simply by searching for solutions of a pro-
gram’s constraint set that assigns absent to the access modifiers of declared entities. 
However, with the access rules as is, dead code can remain undetected due to circular 
referencing. 

Declared entities that are sustained by circular references not fed by a reference 
into the circle can be reduced to absent by modifying the accessibility rule Acc-1 such 
that it allows absent for a d  even though there is an r such that (r) = d, if r resides 
in the location of a declared entity that is itself modified with absent (expressed by 
absent(r)): 

 (r) = d  d   ((r), (d ))  d  = absent if absent(r) (Acc-1') 

However, since all constraints are generated by a rather simple static analysis of the 
program, our dead code removal will always be inferior to that achieved by more 
sophisticated tools, so that we do not pursue this further here. 

6.2 

One might argue that the requirement expressed by some of our constraint rules, that 
declared entities must be made inaccessible or even eliminated to allow certain refac-
torings, is unnecessarily strong. Indeed, the reference to an overloaded method can be 
forced to bind to a certain implementation by inserting upcasts to the formal parame-
ter types of that particular implementation, and the reference to a hidden entity can be 
maintained by inserting qualified names (as described in [18] for the RENAME refac-
toring; cf. Section 2.2). However, this would require a change of the reference rather 
than a change of accessibility, and is therefore a different story (one in which refer-
ences themselves are modelled as variables). 

6.3 

Controlling access modifiers does not solve all refactoring problems related to access-
ing members. For instance, in the left program of 

class A {} 
 
class B extends A { 
  /*d1*/void m() {/*r1*/n();} 
  /*d2*/void n() {} 
} 

class A { B b; } 
 
class B extends A { 
  /*d1*/void m() {/*r1*/b.n();} 
  /*d2*/void n() {} 
} 

with classes A and B residing in the same package, pulling up m() does not violate the 
access rules of JAVA (B.n() is accessible from A), but nevertheless results in a seman-
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tic error — the problem here is that the implicit receiver of calling n(), this, is of type 
B before the refactoring and of type A after. Were n() called on a variable of type B as 
on the right, the program would still work after the refactoring. While a constraint-
based solution to this problem is likely possible, it is independent of access modifica-
tion and therefore out of scope for this paper. 

6.4 

Our capture of access control as a set of constraint rules allows the compact compari-
sons of programming languages. Table 3 provides such a comparison of JAVA, C#, 
and EIFFEL. The inclusion of EIFFEL may seem surprising, since EIFFEL does not have 
access modifiers, but uses selective export of features (to the listed classes and their 
subclasses, to all, or to no classes) instead [12]. However, it nevertheless fits nicely 
into our framework: in EIFFEL, the domain of the accessibility variables ., A, is 
(C ), the powerset of the set of classes (see Table 3). 

Table 3 also reveals that C#, although rather similar to JAVA, avoids certain of its 
problems. For instance, violation of Dyn-1 resulting in a change of behaviour in JAVA 
leads to a semantic error reported by the compiler, and violation of Dyn-2 is impossi-
ble. Similarly, violation of Hid issues a warning suggesting that the new modifier be 
used. A constraint rule of C# not found in JAVA requires that the accessibility of a 
member is at most the accessibility of its declared type. This prevents the breaching of 
non-accessibility made possible by chained method calls in JAVA, through which an 
instance of an inaccessible type can be accessed. 

7 Conclusion 

Refactoring the design of a program typically involves the moving of classes and/or 
their members. This requires regard of the access control rules specified by the pro-
gramming language. In JAVA, disregard of these rules cannot only lead to access vio-
lations (reported as errors by the compiler), it can also lead to a change of meaning of 
a program, which a refactoring must always avoid. By capturing the access control of 
JAVA in the form of constraint rules, we have provided a framework for checking the 
preconditions of refactorings affecting the accessibility of program elements, and for 
safely adapting declared accessibility as part of the mechanics of a refactoring that 
would otherwise be impossible. Our framework involves so-called foresight applica-
tions of rules that model the changes intended by a refactoring, and an additional 
access modifier absent suggesting the deletion of program elements that are in the 
way of a refactoring without being used by the program. By conducting systematic 
experiments, we have shown how our approach can improve applicability and cor-
rectness of at least one important refactoring tool; where it falls short, it may be pos-
sible that additional constraint rules (unrelated to access modification) can fix the 
problems. 
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