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Abstract. Modern development environments support refactoring by
providing atomically behaviour-preserving transformations. While use-
ful, these transformations are limited in three ways: (i) atomicity forces
transformations to be complex and opaque, (ii) the behaviour preser-
vation requirement disallows deliberate behaviour evolution, and (iii)
atomicity limits code reuse opportunities for refactoring implementers.

We present ‘program metamorphosis’, a novel approach for program
evolution and refactoring that addresses the above limitations by break-
ing refactorings into smaller steps that need not preserve behaviour
individually. Instead, we ensure that sequences of transformations pre-
serve behaviour together, and simultaneously permit selective behavioural
change.

To evaluate program metamorphosis, we have implemented a proto-
type plugin for Eclipse. Our analysis and experiments show that (1) our
plugin provides correctness guarantees on par with those of Eclipse’s own
refactorings, (2) both our plugin and our approach address the afore-
mentioned limitations, and (3) our approach fully subsumes traditional
refactoring.
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1 Motivation

Modern programming methodologies, such as Extreme Programming [2], use
refactoring to prepare software for impending change or to eliminate “bad smells”
in source code. Fowler et al. [4] defines refactoring as:

A change made to the internal structure of software . . . without changing
its observable behaviour

To automate this process, integrated development environments such as Eclipse
[14] and refactoring engines such as HaRe [8] provide machine support for refac-
toring. These systems implement refactoring as atomic transformations guarded
by preconditions. The underlying assumption is that if the precondition holds,
the transformation will preserve behaviour. If the precondition does not hold,
the IDE disallows the transformation. This approach prevents some forms of un-
intended behavioural change but presents several problems to refactoring users
and developers:
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c l a s s A {
p r i v a t e i n t x ;
vo id f ( )
{ x = C . g ( ) ; }

}

c l a s s B { }

c l a s s A { }

c l a s s B {
p r i v a t e i n t x ;
vo id f ( )
{ x = C . g ( ) ; }

}

Fig. 1. The chicken-or-egg problem: fields and methods must be moved simultaneously

1. The chicken-or-egg problem. Atomic transformations with preconditions
may prohibit safe refactorings. Consider the program in Figure 1: if we wish
to move field “x” and method “f” from class “A” to class “B”, we would like
to employ the ‘Move Method’ and ‘Move Field’ refactorings [4]. If we move
“f” first, “B.f()” will not be able to see “x”, so ‘Move Method’ will disallow
the move. However, if we move “x” first, the process fails for the converse
reason. This chicken-or-egg problem is exacerbated if additional fields or
mutually recursive methods are affected, and while refactoring users can
sometimes find workarounds, they may find it easier to abandon the promised
behaviour preservation of refactorings in favour of faster manual editing.
Some refactoring implementations address this problem by attempting to
predict which additional methods and fields must be moved simultaneously
to atomically perform the refactoring, but these fixup heuristics are complex,
error-prone, and may run contrary to the user’s wishes.

2. The selective behaviour evolution problem. The user may want to ex-
ploit the automation provided by refactorings without necessarily preserving
all behaviour. For example, in theory a refactoring must never allow the user
to rename a public method since some independent source code (perhaps in
a plugin) might reference this method by name. In practice, a user might
accept this change and yet still want to prevent other forms of behavioural
change, such as a renamed method overriding a method it didn’t override be-
fore. This is a dilemma for refactoring engine designers: they must anticipate
the degree to which users value safety over versatility.

3. The predictive analysis problem. Since traditional behaviour preserva-
tion checks are implemented as preconditions, they must predict the effect
of the transformation in order to determine if it will cause problems. To do
this exhaustively is quite difficult. For example, in the case of ‘Rename’, a
precondition must consider all the possible ways in which a name could be
captured and check to see if that will happen. As Schäfer et al. [13] point
out, a less error-prone approach is to first perform the transformation and
then check after the fact to see if any names have been captured.

This paper shows how a small twist to the “classical” refactoring implemen-
tation strategy allows us to solve the above problems. We achieve this by:
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1. Capturing the approximate program behaviour in a program model,
2. Applying a series of possibly non–behaviour-preserving program metamor-

phosis steps (PM steps for short),
3. Using postconditions to compare the original program model to the current

program model to see if behaviour has changed.

This twist yields a new view on refactoring: instead of treating refactoring as
the application of atomic refactorings that must preserve behaviour by them-
selves, we can think of refactoring as a process of gradual application of PM
steps. As part of this process, users may check for behaviour preservation at any
time. Thus, users may decide to first transform their program as they desire (e.g.,
moving fields and methods) and then either recover behavioural equivalence, if
necessary, or expressly and selectively accept some or all behavioural change.

Program metamorphosis provides three main benefits over the traditional ap-
proach to refactorings:

1. It allows safe transformations through intermediate stages whose behaviour
differs from the intended behaviour,

2. It allows safe transformations through intermediate stages that may not even
compile,

3. It allows the user to selectively evolve behaviour.

In this paper, we provide the following contributions: we describe the process
of program metamorphosis (Section 2) and demonstrate the benefits it offers
over traditional refactoring (Section 3). We then sketch a theory that allows us
to view program metamorphosis as a decomposition of refactorings and show that
our approach is at least as safe as traditional refactoring, if we base it on refac-
torings that we can decompose in a certain way (Section 4). Next, we describe
a prototype Eclipse plugin that demonstrates that program metamorphosis is
practical to implement (Section 5). Finally, we describe several refactorings we
implemented using our prototype; where possible, we compare the quality of
their behaviour preservation promises against those provided by Eclipse’s refac-
torings by applying both to Java projects with comprehensive unit test suites
(Section 6). Section 7 reviews related work and Section 8 concludes.

2 The Process of Program Metamorphosis

Before we look at concrete examples of program metamorphosis, it is helpful
to consider the structure of the underlying process. A program metamorphosis
system consists of three main components:

1. a mechanism for generating program models that describe the approximate
behaviour of a program,

2. a consistency checker that compares two program models and extracts the
inconsistencies (if any) between them,

3. a suite of small PM steps, each of which transforms the program in a possibly
non–behaviour-preserving way.
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Program metamorphosis uses the consistency checker and program model gen-
erator to help the user compose PM steps into a sequence of transformations that,
taken as a whole, preserves behaviour.

2.1 Combining Multiple PM Steps

Unlike traditional refactorings, which use preconditions to check the legality of
the transformation, program metamorphosis uses postconditions. Specifically,
program metamorphosis constructs a model of the program’s behaviour before
the transformation, transforms the program, and then constructs another model
after the transformation, possibly re-using parts of the earlier model. If the two
models do not match, then the program’s behaviour may have been changed.
This approach, illustrated in Figure 2, allows program metamorphosis to safely
combine multiple transformations as follows:

1. We first calculate a model for the program and save it as the “desired pro-
gram model.” We call this the “desired” model since we ultimately want the
transformed program to end up with the same model.

2. When the user applies a PM step, we compare the desired program model
with the calculated current program model, reporting any inconsistencies to
the user. If there are inconsistencies then the user may:
(a) Revert the previous step,
(b) Apply another PM step, or
(c) Accept any or all of the reported inconsistencies as behavioural change

by updating the desired model to incorporate the change in behaviour.

The key benefit of program metamorphosis is that after the user has applied
any particular PM step, the program’s current behaviour may not match its
original behaviour, but the user can continue applying steps until it does. In this
way, PM allows the composition of simple, possibly non-behaviour preserving
steps into a sequence that does, in its entirety, preserve behaviour.

Figure 3 visualises the advantages of our approach. In this figure, every vertex
represents a program; either well-formed (black) or ill-formed (white), while
edges represent PM steps. Programs with ‘equivalent’ behaviour are grouped
into equivalent classes. To refactor program pa to program pb, we can choose

Program
Curr
Model

Current
Model

Desired Model

User Transform

Consistency
Checks

Inconsistencies

Fig. 2. Consistency checking process for program metamorphosis
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p1
p0

pa

pc p2

pb

Fig. 3. Program metamorphosis. Black vertices represent well-formed programs; white
vertices represent ill-formed programs. Solid edges represent the application of PM
steps. Dashed lines group programs with equivalent behaviour.

two PM steps: from pa to p0, then to pb, since we may ‘pass through’ ill-formed
programs. With refactoring, we must always remain well-formed and in the same
equivalence class, so we have to take a longer route through p1 and p2 instead
(Section 3.1 gives a concrete example of this scenario). Worse, we can never hope
to reach pc from pa with refactoring, while there are many ways to get there with
program metamorphosis (Section 5.3 gives a concrete example of this scenario).

2.2 Recovery Plans

In addition to relying on the user to apply additional steps when the current
model does not match the desired model, a program metamorphosis system can
automatically attempt to recover consistency in several ways:

1. Disallow/retract PM steps that fail to preserve behaviour.
2. Heuristically apply supporting PM steps. For example, Schäfer et al. [13]

describe a particular technique that can be used to automatically fix name
capture after ‘Rename’. In some cases, heuristic changes may have undesired
side-effects; if so, the user must undo them later. In a similar vein, existing
refactoring tools, such as Eclipse, predict conflicts that will happen and
heuristically pre-apply other refactorings in order to avoid them.

3. Search for recovery plans. Recovery plans are short sequences of PM steps
that will satisfy the postconditions. The user can then pick which plan (if
any) she wants to enact. This approach falls within the realm of AI Planning;
to be practical, it requires heuristics to guide the planning process.
One of our earlier prototypes incorporated such facilities, though our initial
experiments suggested that scaling this approach is nontrivial. We expect to
explore this idea further in future work.

2.3 Challenges in Comparing Program Models

Program equivalence is undecidable; thus, we cannot be fully precise when com-
paring two program models. We can choose to err either on the side of being
pessimistic, i.e., making conservative worst-case assumptions, or on the side of
being optimistic. Both approaches have their merits: being pessimistic means
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that we will always be safe, while being optimistic means that we can be more
flexible. In Java we must be optimistic, at least in some respects; otherwise
dynamic class loading and reflection render most interesting refactorings impos-
sible.

Traditional refactorings have only two options: they can be pessimistic and
safe, or optimistic and flexible. Program metamorphosis adds a third option:
it can be pessimistic and safe, but also allow users to accept inconsistencies as
behavioural change and thereby also be flexible.

We show in Section 4 that at least in theory program metamorphosis is as
safe as refactorings; we show in Section 6 that our first prototype is also as safe
as refactorings.

3 Examples of Program Metamorphosis

In the following, we present three examples to illustrate our approach in prac-
tice. First, we illustrate transformations that temporarily change behaviour (Sec-
tion 3.1). Next, we consider transformations that temporarily render the program
ill-formed (Section 3.2). Finally, we examine the use of selective behaviour evo-
lution (Section 3.3).

3.1 Transformations through Non-equivalent Programs

Consider the program below and assume that the user wants to swap the names
of the totalValue instance variable and the total method parameter. In the fol-
lowing, we have labelled important declarations and variable references with
[·]n.

c l a s s Rece i p t {
[ i n t t o t a l V a l u e]1 ;

vo id s e tTo t a l ( [ i n t t o t a l ]2 ) {
[ t o t a l V a l u e ]3 = [ t o t a l ]4 ;

}
}

A rename refactoring using atomic preconditions would disallow starting the
transformation by renaming either totalValue to total or total to totalValue be-
cause in both cases the parameter (2) would capture the left-hand side of the
assignment (3), possibly changing the behaviour of the program. This transfor-
mation could be accomplished via refactorings, albeit awkwardly, by first renam-
ing one of the variables to a temporary name, renaming the other to the first
name, and then renaming the temporary name to the second name, but this
work-around requires three steps rather than two and forces the user to plan
ahead when refactoring.

PM can perform the transformation safely in two steps using postconditions.
It starts by creating the following program model, which captures the binding
of variable uses to declaration (here n → m indicates that the variable used at
n refers to the declaration at m).
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Desired Name Model 3 → 1, 4 → 2

The user can then apply a rename step to change the total field declaration
(1) to be called totalValue. PM now computes the model for the transformed
program and compares it to the desired model, reporting any inconsistencies
to the user. In this case, the rename has caused the reference on the left-hand
side of the assignment (3) to be captured: it previously referred to the the field
(declaration 1) but now refers to the parameter (declaration 2).

c l a s s Rece i p t {
[ i n t t o t a l V a l u e ]1 ;

vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l V a l u e ]3 = [ t o t a l V a l u e ]4 ;

}
}

Desired Name Model 3 → 1, 4 → 2

Current Name Model 3 → 2, 4 → 2

Inconsistencies 3 captured by 2

The program’s behaviour has now been changed: calling setTotal() will no longer
update the totalValue field. To ensure behaviour preservation, the user can either
revert the rename transformation, or apply another rename step to rename the
left-hand side totalValue (3) to total.

PM steps have access to the desired program model, which helps them in
transforming programs. In the case of rename, we use the mappings in the desired
model, rather than the current model, to decide which occurrences of totalValue
need to be changed. Thus renaming (3) to total updates both (3) and the field
declaration (1), since (3) is mapped to (1) in the desired model, while leaving
(2) unaffected:

c l a s s Rece i p t {
[ i n t t o t a l ]1 ;

vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;

}
}

Desired Name Model 3 → 1, 4 → 2

Current Name Model 3 → 1, 4 → 2

Inconsistencies None

The current model now matches the desired model. We have achieved the
desired transformation safely and naturally in only two steps, which would be
impossible with a traditional Rename refactoring since atomic preconditions
prohibit transforming through an intermediate stage that does not preserve be-
haviour.

3.2 Transformations through Ill-Formed Programs

Sometimes it makes sense to temporarily transform into a program that will not
even compile. Consider the case below where the user wants to move both the
setTotal() method and the total field from the Receipt class to the Bill class.

Preconditions, as in traditional refactorings, would disallow first moving the
method, since there is no total field in Bill, but would also prohibit first moving
the total field, since that would leave behind an unresolved reference to that field
in Receipt.
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c l a s s Rece i p t {
[ i n t t o t a l ]1 ;

vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;

}
}

pub l i c c l a s s B i l l { }

Desired Name Model 3 → 1, 4 → 2

By using postconditions and a program model, program metamorphosis avoids
this chicken-or-egg problem: the user can move either the field or the method
first, and then move the other. Suppose she moves setTotal() first: this step will
will result in an unknown name inconsistency and the compiler will complain
that it can’t resolve the reference to total (3).

c l a s s Rece i p t {
[ i n t t o t a l ]1 ;

}

c l a s s B i l l {
vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {

[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;
}

}

Desired Name Model 3 → 1, 4 → 2

Current Name Model 3 → ?, 4 → 2

Inconsistencies Unknown name ‘total’ at 3

The user can now apply a second move step to move the total field to Bill. After
this step, the current model matches the desired model and the program is again
well-formed.

c l a s s Rece i p t { }

c l a s s B i l l {
[ i n t t o t a l ]1 ;

vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;

}
}

Desired Name Model 3 → 1, 4 → 2

Current Name Model 3 → 1, 4 → 2

Inconsistencies None

3.3 Selective Behaviour Evolution

Refactorings are not, by definition, permitted to change program behaviour, but
sometimes this is desirable. Consider the case where the user wants to rename a
public class: technically this should not be allowed since there may be indepen-
dent code (such as a plugin) that relies on the existence of that class. If we care
about preserving our public APIs, we can extend the program model to account
for class visibility. Suppose, in the example below, that the user wants to change
the Bill class to be called Invoice instead.

pub l i c c l a s s B i l l {
[p r i v a t e i n t t o t a l ]1 ;

p r i v a t e vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;

}
}

Desired Visibility Model public → {Bill},
protected → {}
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After renaming Bill to Invoice, the current and desired models no longer match:

Desired Visibility Model public → {Bill}, protected → {}
Current Visibility Model public → {Invoice}, protected → {}
Inconsistencies Extra public class Invoice

Missing public class Bill

Program metamorphosis now reports two inconsistencies between the current
and desired program models. First, there is a new public class, Invoice, whose
presence could prevent a plugin that already defines its own Invoice class from
loading. This may be an acceptable behaviour change (after all, library imple-
menters frequently add classes in order to provide new features). Second, Bill
is no longer a public class; this change is more troubling since it would break
existing plugins that rely explicitly on the Bill functionality.

Rather than revert the transformation, with program metamorphosis the user
can selectively accept behavioural change by modifying the desired program
model to indicate that there should be a public class called Invoice. All future
program models will be compared against this new model.

Desired Visibility Model public → {Bill, Invoice}, protected → {}
Current Visibility Model public → {Invoice}, protected → {}
Inconsistencies Missing public class Bill

Even after modifying the desired model, the ‘Missing public class Bill’ incon-
sistency remains; the user could choose to clear this up by, say, introducing a
new version of Bill that delegates to an instance of Invoice.

Compare this user experience to that offered by traditional refactoring imple-
mentations: those typically require the user to make an all-or-nothing choice to
apply an unsafe transformation after warning her that it may change behaviour.
She must then determine how the program text was transformed, discern how
these alterations would change program behaviour, and decide if that new be-
haviour is acceptable. In contrast, program metamorphosis determines how the
program behaviour has been changed and allows the user to approve or reject
those behavioural changes individually.

3.4 Reusing Equivalence Checks

One benefit of using program models rather than the predictive analyses required
by preconditions is that they are often agnostic as to how the program is trans-
formed. The name model is constructed in the same way regardless of whether
a name could be captured via a rename, a field move, or a pull-up method. Sim-
ilarly, it doesn’t matter to the visibility model whether a class’s visibility was
changed because it was deleted or because it was renamed. This is advantageous
because as we add new PM steps, they can reuse the same program models and
get existing behaviour preservation checks “for free.” While refactorings can also
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sometimes exploit commonalities [7], it is much less obvious how source code for
predictive analyses can be re-used.

3.5 Summary

By using postconditions and program models to check for behavioural equiva-
lence, program metamorphosis allows users to safely compose sequences of trans-
formational steps that may not preserve behaviour individually. This approach
is more natural than that used by traditional refactorings because it does not
force users to plan ahead; instead, program metamorphosis notifies them when-
ever they have arrived at a non-equivalent or even ill-formed program and allows
them to continue transforming until the problem has been corrected. Further,
this approach enables an elegant mechanism of informing users about possible
behavioural changes and allows them to selectively choose which, if any, of those
changes are acceptable.

4 Program Metamorphosis and Refactoring

As we have seen, our PM steps are quite different from traditional refactorings,
even though they achieve similar goals. In this section, we investigate the rela-
tion between these two classes of transformations on a high level. We first take
refactorings apart and show how their components relate to the components of
a program metamorphosis system (Section 4.1), and then formally derive the
notion of a program metamorphosis system from the resulting building blocks
(Section 4.2). We establish some basic properties about this formalism (Sec-
tion 4.3) and finally ‘close the circle’ by showing how we can build refactorings
from PM steps (Section 4.4).

4.1 How Refactorings Work

Abstractly, a refactoring is a pair 〈P, t〉. P is a safety precondition that deter-
mines whether or not the refactoring is applicable to a given program. t trans-
forms the program.

Since refactorings should preserve behaviour, P should ensure that the pro-
gram has the same behaviour before and after applying t:

P (p) =⇒ �t(p)� = �p�

where �−� maps a program to its behaviour. Refactoring implementers then
typically implement P such that

P (p) =⇒ V (p) ∧ V (t(p)) ∧ (p ≡ t(p))

i.e., the precondition P (p) holds only if the input program p is well-formed
(V (p)) and the the resulting program will both be well-formed and (in some
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sense) equivalent to the input program (p ≡ t(p)); ideally, but not necessarily,
by exhibiting precisely the same behaviour (cf. Section 2.3).

If we examine existing refactoring implementations in more detail, we observe
that they implement both the validity predicates and the notion of equivalence
via an intermediate step, namely the construction of a model. This model is typi-
cally a set or slice of some relevant properties of the current program; refactoring
developers choose those properties so that they can check for well-formedness
and predict the outcome of the transformation. For example, Griswold [5] uses a
Program-Dependence Graph to determine relevant relationships that might be
affected by the refactoring, while Eclipse uses a comprehensive name and type
model provided by its JDT library1. Let us assume that we compute such a pro-
gram model m with a program analysis properties, i.e., m = properties(p). Then
the above implication becomes

P (p) =⇒ V (m) ∧ V (t′(m)) ∧ (m ≡ t′(m))

(modulo overloading of our predicate V and equivalence relation ≡). Here, t′ is
a simulation of the effect of transformation t on the program model:

properties ◦ t = t′ ◦ properties

i.e., we should arrive at the same model if we first compute the program model
and then apply t′ as if we first transform the program and then compute a
program model from the result.

In practice, refactoring implementors usually don’t need to make the modified
model t′(m) explicit, since they can use domain knowledge to (a) re-compute only
the relevant slice of the program model that might have been affected by the
transformation and (b) manually deforest [16] their code to directly check for
possible changes at the same time as computing the effect the transformation
would have on the model.

4.2 Towards Program Metamorphosis

Such optimisations lead to tightly integrated t′, V and (≡). But if we make all
three explicit, we obtain the building blocks for program metamorphosis.

To see this, recall our example from Section 3.2 of moving a method together
with the field the method depends on. Let tm be the move for the method and
tf the move for the field. Then we have that

V (t′m(p)) does NOT hold

i.e, our program is ill-formed after the first transformation step (because the
method can no longer see the field from its new location). However,

V (t′f ◦ t′m(p)) and, moreover, m ≡ t′f ◦ t′m(m)

i.e., the composition of both transformation steps preserves behaviour. Here,
we exploit that program well-formedness (V ) is independent of any preceding
transformations.
1 http://www.eclipse.org/jdt/overview.php
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4.3 Soundness and Derivation

In this section, we find that we can always construct a program metamorphosis
system from an existing set of refactorings if we can decompose the refactorings
appropriately, and that the resulting metamorphosis system gives the same con-
sistency promises as the original set of refactorings. We make this more concrete
in the following:

First, assume that properties : L → M computes a program model m ∈ M
from a program p ∈ L.

Definition 1. A program metamorphosis system is a tuple 〈M, properties,≡, V 〉
such that V (properties(p)) iff the program p is well-formed.

To simplify our exposition, we overload V (p) ⇐⇒ V (properties(p)) and p ≡
p′ ⇐⇒ properties(p) ≡ properties(p′).

As we have discussed previously, our analyses and equivalence relations can
be ‘pessimistic’ or ‘optimistic’. For pessimistic metamorphosis systems we can
utilise the above intuition to show a useful property regarding the strength of
our consistency promises:

Definition 2. A program metamorphosis system is sound wrt a language se-
mantics �−� iff, for all programs p, p′ ∈ L such that p′ can be reached from p
with program metamorphosis steps,

V (p) ∧ V (p′) ∧ (p ≡ p′) =⇒ �p� = �p′�

Conveniently, we can construct metamorphosis systems from refactoring precon-
ditions such that the metamorphosis systems are sound whenever the precondi-
tions are sound. Recall our earlier decomposition of preconditions:

P (p) ⇐⇒ V (p) ∧ V (t(p)) ∧ (p ≡ t(p))

If we set (≡) = (≡�−�), where p ≡�−� p′ ⇐⇒ �p� = �p′�, we have the
“perfect” predicate for any refactoring. This relation is undecidable, so we must
choose another. If we choose not to be conservative (i.e., if we do not guarantee
behaviour preservation), we may pick any relation. If we are conservative, we
must pick a (≡) ⊂ (≡�−�), i.e., a conservative approximation that distinguishes
some programs that would be semantically equivalent. We can then immediately
see the following:

Theorem 1. Given the decomposition of refactoring preconditions P1, . . . , Pn,
we can construct a metamorphosis system that is sound if P1, . . . , Pn are con-
servative, and allows at least as many transformations as P1, . . . , Pn allow.

Proof. Let (≡1), · · · , (≡n) be the equivalence relations used in P1, . . . , Pn. Then
we set

(≡) = (≡1) ∪ · · · ∪ (≡n)

All (≡i) are conservative approximations of (≡�−�), so (≡) inherits this property.
Furthermore, for any programs p1, p2 we have that p1 ≡i p2 (1 ≤ i ≤ n) implies
p1 ≡ p2.
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In the above, we did not specify how the program models and properties functions
of the various preconditions should be combined. In theory, we can always resort
to a straightforward cartesian product on the program model (as suggested by
our construction of the combined (≡)), but in practice this is wasteful: most pro-
gram models can be factored into common components (for example, practically
all refactorings need a name model, and most need a type model). The net result
of this observation is that the complexity and size of our model apparatus never
increases (and often decreases) relatively to the number of transformations every
time we merge two metamorphosis systems.

4.4 Back to Refactoring

Having separated refactorings into individual program transformations, equiva-
lence predicates and program validity checks, we can now reconstruct refactor-
ings as compositions of transformations with a post-hoc equivalence check, by
slightly adjusting our combination scheme from Section 2.1:

1. Record the initial program.
2. Apply all PM steps that make up the refactoring following appropriate

heuristics.
3. Determine whether the resulting program is both valid and equivalent to the

initial one; otherwise roll back.

In Sections 5.2 and 6.1 we give concrete examples that illustrate this idea.

5 Program Metamorphosis in Practice

To experiment with stateful program metamorphosis, we implemented a number
of prototype systems [11]. Below, we detail the most mature of our systems,
a stateful program metamorphosis system for Java that functions as a plugin
for the Eclipse IDE (version 3.2.2). We employ the same infrastructure that
Eclipse’s built-in refactorings use in order to make a comparison between the
two approaches meaningful.

5.1 Program Metamorphosis in Java

We first describe our prototype’s program model, our consistency promises,
and the PM steps it supports, followed by a discussion of our user interface
and a demonstration of the flexibility of our system compared to traditional
refactorings.

Program model. Our program model includes the results of name, Use-Def,
and Def-Use analyses. For name analysis, we use Eclipse’s built-in bindings mech-
anism to determine the declaration for each use of a name and store a mapping
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between names and declarations. For Def-Use and Use-Def chains, we calcu-
late intra-procedural reaching definitions and similarly store a mapping between
uses and definitions. We recompute the model when the program changes; our
model equivalence test reports an inconsistency whenever the newly computed
mappings do not match the original ones.

Consistency promises. Our prototype tracks whether variables, classes, type
variables and methods refer to the same entities as before metamorphosis. Since
it is impossible in general to determine the precise dynamic type of an expres-
sion, our system uses static types to resolve dispatch; thus, we are sometimes
inaccurate when determining whether two methods refer to the same piece of
functionality before and during metamorphosis. Our system may therefore con-
servatively issue inconsistencies where there are none; the user can review such
inconsistencies and override them as (potential) behavioural change.

We further track re-ordering among read and write operations in local vari-
ables, which can arise when we move code fragments via PM-Cut and PM-Paste
(see below).

PM steps. We have focussed on implementing small, composable transfor-
mations that, when combined, can match and exceed the expressive power of
common refactorings. To that end, our current prototype supports the following
PM steps:

– PM-Rename: change the name of a type or variable and its uses. This step
is similar to the ‘Rename’ refactoring except that it uses the current pro-
gram model to link names to declarations. Unlike the ‘Rename’ refactoring,
PM-Rename allows name changes that result in name captures or other in-
consistencies. Since this step does not alter the desired program model, we
lose no information when a renaming causes names to conflict.

– PM-Split : take a single assignment and convert it into a declaration and
initialiser (such as “x = y + 500;” −→ “int x = y + 500;”). Unlike the ‘Split
Temporary’ refactoring, this step does not introduce a new variable name
for the declaration.

– PM-Delegate: replace a method call on implicit this with the same method
call on another object or vice versa (e.g. “bar()” ↔ “foo.bar()”).

– PM-Cut : remove a statement, field, or method, along with its associated
program model fragment, and place it in a clipboard. There is no analogue
to PM-Cut in refactoring.

– PM-Paste: retrieve the statement, field, or method from the current clip-
board and paste it and the program model fragment into a class or method
body. There is no analogue to PM-Paste in refactoring.

Our PM steps act on both the AST and the program model. For example,
PM-Split replaces an assignment AST node with a variable declaration node,
but also updates the name mappings in the model so that each name that uses
the definition now maps to the new declaration.
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We have by no means implemented the complete set of useful PM steps.
However, as Kiezun et al. point out [6], the fraction of ‘Rename’ and ‘Move’
refactorings among all refactorings used in practice is very high, “perhaps as high
as 90% of all refactorings”. We chose to provide PM-Rename and PM-Cut/PM-
Paste to support these refactorings. PM-Cut and PM-Paste also permit great
flexibility in program evolution and demonstrate that program metamorphosis
has utility beyond mere refactoring. PM-Delegate followed from PM-Cut/PM-
Paste; it is very useful for clearing up inconsistencies when moving code between
different classes and methods. We implemented PM-Split to provide support for
the ‘Split Temporary’ refactoring and to illustrate that our notion of program
models scales to program properties other than name analysis mappings.

User interface. Our prototype attempts to mirror the user interface workflow
of Eclipse’s refactorings as much as possible. The user selects a portion of pro-
gram text in the main editor and then chooses a PM step from an Eclipse menu.
This brings up a modal “wizard” box that requests additional information (e.g.,
the new name in a PM-Rename step), if necessary. The user can then review a
list of textual changes that the PM step will perform and can choose to apply
or abort the step.

If the user chooses to apply the step, we ask Eclipse to perform these textual
changes. We then recompute the model and compare it to the desired model,
listing any differences as “Problem Markers” in the Eclipse pane for syntax
errors and warnings. The user may choose to accept any of these differences as a
change in program behaviour using Eclipse’s “Quick Fix” interface and/or apply
additional PM steps to resolve them.

In order to maintain our consistency guarantees, we must prevent the user
from free-form editing the program text. While it may sometimes be possible to
map arbitrary edits into appropriate program model updates (borrowing ideas
from [15]), we cannot expect such approaches to work in general. Consider a
program with name capture: if the user writes a new statement referencing the
captured name, it is unclear which declaration she means.

5.2 Flexibility

Using the five PM steps supported by our system (cf. Section 5.1) we found that
we can implement some refactorings completely, while offering partial support
for others. Our prototype supports seven standard refactorings [4]: ‘Rename’,
‘Pull Up Method’, ‘Pull Up Field’, ‘Push Down method’, ‘Push Down Field’
(all described in Section 6), as well as ‘Move Field’ and ‘Split Temporary’. Note
that the ‘Push Down’ refactorings are currently limited to pushing down to
a single class due to an implementation limitation (Section 6). We currently
have no facility for adding or removing classes; but if the user manually adds
empty classes and uninitialised fields before beginning program metamorphosis
and manually deletes other classes afterward, we can support two additional
refactorings, ‘Tease Apart Inheritance’ (Section 5.3) and ‘Extract Class’. For
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many other refactorings, such as ‘Move Method’, ‘Inline Method’, or ‘Replace
Inheritance With Delegation’, our system can provide significant support.

That we do not support all standard refactorings is a limitation of our proto-
type and not of program metamorphosis in general. With additional PM steps
(e.g. steps to introduce new classes, methods, and declarations) and a more so-
phisticated program model (e.g. global value numbering) we could fully support
more refactorings.

Our prototype puts a similar amount of effort into preserving program be-
haviour as existing refactoring tools do (Section 6). Like traditional refactorings,
we ensure that the final program is well-formed (largely relying on Eclipse’s ex-
isting facilities to do so), preserve unique references to methods, fields, and
variables, and make no attempt to maintain library APIs. Unlike Eclipse’s auto-
mated refactorings, we preserve the order of reads and writes to local variables.

5.3 Teasing Apart Inheritance

Fowler [4] lists a “big refactoring” called ‘Tease Apart Inheritance’, for cleaning
up class hierarchies that do not clearly separate responsibilities. This refactoring
is hard to fully support with traditional refactoring approaches but useful for
showcasing some of the strengths of our approach. For example, consider a class
“NetworkServer” with subclasses “TCPChatServer” and “UDPDataServer”: here
we have hardwired application protocols (Chat/Data) to transport protocols
(TCP/UDP).

Figure 4 illustrates this idea and the desired program evolution on an abstract
level: the upper part of the figure shows the class hierarchy of “N” and its children
“A×X” and “B×Y” before changing the program. Assume that the method “f”
in both “A×X” and “B×Y” has the following form:
vo id f ( ) { . . . g ( ) ; . . . }

Since our classes “A×X” and “B×Y” combine functionality that should be
handled orthogonally, we wish to tease them apart, by moving the different
implementations of method “g” into a separate inheritance hierarchy. Figure 4
again illustrates this idea: We extract “g” into separate classes “X” and “Y”

class N
f(), g()

class A×X
f(), g()

class B×Y
f(), g()

class N

s : S

f()

class S
g()

class A
f()

class B
f()

class X
g()

class Y
g()

Fig. 4. Teasing Apart Inheritance: we extract functionality “X” and “Y” into a new
class hierarchy underneath “S”. The refactored class “N” then aggregates an instance
of “S”.
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beneath a new, common (abstract) superclass “S” and insert a field “s” of type
“S” into class “N”.

With program metamorphosis, we can do this straightforwardly: we PM-Cut
and PM-Paste all relevant methods as shown in Figure 4, and then apply ‘PM-
Delegate’ to the calls to “g()” in “f()”:

vo id f ( ) { . . . s . g ( ) ; . . . }

Our system still gives us inconsistencies for “s.g()”, since we use the static type
of “s” to determine which “g” we are calling. We can address these inconsistencies
easily by accepting them as a potential behavioural change.

Our current prototype provides all relevant functionality for this process, ex-
cept for introducing the field “s”. Also, introducing and/or deleting classes during
metamorphosis currently invalidates our consistency promises, so we must add
new classes before and obsolete old classes afterwards.

We are not aware of any way to implement the above directly using only
traditional refactorings, and no refactoring engine we have experimented with
supports ‘Tease Apart Inheritance’ directly.

6 Prototype Correctness

As we have suggested in Sections 4 and 5.3, refactorings can always be embedded
into a program metamorphosis system, and often split into smaller, more flexible
parts (Section 5.2). Program metamorphosis is thus (in theory) intrinsically at
least as flexible as traditional refactoring; as we have seen in Section 5.2, it is
(in practice) more flexible. However, this flexibility might be a trade-off with
safety: despite our argument in Section 4.3 that it is possible to be as safe as
refactoring, it might not be practical to implement a program metamorphosis
system that indeed achieves a comparable level of safety.

To investigate this concern, we opted to compare the safety of our PM steps
with refactorings provided by an established refactoring system. Since PM steps
are more fine-grained than refactorings, we constructed three standard refac-
torings out of the metamorphosis steps provided by our prototype. There are
many ways to construct such refactorings in practice, if we include all possible
automatic fixups. We chose to implement all of our refactorings in a very straight-
forward manner: transform, check for inconsistencies, and abort if there are any
inconsistencies (simulating the effect of a refactoring precondition). While this
does not exploit the inherent flexibility of program metamorphosis, it is sufficient
to address our principal experimental concern, safety.

6.1 Experimental Setup

For our experiments, we paired our manually constructed refactorings with refac-
toring built into Eclipse 3.2.2 (since our system was developed for the Eclipse
3.2 infrastructure). Our refactorings were as follows:
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– Rename. Our ‘Rename’ refactoring simply performs a PM-Rename step,
but does not attempt to avoid or resolve any name capture. We configured
Eclipse’s Rename to rename all other relevant identifiers, including identifiers
of overriding and overridden methods in super- and subclasses, which our
renaming does not do implicitly. Eclipse also provides a feature that will
rename occurrences of a class name in a string or external text file. This
option is meant to address uses of reflection, wherein Java may instantiate
a class, invoke a method, or read from or write to a variable designated by a
string value. Since this mechanism is unsafe in practice, we left it disabled.

– Pull Up Field. Our ‘Pull Up Field’ refactoring moves a field to a superclass
(PM-Cut followed by PM-Paste), then iterates over all subclasses of the
target class to identify fields of the same name. For each such field it tests if
the initialiser is identical to the initialiser of the initially selected field, and,
if so, deletes the field in the subclass (per PM-Cut).
For Eclipse’s ‘Pull Up Field’, we instructed Eclipse to also pull up dependent
methods and fields, if necessary (in practice, this should only be needed if
those entities are used in the field’s initialiser.)

– Pull Up Method. Our Pull Up Method refactoring implementation is anal-
ogous to Pull Up Field, except that we also determine all methods and fields
transitively referenced in the method and pull those up afterwards.
We configured Eclipse’s Pull Up Method to also move all dependent entities.

We then instructed our system to randomly locate opportunities for apply-
ing such refactorings in a given program. Our mechanisms for choosing such
opportunities were as follows:

– Rename: For every ‘Rename’, we identified a possibly renameable entity (a
‘SimpleName’, in Eclipse JDT nomenclature) anywhere in the program. We
skipped package names because of limitations of our testing infrastructure,
but included class names and names of entities external to the program (such
as the ‘toString()’ in java.lang.Object).
We then decided a new name as follows: with a probability of 0.5 we chose a
fresh name, otherwise we chose a random name from the same compilation
unit. These names were chosen the same way that renameable entities were
chosen; in particular, names that occur frequently in a class had a higher
probability of being chosen. If the new name was identical to the original
name, we instead chose a fresh name.

– Pull Up: For pulling up, we identified pairs of types (interfaces, abstract
classes, concrete classes) in a nontrivial supertype relationship (i.e., the
classes were not identical) together with a method or field that could be
moved from one type to the other, as required by the specific refactoring.

To test the correctness of a refactoring, we tested for whether the refactoring
aborted, succeeded, or failed. We say that a refactoring aborted if the refactoring
indicated that it was not applicable / would change behaviour. In traditional
refactoring terms, this is usually expressed as the precondition failing. We say
that a refactoring succeeded if the refactoring applied, and the program was both
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statically well-formed and dynamically behaved the same as before, as far as we
could tell (see below). We say that a refactoring failed if the refactoring applied
(i.e., the precondition did not fail) but the resulting program was statically ill-
formed or did not preserve its dynamic behaviour.

To determine whether dynamic behaviour had changed, we ran the unit test
suite shipped with the programs in question. If any unit test failed, we assumed
that dynamic behaviour had changed in an unintended way and that the refac-
toring had therefore failed.

We also automatically asserted that all non–aborted transformations had in-
deed modified the program and manually sampled the results to ensure that the
transformations were reasonably close to our expectations.

Our specific approaches for determining refactoring results were as follows:

– Eclipse refactoring: For Eclipse’s refactoring, we attempted to apply the
refactoring (using the refactoring scripting interface) atomically. If the at-
tempt failed (usually because a precondition failed), we marked the refactor-
ing as aborted. Otherwise we ran Eclipse’s own static checks on the program
and any unit tests. If either the static checks or the unit tests failed, the
refactoring failed, otherwise it succeeded.

– Program metamorphosis: For our own refactorings, we applied all rele-
vant transformations (usually several) in sequence, disregarding any incon-
sistencies until the end. After we had finished transforming, we ran our own
inconsistency checks as well as Eclipse’s static checks. If either indicated
an error or inconsistency, we aborted. Otherwise we ran the unit tests to
determine whether the refactoring had failed or succeeded.

Note that we interpreted the results of Eclipse’s own correctness checks dif-
ferently for program metamorphosis and traditional Refactoring. This reflects
the program metamorphosis philosophy and highlights an advantage of our ap-
proach: by definition, a traditional refactoring must preserve behaviour if its
preconditions trigger – in particular, it must produce a well-formed program.
Program metamorphosis, on the other hand, need only be able to determine
whether the program is well-formed or not after the fact. As we observed with
Eclipse, this allows us to exploit traditional IDE correctness checks to augment
our own checks for program model equivalence (Section 5.1).

6.2 Results

We ran our experiments against the following programs:

– Functional Analyzer [10], a flexible tool for fast analysis of trace information
and similar numerical data, developed by one of the authors (7714 loc2).

– Apache Commons: Discovery 0.4, a library for detecting and managing plu-
gins, developed by the free Apache Commons project (2543 loc).

2 Lines of non-comment non-whitespace source code, computed with sloccount.
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– Apache Commons: Validator 1.3.1, a general-purpose validation library for
structured data, particularly XML (8874 loc).

– Apache Commons: Chain 0.4, a chain-of-responsibility implementation, again
part of the Apache Commons project (8010 loc).

– Apache Commons: Digester 1.8, a configurable XML configuration file inter-
preter (12342 loc).

We chose the above programs by availability and presence of substantial unit
test suites.

For each experiment, we configured our system to perform 200 random trans-
formations for each refactoring. Table 5 summarises our results.

As we can see from our results, our (fairly straightforwardly) PM-scripted
refactorings are competitive with Eclipse’s. In the majority of the cases we
tested, both systems behaved equivalently. Where they didn’t, the differences
were mostly due to Eclipse being more flexible by providing additional fixups
or Eclipse being less conservative (particularly when pulling up) and thus being
simultaneously more flexible and more error-prone. For ‘Pull Up’, our primitive
dependency analysis was sometimes fooled, most commonly by this references,
resulting in additional aborts. In all instances that that we observed, a human
programmer, driven by our inconsistencies, would have been able to identify
and rectify the situation straightforwardly. In other instances, less-than-ideal
interfacing between our module and the Eclipse parser prevented our proto-
type from matching up code from before and after a transformation (partic-
ularly in Rename). With respect to the focus of our tests, we observed that
PM-scripted refactorings were safer than Eclipse’s traditional refactorings: aver-
aging over all of our tests, the cases in which the PM-scripted refactorings failed
and Eclipse’s refactorings succeeded or aborted made up 0.1%, while the cases
in which Eclipse’s refactorings failed and the PM-scripted refactorings aborted
or succeeded made up 24.4% of all tests.

– Pull Up Field. Pulling up, Eclipse attempts to merge fields from all sub-
classes, whether or not those fields have the same initialisers. This frequently
introduces bugs, not all of which are caught by unit tests. If the common
fields’ types mismatch, Eclipse aborts, while our simple pull-up heuristic
skips the fields if their initialisers differ, accounting for a few cases in which
our PM-scripted refactoring is more flexible. In other cases, Eclipse implic-
itly changed field visibility (from private to protected) if needed, which was
not part of our PM scripting.

– Pull Up Method. For ‘Pull Up Method’, both refactoring implementa-
tions failed consistently when pulling up unit test methods into superclasses
for which not all subclasses satisfied the test, in the Commons Validator.
When pulling up methods, Eclipse again suffered from its implicit merg-
ing of fields when pulling up dependent entities, while our PM-scripted
refactoring’s refusal to implicitly change visibility accounted for much of
its lack of flexibility. Eclipse’s ‘Pull Up Method’ further changes requests
to pull up a method into an interface into a request to add a method
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Identical More Flexible More Failures
Refactoring abort success failure total PM Eclipse PM Eclipse

Pull Up Field

Functional Analyzer 9.0% 4.0% 0.0% 13.0% 2.0% 7.0% 0.0% 80.0%

Commons Discovery 13.5% 9.0% 0.0% 22.5% 0.0% 37.0% 0.0% 40.5%

Commons Validator 31.5% 4.5% 0.0% 36.0% 18.5% 32.5% 0.0% 31.5%

Commons Chain 16.5% 0.0% 0.0% 16.5% 1.5% 40.0% 0.0% 43.5%

Commons Digester 3.0% 19.0% 0.0% 22.0% 0.0% 43.0% 0.0% 35.0%

average 14.7% 7.3% 0.0% 22.0% 4.4% 31.9% 0.0% 46.1%

Pull Up Method

Functional Analyzer 55.0% 3.0% 0.0% 58.0% 0.0% 20.5% 0.0% 21.5%

Commons Discovery 51.5% 0.0% 0.0% 51.5% 0.0% 20.0% 0.0% 28.5%

Commons Validator 46.0% 29.0% 7.5% 82.5% 0.0% 9.0% 0.0% 8.5%

Commons Chain 51.5% 0.5% 0.0% 52.0% 1.5% 5.0% 0.0% 42.5%

Commons Chain 46.0% 4.5% 2.5% 53.0% 0.0% 19.5% 0.0% 27.5%

average 50.0% 7.4% 2.0% 59.4% 0.3% 14.8% 0.0% 25.7%

Rename

Functional Analyzer 17.0% 60.5% 0.5% 78.0% 0.0% 21.5% 0.0% 0.5%

Commons Discovery 29.0% 59.5% 2.0% 90.5% 0.0% 9.0% 0.0% 0.5%

Commons Validator 30.5% 60.5% 1.5% 92.5% 0.5% 5.5% 0.5% 1.5%

Commons Chain 43.0% 50.0% 1.0% 94.0% 0.5% 2.0% 0.5% 3.0%

Commons Chain 29.0% 59.0% 1.0% 89.0% 0.5% 9.5% 0.5% 1.0%

average 29.7% 57.9% 1.2% 88.8% 0.3% 9.5% 0.3% 1.3%

Fig. 5. Benchmarking results for Eclipse’s refactoring suite (Eclipse) and refactoring
scripted from program metamorphosis steps (PM). Identical identifies cases in which
both tools behaved equivalently. More Flexible identifies cases in which one tool
permitted a transformation while the other tool aborted that transformation. More
Failures identifies cases in which one tool caused behavioural change. Note that Iden-
tical(total), More Flexible and More Failures sometimes add up to more than
100% in cases where both tools performed the transformation but one tool produced an
incorrect result (we counted this as the correct tool being both safer and more flexible).
Considering cases where Eclipse failed, this accounts for all of the cases in which PM
was more flexible in ‘Pull Up Field’, as well as for 1% of the ‘Pull Up Method’ cases
in the Commons Chain. Considering cases where PM-scripted refactoring failed, this
accounted for two cases in ‘Rename’ (cf. our discussion).

declaration of the same interface to the interface, again adding to its flexibil-
ity (an actual ‘Pull Up Method’ into an interface is only possible for abstract
methods).

– Rename. For renaming, our system primarily suffered from two limitations:
first, our prototype will not refactor constructors in some cases, and sec-
ondly, we do not enforce the override status of overriding methods in sub-
classes.
Refactoring constructors requires renaming the class and all related con-
structors. A limitation of the Eclipse parser that we have not yet addressed
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sometimes prohibits this in classes with multiple constructors; this issue ac-
counts for 3% of the aborted rename attempts (total) in the Functional
Analyzer, 10.5% in Commons Discovery, 13% in the Commons Validator,
16.5% in the Commons Chain package, and 12% in the Commons Digester.
Note that these failures also account for some of its increased safety in
the presence of reflection. Since reflection allows classes to be looked up
by names read from external files, it is notoriously hard to support in any
kind of refactoring process. (All of our test cases utilise reflection to some
extent.)
Another current limitation is that our inconsistency checks do not enforce
the overriding status of methods when renaming methods of a subclass. In
the presence of an @Override annotation, this usually leads to static errors,
but in two cases it allowed the PM-scripted refactoring to introduce a dy-
namic failure. We expect to extend our program model to add either explicit
‘method-X-overrides-method-Y’ information or global value numbering to
increase the strength of our correctness promises overall.

We also experimented with ‘Push Down Method’ and ‘Push Down Field’. Due
to an unresolved issue in our prototype, our ‘Push Down’ operations are currently
overly conservative when pushing to multiple subclasses: copying (rather than
cutting and pasting) generates ‘fresh’ methods and fields, resulting in spurious
inconsistency warnings that cannot be accepted as behavioural change. Con-
versely, Eclipse’s ‘Push Down’ refactoring cannot be constrained to push down
to one particular subclass: instead, it always pushes down to all immediate sub-
classes, though users can interactively choose to suppress parts of the textual
diff after the refactoring has terminated. We could thus not directly compare the
two sets of functionality, though we have no reason to assume that a corrected
PM-scripted ‘Push Down’ would ultimately exhibit correctness or performance
characteristics different from the PM-scripted ‘Pull Up’.

While our results overall indicate that our scripted refactorings are less flexible
than Eclipse’s refactorings, we note the following:

– Our prototype is, on average, safer than Eclipse’s refactorings.
– Our prototype permits us to quickly script refactorings that are as flexible

as Eclipse’s refactorings in most of the cases we examined, without including
any automated fixups or complex analyses as part of the scripting.

6.3 Practicality

One goal of our Java prototype is to examine whether program metamorphosis
is practical to implement and useful for evolving real-world programs. Here, we
evaluate our prototype in terms of code size and resource consumption.

The main component of the memory cost for program metamorphosis is
the need to keep an AST of the entire program in memory at all times. Our
prototype requires two copies of the full AST in memory during equivalence
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checking. Using the the Eclipse JDT’s built-in memory queries, we have de-
termined that a single instance of the Functional Analyzer AST requires ap-
proximately 4MB of memory, which we consider to be acceptable on modern
machines.

Our prototype (excluding unit tests) consists of 3829 lines of Java across 53
files and relies significantly on Eclipse’s infrastructure to perform program anal-
ysis and to interact with the user. This shows that a useful set of PM steps can
be implemented in a relatively small amount of code and that PM can be com-
patible with existing program analysis frameworks and program evolution tools.
For this reason, we have favoured ease of implementation and tight integration
with Eclipse over speed. For example, we used the JDT’s built-in name analysis
even though it requires re-parsing to get updated analysis. We could reduce our
runtime overhead by comparing only altered parts of the program and recom-
puting program models lazily. This would decrease execution times and memory
usage at the cost of added complexity.

To ensure that our prototype is practical for interactive use, we measured
execution times for the correctness tests from Section 6. We summarise these
results in Figure 6. All experiments were run on a 2.4GHz Intel Core 2 Quad
with 4GB of RAM, running Java 1.6.0 03-b05 on Ubuntu 7.1 with
Linux 2.6.24.

Eclipse PM
Refactoring Program min avg max min avg max

Pull Up Field

Functional Analyzer 0.11s 0.32s 1.15s 2.05s 2.29s 2.81s
Commons Discovery 0.13s 0.24s 0.52s 0.86s 0.97s 1.37s
Commons Validator 0.18s 0.45s 0.96s 2.70s 3.07s 4.55s
Commons Chains 0.36s 0.47s 0.83s 2.39s 2.49s 2.64s
Commons Digester 0.15s 0.31s 1.51s 3.09s 3.44s 7.87s
total 0.11s 0.36s 1.51s 0.86s 2.45s 7.87s

Pull Up Method

Functional Analyzer 0.12s 0.32s 0.83s 1.90s 2.55s 3.35s
Commons Discovery 0.14s 0.32s 2.95s n/a n/a n/a
Commons Validator 0.22s 0.47s 1.93s 2.73s 3.79s 11.65s
Commons Chains 0.39s 0.64s 1.74s 2.18s 2.38s 2.59s
Commons Digester 0.19s 0.55s 1.62s 3.09s 4.83s 10.43s
total 0.12s 0.46s 2.95s 1.90s 3.39s 11.65s

Rename

Functional Analyzer 0.09s 0.34s 2.71s 1.10s 1.36s 2.92s
Commons Discovery 0.02s 0.15s 0.85s 0.43s 0.53s 1.53s
Commons Validator 0.06s 0.20s 0.69s 1.46s 1.71s 1.98s
Commons Chains 0.06s 0.26s 0.98s 1.14s 1.35s 2.12s
Commons Digester 0.12s 0.28s 1.66s 1.72s 1.95s 2.58s
total 0.02s 0.25s 2.71s 0.43s 1.38s 2.92s

Fig. 6. Minimum, average, and maximum refactoring execution times, for both
Eclipse’s built-in refactorings and program metamorphosis
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For program metamorphosis, the execution time is the sum of the execution
times of all intermediate steps. The total line gives the overall minimum, max-
imum, and average of the averages (as summarised per program).

Our unoptimised prototype executes most transformation steps well within
the time limits of what we can expect from an interactive tool. While some
transformations may take more than two seconds to complete overall, note that
both of our pull-up refactorings are multi-step transformations in program meta-
morphosis, as we explained in Section 6; except for two Renames (one in the
Functional Analyzer and one in the Commons Digester), no individual transfor-
mation execution time was more than 2.5s per PM step (including re-parsing
and AST re-matching for the entire program after each step).

7 Related Work

There is a large body of related work on refactoring (cf. [9] for a survey), including
many implementations, such as HaRe [8] and Eclipse [14]. The observation that
more information than immediately visible to the eye is needed to perform cor-
rect transformations was already employed by Griswold [5], who used Program
Dependence Graphs [3] for this purpose. These systems consider refactorings
to be individual macroscopic transformations. Some other program transforma-
tion approaches [1, 17] look specifically for atomic transformations, but remain
entirely semantics-preserving.

Composing transformations to achieve a certain goal is the central theme of
AI Planning (cf. [12] for a high-level overview). The composition of refactorings
in particular has also been considered [7], but only for traditional approaches to
refactoring, without allowing intermediate invalidation of correctness properties.

8 Conclusion

We have presented a novel approach to program evolution in which users inter-
actively combine small program transformations, PM steps, while a consistency
checking mechanism tracks behavioural change that they introduce. As part of
this process, users can choose to explicitly alter behaviour rather than to preserve
it. Since our approach differs from refactoring (a) by allowing users to transform
more liberally and (b) by permitting explicit behavioural change, we give it a
different name, program metamorphosis. We have further described an Eclipse
plugin that implements program metamorphosis for Java. Our experimental re-
sults suggest that program metamorphosis is a practical and viable approach for
supplanting traditional machine support for refactoring.
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