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Foreword

Welcome to the proceedings of ECOOP 2009! Thanks to the local organizers for
working hard on arranging the conference — with the hard work they put in,
it was a great success. Thanks to Sophia Drossopoulou for her dedicated work
as PC Chair in assembling a fine scientific program including forward-looking
keynotes, and for her efforts to reduce the environmental impact of the PC
meeting by replacing a physical meeting with a virtual meeting. I would also
like to thank James Noble for taking the time and effort to write up last year’s
banquet speech so that it could be included in this year’s proceedings.

One of the strong features of ECOOP is the two days of workshops preceding
the main conference that allows intense interaction between participants. Thanks
to all workshop organizers.

Last year’s successful summer school tutorials were followed up this year with
seven interesting tutorials. Thanks to the organizers and speakers.

This year’s Dahl-Nygaard award honored yet another pioneer in the field,
namely, David Ungar for his contributions including Self. I appreciate his efforts
in providing us with an excellent award talk.

The world is changing and so is ECOOP. Please contemplate my short note
on the following pages entitled On Future Trends for ECOOP.

April 2009 Eric Jul



On Future Trends for ECOOP

The world is changing and so is the European Conference on Object-Oriented
Programming (ECOOP) series. ECOOP 1998 had more than 700 attendees, ma-
ny workshops, a large tutorial program, and many exhibitors. Since then many
things have changed starting with the .com bust, which meant a reduction in
participation from industry and consequently also a reduction in tutorial atten-
dance and exhibits. The past decade has also seen a number of more specialized
conferences in the OO area focusing on specific topics, e.g., Java, so it is per-
haps natural that some move on from ECOOP to such conferences on subtopics
within OO, while ECOOP still covers new, and less established OO ideas of the
future.

These trends have changed ECOOP from a mix of industry and academia to
mostly academia, resulting in lower attendance, significantly reduced exhibits,
and a change in tutorials from fully paid introductory tutorials to an academic
program of summer school tutorials.

Since the turn of the century, there has also been a slow drop in the num-
ber of workshops, which, besides the strong papers in the main conference, has
been one of the hallmarks of ECOOP. A strong workshop program is important
in attracting strong academics who are not only trendsetters, but also active
participants willing to have lively discussions on their views.

The changing conditions for ECOOP can and should lead to changes in the
conference: I encourage those of you interested in developing ECOOP to look
to the future: which parts of ECOOP should be strengthened? Which should
be changed? The introduction of summer school tutorials is an example of a
successful change — one that has been appreciated by attendees. Perhaps the
change from a larger conference to a smaller, more academic conference with in-
tense workshops and lively summer school tutorials provides for a more intimate
conference with ample oppertunity for academic interchange.

Naturally, the AITO members continually assess the focus and direction of
each ECOOP. The AITO General Assembly meeting, which traditionally is held
the evening before the main conference opens, includes a discussion on the up-
coming ECOOP conferences. We appreciate all input from ECOOP attendees,
so I will conclude by encouraging you to pass on your thoughts to any AITO
member.

April 2009 Eric Jul



Preface

It is both an honor and a pleasure to be presenting the proceedings of the
23rd European Conference on Object-Oriented Programming (ECOOP 2009).
This year’s ECOOP was held in Genoa, Italy; it had a technical program of 25
research papers on a broad range of topics, accompanied by 14 workshops and
seven summer school tutorials.

Each of the 117 submissions received at least four (and as many as seven)
reviews. For PC papers five reviews were required, and higher standards applied.
As in the previous two years, the authors were given the opportunity to write
short responses after reading the preliminary reviews.

After that, instead of the traditional physical meeting which would have re-
sulted in around 37 tonnes of CO2, the PC had two weeks of intensive deliberati-
ons over CyberChairPRO and email, during which further reviews were written,
and papers were hotly debated and deeply scrutinized. Our virtual meeting was
complemented by four long conference calls.

Many PC members had mixed feelings about this mode of deliberarion, and
I am particularly grateful to those who joined the PC despite their skepticism,
and to those who had to be awake at 3:00 in the morning to participate in the
calls. Although the fun of a physical meeting cannot be matched by conference
calls, I firmly believe that ECOOP’s high quality of selection was maintained.
Consequently, I hope that future chairs will adopt and improve virtual meetings.

The PC selected 25 papers, presented in this volume, and awarded two best
paper prizes: one to Davide Ancona and Giovanni Lagorio, for “Coinductive
Type Systems for Object-Oriented Languages,”and the other to Einar Høst and
Bjarte Østvold for “Debugging Method Names.”

David Ungar was this year’s recipient of the Dahl-Nygaard award, and Wil-
liam Cook gave the banquet speech. The volume also includes summaries of the
two ECOOP invited talks, namely “Classes, Jim, but not as we know them - Ty-
pe Classes in Haskell: what, why, and whither,” given by Simon Peyton Jones,
and “Java on 1000 Cores: Tales of Hardware/Software Co-design” given by Cliff
Click. The volume concludes with“The Myths of Object-Orientation,”last year’s
banquet speech by James Noble, prefaced by Jan Vitek, last year’s PC chair.

I thank the authors of all submitted papers, and the external referees who
provided excellent reviews. I am grateful to AITO and in particular to Eric Jul for
their trust and their advice when needed, to Richard van de Stadt for helping with
and customizing CyberChairPRO to the special needs of this PC, and to the local
organizers – especially Elena Zucca and Davide Ancona – for valuable input to all
issues related to the program. I am particularly obliged to the PC members for
their hard work, their enthusiastic debates, their support throughout the process,
and their commitment to make a success of ECOOP 2009.

April 2009 Sophia Drossopoulou
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Konstantinos Stroggylos
Philippe Suter
Daniel Tang
Olivier Tardieu
Ran Tavory
Ewan Tempero
Tachio Terauchi
Cheng Thao
Igor Tsvetkov
Shmuel Tyszberowicz
Naoyasu Ubayashi
Giora Unger
Peter Van Roy
Michalis Vazirgiannis
Mandana Vaziri
Toon Verwaest
Mirko Viroli
Eran Werner
Nathan Weston
Ben Wiedermann
Victor Winter
Tobias Wrigstad
Lei Zhao
Tian Zhao
Lukasz Ziarek
Steffen Zschaler



Table of Contents

Keynote 1

Classes, Jim, But Not as We Know Them – Type Classes in Haskell:
What, Why, and Whither . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Simon Peyton Jones

Types, Frameworks and Modelling

Coinductive Type Systems for Object-Oriented Languages . . . . . . . . . . . . 2
Davide Ancona and Giovanni Lagorio

Checking Framework Interactions with Relationships . . . . . . . . . . . . . . . . . 27
Ciera Jaspan and Jonathan Aldrich

COPE - Automating Coupled Evolution of Metamodels and Models . . . . 52
Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens

Aliasing and Transactions

Making Sense of Large Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Nick Mitchell, Edith Schonberg, and Gary Sevitsky

Scaling CFL-Reachability-Based Points-To Analysis Using
Context-Sensitive Must-Not-Alias Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Guoqing Xu, Atanas Rountev, and Manu Sridharan

NePaLTM: Design and Implementation of Nested Parallelism for
Transactional Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Haris Volos, Adam Welc, Ali-Reza Adl-Tabatabai,
Tatiana Shpeisman, Xinmin Tian, and Ravi Narayanaswamy

Access Control and Verification

Implicit Dynamic Frames: Combining Dynamic Frames and Separation
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Jan Smans, Bart Jacobs, and Frank Piessens

Fine-Grained Access Control with Object-Sensitive Roles . . . . . . . . . . . . . 173
Jeffrey Fischer, Daniel Marino, Rupak Majumdar, and
Todd Millstein

Practical API Protocol Checking with Access Permissions . . . . . . . . . . . . . 195
Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich



XVI Table of Contents

Modularity

Adding State and Visibility Control to Traits Using Lexical Nesting . . . . 220
Tom Van Cutsem, Alexandre Bergel, Stéphane Ducasse, and
Wolfgang De Meuter

Featherweight Jigsaw: A Minimal Core Calculus for Modular
Composition of Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Giovanni Lagorio, Marco Servetto, and Elena Zucca

Modular Visitor Components: A Practical Solution to the Expression
Families Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Bruno C.d.S. Oliveira

Mining and Extracting

Debugging Method Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Einar W. Høst and Bjarte M. Østvold

MAPO: Mining and Recommending API Usage Patterns . . . . . . . . . . . . . . 318
Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei

Supporting Framework Use via Automatically Extracted
Concept-Implementation Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Abbas Heydarnoori, Krzysztof Czarnecki, and
Thiago Tonelli Bartolomei

Refactoring

Stepping Stones over the Refactoring Rubicon: Lightweight Language
Extensions to Easily Realise Refactorings . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
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Classes, Jim, But Not as We Know Them —
Type Classes in Haskell: What, Why, and

Whither

Simon Peyton Jones

Microsoft Research

Haskell is now quite widely used, but its most important contributions are the
ideas that it embodies. In this talk I will focus on one of these ideas, namely type
classes, with a few anecdotes and reflections along the way about the process of
developing the language.

Type classes are probably Haskell’s most distinctive feature. The original idea
is very neat and, better still, it led to a long series of subsequent generalisa-
tions and innovations. Indeed, although the language is now nineteen years old,
Haskell’s type system is still in a state of furious development. For example, I
am involved in adding type-level functions to Haskell, as I will briefly describe.

I will explain what type classes are, how they differ from the classes of main-
stream object oriented languages, why I think they are so cool, and what the
hot topics are. I’ll give plenty of examples, so you don’t need to already know
Haskell.

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Coinductive Type Systems for Object-Oriented
Languages�

Davide Ancona and Giovanni Lagorio

DISI, Univ. of Genova, Italy
{davide,lagorio}@disi.unige.it

Abstract. We propose a novel approach based on coinductive logic to
specify type systems of programming languages.

The approach consists in encoding programs in Horn formulas which
are interpreted w.r.t. their coinductive Herbrand model.

We illustrate the approach by first specifying a standard type system
for a small object-oriented language similar to Featherweight Java. Then
we define an idealized type system for a variant of the language where
type annotations can be omitted. The type system involves infinite terms
and proof trees not representable in a finite way, thus providing a the-
oretical limit to type inference of object-oriented programs, since only
sound approximations of the system can be implemented.

Approximation is naturally captured by the notions of subtyping and
subsumption; indeed, rather than increasing the expressive power of the
system, as it usually happens, here subtyping is needed for approximating
infinite non regular types and proof trees with regular ones.

1 Introduction

In the context of object-oriented programming, many solutions have been pro-
posed to the problem of type inference [17,16,1,21,6,20,12], but the increasing
interest in dynamic object-oriented languages is asking for ever more precise and
efficient type inference algorithms [3,12].

Two important features which should be supported by type inference are para-
metric and data polymorphism [1]; the former allows invocation of a method on
arguments of unrelated types, the latter allows assignment of values of unrelated
types to a field. While most proposed solutions support parametric polymor-
phism well, only few inference algorithms are able to deal properly with data
polymorphism; such algorithms, however, turn out to be quite complex and can-
not be easily specified in terms of a type system.

In this paper we propose a novel approach based on coinductive logic to spec-
ify type systems of programming languages. The approach consists in encoding
programs in Horn formulas which are interpreted w.r.t. their coinductive Her-
brand model. This is made possible by the notion of type constraint defined in

� This work has been partially supported by MIUR EOS DUE - Extensible Object
Systems for Dynamic and Unpredictable Environments.

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 2–26, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Coinductive Type Systems for Object-Oriented Languages 3

previous work on principal typing of Java-like languages [7,4] and is a generaliza-
tion of the algorithm presented in [6]. In contrast with other approaches based
on a unique kind of subtyping constraint, the encoding of a program into a Horn
formula is allowed by constraints which are atoms (that is, atomic formulas)
of different forms, each one corresponding to a kind of compound expression of
the language. Coinduction arises naturally at two different levels: at the level of
terms, since recursive types are infinite terms, and at the level of proofs, since
recursive methods and the use of infinite types require proofs to be infinite as
well.

The paper is structured as follows: In Section 2 we provide a first example by
formalizing a type system for a fully annotated language similar to Featherweight
Java (FJ) [14]; the example is intended as a way for gently introducing the main
concepts of the approach and to prepare the reader to the idealized type system
presented in Section 3 and formalized in Section 4. In Section 5 the idealized type
system is extended with subtyping and subsumption, and soundness is claimed
(some proofs are sketched in Appendix B). Finally, conclusion and comments on
further work can be found in Section 6.

2 A Simple Example

In this section we provide a first example by formalizing a type system for a
fully annotated language similar to Featherweight Java (FJ) [14]. This section
is mainly intended as a way for introducing the main concepts of the approach
and to prepare the reader to the more advanced type system defined in the next
sections; also, it shows the approach can be used for defining different kinds of
type systems.

2.1 Syntax and Operational Semantics

The syntax of the languages is defined in Figure 1. Syntactic assumptions listed in
the figure have to be verified before transforming a program into a Horn formula.
We use bars for denoting sequences: for instance, em denotes e1, . . . , em, τ xn

denotes τ1 x1, . . . , τn xn, and so on.
We assume countably infinite sets of class names c, method names m, field

names f , and parameter names x . A program consists of a sequence of class
declarations and a main expression from which the computation starts. A class
declaration consists of the name of the declared class and of its direct superclass
(hence, only single inheritance is supported), a sequence of field declarations, a
constructor declaration, and a sequence of method declarations. We assume a
predefined class Object , which is the root of the inheritance tree and contains
no fields, no methods and a constructor with no parameters. A field declara-
tion consists of a type annotation and a field name. A constructor declaration
consists of the name of the class where the constructor is declared, a sequence
of parameters with their type annotations, and the body, which consists of an
invocation of the superclass constructor and a sequence of field initializations,



4 D. Ancona and G. Lagorio

prog ::= cd
n

e

cd ::= class c1 extends c2 { fd
n

cn md
m } (c1 �= Object)

fd ::= τ f ;
cn ::= c(τ xn) {super(em); f = e ′;

k}
md ::= τ0 m(τ xn) {e}

e ::= new c(en) | x | e.f | e0.m(en) | if (e) e1 else e2 | false | true
τ ::= c | bool
v ::= new c(vn) | false | true

Assumptions: n, m, k ≥ 0, inheritance is acyclic, names of declared classes in a program,
methods and fields in a class, and parameters in a method are distinct.

Fig. 1. Syntax of OO programs

one for each field declared in the class.1 A method declaration consists of a re-
turn type annotation, a method name, a sequence of parameters with their type
annotations, and an expression (the method body).

Expressions are standard; even though the conditional expression, and the
constants true and false could be encoded in the language, we have introduced
them for making clearer the connection with union types in Section 3.2. For
making the examples easier to read, we will also use the primitive type of integers,
but leave it out in the formal treatment, which would be straightforward. As in
FJ, the expression this is considered as a special implicit parameter.

A type annotation can be either the primitive type bool or a class name.
Finally, the definition of values v is instrumental to the (standard) small steps

operational semantics of the language, indexed over the class declarations defined
by the program, given in Figure 2.

(field-1)
cbody(cds , c) = (xn, {super(. . .); f = e ′;

k}) f = fi 1 ≤ i ≤ k

new c(en).f →cds e ′
i[e

n/xn]

(field-2)

cbody(cds , c) = (xn, {super(e ′m); f = . . . ;
k})

∀ i ∈ 1..k f �= fi class c extends c′ { . . .} ∈ cds
new c′(e ′

1[en/xn], . . . , e ′
m[en/xn]).f →cds e

new c(en).f →cds e

(invk)
mbody(cds , c,m) = (xn, e)

new c(ek).m(e ′n)→cds e[e ′n/xn][new c(ek)/this ]

(if-1)
if (true) e1 else e2 →cds e1

(if-2)
if (false) e1 else e2 →cds e2

Fig. 2. Reduction rules for OO programs

1 This is a generalization of constructors of FJ, which makes the encoding composi-
tional: a constructor declaration contained in a class c can be encoded if just the
name c and the fields declared in c are known.
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For reasons of space, the rule for contextual closure and the standard definition
of contexts have been omitted (to be as general as possible, no evaluation strategy
is fixed); furthermore side conditions have been placed together with premises.
Auxiliary functions cbody and mbody are defined in Appendix A.

Rule (field-1) corresponds to the case where the field f is declared in the same
class of the constructor, otherwise rule (field-2) applies and the field is searched
in the direct superclass. The notation e[en/xn] denotes parallel substitution of
xi by ei (for i = 1..n) in expression e.

In rule (invk), the parameters and the body of the method to be invoked are
retrieved by the auxiliary function mbody, which performs the standard method
look-up. If the method is found, then the invocation reduces to the body of the
method where the parameters are substituted by the corresponding arguments,
and this by the receiver object (the object on which the method is invoked).

The remaining rules are trivial.
The one step reduction relation on programs is defined by: (cds e)→ (cds e ′)

iff e →cds e ′. Finally, →∗ and →∗
cds denote the reflexive and transitive closures

of → and →cds , respectively.

2.2 Encoding of Programs into Horn Formulas

Since Prolog is the most direct way to implement a prototype interpreter for
coinductive logic programming (see the conclusion), we follow the standard Pro-
log syntax notation. We assume two countably infinite sets of predicate and
function symbols each associated with an arity n ≥ 0, and ranged over by p
and f respectively, and a countably infinite set of logical variables ranged over
by X . Functions with arity 0 are called constants. We write p/n, f /n to mean
that predicate p, function f have arity n, respectively. For symbols we follow the
usual convention: function and predicate symbols always begin with a lowercase
letter, whereas variables always begin with an uppercase letter.

A Horn formula Hf is a finite conjunction (or, more abstractly, a finite set)
of clauses (ranged over by Cl) of the form A ← B , where A is the head and B
is the body.

The head is an atom, while the body is a finite and possibly empty conjunction
of atoms; the empty conjunction is denoted by true. A clause with an empty body
(denoted by A← true) is called a fact. An atom has the form2 p(tn) where the
predicate p has arity n and tn are terms.

For list terms we use the standard notation [ ] for the empty list and [ | ] for
the list constructor, and adopt the syntax abbreviation [tn] for [t1|[. . . [tn|[ ]]].

A formula/clause/atom/term is ground if it contains no logical variables.
In the following simple examples terms are built in the usual inductive3 way

from functions symbols and logical variables. In particular, the Herbrand uni-
verse of a Horn formula, obtained from a program prog , is the set of all terms

2 Parentheses are omitted for predicate symbols of arity 0; the same convention applies
for function applications, see below.

3 In Section 4 we will consider infinite terms as well.
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inductively defined on top of the constant [ ] and all constants representing class,
method and field names declared in prog , and on top of the binary function sym-
bol [ | ].

The encoding of a program into a Horn formula intuitively corresponds to a
reverse compilation procedure where the target language (Horn formulas) is at
an higher level4 of abstraction. Following this intuition, a method declaration is
encoded in a Horn clause. Consider for instance the following class declaration:

c lass NEList extends List {

Object el;

List next;

NEList(Object e, List n){super();el=e;next=n;}
NEList add(Object e){new NEList(e, this )}

}

Method add can be encoded in the following clause:

has meth(nelist , add , [E ],nelist) ←
type comp(E, object),new(nelist, [E, nelist], nelist),
override(list, add, [object], nelist).

The clause states that for all types E , class NEList5 has a method named add
taking one argument6 of type E and returning a value of type NEList (atom
has meth(nelist, add, [E], nelist)), if the following constraints are satisfied:

– E is type compatible with Object (atom type comp(E, object)),
– the constructor of class NEList takes two arguments, the former of type E

and the latter of type NEList , and returns7 an object of type NEList (atom
new(nelist, [E, nelist], nelist)),

– in case of overriding, the signature of the method is compatible with method
add of the direct superclass List (atom override(list, add, [object], nelist)).

Note that if some of the constraints above cannot be satisfied, then the method
add (hence, the whole program) is not well-typed (the conjunction of atoms
Bcd

n defined in Figure 4 explicitly requires that all declared methods must be
well-typed).

Each constraint corresponds to an atom which is directly generated from the
method declaration: type comp(E, object) is derived from the type annotation of
the parameter of add , new(nelist, [E, nelist], nelist) is generated from the body
of add , and override(list, add, [object], nelist) depends from the direct superclass
of NEList , and the signature and return type of add .

4 In this sense, our approach shares several commonalities with abstract interpretation,
and a thorough comparison would deserve further investigation.

5 Note that, to comply with the standard syntax of Horn formulas requiring constant
symbols to begin with a lowercase letter, class names must be necessarily changed.

6 We use lists to encode Cartesian products of types.
7 The returned type is redundant here, but not in the type system defined in Sec-

tion 3.2.
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To encode a method body into a conjunction of constraints (that is, atoms) we
follow the consolidated constraint-based approach to compositional typechecking
and type inference of Java-like languages [5,7,4,15,6]: each kind of compound
expression is associated with a specific predicate:

– new(c, [tn], t) corresponds to object creation, c is the class of the invoked
constructor, tn the types of the arguments, and t the type of the newly
created object (recall footnote 7).

– field acc(t1, f , t2) corresponds to field access, t1 is the type of the accessed
object, f the field name, and t2 the resulting type of the whole expression;

– invoke(t0,m, [tn], t) corresponds to method invocation, t0 is the type of the
receiver, m the method name, tn the types of the arguments, and t the
type of the returned value. This predicate is completely redundant here (its
definition is identical to has meth), but not in the type system defined in
Section 3.2;

– cond(t1, t2, t3, t) corresponds to conditional expression, t1 is the type of the
condition, t2 and t3 the types of the “then” and “else” branches, respectively,
and t the resulting type of the whole expression.

Besides those predicates needed to encode an expression, others are instrumental
to the encoding, as type comp and override above.

The encoding of a program is defined in Figure 3, whereas Figure 4 contains
the set of clauses Hf default which are shared by all programs, and the conjunction
of atoms Bcd

n which imposes the requirement that each method declaration
in cd

n
must be well-typed. Note that not all formulas in Figure 4 are Horn

clauses; indeed, for brevity we have used the negation of predicates dec field and
dec meth. However, since the set of all field and method names declared in a
program is finite, the predicates not dec field , not dec meth could be trivially
defined by conjunctions of facts, therefore all formulas could be turned into Horn
clauses.

For the encoding we assume bijections to translate class, field and method
names to constants, and parameter names to logical variables (translations are
denoted by ĉ, f̂ , m̂, and x̂ , respectively). Furthermore, we assume that t̂his =
This .

The rules define a judgment for each syntactic category of the OO language:

– cd
n

e � (Hf |B): a program is translated in a pair (Hf |B), where Hf is the
union of the set Hf default of clauses shared by any program with the set of
clauses generated from the class declarations. The second component B is
the conjunction of Bcd

n and Bm , where Bcd
n is the conjunction of atoms

requiring that each method declared in cd
n

is well-typed (see Figure 4),
whereas Bm is the conjunction of atoms generated from the main expression
e of the program;

– fd in c � Cl , md in c � Hf : the encoding of a field/method declaration
depends on the class c where the declaration is contained;

– cn in fds � Cl : the encoding of a constructor declaration depends on the
declaration of the fields contained in the class of the constructor: the encod-
ing is defined only if all fields in fds are initialized by the constructor in the
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(prog)
∀ i = 1..n cd i � Hf i e in ∅� (t |Bm)
cd

n
e �
(Hf default ∪ (∪i=1..nHf i)|Bcd

n ,Bm)

(field)
τ f ; in c �

dec field(ĉ, f̂ , τ̂ )← true .

(class)
∀ i = 1..n fd i in c1 � Cl i cn in fd

n � Cl ∀ j = 1..m mdj in c1 � Hf j

class c1 extends c2 { fd
n

cn md
m }�{

class(ĉ1 )← true .
extends(ĉ1 , ĉ2 )← true .

}
∪ (∪i=1..n{Cl i}) ∪ {Cl} ∪ (∪j=1..mHf j)

(constr-dec)
∀ i = 1..m ei in {x :τn}� (ti |Bi) ∀ j = 1..k e ′

j in {x :τn}� (t ′j |B ′
j)

c(τ xn) {super(em); f = e ′;
k} in τ ′ f ;

k �
new (ĉ,A, ĉ)← type comp(A, [τ̂

n
]), B

m
, extends(ĉ, P ),

new(P, [tm], P ),B ′k, type comp([t ′k], [τ̂ ′
k

]).

(meth-dec)
e in {This:c, x :τn}� (t |B)

τ0 m(τ xn){e} in c �
dec meth(ĉ, m̂, [τ̂

n
], τ̂0 )← true .

has meth(ĉ, m̂,A, τ̂0 )← type comp(A, [τ̂
n
]), extends(ĉ, P ),

override(P, m̂, [τ̂
n
], τ̂0),B , type comp(t , τ̂0).

(new)
∀ i = 1..n ei in V � (ti |Bi) R fresh

new c(en) in V � (R |Bn
,new(ĉ, [tn], R))

(var)
x in V � (τ̂ | true)

x :τ ∈ V (field-acc)
e in V � (t |B) R fresh

e.f in V � (R |B ,field acc(t , f̂ , R))

(invk)
∀ i = 0..n ei in V � (ti |Bi) R fresh

e0.m(en) in V � (R |B0,B
n
, invoke(t0, m̂, [tn], R))

(if)
e in V � (t |B) e1 in V � (t1 |B1) e2 in V � (t2 |B2) R fresh

if (e) e1 else e2 in V � (R |B ,B1,B2, cond(t , t1, t2, R))

(true)
true in V � (bool | true)

(false)
false in V � (bool | true)

Fig. 3. Encoding of programs

same order8 as they appear in fds (that is, as they have been declared in the
class of the constructor);

– e in V � (t |B): an expression is encoded in a pair (t |B), where t is
the term encoding the type of the expression, and B the conjunction of
atoms generated from the expression. The encoding depends on the type

8 This last restriction is just for simplicity.
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class(object)← true .
subclass(X ,X )← class(X ).
subclass(X , object)← class(X ).
subclass(X ,Y )← extends(X ,Z ), subclass(Z ,Y ).
type comp(bool , bool)← true .
type comp(C1 ,C2 )← subclass(C1 ,C2 ).
type comp([ ], [ ])← true .
type comp([T1 |L1 ], [T2 |L2 ]) ← type comp(T1 ,T2 ), type comp(L1 ,L2 ).
field acc(C ,F ,T )← has field(C ,F ,T ).
invoke(C ,M ,A, R)← has meth(C ,M ,A,R).
new(object , [ ], object)← true .
has field(C ,F ,T )← dec field(C ,F ,T ).
has field(C ,F ,T1 )←

extends(C ,P),has field(P ,F , T1 ),¬dec field(C ,F ,T2 ).
override(object ,M ,A,R)← true .
override(C ,M ,A,R)← dec meth(C ,M ,A,R).
override(C ,M ,A1 ,R1 )←

extends(C ,P),override(P ,M ,A1 ,R1 ),¬dec meth(C ,M ,A2 ,R2 ).
has meth(C ,M ,A1 ,R1 )←

extends(C ,P),has meth(P ,M ,A1 ,R1 ),¬dec meth(C ,M ,A2 ,R2 ).
cond(T1 ,T2 ,T3 , T4 )←

type comp(T1 , bool), type comp(T2 ,T4 ), type comp(T3 ,T4 ).

Bcd
n is the conjunction of atoms generated from cd

n
as follows:

has meth(ĉ, m̂, [τ̂1, . . . , τ̂k], τ̂0) is in Bcd
n iff class c is declared in cd

n
and contains

τ0 m(τ xk) {. . .}.

Fig. 4. Definition of Hf default and Bcd
n . Negation is used for brevity, but it can be

easily removed (see the comments to the figure).

environment V , assigning types to parameters, and is defined only if all free
variables of e are contained in the domain of V .

Rule (class) just collects all clauses generated from the field and constructor
declarations, and the Horn formulas generated from the method declarations,
and adds to them the two new facts stating respectively that class c1 has been
declared and that its direct superclass is c2.

A constructor declaration generates a single clause whose head has the form
new(ĉ, A, ĉ), where c is the class of the constructor, A is the logical variable
corresponding to the list of arguments passed to the constructor, and c is the
type of the object9 created by the constructor. The first atom in the body checks
that the list of arguments A is type compatible w.r.t. the of parameter type an-
notations, that is, that A is a list of exactly n types which are subtypes of the
corresponding type annotations (see the 3rd and 4th clause defining predicate
type comp in Figure 4). However, all occurrences of the parameters are directly
encoded by the corresponding types as specified by the environment {x :τn} (see
9 We have already pointed out that the third argument of new is completely redundant

here, but this is not true for the type system defined in Section 3.2.
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rule (var) below). The atoms B
m

, extends(ĉ, P ),new(P, [tm], P ) encode the in-
vocation of the constructor of the direct superclass, where B

m
and tm are the

atoms and types generated from the arguments (see the first premise). Finally,
the remaining atoms check that the field f

k
declared in the class are initialized

correctly; B
k

and tk are the atoms and types generated from the initializing
expressions (see the second premise). Finally, note that the clause is correctly
generated only if: (1) the free variables of the expressions contained in the con-
structor body are contained in the set {xn} of the parameters (therefore, this
cannot be used); (2) all fields declared in the class are initialized exactly once
and in the same order as they are declared.

Rule (meth-dec) generates two clauses, one for the predicate dec meth and
the other for the predicate has meth. Predicate dec meth specifies just the sig-
natures and return types of all methods declared in c, and is used for defining
predicates override and has meth (see Figure 4); predicate has meth specifies
names, and argument and return types of all methods (either declared or in-
herited) of a class. The clauses generated by this rule correspond to the case
when the method is found in the class, whereas there is a unique shared clause
(defined in Figure 4) to deal with method look-up in the direct superclass.
Atoms extends(ĉ, P ), override(P, m̂ , [τ̂

n
], τ̂0) ensure that the method overrides

correctly the method (if any) inherited from the direct superclass P . Atoms
B , type comp(t , τ̂0) check that the body is correct and that the type of the re-
turned value is compatible with the declared type. Note that the variable this
can be accessed in the body of the method and that it has type c, as specified
in the environment {This :c, x :τn}.

Rule (var) can be instantiated only if x is defined in the environment V ; the
associated type t is returned together with the empty conjunction of atoms.

The other rules for expressions (except for the trivial ones on boolean
constants) are very similar: premises generate types and atoms for all subex-
pressions, then the conclusion collects all generated atoms, adds a new atom
corresponding to the whole expression, and generates a fresh variable (to avoid
clashes) for the type of the whole expression.

Clauses defined in Figure 4 are quite straightforward. For instance, they state
that Object is a predefined class which is the root of the inheritance relation
and which has a default constructor with no parameters. Since Object cannot be
redefined, it turns out that the class declares no fields and no methods.

The definition of field acc is identical to dec field , but this is no longer true
for the type system defined in the next section (see Section 3.2).

The predicate override checks that methods are overridden correctly (we use
the most restrictive formulation asking types of arguments and of the returned
value to be all invariant); the first clause specifies that all methods of class Object
are overridden correctly (since, in fact, object has no methods), the second states
that a method declared in a class is overridden correctly only by a method having
the same name and types of parameters and returned value, while the last clause
says that a method is overridden correctly if it is not declared in the class and
if it is overridden correctly in the direct superclass.
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Finally, the clause defining cond states that a conditional expression is correct
if the type of the condition is bool (we use type comp for uniformity with the
definitions given in Section 4); the corresponding type is any common super type
of the expressions of the two branches.

Coinductive Herbrand Models. Well-typed programs are defined in terms
of coinductive Herbrand models, that is, greatest instead of least fixed-points
are considered.

As we will see in Section 3.4, coinduction arises naturally at two different
levels: at the level of terms, since recursive types are infinite10 terms, and at
the level of proofs, since recursive methods and the use of infinite types require
proofs to be infinite as well.

The Herbrand base of a Horn formula obtained from a program prog is the set
of all ground atoms built from the predicates in the formula and the (ground)
terms of the Herbrand universe of the formula.

A substitution θ is defined in the standard way as a total function from logical
variables to terms, different from the identity only for a finite set of variables.
Composition of substitutions and application of a substitution to a term are
defined in the usual way. A ground instance of a clause A ← A1 . . .An is a
ground clause Cl s.t. Cl = Aθ ← A1 θ, . . . ,Anθ for a certain substitution θ.

Given a Horn formula Hf , the immediate consequence operator THf is an
endofunction defined on the parts of the Herbrand base of Hf as follows:

THf (S) = {A | A← B is a ground instance of a clause of Hf ,B ∈ S}.
A Herbrand model of a logic program Hf is a subset of the Herbrand base of
Hf which is a fixed-point of the immediate consequence operator THf . Since
THf is monotonic for any prog, by the Knaster-Tarski theorem there always
exists the greatest Herbrand model of Hf , which is also the greatest set S s.t.
S ⊆ THf (S). The greatest Herbrand model of Hf is denoted by Mco(Hf ) and
called the coinductive Herbrand model of Hf .

A conjunction of atoms B is satisfiable in Hf iff there exists a substitution θ
s.t. Bθ ⊆ Mco(Hf ).

A program cd
n

e is well-typed iff cd
n

e � (Hf |B) and B is satisfiable in Hf .
Finally, we only informally state the claim and do not prove it (since it is out

of the scope of this section) that the notion of well-typed program is equivalent
to that given by a conventional type system (like that of FJ).

Claim (informal equivalence). A program cd
n

e is well-typed w.r.t. to a standard
type system iff cd

n
e � (Hf |B) and B is satisfiable in Hf .

3 An Idealized Type System: An Outline

In this section we present a more advanced type system supporting method
and data polymorphism. The type system is idealized since it involves infinite
10 However, in the simple type system defined here infinite terms are not needed.
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terms and proof trees not representable in a finite way, therefore only sound
approximations of the system can be implemented. Under this perspective, the
system could be considered as an abstract specification for a large class of type
inference algorithms for object-oriented programs which can only be sound but
not complete w.r.t. the given system, and, thus, an attempt at pushing to the
extreme the theoretical limits of static type analysis.

3.1 Extension of the Syntax

At the syntax level the only needed extension to the language defined in Section 2
concerns type annotations which now can be empty, that is, users can omit
(partially or totally) field and method type annotations:

τ ::= N | ε
N ::= c | bool

This extension does not affect the operational semantics given in Figure 2.
A type annotation τ can be either a nominal type N (the primitive type bool

or a class name c), or empty. Consider for instance the following example:

c lass EList {

EList(){ super();}
add(e){new NEList(e, this )}

}

c lass NEList {

el;

next;

NEList(e,n){super();el=e;next=n;}
add(e){new NEList(e, this )}

}

Omitting types in method declarations allows method polymorphism: for in-
stance, the two methods add are polymorphic in the type of their parameter e.
Omitting types in field declarations allows data polymorphism: it is possible to
build a list of elements of heterogeneous types and, as we will see, in the type
system defined in the sequel each element of the list is associated with its exact
type.

Type annotations are intended as explicit constraints imposed by the user, but
do not make type analysis less precise. For instance, if the declaration of field
el is annotated with type Item, then only instances of Item or of a subclass of
Item can be correctly added to a list. However, if we add to a list an instance of
ExtItem which is a subclass of Item, then the type system is able to assign to
the first element of the list the type ExtItem.

3.2 Structured Types

To have a more expressive type system, we introduce structured types encoded
by the following terms:
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– X , which represents a type variable;
– bool , which represents the type of boolean values;
– obj (ĉ, t), which represents the instances of class c, where t is a record

[f̂1:t1, . . . , f̂n:tn] which associates with each field fi of the object a corre-
sponding type term ti; as in the type system of Section 2, the methods of a
class are encoded as clauses, whereas the types of fields need to be associated
with each single instance, to be able to support data polymorphism;

– t1 ∨ t2, which represents a union type [8,13]: an expression has type t1 ∨ t2 if
it has type t1 or t2.

Note that nominal types are explicitly used by programmers as type annotations,
whereas structured types are fully transparent to programmers.

The use of structured types should now clarify why predicates type comp and
invoke has been already introduced in Section 2 and why predicate new has
arity 3.

– The difference between predicates type comp and subclass is now evident:
type comp/2 (see Figure 6) defines the relation of type compatibility between
structured and nominal types. For instance, the atom

type comp(obj (ĉ1, t1) ∨ obj (ĉ2, t2), ĉ)

is expected to hold, whenever both c1 and c2 are subclasses of c.
– The first and third argument of predicate new are now clearly different: the

former is the class name of the invoked constructor, whereas the latter is the
structured type of the created object. The following invariant is expected to
hold: if new(ĉ, [tn ], t) holds, then type comp(t , ĉ) holds as well.

– Predicates invoke and has meth are now clearly distinct: the first argument
of invoke is the structured type of the receiver, whereas the first argument
of has meth is the class from which method look-up is started.

3.3 Typing Methods

As already mentioned, type annotations are intended as explicit constraints im-
posed by the user, but do not make type analysis less precise. For instance, if
we assume that a program declares11 classes H and P, with H subclass of P, and
we annotate the parameter of method add of class EList as follows

add(P e){new NEList(e, th i s )}

then new EList().add(e) is not well-typed if e=new Object(), while it has
type obj (N̂EList , [êl :obj (Ĥ , [ ]), n̂ext :obj (ÊList , [ ])]) if e=new H() (hence, the
type associated with field el corresponds to an instance of H rather than P). This
means that, during type analysis, parameters are associated with a structural
type (even when they are annotated) which depends on the specific method
invocation.
11 Note that here H and P denotes concrete names and are not meta-variables.
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Similarly, the type of this cannot be fixed (we cannot simply associate with
it the class name where the method is declared, as done in Section 2), therefore
this is treated as an implicit parameter which is always the first of the list. The
only implicit constraint on this requires its associated type to be type compatible
with the class where the method is declared. Consider for instance the following
class declaration:

c l as s C { val; C(v){ super();val=v;} get(){ th i s .val} }

Method get generates the following clause:

has meth(Ĉ , ĝet , [This ],X )← type comp(This , Ĉ ),field acc(This , v̂al ,X ).

The head of the clause requires method get of class C to have just the implicit
parameter this (indeed, no explicit parameters are declared), whereas the body
requires this to be an instance of either C or a subclass of C, and to have a field
val of type X . Hence, if e has type obj (Ĉ , [v̂al :t ]), then the expression e.get()
has type t .

A quite standard consequence of type inference [16,17,1,21] is that no rule
is imposed on method overriding. Consider for instance the following two class
declarations:

c l as s P { P(){super();} m(){new A()} }
c l as s H extends P { H(){super();} m(){new B()} }

In this very simple example method m of class P always returns an instance of
A, but is overridden by the method of H which always returns an instance of B,
where A and B are two unrelated classes. The definition of method m of class H
would not be considered type safe in Java, if we assume to annotate methods
m in P and in H with the return type A and B, respectively. Indeed, in Java the
type of an instance of class H is a subtype of the type of an instance of class P.

In the type system defined here the structural type obj (Ĥ , [ ]) is not a subtype
of obj (P̂ , [ ]); indeed, an object type obj (ĉ1, t1) is a subtype of obj (ĉ2, t2) if
and only if c1 = c2 and t1 is a record type which is a subtype of the record
type t2 (w.r.t. the usual width and depth subtyping relation, see Section 5.3
for the formal definition). In this way the two method declarations above are
perfectly legal, and the method invocation e.m() has type obj (Â, [ ]) if e has
type obj (P̂ , [ ]), obj (B̂ , [ ]) if e has type obj (Ĥ , [ ]), and obj (Â, [ ]) ∨ obj (B̂ , [ ])
if e has type obj (P̂ , [ ]) ∨ obj (Ĥ , [ ]).

3.4 Regular Types

Whereas in Section 2 types are just constants, here we take a coinductive ap-
proach by allowing types (and, hence, terms) to be infinite. This is essential to
encode recursive types. Consider for instance the following class declarations:
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c lass List extends Object {

altList(i,x){

i f (i<=0) new EList()

e l se new NEList(x, this .altList(i-1,x.succ ()))
}

}

c lass EList extends List { c lass NEList extends List {

EList() { super(); } el; next;

NEList(e,n) { super();
el=e;next=n;}

} }

c lass A{ c lass B{

A(){ super();} B(){ super();}
succ (){new B()} succ (){new A()}

} }

The expression new List().altlist(i,new A()) returns an empty list (an in-
stance of EList) if i ≤ 0, or, if i > 0, a non empty list (an instance of NEList)
whose length is i and whose elements are alternating instances of class A and
B (starting from an A instance). Similarly, new List().altlist(i,new B()) re-
turns an alternating list starting with a B instance.

The following two mutually recursive types tA and tB precisely describe
new List().altlist(i,new A()) and new List().altlist(i,new B()), respec-
tively:

tA = obj (ÊList , [ ]) ∨ obj (N̂EList , [êl :obj (Â, [ ]), n̂ext :tB ])
tB = obj (ÊList , [ ]) ∨ obj (N̂EList , [êl :obj (B̂ , [ ]), n̂ext :tA])

In fact, tA and tB correspond to regular infinite trees (see in the following).
However, coinductive terms include also non regular trees12 [19] (see Section 5.1).

4 An Idealized Type System: A Full Formalization

In Section 2 types are just constants, whereas here types can be infinite terms,
therefore the coinductive version of the Herbrand universe and base needs to be
considered. In the rest of the paper we will identify terms with trees.

The definition of tree which follows is quite standard [11,2]. A path p is a finite
and possibly empty sequence of natural numbers. The empty path is denoted by
ε, p1 ·p2 denotes the concatenation of p1 and p2, and |p| denotes the length of p.

We first give a general definition of tree, parametric in the set S of nodes, and
then instantiate it in the case of terms and idealized proof trees.

A tree t defined over a set S is a partial function from paths to S s.t. its domain
(denoted by dom(t)) is prefix-closed, not empty, and verifies the following closure
property: for all m, n and p, if p · n ∈ dom(t) and m ≤ n then p ·m ∈ dom(t).

12 That is, infinite trees which cannot be finitely represented.
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If p ∈ dom(t), then the subtree of t rooted at p is the tree t ′ defined by
dom(t ′) = {p′ | p · p′ ∈ dom(t)}, t ′(p′) = t(p · p′); t ′ is said a proper subtree of
t iff p 	= ε.

A tree is regular (a.k.a. rational) if and only if it has a finite number of distinct
subtrees.

A term is a tree t defined over the set of logical variables and function symbols,
satisfying the following additional property: for all paths p in dom(t) and for
all natural numbers n, p · n ∈ dom(t) iff t(p) = f /m (that is, t(p) is a function
symbol f of arity m), and n < m.

Note that, by definition, if t(p) = X , then p · n 	∈ dom(t) for all n; the same
consideration applies for constants (hence, logical variables and constants can
only be leaves).

Regular terms can be finitely represented by means of term unification problems
[19], that is, systemsof a finitenumberof equations [11,2] of the formX = t (where t
is a finite termwhich isnot a variable). Note thatHorn formulas are built over finite
terms; infinite terms are only needed for defining coinductive Herbrand models.

The definition of coinductive Herbrand universe and base of a Horn formula
Hf is a straightforward extension of the conventional definition of inductive
Herbrand universe and base, where terms are defined as above.

A useful characterization of coinductive Herbrand models is based on the
notion of idealized proof tree [19,18].

An idealized proof tree T (proof for short) for a Horn formula Hf is a tree
defined over the coinductive Herbrand base of Hf , satisfying the following ad-
ditional property: for all paths p in dom(T ), if T (p) = A, m = min{n | p · n 	∈
dom(T )}, and for all n < m T (p ·n) = An, then A← A0 , . . . ,Am−1 is a ground
instance of a clause of Hf .

A proof T for a Horn formula Hf is a proof of the atom A iff T (ε) = A. It can
be proved [19,18] that {A | A ground, ∃ proof T for Hf of A } is the coinductive
Herbrand model of Hf .

4.1 Encoding of Programs into Horn Formulas

The encoding of programs for the idealized type system is defined in Figure 5,
whereas Figure 6 contains the set of clauses Hf default which are shared by all pro-
grams. For completeness, all rules and clauses have been included, even though
some of them are the same as those defined in Figure 3 and Figure 4. Rules and
clauses which are different are highlighted.

Soundness of the encoding is claimed in Section 5, where the system is ex-
tended with subtyping and subsumption.

For simplicity, as already done in Figure 4, in Figure 6 we have used some
convenient abbreviation; besides ¬dec field and ¬dec meth, inequality has been
introduced for field names; however, since the set of all field names declared in a
program is finite, 	= could be trivially defined by conjunctions of facts, therefore
all formulas could be turned into Horn clauses.

Before explaining some details, it is interesting pointing out the main differ-
ences with the encoding defined in Section 2.
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(prog)
∀ i = 1..n cd i � Hf i e in ∅� (t |Bm)

cd
n

e �
(Hf default ∪ (∪i=1..nHf i)|Bcd

n )

(field)
τ f ; in c �

dec field(ĉ, f̂ , τ̂ )← true .

(class)

∀ i = 1..n fd i in c1 � Cl i cn in fd
n � Cl

∀ j = 1..m mdj in c1 � Hf j Hf fds = ∪i=1..n{Cl i} Hf mds = ∪j=1..mHf j

class c1 extends c2 { fd
n

cn md
m }�

{
class(ĉ1 )← true .
extends(ĉ1 , ĉ2 )← true .

}
∪

Hf fds ∪ {Cl} ∪ Hf mds

(constr-dec)
∀ i = 1..m ei in {xn}� (ti |Bi) ∀ j = 1..k e ′

j in {xn}� (t ′j |B ′
j)

c(τ xn) {super(em); f = e;
k} in τ ′ f ;

k �
new (ĉ, [x̂

n
], obj (ĉ, [f̂ :t ′

k

|R]))← type comp([x̂
n
], [τ̂

n
]), B

m
,

extends(ĉ, P ),
new(P, [tm], obj (P, R)),B ′k,

type comp([t ′k], [τ̂ ′
k

]).

(meth-dec)
e in {This, x̂

n}� (t |B)
τ0 m(τ xn){e} in c �

dec meth(ĉ, m̂)← true.

has meth(ĉ, m̂, [This, x̂
n
], t)← type comp(This, ĉ),

type comp([x̂
n
], [τ̂

n
]),

B , type comp(t , τ̂0).

(new)
∀ i = 1..n ei in V � (ti |Bi)

new c(en) in V � (R |Bn
,new(ĉ, [tn], R))

R fresh

(var)
x in V � (x̂ | true)

x ∈ V (field-acc)
e in V � (t |B)

e.f in V �
(R |B ,field acc(t , f̂ , R))

R fresh

(invk)
∀ i = 0..n ei in V � (ti |Bi)

e0.m(en) in V � (R |B0,B
n
, invoke(t0, m̂, [tn], R))

R fresh

(if)
e in V � (t |B) e1 in V � (t1 |B1) e2 in V � (t2 |B2)
if (e) e1 else e2 in V � (R |B ,B1,B2, cond(t , t1, t2, R))

R fresh

(true)
true in V � (bool | true)

(false)
false in V � (bool | true)

Fig. 5. Encoding of programs for the idealized type system (rules with underlined name
in bold are those different w.r.t. Figure 3)
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Here only those methods which might be invoked during the execution of the
main expression are required to be type safe, and no overriding rule is imposed.

These differences stem from the fact that the encoding of Section 2 corre-
sponds to the specification of a typechecking algorithm (since programs are fully
annotated with types), whereas here we are specifying a type inference algorithm
which has to work with programs which may have no type annotations at all.
Earlier error detection is sacrificed in favor of a more precise type analysis. This
approach is not new, indeed it is followed by most of the proposed solutions to
the problem of type inference of object-oriented programs [17,16,1,12].

More in details, these two main differences are reflected by the fact that in rule
(prog) only the atoms Bm generated from the main expression are considered,
and that in Figure 6 no override predicate is defined. Note that the type system
could be easily made more restrictive, by adding to Bm in rule (prog) the atoms
Bcd

n generated from cd
n

as follows: all atoms contain distinct logical variables,
and has meth(ĉ, m̂, A, R) is in Bcd

n iff class c is declared in cd
n

and declares a
method m. Then it would be possible to accept only programs s.t. the formula
Bm ,Bcd

n is satisfiable (for types different from the bottom). In this way, the
type system would reject programs containing methods which are inherently
type unsafe, even though unused. On the other hand, a method m which is not
inherently type unsafe as m(x){x.foo()} would not be well-typed in a program
where no class declares a method foo.

We only comments rules and clauses which are new or significantly different
w.r.t. those given in Section 2.

The clause generated from rule (constr-dec) is very similar to that in Figure 3,
except for the following two differences: (1) the type returned by new is the

structured type obj (ĉ, [f̂ :t ′
k

|R]) where the types t ′
k

of the fields f
k

declared in
the class are determined by the initializing expressions e ′k, whereas R is the
record assigning types to the inherited fields, which is derived from the type
obj (P, R) returned by the invocation of the constructor of the direct superclass;
(2) n logical variables xn need to be explicitly introduced since such variables
are used for passing the actual types each time the constructor is invoked. This
difference is reflected in the environment V used in the judgments for expressions
which simply contains the parameters, but no associated types (see also the rule
(var)). Finally, since type annotations can be empty, we have to define ε̂; because
type comp(t , ε̂) must be always true (no additional constraint is imposed), for
simplicity we adopt the convention that ε̂ always generates a fresh variable.

In rule (meth-dec) the main differences w.r.t. Figure 3 (except for those al-
ready mentioned for (constr-dec)) are that this has to be dealt as an implicit
parameter (the first of the list) of the method, and that no rule on overrid-
ing13 is imposed. Predicate dec meth has only two arguments since the types of
arguments and of the returned value are no longer needed.14

13 Ignoring the overriding rule is safe, as explained at the end of Section 3.3.
14 The corresponding predicate in Figure 4 has four arguments for properly defining

predicate override .
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class(object)← true .
subclass(X ,X )← class(X ).
subclass(X , object)← class(X ).
subclass(X ,Y )← extends(X ,Z ), subclass(Z ,Y ).
type comp(bool , bool)← true .
type comp([ ], [ ])← true .
type comp([T1 |L1 ], [T2 |L2 ]) ← type comp(T1 ,T2 ), type comp(L1 ,L2 ).
∗type comp(obj (C1 , X ),C2 )← subclass(C1 ,C2 ).
∗type comp(T1 ∨ T2 ,C )← type comp(T1 ,C ), type comp(T2 ,C ).
∗field acc(obj (C ,R),F ,T )← has field(C ,F ,TA),field(R,F ,T ), type comp(T ,TA).
∗field acc(T1 ∨ T2 ,F ,FT1 ∨ FT2 )← field acc(T1 ,F ,FT1 ),field acc(T1 ,F ,FT1 ).
∗field([F :T |R],F ,T )← true .
∗field([F1 :T1 |R],F2 , T )← field(R,F2 , T ),F1 �= F2 .
∗invoke(obj (C ,S),M ,A, R)← has meth(C ,M , [obj (C ,S)|A], R).
∗invoke(T1 ∨ T2 ,M ,A,R1 ∨ R2 )← invoke(T1 , M ,A,R1 ), invoke(T2 ,M ,A,R2 ).
∗new(object , [ ], obj (object , [ ]))← true .
has field(C ,F ,T )← dec field(C ,F ,T ).
has field(C ,F ,T1 )← extends(C ,P), has field(P ,F ,T1 ),¬dec field(C ,F ,T2 ).
∗has meth(C ,M ,A,R)← extends(C ,P),has meth(P ,M ,A,R),¬dec meth(C ,M ).
∗cond(T1 , T2 ,T3 ,T2 ∨ T3 )← type comp(T1 , bool).

Fig. 6. Definition of Hf default for the idealized type system (clauses marked with an
asterisk are those different w.r.t. Figure 4)

For what concerns Figure 6, new clauses have been introduced to deal with
union types: invoking a method M with arguments of type A on an object of
type T1 ∨ T2 is correct if the same method with the same argument type can
be invoked on type T1 and on type T2, and the resulting type is the union
of the two obtained types R1 and R2. Note that conditional expressions can
be typed in a more precise way with the union of the types of the two
branches.

In the first clause of predicate field acc, after retrieving the type of the field
from the record part of the type of the object (a new predicate field has been
introduced), it is checked that such a type is compatible with the type annotation
associated with the field declaration. This check can be useful for analyzing open
expressions (for closed expressions the check is redundant since is already done
at creation time).

5 Extending the System with Subtyping

In this section we extend the idealized type system presented in Section 3 and
Section 4 with subtyping and subsumption; rather than increasing the expressive
power of the system, subtyping and subsumption allow sound (but not complete)
implementation of the system, by supporting approximation of infinite non reg-
ular types and proof trees with regular ones.
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5.1 Non Regular Types

Non regular (hence infinite) types may be inferred for quite simple expressions.
For instance, assume to add to class List the following method declaration:

balList(i){

i f (i<=0) new EList()

e l se new NEList(new A(),

this .balList(i -1). addLast(new B()))

}

where the obvious declarations of methods addLast in classes EList and NEList
have been omitted. Method balList generates all linked lists of the form aibi

(where i ≥ 0, and a and b denote the instances of class A and B, respectively). It
is well known that the language {aibi | i ≥ 0} is not regular; indeed, the most
precise type of new List().balList(i) is the non regular term t0 defined by
the following system containing a countably infinite number of equations:

tn = tB
n ∨ obj (N̂EList , [êl :obj (Â, [ ]), n̂ext :tn+1])

tB
0 = obj (ÊList , [ ])
tB
n+1 = obj (N̂EList , [êl :obj (B̂ , [ ]), n̂ext :tB

n ])

Of course, type t0 can be inferred with a non regular proof (see Section 5.2),
while a type inference algorithm would only be able to infer a regular type,15

like the following:

t = obj (ÊList , [ ]) ∨ obj (N̂EList , [êl :obj (Â, [ ]) ∨ obj (B̂ , [ ]), n̂ext :t ])

To infer t subtyping and subsumption have to be introduced in the type system;
indeed, as explained in Section 5.3, t0 is a subtype of t .

5.2 Non Regular Proofs

Consider the following method declaration added to class List:

duplicate (i,e,l) {

i f (i<=0) l e l se this .duplicate (i-1,e,new NEList(e,l)) }

Method duplicate adds n (with n = max(0,i)) duplicates of the element e at
the beginning of the list l.

Let us consider the expression new List().duplicate(i,e,l), where i, e
and l are expressions of type int , te, and tl, respectively. In our system it is
possible to prove that the expression has the type t0 defined by the following
infinite set of equations (where n ranges over the natural numbers):

tn = t ′n ∨ tn+1 t ′0 = tl t ′n+1 = obj (N̂EList , [êl :te, n̂ext :t ′n])

15 Indeed, it can be shown that there exist infinitely many regular types which can
approximate t0 with an arbitrary precision.
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Indeed, a non regular proof can be built containing the following atoms:

invoke(obj (L̂ist , [ ]), ̂duplicate, [int , te, t ′0], t0)
invoke(obj (L̂ist , [ ]), ̂duplicate, [int , te, t ′1], t1)

. . .

invoke(obj (L̂ist , [ ]), ̂duplicate, [int , te, t ′n], tn)
. . .

Intuitively, each atom corresponds to a recursive call of the infinite sequence
(starting from the top) which is generated when the value of i tends to +∞.

However, type t0 is provably equivalent (see Section 5.3) to the following
regular type:

t = tl ∨ obj (N̂EList , [êl :te, n̂ext:t ])

But type t can be inferred with a regular proof only with subsumption. To see
that, we first prove that the atom

(1) invoke(obj (L̂ist , [ ]), ̂duplicate, [int , te, t ], t)

holds. This derives from the fact that t and t ∨ t are equivalent and that

(2) invoke(obj (L̂ist , [ ]), ̂duplicate , [int , te, obj (N̂EList , [êl :te, n̂ext :t ])], t)

holds. But obj (N̂EList , [êl :te, n̂ext :t ]) is a subtype (see Section 5.3) of t , hence, by
subsumption16, (2) holds if (1) holds, and we conclude by coinductive hypothesis.
Finally, from (1) we have that invoke(obj (L̂ist , [ ]), ̂duplicate , [int , te, tl], t) holds
by subsumption, since tl is a subtype of t .

5.3 Formal Definitions

Subtyping is coinductively defined by the following rules, where, for simplicity,
we assume that field names in object types are distinct:

(bool)
bool ≤ bool

(obj)
∀ i = 1 ..m fπ(i) = fi tπ(i) ≤ t ′i
obj (c, [f :t

n
]) ≤ obj (c, [f ′:t ′

m
])

π:{1 ..m}→{1 ..n}

(∨R1)
t ≤ t1

t ≤ t1 ∨ t2
(∨R2)

t ≤ t2
t ≤ t1 ∨ t2

(∨L)
t1 ≤ t t2 ≤ t

t1 ∨ t2 ≤ t
(tuple)

∀ i = 1..n
ti ≤ t ′i

[tn ] ≤ [t ′
n
]

(distr)
obj (c, [f :t

n
, f :tf , f ′:t ′

m
]) ≤ t obj (c, [f :t

n
, f :t ′f , f ′:t ′

m
]) ≤ t

obj (c, [f :t
n
, f :tf ∨ t ′f , f ′:t ′

m
]) ≤ t

16 We are applying the counter-variant rule which says that if a method invocation has
a type, then it has the same type for any invocation where an argument of type ta
has been replaced with a new argument of a subtype of ta.
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Rule (obj) uses standard width and depth record subtyping, but is invariant
w.r.t. the class of the object. Since all field names are assumed to be distinct, in
rule (obj) π must necessarily be injective and, therefore, n ≥ m.

Rule (∨R1), (∨R2) and (∨L) are standard. Rule (distr) ensures that object
types “distributes over” union; by (distr), (∨R1), (∨R2) and (obj) we prove that
obj (c, [f :t1 ∨ t2]) ≤ obj (c, [f :t1]) ∨ obj (c, [f :t2]), whereas by (∨L), (∨R1), (∨R2)
and (obj) we prove that obj (c, [f :t1]) ∨ obj (c, [f :t2]) ≤ obj (c, [f :t1 ∨ t2]).

To avoid unsound subtyping we require some contractiveness conditions [9,10]
on meta-proofs17.

A type t is contractive iff there is no countably infinite sequence of natural
numbers s for which there exists n s.t. for all finite prefix p of s, with |p| ≥ n,
p ∈ dom(t), and t(p) = ∨/2. For instance, the regular type defined by the
equation t = t ∨ t is not contractive; t is in fact the bottom type, denoted by ⊥,
that is, the least type satisfying t = t ∨ t .

A particular care must be taken when proving subtyping between non con-
tractive types; for instance, by coinductively applying rule (∨R1) or (∨R2) we
can obtain t ≤ ⊥ for every t , which is clearly unsound. A similar issue arises
with rule (distr). Instead of the more drastic solution of prohibiting the instan-
tiation of rules (∨R1), (∨R2) and (distr) with non contractive types, we prefer
to require meta-proofs to be contractive.

A meta-proof for t1 ≤ t2 is contractive if it does not contain an infinite subtree
which is obtained by instantiating only rules (∨R1), (∨R2) and (distr).

Finally, we say that t1 ≤ t2 holds if there exists a (coinductive) contractive
meta-proof for t1 ≤ t2 built with the subtyping rules defined above.

We define on top of subtyping a notion of subsumption between atoms. To do
this, we first need to annotate each predicate of arity n with a string α of length
n (where α(i) denotes the annotation of the i-th argument), specifying whether
arguments are covariant (≤), contravariant (≥) or invariant (=). For instance,
we write p/≤≥= to mean that predicate p has 3 arguments, and that the first is
covariant, the second contravariant and the last invariant.

If p/α, then the ground atom p(tn) subsumes the ground atom p(t ′
n
) iff for

all i = 1..n the relation ti α(i) t ′i holds, where t ≥ t ′ holds iff t ′ ≤ t holds, and
t = t ′ holds iff t and t ′ are syntactically equal.

Let us consider the invoke predicate. Clearly it must be contravariant w.r.t.
the arguments corresponding to the receiver and the arguments passed to the
method, covariant w.r.t. the type of the returned value, and invariant w.r.t. the
name of the method, therefore invoke/≥=≥≤.

For instance, invoke(obj (c1, [ ]),m,[obj (c3, [f1:t1, f3:t3])], obj (c4, [ ])) is subsumed
by invoke(obj (c1, [ ]) ∨ obj (c2, [ ]),m, [obj (c3, [f1:t1])], obj (c4, [f2:t2])).

The annotations for the other predicates encoding expressions are the follow-
ing: new/=≥≤, field acc/≥=≤, cond/≥≥≥≤. All the remaining predicates can be
invariant in all arguments.

17 We use the term meta-proof since t1 ≤ t2 does not belong to the coinductive Her-
brand base of the Horn formula under consideration. Note that ≤ cannot be easily
encoded as a predicate, because of the contractiveness conditions.
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The immediate consequence operator THf as defined in Section 2 can be now
refined with the notion of subsumption:

THf (S) = {A′ | A← B is a ground instance of a clause of Hf
A subsumes A′ and B ∈ S}.

The definition of idealized proof tree can be easily refined in a similar way.

5.4 Soundness of the System

Soundness follows by progress and subject reduction theorems below; the former
states that a well-typed program cannot get stuck, the latter states that if a well-
typed program reduces, then it reduces to a well-typed program. The proofs of
these two theorems come directly from the main lemmas in Appendix B.

Theorem 1 (Progress). If cds e � (Hf ,B) and B is satisfiable in Hf , then
either e is a value or e →cds e ′ for some e′.

Theorem 2 (Subject reduction). If cds e � (Hf ,B), B is satisfiable in Hf ,
and e →cds e ′, then cds e ′ � (Hf ,B ′), and B ′ is satisfiable in Hf .

We say that cds e is a normal form iff there exists no e ′ s.t. (cds e) → (cds e ′).
Soundness ensures that reduction of well-typed programs never gets stuck.

Theorem 3 (Soundness). If cds e � (Hf ,B), B is satisfiable in Hf ,
(cds e) →∗ (cds e ′), and cds e ′ is a normal form, then e′ is a value.

Proof. By induction on the number n of reduction steps. The claim for n = 0
holds by progress. If n > 0, then there exists e ′′ s.t. (cds e) → (cds e ′′), and
(cds e ′′) →∗ (cds e ′) in n−1 steps. By subject reduction we have that cds e ′′ �
(Hf ,B ′) and B ′ is satisfiable in Hf , therefore we can conclude by inductive
hypothesis. �

6 Conclusion and Further Developments

We have shown how type systems can be specified by encoding programs into
Horn formulas and by considering their coinductive Herbrand models [19,18].
The encoding was made possible thanks to the notion of type constraint for
principal typing of Java-like languages [7,4].

Coinduction arises naturally at two different levels: at the level of terms,
since recursive types are infinite terms, and at the level of proofs, since recursive
methods and the use of infinite types require proofs to be infinite as well.

The approach has been used for fully formalizing two quite different type sys-
tems, for the same language (the only syntactical difference being the possibility
of omitting type annotations). The definitions of the two type systems are rea-
sonably compact, and modular: despite the two systems are quite different, only
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3 rules out of 12 have to be changed, while almost half of the clauses shared by
all programs could be reused.

The idealized type system provides theoretical limit to type inference of
object-oriented programs, since only sound approximations of the system can
be implemented. From the soundness of the type system can be directly derived
the type safety of any type inference algorithm which is proved to be sound w.r.t.
the system.

The idealized type system has also shown how simple type annotations can
be used without compromising the precision of type analysis, thus integrating
smoothly the two different notions of nominal and structural type.

Finally, the followed approach allows quite naturally typing of open expres-
sions and general queries on the program, as has meth(C,m, [int ], T ) asking for
all classes C and return type T of method m with exactly one argument of type
int . However, because of the limitations of the logic, very simple properties can
be proved independently of any program.

One of the most interesting and challenging issue left open in this paper con-
cerns the implementation of reasonable approximations of the idealized type
system. We have just started investigating possible solutions to this problem,
by exploiting recent results on the operational semantics of coinductive logic
programming [19,18]. We have developed a prototype18 supporting a partial im-
plementation of the idealized type system, based on a Prolog meta-interpreter
for coinductive logic programs, which still needs to be integrated with the no-
tions of subtyping and subsumption. Since regular types are fully supported as
solutions to term unification problems interesting examples can be typed (as the
one shown in Section 3.4), even without subsumption.
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A Auxiliary Functions

(mbody-1)
class c extends c′ { . . . τ0 m(τ xn){e} . . .} ∈ cds

mbody(cds , c,m) = (xn, e)

(mbody-2)

class c extends c′ { . . .mds } ∈ cds m �∈ mds
mbody(cds , c′,m) = (xn, e)

mbody(cds , c, m) = (xn, e)

(cbody)
class c extends c′ { . . . c(τ xn) {super(em); f = e ′;

k} . . .} ∈ cds

cbody(cds , c) = (xn, {super(em); f = e ′;
k})

Fig. 7. Auxiliary functions

B Lemmas and Main Theorems of Section 5 (Some
Proofs Are Sketched)

Progress. To prove progress we need the following lemmas.

Lemma 1. If C[e] in V � (t |B), then e in V � (t ′ |B ′), with B ′ ⊆ B.

Proof. By case analysis on the contexts and by induction on their structure. �

Lemma 2. If cds � Hf , and invoke(ĉ, m̂ , [t1, . . . , tn], t) is satisfiable in Hf ,
then mbody(cds , c,m) = (xn, e) for some variables xn and expression e.

Proof. By induction on the height of the inheritance tree. Note that by assump-
tion (see Figure 1) inheritance cannot be cyclic. �

Theorem 1 [Progress] If cds e � (Hf ,B) and B is satisfiable in Hf , then
either e is a value or e →cds e ′ for some e ′.

Subject reduction. The following lemma strongly relies on the notion of sub-
typing and subsumption as defined in Section 5.

Lemma 3. If cds � Hf , e in V � (t |B), Bθ ⊆Mco(Hf ), and e →cds e ′, then
there exist t ′, B ′ and θ′ s.t. e ′ in V � (t ′ |B ′), B ′θ′ ⊆ Mco(Hf ), and t ′θ′ ≤ tθ.

Theorem 2 [Subject reduction] If cds e � (Hf ,B), B is satisfiable in Hf ,
and e →cds e ′, then cds e ′ � (Hf ,B ′), and B ′ is satisfiable in Hf .

Proof. A corollary of lemma 3. �
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Abstract. Software frameworks impose constraints on how plugins may interact
with them. Many of these constraints involve multiple objects, are temporal, and
depend on runtime values. Additionally, they are difficult to specify because they
are often extrinsic and may break behavioral subtyping. This work introduces
relationships as an abstraction for specifying framework constraints in FUSION
(Framework Usage SpecificatIONs), and it presents a formal description and im-
plementation of a static analysis to find constraint violations in plugin code. We
define three variants of this analysis: one is sound, one is complete, and a prag-
matic variant that balances these tradeoffs. We prove soundness and complete-
ness for the appropriate variants, and we show that the pragmatic variant can
effectively check constraints from real-world programs.

1 Introduction

Object-oriented frameworks have brought many benefits to software development, in-
cluding reusable codebases, extensible systems, and encapsulation of quality attributes.
However, frameworks are used at a high cost; they are complex and difficult to learn
[1]. This is partially due to the complexity of the semantic constraints they place on the
plugins that utilize them.

As an example, consider a constraint in the ASP.NET web application framework.
The ASP.NET framework allows developers to create web pages with user interface
controls on them. These controls can be manipulated programatically through callbacks
provided by the framework. A developer can write code that responds to control events,
adds and removes controls, and changes the state of controls.

One task that a developer might want to perform is to programmatically change the
selection of a drop down list. The ASP.NET framework provides the relevant pieces,
as shown in Fig. 11. Notice that if the developer wants to change the selection of a
DropDownList (or any other derived ListControl), she has to access the indi-
vidual ListItems through the ListItemCollection and change the selection
using setSelected. Based on this information, she might naı̈vely change the selec-
tion as shown in List. 1. Her expectation is that the framework will see that she has
selected a new item and will change the selection accordingly.

1 As the implementation of FUSION runs on Java, we translated the examples to Java syntax.
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Fig. 1. ASP.NET ListControl Class Diagram

List. 1. Incorrect selection for a DropDownList

1 DropDownList list;
2

3 private void Page_Load(object sender, EventArgs e) {
4 ListItem newSel;
5 newSel = list.getItems().findByValue("foo");
6 newSel.setSelected(true);
7 }

When the developer runs this code, she will get the error shown in Fig. 2. The error
message clearly describes the problem; a DropDownList had more than one item
selected. This error is due to the fact that the developer did not de-select the previously
selected item, and, by design, the framework does not do this automatically. While an
experienced developer will realize that this was the problem, an inexperienced devel-
oper might be confused because she did not select multiple items.

The stack trace in Fig. 2 is even more interesting because it does not point to the code
where the developer made the selection. In fact, the entire stack trace is from framework
code; there is no plugin code referenced at all! At runtime, the framework called the
plugin developer’s code in List. 1, this code ran and returned to the framework, and
then the framework discovered the error. To make matters worse, the program control
could go back and forth several times before finally reaching the check that triggered
the exception. Since the developer doesn’t know exactly where the problem occurred, or
even what object it occurred on, she must search her code by hand to find the erroneous
selection.

The correct code for this task is in List. 2. In this code snippet, the developer de-
selects the currently selected item before selecting a new item.

Fig. 2. Error with partial stack trace from ASP.NET
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List. 2. Correctly selecting an item using the ASP.NET API

1 DropDownList list;
2

3 private void Page_Load(object sender, EventArgs e) {
4 ListItem newSel, oldSel;
5 oldSel = list.getSelectedItem();
6 oldSel.setSelected(false);
7 newSel = list.getItems().findByValue("foo");
8 newSel.setSelected(true);
9 }

List. 3. Selecting on the wrong DropDownList

1 DropDownList listA, listB;
2

3 private void Page_Load(object sender, EventArgs e) {
4 ListItem newSel, oldSel;
5 oldSel = listA.getSelectedItem();
6 oldSel.setSelected(false);
7 newSel = listB.getItems().findByValue("foo");
8 newSel.setSelected(true);
9 }

This example, and many others we have found on the ASP.NET developer forum,
shows three interesting properties of framework constraints.

Framework constraints involve multiple classes and objects. List. 2 requires four
objects to make the proper selection. The framework code that the plugin used was
located in four classes.

Framework constraints are often extrinsic. While the DropDownListwas the class
that checked the constraint (as seen by the stack trace), the constraint itself was on the
methods ofListItem. However, theListItem class is not aware of theDropDown-
List class or even that it is within a ListControl at all, and therefore it should not
be responsible for enforcing the constraint. Compare the extrinsic nature of these con-
straints to the intrinsic nature of a class invariant. In addition to being difficult to check,
it is more difficult to document an extrinsic constraint as it is unclear where the docu-
mentation should go so that the plugin developer will naturally discover it.

Framework constraints have semantic properties. Framework constraints are not
only about structural concerns such as method naming conventions or types; the devel-
oper must also be aware of semantic properties of the constraint. There are at least three
semantic properties shown by the DropDownList example. First, the plugin developer
had to know which objects she was using to avoid the problem in List. 3. In this ex-
ample, the developer called the correct operations, but on the wrong objects. She also
had to notice which primitive values (such as true or false) she used in the calls
to change the selection. Finally, she had to be aware of the ordering of the operations.
In List. 2, had she swapped lines 5 and 6 with lines 7 and 8, she would have caused
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unexpected runtime behavior where the selection change does not occur. This behavior
occurs because getSelectedItem returns the first selected ListItem that it finds
in the DropDownList, and that may be the newly selected item rather than the old
item.

In previous work [2], we proposed a preliminary specification approach and sketched
a hypothetical analysis to discover semantic mismatches, such as the ones described
above, between the plugin code and the declared constraints of the framework. The
previous work primarily discussed the requirements for such a system and explored a
prototype specification. In this paper, we make three contributions:
1. We show that the concept of framework developer-defined relations across objects

captures an underlying programming model used to interact with frameworks. We
use these relations to specify framework constraints FUSION (Framework Usage
SpecificatIONs). (Sect. 2)

2. We propose (Sect. 3) and formally define (Sect. 4) a static analysis that detects vio-
lations of constraints in plugins. We define three variants of the FUSION analysis:
a sound variant, a complete variant, and a third variant that is neither sound nor
complete. We prove soundness and completeness for the appropriate variants, and
we argue that the pragmatic variant is better for practical use. There are only minor
differences between the variants, so it is simple to switch between them.

3. We implemented the pragmatic variant of the FUSION analysis and ran it on code
based on examples from framework help forums. As the FUISION does not require
the entire framework to be specified, framework developers will be able to add
specifications as they answer questions on these forums. We show that FUSION
captures the properties described and that the pragmatic variant can handle real-
world code with relatively few false positives and false negatives. (Sect. 5)

2 Developer-Defined Relations over Objects

When a plugin developer programs to a framework, the primary task is not about creat-
ing new objects or data. In many cases, programming in this environment is about ma-
nipulating the abstract associations between existing objects. Every time the plugin re-
ceives a callback from the framework, it is implicitly notified of the current associations
between objects. As the plugin calls framework methods, the framework changes these
associations, and the plugin learns more about how the objects relate. Each method call,
field access, or conditional test gives the plugin more information. For example, in List.
2, when the plugin made the call to ListItemCollection.findItemByValue,
it learned about the association between the returned ListItem and the
DropDownList. These may be direct associations within code, or they may repre-
sent an abstract association with no references in memory. Even when the plugin needs
to create a new object, it is frequently done by calling abstract factory methods that
set up the object and its relationships with other objects. Many frameworks, including
ASP.NET, also use dependency injection, a mechanism in which the framework pop-
ulates the fields of the plugin based on an external configuration file [3]. When using
dependency injection, the plugin simply receives and manipulates pre-configured ob-
jects. In the DropDownList example, all the objects are provided by the framework
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List. 4. The Child relation. Every relation must define params, effect, and test

1 @Relation({ListItem.class, ListControl.class})
2 public @interface Child {
3 String[] params();
4 Effect effect();
5 String test() default "";
6 }

through dependency injection, and the plugin simply changes their relationships with
each other.

Since the primary mechanism of interaction is based on manipulating relationships
between objects, we will model it formally using a mathematical relation. A relation is
a named set of tuples on several types τ.2 A relationship is a single tuple in a relation,
represented as

name(�1, . . . , �n)

where each � is a static representation of a runtime object with the type defined by the
relation.

In this section, we introduce FUSION and three specification constructs based on re-
lationships. The first construct in FUSION, relationship effects, specify how framework
operations change associations between objects. The second construct, constraints, uses
relationships to specify extrinsic and semantic constraints across multiple objects. Fi-
nally, relation inference rules specify how relationships can be inferred based on the
current state of other relationships, regardless of what operations are used.

2.1 Relationship Effects

Relationship effects specify changes to the relations that occur after calling a framework
method. The framework developer annotates the framework methods with information
about how the calling object, parameters, and return value are related (or not related) af-
ter a call to the method. These annotations describe additions and removals of relation-
ships from a relation. For example, the annotation @Item({item, list}, ADD) creates
an Item relationship between item and list, while @Item({item, list}, REMOVE)
removes this relationship3. When a relationship is removed or added, we are simply
marking whether or not its existence in the relation is known. Thereby, if a relationship
is “removed”, but there was no prior knowledge of whether it existed, it is marked as
definitely not in the relation.

Relationship effects may refer to the parameters, the receiver object, and the return
value of a method. They may also refer to primitive values. Additionally, parameters
can be wild-carded, so @Item({*, list}, REMOVE) removes all the Item relationships
between list and any other object.

2 The relations shown in this paper are only unary and binary, but n-ary relations are supported.
3 We are presenting a simplified version of the syntax for readability purposes. The correct Java

syntax for the add annotation appears as @Item(params={“item”, “list”}, effect=ADD).
This is the syntax used in the implementation.
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List. 5. Partial ListControl API with relationship effect annotations

1 public class ListControl {
2 @List({result, target}, ADD)
3 public ListItemCollection getItems();
4

5 //After this call we know two pieces of information. The returned item is selected and it is a child of this
6 @Child({result, target}, ADD)
7 @Selected({result}, ADD)
8 public ListItem getSelectedItem();
9 }

10 public class ListItem {
11 //If the return is true, then we know we have a selected item. If it is false, we know it was not selected.
12 @Selected({target}, TEST, return)
13 public boolean isSelected();
14

15 @Selected({target}, TEST, select)
16 public void setSelected(boolean select);
17

18 @Text({result, target}, ADD)
19 public String getText();
20

21 //When we call setText, remove any previous Text relationships, then add one for text
22 @Text({∗, target}, REMOVE)
23 @Text({text, target}, ADD)
24 public void setText(String text);
25 }
26 public class ListItemCollection {
27 @Item({item, target}, REMOVE)
28 public void remove(ListItem item);
29

30 @Item({item, target}, ADD)
31 public void add(ListItem item);
32

33 @Item({item, target}, TEST, result)
34 public boolean contains(ListItem item);
35

36 @Item({result, target}, ADD)
37 @Text({text, result}, ADD)
38 public ListItem findByText(String text);
39

40 //if we had any items before this, remove them after this call
41 @Item({∗, target}, REMOVE)
42 public void clear();
43 }

In addition to the ADD and REMOVE effects, a TEST effect uses a parameter to
determine whether to add or remove a relationship. For example, we might annotate
the method List.contains(Object obj)with @Item({obj, target}, TEST, re-
sult) to signify that this relationship is added when the return value is true and removed
when the return value result is false.

As relations are user-defined, they have no predefined semantics. Any hierarchy or
ownership present, such as Child or Item relations, is only inserted by the framework
developer. In fact, relationships do not have to reflect any reference paths found in the
heap, but may exist only as an abstraction to the developer. This allows relations to
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List. 6. Comments showing how the relationship context changes after each instruction

1 DropDownList ddl = ...;
2 ListItemCollection coll;
3 ListItem newSel, oldSel;
4 oldSel = ddl.getSelectedItem();
5 //Child(oldSel, ddl), Selected(oldSel)
6 oldSel.setSelected(false);
7 //Child(oldSel, ddl), !Selected(oldSel)
8 coll = ddl.getItems();
9 //Child(oldSel, ddl), !Selected(oldSel), List(coll, ddl)

10 newSel = coll.findByText("foo");
11 //Child(oldSel, ddl), !Selected(oldSel), List(coll, ddl), Item(newSel, coll), Text(”foo”, newSel)

List. 7. DropDownList Selection Constraints and Inferred Relationships

1 @Constraint(
2 op=‘‘ListItem.setSelected(boolean select)’’,
3 trigger=‘‘select == false and Child(target, ctrl) and ctrl instanceof DropDownList’’,
4 requires=‘‘Selected(target)’’, effect={‘‘!CorrectlySelected(ctrl)’’})
5 @Constraint(
6 op=‘‘ListItem.setSelected(boolean select)’’,
7 trigger=‘‘select == true and Child(target, ctrl) and ctrl instanceof DropDownList’’,
8 requires=‘‘!CorrectlySelected(ctrl)”, effect={‘‘CorrectlySelected(ctrl)’’})
9 @Constraint(

10 op=‘‘end−of−method”,
11 trigger=‘‘ctrl instanceof DropDownList’’,
12 requires=‘‘CorrectlySelected(ctrl)’’, effect={})
13 @Infer(trigger=‘‘List(list, ctrl) and Item(item, list)’’, infer={‘‘Child(item, ctrl)’’})
14 public class DropDownList {...}

be treated as an abstraction independent from code. This is a common specification
paradigm; relations have a similar purpose to model fields in JML specifications [4].

To define a new relation, the framework developer creates an annotation type and
uses the meta-annotation @Relation to signify it as a relation over specific types. List. 4
shows a sample definition of the Child relation from the DropDownList example.

Once the framework developer defines the desired relations, they can be used as rela-
tionship effects, as shown in List. 5. These annotations allow tools to track relationships
through the plugin code at compile time. List. 6 shows a snippet from a plugin, along
with the current relationships after each instruction. For example, after line 4 in List. 6,
we apply the effects declared in List. 5, lines 6-8. Therefore, at line 5, we learn the two
new relationships shown. This information, the relationship context, provides us with
an abstract, semantic context that each instruction resides in. In the next section, we use
this context to check the semantic parts of framework constraints.

2.2 Constraints

Framework developers can specify constraints on framework operations in a propo-
sitional logic over relationships. They are written as class-level annotations, but as
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constraints are extrinsic, they can constrain the operations on any other class. As the
three examples in List. 7 show, a constraint has four parts:

1. operation: This is a signature of an operation to be constrained, such as a method
call, constructor call, or even a tag signaling the end of a method. Notice that these
constraints may be defined in another class, as in the first constraint in List. 7. This
makes constraints more expressible that a class or protocol invariant.

2. trigger predicate: This is a logical predicate over relationships. The plugin’s rela-
tionship context must determine that this predicate holds for this constraint to be
triggered. If not, the constraint is ignored. While operation provides a syntactic
trigger for the constraint, trigger provides the semantic trigger. The combination
of both a syntactic and semantic trigger allows constraints to be more flexible and
expressible than many existing protocol-based solutions.

3. requires predicate: This is another logical predicate over relationships. If the con-
straint is triggered, then this predicate must be true under the current relationship
context. If the requires predicate is not true, this is a broken constraint and the
analysis should signal an error in the plugin.

4. effect list: This is a list of relationship effects. If the constraint is triggered, these
effects will be applied in the same way as the relationship effects described earlier.
They will be applied regardless of the state of the requires predicate.

In the first example at the top of List. 7, the constraint is checking that at every
call to ListItem.setSelected(boolean), if the relationship context shows
that the argument is false, the receiver is a Child of a ListControl, and if that
ListControl is a DropDownList, then it must also indicate that the ListItem
is Selected. Additionally, the context will change so that the DropDownList is not
CorrectlySelected. The second constraint is similar to the first and it enforces proper
selection of ListItems in a DropDownList. The third constraint ensures that the
plugin method does not end in an improper state by utilizing the “end-of-method” in-
struction to trigger when a plugin callback is about to end.

2.3 Inferred Relationships

In some cases, the relationships between objects are implicit. Consider the ListItem-
Collection from the DropDownList example. The framework developer would
like to state that items in this list are in a Child relation with the ListControl par-
ent. However, it does not make sense to annotate the ListItemCollection class
with this information since ListItemCollections should not know about List-
Controls.

Inferred relationships describe these implicit relationships that can be assumed at
any time. In List. 7, line 13 shows an example for inferring a Child relationship based
on the relations Item and List. Whenever the relationship context can show that the
“trigger” predicate is true, it can infer the relationship effects in the “infer” list. Inferred
relationships allow the framework developer to specify relationship effects that would
otherwise have to be placed on every location that the predicate is true; this would
significantly drive up the cost of adding these specifications.

It is possible to produce inferred relationships that directly conflict with the rela-
tionship context. To prevent this, the semantics of inferred relationships is that they
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are ignored in the case of a conflict, that is, relationships from declared relationship
effects and constraints have a higher precedence. The rationale behind this is that the
constraints and relationship effects are explicitly declared, and this should be reflected
by the giving them precedence. Additionally, the inferred relationships are only used
on an as-needed basis; to generate all possible inferred relations would be expensive
for the analysis. An alternative mechanism would be to signal an error, though it is not
currently clear whether this will increase the number of false positives.

3 The FUSION Analysis

We have designed and implemented a static analysis to track relationships through plu-
gin code and check plugin code against framework constraints. The FUSION analysis
is a modular, branch-sensitive, forward dataflow analysis4. It is designed to work on a
three address code representation of Java-like source. We assume that the analysis runs
in a framework that provides all of these features. In this section, we will present the
analysis data structures, the intuition behind the three variations of the analysis, and a
discussion of their tradeoffs. Sect. 4 defines how the analysis runs on each instruction.

The FUSION analysis is dependent on several other analyses, including a boolean
constant propagation analysis and an alias analysis. The FUSION analysis uses the
constant propagation analysis for the TEST effect. For this purpose, the relation analysis
assumes there is a function B to which it can pass a variable and learn whether the
represented value is true, false, or unknown.

The FUSION analysis can use any alias analysis which implements a simple inter-
face. First, it assumes there is a context L that given any variable x, provides a finite
set �̄ of abstract locations that the variable might point to. Second, it assumes a context
Γ� which maps every location � to a type τ. The combination of these two contexts,
< Γ�, L > is represented as the alias lattice A. This lattice must conservatively abstract
the heap, as defined by Def. 1.

Definition 1 (Abstraction of Alias Lattice). Assume that a heap h is defined as a set
of source variables x which point to a runtime location � of type τ. Let H be all the
possible heaps at a particular program point. An alias lattice < Γ�, L > abstracts H at
a program counter if and only if

∀ h ∈ H . dom(h) = dom(L) and

∀ (x1 ↪→ �1 : τ1) ∈ h . ∀ (x2 ↪→ �2 : τ2) ∈ h .

(if x1 �= x2 and �1 = �2 then

∃ � ′ . � ′ ∈ L(x1) and � ′ ∈ L(x2) and τ1 <: Γ�(�
′)) and

(if x1 �= x2 and �1 �= �2 then

∃ � ′1, � ′2 . � ′1 ∈ L(x1) and � ′2 ∈ L(x2) and � ′1 �= � ′2 and τ1 <: Γ�(�
′
1) and τ2 <: Γ�(�

′
2))

This definition ensures that if two variables alias under any heap, then the alias lattice
will reflect that by putting the same location � ′ into each of their location lists. Likewise,

4 By branch-sensitive, we mean that the true and false branches of a conditional may receive
different lattice information depending upon the condition. This is not a path-sensitive analysis.
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if the two variables are not aliased within a given heap, then the alias lattice will reflect
this possibility as well by having a distinct location in each location set. The definition
also ensures that the typing context Γ� has the most general type for a location.

If the alias analysis ensures Def. 1 and can provide the required interface, the variants
of the FUSION analysis are provably sound or complete. Additionally, a more precise
alias analysis will increase the precision of the FUSION analysis.

3.1 The Relation Lattice
unknown

true

�����
false

������

bot

������
������

Fig. 3. The relationship
state lattice

We track the status of a relationship using the four-
point dataflow lattice represented in Fig. 3, where
unknown represents either true or false and bot
is a special case used only inside the flow function.
The FUSION analysis uses a tuple lattice which
maps all relationships we want to track to a rela-
tionship state lattice element. We will represent this
tuple lattice as ρ. We will say that ρ is consistent
with an alias lattice A when the domain of ρ is equal to the set of relationships that are
possible under A.

Notice that as more references enter the context, there are more possible relation-
ships, and the height of ρ grows. Even so, the height is always finite as there is a finite
number of locations and a finite number of relations. As the flow function is monotonic,
the analysis always reaches a fix-point.

3.2 Flow Function

The analysis flow function is responsible for two tasks; it must check that a given op-
eration is valid, and it must apply any specified relationship effects to the lattice. The
flow function is defined as

fC;A;B(ρ, instr) = ρ
′

where C is all the constraints, A is the alias lattice, B is the boolean constant lattice,
ρ is the starting relation lattice, ρ ′ is the ending relation lattice, and instr is the in-
struction the analysis is currently checking. The analysis goes through each constraint
in C and checks for a match. It first checks to see whether the operation defined by the
constraint matches the instruction, thus representing a syntactic match. It also checks
to see whether ρ determines that the trigger of the constraint applies. If so, it has both
a syntactic and semantic match, and it binds the specification variables to the locations
that triggered the match. These bindings will be used for the remaining steps.

Once the analysis has a match, two things must occur. First, it uses the bindings
generated above to show that the requires predicate of the constraint is true under ρ. If
it is not true, then the analysis reports an error on instr. Second, the analysis must use
the same bindings to produce ρ ′ by applying the relationship effects.

3.3 Soundness and Completeness

Soundness and completeness allow the user of the analysis to either have confidence that
there are no errors at runtime if the analysis finds none (if it is sound) or that any errors
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Table 1. Differences between sound, complete, and pragmatic variants

Variant Trigger Predicate checks when... Requires Predicate passes when...
Sound True or Unknown True

Complete True True or Unknown
Pragmatic True True

the analysis finds will actually occur in some runtime scenario (if it is complete). For
the purposes of these definitions, an error is a dynamic interpretation of the constraint
which causes the requires predicate to fail. In the formal semantics, an error is signaled
as a failure for the flow function to generate a new lattice for a particular instruction.

We define soundness and completeness of the FUSION analysis by assuming an alias
analysis which abstracts the heap using A, as described above. For both of these theo-
rems, we let Aconc define the actual heap at some point of a real execution, and we let
Aabs be a sound approximation of Aconc. We also let ρabs and ρconc be relationship
lattices consistent with Aabs and Aconc where ρabs is an abstraction of the concrete
runtime lattice ρconc, defined as ρconc � ρabs.

For the sound variant, we expect that if the flow function generates a new lattice
using the imprecise lattice ρabs, then any more concrete lattice will also produce a new
lattice for that instruction. As the flow function only generates a new lattice if it finds
no errors, then there may be false positives from when ρabs produces errors, but there
will be no false negatives. To be locally sound for this instruction, the new abstract
lattice must conservatively approximate any new concrete lattice. Thm. 1 captures the
intuition of local soundness formally. Global soundness follows from local soundness,
the monotonicity of the flow function, and the initial conditions of the lattice.

Theorem 1 (Local Soundness of Relations Analysis).
if fC;Aabs ;B(ρabs, instr) = ρabs ′

and ρconc � ρabs

then fC;Aconc;B(ρconc, instr) = ρconc ′
and ρconc ′ � ρabs ′

If the FUSION analysis is complete, we expect a theorem which is the opposite of the
soundness theorem and is shown in Thm. 2. If a flow function generates a new lattice
given a lattice ρconc, then it will also generate a new lattice on any abstraction of
ρconc. An analysis with this property may produce false negatives, as the analysis can
find an error using the concrete lattice yet generate a new lattice using ρabs, but it will
produce no false positives. Like the sound analysis, the resulting lattices must maintain
their existing precision relationship.

Theorem 2 (Local Completeness of Relations Analysis).
if fC;Aconc;B(ρconc, instr) = ρconc ′

and ρconc � ρabs

then fC;Aabs;B(ρabs, instr) = ρabs ′
and ρconc ′ � ρabs ′

The FUSION analysis can be either sound, complete, or pragmatic by making only
minor changes to the analysis. Proofs of soundness and completeness, for the sound
and complete variants respectively, can be found in our associated technical report [5].
The differences between the variants are summarized in Tab. 1 and are described below.
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public class ListItemCollection {
@Item({∗, target}, REMOVE)
public void clear() {...}

}

@Constraint(op = ‘‘ListItemCollection.clear()’’,
trigger = ‘‘x instanceof ListItem’’,
requires = ‘‘true’’,
effect = {‘‘!Item(x, target)’’})

Fig. 4. Translating a relation effect with wildcards into a constraint. The Item relation has type
Item(ListItem, ListItemCollection).

Trigger condition. The trigger predicate determines when the constraint will check the
requires predicate and when it will produce effects. The sound variant will trigger a
constraint whenever there is even a possibility of it triggering at runtime. Therefore, it
triggers when the predicate is either true or unknown. The complete variant can produce
no false positives, so it will only check the requires predicate when the trigger predicate
is definitely true. Regardless of the variant, if the trigger is either true or unknown, the
analysis produces a set of changes to make to the lattice based upon the effects list.
The pragmatic variant will work the same as the complete variant when determining
whether to trigger the constraint. The rationale here is to try to reduce the number of
false positives by only checking constraints when they are known to be applicable.

Error condition. The requires predicate should be true to signal that the operation is
safe to use. The sound variant will cause an error whenever the requires predicate is
false or unknown. The complete variant, however, can only cause an error if it is sure
there is one, so it only flags an error if the requires predicate is definitely false. In this
case, the pragmatic variant will work the same as the sound variant. If the analysis
has come to this point, it already has enough information to determine that the trigger
was true. Therefore, we will require that the plugin definitely show that the requires
predicate is true, with the expectation that this will reduce the false negatives.

While the pragmatic variant can produce false positives and false negatives, we be-
lieve it will be the most cost-effective in practice based on our experience described in
Sect. 5. Additionally, this variant may use inferred relationships, a feature which is not
sound or complete but reduces the specification burden on the framework developer.

4 Abstract Semantics of FUSION

In this section, we present formal semantics for a simplified version of the specifications
and analysis, the grammar for which is shown in Fig. 5. We do not formalize TEST
effects or specialized relations for equality (==) and typing (instanceof). A semantics
with TEST effects can be found in our technical report [5], and it is possible to add
specialized relations by calling out to other flow analyses in the same manner as is done
with both TEST effects and aliasing.

Relationship effects and wildcards are both syntactic sugar that can be easily trans-
lated into a constraint form. Relationship effects are translated by considering them as
a constraint on the annotated method with a true trigger predicate, a true requires
predicate, and the effect list as annotated. Wildcards are easily rewritten by declaring a
fresh variable in the trigger predicate and constraining it to have the desired type. Fig.
4 shows an example effect with a wildcard translated into a constraint.
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constraint cons ::= op : Ptrg ⇒ Preq ⇓ R

predicate P ::= P1 ∧ P2 | P1 ∨ P2 | P1 =⇒ P2 | R | true | false
relation predicate R ::= rel(ᾱ) | ¬rel(ᾱ)
source instruction instr ::= xrslt = xtgt.m(x) | xrslt = new τ(x) | eom | . . .

instruction signature op ::= τtgt .m(y : τ) : τrslt | new τ(y : τ) | end-of-method | . . .

meta variable α ::= y | �
ternary logic t ::= True | False | Unknown

lattice elements E ::= unknown | true | false | bot
flow lattice ρ ::= rel(�̄) �→ E, ρ | ∅

set of lattices P ::= {ρ} ∪ P | ∅

substitution σ ::= (y �→ �), σ | ∅
set of substitutions Σ ::= {σ} ∪ Σ | ∅

alias lattice A ::= < Γ� ; L >

aliases L ::= (x �→ �), L | ∅
location types Γ� ::= (� : τ), Γ� | ∅

spec variable types Γy ::= (y : τ), Γy | ∅

relation type R ::= rel �→ τ̄, R | ∅
constraints C ::= cons, C | ∅

relation inference rules I ::= P ⇓ R, I | ∅

x is a source variable
m is a method name
rel is a relation name
τ is a type
y is a spec variable, where the variables target and result have special meanings
� is a label for a runtime object
⊥A is a ρ where⊥A is consistent with A and ∀ rel(�̄) �→ E ∈ ⊥A . E = bot

Fig. 5. Abstract syntax

The lattice ρ has the usual operators of join (�) and comparison (�), which work
as expected for a tuple lattice. We also introduce three additional operators, defined in
Fig. 6. Equivalence join ( ) will resolve to unknown if the two sides are not equal.
Overriding meet ( ) has the property that if the right side has a defined value (not
bot), then it will use the right value, otherwise it will use the left value. The polarity
operator (�) will push all non-bottom values to the top of the lattice. Finally, we also
define⊥A as a tuple lattice which is consistent with the alias lattice A and which maps
every relationship to bot.

4.1 Checking Predicate Truth

Before we show how constraint checking works, we must describe how the analysis
tests the truth of a relationship predicate. The judgment for this is written as

ρ � P t
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� bot = bot
(POLAR-BOT)

E �= bot

� E = unknown
(POLAR-UNKNOWN)

E E = E
(EQJOIN-=)

E bot = E
(OVR-BOT)

Er �= bot

El Er = Er
(OVR-NOT-BOT)

El �= Er

El Er = unknown
(EQJOIN- 	=)

Fig. 6. Unusual lattice operations

ρ � P t

ρ(rel(�)) = true

ρ � rel(�) True
(REL-T)

ρ(rel(�)) = false

ρ � rel(�) False
(REL-F)

ρ(rel(�)) = E E �= true E �= false

ρ � rel(�) Unknown
(REL-U-SND/CMP)

ρ(rel(�)) = E E �= true E �= false
ρ infers ρ

′
ρ ρ

′ � rel(�) t t is True or False

ρ � rel(�) t
(INFER-PRG)

ρ(rel(�)) = E E �= true E �= false
¬∃ ρ

′
. ρ infers ρ

′
∧ ρ ρ

′ � rel(�) t ∧ t is True or False

ρ � rel(�) Unknown
(REL-U-PRG)

ρ infers ρ ′

P ⇓ R ∈ I ρ � P[σ] True ρ
′ = lattice(R[σ]) ρ

′ � ρ

ρ infers ρ
′ (DISCOVER)

Fig. 7. Check predicate truth under a lattice. The remaining rules are as expected for ternary logic
and can be found in [5].

and is read “the lattice ρ shows that predicate P is t”, where t is either True, False,
or Unknown. The rules for this judgment are similar to three-valued logic, and the
interesting subset of them are in Fig. 7.

In the sound and complete variants, the rules are trivial. The analysis inspects the
lattice to see what the value of the relationship is to determine whether it is True (REL-

T), False (REL-F), or Unknown (REL-U-SND/CMP). If the lattice maps the relationship to
either unknown or bot, then the predicate is considered Unknown. The rest of the
predicate rules work as expected for a three-valued logic.

The interesting case is in the pragmatic variant when the relationship does not map
to true or false. Instead of using the rule (REL-U-SND/CMP), the pragmatic variant
admits the rules (REL-U-PRG) and (INFER-PRG). These rules attempt to use the inferred
relationships, defined in Sect. 2.3, to retrieve the desired relationship. The rule for the
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inference judgement ρ infers ρ ′ is also defined in Fig. 7. This rule first checks to see if
the trigger of an inferred relation is true, and if so, uses the function lattice to produce
the inferred relationships described by R̄[σ]. For all relationships not defined by R̄[σ],
lattice defaults to bot to signal that there are no changes. There are two properties to
note about the rules (REL-U-PRG), (INFER-PRG), and (DISCOVER):

1. The use of inferred relationships does not change the original lattice ρ. This allows
the inferred relationships to disappear if the generator, P, is no longer true.

2. Any inferred values must be strictly more precise than the relationship’s value in
ρ, as enforced by ρ ′ � ρ. This means that relationships can move from unknown
to true, but they can not move from false to true. This property guarantees
termination and gives declared effects precedence over inferred ones.

Inferred relationships can not be used in the sound and complete variants. This does
not limit the expressiveness of the specifications, as inferred relations can always be
written directly within the constraints. Doing so does make the specifications more dif-
ficult to write; the framework developer must add the inferred relations to any constraint
which will also prove the trigger predicate. Since inferred relations do change the se-
mantics, they are not syntactic sugar, but they are not necessary for reasons beyond the
ease of writing specifications.

4.2 Matching on an Operator

In order to check a constraint, the analysis must determine whether a source instruction,
called instr, matches the syntactic operation op defined by a constraint. This is realized
in the judgment

A; Γy � instr : op �⇒ (Σt
, Σ

u)

with rules defined in Fig. 8. Given the alias lattice A and a typing environment for the
free variables in op, this judgment matches instr to op and produces two disjoint sets
of substitutions that map specification variables in op to heap locations. The first set,
Σt, represents possible substitutions where the locations are all known to be a subtype
of the type required by the variables. The second set, Σu, are potential substitutions
where the locations may or may not have the right type at runtime.

As an example, we will walk through the rule (INVOKE) in Fig. 8. The first premise
checks that the free variables in op are in Γy , and the second premise builds the sub-
stitution set using the findLabels function. Each substitution in the set will map the
specification variables in op (target, result, and y1 . . . yn) to a location in the heap that
is aliased by the appropriate source variables in instr (xtgt, xrslt, and x1 . . .xn).

To produce the set Σt, the findLabels function must generate a substitution for each
yi in ȳ. It starts by verifying that the corresponding source variable xi points to only
one location �, and it checks to see if the type of that location is a subtype of the type
required for yi. Every substitution σ which fits these requirements is in Σt.

Σu is a more interesting set. Unlike Σt, it checks all locations which xi aliases and
records a possible substitution for each. Additionally, when it checks the type, it allows
the location if there is even a possibility of it being the right type. As an example,
consider the class hierarchy and use of findLabels shown in Fig. 9. In the first row, �
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A; Γy � instr : op �⇒ (Σt , Σu)

FV(τtgt .m(y : τ) : τrslt) ⊆ Γy

findLabels(A; Γy ; xrslt, xtgt, x; result, target, y) = (Σt
, Σ

u)

A; Γy � xrslt = xtgt.m(x) : τtgt .m(y : τ) : τrslt �⇒ (Σt
, Σ

u)
(INVOKE)

FV( new τ(y : τ)) ⊆ Γy

findLabels(A; Γy ; xrslt, x; target, y) = (Σt
, Σ

u)

A; Γy � xrslt = new m(x) : new τ(y : τ) �⇒ (Σt
, Σ

u)
(CONSTRUCTOR)

A; Γy � eom : end-of-method �⇒ ({∅}, ∅)
(EOM)

findLabels(A, Γy , x, y) = (Σt, Σu)

|x| = |y| = n

Σ
t = {(y1 �→ �1), . . . , (yn �→ �n) |

∀ i ∈ 1 . . . n . L(xi) = {�i} ∧ Γ�(�i) <: Γy(yi)}
Σ

u = {(y1 �→ �1), . . . , (yn �→ �n) |

∀ i ∈ 1 . . . n . �i ∈ L(xi) ∧ ∃ τ
′
. τ

′
<: Γ�(�i) ∧ τ

′
<: Γy(yi)} − Σ

t

findLabels(< Γ�, L >; Γy ; x; y) = (Σt
, Σ

u)
(FINDLABELS)

Fig. 8. Matching instructions to operations and type satisfaction

τ� τy Σt Σu

B A {(y �→ �)} ∅

B D ∅ ∅

A B ∅ {(y �→ �)}

A D ∅ {(y �→ �)}

findLabels(< � : τ�,x �→ {�} >, y : τy , {x}, {y}) = (Σt, Σu)

Fig. 9. Examples of the difference between Σt and Σu

is definitely substitutable for y, so it is a substitution in Σt. In the second row, y can
never be substituted by �, so both sets are empty. In the third and fourth rows, � may be
substitutable for y (if � has type B or C, respectively), so both substitutions are possibly,
but not definitely, allowed and are therefore in Σu.

The need for Σu may seem surprising, but the rationale behind it is that framework
constraints do not always adhere to behavioral subtyping [6]. Consider analyzing the
DropDownList constraint on the code below:

1 ListControl list = ...;
2 ListItem item = list.getItems().findByValue("foo");
3 item.setSelected(true);

Since list is of type ListControl, the trigger clause of the first constraint in List.
7 will not be true, and the constraint will never trigger an error. However, we would
like this to trigger a potential violation in the sound variant since list could be a
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DropDownList. The root of the problem was that DropDownList is not following
the principle of behavioral subtyping; it has added preconditions to methods that the
base class did not require. Therefore, a DropDownList is not always substitutable
where a ListControl is used! While frustrating for verification, this is common
in frameworks; by trading off substitutability, the framework developers received code
reuse internally. Other verification proposals have also recognized the need to support
broken behavioral subtyping for this reason [7,8]. Inheritance was used here rather than
composition because the type is structurally the same, and it is almost behaviorally
the same. In fact, the methods on DropDownList itself do appear to be behaviorally
substitutable. However, the subtype added a few constraints to other classes, like the
ListItem class.

By keeping track of Σt and Σu separately, it will allow the variants of the analysis
to use them differently. In particular, the sound variant will trigger errors from substi-
tutions in Σu, while the complete and pragmatic variants will only use it to propagate
lattice changes from the effect list.

4.3 Checking a Single Constraint

We will now show how the analysis checks an instruction for a single constraint. This
is done with the judgment

A; ρ; cons � instr ↪→ ρ
Δ

shown in Fig. 10. This judgment takes the lattices and a constraint, and it determines
what changes to make to the relation lattice for the given instruction. The lattice changes
are represented in ρΔ, where a relationship mapped to bot signifies no changes.

The analysis starts by checking whether the instruction matches the constrained op-
eration. If not, the instruction matching rules will return no substitutions and the rule
(NO-MATCH) will apply. If there are substitutions, as shown in rule (MATCH), then the
analysis must check this constraint for every aliasing configuration possible, as repre-
sented by Σt and Σu. This rule checks that for each substitution σ, the constraint passes
and produces a change lattice ρΔ. If the substitution was from Σu, then the analysis
must use the � operator on ρΔ. This is done because the analysis cannot be sure if the
substitution is valid at runtime, so it can only make changes into unknown. Setting
all changes to unknown could cause the analysis to lose precision when ρΔ prescribes
a change that already exists in ρ. A possible solution is to let the polarizing operator
return bot if the prescribed changes already exist in the lattice ρ, but we have not yet
proven this extension is sound.

The last step the rule makes is to combine all the lattice changes, from all substitu-
tions, using . The use of means that a change is only made to true or false
if all the aliasing configurations agree to it. Likewise, a signal to make no changes by
way of bot must also show in all configurations. If any configurations disagree about
a lattice change, then the lattice element changes to unknown.

Once the analysis has a syntactic match, it tries to find the aliasing configurations for
a semantic match using

A; ρ; σ �part cons ↪→ ρ
Δ
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A; ρ; cons � instr ↪→ ρΔ

cons = op : Ptrg ⇒ Preq ⇓ R A; FV(cons) � instr : op �⇒ (Σt
, Σ

u)

Σ
t ∪ Σ

u �= ∅ P
t = {ρ

Δ
| σ ∈ Σ

t
∧ A; ρ; σ �part cons ↪→ ρ

Δ
}

P
u = {� ρ

Δ
| σ ∈ Σ

u
∧ A; ρ; σ �part cons ↪→ ρ

Δ
}

|Σ
t
| = |P

t
| |Σ

u
| = |P

u
| P

Δ = P
t ∪ P

u

A; ρ; cons � instr ↪→ ( P
Δ)

(MATCH)

cons = op : Ptrg ⇒ Preq ⇓ R A; FV(cons) � instr : op �⇒ (∅, ∅)

A; ρ; cons � instr ↪→ ⊥A
(NO-MATCH)

A; ρ; σ �part cons ↪→ ρΔ

cons = op : Ptrg ⇒ Preq ⇓ R

Γy = FV(op) ∪ FV(Ptrg) ∪ FV(R) allValidSubs(A; σop ; Γy) = (Σt
, Σ

u)

Σ
t ∪ Σ

u �= ∅ P
t = {ρ

Δ
| σ ∈ Σ

t
∧ A; ρ; σ �full cons ↪→ ρ

Δ
}

P
u = {� ρ

Δ
| σ ∈ Σ

u
∧ A; ρ; σ �full cons ↪→ ρ

Δ
}

|Σ
t
| = |P

t
| |Σ

u
| = |P

u
| P

Δ = P
t ∪ P

u

A; ρ; σop �part cons ↪→ ( P
Δ)

(BOUND)

cons = op : Ptrg ⇒ Preq ⇓ R

Γy = FV(op) ∪ FV(Ptrg) ∪ FV(R) allValidSubs(A; σop ; Γy) = (∅, ∅)

A; ρ; σop �part cons ↪→ ⊥A
(CANT-BIND)

allValidSubs(A; σ; Γy) = (Σt , Σu)

Σ
t = {σ

′
| σ

′ ⊇ σ ∧ dom(σ ′) = dom(Γy) ∧ ∀ y �→ � ∈ σ
′
. Γ�(�) <: Γy(y)}

Σ
u = {σ

′
| σ

′ ⊇ σ ∧ dom(σ ′) = dom(Γy ) ∧

∀ y �→ � ∈ σ
′
. ∃ τ

′
. τ

′
<: Γ�(�) ∧ τ

′
<: Γy(y)} − Σ

t

allValidSubs(< Γ� ; L >; σ; Γy) = (Σt
, Σ

u)
(VALIDSUBS)

Fig. 10. Checking a single constraint

The analysis must get all aliasing configurations that are consistent with the current
aliases in σ and the types of the remaining free variables in cons. The substitutions are
found by the allValidSubs function, shown in Fig. 10. The rule (BOUND) proceeds in a
similar manner to the rule (MATCH), except it checks the constraint using the judgment

A; ρ; σ �full cons ↪→ ρ
Δ

The rules for this judgment, shown in Fig. 11, are the primary point of difference
between the variants of the analysis.

Sound Variant. The sound variant first checks Ptrg[σ] under ρ. It uses this to determine
which rule applies. If Ptrg[σ] is True, as seen in rule (FULL-T-SND), then the analysis must
check if Preq is True under ρ given any substitution. Since this is the sound variant, it
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A; ρ; σ �full cons ↪→ ρΔ , Sound Variant

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg[σ] True
allValidSubs(A; σ; FV(cons)) = (Σt

, Σ
u)

∃ σ
′ ∈ Σ

t
. ρ � Preq[σ ′] True

A; ρ; σ �full cons ↪→ lattice(R̄[σ])
(FULL-T-SND)

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg [σ] False

A; ρ; σ �full cons ↪→ ⊥A

(FULL-F-SND)

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg[σ] Unknown

allValidSubs(A; σ; FV(cons)) = (Σt
, Σ

u)

∃ σ
′ ∈ Σ

t
. ρ � Preq[σ ′] True ρ

Δ = lattice(R̄[σ])

A; ρ; σ �full cons ↪→� ρ
Δ

(FULL-U-SND)

A; ρ; σ �full cons ↪→ ρΔ , Complete Variant

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg [σ] True
allValidSubs(A; σ; FV(cons)) = (Σt

, Σ
u)

∃ σ
′ ∈ Σ

t ∪ Σ
u

. ρ � Preq [σ ′] True ∨ ρ � Preq[σ ′] Unknown

A; ρ; σ �full cons ↪→ lattice(R̄[σ])
(FULL-T-CMP)

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg[σ] False

A; ρ; σ �full cons ↪→ ⊥A
(FULL-F-CMP)

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg[σ] Unknown

ρ
Δ = lattice(R̄[σ])

A; ρ; σ �full cons ↪→� ρ
Δ

(FULL-U-CMP)

A; ρ; σ �full cons ↪→ ρΔ , Pragmatic Variant

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg[σ] True
allValidSubs(A; σ; FV(cons)) = (Σt

, Σ
u)

∃ σ
′ ∈ Σ

t
. ρ � Preq [σ ′] True

< Γ� ; L >; ρ; σ �full cons ↪→ lattice(R̄[σ])
(FULL-T-PRG)

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg[σ] False

A; ρ; σ �full cons ↪→ ⊥A
(FULL-F-PRG)

cons = op : Ptrg ⇒ Preq ⇓ R ρ � Ptrg [σ] Unknown

ρ
Δ = lattice(R̄[σ])

A; ρ; σ �full cons ↪→� ρ
Δ

(FULL-U-PRG)

Fig. 11. Checking a fully bound constraint and producing effects. Shading highlights the differ-
ences between the three variants.
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will only accept substitutions from Σt. If Preq is not True with a substitution from Σt,
then the analysis produces an error. If there is no error, the rule produces the effects
dictated by R̄[σ]. The function lattice simply converts this list to a lattice, where all
unspecified relationships map to bot. If Ptrg[σ] is False, then the analysis uses rule
(FULL-F-SND). In this situation the constraint does not trigger, so the requires predicate
is not checked and the analysis returns no changes using ⊥A.

In the case that Ptrg[σ] is Unknown, the sound variant proceeds in a similar manner
to the case where Ptrg[σ] is True as it must consider the possibility that the trigger
predicate is actually true. In fact the only difference in the rule (FULL-U-SND) is that
the analysis must use the polarizing operator to be conservative with the effects it is
producing in case the trigger predicate is actually false at runtime.

Complete Variant. Like the sound variant, the complete variant starts by checking
Ptrg[σ] under ρ. If Ptrg[σ] is True, as seen in rule (FULL-T-CMP), then the analysis must
check Preq under ρ given any substitution. As this is the complete variant, the analysis
does not care whether the substitution came from Σt or Σu, and it does not matter
whether Preq is True or Unknown. If no substitutions work, either because none exist or
because they all show Preq to be false, then the analysis produces an error. Otherwise,
the rule produces some effects. Since the constraint trigger was true, it will produce
exactly the effects dictated by R̄[σ]. If the analysis determines that Ptrg[σ] is False,
then it uses the rule (FULL-F-CMP). Like the sound variant, the requires predicate is not
checked and the analysis returns no changes.

Finally, if Ptrg[σ] is Unknown, the complete variant will not check Preq as it can-
not be sure whether the constraint is actually triggered and it should not produce an
error. However, it must still produce some conservative effects in case the constraint is
triggered given a more concrete lattice. Like the sound rule in the case of an unknown
trigger, the rule uses the polarizing operator � to produce only conservative effects.

Pragmatic Variant. The pragmatic variant is a combination of the sound and complete
variants. It has the same rule for False as the other two variants, (FULL-F-PRG). The rule
(FULL-T-PRG) is the same as the True rule for soundness, while the rule (FULL-U-PRG)
is the same as the Unknown rule for completeness. This means that this variant can
produce both false positives and false negatives. False negatives can occur when Ptrg

is Unknown under ρ, but a more precise lattice would have found Ptrg to be True and
eventually generated an error. False positives occur when Ptrg is True under ρ and Preq

is Unknown under ρ, but Preq would have been True under a more precise lattice.

4.4 The Flow Function

The flow function for the FUSION analysis checks all the individual constraints and
produces the output lattice for the instruction. Using the judgments defined in the pre-
vious section, the flow function iterates through each constraint and receives a change
lattice. As shown in below, these lattices are combined using the join operator. Once
the analysis has the final change lattice ρΔ, it applies the changes using the overriding
meet operation. This will preserve the old values of a relationship if the change lattice
maps to bot, but it will override the old value otherwise. This provides us with the
new relationship lattice ρ ′, which is used by the dataflow analysis to feed into the next
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instruction’s flow function. This flow function is monotonic, and the lattice has a finite
height, so the dataflow analysis will reach a fix point.

∀ consi ∈ C . A
′; ρ; consi � instr ↪→ ρ

Δ
i ρ

Δ = �{ρ
Δ
i } (i ∈ 1 . . . n)

fC;A(ρ, instr) = ρ ρ
Δ

5 Implementation and Experience with the Pragmatic Variant

We implemented the pragmatic variant of the FUSION analysis in the Crystal dataflow
analysis framework, an Eclipse plugin developed at Carnegie Mellon University for
statically analyzing Java source 5. The implementation interfaces to a boolean constant
propagation analysis and a basic alias analysis; either of these could be replaced with
more sophisticated implementation in order to improve the results.

We specified three sets of constraints, one for the ASP.NET framework6 and two for
the Eclipse JDT framework. These were all constraints which we had misused ourselves
and were common problems that were posted on the help forums and mailing lists.
These constraints exercised several different patterns, and the specifications were able
to capture each of these patterns.

The specifications allowed us to easily describe structured relationships, such as the
ListItems which are in a DropDownList and a tree of ASTNodes within the
Eclipse JDT. In each of these cases, a relationship ties the “child” and “parent” ob-
jects together, and it is straightforward to check if two children have the same parent.
Two of our constraints had a structured relationship where an operation required that
some objects exist (or do not exist) in a structured relationship.

All three constraints had semantics which required operations to occur in a particular
order. To define this pattern, we needed a relationship which binds relevant objects to-
gether. The operation which occurs first produces an effect which sets this relationship
to true, and the operation which must occur second requires this relationship. An exam-
ple of this was seen in the constraints on the DropDownList in List. 7. Additionally,
relationships allowed us to specify partial orderings of operations. One of the Eclipse
JDT constraints had this behavior, and in fact required three methods to be called before
the constrained operation. Alternatively, the user could choose to call a fourth method
that would replace all three method calls. We captured this constraint by having each of
the four methods produce a relationship, and the constrained operation simply required
either the three relationships produced from the group of three methods, or the single
relationship produced from the fourth one.

Relationships also made it straightforward to associate any objects that were used in
the same operation. For example, this allowed us to associate several fields of an object
so that we could later check that they were only used together. We did this by annotating
the constructor of the object with a relationship effect that tied the field parameters
together. We could also associate objects that were linked by some secondary object,
but had no direct connection, such as a DropDownList and the ListItems received
from calls to the associated ListItemCollection.

5 http://code.google.com/p/crystalsaf
6 We translated the relevant parts of the API and the examples into Java.

http://code.google.com/p/crystalsaf
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After specifying the constraints, we ran the pragmatic variant on 20 examples based
on real-world code. The examples we selected are based on our own misuses of these
frameworks and on several postings on internet help forums and mailing lists. Of these,
the pragmatic variant worked properly on 16, meaning that it either found an expected
error or did not find an error on correct code. Most of these examples had little aliasing
and used exact types, which reflected what we saw on the help forums.

These examples identified two sources of imprecision. The pragmatic variant failed
on one example because the example used an unconstrained supertype, and it failed on
the remaining three examples because the constraint required objects which were not in
scope. The unconstrained supertype resulted in a false negative, and the three examples
with objects out of scope resulted in false positives. In all four of these cases, the sound
variant would have flagged an error, and the complete variant would not have.

Unconstrained supertypes, such as using a ListControl instead of a Drop-
DownList, are the first potential source of imprecision for the pragmatic variant.
While a sound analysis would have detected this type of error, in practice, using this
superclass is not typical as it only exists for code reuse purposes. In fact, we never
found code on the forum that used the superclass ListControl.

The more interesting, and more typical, source of imprecision occurs when a required
object is not in scope. For example, one of the Eclipse JDT constraints required that an
ASTNode have a relationship with an AST object. The plugin, however, did not have
any AST objects in scope at all, even though this relationship did exist globally. Based
on the examples we found, this does occur in practice, typically when the framework
makes multiple callbacks in sequence, such as with a Visitor pattern.

Future revisions of the FUSION analysis could address the problem of out-of-scope
objects with two changes. First, it should be possible for the framework to declare what
relationships exist at the point where the callback occurs. This would have provided the
correct relationships in the previous example, and it should be relatively straightforward
to annotate the interface of the plugin with this information. Second, an inter-procedural
analysis on only the plugin code could handle the case where the relationship goes out
of scope for similar reasons, such as calls to a helper function. These changes would
increase the precision of all three variants of the analysis.

The two sources of imprecision affect all three variants, though in different ways.
While imprecision when checking a constraint can produce a false positive in the sound
variant or a false negative in the complete variant, the location of the imprecision in the
constraint directly changes how the pragmatic variant handles it. When the imprecision
occurs in the trigger predicate, the pragmatic variant results in a false negative. When
the trigger predicate is precise but the requires predicate is imprecise, the pragmatic
variant results in a false positive. This reflects what we expect from the analysis; we
only wish to see an error if there is reason to believe that the constraint applies to our
plugin. If the trigger predicate is unknown, it is less likely that the constraint is relevant.

6 Related Work

Typestates [9] are traditionally used for specifying protocols on a single object by using
a state machine, but there are several approaches to inter-object typestate. Lam et al.
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manipulated the typestate of many objects together through their participation in data
structures [10]. Nanda et al. take this a step further by allowing external objects to affect
a particular object’s state, but unlike relationships, it requires that the objects reference
each other through a pre-defined path [11]. Bierhoff and Aldrich add permissions to
typestates and allows objects to capture the permission of another object, thus binding
the objects as needed for the protocol [12]. Relationships can combine multiple objects
into a single state-like construct and are more general for this purpose than typestate;
they can describe all of the examples used in multiple object typestate work.

With respect to the specifications, relationships are more incremental than typestate
because the entire protocol does not need to be specified in order to specify a single
constraint. Additionally, the plugin developer does not add any specifications, which
she must do with some of the typestate approaches. However, because they require
specifications on both sides, typestate analyses can soundly check that both the plugin
and the framework meet the specification [9,10,12]. The relationship analysis assumes
that the framework properly meets the specification and only analyzes the plugin.

Tracematches have also been used to enforce protocols [13]. Unlike typestate, which
specifies the correct protocol, tracematches specify a temporal sequence of events which
lead to an error state. This is done by defining a state machine for the protocol and then
specifying the bad paths.

The tracematch specification approach is similar to that of relationships; the main
difference is in how the techniques specify the path leading up to the error state. Trace-
matches must specify the entire good path leading up to the error state, which can
lead to many specifications to define a single bad error state. In cases where multiple
execution traces lead to the same error, such as the many ways to find an item in a
DropDownList and select it incorrectly, a tracematch would have to specify each
possibility. Instead of specifying the good path leading up to the error, relationships
specify the context predicate, which is the same for all good paths. This difference
affects how robust a specification is in the face of API changes. If the framework de-
veloper adds a new way to access ListItems in a ListControl, possibly through
several methods calls, the existing tracematches will not cover that new sub-path. How-
ever, all the constraint specifications in the proposed technique will continue to work if
the sub-path eventually results in the same relationships as other sub-paths.

Tracematches are enforced statically and dynamically using a global analysis [14].
The static analysis soundly determines possible violations, and it instruments the code
to check them dynamically. Bodden et al. provide a static analysis which optimizes
the dynamic analysis by verifying more errors statically [15], and Naeem and Lhoták
specifically optimize with regard to tracematches that involve multiple objects [16].
While the FUSION analysis is static, it could be used in the same way by instrumenting
all violations that are found by the sound variant but not by the complete variant.

Bierman and Wren formalized UML relationships as a first-class language construct
[17]. The language extension they created gives relationships attributes and inheritance,
and developers use the relationships by explicitly adding and removing them. Balzer et.
al. expanded on this work by describing invariants on relations using discrete mathe-
matics and support semantic invariants and invariants between several relations [18].
In contrast to previous work, the relationships presented in this paper are added and
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removed implicitly through use of framework operations, and if inferred relationships
are used, they may be entirely hidden from the developer.

Like the proposed framework language, Contracts [19] also view relationships be-
tween objects as a key factor in specifying systems. A contract also declares the objects
involved in the contract, an invariant, and a lifetime where the invariant is guaranteed
to hold. Contracts allow all the power of first-order predicate logic and can express
very complex invariants. Contracts do not check the conformance of plugins and the
specifications are seemingly more complex to write.

The FUSION analysis is similar to a shape analysis, with the closest being TVLA
[20]. TVLA allows developers to extend shape analysis using custom predicates that
relate different objects. FUSION specifications could be written as custom TVLA pred-
icates, but the lower level of abstraction would result in a more complex specification
and would require greater expertise from the specifier.

7 Conclusion

Relationships capture the interaction between a plugin and framework by describing
how abstract object associations change as the plugin makes calls to the framework.
We can then use these relationships to describe constraints on framework operations.
We have shown that FUSION’s relationship-based constraints can describe many con-
straint paradigms found in real frameworks, capturing relationship structure, operation
order, and object associations that may or may not derive from direct references. As
the specifications are written entirely by framework developers, plugin developers only
need to run the analysis on their code, so that investments by a few framework develop-
ers pay dividends to many plugin developers.

A currently intra-procedural static analysis can check that the plugin code meets
framework constraints. This analysis is particularly interesting because it is adjustable.
While many analyses strive to only be either sound or complete, the FUSION analysis
can be run either soundly, completely, or as a pragmatic balance of the two, thereby
allowing the plugin developer to choose the variant that provides the most useful results.
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Abstract. Model-based development promises to increase productivity
by offering modeling languages tailored to a specific domain. Such mod-
eling languages are typically defined by a metamodel. In response to
changing requirements and technological progress, the domains and thus
the metamodels are subject to change. Manually migrating existing mod-
els to a new version of their metamodel is tedious and error-prone. Hence,
adequate tool support is required to support the maintenance of modeling
languages. This paper introduces COPE, an integrated approach to spec-
ify the coupled evolution of metamodels and models to reduce migration
effort. With COPE, a language is evolved by incrementally composing
modular coupled transformations that adapt the metamodel and specify
the corresponding model migrations. This modular approach allows to
combine the reuse of recurring transformations with the expressiveness
to cater for complex transformations. We demonstrate the applicability
of COPE in practice by modeling the coupled evolution of two existing
modeling languages.

1 Introduction

Model-based development promises to increase productivity by offering modeling
languages tailored to a specific domain. Consequently, a variety of metamodel-
based approaches for the development of modeling languages, such as Model-
Driven Architecture [1], Software Factories [2] and Domain-Specific Modeling
[3] have been proposed in recent years. In response, modeling languages are re-
ceiving increased attention in industry. The AUTOSAR standard, for instance,
defines a modeling language to specify automotive software architectures [4].
With the integration of modeling languages into industrial development prac-
tice, their maintenance is gaining importance. Although significant work in both
academia and industry has been invested into tool support for the initial de-
velopment of modeling languages, issues related to their maintenance are still
largely disregarded.
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Even though often neglected, a language is subject to change like any other
software artifact [5]. This holds for both general-purpose and domain-specific
modeling languages. For instance, UML [6] – a general purpose modeling lan-
guage – already has a rich evolution history, although it is relatively young.
Domain-specific modeling languages like e. g. AUTOSAR are even more prone
to change, as they have to be adapted whenever their domain changes due to
technological progress or evolving requirements.

A modeling language is evolved by adapting its metamodel to the evolved
requirements. Due to metamodel adaptation, existing models may no longer
conform to the adapted metamodel. These models have to be migrated so that
they can be used with the evolved modeling language. Throughout the paper,
the combination of metamodel adaptation and reconciling model migration is re-
ferred to as coupled evolution. Manually migrating existing models to the adapted
metamodel is tedious and error-prone. Consequently, in current practice two ap-
proaches are used to handle evolution of modeling languages.

The first approach advocates to perform language evolution in a downwards-
compatible fashion. In other words, the metamodel is adapted in a way that the
old models can still be used with the evolved modeling language without mi-
gration. However, downward compatibility heavily constrains the way in which
a metamodel can be adapted. Furthermore, the preservation of old constructs
can unnecessarily clutter and complicate a metamodel. This approach can be
further refined by using deprecation to signal metamodel changes. More pre-
cisely, constructs are marked deprecated, before they are actually removed from
the metamodel. Users of the modeling language are then informed about the
deprecated constructs which should no longer be used. However, deprecation
shifts the responsibility for model migration from the developer of the model-
ing language to its users. In addition, deprecation also clutters and complicates
the metamodel, as it leads to non-orthogonal constructs being available at the
same time. In a nutshell, both downwards compatibility and deprecation heavily
threaten the simplicity and quality of the metamodel. As a lot of artifacts like
language editors and interpreters depend on the metamodel, these approaches
also affect their simplicity and quality.

The second approach is to adapt the metamodel in a breaking fashion and to
later implement a migrator, i. e. when the new version of the modeling language
is deployed. The migrator preserves the information of an existing model by
transforming it into a new version that conforms to the adapted metamodel.
This approach has the advantage that the metamodel can be adapted in a clean
manner, because legacy constructs can be removed. However, implementation of
a migrator after a number of metamodel adaptations is tedious, as the developers
of the modeling language have to become clear about the intentions behind
these metamodel adaptations. In addition, a migrator implemented as a model
transformation does not allow for the reuse of recurring migration knowledge.

Hence, adequate tool support is required to further reduce the effort involved
in migrator implementation. We have performed an empirical study on the histo-
ries of two industrial metamodels to determine the requirements for adequate tool
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support [7]. The study showed that there is a large fraction of recurring migration
knowledge. Hence, effort can be saved by enabling the reuse of such recurring cou-
pled evolution steps. However, it also revealed that there are a number of migra-
tions that are specific to a certain domain and thus cannot be reused. In addition,
the specification of these migrations requires an expressive language.

Currently, to our best knowledge, there is no approach that combines both
the desired level of reuse and expressiveness. To alleviate this, we present COPE,
an integrated approach to model the coupled evolution of metamodels and mod-
els. COPE is based on a language that provides means to combine metamodel
adaptation and model migration into so-called coupled transactions. The stated
requirements are fulfilled by two kinds of coupled transactions: reusable and
custom coupled transactions. A reusable coupled transaction allows the reuse of
recurring coupled transformations across metamodels. A custom coupled transac-
tion can be manually defined by the metamodel developer for complex migrations
that are specific to a metamodel. To ease the application of this language, COPE
provides further abstraction by tool support. In order not to disturb the habits
of the metamodel developer, we have integrated COPE into the metamodel ed-
itor. The user interface provides easy access to a number of reusable coupled
transactions available through a library. A language history automatically keeps
track of the consecutively performed coupled transactions.

Outline. In Section 2, we recapitulate the requirements derived from our em-
pirical study. We analyze how these requirements are fulfilled by related work
in Section 3. In Section 4, we introduce the language and show how its con-
cepts directly fulfill the requirements from the study. The seamless integration
of COPE into the Eclipse Modeling Framework (EMF) is presented in Section 5.
In Section 6, we show the applicability of COPE in practice by performing the
coupled evolution of existing metamodels and their models. We conclude and
present directions for future work in Section 7.

2 Requirements for Automated Coupled Evolution

To better understand the nature of coupled evolution of metamodels and models
in practice, we performed a study on the histories of two industrial metamod-
els [7]. The study’s main goal was to determine substantiated requirements for
tool support that is adequate for coupled evolution in practice. We investigated
whether reuse of migration knowledge can significantly reduce migration effort.
To this end, we developed a classification of metamodel changes with respect to
the automatability of the corresponding model migration.

As is depicted in Figure 1(a), we introduced four main classes of language
changes. Metamodel-only changes do not require the migration of models, e. g.
metamodel extensions like the addition of an optional attribute, whereas coupled
changes do. Coupled changes can be further subdivided into metamodel-
independent, metamodel-specific and model-specific coupled changes.Metamodel-
independent coupled changes do not depend on a specific metamodel, and thus can
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Fig. 1. Empirical study

be reused across metamodels. Examples are well-known object-oriented refactor-
ings [8] like e. g. rename or extract class. Metamodel-specific coupled changes are
so specific to a certain metamodel that they cannot be reused across metamodels.
An example is the removal of composite states from a statemachine metamodel
which requires to flatten the state hierarchy in the models. Model-specific coupled
changes require information from the developer of a model during migration, and
thus the migration cannot be specified in a model-independent way. Examples are
metamodel refinements which require to also refine the model.

For our study in [7], we deliberately chose two metamodel histories where the im-
pact on the models was not taken into account during metamodel adaptation. The
combined resultof the study for bothmetamodelhistories is shown inFigure1(b) as
a pie chart. The figure shows the fraction and the accumulated numbers of language
changes that fall into each class. As only half of the changes were metamodel-only,
a significant number of language changes required a migration of existing models.
As we found no model-specific coupled changes, we would have been able to spec-
ify transformations to automate the migration of all models. To this end, we do not
take model-specific coupled changes into account in the following. The proportion
between metamodel-independent and metamodel-specific coupled changes leads
to the following two central requirements for adequate tool support:

Reuse: More than three quarters of the coupled changes were metamodel-inde-
pendent, thus indicating a high potential for reuse. To take advantage of
these reuse opportunities, reuse of recurring migration knowledge is required.

Expressiveness: The remaining quarter of the coupled changes were meta-
model-specific and therefore required a custom model migration. Tool support
automating coupled evolution must thus be sufficiently expressive to cater for
complex migrations involved in metamodel-specific coupled changes.

3 Related Work

When a specification is adapted, potentially all existing instances have to be
migrated in order to reconcile them with the new version of the specification.
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Since this problem of coupled evolution [9] affects all specification formalisms
(e. g. database schemata, formats, grammars, metamodels) alike, numerous ap-
proaches for coupled transformation [10] of a specification and its instances have
been proposed [11,12,13,14,15,16,17,18,19,20,21,22,23,24]. The idea of coupled
transformation has even been generalized to a domain-independent approach
that can be instantiated on different domains [25]. Apart from the target specifi-
cation formalism, existing approaches mainly differ in their support for reuse and
expressiveness. In this section, we outline approaches to coupled evolution from
different domains, namely schema, grammar, format and metamodel evolution,
focusing on how they fulfill the requirements rather than on idiosyncrasies of
their target specification formalism. There are a number of other domains, like
e. g. framework, workflow and ontology evolution, in which similar approaches
are proposed.

Schema evolution denotes the migration of database instance data to an adapted
version of the database schema. Schema evolution has been a field of study for
several decades, yielding a substantial body of research [26,27]. For the ORION
database system, Banerjee et al. propose a fixed set of change primitives that
perform coupled evolution of the schema and data [11]. While reusing migration
knowledge in case of these primitives, their approach is limited to local schema
restructuring. To allow for non-local changes, Ferrandina et al. propose separate
languages for schema and instance data migration for the O2 database system
[12]. While more expressive, their approach does not allow for reuse of coupled
transformation knowledge. In order to reuse recurring coupled transformations,
SERF – as proposed by Claypool et al. – offers a mechanism to define arbitrary
new high-level primitives [13], providing both reuse and expressiveness. In a
nutshell, the history of approaches for schema evolution exhibits a progression
towards more expressiveness and reuse. In order to fulfill the requirements from
[7], COPE transfers the concepts of SERF to the domain of metamodel evolution.

Grammar evolution denotes the migration of textual programs to adaptations of
their underlying grammar. Grammar evolution has been studied in the context
of grammar engineering [28]. Lämmel proposes a comprehensive suite of gram-
mar transformation operations for the incremental adaptation of context free
grammars [14]. The proposed operations are based on sound, formal preserva-
tion properties that allow reasoning about the relationship between grammars
before and after transformation, thus helping developers to maintain consistency
of their grammar. However, the proposed operations are not coupled since they
do not take the migration of words into account. Building on Lämmel’s work,
Pizka and Juergens propose a tool for the evolutionary development of textual
languages called Lever, which is also able to automate the migration of words [15].
Primitive grammar and word evolution operations can be invoked from within a
general-purpose language to perform all kinds of coupled transformation. Similar
to SERF, Lever provides a mechanism to define arbitrary new high-level primi-
tives. COPE is not only strongly related to Lever because of its support for reuse
and expressiveness, but also because it provides an explicit language history that
allows to defer model migration to a later instant.
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Format evolution denotes the migration of a class of documents to adaptations
of their document schema. Lämmel and Lohmann suggest operators for format
transformation, from which migrating transformations for documents are in-
duced [16]. The suggested operators are based on Lämmel’s work on grammar
adaptation. Furthermore, Su et al. propose a complete, minimal and sound set
of evolution primitives for formats and documents, and show that they preserve
validity and well-formedness of both formats and documents [17]. Even though
both approaches are able to automate document migration for a fixed set of
format changes, they are not able to handle arbitrary, complex migrations.

Metamodel evolution denotes the migration of models in response to adapta-
tions of their metamodel. In order to specify the model migration between two
metamodel versions, Sprinkle introduces a visual graph-transformation-based
language [18,19]. Compared to conventional languages for model transforma-
tion, this language allows to specify the differences between two metamodels
rather than their similarities. However, Sprinkle’s language does not provide a
mechanism for reusing recurring migration knowledge.

There are a number of approaches to automatically derive a model migration
from the difference between two metamodel versions. Gruschko et al. classify
primitive metamodel changes into non-breaking, breaking resolvable and unre-
solvable changes [20,21]. Based on this classification, they propose to automat-
ically derive a migration for non-breaking and resolvable changes, and envision
to support the developer in specifying a migration for unresolvable changes. Ci-
chetti et al. go even one step further and try to detect composite changes like
e. g. extract class based on the difference between metamodel versions [22]. How-
ever, their approach is no longer automatic for composite changes which depend
on each other. Although fully automated to some degree, the difference-based
approaches have the disadvantage that the derived migration may not be the
one intended by the developer. As a consequence, the developer has to manually
modify and therefore understand the derived migration.

To avoid this problem, incremental transformation allows to capture the in-
tention while performing metamodel adaptation. Several approaches to perform
an incremental coupled transformation of metamodel and model have been pro-
posed. Hößler and Soden present a number of high-level transformations which
adapt the metamodel and migrate models [23]. These transformations are based
upon a generic instance model for both metamodel and model which is required
to support versioning. Wachsmuth adopts ideas from grammar engineering and
proposes a classification of metamodel changes based on instance preservation
properties [24]. Based on these preservation properties, the author defines a set
of high-level coupled transformations. While both approaches enable the reuse
of migration knowledge, they do not provide sufficient expressiveness to cater
for complex coupled transformations.

In a nutshell, there is no approach for metamodel evolution that combines both
the desired level of reuse and expressiveness. To alleviate this, we propose COPE,
which integrates a number of features of existing approaches. Like Sprinkle’s lan-
guage, COPE also relieves the metamodel developer from specifying identity rules
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for metamodel elements which do not have changed. COPE achieves this by us-
ing a generic instance model during migration similar to the proposal of Hößler
and Soden. Based on this generic instance model, COPE follows an incremental
transformation approach which allows to capture the intention while perform-
ing the metamodel adaptation. In addition, the incremental approach allows to
better modularize the coupled evolution into manageable transformations, and
thus to easily combine reuse with expressiveness.

4 Coupled Evolution of Metamodels and Models

In this section, we present COPE’s language to specify the coupled evolution
of metamodels and models. This language provides concepts to fulfill both re-
quirements presented in Section 2: reuse of recurring migration knowledge and
expressiveness to cater for domain-specific migrations. Reuse is provided by an
abstraction mechanism that allows to encapsulate both metamodel adaptation
and model migration in a metamodel-independent way. Expressiveness is pro-
vided by embedding primitives for metamodel adaptation and model migration
into a Turing-complete language. From our experience, developers prefer to use
the metamodel editor over specifying the coupled evolution in this language.
Consequently, COPE provides further abstraction from this language by a non-
invasive integration into a metamodel editor. For simplicity of presentation, we
outline the language here, and present the tool support in Section 5.

Running example. Throughout this section, we use a statemachine metamodel as
a running example. Figure 2 shows the metamodel before and after adaptation
as a UML class diagram. In version 0 of the metamodel, a State has a name
and may be decomposed into sub states through its subclass CompositeState. A
Transition belongs to its source state and refers to a target state, and is activated
by a trigger. When a state is entered, a sequence of actions is performed as effect,
and in case of a composite state, an initial state is entered. For version 1 of the
metamodel, the following adaptations are performed1:

1. The statemachine is changed from a Moore to a Mealy machine. In Moore
machines, the effect of the statemachine only depends on the current state. In
contrast, the effect of the statemachine depends also on the trigger in Mealy
machines. Therefore, we move the attribute effect from State to Transition.

2. Regions are introduced to support concurrency within states. Therefore, we
insert the class Region. We further introduce the new composition region so
that a composite state can define a number of concurrent regions. Finally,
we move the composition state and the association initial to the new class
Region, as regions are now composed of sub states.

In the following, we subsequently specify the coupled evolution in COPE’s
language in order to be able to migrate existing models.

1 In Figure 1, the differences are indicated by numbered, dashed boxes.
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Fig. 2. Running example adaptation

4.1 Incremental Coupled Evolution

In practice, a modeling language is evolved by incremental adaptations to the
metamodel. There are a number of primitive metamodel changes like create el-
ement, rename element, delete element, and so on. One or more such primitive
changes compose a specific metamodel adaptation, like in our example the in-
troduction of regions. COPE allows to attach information about how to migrate
corresponding models in response to a metamodel adaptation. Consequently,
the intended model migration can already be captured while adapting the meta-
model, thus preventing the loss of intention. In COPE, such a combination of
metamodel adaptation and model migration is called coupled transaction.

Coupled transactions can be easily composed by simply sequencing them.
They are modular in the sense that the corresponding model migration can
be specified independently of any neighboring coupled transaction. Due to their
modularity, a comprehensive evolution can be decomposed into manageable cou-
pled transactions, thus ensuring scalability. The notion of coupled transaction
qualifies to fulfill the requirements of reuse and expressiveness. Certain coupled
transactions can be reused resulting in reusable coupled transactions, while oth-
ers have to be specified manually resulting in custom coupled transactions.

Figure 3 illustrates how coupled transactions can be used to compose the
coupled evolution of our running example. The first coupled transaction changes
the statemachine metamodel from a Moore to a Mealy machine. As the corre-
sponding model migration is specific to the metamodel, it has to be performed
by a custom coupled transaction. The last two coupled transactions introduce
concurrent regions to the metamodel and are invocations of reusable coupled
transactions. The invocation of ExtractClass extracts the sub states including
the initial state of a composite state into the new class Region. The invoca-
tion of GeneralizeReference generalizes the multiplicity of the new reference from
CompositeState to Region to enable concurrent regions.

Keeping track of the coupled transactions that lead from one metamodel ver-
sion to the next results in a language history. The language history contains
enough information to migrate a model from the metamodel version to which it
conforms to any subsequent metamodel version. Hence, it is particularly suited
to migrate models which are not accessible while performing the metamodel
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Fig. 3. Language history for the running example

adaptation. This is the case when the modeling language and the models are de-
veloped by different distributed parties. Figure 3 indicates the language history
for our running example which consists of the sequence of coupled transactions
together with markers for the different versions.

4.2 Coupled Transactions

Usually, the metamodel adaptation is manually performed in the metamodeling
tool used for authoring the metamodel. The model migration can be manually
encoded as a model transformation which transforms the old model to a new
model conforming to the adapted metamodel. In general, we distinguish between
exogenous and endogenous model transformation, depending on whether source
and target metamodel of the transformation are different or not [29]. Exogenous
model transformation requires to specify the mapping of all elements from the
source to the target metamodel. As typically only a subset of metamodel ele-
ments are modified by the metamodel adaptation, a model migration specified
as an exogenous transformation contains a high fraction of identity rules. Con-
cerning this aspect, endogenous transformation is better suited to the nature of
model migration, as it only has to address those metamodel elements for which
the model needs to be modified. However, endogenous transformation requires
the source and the target metamodel to be the same which is not the case for
metamodel evolution. Hence, conventional languages for model transformation
are not well suited to specify a model migration.

Instead, model migration is best served by a language that allows to directly
combine the properties of both exogenous and endogenous model transformation:
one needs to be able to specify the transformation from a source metamodel to a
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different target metamodel, but only for the metamodel elements for which a mi-
gration is required. In order to achieve this, we propose to soften the conformance
between metamodel and its model during coupled evolution: the metamodel can
first be adapted regardless of its models, and the model can then be migrated
to the adapted metamodel. As a consequence, only the differences need to be
specified for both metamodel adaptation and model migration. However, soft-
ening the conformance during model migration comes at the price that a model
may not always conform to its metamodel. In order to ensure conformance after
a certain change to metamodel and model, we require a coupled transaction to
enforce the following properties:

Consistency preservation: The adapted metamodel is consistent, i. e. fulfills
the constraints defined by the meta-metamodel, if the original one was.

Conformance preservation: The migrated model conforms to the adapted
metamodel, if the original model conformed to the original metamodel.

Note that both consistency and conformance thus have to hold only at transac-
tion boundaries, i. e. the metamodel may be inconsistent or the model may not
conform to the metamodel during a transaction.

We have implemented COPE on top of the Eclipse Modeling Framework (EMF)
[30] which is one of the most widely used metamodeling tools. In this implementa-
tion, the conformance is softened by a generic instance model which is only used
during migration. To specify both metamodel adaptation and model migration,
COPE provides a number of expressive primitives which operate on the generic
instance model. These primitives can be invoked from within the general-purpose
scripting language Groovy [31] in order to take advantage of its expressiveness.
For more information about the generic instance model and a complete list of
the primitives, we refer the reader to [32].

4.3 Custom Coupled Transactions

Expressiveness is provided by custom coupled transactions, which have to be
specified manually by the metamodel developer. In doing so, the metamodel
developer can apply a number of primitives for both metamodel adaptation and
model migration. The primitives are complete in the sense that every possible
metamodel adaptation as well as model migration can be specified with them.
Completeness can be shown by first destroying the source metamodel or model,
and then rebuilding the target metamodel or model from scratch as done in
[11] for database schema evolution. As these primitives are embedded into the
Turing-complete scripting language Groovy, the resulting language is expressive
enough to even cater for very specific model migrations.

Example. Listing 1 shows the custom coupled transaction that was performed
to change the statemachine from a Moore to a Mealy machine. More specifically,
the depicted custom coupled transaction consists of a metamodel adaptation
and a reconciling model migration. This example also shows that we only have
to specify the differences for both metamodel and model in this language.
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Listing 1. Custom coupled transaction MooreToMealy.

// metamodel adaptation
def effectAttribute = State.effect
Transition.eStructuralFeatures.add(effectAttribute)

// model migration
getEffect = { transition −>

def effect = []
def state = transition.target
effect.addAll(state.get(effectAttribute))
while(state.instanceOf(CompositeState)) {
effect.addAll(state.initial.get(effectAttribute))
state = state.initial

}
return effect

}

for(transition in Transition.allInstances) {
def effect = getEffect(transition)
transition.effect = effect

}

for(state in State.allInstances) {
state.unset(effectAttribute)

}

The metamodel adaptation only moves the attribute effect from class State
to class Transition. The attribute is assigned to the variable effectAttribute in
order to be able to access its values for states, even though the attribute is no
longer known to the class State. Note how metamodel elements can be accessed
by means of fully qualified names (e. g. State.effect).

A Moore machine is migrated to a Mealy machine by moving the effect of each
state to its incoming transitions. However, in the advent of composite states as
well as initial states, the model migration is more involved. When a statemachine
transitions to a composite state, it not only enters the composite state but also
its initial state. Consequently, we also have to take the effect of the initial state
into account when calculating the effect of the transition. Note that this may
have to be applied recursively, as the initial state may again be a composite state,
and so on. The model migration encoded in COPE’s language is thus divided into
two passes: First, we set the effect for each transition based on the states, and
then we remove the effect from each state. The language provides the primitive
allInstances to be able to iterate over all instances of a certain type. The effect
of a transition is set by using transition.effect = effect which is a short form for
transition.set(Transition.effect, effect). The effect of a transition is calculated by
means of the helper method getEffect. As explained before, the effect consists of
the effect of the transition’s target state as well as the effects of the initial states.
transition.target is the short form for transition.get(Transition.target). However,
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the short forms can only be used, in case a feature of that name is currently
defined by the instance’s type. As the attribute effect is no longer defined for
class State, we thus have to use state.get(effectAttribute) to be able to access
the effect of a state. Furthermore, the primitive instanceOf can be used to check
whether a state is of type CompositeState. The effect of a state is removed by
using a primitive to unset the effectAttribute.

4.4 Reusable Coupled Transactions

Reuse is provided by an abstraction mechanism to generalize coupled transac-
tions into so-called reusable coupled transactions. Reusable coupled transactions
are specified independently of the metamodel, and encapsulate both metamodel
adaptation and reconciling model migration. They can be reused across meta-
models, thus promising to significantly reduce effort associated with metamodel
adaptation and model migration. COPE allows to declare new reusable coupled
transactions and make them available through a library. The language employs
the abstraction mechanism of procedures in Groovy in order to declare reusable
coupled transactions. A reusable coupled transaction is declared independently
of the specific metamodel by means of parameters. Reusable coupled transac-
tions can be instantiated by invoking the procedure with parameters assigned to
specific metamodel elements. The applicability of a reusable coupled transaction
can be restricted by preconditions in the form of assertions.

Example. Listing 2 shows the invocation of the reusable coupled transactions
ExtractClass and GeneralizeReference, which correspond to the second adaptation
in our example history. ExtractClass is invoked to extract the references state and
initial from CompositeState to the new class Region. The extracted region then
is accessible from a composite state through the new single-valued containment
reference named region. GeneralizeReference is invoked to increase the multiplicity
of this new reference in order to enable multiple concurrent regions. Note that
by invoking reusable coupled transactions, the metamodel developer does not
have to specify neither metamodel adaptation nor model migration.

Listing 2. Instantiation of reusable coupled transactions.

extractClass([CompositeState.state, CompositeState.initial],
"Region", "region")

generalizeReference(CompositeState.region, Region, 1, INF)

Listing 3 shows the declaration of the reusable coupled transaction Extract-
Class which we just invoked to introduce regions into our example metamodel.
This reusable coupled transaction extracts a number of features from a con-
text class to a new class. The extracted class is accessible from the context
class through a new single-valued containment reference. The reusable coupled
transaction declares parameters for the attributes and references to be extracted
(features), the name of the new class (className) and the name of the new ref-
erence (referenceName). Several preconditions in the form of assertions restrict
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Listing 3. Declaration of reusable coupled transaction ExtractClass.

extractClass = {List<EStructuralFeature> features, String
className, String referenceName −>

def EClass contextClass = features[0].eContainingClass

// preconditions
assert features.every{feature −> feature.eContainingClass ==

contextClass} :
"The features have to belong to the same class"

assert contextClass.getEStructuralFeature(referenceName) ==
null | | features.contains(contextClass.
getEStructuralFeature(referenceName)) :

"A feature with the same name already exists"

// metamodel adaptation
def extractedClass = newEClass(className)
def reference = contextClass.newEReference(referenceName,

extractedClass, 1, 1, CONTAINMENT)
extractedClass.eStructuralFeatures.addAll(features)

// model migration
for(contextInstance in contextClass.allInstances) {
def extractedInstance = extractedClass.newInstance()
contextInstance.set(reference, extractedInstance)
for(feature in features) {

extractedInstance.set(feature, contextInstance.unset(
feature))

}
}

}

the applicability of the reusable coupled transaction, e. g. every feature has to
belong to the same context class.

The metamodel adaptation creates the extracted class and the new single-
valued containment reference from the context class to the extracted class. Then,
the extracted features are moved from the context class to the extracted class.
For the metamodel adaptation, we use the primitives of the meta-metamodel im-
plementation together with some high-level primitives to create new metamodel
elements (e. g. newEClass). The reusable coupled transaction is simplified in the
sense that it leaves out the package in which the extracted class is created.

The model migration pretty much modifies the model accordingly. For each
instance of the context class (contextInstance), a new instance of the extracted
class is created and associated to the context instance through the new reference.
Then, all the values of the extracted features are moved from the context instance
to the new instance. Note that due to the generic instance model the context
instance’s value of a feature can still be accessed by the unset method, even
though the feature has already been moved to the extracted class.
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5 Tool Support

From our experience, metamodel developers do not want to script the coupled
evolution, but rather prefer to adapt the metamodel directly in an editor. Con-
sequently, COPE is implemented as a non-invasive integration into the existing
EMF metamodel editor. Even though COPE is based on the language presented
in Section 4, it shields the metamodel developer from this language as far as
possible. COPE is open source and can be obtained from our website2. The
web site also provides a screencast, documentation and several examples (in-
cluding the running example from this paper). We first describe the workflow
that is supported by COPE, before detailing on its integration into the user
interface.

5.1 Tool Workflow

Figure 4 illustrates the tool workflow using the running example from Section 4.
COPE provides a library of reusable coupled transactions that can be invoked

on a specific metamodel. Besides the transactions used in Section 4, the current
library contains a number of other reusable coupled transactions like e. g. Rename

Fig. 4. Tool workflow

2 http://cope.in.tum.de

http://cope.in.tum.de
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or DeleteFeature. The library is extensible in the sense that new reusable coupled
operations can be declared and registered. Reusable coupled transactions are
declared independently of the specific metamodel, i. e. on the level of the meta-
metamodel.

All changes performed to the metamodel are maintained in an explicit lan-
guage history. The history keeps track of the coupled transactions which contain
both metamodel adaptation and model migration. It is structured according to
the major language versions, i. e. when the language was deployed. All previ-
ous versions of the metamodel can be easily reconstructed from the information
available in the history. In Figure 4, the evolution from version 0 to version 1 is
the sequence of coupled transactions we performed in Section 4.

A migrator can be generated from the language history that allows for the
batch migration of models. The migrator can be invoked to automatically mi-
grate existing models, i. e. no user interaction is required during migration.

5.2 User Interface

Figure 5 shows an annotated screen shot of COPE’s user interface. COPE has
been integrated into the existing structural metamodel editor provided by EMF
(a). This metamodel editor has been extended so that it also provides access to
the language history (b). Reusable coupled transactions are made available to

Fig. 5. Integration of COPE into the EMF metamodel editor



COPE - Automating Coupled Evolution of Metamodels and Models 67

the metamodel developer through a special view called operation browser (c).
An editor with syntax highlighting is provided for the specification of custom
coupled transactions (d).

The metamodel developer can adapt the metamodel by invoking reusable
coupled transactions through the operation browser. The browser is context-
sensitive, i. e. offers only those reusable coupled transactions that are applica-
ble to the elements currently selected in the metamodel editor. The operation
browser allows to set the parameters of a reusable coupled transaction based on
their type, and gives feedback on its applicability based on the preconditions.
When a reusable coupled transaction is executed, its invocation is automatically
tracked in the language history. Figure 5 shows the ExtractClass operation be-
ing available in the browser (c), and the reusable coupled transactions stored
in the history (b). Note that the metamodel developer does not have to know
about the coupled evolution language if she is only invoking reusable coupled
transactions.

In case no reusable coupled transaction is available for the coupled evolution at
hand, the metamodel developer can perform a custom coupled transaction. First,
the metamodel is directly adapted in the metamodel editor, in response to which
the changes are automatically tracked in the history. A migration can later be
attached to the sequence of metamodel changes by encoding it in the language
presented in Section 4. Note that the metamodel adaptation is automatically
generated from the changes tracked in the history. In order to allow for different
metamodeling habits, adapting the metamodel and attaching a model migration
is temporally decoupled such that a model migration can be attached at any later
instant. Figure 5 shows the model migration attached to the manual changes (b)
in a separate editor with syntax highlighting (d).

The operation browser provides a release button to create a major version of
the metamodel. After release, the metamodel developer can initiate the auto-
matic generation of a migrator.

6 Case Study

In order to demonstrate its applicability in practice, we used COPE to model
the coupled evolution of two existing metamodels. The detailed results of the
case study in the form of the language histories as presented in Section 5 can be
obtained from our website3.

6.1 Goals

The study was performed to test the applicability of COPE to real-world coupled
evolution and better understand the potential for reuse of recurring migration
knowledge. More specifically, the study was performed to answer the following
research questions:

3 http://cope.in.tum.de

http://cope.in.tum.de
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– Which fraction of the changes are simple metamodel extensions that do
trivially not require a migration of models?

– Which fraction of the changes can be reused by means of reusable coupled
transactions?

– Which fraction of the changes have to be implemented by means of custom
coupled transactions?

– Can COPE be applied to specify the complete coupled evolution of real-world
metamodels, i. e. including all intermediate versions?

6.2 Setup

As input to our study, we chose two EMF-based metamodels that already have an
extensive evolution history. We deliberately chose metamodels from completely
different backgrounds in order to achieve more representative results.

The first metamodel is developed as part of the open source project Graph-
ical Modeling Framework4 (GMF). It is used to define generator models from
which code for a graphical editor is generated. For our case study, we modeled
the coupled evolution from release 1.0 over 2.0 to release 2.1, which covers a
period of 2 years. There exist a significant number of models conforming to this
metamodel, most of which are not under control of the developers. In order to be
able to migrate these models, the developers have handcrafted a migrator with
test cases which can be used for validation.

The second metamodel is developed as part of the research project Palla-
dio Component Model5 (PCM), and is used for the specification and analysis
of component-based software architectures. For our case study, we modeled the
coupled evolution from release 2.0 over 3.0 to release 4.0, which covers a period
of 1.5 years. As the metamodel developers control the few models, they were
not forced to handcraft a migrator until now, but manually migrated the mod-
els instead. Since no migrator could be used for validation for this reason, the
modeled coupled evolution was validated by the developers of PCM.

The evolution of the metamodels was only available in the form of snapshots
that depict the state of the metamodel at a particular point in time. To this
end, we had to infer both the metamodel adaptation as well as the corresponding
model migration. We used the following systematic procedure to reverse engineer
the coupled evolution:

1. Extraction of metamodel versions : We extracted versions of the metamodel
from the version control system.

2. Comparison of subsequent metamodel versions: Since the version control sys-
tems of both projects are snapshot-based, they provide no information about
the differences between the metamodel versions. Therefore, successive meta-
model versions had to be compared to obtain a difference model. The dif-
ference model consists of a number of primitive changes between subsequent
metamodel versions and was obtained by means of tool support6.

4 http://www.eclipse.org/modeling/gmf
5 http://www.palladio-approach.net
6 http://wiki.eclipse.org/index.php/EMF_Compare

http://www.eclipse.org/modeling/gmf
http://www.palladio-approach.net
http://wiki.eclipse.org/index.php/EMF_Compare
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3. Generation of metamodel adaptation: A first version of the history was ob-
tained by generating a metamodel adaptation from the difference model
between subsequent metamodel versions. For this purpose, a transforma-
tion was implemented that translates each of the primitive changes from the
difference model to metamodel adaptation primitives specified in COPE.

4. Detection of coupled transactions: The generated metamodel adaptation was
refined by combining adaptation primitives to coupled transactions based on
the information on how corresponding models are migrated. In doing so, we
always tried to map the compound changes to reusable coupled transactions
already available in the library. If not possible, we tried to identify and
develop new reusable coupled transactions. In case a certain model migration
was too specific to be reused, it was realized as a custom coupled transaction.

5. Validation of the history: The validity of the obtained coupled evolution
was tested on both levels. The metamodel adaptation is easy to validate,
because the history can be executed and the result can be compared to the
metamodel snapshots. Test models before and after model migration were
used to validate whether the model migration performs as intended.

Steps 1 to 3 as well as 5 are fully automated, whereas step 4 had to be per-
formed manually. In addition, there is an iteration over steps 4 and 5, as a failed
validation leads to corrections of the history. It took roughly one person week
for each studied metamodel to reach the fix point during the iteration. However,
in this case study, the coupled evolution was obtained by reverse engineering,
which requires a lot of effort for understanding the intended migration. We are
convinced that the metamodel developers can model the coupled evolution with
significantly less effort, when they use COPE for forward engineering.

6.3 Results

As the GMF developers do not have all the models under control, they employ
a systematic change management process: the developers discuss metamodel
adaptations and their impact on models thoroughly before actually carrying
them out. Consequently, we found no destructive change at any instant in the
history, that was reversed at a later instant. To this end, the obtained language
history comprises all the intermediate versions. Figure 6(a) gives an impression
of the size of the studied metamodel and its evolution over all the metamodel
versions. In addition, the figure indicates the different releases of the metamodel.
The metamodel is quite extensive, accumulating more than a hundred classes in
the course of its history.

Figure 6(b) depicts the number of the different classes of metamodel adapta-
tions that were used to model the coupled evolution using COPE. The metamodel
extensions make up 64% of the adaptations, whereas reusable coupled transac-
tions account for 34%. Table 1 refines this classification by listing the names
and the number of occurrences of the different kinds of metamodel adaptations.
The dashed line distinguishes the reusable coupled transactions known from the
literature from those which have been implemented while conducting the case
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(a) Evolution in numbers. (b) Classification.

Fig. 6. History of the GMF metamodel

study. For the GMF metamodel, these new reusable coupled transactions cover
15 out of 79 occurrences (19%). The remaining 2% of the metamodel adaptations
consist of only 4 custom coupled transactions for which the model migration had
to be implemented manually. The model migration code handcrafted for these
custom coupled transactions amounts to 100 lines of code.

As the developers of the GMF metamodel do not have all the models under
their control, they have manually implemented a migrator. This migrator con-
stitutes a very technical solution, and is based on different mechanisms for the
two stages. For the migration from release 1.0 to 2.0, the migrator patches the
model while deserializing its XML representation. For the migration from release
2.0 to 2.1, a generic copy mechanism is used that first filters out non-conforming
parts of the model, and later rebuilds them. Even though this migrator is very
optimized, it is difficult to understand and maintain due the low abstraction
level of its implementation.

As the developers of the PCM metamodel have all the models under their
control, they apparently have not taken the impact on the models into account.
Consequently, there were a lot of destructive changes between the intermediate
versions, that were reversed at a later instant. To this end, the obtained language
history comprises only the release versions. Figure 7(a) gives an impression of
the size of the metamodel and its evolution over the studied releases. Similar
to GMF, the PCM metamodel is quite extensive, being split up in a number of
packages and defining more than a hundred classes throughout the history.

Figure 7(b) depicts the number of the different classes of metamodel adap-
tations that were used to model the coupled evolution. Here, the metamodel
extensions account for only 25% of the metamodel adaptations, whereas reusable
coupled transactions make up 74%. Again, Table 1 provides more detailed re-
sults. The reusable coupled transactions that were implemented while conduct-
ing the case study cover 12 out of 76 occurrences (16%). The remaining 1% of
the metamodel adaptations consist of 1 custom coupled transaction for which
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(a) Evolution in numbers. (b) Classification.

Fig. 7. History of the PCM metamodel

the model migration had to be implemented manually. The model migration
code handcrafted for this custom coupled transaction amounts to only 10 lines
of code. As the developers have not yet provided tool support for model mi-
gration, our approach helped by providing an automatic migrator. However,
they provided us with test models and helped to validate the obtained model
migration.

6.4 Discussion

The fraction of metamodel extensions is very large for the GMF metamodel,
whereas it is rather small for the PCM metamodel. A possible interpretation is
that the GMF developers were as far as possible avoiding metamodel adaptations
that required to enhance the migrator. The reason for the metamodel extensions
could as well be the nature of the evolution: they were adding new generator
features to the language which are orthogonal to existing ones.

For both metamodels, a large fraction of changes can be dealt with by reusable
coupled transactions – aside from the metamodel extensions. This result strength-
ens the findings from the previous study as presented in Section 2 that a lot of
migration effort can be saved by reuse in practice. Besides the reusable coupled
transactions known from the literature, we have also identified a number of new
reusable coupled transactions. It may seem odd that these new reusable coupled
transactions could be used for one metamodel, but not for the other. However,
two case studies may not suffice to show their usefulness in other scenarios. In
addition, it may depend on the habits of the developer which reusable coupled
transactions are often used and which not. The extension mechanism of COPE al-
lows the developer to easily register new reusable coupled transactions which fit
their habits.

For both metamodels, a very small fraction of changes were so specific that
they had to be modeled as custom coupled transactions. Due to the expressive-
ness of the language, it was not difficult to manually implement these custom
coupled transactions. This result also strengthens the findings from the previous
study that a non-negligible number of changes are specific to the metamodel.
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Table 1. Detailed results

The case studies further showed that COPE can be applied to specify the
coupled evolution of real-world metamodels. In case of the GMF metamodel,
we would even have been able to directly use COPE for its maintenance. As
the GMF developers do not control the numerous existing models, they took
also the impact on the models into account while adapting the metamodel.
COPE can help here to perform more profound metamodel adaptations. In case
of the PCM metamodel, we would not have been able to directly use COPE
for its maintenance. For metamodel adaptation, the PCM developers preferred
flexibility over preservation of existing models, as they have the few existing
models under control. COPE can help here to perform the metamodel adapta-
tions in a more systematic way by using reusable coupled transactions. Sum-
ming up, COPE provides a compromise between the two studied types of meta-
model histories: its provides more flexibility for carrying out metamodel adap-
tations, and offers at the same time a more systematic approach for metamodel
adaptation.
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7 Conclusion

Just as other software artifacts, modeling languages and thus their metamodels
have to be adapted. In order to reduce the effort for the resulting migration of
models, adequate tool support is required. In previous work, we have performed
a study on the histories of two industrial metamodels to determine requirements
for adequate tool support. Adequate tool support needs to support the reuse of
migration knowledge, while at the same time being expressive enough for complex
migrations. To the best of our knowledge, existing approaches for model migration
do not cater for both reuse and expressiveness. This paper presented COPE, an
integrated approach fulfilling these requirements. Using COPE, the coupled evo-
lution can be incrementally composed of coupled transactions that only require
specification of the differences of metamodel and models in consecutive versions.
The resulting modularity of coupled transactions ensures scalability, and is partic-
ularly suited to combine reuse with expressiveness. Reuse is provided by reusable
coupled transactions that encapsulate recurringmigration knowledge. Expressive-
ness is provided by a complete set of primitives embedded into a Turing-complete
language, which can be used to specify custom coupled transactions. Tracking the
performed coupled transactions in an explicit language history allows to migrate
models at a later instant, and provides better traceability of metamodel adapta-
tions. We implemented these language concepts based on the Eclipse Modeling
Framework (EMF). To ease its application, COPE was seamlessly integrated into
the metamodel editor, shielding the metamodel developer from technical details as
far as possible. We demonstrated the applicability of COPE to real-world language
evolution by reproducing the coupled evolution of two existing modeling languages
over several years. These case studies strengthen the findings of our previous study
[7]: while reuse saves a lot of effort, expressiveness is required for the rare, but im-
portant cases of complex migrations.

Future Work. During the case studies, we have validated the usefulness of well-
known reusable coupled transactions, but also identified a number of new ones.
Until now, we pretty much developed new reusable coupled transactions in a
demand-driven way. However, we plan to compile a library of well-tested reusable
coupled transactions that cover most scenarios of metamodel evolution. To this
end, the existing ones may have to be refined, consolidated and aligned more or-
thogonally to each other. Building on [24], we intend to classify reusable coupled
transactions according to instance preservation properties so that the metamodel
developer can better assess their impact on models.

Currently, conformance preservation of a coupled transaction can only be
verified while executing it on a certain model. To enable the verification of con-
formance preservation in a model-independent way, we intend to develop a static
analysis. In contrast to the verification of properties, validation is more concerned
with whether the migration performs as intended. In order to validate coupled
transactions, we plan to develop a framework for the rigorous testing of model
migrations. This may include specific coverage criteria as well as a method to
derive new test models.
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In this paper, we were only concerned with the migration of models in response
to metamodel adaptation. However, there are also other artifacts like e. g. editors
and generators which depend on the metamodel and which thus have to be
migrated. We first focused on model migration, as the number of models of a
successful modeling language typically outnumbers the number of other artifacts.
To this end, we intend to extend COPE in a way that also the migration of other
artifacts can be specified. Especially for reusable coupled transactions, we plan
an extension mechanism to allow for the injection of migration code for other
artifacts.

As we already mentioned, our approach is especially suited for the incremental
development and maintenance of modeling languages. We claim that a good
modeling language is hard to obtain by an upfront design, but rather has to
be developed by an evolutionary process. A version of a modeling language is
defined and deployed to obtain feedback from its users, which again may lead to
a new version. We thus plan to define a systematic process in order to support
the evolutionary development of modeling languages. This process should also
cover the maintenance of existing modeling languages. To that end, it should
also provide methods to identify bad metamodel designs and to replace them by
better designs.
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Abstract. It is common for large-scale Java applications to suffer mem-
ory problems, whether inefficient designs that impede scalability, or life-
time bugs such as leaks. Making sense of heaps with many millions of
objects is difficult given the extensive layering, framework reuse, and
shared ownership in current applications. We present Yeti, a tool that
summarizes memory usage to uncover the costs of design decisions, rather
than of lower-level artifacts as in traditional tools, making it possible to
quickly identify and remediate problems. Yeti employs three progressive
abstractions and corresponding visualizations: it identifies costly groups
of objects that collectively perform a function, recovers a logical data
model for each, and summarizes the implementation of each model entity
and relationship. Yeti is used by development and service teams within
IBM, and has been effective in solving numerous problems. Through
case studies we demonstrate how these abstractions help solve common
categories of problems.

1 Introduction

Many Java applications suffer from excessive memory footprint [11]. Our group
has diagnosed footprint problems in scores of large-scale commercial applications
over the past eight years. For example, we commonly find server deployments
that support only a thousand concurrent users per machine, thus missing desired
targets by orders of magnitude. Poor memory usage impedes scalability, increases
the burden on the garbage collector, results in increased power consumption
when extra servers are needed to meet throughput requirements, and inhibits
parallelism on architectures with limited memory bandwidth. It also impacts
production schedules, as many problems are not uncovered until late in the cycle.
In this paper, we present a memory analysis tool motivated by the realities of
large-scale object-oriented development.

Developers construct applications by integrating many layers of separately
developed libraries and frameworks, each designed to hide its implementation
details. As a consequence, developers cannot easily understand the global cost
implications of their local data modeling choices. The pile up of many small
decisions can inadvertently lead to a large cost. For example, we worked with a
team that implemented a data model for connections between users. While cod-
ing this, they followed standard software engineering practice of reusing existing
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classes and favoring delegation over subclassing [6]. As a result, each connection
consumed 27 instances from 17 distinct classes. This design incurred a surpris-
ingly high memory overhead: pointers and Java object headers consumed 62%
of a connection’s memory footprint. The application did not scale beyond a few
thousand simultaneous connections, despite needing to support a few million.

Developers also have difficulty managing long-lived structures. Applications
developed in a layered and distributed fashion are prone to lifetime bugs such
as memory leaks and memory drag [15], when objects remain live well beyond
their last use. One common cause is shared ownership where, for example, two
teams unknowingly disagree on who should clip the last reference to a structure.
Beyond bugs, there is the complex task of configuring caches and resource pools.
In order to establish size bounds that perform well, one must know the cost
per cached element. Unfortunately, predicting unit costs is not easy, when so
many disparate pieces of code participate in each structure. Further complicating
matters, developers must manage the competing needs of multiple caches, while
leaving headroom for temporary objects.

In this environment, finding the right abstractions for analysis and visualiza-
tion presents a number of challenges. Heaps can have tens of millions of objects,
so some form of aggregation is clearly necessary. Due to code reuse, the aggrega-
tions need to take context into account; e.g. Strings, HashMaps, and even higher
level structures such as XML DOMs are used for many unrelated purposes in
an application. However, understanding context is difficult because of the pre-
ponderance of cycles, recursive structures, and shared ownership [9]. It is also
difficult because of the large number of layers. Classes are now the assembly
language of memory; even low-level artifacts such as Strings and collections are
implemented with multiple classes. Some existing tools employ very local con-
text, often for special purposes such as memory leak detection [5,18], and leave
it to the user to disambiguate the conflated uses of common classes. Other tools
do maintain a great deal of context [3,17,2], but require the user to manually
navigate through the many layers of raw references. In general, with existing
tools, the user is left to piece together the larger picture from the details.

We present Yeti, a memory analysis tool that embodies three progressively
finer abstractions, to help guide the user to problem areas. Each abstraction
is geared towards the analysis needs of a given level of detail. Yeti takes as
input one or more Java heap snapshots gathered from a running program, and
produces an interactive report with the following elements.

The data structure and its sections. Most of the heap usually consists of a
few large sections, each devoted to different area of functionality. For example,
memory might be apportioned to session state, to user interface state, and to
information cached from external sources. In Section 2, we show how Yeti in-
fers an initial costly data structures breakdown, an approximation of the most
important areas of functionality, based on an extended notion of ownership. Be-
cause of shared ownership, a data structure may consist of groups of objects that
are simultaneously part of other data structures; we show how Yeti computes a
graph of interconnected data structure sections.
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A section’s data model. The user can drill down from a section to view its
content schematic [11], a concise approximation of its logical data model, anno-
tated with costs. While a section can contain millions of objects, the schematics
that Yeti infers typically contain only a handful of nodes. Each node represents
either a logical entity, such as an employee or a chat server connection, or a
collection used to glue the entities together. Section 3 shows how common mod-
eling inefficiencies, such as using many small collections, can be easily spotted
by simple inspection of a content schematic visualization.

A data model’s implementation. Developers implement entities and collec-
tions by combining objects from multiple classes. Yeti employs a focused type
graph, summarizing only the objects that implement a single entity or collection
in a single section. In Section 4, we show how common implementation ineffi-
ciencies, such as unexpected base class baggage, or implementations with too
much delegation, can be easily spotted in a focused type graph.

Given one heap snapshot, Yeti has been successfully used to find many mem-
ory footprint problems and large memory leaks. Given a second heap snapshot,
Yeti aligns the corresponding components of each of the three primary visualiza-
tions, and augments them with differential information. Previously, differential
analysis of memory state has only been used to find memory leaks [3,10,5]. In
Section 5, we show differential analysis based on the Yeti abstractions is useful
for more than diagnostic purposes.

The contributions of this paper are:

– A progressive, top-down, approach to making sense of very large heaps. We
employ three abstractions to quickly guide the user to areas of excessive
memory consumption. The abstractions capture the implications of the local
decisions being made by developers across many layers of code. We term
these the data structure, the content schematic, and the focused type graph.

– Strategies for finding memory leak or drag bugs, for predicting scalability,
and for regression testing, by analyzing changes to memory consumption of
the three abstractions.

– Yeti, a tool that automatically infers these abstractions analyzing the run-
time state of an application’s heap. Yeti includes novel visualizations that
summarize memory footprint in those terms. Yeti is deployed within IBM,
and has been used to solve dozens of problems in industrial applications.

– Examples of common architectural and coding choices that result in excessive
memory consumption, with evidence showing how Yeti easily identifies them.
These examples come from several large-scale applications that suffered from
excessive memory consumption, and that Yeti helped to diagnose.

2 The Data Structure

Individual objects exist as parts of larger cohesive units. Each unit of func-
tionality is likely to have been implemented by different groups, have differ-
ent designs, change differently over time, and have defects that require different
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Cache

User
Sessions

Section

Data Structure

Fig. 1. Two data structures, Cache and User Sessions, consisting of four sections, one
of which is shared between them

UnmodifiableMapOnNode et.... 1015MB (144MB shared)

CompoundClassLoader et. al. 87MB

LinkedHashMap$Entry 71MB (11MB shared)

DeltaDocumentControllerIm... 57MB

WebServicesParserFactory ... 30MB (30MB shared)

String 23MB

Fig. 2. The Costly Data Structures from a snapshot with 20 million objects

remedies. We introduce the data structure abstraction to approximate these units
of functionality.

To accommodate the fact that data structures overlap, we model a data struc-
ture as a graph of sections. Figure 1 illustrates two data structures, Cache and
User Sessions, that share ownership of one section. Each section is a maximally
sized subgraph of memory that contains objects with equivalent ownership. In
Section 2.1 we show how to construct a graph of sections from a heap snap-
shot. From this, Yeti constructs a visualization that shows the most costly data
structures, such as the one shown in Figure 2.

2.1 The Sections of a Data Structure

When one object dominates another [7], it acts as a gatekeeper; application code
must follow references through the former to reach the latter. For this reason,
the dominator relation is an important starting point for inferring the units of
functionality in a heap. If we used the dominator relation in its textbook form,
a unit of functionality would consist of those objects in a dominator tree, i.e.
those objects dominated by the root of the tree.
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There are three reasons why the dominator relation is insufficient for identi-
fying data structures. First, there are many cases where one object artificially
dominates another, because of the many systems-level mechanisms being imple-
mented at the Java source level. Second, because of sharing, dominance does
not preserve reachability. A dominator forest cannot represent shared ownership
of an object when owners are located in different, disconnected trees. Third, a
unit of functionality is often manifested by a group of dominator trees that are
shared in an equivalent way. We now address these three issues.1

The Edge Pruning Heuristic. Artifacts of implementing systems function-
ality in the source language can result in too many or too few dominator trees.
This is because some references in the heap artificially introduce sharing, and
others artificially dominate. We give examples showing why, and present our
solution, an edge pruning heuristic.

One example is the class loader, which often artificially dominates class ob-
jects. As a result, the class loader registry will indirectly (via static fields) dom-
inate most of the objects in the heap. This can lead to the meaningless outcome
of a single dominator tree that spans the entire heap, thus conflating unrelated
areas of functionality. The class loader itself should also be treated as a separate
unit of functionality.

The finalizer queue is an example of artificial sharing. In many JVMs, in-
stances of a class with a finalize method are referenced by the finalizer queue
throughout their lifetime. It is meaningful when finalizable objects are uniquely
owned by the finalizer queue. These objects are now managed by the JVM, i.e.
finalizable objects are part of the finalizer queue unit of functionality. It is less
meaningful when non-finalizable objects are shared by the queue. This situa-
tion is a by-product of a choice made by the JVM developers: to implement an
internal mechanism in the Java heap.

We maintain a catalog of common sources of artificial ownership, and Yeti
prunes those edges from the object reference graph. Yeti computes two subsets of
the objects: the must-not-dominate set D and the must-not-share set S. Figure 3
provides an example of both, and illustrates the effect of the following pruning
heuristic. For every object in D that dominates an object not in D (or vice
versa), we prune this dominating edge. This pruning results in a dominator
forest with only those trees that contain objects in D, and those that don’t (c.f.
the classloader frontier in [9]). This rule avoids artificial dominance. For every
object in S that references, but does not dominate, some other object, we prune
that edge, so as to avoid artificial sharing.

The must-not-dominate and must-not-share sets are crafted from experience
with common frameworks. The must-not-dominate set consists of instances of
known classloader data types, such as java.lang.ClassLoader. In some cases,
applications use data modeling frameworks (such as the Eclipse Modeling Frame-
work [16]), that include application-level analogs to class and package mecha-
nisms; we include these in D. The must-not-share set consists of instances of, or

1 A fourth issue, diamond structures, is not addressed in this paper.
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dominated by classloader

must-not-dominate edge
must-not-share edge

WeakReference

class object
class object

(a) Without pruning

owned by class 
object

owned by 
classloader

owned by 
class object

(b) With pruning

Fig. 3. Pruning artificial ownership, to create sections that more meaningfully capture
the domains of functionality

any instances dominated by: weak and finalizer references, any local variables,
iterators, thread local storage, and any tracing or logging facilities. By also in-
cluding those objects dominated by such instances, we are able to cope with
must-not-share properties that are distant; e.g. if object a is weakly referenced
and eventually references b which shares ownership of c, then the edge from b to
c is also a must-not-share edge.

The Ownership Graph. To reintroduce reachability to the dominator forest,
we adopt the ownership graph [9]. The ownership graph has a node for each dom-
inator tree. If any object in dominator tree A references the head of dominator
tree B, then we form an edge from one ownership graph node to the other.

The Same-Type-Same-Context Heuristic. When a group of sections are
shared, the dominator forest will contain a separate dominator tree for each,
even if they are shared in the same way. Consider Figure 4(a), which illustrates
a situation with five subgraphs dominated by an object of type T. Each of the
five subgraphs is simultaneously owned by two higher-level structures. A common
example that appears when using many application server frameworks is session
state, each instance of which is simultaneously stored in two larger structures.
Large-scale applications can support tens of thousands of active sessions. In
this situation, the dominator relation would separate this single pattern into
many thousands of trees. We apply a simple yet powerful heuristic that resolves
this problem: merge dominator trees that are each dominated by an object of
a common type, and shared by dominator trees headed by nodes of the same
type (c.f. [13]). The result is such as shown in In our example, as illustrated in
Figure 4(b), this heuristic would merge the six nodes down to one.
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Fig. 4. Merging sections based on the same-type-same-context heuristic
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Fig. 5. The algorithm to construct the data structure sections and the costly data
structures visualization that Yeti shows

2.2 Data Structure Inference Algorithm

We now show how to construct a section graph, such as the one conceptualized
in Figure 1. The algorithm proceeds as shown in Figure 5. Given an object refer-
ence graph, first apply the edge pruning heuristic to remove sources of artificial
ownership. Compute the dominator relation over the resulting pruned graph of
objects. Relink the dominator trees into an ownership graph; this produces a
graph where each node is a dominator tree. Collapse nodes of this graph based
on the same-type-same-context heuristic. This results in a graph where each
node is a section.

The remaining steps produce a set of data structures. Compute the strongly-
connected components (SCCs) of the section graph, and collapse every SCC
down to a single node. This produces a directed acyclic graph (DAG) where each
node is either a section, or a group of sections. Every “group” node of this section
DAG has the property that the number of objects reachable from members of
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that group (the reachable size) is the same. Every node of the section DAG, and
everything reachable from it, is considered to be a data structure. Observe that,
by collapsing SCCs, the set of data structures will not include duplicates that
explain the same set of reachable objects.

2.3 The Costly Data Structures

The Yeti tool uses this algorithm to produce a visualization of a short list of the
most costly data structures. We have chosen to have the tool display the top six
structures in terms of reachable size. Figure 2, Figure 6, and Figure 7 show three
example costly data structure views. Yeti names each data structure by the type
of the nodes at the root of the dominator tree for that structure’s sections. In the
case that the data structure represents an SCC, Yeti determines which sections
have no outgoing edges, i.e. edges that exit the SCC, and uses the dominator
root name for that section with the largest dominated size; it appends “et al”
to indicate that this data structure represents multiple heterogeneously typed
sections. Finally, in the case where the section chosen to name the data structure
has a root that is a class object, Yeti appends “statics” to the data structure
name. Yeti also displays two sizings: the total reachable size, and the amount that
overlaps with other data structures. For example, the UnmodifiableMapOnNode
structure from Figure 2, is just over one gigabyte in size, of which 144 megabytes
is shared with other data structures. This snapshot contains roughly 20 million

SAXParserPool statics 618MB (565MB shared)

HashMap 580MB (565MB shared)

CompoundClassLoader 120MB (1.9MB shared)

String 23MB

CacheFactory statics 19MB (17MB shared)

LinkedHashMap$Entry 17MB (16MB shared)

Fig. 6. The Costly Data Structures from a snapshot with 19 million objects

AbstractCache statics 1.58GB (1.58GB shared)

WebCpsCache 747MB

LocalMovieMediaCache 228MB

ConcurrentHashMap$HashEntry 180MB (172MB shared)

MetaSimsVectorDBCache 136MB

HMovieMediaLogistics et. al. 105MB

Fig. 7. The Costly Data Structures from a snapshot with 36 million objects
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live objects that consume 1.46 gigabytes of heap; most of this space is concisely
summarized by the top six costly data structures.

This list provides a jumping off point for further exploration. The Yeti user
can drill down from a costly data structure to a list of the largest reachable
sections, and from there to a more detailed view of a section’s design.

3 The Data Model

Each data structure section can contain millions of objects. In Yeti, we sum-
marize a data structure section, by recovering an organization that reveals its
underlying design. We approximate this logical data model by grouping objects
based on context and on the role they serve – as entities or the implementation
of relationships – in the design. Yeti infers this distinction by automatically rec-
ognizing the backbones of collections [9]. These groups are arranged into a DAG
called the content schematic. The content schematic was introduced in [11]. We
show here how it is used to diagnose problems.

3.1 The Content Schematic Visualization

The content schematic shows the containment of collections and entities (i.e. non-
collection data). This view intentionally differs from the traditional visualization
of data models which draws entities as nodes and the relationships between them
as edges. In our recovered data model, nodes represent either entities or collection
infrastructure. Each node may represent instances from multiple classes; e.g. a
Vector and its underlying array. Content schematic edges represent containment.
Edge labels show the average number of dominating references from the source
to the target; for collections, this represents the average number of entries.

Differentiating collections from entities is a natural way to model heap storage.
First, in Java, collections are used to implement relationships. Memory footprint
problems are often caused by poor use of collections, including too many empty
collections, sparse collections, or wrong collection choice. Second, the nature of
collection problems are different from entity implementation problems. Fixing a
collection problem typically involves making a new selection from the standard
library and configuring it. Fixing a problem with entity implementation typically
involves refactoring classes.

The algorithm for building a content schematic is primarily based on struc-
tural information, and does not use specific knowledge about specific libraries.
Therefore, the analysis recognizes collections that are not defined in the standard
library. However, there are several cases when specific knowledge is needed. For
example, to recognize hash sets with no collisions, we recognize objects with the
substring $Entry in their names.

3.2 Examples

Figure 8 shows a content schematic for thedata structure sectionGatewaySession,
taken fromtheYeti tool.This sectionbelongs to a server framework layer of a social-
network application. From 36 megabytes of objects in the GatewaySession, Yeti
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ArrayList
903kB

Hashtable
1.51MB

ConcurrentHashMap$Segment
26MB

SessionImplementation
1.01MB

0..1

SubscriptionEventImpl
645kB

0..1

GatewaySession
1.51MB

ConcurrentHashMap
2.14MB

1

ArrayList
903kB

1

16

1

String
962kB

0..1
1

String
449kB

0..1

Fig. 8. The content schematic of a GatewaySession, rendered by the Yeti tool

has recovered a data model with just ten nodes that explain the bulk of the cost.
Observe that the largest contributor is ConcurrentHashMap$Segment,which con-
sumes 26megabytes. The standard concurrent hashmap in Java is implementedus-
ing a two-level collection, so it appears as two distinct nodes in the content
schematic: ConcurrentHashMapand ConcurrentHashMap$Segment.Both of these
nodes represent pure overhead cost, since they represent collection infrastructure.
The question is whether this cost is justified, that is, is the use of a concurrent hash
map appropriate here.

Looking deeper (via tooltip, as shown in Figure 9), one can discover that there
are 16505 ConcurrentHashMaps and 264080 ConcurrentHashMap$Segments );
these figures show up as the “count” fields in the tooltips. We also observe that
the GatewaySession section itself is nested in a ConcurrentHashMap, since there
is another section called ConcurrentHashMap that owns it (shown in the Yeti tool,
but not in this figure). The developers confirmed that the granularity of these
nested concurrency structures is too fine, and the inner concurrent hash map is not
needed to assure concurrent access; typically there are a large number of concur-
rent GatewaySessions, but only a few subscribers per session. This allowed them
to replace the inner concurrent hash map with a Hashtable,which provides thread
safety, but no concurrency. This reduced the storage cost of the GatewaySession
section by over 90%, and the cost of the whole heap by 10-20%. This type of prob-
lem, using the wrong collection for a given task, is a common pattern.

Figure 10 shows a different content schematic from the same application, for
the section ClientConnectionImpl. One visible potential problem is that the
6.88 megabytes ArrayList has an average fanout of 1.33. In general, if there
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type: ConcurrentHashMap$Segment
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UNPIN

what's inside?

Fig. 9. A portion of the GatewaySession content schematic from Figure 8, showing
two tooltips rendered by Yeti

are many small collections, the overhead cost of the collections is not justified
by the small number of entries they contain. The two largest cost contributors
are RequestImpl and ClientConnectionImpl. However, we cannot determine
whether this cost can be reduced from just the content schematic. The next
section shows how to obtain more detailed information.

4 The Model’s Implementation

In the previous example, the content schematic focused our attention on the
RequestImpl and ClientConnectionImpl, responsible for a significant portion
of the data structure’s cost. We would now like to understand the implementation
of these entities, to see if they can be optimized. We introduce a type graph
view to show the implementation of a given entity or collection. We show its
application to some common types of storage inefficiencies.

Figure 11 shows the type graph view of the ClientConnectionImpl entity
from Figure 10. This graph shows the actual objects that implement a single en-
tity or collection, aggregated into nodes according to type. An edge summarizes
all references between instances of two types. Edges are labeled with the average
fanout, i.e. the average, per instance of source type, of the number of references
to the target type. Flying over each node yields additional detail, such as the
number of instances and the average instance size.
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Fig. 10. The content schematic of a ClientConnectionImpl, rendered by Yeti
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Fig. 11. Type graph showing the highly delegated implementation of a ClientConnec-
tionImpl entity

4.1 Highly Delegated Entities

It is common for entities to be represented by more than one object type. One
reason is that Java has limited data modeling mechanisms, lacking such features
as composition (i.e. an object may only point to, but not contain another object),
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union types, and multiple inheritance. As a result, even a primitive string in
Java must be implemented using two classes (String and char[]) connected by
a reference. In addition, our software engineering culture favors loosely coupled
design patterns, as well as reuse of existing assets.

From the view we learn that ClientConnectionImpl has a highly delegated
design, with each connection requiring on average 27 instances (from 17 dis-
tinct classes). Each connection object points to a response object which in turn
contains six header entries. Each type of header entry (e.g. ViaHeaderImpl, To-
HeaderImpl, FromHeaderImpl) is modeled by delegating to a separate object
rather than by extending MessageImpl$HeaderEntry. Low-level attributes such
as a web address employ multiple levels of delegation to make use of existing
framework functionality. The memory costs of such designs are high due to ob-
ject header, object alignment, and pointer costs [11]. In this example these costs
alone are responsible for 62% of the storage of each ClientConnectionImpl. Un-
fortunately current JITs do nothing to optimize the storage of these designs. In
the type graph of RequestImpl (not shown) we find a similar, delegated design.

Limiting the type graph to a particular entity or collection has many benefits.
In this example, the content schematic and the focused type graph together let us
see whether the ClientConnectionImpl’s design is appropriate for its context.
This is an important issue in framework-based systems, where developers cannot
predict the uses of their designs, and thus can easily misjudge their space budget.
The focused type graph also separates out unrelated uses of common types, such
as Object in this example.

4.2 Expensive Classes and Base Classes

Highly delegated entity designs can also magnify other expensive patterns in the
modeling of individual Java classes. The type graph can be useful for uncovering
these problems. A customer relationship management (CRM) application where
Yeti was successfully employed exhibited a few of these common patterns. The
content schematic showed that the customer profile entity was a large consumer
of storage, and its type graph view showed that each customer profile was mod-
eled as 30 instances. Low-level attributes such as email address, phone number,
and physical address were modeled as separate classes, each in turn with ad-
ditional side objects. Yeti provides the ability to drill down from each node in
the type graph to show type hierarchy, field, and instance size information.2

Figure 12 shows that the base class of each piece of contact information costs 40
bytes. Seeing the cost in context lets the developer decide if it is worth modeling
at this fine granularity, or if it would be better to move information, such as
when contact information was changed, up to the customer profile.

The field information revealed another problem. Many of the classes and base
classes implementing this entity had a similar coding pattern, one of storing both
a scalar and a formatted string version of the same value (e.g. countryCodeId

2 In this example, class hierarchy information was available from the heap snapshot,
but not exact type information for reference types.
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12 bytes

40 bytes

60 bytes

Object

ContactInformation
Object createDate;
Object enteredBy;
Object updateDate;
Object updatedBy;
Object primaryIndicator;
int typeId;
Object type;
Object description;
Object internationalIndicator;
int id;

PhoneNumber
Object extension;
Object number;
Object areaCode;
int countryCodeId;
Object countryCode;

(a) Phone number.

12 bytes

40 bytes

48 bytes

Object

ContactInformation
Object createDate;
Object enteredBy;
Object updateDate;
Object updatedBy;
Object primaryIndicator;
int typeId;
Object type;
Object description;
Object internationalIndicator;
int id;

ElectronicAddress
Object eaddressValue;
Object eaddressCode;

(b) Electronic address.

Fig. 12. Detailed class information from two CRM application entities, as rendered by
Yeti

and countryCode). The type graph led us to find the unnecessary fields (the
formatted versions) in each class and also explained related String objects that
appeared in the content schematic.

4.3 Collection Implementations

Collections in Java are implemented using multiple classes; the type graph can pro-
vide a concise summary of the structure and costs of these implementation. This
view can show why a particular use of collections is expensive. For example, the
type graph view can be used to determine if a collection has been misconfigured.
In the example of small ArrayLists from Section 3.2, drilling down to the type
graph view (not shown) reveals a graph with two types, ArrayList and Object[].
Looking at the average size of each Object[] shows if the developers made a com-
mon error, sizing the collections too large relative to the small number of entries
they contain. The type graph can also yield insight into the scaling properties of
a collection. In a document processing application with a scalability problem di-
agnosed with Yeti, a large TreeMapwas the largest element of a large section. The
type graph view showed that its size was almost entirely due to the instance size
of the TreeMap$Entry class, a cost that will not be amortized at a larger scale.

5 Differential Analysis

In the previous sections, we have shown how problems of excessive memory foot-
print can be identified with a single heap snapshot. In many cases, problems can



Making Sense of Large Heaps 91

Float
64MB

+43MB

SparseNode
29MB

+19MB

HashMap
258MB

+171MB

1

...

261 ...

0..1
HashMap

56MB

+37MB

0..1

437

...

2.27

2.24

Fig. 13. A content schematic, with each note annotated with its change in size

be resolved by inspecting the content schematics and type graphs of the biggest
data structure sections. This strategy works, but in a relatively limited scope:
the problematic abstraction must be big (e.g. for memory leaks, when the leak
has had time to accrue). It also requires a human to impose a judgment that big
is bad. A differential analysis avoids these problems, and opens up the possibility
for several new analyses. We show how the same abstractions used for footprint
analysis serve as useful units for summarizing change. For example, even a sim-
ple inspection of Figure 13, a content schematic annotated with changes to the
byte size of entities and collection infrastructure, is enlightening.

We first present an algorithm to compute a model of how content schematics
change. We then present a family of differential analyses, both intra-run and
cross-build, that utilize this differential model.

5.1 The Differential Algorithm

A single data structure, and even a single data structure section, may partici-
pate in multiple independent changes over time. For example, we may have one
snapshot taken with 500 users logged on, and another, from a different build
that introduces a memory footprint optimization, with 1000 users logged on.
Comparing these snapshots should show that this data structure has, simulta-
neously, both shrinkage (due to optimizations) and growth (due to an increase
in the number of users). For this reason alone, it is important to compute a



92 N. Mitchell, E. Schonberg, and G. Sevitsky

section DAG 
#1 align sections

compute
correlated subgraphs

alignment model

difference model 
over content 

schematic nodes

difference model 
over correlated 

subgraphs

compute
B, I, E

section DAG 
#1

Fig. 14. The differential algorithm

differential model that includes context; to do otherwise would show only that
there is some change occurring. Moreover, even if a data structure exhibits only
a single kind of change, a data structure almost always has some parts that
remain stable. Knowing that a data structure, or large portions of it, have not
changed is itself an important differential analysis.3

The differential algorithm proceeds as outlined in Figure 14. The algorithm
takes as input the section DAGs from two heap snapshots; recall the section
inference algorithm from Section 2.2, and outlined in Figure 5. It then aligns
the sections, and produces an alignment model. This model is a mapping that
corresponds each section in the first snapshot to zero or one snapshots in the
second snapshot; for a section not in the domain of this mapping, we say it is
nascent, and for a section not in the range of this mapping, we say that it has
disappeared. One section aligns with another if they satisfy the same-type-same-
context heuristic, as described in Section 2.1. Within aligned sections, it further
aligns the content schematic nodes using a straightforward tree matching based
on the type of each node. Nodes, as with sections, can be nascent or disappear.
In this way, the alignment model does not require any notion of persistent object
identities that span heap snapshots.4

Next, the differential algorithm sizes each content schematic node, and com-
putes deltas of these sizes based on the alignment model. The algorithm relies
on three node sizings: byte size B, the number of nodes in the type graph I, and
element count E. For example, in the content schematic shown in Figure 13, the
upper HashMap collection infrastructure consumes 56 megabytes using five data
types; this data structure currently contains 2153 such HashMaps.5 To compute
3 We discuss lack of change in more depth in Section 5.2.
4 This algorithm would not align in the presence of certain changes, such as refactor-

ings that affect class names.
5 The latter two numbers aren’t shown in the figure. When using Yeti, the count

of types can been seen by drilling down from that content schematic node to the
corresponding type graph; the number of HashMaps can be seen in a tooltip over
the content schematic node, as in Figure 9.
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Fig. 15. A content schematic with three subgraphs of correlated growth; e.g. the two
nodes with a change in element count of −2

the change in byte size ΔB of each content schematic node, use the alignment
model: ΔB = B2−B1, where B1 or B2 is defined to have the value of zero when
that respective region or the entire section is not present. The same goes for
the other two sizings. This yields a difference model over the content schematic
nodes, which provides a Δ for each sizing, for each node.

Finally, the algorithm accounts for lock-step changes in element count. Con-
sider a HashSet of Vectors of Strings. When the application adds one more
Vector to the outer set, it is likely that this data structure will also contain
more Strings. If the change in the element count (ΔE) of the latter is a mul-
tiple of the ΔE of the former, the algorithm interprets this to mean that these
two changes are likely to be part of a single, encompassing, trend in the pro-
gram. We define a correlated subgraph of a content schematic as a maximally
sized connected subgraph over which the ΔE of each node is a multiple of its
parent. Figure 15 shows a content schematic with three correlated subgraphs,
e.g. where one exhibits a growth trend with three nodes {+3, +6, +9}. From
this, the algorithm refines the difference model over content schematic nodes to
one over correlated subgraphs in the obvious way.

5.2 Changes within a Run

By comparing multiple snapshots taken from a single run of an application, we
can spot and quantify trends in memory consumption. While much related work
has focused on memory leaks, a wide array of issues can benefit for this style
of analysis. Table 1 shows five categories of intra-run differential analysis; we
describe two of them in detail.

Developers of server applications are faced with the important task of quanti-
fying the size of session state, normalized per user. Without intimate knowledge
of which node in which content schematic corresponds to session state, this task
is quite difficult. A very similar task is that of discovering which runtime memory
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Table 1. Yeti infers trends within a run by observing changes to a content schematic

Trend Analysis Example A correlated subgraph where . . .

One-off broken round-
trip

E of the root increases by n,
once

Growth memory leak ibid, but increases monotoni-
cally

Cache-like infer caches ibid, but plateaus, and then os-
cillates

Steady State memory drag B, I, E unchanged
Incremental Unit
Cost

per-user session
state size

root’s ΔE equals added users;
compute

∑
i Bi/n for subgraph

nodes i

structures correspond to certain configuration parameters (e.g. one that deter-
mines the capacity of a cache). In both cases, one can tweak the external property
(by adding more users, or changing the configuration option) by a known value
of k, and searching for a correlated subgraph with ΔE = k. In addition to the
program understanding benefits, this technique further allows one to present
normalized figures: divide the sum of the byte sizes B by n, for all nodes in the
correlated subgraph. We have used this analysis with many IBM internal and
customer applications; we find many applications where the per-user session costs
are over 100 kilobytes. At this rate, the application would require 1 gigabyte of
memory, just for session state, to support only ten thousand simultaneous users.
This normalized figure quickly focused development effort.

We can also use the differential algorithm to identify portions of memory
that are possibly “dragging” [15]. Applications often contain large sections of
memory that are either rarely used, or only used during application startup. This
combination, of being large and infrequently accessed, present opportunities for
tuning. To approximately find portions of data structures that have memory
drag, Yeti presents correlated subgraphs in which all three sizing criteria remain
unchanged (ΔB = ΔI = ΔE = 0), for all nodes in the subgraph; we have found
that unchanging structures are often the unused ones. We have used this analysis
to find several large dragging sections in IBM products.

5.3 Changes Across Builds

The second style of differential analysis is used by development teams to track
changes across builds of their application. This can be used to quantify the
benefits of a code optimization, or to pinpoint and quantify the negative effects
of a newly introduced feature. Table 2 provides three examples of this style of
cross-build differential analysis. To infer that developers have changed the field
structure of application data types, one can look for correlated subgraphs where
ΔI = 0 and ΔE = 0 (no change in number of types required to implement
model elements, and no change in the number of entities or collections), but
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Table 2. The Yeti differential analysis can also detect cross-build changes

Cross-build Analysis Example Any correlated subgraph
where . . .

Type Optimization remove fields B decreases, but I, E un-
changed

Entity Optimization lower use of delegation B, I decreases, but E un-
changed

Change in Data Model switch from TreeMap to
parallel arrays

E become zero, while another
subgraph’s E become non-
zero

where ΔB < 0. A common example of this kind of type optimization is when
developers change a data type to make some fields computed, rather than stored,
attributes.

6 Related Work

Earlier work introduces summarization according to ownership structure and
inference of collection infrastructure, to enable characterization of heaps [9].
Work on memory health introduces the content schematic and shows how it can
be used to enable design health and scalability assessments [11]. Our present
work combines and extends these abstractions, embodying them in a visual tool
for diagnosing storage inefficiencies and lifetime management bugs, in point-in-
time and differential analyses.

Most work on memory analysis is focused on leak detection and problems of
memory drag. A number of these works use dominance relations to aggregate
objects with the same type and ownership context. Tools such as LeakBot [10],
YourKit [17] and MAT [2] use dominance to compute measures of uniquely owned
storage and give users a starting point for more detailed exploration. None of
these tools provides explicit support for shared ownership. In [14], ownership
information is combined with trace information, enabling object usage and ac-
cess information to be aggregated according to ownership structure. Many tools
aggregate objects according to type and immediate references. In Jinsight [3]
and many commercial tools, such as Yourkit, this aggregation supports naviga-
tion to neighboring groups of objects. Cork employs a type points-from graph
over the whole heap and annotates it with volume information gathered with
the garbage collector [5]. Changes in volume along paths in the graph are used
to pinpoint growing structures. Container profiling uses a priori knowledge of
collection classes to track usage of collections in order to rank leak suspects [18].

Shape analysis aims at summarizing the structure of connected groups of
objects [1,8]. Recent characterization work identifies and summarizes temporary
data structures using lifetime and connectivity information [4].
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7 Yeti in Practice

Yeti runs as a web-based service. Users submit snapshots and receive interactive
reports that can be saved and distributed. It accepts standard heap snapshots,
and does not require a collection agent. Yeti has been available within IBM for
well over a year, and is in active use by at least five development, testing, and
services organizations. It has enabled more than twenty critical problems to be
solved in over a dozen products and customer applications, problems of both
scalability and lifetime management.

8 Conclusions

That systems are built by assembling parts from so many sources has made it
nearly impossible to assess the global impact of local design choices. Yeti’s ab-
stractions for the first time enable visibility across all the layers, via concise cost
summaries from a design perspective. Yeti’s approximations, while not perfect,
have proven in practice to enable users to quickly and easily solve problems. For
example, Yeti may sometimes combine what the user thinks of as two logical
entities into a single one, or segregate two very similar sections only because
some instances happen to be shared at a moment in time. The consequence of
this imprecision has been that users will examine a few extra sections or entities
— still a relatively small effort compared with exploring thousands of links in
detail-oriented tools. The difficulties of current techniques have led developers to
postpone memory analysis until there is a serious problem. It is encouraging that
Yeti’s views are simple enough that it is now being used earlier in the lifecycle
by development and testing groups.

Meaningful cost summaries are a first step toward mitigating memory-related
risks across the development cycle. First, Yeti’s summarizations have made ev-
ident to us many common patterns of data design. We have been compiling a
catalog of costly patterns, from real-world Yeti case studies, and have made it
available as a tutorial [12] aimed at preventing problems. Work is in progress
to automatically recognize these patterns and suggest solutions. Another area
of opportunity is scalability prediction, where developers’ inability to measure
unit costs of their own or others’ code makes it difficult to predict how designs
will scale, or to configure parameters. We are exploring how Yeti’s analyses can
enable understanding of scalability, in the context of development and testing
tools. Finally, Yeti’s differential analysis can be of value for project tracking,
by spotting trends in design scalability as a project progresses, and pinpointing
functional areas that are to blame.
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Abstract. Pointer analyses derived from a Context-Free-Language
(CFL) reachability formulation achieve very high precision, but they
do not scale well to compute the points-to solution for an entire large
program. Our goal is to increase significantly the scalability of the cur-
rently most precise points-to analysis for Java. This CFL-reachability
analysis depends on determining whether two program variables may be
aliases. We propose an efficient but less precise pre-analysis that com-
putes context-sensitive must-not-alias information for all pairs of vari-
ables. Later, these results can be used to quickly filter out infeasible
CFL-paths during the more precise points-to analysis. Several novel tech-
niques are employed to achieve precision and efficiency, including a new
approximate CFL-reachability formulation of alias analysis, as well as a
carefully-chosen trade-off in context sensitivity. The approach effectively
reduces the search space of the points-to analysis: the modified points-to
analysis is more than three times faster than the original analysis.

1 Introduction

Pointer analysis is used pervasively in static analysis tools. There are dozens (or
maybe even hundreds) of analyses and transformations that need information
about pointer values and the corresponding memory locations. Many of these
tools — e.g., software verifiers [1,2], data race detectors [3,4], and static slicers [5]
— require both precision and scalability from the underlying pointer analysis.
The quality of the results generated by such tools is highly sensitive to the
precision of the pointer information. On the other hand, it is highly desirable
for the pointer analysis to scale to large programs and to quickly provide points-
to/aliasing relationships for a large number of variables. To date, existing pointer
analysis algorithms have to sacrifice one of these two factors for the sake of the
other, depending on the kind of client analysis they target.

Of existing pointer analysis algorithms, the family of the refinement-based
analyses [6,7] derived from the Context-Free-Language (CFL) reachability for-
mulation [8] are some of the most precise ones. They achieve precision by simul-
taneously approximating CFL-reachability on two axes: method calls and heap
accesses. Method calls are handled context sensitively: a method’s entry and exit
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are treated as balanced parentheses and are matched in order to avoid propaga-
tion along unrealizable paths (with the appropriate approximations needed to
handle recursive calls). Heap accesses are handled to precisely capture the flow
of pointer values through the heap: the read (load) and write (store) of a field
of the same object are treated as balanced parentheses. These analyses answer
particular points-to/alias queries raised from a client analysis, starting with an
approximate solution and refining it until the desired precision is achieved.

Refinement-based pointer analyses may not scale well if a client analysis re-
quires highly-refined information for a large number of variables [9]. For example,
the Sridharan-Bodik analysis from [6], when using its default configuration, spent
more than 1000 seconds on computing the whole-program points-to solution for
a simple Java program and the large number of library classes transitively used
by it. This solution was required by our static slicer to compute a program slice
for a particular slicing criterion. It is important to note that the slicer requires
points-to information not only for variables in the application code (i.e., the
program we wrote), but also for variables in all reachable library methods; this
is needed in order to compute appropriate dependence summary edges [5] at call
sites. Less-refined (i.e., more approximate) points-to information, even though
it can be produced quite efficiently, could introduce much more imprecision in
the generated slice. For example, the generated slice contained the entire pro-
gram (i.e., it was very imprecise) if we imposed a 500-second time constraint
on the pointer analysis. In fact, this scalability problem prevents many similar
whole-program analyses from obtaining highly-precise points-to information with
acceptable running time. The goal of the analysis proposed in this paper is to
help the analysis from [6] to generate highly-refined points-to information in a
more efficient way.

Insight. The work performed by the Sridharan-Bodik analysis can be coarsely
decomposed into core work that is performed to find the true points-to rela-
tionships, and auxiliary work performed to filter out infeasible points-to rela-
tionships. As analysis precision increases, so does the ratio of auxiliary work to
core work. In fact, the increase of the amount of auxiliary work is usually much
more noticeable than the expected precision improvement, which is detrimental
to algorithm scalability. In order to obtain high precision while maintaining scal-
ability, staged analysis algorithms [2,10] have been proposed. A staged analysis
consists of several independent analyses. A precise but expensive analysis that
occurs at a later stage takes advantage of the results of an earlier inexpensive but
relatively imprecise analysis. This can reduce significantly the amount of auxil-
iary work that dominates the running time of the precise analysis. Our technique
is inspired by this idea. We propose an analysis which efficiently pre-computes
relatively imprecise results. Later, these results can be used to quickly filter out
infeasible graph paths during the more precise Sridharan-Bodik analysis.

Targeted inefficiency. At the heart of the CFL-reachability formulation pro-
posed in [6] is a context-free language that models heap accesses and method calls/
returns. Given a graph representation of the program (described in Section 2), a
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variable v can point to an object o if there exists a path from o to v labeled with
a string from this language. Specifically, v can point to o if there exists a pair of
statements v = a.f and b.f = o such that a and b are aliases. Deciding if a and b are
aliases requires finding an object o′ that may flow to both a and b. This check may
trigger further recursive field access checks and context sensitivity checks (essen-
tially, checks for matched parentheses) that can span many methods and classes.
All checks transitively triggered need to be performed every time the analysis tries
to verify whether a and b may be aliases, because the results may be different under
different calling contexts (i.e., a method may be analyzedunder different sequences
of call sites starting from main). There could be a large number of calling contexts
for a method and it may be expensive to repeat the check for each one of them.

Recent work [11,12] has identified that there exists a large number of equiv-
alent calling contexts. The points-to sets of a variable under the equivalent
contexts are the same; thus, distinguishing these contexts from each other is
unnecessary. This observation also applies to aliasing. Suppose variables a and
b may point to the same object o under two sets of equivalent contexts C1 and
C2, respectively. Clearly, a and b may be aliases under C1 ∩ C2. It is desirable
for the analysis from [6] to remember the aliasing relationship of a and b for this
entire set of contexts, so that this relationship needs to be computed only once
for all contexts in the set. However, because in [6] the context-sensitivity check
is performed along with the field access check, the context equivalence classes
are not yet known when the aliasing relationship of a and b is computed. Ideally,
a separate analysis can be performed to pre-compute context equivalence class
information for all pairs of variables in the program. This information can be
provided to the points-to analysis from [6], which will then be able to reuse the
aliasing relationships under their corresponding equivalent calling contexts. In
addition, this pre-analysis has to be sufficiently inexpensive so that its cost can
be justified from the time saving of the subsequent points-to analysis.

Proposed approach. Since the number of calling contexts (i.e., sequences of
call graph edges) in a Java program is usually extremely large even when treating
recursion approximately, the proposed analysis adopts the following approach:
instead of computing context equivalence classes for every pair of variables, it
focuses on pairs that are not aliases under any possible calling contexts. This in-
formation is useful for early elimination of infeasible paths. The analysis from [6]
does not have to check whether a and b are aliases if this pre-analysis has already
concluded that they cannot possibly be aliases under any calling context. The
pre-analysis will thus be referred to as a must-not-alias analysis.

The key to the success of the proposed approach is to make the must-not-
alias analysis sufficiently inexpensive while maintaining relatively high precision.
Several novel techniques are employed to achieve this goal:

– Aliases are obtained directly by performing a new form of CFL-reachability,
instead of obtaining them by intersecting points-to sets [7].

– The heap access check of the analysis is formulated as an all-pairs CFL-
reachability problem over a simplified balanced-parentheses language [13],
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which leads to an efficient algorithm that has lower complexity than solving
the Sridharan-Bodik CFL-reachability. The simplification of the language
is achieved by computing CFL-reachability over a program representation
referred to as an interprocedural symbolic points-to graph, which introduces
approximations for heap loads and stores.

– The context sensitivity check is performed by combining bottom-up inlining
of methods with 1-level object cloning (i.e., replicating each object for each
call graph edge that enters the object-creating method). Hence, the analysis
is fully-context-sensitive for pointer variables (with an approximation for re-
cursion), but only 1-level context-sensitive for pointer targets. This approach
appears to achieve the desired balance between cost and precision.

The must-not-alias analysis was implemented in Soot [14,15] and was used to
pre-compute alias information for use by the subsequent Sridharan-Bodik points-
to analysis. As shown experimentally, the approach effectively reduces the search
space of the points-to analysis and eliminates unnecessary auxiliary work. On
average over 19 Java programs, the modified points-to analysis (including the
alias pre-analysis) is more than three times faster than the original analysis.

2 Background

This section provides a brief description of the CFL-reachability formulation of
context-sensitive points-to analysis for Java [6]. It also illustrates the key idea
of our approach through an example.

2.1 CFL-Reachability Formulation

The CFL-reachability problem is an extension of standard graph reachability
that allows for filtering of uninteresting paths. Given a directed graph with
labeled edges, a relation R over graph nodes can be formulated as a CFL-
reachability problem by defining a context-free grammar such that a pair of
nodes (n, n′) ∈ R if and only if there exists a path from n to n′ for which the
sequence of edge labels along the path is a word belonging to the language L
defined by the grammar. Such a path will be referred to as an L-path. If there
exists an L-path from n to n′, then n′ is L-reachable from n (denoted by n L n′).
For any non-terminal S in L’s grammar, S-paths and n S n′ are defined similarly.

A variety of program analyses can be stated as CFL-reachability problems [8].
Recent developments in points-to analysis for Java [16,6] extend this formulation
to model (1) context sensitivity via method entries and exits, and (2) heap ac-
cesses via object field reads and writes. A demand-driven analysis is formulated
as a single-source L-reachability problem which determines all nodes n′ such that
n L n′ for a given sourcenode n. The analysis can be expressedby CFL-reachability
for language LF∩RC. Language LF, where F stands for “flows-to”, ensures precise
handling of field accesses. Regular language RC ensures a degree of calling context
sensitivity. Both languages encode balanced-parentheses properties.
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Graph representation. LF-reachability is performed on a graph representation
G of a Java program, such that if a heap object represented by the abstract
location o can flow to variable v during the execution of the program, there
exists an LF path in G from o to v. Graph G is constructed by creating edges
for the following canonical statements:

– Allocation x = new O: edge o
new−−→ x ∈ G

– Assignment x = y: edge y
assign−−−→ x ∈ G

– Field write x.f = y: edge y
store(f)−−−−→ x ∈ G

– Field read x = y.f : edge y
load(f)−−−−→ x ∈ G

Parameter passing is represented as assignments from actuals to formals;
method return values are treated similarly. Writes and reads of array elements
are handled by collapsing all elements into an artificial field arr elm .

Language LF. First, consider a simplified graph G with only new and assign
edges. In this case the language is regular and its grammar can be written simply
as flowsTo → new ( assign )∗, which shows the transitive flow due to assign
edges. Clearly, o flowsTo v in G means that o belongs to the points-to set of v.

For field accesses, inverse edges are introduced to allow a CFL-reachability
formulation. For each graph edge x → y labeled with t, an edge y → x labeled
with t̄ is introduced. For any path p, an inverse path p̄ can be constructed by
reversing the order of edges in p and replacing each edge with its inverse. In the
grammar this is captured by a new non-terminal flowsTo used to represent the
inverse paths for flowsTo paths. For example, if there exists a flowsTo path from
object o to variable v, there also exists a flowsTo path from v to o.

May-alias relationships can be modeled by defining a non-terminal alias such
that alias → flowsTo flowsTo. Two variables a and b may alias if there exists
an object o such that o can flow to both a and b. The field-sensitive points-to
relationships can be modeled by flowsTo → new ( assign | store(f) alias load(f) )∗.
This production checks for balanced pairs of store(f) and load(f) operations,
taking into account the potential aliasing between the variables through which
the store and the load occur.

Language RC. The context sensitivity of the analysis ensures that method en-
tries and exits are balanced parentheses: C → entry(i) C exit(i) |C C | ε. Here
entry(i) and exit(i) correspond to the i-th call site in the program. This pro-
duction describes only a subset of the language, where all parentheses are fully
balanced. Since a realizable path does not need to start and end in the same
method, the full definition of RC also allows a prefix with unbalanced closed
parentheses and a suffix with unbalanced open parentheses [6]. In the absence of
recursion, the balanced-parentheses language is a finite regular language (thus
the notation RC instead of LC); approximations are introduced as necessary to
handle recursive calls. Context sensitivity is achieved by considering entries and
exits along a LF path and ensuring that the resulting string is in RC.
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2.2 CFL-Reachability Example

Figure 1 shows an example with an implementation of a List class, which is
instantiated twice to hold two objects of class A. One of the List instances is
wrapped in a ListClient object, which declares a method retrieve to obtain
an object contained in its list. We will use ti to denote the variable t whose first
occurrence is at line i, and oi to denote the abstract object for the allocation
site at line i. For example, s31 and o26 represent variable s declared at line 31
and the A object created at line 26, respectively. Literal "abc" is used to denote
the corresponding string object. Class A has a string-typed field f, initialized to
some default value in A’s constructor; the actual code for A is not shown.

The program representation for this example is shown in Figure 2; for simplic-
ity, the inverse edges are not shown. Each entry and exit edge is also treated as an
assign edge for LF, in order to represent parameter passing and method returns.
To simplify the figure, edges due to the call at line 32 are not shown. The context-
insensitive points-to pairs are defined by flowsTo paths. For example, there exists
such a path from o26 to s31. To see this, consider that this17 alias this19 (due
to o27) and therefore l17 flowsTo t19 due to the matching store and load of field
list. Based on this, this5 alias this11 due to o25 (note that because of the call
at line 32, they are also aliases due to o28). Since this5 alias this7 (due to o25 or
due to o28), it can be concluded that t7 alias t11 (due to o4). This leads to the
flowsTo path o26 → t26 → m6 → t7 → . . .→ t11 → p12 → r20 → s31.

Since the precise computation of flowsTo path can be expensive, the analy-
sis from [6] employs an approximation by introducing artificial match edges. If,
due to aliasing, there may be a path from the source of a store(f) edge to the
target of a load(f) edge, a match edge is added between the two nodes. Such
edges are added before the balanced-parentheses checks for heap accesses are
performed. An initial approximate solution is computed using the match edges.
All encountered match edges are then removed, and the paths between their
endpoints are explored. These new paths themselves may contain new match
edges. In the next iteration of refinement, these newly-discovered match edges

1 class List{
2 Object[] elems;
3 int count;
4 List(){ t = new Object[10];
5 this.elems = t; }
6 void add(Object m){
7 t = this.elems;
8 t[count++] = m;
9 }
10 Object get(int ind){
11 t = this.elems;
12 p = t[ind]; return p;
13 }
14 }
15 class ListClient{
16 List list;
17 ListClient(List l){ this.list = l; }

18 Object retrieve(){
19 t = this.list;
20 Object r = t.get(0);
21 return r;
22 }
23 }
24 static void main(String[] args){
25 List l1 = new List();
26 A t = new A(); l1.add(t);
27 ListClient client = new ListClient(l1);
28 List l2 = new List();
29 A i = new A(); i.f = "abc";
30 l2.add(i);
31 A s = (A)client.retrieve();
32 A j = (A)l2.get(0);
33 String str = s.f;
34 }}

Fig. 1. Code example
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Fig. 2. Illustration of CFL-reachability

are removed, etc. Since we are interested in a highly-refined solution, the ex-
ample and the rest of the paper will assume complete refinement of match
edges.

Not every flowsTo path is feasible. Consider, for example, path o29 → i29 →
m6 → t7 → . . . → t11 → p12 → r20 → s31. Even though this is a valid flowsTo
path, the entry and exit edges along the path are not properly matched. To see
this, consider the following subpaths. First, for the path from this5 to s31, the se-
quence of entry/exit edges is entry(25), entry(27), entry(27), entry(31), entry(20),
exit(20), exit(31). Here the inverse of an entry edge can be thought of as an exit
edge and vice versa. All edges except for the first one are properly matched. Sec-
ond, consider the two paths from o29 to this5: the first one goes through o28 and
the second one goes through o25. The first path contains edges entry(30), entry(30),
entry(28) and the second path contains edges entry(30), entry(26), entry(25). Nei-
ther path can be combined with the path having the unmatched entry(25) to
form a valid string in RC. On the other hand, there exists a path from o26 to
this5 with edges entry(26), entry(26), entry(25), which can be correctly combined.

In the example, suppose that an analysis client queries the points-to set of
s31. The analysis starts from the variable and reaches p12 after traversing back
through the two exit edges. It then finds the matched arr elm edges from m6 to
t7 and from t11 to p12. At this point, the analysis does not know whether t7 and
t11 can alias, and hence, it queries the points-to sets of t7 and t11. For t7, due
to the matched load and store edges for elems, the analysis tries to determine
whether this5 and this7 can be aliases. Since o25 can flow to both variables, they
indeed are aliases. (Note that o28 also flows to both variables, but its inclusion in
the full path starting at s31 leads to unbalanced entry/exit edges.) Eventually,
the conclusion is that t7 and t11 can alias because there exists an alias path
between them with balanced entry and exit edges. From this point, the analysis
can continue with a backward traversal from m6, which encounters o26 and o29.
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Only the path from o26 to s31 has the balanced entry/exit property, and the
analysis reports that the points-to set of s31 is {o26}.

2.3 Using Must-Not-Alias Information

The proposed must-not-alias analysis is based on a program representation we
refer to as the interprocedural symbolic points-to graph (ISPG). The definition
and the construction algorithm for the ISPG are presented Section 3. Using this
representation, it is possible to conclude that certain variables are definitely not
aliases. The description of this analysis algorithm is presented in Section 4 and
Section 5. For the example in Figure 2, the analysis can conclude that i29 and s31
cannot be aliases under any calling context. This information is pre-computed
before the CFL-reachability-based points-to analysis from [6] starts.

Consider a match edge — that is, the edge from z to w for a pair of matching

z
store(f)−−−−→ x and y

load(f)−−−−→ w. When the points-to analysis removes this edge,
it normally would have to explore the paths from x to y to decide whether
x alias y. Instead, it queries our must-not-alias analysis to determine whether x
and y may be aliases. If they cannot be aliases, further exploration is unnecessary.
For illustration, consider an example where a client asks for the points-to set of
str33. The store(f) edge entering i29 and the load(f) edge exiting s31 mean that
the points-to analysis needs to determine whether i29 alias s31. However, our
must-not-alias information has already concluded that under no calling context
these two variables can be aliases. Hence, the points-to analysis can quickly skip
the check and conclude that "abc" does not belong to the points-to set of str33. In
contrast, without the must-not-alias information, the points-to analysis would
have to explore further for an alias path between s31 and i26, which involves
traversal of almost the entire graph.

3 Program Representation for Must-Not-Alias Analysis

The must-not-alias analysis runs on the interprocedural symbolic points-to graph.
This section describes the approach for ISPG construction. Section 3.1 shows the
first phase of the approach, in which an SPG is constructed separately for each
method. Section 3.2 discusses the second phase which produces the final ISPG.
To simplify the presentation, the algorithm is described under the assumption
of an input program with no static fields and no dynamic dispatch.

3.1 Symbolic Points-to Graph for a Method

The SPG for a method is an extension of a standard points-to graph, with the
following types of nodes and edges:

– V is the domain of variable nodes (i.e., local variables and formal parameters)
– O is the domain of allocation nodes for new expressions
– S is the domain of symbolic nodes, which are created to represent objects

that are not visible in the method
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– Edge v → oi ∈ V ×O shows that variable v points to object oi

– Edge v → si ∈ V × S shows that (1) the allocation node that v may point
to is defined outside the method, and (2) symbolic node si is used as a
placeholder for this allocation node

– Edge oi
f−→ oj ∈ (O ∪ S) × Fields × (O ∪ S) shows that field f of allocation

or symbolic node oi points to allocation or symbolic node oj

In order to introduce symbolic nodes as placeholders for outside objects, the
CFL-reachability graph representation of a method is augmented with the fol-
lowing types of edges. An edge s

new−−→ fp is added for each formal parameter fp
of the method. Here s is a symbolic node, created to represent the objects that
fp points to upon entry into the method. A separate symbolic node is created
for each formal parameter. Similarly, for each call site v = m(), an edge s

new−−→ v
is created to represent the objects returned by the call. A separate symbolic
node is introduced for each call site. For each field dereference expression v.f

whose value is read at least once, edges s
new−−→ t and t

store(f)−−−−→ v are created. Here
symbolic node s denotes the heap location represented by v.f before the method
is invoked, and t is a temporary variable created to connect s and v.f .

The SPG for a method m can be constructed by computing intraprocedural
flowsTo paths for all v ∈ V . A points-to edge v → o ∈ V×(O∪S) is added to the

SPG if o flowsTo v. A points-to edge oi
f−→ oj is added if there exists x

store(f)−−−−→ y
in m’s representation such that oi flowsTo y and oj flowsTo x.

Both symbolic nodes and allocation nodes represent abstract heap locations.
A variable that points to a symbolic node n1 and another variable that points
to an allocation/symbolic node n2 may be aliases if it is eventually decided
that n1 and n2 could represent the same abstract location. The relationships
among allocation/symbolic nodes in an SPG are ambiguous. A symbolic node,
even though it is intended to represent outside objects, may sometimes also
represent inside objects (e.g., when the return value at a call site is a reference
to some object created in the caller). Furthermore, two distinct symbolic nodes
could represent the same object — e.g., due to aliasing of two actual parameters
at some call site invoking the method under analysis. Such relationships are
accounted for later, when the ISPG is constructed.

The introduction of symbolic nodes is similar to pointer analyses from
[17,18,19,20,12]. These analysis algorithms use symbolic nodes to compute a
summary for a caller from the summaries of its callees during a bottom-up
traversal of the DAG of strongly connected components (SCC-DAG) in the call
graph. Unlike previous analyses that create symbolic nodes to compute the ac-
tual points-to solution, we do so to approximate the flow of heap objects in order
to perform a subsequent CFL-reachability analysis on the ISPG. This reachabil-
ity analysis, described in Section 4 and Section 5, identifies alias relationships
among allocation and symbolic nodes, and ignores the points-to relationships
involving variables. These results are used to reduce the cost of the alias path
exploration for the points-to analysis outlined in Section 2.
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actual ai ∈ Vp, formal fi ∈ Vm

ai → n ∈ SPGp, fi → s ∈ SPGm

n
entry(e)−−−−→ s ∈ ISPG

ret ∈ Vm, r ∈ Vp, ret → n ∈ SPGm, r → s ∈ SPGp

n
exit(e)−−−→ s ∈ ISPG

Fig. 3. Connecting method-level SPGs

3.2 Interprocedural Symbolic Points-To Graph

In order to perform interprocedural analysis, the SPGs of individual methods
are connected to build the ISPG for the entire program. The ISPG is not a
completely resolved points-to graph, but rather a graph where SPGs are trivially
connected. Figure 3 shows the rules for ISPG construction at a call site r =
a0.m(a1, . . . , ai, . . . ). Suppose the call site is contained in method p.

In the figure, e denotes the call graph edge that goes from p to m through this
particular call site. The callee m is assumed to have an artificial local variable
ret in which the return value of the method is stored. For a formal-actual pair
(fi, ai), an entry edge is added between each object/symbolic node n that ai

points to in caller and the symbolic node s created for fi in the callee. The
second rule creates an exit edge to connect the returned object/symbolic nodes
n1 from the callee and the symbolic node s created for r at the call site. Similarly
to the entry and exit edges in the CFL-reachability formulation from Section 2,
the entry and exit edges in the ISPG are added to represent parameter passing
and value return. The annotations with call graph edge e for these ISPG edges
will be used later to achieve context sensitivity in the must-not-alias analysis.

Figure 4 shows part of the ISPG built for the running example, which connects
SPGs for methods main, retrieve, add, and get. Symbolic nodes are represented
by shaded boxes, and named globally (instead of using code line numbers). For
example, in method add, S1 is the symbolic object created for this, S2 is created
due to the read of this.elems,and the ISPG contains an edge from S1 to S2. Name
S3 represents the object to which formal m points; due to t[count++]=m, the SPG
contains an edge from S2 to S3 labeled with arr elm. Due to the calls to add at lines
26 and 30, entry edges connect O25 and O28 with S1, and O26 and O29 with S3.

The backbone of an ISPG is the subgraph induced by the set of all allocation
nodes and symbolic nodes. Edges in the backbone are either field points-to edges
oi

f−→ oj computed by the intraprocedural construction described in Section 3.1,
or entry/exit edges created at call sites, as defined above. Variable points-to
edges (e.g., this7 → S1 from above) are not included in the backbone. Section 4
and Section 5 show how to perform CFL-reachability on the backbone of an
ISPG to compute the must-not-alias information.

Why use the ISPG? The benefits of performing the alias analysis using the
ISPG backbone are two-fold. First, this graph abstracts away variable nodes, and
partitions the heap using symbolic and allocation nodes (essentially, by defining
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Fig. 4. Illustration of the ISPG for the running example

equivalence classes for these nodes). Hence, the backbone of an ISPG contains
fewer nodes and edges than the graph representation for CFL-reachability points-
to analysis from Section 2. Second, the ISPG allows simple modeling of the alias
computation — the CFL-reachability used to formulate the context-insensitive
version of the problem, as described in the next section, is restricted to a language
memAlias which is simpler to handle than the more general CFL-reachability
for context-insensitive points-to analysis [6,7].

4 Context-Insensitive Memory Alias Formulation

This section defines a CFL-reachability formulation of a context-insensitive ver-
sion of the must-not-alias analysis. The context sensitivity aspects are described
in the next section. Hereafter, the term “node” will be used as shorthand for
“allocation or symbolic node in the ISPG”, unless specified otherwise.

Two nodes o1 and o2 are memory aliases if they may denote the same heap
memory location. We describe the memory aliases using relation memAlias ⊆
(O ∪ S) × (O ∪ S). This relation is reflexive, symmetric, and transitive, and
therefore is an equivalence relation. The computation of memAlias is formulated
as a CFL-reachability problem over the backbone of the ISPG. The relation has
the following key property: for any pair of variables v1 and v2 in relation alias
computed by the points-to analysis from Section 2, there must exist ISPG edges
v1 → o1 and v2 → o2 such that the ISPG backbone contains a memAlias path
from node o1 to node o2 (and also from o2 to o1). For a variable pair (v1, v2) for
which such a pair (o1, o2) does not exist, the points-to analysis from Section 2
does not need to explore alias paths between v1 and v2, since all such work is
guaranteed to be wasted. This section presents an efficient algorithm for solving



Scaling CFL-Reachability-Based Points-To Analysis 109

o1
fld2

ISPG edge
memAlias path

memAlias f memAlias f
| memAlias  memAlias

|            

fld2
o2

fld3 fld3

o3 o4 o5

o7

fld1

o8

fld1
o6

o9

fld4 fld4
| entry
| entry
| exit
| exit

Fig. 5. Language memAlias

the all-pairs memAlias-path problem. We first assume that the backbone of the
ISPG is free of recursive data structures. The approximation for recursive data
structures is addressed later in the section.

Figure 5 shows the grammar for language memAlias and an example illus-
trating several such paths. An edge label f shows the field name for an ISPG
edge oi

f−→ oj . As before, f̄ denotes the inverse of the edge labeled with f .
The existence of a memAlias path from o1 to o2 also means that there is a
memAlias path from o1 to o2. For this reason, the figure uses double-headed
arrows to show such paths. In this example, o7 memAlias o9 because of path
o7 fld1 o3 fld2 o1 fld2 o4 fld3 o2 fld3 o5 fld1 o8 fld4 o6 fld4 o9.

Example. For illustration, consider the ISPG shown in Figure 4. Some of the
memAlias pairs in this graph are (S7, O27), (S1, S4), (S2, S5), (S3, S6), (S6,
O29), (S11, O29), (S9, O29), and (S10, O29).

Production memAlias → memAlias memAlias encodes the transitivity of the
relation. The productions for entry/exit edges and their inverses allow arbitrary
occurrences of such edges along a memAlias path; this is due to the context in-
sensitivity of this version of the analysis. Production memAlias → f̄ memAlias f
says that if x and y are reachable from the same node z through two paths, and
the sequences of fields along the paths are the same, x and y may denote the
same memory location. This is an over-approximation that is less precise than
the alias information computed by the analysis from Section 2.

Consider the sources of this imprecision. Suppose x, y, z and w are nodes in
the ISPG and variables vx, vy, vz and vw point to them. If w and z are memory

aliases, and there exist two points-to edges x
f←− z and w

f−→ y in the ISPG, x
and y are memory aliases based on our definition. The existence of these two
edges can be due to four combinations of loads and stores in the program:

– vx = vz.f and vy = vw.f : in this case, x and y are true memory aliases
– vx = vz.f and vw.f = vy: x and y are true memory aliases because there

exists a flowsTo path from vy to vx.
– vz.f = vx and vy = vw.f : again, x and y are true memory aliases
– vz.f = vx and vw.f = vy: this case is handled imprecisely, since x and y do

not need to be aliases. Our approach allows this one source of imprecision
in order to achieve low analysis cost.
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Precision improvement.It is important to note that two allocation nodes (i.e.,
non-symbolic nodes) are never memory aliases even if there exists a memAlias
path between them. Hence, in the final solution computed by the analysis, node
x is considered to not be an alias of y if (1) there does not exist a memAlias
path between them, or (2) all memAlias paths between them are of the form

x
fi...f0−−−−→ oi memAlias oj

f0...fi−−−−→ y, where oi and oj are distinct allocation
nodes.

Soundness. The formulation presented above defines a sound must-not-alias
analysis. Consider any two variables v1 and v2 such that v1 alias v2 in the
approach from Section 2. It is always the case that there exist ISPG edges
v1 → o1 and v2 → o2 such that o1 and o2 are declared to be memory aliases by
our analysis. Here one of these nodes is a symbolic node, and the other one is
either a symbolic node or an allocation node. The proof of this property is not
presented in the paper due to space limitations.

4.1 Solving All-Pairs memAlias-Reachability

Solving CFL-reachability on the mutually-recursive languages alias and flowsTo
from [6] yields O(m3k3) running time, where m is the number of nodes in
the program representation and k is the size of LF. As observed in existing
work [21,22,13], the generic bound of O(m3k3) can be improved substantially in
specific cases, by taking advantage of certain properties of the underlying
grammar. This is exactly the basis for our approach: the algorithm for memAlias-
reachability runs in O(n4) where n is the number of nodes in the ISPG backbone.
The value of n is smaller than m, because variable nodes are abstracted away
in the ISPG; Section 6 quantifies this observation. This algorithm speeds up
the computation by taking advantage of the symmetric property of memAlias
paths. This subsection assumes that the ISPG is an acyclic graph; the extension
to handle recursive types is presented in the next subsection.

The pseudocode of the analysis is shown in Algorithm 1. The first phase con-
siders production memAlias → f̄ memAlias f . Strings in the corresponding lan-
guage are palindromes (e.g., abcddcba). Once a memAlias path is found between
nodes a and b, pair (a, b) is added to set memAlias (line 9). The memAlias set
for this particular language can be computed through depth-first traversal of the
ISPG, starting from each node n (line 4-13). The graph traversal (line 5) is imple-
mented by function ComputeReachableNodes, which finds all nodes n′ that
are reachable from n, and their respective sequences ln,n′ of labels along the paths
from which they are reached (n′ could be n). Sequence ln,n′ will be referred to as
the reachability string for a path between n and n′. Due to space limitations, we
omit the detailed description of this function. Also, for simplicity of presentation,
we assume that there exists only one path between n and n′. Multiple paths and
their reachability strings can be handled in a similar manner. The function returns
a map which maps each pair (n, n′) to its reachability string ln,n′ . A similar map
cache accumulates the reachability information for all nodes (line 7). For any pair
of nodes (a, b) reachable from n such that ln,a = ln,b, there exists a memAlias
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Algorithm 1. Pseudocode for solving all-pairs memAlias-reachability.
SolveMemAliasReachability (ISPG backbone IG)
1: Map cache // a cache map that maps a pair of nodes (n, a) to their reachability string ln,a

2: List endNodes // a worklist containing pairs of nodes that are two ends of a sequence of edges
that forms a memAlias path

3: /* phase 1: consider only production memAlias → f̄ memAlias f */
4: for each node n in IG do
5: Map m ←− ComputeReachableNodes(n)
6: for each pair of entries [(n, a), ln,a] and [(n, b), ln,b] in m do
7: cache ←− cache ∪ [(n, a), ln,a] ∪ [(n, b), ln,b] // remember the reachability information
8: if ln,a = ln,b then
9: memAlias ←− memAlias ∪ (a, b) // a memAlias path exists between a and b
10: endNodes ←− endNodes ∪ (a, b)
11: end if
12: end for
13: end for
14: /* phase 2: consider production memAlias → memAlias memAlias */
15: /* a worklist-based algorithm */
16: while endNodes 	= ∅ do
17: remove a pair (a, b) from endNodes
18: if (a, b) has been processed then
19: continue
20: else
21: mark (a, b) as processed
22: end if
23: for each (c, a) in memAlias do
24: for each (b, d) in memAlias do
25: memAlias ←− memAlias ∪ (c, d)
26: endNodes ←− endNodes ∪ (c, d)
27: end for
28: end for
29: for each [(a, c), la,c] in cache do
30: for each [(b, d), lb,d] in cache do
31: if la,c = lb,d then
32: /* add to the worklist all pairs of nodes with a memAlias path between them */
33: memAlias ←− memAlias ∪ (c, d)
34: endNodes ←− endNodes ∪ (c, d)
35: end if
36: end for
37: end for
38: end while

path between them (line 9). This pair is added to relation memAlias and to a list
endNodes for further processing.

Phase 1 complexity. Each graph traversal at line 5 takes time O(m), where
m is the number of edges in the ISPG backbone. The for loop at lines 6-12
takes O(m2). Note that when a reachability string is generated, the hashcode of
the string is computed and remembered. Hence, line 8 essentially compares two
integers, which takes constant time. Since there are O(m) nodes in the program,
the complexity of computing all memAlias paths in this phase is O(m3).

The second phase employs a worklist-based iteration which considers the en-
tire memAlias language. As usual, the phase computes a closure by continuously
processing pairs of nodes between which there exists a memAlias path. Such pairs
of nodes are contained in list endNodes , and are removed from the list upon pro-
cessing. Lines 23-28 update the transitive closure of memAlias . Next, all nodes
reachable from a or from b are retrieved from cache , together with their reach-
ability strings (line 29 and 30). Due to the caching of reachability information,
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graph traversal is no longer needed. If reachability strings la,c and lb,d match, a
memAlias path exists between c and d. Hence, pair (c, d) is added to memAlias
and to worklist endNodes .

Phase 2 complexity. Each while iteration (lines 17-37) takes O(m2) time. The
worst case is that all possible pairs of nodes (a, b) in the ISPG backbone have
been added to endNodes and processed. There are O(m2) such pairs; hence, the
worst-case time complexity for the entire algorithm is O(m4).

Although a slightly modified algorithm is used in the actual context-sensitive
version of the analysis (presented in the next section), the description from above
illustrates the key to computing memAlias-reachability. It is important to note
again that the design of this efficient algorithm is due to the specific structure
of the grammar of language memAlias . Since the grammar is symmetric and
self-recursive (instead of being mutually-recursive), the finite number of open
field parentheses can be computed a priori (i.e., stored in the cache). Thus, at
the expense of the single source of imprecision discussed earlier, this approach
avoids the cost of the more general and expensive CFL-reachability computation
described in Section 2.

4.2 Approximation for Recursive Data Structures

Existing analysis algorithms have to introduce regularity into the context-free
language and approximate either recursive calls [16,6], or recursive data struc-
tures [23] over the regularized language. Because memAlias-reachability is per-
formed over the backbone of an ISPG, we focus on the handling of cycles con-
sisting of field points-to edges caused by recursive data structures.

The key to the handling of a recursive type is to collapse an ISPG SCC caused
by the recursion. For any path going through a SCC, a wildcard (*) is used to
replace the substring of the path that includes the SCC nodes. The wildcard
can represent an arbitrary string. During the string comparison performed by
Algorithm 1, two paths match as long as the regular expressions representing
them have non-empty intersection. Figure 6 shows an example of reachability
checking in the presence of recursive types. In this example, it is necessary to
check whether the two regular expressions fld1 ∗ fld2 fld3 fld6 and fld1 ∗ fld6
have non-empty intersection.

a
fld1g fld6 fld3 fld2 * fld1  a fld1 * fld6 j

g memAlias j
b h

c
fld2

d
fld3

e
fld4

fld5

g
fld6

fld1

i
fld2

fld3fld6

j

Fig. 6. Handling of recursive data structures
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The handling of recursive types requires modifications to the comparison of
reachability strings. If neither string contains wildcards, no changes are needed.
If at least one string contains wildcards, it is necessary to consider the corre-
sponding finite automata and to check if there exists a common sequence of state
transitions that can lead both automata to accepting states. Although deciding
whether two general-form regular expressions have non-empty intersection is a
non-trivial problem, the alias analysis needs to handle a significantly simplified
version of the problem in which the regular expressions do not contain general
closure. In practice, the cost of this processing is insignificant.

Formulation of points-to analysis from memAlias . Although we use lan-
guage memAlias to formulate an alias analysis, a points-to relation pointsTo can
be easily derived from the following production: pointsTo → var pts memAlias .
Here var pts is the label on an ISPG edge from a variable node to a (symbolic
or allocation) node. The set of all such edges forms the complement of the back-
bone edge set. All var pts edges are constructed in the intraprocedural phase
of ISPG construction, as described in Section 3.1. For example, in Figure 4,
j32 pointsTo O29 because j32 var pts S11 and S11 memAlias O29 hold.

Due to the approximations described earlier and the limited context sensitivity
(discussed shortly), the points-to information derived from memAlias is less
precise than the solution computed by the analysis from Section 2. However, as
shown in our experimental results, a large number of infeasible alias pairs can
be eliminated early, leading to considerable overall performance improvement.

5 Context-Sensitive Must-Not-Alias Analysis

A context-sensitivity check can be performed along with the heap access check
to guarantee that a memAlias path contains balanced entry and exit edges. Pre-
vious work [24,11] has shown that heap cloning (i.e., context-sensitive treatment
not only of pointer variables, but also of pointer targets) is one of the most
important factors that contribute to the precision of the analysis. Existing anal-
ysis algorithms achieve heap cloning primarily in two ways: (1) they maintain a
push-down automaton to solve CFL-reachability over language RC described in
Section 2, or (2) they explicitly clone pointer variables and pointer targets (i.e.,
allocation nodes) for each distinct calling context [11,25,12], so that the cloned
nodes are automatically distinguished. In order to achieve both efficiency and
precision, we develop a hybrid algorithm that combines both approaches.

5.1 Analysis Overview

This subsection gives a high-level overview of the proposed approach; the detailed
definitions are presented in the next subsection. The analysis uses bottom-up
propagation on the call graph to ensure context sensitivity for pointer variables,
with appropriate approximations for recursion. This enables a summary-based
approach to propagate reachability strings from callees to callers, which yields
efficiency. By composing summary functions (i.e., reachability strings for nodes
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that parameters and return variables point to in the ISPG) at call sites, reach-
ability strings for nodes in callees are concatenated with reachability strings
for nodes in callers. At each call graph edge e, if the analysis enters the callee
through edge entry(e), it has to exit through edge entry(e) or exit(e). This type
of context sensitivity corresponds to the classical functional approach [26]. How-
ever, functional context sensitivity does not automatically enforce heap cloning.
A (symbolic or allocation) node in a method may represent different objects if
the method is inlined to a caller through different call chains. If these objects
are not differentiated, imprecise memAlias paths may be derived.

Our proposal is to perform lightweight cloning for (symbolic and allocation)
nodes when composing summary function at a call site. In this cloning, there may
be several “clones” (copies) of an ISPG node, each annotated with a different call-
ing context. The level of cloning, of course, has an impact on the analysis precision.
Since the primary concern is efficiency, the level of cloning is restricted to 1, and
thus, each symbolic or allocation node in the analysis has only one call graph edge
associated with it. In fact, for some programs in our benchmark set, increasing the
level of cloning to 2 (i.e., a chain of two call graph edges) makes the alias analysis
too expensive compared to the cost reduction for the subsequent points-to analysis.

5.2 Analysis Details

This subsection defines the context-sensitive alias analysis using the rules shown
in Figure 7. The analysis state is represented by cache map cache, worklist
endNodes , and relation memAlias , whose functions are similar to those defined
in Algorithm 1. In the rules, ε denotes the empty string and operator ◦ represents
string concatenation.

The first rule describes the intraprocedural analysis with a rule of the form
endNodes , cache ,memAlias ⇒ endNodes ′, cache ′,memAlias ′ with unprimed and
primed symbols representing the state before and after an SPG field points-
to edge p

f−→ o is traversed. The intraprocedural analysis performs backward
traversal of the SPG for the method being processed, and updates the state
as described above. When edge p

f−→ o is traversed backwards, the reachability
from p to n is established for any n already reachable from o: that is, for any
[(o, n), lo,n] ∈ cache where lo,n is a reachability string. Given the updated cache ,
it is necessary to consider the set of pairs (a, b) of nodes reachable from p such
that the corresponding reachability strings lp,a and lp,b have non-empty inter-
section (represented by predicate Overlap); this processing is similar to the
functionality of lines 6-12 in Algorithm 1.

The second rule describes the processing of an entry edge from o to s, corre-
sponding to a call graph edge e. In this rule, pe denotes the clone of node p for
e. Here o represents a symbolic or allocation node to which an actual parameter
points, s represents a symbolic node created for the corresponding formal parame-
ter in the callee, and pc is a node reachable from s. Node pc may represent a node in
the callee itself (i.e., when c is the empty string ε), or a node in a method deeper in
the call graph that is cloned to the callee due to a previously-processed call. When
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[Intraprocedural state update]
[(o, n), lo,n] ∈ cache
cache ′ = cache ∪ [(p, n), f ◦ lo,n] ∪ [(p, p), ε]
pairs = { (a, b) | [(p, a), lp,a], [(p, b), lp,b] ∈ cache ′ ∧Overlap(lp,a, lp,b) }
memAlias ′ = memAlias ∪ pairs
endNodes ′ = endNodes ∪ pairs

endNodes , cache ,memAlias ⇒p
f−→o endNodes ′, cache ′,memAlias ′

[Method call]
[(s, pc), ls,p] ∈ cache
px = pe if c = ε and px = pc otherwise
triples = { [(o, px), ls,p] } ∪ { [(o, se), ε] }∪

{ [(o, q), ls,p ◦ ln,q] | (pc exit(e)−−−→ n ∨ pc entry(e)−−−−→ n) ∧ [(n, q), ln,q] ∈ cache}
cache ′ = cache ∪ triples
pairs = { (a, b) | [(p, a), lp,a], [(p, b), lp,b] ∈ cache ′ ∧Overlap(lp,a, lp,b) }
memAlias ′ = memAlias ∪ pairs
endNodes ′ = endNodes ∪ pairs

endNodes , cache ,memAlias ⇒o
entry(e)−−−−→s endNodes ′, cache ′, memAlias ′

Fig. 7. Inference rules defining the context-sensitive alias analysis algorithm

a call site is handled, all nodes that are reachable from a symbolic node created for
a formal parameter, and all nodes that can reach a node pointed-to by a return
variable, are cloned from the callee to the caller. All edges connecting them are
cloned as well. The algorithm uses only 1-level cloning. If the existing context c of
node p is empty, it is updated with the current call graph edge e; otherwise, the
new context x remains c. Note that multiple-level cloning can be easily defined by
modifying the definition of px.

In addition to updating the cache with (o, px) and (o, se), it is also necessary to
consider any node n in the caller’s SPG that is connected with pc either through
an exit(e) edge (i.e., pc is a symbolic node pointed-to by the return variable), or
through an entry(e) edge (i.e., pc is a symbolic node created for another formal
parameter). The analysis retrieves all nodes q in the caller that are reachable
from n, together with their corresponding reachability strings ln,q, and updates
the state accordingly. Now q becomes reachable from o, and the reachability
string lo,q is thus the concatenation of ls,p and ln,q.

After all edges in the caller are processed, the transitive closure computation
shown at lines 16-38 of Algorithm 1 is invoked to find all memAlias pairs in the
caller as well as all its (direct and transitive) callees. This processing is applied
at each call graph edge e, during a bottom-up traversal of the call graph.

Termination. To ensure termination, the following approximation is adopted:
when a call-graph-SCC method m is processed, edge a

f−→ b (which is reachable

from m’s formal parameter) is not cloned in its caller n if an edge ae f−→ be

(where e is the call graph edge for the call from n to m) already exists in n.
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Table 1. Java benchmarks

Benchmark #Methods #Statements #SB/ISPG Nodes #SB/ISPG Edges
compress 2344 43938 18778/10977 18374/3214
db 2352 44187 19062/11138 18621/3219
jack 2606 53375 22185/12605 21523/15560
javac 3520 66971 23858/14119 23258/3939
jess 2772 51021 22773/13421 21769/4754
mpegaudio 2528 55166 22446/12774 21749/4538
mtrt 2485 46969 20344/11878 19674/3453
soot-c 4583 71406 31054/18863 29971/5010
sablecc-j 8789 125538 44134/26512 42114/9365
jflex 4008 25150 31331/18248 30301/4971
muffin 4326 80370 33211/19659 32497/5282
jb 2393 43722 19179/11275 18881/3146
jlex 2423 49100 21482/11787 20643/3846
java cup 2605 50315 22636/13214 21933/3438
polyglot 2322 42620 18739/10950 18337/3128
antlr 2998 57197 25505/15068 24462/4116
bloat 4994 79784 38002/23192 35861/5428
jython 4136 80067 34143/19969 33970/5179
ps 5278 84540 39627/23601 38746/5646

The processing of a SCC method stops as soon as the analysis determines that
no more nodes need to be cloned to this method during the interprocedural
propagation.

6 Experimental Evaluation

The proposed approach was implemented using the Soot 2.2.4 analysis frame-
work [14,15]. The analyses included the Sun JDK 1.3.1 20 libraries, to allow
comparison with previous work [11,6]. All experiments were performed on a
machine with an Intel Xeon 2.8GHz CPU, and run with 2GB heap size. The
experimental benchmarks, used in previous work [12], are shown in Table 1.
Columns Methods and Statements show the number of methods in the original
context-insensitive call graph computed by Soot’s Spark component [27], and the
number of statements in these methods. The ISPG was constructed using this
call graph. Columns #SB/ISPG Nodes (Edges) shows the comparison between
the number of nodes (edges) in the Sridharan-Bodik (SB) graph representation of
the program, and the number of nodes (edges) in the corresponding ISPG back-
bone. On average, the numbers of ISPG backbone nodes and edges are 1.7× and
5.6× smaller than the numbers of SB nodes and edges, respectively.

The rest of this section presents an experimental comparison between the op-
timized version and the original version of the Sridharan-Bodik analysis. Specif-
ically, queries were raised for the points-to set of each variable in the program.

6.1 Running Time Reduction

Table 2 compares the running times of the two analysis versions. Since the anal-
ysis cannot scale to compute fully-refined results, it allows users to specify a
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Table 2. Analysis time (in seconds) and precision comparison

Benchmark Original Optimized Speedup Precision
SB ISPG Alias SB′ Total Casts Ins mA 1H SB

compress 1101 59 20 203 282 3.9 6 0 0 0 2
db 1180 62 10 198 270 4.4 24 0 6 6 19
jack 1447 223 37 241 501 2.9 148 14 40 42 49
javac 1727 86 20 339 445 3.9 317 0 38 40 55
jess 1872 92 51 228 371 5.0 66 6 8 8 38
mpegaudio 866 56 20 185 261 3.3 13 1 4 4 4
mtrt 873 67 16 192 275 3.2 10 0 4 4 4
soot-c 3043 159 64 672 895 3.4 797 7 72 89 142
sablecc-j 4338 445 59 2350 2854 1.5 327 6 35 30 62
jflex 3181 151 43 1148 1342 2.4 580 1 12 2 43
muffin 3378 232 50 599 891 3.8 148 2 20 21 69
jb 802 58 9 287 354 2.3 38 0 3 2 24
jlex 833 54 14 237 305 2.7 47 1 4 3 14
java cup 1231 73 10 342 425 2.9 460 24 24 24 372
polyglot 707 48 15 208 271 2.6 9 0 2 1 4
antlr 1211 87 13 453 553 2.2 77 7 4 3 28
bloat 3121 139 80 1655 1874 1.7 1298 80 91 80 148
jython 1576 83 64 415 562 2.8 458 11 29 30 167
ps 2676 236 73 1226 1535 1.7 667 17 41 189 49

threshold value to bound the total number of refinement passes (or nodes vis-
ited) — once the number of passes (or nodes visited) exceeds this value, the
analysis gives up refinement and returns a safe approximate solution.

We inserted a guard in the points-to analysis code that returns immediately
after the size of a points-to set becomes 1. If the points-to set contains multiple
objects, the refinement continues until the maximum number of passes (10)
or nodes (75000) is reached. Because the same constraint (i.e., #passes and
#nodes) is used for both the original version and the optimized version, the
optimized version does not lose any precision — in fact, it could have higher
precision because it explores more paths (in our experiments, this affects only
ps, in which two additional downcasts are proven to be safe).

The running time reduction is described in Table 2. Column SB shows the
running time of the original version of the Sridharan-Bodik analysis. Columns
ISPG, Alias, and SB ′ show the times to build the ISPG, run the must-not-alias
analysis, and compute the points-to solution. Column Speedup shows the value
of Refine/Total. On average, using the must-not-alias information provided by
our analysis, the points-to analysis ran more than 3 times faster, and in some
case the speedup was as large as five-fold.

The smallest performance improvement (1.6×) is for sablecc-j. We inspected
the program and found the reason to be a large SCC (containing 2103 methods)
in Spark’s call graph. The fixed-point iteration merged a large number of sym-
bolic/object nodes in the SCC methods, resulting in a large reachability map
and limited filtering of un-aliased variables. In general, large SCCs (containing
thousands of methods) are well known to degrade the precision and performance
of context-sensitive analysis. Large cycles may sometimes be formed due to the
existence of a very small number of spurious call graph edges. Based on this
observation, we employ an optimization that uses the original (un-optimized)
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version of the points-to analysis to compute precise points-to sets for the re-
ceiver variables at call sites that have too many call graph edges in Spark’s call
graph. This is done if the number of outgoing call graph edges at a call site
exceeds a threshold value (e.g., the current value is 10). Hence, the approach
pays the price of the increased ISPG construction time to reduce the cost and
imprecision of the memAlias computation.

Note that our analysis does not impose heavy memory burden — once the
must-not-alias analysis finishes and relation memAlias is computed, all reach-
ability maps are released. The only additional needed memory is to hold the
relation and the ISPG nodes. Both the reachability analysis and the subsequent
points-to analysis ran successfully within the 2GB heap limit. We also performed
experiments with 2-level-heap cloning (defined in Section 5). Due to space lim-
itations, these results are not included in the paper. For some programs in the
benchmark set, the analysis ran out of memory; for others, the memAlias com-
putation became very slow. Thus, 1-level heap cloning appears to strike the right
balance between cost and precision.

6.2 Analysis Precision

Column Precision in Table 2 shows a precision comparison between a points-to
solution derived from relation memAlias (as described at the end of Section 4)
and those computed by other analyses. The table gives the number of down-
casts that can be proven safe by context-insensitive points-to analysis (Ins), our
analysis (mA), object-sensitive analysis with 1-level heap cloning (1H ), and the
Sridharan-Bodik analysis (SB). From existing work, it is not surprising that
Ins and SB have the lowest and highest precision, respectively. Analyses 1H
and mA have comparable precision. Although mA is fully context-sensitive for
pointer variables, this does not have a significant effect on precision. The rea-
son is that heap cloning is more important than context-sensitive treatment of
pointer variables [24,11,6]. Even though mA can prove a much smaller number
of safe casts than SB, it does prune out a large number of spurious aliasing rela-
tionships. For example, the points-to set of a variable computed by mA can be
much smaller than the one computed by Ins. Thus, the analysis proposed in this
paper could either be used as a pre-analysis for the Sridharan-Bodik points-to
analysis (in which case it significantly reduces the overall cost without any loss
of precision), or as a stand-alone analysis which trades some precision for higher
efficiency (e.g., since it is significantly less expensive than 1H ).

7 Related Work

There is a very large body of work on precise and scalable points-to analysis
[28,11]. The discussion in this section is restricted to the analysis algorithms
that are most closely related to our technique.

CFL-reachability. Early work by Reps et al. [8,29,30,31,32] proposes to model
realizable paths using a context-free language that treats method calls and re-
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turns as pairs of balanced parentheses. Based on this framework, Sridharan et al.
defined a CFL-reachability formulation to precisely model heap accesses, which
results in demand-driven points-to analyses for Java [16,6]. Combining the CFL-
reachability formulations of both heap accesses and interprocedural realizable
paths, [6] proposes a context-sensitive analysis that achieves high precision by
continuously refining points-to relationships. The analysis is the most precise
one among a set of context-sensitive, field-sensitive, subset-based points-to anal-
ysis algorithms, and can therefore satisfy the need of highly-precise points-to
information. However, the high cost associated with this precision is an obstacle
for the practical real-world use of the analysis, which motivates our work on
reducing the cost while maintaining the precision.

Zheng and Rugina [7] present a CFL-reachability formulation of alias analy-
sis and implement a context-insensitive demand-driven analysis for C programs.
The key insight is that aliasing information can be directly computed without
having to compute points-to information first. Similarly to computing a points-to
solution, this analysis also needs to make recursive queries regarding the aliasing
relationships among variables. Hence, our pre-computed must-not-alias informa-
tion could potentially be useful to improve the performance of this analysis.

Must-not-alias analysis. Naik and Aiken [33] present a conditional must-not-
alias analysis and use it to prove that a Java program is free of data races. The
analysis is conditional, because it is used to show that two objects can not alias
under the assumption that two other objects can not alias. If it can be proven
that any two memory locations protected by their respective locks must not
alias as long as the two lock objects are distinct, the program cannot contain
potential data races. Our analysis uses the must-not-alias relationship of two
memory locations to disprove the existence of alias paths between two variables.
These two analyses are related, because both use must-not-alias information to
disprove the existence of certain properties (data race versus alias path).

Improving the scalability of points-to analysis. Similarly to our technique,
there is body of work on scaling of points-to analysis. Rountev and Chandra [34]
present a technique that detects equivalence classes of variables that have the same
points-to set. The technique is performed before the points-to analysis starts and
can speed up context-insensitive subset-based points-to analysis by a factor of two.
Work from [35] observes that such equivalence classes still exist as points-to sets are
propagated, and proposes an online approach to merge equivalent nodes to achieve
efficiency. A number of other approaches have employed binary decision diagrams
and Datalog-based techniques (e.g., [36,37,38,39,40]) to achieve high performance
and precision. Our previous work [12] identifies equivalence classes of calling con-
texts and proposes merging of equivalent contexts. This analysis has strong context
sensitivity — it builds a symbolic points-to graph for each individual method, and
clones all non-escaping SPG nodes from callees to callers. Although the technique
proposed in this paper uses a variation of this ISPG as program representation, it
is fundamentally different from this previous analysis. In this older work, which is
not based on CFL-reachability, both variable and field points-to edges are cloned
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to compute a complete points-to solution. The technique in this paper formulates a
new alias analysis as a CFL-reachability problem, uses a completely different anal-
ysis algorithm, employs a different form of context sensitivity, and aims to reduce
the cost of a subsequent points-to analysis that is based on a more general and ex-
pensive CFL-reachability algorithm.

8 Conclusions

The high precision provided by CFL-reachability-based pointer analysis usu-
ally comes with great cost. If relatively precise alias information is available
at the time heap loads and stores are matched, many irrelevant paths can be
eliminated early during the computation of CFL-reachability. Based on this ob-
servation, this paper proposes a must-not-alias analysis that operates on the
ISPG of the program and efficiently produces context-sensitive aliasing informa-
tion. This information is then used in the Sridharan-Bodik points-to analysis.
An experimental evaluation shows that the points-to analysis is able to run 3×
faster without any precision loss. This technique is orthogonal to existing CFL-
reachability-based points-to analysis algorithms — it does not aim to compute
precise points-to information directly, but rather uses easily computed aliasing
information to help the points-to analyses quickly produce a highly-precise solu-
tion. These scalability results could directly benefit a large number of program
analyses and transformations that require high-quality points-to information at
a practical cost, for use on large programs in real-world software tools.
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Abstract. Transactional memory (TM) promises to simplify construc-
tion of parallel applications by allowing programmers to reason about
interactions between concurrently executing code fragments in terms of
high-level properties they should possess. However, all currently existing
TM systems deliver on this promise only partially by disallowing par-
allel execution of computations performed inside transactions. This pa-
per fills in that gap by introducing NePaLTM (Nested PAralleLism for
Transactional Memory), the first TM system supporting nested paral-
lelism inside transactions. We describe a programming model where TM
constructs (atomic blocks) are integrated with OpenMP constructs en-
abling nested parallelism. We also discuss the design and implementation
of a working prototype where atomic blocks can be used for concurrency
control at an arbitrary level of nested parallelism. Finally, we present a
performance evaluation of our system by comparing transactions-based
concurrency control mechanism for nested parallel computations with a
mechanism already provided by OpenMP based on mutual exclusion.

1 Introduction

As the microprocessor industry transitions to multithreaded and multicore chips,
programmers must use multiple threads to obtain the full performance of the
underlying platform [24]. Transactional memory (TM), first proposed by Her-
lihy and Moss [13], has recently regained interest in both industry and academia
[9,10,11,18,19] as a mechanism that seeks to simplify multithreaded program-
ming by removing the need for explicit locks. Instead, a programmer can declare
a section of code atomic which the TM system executes as a transaction; its
operations execute atomically (i.e. all or nothing) and in isolation with respect
to operations executed inside other transactions. While transactions appear to
execute in some sequential order, their actual execution may overlap increasing
the degree of available parallelism.
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However as the number of processors increases, by Amdahl’s law [3], the single
transaction may become the sequential bottleneck hindering speedup achieved
via parallelism. Transactional nested parallelism, that is the ability to use multi-
ple threads inside a transaction, proves to be useful in removing this bottleneck.
For example, resizing of a concurrent data structure constitutes a relatively long-
lasting and heavyweight operation which nevertheless must be executed trans-
actionally to prevent interference with other transactions concurrently accessing
the same data structure. By parallelizing the resize operation within a transac-
tion, we can still guarantee non-interference but without letting sequential resize
operation adversely affect overall performance.

Transactions are also meant to compose better than locks. Programmers
should be able to integrate arbitrary library code into their own concurrent ap-
plications without fear of deadlock or unpredictable performance loss, regardless
of how concurrency is managed inside the library. The existing TM systems de-
liver on this composability promise only partially as they do not support nested
parallelism inside transactions and thus transactional code cannot take advan-
tage of efficient parallel implementations of common algorithms, even if they are
readily available in a packaged library form.

At the same time, dynamic (implicit) multithreading provided by languages
such as Cilk [23] or libraries such as OpenMP [22] is becoming a widely used
and efficient method of introducing parallelism into applications. An application
programmer expresses the parallelism by identifying elements that can safely
execute in parallel, and letting the runtime system decide dynamically how to
distribute work among threads. Most of the systems supporting dynamic multi-
threading is based on the fork-join concurrency model which is simple to reason
with and yet has great expressive power. For example, an important class of
problems can be solved using the divide-and-conquer technique which maps well
to the fork-join model: a problem is broken into sub-problems, and then these
sub-problems can be solved independently by multiple threads whose partial
computation results are ultimately combined into a complete problem solution.
The parallel computation of the sub-problems can often proceed with little or
no internal synchronization.

Despite the growing significance of dynamic multithreading, only few re-
searchers have previously explored issues related to integration of TM constructs
into the fork-join concurrency model. In particular, Agrawal et al. describe a
high-level design for supporting nested parallelism inside transactions in the
context of Cilk [2]. However, similarly to the first published design of a sys-
tem supporting transactional nested parallelism (in a context of persistent pro-
gramming languages) by Wing et al. [28], they provide neither implementation
nor performance evaluation of their design. Integration of TM constructs into
OpenMP has been explored by Baek et al. [4] and Milovanović et al. [16] but
neither of these solutions allows nested parallelism inside transactions.

Our paper makes the following contributions:

1. We describe a programming model for a system where OpenMP’s constructs
enabling nested parallelism can be nested inside TM constructs used for
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concurrency control (atomic blocks) (Section 3). Our programming model
defines an execution model which is a logical extension of an existing trans-
actional execution model to the case of nested parallelism.

2. We describe the design (Section 4) and implementation (Section 5) of the first
TM system, NePaLTM (Nested PAralleLism for Transactional Memory),
where atomic blocks can be used for concurrency control at an arbitrary level
of nested parallelism. We discuss in detail extensions and modifications to
the existing TM mechanisms required to support atomic blocks in presence
of nested parallelism.

3. We evaluate performance of our system by comparing transactions-based
concurrency control mechanism for nested parallel computations with a mech-
anism already provided by OpenMP based on mutual exclusion, and demon-
strate that the performance of the former is in many cases superior to the
latter. (Section 6).

2 Background

Before diving into details of our programming model and describing NePaLTM’s
design and implementation, we would like to provide some relevant background
information on both TM-style concurrency control and OpenMP-style fork-join
programming model.

2.1 C/C++ Software Transactional Memory

Intel’s Software Transactional Memory (STM) system, extending C/C++ with a
set of TM constructs, forms our base TM system [19]. The tm atomic statement
is used to define an atomic block which executes as a transaction; its operations
execute atomically (i.e. all or nothing) and in isolation with respect to operations
executed inside other transactions. The tm abort statement (user abort) allows
a programmer to explicitly abort an atomic block. This statement can only
appear in the lexical scope of an atomic block. When a user abort is triggered,
the TM system rolls back all side effects of the atomic block and transfers control
to the statement immediately following the block.

The TM system provides SLA (Single Lock Atomicity) [14] semantics; atomic
blocks behave as if they were protected by a single global lock. This guarantees
that programs that are race free under a single global lock will execute correctly
when executed transactionally. Providing no guarantees for programs containing
data races1 is consistent with the emerging C/C++ memory model specification
[7]. We next give an overview of the base system’s structure [19].

The base system performs updates in-place with strict two-phase locking for
writes, and supports both optimistic and pessimistic concurrency control for
reads. The system keeps a descriptor structure per transaction which encapsu-
lates the transaction’s context (i.e. meta-data such as transactional logs). The
1 A data race occurs when multiple threads access the same piece of memory, and at

least one of those accesses is a write.



126 H. Volos et al.

system also keeps a table of transaction records called the ownership table. Every
memory address is hashed to a unique transaction record in this table but mul-
tiple addresses may be hashed to the same record. A transaction record contains
information used by the concurrency control algorithm to control access to mem-
ory addresses mapped to this record. When a transaction record is write-locked,
it contains information about the single lock owner. When a transaction record
is read-locked, it contains information about all transactions holding read-locks
for a given location. Additionally, when a transaction record is not write-locked,
it contains a version timestamp used by optimistic readers as explained below.

Transactional memory accesses are performed through three types of transac-
tional barriers: write, optimistic read and pessimistic read barriers. On a trans-
actional store, the write barrier tries to exclusively write-lock the transaction
record. If the record is locked by another transaction, the runtime resolves the
conflict before continuing, which may abort the current transaction. If it is un-
locked, the barrier write-locks the record, records the old value and the address
in its undo log, adds the record to its write log (which keeps the transaction’s
write set), and then updates the memory location. On a transactional load, the
optimistic read barrier checks if the transaction record is locked, but does not try
to lock it. In contrast, the pessimistic read barrier tries to read-lock it. In both
cases, if the record is write-locked by another transaction, the conflict is handled.
If it is unlocked or read-locked, both optimistic and pessimistic read barriers re-
turn the value of the location and add the record to the read log (which keeps
the read set). The optimistic read barrier also records the transaction record’s
timestamp, used to keep track of when the memory location is being updated.

On commit, an optimistic transaction uses the recorded timestamps to validate
that no transaction record in its read set has been updated after the transaction
read them. If validation succeeds, the transaction unlocks all transaction records
in its write set; otherwise it aborts. A pessimistic transaction does not need to
validate its read set but does need to unlock all transaction records in both its
read and write set. On abort, in addition to all locks being released, the old values
recorded in the undo log are written back to the corresponding addresses. On both
commit and abort, the runtime modifies the timestamps of the updated locations
– subsequent timestamp values are obtained by incrementing a global counter.

To provide SLA semantics correctly, the runtime guarantees several impor-
tant safety properties, namely granular safety, privatization safety and observ-
able consistency [15]. For granular safety, the runtime records transactional data
accesses into the undo log at an appropriate granularity level – when accessing N
(= 1, 2, 4 or 8) bytes of data, the runtime must be careful to record and restore
only these N bytes without affecting memory adjacent to the location where the
data is stored. Privatization safety and observable consistency are an issue only
with optimistic transactions. Privatization [21] is a common programming idiom
where a thread privatizes a shared object inside a critical section, then continues
accessing the object outside the critical section. Privatization, if not supported
correctly, can cause incorrect behavior in the following way: a committing priva-
tizer may implicitly abort a conflicting optimistic transaction due to an update
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resulting from its privatization action, and subsequent non-transactional code
may read locations that were speculatively modified by the conflicting transac-
tion, which has yet to abort and roll back. The system provides privatization
safety through a quiescence algorithm [26]. Under this algorithm a committing
transaction waits until all other optimistic transactions verify that their read set
does not overlap with the committing transaction’s write set. Observable consis-
tency guarantees that a transaction observes side effects only if it is based upon a
consistent view of memory. In other words, a transactional operation (a read or a
write) is valid in the sense of observable consistency if it is executed under some
consistent memory snapshot, even if that operation needs to be subsequently
undone. The runtime provides this by having each transaction validate its read
set before accessing any location written by a transaction that has committed
since the previous validation of the read set.

2.2 OpenMP API

The OpenMP API is a collection of compiler directives, runtime library routines,
and environment variables that can be used to explicitly control shared-memory
parallelism in C/C++ [22]. We next give an overview of the features of version
2.5 of the OpenMP specification [5] which are relevant to this work. At the point
of writing this paper we had no access to an implementation supporting the new
features available in version 3.0 [6] such as OpenMP tasks so we defer exploration
of these new features to future work.

Parallel regions. OpenMP’s fundamental construct for specifying parallel com-
putation is the parallel pragma. OpenMP uses the fork-join model of parallel
execution. An OpenMP program begins as a single thread of execution, called
the initial thread. When a thread encounters the parallel pragma, it creates
a thread team that consists of itself and zero or more additional threads, and
becomes the master of the new team. Then each thread of the team executes
the parallel region specified by this pragma. Upon exiting the parallel construct,
all the threads in the team join the master at an implicit barrier, after which
only the master thread continues execution. The parallel pragma supports two
types of variables within the parallel region: shared and private. Variables de-
fault to shared which means shared among all threads in a parallel region. A
private variable has a separate copy for every thread.

Work-sharing. All of a team’s threads replicate the execution of the same code
unless a work-sharing directive is specified within the parallel region. The speci-
fication defines constructs for both iterative (for) and non-iterative (sections,
single) code patterns. The for pragma may be used to distribute iterations of a
for loop among a team’s threads. The sections pragma specifies a work-sharing
construct that contains a set of structured blocks defined using the section
pragma that are to be divided among and executed by the threads in a team.
Each structured block is executed once by one of the threads in the team. The
single pragma specifies that the associated code block is executed by only one
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thread in the team. The rest of the threads in the team do not execute the block
but wait at an implicit barrier at the end of the single construct unless a no
wait clause is specified.

Synchronization. Synchronization constructs control how the execution of each
thread proceeds relative to other team threads. The atomic pragma is used to
guarantee that a specific memory location is updated atomically. A more general
synchronization mechanism is provided by the critical pragma used to specify
a block of code called a critical region. A critical region may be associated with a
name, and all anonymous critical regions are assumed to have the same unspecified
name. Only one thread at a time is allowed to execute any of the critical regions
with the same name. In addition to the implicit barriers required by the OpenMP
specification at certain points (such as the end of a parallel region), OpenMP pro-
vides the barrier pragma which can be used to introduce explicit barriers at the
point the pragma appears; team threads cannot proceed beyond the barrier until
all of the team’s members arrive at the barrier. The specification does not allow
nesting of barrier pragma inside a critical region.

3 Programming Model

The programming model we present in this section allows atomic blocks to bene-
fit from OpenMP and vice versa. Transactions can use OpenMP’s parallel regions
to reduce their completion time and OpenMP can use transactions to synchronize
access to shared data. We chose OpenMP because of its industry-wide accep-
tance as a method for programming shared memory, as well as because of the
simplicity and expressive power of the fork-join execution model that OpenMP is
based on. However, nothing prevents transactional nested parallelism to be sup-
ported in an alternative setting, exemplified by systems using explicit threading
models.

3.1 Constructs

Our programming model adds TM’s atomic block construct to the existing,
more traditional, synchronization constructs specified by OpenMP (e.g. critical
regions). Simultaneous use of these constructs is legal as long as they are used to
synchronize accesses to disjoint sets of data. Previous work, exploring composi-
tion of the traditional synchronization constructs with atomic blocks, has shown
that such composition is non-trivial [25,27,29], and, as such, is beyond the scope
of this paper. Our programming model also supports OpenMP’s barrier pragma
for declaring synchronization barriers, but like the original OpenMP specifica-
tion which does not allow the use of this pragma inside critical regions, we do
not allow its use inside atomic blocks.

An atomic block is orthogonal to an OpenMP’s parallel region. Thus an atomic
block may be nested inside a parallel region and vice versa. When an atomic
block is nested inside a parallel region, each dynamic instance of the atomic
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(a) Code (b) Control flow tree

Fig. 1. Shallow (T1) and deep (T2) nesting

block is executed by a single thread of that region. In the opposite case when
a parallel region is nested inside an atomic block, a team of threads is created
and all the threads execute under the same atomic block on behalf of the same
transaction. We refer to the transitive closure of the threads created under the
same atomic block as atomic thread team (or atomic team for short). When a
user abort is triggered by a member of an atomic team using the tm abort con-
struct, all the team’s threads abort their computation and the entire transaction
aborts.

An atomic block is also orthogonal to OpenMP work sharing constructs, with
only one exception. While an atomic block can be nested inside a single con-
struct, the opposite is not true. Recall from Section 2.2 that all team threads
but the one executing the single region wait at an implicit barrier at the end of
the region. If a single pragma was allowed to be nested inside an atomic block
then it would be possible for the threads waiting at the barrier to transactionally
hold resources needed by the thread executing the single region resulting in a
deadlock. To prevent such a case, we disallow single from being nested inside
of an atomic block. Note that this is not different from the original OpenMP
specification which prevents nesting of a single pragma inside a critical region.

Before moving on with the description of the execution model, we need to
introduce some more terminology. We call a thread that begins an outermost
atomic block a root thread. We reason about the hierarchy between threads in
terms of a parent-child relation; a thread spawning some threads becomes the
parent of these threads (and the ancestor of these and all other transitively
created threads), the spawned threads become its children and one another’s
siblings. Conceptually, execution of the parent thread is suspended at the spawn
point and resumed when all children complete their execution. The transactional
parent of a child thread is its ancestor thread that created an atomic block
immediately enclosing the point of the child thread’s creation. Atomic blocks
form a nesting hierarchy. We refer to the atomic block of a root thread as a root
atomic block, and to an atomic block created by a nested thread as a parallel-
nested atomic block. When the threads spawned under a root atomic block do
not use any additional atomic blocks, we have shallow nesting. If however these
threads do use additional atomic blocks then we have deep nesting. For example,
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Figure 1 2 illustrates the control flow tree for a given code block. Threads T1
and T2 are root threads. Thread T1 is the parent of thread T1-2 and T1-2 is the
parent of T1-2-2. T1 is both the ancestor and the transactional parent of T1-2
and T1-2-2. The atomic blocks created by threads T1 and T2 are root atomic
blocks while the atomic blocks created by threads T2-1 and T2-2 are parallel-
nested atomic blocks. Threads T1-1, T1-2, T1-2-1, T1-2-2 are part of the same
atomic team. Finally, the tree with root T1 represents a case of shallow nesting
and the tree with root T2 represents a case of deep nesting.

3.2 Execution Model

Recall from section 2.1 that our base TM model provides the SLA (Single Lock
Atomicity) semantics for race free programs; atomic blocks behave as if they
were protected by a single global abstract 3 lock. However in the presence of
nested parallelism this model is insufficient. To see why, consider again Figure 1;
if a single abstract lock was used by all atomic blocks, then threads T2-1 and
T2-2 would block-wait for their parent, thread T2, to release the abstract lock
protecting its atomic block resulting in a deadlock.

Our programming model logically extends the SLA execution model into the
HLA (Hierarchical Lock Atomicity) model to account for nested parallelism. Like
SLA, HLA defines semantics for race free programs. HLA is similar to the model
used by Moore and Grossman in their formal definition of small-step operational
semantics for transactions [17]. In HLA, abstract locks protecting atomic blocks
form a hierarchy; a “fresh” abstract lock is used whenever a child thread starts
a new atomic block, and it is used for synchronizing data accesses between this
thread and threads that have the same transactional parent. Note how in the
case of shallow nesting HLA degrades to SLA; only a single abstract lock is
required to maintain concurrency control between all atomic blocks.

HLA semantics differs from the semantics of OpenMP’s critical regions in that
critical regions with the same name are not re-entrant. This implies that if we
hierarchically nest critical regions in the same fashion as atomic blocks, we end
up with a non-recoverable deadlock.

To better understand HLA consider the example given in Figure 2 which
extends the example in Figure 1. In contrast to the previous example, threads
T1-2-1 and T1-2-2 create new atomic blocks which are nested under the atomic
block of thread T1. Let’s first consider how abstract locks are assigned to the
atomic blocks according to HLA. The root atomic blocks of threads T1 and T2
are assigned abstract lock AL, atomic blocks of threads T1-2-1 and T1-2-2 are
assigned lock AL-1, and atomic blocks of threads T2-1 and T2-2 are assigned
lock AL-2. Too see how these abstract locks are used to synchronize data accesses
consider the accesses of threads T2-1 and T2-2. Accesses to x and w by T2-1
and T2-2 respectively are isolated from the accesses of T1-2-1 and T1-2-2 using
2 For readability we abbreviate OpenMP pragmas in all figures by omitting the initial
pragma omp.

3 We call this and other locks abstract because locks do not have to be used to enforce
a semantics, even if this semantics is expressed in terms of locks.
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(a) Code (b) Control flow tree

Fig. 2. HLA Example

lock AL. Accesses to z by T2-1 and T2-2 are isolated from each other using lock
AL-2. Similarly, accesses to y by T1-2-1 and T1-2-2 are isolated from each other
using lock AL-1. Finally consider the accesses to q by threads T1-1 and T1-2-1.
Since the two threads do not synchronize their accesses to q through the same
lock, these accesses are not correctly synchronized and therefore they are racy.

4 Design

The HLA semantics can be supported through two different types of concurrency
mechanisms: transactions and mutual exclusion locks. Our design choice is to use
transactions for concurrency control between root atomic blocks and mutual ex-
clusion locks for parallel-nested atomic blocks. This choice is motivated by the fol-
lowing three observations. First, it has been demonstrated that transactions scale
competitively to locks or better [1,11,12,19]. Thus our system offers root atomic
blocks that can execute efficiently as transactions and which can use transactional
nested parallelism to further accelerate their execution in case shallow nesting is
used. Second, by supporting deep nesting through locks, our system provides com-
posability, which is a very important property for the adoption of the model. Third,
while we considered supporting parallel-nested atomic blocks using transactions,
previous work by Agrawal et al. [2] has shown that such a design is complex and
its efficient implementation appears to be questionable. As we discuss at the end
of this section, our personal experience on the subject is very similar.

4.1 Shallow Nesting

In the case of shallow nesting no transactional synchronization is enforced be-
tween the members of an atomic team. Nevertheless, because operations of all
the team members are executed on behalf of a single transaction, they must
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__tm_atomic {
 x = 7;
 #parallel sections
 { 
   #section
    { x = 42; }
   #section
    { x = 0;  }
 }
}

(a)

__tm_atom ic {
 x = y = 7;
 #parallel sections
 { 
   #section
    { x = 42; }
   #section
    { y = 0;  }
 }
 #parallel sections
 { 
   #section
    { x = 0;  }
   #section
    { y = 42; }
 }
}

(b)

Fig. 3. Examples of transactional logs in the presence of shallow nesting. Arrows depict
ordering constraints.

appear to be executed as a single atomic unit and in isolation from other con-
current root transactions. To achieve this, atomic team members inherit the
transactional context of their transactional parent and perform all transactional
operations using that context. Having multiple threads working on behalf of a
single transaction has several important implications on how the runtime man-
ages transactional logs and how it guarantees transactional safety properties.
Below we describe these implications in detail:

Logging. Recall that there are three types of logs associated with a transac-
tional context: read, write, and undo log. The read and write logs track trans-
action’s read and write sets, respectively, and the undo log keeps the old values
of the locations written by the transaction. Conceptually members of an atomic
team and their parent share the same log, so a simple solution would be to have
threads use a single log instance and synchronize access to that log. However
this would require excessive synchronization making this solution impractical.
Instead of using a single log and paying the cost of synchronizing log accesses,
we leverage several properties described below so as to allow each atomic team
member to maintain its own private instances of transactional logs.

Write log. A transaction’s write log is used to release write locks when the
transaction completes. Because locks can be released in any order, they can be
freely distributed between multiple logs. A potential problem of using multiple
logs is double-releasing of a write lock if the same lock appears in more than one
log. However, since children acquire locks on behalf of their parent, at most one
child will find the lock not held and bring it into its log.

Read log. In the pessimistic case, a transaction’s read log is used to release
read locks, and therefore the correctness reasoning is the same as in the write
log above. In the optimistic case, the read log is used for validation, but the
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ordering with which validation is done is not important either. Moreover, since
no locks are released, the read log can tolerate multiple entries per location.

Undo log. In contrast to read and write logs, ordering of undo log entries mat-
ters because side effects must be rolled back in the opposite order to that in
which they happened. While undo entries do not need to be totally ordered,
undo entries for the same memory location must be partially ordered. There are
two cases of writes to the same memory location that we need to consider. First,
simultaneous writes by multiple threads of the same atomic team may generate
multiple undo entries. Since these writes constitute a race, and according to our
programming model racy programs have undefined behavior, their undo entries
need not be ordered. Figure 3(a) shows an example where two threads of the
same atomic team both write x; ordering of the undo entries is not important
because the writes are racy. In the second case, writes of a memory location
by threads in different atomic teams may also generate multiple undo entries.
However, if the writes are performed in different parallel regions executed one
after the other then they are ordered and therefore they are not racy. For ex-
ample in Figure 3(b) writes to x and y by threads T1-1, T1-3 and T1-2, T1-4
respectively are partially ordered. In order for undo entries distributed between
multiple logs to be recorded correctly, atomic team members merge their logs
with that of their parent at join points, and the parent records the ordering.

Safety Properties. NePaLTM must guarantee the three safety properties dis-
cussed in Section 2, namely granular safety, privatization safety, and observable
consistency. For granular safety no additional support is necessary because gran-
ular safety depends only on undo logging granularity which is not affected by
having multiple threads working on behalf of a single transaction. However, hav-
ing multiple threads does have implications on the mechanisms used to provide
observable consistency and privatization safety. For observable consistency, chil-
dren must not only validate their private read sets but they must also validate
the read set of their (suspended) parent. This is because their computations
depend on their parent’s computation and therefore they must have a view of
memory which is consistent with that of their parent. For privatization safety,
a committing transaction waits separately for the atomic team members to val-
idate and become stable rather than waiting for validation of the root thread’s
transaction as a whole which can only happen after execution of all the team
members is completed and could thus be sub-optimal.

4.2 Deep Nesting

NePaLTM supports deeply nested atomic blocks using mutual exclusion locks. As
defined by the HLA semantics presented in Section 3.2, a fresh mutual exclusion
lock is allocated per atomic team and used for concurrency control between
atomic blocks created by the atomic team’s threads.

Despite using mutual exclusion for concurrency control in case of deep nesting,
all the code executed by deeply nested atomic blocks must be transactionalized,
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__tm_atomic {
 x = 7;
 #parallel sections
 {
  #section
   __tm_atomic 
   { x = 42; }
  #section
   __tm_atomic
   { x = 0;  }
 }
}

(a)

__tm_atomic {
 x = 7;
 #parallel sections
 {
  #section
   { ... }
  #section
   x = 0;
   #parallel sections
   {
    #section
     { ... }
    #section 
     __tm_atomic 
     { x = 42; }
   }
}}

(b)

Fig. 4. Examples transactional logs in the presence of deep nesting. Arrows depict
ordering constraints.

that is instrumented to support transactional execution. First, transactional in-
strumentation of memory accesses is necessary to be able to roll back side effects
in case the atomic block needs to abort. Second, transactional concurrency con-
trol must still be used for synchronizing memory accesses performed by threads
inside a root atomic block with memory accesses done by threads executing in-
side other root atomic blocks. We now present a discussion of how deep nesting
impacts logging and safety properties.

Logging. In Section 4.1 we reasoned about the correctness of our design decision
to let children use private instances of transactional logs. Deep nesting, however,
adds the additional ordering constraint that logs must respect the order enforced
by parallel-nested atomic blocks. This is particularly important in case of undo
logs since undo operations must be executed in order opposite to that of transac-
tion commits. A child committing an atomic block, in order to correctly capture
the commit order of this atomic block with respect to other atomic blocks ex-
ecuted under the same parent, must merge its current private log with the log
of its transactional parent before releasing the mutual exclusion lock guarding
its atomic block. If “intermediate” threads have been forked between a child’s
transactional parent and the child itself then log merging must respect the order
implied by the fork operations in case these intermediate threads performed data
accesses on their own. To accomplish this a child must transitively merge logs
up the parent/child hierarchy until it reaches its transactional parent.

Figure 4 shows two examples of deeply nested transactional logs. In the ex-
ample presented in Figure 4(a), thread T1-2 commits its atomic block after
T1-1 does so. Log merging must respect the commit ordering of the two atomic
blocks as shown by the arrow connecting the two logs. In the example presented
in Figure 4(b), thread T1-2-2 commits a deeply nested atomic block with an
intermediate thread T1-2 forked between the time when thread T1-2-2 has been
created and the time when thread T1-2-2’s transactional parent T1 has started
its transaction. To capture the fork order shown by the arrows, T1-2-2’s log
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must be first merged with T1-2’s log and then the resulted log must be merged
together with T1’s log.

Safety Properties. Since parallel-nested atomic blocks use mutual-exclusion
locks to handle synchronization, no additional support is necessary to guarantee
the safety properties for these atomic blocks.

4.3 Discussion

We initially considered an alternative design where transactional concurrency
control is used at all nesting levels. However we eventually abandoned it in
favor of the one we described above for the reasons we discuss here. When
using transactions at all nesting levels, as described by Agrawal et al. [2], the
parent/child relation plays a very important role in ensuring correctness of data
access operations. Maintenance and querying of the structure representing this
relation is likely to significantly complicate the implementation and decrease its
efficiency. Moreover, supporting optimistic transactions further complicates the
algorithms used for guaranteeing privatization safety and observable consistency
between atomic blocks at all nesting levels.

5 Implementation

Our prototype implementation follows our design guidelines and supports HLA
via transactions for root atomic blocks and via mutual-exclusion locks for deeper
nesting levels. As a base for our implementation we used Intel’s STM runtime
library and Intel’s TM C/C++ compiler [19], as well as Intel’s implementation
of the OpenMP library supporting version 2.5 of the OpenMP specification.
Despite a somewhat simplified design for deep nesting, significant extensions
and modifications to the algorithms of the base TM runtime were required.
Additionally we needed to modify the compiler and the OpenMP runtime library
to correctly compile and execute OpenMP constructs that are nested inside
atomic blocks.

In the remainder of this section we describe the data structures used in
NePaLTM as well as the mechanisms that implement concurrency control in
the presence of nested parallelism, with emphasis on the implementation of the
abort procedure and the transactional logs. We finally discuss the required mod-
ifications to the TM compiler to support nested parallelism.

5.1 Concurrency Control

Execution Modes and Descriptor. We introduce two new execution modes
to the base TM system, namely omp optimistic and omp pessimistic which are
used by atomic team members working on behalf of an optimistic or pessimistic
transaction respectively. The base TM system supports multiple execution modes
through a layer of indirection similar to a vtable. Each execution mode defines
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its own dispatch table of pointers to functions that implement the transactional
read/write barriers and transaction begin/commit/abort routines specific to that
mode. At runtime, the dispatch table of the current execution mode is used to
indirectly call that mode’s routines. This mechanism allows us to incrementally
pay the overheads associated with nested parallelism. A transaction always starts
at a base execution mode (e.g. optimistic) where it uses the original barrier
implementations. Then, when it spawns an atomic team, its children transition
into one of the two new execution modes where they use the nested-parallelism-
aware barriers and begin/commit/abort routines.

In NePaLTM, similarly to the base system, every thread in the system (both
root and child threads) is associated with a descriptor which is stored in the
thread’s local storage and encapsulates the thread’s transactional context. We
have extended the descriptor structure to keep some additional state related to
nested parallelism. In particular: information to reconstruct the parent/child
hierarchy such as pointers to the descriptor of the parent and the transac-
tional parent, state used by the recursive abort mechanism described later,
and a mutual exclusion lock for use by parallel-nested atomic blocks under this
transaction.

To correctly switch execution mode and construct the parent/child hierarchy
we extended the OpenMP runtime library functions responsible for spawning
and collecting team threads with callbacks to the TM runtime.

Transactional Barriers. We have implemented new transactional read and
write barriers for instrumenting memory accesses performed by team mem-
bers that run at one of the two new execution modes (omp optimistic and
omp pessimistic). Our new barriers are based on the original ones which we
have extended to support nested-parallelism.

On transactional store, the write barrier executed by transactional thread tries
to exclusively lock the transaction record associated with the memory location.
If it is already locked by this thread’s root transaction then the thread proceeds
without acquiring the lock. However the barrier must still record the old value
and the address in its own private undo log4. If the record is locked by another
root transaction, the runtime resolves the conflict before continuing, which may
abort the current transaction. If the transaction record is unlocked then the
barrier locks it using the current thread’s root transaction descriptor, adds the
record to its own private write log, records the old value and address in its private
undo log, and then updates the memory location.

On an optimistic transactional load, the optimistic read barrier checks if the
transaction record is already locked but does not try to lock it. If the record is
write-locked by another root transaction, the conflict is handled. If it is unlocked,
locked by the current thread’s root transaction or read-locked by another root
transaction, the barrier returns the value of the location, adds the record into
its read log and records the transaction record’s timestamp.

4 This is necessary because the ownership table is implemented as a hash table where
multiple memory locations may be hashed on the same transaction record.
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On a pessimistic transactional load, the pessimistic read barrier tries to read-
lock the transaction record. If the record is write-locked by another root trans-
action, the conflict is handled. If it is already read-locked or write-locked by the
current thread’s root transaction then the barrier returns the value of the loca-
tion without acquiring the lock. If it is unlocked or read-locked by another root
transaction then the barrier read-locks the transaction record using the current
thread’s root transaction descriptor, adds the lock into its own private read log,
and returns the value of the location.

Observable Consistency and Privatization Safety. For observable consis-
tency, a thread executing inside of an optimistic transaction validates the read
sets of all of its ancestors, up to and including the root transaction, in addition
to its own read set. As an optimization, when a thread validates the read set of
an ancestor, it updates the last validation timestamp of that ancestor so that
other threads with the same ancestor do not need to re-validate that read set.
For privatization safety, we modified the base quiescence algorithm so that a
parent thread temporarily removes itself from the list of in-flight transactions
until its child threads complete execution. By removing itself from that list,
other committing transactions do not have to wait for that thread. This is safe
because those other committing transactions will wait for that thread’s children
instead.

Transaction Commit and Abort. Transaction begin, commit and abort pro-
cedures executed by atomic team members are also different than those executed
by root threads. Since deep nesting is implemented using locks, the routines do
not implement a full-fledged begin and commit. Instead they simply acquire and
release the mutual exclusion lock of the transactional parent at entry and exit
to a parallel-nested atomic block. Additionally, since parents must access trans-
actional logs of its children, as described in Section 4, children must pass their
logs to their parents at commit. The implementation details of this procedure
are described in Section 5.2.

NePaLTM supports a recursive abort mechanism, which can be used by any
active thread in the parent/child hierarchy to trigger an abort of the whole com-
putation executing under a transaction. Our extension to the OpenMP library
implementing this mechanism keeps some additional state: a per atomic team
abort flag stored in the transactional descriptor of every parent, and internal
checkpoint of the stack/register context for each atomic team’s thread, taken
before the thread starts its computation. Please not that in presence of transac-
tional nested parallelism it is no longer sufficient to record a checkpoint only at
transaction begin – restoration of a child thread’s state to the checkpoint taken
by the parent would be incorrect.

An atomic team member triggers an abort of the entire transaction by setting
the its parent’s abort flag and then aborting its current computation. An atomic
team member detects abort requests by recursively checking the abort flag of
all of its ancestors up to the root thread. All these checks happen either in the
slow path of the transactional barriers or when a thread waits behind the lock
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protecting a parallel-nested atomic block. When a team member detects an abort
request, it aborts its current computation by marking its state as completed and
then restoring its internal checkpoint. After restoring its checkpoint, the thread
appears to OpenMP as completed, and OpenMP can safely shutdown and recycle
that thread. When execution of all the child threads is completed, execution of
their parent thread is resumed. When the parent thread resumes, it checks for a
pending abort request; if the thread itself is a child then the abort is propagated
up the parent/child hierarchy.

We support aborts requested both implicitly through a TM conflict and explic-
itly through the tm abort statement (user-level abort). The abort flag carries
the reason for the abort giving priority to conflict aborts. The tm abort state-
ment in our system is required to be lexically scoped within an atomic block
and, when executed, it aborts this atomic block only. As a result, abort propa-
gation stops upon reaching the atomic block lexically enclosing the tm abort
statement.

Admittedly, there exists alternative implementations of the abort mechanism,
but we believe that our implementation achieves a good balance between effi-
ciency and required modifications to an already complex and carefully tuned
OpenMP runtime library.

5.2 Transactional Logs

As explained in the design section, each child thread uses private transactional
logs and whenever ordering information needs to be captured, a child merges
its private log together with the log of its parent. We have implemented log
merging using a hybrid algorithm that combines two methods: concatenation and
copy-back. Whenever we need to merge two logs together, our hybrid algorithm
calculates the log size of the source log to be merged. If the log size is above
what we call a concatenation threshold, the log is concatenated; otherwise, the
log is copied-back. We next describe concatenation and copy-back separately.

Concatenation. In this method, a transactional log is composed of several
log fragments linked together to form a list. Similarly to logs in the base TM

Fig. 5. Representation of the log as a list of log fragments
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system, log fragments keep pointers to potentially multiple log buffers. A source
log is merged with a target log by connecting the log fragment list of the former
at the tail of the list of the latter. For example, in Figure 5, log fragment LF1
(log fragments are represented by empty grey rectangles) associated with the
root thread executing transaction t1 has all the log fragments that belong to its
children linked to it.

A log is split into log fragments only when necessary. Thus if nested parallelism
is not used inside atomic blocks, a log is represented by a single log fragment.
However, when nested parallelism is used, we only utilize log fragments at points
where we need to establish correct log ordering as previously described. There
are two cases in which this may happen. First, in the case when a child thread
reaches its join point, its parent connects the log fragment currently used by the
child to its own list of log fragments. Then the child is assigned a fresh log with
a new buffer. A fresh log is necessary because the child thread may be recycled
by OpenMP and used by another parent. In Figure 5, LF2 and LF3 represent log
fragments passed from children to their parent at the join point.

Second, in the case when a child commits a nested atomic block, it splits its log
and then connects the produced log fragment to the parent’s log fragment list.
If ancestor threads exist between the child and the root thread, the child splits
the log fragments of all ancestor threads and connects them recursively until
reaching the root thread. Since only one child can acquire an atomic team’s lock
at any given time, this child can safely access and modify logs of all its ancestors.
Returning to our example in Figure 5 (atomic blocks created by children are
represented by narrow rounded black rectangles), the child thread at the top of
the figure splits its log when committing its first atomic block (t1-1) to create
log fragment LF4. Then the child thread at the bottom of the figure splits when
committing its own atomic block (t1-2) to create log fragment LF5. Finally
the last log fragment, LF6, is created when the child thread at the top of the
figure commits its second atomic block (t1-3). In contrast to thread join where
we assign new buffers to children because they complete their execution, the
committing child is still active so it keeps using its assigned buffers continuing
from the last buffer entries used by its log fragments. As a result, a buffer can be
shared between multiple log fragments as in the case of log fragments LF4 and
LF6 in Figure 5 (log buffers are represented as solid grey rectangles). Naturally,
a transaction using a given log fragment may fill up a buffer initially associated
with this log fragment and attach a new buffer (e.g. log fragments LF1 and LF4
in Figure 5).

Copy-back. In this method two transactional logs are merged together by
simply copying every single entry of the source log to the target log at appropriate
points, the same in fact as the points when the logs are concatenated as described
above. It is the parent that copies entries from the child’s log into its own when
the child has already reached the join point. It is the child that copies entries
from its own log to that of the parent whenever that child commits a nested
atomic block.
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5.3 TM Compiler

The most important compiler-related issue was to ensure that the code gener-
ated for OpenMP’s parallel region executed inside transactions is appropriately
transactionalized, as described in Section 4.2. The TM compiler automatically
transactionalizes function calls (direct and indirect) that are annotated with a
special tm callable attribute. However, OpenMP’s parallel region is specified as
a code block at the source level and packaged into a form of a function internally
by the compiler. As a result it could not be transactionalized automatically and
the compiler needed to be modified to do it explicitly. Also, certain OpenMP
functions are called as part of setting up the execution environment of a par-
allel region. The TM compiler had to be modified to treat these functions as
transactional intrinsics (similarly to calls to the TM runtime library) otherwise
they would be treated as non-transactional functions of unknown origin. For
safety reasons, a transaction encountering a call to a non-transactional function
transitions to the so called serial mode which allows only a single transaction
to execute in the system. Clearly this would defeat the purpose of introducing
nested parallelism in the first place.

6 Performance Evaluation

Our performance evaluation focuses on evaluating our design decisions of using
transactions at the outermost level and locks at the deep nested levels. Because
benchmarks exercising nested parallelism are not easily available, we evaluate
performance of our prototype implementation using an in-house implementation
of the multi-threaded OO7 benchmark [8]. This benchmark is highly configurable
so it allows us to study the behavior of our system under different scenarios.

We seek to answer the following two questions:

1. Can transactions retain their performance advantage over locks in presence
of nested parallelism?

2. How does performance of parallel-nested atomic blocks compare with per-
formance of the atomic blocks executing the same workloads sequentially?

6.1 Benchmark Description

OO7 is a highly configurable benchmark that has been previously used in several
TM-related studies [1,27,29]. The benchmark is also easy to port and modify,
which was an important factor since the previous TM-enabled version of this
benchmark was written in Java, was not OpenMP-enabled and did not support
nested parallelism.

The OO7 benchmark operates on a synthetic design database consisting of
a set of composite parts. Each composite part consists of a graph of atomic
parts. Composite parts are arranged in a multi-level assembly hierarchy, called
a module. Assemblies are divided into two classes: base assemblies (containing
composite parts) and complex assemblies (containing other assemblies).
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The multi-threaded workload consists of multiple client threads running a set
of parameterized traversals composed of primitive operations. A traversal chooses
a single path through the assembly hierarchy and at the base assembly level
randomly chooses a fixed number of composite parts to visit. When the traversal
reaches the composite part, it has two choices: (a) it may access atomic parts
in the read-only mode; or, (b) it may swap certain scalar fields in each atomic
part visited. To foster some degree of interesting interleaving and contention,
the benchmark defines a parameter that allows additional work to be added to
read operations to increase the time spent performing traversals.

Unlike the previous implementations of the OO7 benchmark used for TM-
related studies, ours has been written in C++ and uses OpenMP pragmas for
thread creation and coordination. Similarly to these previous implementations,
while the structure of the design database used by the benchmark conforms to
the standard OO7 database specification, the database traversals differ from the
original OO7 traversals. In our implementation we allow placement of synchro-
nization constructs (either atomic blocks or mutual exclusion locks provided by
OpenMP) at various levels of the database hierarchy, and also allow multiple
composite parts to be visited during a single traversal rather than just one as in
the original specification. We introduce nested parallelism by allowing the work
of visiting multiple composite parts to be split among multiple worker threads.
Naturally, in order to remain compliant with the original workload executed
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during benchmark traversals performing database updates, the worker threads
have to be synchronized using appropriate synchronization constructs (atomic
blocks or locks, depending on a specific configuration).

6.2 Setup

We performed our experiments on a 4 x six-core (24 CPUs total) Intel Xeon 7400
(Dunnington) machine and running Redhat Enterprise Edition 4 at 2.66GHz.

In our experiments with the OO7 benchmark, we compare configurations where
mutual exclusion locks (provided by OpenMP implementation) are used for syn-
chronization with configurations where transactional atomic blocks are used for
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synchronization. We use the standard medium-size OO7 design database. Each
client thread performs 1000 traversals and visits 240 (so that it is divisible by 1,
3, 6, 12 and 24 threads) random composite parts at the base assembly level. Since
worker threads are created at the base assembly level, which represents level 8
of the database hierarchy (where level is the module), synchronization constructs
must be placed at the same level to guard accesses to parts located at the lower
levels of the hierarchy.

We vary the following parameters of the OO7 benchmark to achieve good
coverage of possible nested parallel workloads:

– number of clients: 2, 4 and 8
– number of workers: between 1 and 24 (to complement number of clients up

to 24 total parallel threads)
– percentage of reads vs. writes: 80-20, 50-50 and 20-80
– synchronization level: 1 and 4 for the clients (to simulate coarse-grain and

medium-grain synchronization strategy) and 8 for the workers (to guarantee
correctness)

We have also experimentally established the value of the concatenation thresh-
old to be 224 log entries, based on the results obtained from a simple single-
threaded microbenchmark executing a sequence of memory accesses triggering a
series of log operations.

6.3 Evaluation

When attempting to answer questions we have raised at the beginning of this
section, we report performance numbers for both optimistic and pessimistic con-
currency protocol as they exhibit different characteristics for a given workload,
which may or may not change upon introduction of nested parallelism.

Can transactions retain their performance advantage over locks in
presence of nested parallelism? Our hypothesis is that introduction of
nested parallelism into a TM system should not change the relative performance
characteristics between transactions and locks, regardless of the type of concur-
rency protocol (optimistic or pessimistic) being used.

Figure 6 depicts the relative performance of transactions over locks for pes-
simistic and optimistic concurrency. In this and the rest of the performance
charts, unless noted otherwise, Y axis is speedup of transactions over locks (100%
speedup indicates that a transactional configuration was 2x faster) and X axis
represents the percentage of reads executed during OO7’s database traversals. As
we can see, this particular benchmark favors pessimistic protocols. Even though
both optimistic and pessimistic transactions perform better than coarse-grain
locks, only pessimistic transactions are competitive with medium-grain locks –
optimistic transactions can perform up to 50% worse. It is important to note
that this is a characteristic of a specific workload executed by OO7 benchmark.
Several studies [12,19,20] report that optimistic protocols may in fact perform
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Fig. 8. Performance of a multi-threaded transaction vs. a single-threaded transaction

better than the pessimistic ones. It is therefore important to support both types
of protocols in a TM system.

In Figure 7 we plot results for configurations utilizing nested parallelism, vary-
ing the number of worker threads and comparing the performance of transactions
over coarse-grain locks. The number of worker threads gets lower as we increase
the number of clients to sum up to 24 threads, which is equal to the number of
CPUs available on the machine we use for running all the experiments.

By comparing Figure 7 to Figure 6 we observe that transactional memory with
support for nested parallelism preserves the performance benefits that transac-
tions provide over locks. While the parallel nested transactions do notmaintain the
exact same relative performance difference with respect to a lock-based solution,
significant performance improvements can still be expected (up to approximately
200% speedup) especially in cases when contention between client threads is sig-
nificant, as is the case even with just 4 or 8 client threads. The same performance
trend holds for configurations using medium-grain synchronization style (we do
not report numbers of medium-grain configurations due to space constraints).

How does performance of parallel-nested atomic blocks compare with
performance of the atomic blocks executing the same workloads se-
quentially? Because of our decision to use locks for synchronization at deeper
nesting levels, our expectation is that introduction of transactional nested par-
allelism should provide the largest performance advantage over sequential exe-
cution of code inside transactions when nested parallel threads do not need to
be synchronized, that is in the case of shallow nesting. However, the only OO7
workload that can be safely executed without having worker threads synchro-
nized within the same transaction is the read only workload. Nevertheless, we
decided to present numbers for some selected configurations of this somewhat
trivial workload as they serve as an indication of the performance improvement
achievable by applications exercising shallow nesting. In Figure 8(a) we plot re-
sults for a single client executing a read-only workload, when varying the number
of worker threads between 1 and 24. The worker threads execute unsynchronized
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but the client thread executes synchronization operation (at level 1), even though
it is not necessary for correctness, to account for the cost incurred by transac-
tional execution of the workload (i.e. transaction begin and commit and the cost
of read barriers). We report numbers for both optimistic and pessimistic trans-
actional modes, as well as for a configuration that uses an OpenMP’s mutual
exclusion lock to implement client’s synchronization operation and that does
not include any transactional overheads. Every data point in Figure 8(a) is nor-
malized with respect to the equivalent configuration (optimistic, pessimistic or
lock-based) that does not use nested parallelism and executes the entire workload
sequentially. As we can observe, in case of shallow nesting, nested parallelism
helps to improve performance of the workload over its sequential execution.
However, while it improves performance quite dramatically when increasing the
number of worker threads from 1 to 6, it remains constant or even degrades
slightly when further increasing the number of worker threads. We attribute this
effect to the cost of worker thread maintenance incurred by the OpenMP library
that starts playing a more important role as the amount of work executed by a
single worker thread gets smaller. This observation is indirectly confirmed by the
fact that the configurations using OpenMP locks exhibit similar characteristics.

The remaining question is then how sequential execution of transactional code
compares performance-wise with configurations exercising deep nesting. In Fig-
ure 8(b) we plot results for a single client executing a workload where the percent-
age of writes is equal to the percentage of reads 5 and where the worker threads
require synchronization in addition to synchronization operations executed by
the client. The numbers are normalized similarly to the numbers presented in
Figure 8(a). As we can observe, in case of OO7 benchmark the performance of
parallel-nested transactional configurations is actually worse than that of config-
urations executing transactional code sequentially. This result is not surprising,
considering that the majority of useful work in the OO7 benchmark is performed
by the worker threads. As a result, if the execution of these threads is serialized
then, especially after adding inherent overhead incurred by the STM implemen-
tation, no performance improvement over the sequential configurations should
be expected. However, please note that lock-based parallel-nested configurations
provide no performance benefit over their sequential counterpart either.

To summarize, our performance evaluation indicates that with nested paral-
lelism inside transactions enabled, performance of transaction-based concurrency
control mechanisms can still be better than of those based on mutual exclusion.
However the serialization imposed by the lock used to implement parallel-nested
atomic blocks might detrimentally affect performance of transactions exercising
deep nesting.

7 Conclusions

In this paper we have presented the design and implementation of the first
STM system supporting nested parallelism inside of transactions, along with a
5 Configurations with other read-write percentages exhibit similar characteristics.
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programming model where OpenMP’s constructs enabling nested parallelism can
be nested inside of TM constructs used for concurrency control (atomic blocks).
We expect our system to benefit more applications that use nested parallelism
inside transactions with no or low synchronization between nested threads.
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Abstract. The dynamic frames approach has proven to be a powerful
formalism for specifying and verifying object-oriented programs. How-
ever, it requires writing and checking many frame annotations. In this pa-
per, we propose a variant of the dynamic frames approach that eliminates
the need to explicitly write and check frame annotations. Reminiscent of
separation logic’s frame rule, programmers write access assertions inside
pre- and postconditions instead of writing frame annotations. From the
precondition, one can then infer an upper bound on the set of locations
writable or readable by the corresponding method. We implemented our
approach in a tool, and used it to automatically verify several challenging
programs, including subject-observer, iterator and linked list.

1 Introduction

Last year’s distinguished paper at ECOOP, Regional Logic for Local Reasoning
about Global Invariants [1], proposed Hoare-style proof rules for reasoning about
dynamic frames in a Java-like language. In the dynamic frames approach
[1,2,3,4,5,6], the programmer specifies upper bounds on the locations that can be
read or written by a method in terms of expressions denoting sets of locations. To
preserve information hiding, these expressions can involve dynamic frames, pure
methods or ghost fields that denote sets of locations. A disadvantage of this ap-
proach is that frame annotations must be provided for each method, and that they
must be checked explicitly at verification time.

This paper improves upon regional logic and other dynamic frames-based ap-
proaches in two ways: (1) method contracts are more concise and (2) fewer proof
obligations must be discharged by the verifier. More specifically, we propose a
variant of the dynamic frames approach inspired by separation logic that elim-
inates the need to explicitly write and check frame annotations. Instead, frame
information is inferred from access assertions in pre- and postconditions. We have
proven the soundness of our approach, implemented it in a verifier prototype and
demonstrated its expressiveness by verifying several challenging examples from
related work.

The remainder of this paper is structured as follows. In Section 2, we show
how our approach solves the frame problem. Section 3 extends this solution with
support for data abstraction. In Section 4, we sketch the soundness argument
(for the complete proof, see [7]). Subclassing and inheritance are discussed in
Section 5 . Finally, we discuss our experience with the verifier prototype, compare
with related work, and conclude in Sections 6, 7 and 8.
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2 Framing

To reason modularly about a method invocation, one should not rely on the
callee’s implementation, but only on its specification. For example, consider the
code in Figure 1(b). To prove that the assertion at the end of the code snippet
holds in every execution, one should only take into account Cell ’s method con-
tracts. However, the given contracts are too weak to prove the assertion. Indeed,
setX ’s implementation is allowed to change the state arbitrarily, as long as it
ensures that this.x equals v on exit. In particular, the contract does not prevent
c2.setX (10) from modifying c1.x.

class Cell {
int x;

Cell()
ensures this.x = 0;

{ this.x := 0; }

void setX (int v)
ensures this.x = v;

{ this.x := v; }
}

(a)

Cell c1 := new Cell();
c1.setX (5); //A

Cell c2 := new Cell();
c2.setX (10);

assert c1.x = 5;
(b)

Fig. 1. A class Cell and some client code

To prove the assertion at the end of Figure 1(b), we must strengthen Cell ’s
method contracts. More specifically, the contracts should additionally specify an
upper bound on the set of memory locations modifiable by the corresponding
method. This problem is called the frame problem.

Various solutions to the frame problem have been proposed in the literature
(see Section 7 for a detailed comparison). The solution proposed in this paper is
as follows. A method may only access a memory location o.f if it has permission
to do so. More specifically, writing to or reading from a memory location o.f
requires o.f to be accessible. Accessibility of o.f is denoted acc(o.f). Method
implementations are not allowed to mention acc(o.f). In particular, they are not
permitted to branch over accessibility of a memory location. As a consequence,
a location o.f that was allocated before execution of a method m is only known
to be accessible during execution of m if m’s precondition requires accessibility
of o.f . In other words, a method’s precondition provides an upper bound on the
set of memory locations modifiable by the corresponding method: a method can
only modify an existing location o.f if that location is required to be accessible
by its precondition. As an example, consider the revised version of the class Cell
of Figure 2. setX can only modify this.x, since its precondition only requires
accessibility of this.x. Similarly, Cell ’s constructor does not require access to
any location, and can therefore only assign to fields of the new object.



150 J. Smans, B. Jacobs, and F. Piessens

class Cell {
int x;

Cell()
ensures acc(this.x) ∧ this.x = 0;

{ this.x := 0; }

void setX (int v)
requires acc(this.x);
ensures acc(this.x) ∧ this.x = v;

{ this.x := v; }
}

Fig. 2. A revised version of the class Cell from Figure 1(a)

The accessibility of a memory location can change over time. For example,
when a new object is created, the fields of the new object become accessible.
How does a method invocation affect the set of accessible memory locations?
Since Java does not provide a mechanism for explicit deallocation and assertions
can only mention allocated locations, it would be safe to assume that the set
of accessible locations only grows across a method invocation. However, this
assumption would rule out interesting specification patterns, where a method
“captures” accessibility of a location. Furthermore, this assumption would break
in the presence of concurrency, where accessibility of memory locations is passed
on to other threads (cfr. [8,9]). Therefore, we use the following rule instead: a
memory location o.f that is known to be accessible before a method invocation
is still accessible after the invocation, if o.f was not required to be accessible by
the callee’s precondition. On the other hand, a location o.f that was required to
be accessible by the callee’s precondition is still accessible after the call only if
the callee’s postcondition ensures accessibility of o.f . In other words, acc(o.f)
in a precondition transfers permission to access o.f from the caller to the callee,
and vice versa acc(o.f) in a postcondition returns that permission to the caller.

Given the new method contracts for Cell of Figure 2 together with the rules for
framing outlined above, we can now prove the assertion at the end of Figure 1(b).
Informally, the reasoning is as follows. At program location A, the postcondition
of c1.setX (5) holds: c1.x is accessible and its value is 5. Since c2’s constructor
does not require access to any location, it can modify neither the accessibility
nor the value of any existing location. In particular, c1.x is still accessible and
still holds 5. Similarly, the call c2.setX(10) only requires c2.x to be accessible,
and hence c1.x is not affected. We may conclude that the assertion, c1.x = 5,
holds in any execution.

2.1 Formal Details

In the remainder of this section, we describe a small Java-like language with
contracts. Secondly, we define the notion of valid program. Informally, a program
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π is valid if each method successfully verifies, i.e. if the verification conditions of
π’s methods are valid.

Language. We describe the details of our verification approach with respect
to the small Java-like language of Figure 3. A program consists of a number
of classes and a main routine s. Each class declares a number of fields and
methods. For now, we consider only mutator methods. Each mutator method
has a corresponding method body, consisting of a sequence of statements. A
statement is either a field update, a variable declaration, a variable update, an
object construction, a mutator invocation or an assert statement. In addition,
a mutator method declares a method contract, consisting of two assertions: a
precondition and a postcondition. An assertion is either true, an access assertion,
a conjunction, a separating conjunction, an equality or a conditional assertion.
A separating conjunction holds only if both conjuncts hold and the left and
right-hand side demand access to disjoint parts of the heap. Both statements
and assertions contain expressions. An expression is either a variable, a field
read, or a constant (null or an integer constant).

program ::= class s

class ::= class C { field method }
field ::= t f ;
method ::= mutator
mutator ::= void m(t x) contract { s }
contract ::= requires φ; ensures φ;
t ::= int | C
s ::= e.f := e; | t x; | x := e; | x := new C; | e.m(e); | assert e = e;
φ ::= true | acc(e.f) | φ ∧ φ | φ ∗ φ | e = e | e = e ? φ : φ
e ::= x | e.f | c

Fig. 3. Syntax of a Java-like language with contracts

We assume the usual syntactic sugar. In particular, a constructor

C(t1 x1, . . . , tn xn) requires φ1; ensures φ2; { s }
is a shorthand for the mutator method

void initC(t1 x1, . . . , tn xn)
requires acc(f1) ∗ . . . ∗ acc(fn) ∗ φ1; ensures φ2;

{ s }
where f1, . . . , fn are the fields of C. Accordingly, a constructor invocation x :=
new C(e1, . . . , en); abbreviates x := new C; x.initC(e1, . . . , en);.

Verification. We check the correctness of a program by generating verification
conditions. The verification conditions are first-order formulas whose validity
implies the correctness of the program. In our implementation, we rely on an
SMT solver [10] to discharge the verification conditions automatically.
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Logic. We target a multi-sorted, first-order logic with equality. That is, a term
τ is either a variable or a function application. A formula ψ is either true,
false, a conjunction, a disjunction, an implication, a negation, an equality among
terms or a quantification. The formula ite(τ1 = τ2, ψ1, ψ2) is a shorthand for
(τ1 = τ2 ⇒ ψ1) ∧ (τ1 	= τ2 ⇒ ψ2). An application of a function g with arity 0 is
denoted g instead of g(). Functions with arity 0 are called constants.

Each term in the logic has a corresponding sort. The sorts are the following:
the sort of values, val , the sort of object references, ref , the sort of integers, int ,
the sort of heaps, heap, the sort of booleans, bool , the sort of sets of memory
locations, set , the sort of field names, fname, and finally the sort of class names,
cname. We omit sorts whenever they are clear from the context.

The signature of the logic consists of built-in functions and a number of
program-specific functions. The built-in functions include the following:

function sort
null ref

emptyset set
singleton ref × fname → set
intersect set × set → set
union set × set → set

contains ref × fname × set → bool
select heap × ref × fname → val
store heap × ref × fname × val → heap

allocated ref × heap → bool
allocate ref × heap → heap

ok heap × set → bool
succ heap × set × heap × set → bool

In addition to the built-in functions, the logic contains a number of program-
specific functions. In particular, the logic includes a constant C with sort cname
for each class C and a constant f with sort fname for each field f in the program
text. In Section 3, we will introduce additional program-specific functions.

Interpretation. We interpret the functions using the interpretation I. The inter-
pretation of the built-in functions is as expected. More specifically, null is inter-
preted as the constant null. The functions emptyset , singleton , union, intersect ,
and contains are interpreted as their mathematical counterpart. We abbreviate
applications of these functions by their mathematical notation. The function
select(h, o, f) corresponds to applying h to (o, f). Accordingly, store(h, o, f, v)
corresponds to an update of the function h at location (o, f) with v. We abbrevi-
ate select(h, o, f) as h(o, f) and store(h, o, f, v) as h[(o, f) �→ v]. ok(h, a) denotes
that the state with heap h and access set a is well-formed. Well-formedness im-
plies that both the access set a and the range of the heap h contain only allo-
cated objects. succ(h, a, h′, a′) states that the state with heap h′ and access set
a′ is a successor of the state with heap h and access set a. Successors of well-
formed states are well-formed. Furthermore, a successor state has more allocated
locations than its predecessor. We interpret the built-in constant f as the field
name f and the constant C as the class name C.
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Theory. We assume that the theory Σprelude (incompletely) axiomatizes the
built-in functions. That is, I is a model for Σprelude: I |= Σprelude. Σprelude

may for instance contain a subtheory which axiomatizes the set functions. For
example, in our verifier prototype the prelude includes an axiom that encodes
that the empty set contains no locations:

∀o, f • (o, f) 	∈ emptyset

For now, we assume that Σπ, the theory for verifying mutator methods and the
main routine, equals Σprelude.

statements verification condition
e1.f := e2; s Df(e1) ∧ Df(e2) ∧ (Tr(e1), f) ∈ a ∧

vc(s, ψ)[h[(Tr(e1), f) �→ Tr(e2)]/h]
t x; s ∀x • vc(s, ψ)
x := e; s Df(e) ∧ vc(s, ψ)[Tr(e)/x]
x := new C; s ∀y • y �= null ∧ ¬allocated(y, h)⇒

vc(s, ψ)[y/x, (a ∪ {(y, f1), . . . , (y, fn)})/a, allocate(y, h)/h]
where f1, . . . , fn are the fields of C

e0.m(e1, . . . , en); s Df(e0) ∧ . . . ∧ Df(en) ∧ Tr(e0) �= null ∧ Tr(P )∧
(∀h′, a′•

succ(h, a, h′, a′)∧
Tr(Q)[h′/h, a′/a]∧
(∀o, f • (o, f) ∈ a \ R(P )⇒ (o, f) ∈ a′ ∧ h(o, f) = h′(o, f)) ∧
(∀o, f • (o, f) ∈ R(Q)[h′/h, a′/a] \ R(P )⇒ (o, f) �∈ a)
⇒
vc(s, ψ)[h′/h, a′/a])

where C is the type of e0,
x1, . . . , xn are the parameters of C.m,
P is mpre(C, m)[e0/this, e1/x1, . . . , en/xn] and
Q is mpost(C, m)[e0/this, e1/x1, . . . , en/xn]

assert e1 = e2; s Df(e1 = e2) ∧ Tr(e1 = e2) ∧ vc(s, ψ)
nil ψ

Fig. 4. Verification conditions (vc) of statements with respect to postcondition ψ

Verification Conditions. We check the correctness of a program by generating
verification conditions. The verification conditions for each statement are shown
in Figure 4. The free variables of vc(s, ψ) are h, a, and the free variables of
ψ and s. The variable h denotes the heap, while the variable a denotes the
set of accessible locations. Tr and Df denote the translation and respectively
the definedness of expressions and assertions (shown in Figure 5). mpre(C, m)
and mpost(C, m) respectively denote the pre- and postcondition of the method
C.m.

The first core ingredient of our approach is that a method can only access a
memory location if it has permission to do so. To enforce this restriction, the
verification condition for field update checks that the assignee is in the access
set a. Similarly, a field read o.f is only well-defined if o.f is an element of a.
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expression Tr Df

x x true
e.f h(Tr(e), f) Df(e) ∧ (Tr(e), f) ∈ a
c c true

true true true
acc(e.f) (Tr(e), f) ∈ a Df(e) ∧ Tr(e) �= null
φ1 ∧ φ2 Tr(φ1) ∧ Tr(φ2) Df(φ1) ∧ (Tr(φ1)⇒ Df(φ2))
φ1 ∗ φ2 Tr(φ1 ∧ φ2) ∧ (R(φ1) ∩ R(φ2) = ∅) Df(φ1 ∧ φ2)
e1 = e2 Tr(e1) = Tr(e2) Df(e1) ∧ Df(e2)

e1 = e2 ? φ1 : φ2 ite(Tr(e1 = e2), Tr(φ1), Tr(φ2)) ite(Tr(e1 = e2), Df(φ1), Df(φ2))

Fig. 5. Translation (Tr) and definedness (Df) of expressions and assertions

assertion R
true ∅

acc(e.f) {(Tr(e), f)}
φ1 ∧ φ2 R(φ1) ∪ R(φ2)
φ1 ∗ φ2 R(φ1 ∧ φ2)
e1 = e2 ∅

e1 = e2 ? φ1 : φ2 ite(Tr(e1 = e2), R(φ1), R(φ2))

Fig. 6. Required access set (R) of assertions

The second core ingredient of our approach is that we deduce frame infor-
mation from a callee’s precondition. More specifically, a callee can only read
or modify an existing location o.f if its precondition demands access to o.f . A
naive, literal encoding of this property does not lead to good performance with
automatic theorem provers. In particular, the combination of the literal encoding
and our approach for data abstraction of Section 3 yields verification conditions
that are too hard for those provers. Therefore, we propose a slightly different
encoding. More specifically, we syntactically infer from the callee’s precondition
a required access set, i.e. a term denoting the set of memory locations required
to be accessible by the precondition. The definition of required access set (R) of
an assertion is shown in Figure 6. The subformula

∀o, f • (o, f) ∈ a \ R(P )⇒ (o, f) ∈ a′ ∧ h(o, f) = h′(o, f)

in the verification condition of method invocation encodes the property that all
locations o.f that are accessible to the callee and that were not in the required
access set of the precondition remain accessible and retain their value. Note that
this is a free postcondition: callers can assume the postcondition holds, but it is
not necessary to explicitly prove the postcondition when verifying the method’s
implementation (see Definition 1). In addition to the “free modifies” clause,
callers may assume a second free postcondition, the swinging pivot property:

∀o, f • (o, f) ∈ R(Q)[h′/h, a′/a] \ R(P )⇒ (o, f) 	∈ a

The swinging pivot property states that all locations required to be accessible by
the postcondition are either required to be accessible by the precondition or are
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not accessible to the callee. In Section 3, this property will be crucial to ensure
disjointness.

A program is valid (Definition 3) if it successfully verifies. More specifically,
a valid program only contains valid methods and has a valid main routine. A
mutator is valid (Definition 1) if both its pre- and postcondition are well-defined
assertions and if its body satisfies the method contract. A method body s satis-
fies the contract if the postcondition holds after executing s, whenever execution
starts in a state satisfying the precondition. The main routine is valid (Defini-
tion 2) if it satisfies the contract requires true; ensures true;. Executions of
valid programs never deference null and assert statements never fail. We outline
a proof of this property in Section 4.

Definition 1. A mutator method

void m(t1 x1, . . . , tk xk) requires φ1; ensures φ2; { s }
is valid if all of the following hold:

– The precondition is well-defined and the postcondition is well-defined, pro-
vided the precondition holds.

Σπ � ∀h, a, h′, a′, this , x1, . . . , xk • ok(h, a) ∧ succ(h, a, h′, a′) ∧ this 	= null∧
⇓

Df(φ1) ∧ (Tr(φ1)⇒ Df(φ2)[h′/h, a′/a])

– The method body satisfies the method contract.

Σπ � ∀h, a, this , x1, . . . , xk • ok (h, a) ∧ this 	= null ∧ Tr(φ1)⇒ vc(s, Tr(φ2))

Definition 2. The main routine s is valid if the following holds:

Σπ � ∀h, a • ok(h, a)⇒ vc(s, true).

Definition 3. A program π is valid (denoted valid(π)) if all mutator methods
and the main routine are valid.

3 Data Abstraction

Data abstraction is crucial in the construction of modular programs, since it
ensures that internal changes in one module do not propagate to other modules.
However, the class Cell of Figure 2 and its specifications were not written with
data abstraction in mind. More specifically, (1) client code must directly access
the field x to query a Cell object’s internal state and (2) Cell ’s method contracts
are not implementation-independent as they mention the internal field x. Any
change to Cell ’s implementation, such as renaming x to y, would break or at
least oblige us to reconsider the correctness of client code.

Developers typically solve issue (1) by adding “getters” to their classes. For
example, the class Cell of Figure 7(a) defines a method getX to query a Cell ’s in-
ternal state. The method is marked pure to indicate it does not have side-effects.
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class Cell {
int x;

Cell()
ensures valid() ∧ getX () = 0;
{ this.x := 0; }

void setX (int v)
requires valid();
ensures valid() ∧ getX () = v;
{ this.x := v; }

predicate bool valid()
{ return acc(this.x); }

pure int getX ()
requires valid();
{ return this.x; }

void swap(Cell c)
requires valid() ∗ c �= null ∧ c.valid();
ensures valid() ∗ c.valid();
ensures getX () = old(c.getX ());
ensures c.getX () = old(getX ());
{ int i := x; x := c.getX(); c.setX (i); }

}
(a)

Cell c1 := new Cell();
c1.setX (5); //A

Cell c2 := new Cell();
c2.setX (10);

assert c1.getX () = 5;
(b)

Fig. 7. A revised version of class Cell with data abstraction

As shown in Figure 7(b), the assertion of Figure 1(b) can now be rephrased in
terms of getX .

To complete the decoupling between Cell ’s implementation and client code,
we should also solve issue (2) and make Cell ’s method contracts implementation-
independent. In this paper, we solve the latter issue by allowing getters to be used
inside specifications. That is, we allow the effect of one method to be specified
in terms of other methods. For example, the behavior of setX in Figure 7(a) is
described in terms of its effect on getX .

In this paper, methods used within contracts are called pure methods. We
distinguish two kinds of pure methods: normal pure methods (annotated with
pure) and predicates (annotated with predicate). A pure method’s body con-
sists of a single return statement, returning either an expression (in case of a
normal pure method) or an assertion (in case of a predicate). That is, a normal
pure method abstracts over an expression, while a predicate abstracts an asser-
tion. Since assertions and expressions are side-effect free, execution of a pure
method never modifies the state. Since we disallow mentioning assertions inside
method bodies, predicates can only be called from contracts and from the bodies
of predicates. Furthermore, predicates are not allowed to have preconditions. In
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our running example, both getX and valid are pure methods. The former is a
normal pure method, while the latter is a predicate. Predicates are typically used
to represent invariants and to abstract over accessibility of memory locations.

To prove the assertion at the end of Figure 7(b), one must show that c2’s
constructor and c2.setX (10) do not affect the return value of c1.getX (). In other
words, it suffices to show that the locations modified by those statements is
disjoint from the set of locations that c1.getX () depends on. But how can we
determine which locations influence the return value of getX ? The answer is
simple.

We can deduce from the precondition of a normal pure method an upper
bound on the set of locations readable by that method: a pure method p can
only read o.f if p’s precondition requires o.f to be accessible. In other words, the
return value of a normal pure method only depends on locations required to be
accessible by its precondition. A predicate does not have a precondition, so what
locations does its return value depend on? We say a predicate is self-framing.
That is, the return value of a predicate q only depends on locations that q itself
requires to be accessible.

Given these properties of pure methods, we can now prove the assertion at the
end of Figure 7(b). Informally, the reasoning is as follows. At program location
A, the postcondition of c1.setX (5) holds: c1.valid () is true and c1.getX () returns
5. Because c2’s constructor does not require access to any existing location, it
can only modify fresh locations (i.e. c2’s fields and fields of objects allocated
within the constructor itself). Since c1.valid () only requires access to non-fresh
locations, both its own return value and the return value of c1.getX () are not
affected by c2’s constructor. In addition, the set of memory locations required
to be accessible by c1.valid () is disjoint from the set of locations required to be
accessible by c2.valid (), since the latter set only contains fresh locations (follows
from the swinging pivot property). c2.setX () can only modify locations covered
by c2.valid(). The latter set of locations is disjoint from c1.valid (), hence the
return values of c1.valid() and c1.getX () are not affected by c2.setX (10). We
may conclude that the assertion, c1.getX () = 5, holds in any execution.

To illustrate the use of the separating conjunction, consider the method swap
of Figure 7(a). swap’s precondition requires that the receiver and c are “sep-
arately” valid, i.e. that both this.valid() and c.valid () hold and that the set
of locations required to be accessible by this.valid() is disjoint from the set of
locations required to be accessible by c.valid(). If we would have used a nor-
mal conjunction instead of a separating conjunction, we would not be able to
prove c.valid () holds after the assignment to x. In particular, the separating
conjunction ensures that c.valid() does not depend on this.x.

3.1 Formal Details

Language. We extend the language of Figure 3 with normal pure methods
(typically denoted as p) and predicates (typically denoted as q) as shown in
Figure 8. Accordingly, we add predicate invocations to the assertion language
and normal pure method invocations to the expression language.
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method ::= . . . | predicate | pure
predicate ::= predicate bool q(t x) { return φ; }
pure ::= pure t p(t x) contract { return e; }
φ ::= . . . | e.q(e)
e ::= . . . | e.p(e)

Fig. 8. An extension of the language of Figure 3 with pure methods

To ensure consistency of the encoding of pure methods, we enforce that pure
methods terminate by syntactically checking that a pure method p only calls
pure methods defined before p in the program text. We discuss this restriction
together with more liberal solutions for ensuring consistency in Section 4.

Verification

Logic. A standard technique in verification is to represent pure methods as
functions in the verification logic [11,12]. More specifically, for a normal pure
method C.p with parameters t1 x1, . . . , tn xn and return type t, the verification
logic includes a function C.p with sort heap×set×ref ×sort(t1)× . . .×sort(tn) →
sort(t), where sort maps a type to its corresponding sort. Similarly, for each
predicate C.q with parameters t1 x1, . . . , tn xn, the logic includes a function C.q
with sort heap × set × ref × sort(t1)× . . .× sort(tn)→ bool and a function C.qFP

with sort heap × set × ref × sort(t1)× . . .× sort(tn) → set . The latter function,
C.qFP, is called q’s footprint function.

An invocation of a pure method is encoded in the verification logic as an
application of the corresponding function. For example, the postcondition of
setX of Figure 7(a) is encoded as Cell .valid(h, a, this)∧Cell .getX (h, a, this) = v.

Interpretation. We extend I to these new program-specific functions as follows.
For each normal pure method C.p and for all heaps H , access sets A and val-
ues v0, . . . , vn, I(C.p)(H, A, v0, . . . , vn) equals v, if evaluation of v0.p(v1, . . . , vn)
terminates and yields value v. Otherwise, I(C.p)(H, A, v0, . . . , vn) equals the de-
fault value of the method’s return type. The interpretation of predicates and
footprint functions is similar (see [7]).

Theory. The behavior of a pure method is encoded via several axioms. Each
normal pure method p has a corresponding axiomatization Σp, consisting of an
implementation and a frame axiom. More specifically, the axioms corresponding
to the normal pure method

pure t p(t1 x1, . . . , tk xk) requires φ1; ensures φ2; { return e; }

are the following:

– Implementation axiom. The implementation axiom relates the function
symbol C.p to the pure method’s implementation: applying the function
equals evaluating the method body, provided the precondition holds.
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∀h, a, this, x1, . . . , xk • ok (h, a) ∧ this 	= null ∧ Tr(φ1)
⇓

C.p(h, a, this , x1, . . . , xk) = Tr(e)

– Frame axiom. The frame axiom encodes the property that a pure method
only depends on locations in the required access set of its precondition. That
is, the return value of p is the same in two states, if locations in the required
access set of the precondition have the same value in both heaps.

∀h1, a1, h2, a2, this , x1, . . . , xk•
ok(h1, a1) ∧ ok (h2, a2) ∧ this 	= null∧

Tr(φ1)[h1/h, a1/a] ∧ Tr(φ1)[h2/h, a2/a]∧
(∀o, f • (o, f) ∈ R(φ1)[h1/h, a1/a]⇒ (o, f) ∈ a2 ∧ h1(o, f) = h2(o, f))

⇓
C.p(h1, a1, this , x1, . . . , xk) = C.p(h2, a2, this , x1, . . . , xk)

Each predicate q has a corresponding axiomatization Σq, consisting of an
implementation axiom, frame axiom, footprint implementation axiom, footprint
frame axiom and a footprint allocated axiom. More specifically, the axioms cor-
responding to the predicate

predicate bool q(t1 x1, . . . , tk xk) { return φ; }
are the following:

– Implementation axiom. The implementation axiom relates q’s function
symbol to its implementation.

∀h, a, this , x1, . . . , xk • ok(h, a) ∧ this 	= null
⇓

C.q(h, a, this , x1, . . . , xk) = Tr(φ)

– Frame axiom. The frame axiom encodes the property that a predicate is
self-framing.

∀h1, a1, h2, a2, this , x1, . . . , xk•
ok(h1, a1) ∧ ok (h2, a2) ∧ this 	= null∧

C.q(h1, a1, this , x1, . . . , xk)∧
(∀o, f •(o, f)∈C.qFP(h1, a1, this , x1, . . . , xk)⇒(o, f)∈a2∧h1(o, f)=h2(o, f))

⇓
C.q(h2, a2, this , x1, . . . , xk)

– Footprint implementation axiom. The footprint implementation axiom
relates the function symbol C.qFP to the required access set of the body of
the predicate.

∀h, a, this , x1, . . . , xk • ok (h, a) ∧ this 	= null ∧ C.q(h, a, this , x1, . . . , xk)
⇓

C.qFP(h, a, this , x1, . . . , xk) = R(φ)
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– Footprint frame axiom. The footprint frame axiom encodes the property
that a footprint function frames itself, provided the corresponding predicate
holds.

∀h1, a1, h2, a2, this , x1, . . . , xk•
ok(h1, a1) ∧ ok (h2, a2) ∧ this 	= null∧

C.q(h1, a1, this , x1, . . . , xk) ∧ C.q(h2, a2, this , x1, . . . , xk)∧
(∀o, f •(o, f)∈C.qFP(h1, a1, this , x1, . . . , xk)⇒(o, f)∈a2∧h1(o, f)=h2(o, f))

⇓
C.qFP(h1, a1, this , x1, . . . , xk) = C.qFP(h2, a2, this , x1, . . . , xk)

– Footprint accessible axiom. The footprint accessible axiom states that a
predicate footprint only contains accessible locations, provided the predicate
itself holds.

∀h, a, this , x1, . . . , xk•
ok(h, a) ∧ this 	= null ∧C.q(h, a, this , x1, . . . , xk)

⇓
C.qFP(h, a, this , x1, . . . , xk) ⊆ a

We redefine Σπ as Σprelude ∪
⋃

p∈π Σp. That is, Σπ is the union of the axioms
for the built-in functions and the axioms of each pure method in π. Moreover,
we define Σp∗ as the axiomatization of all pure methods defined before p in the
program text. Note that Σp∗ does not include Σp.

Verification Conditions. To support data abstraction, we added pure methods
and pure method invocation to our language. Figure 9 extends the table of
Figure 5 with invocations of pure methods. In particular, pure methods are
encoded as functions in the verification logic. An invocation of a pure method
is well-defined if the arguments are well-defined and the receiver is not null. In
addition, the precondition must hold for a normal pure method invocation to be
well-defined.

expression Tr Df

e0.p(e1, . . . , en) C.p(h, a, Tr(e0), . . . , Tr(en)) Df(e0) ∧ . . . ∧ Df(en) ∧ Tr(e0) �= null∧
Tr(mpre(C, p)[e0/this, e1/x1, . . . , en/xn])

e0.q(e1, . . . , en) C.q(h, a, Tr(e0), . . . , Tr(en)) Df(e0) ∧ . . . ∧ Df(en) ∧ Tr(e0) �= null

Fig. 9. Translation (Tr) and definedness (Df) of pure method invocations

In this section, we added a new kind of assertion, namely predicate method
invocation. What is the required access set of such an assertion? One solution
would be to define the required access set of a predicate invocation as the re-
quired access set of the predicate’s body. However, such a definition would expose
implementation details to client code. For example, the required access set of the
precondition of getX of Figure 7(a) would be the singleton {(this , x)}. Yet, this
is just a detail of the current implementation, and client code should not rely on
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assertion R
e0.q(e1, . . . , en) C.qFP(h, a, Tr(e0), . . . , Tr(en))

Fig. 10. Required access set (R) of predicate instances

it. Instead, we propose introducing an extra layer of indirection. More specifi-
cally, as shown in Figure 10 the required access set of a predicate invocation is
an application of the footprint function.

We redefine the notion of valid program. More specifically, for a program to be
valid, we now additionally require that all pure methods are valid (Definition 6).
Informally, a pure method is valid if its body and contract are well-defined
(Definitions 4 and 5). Note that a pure method p is not verified with respect to
the theory Σπ but with respect to Σprelude ∪ Σp∗. That is, during verification
of a pure method, one can only assume that the prelude axioms and axioms of
pure methods defined before p in the program text hold.

Definition 4. A predicate

predicate bool q(t1 x1, . . . , tk xk) { return φ; }
is valid if its body is a well-defined assertion:

Σprelude ∪Σq∗ � ∀h, a, this , x1, . . . , xk • ok (h, a) ∧ this 	= null ⇒ Df(φ)

Definition 5. A pure method

pure t p(t1 x1, . . . , tk xk) requires φ1; { return e; }
is valid if its precondition is well-defined and its body is well-defined, provided
the precondition holds:

Σprelude ∪Σp∗ � ∀h, a, this , x1, . . . , xk•
ok(h, a) ∧ this 	= null ⇒ Df(φ1) ∧ (Tr(φ1)⇒ Df(e))

Definition 6. A program π is valid (denoted valid(π)) if all methods (both pure
and mutator) and the main routine are valid.

4 Soundness

The structure of the soundness proof is as follows. We define a run-time checking
execution semantics for the language of Figure 8. Execution gets stuck at null
dereferences and assertion violations. We then define the notion of valid config-
uration. We show that valid programs do not get stuck by proving progress and
preservation for valid configurations in valid programs. In the remainder of this
section, we elaborate all the steps described above. For the full proof, we refer
the reader to a technical report [7].

We start by defining an execution semantics for programs written in the lan-
guage of Figure 8. More specifically, a configuration (H, S) consists of a heap
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H and a stack S. The former component is a partial function from object refer-
ences to objects states. An object state is a partial function from field names to
values. The stack consists of a list of activation records. Each activation record
(Γ, A, G, B, s) is a 5-tuple consisting of an environment Γ that maps variables
to values, a set of accessible locations, an old heap G, an old access set B, and
finally a sequence of statements. The old heap holds the value of the heap at
the time the activation record was put onto the call stack, while the old access
stores a copy of the callee’s access set. A configuration can perform a step and
get to a successor configuration as defined by the small-step relation →. As an
example, consider the definition of → for field update.

H, Γ, A � e1 ⇓ v1
H, Γ, A � e2 ⇓ v2 (v1, f) ∈ A H ′ = H [(v1, f) �→ v2]

(H, (Γ, A, G, B, e1.f := e2; s) · S)→ (H ′, (Γ, A, G, B, s) · S)

In this definition, H, Γ, A � e1 ⇓ v1 denotes that the expression e1 evaluates
to value v1. H [(v1, f) �→ v2] denotes the update of the function H at location
(v1, f) with value v2. Note that → defines a run-time checking semantics. For
example, a field update is stuck if the location being assigned to is not in the
activation record’s access set. In general, → gets stuck at a null deference, pre-
condition violation, postcondition violation, when a non-accessible location is
read or written or when the condition of an assert statement evaluates to false.
→ preserves certain well-formedness properties. In particular, it preserves the

fact that (1) access sets of different activation records are disjoint and (2) that the
access set of each activation record (except for the top of the stack) frames part
of the heap with respect to the old heap. More specifically, for each activation
record (Γi, Ai, Gi, Bi, si), property (2) states that for all locations o.f in Ai, the
value of o.f in the current heap H equals the value of o.f in Gi−1. In other
words, each location that is accessible to the callee but that is not required to
be accessible by the caller cannot be changed during the callee’s execution.

A configuration σ is valid if each activation record is valid. The top activation
record (Γ1, A1, G1, B1, s1) is valid if I, H, Γ1, A |= vc(s1, ψ1), where ψ1 is the
postcondition of the method being executed. That is, the verification condition of
the remaining statements satisfies the postcondition, when interpreting functions
as defined in I, h as the heap H , a as the access set A and all variables by their
value in Γ . Similarly, any other activation record (Γi, Ai, Gi, Bi, si) is valid if
I, Gi−1, Γi, Bi−1 |= vc(s, ψi).

Finally, we prove that for valid programs (i.e. for programs that successfully
verify according to Definition 6) → preserves validity of configurations and that
valid configurations are never stuck. In particular, we prove preservation for
the return step by relying on the well-formedness properties described above.
It follows that executions of valid programs do not violate assertions and never
dereference null. Moreover, it is safe to erase the ghost state (e.g. access set per
activation record) and the corresponding checks (e.g. that any location being
assigned to is in the activation record’s access set is accessible) in executions of
valid programs.
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Consistency. For verification to be sound, the theory Σπ must be consistent.
To show consistency, it suffices to prove that I |= Σπ if π is a valid program.
Since I |= Σprelude, it is sufficient to demonstrate that I is a model for the ax-
iomatization of each pure method. We prove the latter property by constructing
a set of pure methods S, such that if a pure method p is in S, then all pure
methods defined before p in the program text are also in S. We define ΣS as
the union of the axioms of all pure methods in S. We proceed by induction on
the size of S. If S is empty, then trivially I |= ΣS . If S is not empty, select the
pure method p from S that appears last in the program text. It follows from the
induction hypothesis that I |= Σp∗. We have to show that I is a model for each
of p’s axiom. The fact that I models the implementation axiom follows from the
fact that pure methods must terminate (i.e. a pure method can only call pure
methods defined earlier in the program text) and the definition of I for normal
pure methods. The complete proof for all the axioms can be found in [7].

The main goal of our soundness proof is to show that the rules for framing
are sound. We consider ensuring consistency of the logic in the presence of pure
methods as an orthogonal issue. For that reason, we choose to ensure consistency
in the proof by a very simple, but restrictive rule: a pure method p can only
call pure methods defined before p in the program text. However, more flexible
solutions exist [11,13]. For example in our verifier prototype, we allow cycles
in the call graph, provided the size of the precondition’s required access set
decreases along the call chain. Furthermore, a predicate may call any other
predicate, provided the call occurs in a positive position.

5 Inheritance

Inheritance is a key component of the object-oriented programming paradigm
that allows a class to be defined in terms of one or more existing classes. For
example, the class BackupCell of Figure 11 extends its superclass Cell with a
method undo. Dealing with inheritance in verification is challenging. In partic-
ular, for verification to be modular, the addition of a new subclass should not
break or oblige us to reconsider the correctness of existing code. In this section,
we informally describe how our approach can be extended to cope with Java-like
inheritance in a modular way. Our approach for dealing with inheritance is based
on earlier proposals by Leavens et al. [14], Parkinson et al. [15] and Jacobs et
al. [12].

Methods can both be statically and dynamically bound, depending on the
method and the calling context. For example, getX is dynamically bound in
the client code of Figure 7(b), while it is statically bound in the body of setX
in Figure 11. To distinguish statically bound invocations of pure methods from
dynamically bound ones, we introduce additional function symbols in the verifi-
cation logic. That is, for a pure method p defined in a class C with parameters
x1, . . . , xn, the logic not only includes a function symbol C.p but also a function
C.pD. The former function symbol is used for statically bound calls, while the
latter is used for dynamically bound calls.
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class BackupCell extends Cell {
int backup;

BackupCell()
ensures valid() ∧ getX () = 0;

{ super(); }

void setX (int v)
requires valid();
ensures valid();
ensures getX () = v ∧ getBackup() = old(getX ());

{ backup := super.getX (); super.setX (v); }

void undo()
requires valid();
ensures valid() ∧ getX () = old(getBackup());

{ super.setX (backup); }

predicate bool valid()
{ return acc(backup) ∗ super.valid(); }

pure int getBackup()
requires valid();

{ return backup; }
}

Fig. 11. A class BackupCell (similar to Recell from [15]) which extends Cell with undo

The relationship between C.p and C.pD is encoded via a number of axioms.
More specifically, C.p equals C.pD whenever the dynamic type of the receiver
(denoted as typeof (this)) equals C.

∀h, a, this, x1, . . . xn • ok(h, a) ∧ typeof (this) = C ⇒
C.p(h, a, this , x1, . . . , xn) = C.pD(h, a, this , x1, . . . , xn)

Furthermore, whenever a method D.p overrides C.p, we include the following
axiom:

∀h, a, this , x1, . . .xn • ok (h, a) ∧ typeof (this) <: D ⇒
C.pD(h, a, this , x1, . . . , xn) = D.pD(h, a, this , x1, . . . , xn)

That is, if the dynamic type of the receiver is a subtype (denoted as <:) of D,
then dynamically bound invocations of both C.p and D.p yield the same result.
For the footprint function of a predicate, we use a similar encoding.

Calls with receiver this are treated differently in code and in contracts. If a
method invocation is statically bound, then invocations of pure methods with
receiver this in the callee’s contract are also considered to be statically bound;
otherwise, such invocations are considered to be dynamically bound. Meth-
ods themselves are verified under the assumption they are called statically, i.e.
calls with receiver this in the contract are statically bound. Doing so is sound,
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provided each subclass overrides each method. Indeed, if a method is called stat-
ically, then the caller and callee agree on the method contract. If a method is
called dynamically, then the dynamic type of the receiver equals the static type,
and therefore it follows that the static contract equals the dynamic contract.

To ensure the implementation of a subclass D does not break the contracts of
a superclass C, we check that the contract of each method in C is satisfied by a
method body that satisfies the contract of D. More specifically, for each method
m in C, we check that a method body that calls D.m satisfies the contract of C.m,
assuming that the dynamic type of the receiver is D. The latter proof obligation
ensures that no existing code is broken by the addition of the subclass C.

Note that BackupCell is just another client of Cell that is oblivious to Cell ’s
implementation. If we were to change Cell ’s implementation (within the bound-
aries set by its method contracts), then the correctness of BackupCell would not
be endangered.

6 Experience

To demonstrate the approach described in this paper is amenable to automatic,
static verification, we implemented it in a verifier prototype. The prototype was
used to verify several (variations of) programs used in related work.

The time taken to verify each program and a reference to the paper(s) contain-
ing the program is shown in Table 1. The experiments were executed on a desktop
machine with a Pentium Core Duo 2.66 GHz processor and 4 GB of memory
running Windows Vista. To discharge the verification conditions, we used the
Z3 [10] theorem prover. The verifier itself and the programs shown in Table 1
can be downloaded from http://www.cs.kuleuven.be/~jans/vericool2.

Table 1. Table showing the time taken (in seconds) to verify each program

program time taken source
Cell 0.1 [16,17,12]

ArrayList and Iterator 0.8 [2,18]
LinkedList 43 [19,2]

Resource Pool 2.1 [17]
Marriage 0.2 [20]

MasterClock 0.2 [21]
Subject-Observer 11 [1,22]

Recell, TCell, DCell 0.5 [15]
Visitor (framing only) 127 [17]

To ensure a method’s correctness proof does not depend on internal details
of other modules, our verifier prototype makes a pure method’s implementation
axioms available only to other methods implemented in the same module.

Iterated Star. In many programs, it is useful to specify that an assertion
holds for a statically unknown number of objects. For example in the Subject-
Observer pattern, the invariant of the subject typically states that all registered

http://www.cs.kuleuven.be/~jans/vericool2
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observers are valid. In our tool, there are two ways two write such invariants.
First of all, one can define the invariant in terms of a recursive predicate. How-
ever, reasoning about recursive predicates in first-order provers is tricky, since
this often involves proving inductive lemmas. To avoid reasoning about recur-
sive predicates, our tool provides another way of quantifying over an unknown
number of objects, namely iterated star. An iterated star assertion has the form
(∀∗x ∈ (min : max )•φ), where min and max are integer expressions. Informally,
the latter assertion states that φ holds for all integers between min (inclusive)
and max (exclusive) and that for any two different integers in that range, the
locations required to be accessible by φ are disjoint. For example, the invari-
ant of the subject can be written as follows. Note that obs is a field of type
List < Observer >.

predicate bool subobs() {
return acc(value) ∗ acc(obs) ∗ obs 	= null ∧ obs .valid()∗
(∀∗i ∈ (0 : obs .size())•

obs .get(i) 	= null ∧ obs .get(i).valid()∧
obs .get(i).getSubject() = this ∧ obs .get(i).upToDate()); }

We translate iterated star as follows (i and j are fresh variables).

(∀x • Tr(min) ≤ x < Tr(max )⇒ Tr(φ))∧
(∀i, j • Tr(min) ≤ i < Tr(max ) ∧ Tr(min) ≤ j < Tr(max ) ∧ i 	= j ⇒

R(φ[i/x]) ∩ R(φ[j/x]) = ∅)
The first quantification states that φ holds for all integers between min and max ,
while the second one states that the required access set is disjoint at different
indices. An iterated star is well-defined only if the bounds are well-defined and
the assertion is well-defined for all integers within those bounds. That is, the
definedness of an iterated star is as follows.

Df(min) ∧ Df(max ) ∧ (∀x • Tr(min) ≤ x < Tr(max )⇒ Df(φ))

What is the required access set of an iterated star? Informally, the required
access is the union of the required access sets of φ for all indices in the range:⋃

Tr(min)≤x<Tr(max) R(φ). However,
⋃

is not a first-order concept. Therefore, we
encode the required access set of an iterated star as follows (inspired by [23]). For
each iterated star in the program text, we generate a function in the verification
logic unioni (where i is unique for each iterated star) with sort heap×set× int×
int → set . This function represents the required access set of the corresponding
iterated star. Several axioms describe the behavior of union i. For example, we
add an axiom that states a set is disjoint from a union only if it is disjoint from
all the elements.

∀h, a,min,max , s • s ∩ unioni(h, a,min,max ) = ∅ ⇔
(∀x • Tr(min) ≤ x < Tr(max )⇒ s ∩ R(φ) = ∅)

Whenever two different iterated stars are sufficiently similar, we generate only
one union function instead of two. Two iterated stars are sufficiently similar if
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they differ only in the name of the quantified variable or in their range. Such
similar iterated stars typically occur in loop invariants and postconditions.

Partial Permissions

In this paper, we do not distinguish full access permissions (permission to read
and write a location) from partial access permissions (permission to read). That
is, a method either has permission to both read and write a location or it cannot
access the location at all. Therefore, even if a mutator only reads an existing
location, it still has to demand full access to that location in its precondition.
This problem can be solved in many ways. For instance, Boyland [24] proposes
using fractional permissions. We could extend our solution with support for
fractions by tracking an access map, which maps each location to a fraction,
instead of an access set.

In our implementation, we use a different solution. A mutator should indicate
it only reads a location o.f by ensuring in its postcondition that o.f ’s value is

class ArrayList {
int n; Object [] items;

ArrayList()
ensures valid() ∧ size() = 0;

void add(Object o)
requires valid();
ensures valid();
ensures size() = old(size() + 1);
ensures (∀∗i ∈ (0 : size()− 1)•

get(i) = old(get(i)));
ensures get(size()− 1) = o;

predicate bool valid()
{ return acc(n) ∗ acc(items)∗

items �= null ∗ accElems(items)∗
0 ≤ n ≤ items.length ; }

pure int size()
requires valid();
{ return n; }

pure Object get(int index )
requires valid();
requires 0 ≤ index < size();
{ return items [index ]; }

}

class Iterator {
ArrayList list ; int index ;

Iterator (List l)
requires l �= null ∧ l.valid();
ensures valid() ∧ getList() = l;
ensures untouched(getList().valid());

Object next()
requires valid() ∧ hasNext();
ensures valid();
ensures getList() = old(getList());
ensures untouched(getList().valid());

predicate bool valid()
{ return acc(list) ∗ acc(index)∗

list �= null ∧ list .valid()∗
0 ≤ index ≤ list .size(); }

pure bool hasNext()
requires valid();

{ return index < list .size(); }

pure bool getList()
requires valid();

{ return list ; }
}

Fig. 12. The iterator design pattern
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not modified. However, a mutator’s precondition can include predicates that its
implementation relies on to call pure methods. In other words, the mutator might
require a predicate to be true only to read locations protected by the predicate.
Since the predicate’s body may not be visible to the mutator, the mutator’s
postcondition may not be able to enumerate all those locations to ensure their
value did not change. Therefore, our implementation includes a special assertion:
untouched(φ). The assertion states that (1) all locations in φ’s required access
set have the same value in the old and the new heap, (2) those locations are still
accessible in the new state and (3) the swinging pivot property holds for R(φ).

As an example, consider the classes ArrayList and Iterator from Figure 12.
The last postcondition of the method next allows the verifier to deduce that
other iterators of the same list remain valid. The conjunct accElems(items) in
ArrayList ’s invariant is a special access assertion that gives permission to access
the elements of the array. Also, note that it is ok for the invariant to read
items .length without demanding access since length is immutable.

7 Related Work

The dynamic frames approach [1,2,3,4,5,6] solves the frame problem by explic-
itly annotating methods with effect annotations. More specifically, the contract
of a mutator consists of a modifies clause and a “swinging pivot postcondition”,
while a pure method’s contract includes a reads clause. The expressiveness of the
dynamic frames approach stems from the fact that these effect annotations can
mention arbitrary sets of memory locations. To support data abstraction, these
location sets may be specified in terms of dynamic frames, i.e. pure methods or
ghost fields that denote sets of locations. As an example, consider the dynamic
frames version of the class Cell from Figure 7(a) (method swap not included)
shown in Figure 13. setX ’s contract includes a modifies clause indicating that
all locations in the dynamic frame footprint can potentially be changed by the
method. In addition, setX ’s last postcondition encodes the swinging pivot prop-
erty. The contract of each pure method includes a reads clause indicating that
its return value only depends on locations in footprint(). All the latter effect
annotations (indicated with the grey background) need to be provided by the
developer, and must be checked explicitly by the verifier. In our approach on the
other hand, none of the annotations in grey need to be provided or checked ex-
plicitly (they are free postconditions!). Instead, we only check at each field access
that the corresponding location is accessible, which allows us to deduce an up-
per bound on the set of readable and writable locations. Since access assertions
can typically be piggy-backed onto invariants, as shown in the predicate valid of
class ArrayList of Figure 12, contracts do not need to include additional effect
annotations. Moreover, as callers typically already have to establish a callee’s
invariant and the invariant is opaque to the caller, checking the access assertions
inside the callee’s precondition incurs no additional cost.

Our approach was heavily inspired by separation logic [16,15,25]. In particu-
lar, the access assertion acc(e.f) is similar to separation logic points-to predicate
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class Cell {
int x;

Cell()
modifies ∅;
ensures valid() ∧ getX () = 0;
ensures fresh(footprint());

{ x := 0; }

void setX (int v)
requires valid();
modifies footprint();
ensures valid() ∧ getX () = v;
ensures fresh(footprint()

\old(footprint()));
{ x := v; }

pure bool valid()
reads footprint();

{ return true ; }

pure set footprint()

reads footprint();

{ return { (this, x) }; }

pure int getX ()
requires valid();
reads footprint();

{ return x; }
}

Fig. 13. The class Cell with traditional dynamic frames annotations

e.f �→ and Parkinson and Bierman’s abstract predicates inspired our predicate
pure methods. To the best of our knowledge, this is the first approach based
on verification condition generation and automatic, first-order theorem proving
that encodes separation logic’s idea of deducing frame information from precon-
ditions. One difference between separation logic and implicit dynamic frames
is that we allow using heap-dependent expressions, in particular field reads and
pure method invocations, inside assertions. Distefano and Parkinson [17] recently
implemented a verifier for Java based on separation logic, called jStar. jStar re-
lies on symbolic execution, while we use the more traditional combination of
verification condition generation and automated theorem proving. The access
set used in our verification conditions resembles the coloring of objects used in
SLICK [26] for runtime checking of separation logic assertions.

In [27], the authors propose using data groups to specify side-effects. To ensure
soundness, their approach imposes two methodological restrictions: the pivot
uniqueness and owner exclusion restriction. Our approach imposes no such re-
strictions, and as a consequence it can handle programs that [27] cannot. For
example, the former restriction rules out sharing of representation objects, as is
the case in the iterator pattern.

In the universe type system [28] and the Boogie methodology [29], abstractions
(pure methods, invariants or model fields) can depend on the fields of owned
objects and the fields of peers (i.e. objects with the same owner as the receiver),
provided the abstraction is visible to the peer. For example, the method hasNext
of an iterator would have to be visible to the list class. Our approach has no
such restriction.

The use of pure methods in specifications has been discussed extensively in
the literature [11,12,13]. In particular, encoding pure methods as functions in
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the logic is a standard technique in verification. To the best of our knowledge,
this is the first approach that derives an upper bound on the set of readable
locations from preconditions of pure methods. Some authors propose broadening
the range of admissible pure methods by allowing certain side-effects. We believe
our approach can be extended to support such weakly pure methods.

Verification of Java-programs with JML-like [30] annotations has received
considerable attention in the research community [30,31,32]. To the best of our
knowledge, all the JML tools rely on explicit effect annotations for framing. We
believe those tools might benefit from our approach to reduce the number of
effect annotations.

Zee et al. [19] focus on verification of linked data structures. Their technique
for dealing with such data structures inspired our specification of linked list. In
particular, they use a ghost field to represent the set of all nodes in a list and
rely on quantification over that set in the invariant to appropriately constrain
the values and next pointers of the list.

A preliminary version of this work was presented at the 2008 FTFJP work-
shop [33]. This preliminary version already sparked the interest of other au-
thors [34]. In particular, Leino and Müller combine implicit dynamic frames
with fractional permissions and concurrency. However, they encode accessibility
differently and do not show how to deal with data abstraction or inheritance in
their encoding. Moreover, they provide no formal soundness proof.

8 Conclusion

In this paper, we improve upon the classical dynamic frames approach in two
ways: (1) method contracts are more concise and (2) fewer proof obligations
must be discharged by the verifier. We have proven soundness, implemented the
approach in a verifier prototype and demonstrated its expressiveness by verifying
several challenging examples from related work.

In the future, we plan to extend our approach to concurrent programs.
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fork/Join. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp.
199–215. Springer, Heidelberg (2008)

10. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)
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Abstract. Role-based access control (RBAC) is a common paradigm to ensure
that users have sufficient rights to perform various system operations. In many
cases though, traditional RBAC does not easily express application-level security
requirements. For instance, in a medical records system it is difficult to express
that doctors should only update the records of their own patients. Further, tradi-
tional RBAC frameworks like Java’s Enterprise Edition rely solely on dynamic
checks, which makes application code fragile and difficult to ensure correct.

We introduce Object-sensitive RBAC (ORBAC), a generalized RBAC model
for object-oriented languages. ORBAC resolves the expressiveness limitations of
RBAC by allowing roles to be parameterized by properties of the business ob-
jects being manipulated. We formalize and prove sound a dependent type system
that statically validates a program’s conformance to an ORBAC policy. We have
implemented our type system for Java and have used it to validate fine-grained
access control in the OpenMRS medical records system.

1 Introduction

Controlled access to data and operations is a key ingredient of system security. Role-
based access control (RBAC) [9] is an elegant and frequently-used access control mech-
anism in which a layer of roles interposes between users and access privileges. Roles
represent responsibilities within a given organization. Authorizations for resource ac-
cess are granted to roles rather than to individual users and users are given roles accord-
ing to their functions in the organization. Users acquire all privileges associated with
their roles. The intuition behind RBAC is that roles change infrequently within organi-
zations relative to users, and so associating roles with access privileges ensures a stable
and reliable access control policy.

As a concrete scenario, consider a hospital in which users can be doctors or patients.
Doctors should be able to view and update their patients’ records, and patients should
be able to view (but not update) their own records. The RBAC way to represent this
policy is to introduce two roles Doctor and Patient, where the Doctor role is allowed
to both look up and modify patient records and the Patient role is allowed only to look
up a medical record. Users are then classified as having the Doctor or Patient roles and
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inherit the corresponding access privileges. RBAC is available in standard enterprise
software development environments such as Java’s Enterprise Edition (Java EE) [16],
which insert runtime role checks whenever a privileged operation is invoked.

This simple example highlights two key limitations of the RBAC model and its usage
today:

Lack of expressiveness. The role-based implementation described above does not cap-
ture all the constraints of our desired policy. The role-based implementation allows
doctors to access and modify any patient’s record, rather than only their own patients.
Similarly, the role-based implementation allows patients to access any other patient’s
record. One way to solve the problem is to give each user his or her own role, but that
would remove the advantages of using roles altogether! Simply put, the RBAC model
is not fine-grained enough to express common access control requirements.

As a result of this limitation, programmers may be forced to insert manual access
checks that augment the ones provided by systems like Java EE. This manual process
is error prone, and it is difficult to ensure that the inserted checks properly enforce the
desired policy. Alternatively, a system may only enforce a coarse-grained access control
policy but additionally maintain a log of accesses to allow system administrators to
detect finer-grained violations a posteriori.1

Lack of static checking. The reliance solely on dynamic checks in today’s RBAC-based
systems leads to several problems. First, it is difficult for programmers to ensure that
their code properly respects the access control policy. Programmers must manually keep
track of what roles must be held when each function is invoked, which depends on the
set of privileged operations that can potentially be reached during the function’s exe-
cution. If a function is ever executed in the wrong environment, the only feedback will
be a runtime role failure when a privileged operation is invoked, making the problem
difficult to diagnose and fix.

Further, because of the cost of runtime role checks, the checks are often hoisted
from the privileged operations themselves to the “entry points” of an application. For
example, after user authentication, a single role check could be used to determine which
web page to display (e.g., one for doctors and another for patients). However, in this case
the programmer must manually ensure the sufficiency of this check for all potentially
reachable privileged operations downstream, or else the intended access policy can be
subverted.

In this paper we address both of these limitations of the traditional RBAC model
and associated frameworks. First, we extend the RBAC model to support fine-grained
policies like that of our medical records example above. The basic idea is to allow roles
and privileged operations to be parameterized by a set of index values, which intuitively
are used to distinguish users of the same role from one another. A privileged operation
can only be invoked if both the appropriate role is held and the role’s index values
matches the operation’s index value.

1 This was the case in two recent security breaches in the news: unauthorized access to Britney
Spears’ medical records by employees at UCLA medical center and to Barack Obama’s cell
phone records by employees at Verizon Wireless.



Fine-Grained Access Control with Object-Sensitive Roles 175

Our parameterized form of RBAC, which we call Object-sensitive RBAC (ORBAC),
has a natural interpretation and design in the context of an object-oriented language
(Sect. 2). Traditional RBAC policies control access at the level of a class. For example,
with Java EE a method getHistory in a Patient class can be declared to require the
caller to hold the Patient role. In other words, a user with the Patient role can invoke
the getHistory method on any instance of Patient. In contrast, ORBAC supports
access control at the level of an individual object. For example, getHistory can now
be declared to require the caller to hold the Patient<this.patientId> role, where the
patientId field of Patient stores a patient’s unique identifier.

Second, we provide a type system that statically ensures that a program meets a spec-
ified ORBAC policy, providing early feedback on potential access control violations.
We formalize our static checker for a core Java-like language (Sect. 3). Since types and
roles are parameterized by program values (e.g., this.patientId), our static checker
is a form of dependent type system.

We have implemented our static type system for ORBAC as a pluggable type system
for Java in the JavaCOP framework [2]. As with frameworks like Java EE, we leverage
Java’s annotation syntax to specify the role requirements on method calls, but the Java-
COP rules statically ensure the correctness and sufficiency of these annotations. We
have augmented the OpenMRS medical records application [21] with a fine-grained
access control policy using ORBAC and have used our JavaCOP checker to statically
ensure the absence of authorization errors (Sect. 4).

2 Object-Sensitive RBAC

We now overview Object-sensitive RBAC and its associated static type system through
a simple medical records example in Java, comparing an implementation using standard
RBAC in Java EE with one using ORBAC.

2.1 Role-Based Access Control

An RBAC policy can be described as a tuple (U,R,P,PA,UA) consisting of a set of
users U , a set of roles R, and a set of permissions P, together with relations PA⊆ P×R
giving permissions to roles and UA⊆U×R giving (sets of) roles to users [9]. An access
of permission p by user u is safe if there exists a role r ∈ R such that (u,r) ∈ UA (user
u has role r) and (p,r) ∈ PA (role r has permission p).

Figure 1 shows how this model applies to a Patient class for which we wish to
protect access. Our simplified class provides a factory method getPatient, which re-
trieves the specified patient from the database, and two instance methods: getHistory
to return a history of the patient’s visits and addPrescription to associate a new pre-
scription with the patient.

We can group the users of our application into two groups: doctors and patients. In a
typical medical records application, doctors can access the data of their patients and pa-
tients can access their own data (e.g., through a web self-service feature). In a standard
RBAC model, we can represent these two groups with Doctor and Patient roles. Java
EE supports the specification of an RBAC policy through the @RolesAllowed annota-
tion [16]. This annotation is placed on a method definition to indicate the set of roles
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public class Patient {
private int patientId;

/* factory method to retrieve a patient */
@RolesAllowed({"Doctor", "Patient"})
public static Patient getPatient(int pid) { ... }

@RolesAllowed({"Doctor", "Patient"})
public List<String> getHistory() { ... }

@RolesAllowed({"Doctor"})
public void addPrescription(String prescription) { ... }
...

}

public class PatientServlet {
void displayHistory(int pid, Request req, Response resp) {

if (req.isUserInRole("Patient")) {
if (req.userId != pid) {

throw new AccessError("Cannot access this patient");
}

}
Patient p = Patient.getPatient(pid);
List<String> hist = p.getHistory();
... code to write html representation of hist to resp ...

}
}

Fig. 1. Standard RBAC version of doctor-patient example

that have permission to invoke the method. In Fig. 1 we have annotated the getPatient
and getHistory methods to permit users with either the Doctor or Patient role to call
these methods. On the other hand, the addPrescription method has been annotated
to ensure that only doctors can add a prescription to a medical record.

The Java EE tools, and other application frameworks, enforce an RBAC policy dy-
namically by inserting runtime checks to verify that the user indeed has at least one of
the specified roles when an annotated method is invoked. These checks are supported
by standard infrastructure that performs user authentication and queries a database or
configuration files to determine role membership.

For example, one might maintain a database of users and the roles granted to each
user in an external LDAP server, where it can be managed by an administrator. The
first time a user attempts to access a protected application resource (e.g., a web page),
he is redirected to a login page. The user is authenticated by comparing his credentials
against those stored in the LDAP server. The user’s identity and roles are then stored in
memory (e.g., in a session context) for use by dynamic access control checks.

Limitations of the RBAC model. Consider the PatientServlet class of Fig. 1, which
accesses a patient’s medical record. The displayHistory method writes an HTML
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representation of the patient history to a response stream. To do this, it obtains a
Patient object using Patient.getPatient and then calls its getHistory method.
Due to the annotations on these methods, the Java EE framework will insert dynamic
checks on these calls to ensure that the user has either the Doctor or Patient role.

Unfortunately, these checks are not sufficient to enforce the desired access control
policy. For example, the checks allow any patient to access any other patient’s medical
record! Therefore, programmers must manually insert additional checks, as shown at
the beginning of the displayHistory method. A similar check may also be necessary
to ensure that a doctor only accesses the records of her own patients. These kinds of
checks are very fragile and error-prone — one can easily forget or improperly imple-
ment the check on some code path that leads to an invocation of a protected method,
resulting in a serious security vulnerability.

Another limitation of traditional RBAC frameworks like Java EE is the reliance
solely on dynamic checks, which makes it difficult to statically ensure that application
code in fact respects the access policy of a protected class. For example, the program-
mer must ensure that the displayHistory method is never invoked by a user who does
not have either the Doctor or Patient roles. This requirement is completely implicit and
can only be understood by examining the implementation of displayHistory (and in
general the implementations of methods transitively called by displayHistory). If a
program disobeys the requirement, the programmer will receive no warning about the
error, which will instead result in a dynamic access check failure. Such dynamic errors
can be difficult to diagnose and fix. Further, if the error is not expected by the calling
code, it may result in very unfriendly behavior from the user’s perspective (e.g., a Java
uncaught exception).

2.2 Object-Sensitive RBAC

ORBAC is a natural generalization of the formal model for RBAC defined above. With
ORBAC, we define UA⊆U×R× I to be a ternary relation, in which UA(u,r, i) gives a
user u an indexed role (r, i)∈ R× I, where I is a set of index values. Permissions are also
indexed, and an access by user u to the indexed permission (p, i) ∈ P× I is safe if there
exists a role r ∈ R such that (u,r, i) ∈ UA (user u has indexed role (r, i)) and (p,r) ∈ PA
(role r has permission p).

In Fig. 2, we reimplement our example using an ORBAC policy. We use two roles:
Patient and DoctorOf, both of which are parameterized by a patient identifier (a Java
integer). A patient is given the Patient role for his own identifier, allowing him to access
his own record but not those of other patients. A doctor is given a DoctorOf role for each
of her patients, allowing access to those patients but no others.

Conceptually, classes are now parameterized by a set of role indices, which are part
of the class’s static type, analogous with ordinary type parameters in Java. These role
indices may then be used in role annotations within the class. While our formalism ex-
plicitly parameterizes classes in this way, as shown later, our implementation employs
additional annotations to achieve the same effect without modifying Java’s syntax. Class
role parameters are modeled as public final fields of the class that are declared with the
@RoleParam annotation. For example, the @RoleParam annotation on the patientId
field of Patient indicates that this field will be used as an index in role annotations
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public class Patient {
@RoleParam public final int patientId;

/* factory method to retrieve a patient */
@Requires(roles={"DoctorOf", "Patient"}, params={"pid", "pid"})
@Returns(roleparams="patientId", vals="pid")
public static Patient getPatient(@RoleParam final int pid) { ... }

@Requires(roles={"DoctorOf", "Patient"},
params={"this.patientId", "this.patientId"})

public List<String> getHistory() { ... }

@Requires(roles="DoctorOf", params="this.patientId")
public void addPrescription(String prescription) { ... }
...

}

public class PatientServlet {
@Requires(roles={"DoctorOf", "Patient"},

params={"pid", "pid"})
void displayHistory(@RoleParam final int pid,

Request req, Response resp) {
Patient p = Patient.getPatient(pid);
List<String> hist = p.getHistory();
... code to write html representation of hist to resp ...

}
}

Fig. 2. ORBAC version of doctor-patient example

within the class. The @RoleParam annotation can also be used on final formal parame-
ters to achieve the effect of method parameterization, as seen on the pid parameter of
the getPatient method.

Our @Requires annotation is analogous to Java EE’s @RolesAllowed annotation,
indicating the set of roles that have permission to invoke the annotated method. To
stay within Java’s metadata syntax we use two parallel arrays, roles and params, to
specify the roles. For example, the @Requires annotation on getPatient in Fig. 2 al-
lows only users with either the DoctorOf<pid> or Patient<pid> role to invoke the
method, where pid is the patient identifier passed to the method. The @Requires an-
notations on the other methods are similar but they use the patientId field of the
receiver as the role index to appropriately restrict access to that Patient object. Un-
like the @RolesAllowed annotation, @Requires does not introduce a dynamic check.
Instead, all calling code is statically checked to ensure at least one of the required roles
is held.

The @Requires annotation is a form of method precondition for access control,
while our @Returns annotation is a form of postcondition. For example, the @Returns
annotation on getPatient asserts that the returned Patient object has a patientId
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role parameter field which is equal in value to the patient identifier passed to the method.
Our static type system checks the body of the method to ensure the equality between the
role parameters holds. The type system can then assume that this equality holds after a
call to getPatient. In this way, we support modular typechecking for access control.

Resolving the limitations of the RBAC model. The PatientServlet class of Fig.2
illustrates how ORBAC resolves the limitations identified earlier of the RBAC model.
Unlike the version in Fig. 1, no manual access checks are required. These checks are
now part of the access control policy and are reflected in the @Requires annotations
on the methods of Patient. Therefore, it is easy for both humans and tools to reason
about a program’s access control policy just based on program annotations, without
examining the bodies of methods.

Further, access control is now statically checked, providing early feedback on possi-
ble violations. The displayHistory method is annotated with @Requires, restricting
the method to users of the DoctorOf<pid> and Patient<pid> roles. With this annota-
tion, the method’s body can be statically guaranteed to obey the access control policy of
Patient. The call to getPatient satisfies that method’s @Requires clause, so the call
typechecks. The getPatient method’s @Returns clause indicates that the returned
patient object’s patientId parameter is equal to pid, which then allows the call to
getHistory to typecheck successfully.

Subtle errors are now caught statically rather than dynamically. For example, if the
call to getPatient in displayHistory passed a patient identifier other than pid, the
call would correctly fail to typecheck, since a patient could be accessing the record of a
patient other than himself. Also, the annotation on displayHistory in turn allows its
callers to be modularly checked at compile time, ensuring that they have the necessary
roles for the eventual access to Patient.

Incorporating dynamic checks. Our static type system makes explicit (via the
@Requires annotation) the precondition that must be satisfied on entry to a method
m to ensure that the access control policies of all methods transitively called by m will
be obeyed. We insist that top-level methods (e.g., main for a standalone application
or service for a servlet-based web application) have no @Requires annotation. That
is, the application’s external interface must have no precondition and thus can assume
nothing about the roles that the current user holds. In order to allow an unprotected
method to call a method protected by a @Requires annotation, our type system provides
a flexible mechanism for interfacing with the program’s authorization and authentica-
tion logic through the definition of role predicate methods. These methods are identified
by the @RolePredicate annotation, which also indicates the role that the method tests
for. Our static type system incorporates a simple form of flow sensitivity to ensure that
method calls whose role requirements are not met by the current method’s @Requires
annotation occur only after appropriate dynamic checks succeed.

As a simple example, Fig. 3 contains a new version of PatientServlet’s
displayHistory method that performs the necessary role checks dynamically. The
method no longer has a @Requires clause, but our static type system recognizes that
the method is safe: the dynamic role checks ensure that the calls on the Patient class
are only reached when the user has the appropriate Patient or DoctorOf role. Unlike the
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public class Request {
@RolePredicate(roles="Patient", params="pid")
public boolean hasPatientRole(@RoleParam final int pid) { ... }

@RolePredicate(roles="DoctorOf", params="pid")
public boolean hasDoctorOfRole(@RoleParam final int pid) { ... }

}

public class PatientServlet {
void displayHistory(@RoleParam final int pid,

Request req, Response resp) {
if (!(req.hasPatientRole(pid) ||

req.hasDoctorOfRole(pid)))
{

throw AccessError("Cannot access this patient");
}
Patient p = Patient.getPatient(pid);
List<String> hist = p.getHistory();
... code to write html representation of hist to response ...

}

Fig. 3. Use of role predicate methods in displayHistory

manual dynamic checks in the standard RBAC example shown earlier, these checks are
statically ensured to be sufficient. Any errors in the dynamic checks in Fig. 3 (e.g., acci-
dentally using a patient identifier other than pid) will be caught at compile time. Further,
the dynamic checks can be placed as early as possible in the execution of an application
without the risk that a check will be forgotten on some code path to a protected method.

The role predicate methods are treated as black boxes by our type system. They are
free to consult a framework’s security infrastructure or to implement authentication and
authorization however the application designer sees fit. In fact, a particular predicate
method could always return true and be used to achieve an effect similar to J2EE’s
@RunAs annotation, which allows components to be invoked with a security identity
other than that of the currently authenticated user. In short, predicate methods provide a
flexible mechanism for incorporating the runtime checks that are necessary to ascertain
security credentials, and our type system ensures that their use is sufficient to satisfy
declared method preconditions.

3 Formal Semantics

We have formalized the static and dynamic semantics of a small Java-like language in
which ORBAC policies can be expressed and statically checked, and we have proven
a type soundness theorem. Figure 4 shows the syntax of our language, a variant of
Featherweight Java [14]. Our language models only the core features necessary to study
the ORBAC model and its static type system formally. For this reason we have omitted
inheritance, although our implementation handles it in the standard way, as described
in Sect. 4.1.
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ClassDecl K ::= class C〈r〉{T f ;M}
MethodDecl M ::= 〈r〉T m(T x) requires Φ{e}
Exprs e ::= x | e. f | e.m〈ρ〉(e) | new T (e) | e� e | use Φ in e

| pack ρ,e | unpack e as r,x in e
Vals v ::= new C〈i〉(v) | pack i,v
Types T ::= C〈ρ〉 | ∃r.T
RoleContext Φ ::= propositional formula over atoms in Q
Roles Q ::= R〈ρ〉
Indices ρ ::= r | i
IndexVarContext Δ ::= · | Δ,r
VariableContext Γ ::= · | Γ,x : T

Fig. 4. Grammar for the ORBAC language and type system. Metavariable C ranges over class
names, m over method names, f over field names, R over role names, r and q over index variables,
i and j over index constants, and x over program variables.

In our Java implementation of ORBAC described in the previous section, index vari-
ables are specially designated fields and method parameters. In our formal language, we
explicitly parameterize classes, methods, and roles using the syntax of Java generics.
For greater expressiveness, we include a form of existential types to classify expressions
whose role indices are not statically known. This models, for example, the situation in
our Java implementation where a method’s return type is parameterized by an index, but
no information about this index’s value is provided (e.g., via a @Returns annotation).
Expressions of existential type are introduced in our core language by a pack expres-
sion and eliminated by an unpack expression, in the usual way [24]. Our core language
includes a use expression for dynamically changing the set of held roles, which is a
simplified form of the role predicate methods in our Java implementation.2 Finally, we
include a non-deterministic choice construct (e1 � e2) as a simple form of conditional.

Access protection is expressed in our Java implementation using a @Requires anno-
tation indicating the set of roles that may invoke a method. This set can be viewed as
a disjunctive predicate to be satisfied on entry to the method. We provide a more gen-
eral mechanism in our formal language; methods include a requires clause which can
specify an arbitrary propositional formula over roles as a precondition for invocation.

The typing rules for our formal language are shown in Fig. 5. Expressions are type-
checked under three contexts: Φ is the role context represented as a propositional for-
mula over roles, Δ keeps track of the index variables that are in scope, and Γ is the
usual free-variable typing context. The rules depend on a set of simple well-formedness
judgments, which ensure that all referenced index variables are in scope. For example,
Δ � T in the premise of T-NEW ensures that the type being constructed does not refer to
any undefined index variables.

The most interesting rule is T-INVK which includes a logical entailment check in the
premise that guarantees that the current role context Φ satisfies the callee’s requires

2 The use expression can be viewed as a role predicate method that always succeeds. The
possibility of a predicate method returning false can be modeled by combining use with
non-deterministic choice. For example, the expression (use Φ in e1)� e2 models the situa-
tion where e1 is executed if a dynamic check for predicate Φ succeeds, and otherwise e2 is
executed.
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K ok

r � T M ok in C〈r〉
class C〈r〉{T f ;M} ok

(C-OK)

M ok in T

r,q � T r,q � T r,q �Φ Φ;r,q;x : T , this : C〈r〉 � e : T

〈q〉T m(T x) requires Φ{e} ok in C〈r〉 (M-OK)

Φ;Δ;Γ � e : T

Φ;Δ;Γ � x : Γ(x) (T-VAR)

Φ;Δ;Γ � e : T fields(T ) = T f

Φ;Δ;Γ � e. fi : Ti
(T-FIELD)

fields(T ) = T f Φ;Δ;Γ � e : T Δ � T

Φ;Δ;Γ � new T (e) : T
(T-NEW)

Φ;Δ;Γ � e1 : T Φ;Δ;Γ � e2 : T

Φ;Δ;Γ � e1 � e2 : T
(T-CHOOSE)

Δ � ρ Φ;Δ;Γ � e : [r �→ ρ]T
Φ;Δ;Γ � pack ρ,e : ∃r.T

(T-PACK)

r /∈ Δ Γ(x) undefined
Φ;Δ;Γ � e1 : ∃q.S Δ � T Φ;Δ,r;Γ,x : [q �→ r]S � e2 : T

Φ;Δ;Γ � unpack e1 as r,x in e2 : T
(T-UNPACK)

Δ �Φ′ Φ′;Δ;Γ � e : T

Φ;Δ;Γ � use Φ′ in e : T
(T-USE)

Φ;Δ;Γ � e : S Δ � ρ msig(S,m) = 〈r〉T Φ′→ T
Φ;Δ;Γ � e : [r �→ ρ]T Φ⇒ [r �→ ρ]Φ′

Φ;Δ;Γ � e.m〈ρ〉(e) : [r �→ ρ]T
(T-INVK)

fields(T ) = T f

class C〈r〉{T f ;M} ∈ ClassDecls

fields(C〈ρ〉) = [r �→ ρ]T f
(FIELDS)

msig(T,m) = 〈r〉T Φ→ T

class C〈r〉{T f ;M} ∈ ClassDecls 〈q〉S m(S x) requires Φ{e} ∈M

msig(C〈ρ〉,m) = 〈q〉[r �→ ρ]S
[r �→ρ]Φ→ [r �→ ρ]S

(M-SIG)

Fig. 5. Typing rules for our formal language
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precondition after appropriate substitution of actual indices for index parameters. Meth-
ods are typechecked modularly by rule M-OK which uses the Φ specified in a method’s
requires clause as the role context when checking the body.

Rules T-PACK and T-UNPACK are standard for existential type systems. The role
variable r in rule T-UNPACK is required to be fresh, which matches the intuition that
existential types classify objects with unknown index values. An unpacked role vari-
able r can only be employed to satisfy role checks within a use statement that grants
roles involving r. This is analogous to performing a dynamic role predicate check
on an object with an unknown index in our Java implementation. Rules FIELDS and
M-SIG only apply to class types, so an existential package must be unpacked before
its fields and methods are accessed and values of existential type cannot be directly
instantiated.

Evaluation Contexts E ::= [ ] | E. f | E.m〈ρ〉(e) | v.m〈ρ〉(v, . . . ,E,e, . . . ,e)
| new T (v, . . . ,E,e, . . . ,e) | pack ρ,E | unpack E as r,x in e

Φ � e−→ e

Φ � e−→ e′

Φ � E[e]−→ E[e′]
(E-CONGRUENCE)

fields(T ) = T f

Φ � new T (v). fi −→ vi
(E-FIELD)

mbody(T,m〈ρ〉) = (x,e) msig(T,m) = 〈σ〉S Φ′→ S Φ⇒ [σ �→ ρ]Φ′

Φ � new T (v).m〈ρ〉(v′)−→ [x �→ v′][this �→ new T (v)]e
(E-INVK)

Φ � unpack (pack i,v) as r,x in e−→ [x �→ v][r �→ i]e (E-UNPACK)

Φ � e1 � e2 −→ e1 (E-CHOOSE1)

Φ � e1 � e2 −→ e2 (E-CHOOSE2)

Φ′ � e−→ e′

Φ � use Φ′ in e−→ use Φ′ in e′
(E-USE1)

Φ � use Φ′ in v−→ v (E-USE2)

mbody(T,m〈ρ〉) = (x,e)

class C〈r〉{T f ;M} ∈ ClassDecls 〈q〉S m(S x) requires Φ{e} ∈M

mbody(C〈ρ〉,m〈σ〉) = (x, [q �→ σ][r �→ ρ]e)
(M-BODY)

Fig. 6. Evaluation for our formal language
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The dynamic semantics for our formal language is shown in Fig. 6. These evaluation
rules perform role checks that model the dynamic checks on privileged operations used
in most existing RBAC systems. Our type soundness result, however, establishes that
such dynamic role checking is unnecessary for well-typed programs. Like the typing
judgment, the evaluation judgment includes a role context. This context is used in rule
E-INVK, which performs a dynamic entailment check that the current role context is
sufficient to satisfy the method’s declared precondition. Rule E-CONGRUENCE steps
subexpressions according to the evaluation order established by the evaluation contexts,
leaving the role context unchanged. Rule E-USE1 ignores the current role context and
dynamically evaluates its subexpression under the specified context.

We have proven a type soundness theorem, which ensures that well-typed programs
cannot fail dynamic role entailment checks. The theorem is proven using the standard
progress and preservation style [30]. Full details are given in the accompanying techni-
cal report [10]; we provide statements of the key results here:

Lemma 1 (Progress). If Φ; ·; · � e : T , then either e is a value or there is an expression
e′ such that Φ′ � e−→ e′ for any Φ′ where Φ′ ⇒Φ.

Lemma 2 (Preservation). If Φ;Δ;Γ � e : T and Φ � e−→ e′, then Φ;Δ;Γ � e′ : T.

These lemmas imply a type soundness theorem as well as the key corollary about role
checking:

Theorem 1 (Type Soundness). If Φ; ·; · � e : T , then e will not get stuck when evaluated
under any role context Φ′ such that Φ′ ⇒Φ.

Corollary 1 (Dynamic Entailment Checks Unnecessary). Well-typed programs can-
not fail dynamic role entailment checks.

4 Experience: The OpenMRS Case Study

We implemented our ORBAC checker as an extension to Java in the JavaCOP pluggable
types framework [2]. To evaluate our approach, we took OpenMRS [21], an existing
open source medical records application, and retrofitted it to use an ORBAC policy
to protect access to patient data. OpenMRS is implemented in Java using the Spring
application framework [28], which is a commonly used alternative to Java EE. Spring
provides several useful modules, including an inversion of control container, an aspect-
oriented programming framework, and integration with the Hibernate framework for
persistence [13]. Spring’s access control framework supports standard RBAC policies,
which can be configured by an administrator.

4.1 Implementation of ORBAC Using JavaCOP

Our checker implementation makes use of the annotations @Requires, @Returns, and
@RolePredicate that were introduced in Sect. 2.2.
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Several practical issues that are not modeled in the formalism are addressed in
our implementation. Class inheritance is supported. The checker enforces the stan-
dard requirements on method overriding: an overriding method must have a compat-
ible, possibly weaker precondition (@Requires annotation) and a compatible, possibly
stronger postcondition (@Returns clause). Methods without a @Requires annotation
are considered to have the precondition true, so they can be invoked in any con-
text. Hence, methods that override such methods are required to not have a @Requires
annotation.

While our formalism uses arbitrary propositional formulas for requires clauses, our
Java implementation restricts @Requires and @RolePredicate annotations to be dis-
junctions of roles. This means that role contexts are formulas in conjunctive normal
form (CNF); the @Requires clause of a method provides the first conjunct and dy-
namic role predicate checks add conjuncts to the context. This simplifies typechecking
by allowing us to perform a series of subset checks rather than checking arbitrary logical
implication.

We make use of JavaCOP’s support for flow-sensitive reasoning [17] to implement
the static updating of the role context based on role predicate method invocations. Java-
COP’s flow framework properly handles Java’s complex control flow, including excep-
tional control flow. As a result, our checker can statically validate the style of dynamic
checks used in Fig. 3, as well as many other styles.

The implementation of the checker was fairly straightforward. It contains 174 lines
of code in the declarative JavaCOP language and about 450 lines of Java code defining
the flow analysis and some supporting functions and data structures.

4.2 OpenMRS Architecture

The OpenMRS source contains over 160,000 lines of code, spread over 633 files, not
including the frameworks and other infrastructure that it depends upon. Figure 7 shows
a simplified UML diagram of some key patient-related classes defined by OpenMRS.
Patients are represented by the Patient class. Each patient has a number of associated
encounters, each representing a visit to the hospital or clinic. Each encounter may con-
tain multiple observations (represented by the Obs class) which are used for recording
test results and patient vitals.

The OpenMRS application interacts with the client via Java servlets. In Fig. 7, we
show the two primary servlets for patients, PatientDashBoardController, which
renders to HTML a summary of a patient’s data, and PatientFormController, which
accepts a new or updated patient and saves it to the database. These servlets obtain
patient records from the database via classes implementing the PatientService inter-
face, which defines methods for creating, querying, updating, and voiding patients (as
well as many others not shown here). The implementation of PatientService is pro-
vided by PatientServiceImpl, which in turn uses a class implementing PatientDAO
(DAO stands for “Data Access Object”). The implementation of PatientDAO is pro-
vided by HibernatePatientDAO, which interacts with the Hibernate framework and
isolates Hibernate-specific code.

The patient service implementation PatientServiceImpl is made available to
servlets via the Context class. This class provides static methods for accessing global
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Fig. 7. Patient-related classes in OpenMRS

system state (e.g., mappings between “service” interfaces and their configured imple-
mentations) as well as state specific to a given user (e.g., a user id and permissions).

OpenMRS access control framework. The implementation of RBAC in OpenMRS adds
a level of indirection to the standard RBAC model: methods are protected by assigning
required privileges through annotations in the code, roles are defined as mappings from
role names to sets of privileges, and users are assigned sets of roles. The role-privilege
mapping and the user-role mapping are maintained in the database, permitting them to
be changed by an administrator at runtime.

Access policies are configurable in OpenMRS, but the limitations of the RBAC
model make it impossible to configure a policy that permits access to a specific ob-
ject while preventing access to other objects of the same class. In other words, only
coarse-grained policies, which restrict access at the level of classes rather than objects,
are supported. For example, in one reasonable policy within these restrictions, patients
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would have no access to the system at all and every healthcare provider would have
read-write access to all patients.

Access control requirements are defined using method annotations representing the
set of privileges needed to access the method. These annotations are converted to dy-
namic checks by Spring’s aspect-oriented programming framework. For patient data,
these annotations are made on the PatientService class. There are separate privi-
leges defined for viewing, creating, updating, and deleting patients. The administrator
must then assign these privileges to RBAC roles.

Each servlet in OpenMRS may (indirectly) invoke many dynamic privilege checks
inserted by Spring. Unfortunately, there is no easy way to tell which privileges are
required by a servlet. Changes to the implementation of a servlet may inadvertently
change the set of privileges checked in a given situation, leading to runtime errors,
which are displayed as an HTML rendering of a Java stack trace.

Privileges may be explicitly checked in the code by calling the hasPrivilege
method on the Context class. These explicit checks are used in situations where au-
thorization occurs in a conditionally executed block or where an implementation needs
additional authorization requirements beyond those specified for an interface.

4.3 An ORBAC Policy for OpenMRS

With ORBAC we were able to create a new fine-grained access control policy for patient
objects, with three roles:

1. Users with the Supervisor role have read and write access to all patients. This role
is unparameterized — it behaves as a standard RBAC role.

2. Users with the ProviderFor role (e.g., doctors) have read and write access to their
patients, but not to other patients. This role is parameterized by the patient’s id.

3. Users with the Patient role have read access to their own patient record, but not to
those of other patients. This role is parameterized by the patient’s id.

We only changed the access policies for objects related to patients; other objects in
the system are protected by OpenMRS’s original RBAC policy.

Example 1. Figure 8 shows an example set of user-to-role assignments and the resulting
access rights of these users. There are three patients in the system: Britney, Carol, and

User Assigned roles Patients allowed Patients allowed Patients denied
read-only access read-write access access

Alice Supervisor Britney, Carol,
Dave

Bob ProviderFor<Carol> Carol Britney, Dave
Britney Patient<Britney> Britney Carol, Dave
Carol Patient<Carol>, Carol Britney Dave

ProviderFor<Britney>

Dave Patient<Dave> Dave Britney, Carol

Fig. 8. Example of access rights for OpenMRS extended with ORBAC
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Dave. All three have a Patient role parameterized by their own id and can thus see, but
not modify, their own patient records. Alice holds the unparameterized Supervisor role
and has read-write access to the three patients. Bob is a provider for Carol, and thus
has read-write access to her record, but no access to the other patients. Carol is both a
provider for Britney and a patient herself. She does not have read-write access to her
own record. ��
The mechanism for assigning the ProviderFor role turned out to be an interesting design
consideration. The OpenMRS database schema and object model implement a one-
to-many doctor-patient relationship, so one might consider using the presence of this
relationship to grant ProviderFor status. However, in a real healthcare environment,
multiple doctors and nurses might need to interact with a patient and thus see the pa-
tient’s record. We chose to base the granting of the ProviderFor role on whether there
is an encounter record associated with the patient and the provider. This can be deter-
mined by an SQL query against the Encounter table, the results of which can then be
cached to speed up future checks.

The presumed workflow for granting access rights to a patient’s data are as follows:

1. When a patient enters the clinic, a user with Supervisor access looks up the patient’s
record, or creates it if necessary.

2. The Supervisor selects a doctor to see the patient and then creates an encounter
record referencing the patient and the doctor.

3. The doctor now has the ProviderFor role for this patient and can update the patient
record.

Thus, all the providers who have participated in a patient’s care can access the patient
record. Other approaches to granting access rights to patient data are possible and en-
forceable with our pluggable type system.

Implementing the ORBAC policy. To implement our fine-grained access control policy
in OpenMRS, we first made the patientId field of the Patient class a role parameter
via the @RoleParam annotation. We then replaced the original privilege annotations on
the PatientService interface with @Requires annotations. For example, the declara-
tion of the getPatient method is now:

@Requires(roles={"ProviderFor", "Patient", "Supervisor"},
params={"patientId", "patientId", ""})

public Patient getPatient(@RoleParam final Integer patientId)
throws APIException;

This method fetches the patient identified by patientId from the database. To call
it, the caller must possess either the ProviderFor, Patient, or Supervisor roles. These
first two roles are parameterized by the specific patientId, while Supervisor is unpa-
rameterized.

To provide dynamic role checks, we first created three new privileges in Open-
MRS, corresponding to our three roles: ORBAC PATIENT, ORBAC PROVIDER, and
ORBAC SUPERVISOR. Each of these privileges has an associated OpenMRS role, which
can then be assigned to users. We added role predicate methods for each of our ORBAC
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roles to the Context class. For example, the role predicate for the Patient role is defined
as follows:

@RolePredicate(roles="Patient", params="patientId") public static
boolean hasPatientRole(

@RoleParam final Integer patientId) {
User user = Context.getAuthenticatedUser();
if (user==null || !Context.hasPrivilege("ORBAC_PATIENT"))

return false;
else return user.getUserId().equals(patientId);

}

The method checks if the user has the OpenMRS privilege ORBAC PATIENT and if so it
compares the user’s identifier to the specified patient identifier.

Checking the OpenMRS source code. To ensure that the required roles for accessing
patients were enforced, we ran our pluggable type system on the entire OpenMRS code
base (a total of 633 Java files). The checking takes 11 seconds on a MacBook Pro with
a 2.4 GHz Intel Core 2 Duo processor and 2 GB of memory.

We used our type checker in an iterative manner in order to add necessary annotations
and dynamic checks until all type errors were resolved. In general we used @Requires
annotations on methods to remove static type errors. As mentioned in Sect. 2.2, we can-
not place a @Requires annotation on the top-level methods in servlets through which all
user requests must pass. This is the natural place to use predicate methods that perform
dynamic security credential checks to satisfy the type checker.

In total, we made changes to 81 (13%) of the files. A total of 298 @Requires annota-
tions and 151 dynamic checks were added. Since the pluggable type system successfully
checks the code, the dynamic role checks that occur within servlet code are guaranteed
to be sufficient on all paths to the protected methods of PatientServiceImpl.

The count of dynamic checks represents individual role predicate calls
(hasPatientRole, hasProviderRole, or hasSupervisorRole). In many cases, these
predicates are used together in a single if statement. In general, dynamic checks for
patient reads use a disjunction of all three predicates, checks for patient writes use a
disjunction of the provider and supervisor predicates, and checks for servlets that gen-
erate reports (which access many patients) use the supervisor predicate alone.

4.4 Limitations and Tradeoffs

Final fields and role parameters In the ORBAC example of Sect. 2, role parameter
fields are declared as final. Our type system requires that role parameters do not
change. If role parameters can change, the type system becomes unsound, potentially
allowing prohibited calls.

Unfortunately, Hibernate requires that persisted objects have default constructors and
non-final id fields. These id fields are frequently the same fields used as role parameters
(e.g., the patientId of class Patient). To address this, we permit role parameter fields
to be non-final but include checks in our pluggable type system to ensure that role
parameter fields are not assigned outside of constructors. We also use the JavaCOP
flow framework to ensure that every constructor initializes all role parameter fields.
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ProviderFor vs. Provider roles. In our case study, we chose to define for doc-
tors a ProviderFor role which is parameterized by a patient id. This approach
is straightforward and easily handles the case where a patient has multiple
providers. However, it is problematic when representing collections. For example, the
getPatientsByName method of PatientService takes a partial patient name and re-
turns a Collection<Patient> of matching patients. The names of these patients are
then displayed to the user, who can drill down to a specific patient record. We changed
this method to return only those patients accessible to the user. Unfortunately, there
is no way to represent the precise element type of this collection in our type system,
since each patient has a different id. Therefore, we use a collection object with no role
parameter. This lack of static validation cannot cause a security violation, but it does ne-
cessitate the use of dynamic role predicate checks in order to fetch the actual Patient
object when the provider “drills down.”

An alternative would be to instead use a Provider role, which is parameterized by
the doctor’s user id. Thus, the patients returned by getPatientsByName would all be
parameterized by the same value, allowing easier representation in our type system.

This alternative approach is not without disadvantages. In the most obvious imple-
mentation of this policy, the Patient object would be parameterized by two fields:
patientId and providerId. However, this does not work well if a patient can
have multiple providers. One work-around is to change the getPatient method for
PatientServiceImpl to populate the providerId with the current user’s id, if the
user is in the set of providers for the patient.

Access control for encounters and observations. In our current implementation, ac-
cesses to objects logically contained within patients, such as encounters and obser-
vations, are not protected by @Requires annotations. In theory, this could lead to an
unsoundness in the security policy, although, in practice, the OpenMRS navigation de-
sign prevents users from accessing these sub-objects without first accessing the parent
Patient instance. To be sure there is no violation, we could add @Requires anno-
tations to encounters and observations. Alternatively, we could use a form of object
ownership [7] to verify that these objects are in fact logically contained within their
associated patient objects.

5 Related Work

Role-based access control [9] has been used successfully in many systems and is now a
NIST standard. Several approaches have been explored by researchers to extend declar-
ative access control models like RBAC to represent and enforce instance-level policies.
However, these approaches have employed only dynamic enforcement of such policies.

The emphasis in some prior work [1,15,4] is on clarifying the formal semantics of
a parameterized access control model. For example, Abdallah and Khayat [1] provide
a set-theoretic semantics in a formal specification language, and Barth et al. [4] briefly
mentions a parameterized role extension to a temporal logic for reasoning about privacy.
We adapt a variant of these generalized RBAC models to an object-oriented language,
provide a static type system for enforcing access control, and have implemented and
validated the approach in Java.
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The Resource Access Decision facility (RAD) [3] extends RBAC-based access con-
trol policies with access checks based on user relationships. Policies may be configured
to require certain relationship predicates to be true when an activated role is used to ac-
cess an object. For example, a rule might state that doctors can only access the records
of patients to which they have an attending relationship. However, these relationship
predicates are not defined in a declarative manner — a CORBA interface must be im-
plemented in the application to evaluate each predicate. This precludes any use of a
static analysis based on the relationships required by a policy.

The database community has also addressed the enforcement of instance-level access
control policies (e.g., [12,26,20,22]). In particular, [12] extends RBAC with parame-
terized role templates, where the parameters of a template refer to database columns
or constants and serve a similar function as our role parameters. Implementing fine-
grained access control policies at the database level has two key advantages: one can
define policies directly on the data to be protected and the filtering of records can be
integrated with query optimization. However, database-level access control also has sev-
eral disadvantages. First, it would be very difficult to statically determine the code paths
in an application which lead to a given dynamically-generated SQL statement, which
would be necessary to statically detect access violations. Second, developers may also
want to enforce restrictions on function invocations in the application, which would
require a separate mechanism from the database-level access control policies. Third,
most modern application deployments store the mapping of users to roles in an external
repository (e.g., an LDAP server). Information stored in such a repository might not be
available to the database query engine.

Instance-level access control policies can also be defined using domain-specific lan-
guages. For example, the XAML standard [8] permits the definition of access poli-
cies for web services which reference data in individual request messages. Cassandra
[6,5] extends Datalog to express constraint rules referencing parameterized RBAC-style
roles. These approaches are appropriate for enforcing access control between applica-
tions but are not so easily applied within an application. To (dynamically) enforce such
policies within an application, one would need to map the entities referenced by the
policy to actual object instances. In addition, the more expressive semantics of these
policies would complicate static analysis.

We enforce access control policies through explicit dynamic and static checks added
to the codebase through annotations. One could also write policies in a separate lan-
guage outside the codebase and automatically insert them into the code at compile time
or runtime (via bytecode manipulation). This approach has been explored [23], with
policies expressed as access constraint rules — boolean expressions over an object and
its relationships. Our ORBAC annotations could be translated to access constraint rules.

Our approach is orthogonal to Hierarchical RBAC [27], where a partial order is de-
fined on roles. If a role R1 is greater than a role R2 in this hierarchy, then any user
holding R1 also holds the permissions associated with R2. This hierarchy is statically
defined and not dependent on individual object instances, so it still only supports coarse-
grained policies. For example, if a Physician role dominates a Healthcare-Provider role
in the hierarchy, assigning two users to Physician roles gives them the exact same
permissions, which are a superset of the permissions granted to users assigned the
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Healthcare-Provider role. One could extend our ORBAC model to support hierarchies
by including a partial order on (parameterized) roles.

There has also been work on static analysis for RBAC systems. Closest to our work
is that of Pistoia et al. on static analysis of security policies in Java EE [25]. They em-
ploy an interprocedural analysis to identify RBAC policies that are insufficient (i.e., can
lead to runtime authorization failures), redundant (i.e., grants more roles than neces-
sary), and subversive (i.e., allows bypassing access control requirements). Our static
type system prevents the first and third of these errors, but for the more expressive OR-
BAC model. Using a type system as opposed to an interprocedural analysis allows us to
provide modular guarantees about proper access control on each function in a scalable
manner, at the expense of requiring user annotations.

Researchers have explored many forms of dependent type systems [18], whereby
types depend on program values. The closest to our work is the notion of constrained
types in the X10 programming language [19]. In X10, classes are explicitly parame-
terized by a set of properties, which are treated within the class as public final fields.
Our design is similar but uses annotations to implicitly parameterize a class by a des-
ignated set of fields without modifying Java’s syntax. Similarly, an X10 type has the
form C{e}, where C is a class name and e is a constraint on the class’s properties, while
we use annotations to specify constraints. In our type system, these constraints are al-
ways simple equality constraints. The X10 compiler has built-in support for checking
equality constraints, but it also allows users to plug in solvers for other constraints.

The static checking of roles in our type system has no analogue in X10’s con-
strained types. This part of our type system is most closely related to type-and-effect
systems [11], which statically track a set of computational effects. The computational
effects we track are the privileged operations that a function may invoke, which de-
termine the roles that are allowed to invoke the function. Roles are also similar to ca-
pabilities [29], which are a dual to effects. However, roles are disjunctive rather than
conjunctive: it is sufficient for an execution to hold any of a function’s roles, while
capability systems require all capabilities to be held to ensure proper execution.

6 Conclusions

We have presented the design, implementation, formalization, and practical validation
of Object-sensitive RBAC (ORBAC), a generalization of the widely used RBAC model
for access control. ORBAC allows different instances of the same class to be distin-
guished by a designated set of object properties. These properties can then be used
to parameterize roles thereby supporting fine-grained access policies that are useful in
common scenarios but hard to implement in traditional RBAC. We have implemented
a novel static type system that employs forms of dependent types and flow sensitivity
to provide sound yet precise reasoning about an application’s adherence to an ORBAC
policy. Our OpenMRS case study illustrates the practical utility of the ORBAC model
and our type system in a realistic setting.

We have focused on a useful but restricted version of ORBAC. This model can be
naturally extended to support a more expressive policy language. Our current JavaCop-
based implementation could be enhanced to support role predicates as arbitrary
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propositional formulas as well as multiple parameters per role, both of which are in
our formalization. Useful extensions to the type system presented here include the ad-
dition of a partial order on roles, a richer constraint language for index values, and
static tracking of the temporal order of privileged operations. Finally, we would like to
investigate both local and global type inference of object-sensitive roles.
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Abstract. Reusable APIs often define usage protocols. We previously
developed a sound modular type system that checks compliance with
typestate-based protocols while affording a great deal of aliasing flexi-
bility. We also developed Plural, a prototype tool that embodies our ap-
proach as an automated static analysis and includes several extensions
we found useful in practice. This paper evaluates our approach along the
following dimensions: (1) We report on experience in specifying relevant
usage rules for a large Java standard API with our approach. We also
specify several other Java APIs and identify recurring patterns. (2) We
summarize two case studies in verifying third-party open-source code
bases with few false positives using our tool. We discuss how tool short-
comings can be addressed either with code refactorings or extensions to
the tool itself. These results indicate that our approach can be used to
specify and enforce real API protocols in practice.

1 Introduction

Reusable APIs often define usage protocols. Loosely speaking, usage protocols
are constraints on the order in which events are allowed to occur. For example,
a database connection can only be used to execute SQL commands until it is
closed. It has been a long-standing research challenge to ensure statically (before
a program ever runs) that API protocols are followed in client programs using
an API. An often overlooked but related problem is ensuring that the protocol
being checked is consistent with the actual implementation of that protocol. Both
of these challenges are complicated by object aliasing (objects being referenced
and possibly updated from multiple places)—the hallmark feature of imperative
languages like C and Java.

We previously developed a sound (no false negatives) and modular (each
method checked separately) type system that checks compliance with typestate-
based protocols while affording a great deal of aliasing flexibility [7,3]. Types-
tates [33] allow specifying usage protocols as finite-state machines. Our approach
tracks access permissions, which combine typestate and aliasing information,
and was proven sound for core single-threaded [7] and multi-threaded [3] object-
oriented calculi. Unlike previous approaches, access permissions do not require

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 195–219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



196 K. Bierhoff, N.E. Beckman, and J. Aldrich

precise tracking of all object aliases (e.g. [15,17]) or impose an ownership disci-
pline on the heap (e.g. [2]).

We have implemented Plural, a tool that embodies our approach as an auto-
mated static analysis [9] and includes several extensions found to be useful in
practice (section 2.2).1 Plural requires developer-provided annotations on meth-
ods and classes, specifically on the APIs to be checked, although others may be
necessary.

While previous modular protocol checking approaches have been proven sound
and shown to work on well-known examples such as file access protocols, these
approaches generally have not been evaluated on real APIs or third-party code
bases. (Notable exceptions include Vault [15] and Fugue [17,16]). The general lack
of evaluation begs important questions: Can these approaches accurately specify
protocols that occur in practice? Can they verify their use and implementation
without an unreasonable number of false-positives? And can they do so at a low
computational cost and without imposing too great of an annotation burden?

In this paper we attempt to answer these questions. Contributions of this
paper include the following:

– Specification. We report on experience in specifying relevant usage rules
for 440 methods defined in the Java Database Connectivity (JDBC) API for
relational database access with our approach (section 3).2 To our knowledge,
this is the largest case study available in the literature that evaluates the
applicability of a usage protocol specification method for real APIs. Several
other Java APIs were specified and are also discussed.

– Checking. We summarize two case studies in using Plural on third-party
open-source code bases.
• We checked about 2,000 lines taken from the Apache Beehive project

against the specified APIs (section 4).
• We also checked PMD, a program of about 40KLOC, for compliance to

a simple iterator protocol (section 5).
We find that the code can be checked with few false positives and report the
annotation overhead of using our tool. We also discuss how tool shortcom-
ings can be addressed (section 6). To our knowledge, precision and annota-
tion overhead measurements are not available for previous modular protocol
checking approaches.

– API Patterns. We comment on several recurring patterns that we found
to be interesting. These patterns represent challenges that any practical pro-
tocol enforcement technique should be able to handle. Moreover, several of
these patterns are handled elegantly by the novel technical features of our
system. For example:
• It is crucial to track what we refer to as “dynamic state tests,” methods

that can query the abstract state of an object at run-time. For example,
the hasNext method of the Iterator interface.

1 Plural is open-source: http://code.google.com/p/pluralism/
2 API specifications are available at http://www.cs.cmu.edu/∼kbierhof/



Practical API Protocol Checking with Access Permissions 197

open 

valid
endunread read

closed

next() / true next() / false

close()

wasNull()

Fig. 1. Simplified JDBC ResultSet protocol. Rounded rectangles denote states refining
another state. Arches represent method calls, optionally with return values.

• State guarantees, which allow multiple references to modify an object
while all depending on the fact that it will not leave a particular state,
were similarly quite useful.

• Inter-object dependencies, where the state of one object depends on the
state of another, are common but can be precisely checked with our
approach.

We first describe permissions and the Plural tool in section 2, and then we
discuss our case studies in the subsequent sections. Section 7 summarizes related
work and section 8 concludes.

2 Typestate Protocols with Access Permissions

This section summarizes our previous work on access permissions [7] for enforcing
typestate protocols and our work on Plural, an automated tool for checking
permission-based typestate protocols in Java [9]. Plural is described in more
detail in the first author’s dissertation [5].

2.1 Access Permissions

Our static, modular approach to checking API protocols is based on access per-
missions, predicates associated with program references descring the abstract
state of that reference and the ways in which is may be aliased.

In our approach, developpers start by specifying their protocol. Figure 1 shows
a simplified protocol for the JDBC ResultSet interface as a Statechart [22].
ResultSets represent SQL query results, and we will use their protocol as a
running example in this and the following section.

We allow developers to associate objects with a hierarchy of typestates, simi-
lar to Statecharts [22]. For example, while a result set is open, it is convenient to
distinguish whether it currently points to a valid row or reached the end (figure 1).

Methods correspond to state transitions and are specified with access permis-
sions that describe not only the state required and ensured by a method but
also how the method will access the references passed into the method. We dis-
tinguish exclusive (unique), exclusive modifying (full), read-only (pure), immutable,
and shared access (table 1). Furthermore, permissions include a state guarantee,
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Table 1. Access permission taxonomy

Access through Current permission has . . .
other permissions Read/write access Read-only access

None unique unique
Read-only full immutable

Read/write share pure

a state that the method promises not to leave [7]. For example, next can promise
not to leave open (figure 1).

Permissions are associated with object references and govern how objects can
be accessed through a given reference [7]. They can be seen as rely-guarantee
contracts between the current reference and all other references to the same
object: they provide guarantees about other references and restrict the current
reference to not violate others’ assumptions. Permissions capture three kinds of
information:

1. What kinds of references exist? We distinguish read-only and modifying
references, leading to the five different kinds of permissions shown in table
1.

2. What state is guaranteed? A guaranteed state cannot be left by any reference.
References can rely on the guaranteed state even if the referenced object was
modified by other modifying references.

3. What do we know about the current state of the object? Every operation
performed on the referenced object can change the object’s state. In order
to enforce protocols, we ultimately need to keep track of what state the
referenced object is currently in.

Permissions can only co-exist if they do not violate each other’s assumptions.
Thus, the following aliasing situations can occur for a given object: a single
reference (unique), a distinguished writer reference (full) with many readers (pure),
many writers (share) and many readers (pure), and no writers and only readers
(immutable and pure).

Permissions are linear in order to preserve this invariant. But unlike linear
type systems [34], they allow aliasing. This is because permissions can be split
when aliases are introduced. For example, we can split a unique permission into
a full and a pure permission, written unique� full⊗ pure to introduce a read-only
alias. Using fractions [11] we can also merge previously split permissions when
aliases disappear (e.g., when a method returns). This allows recovering a more
powerful permission. For example, full� 1

2 · share⊗ 1
2 · share� full.

2.2 Plural: Access Permissions for Java

Our tool, Plural, is a plug-in to the Eclipse IDE that implements the previously
developed type system [7,3] as a static dataflow analysis for Java [9].
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@Param(name = "stmt", releasedFrom("open"))
public interface ResultSet {

@Full(guarantee = "open")
@TrueIndicates("unread")
@FalseIndicates("end")
boolean next();

@Full(guarantee = "valid", ensures = "read")
int getInt(int column);

@Pure(guarantee = "valid", requires = "read")
boolean wasNull();

@Full(ensures = "closed")
@Release("stmt")
void close();

}

Fig. 2. Simplified ResultSet specification in Plural (using the typestates shown in
figure 1)

In the remainder of this section we show example annotations and explain how
permissions are tracked and API implementations are verified. Then we discuss
tool features we found useful in practice.

Developer annotations. Developers use Java 5 annotations to specify method
pre- and post-conditions with access permissions (figure 2). Figure 2 shows a
simplified ResultSet specification with Plural’s annotations (compare to fig-
ure 1). Annotations on methods specify borrowed permissions for the receiver,
while annotations on method parameters do the same for the associated param-
eter. Borrowed permissions are returned to the caller when the method returns.
The attribute “guarantee” specifies a state that cannot be left while the method
executes. For example, next advances to the next row in the query result, guar-
anteeing the result set to remain open. Cell values can be read with getInt (and
similar but omitted methods) if the result points to a valid row. Conversely,
a required (or ensured) state only has to hold when the method is called (or
returns). For instance, only after calling getInt is it legal to call wasNull. Ad-
ditional annotations will be explained below.

Permission tracking and local permission inference. Our goal is to avoid annota-
tions inside method bodies completely: based on the declared protocols, Plural
infers how permissions flow through method bodies. Since Plural is based on a
dataflow analysis, it automatically infers loop invariants as well.

However, Plural does require additional annotations on method parameters
that have a declared protocol, such as the ResultSet parameter in figure 3.
Notice that we use the same annotations for annotating parameters in client
code that we use for declaring API protocols. While protocol annotations on the
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public static int getFirstInt(@Full(guarantee = "open") ResultSet rs)
{

Integer result = null;
if(rs.next()) {

result = rs.getInt(1);
if(rs.wasNull())

result = null;
return result;

}
else {

return rs.getInt(1); // ERROR: rs in "end" instead of "valid"
}

}

Fig. 3. Simple ResultSet client with error in else branch that is detected by Plural

API itself (e.g., figure 2) can conceivably be provided by the API designer and
amortize over the many uses of that API, the annotation shown in figure 3 is
specific to this client program. In section 6 we discuss the overhead of providing
these additional annotations for two open-source code bases.

Annotations make the analysis modular: Plural checks each method sepa-
rately, temporarily trusting annotations on called methods and checking their
bodies separately. For checking a given method or constructor, Plural assumes
the permissions required by the method’s annotations, i.e., it assumes the de-
clared pre-condition. At each call site, Plural makes sure that permissions re-
quired for the call are available, splits them off (these permissions are “consumed”
by the called method or constructor), and merges permissions ensured by the
called method or constructor back into the current context. Notice that most
methods “borrow” permissions (cf. figure 2), which means that they are both
required and ensured. At method exit points, Plural checks that permissions en-
sured by its annotations are available, i.e., it checks the declared post-condition.

Thus, permissions are handled by Plural akin to conventional Java typing in-
formation: Permissions are provided with annotations on method parameters and
then tracked automatically through the method body, like conventional types for
method parameters. Unlike with Java types, local variables do not need to be
annotated with permissions; instead, their permissions are inferred by Plural.
Permission annotations can be seen as augmenting method signatures. They do
not affect the conventional Java execution semantics; instead, they provide a
static guarantee of protocol compliance without any runtime overhead.

Figure 3 shows a simple client method that retrieves an integer value from the
first column in the first row of the given result set. Plural can be used to check
whether this code respects the protocol declared for the ResultSet interface in
figure 2. (It does not!)

API implementation checking. Our approach not only allows checking whether a
client of an API follows the protocol required by that API, it can also check that
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the implementation of the protocol is consistent with its specification. The key
abstraction for this is the state invariant, which we adapted from Fugue [17]. A
state invariant associates a typestate of a class with a predicate over the fields of
that class. In our approach, this predicate usually consists of access permissions
for fields. An example can be found in figure 7, and details on the semantics of
state invariants can be found in previous work [7].

Method cases. The idea of method cases goes back to behavioral specification
methods, e.g., in the JML [27]. Method cases amount to specifying the same
method with multiple pre-/post-condition pairs, allowing methods to behave
differently in different situations. We early on recognized their relevance for
specifying API protocols [6,4], but we are not aware of any other protocol check-
ing approaches that support method cases. In order to support method cases,
Plural supports tracking disjunctions of possible permissions.

Branch sensitivity. APIs often include methods whose return value indicates the
current state of an object, which we call dynamic state tests. For example, next
in figure 2 is specified to return true if the cursor was advanced to a valid row
and false otherwise.

In order to take such tests into account, Plural performs a branch-sensitive
flow analysis: if the code tests the state of an object, for instance with an if
statement, then the analysis updates the state of the object being tested ac-
cording to the test’s result. For example, Plural updates the result set’s state
to unread at the beginning of the outer if branch in figure 3. Likewise, Plural
updates the result set’s state to end in the else branch and, consequently, signals
an error on the call to getInt.

Notice that this approach does not make Plural path-sensitive: analysis infor-
mation is still joined at control-flow merge points. Thus, at the end of figure 3,
Plural no longer remembers that there was a path through the method on which
the result set was valid. We believe that Plural could be extended to retain this
information, but then we would have to deal with the usual complications of path
sensitivity, i.e., large or infinite numbers of paths even through small methods.

When checking the implementation of a state test method, Plural checks at
every method exit that, assuming true (or false) is returned, the receiver is
in the state indicated by true (resp. false). This approach can be extended to
other return types, although reasoning about predicates such as integer ranges
may require using a theorem prover [8].

Dependent objects. Another feature of many APIs is that objects can become
invalid if other, related objects are manipulated in certain ways. For example,
SQL query results become invalid when the originating database connection is
closed. (A similar problem, called concurrent modification, exists with iterators
[4].) There are no automated modular protocol checkers that we know of that
can handle these protocols, although recent global protocol checking approaches
can [10,30].
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Our solution is to “capture” a permission in the dependent object (the re-
sult set in the example) which prevents the problematic operation (closing the
connection in the example) from happening. The dependent object has to be
invalidated before “releasing” the captured permission and re-enabling the pre-
viously forbidden operation.

Captured permissions are typically required by a method but not returned.
We use @Perm annotations for these situations, which allow declaring permis-
sions required and ensured by a method separately (unlike @Full and similar
annotations, which borrow a permission). Additionally, @Capture tells Plural to
keep tracking the captured permission as a dependent of the capturing object,
i.e., the method or constructor result. That allows explicitly releasing captured
permissions with @Release. Additionally, such permissions will be implicitly re-
leased when the capturing object is no longer used. Released permissions become
available to the client program again. For instance, executeQuery in figure 5 cap-
tures a receiver permission in the returned result set instance, which is explicitly
released with close (figure 2) or implicitly when the result set is no longer used.

Others have modeled dependent objects with linear implications [12,25,21]
but it is unclear how well those approaches can be automated. Our solution is to
use a live variable analysis to detect dead objects, i.e., dead references to objects
with unique permissions, and implicitly release any captured permissions from
these dead objects.3

3 JDBC: Specifying a Java API

The Java Database Connectivity (JDBC) API defines a set of interfaces that Java
programs can use to access relational databases with SQL commands. Database
vendors provide drivers for their databases that are essentially implementations
of the JDBC interfaces. Database client applications access databases primarily
through Connection, Statement, and ResultSet objects. Clients first acquire
a Connection which typically requires credentials such as a username and pass-
word. Then clients can create an arbitrary number of Statements on a given
connection. Statements are used to send SQL commands through the connec-
tion. Query results are returned as ResultSet objects to the client. Conven-
tionally, only one result set can be open for a given statement; sending another
SQL command “implicitly closes” or invalidates any existing result sets for that
statement.

This section discusses the specification of these major interfaces (including
subtypes) using Plural annotations. The specified interfaces are massive: they
define over 400 methods, each of which is associated with about 20 lines of
informal documentation in the source files themselves, for a total of almost 10,000
lines including documentation (see table 2).

3 We could delete these objects (in C or C++) or mark them as available for garbage
collection (in Java or C#), but we are not exploring this optimization possibility
here.
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Table 2. Specified JDBC interfaces with total lines, size increase due to annotations,
methods, annotation counts (on methods, for defining state spaces, and total), and the
use of multiple method cases in each file. Note that each file’s length is almost entirely
due to extensive informal documentation

JDBC On State Mult.
interface Lines (Increase) Methods methods space Total cases
Connection 1259 (9.8%) 47 84 4 88 2
Statement 936 (9.4%) 40 64 2 66 0
PreparedStatement 1193 (5.5%) 55 58 0 58 0
CallableStatement 2421 (5.0%) 111 134 1 135 0
ResultSet 4057 (15.4%) 187 483 8 491 82
Total 9866 (10.4%) 440 823 15 838 84

Fig. 4. Simplified JDBC Connection interface specification

Connections. The Connection interface primarily consists of methods to cre-
ate statements, to control transactional boundaries, and a close method to
disconnect from the database (figure 4). Closing a connection invalidates all
statements created with it, which will lead to runtime errors when using an in-
validated statement. Due to space limits, we do not discuss our specification of
transaction-related features here, but they are included in table 2.

Our goal was to specify JDBC in such a way that statements and result sets
are invalidated when their connections are closed. Our solution is a variant on
our previous work with iterators [4,7]: we capture a share connection permission
each time a statement is created on it. The captured permission has the open
state guarantee, which guarantees that the connection cannot be closed while
the statement is active. Plural releases the captured connection permission from
a statement that is no longer used or when the statement is closed, as explained
in section 2.2. When all statements are closed then a full permission for the
connection can be re-established, allowing close to be called.

Statements. Statements are used to execute SQL commands. Statements define
methods for running queries, updates, and arbitrary SQL commands (figure 5).
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Fig. 5. JDBC Statement interface specification (fragment)

We specify executeQuery similarly to how statements are created on con-
nections. The resulting ResultSet object captures a full permission to the
statement, which enforces the requirement that only one result set per statement
exists. Conversely, executeUpdate borrows a share statement permission and re-
turns the number of updated rows. Since share and full permissions cannot exist
at the same time, result sets have to be closed before calling executeUpdate.
The Statement documentation implies that result sets should be closed be-
fore an update command is run, and our specification makes this point
precise.

The method execute can run any SQL command. If it returns true then the
executed command was a query, which we indicate with the state hasResultSet.
getResultSet requires this state and returns the actual query result.

In rare cases a command can have multiple results, and getMoreResults
advances to the next result. Again, true indicates the presence of a result set.
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∗ ∗

Fig. 6. JDBC ResultSet interface specification (fragment)

We use a full permission because, like execute methods, getMoreResults closes
any active result sets, as stated in that method’s documentation: “Moves to
this Statement object’s next result, returns true if it is a ResultSet object,
and implicitly closes any current ResultSet object(s) obtained with the method
getResultSet.”
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Besides a plain Statement interface for sending SQL strings to the database,
JDBC defines two other flavors of statements, prepared and callable statements.
The former correspond to pattern into which parameters can be inserted, such
as search strings. The latter correspond to stored procedures.

Since these interfaces are subtypes of Statement they inherit the states defined
for Statement. The additional methods for prepared statements are straightfor-
ward to define with these states, while callable statements need an additional state
distinction for detecting NULL cell values.

Overall, we were surprised at how well our approach can capture the design
of the Statement interface.

Result sets. ResultSet is the most complex interface we encountered. We already
discussed its most commonly used features in section 2. In addition, result sets
allow for random access of their rows, a feature that is known as “scrolling”.
Scrolling caused us to add a begin state in addition to the valid and end states.
Furthermore, the cell values of the current row can be updated, which caused
us to add orthogonal substates inside valid to keep track of pending updates (in
parallel to read and unread, see figure 2).

Finally, result sets have a buffer, the “insert row”, for constructing a new row.
The problem is that, quoting from the ResultSet documentation for moveTo-
InsertRow, “[o]nly the updater, getter, and insertRow methods may be called
when the cursor is on the insert row.” Thus, scrolling methods are not available
while on the insert row, although the documentation for these methods does not
hint at this problem.

Our interpretation is to give result sets two modes (i.e., states), scrolling and
inserting, where the former contains the states for scrolling (shaded in figure
1) as substates. moveToInsertRow and moveToCurrentRow switch between these
modes. In order to make the methods for updating cells applicable in both modes
we use method cases which account for all 82 methods with multiple cases in
ResultSet (see table 2).

Figure 6 shows a fragment of the ResultSet interface with our actual protocol
annotations. Notice how the two modes affect the methods previously shown in
figure 2. The figure also shows selected methods for scrolling, updating (including
method cases), and inserting.4

4 Beehive: Verifying an Intermediary Library

This section summarizes a case study in using Plural for checking API compli-
ance in a third-party open source code base, Apache Beehive. In the process we
specified protocols for several other APIs besides JDBC (see section 3) including
a simple protocol for Beehive itself.

4 updateInt defines two cases, which are both based on a borrowed full permission.
One case requires that permission in the valid state and ensures pending, while the
other case requires and ensures insert.
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Beehive5 is an open-source library for declarative resource access. We have
focused on the part of Beehive that accesses relational databases using JDBC.
Beehive clients define Java interfaces and, using Java annotations, choose which
SQL commands should be executed when a method in those interfaces is called.
Notice that this design is highly generic: the client-specified SQL commands
can include parameters that are filled with the parameters passed to the associ-
ated method. Beehive then generates code implementing the client-defined inter-
faces that simply calls a generically written SQL execution engine, JdbcControl,
whose implementation we discuss below.

We first describe the APIs used by Beehive before discussing the challenges
in checking that Beehive correctly implements a standard Java and its own API.

4.1 Checked Java standard APIs

We specified four Java standard APIs used by Beehive, highlighting Plural’s
ability to treat APIs orthogonally.

JDBC. We described the JDBC specification in section 3. Since Beehive has no
apriori knowledge of the SQL commands being executed (they are provided by a
client), it uses the facilities for running “any” SQL command described in section
3. Its use of result sets is limited to reading cell values, and a new statement
is created for every command. We speculate that the Beehive developers chose
this strategy in order to ensure that result sets are never rendered invalid from
executing another SQL command, which ends up helping our analysis confirm
just that.

Beehive is tricky to reason about because it aliases result sets through fields
of various objects. Plural’s modular approach nonetheless allowed us to move
outwards from methods calling into JDBC to callers of those methods. In other
words, we followed a process of running Plural “out of the box” on a given Beehive
class first. Places where Plural issued warnings usually required annotations
on method parameters (or for state invariants). Running Plural again would
possibly result in warnings on the methods calling the previously annotated
methods. Providing annotations for these methods would move the warnings
again until a calling method was able to provide the required permissions by
itself because it created the needed API object.

Collections API. Beehive generically represents a query result row as a map
from column names to values. One such map is created for each row in a result
set and added to a list which is finally returned to the client.

The Java Collections API defines common containers such as lists and maps.
Iterators are available for retrieving all elements in a container one by one. Maps
provide views of their keys, values, and key-value pairs as sets. Lists support sub-
list views that contain a subsequence of the list’s elements. Views are “backed”
by the underlying container, i.e., changes to the view affect the underlying con-
tainer.
5 http://beehive.apache.org/
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We specified the Collections API following our previous work [7]. Iterators are
challenging because they do not tolerate “concurrent modification” of the under-
lying collection. We address this problem by capturing a immutable collection
permission in the iterator [4,7]. Views can be similarly handled by capturing a
permission from the underlying collection when creating the view.

Regular expressions. Regular expressions are only used once in Beehive. The
pattern being matched is a static field in one of Beehive’s classes, which we
annotate with @Imm.

The API includes two classes. A Pattern is created based on a given regular
expression string. Then, clients call find or match to match the pattern in a
given string. The Matcher resulting from these operations can be used to retrieve
details about the current match and to find the next matching substring.

We easily specified this protocol in Plural. As with iterators, we capture a
immutable Pattern permission in each Matcher. We use a typestate matched to
express a successful match and require it in methods that provide details about
the last match.

Exceptions. When creating an exception, a “cause” (another exception) can be
set once, either using an appropriate constructor or, to our surprise, using the
method initCause. The latter is useful when using exceptions defined before
causes were introduced in Java 1.4. Beehive uses initCause to initialize a cause
for such a legacy exception, NoSuchElementException. This protocol is trivial
to specify in Plural, but it was fascinating that even something as simple as
exceptions has a protocol.

Recurring patterns. There were at least three common challenges that we found
across several of the APIs we specified.

1. We were surprised how prevalent dynamic state test methods are, and how
important they are in practice. We found dynamic state test methods in
JDBC, Collections, and regular expressions, and a large number of them
in JDBC alone. For example, the method hasNext in the Java Iterator
interface tests whether another element is available ([4], cf. section 4.2), and
isEmpty tests whether a collection is empty. It was crucial for handling the
Beehive code that our approach can express and benefit from the tests that
are part of JDBC’s facilities for executing arbitrary SQL commands.

2. We also found protocols involving multiple interdependent objects in these
APIs (and very prevalent in JDBC). We could model these protocols by
capturing and later releasing permissions.

3. We used method cases in JDBC and the Collections API. As previously
shown, method cases can be used to specify full Java iterators, which may
modify the underlying collection [4].

We believe that these are crucial to address in any practical protocol checking
approach; our approach was expressive enough to handle these challenges for all
the examples in our case study (see section 3).
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4.2 Protocol Implementations

This section summarizes challenges in checking that Beehive implements the Java
iterator API and that Beehive’s main class is implemented correctly assuming
clients follow Beehive’s API protocol.

Implementing an iterator. Beehive implements an Iterator over the rows of a
result set. Figure 7 shows most of the relevant code. We use state invariants,
i.e., predicates over the underlying result set (see section 2.2), to specify iterator
states. Notice that alive is our default state that all objects are always in. Thus
its state invariant is a conventional class invariant [27,2] that is established in
the constructor and preserved afterwards.

When checking the code as shown, Plural issues 3 warnings in hasNext (see
table 3). This is because our vanilla iterator specification [7] assumes hasNext,
which tests if an element can be retrieved, to be pure. Beehive’s hasNext, how-
ever, is not pure because it calls next on the ResultSet!

The way to fix this problem depends on whether or not you believe the
hasNext method is supposed to be pure in all cases. If you believe it should
be pure, you could modify Beehive’s implementation of the iterator interface so
that all effects are performed in the next method. Alternatively, you can specify
the hasNext method as requiring a full permission, which we have done, and
which causes the warnings to disappear.

Note that next’s specification requires available, which guarantees that
_primed is true (see figure 7), making the initial check in next superfluous
(if all iterator clients were checked with Plural as well).

Formalizing Beehive client obligations. Beehive is an intermediary library for
handling resource access in applications: it uses various APIs to access these
resources and defines its own API through which applications can take advantage
of Beehive. We believe that this is a very common situation in modern software
engineering: application code is arranged in layers, and Beehive represents one
such layer. The resource APIs, such as JDBC, reside in the layer below, while the
application-specific code resides in the layer above, making applications using
Beehive appear like an hourglass.

Beehive’s API is defined in the JdbcControl interface, which Jdbc-
ControlImpl implements. JdbcControlImpl in turn is a client to the JDBC API.
JdbcControlImpl provides three methods onAcquire, invoke, and onRelease
to clients. The first one creates a database connection, which the third one closes.
invoke executes an SQL command and, in the case of a query, maps the result
set into one of several possible representations. One representation is the iterator
mentioned above; another one is a conventional List. Each row in the result is
individually mapped into a map of key-value pairs (one entry for each cell in
the row) or a Java object whose fields are populated with values from cells with
matching names.

Notice that some of these representations, notably the iterator representation,
of a result require the underlying result set to remain open. The challenge now is
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∗ − ∗

Fig. 7. Beehive’s iterator over the rows of a result set (constructor omitted). Plural
issues warnings because hasNext is impure.
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to ensure that onRelease is not called while these are still in use because closing
the connection would invalidate the results. This requirement is identical to the
one we described for immediate clients of Connection, and thus we should be
able to specify it in the same way.

However, the connection is in this case a field of a surrounding Beehive
JdbcControlImpl object, and Plural has currently no facility for letting Jdbc-
ControlImpl clients keep track of the permission for one of its fields. Therefore,
we currently work with a simplified JdbcControlImpl that always closes result
sets at the end of invoke. Its specification, as desired, enforces that onAcquire
is called before onRelease and invoke is only called “in between” the other two.
This, however, means that our simplified JdbcControlImpl does not support
returning iterators over result sets to clients, since they would keep result sets
open. Overcoming this problem is discussed in the next section.

As mentioned, Beehive generates code that calls invoke. The generated code
would presumably have to impose usage rules similar to the ones for invoke on
its clients. Plural could then be used to verify that the generated code follows
JdbcControlImpl’s protocol.

5 PMD: Scalability

We used the version of PMD included in the DaCapo 2006-10-MR2 benchmarks6
to investigate how Plural can be used to check existing large code bases. In the
next section this case study is used for direct comparison with state-of-the-art
global protocol analyses [10,30], which typically focus on simple protocols such
as the well-known iterator protocol. Iterators are widely used in PMD, and
most iterations in PMD are over Java Collections (see section 4.1), but PMD
implements a few iterator classes over its own data structures as well.

Iterator protocol. We decided to focus on the simple and well-known iterator
protocol (see section 4.1). It took one of the authors 75 minutes to examine and
specify PMD, a specification that ultimately consisted of just 15 annotations.
This then enabled Plural to check that this protocol is followed all across PMD,
which includes 170 distinct calls to the next method defined in the Iterator
interface. Most iterator usages could be verified by Plural without any addi-
tional annotations because they are entirely local to a method. Annotations
were needed where iterators were returned from a method call inside PMD and
then used elsewhere. In one place an iterator is passed to a helper method after
checking hasNext, and we could express the contract of this helper method with
a suitable annotation.

Iterator implementations. PMD implements three iterators of its own. In one of
them, TreeIterator, the implementation of hasNext is not only impure, like
Beehive’s iterator, but advances the iterator every time it is called. Thus, failure
to call next after hasNext results in lost elements. The other iterators exhibit
6 http://dacapobench.org/
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behavior compatible with the conceptual purity of hasNext: next is used to pre-
fetch the element to be returned the next time it is called before returning the
current element. hasNext then simply checks the pre-fetched element is valid,
which is typically a pure operation.

In light of these and the iterator implementation in Beehive (figure 7), it ap-
pears legitimate to ask whether hasNext is really a pure operation. This would
have significant consequences for behavioral specification approaches like the
JML [27] or Spec# [2] because they use pure methods in specifications. Conven-
tionally, the specification of next in the JML would be “requires hasNext()”,
but that would be illegal if hasNext was not pure. In contrast, our specifications
are more robust to the non-purity of hasNext. In fact, Plural can verify iterator
usage in PMD with a full permission for hasNext with the same precision.

6 Evaluation

This section summarizes overhead and precision of applying Plural to Beehive
and discusses improvements to the tool to address remaining challenges.

Annotation overhead: The price of modularity. The overhead for specifying Bee-
hive is summarized in table 3. We used about 1 annotation per method and 5
per Beehive class, for a total of 66 annotations in more than 2,000 lines, or about
one annotation every 30 lines. Running Plural on the 12 specified Beehive source
files takes about 34 seconds on a 800 Mhz laptop with 1GB of heap space for
Eclipse including Plural.

For PMD we mentioned in section 5 that we only needed 15 annotations in
total, which one of the authors provided in approximately 75 minutes. Thus,

Table 3. Beehive classes checked with Plural. The middle part of the table shows
annotations (on methods, invariants, and total) added to the code. The last 2 columns
indicate Plural warnings and false positives.

Lines / Annotations Plural False
Beehive class Methods Meths. Invs. Total warnings pos.
DefaultIteratorResultSetMapper 37 / 2 1 0 1 0 0
DefaultObjectResultSetMapper 127 / 2 2 0 2 0 0
JdbcControlImpl 521 / 13 13 1 14 2 1
ResultSetHashMap 85 / 9 9 0 9 0 0
ResultSetIterator 106 / 4 4 3 7 3 0
ResultSetMapper 32 / 2 2 0 2 0 0
RowMapper 260 / 5 9 1 10 0 0
RowMapperFactory 156 / 7 3 0 3 4 4
RowToHashMapMapper 57 / 2 4 1 5 0 0
RowToMapMapper 49 / 2 4 1 5 0 0
RowToObjectMapper 236 / 3 4 0 4 0 0
SqlStatement 511 / 14 4 0 4 0 0
Total 2158 / 65 59 7 66 9 5
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checking the iterator protocol was straightforward and imposed almost no over-
head. Running Plural on PMD’s entire codebase of 40KLOC in 446 files (with
the same configuration as for Beehive) takes about 15 minutes.

Precision: A benefit of modularity. Plural reports 9 problems in Beehive. Three of
them are due to the impure hasNext method in ResultSetIterator (see section
4.2). Letting hasNext use a full permission removes these warnings. Another
warning in JdbcControlImpl is caused by an assertion on a field that arguably
happens in the wrong method: invoke asserts that the database connection
is open before delegating the actual query execution to another, “protected”
method that uses the connection. Plural issues a warning because a subclass
could override one, but not the other, of these two methods, and then the state
invariants may no longer be consistent. The warning disappears when moving the
assertion into the protected method. Furthermore we note our state invariants
guarantee that the offending runtime assertion succeeds.

The remaining warnings issued by Plural are false positives. This means that
our false positive rate is is around 1 per 400 lines of code. We consider this to be
quite impressive for a behavioral verification tool applied to complicated APIs
(JDBC and others) and a very challenging case study subject (Beehive).

The false positive rate in PMD is extremely low. Warnings remained only
in three places where PMD checks that a set is non-empty before creating an
iterator and immediately calling next to get its first element. This is also men-
tioned as a source of imprecision in the most recent global protocol compliance
checkers, which check for the same iterator protocol in PMD with 6 [10] and 2
[30] remaining warnings, respectively.

Future improvements. The remaining warnings in Beehive fall into the following
categories:

– Reflection (1). Plural currently cannot assign permissions to objects created
using reflection in
RowMapperFactory.

– Static fields (3). RowMapperFactory manipulates a static map object, which
we specified to require full permissions. For soundness, we only allow dupli-
cable permissions, i.e., share, pure, and immutable, on static fields.

– Complex invariant (1). JdbcControlImpl opens a new database connection
in onAcquire only if one does not already exist. We currently cannot express
the invariant that a non-null field implies a permission for that field, which
would allow Plural to verify the code.

These are common sources of imprecision in static analyses. We are consider-
ing tracking fields as implicit parameters in method calls, as discussed in section
4.2, and static fields could be handled in this way as well. Related to this is-
sue is also a place in Beehive where a result set that was assigned to a field
in the constructor is implicitly passed in a subsequent method call. We turned
it into an explicit method parameter for now (the call to mapRowToReturnType
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in figure 7). Java(X) has demonstrated that fields can be tracked individually
[14], although we would like to track permissions for “abstract” fields that do
not necessarily correspond to actual fields in the code. We are also working on a
strategy for handling object construction through reflection, and on generalizing
the state invariants expressible in Plural.

We also simplified the Beehive code in a few places where our approach for
tracking local aliases leads to analysis imprecisions. Since local alias tracking is
orthogonal to tracking permissions we used the simplest available, sound solution
in Plural, which is insufficient in some cases. We plan to evaluate other options.

Problems occur when the same variable is assigned different values on different
code paths, usually depending on a condition. When these code paths rejoin,
Plural assumes that the variable could point to one of several locations, which
forbids strong updates. We are investigating using more sophisticated approaches
that avoid this problem. Alternatively, Plural will work fine when the part of the
code that initializes a variable on different paths is refactored into a separate
method. Notice, however, that tracking local aliasing is a lot more tractable than
tracking aliasing globally. Permissions reduce the problem of tracking aliasing
globally to a local problem.

Finally, we assumed one class to be non-reentrant, but we believe a more
complicated specification would allow the class to be analyzed assuming re-
entrancy. Our approach conservatively assumes that all classes are re-entrant
[7]—meaning that within the dynamic scope of a method, another method of
the same class may be invoked with the same receiver object—but in practice
that is not always the developer’s intention. Therefore, we use the (currently
unchecked) annotation shown in figure 7 to mark a class as non-reentrant, which
causes Plural to omit certain checks during API implementation checking. We
are planning on checking this annotation with Plural in the future.

Refactoring option. Notice that besides improving the tool there is usually the
option of refactoring the problematic code. We believe that this is an indica-
tor for the viability of our approach in practice, independent of the features
supported by our tool: developers can often circumvent tool shortcomings with
(fairly local) code changes. On the other hand, we have not seen many examples
that fundamentally could not be handled by our approach.

Iterative process. We noticed that Plural has several characteristics that seem
to facilitate its retroactive use with existing code. First, running Plural on un-
annotated API client code will result in warnings on some of the calls into
the API. Removing these warnings requires annotating the client methods in
question, which will “move” the warnings to where these methods are invoked.
This process continues until it reaches code where API objects are created. In the
case of iterators, that is often the method where they are also used, in which case
no developer intervention is required. Second, our experience also suggests that
checking protocols for different APIs is largely orthogonal. Finally, annotations
allow making assumptions about parts of the codebase that one wants to ignore



Practical API Protocol Checking with Access Permissions 215

for the time being, for instance because that part of the code is known not to
interfere with the API protocol at hand.

7 Related Work

We previously proposed access permissions for sound, modular typestate pro-
tocol enforcement in the presence of aliasing, first for single-threaded [7] and
recently for multi-threaded programs [3]. We showed on paper that the proposed
type systems can handle interesting protocols, including iterators. We also devel-
oped Plural, an automated tool that embodies our permission-based approach
as a static dataflow analysis for Java [9]. A comprehensive description of the
Plural tool is part of the first author’s dissertation [5]. This paper evaluates our
approach for specifying and checking compliance to API protocols using Plural.

A plethora of approaches was proposed in the literature for checking protocol
compliance and program behavior in general. These approaches differ signifi-
cantly in the way protocols are specified, including typestates [33,15,26,19,17,7],
type qualifiers [20], size properties [13], direct constraints on ordering [24,10,30],
type refinements [29,14], first-order [27,2] or separation logic [32], and various
temporal logics [23]. In these approaches, like in ours, usage rules of the API(s)
of interest have to be codified by a developer. Once usage protocols are cod-
ified, violations can be detected statically (like in our and most of the above
approaches) or dynamically (while the program is executing, e.g. [6,18]).

Many of the proposed static approaches, including ours, are modular and
require developer-provided annotations in the analyzed code in addition to cod-
ifying API usage rules (e.g. [17,14]) but there are also global approaches that
require no or minimal developer intervention (e.g. [20,23]). Unlike previous mod-
ular approaches, our approach does not require precise tracking of all object
aliases (e.g. [15,17]) or impose an ownership discipline on the heap (e.g. [2]) in
order to be modular.

Ours is one of the few approaches that can reason about correctly implement-
ing APIs independent from their clients. (Interestingly, all of these approaches
that we are aware of are modular typestate analyses [17,26,7].) Ours is the only
approach (that we are aware of) that can verify correct usage and implementa-
tion of dynamic state test methods. Several other approaches can verify their
correct usage (e.g., [29,13]), but not their implementation.

Previous modular approaches are often proven sound and shown to work for
well-known examples such as file access protocols. But automated checkers are
rare, and case studies with real APIs and third-party code hard to find. Notable
exceptions include Vault [15] and Fugue [17,16], which are working automated
checkers that were used to check compliance to Windows kernel and .NET stan-
dard library protocols, respectively (although Vault requires rewriting the code
into its own C-like language).

This paper shows that our approach can be used in practical development
tools for enforcing real API protocols. As far as we know, this paper is the first
one that reports on challenges and recurring patterns in specifying typestate
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protocols of large, real APIs. We also report overhead (in terms of annotations)
and precision (in terms of false positives) in checking open-source code bases
with our tool.

We suspect that empirical results are sparse because APIs such as the ones
discussed in this paper would be difficult to handle with existing modular ap-
proaches due to their limitations in reasoning about aliased objects. These lim-
itations make it difficult to specify the object dependencies we found in the
JDBC, Collections, and Regular Expressions APIs in the Java standard library.
Fugue, for instance, was used for checking compliance with the .NET equivalent
of JDBC, but the published specification does not seem to enforce that con-
nections remain open while “commands” (the .NET equivalent of JDBC “state-
ments”) are in use [16]. Existing work on permissions recognized these challenges
[11,12] but only supports unique and immutable permissions directly and does not
track behavioral properties (such as typestates) with permissions.

In contrast to modular checkers, many global analyses have been implemented
and empirically evaluated. While model checkers [23] typically have severe limita-
tions in scaling to larger programs, approaches based on abstract interpretations
have been shown to scale quite well in practice. “Sound” (see below) approaches
rely on a global aliasing analysis [1,19,10,30] and become imprecise when alias
information becomes imprecise.

This paper shows that our approach at least matches the most recently pro-
posed global analyses that we are aware of in precision when verifying iterator
usage in PMD [10,30] with extremely low developer overhead. Another previous
global typestate analysis has also been used—with varying precision—to check
simple iterator protocols, but in a different corpus of client programs [19].

These global typestate-based analyses have been used to make sure that dy-
namic state test methods are called, but not that the test actually indicated
the needed state [19,10,30]. For example, the protocols being checked require
calling hasNext before calling next in iterators, but they do not check whether
hasNext returned true, which with our approach is expressed and ensured easily.
Tracematch-based analyses [10,30] currently lack the expressiveness to capture
these protocols more precisely, while approaches based on must-alias information
(e.g. [19]) should be able to, but do not in their published case studies, encode
these protocols. This is arguably an omission in these approaches that, given the
importance of dynamic state tests in practice, we believe should be addressed.

Note that our approach, unlike global analyses, can reason about API imple-
mentations separately from clients and handles dynamic state tests soundly, as
discussed above. Reasoning about API implementations separately from clients
is critical for libraries such as Beehive that may have many clients. Our approach
also seems to match the precision of global analysis for checking a simple iterator
protocol. Additional empirical comparisons with global analyses can be found
elsewhere [5].

Lastly, work has been done on inferring API usage protocols [31] and flagging
deviations from commonly followed rules using statistical methods [28]. These
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approaches are complimentary to ours as the inferred protocols could be specified
and checked with our approach.

8 Conclusions

This paper evaluates access permissions for enforcing API protocols using our
prototype tool, Plural. It reports on our experience in specifying JDBC and
several other important Java standard APIs, identifying common challenges for
any practical API protocol enforcement technique. The paper also summarizes
case studies in checking third-party open source applications after the fact, i.e.,
by using Plural on the existing code base, injecting annotations, and performing
small refactorings. In future work we plan to evaluate Plural during software
development.

Intermediary libraries, such as the one we consider in this paper, represent a
compelling use case for Plural. Because Plural is modular and can verify imple-
mentations of protocols it can be used to verify the library by itself, assuming
the specification of underlying APIs and imposing rules on potential clients but
without depending on the specifics of a sample client or a concrete implementa-
tion of the underlying APIs. Thus, the effort for verifying a library can amortize
across the users of the library and the possible combinations of underlying API
implementations (such as the drivers for various databases).

To our knowledge, this is the first comprehensive evaluation of a modular
protocol checking approach in terms of its ability to specify large, real APIs.
We also report annotation overhead and precision in checking open-source code
bases with our tool. We find that our approach imposes moderate developer
overhead in the form of annotations on classes and methods and produces few
false positives. These results indicate that our approach can be used to specify
and enforce API protocols in practice. From specifying APIs we notice several re-
curring patterns including the importance of dynamic state tests, method cases,
and the dependency of API objects on each other. The extremely small over-
head of enforcing a simple protocol (iterators) in a large code base (PMD) also
suggests that our approach can be introduced gracefully into existing projects,
with increasing effort for increasingly interesting protocols.
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Abstract. Traits are reusable building blocks that can be composed to share
methods across unrelated class hierarchies. Original traits are stateless and cannot
express visibility control for methods. Two extensions, stateful traits and freez-
able traits, have been proposed to overcome these limitations. However, these ex-
tensions introduce complexity and have not yet been combined to simultaneously
add both state and visibility control to traits.

This paper revisits the addition of state and visibility control to traits. Rather
than extending the original traits model with additional operations, we allow traits
to be lexically nested within other modules. Traits can then have (shared) state
and visibility control by hiding variables or methods in their lexical scope. Al-
though the Traits’ “flattening property” has to be revisited, the combination of
traits with lexical nesting results in a simple and expressive trait model. We dis-
cuss an implementation of the model in AmbientTalk and specify its operational
semantics.

1 Introduction

Traits have been proposed as a mechanism to compose and share behavioral units be-
tween distinct class hierarchies. They are an alternative to multiple inheritance, the most
significant difference being that name conflicts must be explicitly resolved by the trait
composer. Traits are recognized for their potential in supporting better composition and
reuse. They have been integrated into a significant number of languages, such as Perl 6,
Slate [1], Squeak [2], DrScheme OO [3] and Fortress [4]. Although originally designed
in a dynamically typed setting, several type systems have been built for Traits [5,6,7,8].

Several extensions of the original traits have been proposed to fix their limitations.
Stateful traits present a solution to include state in traits [9]. In addition to defining
methods, a trait may define state. This state is private by default and may be accessed
within the composing entity. Freezable traits [10] provide a visibility control mechanism
for methods defined in a trait: a method may either be (i) public and late bound or (ii)
private and early bound. This enables the composer to change a trait method’s visibility
at composition time to deal with unanticipated name conflicts.

Although these extensions have been formally described and implementations were
proposed, their main drawback is that the resulting language has too many operators
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and may introduce complex interactions with the host language. For example, freez-
able traits introduce early bound message dispatch semantics to support method privacy
which may conflict with the host language’s late bound semantics. Stateful traits intro-
duce private state that may conflict with the host language’s visibility rules. Finally,
stateful traits must extend the host language’s memory layout with a “copy down” tech-
nique [11] when linearizing variables whose offset in the memory layout is not constant
among different composition locations.

This paper proposes a unique and simpler extension to traits to achieve both state and
visibility control (to distinguish public from private state and behavior). We first revisit
previous extensions to traits (as defined by among others this paper’s second and third
author). Subsequently, instead of providing two different visibility control mechanisms
– one for state and another one for methods – we use lexical scoping as the sole visibility
control mechanism for both state and methods.

Our approach is validated in AmbientTalk, a classless object-based language. In Am-
bientTalk, traits are plain, first-class objects that can be lexically nested (within other
objects or methods). Traits can have private or public state. Unanticipated name con-
flicts can be reduced because a trait can make methods private by hiding them in its
lexical scope. However, there is no mechanism to fully support unanticipated name
conflicts, since the composer cannot rename or hide conflicting methods.

The contribution of this paper is a trait model that supports both state and visibility
control without the introduction of any new composition operators, in contrast to state-
ful or freezable traits. Instead, our model relies on the introduction of one feature: lex-
ical nesting. Our simpler model does require more support from its host language than
the original one and is therefore not as straightforward to add to existing languages as
is the original. Our contribution is validated as follows:

– we describe an existing implementation of our model in the AmbientTalk language.
– we demonstrate the effectiveness of our trait model by using it to structure a non-

trivial Morphic-like UI framework.
– we provide an operational semantics to model lexical nesting of objects and the

composition of lexically nested traits.

The paper is organized as follows. We first give a brief review of traits and point out
some limitations related to state and visibility (Section 2). We then show how lexical
nesting may be combined with traits (Section 3). To illustrate the implication of this
combination in practice, we discuss a small case study (Section 4). We then formalize
our approach by giving an operational semantics (Section 5), the properties of which are
subsequently discussed (Section 6). A related work section (Section 7) and a conclusion
end this paper (Section 8).

2 Traits and Their Limitations

This section provides a brief description of the original Traits model. Readers already
familiar with Traits may safely skip Section 2.1 and jump directly to Section 2.2.
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2.1 Traits in a Nutshell

An exhaustive description of Traits may be found in previous work [12]. This section
highlights the most relevant aspects of Traits for the purpose of this paper.

Reusable groups of methods. A trait is a set of methods that serves as the behavioral
building block of classes and is a primitive unit of code reuse. Traits cannot define state
but may manipulate state via accessor methods.

Explicit composition. A class is built by reference to its superclass, uses a set of traits,
defines state (variables) and behavior (methods) that glue the traits together; a class
implements the required trait methods and resolves any method conflicts. Trait compo-
sition respects the following three rules:

– Methods defined in the composer (i.e., class or trait) using a trait take precedence
over trait methods. This allows methods defined in a composer to override methods
with the same name provided by used traits; we call these methods glue methods.

– Traits may be flattened. In any class composer the traits can be in-lined to yield an
equivalent class definition that does not use traits. This helps to understand classes
that are composed of a large number of traits.

– Composition order is irrelevant. All the traits have the same precedence, and hence
conflicting trait methods must be explicitly disambiguated by the composer.

Conflict resolution. While composing traits, method conflicts may arise. A conflict
arises if two or more traits are combined that provide identically named methods not
originating from the same trait. The composer can resolve a conflict in two ways:
by defining a (glue) method that overrides the conflicting methods, or by excluding
a method from all but one trait. Traits allow method aliasing to introduce an additional
name for a method provided by a trait. The new name is used to obtain access to a
method that would otherwise be unreachable because it has been overridden.

2.2 Issues with Freezable Traits and Stateful Traits

Since the original paper Traits: Composable Units of Behavior was published at ECOOP
2003 [13], several communities expressed their interest in Traits. In spite of its accep-
tance, the trait model suffers from several drawbacks.

State. First, state is not modeled: a trait is made of a set of method definitions, required
method declarations and a composition expression. At that time, allowing traits to define
variables was not considered and was intentionally left as future work. The follow-up
work, stateful traits [9], addressed this very issue. It introduces state and a visibility
mechanism for variable privacy. Trait variables are private. Variable sharing is obtained
with a new composition operation (called @@). Variables defined in different traits may
be merged when those traits are composed with each other. This model raises several
questions regarding encapsulation since a trait may be proposed as a black box and the
composer has means to “open” it up. Since a linear object memory layout is employed
in most efficient object-oriented language implementation, a trait variable may have a
different offset in the object layout at different composer locations. To be able to keep
using a linear object layout, a technique known as “copy down” has to be employed [11].
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Visibility. Second, no visibility control was proposed in the original version of traits.
Reppy and Turon [14] proposed a visibility mechanism à la Java with public and private
keywords. These access modifiers determine the visibility the members will have after
they are inlined into a class but cannot be changed by the trait composer. Although
having these visibilities for classes seems to be widely accepted, having the very same
visibilities for traits seems not appropriate since the range of composition operators is
far greater than the one for classes. Van Limberghen and Mens [15] showed that adding
public/private/protected properties to attributes in mixins does not offer an adequate
encapsulation mechanism. Traits can be composed in more ways than classes or mixins.

Freezable Traits [10] introduced visibility control to fully support unanticipated name
conflicts. The composer may change the visibility of trait methods at composition time
using two new operators freeze and defrost: the first operator turns a public late-bound
method into a private early-bound method while the second reverts a private method
into a public one. The problem of Freezable Traits is that it is complex to grasp the
consequence of a change. More importantly Freezable Traits are based on the use of
early-bound method dispatch. Such a mechanism may not be available in the host lan-
guage implementation and adding it may radically change the resulting language.

Analysis. The two extensions to traits described above were designed in separation.
Combining them into a unique language leads to a complex situation where two differ-
ent visibility mechanisms coexist. Although doable, this would significantly raise the
complexity of the trait model since 3 new operators (@@, freeze, defrost) and two vis-
ibility mechanisms would need to be added, which clearly goes against the simplicity
of the original model.

In the following Section, we extend traits with both state and visibility control solely
by combining them with lexical nesting of objects in the host language. Our model does
not introduce any additional composition operators with respect to the original model.

3 Lexically Nested Object-Based Traits

In this Section, we discuss how state and visibility control can be added to traits. Our
first change to the model is that we no longer represent traits as distinct, declarative
program entities, but rather as plain runtime objects (as in Self [16]). More specifically,
traits will be represented as objects that close over their lexical environment i.e., as
closures. In languages that support closures, such as Scheme, function bodies close over
their defining lexical environment. By doing so, the lexical environment may outlive the
activation record in which it was created. Thus, a lexically free variable will retain its
value and is said to have an indefinite extent. This property enables closures to hide
(mutable) variables and auxiliary functions in their lexically enclosing scope.

In the following section we discuss how lexical scoping can and has been reconciled
with object-oriented programming. We then introduce lexically nested traits in Section
3.2. Section 3.3 discusses how to compose such traits.

3.1 Objects as Closures

It has long been known that closures can be used to implement objects [17, 18, 19].
While closures successfully capture the essence of OOP, the expression of objects as
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functions and message passing as function calls models objects only as a “second class”
abstraction. There do exist a number of object-oriented languages that have introduced
first-class support for objects and message passing without losing the benefits of rep-
resenting objects as closures. Examples of such languages include Emerald [20], EC-
MAScript (a.k.a. Javascript) [21], Beta [22], E [23] and Newspeak [24].

We introduce traits as closures in the AmbientTalk language [25,26], an object-based
distributed programming language that is closest in style to Miller’s E language.

Objects as closures in AmbientTalk. AmbientTalk is a classless, object-based language.
Listing 1 defines a simple counter abstraction with operations to access, increment and
decrement its value. In languages that support (either first or second class) objects as
closures, the role of classes as object generators is often replaced by functions that
return a new object whenever they are called (cf. E [23], Emerald [20], Scheme [18]).
We will name such functions, like the makeCounter function defined above, “constructor
functions”. To create a new counter, one calls the makeCounter constructor function.

� �

def makeCounter(val) {
object: {

def count() { val };
def inc() { val := val + 1 };
def dec() { val := val - 1 };

}
}

� �

Listing 1. Constructor function for counter objects.

AmbientTalk fully exploits lexical scoping and allows object definitions to be nested
within other object definitions or within the scope of a function or method body. In the
above listing, the object construction expression object: {...} is lexically nested within
the function makeCounter. The object expression groups the methods and fields of an
object and evaluates to a new, independent object. Within the expression one can refer
to lexically free variables, such as val. Objects close over their lexical environment,
such that these variables have an indefinite extent. This allows the counter to keep track
of its state using val, while keeping this variable completely hidden within its lexical
scope. Executing makeCounter(0).val will raise an exception.

This simple object model removes the need for special language constructs for object
creation (replaced by calling a constructor function), visibility control (hiding names us-
ing lexical scoping), special constructor methods (replaced by constructor functions),
static fields or methods (which are free variables of the constructor function) and sin-
gletons (by not nesting an object definition within a constructor function).

Lexical nesting and inheritance. AmbientTalk, like Self [27], supports object-based
inheritance which is a relationship between two objects, a delegator and a delegate,
rather than between a class and a superclass. Object-based inheritance implies that if the
delegator receives a message it does not understand, it will delegate this message to its
delegate object. Delegating a message to an object is different from sending a message
to an object. Delegation, as first proposed by Henry Lieberman [28], implies that if a
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matching method is found in the delegate, in the subsequent method invocation the self

pseudovariable will refer to the delegator (that is: the object that originally received the
message). This property ensures that object-based inheritance properly supports method
overriding.

In AmbientTalk, every object has a field named super which refers to an object’s del-
egate. There is only one such field in each object; multiple inheritance is not supported.
Objects by default delegate to an object named nil. Listing 2 exemplifies object-based
inheritance. It shows the abstraction of a counter that cannot be decremented below
zero. The delegate of such a “positive” counter object is a regular counter object. Any
message for which a positive counter does not implement a method will be delegated
to a regular counter object. The positive counter overrides the dec method and, if the
counter has not reached zero yet, explicitly delegates the dec message to its delegate by
means of the syntax superˆdec().

� �

def isStrictlyPositive(x) { x > 0 };

def makePositiveCounter(val) {
extend: makeCounter(val) with: {

def dec() {
if: isStrictlyPositive(self.count()) then: {

superˆdec()
}

}
}

}
� �

Listing 2. Object-based inheritance.

Because AmbientTalk allows both lexical nesting and (object-based) inheritance, we
must clarify the semantics of looking up identifiers, as there are now two hierarchies of
names: the lexical scope (starting with the object itself, ending in the top-level scope
via lexical nesting) and the object’s inheritance chain (starting with self, ending in nil

via each object’s super field). An unqualified identifier, such as val, is always looked
up in the object’s lexical scope. A qualified identifier, such as inc in c.inc() or count in
self.count(), is looked up in the receiver’s inheritance chain. The major difference with
mainstream object-oriented languages is that m() is not equivalent to self.m(). This is
similar to method lookup in Newspeak [24], except that in Newspeak the inheritance
chain is still considered if the method is not lexically visible.

The example given above shows how the positive counter abstraction can unam-
biguously make use of both lexically visible as well as inherited methods. The call to
isStrictlyPositive is guaranteed to refer to the lexically visible definition. The invoca-
tion self.count() will find the method defined in the delegate object.

3.2 Lexically Nested Traits

AmbientTalk supports trait-based composition between objects. An object can import
zero or more traits when it is defined. This causes the object to acquire all of the methods
defined by its imported traits, as if it had defined those methods itself. If an imported
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method name clashes with another imported name, or with a name explicitly defined
by the importing object, an exception is raised when the object is created to signal
this conflict. Conflicts should be dealt with by the programmer by either aliasing an
imported method name or by excluding it.

In AmbientTalk, traits are regular objects rather than distinct runtime values or static
program declarations. Any object can play the role of a trait. Hence, like all objects,
traits can make use of lexical nesting to hide private state or auxiliary functions. To the
best of our knowledge, this combination hasn’t been achieved before: it is a novel prop-
erty that is not available in other languages with explicit support for trait composition.

Listing 3 defines a trait that provides a reusable abstraction for animating arbitrary
objects. The example is taken from the implementation of a Morphic-like graphical
kernel for AmbientTalk which is discussed in more detail in Section 4. The animation
trait is parameterized with the refresh rate between animation calls (in milliseconds). It
provides two methods, start and stop, to start and stop the animation loop. The start

method triggers the animation loop by sending the message every:do: to its timer, pass-
ing as the second argument an anonymous zero-argument closure to be executed every
refreshRate milliseconds. Note that the timer variable is hidden within the lexical en-
vironment of the animation trait object. As such, the variable is private to the trait and
will not be visible to the composing clients. This example illustrates that traits can be
stateful in AmbientTalk.

� �

def makeAnimationTrait(refreshRate) {
def timer := makeTimer();
object: {

def start() { timer.every: refreshRate do: { self.animate() } };
def stop() { timer.reset() };

}
}

� �

Listing 3. A trait as a regular object.

To actually perform the animation, the animation trait requires the composite (i.e.,
the object using the trait) to define a method named animate. The set of methods required
by a trait is implicit in the source code. A method is required by a trait if the trait does
not implement the method, yet it is invoked in the code (e.g. by means of a self-send).

Listing 4 shows the implementation of a particle morph that uses the above animation
trait to move within a given direction at a constant rate (see Section 4 for a more in-
depth explanation of a “morph”). We assume that makeCircleMorph creates an object
that is graphically represented as a circle. The particle morph implements the animate

method as required by the animation trait. At each step of the animation, the particle
morph moves itself at the given moveRate.

Composition of traits is performed by means of the import statement. Because the
animation trait is stateful, the particle morph first generates a new instance of this trait
(by invoking the makeAnimationTrait constructor function) and then imports this new in-
stance. The operational effect of the import statement is that the particle morph acquires
its own, local definitions for the methods start and stop. How exactly this acquisition
of methods takes place is the topic of the following section. For now, it suffices to
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� �

def makeParticleMorph(radius, moveRate, dx, dy) {
extend: makeCircleMorph(radius) with: {

import makeAnimationTrait(moveRate);
def animate() {
self.move(dx, dy);

};
}

}
� �

Listing 4. Composing an object with a trait.

understand that when start is sent to a particle morph, the implementation of the ani-
mation trait is invoked and a self.animate() call will invoke the particle morph’s animate
method, as expected.

Conflict resolution. When the composite object is created, the import statement raises
an exception if the composite and the trait define slots with the same name. It is up to
the composite to explicitly resolve name conflicts between imported traits, or between
an imported trait and itself. The composite can do so by aliasing or excluding imported
methods1. For example, the particle morph can import the animation trait as follows:
� �

import makeAnimationTrait(moveRate) alias start := startMoving
exclude stop;

� �

In this case, the particle morph will acquire a method named startMoving rather than
start. Because the stop method is excluded, the particle morph will not acquire this
method such that it cannot be stopped by client code.

Initialization. As discussed previously, AmbientTalk objects are constructed by call-
ing ordinary functions. All code executed when calling such constructor functions is
regarded as initialization code. When objects are used as traits (i.e., constructed as part
of an import statement), their initialization code is ran in the order in which the import

statements occur in the code. If more control over the composition of initialization code
is required, such code can be transferred to a dedicated trait method that can then be
composed, aliased or excluded at will by the composing object.

3.3 Flattening Lexically Nested Traits

We now discuss how exactly a composite object acquires the method definitions of its
imported traits. In the original version of the traits model, trait composition enjoys the
so-called flattening property, which states that the semantics of a class defined using
traits is exactly the same as that of a class constructed directly from all of the non-
overridden methods of the traits [13]. The intuitive explanation is that trait composition
can be understood in terms of copy-pasting the method definitions of the trait into the
class definition.

1 Note that aliasing solves name conflicts, but does not guarantee that the intentional behavior
of the composed traits is preserved. This issue has previously been addressed [10] and is not
further discussed here.
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When traits can be lexically nested, trait composition no longer adheres to the flat-
tening property. The reason is that each imported trait method has its own distinct lex-
ical environment upon which it may depend. If the method body of an imported trait
method were copy-pasted verbatim into the composing object, lexically free variables of
the method may become unbound or accidentally rebound to a variable with the same
name in the lexical environment of the composing object. An imported trait method
should retain its own lexical environment, which implies that it is not equivalent to a
method defined by the composing object with the same method body.

In this Section, we explore an alternative semantics for trait composition based on
delegation to avoid the obvious problems related to the flattening property when traits
are closures. More specifically, we make use of a language feature of AmbientTalk that
has not been explained thus far, which is the explicit delegation of messages between
objects. In what follows, we first discuss this language feature. Subsequently, we apply
it to implement trait composition.

Explicit delegation. As discussed in Section 3.1, an AmbientTalk object delegates
any message it does not understand to the delegate object stored in its super field.
This mechanism is known as object-based inheritance. In this case, delegation of the
message happens implicitly. However, AmbientTalk also provides a delegation opera-
tor ˆ that allows objects to explicitly delegate messages to objects other than the object
stored in their super field. This enables objects to reuse code from different objects
without resorting to multiple inheritance. Listing 5 exemplifies such reuse by extracting
the reusable behavior of enumerable collections into a separate object (modeled after
Ruby’s Enumerable mixin module 2). All reusable methods depend on a required method
named each:. A collection representing an interval of integers [min, max[ reuses this
behavior by providing an implementation for each:.

� �

def Enumerable := object: {
def collect: function {

def sequence := makeSequence();
self.each: { |elt| sequence.append(function(elt)) };
sequence

};
def detect: predicate {...};
...

}
def makeInterval(min, max) {

extend: Collection with: {
// delegate messages to Enumerable to acquire its behavior
def collect: function { Enumerableˆcollect: function };
def detect: predicate { Enumerableˆdetect: predicate };
...
def each: function { // the method needed by Enumerable

// apply function to all Integer objects between min and max
min.to: max do: function

};
}

}
� �

Listing 5. Composition of a reusable object via explicit delegation.

2 http://www.ruby-doc.org/core/classes/Enumerable.html

http://www.ruby-doc.org/core/classes/Enumerable.html
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In order to reuse the functionality provided by Enumerable, the interval object defines
a number of delegating methods. The sole purpose of such methods is to explicitly del-
egate a message to another object. The expression objˆm() denotes the delegation of
a message m to an object obj. Recall from Section 3.1 that the difference between a
delegation and a regular message send (i.e., obj.m()) is that the former leaves the self

pseudovariable unchanged during the invocation of m() (i.e., self is not rebound to refer
to obj). This property is crucial to enable the kind of reuse exemplified above: the imple-
mentation of Enumerable’s methods is only partial. It depends on a method call to each:

(shown underlined) that should generate a sequence of the collection’s elements by
feeding them to a single-argument function. This method is therefore implemented by
the interval object. Because the interval uses explicit delegation to forward the collect:

and detect: messages to Enumerable, any occurrence of self.each: in these methods will
refer to the implementation provided by the interval object.

The above example shows that explicit delegation allows objects to reuse partially
implemented methods via object composition rather than via (object-based) inheritance.
The advantage of composition over (multiple) inheritance is that it enables the reuse of
methods from multiple objects without introducing ambiguity. Its disadvantage is that
the composing object needs to define explicit delegating methods for each method it
wants to reuse as part of its interface. Below, we discuss how the definition of these del-
egating methods can be automated, by defining trait composition in terms of generating
delegating methods.

Trait composition by delegating method generation. Even though traits cannot be
flattened in a language that models traits as closures (as discussed previously), we can
attribute a simple semantics to trait composition in terms of explicit delegation. To
acquire a method defined in an imported trait object, the composite object can generate
a delegating method for it. This has the following desirable properties:

– Because the composite explicitly delegates to the trait object, the trait method is
invoked in its proper lexical environment. The lexical environment of the trait’s
methods is unaffected by the trait composition.

– Because delegation does not alter the binding of self, this pseudovariable can be
used by the trait to invoke its required methods, implemented by the composite.

Given this semantics, if we regard the Enumerable object as a trait, the interval object’s
definitions for the delegating methods can be replaced by a single import Enumerable

statement to achieve the same operational effect. Listing 6 shows the definition of the
particle morph from Section 3.2 where the trait import has been transformed into a set
of delegating methods. In this example, we assume t_ to be a fresh variable name. Note
that the animation trait’s methods retain their proper lexical environment. Furthermore,
this semantics respects the ability of nested traits to close over their lexical environment
to encapsulate state and private behavior. For example, the particle morph cannot access
the timer variable associated with its imported trait.

Given the semantics of trait composition by means of explicit delegation, alias-
ing a method by means of alias oldName := newName generates the delegating method
def newName() { t_ˆoldName() } and the semantics of exclude name is simply that no del-
egating method for name is defined in the importing scope.
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� �

def makeParticleMorph(radius, moveRate, dx, dy) {
def t_ := makeAnimationTrait(moveRate);
extend: makeCircleMorph(radius) with: {

// import is transformed into a set of delegating method definitions
def start() { t_ˆstart() };
def stop() { t_ˆstop() };
def animate() {
self.move(dx, dy);

};
}

}
� �

Listing 6. Trait composition is transformed into delegation.

Dealing with state. The example objects that we have shown up to now have private
state because the fields holding this state are hidden in their lexical environment. It
is also possible for objects to declare fields directly as part of their public interface.
Since traits are ordinary objects, they may also declare fields in addition to methods. As
previously described, when a trait is imported a delegate method is defined for each of
its provided methods. In addition, for each field provided by the trait, a field with the
same name is defined in the object that imports the trait. Each object that imports a trait
with public state will thus have its own copy of that state. As is the case with methods,
an exception is raised if the names of imported fields conflict with those defined in the
importing object.

3.4 Summary

Objects can be augmented with private state and visibility control by allowing them to
close over their environment of definition. We added these properties to traits by simi-
larly representing them as plain objects that close over their environment of definition.
However, when representing traits in this way, the traditional way of composing traits
by flattening them must be reconsidered. If we were to copy the method bodies of a
trait’s provided methods directly in the importing scope, their lexical scope would be
ill-defined. One way to reconcile trait composition with lexical nesting is by expressing
the composition in terms of delegating methods that delegate a message to a trait. The
composite acquires the delegating method, rather than the method’s implementation.
The use of delegation allows the trait to execute the method in its proper lexical scope
yet access any required methods provided by the composite via self-sends.

Contrary to Stateful and Freezable traits, our model does not introduce any new trait
composition operators, thus preserving the simplicity of the original model. The draw-
back is that our model cannot express certain compositions that can be expressed using
Stateful or Freezable traits. For example, contrary to Freezable Traits we provide no
operators to deal with unanticipated name conflicts since the composer cannot change
the visibility of a trait’s provided fields or methods.

4 Case Study: AmbientMorphic

We demonstrate the applicability of lexically nested traits by means of a concrete case
study. AmbientMorphic is a minimal implementation of the Morphic user-interface
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construction framework [29] in AmbientTalk3. In Morphic, the basic unit of abstraction
is called a morph. A morph is an object with a graphical manifestation on the screen.
Morphs can be composed into typical user interface widgets, but they can equally be
used for rendering more lively applications such as e.g. a simulation of atoms in a gas
tank [30]. The goal of the morphic framework is to create the illusion that the graphical
“objects” which can be seen on the screen really are the objects that the programmer
manipulates in the code.

Morphic is an ideal case study for traits because morphs can be decomposed into
many different yet interdependent concerns. Typical concerns include drawing and re-
drawing, resizing, keeping track of which morph has the current focus, determining
what morph is currently under the cursor (which is represented by the “hand morph” in
Morphic), etc. In our framework, a Morph is composed of many small traits that each en-
code such a concern. Figure 1 depicts a subset of the framework. The entire framework
totals 18 traits (13 of which are stateful) and 12 morphs.

Uses Trait

private state

provided
methods

required
methods

Trait Name

start
stop

animate

timer

AnimatableTrait

animate
touchedLeft
touchedRight
touchedTop
touchedBottom

directionVector

BouncableTrait

color
color:=

myColor

ColorableTrait

onDropped
owner

ownerMorph

ProtoMorphTrait

addSubmorph
removeSubmorph
visitSubmorphs: block
...

childMorphs

MorphCollectionTrait

addMorph
removeMorph
rootMorph
...

CompositeMorphTrait

absoluteX
absoluteY
relativeX
relativeY
...

x, y

PositionableTrait

ownerwidth
height
resize
bounds
...

w, h

ResizableTrait

absoluteX
absoluteY

pick
isInside
drop
...

isPickable, boundingBox

PickableTrait

bounds
absoluteX
absoluteY
owner
...

drawOn: canvas

Morph

Legend

Fig. 1. A selection of the traits used in the AmbientMorphic framework

Decomposing a morph into separate traits leads to separation of concerns (i.e., in-
creased modularity) and also enables programmers to reuse traits to build other kinds
of morphs (i.e., increased reuse). Because our trait model additionally enables state and
visibility control, we gain the following benefits:

1. Since traits can be stateful, the Morph object does not need to be polluted with the
fields, accessors and mutators that would otherwise be required by the traits.

2. State remains well encapsulated within each trait. If one of the traits modifies the
representation of its state, this will not impact the Morph.

3 The framework is included in the open-source AmbientTalk distribution available online at
http://prog.vub.ac.be/amop.

http://prog.vub.ac.be/amop
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These benefits would not have been achieved using the original traits model. The
first benefit can be achieved with stateful traits and the second with freezable traits.
However, these extensions have not before been combined into a single model.

5 Operational Semantics

We now formalize the features presented in Section 3 by providing an operational se-
mantics for three increasingly descriptive calculi: PROTOLITE, LEXLITE, and AM-
BIENTTALKLITE. PROTOLITE is a core calculus that is gradually extended with the
features required for lexically nested traits. The goal of this formalization is to provide
the necessary technical description required when one would want to reproduce our im-
plementation of lexically nested traits. This section does not provide any hint on how
to make this implementation fast (this is not the focus of this paper), but it conveys the
necessary details to realize one.

PROTOLITE is a minimal language that captures the essence of a dynamically typed,
object-based programming language. It features ex-nihilo object creation, message pass-
ing, field access and update and finally explicit delegation (as discussed in Section 3.3).
We chose not to formalize AmbientTalk’s support for implicit delegation via super fields
because it is not essential to our discussion on trait composition.

While PROTOLITE allows object definitions to be syntactically nested within other
object definitions, objects are not allowed to refer to lexically free fields or methods.
LEXLITE extends PROTOLITE with proper lexically nested objects. This enables nested
objects to access lexically visible fields and methods of their enclosing objects, a key
property for adding state and visibility control to traits. Finally, AMBIENTTALKLITE

extends LEXLITE with support for trait composition.

Related work. A number of calculi that describe delegation or traits have been for-
mulated so far. δ [31] is an imperative object based calculus with delegation. δ allows
objects to change their behavior at runtime. Updates to an object’s fields can be either
lazy or eager. δ also introduces a form of explicit delegation. An object has a number
of delegates (which may be dynamically added or removed) and a message may be
explicitly directed at a delegate. We chose not to use δ as our starting point because
dynamic addition and removal of delegates and methods is not required for our purpose
and because it does not support lexical nesting.

Incomplete Featherweight Java [32] is an extension of Featherweight Java with in-
complete objects i.e., objects that require some missing methods which can be provided
at run-time by composition with another complete object. The mechanism for method
invocation is based on delegation and it is disciplined by static typing. The authors
extend the class-based inheritance paradigm to make it more flexible.

Bono and Fisher [33] have designed an imperative object calculus to support class-
based programming via a combination of extensible objects and encapsulation. Two
pillars of their calculus are an explicit type hierarchy and an automatic propagation of
changes. Their focus is thus rather different from ours.
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5.1 PROTOLITE

Figure 2 presents the syntax of PROTOLITE. This syntax is reduced to the minimum set
of syntactic constructions that models object creation, message sending, and message
delegation. We use the meta-variable e for expressions, m for method names, f for field
names and x for variable names.

e = object{field∗ meth∗}
| e.f | e.f := e | e.m(e∗) | eˆm(e∗) | e〈oid〉ˆm(e∗)
| e ; e | x | self | nil | oid

meth = m(x∗) = e
field = f := e

Fig. 2. PROTOLITE expressions (run-time expressions are shown underlined)

Objects are created by means of the object creation expression object{. . .}. An ob-
ject consists of a set of fields and methods. We assume that all object expressions are
valid, i.e., field and method names are unique within an object creation expression. Each
field declaration is associated with an initialization expression, which is evaluated when
the object is created. Messages may be sent to the result of an expression using an arbi-
trary number of arguments (e.m(e∗)). Messages may also be delegated (eˆm(e∗)). The
figure shows run-time expressions, which are underlined, following the notation of Flatt
et. al [34]. These expressions cannot be formulated in source code. They exist at run-
time and may contain annotations to store additional information about the expression
(shown using 〈〉).

Figure 3 shows the evaluation contexts using the notation of Felleisen and Hieb [35].
Evaluation contexts specify the evaluation order on expressions. For example, the re-
ceiver expression of a message send must be evaluated before its arguments. The nota-
tion v∗ E e∗ indicates the evaluation of expressions from left to right. The names v, o
and o′ are meta-variables that designate object references.

E = [ ] | E.f | E.f := e | E.m(e∗) | E〈o〉ˆm(e∗)
| o.f := E | o.m(v∗ E e∗) | o〈o′〉ˆm(v∗ E e∗) | E ; e

v, o, o′ = nil | oid

Fig. 3. PROTOLITE Evaluation contexts

Figure 4 describes the generation of PROTOLITE run-time expressions. Such expres-
sions are generated to annotate objects and replace self. This annotation and replace-
ment occurs before evaluating a field initialization expression contained in an object
definition and before evaluating a method body.

Message sending and delegation require a mechanism to bind the self pseudo-
variable to an arbitrary value (the receiver). The [[e]]o operator recursively replaces all
references to self by o in the expression e. References to self within a nested object
creation expression in e are not substituted because self references within this expres-
sion should refer to the nested object itself. Delegated message sends need to keep a
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[[x]]o = x
[[self]]o = o
[[nil]]o = nil

[[e ; e′]]o = [[e]]o; [[e
′]]o

[[e.f]]o = [[e]]o.f
[[e.f := e′]]o = [[e]]o.f := [[e′]]o

[[e.m(e∗i )]]o = [[e]]o.m([[ei]]∗o)
[[eˆm(e∗i )]]o = [[e]]o〈o〉ˆm([[ei]]∗o)

[[object{field∗ meth∗}]]o = object{field∗ meth∗}
Fig. 4. Annotating PROTOLITE expressions

reference to the object that performs the delegation. To this end, they are replaced by
a run-time expression that is annotated with the value of self. This reference is used to
replace the self variable when the delegated send is executed.

Figure 5 shows the reduction rules of PROTOLITE. Each of these is an elementary
reduction, mapping an evaluation context E and a store S onto a reduced evaluation
context and an updated store. Objects are represented as tuples 〈F ,M〉 of a map of
fields F and methodsM. In the [object] reduction rule, fields are initialized to nil when
the object is created. Their initial values are subsequently assigned by evaluating the
initialization expressions before the object is returned. References to self within a field
initialization expression are first substituted for the new object.

In the [delegate] reduction rule, note that o′ (the delegator) rather than o (the re-
ceiver) substitutes self in the invoked method. In the [send] and [delegate] rules, before
evaluating a method body e[v∗/x∗] substitutes parameters x∗ for the argument values
v∗. In the method body, a field f of the enclosing object is accessible via self.f .

〈E[object{field∗ meth∗}],S〉 ↪→ 〈E[(o.f := [[e]]o)
∗; o],S [o �→ 〈F ,M〉]〉 [object]

where o �∈ dom(S) and F = { f �→ nil | ∀ f := e ∈ field∗}
andM = {m �→ 〈x∗, e′〉 | ∀m(x∗) = e′ ∈ meth∗}
〈E[o.f ],S〉 ↪→ 〈E[v],S〉 [get]
where S(o) = 〈F ,M〉 and F( f ) = v

〈E[o.f :=v],S〉 ↪→ 〈E[v],S [o �→ 〈F [f �→ v],M〉]〉 [set]
where S(o) = 〈F ,M〉 and f ∈ dom(F)

〈E[o.m(v∗)],S〉 ↪→ 〈E[[[e[v∗/x∗]]]o],S〉 [send]
where S(o) = 〈F ,M〉 and m �→ 〈x∗, e〉 ∈ M
〈E[o〈o′〉ˆm(v∗)],S〉 ↪→ 〈E[[[e[v∗/x∗]]]o′ ],S〉 [delegate]
where S(o) = 〈F ,M〉 and m �→ 〈x∗, e〉 ∈ M
〈E[o ; e],S〉 ↪→ 〈E[e],S〉 [seq]

Fig. 5. Reductions for PROTOLITE

5.2 LEXLITE

PROTOLITE does not allow objects to access fields and methods of their enclosing ob-
jects. LEXLITE extends PROTOLITE with a new syntax and semantics that allows ob-
jects to access lexically visible fields and methods. Figure 6 shows the syntax extensions
of LEXLITE with respect to PROTOLITE. The new expressions denote the invocation
of a lexically visible method m and the access to a lexically visible field f . LEXLITE
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e = . . . | m(e∗) | f | object{ field∗ meth∗}〈L〉

Fig. 6. LEXLITE syntax extensions to PROTOLITE

supports an additional run-time expression that annotates an object creation expression
with a lexical environment L. This annotation is generated when closing over the lexical
environment. This is explained in more detail below.

In LEXLITE, receiverless (i.e., lexically resolved) method invocation and field access
are interpreted as if the method or field was invoked on the lexically visible object in
which the method or field is defined. Also, object definitions must now close over their
lexical environment, such that expressions contained in their methods may correctly
refer to methods and fields defined in an enclosing lexical environment. We represent
the lexical environment as a function L(n) = o mapping a method or field name n to
the object o in which that name is defined. Figure 7 shows how each expression e closes
over a lexical environment L by means of the transformation CL[[e]]. Following the
convention previously introduced, code generated by this transformation is underlined.

CL[[x]] = x
CL[[self]] = self
CL[[nil]] = nil

CL[[e ; e′]] = CL[[e]] ; CL[[e′]]
CL[[e.f]] = CL[[e]].f

CL[[e.f := e′]] = CL[[e]].f := CL[[e′]]
CL[[e.m(e∗i )]] = CL[[e]].m(CL[[ei]]∗)
CL[[eˆm(e∗i )]] = CL[[e]]ˆm(CL[[ei]]∗)

CL[[ f ]] = l.f where l = L(f)
CL[[m(e∗i )]] = l.m(CL[[ei]]∗) where l = L(m)

CL[[object{field∗ meth∗}]] = object{field∗ meth∗}〈L〉

Fig. 7. LEXLITE expressions closing over a lexical scope L

Because lexically scoped method invocations and field accesses are transformed into
regular method invocations and field accesses when expressions close over their defin-
ing lexical environment, no special reduction semantics must be added for these expres-
sions. However, the reduction semantics for [object] must be refined such that method
bodies now close over the lexical environment in which the object has been defined.
This new reduction rule is shown in Figure 8. The other reduction rules for LEXLITE

are the same as those defined in Figure 5.
Note that a lexical closure is not defined as a “snapshot” of the lexical environment

at the time the object is created. This would work for a functional language, but since
LEXLITE is stateful, the closure must refer to the actual enclosing objects such that
state changes in those objects remain visible to the nested object. Finally, note that by
transforming a receiverless method invocation m() into a receiverful method invocation
l.m() on the enclosing object l, within m the binding of self will correctly refer to the
enclosing object (i.e., l) rather than to the nested object that performed the invocation.

In LEXLITE, lexical lookup proceeds via a chain of L functions. In order to be well-
defined, this lookup must eventually end. Therefore, the top-level expression of a LEX-
LITE program must close over an empty top-level environment T (n) =⊥ before it can
be reduced. If one wants to bootstrap the lexical environment with top-level methods
and fields, these can be encoded as follows. If e is the top-level expression encoding a
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〈E[object{field∗meth∗}〈L〉],S〉 ↪→ 〈E[(o.f := CL′
[[
[[e]]o

]]
)∗; o],S [o �→ 〈F ,M〉]〉 [object]

where o �∈ dom(S) and F = { f �→ nil | ∀ f := e ∈ field∗}
andM = {m �→ 〈x∗, CL′ [[e′]]〉 | ∀m(x∗) = e′ ∈ meth∗}
and L′(n) =

{
o if n ∈ dom(F) ∪ dom(M)
L(n) otherwise

Fig. 8. Redefined reduction rule for LEXLITE

program and m is a fresh name then the expression object{...m() = e...}.m() intro-
duces an explicit top-level environment. All fields and methods declared in this outer
object expression can be regarded as top-level in e.

5.3 AMBIENTTALKLITE

AMBIENTTALKLITE extends LEXLITE with explicit support for trait composition. It
exhibits the properties of AmbientTalk regarding state and visibility control (cf. Section
3.2) and describes trait composition in terms of generating delegate methods (cf. Sec-
tion 3.3). Figure 9 shows the syntax extensions of AMBIENTTALKLITE with respect to
LEXLITE. An object creation expression may contain import declarations to acquire
the fields and methods of trait objects. The expression e in the import declaration is
eagerly reduced to the trait object. A run-time import declaration is introduced which
is annotated with a mapping A that maps names to their aliases and a set E of field or
method names to be excluded. Figure 10 shows how these annotations are generated
based on the alias and exclude clauses of the original import declaration.

e = . . . | object{field∗ meth∗ import∗}
import = import e alias alias∗ exclude n∗

| import e 〈A, E〉
alias = n← n

n = a method or field name

E = . . . | object{field∗ meth∗ import v 〈A, E〉∗ import E 〈A, E〉 import e 〈A, E〉∗}

Fig. 9. AMBIENTTALKLITE syntax and evaluation context extensions to LEXLITE

[[object{field∗ meth∗ import∗}]]o = object{field∗ meth∗ [[import∗]]o}
[[import e alias alias∗ exclude n∗]]o = import [[e]]o〈A, E〉

where A(n) =
{

n′ if n′ ← n ∈ alias∗

n otherwise
and E = {n | n ∈ n∗}

Fig. 10. Annotating AMBIENTTALKLITE expressions

The [import] reduction rule in Figure 11 shows how the import declarations are ex-
panded into a set of generated fields and delegating methods. Field definitions present in
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the value being imported, ti, are copied (as explained in Section 3.3). For each imported
method m, a delegating method n is generated which delegates m to ti. Note that the
use of Ai ensures a field or method renaming if specified. The last two lines indicate
the constraint that duplicate field or method names are disallowed. Once the import
declarations are reduced, a regular LEXLITE object creation expression remains.

〈E[object{field∗ meth∗ import ti〈Ai, Ei〉∗}〈L〉],S〉 [import]
↪→ 〈E[object{field∗ ifield∗ meth∗ imeth∗}〈L〉],S〉
where S(ti) = 〈Fi,Mi〉
and ifieldsi = { n := v | f �→ v ∈ Fi, f /∈ Ei, n = Ai( f )}
and imethsi = { n(x∗) = tiˆm(x∗) | m �→ 〈x∗, e〉 ∈ Mi, m /∈ Ei, n = Ai(m)}
and ifields1 ∩ · · · ∩ ifieldsn ∩ field∗ = ∅
and imeths1 ∩ · · · ∩ imethsn ∩ meth∗ = ∅

Fig. 11. Additional reduction rule for AMBIENTTALKLITE

The following example illustrates how trait composition is expressed in terms of
delegation. The code on the left summarizes the essence of the animation trait exam-
ple from Section 3.2. The resulting store is depicted on the right. Note the generated
startMoving method of the morph object.

� �

animationtrait := object {
start() = STARTCODE

stop() = STOPCODE

}

morph := object {
animate() = ANIMATECODE

import animationtrait
alias startMoving<-start exclude stop

}
� �

S≡{
animationtrait �→〈∅, {

start �→〈[], STARTCODE〉,
stop �→〈[], STOPCODE〉}〉

morph �→〈∅, {
animate �→〈[], ANIMATECODE〉
startMoving �→
〈[], animationtraitˆstart()〉}〉}

This concludes our description of the operational semantics of trait composition in
AmbientTalk. In the following Section, we discuss how state and visibility control for
traits are expressed using this operational semantics.

6 Properties and Discussion

State and visibility control. From the operational semantics of AMBIENTTALKLITE

we can derive how state and visibility control are expressed through lexical nesting:

– Public state. Trait objects can be stateful by declaring public fields which are ex-
plicitly copied into the composing object (cf. Figure 11).

– Lexically hidden state. Trait objects can depend upon a field of an object in which
they are nested. These fields are not copied into the composing object. Rather, the
field remains accessible from the original trait method by lexically referring to it
(cf. the syntax extension presented in Figure 6). This is possible because all trait
methods close over their lexical scope when created (cf. Figure 8).
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– Lexical visibility control. An object creation expression that is lexically nested
within another object creation expression can refer to the fields and methods of
the outer expression. However, an object that has a reference to the nested object
cannot access these outer fields or methods via that nested object. As expressed in
the [get] and [send] rules (Figure 5), the lexical scope of an object is not involved
in external field access or method invocation. As a consequence, outer fields and
methods are inaccessible to clients of the inner object.

– Shared visibility. When two object creation expressions are lexically nested within
the same outer object creation expression, the two inner objects may refer to the
same outer field and method declaration. This allows for sharing state and behavior
while keeping it private to external clients. In the operational semantics, sharing
is expressed in terms of two lexical environments L1 and L2 that may both for-
ward to the same lexical environment L3 when a name n is not found locally (cf.
Figure 8).

Limitations. Traits do not by themselves support advanced resolution strategies re-
quired to resolve any unanticipated name conflicts. If two traits are composed that in-
tentionally (rather than accidentally) provide a method with the same name, neither
exclusion nor aliasing is an appropriate solution to resolve this conflict. One possible
solution would be to completely rename one of the two methods (which, unlike alias-
ing, requires changing the calls to that method in the method bodies of one of the traits).
Another solution would be to change the visibility of one of the two methods, such that
it effectively becomes private to its trait. Lexically nested traits by themselves support
neither renaming nor changing the visibility of imported methods. Hence, dealing with
unanticipated conflicts remains an open issue even with lexically nested traits.

Because lexically nested traits can be stateful, they reintroduce the problem of du-
plicated state in the case of “diamond inheritance”. For example, an object may import
two traits A and B, and these two traits both import a third trait C which is stateful. The
composite object will then acquire C’s state twice. To avoid such issues, one must revert
to stateless traits that use accessor and mutator methods to manipulate their state, which
is deferred to the composite, as in the original Traits model [13].

Cost. In AmbientTalk, a delegated method invocation has the same runtime cost as
a normal method invocation. Without additional optimizations, invoking an imported
“delegate method” on a composite is about twice as expensive as a normal method call,
because of the additional delegation to the trait. Caching techniques can be used to re-
duce this overhead, by storing the imported method rather than the delegating method
in the composite object’s method cache. Improving the performance of our implemen-
tation is an area of future work.

Summary. The Trait model supported by AmbientTalk adds both state and visibility
control to traits via lexical nesting. Trait composition is made independent of lexical
nesting by introducing delegate methods in the composite. Such methods explicitly
delegate messages to the imported trait, leaving the lexical environment of the trait’s
methods intact. Our model does not introduce any additional composition operators.
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7 Related Work

Traits in Self. The term traits was introduced in the prototype-based language Self to
refer to objects that factor out behavior common to objects of the same type [16]. Self
traits are not a special kind of object: any object can be a trait and objects “use” a trait
by delegating to it using Self’s support for object-based inheritance. Like AmbientTalk
traits, Self traits exploit delegation to access the “composite” (e.g. for accessing state
or invoking an overridden method) by means of late-bound self-sends. Self traits can
be stateful, but state is shared by all objects using the trait (like class variables shared
between all instances).

When multiple inheritance was added to Self, an object was able to specify multiple
parent objects, and could thus use traits as mixins. However, since Self relies on object-
based (multiple) inheritance to enable the use of (multiple) traits, naming conflicts are
not explicitly resolved by the composite object. Resolving such conflicts is instead done
by the method lookup algorithm. Self later abandoned multiple inheritance due to its
complexity in favor of a simpler “copy-down” approach [30].

AmbientTalk combines the properties of Self traits and Squeak traits. This is illus-
trated in Figure 12 by means of the example presented in Section 3.1. An Enumerable

trait defines a collect: method and requires an each: method which is defined by the
composite, in this case a Range object that represents an interval.

Squeak Self AmbientTalk

parent*

collect: collect:

collect:

each:

Enumerable trait objectEnumerable trait objectEnumerable Trait

collect:

each:

Range Class Range
prototype object Range object

each:

collect:

...
self each: [ :e | ... ]
...

...
self each: [ :e | ... ]
...

...
self.each: { |e| ... }
...

t_^collect: block

t_
... ...

... ...

... ...

... ... ... ...

... ...

Fig. 12. Comparing trait composition in Squeak, Self and AmbientTalk

Like Self traits, AmbientTalk traits are object-based: any object can be a trait and
both languages use the mechanism of delegation to allow the trait to access the com-
posite. Note that in Self the composite delegates to the trait by means of object-based
inheritance (via a so-called “parent slot”) while in AmbientTalk delegation to the trait
happens by means of the ˆ operator in the delegating method.

Like Squeak traits, AmbientTalk traits require an explicit composition operation
(import) during which naming conflicts must be explicitly resolved by the compos-
ite. Note how trait composition is compiled away in Squeak by means of the flattening
property: the collect: method is added to class Range. Similarly, in AmbientTalk the
trait composition is transformed by adding a delegate method to the composite object.
Note that contrary to Self, the trait is not directly accessible from the composite object.
Rather, it is referred to by means of a variable private to the delegating method.

Neither Self nor Smalltalk exploit lexical nesting of objects or classes. Similarly,
neither language provides a means to hide the visibility of certain methods. Thus, traits
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defined in these languages have no standard means of controlling visibility. Ambient-
Talk exploits an object’s lexical scope to restrict the visibility of state and behavior.
Since a trait is a regular AmbientTalk object, it can continue to use this technique to
restrict the visibility of the state or behavior that it needs, but does not want to provide
to its clients.

Jigsaw. In his PhD work, Bracha [36] defined Jigsaw as a minimal programming lan-
guage in which packages and classes are unified under the notion of a module. A module
in Jigsaw is a self-referential scope that binds names to values (i.e., constants and func-
tions). By being an object generator, a module acts as a class and as a coarse-grained
structural software unit. Modules can be nested, therefore a module can define a set of
classes. A number of operators are provided to compose modules.

In Jigsaw, modules may refer to each other, and functions defined in one are invok-
able by others according to some visibility rules. Behavior may be shared by merging
two modules, or making one override another one. Using these operators, a mixin and
its application are nicely modeled. It appears that the same set of operators is used to
express both module specialization and mixin uses.

Traits require a different composition operator than inheritance. Traits cannot be
expressed in Jigsaw directly because it imposes an ordering on mixins, while one of the
design principles of traits states that the composition order of traits is irrelevant.

CHAI. Smith and Drossopoulou [6] designed the language Chai, which incorporates
statically typed traits into a Java-like language. Three different roles for traits in Chai
were explored in separate languages: Chai1 (traits may be used by classes), Chai2
(a trait may be a type), and Chai3 (traits play a role at runtime). This third language
allows traits to be added to objects at runtime, thus changing their behavior.

The differences with AmbienTalk’s traits are significant. AmbientTalk is dynami-
cally typed and its traits are first class values. Any object can be used as a trait simply
by importing it into another object. In Chai3 only a trait subtype can be applied to an
object. Consequently, a more restricted set of traits may be applied to a given object but
type safety is upheld.

8 Conclusion

Traits have originally been presented as groups of reusable methods, without state and
a mechanism to control the visibility of provided methods. Extensions have been pro-
posed to add these properties (stateful and freezable traits, respectively) but these mod-
els introduce many ad hoc operators that have not before been combined into a unified
model supporting both properties. This paper demonstrates that state and visibility con-
trol can be added to traits by means of just one linguistic mechanism: lexical nesting.

We have shown that introducing trait composition in a host language that supports
lexical nesting requires special attention. Whereas in the original model the flattening
property allows trait composition to be implemented by almost literally copying the
methods provided by the trait into the composite, this approach fails to hold when traits
can be lexically nested, because their methods may refer to lexically free variables.
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Our approach to solving this problem is based upon delegation of messages. Trait com-
position is described in terms of generating delegating methods, whose purpose is to
delegate a received message to the imported trait object. The actual method invocation
is then performed in the proper lexical environment (i.e., that of the trait), but delegation
ensures that the trait can still access its required methods via self sends. Because meth-
ods are generated in the composite, trait composition remains explicit. Name clashes
must still be resolved by the composing object, staying true to the original design prin-
ciples behind traits. Our proposed model has been validated by implementing it in a
concrete host language, AmbientTalk, and by describing in detail its operational se-
mantics for a calculus, AMBIENTTALKLITE.

This work started out as an investigation of how traits, a composition mechanism
that has been very successfully applied to class-based languages, could be applied to
our object-based AmbientTalk language. It became apparent that AmbientTalk’s ability
to lexically nest objects lead to a simpler trait model since state and visibility control
are supported without introducing any additional composition operators. We did need
delegation as an additional mechanism to ensure that trait methods can both refer to
names in their lexical scope as well as to names provided by the composite. However,
our experience tells us that the basic model only relies on lexical nesting, not on the
fact that our language is object-based. We think that our model of lexically nested traits
can thus be applied more generally to class-based languages as well, provided that they
allow classes to be nested and that they provide a solution to the problem of flattening
traits in the presence of lexical nesting.
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Abstract. We present FJig, a simple calculus where basic building
blocks are classes in the style of Featherweight Java, declaring fields,
methods and one constructor. However, inheritance has been general-
ized to the much more flexible notion originally proposed in Bracha’s
Jigsaw framework. That is, classes play also the role of modules, that
can be composed by a rich set of operators, all of which can be expressed
by a minimal core.

We keep the nominal approach of Java-like languages, that is, types
are class names. However, a class is not necessarily a structural subtype
of any class used in its defining expression.

The calculus allows the encoding of a large variety of different mecha-
nisms for software composition in class-based languages, including stan-
dard inheritance, mixin classes, traits and hiding. Hence, FJig can be
used as a unifying framework for analyzing existing mechanisms and
proposing new extensions.

We provide two different semantics of an FJig program: flattening
and direct semantics. The difference is analogous to that between two
intuitive models to understand inheritance: the former where inherited
methods are copied into heir classes, and the latter where member lookup
is performed by ascending the inheritance chain. Here we address equiva-
lence of these two views for a more sophisticated composition mechanism.

Introduction

Jigsaw is a framework for modular composition largely independent of the un-
derlying language, designed by Gilad Bracha in his seminal thesis [8], and then
formalized by a minimal set of operators in module calculi such as [21,3]. In
this paper, we define an instantiation of Jigsaw, called Featherweight Jigsaw
(FJig for short), where basic building blocks are classes in the style of Java-like
languages. That is, classes are collections of fields, methods and constructors,
that can be instantiated to create objects; also, class names are used as types
(nominal typing).
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The motivation for this work is that, even though Jigsaw has been proposed a
long time ago and since then it has been greatly influential1, its design has been
never fully exploited in the context of Java-like languages, as recently pointed
out as an open question in [4]. Here, we provide a foundational answer to this
question, by defining a core language which, however, embodies the key fea-
tures of Java-like languages, in the same spirit of Featherweight Java [15] (FJ
for short). Indeed, formally, a basic class of FJig looks very much as a class in
FJ. However, standard inheritance has been replaced by the much more flex-
ible (module) composition, that is, by the rich set of operators of the Jigsaw
framework.

Instantiating Jigsaw on Java-like languages poses some non trivial design prob-
lems. Just to mention one (others are discussed in Sect. 1), we keep the nominal
approach of Java-like languages, that is, types are class names. However, a class
is not necessarily a structural subtype of any class used in its defining expression.
While this allows a more flexible reuse, it may prevent the (generalized) inher-
itance relation to be a subtyping relation. So, the required subtyping relations
among classes are declared by the programmer and checked by the type system.

Another challenging issue is the generalization to FJig of two intuitive models
to understand inheritance: one where inherited methods are copied into heir
classes, and the other one where member lookup is performed by ascending the
inheritance chain. We address the equivalence of these two views for a much
more sophisticated composition mechanism. Formally, we provide two different
semantics for an FJig program: flattening semantics, that is, by translation
into a program where all composition operators have been performed, and direct
semantics, that is, by formalizing a dynamic look-up procedure.

The paper is organized as follows. Sect. 1 provides an informal introduction to
FJig by using a sugared surface syntax. Sect. 2 introduces a lower level syntax
and defines flattening semantics. Sect. 3 defines the type system and states its
soundness. Sect. 4 defines direct semantics of FJig and states the equivalence
between the two semantics. In the Conclusion, we summarize the contribution
of the paper and briefly discuss related and further work.

A preliminary version of this paper, focused on the equivalence between flat-
tening and direct semantics, and not including the type system, is [17]. An
extended version including proofs of results is [16].

1 An Informal Introduction

In this section we illustrate the main features of FJig by using a sugared surface
syntax, given in Fig. 1. We assume infinite sets of class names C , (member)
names N , and variables x . We use the bar notation for sequences, e.g., μ is a
metavariable for sequences μ1 . . .μn.
1 Just to mention two different research areas, Jigsaw principles are present in work

on extending the ML module system with mutually recursive modules [9,13,14],
and Jigsaw operators already included those later used in mixin classes and traits
[11,1,20,10,19].
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p :: = cd leq program
cd :: = cmod class C CE class declaration
leq :: = C <= C ′ subtype declaration
cmod :: = abstract | ε class modifier
CE :: = class expression

B basic class
| C class name
| merge CE1,CE2 merge
| CE1 override CE2 override
| rename N to N ′ in CE rename
| restrict N in CE restrict
| hide N in CE hide
| . . .
| CE [τ ] ThisType wrapper
| CE [kh{super(e)}] constructor wrapper

N :: = F | M member name
kh :: = constructor(C x) constructor header
B :: = {τ ϕ κ μ} basic class
τ :: = ThisType <= C ThisType constraint
ϕ :: = mod C F ; field
κ :: = kh{F=e} constructor
μ :: = mod C M (C x ){return e;}

| abstract C M (C x); method
mod :: = abstract | virtual | frozen | local member modifier
e :: = expression

x variable
| e.F client field access
| e.M (e) client method invocation
| F internal field access
| M (e) internal method invocation
| new C (e) object creation

Fig. 1. FJig (surface) syntax

This syntax is designed to keep a Java-like flavour as much as possible. In the
next section we will use a lower-level representation, which allows to formalize
the semantics in a simpler and natural way.

We will first revise Jigsaw features in the context of FJig, then discuss some
issues that are specific to the instantiation on Java-like languages.

Basic classes. Jigsaw is a programming paradigm based on (module) composi-
tion, where a basic module (in our case, a class) is a collection of components (in
our case, members), which can be of four different kinds, indicated by a modifier:
abstract, virtual, frozen, and local. A method has no body if and only if
its modifier is abstract. The meaning of modifiers is as follows:

– An abstract member has no definition, and is expected to be defined later
when composing the class with others.
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– A virtual or frozen member has a definition, which can be changed by us-
ing the composition operators. However, the redefinition of a frozenmember
does not affect the other members, which still refer to its original definition.

– Finally, as the name suggests, a local member cannot be selected by a
client2, and is not affected by composition operators, hence its definition
cannot be changed.

We assume by default the modifier frozen for fields and virtual for methods.
A class having at least one abstract member must be declared abstract.

The following example shows two abstract basic classes.3

abstract class A {
abstract int M1 ();
int M2 () { return M1() + M3 (); }
local int M3() { return 1; }

} abstract class B {
abstract int M2 ();
frozen int M1() { return 1 + M2 (); }

}

Merge and override operators. A concrete class can be obtained by applying the
merge operator as follows:

class C merge A, B

This declaration is equivalent to the following:

class C {
frozen int M1() { return 1 + M2 (); }
int M2 () { return M1() + M3 (); }
local int M3() { return 1; }

}

Conflicting definitions for the same non-local member are not permitted, whereas
abstract members with the same name are shared. Members can be selected
by client code unless they are local, that is, we can write, e.g., new C().M2()
but not new C().M3(). To show the difference between virtual and frozen
members, in the next examples we use the override operator, a variant of
merge where conflicts are allowed and the left argument has the precedence.

class D1
{ int M2() { return 2; } } override C

An invocation new D1().M2() will evaluate to 2, and an invocation
new D1().M1() to 3. On the other hand, in this case:

class D2
{ int M1() { return 3; } } override C

2 Note the difference with private modifier in Java, which allows client selection when
clients are of the same class, see more details in the sequel.

3 To write more readable examples, we assume that the primitive type int and its
operations are available.
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an invocation new D2().M1() will evaluate to 3, but an invocation
new D2().M2() will not terminate, since the internal invocation M1() in the
body of M2() still refers to the old definition.

Client and internal member selection. In a programming paradigm based on
module composition, a module component can be either selected by a client, or
used by other components inside the module itself. Correspondingly, in FJig we
distinguish between client field accesses and method invocations, which specify
a receiver, and internal field accesses and method invocations, whose implicit
receiver is the current object. Note that e.M (. . .) behaves differently from M (. . .)
even in the case e denotes an object of the same class (that is, internal selection
does not correspond to selection of private members as in, e.g., Java). For
instance, consider the following class, where we use the operator rename, which
changes the name of a member.
class E merge

(rename M1 to M4 in {
int M1() { return 1; }
int M2() { return M1 (); }
int M3() { return new E(). M1 (); }

}), { int M1() { return 3; } }

An invocation new E().M2() returns 1, since the internal invocation in the body
of M2 refers to the method now called M4. However, an invocation new E().M3()
returns 3, since the client invocation in the body of M3 refers to method M1 in
E. Note that this does not even coincide with privateness on a “per object” basis
as, e.g., in Smalltalk, since this would be the case even with a client invocation
e.M1(), where e denotes, as special case, the current object.

Other operators of the Jigsaw framework, besides the ones mentioned above,
are restrict, which eliminates the definition for a member4, and hide, which
makes a member no longer selectable from the outside. We refer to [8] and [3]
for more details. All these operators and many others can be easily encoded (see
[3]) by using a minimal set of primitive operators: sum, reduct, and freeze, which
will be formally defined in next section.

We discuss now the issues specific to the instantiation on Java-like classes.

Fields and constructors. It turns out that the above modifiers can be smoothly
applied to fields as well, with analogous meaning, as shown by the following
example which also illustrates how constructors work.
class A1 {

abstract int F1; virtual int F2; int F3;
constructor (int x) { F2 = x; F3 = x; }
int M() { return F2 + F3; }

} class C1 {
int F1; int F2; int F3;
constructor (int x) { F1 = x+1; F2 = x+1; F3 = x+1; }

} override A1

4 Indeed, CE1 override CE2 = merge CE1, restrict N1 in . . . restrict Nk in CE2

where N1, . . .Nk are the common members.
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A basic class defines one5 constructor which specifies a sequence of parame-
ters and a sequence of initialization expressions, one for each non-abstract field.
We assume a default constructor with no parameters for classes having no fields.
Note the difference with FJ, where the class constructor has a canonical form (pa-
rameters exactly correspond to fields). This would be inadequate in our frame-
work since object layout must be hidden to clients. In order to be composed by
merge/overriding, two classes should provide a constructor with the same pa-
rameter list (if it is not the case, a constructor wrapper can be inserted, see the
last example of this section), and the effect is that the resulting class provides
a constructor with the same parameter list, that executes both the original con-
structors. An instance of class C1 has five fields (A1.F2, A1.F3, C1.F1, C1.F2,
C1.F3), and an invocation new C1(5).M() will return 11, since F2 in the body
of M refers to the field declared in C1 (initialized with 5+1), while F3 refers to
the field declared in A1 (initialized with 5).6

Classes composed by merge/overriding can share the same field, provided it is
abstract in all except (at most) one. Note that this corresponds to sharing fields
as in, e.g., [5]; however, in our framework we do not need an ad-hoc notion.

Inheritance and subtyping. Since our aim is to instantiate the Jigsaw framework
on a Java-like language, we keep a nominal approach, that is, types are class
names. However, subtyping does not coincide with the generalized inheritance
relation, since some of the composition operators (e.g., renaming) do not preserve
structural subtyping. Hence, we assume that a program includes a sequence of
subtyping relations among classes explicitly declared by the programmer, and
the type system checks, for each C <= C ′ subtype declaration, that the relation
can be safely assumed since C is a structural subtype of C ′.

Type of the current object. The following code

{ C M() { return this ; } }

can be safely inherited only by classes which are a subtype of C. To ensure this,
basic classes can declare a ThisType constraint:

{ ThisType <= C;
C M() { return this ; }

}

This constraint is used to typecheck the occurrences of this inside method
bodies. Moreover, the constraint is checked when inheriting the code:

class C {
ThisType <= C;
C M() {return this ;}

} class D ... C ... // ok only if D <= C

5 Since overloading is not allowed.
6 Note that an overriden member, such as A1.F2, could still be selected, as usual, by

a super mechanism, which can be encoded in Jigsaw, notably by renaming [2].
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The ThisType constraint can be strengthened by the ThisType wrapping oper-
ator

C [ThisType <= D] //ok only if D <= C

We assume a default constraint ThisType <= Object, where Object is a pre-
defined class with no members.

To conclude this section, we show a more significant example, where we also
assume to have the type void and some statements in the syntax.

The following class DBSerializable, an example of the pattern template
method [12], contains the method saveToDB, which writes the object serialized
representation onto a database. While the behaviour of saveToDB is fixed, the
details on how to open the connection are left unspecified, and the implementa-
tion of the method serialize can be changed.7 This is reflected by the method
modifiers. Class DBConnection is a given library class.

abstract class DBSerializable {
abstract DBConnection openConnection ();
virtual void serialize ( DBConnection c) {}
frozen void saveToDB () {

DBConnection connection = openConnection ();
// ...
serialize (connection );
connection .close ();

}
}

Suppose we want to specialize the class DBSerializable for the DB server
MySQL. We can create this specialization, called MySQLSerializable, in two
steps: first, we provide an implementation of method openConnection with the
specific code for MySQL, then we hide it, since clients of MySQLSerializable
should never invoke this method directly. We start by defining an auxiliary class
_MySQLSerializable, merging DBSerializablewith an anonymous basic class:

class _MySQLSerializable
merge

DBSerializable [ constructor (String cs) {
super()

} ],
{ local String connectionString ;

constructor (String cs) { connectionString = cs; }
virtual DBConnection openConnection () {

/* ... use connectionString ... */}
}

Note the use of the constructor wrapper: the constructor of the anonymous
basic class has a String parameter, whereas that of the class DBSerializable,
which has no fields, is the default (parameterless) constructor. Hence, a construc-
tor wrapper is inserted, so that the classes we are merging have both a construc-
tor with the same parameters. This allows to create objects of the new class with
expressions like new _MySQLSerializable("someConnectionString..."). As
7 This method could be declared abstract as well.
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mentioned before, the class _MySQLSerializable provides, along the method
saveToDB, the method openConnection that we can hide as follows:

class MySQLSerializable
hide openConnection in _MySQLSerializable

Consider now the following class Person, providing a method, named write,
to serialize its objects to a database:

class Person { // ...
frozen void write(DBConnection c) {

/* serializes the data on c*/}
}

Notwithstanding the inherited method DBSerializable.saveToDB writes the
data by invoking the method serialize and not write, using the class Person
with MySQLSerializable is not a problem, since we can rename the method
before merging the two classes:

class MySQLSerializablePerson
hide serialize in

(rename write to serialize in Person)
[constructor (String cs){ super()}]

override MySQLSerializable

2 FJig Calculus

In this section we formally define the (flattening) semantics of FJig. To this aim,
we use a different representation for basic classes w.r.t. the surface syntax given in
Fig. 1. That is, instead of having explicit modifiers, their semantics is encoded by
distinguishing between external and internal member names. Internal names are
used to refer to members inside code (method bodies), whereas external names
are used in class composition via operators and in selection of members by clients.
Correspondingly, basic classes include, besides previous components which are
collected in the local part, an input map from internal to external names, and an
output map from external to internal names. Intuitively, the input map trans-
lates required internal names to external names which are actually required from
other classes, and the output map translates provided external names to inter-
nal names which actually provide their definitions. We could have alternatively
expressed the semantics directly on the surface language, getting a more FJ-
like flavour. However, the representation with i/o maps has some advantages: a
clean distinction between internal names, which can be α-renamed, and external
names, as in the tradition of module calculi [21,3]; renaming (reduct operator)
can be modeled without changing (occurrences of names in) code; in general,
operators can be modeled in a uniform way, whereas the other representation
would require a case analysis on the four kinds of members.

The syntax of the calculus is given in Fig. 2. Besides class names, (external)
names and variables, we assume an infinite set of internal (member) names n.
A program consists of two components: a sequence of class declarations (class
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name and class expression), as in FJ, and a sequence of subtype declarations.
We assume that no class is declared twice and order is immaterial, hence we
can write p(C ) for the class expression associated with C . Class expressions CE
are basic classes B , class names C , or are inductively constructed by a set of
composition operators. Let us say that C “inherits from” C ′ if the class expression
associated with C contains a subterm C ′, or, transitively, C ′′ which inherits from
C ′. In a well-formed program, we require this generalized inheritance relation
to be acyclic, exactly as for standard inheritance. Input and output maps are
represented as sequences of pairs where the first element has a type annotation.
In an input map, internal names which are mapped to the same external name
are required to have the same annotation, whereas this is not required in output
names, that is, the same member can be exported under different names with
different types, see the type system in next section. Renamings σ are maps
from (annotated) external names into (annotated) external names, represented
as sequences of pairs; pairs of form _ �→ N :T are used to represent non-surjective
maps. We use some shorter keywords w.r.t. the surface syntax, and expressions
include runtime expressions, that is, (pre-)objects and blocks.

We denote by dom and img the domain and image of a map, respectively.
Given a basic class [ι |o |ρ], with ρ = {τ ϕ κ μ}, we denote by dom(μ) and dom(ϕ)
the sets of internal names declared in μ and ϕ, respectively, which are assumed
to be disjoint. The union of these two sets, denoted by dom(ρ), is the set of local
names. An internal name n is, instead, abstract if n∈dom(ι), ι(n)	∈dom(o), and
virtual if ι(n)∈dom(o). An external name N is abstract if N∈img(ι)\dom(o),
virtual if N∈img(ι)∩dom(o), frozen if N∈dom(o)\img(ι). In a well-formed basic
class, local names must be distinct from abstract/virtual internal names, that
is, dom(ι)∩dom(ρ)=∅. Moreover, img(o)⊆dom(ρ), and, denoting by names(e)
the set of internal names in an expression e, names(e)⊆dom(ι)∪dom(ρ) for each
method body e.

A basic class of the surface language can be easily encoded in the calculus
as follows. For each member name N we assume (at most) a corresponding
external name N and (at most) two internal names n,n ′, depending on the
member kind, as detailed below. Client references to N are unaffected, whereas
internal references are translated according to the member kind:

– if N is abstract, then there is an association n �→N in the input map, and
internal references are translated by n,

– if N is virtual, then there is an association n �→N in the input map, an
association N �→n ′ in the output map, a definition for n ′ in ρ, and internal
references are translated by n,

– if N is frozen, then there is an association N �→n ′ in the output map, a
definition for n ′ in ρ, and internal references are translated by n ′.

– if N is local, then there is a definition for n ′ in ρ, and internal references are
translated by n ′.

Inside constructor bodies, a field name F on the left-hand side is always
translated by f ′ (and internal member selection is forbidden).

For instance, the class C shown in the previous section is translated by
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p :: = cd leq program
cd :: = C �→ CE class declaration
leq :: = C ≤ C ′ subtype declaration
CE :: = B | C | class expression

CE1 + CE2 sum
| σι|CE |σo reduct
| freezeNCE freeze
| CE [K(C x){e}] | CE [TT≤C ] constructor and ThisType wrappers

σ :: = N :T �→N ′:T ′, _ �→ N :T renaming
N :: = F | M external member name
T :: = C | MT member type
MT :: = C→C method type

B :: = [ι |o |ρ] basic class
ι :: = n:T �→N input map
o :: = N :T �→n output map
n :: = f | m internal member name
ρ :: = {τ ϕ κ μ} local part
τ :: = TT≤C ThisType constraint
ϕ :: = C f ; field
κ :: = K(C x){f =e} constructor
μ :: = C m(C x){return e;} method
e :: = x | e.F | e.M (e) | f | m(e) | new C (e) expression

| [μ; v |e] block
| C (f =e) (pre-)object

v , vC :: = C (f =e) value (object)

Fig. 2. Syntax

[m2:()→int �→ M2 |M1:()→int �→ m ′
1,M2:()→int �→ m ′

2,|ρ]
ρ = {
TT≤Object K(){}
int m ′

1(){return 1 + m2();}
int m ′

2(){return m ′
1() + m ′

3();}
int m ′

3(){return 1;}
}

Wedescribe now the two kinds of runtime expressions introduced in the calculus.
Expressions of form C (f =e) denote a pre-object of class C , where for each field

f there is a corresponding initialization expression. Note the difference with the
form new C (e), which denotes a constructor invocation, whereas in FJ objects
can be identified with object creation expressions where arguments are values.
As already noted, in FJ it is possible, and convenient, to take this simple and
nice solution, since the structure of the instances of a class is globally visible to
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the whole program. In FJig, instead, object layout must be hidden to clients,
hence constructor parameters have no a priori relation with fields.

Values of the calculus are objects, that is, pre-objects where all initialization
expressions are (in turn) values. We use both vC and v as metavariables for
values of class C , the latter when the class is not relevant.

Moreover, runtime expressions also include block expressions of the form
[μ; v | e], which model the execution of e where method internal names are
bound in μ and field internal names in the current object v . Hence, denoting by
dom(v) the set {f1, . . . , fn} if v=C (f1=v1 . . . fn=en), a block expression is well-
formed only if names(e)⊆dom(μ)∪dom(v) (hence names([μ; v | e]) = ∅) and
these two sets are disjoint.

The semantics of an expression e in the context of a program p can be de-
fined in two different ways. The former, which we call flattening semantics and
illustrate in this section, is given in two steps. First, p is reduced to a flat pro-
gram p′, that is, a program where every class is basic. To this end, operators are
performed and the occurrences of class names are replaced by their defining ex-
pressions. Then, e is reduced in the context of p′. Note that in this case dynamic
look-up is always trivial, that is, a class member (e.g., a method) can be always
found in the class of the receiver. In next section, we define an alternative direct
semantics, where expressions are reduced in the context of non flat programs,
hence where dynamic look-up is non trivial.

Flattening rules are defined in the top section of Fig. 3. We omit subtype
declarations for simplicity since they do not affect semantics.

The first two rules define reduction steps of programs, which can be obtained
either by reducing one of the class expressions, or, if some class C has already
been reduced to a basic class B , by replacing by B all occurrences of C as class
expression.

The remaining rules define reduction steps of class expressions. Rules for sum,
reduct and freeze operators are essentially those given in [3], to which we refer
for more details. We omit standard contextual closure for brevity.

The expression o1, o2 is well-formed only if the two maps have disjoint do-
mains, and analogously for other maps. Hence, rule (sum) can only be applied
(implicit side conditions) when the two sets of internal names are disjoint, as are
the sets of output names. The former condition can be always satisfied by an
appropriate α-conversion, whereas the latter corresponds to a conflict that the
programmer can only solve by an explicitly renaming (reduct operator). Note
that ThisType constraints and constructor parameters are required to be the
same, in order both to get a commutative operator and to keep the calculus
minimal; indeed, this can be always achieved by using wrapping operators.

In rule (reduct), new input and output names are chosen, modeled by
img(σι) and dom(σo), respectively. Old input names are mapped in new in-
put names by σι, whereas new output names are mapped into old output names
by σo. Input names can be shared or added, whereas output names can be
duplicated or removed. The symbol ◦ denotes composition of maps, which is
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(cdec1)
CE−→CE ′

(p,C �→ CE )−→(p,C �→ CE ′)

(cdec2)
(p,C �→ B)−→(p[B/C ],C �→ B)

(sum)
[ι1 |o1 |ρ1] + [ι2 |o2 |ρ2]−→ [ι1, ι2 |o1, o2 |ρ]

ρi={τ ϕi K(C x){(f =e)i} μi},
i ∈ {1, 2}

ρ={ τ ϕ1, ϕ2
K(C x){(f =e)1, (f =e)2} μ1, μ2}

(reduct)

σι|[ι |o |ρ]|σo −→ [σι ◦ ι |o ◦ σo |ρ]

(freeze)
freezeN[ι,n1:T �→N . . .nk:T �→N |o |ρ]−→

[ι |o |ρ[n ′/n1] . . . [n ′/nk]]

n′=o(N )
N 	∈ img(ι)

(TT wrap)
[ι |o |{TT≤C ′ ϕ κ μ}][TT≤C ]−→ [ι |o |{TT≤C ϕ κ μ}]

(K wrap)
[ι |o |ρ][K(D y){e}]−→ [ι |o |ρ′]

x=x1 . . . xn

ρ = {τ ϕ K(C1 x1 . . . Cn xn){f =e} μ}
ρ′ = {τ ϕ K(D y){f =e[e/x ]} μ}

(ctx)
e −→p e ′

E{e} −→p E{e ′} (client-field)
vC .F −→p [μ; vC | f ]

p(C )=[ι |o | {τ ϕ κ μ}]
o(F)=f

(client-invk)
vC .M (v ) −→p [μ; vC |m(v )]

p(C )=[ι |o | {τ ϕ κ μ}]
o(M )=m

(int-field)
[μ; v |E{f }] −→p [μ; v |E{vi}]

f /∈ HB(E)
v = C (f1=v1 . . . fn=vn)
f =fi

(int-invk)
[μ; vC |E{m(v )}] −→p [μ; vC |E{e[v/x ][vC /this]}]

m /∈ HB(E)
μ(m)=〈x , e〉

(obj-creation)

new C (v) −→p C (f =e[v/x ])

p(C )=[∅|o |ρ]
ρ={τ ϕ K(C1 x1 . . . Cn xn){f =e} μ}
x=x1 . . . xn

(exit-block)
[μ; v |e] −→p e

names(e)=∅

Fig. 3. Flattening semantics
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well-formed only if type annotations are the same and the annotation of the new
name is kept in the resulting map.

In rule (freeze), association from internal names into N are removed from
the input map, and occurrences of these names in method bodies are replaced by
the local name of the corresponding definition, thus eliminating any dependency
on N . The second side condition ensures that we actually take all such names.

Rules for constructor and ThisType wrapping just correspond to changing the
constructor and the ThisType constraint for a class, respectively. In (K wrap),
n is the arity of the old constructor, and the body of the new constructor has n
initialization expressions, as implicitly imposed by the well-formedness of mul-
tiple substitution e for x . We chose a permissive semantics for ThisType wrap-
ping, alternatively we could perform a runtime check on the relation between C
and C ′.

Reduction rules are given in the second section of Fig. 3.
The first rule is the standard contextual closure, where E denotes a one-hole

context and E{e} denotes the expression obtained by filling the hole by e.
Client field accesses and method invocations are reduced in two steps. First,

they are reduced to a block where the current object is the receiver and the
expression to be executed is the corresponding internal member selection on the
name found in the receiver’s class; moreover, methods found in the receiver’s
class are copied into the block and used for resolving further internal method
invocations.8 Then, the following two rules can be applied.

An internal field access can only be reduced if it appears inside a block. In
this case, it is replaced by the corresponding field of the current object. The
first side condition says that the occurrence of f or m in the position denoted by
the hole of the context E is free (that is, not captured by any binder around the
hole), hence ensures that it is correctly bound to the current object in the first
enclosing block. The standard formal definition of HB is omitted. For instance,
in the expression [μ; v |m(f , [μ′; v ′ | f ])], the first occurrence of f denotes a field
of the object v , whereas the second occurrence denotes a field of the object v ′.
Analogously, an internal method invocation is replaced by the corresponding
body, found in μ, where parameters are replaced by arguments and this by the
current object. We denote by μ(m) the pair 〈x1 . . . xn, e〉 if μ contains a (unique)
method C m(C1 x1 . . .Cn xn){return e;}.

Note that there are two kinds of references to the current object in a method
body: through the keyword this (in client member selection, or in a non-receiver
position, e.g. return this), and through internal names. Whereas the former
can be substituted at invocation time, as in FJ, the latter are modeled by a
block, otherwise we would not be able to distinguish, among the objects of form
vC , those which actually refer to the original receiver of the invocation.

In rule (obj-creation), note that only classes where all members are frozen
can be instantiated. This is a simplification: the execution model could be easily

8 Alternatively, the method body corresponding to an internal name could be again
found in the basic class of the receiver; we choose this model because it can be better
generalized to direct semantics, see the following.
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generalized to handle internal member selection on a virtual internal name by re-
trieving the input map as well in blocks (in rules (client-field) and (client-
invk)) and adding two reduction rules which, roughly, reduce such an internal field
access/method invocation into the corresponding client member selection. We pre-
ferred to stick to an equivalent simpler model which, assuming that all classes have
been frozen before being instantiated, avoids these redundant lookup steps.

Finally, in (exit-block), a block can be eliminated when the enclosed ex-
pression does no longer contain internal member selections, hence in particular
when a value is obtained.

Examples illustrating flattening semantics (in comparison with direct seman-
tics) will be provided in Sect. 4.

3 Type System

The type system uses four kinds of type environments, shown in Fig. 4.

Δ :: = C :CT leq class type environment
CT :: = [Σι; Σo;C ;C ] class type
Γ :: = n:T internal type environment
Π :: = x :C parameter type environment
Σ :: = N :T signature
Δr :: = C :Γ runtime class type environment

Fig. 4. Type environments

A class type environment is a pair consisting of a map from class names into
class types and a sequence of subtype declarations. A class type is a 4-tuple
consisting of input and output signatures, constructor type and type of this.
We use the abbreviated notations C ≤ C ′ ∈ Δ and Δ(C ) = CT .

Signatures are maps from external names into types.
We denote by mtype(Δ,C ,N ) the type of member named N in Δ(C ), which

is the output type9 for a defined member, the input type for an abstract member.
Internal type environments map internal names to types. Parameter type

environments map variables (parameters) into class names. Finally, runtime class
type environments map class names to internal type environments.

Typing rules in Fig. 5 define judgments � p:Δ for programs and Δ � CE :CT
for class expressions.

In (prog-t), a program has type Δ if each declared class C has type Δ(C )
w.r.t. Δ, ThisType constraints are satisfied, and declared subtyping relations are
safe. The judgment Δ � C ≤ C ′ checks whether C and C ′ are in the reflexive and
transitive closure of subtyping declarations in Δ. The judgment Δ � C ≤ C ′ ok

9 To provide a richer interface to clients.
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(prog-t)

Δ � CE i:CT i ∀i ∈ 1..n
Δ � Ci ≤ C τ

i ∀i ∈ 1..n
Δ � C ′

i ≤ C ′′
i ok ∀i ∈ 1..k

� C1 �→CE 1 . . .Cn �→CEn leq :Δ

leq = C ′
1 ≤ C ′′

1 . . . C ′
k ≤ C ′′

k

Δ = C1:CT1 . . . Cn:CTn leq
CT i = [_; _; _;Cτ

i ]

(cname-t)
Δ � C :CT

Δ(C ) = CT

(basic-t)

Δ; Γ ι, Γ μ, Γ ϕ;C � μ:Γ μ

Δ; Γ ϕ � κ:C
Δ � [ι |o |{TT≤C ϕ κ μ}]:[Σι; Σo;C ;C ]

Δ � Σo(N ) ≤ Σι(N )
∀N ∈ img(ι) ∩ dom(o)

Δ � (Γ ϕ, Γ μ)(o(N )) ≤ Σo(N )
∀N ∈ dom(o)

(methods-t)
Δ; Γ ;C � μi:MT i ∀ i ∈ 1..n

Δ; Γ ; C � μ:Γ μ

μ = μ1 . . . μn

Γ μ = m1:MT1 . . . mn:MTn

(method-t)
Δ; Γ ; this:C, x1:C1 . . . xn:Cn � e:C ′

Δ; Γ ; C � C0 m(C1 x1 . . .Cn xn){return e;}:
C1 . . .Cn→C0

Δ � C ′ ≤ C0

(K-t)
Δ; ∅; x1:C1 . . . xn:Cn � ei:C ′′

i ∀i ∈ 1..k

Δ; f1:C ′
1 . . . fk:C ′

k � κ:C1 . . .Cn

κ = K(C1 x1 . . . Cn xn){f1 = e1 . . . fk = ek}
Δ � C ′′

i ≤ C ′
i ∀i ∈ 1..k

(sum-t)

Δ � CE1:[Σι
1; Σo

1 ;C ;C ]
Δ � CE2:[Σι

2; Σ
o
2 ;C ;C ]

Δ � CE 1 + CE2:[Σι
1, Σ

ι
2; Σ

o
1 , Σo

2 ;C ;C ]
dom(Σo

1) ∩ dom(Σo
2) = ∅

(reduct-t)
Δ � CE :[Σι

1; Σ
o
1 ;C ;C ]

Δ � σι|CE |σo :[Σι; Σo;C ;C ]
Δ � σι:Σι

1 → Σι

Δ � σo:Σo → Σo
1

(freeze-t)
Δ � CE :[Σι,N :T ; Σo;C ;C ]
Δ � freezeNCE :[Σι; Σo;C ;C ]

N∈dom(Σo)

(TT-wrap-t)
Δ � CE :[Σι; Σo;C ;C ′]

Δ � CE [TT≤C ]:[Σι; Σo;C ;C ]
Δ � C ≤ C ′

(K-wrap-t)

Δ; ∅; x1:C1 . . . xn:Cn � ei:C ′′
i ∀i ∈ 1..k

Δ � CE :[Σι; Σo;C ′
1 . . .C ′

k;C ]
Δ � CE [K(C1 x1 . . .Cn xn){e1 . . . ek}]:

[Σι; Σo;C1 . . .Cn;C ]

Δ � C ′′
i ≤ C ′

i∀i ∈ 1..k

Fig. 5. Typing rules for programs and class expressions
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checks whether C is a structural subtype of C . The straightforward definition
of these judgments is omitted (see [16]).

In (basic-t), we denote by Σι and Σo the signatures extracted from ι and
o, respectively; analogously, we denote by Γ ι,Γ μ and Γ ϕ the internal type envi-
ronments extracted from ι, μ and ϕ, respectively.

A basic class is well-typed w.r.t. Δ under three conditions. First, methods
have their declared types w.r.t. Δ, the internal type environment assigning to
member internal names their annotations, and the type in the ThisType con-
straint (assumed as type for this). Second, the constructor has its declared type
w.r.t. Δ and the internal type environment assigning to internal field names their
annotations. Finally, type annotations in input signature, output signature and
local part must be consistent, that is, a virtual member can be used inside the
class with a supertype of its exported type (first side condition), and a member
can be exported with a supertype of its internal type (second side condition).

Typing rules for sum, reduct and freeze are based on those in [3]. Rule (sum-
t) imposes the same constructor type and ThisType constraint, and disjoint
output signatures. In (reduct-t), the judgment Δ � σ:Σ → Σ′ means that,
if σ maps N :T into N ′:T ′, then Δ � T ′ ≤ T holds. Hence, the side condition
allows a member to be imported with a more specific type, and exported with a
more general type. Analogously, rule (this-type-t) allows the type of this to
become more specific.

Typing rules in Fig. 6 define the judgment Δ; Γ ; Π � e:C for well-typed
expressions. They are analogous to FJ rules. However, note that member type
is found in receiver’s class for client member selection, whereas it is found in the
internal type environment for internal member selection. Also, note that (new-
t) requires a class to have an empty input signature in order to be instantiated
(see comment to rule (obj-creation) in previous section).

Finally, typing rules in Fig. 7 define the judgment Δ; Δr ; Γ ; Π � e:C for well-
typed runtime expressions. These expressions are typed using an additional type
environment Δr , which gives for each class the types of its internal field names.

Rule (block-t) checks that the current object is well-typed and, moreover,
that the enclosed method declarations and expression are well-typed in the inter-
nal type environment corresponding to the current object’s class in Δr . In this
case, the type of the block is that of the enclosed expression. Rule (pre-obj-t)
checks that each initialization expressions has a subtype of the type of the corre-
sponding field internal name, found in the internal type environment associated
to the (pre)object’s class in Δr . Rules for other forms of expressions are analogous
to those in Fig. 6, plus propagation of the runtime class type environment.

Soundness of the type system is expressed by the following theorems.

Theorem 1 (Soundness w.r.t. flattening relation). If � p:Δ, then p �−→p′

for some p′ flat program, and � p′:Δ.

Let us denote by Δr
p the runtime class type environment extracted from a flat

program p. That is, for each basic class declaration of form C �→ [∅|o |{τ ϕ κ μ}]
in p, Δr

p(C ) = Γ ϕ.
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(var-t)
Δ; Γ ; Π � x :C

Π(x) = C (client-field-t)
Δ; Γ ; Π � e0:C0

Δ; Γ ; Π � e0.F :C
mtype(Δ, C0, F) =

C

(client-invk-t)

Δ; Γ ; Π � e0:C0
Δ; Γ ; Π � ei:C ′

i ∀i ∈ 1..n

Δ; Γ ; Π � e0.M (e1 . . . en):C
mtype(Δ, C0, M ) = C1 . . . Cn →C
Δ � C ′

i ≤ Ci ∀i ∈ 1..n

(int-field-t)
Δ; Γ ; Π � f :C

Γ (f ) = C

(int-invk-t)
Δ; Γ ; Π � ei:C ′

i ∀i ∈ 1..n

Δ; Γ ; Π � m(e1 . . . en):C
Γ (m) = C1 . . . Cn →C
Δ � C ′

i ≤ Ci ∀i ∈ 1..n

(new-t)
Δ; Γ ; Π � ei:C ′

i ∀i ∈ 1..n

Δ; Γ ; Π � new C (e1 . . . en):C
Δ(C ) = [∅; _; C1 . . . Cn; _]
Δ � C ′

i ≤ Ci ∀i ∈ 1..n

Fig. 6. Typing rules for expressions

(block-t)

Δ; Δr ; Γ ; Π � v :C ′

Δ; Δr ; Γ ′;C ′ � μ:Γ μ

Δ; Δr ; Γ ′; Π � e:C
Δ; Δr ; Γ ; Π � [μ; v |e]:C

Γ ′ = Γ, Δr (C ′), Γ μ

(pre-obj-t)
Δ; Δr ; Γ ; Π � ei:C ′

i ∀i ∈ 1..n

Δ; Δr ; Γ ; Π � C (f1 = e1; . . . fn = en; ):C
Δr (C ) = f1:C1 . . . fn:Cn

Δ � C ′
i ≤ Ci ∀i ∈ 1..n

Fig. 7. Typing rules for runtime expressions

Theorem 2 (Progress). If � p:Δ, then Δ; Δr
p ; ∅; ∅ � e:C implies that either e

is a value or e −→p e ′ for some e ′.

Theorem 3 (Subject reduction). If � p:Δ, then Δ; Δr
p ; Γ ; Π � e:C and

e −→p e ′ imply that Δ; Δr
p ; Γ ; Π � e ′:C ′, and Δ � C ′ ≤ C .

Proof of Th. 1 is is a simple adaptation from [3], others can be found in [16].

4 Direct Semantics

Direct semantics allows a modular approach where each class (module) can be
analyzed (notably, compiled) in isolation, since references to other classes do
not need to be resolved before runtime. In this case, look-up is a non trivial
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procedure where a class member (e.g., method) is retrieved from other classes
and possibly modified as effect of the module operators. Since FJig subsumes
a variety of mechanisms for class composition, including standard inheritance,
mixins, traits, and hiding, the definition of direct semantics for FJig provides
a guideline which can be emulated by real extensions of class-based languages,
and also a hint to implementation.

In order to give this definition, block expressions are generalized as shown
in the top section of Fig. 8. That is, besides the previous components, a block
contains a path map ι̂ which maps internal names to paths π, which denote a
subterm in the class expression defining the class C of the current object (an
implementation could use a pointer). More precisely, a path π always denotes
a subterm of the form freezeNCE , and is used as a permanent reference to the
definition of member N in CE . Indeed, the external name N can be changed
or removed by effect of outer reduct operators; however, references via π are
not affected. Hence, when a reference π is encountered during current method
execution, lookup of N in CE is triggered (see more explanations below). In
flattening semantics, C is always a basic class, hence this case never happens.

The center section of the figure contains the new rules for expression reduction.
When a member reference (external name or path) N̂ needs to be resolved,

the lookup procedure starts the search of N̂ from receiver’s class C and, if
successful, returns a corresponding internal name inside a block expression, as
shown in rules (client-field) and (client-invk). In flattening semantics, C
is always a basic class, hence lookup is trivial and the side condition can be
equivalently expressed as in the analogous rules in Fig. 3.

When an internal name n is encountered, it is either directly mapped to a
definition, or to a path. The former case happens when n was a local name
in the basic class containing the definition of the method which is currently
being executed. In this case, the corresponding definition is taken, as shown
in rules (int-field) and (int-invk). The latter case happens when n was an
abstract or virtual name inside the basic class containing the definition of the
method which is currently executed, and n has been permanently bound to some
definition by an outer freeze operator (recall that only classes where all members
are frozen can be instantiated). In this case, lookup of this definition is started
from receiver’s class via the path π, and, if successful, the internal name n is
replaced by the name n ′ found by lookup; moreover, the corresponding path
map and methods are merged with the original ones (α-renaming can be used
to avoid conflicts among internal names in this phase). This is shown in rule
(path). In flattening semantics, the latter case never happens, hence only the
first two rules are needed.

Creation of an instance of class, say, C , also involves a constructor lookup
procedure, which returns, starting from class C , the appropriate constructor, by
retrieving and possibly modifying constructors of other classes (this generalizes
what happens in standard Java-like languages, where the superclass constructor
is always invoked). In flattening semantics, C is always a basic class, hence
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π :: = i1 . . . ik i ∈ {1, 2}
N̂ :: = N | π
ι̂ :: = n1 �→π1 . . .nk �→πk

e :: = . . . | [ι̂; μ; v |e]

vC .F −→p [ι̂; μ; vC | f ]
lookupp〈F , C 〉 = [ι̂; μ | f ]

vC .M (v) −→p [ι̂; μ; vC |m(v)]
lookupp〈M , C 〉 = [ι̂; μ |m]

[ι̂; μ; v |E{f }] −→p [ι̂; μ; v |E{vi}]
f /∈ HB(E)
v = C (f1=v1 . . . fn=vn)
f =fi

[ι̂; μ; v |E{m(v)}] −→p [ι̂; μ; v |E{e[v/x ][vC/this]}]
m /∈ HB(E)
μ(m) = 〈x , e〉

[ι̂,n �→ π; μ; vC |e] −→p [ι̂, ι̂′; μ[n ′/n], μ′; vC |e[n ′/n]]

n ∈ names(e)
lookupp〈π, C 〉 =

[ι̂′; μ′ |n′]

new C (v) −→p C (f =e[v/x ])
p(C ) = K(C1 x1 . . . Cn xn){f =e}

x=x1 . . . xn

[ι̂; μ; v |e] −→p e
names(e)=∅

lookupp〈N̂ , π,C 〉 = lookupp〈N̂ , π,CE〉
p(C ) = CE

lookupp〈N , π, [ι |o,N �→n |{τ ϕ κ μ}]〉 = [ι; ∅; μ |n]
lookupp〈N̂ , π,CE1 + CE2〉 = αi([ι; ι̂; μ |n])

lookupp〈N̂ , π.i,CE i〉 = [ι; ι̂; μ |n], i ∈ {1, 2}
lookupp〈N̂ , π, σι|CE |σo〉 = [σι ◦ ι; ι̂; μ |n]

lookupp〈N̂ ′, π.1,CE〉 = [ι; ι̂; μ |n],
N̂ ′ = σo(N ) N̂ = N , N̂ ′ = N̂

lookupp〈N̂ , π, freezeNCE〉 = [ι; ι̂,n1 �→π . . .nk �→π; μ |n]
N̂ �= π,N �∈ img(ι),

lookupp〈N̂ , π.1,CE〉 = [ι,n1 �→N . . .nk �→N ; ι̂; μ |n]
lookupp〈π, π, freezeNCE〉 = [ι; ι̂,n1 �→π . . .nk �→π; μ |n]

N �∈ img(ι),
lookupp〈N , π.1,CE〉 = [ι,n1 �→N . . .nk �→N ; ι̂; μ |n]

lookupp〈N̂ , π,CE [TT≤C ]〉 = lookupp〈N̂ , π.1,CE〉
lookupp〈N̂ , π,CE [K(C x ){e}]〉 = lookupp〈N̂ , π.1,CE〉

p(C ) = p(CE)
p(C ) = CE

p([∅|o |{τ ϕ κ μ}]) = κ

p(CE1 + CE2) = K(C x ){α1(f = e), α2(f ′ = e ′)}
p(CE1) = K(C x ){f = e},

p(CE2) = K(C x ){f ′ = e ′}
p(σι|CE |σo) = p(CE)
p(freezeNCE) = p(CE)
p(CE [TT≤C ]) = p(CE)

p(CE [K(D y){e}]) = K(D y){f =e[e/x ]}
x = x1 . . . xn,

p(CE) = K(C1 x1 . . .Cn xn){f =e}

Fig. 8. Direct semantics
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constructor lookup is trivial and the side condition can be equivalently expressed
as in the corresponding rule in Fig. 3.

Lookup and constructor lookup are defined in the bottom section of the figure.
The lookup procedure is modeled by a function which, given a program p,

takes three more arguments: a member reference (external name or path) N̂ , a
path π, which acts as an accumulator and keeps track of the current subterm
of the class expression which is examined, and a class name C . When lookup is
started, π is always the empty path Λ, and lookupp〈N̂ , Λ,C 〉 is abbreviated by
lookupp〈N̂ ,C 〉.

The lookup function returns a triple consisting of input map, path map, meth-
ods and an internal name, written [ι; ι̂; μ |n]. However, the final result of lookup
(that is, the result returned for the initial call) is expected to be always of form
[∅; ι̂; μ |n], abbreviated by [ι̂; μ |n], since all abstract/virtual internal names are
expected to be eventually bound to a path as effect of some freeze operator.

The first two clauses defining lookup are trivial and state that looking for a
member reference starting from a class name C means looking in the definition
of C , and that looking for an external name N in a basic class only succeeds
if the name is present in the class, and returns the corresponding input map,
methods and internal name. Note that the case where we look for a path π in a
basic class is expected to never happen.

The third clause defines lookup on a sum expression. In this case, lookup is
propagated to both arguments. This definition is a priori non-deterministic, but
is expected to be deterministic on class expressions which can be safely flattened,
since in this case an external name cannot be found on both sides. For member
references which are paths, instead, determinism is guaranteed by construction
since the path exactly corresponds to a subterm. In case lookup succeeds on one
of the two arguments, the result is modified by renaming field local names in a
way which keeps track of this argument. For instance, if lookup succeeded on the
first argument, then every field internal name f is renamed to f .1. This renaming
is denoted by αi. We choose this canonical α-renaming for concreteness, but any
other could be chosen, provided that it is consistent with that in constructor
lookup.

For instance, let us consider the following program10:

C �→ C1 + C2

C1 �→ [∅| . . . |{ int f ; K(){f = 3} . . .}]
C2 �→ [∅| . . . ,M �→ m |{ int f ; K(){f = 5} int m(){return f + 1;}}]

and the expression new C ().M (). An instance of class C has two fields, inher-
ited from C1 and C2, and initialized to 3 and 5, respectively. They are both
named f in the original classes; however, they are renamed during construc-
tor lookup (see the clause for sum), hence the above expression reduces to
C (f .1 �→3, f .2 �→5).M (). Now, M is invoked, starting the lookup from C , and
the search is propagated to both C1 and C2. Only the lookup in C2 is successful
and returns the result
10 In order to write more readable examples, we assume integer values and operations,

and omit default constructor and ThisType constraint.
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[; ; int m(){return f + 1;}|m]

which is modified in [; ; int m(){return f .2+1;}|m] to take into account that the
method has been found in the second argument. Hence, this method invocation
reduces to [; int m(){return f .2 + 1;};C (f .1 �→3, f .2 �→5) |m] where the body of
m correctly refers to the second field.

In flattening semantics, C reduces to the following basic class:

[∅| . . . ,M �→ m |{ int f .1; int f .2; κ int m(){return f .2 + 1;} . . .}]
κ = K(){f.1 = 3, f.2 = 5}

Note that here the clash between the two fields is resolved during flattening
(hence before runtime), by α-renaming. We have chosen as α-renaming the same
used in direct semantics as an help for the reader, but of course in this case any
other arbitrary α-renaming would work as well.

The fourth clause defines lookup on a reduct expression. In this case, lookup
of an external name is propagated under the name the member has in the ar-
gument, given by the output renaming σo. Instead, lookup of a path is simply
propagated, since paths are permanent references which are not affected by re-
namings. Moreover, the result of lookup on the argument must be modified to
ensure that internal names refer to the appropriate external names obtained via
the input renaming σι.

For instance, consider a program including

C �→ M1 �→M ′
1|C

′
|M �→M ′

C ′ �→ [m ′ �→ M1 |M ′ �→ m |{ . . . int m(){return m ′();}}]
and assume that some method invocation triggers the lookup for M in C . Then,
the lookup is propagated under the name M ′ to C ′. The lookup of M ′ in C ′ is
successful and returns the result [m ′ �→ M1; ; int m(){return m ′();} |m] which
is modified in [m ′ �→ M ′

1; ; int m(){return m ′();} |m] as an effect of the input
renaming.

In flattening semantics, C reduces to the following basic class:

[m ′ �→ M ′
1 |M �→ m |{ . . . int m(){return m ′();}}]

There are two clauses defining lookup on a freeze expression. The former
handles most cases, except the special situation in which we are exactly looking
for the member that has been frozen in the current subterm π, which has the
form freezeNCE . In this special case (second clause) the lookup of N in CE is
triggered. Moreover, the result is modified, since internal names referring to N
must now refer to the permanent reference π. Otherwise (first clause), the lookup
is propagated, and the result of the lookup on the argument is modified as in
the previous case.

Consider the program

C �→ freezeFC
′

C ′ �→ [f �→ F |F �→ f ′, M �→ m |{ int f ′; K(){f ′ = 42} int m(){return f + 1;}}]

and the expression new C ().M ().
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An instance of class C has one field, inherited from C ′ and initialized to
42. Hence, the above expression reduces to C (f ′ �→42).M (). Now, M is invoked,
starting the lookup from C , and the search is propagated to C ′. The lookup in
C ′ is successful and returns the result [f �→ F ; ; int m(){return f + 1;} |m],

μA ≡ C m(){return m ′();}
μsum ≡ μA C m ′′(){return f ;}
μC ≡ C m(){return m ′′();} C m ′′(){return f ;}
μD ≡ μC C m ′(){return 8;}
μ′′ ≡ C m ′′(){return f .2.1;}

p ≡ A = [m ′ �→ M ′ |M �→ m |{μA}]
B = [∅|M ′ �→ m ′ |{ C f ; K(){f = 0} C m ′(){return f ;}}]
C = freezeM ′(A + B)
D = ∅|C|_ �→M ′,M �→M + [∅|M ′ �→ m ′ |{C m ′(){return 8;}]}

freezeM ′(A + B) −→
freezeM ′[m ′ �→ M ′ |M �→ m,M ′ �→ m ′′ |{ C f ; K(){f = 0} μsum}] −→
[∅|M �→ m,M ′ �→ m ′′ |{ C f ; K(){f = 0} μC}]

D
�−→

[∅|M �→ m |{ C f ; K(){f = 0} μC}] + [∅|M ′ �→ m ′ |{C m ′(){return 8;}]} −→
[∅|M �→ m,M ′ �→ m ′ |{ C f ; K(){f = 0} μD}]

p′ ≡ A = [m ′ �→ M ′ |M �→ m |{μA}]
B = [∅|M ′ �→ m ′ |{ C f ; K(){f = 0} C m ′(){return f ;}}]
C = [∅|M �→ m,M ′ �→ m ′′ |{ C f ; K(){f = 0} μC}]
D = [∅|M �→ m,M ′ �→ m ′ |{ C f ; K(){f = 0} μD}]

new D().M () −→p′ D(f = 0).M () −→p′ [μD ;D(f = 0) |m()] −→p′

[μD ;D(f = 0) |m ′′()] −→p′ [μD ;D(f = 0) | f ] −→p′ [μD ;D(f = 0) |0] −→p′ 0

new D().M () −→p k-lookupp(D) = K(){f.2.1 = 0}
D(f .2.1 = 0).M () −→p lookupp〈M , Λ, D〉 = [Λ;m ′ �→ 1.1; μA|m]
[m ′ �→ 1.1; μA;D(f .2.1 = 0) |m()] −→p

[m ′ �→ 1.1; μA;D(f .2.1 = 0) |m ′()] −→p lookupp〈1.1, Λ, D〉 = [Λ; Λ; μ′′|m ′′]
[m ′ �→ 1.1; μA, μ′′;D(f .2.1 = 0) |m ′′()] −→p

[m ′ �→ 1.1; μA, μ′′;D(f .2.1 = 0) | f .2.1] −→p

[m ′ �→ 1.1; μA, μ′′;D(f .2.1 = 0) |0] −→p

0

Fig. 9. Example
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which is modified in [; f �→ Λ; int m(){return f + 1;}|m], where Λ denotes the
empty path, to take into account that F has been frozen. Hence, the method
invocation reduces to [f �→ Λ; int m(){return f + 1;};C (f �→42) |m], where the
body of m correctly refers to F frozen in the top level freeze.

In flattening semantics, C reduces to the following basic class:

[∅|F �→ f ′,M �→ m |{ int f ′; K(){f ′ = 42} int m(){return f ′ + 1;}}]

Fig. 9 shows a more involved example comparing flattening and direct seman-
tics.

The top section of the figure lists some abbreviations, the second shows the
four classes composing program p. Class A defines a method M whose body
invokes the abstract method M ′. Class B has a local field f initialized to 0 and
defines a method M ′ which returns this field. Class C is obtained by summing
A and B, and then freezing method M ′. Finally, class D is obtained by hiding
method M ′ in C (in the reduct, the input renaming is empty since there are no
input names, and the output renaming maps “no new name” into M ′ and is the
identity on M ) and then summing a new definition for M ′. The following three
sections of the figure shows how the class expressions for C and D are reduced,
the resulting flat program p′ and the reduction of expression new D().M () in
the context of p′. Finally, the last section shows direct semantics of the same
expression in the context of p.

The example shows how the method originally called M ′ in B is correctly
invoked via the path 1.1, even though M ′ has been hidden and then replaced by
an homonymous method.

The following theorem states that flattening is equivalent to direct semantics.
We denote by �−→ the reflexive and transitive closure of the flattening relation,
and analogously for the reduction relation. The proof can be found in [17].

Theorem 4. If p �−→ p′, and e is an expression with no paths, then e �−→p v
iff e �−→p′ v .

5 Conclusion

We have presented FJig, a core calculus which formalizes the Bracha’s Jigsaw
framework [8] in a Java-like setting. The design of FJig comes out naturally, yet
not trivially, by taking Featherweight Java [15] as starting point and replacing
inheritance by the more general composition operators of Jigsaw.

We believe that such a core calculus can be useful for many research direc-
tions. First, it provides a simple unifying formalism for encoding and comparing
a large variety of different mechanisms for software composition in class-based
languages, including standard inheritance, mixin classes, traits and hiding. Then,
it can serve as the basis for the design of a real language based on Jigsaw prin-
ciples. Moreover, it could be enriched by behavioural types, leading to a class-
based specification language, in the spirit of, e.g., JML [18], allowing modular
development and composition of class specifications.
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We have also defined two different execution models for the calculus, flattening
and direct semantics, and proved their equivalence. That is, we have shown
the equivalence of two different views on inheritance in a formal setting with a
more sophisticated composition mechanism, where, e.g., mixin classes and traits
can be subsumed. This can also greatly help in integrating such features, or
other modularity mechanisms, in standard class-based languages, since it gives
practical hints on implementation.

Apart from the two key references mentioned above, this work has been di-
rectly influenced by work on traits [20,10], mostly by the recent developments
[19,6,7]. In particular, we share with [6,7] the objective of replacing inheritance
by more flexible operators. Concerning flattening and direct semantics, the most
direct source of inspiration for our work has been [19], which defines a direct
semantics for traits. Essentially, their dynamic look-up algorithm can be seen as
a simplified version, handling sum and output reduct only, of ours.

The focus of this paper is on providing a simple and compact model for a
language based on the Jigsaw framework in a Java-like setting, hence we have
only outlined in Sect. 1 a simple surface language. As mentioned above, we leave
to further work a deeper investigation of a realistic language design, and a more
precise analysis on how different mechanisms such as standard inheritance, mixin
classes, traits can be encoded into FJig. We also plan to develop a prototype;
a very preliminary interpreter of flattening semantics, assigned as master thesis,
can be found at http://www.disi.unige.it/person/LagorioG/FJig/.We also
plan to investigate smart implementation techniques of direct semantics in the
prototype interpreter.
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Abstract. The expression families problem can be defined as the prob-
lem of achieving reusability and composability across the components
involved in a family of related datatypes and corresponding operations
over those datatypes. Like the traditional expression problem, adding new
components (either variants or operations) should be possible while pre-
serving modular and static type-safety. Moreover, different combinations
of components should have different type identities and the subtyping
relationships between components should be preserved. By generalizing
previous work exploring the connection between type-theoretic encod-
ings of datatypes and visitors, we propose two solutions for this problem
in Scala using modular visitor components. These components can be
grouped into features that can be easily composed in a feature-oriented
programming style to obtain customized datatypes and operations.

1 Introduction

Component-oriented programming (COP) [1], a programming style in which soft-
ware is assembled from independent components has, for a long time, been ad-
vocated as a solution to the so-called software crisis [2]. However, the truth is
that to date the COP vision has not been fully realised, largely due to limi-
tations of current programming languages. A particular problem is that most
languages have a bias towards one kind of decomposition of software systems,
which imposes a corresponding bias on the kinds of extensibility available [3,4]:
in same languages adding new datatype variants is easy, while in others adding
new operations is easy. Providing software systems that support both kinds of
extensibility at the same time has proved itself quite elusive to achieve in existing
languages and leads to what Wadler calls the expression problem [5].

In this paper we will look at a variation of the expression problem (EP)
that we call the expression families problem (EFP). The EFP can be defined
as the problem of achieving reusability and composability across the components
involved in a family of related expression datatypes and corresponding operations
over those datatypes. Like with the traditional EP, adding new components
(either variants or operations) should be possible while preserving modular and
static type-safety (that is, no modification or duplication and no re-compilation
and re-typechecking of existing code should be needed). Furthermore, it should
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also be possible to combine independently developed extensions [6]. Additionally,
a solution to the EFP should: allow different combinations of components to
have different type identities ; preserve the subtyping relationships between the
different components (whether in the same family or a different one); and provide
a high degree of composability and decoupling of components.

By generalizing previous work [7,8] exploring the connection between type-
theoretic encodings of datatypes [9,10] and the Visitor pattern [11], we pro-
pose two solutions for this problem in Scala1 using modular visitor components.
These components can be grouped into features that can be easily composed in
a feature-oriented programming style. The solutions presented in this paper do
not require any extensions to Scala and rely only on features that, although not
yet widely available in mainstream OO languages, have been shown to be inde-
pendently useful in the past. In particular, we make use of the following features:
higher-order type parameters [12,13], traits and mixin composition [14,15], self-
types [16] and variance annotations [17]. Of these, self-types are only required
by one of the solutions and could potentially be completely eliminated using a
technique devised by Torgersen [18]. The other three features are needed to ad-
dress all the requirements of the EFP. However we should remark that variance
annotations are only required to ensure that the subtyping relations between
different datatypes are preserved, but otherwise they would not be necessary (in
particular, they would not be needed to solve the traditional EP).

In Section 2 we motivate and formulate the expression families problem. The
technical contributions follow:

– Section 3 shows how to adapt type-theoretic encodings of datatypes to sup-
port extensibility of variants as well as extensibility of operations.

– Section 4 shows a simple solution for the EFP inspired by Church encodings
of datatypes. It is also shown how the subtyping relations between compo-
nents of different families can be helpful for scalability and reuse.

– Section 5 shows another solution for the EFP inspired by Parigot encodings
of datatypes. This solution is more expressive than the one in Section 4, but
it is also slightly more complex to use.

– Section 6 shows how we can group the modular visitor components into fea-
tures that can be easily combined by clients to obtain customized datatypes
and operations.

A comparison between our work and solutions to the expression problem is
presented in the Section 7. Conclusions are presented in Section 8.

2 The Expression Families Problem

In the expression families problem we are interested in modularizing and reusing
the common parts of a family of expression datatypes and corresponding family
1 Source code available at: http://web.comlab.ox.ac.uk/people/Bruno.Oliveira/
EFP.tgz

http://web.comlab.ox.ac.uk/people/Bruno.Oliveira/EFP.tgz
http://web.comlab.ox.ac.uk/people/Bruno.Oliveira/EFP.tgz
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of operations. For example, in some context, we may have a system composed of
a datatype of expressions Exp1 that supports numeric, addition and subtraction
variants together with a corresponding evaluation function:

data Exp1 = Num1 Int | Add1 Exp1 Exp1 | Minus1 Exp1 Exp1

eval1 :: Exp1 → Int
eval1 (Num1 x ) = x
eval1 (Add1 e1 e2 ) = eval1 e1 + eval1 e2
eval1 (Minus1 e1 e2 ) = eval1 e1 − eval1 e2

In a different context we may have a system composed of a datatype Exp2
that also supports negation and provides both an evaluation operation and an
operation that narrows Exp2 expressions into Exp1 expressions:

data Exp2 = Num2 Int | Add2 Exp2 Exp2 | Minus2 Exp2 Exp2 | Neg2 Exp2

eval2 :: Exp2 → Int
eval2 (Num2 x ) = x
eval2 (Add2 e1 e2 ) = eval2 e1 + eval2 e2
eval2 (Minus2 e1 e2 ) = eval2 e1 − eval2 e2
eval2 (Neg2 e) = − (eval2 e)
narrow21 :: Exp2 → Exp1
narrow21 (Num2 x ) = Num1 x
narrow21 (Add2 e1 e2 ) = Add1 (narrow21 e1 ) (narrow21 e2 )
narrow21 (Minus2 e1 e2 ) = Minus1 (narrow21 e1 ) (narrow21 e2 )
narrow21 (Neg2 e) = Minus1 (Num1 0) (narrow21 e)

The two systems are clearly related and share a lot of code, but there is not
any reuse of code (in a software engineering sense) between them. In current
programming languages, achieving reusability between these two systems is not
easy because datatypes and operations are evolving at the same time. This is,
after all, the EP — we suggest [6] for a good introduction to the original EP
for readers unfamiliar with it. However, there is something more about this
example that is not normally emphasized in the context of the EP. The narrow21
operation takes a value of Exp2 and converts it to a value of Exp1. Among other
things, it is statically known that the result of narrow21 will not contain any
negation variant. Solutions for the EP are only required to allow extensibility,
but there is no explicit requirement about the interaction between distinct types
of expressions. In particular, this allows for solutions where there is only a single,
global expression datatype [19,20,21]. However, with these approaches it is not
possible to accurately express the type of narrow21. Consequently these solutions
fail to solve the EFP because they do not meet the following requirement:

Different kinds of expressions should have different type identities.

Another aspect about this example that is not normally emphasized in the
context of the EP — although both Wadler [5] and Zenger and Odersky [20]
do mention it — is that there are interesting subtyping relationships between
some of the components in different families. In particular Exp1 <: Exp2 and
eval2 <: eval1. More generally, the extension of a datatype becomes a supertype
of the original datatype; while the extension of an operation becomes a subtype
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of the original operation [22]. These relations are important for legacy and per-
formance reasons since it means that, for example, a value of type Exp1 can be
automatically and safely coerced (at no run-time cost) into a value of type Exp2,
allowing some interoperability between new functionality and legacy code. This
leads us to the following requirement for the EFP:

Subtyping relationships between components should be preserved.

In our example we can identify a number of different features: on the one
hand we have the set of operations {eval ,narrow } and, on the other hand,
we have set of variants {Num,Add ,Neg,Minus }. The two systems above are
just two possible combinations of those features, but there are many other valid
possibilities. Ideally, we would like to allow any possible combination of features,
since in general it is not possible to know which of these features are relevant
to the different clients. We expect the EFP to be particularly relevant in the
context of component-based frameworks and software product-lines. In fact, the
EFP is closely related to the expression product lines of Herrejon et al. [23].
Therefore, the final requirement for the EFP is that:

A solution should allow a high degree of composability and decoupling of
components so that no valid combinations of features are ruled out.

3 Extensible Encodings of Datatypes

In this section, we discuss the relationship between visitors and encodings of
datatypes, and show how to make these encodings extensible. This will provide
the foundations for the two Scala solutions presented in Sections 4 and 5.

3.1 Encodings of Datatypes and the Visitor Pattern

The Visitor design pattern [11] shows how to separate the structure of an
object hierarchy from the behaviour of traversals over that hierarchy; it can be
used in object-oriented languages to provide a functional decomposition style.
Buchlovsky and Thielecke [7] formalized the relation between two variants of the
Visitor pattern and encodings of datatypes in a minor variant of System Fω

with products. They observed that external visitors (visitors where the traversal
of the object structure is explicitly controlled by the programmer) are related
to Parigot encodings of datatypes [10], while internal visitors (visitors where
the traversal is automatically performed by the object structure) are related
to Church encodings of datatypes [9]. The basic idea behind the relationship
between visitors and encodings of datatypes is briefly illustrated next (the reader
wishing to know more details may look at [7,8]):

Expr ≡ ∀X .

ExprV isitor︷ ︸︸ ︷
(Int ⇒ X )︸ ︷︷ ︸

num

⇒ (X ⇒ X ⇒ X )︸ ︷︷ ︸
add

⇒ X
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ExprVisitor X ≡ {num ∈ Int ⇒ X , add ∈ X ⇒ X ⇒ X }
Expr ≡ {accept ∈ ∀X . ExprVisitor X ⇒ X }
Num ∈ Int ⇒ Expr
Num x ≡ {accept v ≡ v .num x }
Add ∈ Expr ⇒ Expr ⇒ Expr
Add e1 e2 ≡ {accept v ≡ v .add (e1 .accept v) (e2 .accept v)}

Fig. 1. Church encoding for numeric expressions using records

ExprVisitor X ≡ {num ∈ Int ⇒ X , add ∈ Expr ⇒ Expr ⇒ X }
Expr ≡ {accept ∈ ∀X . ExprVisitor X ⇒ X }
Num ∈ Int ⇒ Expr
Num x ≡ {accept v ≡ v .num x }
Add ∈ Expr ⇒ Expr ⇒ Expr
Add e1 e2 ≡ {accept v ≡ v .add e1 e2 }

Fig. 2. Parigot encoding for numeric expressions using records

This example is based on the type of a Church encoding for a simple datatype of
expressions. What the reader should note is that the two functional arguments
num and add can be seen as, what in the Visitor pattern are called, the visit
methods for the type Expr . In order to make the connection to OO languages
more clear we will assume, in what follows, a calculus much like the one pre-
sented by Buchlovsky and Thielecke, but also featuring subtyping [24] and using
records [25] instead of products.

In Figure 1, instead of defining Expr as a higher-order function type, we use
a record ExprVisitor to capture the visitor type and visit methods explicitly.
We also use a record for Expr and name the functional type as accept . The two
functions Num and Add are the two constructors (or concrete elements) for the
Expr datatype. This is essentially an instance of the Visitor pattern and can
be easily translated into any OO language with support for generics.

A very similar construction can be done using Parigot encodings instead (but
we need to additionally extend the calculus with both value and type level re-
cursion). We show the code for Parigot encodings in Figure 2. The essential dif-
ference to Church encodings is that, for constructors with recursive occurrences
of expressions such as Add , the expressions are not traversed by the constructor
but are instead passed to the add visit method, delegating the responsibility of
traversal to the client implementing the add operation.

Buchlovsky and Thielecke show that we can provide a shape generic ver-
sion of the encodings that can be instantiated with different visitor shapes, by
parametrizing over the visitor type — in this context “shape” essentially means
the set of visit methods in a visitor. We need two versions of the shape generic
encodings for internal and external visitors.
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Expr V ≡ {accept ∈ ∀X .V X ⇒ X }
num X ≡ {num ∈ Int ⇒ X }
add X ≡ {add ∈ X ⇒ X ⇒ X }
ExprNum (V <: num) ≡ Expr V
ExprAdd (V <: add) ≡ Expr V
Num ∈ ∀(V <: num). Int ⇒ ExprNum V
Num x ≡ {accept v ≡ v .num x }
Add ∈ ∀(V <: add). Expr V ⇒ Expr V ⇒ ExprAdd V
Add e1 e2 ≡ {accept v ≡ v .add (e1 .accept v) (e2 .accept v)}

Fig. 3. Extensible Church encoding using record subtyping

Internal V ≡ {accept ∈ ∀X .V X ⇒ X }
External V ≡ {accept ∈ ∀X .V (External V ) X ⇒ X }

In each case, V is a type constructor (that is, a type that is itself parametrized
by other types) and abstracts over the concrete visitor components. In the case
of Internal , the visitor only needs to be parametrized by the result type. For
External , the visitor also requires a second argument for abstracting over the
recursive occurrences of External . Although type constructors are native to cal-
culi of the System Fω family, they are not normally found in mainstream OO
languages with generics, since only first-order type parameters are allowed. So,
these generic versions of visitors cannot be encoded in those languages. How-
ever, Scala has recently been extended with support for type constructors [13]
and there have been proposals for supporting them in Java too [26].

3.2 Extensible Encodings of Datatypes Using Record Subtyping

A major problem with the encodings of datatypes presented in Section 3.1 is
that they are not extensible: we cannot easily add new variants to a datatype.
With a standard encoding like the one presented in Figure 1, the datatype (or
composite) type needs to know in advance about all the variants because of the
fixed shape imposed by ExprVisitor . Interestingly, in the generic version of the
encodings, the visitor shape is abstracted and the composite types Internal and
External are not tied to any particular variants. Inspired by this observation, we
can define an expression type that does not commit to a particular shape:

Expr V ≡ {accept ∈ ∀X .V X ⇒ X }
(This is basically the same type as Internal). We could easily obtain the type for
expressions presented in Figure 1, by simply parametrizing Expr withExprVisitor .
However, we want to be able to define the constructors for numeric and addition
expressions in a way that does not commit to a particular shape.

Clearly, we seek a solution that provides just enough information to define
the constructor, but no more. In fact, all we need to know is that, for the con-
structor that we are defining, the visitor provides a corresponding visit method.
This minimal shape information can be easily captured using standard record
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subtyping bounds as we can see in Figure 3. The type Expr V is, as we have al-
ready discussed, just the type for expressions with a parametrized visitor shape.
The types num X and add X define two atomic visitor components that pro-
vide, respectively, num and add visit methods. Here, we use the convention that
these atomic visitor types have names spelled in exactly the same way than the
visit methods they contain. The idea is that when we see a bound like V <:num
we can read it as “the visitor V contains the visit method num”. The types
ExprNum V and ExprAdd V define refinements of Expr V that specify some
extra information about the shape. These types are used to provide construc-
tors with more accurate types; but we should note that they are orthogonal
to the extensibility problem and a slightly simpler extensible encoding can be
achieved by just using Expr V instead. Finally, the constructors Num and Add
are defined almost in the same way as with traditional Church encodings. The
only difference is that the types of our extensible encodings only assume minimal
shape information by using subtyping bounds to specify which visitor component
provides the respective visit method.

With this encoding the expression type is parametrized by a shape instead of
having a hard reference to a particular shape, which decouples the expression
type from the visitor. Furthermore, the constructors only need minimal shape
information, which allows them to be developed independently of other vari-
ants. This means that adding new variants and new functions is possible and,
consequently, achieves a solution to the expression problem. A very similar con-
struction can be done for Parigot encodings. We will now switch to Scala and
explore solutions to the expression (families) problem using both generic Church
encodings (in Section 4) and generic Parigot encodings (in Section 5).

4 Modular Internal Visitor Components

In this section we explore a solution to the expression families problem using
modular internal visitors, inspired by Church encodings of datatypes.

4.1 Modular Internal Visitors in Scala

In Figure 4 we show a translation of the code in Figure 3 into Scala. Apart from
fairly obvious idiomatic conversions (like, for example, encodings types as traits
and classes) the Scala code is surprisingly faithful to the original code in Fig-
ure 3. Even though there is a significant gap between a calculus like System F<:

ω

and Scala, the fact is that Scala supports the essential features that are required
by the encodings. In particular, the encoding requires type parametrization (or
parametric polymorphism) in both the first-order and higher-order forms, the
latter of which has been recently added to Scala [13]. The most significant dif-
ference between the Scala version and the System F<:

ω version is the use of a
contravariance annotation (the “-” preceding V ) for the visitor type parameter.
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trait Expr [−V [ ] ] {
def accept [a ] (vis : V [a ]) : a

}

trait num [A ] {
def num (x : Int) : A

}

case class Num [−V [X ] <: num [X ] ] (x : Int) extends Expr [V ] {
def accept [a ] (vis : V [a ]) : a = vis .num (x )

}

trait add [A ] {
def add (e1 : A, e2 : A) : A

}

case class Add [−V [X ] <: add [X ] ] (e1 : Expr [V ], e2 : Expr [V ]) extends Expr [V ] {
def accept [a ] (vis : V [a ]) : a = vis .add (e1 .accept (vis), e2 .accept (vis))

}

Fig. 4. Extensible expressions in Scala

This annotation is not strictly necessary, but without it this solution would not
preserve the following subtyping relationship

Expr [V ] <: Expr [U ] if U <: V
which is one of the requirements for a solution for the EFP. There are a few other
minor points that are worthwhile noting. Firstly, the Scala version combines the
definitions of the constructors with the refined types for those constructors.
For example, in the extensible Church encoding, we define a type ExprNum

which captures the more refined type for the result type of the constructor Num.
In Scala, a class declaration together with the extends clause captures these
two constructions. Secondly, in Scala type constructor declarations are provided
together with their corresponding arity and bounds. For example, V [X ] <:
num [X ] declares a type constructor variable V that has one type argument X
and is bounded by num [X ]. In the definition Expr [−V [ ] ], naming the type
constructor argument is not necessary, so we use the anonymous variable “ ”
to declare the existence of one type argument. Finally, we use a case class [27]
instead of a standard class for syntactical brevity when constructing new values
(since it allows us to avoid uses of new).

4.2 Adding New Operations

An operation that evaluates expressions can be defined, using a visitor, with the
following trait:

trait BaseEval extends num [Int ] with add [Int ] {
def num (x : Int) = x
def add (e1 : Int , e2 : Int) = e1 + e2

}
This trait extends the numeric and addition visitors, using mixin composi-
tion [14] of traits, and provides the definition for the corresponding visit methods.
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Because we use an internal visitor, all the traversal code is handled in the con-
structors, so in the add visit method, the only thing that is left to be done is to
add the two results together.

We can write some simple testing code that demonstrates a possible way to
use BaseEval from a client perspective.

type numadd [A ] = num [A ] with add [A ]
type NumAdd = Expr [numadd ]
def exp : NumAdd =

Add [numadd ] (Num [numadd ] (3),Num [numadd ] (4))
def evalNumAdd (e : NumAdd) : Int = e.accept (new BaseEval () {})
val test1 : Int = evalNumAdd (exp)

For the sake of clarity and brevity, we define numadd and NumAdd type syn-
onyms, which correspond, respectively, to the visitor and composite types in-
stantiated with a more concrete shape. We create a basic test expression exp
that encodes the expression 3+4 and test it by calling the evalNumAdd on that
expression. There are a couple of inconveniences about this client code that we
should note. Firstly, we need to parametrize the constructors with the visitor
type, which makes the use of constructors significantly verbose (we would like to
write Add (Num (3),Num (4)) instead). Secondly, we are providing evalNumAdd
in the client code. It would be preferable to have a “generic” eval definition that
would be provided in the library code instead. We shall address these convenience
issues in Section 6.

4.3 Adding New Variants and Extending Existing Operations

Suppose that we want to add a new constructor that negates expressions. With
our approach, this is also very easy: all we need to do is to introduce the visitor
and corresponding constructor.

trait neg [A ] {
def neg (e : A) : A

}
case class Neg [−V [X ] <: neg [X ] ] (e : Expr [V ]) extends Expr [V ] {

def accept [a ] (vis : V [a ]) : a = vis .neg (e.accept (vis))
}

The trait neg is the visitor type and defines the neg visit method and the case
class Neg defines a constructor taking a single expression as argument.

We can provide a definition for eval independently of the definitions for num
and add

trait NegEval1 extends neg [Int ] {
def neg (e : Int) = −e

}
and later mix it in with those definitions:

trait NumAddNegEval extends BaseEval with NegEval1
Alternatively, we could directly extend BaseEval :
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trait NegEval2 extends BaseEval with neg [Int ] {
def neg (e : Int) = −e

}

4.4 Subtyping between Components for Scalability and Reuse

Interestingly, while we may think that the trait NegEval1 is more reusable than
NegEval2 (since it has no references to BaseEval ) this is, in fact, not the case!
Indeed the two variants are equally reusable and there is no advantage of one
against the other in that respect. Because visitor extension usually follows the
standard subtyping relation (although there are some exceptions, as shown in
Section 4.5), a concrete visitor supporting num, add and neg can be passed when
a visitor just supporting num and add is expected. For example, we could have
alternatively defined evalNumAdd in the client code as:

def evalNumAdd (e :Expr [numadd ]):Int =e.accept (new NegEval2 () {})
The point here is that we do not need to carefully design visitor components
for operations like this one independently of each other, which is helpful for
scalability: we can pack many cases together (like in the trait BaseEval ) and
avoid code scattering and redundancy.

Another interesting point that is worthwhile noting is that, because of the
subtyping relationships between different types of expressions we can apply op-
erations defined over some type of expressions to expressions with strictly fewer
variants. For example,

def evalNumAddNeg (e :Expr [numaddneg ])=e.accept (new NegEval2 () {})
val test2 = evalNumAddNeg (exp)

the function evalNumAddNeg takes an expression that supports numeric, addi-
tion and negation variants, but exp (defined above) is a different type of ex-
pressions that supports numeric and addition variants only. However, because
Expr [numadd ] <: Expr [numaddneg ] we can pass exp to evalNumAddNeg .

4.5 Narrowing Operation

As we pointed out in Section 2 a solution to the EFP should allow the incre-
mental definition of a narrow operation, so that it can be reused by any pair
of expression types. With our solution we can achieve this by creating a visitor
component that is itself parametrized by the type of another visitor component
(which is the shape of the target expression type). We show the code for the
narrow components in Figure 5. We expect that, for the most part, the major-
ity of the variants are shared between the two expression types involved in the
narrow operation and that the conversion between those variants will essentially
be a matter of decomposing the variant of the input expression, narrowing re-
cursively and rebuilding the same variant on the output expression. The visitors
NumNarrow , AddNarrow and NegArrow do exactly this. However, when the tar-
get type of the expression does not have the variant that we are interested in,
we need to convert the expression using some other variants. The NMNarrow
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trait NumNarrow [V [X ] <: num [X ] ] extends num [Expr [V ] ] {
def num (x : Int) = Num [V ] (x )

}

trait AddNarrow [V [X ] <: add [X ] ] extends add [Expr [V ] ] {
def add (e1 : Expr [V ], e2 : Expr [V ]) = Add [V ] (e1 , e2 )

}

trait NegNarrow [V [X ] <: neg [X ] ] extends neg [Expr [V ] ] {
def neg (e : Expr [V ]) = Neg [V ] (e)

}

trait NMNarrow [V [X ] <: num [X ] with minus [X ] ] extends neg [Expr [V ] ] {
def neg (e : Expr [V ]) = Minus [V ] (Num [V ] (0), e)

}

Fig. 5. Components for the narrow operation

visitor shows how we could provide an alternative translation from an expres-
sion with negation into an expression without that variant, by using numeric
and subtraction variants (we assume the existence of the visitor minus and the
Minus variant here). Note that the following definition for neg

def neg (e : Expr [V ]) = Neg [V ] (e)
would be a static type error in the NMNarrow trait. By using mixin composition,
we are free to assemble a narrow operation in very flexible ways and there may
be multiple alternatives to pick from for the same case. For example, the object

object myNarrow extendsNumNarrow [num]with NMNarrow [numminus]
provides a concrete narrow visitor that converts between expressions with Num
and Neg variants into expressions with Num and Minus variants. Unlike the
visitor for evaluation, with the narrow operation visitors we need to be careful
when grouping the different cases together since we can create dependencies on
variants because of the constraints imposed by the visitor type argument.

5 Modular External Visitor Components

In this section we explore a solution to the expression families problem using
modular external visitors, inspired by Parigot encodings of datatypes.

5.1 Modular External Visitors in Scala

In Figure 6 we show the Scala code necessary to implement a small library of
expression components using modular external visitors. The trait Expr defines
the base component for our expression families; all constructors extend this trait.
Like with the internal visitor solution, we need a contravariance annotation for
the visitor type parameter V [− , ]. However, we also need an extra contravari-
ance annotation for the first type argument of V . As before, these variance
annotations are required to ensure that the following subtyping relation holds:
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object Components {

//The base component for expression families

trait Expr [−V [− , ] ] {
def accept [a ] (vis : V [Expr [V ], a ]) : a

}

//The components for the Num variant

trait num [−R,A ] {
def num (x : Int) : A

}

case class Num [V [−R,A ] <: num [R,A ] ] (x : Int) extends Expr [V ] {
def accept [a ] (vis : V [Expr [V ], a ]) : a = vis .num (x )

}

//The components for the Add variant

trait add [−R,A ] {
def add (e1 : R, e2 : R) : A

}

case class Add [V [−R,A ] <: add [R,A ] ] (e1 : Expr [V ], e2 : Expr [V ])
extends Expr [V ] {

def accept [a ] (vis : V [Expr [V ], a ]) : a = vis .add (e1 , e2 )
}

//The components for the Neg variant

trait neg [−R,A ] {
def neg (e : R) : A

}

case class Neg [−V [−R,A ] <: neg [R,A ] ] (e : Expr [V ]) extends Expr [V ] {
def accept [a ] (vis : V [Expr [V ], a ]) : a = vis .neg (e)

}

//An evaluation component

trait EvalVisitor [V [−R,A ] ] extends
num [Expr [V ], Int ] with add [Expr [V ], Int ] with neg [Expr [V ], Int ] {

self : V [Expr [V ], Int ] ⇒
def num (x : Int) = x

def add (e1 : Expr [V ], e2 : Expr [V ]) = e1 .accept (this) + e2 .accept (this)
def neg (e : Expr [V ]) = −e.accept (this)

}

//Some components for the narrow operation

trait NumNarrow [V1 [− , ],V2 [−R,X ] <: num [R,X ] ]
extends num [Expr [V1 ],Expr [V2 ] ] {

def num (x : Int) = Num [V2 ] (x )
}

trait AddNarrow [V1 [− , ],V2 [−R,X ] <: add [R,X ] ]
extends add [Expr [V1 ],Expr [V2 ] ] {self : V1 [Expr [V1 ],Expr [V2 ] ] ⇒

def add (e1 : Expr [V1 ], e2 : Expr [V1 ]) =
Add [V2 ] (e1 .accept (this), e2 .accept (this))

}
}

Fig. 6. The library code for expression components
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Expr [V ] <: Expr [U ] if U <: V
but, if we did not want to preserve this relation, then the contravariance an-
notation would not be required. Visitors take two type arguments instead of a
single one (when compared to the internal visitor solution) because we need to
distinguish the types of the recursive arguments from the result type.

We provide three variants in the library for numeric, addition and negation
expressions. The constructors define accept methods that do not recur on the ex-
pressions, delegating that responsibility to the visitors, and following the Parigot
encoding of datatypes presented in Figure 2. Two sets of components for opera-
tions are provided: the first one evaluates expressions; and the second one pro-
vides some definitions for the narrow operation. For operations with recursive
calls we need a self-type annotation because, without the annotation, it would
not be safe to assume that all the cases present in the expressions being recur-
sively traversed would be handled. This is the same issue that was encountered,
for example, by Torgersen [18] in his second solution for the expression problem.

In this section, we do not provide a step-by-step explanation of how indepen-
dent extensibility of components can be achieved, because this can be done in
essentially the same way as the solution presented in Section 4. We focus instead
on discussing some practical concerns when assembling components and also on
the extra expressiveness provided by external visitors over internal visitors.

5.2 Ad-Hoc Assembling of Components

The code presented in Figure 6 captures the code involved in a family of expres-
sions, but it does not define any member of that family in particular. We need to
combine (some of the) expression components if we want to obtain a particular
type of expressions. The combination of components is not a responsibility of
the library writer, because he cannot predict which combinations are interesting.
Obviously, he cannot enumerate all possible combinations too, since the number
of combinations rises very fast in respect to the number of components. So, the
assembling of components should be delegated to the clients of the library.

In Figure 7 we present the code for a client of the component library, which
supports expressions with numeric and addition variants and evaluation. The
value C is used as a shortcut to the Components object (note that, in Scala,
objects also play the role of modules). The type ExprShape defines a concrete
visitor shape that combines several smaller visitors using mixin composition;
and then we use that shape to define the type of expressions Expr . We also
define an ExprVisitor trait that can be used to easily create new visitors for
our expressions. Next we define some useful shorthands for the constructors,
which avoid parametrization over the visitor type. Finally, operations like eval
are defined by calling the accept method on the corresponding visitor.

The nice thing about this client is that it provides an abstraction on top of the
component library. This is important because the components of the library use
some advanced Scala features and extra parametrization that would not normally
be needed if the program had been defined conventionally. If those components
had been used directly, then some familiarity with the Scala features used in
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trait Client {
protected val C = Components
//Defining the members of the datatype
protected type ExprShape [−R,A ] = C .num [R,A ] with C .add [R,A ]
type Expr = C .Expr [ExprShape ]
//Shorthand for Expression Visitors
trait ExprVisitor [A ] extends C .num [Expr ,A ] with C .add [Expr ,A ]
//Shorthands for the constructors
def Num (x : Int) = C .Num [ExprShape ] (x )
def Add (e1 : Expr , e2 : Expr) = C .Add [ExprShape ] (e1 , e2 )
//The operations
def eval (e : Expr ) : Int =

e.accept [Int ] (new C .EvalVisitor [ExprShape ] () {})
}

Fig. 7. Ad-hoc assemblage of components for expressions

the library would probably be needed and difficult to interpret error messages
arising from the misuse of these features would almost certainly occur. Happily,
any code that uses Client does not need to be aware of the components in the
expression library: all that is visible is a fairly conventional interface. However,
the definition of clients like this one is somewhat ad-hoc, and similar preparation
code is needed for other clients. In Section 6, we show how we can define these
client interfaces in a more compositional and less ad-hoc way.

5.3 Extensible Modular Components with Multiple Dispatching

As the reader may notice, external visitors are more complicated to use than in-
ternal visitors because they require extra typing and the responsibility of traver-
sal is delegated to the programmer. So, an obvious question is why should we
bother with external visitors in the first place. Ignoring the extensibility issue
for a moment, the main reason to use external visitors is when the recursion
pattern of the operations we are defining does not follow a simple structural re-
cursion, which is what internal visitors excel at. External visitors are essentially
equivalent to case analysis [8] and, in a language like Scala, they can be used
to define operations that do not follow standard recursion patterns. In partic-
ular, with external visitors it is possible to define operations that dynamically
dispatch over multiple arguments or perform nested case analysis over some of
the arguments.

The interesting question to ask is whether the ability to define these non-
standard recursive schemes translates into our modular external visitors. This
would imply a modular and statically type-safe solution for extensible multiple
dispatching, without the need for any special purpose language extensions. As
we shall see, this is indeed possible, but it is not simple. The good news is that
there is a fairly mechanical scheme that can be used to define operations with
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such recursion patterns, which hints at a possible higher-level notation similar
to multi-methods [28,19] or pattern matching as a language extension.

We use structural equality between expressions (which is a binary method)
as our working example. When working with non-extensible visitors, the trick
to achieve multiple dispatching is to use a series of visitors to handle each dis-
patching (the reader may look at [8] for an example of equality defined in this
way). The strategy that we will use to define extensible equality is similar. It
is helpful to look at a definition of equality by pattern matching to understand
what happens when we define the modular components for structural equality:

eq :: (Expr ,Expr)→ Expr
eq (Num n1 ,Num n2 ) = n1 .equals (n2 )
eq (Add e1 e2 ,Add e3 e4 ) = eq (e1 , e3 ) ∧ eq (e2 , e4 )
eq (Neg e1 ,Neg e2 ) = eq (e1 , e2 )
eq ( , ) = false

There is some modularity in a definition like this. In order to add a new clause, we
do not need to touch the code of other clauses. We explore exactly the same form of
modularity in our components for equality shown in Figure 8. The
BaseHandleDefault visitor, handles the default cases that return false. This can
be seen as the code corresponding to the last clause in the definition of eq. In order
to handle one of the other clauses we need three visitors: one for extending the de-
fault visitor with the new case, another for handling the first matched pattern and
a third one to handle the second matched pattern. For the eq (Num n1 ,Num n2 )
clause, the NumHandleDefault visitor extends the default visitor with a num visit
case. The NumEquals visitor defines the case for the first matched pattern and
calls an instance of the visitor than handles the second match, which is handled
by the third visitor HandleNum. Providing code for other clauses proceeds in a
similar fashion. We show the code that handles the eq (Neg e1 ,Neg e2 ), but skip
the code for eq (Add e1 e2 ,Add e3 e4 ) for space reasons.

6 Feature-Oriented Programming

In this section, inspired by ideas from feature-oriented programming (FOP) [29],
we show how to organize components into features that can be used to easily
and compositionally assemble customized expressions datatypes and operations.

6.1 Organizing Components into Features

In Section 5.2 we have already seen how we can fairly easily assemble visitor
components in an ad-hoc, non-compositional way. However, some overhead is
still required. Ideally, assembling a final system should be as easy as composing
a few smaller subsystems together. The comments in Figure 6 identify what
components are needed for numeric, addition and negation variants and which
components are needed for evaluation and narrowing. Each of these groups of
components can be seen as what in FOP is called a feature.

In Scala it is possible to more precisely capture these features by grouping the
required functionality for each feature in a trait. We illustrate this in Figure 9.
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object ExtendedComponents {
//Default case for equality : eq ( , ) = false

trait BaseHandleDefault [V [− , ],A ] {
self : V [Expr [V ],A ⇒ Boolean ] ⇒
//recursive call reference

def eqVis : V [Expr [V ],Expr [V ] ⇒ Boolean ]
//default value

val default = ( : A) ⇒ false

}

//Components for handling : eq (Num n1 ,Num n2 ) = n1 .equals (n2 )
trait NumHandleDefault [V [− , ],A ] extends BaseHandleDefault [V ,A ]

with num [Expr [V ],A ⇒ Boolean ] {
self : V [Expr [V ],A ⇒ Boolean ] ⇒
def num (n2 : Int) = default

}

trait NumEquals [V [− , ] ] extends num [Expr [V ],Expr [V ] ⇒ Boolean ] {
self : V [Expr [V ],Expr [V ] ⇒ Boolean ] ⇒
def eqNum : V [Expr [V ], Int ⇒ Boolean ]
def num (n : Int) = e ⇒ e.accept (eqNum) (n)

}

trait HandleNum [V [−R,A ] ] extends NumHandleDefault [V , Int ] {
self : V [Expr [V ], Int ⇒ Boolean ] ⇒
override def num (n2 : Int) = n1 ⇒ n1 .equals (n2 )

}

//Components for handling : eq (Neg e1 ,Neg e2 ) = eq (e1 , e2 )
trait NegHandleDefault [V [− , ],A ] extends BaseHandleDefault [V ,A ]

with neg [Expr [V ],A ⇒ Boolean ] {
self : V [Expr [V ],A ⇒ Boolean ] ⇒
def neg (e : Expr [V ]) = default

}

trait NegEquals [V [−R,A ] ] extends neg [Expr [V ],Expr [V ] ⇒ Boolean ] {
self : V [Expr [V ],Expr [V ] ⇒ Boolean ] ⇒
val eqNeg : V [Expr [V ],Expr [V ] ⇒ Boolean ]
def neg (e2 : Expr [V ]) = e1 ⇒ e1 .accept (eqNeg) (e2 )

}

trait HandleNeg [V [−R,A ] ] extends NegHandleDefault [V ,Expr [V ] ] {
self : V [Expr [V ],Expr [V ] ⇒ Boolean ] ⇒
override def neg (e2 : Expr [V ]) = e1 ⇒ e1 .accept (eqVis) (e2 )

}
}

Fig. 8. Extensible components for equality
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trait Base {//Base feature

protected val C = Components

protected type ExprVisitor [−R,A ]
type Expr = C .Expr [ExprVisitor ]

}

trait Numeric extends Base {//Numeric Feature

type ExprVisitor [−R,A ] <: C .num [R,A ]//feature constraints

def Num (x : Int) = C .Num [ExprVisitor ] (x )
}

trait Addition extends Base {//Addition Feature

type ExprVisitor [−R,A ] <: C .add [R,A ]//feature constraints

def Add (e1 : Expr , e2 : Expr ) = C .Add [ExprVisitor ] (e1 , e2 )
}

trait Negation extends Base {//Negation Feature

type ExprVisitor [−R,A ] <: C .neg [R,A ]//feature constraints

def Neg (e : Expr) = C .Neg [ExprVisitor ] (e)
}

trait Eval extends Base {//Evaluation Feature

protected type BaseEval = C .BaseEval [ExprVisitor ]
protected type EvalVisitor = BaseEval with ExprVisitor [Expr , Int ]
protected val evalVisitor : EvalVisitor//abstract
def eval (e : Expr) : Int = e.accept [Int ] (evalVisitor )

}

trait Narrow extends Base {//Narrowing Feature

type TExpr = C .Expr [TExprVisitor ]
protected type TExprVisitor [−R,A ]
protected type NarrowVisitor = ExprVisitor [Expr ,TExpr ]
protected val narrowVisitor : NarrowVisitor//abstract
def narrow (e : Expr ) : TExpr = e.accept [TExpr ] (narrowVisitor )

}

trait NumNarrow extends Numeric with Narrow {//Narrowing for numbers

protected type TExprVisitor [−R,A ] <: C .num [R,A ]
protected type NumNarrow = C .NumNarrow [ExprVisitor ,TExprVisitor ]

}

trait NegNarrow extends Negation with Narrow {//Narrowing for negation

protected type TExprVisitor [−R,A ] <: C .num [R,A ] with C .minus [R,A ]
protected type NMNarrow = C .NMNarrow [ExprVisitor ,TExprVisitor ]

}

Fig. 9. Expression features
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object Client extends NumNarrow with NegNarrow with Eval {
type TExprVisitor [−R,A ] = C .num [R,A ] with C .minus [R,A ]
type ExprVisitor [−R,A ] = C .num [R,A ] with C .neg [R,A ]
protected val evalVisitor = new BaseEval {}
protected val narrowVisitor = new NumNarrow with NMNarrow

}

Fig. 10. A client with numeric, negation, narrowing and evaluation features

The Base feature (on which all other features depend) abstracts over the con-
crete visitor shape using a virtual type ExprVisitor , and a type Expr defines the
type of expressions with that shape. Note that we could also have parametrized
Base by the visitor instead of using an abstract type, but we feel that an abstract
type captures the nature of the abstraction better here. The Numeric feature
imposes a constraint on the shape in order to support the num visit method,
and defines a method Num that can be used to construct numeric expressions
with the particular shape required by ExprVisitor . The features for Addition
and Negation are defined in a similar way to Numeric, imposing corresponding
constraints on the visitor shape and defining a constructor method. The Eval
feature defines a type EvalVisitor that specifies the expected type for evalua-
tion visitors for the particular ExprVisitor shape. A method eval that supports
evaluation of expressions is also specified in the trait by using an instance of
EvalVisitor . However, this instance reference is abstract (because it cannot be
created without knowing the final shape) and is expected to be provided in the
object implementing the trait. The narrowing feature requires a second abstract
visitor, which defines the shape of the output expression type for the narrowing
operation. The NumNarrow and NegNarrow traits are examples of composite
features (that is, they are built on top of more basic features). Each of these two
features constrains the output visitor type of the narrowing operation.

Figure 10 shows how we could assemble a client by combining some of the
features using mixin composition. The first line of the object declaration for
Client expresses what we may expect from a FOP language, defining a client
to be the composition of three features that will provide support for numeric
and subtraction variants together with evaluation and a narrowing operation. In
Scala we still need to do a little bit more work because we need to instantiate
the visitor shapes and the visitors required for the operations, but this is fairly
trivial code and certainly shorter than the code that needs to be provided for a
client like the one in Figure 7.

7 Related Work

In this section we discuss related work. We also assess existing solutions to the
extensibility problem against the requirements of the EFP.



Modular Visitor Components 287

7.1 Extensible Visitors and Algebraic Datatypes

There have been several proposals to make visitors more flexible and extensi-
ble in the past [30,31,32]. Like our solution, an important motivation for most
of these approaches is to remove the dependencies between visitors and con-
crete subclasses of the object structure. As Vlissides [32] observes, the Visitor

pattern (in its classic form) is unsuitable to be used in frameworks because of
the references to concrete subclasses, violating the dependency inversion prin-
ciple [33] and endangering modularity. However, the flexibility and extensibility
in those approaches comes at a price: the solutions are not statically type-safe;
casts or reflection are used and run-time type errors can occur if a visitor (or
visit method) is called on a variant it does not handle. Both Krishnamurthi
et al. [30] and Vlissides [32] describe variations of the Visitor pattern that
follow a structure similar to ours. The former solution can avoid run-time er-
rors if all existing visitors are subclassed and some factory methods are over-
riden when a new variant is added; while the later solution can use catch-all
cases for the same purpose. In both approaches the correct usage of the pat-
tern (so that it does not incur of run-time type errors) is quite complex and
error-prone.

Zenger and Odersky [20] propose extensible algebraic datatypes with defaults
(EADDs) as a possible solution for the expression problem. They observe that
the subtyping relationship between a datatype and its extension is inverted (the
extension is a supertype of the original datatype), which leads to the idea of
adding a default variant to every algebraic datatype. This has the effect of sub-
suming all variants defined in future extensions. Unlike our datatypes, in their
approach the extension is a subtype of the original datatype. Because of this
static type-safety is guaranteed even when a new, unforeseen, variant is added.
However, this solution is subject to single inheritance and only linear extensions
are possible. Moreover, it assumes that sensible default cases exist for all func-
tions, which may not necessarily be the case. Case classes in Scala [27] and the
open datatypes and functions proposal for Haskell [21] can be seen as close rela-
tives of EADDs as they allow easy introduction of new variants and it is possible
to provide a default case in a function, which ensures that the function will not
fail with a run-time type error. Still, the use of a default case is not enforced,
which provides some extra flexibility but also means that run-time type errors
can occur.

One important requirement of the expression families problem (but not of
the expression problem) is that expressions used in different domains should
have distinct types. While most of the solutions above do solve the extensibility
problem (even if at the cost of static type-safety), they do not easily allow
us to have distinct types with reuse because we normally have single, simple
types like Expr , Num or Add which are impossible to distinguish when used
in different domains. Our solution allows the two distinct numeric expressions
to have distinct types, while reusing most of the common, domain-independent
functionality because we have types parametrized by visitors: Expr [V ], Num [V ]
or Add [V ]. In a sense, the visitor parameter can be seen as the different domain
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of expressions. So, by using two different visitor types we can distinguish between
expressions used in different domains while achieving reuse.

7.2 Multiple Dispatch and Open Classes

Mainstream object-oriented languages, like C++, C# and Java, all use a single
dispatching mechanism, where a single argument (the self object) is dynami-
cally dispatched and all other dispatching is static. A problem arises, however,
when a method requires dynamic dispatching on two or more arguments. The
Visitor pattern can be seen as a way to emulate double-dispatching in a single
dispatching language [34,11]. By using nested visitors, we can also emulate a
limited, non-extensible form of multiple dispatching. Modular visitors overcome
the extensibility limitation and can be used to develop extensible and modular
operations that dynamically dispatch over more than one argument. However,
the use of visitors to emulate multiple dispatching is not trivial and, admit-
tedly, it is much less practical to use than programming language extensions like
multi-methods [28,19,35].

In a language with multiple dispatching the need for the classic Visitor

pattern is greatly reduced as most multiple dispatching languages support the
notion of open classes [19], since multi-methods are normally defined indepen-
dently of the classes. Consequently, we can use multi-methods to add a new
operation to an object structure modularly. However, this does not solve the
problem of reuse across similar object structures while allowing distinct type
identities (see the discussion at the end of Section 7.1). We believe that the two
lines of work are essentially complementary. On the one hand, modular visitors
could benefit from a mechanism similar to multi-methods or pattern matching
to better express reusable, extensible and modular operations that dynamically
dispatch over multiple arguments. There is an extensive amount of work around
multi-methods covering syntax, type checking and ambiguities between differ-
ent clauses; this could be very useful for such a hypothetical extension. On the
other hand, our work could potentially provide an alternative compilation model
for multi-methods targeting conventional single dispatching languages without
using any form of run-time type analysis and while supporting modularity and
extensibility. It would be interesting to explore this in the future.

7.3 Generics

Wadler proposed a solution using generics to solve the expression problem [5],
but he later found a subtle typing problem. Kim Bruce [36] proposed a solution
to the expression problem using generics and self-types. He also made an attempt
to solve the expression problem using an instance of the Visitor pattern (again
with generics and self-types). However, he failed to obtain a fully statically type-
safe visitor solution. Nevertheless, he observed that type constructors (that we
use in our solution) could be useful. Torgersen’s second and third solutions to
the expression problem [18] addressed the typing problems of Bruce’s solution
and showed fully statically type-safe solutions just using conventional generics
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and an instance of the Visitor pattern. The idea is simple: use imperative
instead of functional style visitors. Consequently, visitors do not need to be
parametrized types and type constructors can be avoided. Self-types are also
avoided by parametrizing the visit methods with an extra visitor parameter
provided by the concrete elements. These solutions are a close relative to the
modular external visitors presented in Section 5. However, by avoiding type-
constructors some expressiveness is lost. For example, it is no longer possible
to apply the same technique to datatypes that are themselves parametrized by
types (that is, types like Vector〈A〉) as this would require visitors themselves to
be parametrized by types. Furthermore, these solutions only work in languages
with mutable-state, while functional-style visitors do not have such requirement.
Torgersen also presented two other solutions for the problem: the first one works
in both Java and C#, while the fourth relies on dynamic reification of type
parameters that is only present in C#.

All of the generics solutions have an important characteristic in common with
our solution: they are parametrized by the family of expressions or the family of
visitors (or both). This means that, like our solution, it is possible to distinguish
between different types of expressions. The third solution by Torgerson has an-
other thing in common with our solution: the subtyping relationships between
different expressions are preserved. An important limitation of these techniques
is their lack of support for independent extensibility [6].

7.4 Type Classes and Polymorphic Variants

Oliveira et al. [37] addressed the problem of extensible generic functions in
Haskell using records in the form of constructor type classes (that is, type
classes parametrized by a type constructor) and noted the connection to the
expression problem. This solution is essentially an instance of internal visitors in
disguise [38] and inspired the solution presented in Section 4. Swierstra [39] pro-
posed a solution to the expression problem using extensible sums (or variants)
that has some close similarities to Oliveira’s et. all technique and the solution
proposed here. However, this approach relies on variant subtyping, which needs
to be encoded in Haskell. From an OO perspective, Swierstra’s technique seems
less appealing than a solution that uses records because while nearly all OO
languages natively support some form of record subtyping, most (if not all) do
not support variant subtyping and a manual implementation of the subtyping
machinery for variants would also be required.

Garrigue [40] shows how polymorphic variants can be used to solve the ex-
pression problem. With polymorphic variants, different datatypes can share the
same constructor. When a definition using pattern matching is written every
usage of a polymorphic variant will raise a type constraint which ensures that
only a datatypes containing all of those constraints will be used in the definition.
An important drawback of this approach is that functions are not extensible and
open recursion has to be used manually to emulate extensible functions.

Both the Haskell solutions and polymorphic variants have very good sup-
port for type inference. This can be seen as an advantage because it allows us



290 B.C.d.S. Oliveira

to program without ever closing extensions. In our approach this is also pos-
sible but, because support for type inference in Scala is weaker, this becomes
more cumbersome (see, for example, the client code in Section 4.2). However, by
programming in this open style, the client will also be exposed to the complexity
of the advanced language features to achieve extensibility, which can lead, for ex-
ample, to difficult error messages to interpret. With our solution we can provide
an abstraction on top of the reusable infrastructure that hides that complexity
away. We believe that in practice having this abstraction is preferable as this
keeps the interfaces very simple and familiar to most programmers. Also, in all
these approaches there are important limitations when the functions we want to
write do not follow a simple structurally recursive scheme.

7.5 Virtual Types

Odersky and Zenger [6] present two solutions for the expression problem using a
combination of virtual types and nested classes. In the top-level classes, some oper-
ations and variants are initially added and the hard references that would preclude
extensibility are replaced with virtual types. In the subclasses, new operations
and/or variants can be added by suitably extending the top-level class and refin-
ing the virtual types. Their solution has, somehow, the flavour of virtual classes,
which provide a more direct way to solve the problem as Ernst demonstrates in
GBeta [41]. Ernst’s solution also benefits from a special form of composition that
can compose two classes and all of their inner classes automatically. In Scala we
have to perform this operation manually. Nystrom et al. propose Java extensions
similar to virtual classes that support nested inheritance [42] and nested inter-
section [43]; and present a solution for the EP that is very similar to the virtual
classes solution by Ernst. More recently, Qi and Myers [44] have proposed class
sharing as a new language mechanism that aims at allowing objects of one family
to be used as members of another family. Our use of variance annotations to allow
subtyping relations across components of different families also achieves this kind
of interchange of objects in different families. Nonetheless, class sharing does not
induce subtyping relations and can be used to make adaptations that are not pos-
sible with our approach. However, class sharing requires significant annotations,
which places an additional burden on the programmer.

Solutions that use some form of virtual types (or classes) are generally very
readable and easy to understand because the reusable code is very similar to the
code that would be written if we would not be aiming at extensibility. In solutions
like ours, or the ones discussed in Sections 7.3 and 7.4, the reusable code has to
be written in a slightly different style and genericity becomes explicitly visible
due to some extra typing effort involved. We believe that virtual types provide
a particularly good solution to problems where a relatively small amount of
customization is expected and a small, interesting set of composable functionality
is identified. However, we think that when the expected degree of customization
is higher and potentially all valid combination of features should be allowed,
then virtual types do have some drawbacks. If we want to use virtual types to
allow the degree of compositionality and decoupling required by the EFP, we
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basically need to have a class with the corresponding nested virtual types for
each feature. Furthermore, we need to scatter the reusable code for the operations
very finely across those classes so that entanglement between features is not
created. Therefore, although it would be possible to achieve a similar degree
of customization and compositionality, the readability advantage would be lost
and a considerable amount of boilerplate code to set up each feature would
be required. Moreover, if the language that we use supports virtual types, but
not nested inheritance (like, for example, Scala) then the amount of effort to
compose features can be quite overwhelming. Our solution on the other hand,
allows small features to be created with very little boilerplate code and, for most
operations, we do not need to scatter code around since, as we have discussed in
Section 4.4, we can exploit the subtyping relationship between visitors to group
many cases together without entangling features.

8 Conclusions

We have shown how to solve the EFP using two alternative variations of modular
visitors. One very simple and practical alternative is to use internal visitors.
Another alternative is to use external visitors, which are slighty more complex
to use but allow additional expressiveness. Inspired by some ideas of FOP, we
have also shown how to organize the visitor components into features that can be
easily composed to provide customized systems of datatypes and operations. We
believe that our techniques can be very helpful for the development of software
in a FOP style without requiring any special tool or language extension and
using only generic language constructs.

While in most situations internal visitors are preferable, there are a few situa-
tions where external visitors may be more suitable, which seems to force us into
a design decision. In earlier work [8] we have presented a reusable, generic and
type-safe visitor library (VisLib) that is parametrizable over the traversal strat-
egy. Internal and External visitors can be recovered by suitably parametrizing
the concrete visitors with the corresponding traversal strategy. As it happens,
extensibility is orthogonal to VisLib and we can in fact easily use the origi-
nal VisLib to develop extensible visitor components using techniques similar to
the ones in this paper, without having to commit to internal or external vis-
itors in advance. Although we have not presented such solution here, in the
companion code for this paper a solution using VisLib is also presented and
documented.
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Abstract. Meaningful method names are crucial for the readability and
maintainability of software. Existing naming conventions focus on syn-
tactic details, leaving programmers with little or no support in assuring
meaningful names. In this paper, we show that naming conventions can
go much further: we can mechanically check whether or not a method
name and implementation are likely to be good matches for each other.
The vast amount of software written in Java defines an implicit conven-
tion for pairing names and implementations. We exploit this to extract
rules for method names, which are used to identify “naming bugs” in
well-known Java applications. We also present an approach for auto-
matic suggestion of more suitable names in the presence of mismatch
between name and implementation.

1 Introduction

It is well-known that maintenance costs dominate — if not the budget — then
the true cost of software [7]. It is also known that code readability is a vital
factor for maintenance [5]: unintelligible software is necessarily hard to modify
and extend. Finally, it has been demonstrated that the quality of identifiers has
a profound effect on program comprehension [14]. We conclude that identifier
quality affects the cost of software! Hence, we would expect programmers to
have powerful analyses and tools available to help assure that identifier quality
is high.

The reality is quite different. While the importance of good names is undis-
puted among leading voices in the industry [2, 18, 19], the analyses and tools are
lacking. Programmer guidance is limited to naming convention documents such
as those provided by Sun Microsystems for Java. The following quote is typical
for the kind of advice given by such documents: “Except for variables, all in-
stance, class, and class constants are in mixed case with a lowercase first letter”1.
In other words, the documents mandate a certain uniformity of lexical syntax.
Since such uniformity is easily checked mechanically, there are tools available
to check for violations against these rules. While this is certainly useful, it does
little to ensure meaningful identifiers. (Arguably, syntactic uniformity helps re-
duce the cost of “human parsing” of identifiers, but not the interpretation.) Since
identifiers clearly must be meaningful to be of high quality, current tool-support
must be considered unsatisfactory.
1 http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html
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This begs the question what meaningful identifiers really are. Consider what
an identifier is used for: it represents some program entity, and allows us to refer
to that entity by means of the identifier alone. In other words, the identifier is
an abstraction, and the meaning relates to the program entity it represents. The
identifier is meaningful if the programmer can interpret it to gain an understand-
ing of the program entity without looking at the entity itself. Intuitively, we also
demand that the abstraction be sound: we must agree that the identifier is a
suitable replacement for the entity. Hence, what we really require are identifiers
that are both meaningful and appropriate.

In this work, we consider only method names. Methods are the smallest named
units of aggregated behaviour in most conventional programming languages, and
hence a cornerstone of abstraction. A method name is meaningful and appro-
priate if it adequately describes the implementation of the method. Naming is
non-trivial because there is a potential for conflict between names and imple-
mentations: we might choose an inappropriate name for an implementation, or
provide an inappropriate implementation for a name. The label appropriate is
not really a binary decision: there is a sliding scale from the highly appropriate
to the utterly inappropriate. Inappropriate or even meaningless identifiers are
obviously bad, but subtle mistakes in naming can be as confusing or worse. Since
the programmer is less likely to note the subtle mistake, a misconception of the
code’s behaviour can be carried for a long time.

Consider the following example, taken from AspectJ 1.5.3, where the method
name has been replaced by underscores:

/**

* @return field object with given name, or null

*/

public Field ___(String name) {

for (Iterator e = this.field_vec.iterator(); e.hasNext();) {

Field f = (Field) e.next();

if (f.getName().equals(name))

return f;

}

return null;

}

Most Java programmers will find it easy to come up with a name for this
method: clearly, this is a find method! More precisely, we would probably name
this method findField; a suitable description for a method that indeed tries
to find a Field. The name used in AspectJ, however, is containsField. We
consider this to be a naming bug, since the name indicates a question to the
object warranting a boolean reply (“Do you contain a field with this name?”)
rather than an instruction to return an object (“Find me the field with this
name!”). In this paper, we show how to derive rules for implementations of con-
tains methods, find methods and other methods with common names, allowing
us to identify this naming bug and many others. We also present an approach for
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automatic correction of faulty names that successfully suggests using the verb
find rather than contains for the code above.

It is useful to speak of method names in slightly abstract terms; for instance,
we speak of find methods, encompassing concrete method names like findField
and findElementByID. We have previously introduced the term method phrase
for this perspective [12]. Typically, the rules uncovered by our analysis will refer
to method phrases rather than concrete method names. This is because method
phrases allow us to focus on essential similarities between method names, while
ignoring arbitrary differences.

The main contributions of this paper are as follows:

– A formal definition of a naming bug (Sect. 3.1).
– An approach for encoding the semantics of methods (Sect. 3.3), building on

our previous work [12, 11].
– An approach for extracting name-specific implementation rules for methods

(Sect. 3.4).
– An automatically generated “rule book” containing implementation rules for

the most common method names used in Java programming (Sect. 3.4).
– An approach for automatic suggestion of a more suitable name in the case

of mismatch between the name and implementation of a method (Sect. 3.6).

We demonstrate the usefulness of our analysis by finding genuine naming bugs
in well-known Java applications (Sect. 5.2).

2 Motivation

Our goal is to exploit the vast amount of software written in Java to derive
name-specific implementation rules for methods. Our approach is to compare the
names and implementations of methods in a large corpus of well-known open-
source Java applications. In this section, we motivate our approach, based on
philosophical considerations about the meaning of natural language expressions.

2.1 The Java Language Game

We have previously argued that method identifiers act as hosts for expressions in
a natural language we named Programmer English [12]. Inspired by Wittgenstein
and Frege, we take a pragmatic view of how meaning is constructed in natural
language. According to Wittgenstein, “the meaning of a word is its use in the
language” [27]. In other words, the meaning is simply the sum of all the uses
we find of the word — there is no “objective” definition apart from this sum.
It follows that meaning is not static, since new examples of use will skew the
meaning in their own direction. Also, any attempt at providing a definition for
a word (for instance in a dictionary, or our own phrase book for Java [12]) is
necessarily an imperfect approximation of the meaning.

Wittgenstein used the term language game (Sprachspiel) to designate sim-
ple forms of language, “consisting of language and the actions into which it is
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woven” [27]. Intuitively, a language game should be understood as interplay be-
tween natural language expressions and behaviours. Hence, our object of inquiry
is really the Java language game, where the language expressions are encoded in
method identifiers and the actions are encoded in method bodies.

In discussing the meaning of symbolic language expressions, Frege [9] intro-
duces the terms sign, reference and sense. The sign is the name itself, or a
combination of words. The reference is the object to which the sign refers. The
sense is our collective understanding of the reference. In the context of Java
programming, we take the sign to be the method phrase, the reference to be
the “true meaning” indicated by that phrase (that Wittgenstein would claim is
illusory), and the sense to be the Java community’s collective understanding of
what the phrase means. Of course, the collective understanding is really unavail-
able to us: we are left with our own subjective and imperfect understanding of
the sign. This is what Frege refers to as the individual’s idea. Depending on our
level of insight, that idea may be in various degrees of harmony or conflict with
the actual sense.

Interestingly, when analysing Java methods, we do have direct access to a
manifestation of the programmer’s idea of the method name’s sense: the method
body. By collecting and analysing a large number of such ideas, we can approx-
imate the sense of the name. This, in turn, allows us to identify naming bugs:
ideas that are in conflict with the approximated sense.

3 Analysis of Methods

We turn our understanding of how meaning is constructed into a practical ap-
proach for approximating the meaning of method names in Java. This approxi-
mation is then used to create rules for method implementations. Finally, these
rules help us identify naming bugs. Fig. 1 provides an overview of the approach.
The analysis consists of three major phases: data preparation, mining of imple-
mentation rules, and identification of naming bugs.

CodeName Phrase

Corpus

SemanticsPhrase
Derive

Rules

Prepare Generate

semantic
abstraction

grammatical
analysis refinequalifies?

Identify

SemanticsPhrase

Rules

lookup check

Software
Corpus

Method
Corpus

Rule
Book

Naming
Bugs

Fig. 1. Overview of the approach
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In the data preparation phase, we transform our corpus of Java applications
into an idealised corpus of methods. The transformation entails analysing each
Java method in two ways. On the one hand, we perform a natural language
analysis on the method name (Sect. 3.2). This involves decomposing the name
into individual words and performing part-of-speech tagging of those words.
The tags allow us to form abstract phrases from the concrete method names.
On the other hand, we analyse the signature and Java bytecode of the method
implementation, deriving a semantic profile for each implementation (Sect. 3.3).

This sets us up to investigate the semantics of methods that share the same
abstract phrase. We start with very abstract phrases that we gradually refine
into more concrete phrases, more closely matching the actual method names.
If a given phrase fulfils certain criteria pertaining to prevalence, we derive a
corresponding set of implementation rules (Sect. 3.4) that all methods whose
names match the phrase must obey. Failure to obey an implementation rule is
considered a naming bug (Sects. 3.5 and 3.6).

3.1 Definitions

In the following, please refer to Fig. 2 for an overview of the relationships between
the introduced terms.

We define a method m as a tuple consisting of a unique fingerprint u, a name
n, and a semantic profile �m�. The unique fingerprints prevent set elements from
collapsing into one; hence, a set made from arbitrary methods m1, . . . , mk will
always have k elements. The name n is a non-empty list of fragments f . Each
fragment is annotated with a tag t.

The semantic profile �m� for a method m is defined in terms of attributes. We
define a set A of attributes {a1, . . . , ak}, and let a denote an attribute from A.
Given a method m and an attribute a, the expression check(m, a) is a binary value
b ∈ {0, 1}. Intuitively, check determines whether or not m fulfils the predicate

Phrase Name

Method

Rule Set
Semantic

Profile

belongs to

has aapplies to

is in corpus of

is associated with

checks

captures

refines

Fig. 2. Conceptual model of phrase terms
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defined by a. We then define �m� as the list [check(m, a1), . . . , check(m, ak)]. It
follows that there are at most 2|A| distinct semantic profiles. The rank of a se-
mantic profile in a corpus is the proportion of methods that have that semantic
profile.

A phrase p is a non-empty list of parts ρ; its purpose is to abstract over method
names. A part ρ may be a fragment f , a tag t, or a special wildcard symbol ∗.
The wildcard symbol may only appear as the last part of a phrase. A phrase
that consists solely of fragments is concrete; all other phrases are abstract.

A phrase captures a name if each individual part of the phrase captures each
fragment of the name, in order from first to last. A fragment part captures
a fragment if they are equal. A tag part captures a fragment if it is equal to
the fragment’s tag. A wildcard part captures any remaining fragments in a
name, including zero fragments. A concrete phrase can only capture a single
name, whereas an abstract phrase can capture multiple names. For instance,
the abstract phrase is-〈adjective〉-* captures names like is-empty, is-valid-
signature and so forth.

A corpus C is a set of methods. Implicitly, C defines a set N , consisting of
the names of the methods m ∈ C. A name corpus Cn is the subset of C with
the name n. Similarly, a phrase corpus Cp is the subset of C whose names are
captured by the phrase p. The frequency value ξa(C) for an attribute a given a
corpus C is defined as:

ξa(C) def=
∑

m∈C check(m, a)
|C|

The semantics of a corpus C is defined as the list [ξa1(C), . . . , ξak
(C)]. We write

�p�C for the semantics of a phrase in corpus C, and define it as the semantics of
the corresponding phrase corpus. The subscript will be omitted when there can
be no confusion as to which corpus we refer to.

We introduce a subset Ao ⊂ A of orthogonal attributes. Two attributes a1 and
a2 are considered orthogonal if check(m, a1) does not determine check(m, a2) or
vice versa for any method m. We define the semantic distance d(p1, p2) between
two phrases p1 and p2 as the vector distance

d(p1, p2)
def=

∑
a∈Ao

(
ξa(Cp1)− ξa(Cp2)

)2

A rule r is a tuple consisting of an attribute a, a trigger condition c and
a severity s. The trigger condition c is a binary value, indicating whether the
rule is triggered when the function check evaluates to 0 or to 1. The severity
s is defined as s ∈ {forbidden , inappropriate , reconsider}. For example, the rule
r = (areads field , 1, inappropriate) indicates that it is considered inappropriate for
the reads field attribute to evaluate to 1. Applied to a method implementation,
the rule states that the implementation should not read field values. In practice,
rules are relevant for specific phrases. Hence, we associate with each phrase p a
set of rules Rp that apply to the methods m ∈ Cp.
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Finally, we define a boolean function bug(r, m) def= check(m, a) = c that eval-
uates to true when the rule r = (a, c, s) is triggered by method m.

3.2 Analysing Method Names

Far from being arbitrary labels, method names act as hosts for meaningful
phrases. This is the premise we rely on when we state that it is possible to define
name-specific rules for the implementation of methods. According to Liblit [15],
“[method] names exhibit regularities derived from the grammars of natural lan-
guages, allowing them to combine together to form larger pseudo-grammatical
phrases that convey additional meaning about the code”. To reconstruct these
phrases, we decompose the method names into individual fragments, and ap-
ply a natural language processing technique called part-of-speech tagging [17] to
identify their grammatical structure.

Decomposition. By convention, Java programmers use “camel case” when
forming method names that consist of multiple fragments (“words”). A camel
case method name uses capitalised fragments to compensate for the lack of
whitespace in identifiers. For instance, instead of writing create new instance
(which would be illegal), Java programmers write createNewInstance. To re-
cover the individual fragments, we reverse the process, using capital characters
as an indicator to split the name, with special treatment of uppercase acronyms.
For instance, we decompose parseXMLNode into parse XML node as one would
expect. Some programmers use underscore as delimiter instead of case-switching;
however, we have previously noted that this is quite rare [12]. For simplicity, we
therefore choose to omit such methods from the analysis.

Part-of-speech Tagging. Informally, part-of-speech tagging refers to the pro-
cess of tagging each word in a natural language expression with information
about its the grammatical role in the expression. In our scenario, this trans-
lates to tagging each fragment in the decomposed method name. We consider a
decomposed method name to be an untagged method phrase.

An overview of the tagging process is shown in Fig. 3. First, we use the
tags verb, noun, adjective, adverb, pronoun, preposition, conjunction,
article, number, type and unknown to tag each fragment in the phrase. In
other words, apart from the special tags number, type and unknown, we use
the basic word classes. The number tag is used for numeric fragments like 1.
The type tag is used when we identify a fragment as the name of a type in scope
of the method. Fragments that we fail to tag default to the unknown tag.

We make three attempts at finding suitable tags for a fragment. First, we use
WordNet [8], a large lexical database of English, to find verbs, nouns, adjectives
and adverbs. We augment the results given by WordNet with lists of pronouns,
prepositions, conjunctions and articles. If we fail to find any tags, we use a
mechanism for identifying invented words. Programmers sometimes derive nouns
and adjectives from verbs (for instance, handler from handle and foldable
from fold), or verbs from nouns (for instance, tokenize from token). If we can
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Fig. 3. Part-of-speech tagging for method phrases

discover such derivations, we tag the fragment accordingly. Finally, we resort to
a manual list of tags for commonly used programming terms.

Since a fragment may receive multiple tags (for instance, WordNet considers
object to be both a noun and a verb), the initial tagging leads to an ambiguously
tagged phrase. We then perform a selection of tags that takes into account both
the fragment’s position in the phrase, and the tags of surrounding fragments.
This yields an unambiguously tagged phrase. We have previously estimated the
accuracy of the part-of-speech tagger to be approximately 97% [12].

Method Phrases and Refinement. The decomposed, tagged method names
are concrete method phrases. The tags allow us to form abstract phrases as
well; phrases where concrete fragments have been replaced by tags. Phrases are
written like this: get-〈noun〉-*, where the individual parts are separated by
hyphens, fragments are written straightforwardly: get, tags are written in angle
brackets: 〈noun〉, and the * symbol indicates that the phrase can be further
refined.

Refinement involves reducing the corresponding phrase corpus to a subset. In
general, there are three kinds of refinement:

1. Introduce tag: p-* ⇒ p-〈t〉-*.
For instance, the phrase is-* may be refined to is-〈adjective〉-*. The former
phrase would capture a name like isObject, the latter would not.

2. Remove wildcard: p-* ⇒ p.
For instance, the phrase is-〈adjective〉-* may be refined to is-〈adjective〉.
The former phrase would capture a name like isValidSignature, the latter
would not.

3. Replace tag with fragment: p-〈t〉-* ⇒ p-f-*.
For instance, the phrase is-〈adjective〉-* may be refined to is-empty-*.
The former phrase would capture a name like isValid, the latter would not.

Fig. 4 shows the refinement steps leading from the completely abstract phrase
*, to the concrete phrase is-empty. When we reach a concrete phrase, we
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is-* is-<adjective>-* is-empty-* is-empty<verb>-**

Fig. 4. The refinements leading to is-empty

attempt a final step of further refinement to annotate the concrete phrase with
information about the types of return value and parameters. Hence we can form
signature-like phrases like boolean is-empty(). This step is not included in the
figure, nor in the list above.

3.3 Analysing Method Semantics

In any data mining task, the outcome of the analysis depends on the domain
knowledge of the analyst [26]. Hence, we must rely on our knowledge of Java pro-
gramming when modelling the semantics of methods. In particular, we consider
some aspects of the implementation to be important clues as to the behaviour
of methods, whereas others are considered insignificant.

A method m has some basic behaviours pertaining to data flow and control
flow that we would like to capture: 1) read or write fields, 2) create new objects,
3) return a value to the caller, 4) call methods, 5) branch and/or repeat iteration,
and 6) catch and/or throw exceptions. We concretise the basic behaviours by
means of a list of machine-traceable attributes, formally defined as predicates on
Java bytecode. In addition to the attributes stemming from the basic behaviours,
called instruction attributes, we define a list of signature attributes. Table 1 lists
all the attributes, coarsely sorted in groups. Note that some attributes, such
as returns created object really belong to more than one group. Attributes
marked with an asterisk belong to the subset of orthogonal attributes.

Most of the attributes should be fairly self-explanatory; however, the at-
tributes pertaining to object creation warrant further explanation. A regular
object is an object that does not inherit from the type java.lang.Throwable, a
string object is an instance of the type java.lang.String, and a custom object
is one that does not belong to either of the namespaces java.* and javax.*.
Finally, the attribute creates own type objects indicates that the method
creates an instance of the class on which the method is defined.

3.4 Deriving Phrase-Specific Implementation Rules

We derive a set of implementation rules for method phrases that are prevalent in
a large corpus of Java applications. A phrase is considered prevalent if it fulfils a
simple heuristic: it must occur in at least half of the applications in the corpus,
and it must cover at least 100 method instances. While somewhat arbitrary,
this heuristic guards against idiosyncratic naming in any single application, and
ensures a fairly broad basis for the semantics of the phrase. Each prevalent phrase
is included in a conceptual “rule book” derived from the corpus, along with a
corresponding set of rules. Intuitively, all methods captured by a certain phrase
must obey its implementation rules.
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Table 1. Attributes. Orthogonal attributes marked with an asterisk.

Signature

Returns void* Returns reference
Returns int Returns boolean
Returns string No parameters*
Return type in name Parameter type in name

Data Flow

Reads field* Writes field*
Writes parameter value to field Returns field value
Returns created object Runtime type check*

Object Creation

Creates regular objects* Creates string objects
Creates custom objects Creates own type objects

Control Flow

Contains loop* Contains branch
Multiple return points*

Exception Handling

Throws exceptions* Catches exceptions*
Exposes checked exceptions

Method Call

Recursive call* Same name call*
Same verb call* Method call on field value
Method call on parameter value Parameter value passed to method call

on field value

We define the implementation rules on the level of individual attributes. To
do so, we consider the frequency values of the attributes for different phrase
corpora. The intuition is that for a given phrase corpus, the frequency value for
an attribute indicates the probability for the attribute’s predicate to be fulfilled
for methods in that corpus. For each attribute a ∈ A, we find that the the
frequency value ξa(Cn) is distributed within the boundaries 0 ≤ ξa(Cn) ≤ 1. We
assume that method names therefore can be used to predict whether or not an
attribute will evaluate to 1: different names lead to different frequency values.
Fig. 5 shows example distributions for the attributes reads field and returns
void for some corpus. We see that the two distributions are quite different.
Both attributes distinguish between names, but returns void is clearly the
most polarising of the two for the corpus in question.

A frequency value close to 0 indicates that it is rare for methods in the cor-
responding corpus to fulfil the predicate defined by the attribute; a value close
to 1 indicates the opposite. We exploit this to define rules. Any method that
deviates from the norm set by the phrase corpus to which it belongs is suspect.
If the norm is polarised (close to 0 or 1), we induce a rule stating that the at-
tribute should indeed evaluate to only the most common value. Breaking a rule
constitutes a naming bug. Note that there are two kinds of naming bugs, that
we call inclusion bugs and omission bugs. The former refers to methods that fulfil
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Fig. 5. Distribution of frequency values for two attributes

the predicate of an attribute it should not, the latter to methods that fail to
fulfil a predicate it should. We expect inclusion bugs to be more common (and
arguably more severe) than omission bugs. For instance, it might be reasonable
to refrain from doing anything at all (an empty method) regardless of name,
whereas throwing an exception from a seemingly innocent hasChildren method
is more dubious.

Specifically, we induce rules by defining percentiles on the distribution of fre-
quency values for each attribute a ∈ A. The percentiles are 0.0%, 2.5%, 5.0%,
95.0%, 97.5% and 100.0%, and are associated to a degree of severity when the cor-
responding rules are violated (see Table 2). The intuition is that the percentiles
classify the frequency values of different phrases relative to each other. Assume,
for instance, that we have a corpus C and a phrase p with a corresponding cor-
pus Cp ⊂ C of methods yielding a frequency value ξa(Cp) for a certain attribute
a ∈ A. Now assume that the frequency value belongs to the lower 2.5% when
compared to that of other phrases in C. Then we deem it inappropriate for a
method m ∈ Cp to fulfil the predicate defined by a.

Table 2. Percentile groups for frequency values

Percentiles (%) Severity

0.0 Forbidden (if included)
0.0− 2.5 Inappropriate (if included)
2.5− 5.0 Reconsider (if included)
5.0− 95.0 No violation
95.0− 97.5 Reconsider (if omitted)
97.5− 100.0 Inappropriate (if omitted)
100.0 Forbidden (if omitted)

3.5 Finding Naming Bugs

Once a set of rules has been obtained for each prevalent phrase in the corpus,
finding naming bugs is trivial. For each of the methods we want to check, we
attempt to find the rule set for the most concrete capturing phrase (see Fig. 2).
In a few cases, the capturing phrase may be fully concrete, so that it perfectly
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matches the method name. This is likely to be the case for certain ubiquitous
method names and signatures such as String toString() and int size(),
for instance. In most other cases, we expect the phrase to be more abstract.
For instance, for the method name Element findElement(), the most concrete
capturing phrase might be something like ref find-〈type〉. Failure to find any
capturing phrase at all could be considered a special kind of naming bug; that
the name itself is rather odd.

When we have found the most concrete capturing phrase p, we obtain the
corresponding rule set Rp that applies to the method. For each rule in the rule
set, we pass the rule and the method to the function bug. Whenever bug returns
true, we have a rule violation, and hence a naming bug. Note that a single
method might violate several implementation rules, yielding multiple naming
bugs.

3.6 Fixing Naming Bugs

Naming bugs manifest themselves as violations of phrase-specific implementation
rules. A rule violation indicates a conflict between the name and the implemen-
tation of a method. There are two ways to resolve the conflict: either we assume
that the name is correct and the implementation is broken, or vice versa. The
former must be fixed by removing offending or adding missing behaviour. While
it is certainly possible to attempt to automate this procedure, it is likely to yield
unsatisfactory or even wrong results. The programmer should therefore attend
to this manually, based on warnings from the analysis.

We are more likely to succeed, at least partially, in automating the latter. We
propose the following approach to find a suitable replacement name for an im-
plementation that is assumed to be correct. The implementation is represented
by a certain semantic profile. Every prevalent phrase that has been used for
that profile is considered a relevant phrase for replacement. Some of the relevant
phrases may be unsuitable, however, because they have rules that are in conflict
with the semantic profile. We therefore filter the relevant phrases for rule vio-
lations against the semantic profile. The resulting list of phrases are candidates
for replacement. Note that, in some cases, the list may be empty. If so, we deem
the semantic profile to be unnameable.

Finding the best candidate for replacement is a matter of sorting the candidate
list according to some criterion. We consider three relevant factors: 1) the rank of
the semantic profile in the candidate phrase corpus, 2) the semantic distance from
the inappropriate phrase to the candidate phrase, and 3) the number of syntactic
changes we must apply to the inappropriate phrase to reach the candidate phrase.
We assume that the optimal sorting function would take all three factors — and
possibly others — into consideration. As a first approximation to solving the
problem, however, we suggest simply sorting the list according to profile rank
and semantic distances separately, and letting the programmer choose the most
appropriate of the two.
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4 The Corpus

The main requirements for the corpus are as follows:

– It must be representative of real-world Java programming.
– It must cover a variety of applications and domains.
– It must include most well-known and influential applications.
– It must be large enough to be credible as establishing “canonical” use of

method names.

Table 3 lists the 100 Java applications, frameworks and libraries that consti-
tute our corpus. Building and cleaning a large corpus is time-consuming labour;
hence we use the same corpus that we have used in our previous work [12, 11].
The corpus was constructed to cover a wide range of application domains and
has been carefully pruned for duplicate code. The only alteration we have made
in retrospect is to remove a large number of near-identical code-generated parse
methods from XBeans and Geronimo. The code clones resulted in visibly skewed
results for the parse-* phrase, and proves that code generation is a real problem
for corpus-based data mining.

Some basic numbers about the pruned corpus are listed in Table 4. We omit
methods flagged as synthetic (generated by the compiler) as well as methods with
“non-standard names”. We consider a standard name be at least two characters
long, start with a lowercase letter, and not contain any dollar signs or underscores.

5 Results

Here we present results from applying the extracted implementation rules on the
corpus, as well as a small set of additional Java applications. In general, the rules
can be applied to any Java application or library. For reasons of practicality and
scale, however, we focus primarily on bugs in the corpus itself. We explain in detail
how the analysis automatically identifies and reports a naming bug, and proceeds
to suggest a replacement phrase to use for the method. We then investigate four
rather different kinds of naming bugs revealed by the analysis. Finally, we present
some overall naming bug statistics, and discuss the validity of the results.

5.1 Name Debugging in Practice

We revisit the example method from the introduction, and explain how the
analysis helps us debug it.

public Field containsField(String name) {

for (Iterator e = this.field_vec.iterator(); e.hasNext();) {

Field f = (Field) e.next();

if (f.getName().equals(name))

return f;

}

return null;

}
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Table 3. The corpus of Java applications and libraries

Desktop applications

ArgoUML 0.24 Azureus 2.5.0 BlueJ 2.1.3 Eclipse 3.2.1
JEdit 4.3 LimeWire 4.12.11 NetBeans 5.5 Poseidon CE 5.0.1

Programmer tools

Ant 1.7.0 Cactus 1.7.2 Checkstyle 4.3 Cobertura 1.8
CruiseControl 2.6 Emma 2.0.5312 FitNesse JUnit 4.2
Javassist 3.4 Maven 2.0.4 Velocity 1.4

Languages and language tools

ANTLR 2.7.6 ASM 2.2.3 AspectJ 1.5.3 BSF 2.4.0
BeanShell 2.0b Groovy 1.0 JRuby 0.9.2 JavaCC 4.0
Jython 2.2b1 Kawa 1.9.1 MJC 1.3.2 Polyglot 2.1.0
Rhino 1.6r5

Middleware, frameworks and toolkits

AXIS 1.4 Avalon 4.1.5 Google Web Toolkit 1.3.3 JXTA 2.4.1
JacORB 2.3.0 Java 5 EE SDK Java 6 SDK Jini 2.1
Mule 1.3.3 OpenJMS 0.7.7a PicoContainer 1.3 Spring 2.0.2
Sun WTK 2.5 Struts 2.0.1 Tapestry 4.0.2 WSDL4J 1.6.2

Servers and databases

DB Derby 10.2.2.0 Geronimo 1.1.1 HSQLDB JBoss 4.0.5
JOnAS 4.8.4 James 2.3.0 Jetty 6.1.1 Tomcat 6.0.7b

XML tools

Castor 1.1 Dom4J 1.6.1 JDOM 1.0 Piccolo 1.04
Saxon 8.8 XBean 2.0.0 XOM 1.1 XPP 1.1.3.4
XStream 1.2.1 Xalan-J 2.7.0 Xerces-J 2.9.0

Utilities and libraries

Batik 1.6 BluePrints UI 1.4 c3p0 0.9.1 CGLib 2.1.03
Ganymed ssh b209 Genericra HOWL 1.0.2 Hibernate 3.2.1
JGroups 2.2.8 JarJar Links 0.7 Log4J 1.2.14 MOF
MX4J 3.0.2 OGNL 2.6.9 OpenSAML 1.0.1 Shale Remoting
TranQL 1.3 Trove XML Security 1.3.0

Jakarta commons utilities

Codec 1.3 Collections 3.2 DBCP 1.2.1 Digester 1.8
Discovery 0.4 EL 1.0 FileUpload 1.2 HttpClient 3.0.1
IO 1.3.1 Lang 2.3 Modeler 2.0 Net 1.4.1
Pool 1.3 Validator 1.3.1

Recall that we manually identified this as a naming bug, since we expect
contains-* methods to return boolean values. Intuition tells us that find would
be a more appropriate verb to use.

Finding the Bug. The analysis successfully identifies this as a naming bug, in
the following way. First, we analyse the method. The name is decomposed into
the fragments “contains” and “Field”, which are tagged as verb and type, re-
spectively. From the implementation, we extract a semantic profile that has the
following attributes from Table 1 evaluated to 1, denoting presence: return type
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Table 4. Basic numbers about the corpus

JAR files 1003
Class files 189941
Candidate methods 1226611
Included methods 1090982

Table 5. Rules for contains-* methods

Attribute Condition Severity Violation

Returns void 1 Forbidden No
Returns boolean 0 Inappropriate Yes
Returns string 1 Inappropriate No
Returns reference 1 Reconsider Yes
Return type in name 1 Inappropriate Yes
Parameter type in name 1 Reconsider No
Writes field 1 Reconsider No
Returns created object 1 Forbidden No
Creates own class objects 1 Inappropriate No

in name, reads field, runtime type-check, contains loop, has branches,
multiple returns, method call on field. The rest of the attributes are eval-
uated to 0, denoting absence. We see that the attributes conspire to form an
abstract description of the salient features of the implementation.

The most suitable phrase in our automatically generated rule book correspond-
ing to the concrete phrase contains-Field is the abstract phrase contains-*. The
rule set for contains-* is listed in Table 5, along with the violations for the se-
mantic profile. The mismatch between the name and implementation in this case
manifests itself as three naming bugs. A contains-* should not return a reference
type (much less echo the name of that type in the name of the method); rather, it
should return a boolean value.

Fixing the Bug. There are two ways to fix a naming bug; either by changing the
implementation, i.e., by returning a boolean value if the Field is found (rather
than the Field itself), or by changing the name. In Sect. 3.6 we describe the
approach for automatic suggestion of bug-free method names, to assist in the
latter scenario.

Consider the top ten candidate replacement phrases listed in Table 6. An
immediate reaction is that the candidates are fairly similar, and that all of them
seem more appropriate than the original. Here we have sorted the list according
to the sum of the orders given by the two ordering metrics semantic distance
and profile rank ; in cases of equal sum, we have arbitrarily given precedence
to the phrase with the highest rank. In this particular example, we see that a
rank ordering gives the better result, by choosing ref find-〈type〉 over the more
generic find-〈noun〉-*.
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Table 6. Candidate replacement phrases

Phrase Distance Rank Sum

find-〈type〉 4 3 7
find-* 2 5 7
ref find-〈type〉 7 1 8
find-〈type〉-* 5 4 9
find-〈adjective〉-* 3 6 9
ref find-〈type〉-* 8 2 10
find-〈noun〉-* 1 9 10
get-〈type〉-*(String...) 6 8 14
ref get-〈type〉-*(String...) 9 7 16
ref get-〈type〉-* 10 10 20

5.2 Notable Naming Bugs

To illustrate the diversity of naming bugs the phrase-specific implementation
rules help us find, we explore a few additional examples of naming bugs found
in the corpus. The four methods shown in Fig. 6 exhibit rather different naming
bugs. Note that since both strategies for choosing replacement phrases yield
similar results, we have included only the top candidate according to profile
rank in the figure.

The first example, taken from Ant 1.7.0, is representative of a fairly common
naming bug: the inappropriately named “boolean setter”. While both Java con-
vention and the JavaBean specification2 indicate that the verb set should be
used for all methods for writing properties (including boolean ones), program-
mers sometimes use an inappropriate is-* form instead. This mirrors convention
in some other languages such as Objective-C, but yields the wrong expectation
when programming Java. The problem is, of course, that isCaching reads like
a question: “is it true that you are caching?”. We expect the question to be an-
swered. The analysis indicates three rule violations for the method, and suggests
using the phrase set-〈adjective〉-* instead.

The second example, taken from the class Value in JXTA 2.4.1, shows a bro-
ken implementation of an equals method. According to Sun’s documentation,
“The equals method implements an equivalence relation on non-null object refer-
ences”3: it should be reflexive, symmetric, transitive and consistent. It turns out
that this is notoriously hard to implement correctly. An influential book on Java
devotes much attention to the details of fulfilling this contract [3]. The problem
with the implementation from JXTA is that it is not symmetric, and the symp-
tom is the creation of an instance of the type that defines the method. Assume
that we have a Value instance v. The last instruction returns true whenever the
parameter can be serialised to a String that in turn is used to create a Value
object that is equal to v. For instance, we can get a true return value if we pass
in a suitable String object s. However, if we pass v to the equals method of s,

2 http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
3 http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html
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Fig. 6. Four notable naming bugs from the corpus

we will get false. Interestingly, we find no appropriate replacement phrase for
this method. This is good news, since it makes little sense to rename a broken
equals method.

The third example, an iterator method from the class Registry in Java
5 Enterprise Edition, illustrates the problem of overloading and redefining a
well-established method name. The heavily implemented Iterable<T> inter-
face defines a method signature Iterator<T> iterator(). Since the signature
does not include any checked exceptions, the expectation naturally becomes
that iterator methods in general do not expose any checked exceptions — in-
deed, the compiler will stop implementors of Iterable<T> if they try. However,
Registry does not implement Iterable<T>, it simply uses a similar signature.
But it is a bad idea to do so, since violating expectations is bound to cause con-
fusion. It is particularly troublesome that the implementation exposes a checked
exception, since this is something iterator methods practically never do. Note
that the replacement phrase makes perfect sense since the method acts as a
factory that creates new objects.
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The final example is a bizarrely named method from DB Derby 10.2.2.0:
clearly this is no setter ! The semantic profile of the method is complicated a bit
by the synchronisation and logging code, but for all intents and purposes, this
is a factory method of sorts. The essential behaviour is that an object is cre-
ated and returned to the caller. Creating and returning objects is inappropriate
behaviour for methods that match the phrase set-〈adjective〉-*; hence we get
a rule violation. The suggested replacement phrase, open-*, is not completely
unreasonable, and certainly better than the original.

5.3 Naming Bug Statistics

We now consider the more general prevalence of naming bugs. Table 7 presents
naming bug statistics for all the applications in the corpus, as well as a small
number of additional applications. The additional applications are placed be-
neath a horizontal line near the bottom of the table. For each application, we
list the number of methods, the percentage of those methods covered by imple-
mentation rules, and the percentage of covered methods violating an implemen-
tation rule. We see that the naming bug rates are fairly similar for applications
in and outside the corpus, suggesting that the rules can meaningfully be applied
to any Java application. It is worth noting that the largest applications (for in-
stance, Java, Eclipse and NetBeans) to some extent have the power to dictate
what is common usage. At the same time, such applications are developed by
many different programmers over a long period of time, making diversity more
likely.

It is important to remember that the numbers really indicate how canonical
the method implementations are with respect to the names used. Herein lies an
element of conformity as well. The downside is that some applications might be
punished for being too “opinionated” about naming. For instance, JUnit 4.2 is
written by programmers who are known to care about naming, yet the reported
naming bug rate, 3.50%, is fairly high. We believe this is due to the tension
between maintaining the status quo and trying to improve it.

Where to draw the line between appropriate and inappropriate usage of names
is a pragmatic choice, and a trade-off between false positives and false negatives.
A narrow range for appropriate usage increases the number of false positives, a
broad range increases the number of false negatives. We are not too concerned
with false negatives, since our focus is on demonstrating the existence of naming
bugs, rather than finding them all. False positives, on the other hand, could pose
a threat to the usefulness of our results.

False positives, i.e., that the analysis reports a naming bug that we intuitively
disagree with, might occur for the following reasons:

– The corpus may contain noise that leads to rules that are not in harmony
with the intuitions of Java programmers.

– Some legitimate sub-use of a commonly used phrase may be deemed inap-
propriate because the sub-use is drowned by the majority. (Arguably a new
phrase should be invented to cover the sub-use.)
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Table 7. Naming bug statistics

Application Methods Covered Buggy Application Methods Covered Buggy

ANTLR 2.7.6 1641 61.66% 1.18% ASM 2.2.3 724 45.30% 0.30%
AXIS 1.4 4290 91.35% 1.65% Ant 1.7.0 7562 89.35% 0.85%
ArgoUML 0.24 13312 81.17% 0.85% AspectJ 1.5.3 24976 74.41% 1.24%
Avalon 4.1.5 280 82.14% 2.17% Azureus 2.5.0 14276 78.32% 1.30%
Batik 1.6 9304 85.90% 0.76% BSF 2.4.0 274 77.37% 0.00%
BeanShell 2.0 Beta 907 74.97% 0.73% BlueJ 2.1.3 3369 82.13% 1.48%
BluePrints UI 1.4 662 89.57% 0.67% C3P0 0.9.1 2374 83.06% 1.52%
CGLib 2.1.03 675 80.29% 1.66% Cactus 1.7.2 3004 87.61% 1.36%
Castor 1.1 5094 91.44% 0.88% Checkstyle 4.3 1350 76.07% 0.09%
Cobertura 1.8 328 82.92% 1.47% Commons Codec 1.3 153 79.08% 0.00%
Commons Collections 3.2 2914 77.93% 1.14% Commons DBCP 1.2.1 823 88.69% 1.09%
Commons Digester 1.8 371 79.24% 0.34% Commons Discovery 0.4 195 92.30% 0.00%
Commons EL 1.0 277 59.20% 4.87% Commons FileUpload 1.2 123 91.86% 0.88%
Commons HttpClient 3.0.1 1071 88.98% 1.46% Commons IO 1.3.1 357 81.23% 5.17%
Commons Lang 2.3 1627 82.72% 1.93% Commons Modeler 2.0 376 93.35% 1.42%
Commons Net 1.4.1 726 69.69% 1.58% Commons Pool 1.3 218 71.55% 0.00%
Commons Validator 1.3.1 443 88.03% 1.02% CruiseControl 2.6 5479 87.18% 0.85%
DB Derby 10.2.2.0 15470 80.08% 2.09% Dom4J 1.6.1 1645 92.15% 0.39%
Eclipse 3.2.1 110904 81.65% 1.03% Emma 2.0.5312 1105 82.62% 0.65%
FitNesse 2819 74.49% 2.14% Ganymed ssh build 209 424 76.65% 1.23%
Genericra 454 86.78% 0.50% Geronimo 1.1.1 26753 85.28% 0.71%
Google WT 1.3.3 4129 73.40% 1.78% Groovy 1.0 10237 76.14% 1.01%
HOWL 1.0.2 173 81.50% 1.41% HSQLDB 3267 86.16% 2.98%
Hibernate 3.2.1 11354 80.47% 2.00% J5EE SDK 148701 83.56% 1.17%
JBoss 4.0.5 34965 84.69% 0.95% JDOM 1.0 144 80.55% 0.86%
JEdit 4.3 3330 80.36% 1.30% JGroups 2.2.8 4165 77.52% 2.04%
JOnAS 4.8.4 30405 81.88% 1.16% JRuby 0.9.2 7748 76.69% 1.27%
JUnit 4.2 365 62.46% 3.50% JXTA 2.4.1 5210 86.96% 1.30%
JacORB 2.3.0 8007 71.01% 1.16% James 2.3.0 2382 79.21% 1.85%
Jar Jar Links 0.7 442 53.84% 0.42% Java 6 SDK 80292 81.03% 1.16%
JavaCC 4.0 370 77.02% 2.80% Javassist 3.4 1842 84.03% 1.42%
Jetty 6.1.1 15177 73.54% 1.06% Jini 2.1 8835 80.00% 1.38%
Jython 2.2b1 3612 72.09% 1.65% Kawa 1.9.1 6309 65.36% 2.01%
Livewire 4.12.11 12212 81.96% 1.15% Log4J 1.2.14 1138 83.39% 0.63%
MJC 1.3.2 4957 73.77% 1.72% MOF 28 100.00% 0.00%
MX4J 3.0.2 1671 85.33% 1.26% Maven 2.0.4 3686 84.69% 0.86%
Mule 1.3.3 4725 86.79% 1.09% NetBeans 5.5 113355 87.60% 0.85%
OGNL 2.6.9 502 88.24% 0.45% OpenJMS 0.7.7 Alpha 3624 85.89% 0.70%
OpenSAML 1.0.1 306 92.48% 1.76% Piccolo 1.04 559 77.10% 0.46%
PicoContainer 1.3 435 67.81% 1.35% Polyglot 2.1.0 3521 67.33% 1.64%
Poseidon CE 5.0.1 25739 77.73% 1.19% Rhino 1.6r5 2238 77.56% 1.67%
Saxon 8.8 6596 73.12% 1.22% Shale Remoting 1.0.3 96 72.91% 0.00%
Spring 2.0.2 8349 88.05% 1.52% Struts 2.0.1 6106 88.97% 1.06%
Sun Wireless Toolkit 2.5 20538 80.37% 1.59% Tapestry 4.0.2 3481 78.71% 0.87%
Tomcat 6.0.7 Beta 5726 88.31% 0.90% TranQL 1.3 1639 77.85% 1.17%
Trove 1.1b4 3164 82.01% 0.23% Velocity 1.4 3635 81.62% 0.67%
WSDL4J 1.6.2 651 94.16% 0.00% XBean 2.0.0 7000 81.10% 1.33%
XML Security 1.3.0 819 86.56% 1.55% XOM 1.1 1399 77.05% 1.85%
XPP 1.1.3.4 426 84.50% 1.38% XStream 1.2.1 916 77.83% 0.84%
Xalan-J 2.7.0 14643 81.38% 1.21% Xerces-J 2.9.0 590 89.15% 0.19%
FindBugs 1.3.6 7688 72.78% 1.42% iText 2.1.4 4643 85.18% 1.54%
Lucene 2.4.0 2965 74.16% 1.50% Mockito 1.6 1408 68.32% 1.35%
ProGuard 4.3 4148 45.34% 2.65% Stripes 1.5 1600 89.31% 2.09%

– The percentiles used to classify attribute fraction rank (Sect. 3.4) can be
skewed.

Whether or not something classifies as a naming bug is subjective. What
is not subjective, is the fact that all reported issues will be rare, and there-
fore worthy of reconsideration. To discern false positives from genuine naming
bugs, we must rely on our on best judgement. To get an idea of the severity
of the problem, we manually investigated 50 reported naming bugs chosen at
random. We found that 30% of the reported naming bugs in the sample were
false positives, suggesting that the approach holds promise (even though, due to
the limited size of the sample, the true false positive rate might be significantly
higher or lower). The false positives were primarily getters that were slightly
complex, but not inappropriately so in our eyes, and methods containing log-
ging code.
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5.4 Threats to Validity

There are three major threats to the validity of our results:

– Does the pragmatic view of how meaning is constructed apply to Java pro-
gramming?

– Is the corpus representative of real-world Java programming?
– Is the attribute model a suitable approximation of the actual semantics of a

method?

Our basic assumption is that canonical usage of a method name is also mean-
ingful and appropriate usage; this relates to the pragmatic view that meaning
stems from actual use. We establish the meaning of phrases using a crude demo-
cratic process of voting. This approach is not without problems. First, it is
possible for individual idiosyncratic applications to skew the election. In par-
ticular, code generation can lead to problems, since it enables the proliferation
of near-identical clones. While we can spot gross examples of this (see Sect. 4),
code generation on a smaller scale is hard to detect, and can affect the results
for individual phrases. This in turn can corrupt our notion of canonical usage,
leading to corrupt rules and incorrect reports of naming bugs. Second, there
might be individual applications that use a language that is both richer, more
consistent and precise than the one used by the majority. However, the relative
uniformity in the distribution of naming bugs seems to indicate that neither of
these problems are too severe. Despite these problems, therefore, we believe that
the pragmatic view of meaning applies well to Java programming. It is certainly
more reasonable to use the aggregated ideas of many as an approximation of
meaning than to make an arbitrary choice of a single application’s idea.

When aggregating ideas, however, we must assume that the ideas we aggregate
are representative. The business journalist Surowiecki argues that diversity of
opinion, independence, decentralisation and an aggregation mechanism are the
prime prerequisites to make good group decisions [25]. The corpus we use was
carefully constructed to contain a wide variety of applications and libraries of
various sizes and from many domains. We therefore believe it to fulfil Surowiecki’s
prerequisites and be reasonably representative of real-world Java programming.

Finally, we consider the suitability of the model for method semantics, which
is a coarse approximation based on our knowledge of Java programming. Using
attributes to characterise methods has several benefits, in particular that it re-
duces the practically endless number of possible implementations to a finite set
of semantic profiles. Furthermore, the validation of a useful model must come in
the form of useful results. As we have seen, the model has helped us identify real
naming bugs with what appears to be a relatively low rate of false positives. We
therefore believe that the model is adequate for the task at hand.

6 Related Work

Micro patterns, introduced by Gil and Maman [10], are a central source of in-
spiration for our work. Micro patterns are machine-traceable patterns on the
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level of Java classes. A pattern is machine-traceable if it can be expressed as
a simple formal condition on some aspect of a software module. The presented
micro patterns are hand-crafted by the authors to capture their knowledge of
Java programming.

In our work, we use hand-crafted machine-traceable attributes to model the
semantics of methods rather than classes. The attributes are similar to finger-
prints, a notion used by the Sourcerer code search engine [1]. According to the
Sourcerer website4, the engine supports three kinds of fingerprint-based search,
utilising control flow, Java type and micro pattern information respectively. Ma
et al. [16] provide a different take on the task of searching for a suitable software
artefact. They share our assumption that programmers usually choose appropri-
ate names for their implementations, and therefore use identifier information to
index the Java API for efficient queries.

Overall, there seems to be a growing interest in harnessing the knowledge
embedded in identifiers. Pollock et al. [20] introduce the term Natural Language
Program Analysis (NLPA) to signify program analysis that exploits natural lan-
guage clues. The analysis has been used to develop tools for program navigation
and aspect mining [23, 22]. The tools exploit the relationship between natural
language expressions in source code (identifiers and comments) and information
about the structure of the code.

Singer and Kirkham [24] investigate which type names are used for instances
of micro patterns in a large corpus of Java applications. More precisely, the
suffixes of the actual type names are used (the last fragment of the name in our
terminology). The empirical results indicate that type name suffixes are indeed
correlated to the presence of micro patterns in the code.

Caprile and Tonella [4] analyse the structure of function identifiers in C pro-
grams. The identifiers are decomposed into fragments that are then classified
into seven lexical categories. The structure of the function identifiers are further
described by a hand-crafted grammar.

Lawrie et al. [13] study the quality of identifiers in a large corpus of applica-
tions written in several languages. An identifier is assumed to be of high quality
if it can be composed of words from a dictionary and well-known abbreviations.
This is a better quality indicator than mere uniformity of lexical syntax, but
does not address the issue of appropriateness. Deißenböck and Pizka [6] develop
a formal model for identifier quality, based on consistency and conciseness. Un-
fortunately, this model requires an expert to perform manual mapping between
identifiers and domain concepts.

Reiss [21] proposes an automatic approach for finding unusual code. The as-
sumption is that unusual code is potentially problematic code. The approach
works by mining common syntactic code patterns from a corpus of applications.
Unusual code is code that is not covered by such patterns. Hence we see that
there are similarities to our work, both in the assumption and the approach. A
main difference is that we define unusual code in the context of a given method
phrase.

4 http://sourcerer.ics.uci.edu/

http://sourcerer.ics.uci.edu/
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7 Conclusion

Natural language expressions get their meaning from how and when they are used
in practice. Deviation from normal use of words and phrases leads to misunder-
standing and confusion. In the context of software this is particularly bad, since
precise understanding of the code is paramount for successful development and
maintenance. We have therefore coined the term naming bug to describe unusual
aspects of implementations for a given method name. We have presented a practi-
cal approach to debugging method names, by offering assistance both in finding and
fixing naming bugs. To find naming bugs, we use name-specific implementation
rules mined from a large corpus of Java applications. Naming bugs can be fixed
either by changing the implementation or by using a different method name; for
the latter task, we have also shown an approach to provide automatic assistance.
To demonstrate that method name debugging is useful, we have applied the rules
to uncover naming bugs both in the corpus itself and in other applications.

In this and previous work, we have exploited the fact that there is a shared vo-
cabulary of terms and phrases, Java Programmer English [12], that programmers
use in method names. In the future, we would like to investigate the adequacy of
that vocabulary. In particular, there might be terms or phrases that are super-
fluous, while others are missing, at least from the common vocabulary of Java
programmers. We know that there exists verbs (for instance create and new)
that seem to be used almost interchangeably in method names. Our results re-
veal hints of this, by finding a shorter semantic distance between phrases that
use such verbs. By analysing the corresponding method implementations, we
could find out whether there are subtle differences in meaning that warrant the
existence of both verbs in Java Programmer English. If not, it would be bene-
ficial for Java programmers to choose one and eliminate or redefine the other.
There are also verbs (and phrases) that are imprecise, in that they are used to
represent many different kinds of implementations. For instance, the ubiquitous
getter is much less homogenous than one might expect [11], indicating that it has
a wide variety of implementations. It would be interesting to see if the verbs are
simply used as easy resorts when labelling more or less random chunks of code,
or if there are legitimate, identifiable sub-uses that would warrant the invention
of new verbs. Or it might be that a minority of the Java community already
has invented the proper verbs, and that they should be more widely adopted to
establish a richer, more expressive language for all Java programmers to use.
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References

[1] Bajracharya, S.K., Ngo, T.C., Linstead, E., Dou, Y., Rigor, P., Baldi, P., Lopes,
C.V.: Sourcerer: a search engine for open source code supporting structure-based
search. In: Tarr, P.L., Cook, W.R. (eds.) OOPSLA Companion, pp. 681–682. ACM
Press, New York (2006)



316 E.W. Høst and B.M. Østvold

[2] Beck, K.: Implementation Patterns. Addison-Wesley Professional, Reading (2007)
[3] Bloch, J.: Effective Java. Prentice-Hall, Englewood Cliffs (2008)
[4] Caprile, B., Tonella, P.: Nomen est omen: Analyzing the language of function

identifiers. In: Proceedings of the Sixth Working Conference on Reverse Engi-
neering (WCRE 1999), Atlanta, Georgia, USA, 6-8 October 1999, pp. 112–122.
IEEE Computer Society Press, Los Alamitos (1999)

[5] Collar, E., Valerdi, R.: Role of software readability on software development cost.
In: Proceedings of the 21st Forum on COCOMO and Software Cost Modeling,
Herndon, VA (October 2006)
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Abstract. To improve software productivity, when constructing new software
systems, programmers often reuse existing libraries or frameworks by invoking
methods provided in their APIs. Those API methods, however, are often complex
and not well documented. To get familiar with how those API methods are used,
programmers often exploit a source code search tool to search for code snip-
pets that use the API methods of interest. However, the returned code snippets
are often large in number, and the huge number of snippets places a barrier for
programmers to locate useful ones. In order to help programmers overcome this
barrier, we have developed an API usage mining framework and its supporting
tool called MAPO (Mining API usage Pattern from Open source repositories) for
mining API usage patterns automatically. A mined pattern describes that in a cer-
tain usage scenario, some API methods are frequently called together and their
usages follow some sequential rules. MAPO further recommends the mined API
usage patterns and their associated code snippets upon programmers’ requests.
Our experimental results show that with these patterns MAPO helps program-
mers locate useful code snippets more effectively than two state-of-the-art code
search tools. To investigate whether MAPO can assist programmers in program-
ming tasks, we further conducted an empirical study. The results show that using
MAPO, programmers produce code with fewer bugs when facing relatively com-
plex API usages, comparing with using the two state-of-the-art code search tools.

1 Introduction

The modern software industry increasingly relies on third-party libraries and frame-
works provided by companies or open source organizations. Programmers often need
to cope with Application Programming Interfaces (APIs) of these libraries or frame-
works to accomplish their daily work. Unfortunately, most of the API libraries are
complex and difficult to use [30]. Typically, an API library or framework written in
object-oriented languages often provides a large number of classes and methods. For
example, the Eclipse 3.1 platform SDK provides more than 11,000 classes not to say
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its large external plug-in projects. Furthermore, API libraries or frameworks provided
by different companies and organizations follow different styles. As a result, even ex-
perienced programmers may encounter problems when they are to use unfamiliar API
libraries or frameworks.

Due to these issues, programmers often struggle with choosing proper methods pro-
vided by APIs (called API methods) and how to organize the API methods when invok-
ing them together to implement a certain feature. In fact, if the API classes and methods
have meaningful names, it might not be too difficult for the programmers to find use-
ful API methods for a given task. However, it is often difficult for the programmers
to pick out all the essential API methods and to organize these API methods properly
for the task. Some API libraries or frameworks such as the .NET framework are well
documented and have sample snippets, but for many API libraries or frameworks, no
code snippet is provided or the provided code snippets exhibit only one usage. As an
API method may have many usages, the provided usage may not be relevant to the task
at hand. Therefore, the associated documentation of an API library or framework is
insufficient for programmers.

Fortunately, as source files in open source projects contain various API usages, pro-
grammers can access code snippets of plenty of usages using code search engines such
as Google code search [12] or code snippet recommenders such as Strathcona [15].
However, given an API method, as there often exist many code snippets using the
method in various open source projects, it is challenging for existing code search tools
to rank the code snippets by putting the ones with relevant usage at the top of the re-
turned list. As a result, programmers may need to browse through a large number of
code snippets to locate snippets with relevant usage.

At the same time, data mining [13] provides various techniques to mine a large vol-
ume of data into useful patterns. These techniques are potentially useful to help pro-
grammers in locating useful code snippets. In this paper, we propose an API usage
mining framework and its supporting tool called MAPO to mine API usage patterns
from a large number of code snippets. With the mined patterns, MAPO further guides
programmers to locate useful code snippets.

This paper makes the following main contributions:
– Extraction strategy. A code analyzer and a set of strategies to extract API usage

information from code snippets that include usages of API methods.
– Mining technique. A technique to mine API usage patterns from the collected API

usage information, with the application of clustering on the collected API method
call sequences.

– Recommendation mechanism. A user interface to recommend the API usage pat-
terns and their associated code snippets to programmers.

– Experimental study. An experimental study on evaluating MAPO, where we ap-
plied MAPO on 20 open source projects (141K lines of code in total, which use
Eclipse Graphical Editing Framework (GEF) [17]) and acquired 93 patterns, which
include 157 API method call sequences and cover the usages of 856 API meth-
ods. We also compared MAPO with two state-of-the-art code search tools: Strath-
cona [15] and Google code search [12]. The experimental results show that the
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public class DEditorActionContributor … {
public void contributeToMenu(IMenuManager menu) {

super.contributeToMenu(menu);
IMenuManager editMenu = menu.findMenuUsingPath(IWorkbenchActionConstants.M_EDIT);
if(editMenu != null ){

editMenu.add(new Separator());
editMenu.appendToGroup(“additions”, fToggleInsertModeAction);

}}
}
…

}

public class RubyEditorActionContributor … {
public void contributeToMenu(IMenuManager menuManager) {

…
IMenuManager gotoMenu = menu.findMenuUsingPath(“navigate/goTo”);
if(gotoMenu != null ){if(gotoMenu != null ){

gotoMenu.add(new Separator(“additions2”));
gotoMenu.appendToGroup(“additions2”, fGotoMatchingBracket);

}
}
…

}

Fig. 1. Code snippets of “appendToGroup” returned by Google code search

patterns mined by MAPO are useful to help programmers locate useful code snip-
pets more effectively than Strathcona and Google code search.

– Empirical study. An empirical study on evaluating MAPO, where we investigated
whether MAPO can assist programmers to complete programming tasks. The re-
sults show that comparing with Strathcona and Google code search, MAPO helps
programmers produce code with fewer bugs when API usages are relatively com-
plex and these usages exist in code repositories.

The rest of the paper is organized as follows. Section 2 presents an example to illus-
trate our approach. Section 3 discusses related work. Section 4 presents our approach.
Sections 5 and 6 describe our experimental study and empirical study, respectively.
Section 7 discusses issues in API usage mining. Section 8 concludes.

2 Example

To compare the effectiveness of locating useful code snippets, we use an example to il-
lustrate the situation when using Google code search [12] to locate some code snippets.
Suppose that we plan to add an action item to the menu of the Eclipse IDE platform.
After browsing Eclipse’s platform API documentation1, we find a potentially relevant
interface IContributionManager based on its description: “A contribution manager
organizes contributions to such UI components as menus, toolbars and status lines”.
By browsing methods defined in this interface, we find one method appendToGroup

potentially relevant based on its description: “Adds a contribution item for the given

1 http://tinyurl.com/5ltogx

http://tinyurl.com/5ltogx
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public class ContextMenuProviderImpl … {
public void buildContextMenu(IMenuManager manager) {

GEFActionConstants.addStandardActionGroups(manager);
IAction action;
action = actionRegistry.getAction(CreateAttributeAction.ID);
if(action.isEnabled() )

manager.appendToGroup(GEFActionConstants.GROUP_REST, action);
…

}
…

}

public class LatticeContextMenuProvider … {
public void buildContextMenu (IMenuManager manager) {

GEFActionConstants.addStandardActionGroups(manager);
IAction action;
action = actionRegistry getAction(ShowMethodSignatureAction TEXT);action = actionRegistry.getAction(ShowMethodSignatureAction.TEXT);
if(action.isEnabled() )

manager.appendToGroup(GEFActionConstants.GROUP_VIEW, action);
…

}
…

}

Fig. 2. Code snippets of “appendToGroup” returned by Google code search (Cont.)

action at the end of the group with the given name”. We then use “appendToGroup
lang:java” to query Google code search and it returns 151 code snippets2.

After browsing these code snippets, we find two relevant code snippets as shown
in Figure 1. Both snippets are put near the bottom of the returned list. In particu-
lar, the first snippet in Figure 1 is put as the 84th of the snippet list, and the second
snippet in Figure 1 is put as the 104th of the snippet list. We further investigate the
returned 151 snippets, and we find that there are many different usages of the API
method appendToGroup. For example, the snippets in Figure 2 exhibit another usage
of appendToGroup. The two snippets are put as the 11th and the 27th of the returned
list. The snippets with different usages interlace with each other, and none of the four
snippets are ranked as top 10 snippets by Google code search. As a result, in this par-
ticular example, we need to check 84 snippets to locate the first relevant code snippet.
We next illustrate how MAPO addresses the preceding situation.

Pattern mining. To mine patterns, MAPO first clusters code snippets according to their
similarities of each other (Section 4.2). The aim of the clustering is to cluster code snip-
pets exhibiting different usages (such as the snippets in Figures 1 and 2) into different
clusters. In Figure 1, the two snippets come from two methods with the same name (i.e.,
contributeToMenu), and the two methods belong to two classes with similar names

2 We used “appendToGroup lang:java” to query Google code search in January 2008. Note that
given the same key words, Google code search may return different numbers of code snippets
over time possibly due to the growth of Google code search’s crawled repositories. The sit-
uation of using it for the described purpose becomes even worse with the growth of Google
code search’s crawled repositories. From more crawled repositories, Google code search re-
turns more code snippets with more API usages for a given query. Code snippets of interest
may be pushed to an even lower position by code snippets exhibiting other usages.
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Fig. 3. Pattern index of “appendToGroup”

(i.e., DEditorActionContributor and RubyEditorActionContributor). Simi-
larly, we make the same observation in Figure 2. Although the four code snippets are
from four different projects, they all follow the convention of using similar names for
similar usages. In MAPO, the similarity metric used in clustering is mainly based on
this convention. Here, if MAPO does not use these names for clustering and uses only
method call sequences, it cannot mine patterns that are sensitive to programming con-
texts such as class names and method names.

For each cluster, MAPO adopts a frequent subsequence miner [7] to mine usage pat-
terns from the code snippets in the cluster (Sections 4.2). For example, from each of
the two clusters, MAPO acquires one usage pattern as shown in Figure 3. A mined pat-
tern may have one or more frequent sequences of API method calls, and one frequent
sequence describes one common usage exhibited by the snippets. For example, the fre-
quent sequence under “Pattern1” in Figure 3 shows that in this usage, appendToGroup
is often used with findMenuUsingPath and add, and when the three API meth-
ods are used together, they follow the sequential rule of findMenuUsingPath→ add

→append- ToGroup (i.e., the usage exhibited in the snippets of Figure 1).

Pattern recommendation. MAPO uses mined patterns as an index for their associ-
ated code snippets (Section 4.3). As mined patterns are usually much fewer than code
snippets, programmers are able to locate their code snippets more effectively with the
pattern index. For example, MAPO associates “Pattern1” in Figure 3 to the code snip-
pets in Figure 1, and “Pattern2” in Figure 3 to the code snippets in Figure 2. When a
programmer clicks a pattern, MAPO returns all the code snippets associated with the
pattern to the programmer. In this example, as the second pattern exhibits the API usage
of interest, a programmer needs to check only 2 snippets for the first relevant snippet.
In addition, from a mined pattern, a programmer is able to find which methods are used
together with appendToGroup and how to call these methods correctly. Code search
engines such Google code search do not provide such a benefit directly to program-
mers. This example illustrates how MAPO is more effective than Google code search
in helping write API client code.
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3 Related Work

To our knowledge, our MAPO is the first approach that mines API usage patterns and
uses mined patterns as an index for recommending associated code snippets to aid pro-
gramming. Our approach is related to existing work on recommending code snippets
since MAPO recommends code snippets organized according to API usage patterns
mined from them. MAPO is also related to existing work on mining API properties
since API usage patterns mined by MAPO have similar forms as API properties mined
by existing work. We next discuss the major differences between MAPO and these ex-
isting related approaches.

Recommending code snippets. Strathcona developed by Holmes and Murphy [15] lo-
cates a set of relevant code snippets from a code snippet repository by matching the
structure of the code under development with the code snippets in the repository. As
MAPO returns code snippets given an API method name, it is more convenient to lo-
cate useful code snippets if a programmer wants to know the usages of a particular API
method. In addition, like other code search engines, Strathcona returns a list of relevant
code snippets, whereas MAPO extracts common patterns among the list of relevant
code snippets returned by a code search engine or Strathcona. Our evaluation (Sec-
tion 5) shows that the mined patterns help programmers locate useful code snippets
more effectively than approaches that recommend raw code snippets (such as Strath-
cona and Google code search).

Prospector developed by Mandelin et al. [22] synthesizes solution jungloids from a
jungloid query. A jungloid query is a pair (Tin, Tout) where Tin and Tout are source
and target object types, respectively. The retrieval is accomplished by traversing a set of
paths (API method call sequences) from Tin to Tout. XSnippet developed by Tansalarak
and Claypool [32] extends Prospector and adds additional queries, ranking heuristics,
and mining algorithms to query a code snippet repository for code snippets relevant
to the programming task at hand. Instead of finding code snippets from a repository
(with a limited set of snippets), PARSEWeb developed by Thummalapenta and Xie [33]
uses Google code search for collecting relevant code snippets and mines the returned
code snippets to find solution jungloids. These tools require programmers to translate
a programming task into the form of a jungloid query (source and target object types),
whereas MAPO returns ranked relevant patterns and code snippets given a query such
as an API method name, complementing these existing tools.

Saul et al. [29] proposed an approach to find API methods that are closely related
to a query API method of interest, by discovering API methods that share a caller or
a callee with the query API method. Their approach recommends only a set of API
methods without temporal information among them whereas MAPO recommends both
API usage patterns with temporal information and their associated code snippets.

Mining API properties. Mining API properties has long been a research focus. Previ-
ous related approaches fall into categories as follows.

The first category is to mine association rules among software artifacts. Some ap-
proaches [19, 20, 24, 37] mine association rules among method calls. Some approaches
[25] mine association rules among class inheritances. Some approaches [8] mine as-
sociation rules among class collaborations. These previous approaches mine properties
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without temporal information, whereas MAPO mines more complicated API usage pat-
terns involving multiple methods and temporal information.

The second category is to mine frequent call sequences from API client code or traces.
To mine these frequent method calls, some approaches [27, 34] use existing sequence
mining techniques [3], and other approaches [1, 10, 35, 39] adopt various customized
techniques. MAPO also mines frequent call sequences, but there are two major differ-
ences between MAPO and the preceding approaches. One is that most of these preceding
approaches mine patterns related to one or two API method calls, whereas MAPO mines
patterns related to multiple API method calls. The other is that these approaches do not
take programming contexts into consideration, whereas MAPO combines the frequent
subsequence mining technique with the clustering technique, and thus MAPO alleviates
the interlacement among different usages that are sensitive to programming contexts.

The third category is to mine automata from API client code or traces. To mine
automata, some approaches [4, 5, 21] use the Angluin’s algorithm [6], and other ap-
proaches [14, 36, 31, 9, 28, 11] adopt various customized techniques. These approaches
are not as robust to noise (either an anomalous or buggy API method call) in traces as
MAPO, because their underlying finite automaton learner is not as robust to noise as
the frequent subsequence miner used by MAPO.

MAPO is extended from its previous version [38], and the main differences are as
follows. First, we choose an offline mechanism to improve user experiences as it takes
less time to query a mined pattern than to mine a pattern on demand. Second, we com-
bine clustering with sequence mining to mine API usage patterns that are sensitive
to programming contexts. Consequently, MAPO is now able to mine patterns that are
useful under particular programming contexts. Finally, we further conduct various ex-
periments to evaluate the effectiveness of our new approach.

4 Approach

MAPO (as shown in Figure 4) consists of a source code analyzer, an API usage miner,
and an API usage recommender. The source code analyzer (Section 4.1) extracts the

Fig. 4. Overview of MAPO
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API usage information from code snippets (referred to as client code in the rest of this
paper) that call API methods, and organizes the information according to the methods
from which the information is collected. The API usage miner (Section 4.2) groups the
API usage information into clusters and mines API usage patterns from each cluster
separately. The mined API usage patterns are stored and fed to the recommender. The
recommender (Section 4.3) is an Eclipse plug-in that recommends proper API usage
patterns and their associated code snippets to programmers upon their requests.

4.1 Source Code Analyzer

Client code from open source projects provides valuable scenarios on how to use API
methods. To extract API usage information from client code, we have developed a
source code analyzer based on Eclipse’s JDT compiler [2]. In MAPO, we consider
the following program locations as API method calls:

– A super constructor call when the super class is provided by a third-party library or
framework such as the Eclipse Graphical Editing Framework (GEF) [17].

– A class cast expression when the associated class is provided by a third-party library
or framework.

– A method call when the declared class of the method is provided by a third-party
library or framework.

– A class instance creation when the associated class is provided by a third-party
library or framework.

As a practical matter, there are also some in-house API libraries or frameworks whose
source files are available. Here, our definition emphasizes on third-party libraries or
frameworks, and if an API library or framework is in-house, we can ignore its source
code to treat it the same as third-party libraries or frameworks. We next present the
details of extracting API method call sequences from method m.

Collecting third-party API method calls. We consider only method calls of third-
party API methods (i.e., API methods from third-party libraries or frameworks) in m.
As a single statement may call more than one API method, MAPO performs a post-
order traversal to collect API method call sequences. For example, the correspond-
ing call sequence of statement getGraphicalViewer().setRootEditPart( new
ScalableRootEditPart()) is as follows:

@new org.eclipse.gef.editparts.ScalableRootEditPart
@org.eclipse.gef.ui.parts.GraphicalEditor#getGraphicalViewer
@org.eclipse.gef.EditPartViewer#setRootEditPart

In the sequence, the representation of each method call starts with @. A method’s
name is separated from its declaring class with #. When an API method call is a con-
structor call, the representation consists of new followed by the class name (e.g., the
first call in the preceding sequence).

Dealing with conditional statements. As there may be conditional statements in m,
MAPO considers all the possible API method call sequences induced by these state-
ments. Consider the following method body containing three if -statements.
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public void fun(boolean cond1, boolean cond2, boolean cond3){
i1;
i2;
if(cond1)

if(cond2) i3
else i4;
if(cond3) i5;

else i6;
}

Let {i1, . . ., i6} be the API method calls in method fun. There are six possible API
method call sequences in fun: 〈i1, i2, i5〉, 〈i1, i2, i6〉, 〈i1, i2, i3, i5〉, 〈i1, i2, i3, i6〉,
〈i1, i2, i4, i6〉, and 〈i1, i2, i4, i5〉. Here we do not consider the dependency among cond1,
cond2, and cond3 for simplicity (thus infeasible paths/sequences may be produced like
those produced by many other static analysis techniques). Similarly, we acquire possible
API method call sequences for methods containing switch-statements. For loop state-
ments such as for-statements, while-statements, and do-while-statements, as we do not
know how many times they are to be executed at runtime, we treat them as conditional
statements for simplicity (later we shall use conditional statements to refer to statements
involving branching points for simplicity). That is to say, we view a loop statement as
containing two branches: one for executing the loop once, and the other for not execut-
ing the loop at all. Once again, this simplification may also cause imprecision. However,
we believe that it should not make a big difference for MAPO to mine patterns, since
no matter whether we include the API method calls in the loop statement once or more
than once in the sequence, the mined pattern tells the programmer only that these API
methods are often used together. The programmer still needs to explore the associated
code snippets to understand whether these API methods can be called many times.

Selecting a subset of sequences. After we acquire all the possible API method call se-
quences of m, we select a subset of sequences (that covers all API method calls) as the
representative API method call sequences for each m. The reason for selecting a subset
of sequences is to address the following two issues. The first issue is method overweight.
As different methods may contain different numbers of (nested) conditional statements,
we generate different numbers of possible API method call sequences for these meth-
ods. If we choose all the possible API method call sequences for each method, the
methods with more sequences may have undesirable bigger impact on the mining pro-
cess. The other issue is common-path overweight. In the preceding piece of source code,
〈i1, i2〉 appears in all the six sequences, because 〈i1, i2〉 is on the common path of exe-
cution, not because 〈i1, i2〉 is a frequent usage pattern. However, if we pass all the six
sequences to the miner, 〈i1, i2〉 will be given a biased weight and may be recognized
as a frequent pattern. To reduce this bias, we use a greedy strategy to select sequences.
The strategy first selects the longest sequence. From the remaining sequences, the strat-
egy iteratively selects the sequence that covers (i.e., involves) the most un-covered API
method calls until all the API methods are covered. We feed selected sequences to our
pattern miner where the selection order does not have impact on the mined patterns.

Inlining non-third-party methods. As programmers may scatter their implementation
of a feature into different (non-third-party) methods especially when using API frame-
works, a single method may not contain all the involved third-party API methods of an
API usage scenario. To address this issue, we employ a method inlining strategy. Our
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method inlining strategy is a recursive process. When constructing the API method call
sequences of m, we need to inline the API method call sequences of each non-third-
party method m′ called by m. This strategy is also applied to construct the API method
call sequences of m′. When m and m′ are within the same class, MAPO traverses the
parser tree of the class for m′’s API method call sequences. When m and m′ are not
within the same class, MAPO resolves the declaring class of m′ and then finds the
declaring class’s source file for m′’s method body. After that, MAPO constructs m′’s
API method call sequences from its found method body. The iterations go on in the
call graph till no non-third-party methods need to be inlined. Note that we deal with
recursions among methods and repeating methods by avoiding inlining any method that
has been inlined before. As MAPO analyzes client code statically, it ignores polymor-
phic method calls because these calls are determined at runtime. Here, we choose not
to extract all possible sequences from a polymorphic call to avoid a similar overweight
problem as common-path overweight.

4.2 API Usage Miner

Although the extracted API method call sequences contain valuable usage scenarios
of API methods, it is difficult to mine patterns directly from these sequences because
these sequences may include quite different API usage scenarios. If we mine all the
sequences together, these different API usage scenarios may interfere with each other
and thus impact the mining process negatively. As shown in Figure 4, to reduce the
interference between different API usage scenarios, we first cluster the extracted API
method call sequences and then mine patterns separately from each cluster.

Clustering API method call sequences. Clustering techniques [18] are to group a
given collection of unlabelled items into meaningful clusters. Clustering is data-driven
and the category labels are obtained solely from the similarities among data. Therefore,
before we use existing techniques to cluster API method call sequences, we need to first
define their quantified similarities. We next present the details of our similarity metric.
Names: In both code snippets in Figure 1, appendToGroup is used with findMenu-

UsingPath and add, and the API method call order is findMenuUsingPath→ add→
appendToGroup. To effectively mine this pattern in MAPO, we need to cluster API
method call sequences from these two code snippets and other similar snippets into
one cluster. When we examine the names used in the two code snippets, we make
the following observation. The first snippet illustrates the code for a method named
contributeToMenu in a class named DEditorActionContributor, while the sec-
ond snippet illustrates the code for a method named contributeToMenu in a class
named RubyEditorActionContributor. The method names are the same, and the
class names are very similar. Similarly, in both snippets in Figure 2, appendToGroup is
used with getAction, isEnabled, and addStandardActionGroups. The method
and class names used in the first snippet are buildContextMenu and ContextMenu-

ProviderImpl, while the method and class names used in the second snippet are
buildContextMenu and LatticeContextMenuProvider. Once again, the method
names are the same, and the class names are very similar. We further study some more
snippets, and we confirm the preceding observation: when two snippets have similar
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method names and similar class names, the two snippets often exhibit the same usage.
The convenance comes partly from copy-paste programming and partly from class in-
heritances. In particular, although the classes named DEditorActionContributor

and RubyEditorActionContributor are from two different projects, they both ex-
tend the class named org.eclipse.ui.editors.text.TextEditorActionCon-

tributor. The programmers of the two code snippets may refer to the extended class
for naming their extending classes, so the two classes have similar names. The preced-
ing observation forms our design rationale of choosing the similarities between method
names and the similarities between class names as two sources for the definition of the
similarities between API method call sequences.

When calculating the similarity between a pair of names, we split the names into
words according to the capital letters in the names. MAPO chooses the Levenstein
measure provided by Simmetrics3 to calculate the similarity between two words. Then
we calculate the similarity between two names as the average of the similarities of their
pairwise split words.
Called API methods: Besides method names and class names, we choose called API
methods as the third source for the definition of the similarities between API method
call sequences. This design decision aims to deal with the following situation. When
different programmers implement a similar feature, they may use a different set of API
methods. For example, to parse XML files, programmers may use Jdom4, Dom4j5, or
other API libraries to accomplish their task.

For two sequences (s1 and s2), we define their similarity metric as follows.

sim(s1, s2) =
# of API calls in I1 ∩ I2

# of API calls in I1 ∪ I2
(1)

Here, I1 and I2 are the corresponding sets of API methods appearing in the two se-
quences. The number of API method calls appearing in both sets of called API methods is
represented as “# of API calls in I1∩I2”. The number of API method calls appearing
in either set of called API methods is represented as “# of API calls in I1 ∪ I2”.

Based on the preceding definitions of similarities, given two API method call se-
quences, we calculate one similarity value based on the method names, one similarity
value based on the class names, and one similarity value based on the called API meth-
ods. Using the three similarity values, we calculate the similarity of the two API method
call sequences as the average of the three similarity values. Based on the similarity of
any two API method call sequences, MAPO uses a classical hierarchical clustering
technique [13] provided by the toolbox of Matlab6.

Mining API patterns. Agrawal and Srikant [3] propose to mine sequential patterns
in transaction databases and time-series databases. In these databases, transactions are
ordered by transaction time and each transaction is a set of items. Here, the mining
problem is to find all sequential patterns with a minimum user-defined support, which
is the number of API method call sequences that contain the patterns. As shown in Fig-
ure 4, the API method call sequences in each cluster are fed into a frequent subsequence

3 http://www.dcs.shef.ac.uk/˜sam/simmetrics.html
4 http://www.jdom.org
5 http://www.dom4j.org
6 http://www.mathworks.com/matlabcentral/fileexchange/7486

http://www.dcs.shef.ac.uk/~ sam/simmetrics.html
http://www.jdom.org
http://www.dom4j.org
http://www.mathworks.com/matlabcentral/fileexchange/7486
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miner for mining frequent sequences. From each cluster, MAPO combines the mined
frequent call sequences to produce a pattern.

In particular, to produce frequent API method call sequences, MAPO first encodes
the call sequences of a cluster into the form of a transaction database and then feeds the
database to an existing frequent subsequence miner [7]. In each cluster (C), the support
of an API method call sequence (s) is defined as follows:

support(s) =
# of API call sequences with s

# of API call sequences in C
(2)

This definition is adapted from the classical definition of frequent sequences that is
used by existing frequent subsequence miners. A frequent subsequence miner automat-
ically mines the frequent sequences whose support values are greater than a threshold.
After mining the frequent sequences, MAPO decodes each mined sequence into a fre-
quent API method call sequence.

4.3 API Usage Recommender

This section presents the mechanism of MAPO to recommend associated snippets us-
ing the mined patterns as an index. Figure 5 shows MAPO’s API usage recommender,
which is a plug-in that integrates with the Eclipse IDE.

Instead of requiring programmers to check the snippets one by one, the recommender
provides programmers with the capability to use the mined patterns as an index to locate
snippets. For example, if a programmer wants to know the usages of appendToGroup,
the programmer needs to type in “appendToGroup” into the method body under devel-
opment. After that, the programmer selects “appendToGroup” and clicks “Query API

Fig. 5. MAPO recommender with annotations
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patterns” of the context menu for the usages of “appendToGroup”. Figure 5 shows an
annotated screen snapshot of the preceding query. The returned relevant patterns with
the pattern ranks are shown in the pattern view on the right side of Figure 5. The rank of
a pattern is the average similarity of the supporting snippets to the current programming
task. Here, we use the method names and the class names to calculate the similarity. For
example, supposing that the programmer is implementing a method named m in class c,
m and c will be compared with the method name and the class name of each supporting
snippet to calculate a similarity value. The similarity definition is the same as the one
in Section 4.2. From each pattern, MAPO lists its frequent method call sequences. One
pattern may have more than one sequence, and MAPO recommends only sequences
containing the API method of interest to the programmer.

The programmer can use the returned patterns as an index to locate snippets. In
particular, the programmer can exploit a pattern’s associated snippets by clicking on
the pattern. The brief summaries of the associated snippets are listed in the “details
view” on the bottom of Figure 5, and the snippets with the call sequence of interest are
highlighted. Here, every entry in the “details view” denotes a snippet. The programmer
can further exploit the source code of each snippet by clicking an entry with highlighted
patterns. The source code is also highlighted with relevant API methods.

5 Experimental Study

We conducted an experimental study on MAPO, Strathcona [15], and Google code
search [12]. The experimental study aims to investigate whether MAPO can help pro-
grammers locate code snippets of interest faster than the other two tools.

5.1 Setup

The Graphical Editing Framework (GEF) [17] is one of the sub-projects under Eclipse’s
tool project. Programmers can use GEF to develop graphical editors for Eclipse plug-in
applications. In our experimental study, we focus on patterns of APIs provided by GEF.
To mine the patterns of GEF, we used 20 open source projects that use GEF to develop
graphical editors as a code repository. Table 1 lists the details of these projects, includ-
ing project sources, Lines of Code (LOC), and the number of classes and methods. The
total number of LOC of the 20 projects is about 141K.

From the source code of these 20 projects, MAPO extracted API method call
sequences and built clusters of these sequences using the technique presented in Sec-
tion 4.2. As our study focuses on patterns of APIs provided by GEF, MAPO auto-
matically filtered out clusters that did not call any GEF APIs by checking whether a
called method was from the package org.eclipse.gef. After filtering, MAPO used
SPAM [7] to mine frequent patterns of the API method call sequences in each cluster
separately, and the support value was set to 0.7. We choose the support value based
on our initial experience. From the clusters, MAPO produced 93 patterns. The mined
93 patterns include 157 frequent API method call sequences and cover the usages of
856 API methods. In particular, in the 93 patterns, 26.9% patterns have more than one
frequent API method call sequence. In the 157 frequent API method call sequences,
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Table 1. Projects used to mine patterns

Project Project source LOC #classes #methods
Work flow TU Berlin 10125 101 1017
Net Editor TU Berlin 2867 35 359

Sequence Editor TU Berlin 3921 46 486
Visual OCL TU Berlin 11967 134 1077
PetriEditor TU Berlin 3248 44 375

jLibrary (Client) SourceForge 46213 503 3455
Green UML SourceForge 10652 146 1151

Quantum SourceForge 2380 33 225
GanttRCP SourceForge 3760 72 510

OpenWFE (IDE) SourceForge 9952 178 954
Jupe SourceForge 8100 109 665

Schema Viewer SourceForge 3358 48 338
Janus SourceForge 1952 19 132

ZEN-kit University of California 3991 151 314
SimpleGEF Bonevich 851 20 120
cvsgrapher Bonevich 1706 29 179

GEF tutorial EclipseTeam 837 19 122
GEF example EclipseTeam 1299 22 155

Hello GEF EclipseTeam 1042 18 144
OAW sample Eclipse GMT 12777 203 1196

Total 140998 1930 12974

61.8% frequent sequences describe usages of more than two API methods, and 70.7%
frequent sequences describe usages of more than one class.

Strathcona is able to locate a set of relevant code snippets from a code repository.
The returned snippets have a similar structure with the code under development. Strath-
cona can be installed through the instructions from its website7. From its repository
information8, we find that Strathcona covers all relevant APIs of GEF.

Google code search uses a much larger repository than MAPO. To make the study
comparable, we restrict its search scope to the same projects as MAPO using Google code
search’s keyword, package9. As all our 20 projects are from the open source community,
these projects can be crawled by Google code search. That is to say, in our experimental
study, both MAPO and Google Code search use exactly the same code repository. For
Google code search, we also tried to use class and method names presented in Section 4.2
to build the queries for the examples of Table 2. From these queries, no snippet is returned
because Google code search uses these names as keywords to retrieve the exactly matched
snippets and such snippets can hardly be found. As a result, in our experimental study,
Google code search does not use these names to refine its results whereas MAPO does.
This comparison may be somewhat unfair to Google code search, but using Google code
search without these names reflects how it is actually used by its users in practice.

7 http://tinyurl.com/6h2ybq
8 http://tinyurl.com/5w56ye
9 http://www.google.com/intl/en/help/faq_codesearch.html

http://tinyurl.com/6h2ybq
http://tinyurl.com/5w56ye
http://www.google.com/intl/en/help/faq_codesearch.html
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For a given query, MAPO returns its relevant patterns and snippets within only a few
seconds because it does offline mining (i.e., mining patterns before a programmer makes
a request on specific API methods). As these patterns are already mined, MAPO achieves
good user experiences for programmers. As far as their runtime performances are con-
cerned, all the three tools are comparable.

5.2 Quantitative Comparison

To compare the three tools quantitatively, we exploit a GEF book titled as Eclipse De-
velopment using the Graphical Editing Framework and the Eclipse Modeling Frame-
work. This book is an IBM redbook10 and is recommended by the GEF project as the
first book on GEF11. In this book, the examples relevant to GEF are densely listed in
its Chapter 4 titled as GEF examples and these examples cover many aspects of the us-
ages of GEF. Based on all the 13 examples in the chapter, we prepared 13 programming
tasks. In each task, we use the first API method call and the programming context in
the example to query the three tools12. After that, we check the returned snippets for the
matched one. Here, a matched snippet of an example should use the same set of API
methods and the same API method call sequence as exhibited in the example.

Table 2. Comparison of Strathcona, Google code search, and MAPO

Example
First matched snippet Second matched snippet Total num. of items
Strat. Google MAPO Strat. Google MAPO Strat. Google MAPO

example 1 5 1 1 n/a 2 2 10 8 (2)
example 2 1 1 1 2 n/a 2 10 7 (1)
example 3 1 3 1 5 4 2 10 12 (4)(2)
example 4 n/a 4 n/a n/a 10 n/a 10 11 n/a
example 5 1 7 2 3 13 3 10 33 (2)
example 6 n/a 9 n/a n/a 11 n/a 10 33 n/a
example 7 2 4 2 n/a 10 3 10 39 (2)
example 8 n/a n/a n/a n/a n/a n/a 10 18 (1)
example 9 n/a 3 1 n/a 4 2 10 28 (2)
example 10 1 1 1 2 2 2 10 16 (1)
example 11 2 10 1 n/a 15 2 10 39 (2)
example 12 n/a 1 1 n/a 2 2 10 27 (1)
example 13 2 2 2 3 5 3 10 70 (2)(1)

Effectiveness of locating the 1st matched snippet. Table 2 shows the results of the
three tools to locate the 1st matched snippet. Column “Total num. of items” lists the re-
turned items from each query. For its sub-columns, sub-columns “Strat.” and “Google”
list the number of snippets returned by Strathcona and Google code search, respectively;

10 http://www.redbooks.ibm.com/abstracts/sg246302.html
11 http://www.eclipse.org/gef/reference/articles.html
12 For the sixth example, we use the third API method call because its first and second API

method calls overlap with the third example. In addition, as discussed before, we do not use
the programming contexts to build queries for Google code search.

http://www.redbooks.ibm.com/abstracts/sg246302.html
http://www.eclipse.org/gef/reference/articles.html
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sub-column “MAPO” lists the returned patterns where a bracket pair denotes a pattern,
and the number enclosed by a bracket pair denotes the number of frequent sequences
(associated with the pattern) that contain the API method of interest.

Strathcona always returns 10 snippets, and its developers described that the limit of
10 was chosen informally [16]. Google code search returns much fewer snippets than ex-
pected due to two factors. One is that we restrict the search scope of Google code search
for a fair comparison as explained in Section 5.113. The other is that Google code search
may have some techniques to filter out some snippets that match the given keywords,
because when we restrict the search scope to Jlibrary and Quantum, it returns 3 snippets,
but when we expand the search scope to all our 20 projects, the preceding 3 snippets are
not returned. Google code search may use this filtering technique to control the num-
ber of returned snippets. Unlike Google code search, MAPO relies on mined patterns to
achieve a similar goal. Generally, as MAPO mines patterns from raw snippets, MAPO
returns fewer items to be checked than Strathcona and Google code search.

Column “First matched snippet” lists the numbers of snippets that need to be checked
to find the first matched snippets among the snippets returned by Strathcona, Google
code search, and MAPO. For Strathcona and Google code search, we check the snippets
by their orders returned by these two tools. For MAPO, we check its returned snippets
by the ranking order of the patterns. As MAPO highlights the snippets with a frequent
call sequence automatically, only one highlighted snippet needs to be checked for each
call sequence because all the highlighted snippets follow a similar usage.

From the results of MAPO and Strathcona, we find that in four examples, MAPO
requires programmers to check fewer snippets for the first match than Strathcona, and in
one example, MAPO requires to check more snippets for the first match than Strathcona.
The results of Strathcona sometimes suffer from noisy snippets (i.e., snippets that are
not relevant but are matched based on search criteria used by the used code search tool).
In particular, in Examples 9 and 12, many returned snippets from Strathcona have no
method bodies, and these snippets can hardly show any correct API usage. We further
check the snippets returned by MAPO, and we find that some snippets also contain noises
but these noises do not affect the results of MAPO much. As it is rare that many snippets
follow a similar noisy pattern, these noises are rarely mined as a pattern. As a result, the
snippets with noises are rarely highlighted when we use patterns as an index for snippets.

From the results of MAPO and Google code search, we find that in five examples,
MAPO requires programmers to check fewer snippets for the first match than Google
code search, and in two examples, MAPO fails to find a match while Google code search
succeeds. Strathcona also fails to find a match for these two examples. We investigate
these two examples. We find that the usages of relevant API methods are quite complex,
and a method call sequence cannot describe these API usages sufficiently. In Section 7,
we further discuss this issue. In Example 8, all the three tools fail to find a match. The
usage in this example may be rare and does not occur in any snippet in the 20 projects
being mined.

In summary, generally, as MAPO uses patterns as an index for snippets, it requires
less effort to locate the first match than the other two tools. In addition, as patterns are
mined from raw snippets, these patterns are more robust to noises than raw snippets.

13 Note that we do not restrict the search scope of Google code search for the example in Section 2.
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The comparison also helps us understand cases where MAPO needs improvements in
our future work to handle complex API usages.

Effectiveness of locating the 2nd matched snippet. For a critical programmer, it may
be essential to recommend snippets with a similar usage of the first matched snippet’s
so that the programmer can have high confidence that the selected snippet embeds a
common usage pattern. Table 2 shows the results of these tools to locate the second
matched snippets. Column “Second matched snippet” lists the number of snippets to be
checked to find the second match among the snippets returned by Strathcona, Google
code search, and MAPO, respectively.

For Strathcona and Google code search, we still need to check the returned snippets
one by one. For MAPO, as we can highlight the snippets with a particular pattern, after
we find the first match, we need to check only the next highlighted snippet associated
with the same pattern for the second match. From the results of MAPO and Strathcona,
we find that in eight examples Strathcona fails to find the second match, while only in
three examples MAPO fails to find the second match. In addition, for the five examples
where both MAPO and Strathcona are able to find the second match, MAPO requires
to check fewer or the same number of snippets for the second match than Strathcona.
As Strathcona returns a limited set of snippets, Strathcona seems difficult to provide
rematched snippets for critical programmers. From the results of MAPO and Google
code search, we find that in seven examples, MAPO requires to check fewer snippets
for the second match than Google code search.

As MAPO groups code snippets of a similar API usage into one cluster, programmers
can easily find the the 2nd matched code snippet if they already find a matched code
snippet. We do not further compare the effectiveness of these tools to locate the third code
snippet and so on, although we anticipate to get similar results from the comparison.

In summary, MAPO requires less effort of a critical programmer to search for re-
matched snippets than the other tools. The rematched snippets provided by MAPO in-
crease a programmer’s confidence that a usage is correct and common because it is
relatively rare that snippets from different projects all follow a similar noisy or buggy
pattern to use API methods.

In fact, a code snippet recommending tool often faces the following dilemma. To help
programmers find the first matched snippet as soon as possible, a code search engine
may need to put the snippets with different usages on the top of its returned snippet
list, but the rematched snippets may thus be put near the bottom of the snippet list.
To help programmers find the rematched snippets as soon as possible, a code search
engine may need to put the rematched snippets near the top of the returned snippet list,
but the snippets with different usages may thus be put near the bottom of the returned
snippet list. MAPO solves this dilemma, as MAPO clusters snippets and uses the mined
patterns as an index for these snippets. From our experiences, in some extreme cases,
MAPO returns about 20 patterns given a single query. However, it is still much fewer
than the code snippets returned by a code search engine.

5.3 Significance of MAPO’s Design Decisions

We next show the impacts of MAPO’s design decisions on MAPO’s effectiveness in
locating the first and the second matches. For each task, we turn off MAPO’s individual
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Table 3. Impacts of MAPO’s design decisions

Example
First matched snippet Second matched snippet Total num. of items
All ×S ×I ×C All ×S ×I ×C All ×S ×I ×C

example 1 1 1 n/a 1 2 2 n/a 2 (2) (2) n/a (2)
example 2 1 1 1 1 2 2 2 2 (1) (1) (1) (1)
example 3 1 1 1 n/a 2 2 2 n/a (4)(2) (4)(2) (3)(1) (2)
example 4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
example 5 2 2 2 n/a 3 3 3 n/a (2) (2) (2) n/a
example 6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
example 7 2 2 2 n/a 3 3 3 n/a (2) (2) (2) n/a
example 8 n/a n/a n/a n/a n/a n/a n/a n/a (1) (1) (1) (1)
example 9 1 1 1 1 2 2 2 2 (2) (2) (2) (2)
example 10 1 1 1 1 2 2 2 2 (1) (1) (1) (1)
example 11 1 1 1 n/a 2 2 2 n/a (2) (2) (2) n/a
example 12 1 1 1 1 2 2 2 2 (1) (1) (1) (1)
example 13 2 n/a n/a n/a 3 n/a n/a n/a (2)(1) (1) (1)(1) (1)

In this table, we highlight those affected values with the bold font.

internal techniques and compare the results with “All” where all techniques are turned
on, and Table 3 shows the results. Column “First matched snippet” lists the number
of snippets that require to be checked for the first match. Column “Second matched
snippet” lists the number of snippets that require to be checked for the second match.
Column “Total num. of items” lists the number of the total frequent sequences. For their
sub-columns, sub-columns “×S”, “×I”, and “×C” show the results when we turn off
the corresponding technique, respectively. Based on these results, we find the impacts
of MAPO’s design decisions on its effectiveness as follows.

Selection. We find that the result of Example 13 is affected by the selection technique.
In this example, the related API methods are called within a branching statement. Let
us use |With(s)| to denote “# of API method call sequences with s” in Equation 2,
and we use |C| to denote “# of API method call sequences in cluster C”. If we turn
off the selection technique and extract all possible call sequences, |C| increases while
|With(s)| does not change much. Consequently, s’s support value decreases and s may
not be mined as a frequent call sequence. From the observation, we find that the selec-
tion technique helps MAPO mine frequent API method call sequences when the API
method of interest is often used within branches in conditional statements.

Inlining.We find that the results of Examples 1 and 13 are affected by the inlining tech-
nique. We further investigate the two examples’ usages, and we find that API methods
of the mined sequence from “All” are actually scattered in different methods of client
code. Consequently, when we turn off inlining, these API method call sequences cannot
be extracted and thus cannot be mined as frequent API method call sequences. From the
observation, we find that the inlining technique helps MAPO mine API method calls
from different methods of client code into frequent API method call sequences.

Clustering. We find that the results of Examples 3, 5, 7, 11, and 13 are affected by
the clustering technique. For the ease of discussing this technique, let s1 and s2 be two
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mined frequent call sequences from clusters C1 and C2, respectively, and from Equa-
tion 2, their support values are |With(s1)|

|C1| and |With(s2)|
|C2| . When we turn off clustering,

C1, C2, and other clusters are merged into one. As a result, the support of s1 changes to
|With(s1)|

|C1|+|C2|+|N |−|C1|∩|C2| where N is the set of sequences that also call API methods in
s1 from other clusters. For simplicity, we next focus only on cases for s1. If s1 and s2
belong to the same pattern, C1 and C2 are the same cluster. After we turn off clustering,
s1’s support value changes to |With(s1)|

|C1|+|N | . If |N | is small, s1’s support value does not
decrease much, and can still be mined as a frequent sequence. We find that Examples 1,
2, 9, 10, and 12 fall into this situation and their results are not affected. If |N | is large,
s1’s support value may decrease too much to be mined as a frequent sequence. We find
that Examples 5, 7, and 11 fall into this situation and their results are affected. If s1
and s2 belong to two different patterns, C1 and C2 are two different clusters. After we
turn off clustering, s1’s support value changes to |With(s1)|

|C1|+|C2|+|N | . We see that the support
value may decrease more than in previous examples. We find that Examples 3 and 13
fall into this situation and their results are affected. Based on these observations, we find
that the clustering technique helps MAPO alleviate the interlacement among different
usages that are sensitive to programming tasks.

As for the results of Examples 2, 10, and 12, their results are not affected by any the
MAPO’s internal techniques. We investigate these examples, and we find that their API
usages are quite simple and straightforward. For example, after we investigate the re-
lated snippets of Example 10, we find the following facts regarding the call sequence of
addRetargetAction. It is seldom used in different programming usages. Its relevant
API methods are seldom scattered in different methods. It is even seldom used within
branches of conditional statements. Consequently, its results are not affected by these
techniques in MAPO.

In summary, MAPO’s techniques help handle complex usages of API methods. In par-
ticular, the selection technique helps MAPO mine API frequent sequences when the API
method of interest is often used within branches in conditional statements. The inlining
technique helps MAPO mine API method calls from different methods of client code into
frequent API method call sequences. The clustering technique helps MAPO alleviate the
interlacement among different usages that are sensitive to programming contexts.

5.4 Threats to Validity

The threats to external validity primarily include the degree to which the projects being
mined, the programming tasks being constructed, and existing code search tools being
compared are representative of true practice. Although GEF is one of the popular sets of
Eclipse APIs, only one set of APIs is used, and the recommendations are all on the use
of GEF. Although we tried to be as objective as possible by exploiting all code snippets
from a book to construct programming tasks, these code snippets are limited in number,
and code snippets from books may omit rare usages that are also useful to programmers.
Although Strathcona and Google code search are the publicly available tools related to
MAPO in code searching with API method queries, some other code search engines or
tools may perform better than these two tools. These threats could be reduced by more
experiments on wider types of subjects and tools in future work. The threats to internal
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validity are instrumentation effects that may bias our results. To reduce these threats,
we manually inspected all snippets returned by MAPO and Strathcona as well as most
snippets returned by Google code search.

6 Empirical Study

Our empirical study aims to investigate whether MAPO can assist programmers to
complete programming tasks. In general, the development time and the number of in-
troduced bugs (reflecting the quality of completed code) are two major metrics for the
evaluation of tools aiming at assisting programming activities. However, these two met-
rics can impact each other. Intuitively, given a tool, the more time a programmer spends
for a given programming task, the more likely the programmer produces code with
fewer bugs. Therefore, in our empirical study, we give the programmers a fixed time
(one hour) and use the number of introduced bugs as the metric for the tools’ useful-
ness of assisting programming. As all the tools aim at facilitating programming tasks
concerning APIs, we focus on API-related bugs such as missing essential API methods
and improper orders of these API methods.

To conduct the study, we prepared six programming tasks listed in Table 4. The de-
tailed descriptions of these tasks can be found in another GEF book titled as SWT/JFace
in Action [23], which is also recommended by the GEF project14. As GEF is a frame-
work to create graphical editors, it is difficult to use it to implement an independent task.
To prepare each task, we first implemented the task in a code base and then took out
the code that is related to the task from the code base to form an incomplete code base.
The code base had 2383 LOC. Here, to simulate the real usage of these tools, we did
not choose an existing GEF project because the source code of an existing GEF project

Table 4. Tasks used in the empirical study

Task Description Essential API calls
1 Factor an incoming request 3
2 Start monitoring property changes 4
3 Update the name and the bounds of a figure 5
4 Add a context menu to an editor 5
5 Add a tool bar to an editor 5
6 Save the content of a editor 8

Table 5. Background of the subjects

Group 1 Group 2
subject 1 subject 2 subject 3 subject 4 subject 5 subject 6

Java (Years) 4 3 2 3 1 3
GEF (Years) 2 0 0 0 0 1

14 http://www.eclipse.org/gef/reference/articles.html

http://www.eclipse.org/gef/reference/articles.html
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Table 6. Results of the empirical study

Control Group MAPO Group
subject 1 subject 2 subject 3 total subject 4 subject 5 subject 6 total

Task 1 0 0 0 0 0 1 0 1
Task 2 0 1 1 2 0 1 1 2
Task 3 2 0 5 7 2 4 0 6

MAPO Group Control Group
subject 1 subject 2 subject 3 total subject 4 subject 5 subject 6 total

Task 4 0 0 0 0 5 4 0 9
Task 5 0 0 0 0 0 4 0 4
Task 6 0 2 3 5 4 3 3 10

might be found in existing repositories. We chose these tasks because they cover many
aspects of GEF’s usages and they vary in their difficulties to implement. Column 3 of
Table 4 lists the number of API methods that are essential to implement the tasks. These
tasks are relatively small in size. Even for the 6th task that contains the most essential
APIs, a programmer needs to write only less than one hundred lines of code.

We invited six graduate students (subjects) majoring in computer science from Peking
University to complete the six tasks. None of the invited subjects was familiar with
MAPO. All of them were shown a short demonstration on using the three tools just
before the study. Table 5 shows the background of these subjects. Most of the subjects
have some programming experience of Java but little experience of GEF. We divided
these subjects into two groups with the goal of making each group to have comparably
similar mixture of background.

To reduce the possible imbalance between the two groups, we introduced a crossover
comparison that is used in existing empirical studies [26]. In particular, our study has
two stages, and in each stage, the two groups exchange their roles as the MAPO group
and the control group. In particular, in the first stage, Group 1 was asked to complete
Tasks 1, 2, and 3 using Google code search and Strathcona, whereas Group 2 was asked
to complete Tasks 1, 2, and 3 using MAPO. In the second stage, Group 1 was asked
to complete Tasks 4, 5, and 6 using MAPO, whereas Group 2 was asked to complete
Tasks 4, 5, and 6 using Google code search and Strathcona. The tasks and the copies
of the incomplete code were assigned to the subjects just before the study began. These
subjects worked on the tasks separately and were free to test and execute the programs
when completing these tasks. In each stage, the subjects were allowed to use one hour
to finish the incomplete code according to the assigned tasks.

After the subjects of the two groups finished the preceding tasks using the assigned
tools, we checked the code written by these subjects. We did not classify their submitted
tasks as complete or incomplete for comparison of these tools, as the classification may
not be sufficiently objective. Instead, we prepared a test suite for each task, and if a
completed program fails to pass a test case of a task, we count the failure as one found
bug of the task. The test suites are carefully prepared for two goals. One is that the test
suites should be designed to contain no redundant tests (i.e., no two test cases cover
the same behavior or expose the same bug), so that one bug will be less likely to be
exposed (and thus counted) repeatedly by multiple test cases. The other is that a test
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suite of a task should try to cover comprehensive behaviors of the task. We carefully
checked the failed test cases to ensure that they reveal difference defects, and Table 6
shows the results. Column “subject x” lists the numbers of failed test cases in completed
projects of the xth subject. Column “total” lists the numbers of total failed test cases.
From “total” of Table 6, in the first task, the MAPO group produced code with more
bugs than the control group. In the second task, the MAPO group produced code with
the same number of bugs with the control group. In all the remaining four tasks, the
MAPO group produced code with fewer bugs than the control group.

Our observation confirms that MAPO is able to assist programmers to produce code
with fewer bugs when implementing their programming tasks. After inspection of the
introduced bugs, we find the impacts of these tools as follows. In Tasks 1 and 2, there is
a little difference in performance between the MAPO group and the control group. We
find that in the two tasks, the essential API methods are from the same package of an
API framework, and their usages are relatively straightforward. The number of bugs is
small, and the bugs are introduced because the subjects are unfamiliar to the incomplete
code. As the subjects of the two groups have comparable background, almost the same
number of bugs are introduced. In Task 3, there is also a little difference in performance
between the MAPO group and the control group. We find that the API usage of this
task is relatively complex and cannot be found in existing snippets or patterns. As a
result, all the three tools cannot give the subjects much help, and the subjects of the two
groups both introduce many bugs. In Tasks 4, 5, and 6, there is a significant difference
in performance between the MAPO group and the control group. We find that in these
tasks, the API usages are relatively complex. For example, in Task 4, before the API
method appendToGroup is called to add an action to the menu, another API method
isEnable should be called to check whether the action is enabled. As shown in Fig-
ure 3, MAPO mines this usage into a pattern. As a result, all the subjects of the MAPO
group called this API method call, whereas only one subject of the control group did
so. In Task 6, the API method getEditorInput is essential to be called to get the
content of the editor, and another API method markSaveLocation is also essential
to be called to mark the saved status of the editor after its content is saved. Two sub-
jects of the MAPO group used both API method calls to complete their code because
MAPO mines these API method calls into a pattern and highlights them in the recom-
mended snippets, whereas no subjects of the control group used both API method calls
in their code. It is tricky because the former API method getEditorInput is declared
by the class org.eclipse.ui.part.EditorPart, whereas the latter API method
markSaveLocation is declared by another class org.eclipse.gef.commands.

CommandStack. As MAPO mines this API usage into a pattern, it helps the subjects of
the MAPO group understand this usage better than the subjects of the control group.

In summary, in the three tasks of our empirical study, as API usages are straightfor-
ward or cannot be found in existing snippets, the three tools do not show many differ-
ences in effectiveness. In the other three tasks, as API usages are relatively complicated,
MAPO successfully helps programmers produce code with fewer bugs than the other
two tools. MAPO helps programmers understand complicated usages of APIs and thus
assist programmers to complete programming tasks.
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Threats to validity. As our empirical study shares the settings with the experimental
study in Section 5, our empirical study shares the threats with the study in Section 5 as
well. Besides these threats, our empirical study has four other threats to internal valid-
ity. First, our empirical study involves human subjects, and the particular programming
capabilities of the human subjects may bias results. To reduce this threat, we invited
as many human subjects as possible and used a crossover design. Second, the results
observed in the empirical study may not be applicable to programming tasks other than
those considered in the study, being a threat to the external validity. We can conduct em-
pirical studies involving more subjects and more programming tasks to further reduce
these threats. Third, due to the limit of human resources, we assign the six subjects into
two groups, one of which is a control group. In the control group, we allow the subjects
to use both Google code search and Strathcona, which may have negative impacts on
the two tools. To reduce the threat, we plan to involve more subjects and to assign these
subjects into three groups with one tool for each group. Fourth, the learning curve of the
these subjects may affect the results. To reduce the threat, we balance the two groups
with similar background. To further reduce the threat, we plan to give detailed training
to the subjects.

7 Discussion and Future Work

Tuning the MAPO approach. Our MAPO approach chooses some data mining tech-
niques and their parameters based on our initial experiences. We still need further investi-
gations to confirm whether these selected techniques and parameters are the best choice.
For mining techniques, we plan to try other clustering techniques such as K-means and
DBSCAN, or to try some classifiers such as K-nn in the clustering stage15; we plan to try
other miners such as Acharya et al. [1]’s partial order miner in the mining stage; and we
plan to take other features such as class structure into consideration for clustering. For
parameters, we plan to evaluate the significances of the selected weights and thresholds.

Quality of mined patterns. In the experiment, we do not show the quality of mined
patterns directly. As most libraries do not provide usage patterns, there is no off-the-
shelf golden standard for real patterns. We plan to conduct more experiments to show
the quality of mined patterns when such a golden standard is available in future work.

Other object-oriented languages. Although the current implementation of MAPO
analyzes only Java code, our MAPO approach may be generally applicable for other
object-oriented languages since our approach relies on some common object-oriented
features. We plan to adapt MAPO to other object-oriented languages in future work.

Mining uncommon API usages. As most existing mining approaches extract API us-
ages from only API client code, these approaches may fail to mine API usage patterns
that are not common among client code (but can be potentially inferred from API im-
plementation code). In future work, we plan to develop techniques to mine API patterns
based on both API client code and implementation code.

15 Please refer to Data Mining: Concepts and Techniques [13] for the details of these techniques.
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8 Conclusion

To help a programmer understand API usages and write API client code more effec-
tively, we have developed a tool called MAPO. It mines API usage patterns from open
source repositories automatically and recommends the mined patterns and their asso-
ciated snippets on a programmer’s requests. In particular, MAPO implements a mech-
anism that combines frequent subsequence mining with clustering to mine API usage
patterns from code snippets. In addition, MAPO provides a recommender that inte-
grates with the existing Eclipse IDE. Through MAPO’s recommender, a programmer
can retrieve patterns to help navigate their associated snippets to find the code snip-
pet of interest effectively. We have conducted an experimental study on MAPO as well
as Strathcona and Google code search, two state-of-the-art code searching tools. The
results show that MAPO helps a programmer to locate useful code snippets more effec-
tively than these two existing tools. To explore whether MAPO can assist programmers
in programming tasks, we further conducted an empirical study. The results show that
comparing with Strathcona and Google code search, MAPO helps programmers pro-
duce code with fewer bugs when API usages are relatively complex and these usages
can be found in existing code snippets.
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[24] McCarey, F., Cinnéide, M.Ó., Kushmerick, N.: Recommending library methods: An eval-

uation of the vector space model (VSM) and latent semantic indexing (LSI). In: Proc. 9th
ICSR, pp. 217–230 (2006)

[25] Michail, A.: Data mining library reuse patterns using generalized association rules. In:
Proc. 22nd ICSE, pp. 167–176 (2000)

[26] Ng, T., Cheung, S., Chan, W., Yu, Y.: Work experience versus refactoring to design patterns:
a controlled experiment. In: Proc. 6th ESEC/FSE, pp. 12–22 (2006)

[27] Ramanathan, M.K., Grama, A., Jagannathan, S.: Path-sensitive inference of function prece-
dence protocols. In: Proc. 29th ICSE, pp. 240–250 (2007)

[28] Reiss, S., Renieris, M.: Encoding Program Executions. In: Proc. 23rd ICSE, pp. 221–230
(2001)

[29] Saul, Z.M., Filkov, V., Devanbu, P., Bird, C.: Recommending random walks. In: Proc. 7th
ESEC/FSE, pp. 15–24 (2007)

[30] Scaffidi, C.: Why are APIs difficult to learn and use? Crossroads 12(4), 4–4 (2005)
[31] Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-

based abstractions. In: Proc. ISSTA, pp. 174–184 (2007)
[32] Tansalarak, N., Claypool, K.T.: XSnippet: Mining for sample code. In: Proc. 21st OOPSLA,

pp. 413–430 (2006)
[33] Thummalapenta, S., Xie, T.: PARSEWeb: A programmer assistant for reusing open source

code on the web. In: Proc. 22nd ASE, pp. 204–213 (2007)

http://www.google.com/codesearch


MAPO: Mining and Recommending API Usage Patterns 343

[34] Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage anomalies. In: Proc. 7th
ESEC/FSE, pp. 35–44 (2007)

[35] Weimer, W., Necula, G.: Mining temporal specifications for error detection. In: Halbwachs,
N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476. Springer, Heidelberg
(2005)

[36] Whaley, J., Martin, M., Lam, M.: Automatic extraction of object-oriented component inter-
faces. In: Proc. ISSTA, pp. 218–228 (2002)

[37] Williams, C.C., Hollingsworth, J.K.: Recovering system specific rules from software repos-
itories. In: Proc. 2nd MSR, pp. 1–5 (2005)

[38] Xie, T., Pei, J.: MAPO: Mining API usages from open source repositories. In: Proc. 3rd
MSR, pp. 54–57 (2006)

[39] Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: mining temporal API rules
from imperfect traces. In: Proc. 28th ICSE, pp. 282–291 (2006)



Supporting Framework Use via Automatically
Extracted Concept-Implementation Templates

Abbas Heydarnoori, Krzysztof Czarnecki, and Thiago Tonelli Bartolomei

Generative Software Development Lab
University of Waterloo, Canada

{aheydarn,kczarnec,ttonelli}@gsd.uwaterloo.ca
http://gsd.uwaterloo.ca

Abstract. Application frameworks provide reusable concepts that are instanti-
ated in application code through potentially complex implementation steps such
as subclassing, implementing callbacks, and making calls. Existing applications
contain valuable examples of such steps, except that locating them in the appli-
cation code is often challenging. We propose the notion of concept implemen-
tation templates, which summarize the necessary implementation steps, and an
approach to automatic extraction of such templates from traces of sample ap-
plications. We demonstrate the feasibility of the template extraction with high
precision and recall through an empirical study with twelve realistic concepts
from four widely-used frameworks. Finally, we report on a user experiment with
twelve subjects in which the choice of templates vs. documentation had much
less impact on development time than the concept complexity.

1 Introduction

Object-oriented frameworks allow the reuse of both designs and code and are one of the
most effective reuse technologies available today. Frameworks provide domain-specific
concepts, which are generic units of functionality. Framework-based applications are
constructed by writing completion code, also known as application code, that instan-
tiates these concepts. For example, a graphical user interface (GUI) framework such
as JFace offers implementation for a set of GUI concepts, which include a text box,
tree viewer, and context menu. The instantiation of such concepts requires various im-
plementation steps in the completion code, such as subclassing framework-provided
classes, implementing interfaces, and calling appropriate framework services.

Many existing frameworks are difficult to use because of their large and complex
Application Programming Interfaces (APIs) and often incomplete user documenta-
tion. To cope with this problem, application developers frequently apply the Monkey
See/Monkey Do rule [1]: “Use existing framework applications as a guide to develop
new applications”. Understanding how an existing application implements a concept
requires the ability to quickly locate those parts of the application code that implement
the concept. Unfortunately, locating the concept implementation can be challenging
since the implementation is often scattered in the application code and tangled with the
implementation of other concepts.

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 344–368, 2009.
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Several tools have been proposed to address this challenge. Framework usage com-
prehension tools such as Strathcona [2] and FrUiT [3] apply static analysis to the source
code of sample applications and allow retrieving code snippets or usage rules for a
particular API element. These tools can be very helpful to understand concept imple-
mentations, but require the developer to know at least the names of some of the API
elements involved. They are less helpful if the developer has only a high-level idea of
the concept that needs to be implemented or if the concept spans multiple classes or
both. Concept location tools such as SNIAFL [4] or SITIR [5] can be used to locate the
code implementing a concept of interest identified by higher-level characteristics such
as usage scenarios or domain terms. These tools do not focus on framework API usage,
however: the code identified will still include many application-specific elements that
are irrelevant from the viewpoint of framework usage.

To address the above issues, we propose the notion of concept implementation tem-
plates and FUDA (Framework Understanding through Dynamic Analysis), an approach
to automatic extraction of such templates from traces of sample applications. A concept
implementation template is a tutorial-like code example summarizing the implementa-
tion steps necessary to instantiate a given concept. Such a template can be used as a
starting point to further investigate the concrete concept implementations in the sample
applications.

The FUDA template extraction approach works by invoking the concept of interest
in at least two different contexts in one or more sample applications, and recording all
runtime interactions between the application code and the framework API. For instance,
given the context menu in an Eclipse view as the desired concept, each trace could be
collected by invoking a context menu in a different Eclipse view. The collected traces
are then intersected. The calls in the intersection provide the basis for generating a tem-
plate that specifies which packages to import, framework classes to subclass, interfaces
to implement, and operations to call in order to implement the concept.

We have implemented the extraction approach as a tool for Java and used this tool
in a study to evaluate the quality of the extraction. The study shows that the approach
can produce templates with relatively few false positives and false negatives for realistic
concepts by using only two sample applications.

Furthermore, we conducted a user experiment with twelve subjects comparing tem-
plates to framework documentation. For the studied sample, no statistically significant
difference between using templates and documentation in terms of implementation time
and number of introduced bugs could be detected. The analysis of additional data and
feedback suggested that templates should be used together with the sample applications
from which they were extracted rather than just by looking at the templates alone.

The contributions of the paper include (1) the notion of automatically extracted
concept implementation templates, (2) an approach to automatic extraction of such
templates from sample applications, (3) a prototype implementation of the extraction
approach, (4) a study evaluating the precision and recall of the extraction approach, and
(5) an experiment evaluating the usefulness of templates in comparison to framework
documentation in assisting application developers.

In the remainder, we introduce our running example (Section 2) and present the
notion of templates (Section 3). We then describe the extraction approach (Section 4)



346 A. Heydarnoori, K. Czarnecki, and T.T. Bartolomei

and present its evaluation (Section 5). Finally, we discuss several aspects of FUDA
(Section 6), compare it with related work (Section 7), and conclude (Section 8).

2 Running Example

As an example, consider the code implementing a context menu using JFace (Figure 1).
The menu is located in SampleView, which is a visual component that displays trees
using a TreeViewer (l. 36). The code was generated using one of Eclipse’s wiz-
ards. The lines implementing the context menu are marked by •. The lines marked
by ◦ implement a Welcome window and were manually added as an example of code
that is completely unrelated to the context menu. The constituent parts of the view
are created in createPartControl() (l. 190). In particular, this method calls
makeActions() (l. 198) and hookContextMenu() (l. 199), which together cre-
ate the context menu. In general, a context menu consists of one or more actions (l. 220,
225) and potentially one or more separators (l. 215, 217). It is constructed by a menu
manager (l. 202, 208) and invoked by a menu listener (l. 204). The latter implements the
menuAboutToShow() (l. 205) callback method which is called by the framework,
i.e., JFace, when the user clicks to open the context menu.

The context menu example illustrates some of the challenges in locating concepts in
code. The implementation of the menu is tangled with the implementation of the view
and it involves a complex interaction of several objects, namely view, menu manager,
menu listener, menu, actions, and separators. To complicate the matter, a concept im-
plementation may also be scattered across several classes as in the case of Eclipse’s
drag&drop. Consequently, even though locating a concept in the GUI of a sample ap-
plication may be easy, locating its implementation in the application code is often chal-
lenging and time consuming.

3 Concept Implementation Templates

A template for our context menu example is shown in Figure 2. The template was gen-
erated from two traces collected by invoking the context menu in two sample applica-
tions: SampleView (Figure 1) and Console, which is part of Eclipse. The generated
template has the form of a tutorial-like example in Java-based pseudocode.

Templates specify the following implementation steps: packages to import (l. 1–8 in
Figure 2), framework classes to subclass (l. 15), interfaces to implement (l. 9), methods
to implement (l. 10), objects to create (e.g., l. 11), and methods to call (e.g., l. 12). Note
that the specified steps involve only the elements of the framework API. For example,
the method calls makeActions() and hookContextMenu() in Figure 1 are spe-
cific to that particular implementation and are not reflected in the template. The involved
elements may be entirely framework-defined, e.g., the implementation of Separator,
which is instantiated in line 11, resides in framework code. Alternatively, the elements
may also reside in the application code, provided that they are framework-stipulated.
In particular, such elements are (1) application classes that are subtypes of API-defined
types; (2) application methods that implement API-defined operations or override API-
defined methods; and (3) constructors of framework-stipulated classes. For example,
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. . .
public class SampleView extends ViewPart {35

private TreeViewer viewer;36
private DrillDownAdapter drillDownAdapter;37
private Action action1;•38
private Action action2;•39
private WelcomeWindow welcomeWindow;◦40
. . .
class ViewContentProvider98

implements IStructuredContentProvider, ITreeContentProvider {99
. . .

}162
class ViewLabelProvider extends LabelProvider {163

. . .
}189
public void createPartControl(Composite parent) {190

welcomeWindow = new WelcomeWindow();◦191
welcomeWindow.open();◦192
viewer = new TreeViewer(. . . );193
drillDownAdapter = new DrillDownAdapter(viewer);194
viewer.setContentProvider(new ViewContentProvider());195
viewer.setLabelProvider(new ViewLabelProvider());196
viewer.setInput(getViewSite());197
makeActions();•198
hookContextMenu();•199

}200
private void hookContextMenu() {•201

MenuManager menuMgr = new MenuManager(“#PopupMenu”);•202
menuMgr.setRemoveAllWhenShown(true);•203
menuMgr.addMenuListener(new IMenuListener() {•204

public void menuAboutToShow(IMenuManager manager) {•205
SampleView.this.fillContextMenu(manager);•206

}});•207
Menu menu = menuMgr.createContextMenu(viewer.getControl());•208
viewer.getControl().setMenu(menu);•209
getSite().registerContextMenu(menuMgr, viewer);•210

}•211
private void fillContextMenu(IMenuManager manager) {•212

manager.add(action1);•213
manager.add(action2);•214
manager.add(new Separator());•215
drillDownAdapter.addNavigationActions(manager);•216
manager.add(new Separator(IWorkbenchActionConstants.MB ADDITIONS));•217

}•218
private void makeActions() {•219

action1 = new Action() {•220
public void run() { showMessage(“Action 1 executed”); }221

};•222
action1.setText(“Action 1”);•223
action1.setToolTipText(“Action 1 tooltip”);•224
action2 = new Action() {•225

public void run() { showMessage(“Action 2 executed”); }226
};•227
action2.setText(“Action 2”);•228
action2.setToolTipText(“Action 2 tooltip”);•229

}•230
. . .

}267

Fig. 1. Implementation of a sample Eclipse view with a context menu (•)
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import org.eclipse.jface.action.Separator;1
import org.eclipse.jface.viewers.Viewer;2
import org.eclipse.jface.action.Action;3
import org.eclipse.jface.action.MenuManager;4
import org.eclipse.swt.widgets.Menu;5
import org.eclipse.jface.resource.ImageDescriptor;6
import org.eclipse.jface.action.IMenuListener;7
import org.eclipse.swt.widgets.Control;8

public class AppMenuListener implements IMenuListener { (l. 204)→9
public void menuAboutToShow(menuManager) { (l. 205)→10

Separator separator = new Separator(String)||(); //REPEAT (l. 215, l. 217)→11
menuManager.add(separator)||(appAction); //REPEAT (l. 213-l. 215, l. 217)→12

}13
}14

public class AppAction extends Action { (l. 220, l. 225)→15
}16

public class SomeClass {17
public void someMethod() {18

Viewer viewer = . . . ;19
Control control = viewer.getControl(); //MAY REPEAT (l. 208, l. 209)→20
AppAction appAction = new AppAction(); //MAY REPEAT (l. 220, l. 225)→21
appAction.setText(String); //MAY REPEAT (l. 223, l. 228)→22
appAction.setToolTipText(String); //MAY REPEAT (l. 224, l. 229)→23
MenuManager menuManager = new MenuManager(String)||(String,String)||(); (l. 202)→24
menuManager.setRemoveAllWhenShown(boolean); (l. 203)→25
AppMenuListener appMenuListener = new AppMenuListener(); (l. 204)→26
menuManager.addMenuListener(appMenuListener); (l. 204)→27
Menu menu = menuManager.createContextMenu(control); (l. 208)→28

}29
}30

Fig. 2. A sample implementation template extracted for the concept context menu

AppAction is both defined (l. 15) and instantiated (l. 21) in the application code;
however, JFace’s design stipulates the creation of subclasses of the API-defined class
Action in the application code. In addition to the basic implementation steps, the
template also reflects (i) call nesting, e.g., add() is called directly or indirectly by
menuAboutToShow() (l. 12); (ii) call order, e.g., the menu listener is added to the
menu manager (l. 27) before creating the menu (l. 28); and (iii) parameter passing pat-
terns, e.g., the control object passed to the menu creation method (l. 28) is obtained by
a prior call to getControl() (l. 20). The comments REPEAT and MAY REPEAT in-
dicate that the commented step appeared more than once in every or some of the traces
used to generate the template, respectively.

Templates are rendered in ordinary Java with two main exceptions. First, the code
uses the notation ‘||’ to show that a method with a given name was called with dif-
ferent argument types. For example, add(separator)||(appAction) (l. 12 in
Figure 2) is due to multiple calls to add() with different arguments (l. 213 and 215
in Figure 1). Second, what appears to be a local variable declaration in Java, such
as appAction (l. 21), actually has global meaning in the template. For that reason,
appAction can be used as a method argument in another method scope (l. 12).

A template extracted by FUDA is an approximation of the necessary implementa-
tion steps, and it can be incomplete or unsound or both. In particular, implementation
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Fig. 3. FUDA overview

steps can be missing (false negatives) or unrelated steps (false positives) can be present
in some cases. Given two traces, FUDA will filter out any steps that are not common
to both traces. If a necessary implementation step, say component registration, can be
achieved in more than one way, e.g., by calling different methods, such a step may get
filtered out. Furthermore, FUDA relies on the assumption that input traces show the
execution of the concept of interest in different contexts. For example, SampleView,
which uses TreeViewer, and Console provide entirely different contexts for the
context menu. In contrast, a template generated from SampleView and a view con-
taining a TableViewer, which is graphically different from the TreeViewer of the
SampleView, would also contain calls to setContentProvider and setLabel-
Provider. Although the calls to these two methods are not related to the context
menu, they are contained both in code instantiating TreeViewer and in code in-
stantiating TableViewer. Finally, some implementation details are still missing in
a template. For example, although the calls in lines 21–23 are marked as candidates
to be repeated, the template does not reflect that they should be repeated as a block,
rather than individually. Nevertheless, the user can still extract the missing details from
the actual sample code. The traceability links between the implementation steps in the
template and the corresponding steps in the application code, as shown in Figure 2, can
support this task.

4 The FUDA Template Extraction Approach

From a user perspective, FUDA’s process consists of the four steps depicted in Figure 3.
The first three steps are performed manually by the user; the last one is a composition
of several automated sub-steps. We describe each step in detail next.

4.1 Concept Definition

A framework-provided concept may be implemented by one or more objects. FUDA
can produce implementation templates covering the entire life cycle of a concept, which
involves concept creation (creating and setting up its implementation objects), concept
invocations (calling the objects) and concept destruction (tearing down and disposing
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the objects). The following concept-defining question asks for the entire life cycle of a
concept: “How does one implement a context menu in an Eclipse view?” Alternatively,
FUDA can also produce implementation templates covering individual concept invo-
cations, as exemplified by this question: “What events occur when a user clicks on a
figure?”

4.2 Selection of Sample Application(s) and Execution Scenarios

FUDA requires one or two applications implementing the concept of interest. It also
needs two execution scenarios, each invoking an instance of the concept. Graphical
concepts can be directly invoked, but FUDA is also applicable to non-graphical frame-
works, as long as the concept of interest can be explicitly invoked from the sample
applications’ graphical or programmatic user interface.

The applications and the scenarios should be selected to achieve one or more of the
following goals: (1) The scenarios are concept-focused: ideally the majority of the ex-
ecuted instructions are part of the concept. (2) The concept is invoked separately from
others as part of the scenario and the invocation can be explicitly marked. (3) Each con-
cept instance is invoked in a different context. A single application may already support
the third goal, e.g., an application implementing a context menu in two different views
would suffice. Because FUDA works by intersecting traces of the different executions,
the more the contexts differ, the lower the possibility of false positives. For the same
reason, it is important to select scenarios that contain a similar variant of the concept,
which minimizes false negatives. For example, if a variant of the context menu concept
with a separator is desired, scenarios that contain separators should be selected.

4.3 Trace Collection and Marking

This step involves running each sample application under a tracer and invoking the
concept of interest. The user specifies the package(s) in which the framework resides,
e.g., org.eclipse.jface.* for the context menu, and the package(s) in which the
application resides. The tracer logs all calls that occur at the boundary between the ap-
plication and the framework, which results in a framework API interaction trace, called
API trace for short. If possible, pinpointing the moments before and after the concept
invocation will improve the template extraction results, which is in fact essential for
concepts whose defining question deals with the response to an event. For the context
menu example, pinpointing amounts to instructing the tracer to mark subsequent events
right before opening the menu and instructing it to stop marking right after the menu
is open. If the moments before and after concept invocation cannot be pinpointed, the
whole trace is marked. Concepts invoked through a programmatic interface can use the
tracer tool to indicate the begin and end of the concept execution.

The API trace consists of API interaction events, which are runtime events
corresponding to method or constructor calls executed at the boundary between the
framework and application code. This boundary consists of (1) all calls to application
methods and constructors that are framework-stipulated and (2) calls to API-defined
methods and constructors from within the application. Each event has one of two di-
rections: (1) an event is outgoing iff the call is made from within the application code;
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↑null:WelcomeWindow.<init>():1e1
↑1:WelcomeWindow.open():2e2

↓1:jface.window.Window.createContents(3):3e3
↑1:WelcomeWindow.getShell():3e4

↑null:jface.viewers.TreeViewer.<init>(4,5):6e5
↑null:SampleView$ViewContentProvider.<init>(7):8e6
↑6:jface.viewers.TreeViewer.setContentProvider(8):Ve7
↑null:SampleView$ViewLabelProvider.<init>(7):9e8
↑6:jface.viewers.TreeViewer.setLabelProvider(9):Ve9
↑6:jface.viewers.TreeViewer.setInput(10):Ve10

↓8:jface.viewers.IContentProvider.inputChanged(6,10):Ve11
↓8:jface.viewers.IStructuredContentProvider.getElements(10):11e12

↑8:SampleView$ViewContentProvider.getChildren(12):11e13
↓9:jface.viewers.ILabelProvider.getText(13):14e14
↓9:jface.viewers.ILabelProvider.getImage(13):15e15
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):16e16

↑null:SampleView$2.<init>(7):17•e17
↑17:jface.action.Action.setText(18):V•e18
↑17:jface.action.Action.setToolTipText(19):V•e19
↑null:SampleView$3.<init>(7):21•e20
↑21:jface.action.Action.setText(22):V•e21
↑21:jface.action.Action.setToolTipText(23):V•e22
↑null:jface.action.MenuManager.<init>(24):25•e23
↑25:jface.action.MenuManager.setRemoveAllWhenShown(26):V•e24
↑null:SampleView$1.<init>(7):27•e25
↑25:jface.action.MenuManager.addMenuListener(27):V•e26
↑6:jface.viewers.TreeViewer.getControl():28•e27
↑25:jface.action.MenuManager.createContextMenu(28):29•e28
↑6:jface.viewers.TreeViewer.getControl():28•e29
↑6:jface.viewers.TreeViewer.getControl():28•e30
↓27:jface.action.IMenuListener.menuAboutToShow(25):V•e31

↑25:jface.action.IMenuManager.add(17):V•e32
↑25:jface.action.IMenuManager.add(21):V•e33
↑null:jface.action.Separator.<init>():30•e34
↑25:jface.action.IMenuManager.add(30):V•e35
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):31e36
↓8:jface.viewers.ITreeContentProvider.hasChildren(13):32e37
↑null:jface.action.Separator.<init>(33):34•e38
↑25:jface.action.IMenuManager.add(34):V•e39

↓8:jface.viewers.IContentProvider.inputChanged(6,10):Ve40
↓8:jface.viewers.IContentProvider.dispose():Ve41

↑1:WelcomeWindow.close():35e42

Fig. 4. Framework API interaction trace

and (2) an event is incoming iff the call is made from within the framework code, i.e., a
callback.

The complete API trace produced by running SampleView from Figure 1 and in-
voking its context menu is shown in Figure 4. Events are denoted as D O:n(P):R, where
D represents the direction of the event, with “↓” for incoming and “↑” for outgoing
events; O is the target object’s ID or “null” for constructor and static method calls; n
represents the fully qualified name of the target method or constructor; P is a list of
IDs of objects passed as parameters; and R is the ID of the returned object or “V” if the
return type is void. For brevity, the package prefix org.eclipsewas removed from
n for all JFace events. The events in bold face are those that were marked by informing
the tracer about the moments just before and after the context menu was invoked.

Most of the events in Figure 4 can easily be traced back to their corresponding code
lines in Figure 1. The events e1–e30 are generated when the createPartControl()
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is called, e.g., e1 is due to line 191. The actual call to createPartControl() is
not traced because it resides in eclipse.ui, which is not part of JFace. The calls
in l. 209 and l. 210 are not traced for the same reason. Indentation denotes event nest-
ing. For example, events e3 and e4 were generated in the control flow of the call to
welcomeWindow.open() (l. 192). Anonymous classes are denoted by numbers
separated from their host classes by $, e.g., e17 constructs action1 (l. 220).

The marked events (in bold face) were generated by the callback to menuAboutTo-
Show(), which is called by JFace when a menu is being opened. That method calls
fillContextMenu(), which generates the nested events e32–e39. The incoming
events e36–e37 are generated by the method called in l. 216, which is not part of JFace
and thus not traced. The last three events, e40–e42, are generated during cleanup (code
not shown).

4.4 Automated Trace Processing

The automated trace processing stage receives two or more of the collected traces and
generates a concept implementation template. It consists of the following steps.
API Trace Slicing. The marked trace region (bold face) in Figure 4 contains the calls
that occurred when the context menu was being opened. Selective marking improves the
results by delimiting the interaction between application and framework that is relevant
for the concept of interest. If the goal is to understand the complete life cycle of the
concept, however, it is necessary also to consider calls related to the initialization and
clean-up of the involved objects, which are not reflected in this marked region. For
example, e17–e22 create and initialize the context menu’s actions.

We use API trace slicing to identify these additional calls based on the marked re-
gion. API trace slicing identifies all the unmarked calls in the input trace that involve
any of the objects that are also involved in a marked call. The precise definition is
based on the object-connectedness of two events. The two events ei=Di Oi:ni(Pi):Ri

and ej=Dj Oj :nj(Pj):Rj are object-connected iff they share any target, parameter, or
returned objects, i.e., ({Oi, Ri} ∪ Pi) ∩ ({Oj , Rj} ∪ Pj) \ {null, V} �= ∅. Also, let
object-relatedness be the transitive closure of object-connectedness. Then, a trace slice
is defined as the portion of the input trace consisting of all the marked events and the
unmarked events that are object-related to the marked events. In Figure 4, the unmarked
events that are object-related to the marked ones are typeset in italic font. For example,
e5 is object-connected to e7 through the object with ID 6, and e7 is object-connected
to e36 through object 8. Consequently, e5 is object-related to the marked event e36 and
thus part of the slice. Note that slicing eliminates the steps implementing the Welcome
window (e2–e4, e42), which are unrelated to the context menu. As can be seen in Fig-
ure 4, API trace slicing is an approximation of the actual dependencies between API
calls. The approximation worked perfectly for the real framework APIs in our evalua-
tion (Section 5), however: there was not a single false negative due to slicing. Slicing is
optional since some concepts focus on the invocation only, in which case no slicing is
needed and only the marked events are further processed. Also, if marking is not used,
FUDA will process the entire trace.
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Fig. 5. Boundaries of application, framework, and language-specific types

Event Generalization. The generalization procedure allows the next processing stage
to compare traces in terms of framework API types. This procedure is a static
analysis that replaces the application-specific names of events with appropriate frame-
work names. For example, the fully qualified name of e6 in Figure 4 (SampleView$-
ViewContentProvider.<init>) is application-specific and generalization re-
places it by [jface.viewers.IStructuredContentProvider, jface.-
viewers.ITreeContentProvider].<init>. The two names in brackets re-
fer to the framework interfaces that ViewContentProvider implements (l. 99).
Event generalization treats calls to instance methods, constructors, and static methods
differently. We will explain it using Figure 5, which shows some menu-related classes.

Instance Methods. When generalizing an instance method call, the procedure aims
at maximum generality and searches for the topmost types that declare the method.
For example, the method equals in Java is declared by Object and although the
method may be implemented in many subclasses, it conceptually belongs to Object.
A method may have multiple topmost types. For example, generalization of a call to
AppMenuManager.isDirty() identifies both IContributionManager and
IContributionItem as topmost types since both interfaces declare the method.

Constructors. An application class may specialize many framework and application-
specific types. For constructor calls, the procedure aims at minimum generality and
selects all framework-defined supertypes of the target application class that are located
at the bottom framework borderline of the type hierarchy. For example, for a call to
the constructor of AppMenuManager, the procedure identifies MenuManager and
IToolBarManager as the generalized framework types. The rationale for minimum
generalization for constructors is that selecting the topmost types, even if only top-
most framework types, would lose too much information. For example, assuming that
all framework classes are derived from FWObject, the latter approach would yield
FWObject for every constructor call to a subclass of a framework class.

Static Methods. Although a static method cannot be polymorphically called, it can be
hidden by an equally named static method in a subclass. For example, in Figure 5, both
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MenuManager and ContributionManager declare the getOverrides()
static method. Depending on which class is used statically, a different method is re-
ally being used. Thus, the procedure searches the type hierarchy of the application class
being instantiated and returns the first type that declares the method.

Common Facts Extraction. Three types of facts are extracted from each generalized
trace: event occurrence facts, event nesting facts, and event dependency facts. The first
represents the occurrence of interaction events in the generalized trace, while the re-
maining represent the existence of certain relationships among events. Then, common
facts are computed as intersections of the extracted fact sets across the generalized
traces. Figure 6 presents different kinds of common facts extracted from two general-
ized traces for SampleView and Console example applications.

Event occurrence facts, called event facts for short, are the names of the methods
and constructors that were called at the application-framework boundary and the corre-
sponding call directions (Figure 6(a)). They abstract away the numbers of occurrences,
object IDs, and parameter and return types of the corresponding calls. The rationale is
that two methods with the same name but different parameter or return types or numbers
of parameters are likely to be conceptually equivalent within an API. An event fact D
t.n, where t is a type name, is extracted from a generalized trace iff the trace contains
one or more events D Oi:[. . . ,t,. . . ].n:Ri, where Oi is any object ID or “null” and Ri

is any object ID or “V”. We say that the events match such an event fact. For example,
a2 is extracted from the generalized trace due to its events corresponding to e18 or e21
in Figure 4. The events in Figure 4 that match the common event facts in Figure 6(a)
are marked by •. The remaining events are effectively filtered out as they were unique
to this trace.

Event nesting facts record the calling context for outgoing calls (Figure 6(b)). A nest-
ing fact ai→aj , where ai and aj are event facts, is produced whenever the generalized
trace contains two events ek and el such that (i) ek and el match ai and aj , respectively;
(ii) el is outgoing; and (iii) el is directly nested in ek in the trace.

Event dependency facts represent call sequence and object passing patterns. There
are nine dependency fact types: target-target (TT), target-parameter (TP), target-return
(TR), parameter-target (PT), parameter-parameter (PP), parameter-return (PR), return-
target (RT), return-parameter (RP), and return-return (RR). A target-target dependency
fact TT(ai, aj), where ai and aj are event facts, is produced whenever the generalized
trace contains two events ek and el such that (i) ek and el match ai and aj , respec-
tively; (ii) ek precedes el in the trace; and (iii) both ek and el have the same object as
target. The analogous definitions for the remaining dependency fact types are obtained
by modifying the third condition. For example, if the return object ID of ek is used
as a parameter in el, the resulting fact type is RP(ai, aj). Dependency facts indicate
sharing of objects and object passing; e.g., PR and TR may represent the registration of
an object with a framework and subsequent retrieval. After the common facts are com-
puted, the event facts that originated from the same generic events (because of multiple
type names due to generalization) are collapsed and the affected common nesting and
dependency facts are updated accordingly.
Template Generation. This section sketches the main steps of the template genera-
tion algorithm. Interested readers can refer to [6] for further details. The inputs to the
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↑jface.action.Action.<init>a1
↑jface.action.IAction.setTexta2
↑jface.action.IAction.setToolTipTexta3
↑jface.action.MenuManager.<init>a4
↑jface.action.IMenuManager.setRemoveAllWhenShowna5
↑jface.action.IMenuListener.<init>a6
↑jface.action.IMenuManager.addMenuListenera7
↑jface.viewers.Viewer.getControla8
↑jface.action.MenuManager.createContextMenua9
↓jface.action.IMenuListener.menuAboutToShowa10
↑jface.action.Separator.<init>a11
↑jface.action.IContributionManager.adda12

(a) Common event occurrence facts

a10→a11
a10→a12

(b) Common nesting facts

RT(a1, a2) RT(a1, a3) RP(a1, a12) TT(a2, a3)
TP(a2, a12) TP(a3, a12) RT(a4, a5) RT(a4, a7)
RP(a4, a10) RT(a4, a12) RT(a4, a9) TT(a5, a7)
TT(a5, a9) TP(a5, a10) TT(a5, a12) RP(a6, a7)
RT(a6, a10) TT(a7, a9) PT(a7, a10) TP(a7, a10)
TT(a7, a12) RP(a8, a9) TP(a9, a10) TT(a9, a12)
PT(a10, a12) RP(a11, a12)

(c) Common dependency facts

Fig. 6. Common facts

algorithm are the three sets of common facts and the generalized traces. The common
facts determine the overall structure of the template, and the traces are used to extract
additional details as needed. The algorithm executes the following steps.

Create Classes. A class is created for each group of incoming event facts that are
related by TT dependencies. The corresponding constructor calls are assigned using RT
dependencies. For example, the class in l. 9 (Figure 2) is created for the fact a10, which
does not participate in any TT dependencies and thus forms its own group. The cor-
responding constructor call is a6, due to RT(a6,a10). The remaining unassigned con-
structor calls for abstract classes or interfaces, which occur when instantiating anony-
mous classes, are grouped through RR dependencies and a class is created for each such
group. For example, the class in l. 15 is created for a1, a call to the constructor of the
abstract class Action.

Create Methods and Constructors. For each incoming event fact assigned to a class
in the previous step, a method is created in that class. For example, the method in l. 10
is created for a10. A constructor is created in a class if nesting facts whose source is
any of the constructor calls assigned to that class are present.

Create Statements. Outgoing calls are placed in methods based on the common nest-
ing facts. For example, the nesting fact a10→a12 places the call in l. 12. The gener-
alized traces are then consulted to see whether the calls are repeated in a given call-
ing context. For instance, the call to a12 is marked as REPEAT since a12 was called
multiple times in every trace within the control flow of menuAboutToShow(). The
additional class SomeClass (l. 17) is created to host calls corresponding to outgoing



356 A. Heydarnoori, K. Czarnecki, and T.T. Bartolomei

event facts for which no calling contexts are specified by the nesting facts. Within each
method, calls are sorted in an order determined by the dependency facts. For example,
the call order in the context menu template was obtained as a topological sort on the
graph with event facts as nodes and the dependency facts as directed edges. Since mul-
tiple calls to a given method are collapsed in a single event fact, dependency facts may
form cycles, in which case only a subset of the calls can be sorted. The calls that cannot
be sorted according to the dependencies are listed in an arbitrary order and the user is
warned.

Identify Supertypes. Superclass and interfaces for each class (except SomeClass)
are determined by constructing a type hierarchy of target types of incoming method
and constructor calls assigned to that class. The leaves of this type hierarchy identify
the superclass and the interfaces for that class.

Generate Class and Variable Names. Each class is named by prepending App to its
superclass name or one of its interface names if no superclass is present. Constructor
calls and method calls whose return types are not void are made initializers of variable
declarations. Variables are then given names that are the same as their types, but in
lower case, e.g., appAction in l. 21 and menu in l. 28.

Broadcast Variables. The dependency facts, except RR, are used to identify object
passing between calls. For example, appAction is passed as a parameter to add in
l. 12 because of RP(a1,a12). New variables are introduced as needed. The notation ‘||’
is used to illustrate different argument types passed to a method or constructor call, e.g.,
in l. 12. Parameter objects of framework-stipulated types that were not returned by any
other calls are provided by dummy declarations as in l. 19.

Identify Imports. Package imports are identified based on the fully qualified type
names of the event facts.

5 Evaluation

The approach was evaluated through an experiment to assess the template extraction
process (Section 5.1) and an additional experiment to analyze the usage of templates in
the implementation of framework-provided concepts (Section 5.2).

5.1 Evaluation of Template Extraction

Experimental Design. This evaluation was designed to verify that FUDA can extract
templates with high precision and recall from only two traces and two sample applica-
tions. We aim at keeping the number of traces per concept as small as possible since
the collection of traces represents manual effort. In particular, the installation and ex-
ecution of sample applications can be cumbersome. Also, in an earlier experiment [7]
we showed that additional applications cause templates to concentrate on the minimal
common implementation steps, without much improvement in terms of false positives
or negatives. The evaluation consists of the following steps.

Selection of Frameworks and Concepts. The evaluation includes four widely used
frameworks (Table 1). The JFace and Eclipse concepts, except Focus, were selected as
representative for FUDA based on the authors’ prior familiarity with these frameworks.
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Table 1. Experimental data (* indicates concepts from developer forums)
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No Slicing With Slicing
Name Source
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JF
ac

e

Context
Menu

How to
implement a
context menu
in a view?

X X X X X

Tree View Eclipse Wizard

15
0

(4)
1

(1)
100
(73)

94
(92)

15
0

(4)
1

(1)
100
(73)

94
(92)Console Eclipse UI

Toolbar
Button

How to add a
button to a
view’s toolbar?

X X X X X

Pkg Explorer Eclipse JDT

18
5

(14)
3

(3)
72

(22)
81

(57)
13

1
(9)

3
(3)

92
(31)

80
(57)Crosscutting

Comparison
AJDT

Content
Assist

How to develop
a content
assistant in a
text editor?

X X – – X

Java editor Eclipse JDT

46
27

(30)
1

(1)
41

(35)
95

(94)
32

13
(16)

1
(1)

59
(50)

95
(94)JSP editor Eclipse WTP

E
cl
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se

Table
Viewer

How to develop
a table viewer?

X – X – X
Editor List eclipse-plugins

39
0

(23)
0

(0)
100
(41)

100
(100) – – – – –

Table View Eclipse Wizard

Tree
Viewer

How to develop
a tree viewer?

X – X – X
LDAP Brwsr eclipse-plugins

45
0

(29)
1

(1)
100
(36)

98
(94) – – – – –

Tree View Eclipse wizard

Navigate

How to create
the tree
navigation
buttons in a
view’s toolbar?

X X – X X

KTreeMap SourceForge
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0
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100

(100)
38

8
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0
(0)
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Subclipse

Focus*

What events
happen by
clicking on a
view’s titlebar?

X – X X –

LDAP Brwsr eclipse-plugins

4
0

(0)
0

(0)
100

(100)
100

(100) – – – – –
Editor List eclipse-plugins

G
E

F

Select*

What events
happen by
clicking on a
figure?

X – X X –

Flow GEF Examples

7
0

(3)
0

(0)
100
(57)

100
(100) – – – – –

Shapes GEF Examples

Figure*
How to draw a
figure in a GEF
editor?

X X X – X

Flow GEF Examples
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25

(75)
0

(0)
70

(10)
100

(100)
68

10
(60)

0
(0)

85
(12)

100
(100)Shapes GEF Examples

Connec-
tion*

How to draw a
connection
between two
figures?

X X X – X

Flow GEF Examples
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26

(82)
0

(0)
71

(10)
100

(100)
76
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0
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Title-Bar
Color*

How to change
the color of a
GEF editor’s
title-bar?

– – – X –

– –
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2D

Moving
Shapes*

How to draw
shapes and let
the user drag
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X X X X X

GTEditor Google Code
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7

(16)
4

(4)
72

(36)
82

(69)
18

3
(9)

4
(4)

83
(50)

79
(69)GeoSoft Google Search

Circle
Drawing*

How to draw a
red circle on a
black
background?

X X X X X

JHotDraw SourceForge
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4

(9)
0

(0)
67

(25)
100

(100)
10

2
(7)

0
(0)

80
(30)

100
(100)Scribble Google Search

Rounded
Image*

How to make
the corners of
an image
rounded?

– – X X –

– –

– – – – – – – – – –– –

G: Template size; I: Num of false positives; M: Num of false negatives; P: Precision; R: Recall.
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The remaining concepts (i.e., their defining questions) were sampled from developer
forums of the respective frameworks and FUDA steps were performed for them without
much prior knowledge of the corresponding frameworks.

The concepts were selected to cover a variety of characteristics, namely being in
scope of FUDA’s intended usage or not, requiring slicing or not, being frequent among
existing applications or rare, being simple or complex in terms of implementation com-
plexity measured as template size, or being composite in the sense of consisting of
several variable subsets of implementation steps or atomic, if only a fixed set of steps is
involved.

Tree Viewer and Table Viewer are the concepts in Table 1 where slicing was not used
since the scenario involving view opening and closing spanned the entire view life cycle.
Thanks to trace slicing, FUDA also works well for concepts having life cycles spanning
beyond the marked trace region, which are those shown with “X” in the Slicing column.
We also included two concepts, Focus and Select, for which only the marked region is
used since the defining question asked for the response to an event. Obviously, FUDA
works best for frequent concepts, in which case finding sample applications is likely
easy. It may be applicable to rare concepts, too, if the user has already identified one or
two applications with appropriate execution scenarios. For example, users may apply
FUDA to find out the implementation of a rare concept that caught their eye in an
existing application. Also, concepts that may appear rare at first might not be rare after
all. For example, the choice of red and black in Circle Drawing may be rare, but setting
background and figure colors is not. Most of the considered concepts are composite
as they include variable parts. For example, a context menu may or may not include
a separator. Concepts with only few implementation steps tend to be atomic and more
complex ones are usually composite. Finally, Rounded Image and Title-Bar Color are
out of scope because it is very unlikely to find applications and scenarios satisfying the
three goals from Section 4.2 for them.

Selection of Applications and Execution Scenarios. The sample applications come
from different sources (Table 1), such as framework-packaged examples for Eclipse’s
Graphical Editing Framework (GEF), applications listed in online repositories, e.g.,
eclipse-plugins.org, or part of a larger familiar environment, e.g., Java De-
velopment Tools (JDT). Application selection involved (i) reliance on prior familiar-
ity with a given application (mostly for JFace and Eclipse), (ii) browsing and running
the standard examples (e.g., GEF), (iii) searching or browsing in application reposito-
ries (e.g., GTEditor for Moving Shapes was identified on Google Code by the search
keyword “shape” and seeing a screenshot of a drawing editor), or (iv) tips by others
(e.g., WTP was suggested by a colleague). Selecting the applications for each con-
cept took anywhere from no time for Eclipse JDT or wizards thanks to prior famil-
iarity to up to an hour of searching and browsing for eclipse-plugins.org or
SourceForge.net. The selection process had a significant learning effect: familiar-
ity with framework-packaged examples or applications inspected for a given concept
significantly reduced the selection time for the next concept. Some execution scenarios
were already specified by the defining questions, e.g., “How does one draw a figure
in a GEF editor?” In other cases, an action invoking the concept of interest had to be
identified, e.g., the opening action for Context Menu.

eclipse-plugins.org
eclipse-plugins.org
SourceForge.net
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Trace Collection. The tracer used to collect the traces was implemented using As-
pectJ. The user had to specify the packages in which the framework of interest and
the sample application reside. All concepts in Table 1 involved trace marking, except
Tree Viewer and Table Viewer for which full traces were used. Note that only the calls
at the application-framework boundary are traced, which are drastically fewer than all
the calls involved in the implementation of a concept. As a result, API tracing is quite
efficient. For example, tracing all of GEF (org.eclipse.gef.*) was almost un-
noticeable when using GEF applications on a laptop with a single-core Pentium M
1.6MHz processor, 1GB of RAM, and Windows XP. The applications ran two to three
times slower when all of Eclipse was traced (org.eclipse.*), however. Collecting
a single trace took anywhere from several seconds to a few minutes.

Template Generation. The template extraction algorithms described in this paper
were implemented as an Eclipse plug-in. This tool was then used to generate the
templates.

Development of Reference Templates. The precision and recall of the generated tem-
plates were calculated against reference templates. For each concept in scope a manda-
tory and an optional reference template were created. Mandatory reference templates
represent the set of mandatory implementation steps, i.e., the ones that are essential to
the instantiation of a concept: if the step is removed, the concept does not work as ex-
pected. For example, without calling the method createContextMenu() (l. 28 in
Figure 2) a context menu cannot be realized. For concepts that relate to the response to
an event, such as Focus and Select, the mandatory steps are the ones that always occur
as a result to the event. Optional reference templates additionally include steps that are
not essential but that are relevant to the concept and were present in the sample applica-
tions. For instance, Context Menu’s optional reference template includes calls to create
and register separators.

Reference templates were carefully created to minimize threats to the validity of the
results. For all concepts, reference templates were created using documentation found
online (usually third-party articles or solutions posted in forums or both) and manu-
ally inspecting sample applications. In order to guarantee their correctness, reference
templates were used in the creation of sample implementations. The determination of
mandatory steps was mostly obvious; dubious cases were verified by removing the step
from the sample implementation and testing. Reference templates were then compared
against the generated ones to identify optional features present in the sample appli-
cations. Each non-mandatory step found in the generated template was examined and
classified as optional, if it was relevant to the concept, or irrelevant, otherwise. If not
clear, we were conservative and the step was considered irrelevant.

Calculation of Precision and Recall. The calculation of precision and recall is based
on counting the basic implementation steps contained in a template: subclass declara-
tions, interface implementation declarations, method implementations (except some-
Method()), method calls, and constructor calls. These steps are the main elements of
a template. Call sequence and parameter passing patterns are considered supplementary
information that makes templates more readable. The calculation of precision and recall
is based on determining three numbers: G is the number of all implementation steps in
the generated template; (ii) M is the number of steps present in the reference template
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but missing in the generated template (i.e., false negatives); and (iii) I is the number of
steps incorrectly present in the generated template, but absent in the reference template
(i.e., false positives). Precision is calculated as P = (G−I)/G, and recall is calculated
as R = (G− I)/(G− I + M).

Experimental Results. The precision and recall results are given in Table 1. For the
concepts with slicing, we also include the numbers obtained by using full traces with-
out slicing, for comparison. The final numbers are marked in bold, with precision rang-
ing between 59% and 100% and recall ranging between 79% and 100% when optional
reference templates are used. When mandatory reference templates are used (in paren-
theses), precision ranges between 12% and 100%, and recall ranges between 57% and
100%. Note that users are likely interested in templates similar to optional reference
templates; the mandatory reference templates are used to establish a lower bound on
the precision and recall. In the following, we concentrate on the results for optional
reference templates.

In general, false positives were more frequent than false negatives. False positives
were due to similarities among the sample applications that extend beyond the con-
cept of interest. For example, the single false positive for Toolbar Button was due to
calls to the method IShellProvider.getShell(), which are frequently used
in Eclipse views. Slicing improved precision by eliminating between 20% and 80% of
false positives, except for Context Menu, for which the sample applications were differ-
ent enough to achieve 100% precision without slicing. Slicing was particularly useful
for Figure and Connection since all GEF editors use common parts such as palette and
action bar. While steps related to action bar were eliminated by slicing, some palette-
related steps remained since palette was involved in all figure drawing scenarios.

The false negatives for JFace concepts represent the case when the user does not
correctly identify the framework packages. For instance, for the concept Context Menu,
the instruction setMenu() (l. 209 in Figure 4) is missing because it is in the Eclipse
framework, not in JFace. The only false negative for the concept Tree Viewer was the
method getChildren(): since the collected traces included only the outgoing calls
to this method and not any incoming calls, the generated template did not contain this
method as one that needs to be implemented. Two of the false negatives for Mov-
ing Shapes were caused by a limitation of AspectJ, which cannot introduce code into
java.awt.* packages or any other package belonging to the Java runtime library.
The other two false negatives for this concept were due to different instructions that
our sample applications used to change the location of a shape. Similarly, although we
did not have any false negatives for Circle Drawing, the analysis revealed that one false
negative was likely. The reason is that there are multiple ways of implementing cir-
cle drawing, e.g., using drawOval() or draw(new Ellipse), and the difference
between these calls is not visible to the application user.

Threats to Validity. We see three main threats to validity. First, the selection of frame-
works and concepts for the evaluation might not be representative of those used in real-
world development. This threat is addressed by selecting frameworks that are widely
used, by including concepts from developer forums, and selecting concepts with differ-
ent properties. Second, the selection of applications and execution traces might not be
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representative. We minimize this threat by following the same identification strategies
that would be applied in practice and use a mix of them in the evaluation. Third, the
reference templates could be incorrect, which would impact the calculation of precision
and recall values. We minimized this threat by (i) using three sources of knowledge for
all concepts: manual inspection of sample applications, consulting existing documenta-
tion, and testing the implementation steps in sample implementations; (ii) having two
of the authors independently check in several iterations the correctness of all the refer-
ence templates and the values calculated for precisions and recalls; and (iii) reporting
not only the values for the comparison with the optional reference templates, but also
to the mandatory reference templates.

5.2 Evaluation of Template Usage

Experimental Design.The previous experiment showed that implementation templates
can be extracted from sample applications with high precision and recall. This experiment
was designed to go further and evaluate the following research questions: (i) Are imple-
mentation templates as effective as framework documentation in aiding the development
of framework-provided concepts? The rationale behind this question is that if templates
are as effective as framework documentation, then they can serve as a substitute when
no documentation is available. (ii) What is the influence of template quality and its us-
age strategies on the quality of resulting implementations? For instance, if templates are
simply pasted into target applications, its false positives could pollute implementations
with undesired code, and its false negatives could yield incomplete implementations.

Hypothesis and Measures. The experiment was designed to provide quantitative and
qualitative evidence regarding the first research question, and qualitative data concern-
ing the second question. Developers were recruited and asked to implement framework-
provided concepts using one of the documentation aids, i.e., framework documentation
or template. To answer the first research question, the effectiveness of each documen-
tation aid was measured in terms of development time and functional correctness of
resulting implementations. We defined three levels of functional correctness: success, if
the resulting implementation behaved as specified; buggy, if the implementation did not
perform as specified; and incomplete, if the developer did not finish the implementation.
Since we had no expectations as to which documentation aid is superior we formulated
the following two-sided null hypothesis:

H0 : The development time to implement a framework-provided concept supported
by implementation templates equals the development time when supported by frame-
work documentation.

After the completion of the implementation, developers answered a questionnaire
and went through a debriefing interview. To answer the second research question, this
data was used to determine how developers employed the information contained in doc-
umentation and templates (usage strategies). We then analyzed how templates’ quality
and usage strategies affect the functional correctness of resulting implementations.

Procedure and Data Collection. We selected two simple concepts (Context Menu
and Navigate) and two complex concepts (Content Assist and Table Viewer) that were
used in the previous experiment (Table 1). We recruited twelve subjects: nine graduate
students (S1-S6, S8-S10), two professionals (S7, S12), and one 4th-year undergraduate
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student (S11). Before the experiment, subjects answered a background questionnaire to
determine their experience. All subjects had between 4 and 10 years of Java program-
ming experience and all subjects except subject S8 had at least one year of industrial
programming experience. The subjects were blocked into two groups depending on
their experience levels with the JFace and Eclipse frameworks: subjects in the experi-
enced group (S1-S6) had implemented both frequent concepts before (Context Menu
and Table Viewer), but not the rare ones (Navigate and Content Assist); subjects in the
moderate group (S7-S12) had not previously implemented any of the four concepts. All
subjects were given a briefing about implementation templates. In this briefing, we fo-
cused on the information available in templates, but let subjects freely decide how to
use it in their implementations.

The experiment used three independent variables with two factor levels each:
documentation aid (framework documentation (D) and implementation template (T)),
concept complexity (simple and complex) and subject experience (moderate and experi-
enced). The templates used in the experiment were those automatically extracted in the
first study (Table 1). The documentation for a given concept was identified in Eclipse
Help, Eclipse Corner Articles1, or third-party Eclipse articles (web search). The doc-
umentation length varied between 5 pages (for Navigate) and 28 pages (for Content
Assist). Each document had a dedicated section for the concept of interest and included
code examples. Each subject was assigned one simple and one complex concept, and
used a template for implementing one concept and documentation for the other concept
(in a balanced sequence). The experienced subjects were assigned the rare concepts and
the moderate subjects were assigned the frequent concepts; however, the assignment
was random and balanced over the simple and complex concepts within each subject
group. For each concept, a concept instance specification and a target application were
created. Each specification consisted of a screenshot showing the desired concept to be
implemented and a short paragraph describing it. Each target application was of min-
imal size, ranging between 10 (for Content Assist) and 186 LOC (for Navigate), to
help developers focus on implementing the assigned concept instead of navigating and
investigating the target applications.

The subjects were asked to implement the specified concept instance within the cor-
responding target application. During the implementation, the only documentation aids
the subjects could use were the respective documentation aid (D or T), the two sample
applications for a given concept (Table 1), and the framework-provided JavaDoc docu-
mentation. In particular, they could not use Eclipse Help or search the web. Note that
JavaDoc documentation does not explain how to implement concepts, but only how
to use a given framework-provided programming element, such as an interface or a
method. The sizes of the sample applications varied between 1 KLOC (EditorList for
Table Viewer) and 66 KLOC (Subclipse for Navigate). The subjects were instructed to
implement each assigned concept without interruptions and measure the time needed.

After the implementation, subjects filled a result questionnaire, asking whether the
provided documentation aid was useful; how many of the sample applications were
used; and how the templates could be improved. Finally, we tested and inspected the
subjects’ code to determine whether each concept was correctly implemented.

1 http://www.eclipse.org/articles/

http://www.eclipse.org/articles/
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Fig. 7. Experimental results

Data Analysis. The qualitative aspects of the experiment were analyzed via inspec-
tion of resulting implementations, and careful examination of questionnaires and
interviews. The quantitative assessment of development time was performed through
univariate statistical analyses, which were applied to each independent variable. Un-
paired, two-sample, two-sided t-tests [8] were performed. To reduce potential threats
due to violation of t-test assumptions, we also applied the non-parametric Wilcoxon
rank sum test [8]. For both hypothesis tests, we set the significance level to α = 0.05
and presented the p-value. Furthermore, we measured the effect size as the percentage
difference between means (%diff ) and by calculating Hedge’s g [9], which is defined as
the difference between means divided by the pooled standard deviation.

Experimental Results. Due to space constraints, this section summarizes the most im-
portant results. A complete description of the data can be found elsewhere [6][10].

Discussion of Quantitative Results. Figure 7 shows the time measured for each im-
plementation as a function of the documentation aid and concept complexity. Bold la-
bels identify experienced subjects; solid lines indicate the variance. The descriptive
statistics and the results of the statistical analyses are presented in Table 2. The three
initial rows present data for the independent variables and the two last rows present
additional data for documentation aid when isolating the complexity levels.

The first row presents the most important quantitative experimental results. The p-
values for documentation aid are not significant (p� 0.05). On average, subjects using
templates took 13% less time to implement the concept than subjects using documenta-
tion. The second row presents a different picture. The choice between a simple or com-
plex concept has an extremely significant (p = 0.0006� 0.05) impact on development
time. Complex concepts take consistently longer than simple concepts to implement
(avg. 124.6%), regardless of documentation aid and experience. This outcome inspired
the analysis presented in the last two rows, where we isolate the complexity levels.
The results show that, within a complexity level, subjects using templates were 11% or
17% faster on average, but these two results are statistically not significant, as in the
first analysis. All these trends can also be clearly verified by inspecting the diagram in
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Table 2. Descriptive statistics and univariate analysis results for development time

Independent Variable Factor Level Mean
Std.
Dev.

%diff
Hedge’s

g
t-test

(p-value)
Wilcoxon
(p-value)

Documentation Aid
(All Concepts)

Documentation 40.5 25.79
-13.0 -0.22 0.5855 0.6851

Template 35.25 20.33

Concept Complexity
Simple 23.33 17.71

124.6 1.58 0.0006 0.0006
Complex 52.42 17.84

Subject Experience
Moderate 40.92 22.49

-14.9 -0.25 0.5267 0.5431
Experienced 34.83 23.82

Documentation Aid
(Simple Concepts)

Documentation 25.5 23.12
-17.0 -0.22 0.695 1.0000

Template 21.17 11.99

Documentation Aid
(Complex Concepts)

Documentation 55.5 19.71
-11.1 -0.31 0.5748 0.7466

Template 49.33 17

Figure 7, where complexity deeply impacts time, while documentation aid does not.
Note that the diagram also allows the identification of individual trends (e.g., subject
S8 takes usually longer to perform the tasks).

The fact that H0 could not be rejected with high significance in our experiment implies
that no evidence could be provided regarding the difference (or equality) in effectiveness
between templates and documentation when providing aid for developers to implement
framework-provided concepts. The experiment shows that the impact of concept com-
plexity is far greater than the choice of documentation aid, however, which indicates that
if there is indeed difference, its impact on the development time is likely to be small.

Discussion of Qualitative Results. We first investigated the impact of templates’ false
positives and false negatives on the implementation. Table 1 shows the number of false
positives and negatives for each template. In general, false negatives prevent the full
instantiation of the concept, as in the case of Context Menu and Table Viewer. False
positives either cause runtime errors (as in Content Assist) or pollute the concept in-
stantiation with unnecessary code (as in Navigate). Further, the questionnaires and
interviews allowed the determination of template usage strategies. Subjects used the
templates essentially in two ways, either by pasting them directly into a target appli-
cation or as an entry point to inspect sample applications. When using templates as an
entry point, subjects either copied sample application code into the target application or
wrote their own code based on what they learned. Some subjects who pasted templates
directly into target applications also investigated sample applications before executing
the code. Other subjects tried to execute the code and only investigated sample applica-
tions after a runtime error occurred or an unintended behavior appeared. Only subject
S4 pasted template code without verifying against sample applications.

The resulting implementations were executed and manually inspected. Most im-
plementations followed the specified functional requirements and were classified as
success. Only two were buggy. The task specification was not correctly followed by
subject S6 in the Content Assist (complex/documentation) implementation. Subject S4
implemented Navigate (simple/template) with an additional button. This error arose
because S4 pasted the template code without verifying sample applications, and Nav-
igate contained false positives that included unwanted code. This observation suggests



FUDA: Framework Understanding through Dynamic Analysis 365

that templates should always be used together with sample applications since they help
understanding what is missing and detecting unneeded code.

Threats to Validity. The main threat to internal validity concerns the distribution of
subjects over the tasks. This threat was minimized by blocking subjects according to
experience and randomizing the remaining distribution. The main threat to construct
validity is related to the measurement of effectiveness and the definition of documenta-
tion. We used implementation time to measure effectiveness and it is clear that different
notions could be used, such as code quality, that could affect the results. The defini-
tion of documentation sought to maximize its familiarity and conciseness by selecting
standard documents dedicated to the concept at hand. The principal threats to external
validity refer to the generalization from students to professionals and from a laboratory
to a real setting and to the small sample size. We minimized these threats by select-
ing a sample that resembles our target population (i.e., experienced subjects) and using
realistic concepts and a state-of-the-art development environment (Eclipse JDT). Our
sample of twelve subjects is sufficient to produce preliminary results and qualitative
insights, but a larger sample is required to provide conclusive results.

6 Discussion

Strengths and Weaknesses. The results of template extraction evaluation presented
in Section 5.1 indicate that FUDA can retrieve concept implementation templates with
relatively high precision and recall from only two traces and two sample applications.
Furthermore, the processing of the traces is fully automatic and the instrumentation
does not impose significant overhead on the application execution since only the API
interaction rather than full traces are recorded. Given a set of applications and scenarios,
the amount of time needed to retrieve templates is mainly determined by the time it takes
to execute the scenarios on the applications. Furthermore, dynamic analysis detects
the API elements that are actually being invoked. This is important since frameworks
typically use polymorphism and reflection, which can render static analysis less precise.

Nevertheless, the approach has some potential drawbacks as well. Most importantly,
it relies on the ability to find appropriate sample applications. The quality of the re-
sults may depend on the selection of the applications and concept invocation scenarios.
In particular, the scenarios might require careful design to isolate the API instructions
of interest in the context of composite concepts. Second, all dynamic approaches are
dependent on the input data and generalizing from this data might not be safe. In par-
ticular, FUDA may fail to retrieve optional API instructions. Both issues are discussed
further shortly. Finally, dynamic approaches require the setup of the runtime environ-
ment, which might not be easy in some situations. Therefore, being able to retrieve
useful concept implementation templates from only few application executions is par-
ticularly important.

Scenario Design Considerations. The nature of the concept and the ways in which
it is implemented by the applications can influence the results. Ideally, the concept is
atomic, its invocation is easily delimitable (for marking), and the sample applications
have only this concept in common. In this case, FUDA will yield best results. In gen-
eral, concepts are composites of other concepts, the invocation of a concept might not



366 A. Heydarnoori, K. Czarnecki, and T.T. Bartolomei

be easily demarcated, and the sample applications may have several concepts in com-
mon. For a composite concept, developers should select applications that vary those of
its components that should be eliminated. If the concept of interest is part of a com-
posite concept, developers should be able to demarcate the boundaries of the concept
execution. If these scenario design goals are only partially satisfied, the resulting false
positives and false negatives may still be identified by following the traceability links
in the template and studying the actual sample application code.

7 Related Work

Framework documentation and completion approaches support framework users
passively or actively or both. For instance, framework-specific modeling languages
(FSMLs) [11] document framework-provided concepts as hierarchies of mandatory and
optional features and actively support users in instantiating the concepts through round-
trip engineering. Further, reuse contracts [12] and collaboration contracts [13] help
ensure that frameworks are used correctly. Nonetheless, the main difficulty of these ap-
proaches is that framework documentation requires manual effort and, consequently,
documentation of the framework may become outdated. FUDA attempts to fill this gap
by allowing users to generate implementation templates when the framework documen-
tation is missing.

Framework usage comprehension is supported by several approaches such as
XSnippet [14], Strathcona [2], Prospector [15], PARSEWeb [16], and FrUiT [3]. Both
XSnippet and Strathcona are context-sensitive code assistant tools that allow developers
to query a repository of code snippets that are relevant to the programming task at hand.
Given two API types τin and τout as a query, both Prospector and PARSEWeb mine for
call sequences transforming an object of type τin to another object of type τout. FrUiT
mines for frequent API usage patterns as association rules, e.g., subclass A⇒ call m.
It then uses such rules to suggest implementation steps for a class under development.
All these approaches are mainly code assistants in the context of a programming task at
hand, such as how to call a specific framework method or how to instantiate a particular
framework class. In contrast to FUDA, they do not provide a complete code snippet or
implementation template for instantiating an entire, large concept, which may span mul-
tiple framework methods or even classes. Moreover, whereas all these approaches use
static analysis, FUDA applies primarily dynamic analysis. The advantage of static anal-
ysis is that it can cope with a large body of applications and potentially incomplete code.
The advantage of dynamic analysis is that it can handle highly polymorphic and reflective
code, which is often part of modern frameworks. Additionally, contrary to FUDA, static
analysis does not support concept identification by invoking concepts directly from the
user interface.

Specification mining is concerned with automatically discovering the protocols or
rules that a program must follow when interacting with an API. Existing techniques
can be classified into static [17][18] and dynamic [19][20][21] ones. Examples of static
approaches include inferring ordering patterns among method calls [17] or detecting
function precedence protocols [18]. Examples of dynamic approaches contain mining
temporal API rules from dynamic traces [19], mining iterative patterns from traces [20],
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or inferring declarative specifications of the API behavior for target concepts such as the
raising of an exception [21]. In contrast to specification mining approaches, FUDA does
not recover API interaction protocols. The latter are important for library API usage, but
less so for frameworks. Frameworks typically follow inversion of control by enforcing
protocols in framework rather than application code. Although FUDA extracts total
orders of calls, it does so to improve readability of templates by sorting calls within
method bodies. Additionally, dynamic specification mining techniques often require
several runtime traces in order to recover different legal execution sequences. On the
other hand, FUDA aims to keep the number of traces as small as possible to make the
approach attractive in practice.

Concept location concentrates on understanding how a certain concept or func-
tionality is implemented in the source code of an application. Existing approaches
can be mainly categorized into static (e.g., [4]), dynamic (e.g., [22]), and hybrid ones
(e.g., [5][23]). One can refer to [5] for a good literature overview. We focus only on
the most related dynamic and hybrid techniques. Most of these techniques use two or
more traces to filter out irrelevant events, e.g., [22][23]. SITIR [5] gets away with only
one trace by filtering it using the textual similarity to a keyword query. Unlike FUDA,
all these techniques focus on retrieving concepts in general application code rather
than framework-provided concepts. Therefore, the result may contain many application-
specific instructions that are irrelevant from the viewpoint of framework usage. FUDA
avoids this problem by focusing on API interaction traces and removing the application-
specific content from those traces through the event generalization. Furthermore, we are
unaware of other techniques using the combination of API trace marking with API trace
slicing. In particular, SITIR [5] uses the runtime trace marking to reduce the size of the
traces, but it misses the relevant events to the implementation of the desired concept that
are not marked at runtime. FUDA is able to identify such relevant events by applying
the API trace slicing.

8 Conclusion

This paper presented FUDA, an approach for extracting implementation templates from
traces obtained by invoking concepts of interest in sample applications. FUDA was
tested on twelve concepts of four widely-used frameworks. The concept sample in-
cluded both simple and complex ones. Six concepts corresponded to questions found
at developer forums. The experimental evaluation shows that, for the considered con-
cepts, FUDA can extract templates with high precision (59-100%) and recall (79-100%)
from only two traces and two sample applications per concept. Finally, we reported on
a user experiment with twelve subjects in which the choice of templates vs. documen-
tation had much less impact on development time than the concept complexity. The
experiment also suggested that the templates should be used together with the sample
applications from which they were extracted.
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Abstract. Refactoring tools allow the programmer to pretend they are working
with a richer language where the behaviour of a program is automatically pre-
served during restructuring. In this paper we show that this metaphor of an ex-
tended language yields a very general and useful implementation technique for
refactorings: a refactoring is implemented by embedding the source program into
an extended language on which the refactoring operations are easier to perform,
and then translating the refactored program back into the original language. Us-
ing the well-known Extract Method refactoring as an example, we show that this
approach allows a very fine-grained decomposition of the overall refactoring into
a series of micro-refactorings that can be understood, implemented, and tested in-
dependently. We thus can easily write implementations of complex refactorings
that rival and even outperform industrial strength refactoring tools in terms of
correctness, but are much shorter and easier to understand.

1 Introduction

According to its classic definition, refactoring is the process of improving the design
of existing code by behaviour-preserving program transformations, themselves called
refactorings. Applying refactorings by hand is error-prone since even very simple oper-
ations such as renaming a program entity can affect large parts of the refactored program
and may interact with existing program structure in subtle ways, leading to uncompil-
able code or, even worse, to code that still compiles but behaves differently.

For many years now, popular Integrated Development Environments such as Jet-
Brains’ IntelliJ IDEA [10], Eclipse [2], or Sun’s NetBeans [17] have provided support
for automated refactorings in which the user specifies the refactoring operation to per-
form, and the refactoring engine performs the requested transformation while checking
that program behaviour is actually preserved.

Traditionally [19], this is done by checking preconditions that are thought sufficient
to preserve some invariants, which in turn ensure behaviour preservation. However,
as we have pointed out before [21], this approach has severe weaknesses. Deriving
the correct preconditions relies on a global understanding of the object language in
which programs to be refactored are written, and has to account for all corner cases that
might possibly lead to an incorrect refactoring. In a complex modern language like Java
this is an arduous task even for very simple refactorings, and we found in an informal
survey that none of the most popular IDEs solves it satisfactorily [3]. Even if sufficient
preconditions are found, further evolution of the language is likely to introduce new
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constructs and concepts that impact refactoring in subtle ways, and make it necessary
to revise the preconditions.

We believe that it is more beneficial to think about refactorings directly in terms of
invariant preservation rather than preconditions. The ultimate invariant to be preserved
is still, of course, the semantics of the input program, but this criterion is too deep
and too far removed from the program as a syntactic entity to be useful. We should
rather search for more syntactic invariants whose preservation we can see as ensuring
the correctness of the refactoring. In previous work, we have shown how this approach
can be used to tackle the Rename refactoring: From the abstract criterion of binding
preservation, i.e. the requirement that in the renamed program every name still refer
to the same declaration as before, we obtain a concrete implementation that correctly
refactors many programs on which industrial strength tools fail.

In this paper, we follow this line of work and show how it can be extended to
cover more complex refactorings, among them the Extract Method refactoring, that was
dubbed “Refactoring’s Rubicon” by Fowler [7], who proclaimed it to be the yardstick
of “serious” refactoring tools.

Our key idea is to treat refactorings not as transformations on programs in the object
language that the programmer writes them in, but instead as transformations on pro-
grams translated into a richer language that offers some additional language features to
ease their implementation. The implementation of the refactoring itself then becomes
much simpler, but some effort has to be invested into the translation back from the
enriched language to the base language.

As an example, first consider renaming. If we extend our basic language with bound
names, i.e. names that do not follow the normal lookup rules, but directly bind to their
target declaration (preventing accidental shadowing or capture), renaming becomes triv-
ial to implement: First, all names in the input program are replaced by their bound
equivalents (their bindings are “locked”). Now the renaming can be performed without
having to worry about altering the binding structure, since all references in the program
are fixed. Finally, we need to go back to the language without bound names, replacing
them with possibly qualified names in the base language that have the same binding
behaviour (their bindings are “unlocked”). If unlocking cannot be performed, the trans-
formation is unsafe and has to be aborted and rolled back.

Of course, the unlocking step is highly non-trivial to perform and hard to implement,
but a general translation from “Java with Bound Names” to plain Java is very useful
in the context of other refactorings as well. Consider, for example, the Push Down
Method refactoring, in which a method m is moved from a class A to its subclass B.
Its crucial correctness property is again binding preservation, since we want to ensure
that all calls to m still resolve to the right method after pushing, and that all references
to fields, variables, types, and methods inside m itself still refer to the same targets
as before. Again, this is easily achieved in Java with Bound Names: we simply lock
all calls to m and all names within m itself, then move the definition of m from A to
B, and unlock, using the same translation from Java with Bound Names to plain Java
originally developed for Rename.

In this paper we show how this idea of refactorings as transformations on a richer
language can be extended to more complex refactorings, most prominently Extract
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Method, Inline Method, Extract Local Variable, and Inline Local Variable. Although
binding preservation is still important, these refactorings are more challenging in that
they move code relative to other code. As a criterion to preserve behaviour, we suggest
control flow and data flow preservation: All statements in the affected methods should
maintain their control flow predecessors and successors throughout the refactoring, and
all variables should have the same reaching definitions.

Our aim is not to prove that this is a sufficient criterion for behaviour preservation.
If we wanted to do that, we would have to restrict our attention to a suitably well-
behaved subset of the language, since in full Java even the introduction of a number of
extra push instructions that would be needed to realise the call to an extracted method
in byte code, could possibly lead to an out-of-memory error, which would alter the
behaviour of the program.

We rather take flow preservation as a common-sense criterion that is to guide our
implementation; since it can be effectively checked, it also provides a safety net for our
refactoring engine. By judicious introduction of additional language extensions we can
further decompose the overall transformation into micro-refactorings that each perform
a small, well-defined task. These language extensions are lightweight in that they cannot
occur in source programs and no code is generated for them, but they are introduced and
eliminated again during the process of refactoring.

This decomposition brings with it the usual benefits of modularity, as it eases imple-
mentation and testing . We were thus able to implement all four of the above-mentioned
refactorings in less than 3000 lines of code, most of which is reused heavily between
the individual refactorings, as part of our JastAdd-based refactoring engine, and pass
all applicable tests in the internal test suites of both Eclipse and IntelliJ IDEA.

The main novel contributions of this paper are:

– A presentation of refactorings solely based on invariant preservation, which pro-
vides a more flexible implementation guideline than traditional precondition-based
approaches.

– The use of lightweight language extensions as a device to simplify and modularise
refactoring implementations.

– An analysis of Extract Method in terms of this general approach, showing how
the overall refactoring can be decomposed into micro-refactorings that are easy to
implement, understand, and test.

– A high-quality implementation of Extract Method and related refactorings based
on this analysis, that is very compact, yet supports the whole Java 5 language and
is on par with well-known Java IDEs in terms of correctness.

We structure this paper as follows: Section 2 introduces refactoring challenges, illus-
trated with the example of Extract Method. Section 3 shows how these challenges can
be met using a decomposition of the whole refactoring into a series of well-defined
micro-refactorings, and Section 4 provides a more in-depth discussion of how this can
be done for method extraction. Section 5 puts these concepts into context and discusses
how similar strategies can be used on related refactorings. Section 6 evaluates our im-
plementation in terms of code size and correctness, comparing it against some other
well-known Java refactoring engines. Section 7 discusses some related work directions
for future work before we conclude in Section 8.
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2 Challenges

We begin by introducing refactoring challenges through our running example, the Ex-
tract Method refactoring for the Java language. It is used to simplify complicated meth-
ods by extracting a contiguous range of statements into a new method, and replace the
original statements by a call to that method. As a simple example, consider the method
m in Figure 1 on the left, and assume we want to extract the body of the for loop into
a new method processItem.

class A {
void m() {
int total = 0;
for(Item i : getItems()) {

System.out.println("item "
+ i.getDescription());

total += i.getValue();
}
System.out.println("total: "

+ total);
}

(...)
}

⇒

class A {
void m() {
int total = 0;
for(Item i : getItems()) {

total = processItem(i, total);
}
System.out.println("total: "

+ total);
}

int processItem(Item i, int total) {
System.out.println("item "

+ i.getDescription());
total += i.getValue();
return total;

}

(...)
}

Fig. 1. An example program before and after Extract Method

This is relatively easy; all we need to do is provide i and total as parameters to
the new method, and return the value of total to update the original variable after the
method returns. Thus the resulting program should look like the one shown in the same
figure on the right.

But even this simple example shows that Extract Method is much more than just cut-
and-paste. In general, we can identify three different kinds of problems to be handled,
that can all be cast as preservation problems: we need to preserve name bindings, control
flow, and data flow.

2.1 Name Binding Preservation

Since the refactoring introduces new names and declarations into the program, care has
to be taken not to accidentally change existing name bindings. Take, for example, the
program in Figure 2 on the left; the method m in class A constructs an instance of the
locally declared class X and returns it.

In NetBeans, extracting the declaration of X to a method n yields the program on
the right, where the instance constructed is no longer of the local class X, but of the
global class of the same name. This particular program does not change its behaviour,
but slightly extended examples either make NetBeans produce an output program that
does not compile (which is annoying to the user, if comparatively harmless), or that still
does compile but behaves differently.
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class X { }
class A {

Object m() {
class X { }
return new X();

}
}

“⇒”
class X { }
class A {

Object m() {
return new X();

}
void n() {
class X { }

}
}

Fig. 2. How not to preserve name binding during method extraction

Other IDEs employ simple heuristics to guard against this kind of situation, but no
systematic binding preservation seems to be attempted, and similar bugs can be discov-
ered in all cases [3].

2.2 Control Flow Preservation

While Java mostly uses structured control flow, it also provides the unstructured branch-
ing statementsbreak and continue. The former exits from an enclosing loop (which
can be further specified by a label), while the latter only exits from the current iteration
and starts the next one. These “gotos in disguise” cannot be moved into the newly cre-
ated method blindly: If their target loop is not also moved, the resulting program will
not compile.

Even more subtle is the return statement: If types match, an extracted method with
an embedded return will still compile, but of course the statement now returns from the
extracted method, not the original method as it did before. As an example, consider the
program in Figure 3 on the left, and assume we want to extract the if statement into a
method n. A naive implementation might produce the program on the right, which has
different behaviour from the original program: while originally calling m(23) would
return immediately, it now prints 23.

A precondition-based approach might categorically forbid extraction of any code
that contains these branching statements, but that would reject many potentially useful
refactorings: As a simple example, consider the program in Figure 4 on the left, and
assume we want to extract the whole body of m into a new method n. This can easily
be done if, instead of replacing the extracted code by the method invocation n(i), we
instead replace it by return n(i).

Thus a more advanced precondition might be to allow extraction if all control paths
end in a return statement. But this is again too stringent a requirement, as the example

class A {
void m(int i) {
if(i == 23)

return;
System.out.println(i);

}
}

“⇒”

class A {
void m(int i) {

n(i);
System.out.println(i);

}
void n(int i) {

if(i == 23)
return;

}
}

Fig. 3. How not to preserve control flow during method extraction
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class A {
int m(int i) {
if(i == 23)

return 42;
return i + 1;

}
}

class B {
void x(int j) {

if(j == 42)
return;

System.out.println(j);
}

}

(a) (b)

Fig. 4. Preserving control flow during method extraction

program in the same figure on the right shows. Our preconditions would not allow us
to extract the whole body of x into a new method y, although this would actually be
unproblematic, since the code to be extracted is right at the end of the enclosing method
anyway.

These examples show that precondition based refactoring engines are doomed to play
an ultimately pointless game of tag in which preconditions have to be progressively re-
laxed as desirable refactorings are discovered. It is all too easy to introduce unsoundness
this way, especially if new language versions introduce constructs that influence control
flow (such as the assert statement in Java 1.4).

We instead propose preservation of control flow as the goal to aim for during method
extraction: every statement in the extracted method should have the same control flow
predecessors and successors as before the extraction. This immediately rules outbreak
and continue statements whose target is not in the new method: their control flow
successors will no longer be defined at all. For the two examples above, it can however
be seen that their control flow successors do not change during the proposed refactor-
ings, although flow sometimes has to be “rerouted” by inserting extra statements like
the return of the first example.

Since refactorings work on a source-level representation of the program, not its gen-
erated byte code, some care has to be taken in determining control flow information,
which we will discuss in more detail in Section 3.

2.3 Data Flow Preservation

One of the most intricate aspects of the Extract Method refactoring is to determine the
parameters of the extracted method. Intuitively, it is clear that we need to pass the new
method the values of any local variables it might need, and that the new method in turn
should return the values of any local variables it has changed, if they are needed for
further computation.

In previous work [23] we have given criteria for selecting parameters and return
values in terms of familiar data flow concepts such as liveness and def/use sites. As it
turns out, these criteria can be given a more basic justification in terms of data flow
preservation.

Analogous to control flow successors and predecessors, we define data flow succes-
sors and predecessors: The data flow predecessors of a variable use are its reaching
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class A {
void m(boolean b) {
int i = 22;
int n = 40;
try {

/ / f rom
++i;
if(b) {

n += 2;
throw new Exception();

}
/ / t o
System.out.println(i+n);

} catch(Exception e) {
}

}
}

⇒

class A {
void m(boolean b) {

int i = 22;
int n = 40;
try {

i = f(b, i, n);
System.out.println(i+n);

} catch(Exception e) {
}

}
int f(boolean b, int i, int n)

throws Exception {
++i;
if(b) {

n += 2;
throw new Exception();

}
return i;

}
}

Fig. 5. A refactoring rejected by Eclipse

definitions, i.e. all definitions of this variable that might influence the value of the vari-
able at this point in the program. Similarly, the data flow successors of a variable defi-
nition are all uses that might be reached without an intervening definition.

We can now specify that a variable should become a parameter to the extracted
method if it has a use within the code to be extracted whose data flow predecessor lies
before the extracted selection, and it should be returned if it has a definition whose data
flow successor comes after the selection. This is a natural criterion, since those data flow
edges would be “broken” by method extraction, and hence have to be rerouted through
parameters in order to be preserved.

Again, we leave it to Section 3 to make this basic idea more precise and show how
it can be implemented at the abstract syntax tree level. That this is not a trivial problem
can be illustrated by a simple example: Assume that in the program in Figure 5 on the
left we want to extract the code between the comments. We note that all of b, n, and i
have to become parameters to the new method, and i should be returned so that its new
value is available for the println statement, as shown in the program on the right.

The value of n, however, does not need to be returned: if n is changed by the ex-
tracted code, an exception is immediately thrown and control transfers to the catch
clause; in other words, the assignment to n has no data flow successor, and hence its
value does not need to be returned. Eclipse, for example, does not detect this, and de-
termines that both values need to be returned. This is not easily accomplished in Java,
and hence the refactoring is rejected.

3 Our Approach

As outlined in the last section, the main challenge in implementing the Extract Method
refactoring and its brethren is the intertwining of name binding, control flow, and data
flow, which are all delicate by themselves, and even more so in conjunction.

By using our existing naming framework, we can easily achieve binding preservation
where necessary, so we can concentrate on preserving control and data flow. It is a
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natural idea to simplify this task by splitting the refactoring into two parts that deal
with control flow and data flow separately. Unfortunately, this is difficult to achieve in
plain Java: At some point during the refactoring, the statements to be extracted have
to be moved into a new method, and at that point both their control and data flow will
change at the same time.

We hence introduce anonymous methods into the language as a lightweight extension
that helps breaking up the transformation. Just as an anonymous class is a class that
is defined and instantiated at the same time and may access local variables from the
surrounding method, an anonymous method is a method that is defined and invoked
at the same time, and (besides its own parameters and local variables) can also access
variables from the surrounding method.

In control flow terms it behaves like an ordinary method, in particular break and
continue statements can not escape the anonymous method. In data flow terms, how-
ever, it behaves like a block in that it can access variables from the enclosing scope in a
lexically scoped fashion.

Thus an anonymous method provides a convenient half-way point for the Extract
Method refactoring: If we can package up the statements to be extracted into an anony-
mous method, it means that we have successfully preserved the control flow. We can
then tackle the task of preserving data flow by successively introducing parameters and
return values as needed. Once the anonymous method does not reference any local vari-
ables from the surrounding method anymore, it can safely be promoted to a normal
method without disturbing either control or data flow.

While we leave a detailed exposition of the different steps involved in extracting a
method to the next section, we will briefly describe the general procedure by using our
initial example. Here is the original program, with the statements to be extracted framed
by comments:

class A {
void m() {
int total = 0;
for(Item i : getItems()) {

/ / f rom
System.out.println("item " + i.getDescription());
total += i.getValue();
/ / t o

}
System.out.println("total: " + total);

}

(...)
}

As a first step, it will be convenient to turn the sequence of statements to extract
into a block so that we can analyse it and operate on it as a single abstract syntax tree.
This first step, a micro-refactoring we will refer to as Extract Block, is fairly easy to
implement, since blocks do not affect control and data flow, and yields the following
program:

class A {
void m() {
int total = 0;
for(Item i : getItems()) {
{

System.out.println("item " + i.getDescription());
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total += i.getValue();
}
}
System.out.println("total: " + total);

}

(...)
}

Now we turn the extracted block into an anonymous method without parameters,
carefully preserving control flow in the process. This micro-refactoring, called Intro-
duce Anonymous Method, yields this:

class A {
void m() {
int total = 0;
for(Item i : getItems()) {

(() : void ⇒ {
System.out.println("item " + i.getDescription());
total += i.getValue();

})();
}
System.out.println("total: " + total);

}

(...)
}

We write the anonymous method as (() : void ⇒... )(), indicating that
it has no formal parameters, is of return type void, and is applied to an empty list
of arguments. Note that this syntax is for presentation purposes only, and anonymous
methods cannot appear in user programs.

Our next task is to reroute dataflow edges that go across the boundaries of the anony-
mous method, i.e. to do a lambda lifting [11]. To ease this step, we allow our anonymous
methods to have reference parameters like in C#. Thus we get the following:

class A {
void m() {
int total = 0;
for(Item i : getItems()) {

((int i, ref int total) : void ⇒ {
System.out.println("item " + i.getDescription());
total += i.getValue();

})(i, total);
}
System.out.println("total: " + total);

}

(...)
}

The anonymous method now has two parameters i and total, both of type int,
to which the arguments i and total from the surrounding method are assigned. In the
former case, the parameter i and the argument i are entirely different entities, whereas
in the latter case the reference parameter total is aliased to the variable total to
make sure that any changes to the parameter are reflected in the variable.

Before we can lift the anonymous method to a named method, we need to eliminate
reference parameters, which are not supported in normal Java. The easiest way is to
require that there be at most one such parameter, and turn it into a return value, yielding
the following result:
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class A {
void m() {
int total = 0;
for(Item i : getItems()) {

total = ((int i, int total) : int ⇒ {
System.out.println("item " + i.getDescription());
total += i.getValue();
return total;

})(i, total);
}
System.out.println("total: " + total);

}

(...)
}

Now the anonymous method’s body does not reference any local variables from the
surrounding method, thus its control and data flow both behave as with a named method,
and we can, in a final step, lift it out to complete the extraction.
class A {

void m() {
int total = 0;
for(Item i : getItems()) {

total = n(i, total);
}
System.out.println("total: " + total);

}
int n(int i, int total) {
System.out.println("item " + i.getDescription());
total += i.getValue();
return total;

}

(...)
}

We would like to particularly emphasise that we do not propose to add anonymous
methods as a general mechanism to the Java language standard. It is rather a lightweight
extension that we use to simplify the implementation of refactorings. There is no parsing
syntax for anonymous methods, hence they can never occur in user programs, and no
code can be generated for them. All we need to specify is their behaviour in terms of
name binding, control flow, and data flow.

Although we have described only the Extract Method refactoring here and will con-
tinue to concentrate on it as our running example, other refactorings that deals with
code movement, in particular Inline Method, Extract Local Variable, and Inline Local
Variable, face exactly the same kind of problems, and can indeed be treated in the same
way.

4 Extract Method in Small Pieces

Using the concepts introduced in the previous section, we will now take a more detailed
look at the implementation of Extract Method. Our refactoring engine is implemented as
an extension to the JastAddJ Java compiler [4], hence it can work on the abstract syntax
tree produced by the compiler frontend, and use all of the static analysis machinery
provided by the compiler. In particular, this includes name lookup to easily navigate
from a name to its declaration.
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We also make use of a new implementation of the intra-procedural control flow anal-
ysis library presented in [18]. This library provides for every AST node two attributes
pred and succ, that compute the nodes preceding resp. succeeding this node in terms
of control flow. In particular, this allows us to compute, for any statement, its preceding
and succeeding statements. For a given node n, if the node s is contained within the set
n.succ(), we say that there is a “succ edge” from n to s, and similar for pred.

We can now implement a “locking” and “unlocking” mechanism somewhat similar
to the bound names framework [21]: Before performing a transformation, we compute
the control flow predecessors and successors of the statements that the transformation
acts upon. Then after the transformation we recompute this information and verify that
it has not changed, aborting the refactoring if any change has occurred1.

A certain category of syntax tree nodes can be categorised as flow-through nodes,
which purely contribute to the program’s control flow without influencing any other
aspect of the semantics. Examples are nodes corresponding to break and continue
statements, but also nodes corresponding to return2. When checking for control flow
preservation, we disregard such nodes, thus creating the opportunity to “fix” control
flow by inserting additional flow-through nodes.

Note that the post hoc flow preservation check makes the refactoring robust in the
face of future language extensions: if additional control flow constructs appear which
are not handled by the refactoring, the transformation will be aborted instead of pro-
ducing incorrect results.

On top of the control flow analysis we have implemented a lightweight dataflow
analysis for local variables and parameters which provides two attributes dataPred
and dataSucc for every variable node in the syntax tree. The former computes all as-
signment statements for the same variable that can be reached by walking along pred
edges without encountering any intervening assignments to this variable; the latter does
the reverse and computes a set of variable nodes that may use the value assigned to a
variable in an assignment. Thus, dataPred gives us all reaching definitions of a vari-
able use, whereas dataSucc computes the set of reached uses of a variable definition.

This flow analysis framework, together with the naming toolkit, provides the basis
on which we build our implementation of method extraction. The extraction process is
split up into five smaller refactorings:

1. Extract Block pulls the statements to be extracted together into a block.
2. Introduce Anonymous Method turns that block into an anonymous method without

parameters.
3. Close Over Variables eliminates any references to local variables from within the

anonymous method by introducing parameters.
4. Eliminate Reference Parameters gets rid of parameters that need to be passed by

reference, since this is not supported by Java.

1 It is enough to perform intra-procedural flow analysis, since the naming framework guarantees
that method calls are resolved to the same method before and after the refactoring, which
means that inter-procedural control flow will not change.

2 However, for a statement return e;, the node corresponding to e (and its children) are not
flow-through, since they correspond to actual computation taking place.
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5. Lift Anonymous Method turns the anonymous method into a named method within
the same type as the method we are extracting from.

The whole Extract Method refactoring is simply a sequential composition of these five
sub-refactorings, which we now are going to discuss in greater detail. The control flow
and data flow analyses are run before and after each refactoring step to ensure that the
invariants are preserved.

4.1 Extract Block

The Extract Block refactoring takes as its input a block b (represented by its node in the
abstract syntax tree) composed of statements b1 to bn and two indices i and j such that
1 ≤ i ≤ j ≤ n. The goal of the refactoring is to put statements bi to bj into a new block
b′ and insert it into b to replace the original statements.

This refactoring can itself be composed from even simpler operations: In a first step,
we insert an empty block after statement bj , then we successively move the statements
bj to bi into this new block. For every statement to be moved, we want to ensure that its
flow and bindings do not change, so we lock flow and binding information, move it into
the block, and then unlock it; this operation can be encapsulated into a micro-refactoring
Push Statement into Block.

As an example, consider the program in Figure 6 (a), and assume we want to wrap
the first three statements of m into a block. We create an empty block and push the third

class A {
int x = 23;
int m() {

x = 42;
int x = 55;
++x;
return x;

}
}

class A {
int x = 23;
int m() {

x = 42;
int x = 55;
{

++x;
}
return x;

}
}

class A {
int x = 23;
int m() {

x = 42;
int x;
x = 55;
{

++x;
}
return x;

}
}

(a) (b) (c)

class A {
int x = 23;
int m() {

int x;
this.x = 42;
{

x = 55;
++x;

}
return x;

}
}

class A {
int x = 23;
int m() {

int x;
{

this.x = 42;
x = 55;
++x;

}
return x;

}
}

(d) (e)

Fig. 6. Extract Block in action
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statement into it, which does not violate binding or flow preservation and yields the
intermediate program in (b).

The next statement cannot be pushed into the block directly: it declares the vari-
able x which is referenced after the block; if we were to push the whole statement into
the block, x would become invisible, and the resulting program would fail to compile.
Hence we first employ a micro-refactoring Split Variable Declaration, that turns a vari-
able declaration with initialisation into a “pure” declaration without initialiser followed
by an assignment, yielding program (c).

Now the statement x = 55; can be pushed into the block without any problems.
We also need to move the declaration up to the beginning of the selection to clear the
way for pushing the remaining statements. This, of course, creates a problem, since the
local variable x would now shadow the field x in the assignment x = 42. Fortunately,
our naming framework takes care of this automatically, and after unlocking we get (d).

Moving the last statement into the block does not present any particular difficulties,
and we obtain our final program in (e).

Of the three minor refactorings discussed here, Extract Block might be considered a
useful refactoring in its own right to clarify code structure. Push Statement Into Block
and Split Declaration, on the other hand, are pure building blocks that are not very use-
ful to the programmer; they can, however, be reused in the context of other refactorings.

4.2 Introduce Anonymous Method

Next we want to convert the block created in the previous step into an anonymous
method without parameters. JastAddJ, of course, has no built-in support for anonymous
methods, since they are not part of the Java language. Its very extensible implementa-
tion, however, makes it extremely easy to add language extensions.

Support for anonymous methods can be added by providing an additional production
for an abstract syntax tree node in the object language:

AnonymousMethod : Expr ::= Parameter:ParameterDeclaration*
ReturnType:Access Exception:Access* Block Arg:Expr*;

In words, this production says that anonymous methods are a kind of expression,
i.e. they can occur anywhere the Java language grammar allows an expression to occur.
They contain a list of parameters, represented by the same node type as parameters for
plain Java methods and constructors; a return type which is an Access, i.e. a possibly
qualified name; a list of thrown exceptions, likewise given as accesses; a body given as
a Block; and finally a list of arguments, which may be arbitrary expressions.

We do not specify any parsing rules for anonymous methods, since we do not want
to make them available for programmers, but for presentation purposes we use the con-
crete syntax (p : r throws x ⇒ b)(e) to represent an anonymous method with body
b that takes parameters p, is invoked with arguments e, throws exceptions x and has
return type r.

To defer the handling of multiple return values, we introduce another language ex-
tension in the form of output and reference parameters, marked with the modifiers out
and ref, respectively. The argument given for such parameters must be a variable of the
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enclosing scope, and any changes the anonymous method makes to the parameter are
reflected in that argument, thus these arguments are (conceptually) passed by reference.

Parameters marked ref may be read before they are assigned, which is not possible
for out parameters. These two kinds of parameters behave like their counterparts in
C#, but they only occur as ephemeral language constructs during refactoring, not as
genuine language features. A parameter that is marked neither out nor ref is called a
value parameter.

Conceptually, control flow for an anonymous method works like for a normal method
call: parameters are bound to arguments, the body is executed, and may return a value
by executing a return statement. Exception handling likewise works as for methods,
exceptions thrown but not caught within the anonymous method propagate to the en-
closing scope and onwards until a correspondingcatch clause is found. Like a normal
method, an anonymous method may declare and use local variables in addition to its pa-
rameters, and it may also access any variable or field visible in the surrounding method,
subject to lexical scoping.

To turn a block into an anonymous method without parameters, we do not need
to adjust any data flow or name bindings: all these work the same way for blocks as
they do for anonymous methods. We do, however, need to make sure that control flow
is preserved. Hence, we lock down control flow in the block, computing and caching
the predecessor and successor statements of every statement in the block, then wrap it
into an anonymous method, and unlock control flow, recomputing all predecessor and
successor statements to make sure they have not changed.

More precisely, given a block b in a context with return type T 3, we perform the
following steps:

1. Lock all control flow in b.
2. Compute all uncaught checked exceptions thrown in b, and use the naming frame-

work to compute locked accesses e1, . . . , en for them.
3. Construct an anonymous method C of the form

(() : R throws e1, . . . , en ⇒ b)()

where R is T if b cannot complete normally4, or void otherwise.
4. If b can complete normally, replace it by C;, otherwise by return C;.
5. Unlock control flow, aborting the refactoring if the flow has changed.

In the second example program of Figure 4, for example, the block can complete nor-
mally, so we perform the following transformation:

class A {
void m(int i) {

{
if(i == 23)
return;

System.out.println(i);
}

}
}

⇒
class A {

void m(int i) {
(() : void ⇒ {

if(i == 23)
return;

System.out.println(i);
})();

}
}

3 That is, T is either the return type of the enclosing method, or it is void if b is not inside a
method.

4 That is, if every control flow path through b ends in a control transfer statement like return;
for the precise definition see the Java Language Specification[8].
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In the program on the left, the only control flow successor of both the return state-
ment and the println statement is the “exit node” of the enclosing method, which
is a pseudo-statement indicating that control flow has reached the end of the method
(see [18] for more details on this point). The same is true in the refactored program
on the right, and since all the other predecessor and successor statements are likewise
preserved, the refactoring can continue.

In the first example program of Figure 4, the block cannot complete normally (both
control paths end in a return statement), hence we transform as follows:

class A {
void m(int i) {

{
if(i == 23)
return 42;

return i + 1;
}

}
}

⇒
class A {

int m(int i) {
return (() : int ⇒ {

if(i == 23)
return 42;

return i + 1;
})();

}
}

Again, we can verify that control flow successors have not changed: the newly
inserted return is a flow-through node, and hence does not disrupt control flow.

4.3 Close over Variables

We now want to perform lambda lifting on the anonymous method produced by the pre-
vious step, to make explicit any dependencies on local variables from the surrounding
scope. In data flow terms, we need to handle two situations:

– The anonymous method might read a local variable x from the surrounding scope,
whose value was set before executing the method; thus it has an incoming dataflow
edge that crosses the boundaries of the anonymous method.

– The anonymous method might write a local variable y from the surrounding scope
whose value is read after the method has finished executing; thus it has an outgoing
data flow edge that crosses the method’s boundaries.

In the first case, x needs to be made a value parameter of the method, in the second case
y should become an output parameter. Of course, both situations may apply to the same
variable, which should then be classified as a reference parameter.

We can implement these conditions in terms of the dataflow framework: For a given
occurrence of a variable x in the anonymous method,

– x should be made a value parameter if any of its data flow predecessors come before
the entry of the anonymous method,

– x should be made an output parameter if any of its data flow successors come after
the exit of the anonymous method,

and it should be made a reference parameter if both situations apply.
After all variables have been treated in this manner, we are guaranteed that all data

flow edges have been safely rerouted. There might, however, still be references to local
variables from the enclosing scope in the body; this happens if the use of a local variable
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class A {
int k;
void m(boolean b) {
int n = 23, m;
(() : void ⇒ {

if(b)
n += 19;

m = k = 56;
})();
System.out.println(n);

}
}

⇒
class A {

int k;
void m(boolean b) {

int n = 23, m;
((boolean b, ref int n) : void ⇒ {

int m;
if(b)
n += 19;

m = k = 56;
})(b, n);
System.out.println(n);

}
}

Fig. 7. Closing over local variables

inside the anonymous method is independent of its use in the enclosing method, and we
can then safely make it a local variable of the anonymous method instead.

As an example, consider the program in Figure 7 on the left. The Close Over Vari-
ables refactoring considers the three references to b, n, and m inside the anonymous
method (but not the reference to k, since it is a field).

– b has an incoming dataflow edge; the parameter declaration counts as a definition,
there are no intervening definitions of b, and the definition is outside the anonymous
method. It has no outgoing dataflow edge, since it is never used afterwards.

– n has both an incoming and an outgoing dataflow edge; its data flow predecessor is
its declaration, which is outside the anonymous method; its data flow successor is
the println statement, which is likewise outside the anonymous method.

– m has neither incoming nor outgoing dataflow edges, since it has no data flow pre-
decessors or successors.

Thus, b should be made a value parameter, n a reference parameter, and m a local
variable, yielding the program on the right.

Note that control flow cannot be influenced by the transformations done in this step,
so no control flow locking and unlocking is needed. Also, we forgo binding preservation
in this step: uses of local variables from the surrounding scope will now bind to the
corresponding parameters instead. In all the preceding (and most of the following) steps,
however, we do indeed want to preserve binding. Our decomposition of the refactoring
helps to clarify this situation and makes it possible to precisely pinpoint at which stages
binding preservation is required, and where we have deliberately chosen to relax it.

4.4 Eliminate Reference Parameters

Our refactoring process has now reached its apogee from the Java language specifica-
tion: not only are we working with an anonymous method, a construct unknown to the
JLS, but it even might feature output and reference parameters, which are likewise not
supported by the language. It is now our task to safely remove these extra features to
bring our program back into the fold of standard compliant Java programs.



Stepping Stones over the Refactoring Rubicon 385

In this step, we eliminate out and ref parameters. The basic idea is that a ref
parameter can be simulated by a value parameter whose value is returned to the sur-
rounding method, and there assigned to the corresponding variable; an out parameter
is a local variable whose value is passed back in the same fashion.

More precisely, we perform the following steps:

1. If there is no output or reference parameter, the refactoring is a no-op. If there is
more than one such parameter, abort (since Java methods can only return a single
value).

2. If the anonymous method already has a non-void return type, abort likewise, for
the same reason.

3. Let x be the only non-value parameter. If it is a reference parameter, change it into a
value parameter. Otherwise make it into a local variable of the anonymous method
and remove the corresponding argument.

4. Change the return type of the anonymous method to the type of x.
5. Insert a statement to return x and wrap the whole anonymous method into an as-

signment to the corresponding variable in the surrounding method.

All these steps are quite straightforward to implement; for example, the program from
Figure 7 becomes

class A {
int k;
void m(boolean b) {
int n = 23, m;
n = ((boolean b, int n) : int ⇒ {

int m;
if(b)

n += 19;
m = k = 56;
return n;

})(b, n);
System.out.println(n);

}
}

As explained, this refactoring step rejects any anonymous method that needs to return
the value of two or more variables, which results in a behaviour similar to Eclipse. An
alternative would be to package up the necessary return values into a wrapper object,
return that object, and unwrap it again in the calling method.

4.5 Lift Anonymous Method

To finally turn our refactored program back into a normal Java program, we need to
eliminate the anonymous method. We know that it has only value parameters and its
body does not reference any local variables from the enclosing scope; hence it is se-
mantically equivalent to a call to a named method with the same body and parameters
and the same arguments.

Assuming that we want to extract the anonymous method to a method named f, we
simply convert (p : r throws x ⇒ b)(e) into the method call f(e), and insert the
definition
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r f(p) throws x {

b
}

into the surrounding class declaration. Our naming framework is put to use to ensure
that the call to f really binds to the newly inserted method f (and that there are no
overriding methods), and that all type bindings are preserved; this will, for example,
detect (and reject) a refactoring that tries to extract a statement that throws a locally
declared exception type.

The example program from above, of course, poses no such problems, and we can
successfully complete the refactoring:

class A {
int k;
void m(boolean b) {
int n = 23, m;
n = f(b, n);
System.out.println(n);

}
int f(boolean b, int n) {
int m;
if(b)

n += 19;
m = k = 56;
return n;

}
}

4.6 Putting It All Together

The micro-refactorings introduced above are all implemented as methods on AST node
types, which are just Java classes. For example, the Extract Block refactoring is a
method in class Block with the signature

Block extractBlock(int i, int j) throws RefactoringException

When invoked as b.extractBlock(i, j), the method extracts statements i to j
of block b into a new block, and returns it as a result. If, at any point, the refactoring
cannot proceed (for example due to an invariant violation), an exception is thrown.

The other refactorings are implemented in a similar way, so that the complete Extract
Method refactoring can be realised as a one-liner (although we introduce some line
breaks for æsthetic reasons):

MethodDecl extractMethod(int i, int j, String n, String v)
throws RefactoringException {

return extractBlock(i, j).extractAnonymous().
closeVariables().eliminateOut().lift(n, v);

}

This method again belongs to class Block, and is invoked on the block from which
we want to extract statements i to j. The parameter n determines the name of the
new method, and v its visibility. Since all the micro-refactorings return the result they
produce, an invocation chain can be used to implement their sequential composition.

Space constraints prevent us from showing more code, but the entire refactoring
framework is available at http://jastadd.org/refactoring-tools.

http://jastadd.org/refactoring-tools
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5 Discussion

The previous two sections have discussed in some detail an implementation of Extract
Method as a sequential composition of five component refactorings that make essential
use of several lightweight language extensions to achieve better separation of concerns,
and to get a clearer picture of how the refactoring preserves certain syntactic invariants
to achieve behaviour preservation.

The same approach works equally well for other refactorings. Let us take a short
look at Inline Method. It is the inverse of Extract Method in that it takes an invocation
of a method and inlines the method body, substituting it for the invocation expression.
It can likewise be decomposed into five micro-refactorings, that are precisely inverse to
their counterparts from Extract Method:

1. Anonymise Method turns a method call that can be statically resolved into an anony-
mous method with the same body, parameter list and exception list as the named
method being invoked, applied to the same arguments.

2. Introduce Reference Parameter removes return statements and replaces them with
assignments to an output parameter.

3. Open Variables substitutes actual arguments for formal parameters, using the lock-
ing framework to ensure that name binding and data flow remain unaffected.

4. Inline Anonymous Method replaces an invocation of an anonymous method without
parameters by its body, preserving control flow.

5. Inline Block inlines all statements within a block into the surrounding block.

As another example of a similar pair of inverse refactorings we have Extract Local
Variable, which extracts an expression into a local variable, and Inline Local Variable,
which eliminates all uses of a local variable by substituting its value. Both were very
easy to implement in our framework.

In all these cases, the use of anonymous methods allows us to separate the con-
cerns of data flow preservation and control flow preservation, and as before both the
name binding framework and the control and data flow library see heavy use. Several
smaller language extensions are also used: For example, when inlining method param-
eters during Open Variables it is useful to introduce temporary local variables whose
names should not conflict with any other variables in scope. We introduce such non-
shadowing variables as an additional language construct which can be turned into a
normal declaration by choosing a fresh name.

These language extensions only exist at the level of abstract syntax. It is hard to
imagine a good syntactic representation, e.g., for a bound name that explicitly specifies
its binding target, and it would certainly not be conducive to a source program’s clarity
to explicitly contain such constructs. But that is not their goal: Bound names and bound
control flow exist only to raise the level of abstraction for implementing refactorings
and to address in one place issues that occur in several different refactorings.

The situation is a bit different for anonymous methods and their support for reference
and output parameters: again, these only exist in the abstract syntax tree and cannot be
used in source programs. Programming languages like C# or Smalltalk, on the other
hand, come with built-in support for this kind of language feature, which could po-
tentially simplify the implementation of refactorings like Extract Method. However, it



388 M. Schäfer et al.

may be the case that the complexity of handling closures in the analysis outweighs the
benefit of using them for decomposition.

It is perhaps interesting to observe that our use of an intermediate language for refac-
toring goes against the usual trend: For static analysis, for example, one would normally
choose an intermediate language that is simpler than the source language, abstracting
away from its idiosyncrasies and simplifying it down to a core language. We work
instead on a richer language that introduces new features which we find useful for
structuring the refactoring process.

However, this does not complicate the implementations of the refactorings proper.
While there are numerous statements in Java that affect control flow, from the refac-
toring point of view it is sufficient to abstract them as nodes in a control flow graph.
Similarly, all expressions in Java that contain an assignment as a side effect can be
abstracted as reaching definitions.

The challenge of refactoring a rich language with various extensions thus boils down
to implementing name binding, control flow analysis, and data flow analysis for the
full language. These analyses can all be implemented in a modular and extensible way,
taking advantage of the compiler infrastructure [21,18].

While the analyses provide these abstractions and use them to enforce invariants,
the micro-refactorings build on top of these abstractions and therefore only need to
deal with a much smaller language. For example, Extract Method needs to be aware
of concepts such as methods, parameters, return values, and exceptions; the remaining
language features can be abstracted as their effect on control and data flow.

This abstract view is sufficient for the refactoring developer. The invariant check-
ing provides a safety net that guards against corner cases and surprising interactions
between language features. For example, if the developer did not implement the Close
Over Variables micro-refactoring, method extraction would still be possible for a lim-
ited number of cases, and reject cases were lambda lifting is needed.

The developer could then further improve the transformation to cover more cases
without the danger of inadvertently allowing unsound refactorings. This stands in sharp
contrast to a precondition-based approach where unanticipated situations easily lead to
incorrect transformations.

6 Evaluation

For evaluating our approach, we first present some statistics on the amount of code
needed to implement the discussed refactorings.

The naming framework is the biggest component, requiring about 1700 lines of
code5; this excludes code that is specific to the Rename refactorings. The implemen-
tation of the control flow analysis contributes around 550 lines of code, whereas the
data flow analysis for local variables is implemented in 200 lines of code. Note that the
former two components were written well before we started implementing the refactor-
ings discussed in this paper, only the data flow analysis was implemented specifically
for this project.

5 This and all following code size measurements were generated using David A. Wheeler’s
’SLOCCount’.
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The implementation of anonymous methods requires about 150 lines of code, for the
definition of corresponding AST node types, pretty printing, name analysis, and control
and data flow analysis.

The size of the individual refactorings we have implemented is summarised in Figure
8: for each refactoring we show its decomposition in micro-refactorings, and the size of
each micro-refactoring.

Extract Method takes around 500 lines of code, quite evenly distributed between the
individual micro-refactorings: Extract Block needs about 140 lines (including the code
for Push Statement Into Block and Split Declaration), Introduce Anonymous Method
and Close Over Variables around 100 lines each, whereas Eliminate Reference Param-
eters and Lift Anonymous Method each are implemented in less than 90 lines.

Similar numbers obtain for Inline Method, shown in the same figure on the right,
which is overall a bit smaller than Extract Method; Extract Local Variable and Inline
Local Variable are significantly smaller, at about 80 lines of code each.

These numbers compare very favourably both to Eclipse’s implementation of Extract
Method, which comprises more than 1500 lines of code, and other implementations like
the one presented by Juillerat [12] that seems to offer less functionality for only a subset
of Java at around 1000 lines of code.

To test the correctness of our refactorings, we put together a suite of about 90 tests for
Extract Method and its constituent micro-refactorings, and several dozen for the other
refactorings, in particular including all the test cases for bugs in the refactoring engines
of popular IDEs [3].

We also ran our engine on the test suite for Eclipse 3.4, which is publicly available,
and some tests from the test suite for IntelliJ IDEA 8.0, which JetBrains kindly provided
for us to use.

Extract Method:

Extract Block
139

Intro Anon.
Method

90

Close Over
Variables

103

Eliminate Ref.
Parameter

84

Lift Method
82

Inline Method:
Anonymise

Method
22

Introduce Ref.
Parameter

51

Open Variables
89

Inline Anon
Method

74

Inline Block
33

Extract Local Variable:
Intro Unused

Variable
16

Extract
Assignment

30

Merge
Declaration

29

Inline Local Variable:
Split

Declaration
29

Inline
Assignment

42

Remove
Unused Var

13

Fig. 8. Structure and code size for four refactorings



390 M. Schäfer et al.

The former includes 395 test cases for Extract Method, of which 23 test functionality
that we do not support yet: Two test cases concern the extraction of a method into a
surrounding class other than the immediate host class. Another 21 cases test duplicate
elimination, where a number of occurrences of the same expression are jointly extracted
into a method. This feature is largely orthogonal to the extraction process proper and
relies on clone detection [1], which we have not implemented in our framework yet. All
of the remaining 372 test cases are handled correctly by our implementation, among
them three on which Eclipse’s own refactoring engine fails with a null pointer exception,
and one on which it produces a wrong result.

The test cases that JetBrains provided to us comprise 74 tests for Extract Method, of
which 19 again concern duplicate elimination. We pass all the remaining 55 tests.

Where our engine did not produce identical code to Eclipse or IntelliJ, we manually
checked to make sure that our output is equally valid. Such discrepancies are mostly
due to a different ordering of the parameters of the extracted method or similar syntactic
variations.

In summary, we can say with confidence that our implementation is at least as good
as these two industrial-strength implementations, and in some cases manages to detect
and properly handle situations they fail to address.

7 Related and Future Work

Refactoring literature usually presents statement-level refactoring like Extract Method
as primitive transformations useful in the composition of larger-scale refactorings
[19,13]. We are, however, by no means the first to advocate the decomposition of that
kind of refactoring into yet smaller components. In [20], Perera paints a compelling
picture of how the use of micro-refactorings changes the way refactorings are used by
the programmer, with method extraction in Java as one of his examples. His proposed
building blocks, e.g. Push Statement into Method for moving statements one by one into
a freshly created method, are still quite complex, however, as they still need to yield a
valid Java program at each intermediate step. It is hence not obvious that his decompo-
sition actually makes it easier to implement a behaviour preserving refactoring engine.
By comparison, our use of lightweight language extensions makes the individual micro-
refactorings much simpler and easier to think about and implement.

Such decomposition of statement-level refactorings is also addressed by Ettinger
in his inspirational PhD thesis [5], in which he develops a theoretical framework for
slicing-based behaviour-preserving transformations. Noteworthily, he chose to embed
the concept of liveness directly into programs, by explicitly stating variables that cannot
be local to a statement. Rather than tackling a full mainstream language like we do,
however, Ettinger focuses on proving the correctness of transformations for programs
written in a simple ad hoc imperative language.

The concept of control and data flow preservation features prominently in the in-
fluential paper of Komondoor and Horwitz [14] on procedure extraction. Under their
idealising assumptions, they can indeed prove that flow preservation entails semantics
preservation, which, as we have discussed, is not the case for Java. However, their work
mostly focuses on moving statements together to arrange them into a contiguous block
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suitable for extraction; the actual process of extracting into a procedure they dismiss as
“straightforward”.

Our use of language extensions like bound names bears a certain resemblance to
work by Mens and others on implementing transformations on graph representations
of programs [16]. The graph they propose, however, only encodes part of the program,
namely its high-level structure, as none of the refactorings they discuss actually require
control and data flow information. Furthermore, their work does not address the prob-
lem of translating back the graph representation into a source-level program, which is
essential for the purposes of a refactoring engine.

The composition of smaller refactorings into larger ones has been the focus of work
by Kniesel and Koch [13]. For the refactorings we have considered in this paper, a very
simple form of sequential composition is sufficient, which they call AND-sequence.
Their work is also concerned with composing the pre- and post-conditions of constituent
refactorings, which does not directly apply to our invariant-based presentation.

An invariant-based approach to structural refactoring has been suggested some time
ago by Griswold [9]. He provides a small catalogue of simple “program restructur-
ings” that preserve data and control dependencies as captured in a Program Depen-
dence Graph [15]. While these restructurings are quite similar in scope and intent to our
micro-refactorings, they are presented for a very small and well-behaved object lan-
guage (a first-order subset of Scheme), where they are much easier to implement and
reason about than with Java.

For future work, we would like both to explore the implementation of new refactor-
ings and to extend our current implementations. There is still a number of structural
refactorings that our engine does not support, for example Encapsulate Field or Move
Method, but it seems that most of these should be easy to implement using our by now
well-developed toolbox of name binding and flow analyses.

A more interesting challenge would be to implement the Extract Slice refactoring
[6], which does away with the restriction of Extract Method that only consecutive state-
ments can be extracted. Slice extraction needs to freely rearrange statements, so it does
not preserve control flow in general; an invariant-based presentation would hence need
to consider more subtle preservation criteria.

A more straightforward extension to our current implementation would be to im-
plement duplicate elimination as provided by Eclipse and IntelliJ. As mentioned, this
extension would not seem to necessitate any extensions to the extraction mechanism
proper, but only requires the implementation of a clone detection algorithm [1].

Finally, it would be interesting to see if the decomposition we have achieved for
our four example refactorings could help with their verification. Since each micro-
refactoring performs a very small but independent and well-defined transformation on
the program it is tempting to try and verify their correctness separately, and then com-
pose their proofs into a correctness proof of the whole refactoring. Such a proof could
also make use of our previous work on formalising Java name binding [22].

8 Conclusions

We have presented a general approach to implementing software refactorings by view-
ing them as invariant-preserving transformations on programs in an enriched language.
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Such an enriched language offers extensions to the base language that make the imple-
mentation of refactorings easier, for example by providing implicit invariant checking,
or language constructs that can be used to better decompose the transformation per-
formed by a refactoring. We have implemented a framework that offers several such
extensions to the Java 5 language, and have used it to implement non-trivial refactor-
ings such as Extract Method. The implementations are concise and well-structured; they
support the complete Java 5 language; and our tests show that in terms of correctness
they rival or even surpass widely known refactoring engines. We are confident that our
approach is flexible enough to allow easy implementation of any structural refactoring
that modifies name binding, control flow, and data flow.

We agree with Fowler’s assessment that the Extract Method refactoring is a paradig-
matic example of a refactoring that is simple, yet requires non-trivial analysis. But we
have shown that there is no need to cross this Rubicon in one huge leap; we can in-
stead pass it on stepping stones, one micro-refactoring at a time, with the principle of
invariant preservation as our guide rope.
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Abstract. Modern development environments support refactoring by
providing atomically behaviour-preserving transformations. While use-
ful, these transformations are limited in three ways: (i) atomicity forces
transformations to be complex and opaque, (ii) the behaviour preser-
vation requirement disallows deliberate behaviour evolution, and (iii)
atomicity limits code reuse opportunities for refactoring implementers.

We present ‘program metamorphosis’, a novel approach for program
evolution and refactoring that addresses the above limitations by break-
ing refactorings into smaller steps that need not preserve behaviour
individually. Instead, we ensure that sequences of transformations pre-
serve behaviour together, and simultaneously permit selective behavioural
change.

To evaluate program metamorphosis, we have implemented a proto-
type plugin for Eclipse. Our analysis and experiments show that (1) our
plugin provides correctness guarantees on par with those of Eclipse’s own
refactorings, (2) both our plugin and our approach address the afore-
mentioned limitations, and (3) our approach fully subsumes traditional
refactoring.

Keywords: Refactoring, Program Evolution.

1 Motivation

Modern programming methodologies, such as Extreme Programming [2], use
refactoring to prepare software for impending change or to eliminate “bad smells”
in source code. Fowler et al. [4] defines refactoring as:

A change made to the internal structure of software . . . without changing
its observable behaviour

To automate this process, integrated development environments such as Eclipse
[14] and refactoring engines such as HaRe [8] provide machine support for refac-
toring. These systems implement refactoring as atomic transformations guarded
by preconditions. The underlying assumption is that if the precondition holds,
the transformation will preserve behaviour. If the precondition does not hold,
the IDE disallows the transformation. This approach prevents some forms of un-
intended behavioural change but presents several problems to refactoring users
and developers:
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c l a s s A {
p r i v a t e i n t x ;
vo id f ( )
{ x = C . g ( ) ; }

}

c l a s s B { }

c l a s s A { }

c l a s s B {
p r i v a t e i n t x ;
vo id f ( )
{ x = C . g ( ) ; }

}

Fig. 1. The chicken-or-egg problem: fields and methods must be moved simultaneously

1. The chicken-or-egg problem. Atomic transformations with preconditions
may prohibit safe refactorings. Consider the program in Figure 1: if we wish
to move field “x” and method “f” from class “A” to class “B”, we would like
to employ the ‘Move Method’ and ‘Move Field’ refactorings [4]. If we move
“f” first, “B.f()” will not be able to see “x”, so ‘Move Method’ will disallow
the move. However, if we move “x” first, the process fails for the converse
reason. This chicken-or-egg problem is exacerbated if additional fields or
mutually recursive methods are affected, and while refactoring users can
sometimes find workarounds, they may find it easier to abandon the promised
behaviour preservation of refactorings in favour of faster manual editing.
Some refactoring implementations address this problem by attempting to
predict which additional methods and fields must be moved simultaneously
to atomically perform the refactoring, but these fixup heuristics are complex,
error-prone, and may run contrary to the user’s wishes.

2. The selective behaviour evolution problem. The user may want to ex-
ploit the automation provided by refactorings without necessarily preserving
all behaviour. For example, in theory a refactoring must never allow the user
to rename a public method since some independent source code (perhaps in
a plugin) might reference this method by name. In practice, a user might
accept this change and yet still want to prevent other forms of behavioural
change, such as a renamed method overriding a method it didn’t override be-
fore. This is a dilemma for refactoring engine designers: they must anticipate
the degree to which users value safety over versatility.

3. The predictive analysis problem. Since traditional behaviour preserva-
tion checks are implemented as preconditions, they must predict the effect
of the transformation in order to determine if it will cause problems. To do
this exhaustively is quite difficult. For example, in the case of ‘Rename’, a
precondition must consider all the possible ways in which a name could be
captured and check to see if that will happen. As Schäfer et al. [13] point
out, a less error-prone approach is to first perform the transformation and
then check after the fact to see if any names have been captured.

This paper shows how a small twist to the “classical” refactoring implemen-
tation strategy allows us to solve the above problems. We achieve this by:
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1. Capturing the approximate program behaviour in a program model,
2. Applying a series of possibly non–behaviour-preserving program metamor-

phosis steps (PM steps for short),
3. Using postconditions to compare the original program model to the current

program model to see if behaviour has changed.

This twist yields a new view on refactoring: instead of treating refactoring as
the application of atomic refactorings that must preserve behaviour by them-
selves, we can think of refactoring as a process of gradual application of PM
steps. As part of this process, users may check for behaviour preservation at any
time. Thus, users may decide to first transform their program as they desire (e.g.,
moving fields and methods) and then either recover behavioural equivalence, if
necessary, or expressly and selectively accept some or all behavioural change.

Program metamorphosis provides three main benefits over the traditional ap-
proach to refactorings:

1. It allows safe transformations through intermediate stages whose behaviour
differs from the intended behaviour,

2. It allows safe transformations through intermediate stages that may not even
compile,

3. It allows the user to selectively evolve behaviour.

In this paper, we provide the following contributions: we describe the process
of program metamorphosis (Section 2) and demonstrate the benefits it offers
over traditional refactoring (Section 3). We then sketch a theory that allows us
to view program metamorphosis as a decomposition of refactorings and show that
our approach is at least as safe as traditional refactoring, if we base it on refac-
torings that we can decompose in a certain way (Section 4). Next, we describe
a prototype Eclipse plugin that demonstrates that program metamorphosis is
practical to implement (Section 5). Finally, we describe several refactorings we
implemented using our prototype; where possible, we compare the quality of
their behaviour preservation promises against those provided by Eclipse’s refac-
torings by applying both to Java projects with comprehensive unit test suites
(Section 6). Section 7 reviews related work and Section 8 concludes.

2 The Process of Program Metamorphosis

Before we look at concrete examples of program metamorphosis, it is helpful
to consider the structure of the underlying process. A program metamorphosis
system consists of three main components:

1. a mechanism for generating program models that describe the approximate
behaviour of a program,

2. a consistency checker that compares two program models and extracts the
inconsistencies (if any) between them,

3. a suite of small PM steps, each of which transforms the program in a possibly
non–behaviour-preserving way.
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Program metamorphosis uses the consistency checker and program model gen-
erator to help the user compose PM steps into a sequence of transformations that,
taken as a whole, preserves behaviour.

2.1 Combining Multiple PM Steps

Unlike traditional refactorings, which use preconditions to check the legality of
the transformation, program metamorphosis uses postconditions. Specifically,
program metamorphosis constructs a model of the program’s behaviour before
the transformation, transforms the program, and then constructs another model
after the transformation, possibly re-using parts of the earlier model. If the two
models do not match, then the program’s behaviour may have been changed.
This approach, illustrated in Figure 2, allows program metamorphosis to safely
combine multiple transformations as follows:

1. We first calculate a model for the program and save it as the “desired pro-
gram model.” We call this the “desired” model since we ultimately want the
transformed program to end up with the same model.

2. When the user applies a PM step, we compare the desired program model
with the calculated current program model, reporting any inconsistencies to
the user. If there are inconsistencies then the user may:
(a) Revert the previous step,
(b) Apply another PM step, or
(c) Accept any or all of the reported inconsistencies as behavioural change

by updating the desired model to incorporate the change in behaviour.

The key benefit of program metamorphosis is that after the user has applied
any particular PM step, the program’s current behaviour may not match its
original behaviour, but the user can continue applying steps until it does. In this
way, PM allows the composition of simple, possibly non-behaviour preserving
steps into a sequence that does, in its entirety, preserve behaviour.

Figure 3 visualises the advantages of our approach. In this figure, every vertex
represents a program; either well-formed (black) or ill-formed (white), while
edges represent PM steps. Programs with ‘equivalent’ behaviour are grouped
into equivalent classes. To refactor program pa to program pb, we can choose

Program
Curr
Model

Current
Model

Desired Model

User Transform

Consistency
Checks

Inconsistencies

Fig. 2. Consistency checking process for program metamorphosis
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p1
p0

pa

pc p2

pb

Fig. 3. Program metamorphosis. Black vertices represent well-formed programs; white
vertices represent ill-formed programs. Solid edges represent the application of PM
steps. Dashed lines group programs with equivalent behaviour.

two PM steps: from pa to p0, then to pb, since we may ‘pass through’ ill-formed
programs. With refactoring, we must always remain well-formed and in the same
equivalence class, so we have to take a longer route through p1 and p2 instead
(Section 3.1 gives a concrete example of this scenario). Worse, we can never hope
to reach pc from pa with refactoring, while there are many ways to get there with
program metamorphosis (Section 5.3 gives a concrete example of this scenario).

2.2 Recovery Plans

In addition to relying on the user to apply additional steps when the current
model does not match the desired model, a program metamorphosis system can
automatically attempt to recover consistency in several ways:

1. Disallow/retract PM steps that fail to preserve behaviour.
2. Heuristically apply supporting PM steps. For example, Schäfer et al. [13]

describe a particular technique that can be used to automatically fix name
capture after ‘Rename’. In some cases, heuristic changes may have undesired
side-effects; if so, the user must undo them later. In a similar vein, existing
refactoring tools, such as Eclipse, predict conflicts that will happen and
heuristically pre-apply other refactorings in order to avoid them.

3. Search for recovery plans. Recovery plans are short sequences of PM steps
that will satisfy the postconditions. The user can then pick which plan (if
any) she wants to enact. This approach falls within the realm of AI Planning;
to be practical, it requires heuristics to guide the planning process.
One of our earlier prototypes incorporated such facilities, though our initial
experiments suggested that scaling this approach is nontrivial. We expect to
explore this idea further in future work.

2.3 Challenges in Comparing Program Models

Program equivalence is undecidable; thus, we cannot be fully precise when com-
paring two program models. We can choose to err either on the side of being
pessimistic, i.e., making conservative worst-case assumptions, or on the side of
being optimistic. Both approaches have their merits: being pessimistic means
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that we will always be safe, while being optimistic means that we can be more
flexible. In Java we must be optimistic, at least in some respects; otherwise
dynamic class loading and reflection render most interesting refactorings impos-
sible.

Traditional refactorings have only two options: they can be pessimistic and
safe, or optimistic and flexible. Program metamorphosis adds a third option:
it can be pessimistic and safe, but also allow users to accept inconsistencies as
behavioural change and thereby also be flexible.

We show in Section 4 that at least in theory program metamorphosis is as
safe as refactorings; we show in Section 6 that our first prototype is also as safe
as refactorings.

3 Examples of Program Metamorphosis

In the following, we present three examples to illustrate our approach in prac-
tice. First, we illustrate transformations that temporarily change behaviour (Sec-
tion 3.1). Next, we consider transformations that temporarily render the program
ill-formed (Section 3.2). Finally, we examine the use of selective behaviour evo-
lution (Section 3.3).

3.1 Transformations through Non-equivalent Programs

Consider the program below and assume that the user wants to swap the names
of the totalValue instance variable and the total method parameter. In the fol-
lowing, we have labelled important declarations and variable references with
[·]n.

c l a s s Rece i p t {
[ i n t t o t a l V a l u e]1 ;

vo id s e tTo t a l ( [ i n t t o t a l ]2 ) {
[ t o t a l V a l u e ]3 = [ t o t a l ]4 ;

}
}

A rename refactoring using atomic preconditions would disallow starting the
transformation by renaming either totalValue to total or total to totalValue be-
cause in both cases the parameter (2) would capture the left-hand side of the
assignment (3), possibly changing the behaviour of the program. This transfor-
mation could be accomplished via refactorings, albeit awkwardly, by first renam-
ing one of the variables to a temporary name, renaming the other to the first
name, and then renaming the temporary name to the second name, but this
work-around requires three steps rather than two and forces the user to plan
ahead when refactoring.

PM can perform the transformation safely in two steps using postconditions.
It starts by creating the following program model, which captures the binding
of variable uses to declaration (here n→ m indicates that the variable used at
n refers to the declaration at m).
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Desired Name Model 3 → 1, 4 → 2

The user can then apply a rename step to change the total field declaration
(1) to be called totalValue. PM now computes the model for the transformed
program and compares it to the desired model, reporting any inconsistencies
to the user. In this case, the rename has caused the reference on the left-hand
side of the assignment (3) to be captured: it previously referred to the the field
(declaration 1) but now refers to the parameter (declaration 2).

c l a s s Rece i p t {
[ i n t t o t a l V a l u e ]1 ;

vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l V a l u e ]3 = [ t o t a l V a l u e ]4 ;

}
}

Desired Name Model 3 → 1, 4 → 2

Current Name Model 3 → 2, 4 → 2

Inconsistencies 3 captured by 2

The program’s behaviour has now been changed: calling setTotal() will no longer
update the totalValue field. To ensure behaviour preservation, the user can either
revert the rename transformation, or apply another rename step to rename the
left-hand side totalValue (3) to total.

PM steps have access to the desired program model, which helps them in
transforming programs. In the case of rename, we use the mappings in the desired
model, rather than the current model, to decide which occurrences of totalValue
need to be changed. Thus renaming (3) to total updates both (3) and the field
declaration (1), since (3) is mapped to (1) in the desired model, while leaving
(2) unaffected:

c l a s s Rece i p t {
[ i n t t o t a l ]1 ;

vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;

}
}

Desired Name Model 3 → 1, 4 → 2

Current Name Model 3 → 1, 4 → 2

Inconsistencies None

The current model now matches the desired model. We have achieved the
desired transformation safely and naturally in only two steps, which would be
impossible with a traditional Rename refactoring since atomic preconditions
prohibit transforming through an intermediate stage that does not preserve be-
haviour.

3.2 Transformations through Ill-Formed Programs

Sometimes it makes sense to temporarily transform into a program that will not
even compile. Consider the case below where the user wants to move both the
setTotal() method and the total field from the Receipt class to the Bill class.

Preconditions, as in traditional refactorings, would disallow first moving the
method, since there is no total field in Bill, but would also prohibit first moving
the total field, since that would leave behind an unresolved reference to that field
in Receipt.
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c l a s s Rece i p t {
[ i n t t o t a l ]1 ;

vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;

}
}

pub l i c c l a s s B i l l { }

Desired Name Model 3 → 1, 4 → 2

By using postconditions and a program model, program metamorphosis avoids
this chicken-or-egg problem: the user can move either the field or the method
first, and then move the other. Suppose she moves setTotal() first: this step will
will result in an unknown name inconsistency and the compiler will complain
that it can’t resolve the reference to total (3).

c l a s s Rece i p t {
[ i n t t o t a l ]1 ;

}

c l a s s B i l l {
vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {

[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;
}

}

Desired Name Model 3 → 1, 4 → 2

Current Name Model 3 → ?, 4 → 2

Inconsistencies Unknown name ‘total’ at 3

The user can now apply a second move step to move the total field to Bill. After
this step, the current model matches the desired model and the program is again
well-formed.

c l a s s Rece i p t { }

c l a s s B i l l {
[ i n t t o t a l ]1 ;

vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;

}
}

Desired Name Model 3 → 1, 4 → 2

Current Name Model 3 → 1, 4 → 2

Inconsistencies None

3.3 Selective Behaviour Evolution

Refactorings are not, by definition, permitted to change program behaviour, but
sometimes this is desirable. Consider the case where the user wants to rename a
public class: technically this should not be allowed since there may be indepen-
dent code (such as a plugin) that relies on the existence of that class. If we care
about preserving our public APIs, we can extend the program model to account
for class visibility. Suppose, in the example below, that the user wants to change
the Bill class to be called Invoice instead.

pub l i c c l a s s B i l l {
[p r i v a t e i n t t o t a l ]1 ;

p r i v a t e vo id s e tTo t a l ( [ i n t t o t a l V a l u e ]2 ) {
[ t o t a l ]3 = [ t o t a l V a l u e ]4 ;

}
}

Desired Visibility Model public → {Bill},
protected → {}
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After renaming Bill to Invoice, the current and desired models no longer match:

Desired Visibility Model public → {Bill}, protected → {}
Current Visibility Model public → {Invoice}, protected → {}
Inconsistencies Extra public class Invoice

Missing public class Bill

Program metamorphosis now reports two inconsistencies between the current
and desired program models. First, there is a new public class, Invoice, whose
presence could prevent a plugin that already defines its own Invoice class from
loading. This may be an acceptable behaviour change (after all, library imple-
menters frequently add classes in order to provide new features). Second, Bill
is no longer a public class; this change is more troubling since it would break
existing plugins that rely explicitly on the Bill functionality.

Rather than revert the transformation, with program metamorphosis the user
can selectively accept behavioural change by modifying the desired program
model to indicate that there should be a public class called Invoice. All future
program models will be compared against this new model.

Desired Visibility Model public → {Bill, Invoice}, protected → {}
Current Visibility Model public → {Invoice}, protected → {}
Inconsistencies Missing public class Bill

Even after modifying the desired model, the ‘Missing public class Bill’ incon-
sistency remains; the user could choose to clear this up by, say, introducing a
new version of Bill that delegates to an instance of Invoice.

Compare this user experience to that offered by traditional refactoring imple-
mentations: those typically require the user to make an all-or-nothing choice to
apply an unsafe transformation after warning her that it may change behaviour.
She must then determine how the program text was transformed, discern how
these alterations would change program behaviour, and decide if that new be-
haviour is acceptable. In contrast, program metamorphosis determines how the
program behaviour has been changed and allows the user to approve or reject
those behavioural changes individually.

3.4 Reusing Equivalence Checks

One benefit of using program models rather than the predictive analyses required
by preconditions is that they are often agnostic as to how the program is trans-
formed. The name model is constructed in the same way regardless of whether
a name could be captured via a rename, a field move, or a pull-up method. Sim-
ilarly, it doesn’t matter to the visibility model whether a class’s visibility was
changed because it was deleted or because it was renamed. This is advantageous
because as we add new PM steps, they can reuse the same program models and
get existing behaviour preservation checks “for free.” While refactorings can also
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sometimes exploit commonalities [7], it is much less obvious how source code for
predictive analyses can be re-used.

3.5 Summary

By using postconditions and program models to check for behavioural equiva-
lence, program metamorphosis allows users to safely compose sequences of trans-
formational steps that may not preserve behaviour individually. This approach
is more natural than that used by traditional refactorings because it does not
force users to plan ahead; instead, program metamorphosis notifies them when-
ever they have arrived at a non-equivalent or even ill-formed program and allows
them to continue transforming until the problem has been corrected. Further,
this approach enables an elegant mechanism of informing users about possible
behavioural changes and allows them to selectively choose which, if any, of those
changes are acceptable.

4 Program Metamorphosis and Refactoring

As we have seen, our PM steps are quite different from traditional refactorings,
even though they achieve similar goals. In this section, we investigate the rela-
tion between these two classes of transformations on a high level. We first take
refactorings apart and show how their components relate to the components of
a program metamorphosis system (Section 4.1), and then formally derive the
notion of a program metamorphosis system from the resulting building blocks
(Section 4.2). We establish some basic properties about this formalism (Sec-
tion 4.3) and finally ‘close the circle’ by showing how we can build refactorings
from PM steps (Section 4.4).

4.1 How Refactorings Work

Abstractly, a refactoring is a pair 〈P, t〉. P is a safety precondition that deter-
mines whether or not the refactoring is applicable to a given program. t trans-
forms the program.

Since refactorings should preserve behaviour, P should ensure that the pro-
gram has the same behaviour before and after applying t:

P (p) =⇒ �t(p)� = �p�

where �−� maps a program to its behaviour. Refactoring implementers then
typically implement P such that

P (p) =⇒ V (p) ∧ V (t(p)) ∧ (p ≡ t(p))

i.e., the precondition P (p) holds only if the input program p is well-formed
(V (p)) and the the resulting program will both be well-formed and (in some
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sense) equivalent to the input program (p ≡ t(p)); ideally, but not necessarily,
by exhibiting precisely the same behaviour (cf. Section 2.3).

If we examine existing refactoring implementations in more detail, we observe
that they implement both the validity predicates and the notion of equivalence
via an intermediate step, namely the construction of a model. This model is typi-
cally a set or slice of some relevant properties of the current program; refactoring
developers choose those properties so that they can check for well-formedness
and predict the outcome of the transformation. For example, Griswold [5] uses a
Program-Dependence Graph to determine relevant relationships that might be
affected by the refactoring, while Eclipse uses a comprehensive name and type
model provided by its JDT library1. Let us assume that we compute such a pro-
gram model m with a program analysis properties, i.e., m = properties(p). Then
the above implication becomes

P (p) =⇒ V (m) ∧ V (t′(m)) ∧ (m ≡ t′(m))

(modulo overloading of our predicate V and equivalence relation ≡). Here, t′ is
a simulation of the effect of transformation t on the program model:

properties ◦ t = t′ ◦ properties

i.e., we should arrive at the same model if we first compute the program model
and then apply t′ as if we first transform the program and then compute a
program model from the result.

In practice, refactoring implementors usually don’t need to make the modified
model t′(m) explicit, since they can use domain knowledge to (a) re-compute only
the relevant slice of the program model that might have been affected by the
transformation and (b) manually deforest [16] their code to directly check for
possible changes at the same time as computing the effect the transformation
would have on the model.

4.2 Towards Program Metamorphosis

Such optimisations lead to tightly integrated t′, V and (≡). But if we make all
three explicit, we obtain the building blocks for program metamorphosis.

To see this, recall our example from Section 3.2 of moving a method together
with the field the method depends on. Let tm be the move for the method and
tf the move for the field. Then we have that

V (t′m(p)) does NOT hold

i.e, our program is ill-formed after the first transformation step (because the
method can no longer see the field from its new location). However,

V (t′f ◦ t′m(p)) and, moreover, m ≡ t′f ◦ t′m(m)

i.e., the composition of both transformation steps preserves behaviour. Here,
we exploit that program well-formedness (V ) is independent of any preceding
transformations.
1 http://www.eclipse.org/jdt/overview.php
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4.3 Soundness and Derivation

In this section, we find that we can always construct a program metamorphosis
system from an existing set of refactorings if we can decompose the refactorings
appropriately, and that the resulting metamorphosis system gives the same con-
sistency promises as the original set of refactorings. We make this more concrete
in the following:

First, assume that properties : L → M computes a program model m ∈ M
from a program p ∈ L.

Definition 1. A program metamorphosis system is a tuple 〈M, properties,≡, V 〉
such that V (properties(p)) iff the program p is well-formed.

To simplify our exposition, we overload V (p) ⇐⇒ V (properties(p)) and p ≡
p′ ⇐⇒ properties(p) ≡ properties(p′).

As we have discussed previously, our analyses and equivalence relations can
be ‘pessimistic’ or ‘optimistic’. For pessimistic metamorphosis systems we can
utilise the above intuition to show a useful property regarding the strength of
our consistency promises:

Definition 2. A program metamorphosis system is sound wrt a language se-
mantics �−� iff, for all programs p, p′ ∈ L such that p′ can be reached from p
with program metamorphosis steps,

V (p) ∧ V (p′) ∧ (p ≡ p′) =⇒ �p� = �p′�

Conveniently, we can construct metamorphosis systems from refactoring precon-
ditions such that the metamorphosis systems are sound whenever the precondi-
tions are sound. Recall our earlier decomposition of preconditions:

P (p) ⇐⇒ V (p) ∧ V (t(p)) ∧ (p ≡ t(p))

If we set (≡) = (≡�−�), where p ≡�−� p′ ⇐⇒ �p� = �p′�, we have the
“perfect” predicate for any refactoring. This relation is undecidable, so we must
choose another. If we choose not to be conservative (i.e., if we do not guarantee
behaviour preservation), we may pick any relation. If we are conservative, we
must pick a (≡) ⊂ (≡�−�), i.e., a conservative approximation that distinguishes
some programs that would be semantically equivalent. We can then immediately
see the following:

Theorem 1. Given the decomposition of refactoring preconditions P1, . . . , Pn,
we can construct a metamorphosis system that is sound if P1, . . . , Pn are con-
servative, and allows at least as many transformations as P1, . . . , Pn allow.

Proof. Let (≡1), · · · , (≡n) be the equivalence relations used in P1, . . . , Pn. Then
we set

(≡) = (≡1) ∪ · · · ∪ (≡n)

All (≡i) are conservative approximations of (≡�−�), so (≡) inherits this property.
Furthermore, for any programs p1, p2 we have that p1 ≡i p2 (1 ≤ i ≤ n) implies
p1 ≡ p2.
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In the above, we did not specify how the program models and properties functions
of the various preconditions should be combined. In theory, we can always resort
to a straightforward cartesian product on the program model (as suggested by
our construction of the combined (≡)), but in practice this is wasteful: most pro-
gram models can be factored into common components (for example, practically
all refactorings need a name model, and most need a type model). The net result
of this observation is that the complexity and size of our model apparatus never
increases (and often decreases) relatively to the number of transformations every
time we merge two metamorphosis systems.

4.4 Back to Refactoring

Having separated refactorings into individual program transformations, equiva-
lence predicates and program validity checks, we can now reconstruct refactor-
ings as compositions of transformations with a post-hoc equivalence check, by
slightly adjusting our combination scheme from Section 2.1:

1. Record the initial program.
2. Apply all PM steps that make up the refactoring following appropriate

heuristics.
3. Determine whether the resulting program is both valid and equivalent to the

initial one; otherwise roll back.

In Sections 5.2 and 6.1 we give concrete examples that illustrate this idea.

5 Program Metamorphosis in Practice

To experiment with stateful program metamorphosis, we implemented a number
of prototype systems [11]. Below, we detail the most mature of our systems,
a stateful program metamorphosis system for Java that functions as a plugin
for the Eclipse IDE (version 3.2.2). We employ the same infrastructure that
Eclipse’s built-in refactorings use in order to make a comparison between the
two approaches meaningful.

5.1 Program Metamorphosis in Java

We first describe our prototype’s program model, our consistency promises,
and the PM steps it supports, followed by a discussion of our user interface
and a demonstration of the flexibility of our system compared to traditional
refactorings.

Program model. Our program model includes the results of name, Use-Def,
and Def-Use analyses. For name analysis, we use Eclipse’s built-in bindings mech-
anism to determine the declaration for each use of a name and store a mapping
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between names and declarations. For Def-Use and Use-Def chains, we calcu-
late intra-procedural reaching definitions and similarly store a mapping between
uses and definitions. We recompute the model when the program changes; our
model equivalence test reports an inconsistency whenever the newly computed
mappings do not match the original ones.

Consistency promises. Our prototype tracks whether variables, classes, type
variables and methods refer to the same entities as before metamorphosis. Since
it is impossible in general to determine the precise dynamic type of an expres-
sion, our system uses static types to resolve dispatch; thus, we are sometimes
inaccurate when determining whether two methods refer to the same piece of
functionality before and during metamorphosis. Our system may therefore con-
servatively issue inconsistencies where there are none; the user can review such
inconsistencies and override them as (potential) behavioural change.

We further track re-ordering among read and write operations in local vari-
ables, which can arise when we move code fragments via PM-Cut and PM-Paste
(see below).

PM steps. We have focussed on implementing small, composable transfor-
mations that, when combined, can match and exceed the expressive power of
common refactorings. To that end, our current prototype supports the following
PM steps:

– PM-Rename: change the name of a type or variable and its uses. This step
is similar to the ‘Rename’ refactoring except that it uses the current pro-
gram model to link names to declarations. Unlike the ‘Rename’ refactoring,
PM-Rename allows name changes that result in name captures or other in-
consistencies. Since this step does not alter the desired program model, we
lose no information when a renaming causes names to conflict.

– PM-Split : take a single assignment and convert it into a declaration and
initialiser (such as “x = y + 500;” −→ “int x = y + 500;”). Unlike the ‘Split
Temporary’ refactoring, this step does not introduce a new variable name
for the declaration.

– PM-Delegate: replace a method call on implicit this with the same method
call on another object or vice versa (e.g. “bar()” ↔ “foo.bar()”).

– PM-Cut : remove a statement, field, or method, along with its associated
program model fragment, and place it in a clipboard. There is no analogue
to PM-Cut in refactoring.

– PM-Paste: retrieve the statement, field, or method from the current clip-
board and paste it and the program model fragment into a class or method
body. There is no analogue to PM-Paste in refactoring.

Our PM steps act on both the AST and the program model. For example,
PM-Split replaces an assignment AST node with a variable declaration node,
but also updates the name mappings in the model so that each name that uses
the definition now maps to the new declaration.
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We have by no means implemented the complete set of useful PM steps.
However, as Kiezun et al. point out [6], the fraction of ‘Rename’ and ‘Move’
refactorings among all refactorings used in practice is very high, “perhaps as high
as 90% of all refactorings”. We chose to provide PM-Rename and PM-Cut/PM-
Paste to support these refactorings. PM-Cut and PM-Paste also permit great
flexibility in program evolution and demonstrate that program metamorphosis
has utility beyond mere refactoring. PM-Delegate followed from PM-Cut/PM-
Paste; it is very useful for clearing up inconsistencies when moving code between
different classes and methods. We implemented PM-Split to provide support for
the ‘Split Temporary’ refactoring and to illustrate that our notion of program
models scales to program properties other than name analysis mappings.

User interface. Our prototype attempts to mirror the user interface workflow
of Eclipse’s refactorings as much as possible. The user selects a portion of pro-
gram text in the main editor and then chooses a PM step from an Eclipse menu.
This brings up a modal “wizard” box that requests additional information (e.g.,
the new name in a PM-Rename step), if necessary. The user can then review a
list of textual changes that the PM step will perform and can choose to apply
or abort the step.

If the user chooses to apply the step, we ask Eclipse to perform these textual
changes. We then recompute the model and compare it to the desired model,
listing any differences as “Problem Markers” in the Eclipse pane for syntax
errors and warnings. The user may choose to accept any of these differences as a
change in program behaviour using Eclipse’s “Quick Fix” interface and/or apply
additional PM steps to resolve them.

In order to maintain our consistency guarantees, we must prevent the user
from free-form editing the program text. While it may sometimes be possible to
map arbitrary edits into appropriate program model updates (borrowing ideas
from [15]), we cannot expect such approaches to work in general. Consider a
program with name capture: if the user writes a new statement referencing the
captured name, it is unclear which declaration she means.

5.2 Flexibility

Using the five PM steps supported by our system (cf. Section 5.1) we found that
we can implement some refactorings completely, while offering partial support
for others. Our prototype supports seven standard refactorings [4]: ‘Rename’,
‘Pull Up Method’, ‘Pull Up Field’, ‘Push Down method’, ‘Push Down Field’
(all described in Section 6), as well as ‘Move Field’ and ‘Split Temporary’. Note
that the ‘Push Down’ refactorings are currently limited to pushing down to
a single class due to an implementation limitation (Section 6). We currently
have no facility for adding or removing classes; but if the user manually adds
empty classes and uninitialised fields before beginning program metamorphosis
and manually deletes other classes afterward, we can support two additional
refactorings, ‘Tease Apart Inheritance’ (Section 5.3) and ‘Extract Class’. For
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many other refactorings, such as ‘Move Method’, ‘Inline Method’, or ‘Replace
Inheritance With Delegation’, our system can provide significant support.

That we do not support all standard refactorings is a limitation of our proto-
type and not of program metamorphosis in general. With additional PM steps
(e.g. steps to introduce new classes, methods, and declarations) and a more so-
phisticated program model (e.g. global value numbering) we could fully support
more refactorings.

Our prototype puts a similar amount of effort into preserving program be-
haviour as existing refactoring tools do (Section 6). Like traditional refactorings,
we ensure that the final program is well-formed (largely relying on Eclipse’s ex-
isting facilities to do so), preserve unique references to methods, fields, and
variables, and make no attempt to maintain library APIs. Unlike Eclipse’s auto-
mated refactorings, we preserve the order of reads and writes to local variables.

5.3 Teasing Apart Inheritance

Fowler [4] lists a “big refactoring” called ‘Tease Apart Inheritance’, for cleaning
up class hierarchies that do not clearly separate responsibilities. This refactoring
is hard to fully support with traditional refactoring approaches but useful for
showcasing some of the strengths of our approach. For example, consider a class
“NetworkServer” with subclasses “TCPChatServer” and “UDPDataServer”: here
we have hardwired application protocols (Chat/Data) to transport protocols
(TCP/UDP).

Figure 4 illustrates this idea and the desired program evolution on an abstract
level: the upper part of the figure shows the class hierarchy of “N” and its children
“A×X” and “B×Y” before changing the program. Assume that the method “f”
in both “A×X” and “B×Y” has the following form:
vo id f ( ) { . . . g ( ) ; . . . }

Since our classes “A×X” and “B×Y” combine functionality that should be
handled orthogonally, we wish to tease them apart, by moving the different
implementations of method “g” into a separate inheritance hierarchy. Figure 4
again illustrates this idea: We extract “g” into separate classes “X” and “Y”

class N
f(), g()

class A×X
f(), g()

class B×Y
f(), g()

class N

s : S

f()

class S
g()

class A
f()

class B
f()

class X
g()

class Y
g()

Fig. 4. Teasing Apart Inheritance: we extract functionality “X” and “Y” into a new
class hierarchy underneath “S”. The refactored class “N” then aggregates an instance
of “S”.
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beneath a new, common (abstract) superclass “S” and insert a field “s” of type
“S” into class “N”.

With program metamorphosis, we can do this straightforwardly: we PM-Cut
and PM-Paste all relevant methods as shown in Figure 4, and then apply ‘PM-
Delegate’ to the calls to “g()” in “f()”:

vo id f ( ) { . . . s . g ( ) ; . . . }

Our system still gives us inconsistencies for “s.g()”, since we use the static type
of “s” to determine which “g” we are calling. We can address these inconsistencies
easily by accepting them as a potential behavioural change.

Our current prototype provides all relevant functionality for this process, ex-
cept for introducing the field “s”. Also, introducing and/or deleting classes during
metamorphosis currently invalidates our consistency promises, so we must add
new classes before and obsolete old classes afterwards.

We are not aware of any way to implement the above directly using only
traditional refactorings, and no refactoring engine we have experimented with
supports ‘Tease Apart Inheritance’ directly.

6 Prototype Correctness

As we have suggested in Sections 4 and 5.3, refactorings can always be embedded
into a program metamorphosis system, and often split into smaller, more flexible
parts (Section 5.2). Program metamorphosis is thus (in theory) intrinsically at
least as flexible as traditional refactoring; as we have seen in Section 5.2, it is
(in practice) more flexible. However, this flexibility might be a trade-off with
safety: despite our argument in Section 4.3 that it is possible to be as safe as
refactoring, it might not be practical to implement a program metamorphosis
system that indeed achieves a comparable level of safety.

To investigate this concern, we opted to compare the safety of our PM steps
with refactorings provided by an established refactoring system. Since PM steps
are more fine-grained than refactorings, we constructed three standard refac-
torings out of the metamorphosis steps provided by our prototype. There are
many ways to construct such refactorings in practice, if we include all possible
automatic fixups. We chose to implement all of our refactorings in a very straight-
forward manner: transform, check for inconsistencies, and abort if there are any
inconsistencies (simulating the effect of a refactoring precondition). While this
does not exploit the inherent flexibility of program metamorphosis, it is sufficient
to address our principal experimental concern, safety.

6.1 Experimental Setup

For our experiments, we paired our manually constructed refactorings with refac-
toring built into Eclipse 3.2.2 (since our system was developed for the Eclipse
3.2 infrastructure). Our refactorings were as follows:
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– Rename. Our ‘Rename’ refactoring simply performs a PM-Rename step,
but does not attempt to avoid or resolve any name capture. We configured
Eclipse’s Rename to rename all other relevant identifiers, including identifiers
of overriding and overridden methods in super- and subclasses, which our
renaming does not do implicitly. Eclipse also provides a feature that will
rename occurrences of a class name in a string or external text file. This
option is meant to address uses of reflection, wherein Java may instantiate
a class, invoke a method, or read from or write to a variable designated by a
string value. Since this mechanism is unsafe in practice, we left it disabled.

– Pull Up Field. Our ‘Pull Up Field’ refactoring moves a field to a superclass
(PM-Cut followed by PM-Paste), then iterates over all subclasses of the
target class to identify fields of the same name. For each such field it tests if
the initialiser is identical to the initialiser of the initially selected field, and,
if so, deletes the field in the subclass (per PM-Cut).
For Eclipse’s ‘Pull Up Field’, we instructed Eclipse to also pull up dependent
methods and fields, if necessary (in practice, this should only be needed if
those entities are used in the field’s initialiser.)

– Pull Up Method. Our Pull Up Method refactoring implementation is anal-
ogous to Pull Up Field, except that we also determine all methods and fields
transitively referenced in the method and pull those up afterwards.
We configured Eclipse’s Pull Up Method to also move all dependent entities.

We then instructed our system to randomly locate opportunities for apply-
ing such refactorings in a given program. Our mechanisms for choosing such
opportunities were as follows:

– Rename: For every ‘Rename’, we identified a possibly renameable entity (a
‘SimpleName’, in Eclipse JDT nomenclature) anywhere in the program. We
skipped package names because of limitations of our testing infrastructure,
but included class names and names of entities external to the program (such
as the ‘toString()’ in java.lang.Object).
We then decided a new name as follows: with a probability of 0.5 we chose a
fresh name, otherwise we chose a random name from the same compilation
unit. These names were chosen the same way that renameable entities were
chosen; in particular, names that occur frequently in a class had a higher
probability of being chosen. If the new name was identical to the original
name, we instead chose a fresh name.

– Pull Up: For pulling up, we identified pairs of types (interfaces, abstract
classes, concrete classes) in a nontrivial supertype relationship (i.e., the
classes were not identical) together with a method or field that could be
moved from one type to the other, as required by the specific refactoring.

To test the correctness of a refactoring, we tested for whether the refactoring
aborted, succeeded, or failed. We say that a refactoring aborted if the refactoring
indicated that it was not applicable / would change behaviour. In traditional
refactoring terms, this is usually expressed as the precondition failing. We say
that a refactoring succeeded if the refactoring applied, and the program was both
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statically well-formed and dynamically behaved the same as before, as far as we
could tell (see below). We say that a refactoring failed if the refactoring applied
(i.e., the precondition did not fail) but the resulting program was statically ill-
formed or did not preserve its dynamic behaviour.

To determine whether dynamic behaviour had changed, we ran the unit test
suite shipped with the programs in question. If any unit test failed, we assumed
that dynamic behaviour had changed in an unintended way and that the refac-
toring had therefore failed.

We also automatically asserted that all non–aborted transformations had in-
deed modified the program and manually sampled the results to ensure that the
transformations were reasonably close to our expectations.

Our specific approaches for determining refactoring results were as follows:

– Eclipse refactoring: For Eclipse’s refactoring, we attempted to apply the
refactoring (using the refactoring scripting interface) atomically. If the at-
tempt failed (usually because a precondition failed), we marked the refactor-
ing as aborted. Otherwise we ran Eclipse’s own static checks on the program
and any unit tests. If either the static checks or the unit tests failed, the
refactoring failed, otherwise it succeeded.

– Program metamorphosis: For our own refactorings, we applied all rele-
vant transformations (usually several) in sequence, disregarding any incon-
sistencies until the end. After we had finished transforming, we ran our own
inconsistency checks as well as Eclipse’s static checks. If either indicated
an error or inconsistency, we aborted. Otherwise we ran the unit tests to
determine whether the refactoring had failed or succeeded.

Note that we interpreted the results of Eclipse’s own correctness checks dif-
ferently for program metamorphosis and traditional Refactoring. This reflects
the program metamorphosis philosophy and highlights an advantage of our ap-
proach: by definition, a traditional refactoring must preserve behaviour if its
preconditions trigger – in particular, it must produce a well-formed program.
Program metamorphosis, on the other hand, need only be able to determine
whether the program is well-formed or not after the fact. As we observed with
Eclipse, this allows us to exploit traditional IDE correctness checks to augment
our own checks for program model equivalence (Section 5.1).

6.2 Results

We ran our experiments against the following programs:

– Functional Analyzer [10], a flexible tool for fast analysis of trace information
and similar numerical data, developed by one of the authors (7714 loc2).

– Apache Commons: Discovery 0.4, a library for detecting and managing plu-
gins, developed by the free Apache Commons project (2543 loc).

2 Lines of non-comment non-whitespace source code, computed with sloccount.
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– Apache Commons: Validator 1.3.1, a general-purpose validation library for
structured data, particularly XML (8874 loc).

– Apache Commons: Chain 0.4, a chain-of-responsibility implementation, again
part of the Apache Commons project (8010 loc).

– Apache Commons: Digester 1.8, a configurable XML configuration file inter-
preter (12342 loc).

We chose the above programs by availability and presence of substantial unit
test suites.

For each experiment, we configured our system to perform 200 random trans-
formations for each refactoring. Table 5 summarises our results.

As we can see from our results, our (fairly straightforwardly) PM-scripted
refactorings are competitive with Eclipse’s. In the majority of the cases we
tested, both systems behaved equivalently. Where they didn’t, the differences
were mostly due to Eclipse being more flexible by providing additional fixups
or Eclipse being less conservative (particularly when pulling up) and thus being
simultaneously more flexible and more error-prone. For ‘Pull Up’, our primitive
dependency analysis was sometimes fooled, most commonly by this references,
resulting in additional aborts. In all instances that that we observed, a human
programmer, driven by our inconsistencies, would have been able to identify
and rectify the situation straightforwardly. In other instances, less-than-ideal
interfacing between our module and the Eclipse parser prevented our proto-
type from matching up code from before and after a transformation (partic-
ularly in Rename). With respect to the focus of our tests, we observed that
PM-scripted refactorings were safer than Eclipse’s traditional refactorings: aver-
aging over all of our tests, the cases in which the PM-scripted refactorings failed
and Eclipse’s refactorings succeeded or aborted made up 0.1%, while the cases
in which Eclipse’s refactorings failed and the PM-scripted refactorings aborted
or succeeded made up 24.4% of all tests.

– Pull Up Field. Pulling up, Eclipse attempts to merge fields from all sub-
classes, whether or not those fields have the same initialisers. This frequently
introduces bugs, not all of which are caught by unit tests. If the common
fields’ types mismatch, Eclipse aborts, while our simple pull-up heuristic
skips the fields if their initialisers differ, accounting for a few cases in which
our PM-scripted refactoring is more flexible. In other cases, Eclipse implic-
itly changed field visibility (from private to protected) if needed, which was
not part of our PM scripting.

– Pull Up Method. For ‘Pull Up Method’, both refactoring implementa-
tions failed consistently when pulling up unit test methods into superclasses
for which not all subclasses satisfied the test, in the Commons Validator.
When pulling up methods, Eclipse again suffered from its implicit merg-
ing of fields when pulling up dependent entities, while our PM-scripted
refactoring’s refusal to implicitly change visibility accounted for much of
its lack of flexibility. Eclipse’s ‘Pull Up Method’ further changes requests
to pull up a method into an interface into a request to add a method
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Identical More Flexible More Failures
Refactoring abort success failure total PM Eclipse PM Eclipse

Pull Up Field

Functional Analyzer 9.0% 4.0% 0.0% 13.0% 2.0% 7.0% 0.0% 80.0%
Commons Discovery 13.5% 9.0% 0.0% 22.5% 0.0% 37.0% 0.0% 40.5%
Commons Validator 31.5% 4.5% 0.0% 36.0% 18.5% 32.5% 0.0% 31.5%
Commons Chain 16.5% 0.0% 0.0% 16.5% 1.5% 40.0% 0.0% 43.5%
Commons Digester 3.0% 19.0% 0.0% 22.0% 0.0% 43.0% 0.0% 35.0%
average 14.7% 7.3% 0.0% 22.0% 4.4% 31.9% 0.0% 46.1%
Pull Up Method

Functional Analyzer 55.0% 3.0% 0.0% 58.0% 0.0% 20.5% 0.0% 21.5%
Commons Discovery 51.5% 0.0% 0.0% 51.5% 0.0% 20.0% 0.0% 28.5%
Commons Validator 46.0% 29.0% 7.5% 82.5% 0.0% 9.0% 0.0% 8.5%
Commons Chain 51.5% 0.5% 0.0% 52.0% 1.5% 5.0% 0.0% 42.5%
Commons Chain 46.0% 4.5% 2.5% 53.0% 0.0% 19.5% 0.0% 27.5%
average 50.0% 7.4% 2.0% 59.4% 0.3% 14.8% 0.0% 25.7%
Rename

Functional Analyzer 17.0% 60.5% 0.5% 78.0% 0.0% 21.5% 0.0% 0.5%
Commons Discovery 29.0% 59.5% 2.0% 90.5% 0.0% 9.0% 0.0% 0.5%
Commons Validator 30.5% 60.5% 1.5% 92.5% 0.5% 5.5% 0.5% 1.5%
Commons Chain 43.0% 50.0% 1.0% 94.0% 0.5% 2.0% 0.5% 3.0%
Commons Chain 29.0% 59.0% 1.0% 89.0% 0.5% 9.5% 0.5% 1.0%
average 29.7% 57.9% 1.2% 88.8% 0.3% 9.5% 0.3% 1.3%

Fig. 5. Benchmarking results for Eclipse’s refactoring suite (Eclipse) and refactoring
scripted from program metamorphosis steps (PM). Identical identifies cases in which
both tools behaved equivalently. More Flexible identifies cases in which one tool
permitted a transformation while the other tool aborted that transformation. More
Failures identifies cases in which one tool caused behavioural change. Note that Iden-
tical(total), More Flexible and More Failures sometimes add up to more than
100% in cases where both tools performed the transformation but one tool produced an
incorrect result (we counted this as the correct tool being both safer and more flexible).
Considering cases where Eclipse failed, this accounts for all of the cases in which PM
was more flexible in ‘Pull Up Field’, as well as for 1% of the ‘Pull Up Method’ cases
in the Commons Chain. Considering cases where PM-scripted refactoring failed, this
accounted for two cases in ‘Rename’ (cf. our discussion).

declaration of the same interface to the interface, again adding to its flexibil-
ity (an actual ‘Pull Up Method’ into an interface is only possible for abstract
methods).

– Rename. For renaming, our system primarily suffered from two limitations:
first, our prototype will not refactor constructors in some cases, and sec-
ondly, we do not enforce the override status of overriding methods in sub-
classes.
Refactoring constructors requires renaming the class and all related con-
structors. A limitation of the Eclipse parser that we have not yet addressed
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sometimes prohibits this in classes with multiple constructors; this issue ac-
counts for 3% of the aborted rename attempts (total) in the Functional
Analyzer, 10.5% in Commons Discovery, 13% in the Commons Validator,
16.5% in the Commons Chain package, and 12% in the Commons Digester.
Note that these failures also account for some of its increased safety in
the presence of reflection. Since reflection allows classes to be looked up
by names read from external files, it is notoriously hard to support in any
kind of refactoring process. (All of our test cases utilise reflection to some
extent.)
Another current limitation is that our inconsistency checks do not enforce
the overriding status of methods when renaming methods of a subclass. In
the presence of an @Override annotation, this usually leads to static errors,
but in two cases it allowed the PM-scripted refactoring to introduce a dy-
namic failure. We expect to extend our program model to add either explicit
‘method-X-overrides-method-Y’ information or global value numbering to
increase the strength of our correctness promises overall.

We also experimented with ‘Push Down Method’ and ‘Push Down Field’. Due
to an unresolved issue in our prototype, our ‘Push Down’ operations are currently
overly conservative when pushing to multiple subclasses: copying (rather than
cutting and pasting) generates ‘fresh’ methods and fields, resulting in spurious
inconsistency warnings that cannot be accepted as behavioural change. Con-
versely, Eclipse’s ‘Push Down’ refactoring cannot be constrained to push down
to one particular subclass: instead, it always pushes down to all immediate sub-
classes, though users can interactively choose to suppress parts of the textual
diff after the refactoring has terminated. We could thus not directly compare the
two sets of functionality, though we have no reason to assume that a corrected
PM-scripted ‘Push Down’ would ultimately exhibit correctness or performance
characteristics different from the PM-scripted ‘Pull Up’.

While our results overall indicate that our scripted refactorings are less flexible
than Eclipse’s refactorings, we note the following:

– Our prototype is, on average, safer than Eclipse’s refactorings.
– Our prototype permits us to quickly script refactorings that are as flexible

as Eclipse’s refactorings in most of the cases we examined, without including
any automated fixups or complex analyses as part of the scripting.

6.3 Practicality

One goal of our Java prototype is to examine whether program metamorphosis
is practical to implement and useful for evolving real-world programs. Here, we
evaluate our prototype in terms of code size and resource consumption.

The main component of the memory cost for program metamorphosis is
the need to keep an AST of the entire program in memory at all times. Our
prototype requires two copies of the full AST in memory during equivalence
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checking. Using the the Eclipse JDT’s built-in memory queries, we have de-
termined that a single instance of the Functional Analyzer AST requires ap-
proximately 4MB of memory, which we consider to be acceptable on modern
machines.

Our prototype (excluding unit tests) consists of 3829 lines of Java across 53
files and relies significantly on Eclipse’s infrastructure to perform program anal-
ysis and to interact with the user. This shows that a useful set of PM steps can
be implemented in a relatively small amount of code and that PM can be com-
patible with existing program analysis frameworks and program evolution tools.
For this reason, we have favoured ease of implementation and tight integration
with Eclipse over speed. For example, we used the JDT’s built-in name analysis
even though it requires re-parsing to get updated analysis. We could reduce our
runtime overhead by comparing only altered parts of the program and recom-
puting program models lazily. This would decrease execution times and memory
usage at the cost of added complexity.

To ensure that our prototype is practical for interactive use, we measured
execution times for the correctness tests from Section 6. We summarise these
results in Figure 6. All experiments were run on a 2.4GHz Intel Core 2 Quad
with 4GB of RAM, running Java 1.6.0 03-b05 on Ubuntu 7.1 with
Linux 2.6.24.

Eclipse PM
Refactoring Program min avg max min avg max

Pull Up Field

Functional Analyzer 0.11s 0.32s 1.15s 2.05s 2.29s 2.81s
Commons Discovery 0.13s 0.24s 0.52s 0.86s 0.97s 1.37s
Commons Validator 0.18s 0.45s 0.96s 2.70s 3.07s 4.55s
Commons Chains 0.36s 0.47s 0.83s 2.39s 2.49s 2.64s
Commons Digester 0.15s 0.31s 1.51s 3.09s 3.44s 7.87s
total 0.11s 0.36s 1.51s 0.86s 2.45s 7.87s

Pull Up Method

Functional Analyzer 0.12s 0.32s 0.83s 1.90s 2.55s 3.35s
Commons Discovery 0.14s 0.32s 2.95s n/a n/a n/a
Commons Validator 0.22s 0.47s 1.93s 2.73s 3.79s 11.65s
Commons Chains 0.39s 0.64s 1.74s 2.18s 2.38s 2.59s
Commons Digester 0.19s 0.55s 1.62s 3.09s 4.83s 10.43s
total 0.12s 0.46s 2.95s 1.90s 3.39s 11.65s

Rename

Functional Analyzer 0.09s 0.34s 2.71s 1.10s 1.36s 2.92s
Commons Discovery 0.02s 0.15s 0.85s 0.43s 0.53s 1.53s
Commons Validator 0.06s 0.20s 0.69s 1.46s 1.71s 1.98s
Commons Chains 0.06s 0.26s 0.98s 1.14s 1.35s 2.12s
Commons Digester 0.12s 0.28s 1.66s 1.72s 1.95s 2.58s
total 0.02s 0.25s 2.71s 0.43s 1.38s 2.92s

Fig. 6. Minimum, average, and maximum refactoring execution times, for both
Eclipse’s built-in refactorings and program metamorphosis
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For program metamorphosis, the execution time is the sum of the execution
times of all intermediate steps. The total line gives the overall minimum, max-
imum, and average of the averages (as summarised per program).

Our unoptimised prototype executes most transformation steps well within
the time limits of what we can expect from an interactive tool. While some
transformations may take more than two seconds to complete overall, note that
both of our pull-up refactorings are multi-step transformations in program meta-
morphosis, as we explained in Section 6; except for two Renames (one in the
Functional Analyzer and one in the Commons Digester), no individual transfor-
mation execution time was more than 2.5s per PM step (including re-parsing
and AST re-matching for the entire program after each step).

7 Related Work

There is a large body of related work on refactoring (cf. [9] for a survey), including
many implementations, such as HaRe [8] and Eclipse [14]. The observation that
more information than immediately visible to the eye is needed to perform cor-
rect transformations was already employed by Griswold [5], who used Program
Dependence Graphs [3] for this purpose. These systems consider refactorings
to be individual macroscopic transformations. Some other program transforma-
tion approaches [1, 17] look specifically for atomic transformations, but remain
entirely semantics-preserving.

Composing transformations to achieve a certain goal is the central theme of
AI Planning (cf. [12] for a high-level overview). The composition of refactorings
in particular has also been considered [7], but only for traditional approaches to
refactoring, without allowing intermediate invalidation of correctness properties.

8 Conclusion

We have presented a novel approach to program evolution in which users inter-
actively combine small program transformations, PM steps, while a consistency
checking mechanism tracks behavioural change that they introduce. As part of
this process, users can choose to explicitly alter behaviour rather than to preserve
it. Since our approach differs from refactoring (a) by allowing users to transform
more liberally and (b) by permitting explicit behavioural change, we give it a
different name, program metamorphosis. We have further described an Eclipse
plugin that implements program metamorphosis for Java. Our experimental re-
sults suggest that program metamorphosis is a practical and viable approach for
supplanting traditional machine support for refactoring.
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Abstract. Contemporary refactoring tools for JAVA aiding in the restructuring 
of programs have problems with respecting access modifiers such as public 
and private: while some tools provide hints that referenced elements may be-
come inaccessible due to the intended restructuring, none we have tested pre-
vent changes that alter the meaning of a program, and none take steps that 
counteract such alterations. To address these problems, we formalize accessibil-
ity in JAVA as a set of constraint rules, and show how the constraints obtained 
from applying these rules to a program and an intended refactoring allow us to 
check the preconditions of the refactoring, as well as to compute the changes of 
access modifiers necessary to preserve the behaviour of the refactored program. 
We have implemented our framework as a proof of concept in ECLIPSE, and 
demonstrated how it improves applicability and success of an important refac-
toring in a number of sample programs. That our approach is not limited to 
JAVA is shown by comparison with the constraint rules for C# and EIFFEL. 

“Moving state and behavior between classes is the very essence of refactoring.” [4] 

1 Introduction 

In object-oriented programming languages like C++, JAVA, and C#, information hid-
ing [17] is supported by access modifiers such as public and private. Their disciplined 
use contributes to modularization and, thus, the design of a program. 

Refactorings change a program’s design without altering its (externally visible) be-
haviour [4]. Insofar as the change affects the division of the program into modules, 
access modifiers must be updated during the refactoring process to reflect the new 
modularization. However, while insufficient accessibility is routinely reported by the 
compiler, excessive accessibility is usually not and therefore often forgotten [1]. 
Worse still, in JAVA the change of access modifiers can have an effect on static and 
dynamic binding, changing the meaning of a program [1, 14, 19].  

Refactoring tools are metaprograms aiding the programmer in the often tedious and 
error-prone refactoring process. Contemporary IDEs such as ECLIPSE [3], NETBEANS 
[15], and INTELLIJ IDEA [9] come with various refactoring tools, usually including 
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support for renaming program elements, moving elements, and modifying the type 
hierarchy. However, as we will see, when it comes to maintaining accessibility most 
refactoring tools are flawed, not only in rare corner cases. As we will also see, the 
problem is not caused by negligence of the programmers who implemented the tools, 
but the tremendous complexity of the programming languages used today, and the 
myriad of different constructions they allow. 

In this paper, we present a constraint-based approach to modelling the access con-
trol1 rules of JAVA that makes it easy for a refactoring tool to respect them. In particu-
lar, we show how a change of accessibility of a declared entity, as well as how a 
change of location of a declared entity and its contained references, propagate through 
a program, and how these changes are constrained by references to the declared enti-
ties and by other declarations. This enables us to enhance important refactorings such 
as MOVE TYPE/MEMBER and PULL UP/PUSH DOWN MEMBER by adding necessary 
preconditions that are currently unconsidered, and also by adding mechanics enabling 
applications that currently lead to failure. Our approach is analogous to that taken by 
the type-related refactorings described in [22], but remains completely orthogonal in 
the problems it addresses. Also, our definition of foresight rules anticipating the 
changes performed by an intended refactoring appears to be novel. 

The remainder of this paper is organized as follows. In Section 2, we motivate our 
work by presenting a number of basic problems current refactoring tools have, and by 
arguing why existing related work does not address them sufficiently. In Section 3, 
we develop our formal framework of accessibility constraints and present the con-
straint rules that model JAVA’s access control. In Section 4 we show how these con-
straints and their generation integrate into the refactorings we aim to improve. Section 
5 presents the implementation of our framework in ECLIPSE’s JAVA DEVELOPMENT 

TOOLS (JDT) and shows how we have tested and evaluated it. Section 6 discusses our 
work, its limitations, and its potential for performing systematic programming lan-
guage comparisons. 

2 Motivation 

2.1 Problems 

Moving a class without adapting accessibility can break the code. For instance, mov-
ing class B in the JAVA program 

package a; 
class A { 
  B b; 
} 
 
package a; 
class B {} 

to another package with the corresponding refactoring tools of ECLIPSE, NETBEANS 
and IDEA will produce a compilation error, since for the class B to be accessible from 
other packages, it needs to be declared public, which the tools ignore (only IDEA 
                                                           
1  not to be confused with access rights [11] 
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issues a warning that B will become inaccessible for A). Note that this is not a problem 
of JAVA’s language design, but a necessary consequence of modularization: access 
across packages should be restricted to elements declared public. Moving B therefore 
either breaks the designed modularization and should be prevented, or it constitutes a 
design change that should be reflected in a change of the corresponding access modi-
fiers. 

While the above problem is detected by the compiler and easily responded to, the 
situation becomes more complex when members of B are accessed. For instance, 
moving class B in 

package a; 
public class A { 
  void n() { (new B()).m("abc"); } 
} 
 
package a; 
public class B { 
  public void m(Object o) {…} 
  void m(String s) {…} 
} 

to another package will not produce a compilation error, but instead change the mean-
ing of the program: rather than the method n in A calling m(String) in B as before the 
change, m(Object) gets invoked instead. The corresponding refactoring tool of 
ECLIPSE performs the change without warning; NETBEANS displays that B.m(String) is 
referenced and IDEA warns that it becomes inaccessible from A, but neither indicates 
that the refactoring will change the meaning of the program. 

The change of meaning can be detected by observing that the static binding of the 
method call has changed. However, this alone is not sufficient, as the following ex-
ample shows:  

package a; 
public class A { 
  void m(String s) {…} 
  void n() { ((A) new B()).m("abc"); } 
} 
 
package a; 
public class B extends A { 
  void m(String s) {…} 
} 

Again, moving B to another package changes the meaning of the program, yet this 
time not because the binding changes, but because m(String) in A changes its status 
from being overridden in B to not being overridden, so that calling m(String) on a 
receiver of static type A is no longer dispatched to the implementation in B. In 
ECLIPSE and NETBEANS, this change of meaning goes unnoticed, IDEA notes that 
class A contains a reference to class B, but this is not indicative of the problem. 

While all the above sample problems can be easily fixed by adapting the accessi-
bility of members to preserve program meaning, in real programs there may be ripple 
effects that are difficult to oversee, and also unobvious conditions that prevent such 
changes. For instance, if  

package a; 
public class C extends B { 
  void m(String s) {…} 
  public void m(Object o) {…} 
} 
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is added to the previous example, the accessibility of m(String) in B cannot be in-
creased to public without also increasing its accessibility in C. However, increasing 
accessibility of m(String) in C may be contraindicated, as it can change meaning of 
another call: 

package b; 
class D { 
  void n() { (new C()).m("abc"); } 
}   

Although all three IDEs offer a refactoring for changing accessibility of methods (as 
part of changing their signature), none of them notes the change of binding this en-
tails. 

It should be clear from these examples that for larger programs, the situation 
quickly becomes unmanageable for a human programmer. Reliable tool support is 
therefore needed. 

2.2 Related Work 

That moving classes, fields, and methods of an object-oriented program can be a non-
trivial problem was already recognized by Opdyke in his doctoral thesis [16]. How-
ever, despite a presentation of formal preconditions, these seem to be only loosely 
related to a concrete language (C++), and do not seem to be thoroughly checked for 
completeness. For instance, the preconditions for pulling up a member variable (field) 
state that “the variable is defined identically in all subclasses where it is defined” and 
that “the variable isn’t already defined locally in (as a private member of) the super-
class” [p. 73]. However, if one of the subclasses has another superclass with a vari-
able of the same name (that was previously hidden), an ambiguity arises for accesses 
of the variable from the subclass (cf. Section 3.1, Inh-2). Also, Opdyke’s treatment of 
access modifiers and how they are to be handled in refactorings is only cursory. 

Contemporary refactoring tools such as those integrated in the ECLIPSE JDT [3], in 
NETBEANS [15], and in IDEA [9] all include some basic precondition checking (in 
IDEA including the issuing of warnings when a declared entity is moved out of 
reach), and some (notably IDEA) also present a list of references potentially directly 
affected by a refactoring, but none of them correctly predicts the change of semantics 
provoked by the examples of the previous subsection and the subsections that follow, 
and none offers a change of access modifiers that would prevent such changes or 
avoid compilation errors. The understanding of the consequences of such refactorings 
is therefore the duty of the programmer. 

The problem of maintaining accessibility is related to, yet sufficiently different 
from, making sure that all bindings are preserved under the RENAME refactoring [18]. 
It is similar in that each reference must refer to the same declared entity before and 
after a refactoring (or otherwise the meaning of the program changes). It is different 
in that maintaining static binding alone is not enough (as the above example with the 
lost dynamic binding suggests), and that it is not achieved by changing references to a 
declared entity (by renaming them as well, or by adding necessary qualification [18]), 
but by changing the (accessibility of) the declared entity itself. Also, as the last of the 
above examples suggested, changes of accessibility may be constrained by the acces-
sibility of other declared entities, so that the refactoring may have ripple effects. In-
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version of the lookup of a declared entity as resorted to in [18] does not point to these 
indirect constraints and is therefore insufficient to solve our problem. 

That reverse lookup is indeed insufficient became clear to us during the develop-
ment of our ACCESS MODIFIER MODIFIER (AMM), a smell detection and refactoring 
tool that marks all methods with excessive accessibility and offers its reduction to the 
lowest level tolerated by the program [1]. The AMM maintains reverse lookup tables 
for every method, pointing from that method to its references. However, to deal with 
the binding problems sketched above, we had to implement additional lookups and 
checks reflecting the relevant rules of the language specification. Since the checks and 
lookups were hard-coded for a specific problem, namely the independent change of 
accessibility of a single method, retrofitting them to a different purpose (such as pre-
condition checking for general MOVE refactorings), or even to a different target lan-
guage, amounts to rewriting them. Because the problem itself seems rather general, 
we thought that a more generic, problem-independent formulation of the conditions 
under which accessibility could be changed would be desirable. 

Such a formulation has been delivered as part of a formal model of JAVA written 
for the theorem prover ISABELLE/HOL [19]. Using this formalization, some interest-
ing runtime properties of JAVA programs concerning access integrity could be shown. 
However, both model and theorem prover are rather heavy-weight and have to our 
knowledge not yet been utilized in refactoring tools. 

A much lighter declarative approach to controlling access has been pursued in 
KACHEK/J, a tool that infers object encapsulation properties for JAVA programs [7]. 
KACHEK/J uses constraints to express a set of rules that allow the inference of con-
finement, i.e., that no aliases to instances of a confined type exist outside its defining 
package. The constraints basically make sure that confined types are neither declared 
public nor cast to non-confined supertypes, that they cannot be the types of public or 
protected members, and that methods inherited by them cannot leak aliases to the this 
pointer. While these constraints add confinement as a new property to the language 
(rather than model existing ones, as we intend), to improve this property in existing 
programs the first author of [7] has developed the JAVA ACCESS MODIFIER INFERENCE 

TOOL (JAMIT) [7, 8], which also builds on constraints. However, the constraints of 
JAMIT model only those aspects of JAVA access modifiers that are relevant to the 
virtual machine (JAMIT operates on byte code), and do not deal with possible changes 
of bindings that result from moving program elements. 

3 

Following the approach of JAMIT [8], we model the access control rules of JAVA using 
constraints, making our above identified refactoring problems solvable by constraint 
programming. Constraint programming usually consist of two parts: 
1. the generation of the constraints describing the problem, and 
2. constraint satisfaction, i.e., the computation of a solution for the generated con-

straints. 
Each generated constraint constrains one or more variables by setting up relations 
between them or assigning constant values to them. Through shared variables, the 
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generated constraints form a network, referred to as constraint set hereafter; the solu-
tion of a constraint set consists of assignments to the variables that satisfy all con-
straints. Generally, a constraint set can have arbitrarily many (including no) solutions; 
in case more than one solution exists, one is usually interested in one that satisfies 
certain additional conditions (not expressed as constraints). Although the solution of a 
constraint set is generally problem-independent, the additional conditions can lead to 
algorithms finding the best solution efficiently. 

The constraints describing a particular refactoring problem are usually generated 
from the program to be refactored by applying a set of constraint generating rules, or 
constraint rules for short [22]. The variables in the generated constraints represent 
those parts of the program that can be changed to solve the problem. Constraint gen-
eration also assigns the variables of the constraints initial values; these values reflect 
the program as it is at the outset of the problem (when the constraints were gener-
ated), that is, before the refactoring is performed. 

A constraint set generated from a (syntactically and semantically) correct program 
always has a solution, and in particular all constraints are satisfied by the initial vari-
able assignments, or otherwise the constraint rules are inconsistent. Vice versa, any 
assignment to variables that solves the constraint set must represent a correct pro-
gram, or otherwise the constraint rules are incomplete. Therefore, given a complete 
set of constraint rules, if another than the initial solution has been found, adapting the 
original program to the changed variable values (so that constraint generation would 
have extracted these values as initial had it been applied to the adapted program) will 
lead to a (syntactically and semantically) correct program. We refer to adapting the 
program so as to reflect the variable values of a new solution as writing back the solu-
tion. 

3.1 

Basics For our purposes, an object-oriented program consists of a set, D, of declared 
entities [6, §6.1] d, d1, etc., and a set, R, of references r, r1, etc. referring to declared 
entities. The set of declared entities D is partitioned into a set of classes, C, a set of 
interfaces, I, a set of methods (including constructors), M, and a set of fields, F.2 D 
also contains a subset of declared entities (including all constructors) declared as 
static, S. We express the binding of a reference r to a declared entity d by a function 

 : R  D (binding) 

where (r) = d means that reference r binds to declared entity d. One common invari-
ant of refactorings is that bindings are not changed. 

A program is further divided into a set, L, of locations l, l1, etc. Each d  D is de-
clared, and each r  R resides, in a location l  L.3 In languages allowing nesting of 
declarations, the location is conveniently expressed by a path expression involving all 

                                                           
2  The set of variables (temporaries and formal parameters) is not contained in D, since their 

access cannot be modified. 
3  The location of a declaration element is sometimes referred to as its declaration space [13], 

and is not to be confused with its scope. 
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containing declarations. To facilitate reading, we tag declared entities and references 
in the code we are referring to using comments, as in 

package a; class /*d1*/A { /*r1*/B b; } 

We refer to the location of so tagged entities and references by the function 

 : D  R  L (location) 

For instance, the location of d1 (class A) in the above program, (d1), is a (the contain-
ing package) and that of r1, (r1), is a.A (the containing class). 

In JAVA the accessibility of a declared entity is determined by an access modifier 
preceding its declaration. We write d  for the declared access modifier of d. The set 
of available access modifiers, A, is { public, protected, package, private}.4 Its ele-
ments are totally ordered: public > protected > package > private, where > means 
granting greater access. As usual, we write  to denote greater than or equal. 

Whether a reference can access a declared entity is determined by the access rules 
of the language. In order to maintain a certain language independence (and also be-
cause they are quite intricate in the case of JAVA), we model the access rules as a 
function 

 : L  L  A (required access modifier) 

where the first argument is the location of the reference, the second is the location of 
the referenced declared entity, and where ((r), (d )) computes the smallest access 
modifier for d granting r access to d.  may be considered an inverse of the so-called 
accessibility domain [13], mapping a declared entity and its declared accessibility to 
all locations in the program text in which access to the member is permitted. We 
model  as a function of a pair of locations rather than of R  D since the access 
modifier required for accessibility does not depend on individual references or de-
clared entities, but where they are located.5 Also, as we will see, not the references or 
declared entities, but their locations are the variables of our constraints. 

For a declared entity d that is a member of a type, the location of a reference r to d 
may be insufficient to determine d ’s accessibility — the (static) type through which d 
is accessed is also significant. We model this through a function 

 : R  L (receiver) 

computing the location corresponding to the body of the receiver type. For instance, 
in the program 

class A { 
  B b = new B(); 
 int i; 
 void m() { /*r1*/i = 1; /*r2*/b.i = 2; } 
class B extends A {} 

(r1) evaluates to A and (r2) evaluates to B. 
We are now equipped to state our first constraint rule. 

                                                           
4  Not every declaration element can use every access modifier — the domain of legal access 

modifiers depends on the kind of element that is declared, and where it is declared. As will 
be seen below, we model this as a constraint rule. 

5  The one exception, access to protected members, is modelled as a constraint rule (Acc-2). 
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Accessing Accessing a declared entity d via a reference r requires that the declared 
accessibility of d, d  (its access modifier) is equal to or greater than the accessibility 
required by the language’s access rules. To express this, we introduce the following 
constraint rule: 

 (r) = d  d   ((r), (d )) (Acc-1) 

Applied to the JAVA program 
package a; class A { /*r1*/B b; } 
package a; class /*d1*/B {} 

we obtain the constraint d1  ((r1), (d1)). The variables of the constraint are:  
 d1, the declared access modifier of d1, 
 (r1), the location of r1, and 
 (d1), the location of d1.6 
As noted above, for the initial assignments of the variables derived from a syntacti-
cally and semantically correct program, constraints are always solved; note how this 
is indeed the case for the above example, in which d1 = ((r1), (d1)) = package. 

Now a refactoring may change the values of one or more variables, possibly violat-
ing the constraint. For instance, when class A is moved to another package, (r1) 
changes its value so that  evaluates to public and the constraint is no longer satisfied. 
To satisfy it, either the declared access modifier d1 has to be changed to public, or 
class B has to be moved to the same location.7 While the constraint itself is neutral to 
the chosen solution, the constraint satisfaction algorithm can be adapted to compute 
the one that is required (or makes most sense) for the given refactoring. 

In the special case of protected access, it must be made sure that a “protected 
member or constructor of an object may be accessed from outside the package in 
which it is declared only by code that is responsible for the implementation of that 
object” [6, §6.2.2]. This is achieved by the additional constraint rule 

 (r) = d  ((r), (d )) = protected  d  S  (r)  subclasses((r))  {(r)}  
  d  = public (Acc-2) 

in which subclasses((r)) represents the union of the locations corresponding to the 
bodies of (true) subclasses of the class whose body corresponds to (r). Note that 
Acc-2 does not replace Acc-1 in case of accessing protected members — it only adds 
a stronger constraint. 

Inheritance JAVA’s access rules require accessibility of an inherited member as if it 
were accessed as a member of the base class [6, 14, 19]. Therefore, Acc-1 covers 
access of inherited members as well. For instance, in 

                                                           
6  Note that in JAVA, the default constructor of a class may be implicitly accessed by its sub-

classes’ constructors. In these cases, corresponding constraints must be created without pres-
ence of explicit references. 

7  Note that if class B is moved first, the constraint generated from Acc-1 only requires that r1 is 
also moved. Other rules of the language may require that r1 must remain within the body of 
its owning class, so that class A must be moved with it. However, this constraint is unrelated 
to access control and therefore out of scope. We will return to this issue in Section 3.2. 
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package a; class A {} 
package b; class B extends a.A { protected /*d1*/void m() {…} } 
package b; class C { void n() { (new B()).m(); } } 

pulling up d1 is correctly prevented by Acc-1 (but nevertheless performed without 
warnings by ECLIPSE, NETBEANS, and IDEA). However, Acc-1 is insufficient to 
maintain inheritance under refactoring, as the following example shows (note how i 
can be accessed from B even though i is protected and B is in a different package): 

package a; 
public class A { 
  protected /*d1*/int i; 
  void n() { /*r1*/(new b.B()).i = 1; } 
} 
 
package b; 
public class B extends a.A {} 

Here, reducing the declared accessibility of d1 produces an error, even though 
((r1), (d1)) = private. The reason for this is that after the reduction, B, the type 
through which i is accessed, no longer inherits i. The reduction of accessibility and the 
concomitant loss of inheritance are prevented by the constraint rule 

 (r) = d  (r)  (d )  d   ((r), (d )) (Inh-1) 

which, in the above example, requires at least protected for d . As above, Inh-1 does 
not replace Acc-1 in case of accessing inherited members — it adds to it, effectively 
requiring that d  is greater than the maximum of ((r), (d )) and ((r), (d )). 

However, there is another problem with inheritance, namely that access of a static 
field can become ambiguous if it is inherited both from a superclass and from an 
interface [6, §8.3.3.3]. For instance, in 

class A { private /*d1*/static int i = 1; } 
interface I { /*d2*/static int i = 2; } 
class B extends A implements I {void m() { int j = /*r1*/i; } } 

in which (r1) = d2, the accessibility of d1 must not be increased. While the compiler 
detects and denies such ambiguous access, a refactoring changing the accessibility of 
the field in the superclass so that it is inherited by the subclass (where it was not prior 
to the refactoring) must foresee this problem and refuse its application. This is 
achieved by the constraint rule 

 {d, d' }  F  S  (d ) = (d' )  (r) = d  (d' )  superclasses((r))  
 d'  < ((r), (d' )) (Inh-2) 

in which (d ) refers to the unqualified identifier (simple name) of d and super-
classes(.) has the obvious meaning (analogous to subclasses(.) in Acc-2). Note that for 
qualified references r to d, (r) corresponds to an interface, so that Inh-2 is not appli-
cable (because superclasses((r)) is undefined). Also note that d'  depends on (r), 
not (r), since access, not inheritance, may become ambiguous. 

There is a variant of the above example in which d1 does not exist in class A prior 
to the refactoring, for instance because it is yet to be pulled up from a subclass. To 
prevent such a refactoring (which would affect the binding of r1), Inh-2 must be ap-
plied to a declared entity d' (d1 in the above example) that is not yet there (or, rather, 
that has as yet another location), so that r cannot yet bind to it. We call such constraint 
rules, which anticipate a refactoring, foresight rules. They can only be applied when 
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Subtyping A rather straightforward constraint rule expresses that in JAVA, the ac-
cessibility of an overriding or hiding method must not decrease ([6, §8.4.8.3]). This is 
expressed by the constraint rule 

 {d, d' }  M  (overrides(d', d )  hides(d', d ))  d'   d  (Sub-1) 

in which overrides(.,.) and hides(.,.) have the obvious meanings. Note that the subtyp-
ing rule does not apply to fields in JAVA; however, as we will see below, hiding (in-
cluding that of fields) gives rise to another constraint rule. Also note that, as for Inh-2 
above, there is a foresight application of this rule, namely when the method d is pulled 
up from a sibling class. 

A rather subtle implication of subtyping in JAVA is that a method inherited by a 
class that implements an interface requiring that method must remain publicly acces-
sible. This is expressed by the constraint rule 

 {d, d' }  M  subsignature(d', d )  {c, c' }  C  i  I  (d ) = i  (d' ) = c' 
   implements(c, i )  inherits(c, d', c' )  d'  = public (Sub-2) 

in which subsignature(.,.) is defined as in [6, §8.4.2] and implements(.,.) as well as 
inherits(.,.,.) have their obvious meanings. 

Dynamic binding Since constraints work in both directions, the above subtyping 
constraint rule Sub-1 equally states that the access modifier of an overridden method 
must always be less than or equal to that of the overriding method. Thus, if the access 
modifier for an overriding method should be decreased for any reason, the access 
modifier of the overridden method may also have to decrease. 

There are however bounds to this decrease, set by JAVA’s rules for dynamic bind-
ing. For example, given the JAVA code 

class A { 
  /*d1*/void m() {…} 
  void n() {/*r1*/m();} 
} 
class B extends A { 
  /*d2*/void m() {…} 
} 

changing accessibility of d1 to private is syntactically correct, but changes the mean-
ing of the program, since the call of m() in n() is no longer dispatched to the imple-
mentation of m() in B, if n() is invoked on an instance of B. Therefore, we add a con-
straint rule 

 overrides(d', d )  d   ((d' ), (d )) (Dyn-1) 

This models the requirement that for a method to be overridden, it must be accessible 
from the overriding subclass [6, §8.4.8.1]. Note that whether the loss of dynamic 
binding actually leads to a change of meaning of the program depends on the dynamic 
types of the receiver objects, and thus on conditions that cannot generally be decided 
statically. Therefore, Dyn-1 is a conservative rule that prohibits illegal refactorings, 
but may also prevent legal ones. 
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Accidentally losing overriding and dynamic binding has a converse problem, 
namely accidentally introducing it: if in the program 

class A { 
  private /*d1*/void m() {…} 
  void n() {/*r1*/m();} 
} 
class B extends A { 
  /*d2*/void m() {…} 
} 

accessibility of d1 is increased to package, the meaning of the program changes for 
invocations of n() on instances of B. This is prevented by the constraint rule 

 (d )  superclasses((d' ))  subsignature(d', d )  overrides(d', d )   
 d  < ((d' ), (d )) (Dyn-2) 

Note that Dyn-1 and Dyn-2 are not only useful for preventing a change of access 
modifiers that changes the status of dynamic binding — they are also capable of cor-
recting access modifiers when moving subclasses to other packages, so as to maintain 
(absence of) overriding. For instance, Dyn-1 requires increasing the access modifier 
of d1 in  

public class A { 
 /*d1*/void m() {…} 
 void n() { 
  A a = new B(); 
  /*r1*/a.m(); 
 } 
}  
public class B extends A { 
 /*d2*/void m() {…} 
} 

to protected when class B is moved to another package, which otherwise would pre-
vent execution of d2 (example adapted from [14]). Note that the concomitant required 
increase of the accessibility of d2 is mandated by Sub-1, requiring that d2  d1. 

Further note that because Dyn-1 and Dyn-2 have mutually exclusive antecedents, 
they can never introduce a direct (i.e., not involving other declared entities or refer-
ences) contradiction. This is different, however, for Sub-1 and Dyn-2: since their 
antecedents can both be fulfilled for the same pair (d, d' ), one might be concerned 
about unforeseen interactions. However, due to the declarative nature of constraints, 
this is not necessary: if all rules are correct, the result of their combined application is 
also correct (even if the resulting constraints are unsolvable; see below for an example 
of this). Constraints are inherently modular. 

Overloading In addition to overriding, JAVA allows overloading, which poses its 
own problems. For example, in the JAVA program 

class A { 
  /*d1*/void m(Object o) {…} 
} 
class B extends A { 
  /*d2*/void m(String s) {…} 
} 
class C { 
  void n() { /*r1*/(new A()).m("abc"); } 
} 
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where all classes reside in the same package, (r1) = d1. However, when d2 is pulled 
up from B to A, the binding of r1 changes to d2, changing the meaning of the program. 

The problem here is similar to that of inheriting two static fields (Inh-2) in that nei-
ther reference r nor declared entity d of an existing binding (r) = d changes location 
or accessibility — instead, a new declared entity d' becomes accessible, affecting the 
binding of r. Therefore, as with Inh-2 we have to create a constraint limiting the ac-
cessibility of the new declared entity d' (or a declared entity in a new location) so that 
it remains inaccessible for references that would otherwise be re-bound to d'. This is 
done by the constraint rule 

 {d, d' }  M  overloads(d', d )  (r) = d  (d' )  superclasses((r))  {(r)}    
 d'  < ((r), (d' )) (Ovr) 

in which overloads(d', d ) is defined as in [6, §8.4.9]. As for Inh-2, a constraint gener-
ated from Ovr constrains accessibility of a declared entity in a constraint set in which 
variable values have been updated to reflect the refactoring (in the above exam-
ple,(d2) has changed to a new location). The constraint may be invalid before the 
refactoring in the sense that it does not adequately reflect the program as is (in the 
above example, there is no reason to restrict, on the basis of r1, accessibility of d2 
where it is located). Because its application must foresee the refactoring to be per-
formed, Ovr is a foresight rule that, like Inh-2 and Hid, can only be applied to a pro-
gram when the planned refactoring is known.8 

The overloading constraint rule Ovr has an interesting consequence: it can require 
access modifiers to be less than private, which basically means that the so modified 
entity must not be there. While this may seem paradoxical, it makes perfect sense in 
certain situations: for instance, if (r1) in the above example were class A, Ovr would 
produce d2 < private, meaning that m(String) must not be declared in A (which is the 
only correct solution to the problem). In order for all constraints generated by our 
rules to be satisfiable, we introduce a new value to our set of access modifiers, A, 
which is smaller than private. We call this access modifier absent.9 Note that a con-
straint requiring an existing declared entity to be absent can only be generated by 
foresight rules (because otherwise the program from which it were created, having an 
entity it must not have, would be incorrect), and that no constraint variable can have 
the initial value absent. 

Hiding The overloading rule Ovr has another interesting application: if we extended 
the antecedent to cover overriding methods, Ovr could prevent the pulling up of d2 in 

class A { 
  /*d1*/void m() {…} 
} 
class B extends A { 
  void n() { /*r1*/m(); } 
} 

                                                           
8  Note that the converse problem, namely that binding of r to d' is redirected to d because d' 

became inaccessible, is prevented by Acc-1. 
9  Satisfiability with abnormal values like absent is different from lack of satisfiability, since it 

provides a diagnosis of the problem and points to a possible solution. Cf. Section 6.1 for a 
discussion. 
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class C extends B { 
  /*d2*/void m() {…} 
} 

which would lead to a change of binding of r1. The pulling up would be prevented by 
Ovr because its application would produce the constraint d2 < ((r1), (d2)), which 
is at conflict with the constraints generated by Sub-1, d1  d2, and Acc-1,  
d1  ((r1), (d1)) (= ((r1), (d2))), so that the refactoring would lead to an un-
solvable constraint set (meaning that pulling up d2 is not allowed). 

Rather than extending Ovr as suggested above, we introduce a separate constraint 
rule that also covers static methods and fields, whose introduction in a type can like-
wise lead to a change of binding (called hiding in [6] or hiding through inheritance in 
[13]). However, other than with overloading, with hiding there will never be solutions 
consisting of reducing accessibility of the hiding declared entity to a level above ab-
sent. Therefore, the new constraint rule reads 

 (d ) = (d' )  (r) = d  (d' )  (superclasses((r))  {(r)}) \ superclasses((d )) 
  d'  = absent (Hid) 

where (d ) = (d' ) means that d and d' have the same name or are override-equivalent 
[6, §8.4.2]. Again, that a declared entity that hides must be absent may seem para-
doxical, but just as with inheritance (Inh-2) and overloading (Ovr), Hid is not applied 
to a program as is, but rather to the changes introduced by the refactoring were it 
performed (a kind of internal preview). It is thus a foresight rule, here one preventing 
that a certain declared entity is introduced, or moved, to a certain location. 

Note that so-called shadowing and obscuring [6] (called hiding by nesting in [13]) 
cannot be prevented by adjusting access modifiers and are therefore out of scope for 
this paper. 

Miscellaneous A number of constraints follow directly from the JAVA language 
specification (JLS) [6] and are easily formalized: 
 The accessibility of an array type equals the accessibility of its element type [6, 

§6.6.1]. 
 The accessibility of all fields declared in the same field declaration must be equal 

[6, §8.3]. 
 All main methods must be publicly accessible [6, §12.1.4]. 
 Only that top level type of a compilation unit whose name equals the name of the 

compilation unit may be declared public [6, §7.6].10 
 A singly imported type and imported static members must be accessible by the 

importing compilation unit [6, §7.5]. 
Not so easily formalized (and omitted here for spatial reasons) is the rule that for 
multiple on-demand imports [6, §7.5], if a simple name in the importing compilation 
unit refers to a declared entity imported by one of the imports, the same entity must 
not be accessible through any of the other on-demand imports [6, §6.5]. 

For open programs (libraries, frameworks, etc.) it is necessary to keep other entry 
points than the main methods accessible. We therefore interpret certain annotations as 
constraints keeping the accessibility of the annotated entity constant; the @API annota-

                                                           
10  Note that in our formalization, compilation units have not been included as locations. 
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Last but not least (and as announced in Footnote 4), the set of admissible access 
modifiers for a declared entity depends on its kind and where it is declared, which is 
modelled by a corresponding constraint rule. Note that the allowable modifiers of d 
may change should the location of d change, for instance when d is a method pulled 
up to an interface.  

3.2 

Solutions to finite constraint sets over variables with finite domains are trivially found 
by generating all possible variable assignments and by testing for each assignment 
whether it solves the constraint set. Clearly, the computational complexity of such a 
procedure is exponential in the number of variables, and therefore rarely acceptable. 
However, while general constraint satisfaction problems are known to be NP-com-
plete, in practice, highly efficient algorithms that can solve finite domain constraint 
satisfaction problems such as ours with thousands of variables in acceptable time are 
available off the shelf (see, e.g., [5]), so that we will not go into details here. With one 
notable exception. 

Since our constraint rules only model one aspect of JAVA, namely its access con-
trol, the constraints generated from these rules cannot be expected to prevent changes 
to programs violating syntactic or semantic rules unrelated to accessibility (examples 
of this are given in Footnote 7 and in Section 6.3). In particular, generated constraint 
sets may have solutions involving the changed location of elements that translate to 
incorrect programs, even if no access constraint is violated. Therefore, we restrict 
constraint solving to computing new values for the variables representing the declared 
access modifiers of entites, ., and keep the variables representing locations of de-
clared entities and references, (.), constant (unless of course the change of location is 
the purpose of a refactoring). Since the sets of possible locations for references and 
declared entities are usually large, this reduces the complexity of our constraint satis-
faction problems considerably. 

4 

Traditionally, the specification of a refactoring consists of a set of preconditions and 
an algorithmic part that describes its “mechanics” [4].11 The preconditions are 
checked before the refactoring is performed; their purpose is to exclude applications 
of the refactoring to constellations in which the refactoring cannot work. 

For constraint-based approaches to refactoring, precondition checking and mechan-
ics rely on the same characterization of the problem: precondition checking amounts 
to finding out whether a generated constraint set with the intended changes applied is 
solvable, and performing the mechanics amounts to writing a solution of the con-
straint set (i.e., the found variable values) back to the program. If checking solvability 

                                                           
11  Being an algorithm, the complete specification of a refactoring would also involve a set of 

postconditions. However, postconditions of refactorings are rarely found in the literature. 
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and finding a solution are considered one, refactoring with constraints consists of four 
steps: 
1. the generation of constraints and initial variable values from the program to be 

refactored (resulting in a solved constraint set); 
2. a change of variable values and the addition of foresight constraints reflecting the 

planned refactoring (possibly resulting in an unsolved constraint set); 
3. the solution of the constraint set under the side conditions of the refactoring (in-

cluding which constraint variables are fixed and which can be changed as part of 
the solution); and 

4. the writing back of the found solution, if any. 
The refactoring may involve user interaction, namely answering questions as to 
whether certain changes should be allowed (such as the change of access modifiers 
due to ripple effects). Since the constraints required for each particular refactoring, 
which variables of these constraints are actually changeable, and the possible user 
interaction depend on the concrete refactoring, we clarify these issues separately for 
each refactoring. 

4.1 The C

The most primitive refactoring relating to accessibility is changing the access modi-
fier of a declared entity. It is a refactoring because, as noted in the introduction, the 
change represents a change of design and because it requires a careful prior analysis 
(it can change the meaning of the program, which a refactoring must not do). 

The constraints to be generated for this refactoring are those involving the entity d 
whose declared accessibility d  is to be changed, and recursively all those that are 
directly or indirectly (through shared constraint variables) related to it. If the user 
chooses that no other declared entities d'  may be touched in the course of the refactor-
ing, the set of constraints needing to be generated is reduced to the ones in which d is 
directly involved; the declared access modifiers d'  of the d' participating in these 
constraints are then marked as constant. 

The computation of the solution is initiated by assigning the constraint variable d  
representing the declared accessibility of the entity d to be refactored the value corre-
sponding to the target accessibility. If the new value leaves the constraint set solved, 
the changed value can be written back and the refactoring is performed. If it is un-
solved, a new solution must be computed. To express that the solution should involve 
as few and as small changes as possible (a side condition of the refactoring), the num-
ber of changes must be counted and the constraint solver instructed to find a solution 
that minimizes this count. If no solution exists, the refactoring must be refused; oth-
erwise, the solution is written back and the refactoring performed. 

Regarding the foresight rules preventing a change of binding (Inh-2 and Ovr; Hid 
is irrelevant here, because it can only prevent changes of location), only those con-
straints need be generated that constrain declared entities d whose accessibility may 
change during the course of the refactoring. For Inh-2, this amounts to checking all 
superclasses of (r) for all r with (r) = d, for the presence of a static field with the 
same name as d. If present, a corresponding constraint is added. For Ovr, the check is 
analogous, but limited to overloaded methods. For instance, if in the program 
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package a; 
public abstract class A { 
  protected /*d1*/abstract void m(String s); 
} 
 
package a; 
public class B extends A {  
  public /*d2*/void m(Object o) {…}  
 protected /*d3*/void m(String s) {…} 
} 
 
package b; 
public class C { 
  void n() { /*r1*/(new a.B()).m("abc"); } 
} 

accessibility of d1 is to be increased to public, application of Ovr adds the constraint 
d3 < ((r1), (d3)) (because Sub-1 inserted d3  d1, implying a change of d3). 
Since ((r1), (d3)) = public, the refactoring is prevented. 

A special case of changing accessibility is the HIDE METHOD refactoring, which 
suggests making “each method as private as you can” [4]. In previous work of ours, 
we have implemented a refactoring that attempts to hide all methods of a program in 
one step [1]. However, due to the imperative character of the implementation (cf. 
Section 2.2), it did not consider ripple effects (i.e., one reduction that required another 
reduction as a prior step), so that it had to be repeated after each application to see 
whether any new reductions had become possible. By contrast, the constraint ap-
proach we are presenting here addresses this chaining through constraint propagation, 
so that accessibility of all declared entities can be reduced to their smallest possible 
levels in a single refactoring step. 

4.2 The M

As far as accessibility is concerned, there is no difference between moving and pull-
ing up or pushing down members (a distinction that is made in [4] and also in many 
refactoring tools): the constraint rules to be applied are precisely the same. The differ-
ence lies in which other elements must be moved as well, but this is independent of 
access modification and hence outside the scope of our work (cf. Sections 3.2 and 
6.3). Therefore, we do not distinguish between these refactorings here. 

Moving one or more declared entities d means that the constraint variables repre-
senting their locations, (d ), are assigned new values. If the declared entities contain 
references r, their locations (r) change as well. All constraints directly or indirectly 
involving the changed (d ) or (r) must be generated. If the user selects that no ac-
cess modifiers may be changed as part of the refactoring, the set of constraints to be 
generated is restricted to the ones directly involving the moved locations and the 
values of all variables d  are considered constant. All this is more or less analogous 
to the CHANGE ACCESSIBILITY refactoring (cf. above). 

The situation is significantly different, however, for the foresight rules: here, Inh-2, 
Sub-1, Ovr, and Hid must be applied to the moved program elements, referring to 
their updated locations. This implies that search for overloaded or override-equivalent 
methods and for fields of the same name must be commenced in the target, rather than 
the original, location. For instance, if the intended refactoring for the program 

434 F. Steimann and A. Thies 

OVE TYPE/MEMBER and PULL UP/PUSH DOWN MEMBER Refactorings 



package a; 
public class A { 
  public /*d1*/void m(Object o) {…} 
  void n() { /*r1*/(new b.B()).m("abc"); } 
} 
 
package b; 
public class B extends A {} 
 
package a; 
public class C extends B { 
  public /*d2*/void m(String s) {…} 
  void n() { /*r2*/(new C()).m("abc"); } 
 
} 

is to pull up d2 to class B, application of Ovr to r1, d1, and d2 in its new location, class 
B, produces the constraint d2 < ((r1), (d2)) (= public; note that this constraint is 
not justified for the program before the refactoring). Since application of Acc-1 pro-
duced d2  ((r2), (d2)) (= protected ), the pulling up of d2 is possible, but only if 
d2 is reduced to protected. Since we restricted the moving of program elements to 
the ones the user required to be moved (cf. Section 3.2), for all others the foresight 
rules must be applied as if the refactoring were CHANGE ACCESSIBILITY (because this 
is all that can happen). In the above example, there are no other foresight rules to be 
applied. 

4.3 

A number of standard refactorings have the potential to change bindings. Perhaps the 
most prominent is the RENAME refactoring, which has to deal with issues such as 
hiding, shadowing, and obscuring [6, 18]. In certain cases, a change of accessibility 
can prevent such changes of binding, but these cases are rather rare. Also, the choice 
of names should not have an impact on accessibility and thus modularity, so that we 
do not pursue this further here. 

Somewhat related is the problem of changed bindings due to a change of method 
signatures, either due to user request or as a side effect of refactorings such as GEN-

ERALIZE DECLARED TYPE or USE SUPERTYPE WHERE POSSIBLE [21]. In languages with 
single dispatch, the change of binding is limited to overloaded methods, and therefore 
can be dealt with using our constraint rules (in particular Ovr). However, as will be 
discussed in Section 6.2, other means of preventing or solving such problems may be 
more adequate. 

4.4 

Although not themselves concerned with changing access modifiers, some refactor-
ings have preconditions requiring a certain level of accessibility of involved declared 
entities. For instance, the REPLACE INHERITANCE WITH DELEGATION [10] refactoring 
requires that the inheriting class or its subclasses do not need access to protected 
members inherited before the refactoring (because these are no longer accessible after 
inheritance has been replaced by delegation). A corresponding case study showed that 
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in more than 15% of all inheriting classes, this precondition was violated [10]. In-
creasing accessibility of the (formerly) inherited member to public would satisfy the 
precondition; however, this presupposes that such a change does not change the 
meaning of the program. This can easily be checked by our constraints. 

5 Implementation 

As a proof of concept, we have implemented our constraint-based model of accessi-
bility in JAVA as a plug-in to ECLIPSE’s JDT, and tested and evaluated it by using it as 
the basis of several systematic refactorings of a set of sample programs. 

5.1 

Section 4 described in abstract terms how the constraints required for a specific refac-
toring are determined. Basically, an implementation would have to start with an initial 
set of variables whose change of value models the intended refactoring, generate all 
constraints from the program that constrain these variables, add their other (change-
able) variables to the variable set, and so forth until no more constraints can be added. 
For instance, if the declared accessibility d  of an entity d is to be changed, the pro-
gram must be scanned for matches of the preconditions of all constraint rules contain-
ing d. For Acc-1 with precondition (r) = d this means that all references r binding to 
d must be found, for Inh-1 that additionally the static type of the receiver must be 
looked up, and so forth. As it turns out, the required searches and lookups can be quite 
expensive, especially if the AST does not maintain inverted indices pointing from 
declared entities to their references (cf. the discussion in Section 2.2). Since the space 
and time requirements for building and keeping such indices can be substantial (see 
[1] for some measurements), and since the JDT’s search functions also rely on scan-
ning the AST (so that successive searches for references to different declared entities 
are rather expensive), we decided to generate all constraints in a single sweep of the 
AST, regardless of whether they are actually needed by the concrete refactoring prob-
lem. As can be seen from Table 1, this poses some non-negligible spatial and tempo-
ral limits on our implementation. 

Table 1.  Space and time requirements of the approach as currently implemented (see text). 

 SPACE TIME 
 No. of Avg. Time$ in msec to 
Project (.) . Constraints Build Check* Solve* 

Avg. No. of 
Steps to Solve*

JUNIT 3.8.1 2553 1332 4949 10593 30 599 5293360 
JESTER 1.37b 1475 761 2293 1127 9 81 6837 
JHOTDRAW 6.01b 9594 4995 26816 21246 199 6452 25582800 
APACHE.IO 1.4 4315 2181 12877 17843 129 2486 57052 
$  on a contemporary Wintel machine with 2GHz clock speed and 1GB of main memory for the JVM 
*  averaged over the refactorings performed to obtain the data of Table 2 
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5.2 

Except for , the auxiliary functions and predicates occurring in the antecedents of 
our constraint rules (namely , , , , subclasses, superclasses, implements, inherits, 
hides, overrides, overloads, and subsignature) are implemented using corresponding 
API methods of the JDT. The function  computing the required accessibility level 
for a reference to a declared entity is unpleasant to specify (as was its extraction from 
the JLS [6]); because it is of no theoretical interest, we do not present it here. 

5.3 

For constraint set solution, we adopted Naoyuki Tamura’s class library for constraint 
programming in JAVA, called CREAM [20]. CREAM offers various implementations of 
efficient solvers for finite domain (especially integer) constraint satisfaction prob-
lems, of which our accessibility constraint sets (with the finite and totally ordered A as 
their domain) are a special case. As can be seen from Table 1, CREAM is capable of 
computing a new solution for a constraint set invalidated by the change of variable 
values and the addition of foresight constraints modelling an intended refactoring in 
acceptable time. However, better performance can be expected from creating fewer 
constraints (cf. Section 5.1), and from devising problem-specific constraint solvers. 

5.4 Testing 

In the absence of a formal proof of the completeness and correctness of our constraint 
rule set, we tested it thoroughly, exploiting the invariants mentioned at the end of the 
introduction to Section 3. In particular: 
1. We generated all constraints and initial variable values from existing programs and 

checked whether the resulting constraint sets were solved given the initial assign-
ments. This gave us an idea of the correctness of our constraint rules. 

2. We computed all solutions for constraint sets generated from programs covered by 
test suites and wrote back the solutions to the code, checking whether the programs 
still compiled and their test suites still passed. This gave us an idea of the com-
pleteness of our constraint rule set. Note that, because behaviour-preserving change 
of location is not only constrained by accessibility (cf. Sections 3.2 and 6.3), we 
only computed new values for the variables . representing the declared access 
modifiers.12 

3. We automatically performed refactorings enhanced with accessibility constraints 
for precondition checking and for computing the necessary mechanics on several 
programs covered by accompanying test suites, and checked whether the refactor-
ings left the meaning of the programs (as specified in the test cases) unchanged. 

                                                           
12  Due to the exponentially growing number of possible solutions, we had to limit testing to 

small programs (mostly variants of the programs used as examples in this paper, but also 
subsets of JUNIT and other small programs). We complemented these tests by tests on much 
larger programs, in which we changed only one access modifier at a time. 
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All three approaches contributed to identifying and shaping our constraint rules, 
whose original extraction from the JLS [6] turned out to be difficult and error-prone. 

For the automated application of refactorings to sample programs, we used our 
REFACTORING TOOL TESTER (RTT) program. RTT is an ECLIPSE plugin that auto-
matically applies a given ECLIPSE refactoring tool to all those elements of a test pro-
gram for which it is intended, and checks whether the program still compiles after the 
refactoring and whether its unit tests still pass (approximating behaviour preserva-
tion). In its purpose, RTT competes with ASTGEN [2], but its design is different in 
that it uses existing, rather than specially generated, programs. Using the RTT on a 
large set of test programs increases the likelihood of covering rare cases (the design-
ers of the generators for ASTGEN may not even have conceived of). However, since 
this approach primarily tests the refactorings and only indirectly the constraints used 
to compute preconditions and necessary changes, and because these refactorings have 
bugs unrelated to accessibility, the results of this automated testing require a careful 
interpretation. We defer this to the next subsection. 

5.5 Evaluation 

Although our examples of Section 2.1 should have provided sufficient evidence for 
the usefulness of a formal capture of accessibility and its integration into refactoring 
tools, we have also conducted some experiments using real programs, giving us an 
impression of how often a user of these tools will actually benefit. For this, we have 
adapted our above described RTT to apply two ECLIPSE refactoring tools, MOVE 

CLASS and PULL UP METHOD, in three variants to a set of sample programs: variant 1 
(pure) applies the refactorings as they are currently deployed with [3] (including their 
built-in precondition checking); variant 2 (prec) enhances them with our constraint-
based precondition checking allowing no changes of access modifiers, and variant 3 
(mech) enhances them with precondition checking and constraint-solution based me-
chanics adjusting access modifiers so as to make the refactoring possible. Thus, we 
get for each potential application (appl ) of a refactoring six outcomes, namely for 
each variant one pair stating whether it passed the preconditions (p) and whether it 
was successful (s). The counts of these outcomes for the sample programs are summa-
rized in Table 2. 

Due to the nature of the problem, we can expect the number of precondition passes, 
p, to decrease from pure to prec, and the number of successes, s, to stay the same (if it 
decreased, our preconditions would likely be too strong). Thus, the relative number of 
successful applications should increase. When moving from prec to mech, p should 
increase, as should s. However, because the refactorings can fail for other reasons (see 
below), the relative number of successful applications can change in either direction. 

For MOVE CLASS, the results from Table 2 confirm our expectations: the passing of 
preconditions drops by 15% on average when moving from pure to prec13, and in-
creases by 17% when moving from prec to mech. This means that if the refactoring is 
allowed to change access modifiers, preconditions predict that it can be applied in 
99% of all cases, compared to 85% if no changes are allowed. The success rate, which 

                                                           
13  The inhibiting constraint rules were Acc-1 (52), Dyn-1 (7), and Inh-1 (4). 
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is only 86% for pure, increases to 100% for prec and mech. The decrease of success-
ful applications from pure to prec by 2% in the case of JHOTDRAW turned out to be 
due to measurement error: the five surplus applications of pure changed the meaning 
of the program (an were thus in fact unsuccessful), but this was neither caught by the 
compiler (in the form of compile-time errors) nor by the test cases. The two illegal 
applications of pure that could not be legalized by mech (both from JUNIT) were due 
to unsatisfiable constraints introduced by application of Acc-1 and Dyn-2. 

The picture is rather different for PULL UP METHOD: while applicability also de-
creases from pure to prec (by 24% on average14), the loss of applicability is not re-
verted by mech: of the 58 applications inhibited by prec, only 27 could be legalized 
by adapting access modifiers. The remainder was prevented by unsatisfiable con-
straints of the above kind, and also by the 16 constraints introduced by Hid (cf. Foot-
note 14), which are generally unsatisfiable for referenced entities (cf. Section 3.1). 
The high success rate of pure (95%) is explained by the fact that the original refactor-
ing tool changes the access modifier of the pulled up method if this is deemed neces-
sary (which avoids many compile-time errors), and that introduced binding errors are 
not caught by tests (recall that Dyn-1 and Dyn-2 may be too strict so that their viola-
tion may not even present an error). The eight unsuccessful applications for prec and 
mech are caused by errors introduced by the pure refactoring tool that are unrelated to 
accessibility (and thus can neither be prevented by prec nor fixed by mech), such as 
disregarding the changed type of this (cf. Section 6.3) and the incompatibility of ex-
ceptions thrown by the pulled up method and an override-equivalent method in a 
sibling class. 

6 Discussion 

6.1 

The existence of absent as an access modifier allows the elegant formulation of cer-
tain preconditions of refactorings as solvable constraints (cf. Footnote 9). For in-

                                                           
14 with Ovr (365), Acc-1 (125), Sub-1 (18) and Hid (16) inhibiting the application 

Table 2.  Number of passed (p) and successful (s) refactorings as applied to several test pro-
jects (see text). 

 MOVE CLASS PULL UP METHOD 
 appl pure prec mech appl pure prec mech 
Project  p s p s p s  p s p s p s 
JUNIT 3.8.1 38 38 23 23 23 36 36 148 20 20 14 14 20 20 
JESTER 1.37b 31 31 26 26 26 31 31 5 3 3 3 3 3 3 
JHOTDRAW 6.01b 235 235 213 208 208 235 235 1167 199 187 147 139 168 160
APACHE.IO 1.4 73 73 64 64 64 73 73 102 14 14 14 14 14 14 
total 377 377 326 321 321 375 375 1422 236 224 178 170 205 197
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stance, if a foresight constraint requires that a certain entity’s declared accessibility 
must be less than private, and if no other constraint requires that it must be at least 
private (because the entity is never referenced), the constraint solver will assign it the 
value absent, suggesting that the element should be (and can be!) deleted. Without 
absent, the constraint set would be unsolvable and the possible solution, the removal 
of a declared entity, would remain unconsidered. 

Beyond this, absent also has its own value. Analogous to JAMIT [8], our constraint 
rules are capable of detecting dead code, simply by searching for solutions of a pro-
gram’s constraint set that assigns absent to the access modifiers of declared entities. 
However, with the access rules as is, dead code can remain undetected due to circular 
referencing. 

Declared entities that are sustained by circular references not fed by a reference 
into the circle can be reduced to absent by modifying the accessibility rule Acc-1 such 
that it allows absent for a d  even though there is an r such that (r) = d, if r resides 
in the location of a declared entity that is itself modified with absent (expressed by 
absent(r)): 

 (r) = d  d   ((r), (d ))  d  = absent if absent(r) (Acc-1') 

However, since all constraints are generated by a rather simple static analysis of the 
program, our dead code removal will always be inferior to that achieved by more 
sophisticated tools, so that we do not pursue this further here. 

6.2 

One might argue that the requirement expressed by some of our constraint rules, that 
declared entities must be made inaccessible or even eliminated to allow certain refac-
torings, is unnecessarily strong. Indeed, the reference to an overloaded method can be 
forced to bind to a certain implementation by inserting upcasts to the formal parame-
ter types of that particular implementation, and the reference to a hidden entity can be 
maintained by inserting qualified names (as described in [18] for the RENAME refac-
toring; cf. Section 2.2). However, this would require a change of the reference rather 
than a change of accessibility, and is therefore a different story (one in which refer-
ences themselves are modelled as variables). 

6.3 

Controlling access modifiers does not solve all refactoring problems related to access-
ing members. For instance, in the left program of 

class A {} 
 
class B extends A { 
  /*d1*/void m() {/*r1*/n();} 
  /*d2*/void n() {} 
} 

class A { B b; } 
 
class B extends A { 
  /*d1*/void m() {/*r1*/b.n();} 
  /*d2*/void n() {} 
} 

with classes A and B residing in the same package, pulling up m() does not violate the 
access rules of JAVA (B.n() is accessible from A), but nevertheless results in a seman-
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tic error — the problem here is that the implicit receiver of calling n(), this, is of type 
B before the refactoring and of type A after. Were n() called on a variable of type B as 
on the right, the program would still work after the refactoring. While a constraint-
based solution to this problem is likely possible, it is independent of access modifica-
tion and therefore out of scope for this paper. 

6.4 

Our capture of access control as a set of constraint rules allows the compact compari-
sons of programming languages. Table 3 provides such a comparison of JAVA, C#, 
and EIFFEL. The inclusion of EIFFEL may seem surprising, since EIFFEL does not have 
access modifiers, but uses selective export of features (to the listed classes and their 
subclasses, to all, or to no classes) instead [12]. However, it nevertheless fits nicely 
into our framework: in EIFFEL, the domain of the accessibility variables ., A, is 
(C ), the powerset of the set of classes (see Table 3). 

Table 3 also reveals that C#, although rather similar to JAVA, avoids certain of its 
problems. For instance, violation of Dyn-1 resulting in a change of behaviour in JAVA 
leads to a semantic error reported by the compiler, and violation of Dyn-2 is impossi-
ble. Similarly, violation of Hid issues a warning suggesting that the new modifier be 
used. A constraint rule of C# not found in JAVA requires that the accessibility of a 
member is at most the accessibility of its declared type. This prevents the breaching of 
non-accessibility made possible by chained method calls in JAVA, through which an 
instance of an inaccessible type can be accessed. 

7 Conclusion 

Refactoring the design of a program typically involves the moving of classes and/or 
their members. This requires regard of the access control rules specified by the pro-
gramming language. In JAVA, disregard of these rules cannot only lead to access vio-
lations (reported as errors by the compiler), it can also lead to a change of meaning of 
a program, which a refactoring must always avoid. By capturing the access control of 
JAVA in the form of constraint rules, we have provided a framework for checking the 
preconditions of refactorings affecting the accessibility of program elements, and for 
safely adapting declared accessibility as part of the mechanics of a refactoring that 
would otherwise be impossible. Our framework involves so-called foresight applica-
tions of rules that model the changes intended by a refactoring, and an additional 
access modifier absent suggesting the deletion of program elements that are in the 
way of a refactoring without being used by the program. By conducting systematic 
experiments, we have shown how our approach can improve applicability and cor-
rectness of at least one important refactoring tool; where it falls short, it may be pos-
sible that additional constraint rules (unrelated to access modification) can fix the 
problems. 
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Java on 1000 Cores:
Tales of Hardware/Software Co-design

Cliff Click

Azul Systems

Azul Systems designs and builds systems for running business logic applications
written in Java. Unlike scientific computing, business logic code tends to be very
large and complex (> 1MLOC is *common*), display very irregular data access
patterns, and make heavy use of threads and locks. The common unit of par-
allelism is the transaction or thread-level task. Business logic programs tend to
have high allocation rates which scale up with the amount of work accomplished,
and they are sensitive to Garbage Collection max-pause-times. Typical JVM im-
plementations for heaps greater than 4 Gigabytes have unacceptable pause times
and this forces many applications to run clustered.

Our systems support heaps up to 600 Gigabytes and allocation rates up to 35
Gig/s with pause times in the dozen-millisecond range. We have large core counts
(up to 864) for running parallel tasks; our memory is Uniform Memory Access (as
opposed to the more common NUMA), cache-coherent, and has supercomputer-
level bandwidth. The cores are our own design; simple 3-address RISCs with
read- and write-barriers to support GC, hardware transactional memory, zero-
cost high-rez profiling, and some more modest Java-specific tweaks.

This talk is about the business environment which drove the design of the
hardware (e.g. why put in HTM support? why our own CPU design and not
e.g. MIPS or X86?), some early company history with designing our own chips
(1st silicon back from the fab had problems like the bits in the odd-numbered
registers bleeding into the even-numbered registers), and finally some wisdom
and observations from a tightly integrated hardware/software co-design effort.
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Abstract. This paper presents a simple type system for thread-local
data in Java. Classes and types are annotated to express thread-locality
and unintended leaks are detected at compile-time. The system, called
Loci, is minimal, modular and compatible with legacy code. The only
change to the language is the addition of two new metadata annotations.
We implemented Loci as an Eclipse plug-in and used it to evaluate our
design on a number of benchmarks. We found that Loci is compatible
with how Java programs are written and that the annotation overhead
is light thanks to a judicious choice of defaults.

1 Introduction

Statically determining whether part of a computation takes place solely inside
a single thread is desirable for several reasons. Not only does it simplify reason-
ing, but it enables optimizations that are only possible in sequential code, for
example, to improve the performance of automatic memory management algo-
rithms [17,32] or remove unnecessary synchronization [2,1]. Java has supported
thread-local fields with the ThreadLocal class since version 1.2 of the language.
Using this API, each thread can have its own copy of a field and use that in
a race-free manner. Another example of use is the detection of deadlock and
shutdowns in a CORBA implementation [25].

When used with simple or immutable data types, the ThreadLocal API offers
sufficient protection. However, when used with mutable complex data types the
safety offered by the ThreadLocal API can be likened to that of name-based
encapsulation: the field is guaranteed to be thread-local, but not its contents.
For example, a reference obtained from a thread-local field can subsequently be
shared across threads, which may violate thread-locality assumptions elsewhere
in the program. This also means that compilers can not rely on thread-locality
in their optimizations.

In this paper, we propose a simple, statically checkable set of annotations that
lets programmers express thread-locality. Our system, Loci, was designed with
Java in mind, but should apply to Java-like languages with only a modicum of
changes. We extend Java with two annotations: @Thread, to denote potentially
thread-local objects and @Shared to denote shared objects. Classes that do not
leak this to shared fields can be marked @Thread to denote that they are safe
to use for thread-local computation. Annotations on fields, parameters, local
variables and method returns are then used to express thread-locality of objects

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 445–469, 2009.
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in the program. Loci statically verifies that a program’s thread-local behavior
corresponds to the programmer’s intentions and thus enforces proper use of
Java’s ThreadLocal API. Experiments with Loci on ≥45 000 lines of Java code
validate our design and suggest improvements.

The design of Loci was driven by a quest for simplicity and practical appli-
cability. To minimize syntactic overhead, and increase reusability of code and
libraries, Loci uses a default annotation system on types controlled by class-level
annotations. In many cases, a single class-level annotation is necessary to make a
class suitable for use in thread-local computation. Furthermore, the defaults have
been chosen so that all existing Java programs are valid Loci programs. Loci is an
ownership types system that uses threads as owners, instead of objects, similar
in spirit to [30,14]. This paper makes the following contributions:

1. It proposes Loci, a simple annotation system for Java-like languages that can
statically express and enforce proper use of thread-local data and integrates
reasonably well with legacy code, specifically, all existing Java programs have
a valid Loci semantics.

2. An implementation of Loci in an Eclipse plug-in which integrates error
reporting with the Eclipse IDE and performs bytecode-level rewriting of
thread-local field accesses and thread-local methods.

3. Reports on experimental results from annotating classes in existing Java
programs. We have refactored some benchmark programs by hand and, in
parallel, we have implemented an inference algorithm as well as a dynamic
tracking algorithm.

The main motivation for our work is to statically enforce thread-locality in
Java. Loci allows programmers to declare their intentions with respect to thread-
locality and checks statically that those intentions are never violated. The knowl-
edge that some of the data manipulated by a system is guaranteed to be race-free
is a big help for programmers as they need not worry about concurrency control
for those parts of the system.

There are other potential benefits to thread-locality that we intend to explore.
For starters, we believe that thread-locality information can be used to improve
performance. Trivially, thread-local objects are free from data races and no locks
need to be acquired for such objects. Thread-locality also has positive effects
on garbage collection. For example, collecting thread-local data can be done
in parallel without synchronization. In a reference counted collector, reference
counts on thread-local objects can be modified directly without a compare-and-
swap. Previous work [17] shows overall speedups of 50% when using thread-local
heaps in Java. As a last example, thread-locality could be used to cache field
reads for local manipulation in methods, before written back.

Another interesting future application of thread-locality lies in real-time com-
puting. Run-time facilities used to execute Java programs typically have a very
fast path that speculatively assumes properties that would be implicit with
thread locality. For example, thin locks [3] and biased locks [29] assume a lack of
contention. While this results in good performance for systems in which only the
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overall throughput is important, it is of no use to systems in which the worst-
case performance is the more interesting property. Thread-locality can aid the
worst-case analysis of real-time programs, by assuring the developer that the
slow-path will never be taken. Typical Java programs use locking in the form of
the synchronized statement freely under the assumption that it is cheap. Unfor-
tunately, locking is only cheap when it is uncontended. Proving this with a static
analysis is hard, but can be made easy for a large subset of the program by using
Loci. While real-time garbage collection is gaining acceptance, its performance
is still lagging. Using thread-local heaps, or similar variants thereof [27,30], in-
creases both mutator utilization and scalability. Existing systems accomplish
this with a combination of run-time checks, analyzes performed at run-time on
object graphs, and extremely strict confined types systems. Loci could be used
to achieve a similar effect with more expressive power and less work on the part
of the programmer.

2 Informal Introduction to Loci

We now informally describe the Loci system, its logical run-time view of the heap
and the annotation system.

2.1 Example

As first example, Fig. 1 shows Loci preventing a supposedly thread-local variable
from a thread’s run method to be leaked. The class Leaky is a thread with a field
unsafe of type String[]. The run() method stores a reference to an object that
was intended to be thread-local into that field, thus making it possible for another
thread to read the field and perform concurrent updates on the array.

In many cases, the only variable that needs to be explicitly annotated in Loci
is the root variable on the bottom stack-frame in the thread’s run-method. The
Loci class Safe is a thread where the field unsafe has been marked @Shared. This
means that it is a field that can be read by multiple threads. In the method run,
the local variable is marked @Thread to denote that it is intended to be thread-
local. Loci will flag the assignment of line 6 as a compile-time error because it
breaks the thread-locality guarantee on local.

In cases where the thread needs to explicitly store thread-local variables on the
heap, a @Thread field can be used. Class NotSoLeaky is a correct implementation
of Leaky that uses the ThreadLocal API explicitly to store the contents of the
local variable in a thread-local field. The same effect can be achieved in Loci
by annotating a field as @Thread. This is done in class Safe where the field safe

is thread-local. In this case, Loci will silently transform the code written by the
programmer (at compile-time) into equivalent code which uses ThreadLocal.

To sum up, Loci guarantees that the contents of any field or variable annotated
@Thread is and will remain thread-local. For variables this is done entirely at
compile-time (by restricting assignments) and for fields the guarantee is obtained
by translation into using the ThreadLocal API.
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1 class Leaky extends Thread {

2 String[] unsafe;

3

4 public void run() {

5 String[] local = ...;

6 unsafe = local; // leak

7

8 } }

9 ...

10 Leaky t;

11 ... = t.unsafe;

12

class Safe extends Thread {

@Shared String[] unsafe;

@Thread String[] safe;

public void run() {

@Thread String[] local = ...;

unsafe = local; // wont compile

safe = local; // OK

} }

...

Safe t;

... = t.unsafe;

... = t.safe; // no leak

1 class NotSoLeaky extends Thread {

2 ThreadLocal<String[]> safe = new ThreadLocal<String[]>();

3

4 public void run() { String[] local = ...; safe.set(local); }

5 }

6 ...

7 NotSoLeaky t = ...;

8 ... = t.safe.get();

Fig. 1. Enforcing thread-locality with Loci. Line 6 marked Leak in the leftmost ex-
ample is prevented statically. On Line 12, the assignment from safe does not cause a
leak, as different threads get different values when reading a thread-local field. Class
NotSoLeaky is safe as it uses the the ThreadLocal API, Loci provides more convenient
syntax for the same. Whenever ever a field is annotated @Thread, the Loci compiler
will turn it into a ThreadLocal.

2.2 Logical View of the Heap

In Loci, the heap of a program with n threads is logically partitioned into n
number of isolated heaps, called “heaplets”, plus a shared heap. There is a one-
to-one mapping between threads and heaplets. From now on, heap refers to the
shared heap accessible by all threads, and heaplets refers to thread-local heaps.
The Loci annotation system enforces the following simple properties on Java
programs, shown in Fig. 2:

1. References from one heaplet into another are not allowed ( );
2. References from heaplets to the shared heap are unrestricted ( );
3. References from the shared-heap into a heaplet must be stored in a thread-

local field ( ).

The third property above ensures that even though a reference into a heaplet ρi

may exist on the shared heap, it is only accessible to the thread i to which ρi

belongs. If another thread j reads the same field, it will either get a reference into
its own heap ρj that it had written there before, or a thread-local copy of the
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1 2 3 4

(a)

(b)
(c)

(d)

(e)

Fig. 2. Thread-Local Heaplets and a Shared Heap. The teal area (�) is the shared heap,
white areas (ρ1..ρ4) represent the thread-local heaplets. Solid arrows are invalid and
correspond to property 1 in Sec. 2.2, dashed arrows are valid pointers into the shared
heap (property 2), respectively from the shared heap into heaplets (property 3, when
“anchored” in a bullet). The right-most figure is a Venn diagram-esque depiction of
the same program to illustrate the semantics of the shared heap.

default value of the field (which may be null). Effectively, there is a copy of each
thread-local field for each active thread in the system and writes and reads of
the same thread-local field by different threads access different copies. Together,
these simple properties make heaplets effectively thread-local, and objects in the
heaplets are thus safe from race conditions and data races.

2.3 Annotations

Loci uses two annotations, @Thread and @Shared, their semantics is summarized
in Table 1. We distinguish between class-level annotation and annotations on
types in declarations. Class-level annotations control how instances of a class
can be used. Instances of classes annotated @Shared always live in the shared
heap. Instances of classes annotated @Thread may live on the shared heap, or

Table 1. Loci annotations

Annotation Level

@Shared Class Instances are always allocated in the shared heap.
@Thread Class Instances can be allocated either in the shared heap or in heaplets.

– Class Equivalent to @Shared.
@Shared Field May point into the heap or into a heaplet.
@Thread Field Must refer to a heaplet-allocated value. Access to the object is

through the ThreadLocal API.
– Field Treated as @Shared if the enclosing class is @Shared, and as a

@Thread local variable otherwise. (@Context in the formalism.)
@Shared Local May point into the heap or into a heaplet.
@Thread Local Must refer to a heaplet-allocated value.

– Local Treated as @Shared if the enclosing class is @Shared, and @Thread

otherwise. (Called @Context in the formalism.)
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1 @Thread class Foo { Foo f; }

2 @Shared Foo x;

3 @Thread Foo y;

4 Foo z;

5 @Shared Foo xx = x.f;

6 @Thread Foo yy = y.f;

7 Foo zz = z.f;

8 yy.f = z; // Illegal

@Shared class S { S f; }

@Shared S x;

@Thread S y; // Illegal

S z = x = x.f;

@Thread class C { C m(S) { ... } }

@Thread C c;

c = c.m(x.f);

Fig. 3. Loci by example. Left: f in Foo will live on same heap(let) as the enclosing
obj. Thus, 5–7) are valid. Depending on the current context, z can be both shared and
unshared. Thus, 8) is illegal. However, when we know the nature of the context, we can
figure out the precise type (y in 6). Right: Line 3) demonstrates that @Shared classes
cannot be pointed to by @Thread variables. Line 4) shows that an unannotated field in
a @Shared class will also be shared. Line 6) trivially shows viewpoint adaptation.

on a thread-local heap. The class-level annotations control the implicit defaults
used on types in the class. In a @Shared class, all types are implicitly shared. Un-
less explicitly declared @Thread, fields in a @Shared class point to objects in the
shared heap. Fig. 3 contains some example uses of the annotations. In @Thread-
annotated classes, the default annotation is empty (@Context in the formalism),
which is a non-annotation only used implicitly. Empty is equivalent to owner in
ownership types systems and means “the same as the enclosing instance.” If f

is an unannotated field in an instance o of a @Thread class, f will point to an
object in the same heaplet as o, or into the shared heap iff o is in the shared
heap. In practice, the implicit default value is right most of the time. Often-
times, a single class-level annotation is all that is necessary. When accessing
an unannotated field of a @Thread variable, the field’s annotation will automat-
ically default to @Thread. We refer to this as viewpoint adaptation and it is a
simplified version of σ-substitution found in several ownership types formalisms
[12,13,34,26].

Rather than splitting classes into thread-local and not, a @Thread class can be
used to instantiate both thread-local and shared objects. This makes code more
flexible and reusable in both shared and unshared context which is important
for library classes. The main restriction for @Thread classes is that they may
not assign from this in a way that could invalidate isolation. This is simple
to check statically—disallow values whose annotation is unknown to be stored
in explicitly annotated fields or variables. Since globals are always @Shared, a
@Thread class may not leak this into them and so the only way to invalidate
thread-locality is by storing this in a constructor argument. To that end, if a
constructor takes 0 arguments or all @Thread arguments, the new object will be
thread-local. Otherwise it will be shared.

Fields, variables, parameters and return types annotated @Thread or @Shared

point to thread-local respectively shared objects. If the annotation is empty, it is
effectively the same as the current this. To maintain compatibility with existing
Java code, the default class-level annotation is @Shared. Thus, the class Thread
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@Thread class RayTracerRunner extends RayTracer {

@Shared Barrier br = null; # Barrier is shared between threads

...

}

...

// was thobjects[i] = new RayTracerRunner(i, wdt, hgt, brl);

thobjects[i] = new Thread() {

public void run() {

@Thread RayTracerRunner _ = new RayTracerRunner(i, wdt, hgt, brl);

_.run(); // Start thread-local computation

}

};

...

Fig. 4. Code from Raytracer in JavaGrande refactored with Loci annotations

is shared (which is the only sensible option), and as subclassing must preserve
annotations in Loci (modulo for Object, see below), the derived thread classes in
Fig. 1 must also be @Shared.

The root class Object is annotated @Thread. We treat it specially in that we
allow it to be extended as @Shared. This is type safe, and as subtyping preserves
annotations, cannot be used to confuse the type system.

Finally, Fig. 4 shows an example from Raytracer in the JavaGrande bench-
marks where RayTracer classes all the classes that are used by RayTracer are
annotated @Thread, modulo the shared barrier. The computation is thus entirely
thread-local. The arrays of threads contain threads that simply start the thread-
local computation.

2.4 Migrating Objects

Some concurrent programming idioms are characterized by phased access to ob-
jects. For example, in a producer-consumer pattern, an object is first accessed
exclusively by the producer thread before being handed out to the consumer
thread which then has sole access to the object. This goes beyond the kind of
thread-locality expressible directly in Loci or most simple ownership type sys-
tems. Approaches based on linearity are feasible but they would overly compli-
cate the type system. In Loci, when thread-local objects must migrate between
threads it is necessary to perform a deep copy via the heap. Fig. 5 shows a
method that copies an instance of Foo from Fig. 3 from a heaplet to the shared
heap. Copying an object directly across heaplets is not yet supported, but we
plan to investigate simple ways of doing this in the future.

For now, two threads in a producer-consumer relationship wishing to transfer
unshared objects across via for example a shared queue, must copy the objects
twice and place them on the shared heap. As noted in Sec. 2.3, most newly
created instances of @Thread classes can safely be stored anywhere.

Two minor technicalities prevent us from doing direct inter-heaplet migra-
tion. Firstly, we cannot name a field belonging to another thread. Second, the
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1 @Shared Foo copyToShared(Cache cache) {

2 if (cache.hasKey(this)) return cache.get(this);

3 @Shared Foo copy = new Foo();

4 cache.put(this, copy);

5 if (f != null) {

6 copy.f = f.copyToShared(cache);

7 }

8 return copy;

9 }

Fig. 5. A simple deep copy method for Foo that makes a shared copy of a possibly
thread-local object. Cache is a @Thread map from keys to @Shared objects. Removing
@Shared would make the method return a thread-local copy, as Foo is a @Thread class.

annotations can only express references into the current thread’s heaplet or the
shared heap. Extending the system to allow both is relatively straightforward.
Writing to another thread’s field can be as simple as extending ThreadLocal with
a put(Thread t, Object val) method. A @StackLocal annotation could also be
employed to type the put() method, and at the same time obviate the need
for two deep copy methods, but would further complicate the system, especially
when preserving aliasing through a cache like in Fig. 5.

2.5 Run-Time Overhead

Loci does not add run-time overhead over the equivalent Java programs. It does
not need to store to what heap(let) an object belongs at run-time. @Thread-
annotated local variables, parameters and method returns all live on the stack
and are thus effectively thread-local without the need for any additional magic.
Most notably, implicitly thread-local fields (e.g., f in Fig. 3) in @Thread-annotated
classes do not incur any additional overhead. The key realization is that access
to the enclosing object acts as a guard (similar observations have been done
elsewhere, e.g., [13,34,16,18]):

If the enclosing object is only reachable by its “owning thread”, the same
holds for all objects pointed to by its non-@Shared fields.

The overhead of @Thread-annotated fields is due to their implementation using
Java’s ThreadLocal API. Micro benchmarks suggest that access to a thread-local
field is about 8 times slower than a regular field access. In our experience, fields
only need to be annotated @Thread in the places where the Java program would
have used the ThreadLocal API explicitly.

3 A Formal Account of Loci

We formalize our system in a subset of Java. For brevity, we omit commonly omit-
ted features, such as overriding, interfaces, exceptions, final variables,
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primitive data types, arrays and generics. Generics is not yet supported by
Loci as Java does not yet support annotations on type parameters. Should JSR
308, “Type Annotations” be accepted, adding support for annotating type pa-
rameters would be straightforward and would improve our story for collection
classes.

3.1 Syntax and Static Semantics

Loci’s syntax is shown in Fig. 6. For simplicity, we use an explicit annotation
@Context, instead of implicit annotations. Without loss of generality, we use a
“named form,” where the results of field and variable accesses, method calls
and instantiations must be immediately stored in a variable or field. For sim-
plicity, all rules have an implicit program P in which classes are looked up. We
use the right-associative viewpoint-adaptation operator ⊕ to expand the default
@Context annotation thus:

α1 ⊕ α2 c =
{

α1 c if α2 = @Context

α2 c otherwise α1 ⊕ α2 ⊕ α3 c = α1 ⊕ (α2 ⊕ α3 c)

For brevity, we assume that fields(c) = τ f where f are all fields in c and super
classes of c. We use the shorthand fields(c.f) = τ to say that field f in class c
has the type τ . For methods, we assume the existence of mtype(c.m) = τ → τ
and mbody(c.m) = (x, s;return x) where τ m(τ x){ s;return x } is declared
in the most direct superclass to c that declares m. We sometimes write (sub-

∗) to denote all rules starting with “sub” and (∗-var) for all rules ending with
“var.”

We say that a program P is well-formed if all class definitions are well formed.
By construction, all class hierarchies are rooted in Object. For simplicity, Object
is an empty class with no superclasses that is annotated @Thread. A user-defined
class is well-formed if it abides by (t-class).

P ::= cd program

cd ::= α class c extends d { fd md } class declaration
fd ::= τ f field
md ::= τ m(τ x) { s;return y } method
s ::= s;s | skip | x = y .f | x = y | y .f = z | τ x | statement

x = new τ() | x = y .m(z) | x = start c()
τ ::= α c type
α ::= @Thread | @Shared | @Context annotations

E ::= [] | E[x : τ ] local type environment

Fig. 6. Loci’s syntax. c, d are class names, f ,m are field and method names, and x , y , z
are names of variables or parameters respectively, where x �= this. For simplicity, we
assume that names of classes, fields, methods and variables are unique. The special
variable ret and return only appears in the dynamic syntax and semantics.
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(t-class)

fields(d) = fd2 methods(d) = md2 annote(d) = α2

∀m ∈ names(md1 ) ∩ names(md2 ). mtype(c.m) = mtype(d.m)
names(fd1 ) ∩ names(fd2 ) = ∅

α1 �= @Context (α1 = α2 ∨ d = Object) α1 � fd1 α1 c � md1

� α1 class c extends d { fd1 md1 }

Notably, subclassing and overriding must preserve annotations, overriding is not
supported, and @Context is not a valid class-level annotation.

(t-field)

� α1 ⊕ α2 c

α1 � α2 c f

(t-method)

(α1 = @Thread ∧ α2 = @Context) ∨ α2 = @Shared

this : α2 c, x : τ � s; E E(y) ≤ α2 ⊕ τ

α1 c � τ m(τ x){ s;return y }

(t-field) uses the viewpoint-adaptation operator ⊕ on annotations and types.
α2 is the annotation on the field and α1 is the annotation of the declaring class
used if α2 is @Context. The class of the field must be valid with respect to the
resulting annotation. This is similar to σ-substitution found in ownership types
type systems and is used frequently in the formalism.

In (t-method), the type of this depends on the enclosing class. In a @Thread

class, this is @Context and otherwise @Shared. This is because @Thread classes
can be used to create both shared and thread-local instances.

Statements. The statements should be straightforward to follow for anyone
familiar with Java. Remember, x �= this.

(t-sequence)

E � s1; E1 E1 � s2; E2

E � s1;s2; E2

(t-skip)

E � skip; E

(t-assign)

E(y) ≤ E(x)
E � x = y; E

(t-select)

E(y) = α c
fields(c.f) = τ ′

α⊕ τ ′ ≤ E(x)
E � x = y.f ; E

(t-update)

E(y) = α c
fields(c.f) = τ
E(z) ≤ α⊕ τ

E � y.f = z; E

(t-decl)

x �∈ dom(E)
E(this) = α c

E′ = E[x : α⊕ τ ]
E � τ x; E′

(t-select) and (t-update) applies ⊕ to the annotation on the target and the
field to possibly expand @Contexts. Note that (t-decl) replaces @Context with
the annotation of the current this (which may be @Context).

(t-new)

� τ τ ≤ E(x)
E � x = new τ(); E

(t-call)

E(y) = α c mtype(c.m) = τ → τ ′

E(z) ≤ α⊕ τ α⊕ τ ′ ≤ E(x)
E � x = y.m(z); E

(t-fork)

mtype(c.run) = ε→ τ
E(x) = @Shared c

E � x = start c(); E

Similar to how Java deals with threads, the start operation only works on classes
that have a 0-arity run method (denoted by ε parameter types).
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Subtyping, Types. The subtyping relation ≤ is the transitive relation closed
under the rules below. annote(c) returns the annotation on the class c or @Thread
if c = Object.

(sub-direct)

α class c extends d · · ·
c ≤ d

(sub-trans)

c ≤ c′ c′ ≤ d

c ≤ d

(sub-self)

c ≤ c

(sub-annote)

� α c � α d c ≤ d

α c ≤ α d

(type)

annote(c) = @Shared⇒ α = @Shared

� α c

By (sub-annote), subtyping must preserve annotations. Most importantly, though,
Object may be subclassed as both @Shared and @Thread.

3.2 Dynamic Semantics

We formulate Loci’s dynamic semantics as a small-step operational semantics.
See Fig. 7 for syntax. A Loci configuration H ; T consists of a single heap H of
locations mapped to objects tagged to denote to what heap(let) they belong to
and a collection of threads. Each thread T has its own stack, plus a thread id
denoted ρ. An object belonging to the thread ρ will be tagged ρ in its second
compartment. We use � in the syntactic category ρ to denote the shared heap.
Thread-scheduling is modeled as a non-deterministic choice in (d-schedule). A
configuration with a thread scheduled to run is denoted H ; T ; T . For convenience,
we write H(ι.f) as a shorthand for H(ι)(f) and H(ι.f) := v for H [ι �→ o[f �→ v]].
We denote the look-up of a non-existent field H(ι.f) = ⊥ (where ⊥ �= v), which
can happen due to lazy creation of thread-local fields. The initial configuration
has the form []; (〈[], s;return x〉, ρ), i.e., there is only one thread on start-up, and
the initial stack frame and heap are empty. The relation (→) is the reduction
step on configurations.

The rule (d-schedule) non-deterministically picks one thread for execution.
The rules (d-finish) and (d-dead) remove threads that are fully reduced from
the system. NPE is a thread that’s dead from a null-pointer error.

(d-schedule)

H ; T T ′ T → H ′; T ′′

H ; T T T ′ → H ′; T ′′

(d-finished)

H ; T (〈F, return x〉, ρ)→ H ; T

(d-dead)

H ; T (NPE, ρ)→ H ; T

H ::= [] | H [ι �→ o] heap
T ::= (S, ρ) | (NPE, ρ) thread
S ::= ε | S 〈F, s〉 stack

F ::= [] | F [y �→ v] stack frame
o ::= c(ρ,F ) object
v ::= ι | null value

Fig. 7. Syntax for heaps, threads, stacks, frame, objects and values. For brevity, we
unify stack frame and object fields. To distinguish, we use f for fields and y for variables.
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Local variable declaration and assignment offer no surprises.

(d-assign)

F (y) = v T = (S 〈F [x = v], s〉, ρ)
H ; T (S 〈F, x = y; s〉, ρ)→ H ; T T

(d-decl)

T = (S 〈F [x �→ null], s〉, ρ)
H ; T (S 〈F, τ x; s〉, ρ)→ H ; T T

(d-skip)

H ; T (S 〈F, skip; s〉, ρ)→ H ; T (S 〈F, s〉, ρ)

We model thread-local variables as zero or more variables indexed by the thread
id ρ—a thread ρ accessing a @Thread field f returns the contents of the field fρ.

sel(ι, c.f, H, ρ) =

⎧⎨⎩
null if fields(c.f) = @Thread d ∧H(ι.fρ) = ⊥
v if fields(c.f) = @Thread d ∧H(ι.fρ) = v
v′ if H(ι.f) = v′

The predicate sel() returns the value of the request field, or, if the field is thread-
local, the value of the field indexed by the current thread.

(d-select)

F (y) = ι H(ι) = c(· · ·) sel(ι, c.f, H, ρ) = v T ′ = (S 〈F [x = v], s〉, ρ)
H ; T (S 〈F, x = y.f ; s〉, ρ)→ H ; T T ′

Missing thread-local fields are given the value null. An alternative would be to
create a copy for every thread in the system, but the above solution felt somewhat
closer to the semantics of the ThreadLocal API, which calls initialValue() on
the first read of a field by a particular thread. Like reading, writing a @Thread

field updates the copy of the field indexed by the current thread’s id.

upd(ι, c.f, H, ρ, v) =
{

H(ι.fρ) := v if fields(c.f) = @Thread c
H(ι.f) := v otherwise

(d-update)

F (y) = ι H(ι) = c(· · ·) H ′ = upd(ι, c.f, H, ρ, F (z))
H ; T (S 〈F, y.f = z; s〉, ρ)→ H ′; T (S 〈F, s〉, ρ)

We have omitted constructors (see Sec. 4.1 for a discussion on how to deal with
them). Thus, a new instance is always thread-local and can subsequently be
placed either on the shared heap or in the current heaplet. This is decided by
the annotation of the target variable for the instantiation.

reg(α, ρ, ρ1) =

⎧⎨⎩
ρ if α = @Thread

ρ1 if α = @Context

� if α = @Shared
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The predicate reg() “registers” a newly created instance with a certain thread.

(d-new)

H(F (this)) = d(ρ1, F1) ι is fresh names(fields(c)) = f
H ′ = H [ι �→ c(reg(α, ρ, ρ1), f �→ null)]

H ; T (S 〈F, x = new α c(); s〉, ρ)→ H ′; T (S 〈F [x �→ ι], s〉, ρ)

If the target variable is @Context-annotated, the class is stored in the same heap
or heaplet as the current this. We use the special variable ret to capture return
values. The only assignment to ret is through a return which assigns the ret of
the underlying stack frame.

(d-return)

F (y) = v T = (S 〈F ′[ret �→ v], s′〉, ρ)
H ; T (S 〈F ′, s′〉〈F, return y〉, ρ)→ H ; T T

(d-call)

F (y) = ι F (z) = v H(ι) = c(· · ·) mbody(c.m) = (x′, s′;return y′)
F ′ = this �→ ι, x′ �→ v S′ = S 〈F, x = ret; s〉

H ; T (S 〈F, x = y.m(z); s〉, ρ)→ H ; T (S′ 〈F ′, s′;return y′〉, ρ)

An invocation x = y.m() is rewritten into x = ret and the method’s body is
executed on a new stack frame eventually assigning ret as the result of a return.

(d-fork)

ι, ρ′ are fresh names(fields(c)) = f H ′ = H [ι �→ c(�, f �→ null)]
mbody(c.run) = (ε, s′;return y′) T = (〈[this �→ ι], s′;return y′〉, ρ′)

H ; T (S 〈F, x = start c(); s〉, ρ)→ H ′; T T (S 〈F [x �→ ι], s〉, ρ)

The (d-fork) operations adds a thread to the system and is a simplified union
of Java’s new and start. The new thread object is created on the shared area,
forcing its thread-local data to be stored either on the stack of the run method,
or in a thread-local field. Adding thread-local threads to the system would be
as simple as introducing a start operation that returns null.

For brevity, null-pointer exceptions kill the entire thread rather than propa-
gate an error through the execution. The semantics is effectively the same.

(d-select-npe)

H ; T (S 〈F [y �→ null], x = y.f ; s〉, ρ)→ H ; T (NPE, ρ)

(d-update-npe)

H ; T (S 〈F [y �→ null], y.f = z; s〉, ρ)→ H ; T (NPE, ρ)

(d-call-npe)

H ; T (S 〈F [y �→ null], x = y.m(z); s〉, ρ)→ H ; T (NPE, ρ)
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3.3 Meta-theory

Well-Formedness Rules. We now present the rules for well-formed configura-
tions, heaps and stacks. Γ is the store-type and has the syntax Γ ::= ε | Γ [ι : τ ].

tid(H, ι) =
{

ρ if H(ι) = c(ρ, F )
⊥ otherwise tid(T ) =

{
ρ if T = (S, ρ)
ρ if T = (NPE, ρ)

In the following rules, we make use of the auxiliary function tid(T ) that extracts
a thread’s id, and tid(H, ι), that looks up the thread id of an object on the heap.
(wf-config) states that a configuration is well-formed if there is a well-formed
store typing Γ which type the heap H and if all threads have distinct ids and
are well-formed.

(wf-config)

� Γ Γ ; H � H tid(T ) distinct ∀ (S, ρ) ∈ T . Γ ; H �ρ S

Γ � H ; T

(wf-Γ -0)

� []

(wf-Γ -1)

� Γ � α c
α �= @Context

� Γ [ι : α c]

(wf-thread-0)

Γ ; H �ρ []

(wf-thread-1)

Γ ; H �ρ S
Γ ; H ; E �ρ F E � s; E′

Γ ; H �ρ S 〈F, s〉

An object is well-formed if all its fields point to locations on the heap. Thread-
local objects must have the same id as the current thread or, otherwise, the id
of the shared heap. Note that @Context does not appear on types in Γ .

(wf-heap-ε)

Γ ; H ′ �ρ [ ]

(wf-heap-shared)

Γ ; H ′ �ρ H Γ (ι) = @Shared c
fields(c) = E Γ ; H ′; E �� F

Γ ; H ′ �ρ H [ι �→ c(�, F )]

(wf-heap-thread)

Γ ; H ′ �ρ H Γ (ι) = @Thread c
fields(c) = E Γ ; H ′; E �ρ F

Γ ; H ′ �ρ H [ι �→ c(ρ, F )]

Due to the treatment of thread-local fields, rules for well-formed fields are a
bit more complex that usual for a Java-like language. (wf-field-ε) captures that
thread-local fields may not yet have been initialized.

(wf-field-ε)

Γ ; H ; E �ρ []

(wf-field-null)

Γ ; H ; E �ρ F E(f) = τ

Γ ; H ; E �ρ F [f �→ null]

(wf-field-thread-null)

Γ ; H ; E �ρ F E(f) = τ

Γ ; H ; E �ρ F [fρ′ �→ null]

(wf-field-thread)

Γ ; H ; E �ρ F E(f) = τ tid(H, ι) = ρ′ Γ (ι) ≤ τ

Γ ; H ; E �ρ F [fρ′ �→ ι]

(wf-field-shared)

Γ ; H ; E �� F E(f) = @Shared c
Γ (ι) ≤ @Shared c tid(H, ι) = �

Γ ; H ; E �ρ F [f �→ ι]

(wf-field-context)

Γ ; H ; E �ρ F E(f) = @Context c
Γ (ι) ≤ α c tid(H, ι) = ρ

Γ ; H ; E �ρ F [f �→ ι]
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Notably, @Shared fields point to objects on the shared heap, @Context fields point
to objects on the same heap(let) as the current this, and @Thread fields have ≥ 0
copies subscripted with the same thread id as the object they point to.

For stack frames, a pointer in a @Shared field points to an object on the shared
heap and a pointer in a non-shared field points to an object on the same heap(let)
as the current this.

(wf-frame-0)

Γ ; H �ρ [], []

(wf-frame-1)

Γ ; H �ρ E, F
tid(H, ι) = ρ′ Γ (ι) ≤ α c

α = @Shared⇒ ρ′ = �
α �= @Shared⇒ ρ′ = ρ

Γ ; H �ρ E[y : α c], F [y �→ ι]

(wf-frame-2)

Γ ; H �ρ E, F

Γ ; H �ρ E[y : τ ], F [y �→ null]

Invariants Informally, Loci enforces the following property:

A thread ρ can only access objects in heaplet ρ or on the shared heap �.

We formulate this in two theorems, the first of which says that pointers in
variables on a stack frame in a thread ρ either point to objects in ρ or in �,
and the second that evaluating a field access in thread ρ results in a pointer to
either an object in ρ or in � (or is a null-pointer).

Theorem 1. Local variables point into shared heap or current heaplet. If Γ ; E �
H ; T (S 〈F, s〉, ρ), then ∀ι ∈ rng(F ). tid(H, ι) ∈ {�, ρ}.
Proof. Follows by straightforward induction on s. (wf-frame-1) and (wf-frame-

2) are key. ��
Theorem 2. Field accesses yield pointers to shared heap or current heaplet.
Let s be a field access x = y.f . If Γ ; E � H ; T (S 〈F, s〉, ρ), H ; T (S 〈F, s〉, ρ) →
H ′; T ′ (S′ 〈F ′, s′〉, ρ), and F ′(x) = ι, then tid(H ′, ι) ∈ {�, ρ}.
Proof. The proof is by derivation on Γ ; E � H ; T (S 〈F, x = y.f〉, ρ) relying on
the fact that ρ is threaded through a computation and that @Context-annotated
fields point to the heaplet of its enclosing object. By the rules for well-formed
configurations, heaps and fields, H(F (y).f) = ι and fields(c.f) = α c′ implies
tid(H, ι) = ρ′ s.t. (a) α = @Shared implies ρ′ = �, (b) α = @Context implies
ρ′ = ρ′′ s.t. tid(H(F (y))) = ρ′′, and (c) α = @Thread implies f = fρ∧ρ′ = ρ. Cases
(a) and (c) immediately satisfy the theorem and case (b) follows immediately
from Theorem 1 that gives ρ′′ ∈ {ρ, �}. ��

Type Soundness. We prove type soundness in the standard fashion of progress
plus preservation [33]. In this context, preservation means that reduction does
not invalidate the store typing.

Theorem 3. Preservation. If Γ � H ; T , and H ; T → H ′; T ′, then there exists
a Γ ′ s.t. Γ ′ � H ′; T ′.
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Proof. The proof is straightforward by structural induction. There are no sur-
prising cases. ��
Theorem 4. Progress. If Γ � H ; T , then there exists a reduction such that
H ; T → H ′; T ′.

Proof. The proof is straightforward by structural induction on the shape of T
where most cases are immediate. The slightly more intricate cases, (t-select),
(t-update) and (t-call) are all guarded by (∗-npe) versions of the rule that deal
with null-dereferencing. By (wf-heap-∗) and (wf-field-∗), a well-formed object
c(ρ, F ) has all non-@Thread fields in F . By (select-first-thread), accessing an
“undefined” thread-local field does not get stuck. Last, the only ways in which
(d-new) or (d-fork) could get stuck is if we cannot produce fresh ι’s or ρ’s,
which is not modeled by our system. ��

4 Loci for Eclipse

We have implemented Loci as an Eclipse plug-in. The plug-in supports most of
Java, modulo generics, checking of native code, and reflection. The tool imple-
ments static checking of @Shared, @Thread, and the implicit @Context annotation.
Currently, the tool gives a warning rather than an error when it detects a viola-
tion. Fig. 8 shows how @Thread fields are desugared into uses of the ThreadLocal

API before compilation. The tool ignores primitive types and immutables, like
strings and boxed primitives. To minimize the annotation burden, in a @Thread

class, @Context is the implicit default annotation for a type of @Thread class, and
@Shared for a type of @Shared class. In a @Shared class, the implicit annotation

1 @Thread class Foo {

2 @Thread Foo foo = null;

3

4

5

6

7

8 Object x;

9 void bar() {

10 @Thread Foo f = foo;

11 foo = f;

12 }

13 }

1 @Thread class Foo {

2 @Thread ThreadLocal<Foo> foo =

3 new ThreadLocal<Foo>() {

4 Foo initialValue() {

5 return null;

6 }

7 };

8 Object x;

9 void bar() {

10 @Thread Foo f = foo.get();

11 foo.set(f);

12 }

13 }

Fig. 8. Sugared view and corresponding desugared view of a @Thread class. “Ensugar”
and “desugar” buttons in the tool allows the user to switch back and forth between
these views. Notably, @Thread-annotated local variables (f above) do not need to be
implemented using the ThreadLocal API.
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is @Shared. Notably, there is no keyword for @Context, it is only used implic-
itly. While it would have been more reasonable to default unannotated classes
to @Thread, this would have had the drawback of requiring invasive changes to
legacy code. To give existing Java programs a valid Loci interpretation, unanno-
tated classes are implicitly @Shared, with the exception of Object.

4.1 Extending Loci to Full Java

In this section, we address some of the interplay with Java not visible from the
formalization, due to simplifications or Java conventions.

Anonymous classes. Loci fully supports anonymous classes. Anonymous classes
automatically inherit the annotation of the superclass or interface. In the case of
an interface without a class-level annotation, Loci currently requires the resulting
instance to be stored immediately in a local variable and infers the annotation
from the variable’s type. Ambiguous instantiations of this kind could be solved
by annotating the instantiated type.

Arrays. Loci supports three kinds of arrays (of any dimension):

1. Thread-local arrays of pointers to shared objects or primitives
2. Thread-local arrays of pointers to thread-local objects
3. Shared arrays of pointers to shared objects or primitives

If Foo and Bar are a @Shared respectively a @Thread class, then @Thread Foo[]

is an array of the first kind, @Thread Bar[] the second, and @Shared Foo[] and
@Shared Bar[] are of the third kind. The reason why @Shared Bar[] is a shared
array of shared objects rather than an shared array of thread-local objects is
because this case can be easily modeled by @Thread Bar[]. This frees @Shared

Bar[] up to allow using Bar as a shared class in @Shared arrays. When using
array initializers, Loci will inspect the annotations on the values used to initialize
the array to infer whether the compartments of the array should be @Thread or
@Shared, similar to constructor arguments in instantiation.

Interfaces. Unless explicitly annotated, we treat Java interfaces as implicitly an-
notated @Context, even on the class level (this is supported in the tool but omitted
from the formalism since it does not deal with interfaces). When implemented, we
apply the⊕ operator using the annotation of the implementing class to get the an-
notation to which the implementing class must correspond. This allows us to reuse
interfaces across different classes with different thread-local behavior.

Constructors and Instantiation. As @Shared classes are semantically equiva-
lent to Java classes, their constructors require no special treatment. For @Thread

classes, the story is different. Modulo constructor arguments, it is easy to see
that a @Thread class instance constitutes a “free” value. The type of this is
@Context SomeClass and as the types of static fields and methods must use ei-
ther @Shared or @Thread, the class is effectively prevented from leaking itself. If a
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class “uses” @Context to annotate types of parameters to its constructor, we can
derive the annotation of the new instance by looking at how these parameters
are instantiated. If a new is only valid if the instance was shared (i.e., it binds a
@Shared argument to a @Context parameter), the new object lives in the shared
heap and the result type of the instantiation is @Shared. If @Context parameters
are bound only to @Context, the resulting type is @Context. If both bindings are
required, the instantiation is invalid as the object’s type would have to be both
@Shared and @Thread.

Inner and Nested classes. @Shared classes can have nested @Thread classes and
vice versa. The inverse poses a problem, though, as the nested class instance has
access to the enclosing instance, which could be thread-local. For this reason, Loci
only allows instantiating @Shared inner classes inside non-thread-local instance.
For example, given

@Thread class Foo { @Shared class Bar { } }

@Thread Foo f1;

@Shared Foo f2;

Foo f3;

we are allowed to do f2.new Bar() but not f1.new Bar() as the resulting shared
instance would break thread-locality of the object in f1. Naturally, f3.new Bar()

is only allowed if we can determine that f3 is shared.
Nested classes can be annotated @Thread and @Shared just like regular classes.

They can access static variables of the enclosing classes.

Static Fields, Blocks and Methods. In static context, the implicit annotation
is @Shared rather than @Context. Static fields and variables can still be @Thread, but
never @Context. The downside of this design is that static methods used to imple-
ment pure functions can never manipulate @Context data (see Sec. 5).

Generics and Collections. As stated above, Loci does not yet support Java
generics. The reason is that Java does not (yet) support annotations on type
parameters. Once Java does, extending Loci to work with generics is straight-
forward and will mostly follow the style of [28]. On the downside, support for
generics will require the introduction of additional annotations to our system to
serve as “annotation parameters.” The reason is to enable expressing that the
annotations on two different types should be bound to the same annotation.

Java’s Thread API. As we saw in Fig. 1, Thread is a shared class. The same
holds for Runnable. This is natural, since instances of both will (potentially) be
shared between at least two threads. Rather than using thread-local fields in a
Thread object, a programmer should insert an extra level of indirection pointed
to by a @Thread local variable in the run() method. (This pattern emerged in
our evaluation.) As a result of these default annotations, Loci works naturally
with Java ThreadPools. Java’s InheritableThreadLocal also works well with the
annotations as inherited values are fresh thread-local copies for the new thread.
Extending Loci to support InheritableThreadLocal is straightforward.
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5 Evaluation of Type System Design

To evaluate the type system design and our defaults, we have annotated parts
of the JavaGrande benchmark and Lucene Search from the DaCapo Benchmark
suite [5]. We have also implemented an inferencer for our system. The results are
shown in Tab. 2. In short, they show us that the design of the Loci type system
is largely compatible with how Java code is written.

Tab. 2 shows our results from annotating large chunks of Java code. We used
code coverage tools to make sure we annotated parts of the code that was actu-
ally being executed. We also annotated parts of Xalan, a ≥100 000 LOC XSLT
processor, but this work is unfinished at the time of writing. As is visible from
the table, the number of annotations is small—80 annotations in total for 44 245
LOC, which is less than 1 annotation per 500 LOC. The annotation of Lucene
Search was driven by the desire to only annotate the parts of the code that
execute as part of thread-local computation and leave the rest of the code unan-
notated. We were able to annotate 19 classes as @Thread that perform thread-local
computation inside instances of IndexReader. Due to lack of an annotated Java
API, some classes could not be annotated without getting warnings from the Loci
tool, notably the index reader itself. Most notably, both classes stored in thread-
local fields in the original source (TermsVectorReader and SegmentTermEnum) could
be annotated @Thread. The two thread-local fields in Lucene Search in Tab. 2

Table 2. Results from experiments with annotating Java programs with Loci. The up-
per right table shows results from applying a conservative analysis to infer annotations
to GNU classpath. The bottom shows results of dynamic analysis for DaCapo bench-
marks [5]. We measure both the average rate at which objects are thread-local, and
the average number of bytes that belong to thread-local objects. In the entire DaCapo
suite, 69% of all objects are thread-local.

LOC Classes @Thread @Shared Default
Raytracer 1496 16 16 0 0

Lucene Search 42749 285 19 0 266
Total 44245 301 35 0 266

Inferred Classes
@Thread 5996
@Shared 1289

Total 7285

@Thread Annotations @Shared Annotations
Fields Params Returns Vars Fields Params Returns Vars

Raytracer 0 0 0 1 1 1 1 1
Lucene Search 2 0 4 5 0 20 0 9

Total 2 0 4 6 1 21 1 10

Average Thread-locality Rate
Apache Lucene

ANTLR BLOAT Eclipse FOP HSQLDB Jython Index Search PMD Xalan
Objects 79% 82% 63% 78% 88% 77% 78% 74% 83% 66%

Bytes 71% 77% 64% 76% 85% 73% 71% 51% 81% 69%
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were uses of ThreadLocal that were there from the start and none were added.
The two key reasons why a class could not be annotated @Thread is because it
stores itself in a hash map or extends vector. Both these problems can be solved
by annotating the standard library. Raytracer is a much smaller application (only
1496 LOC). Here, all classes could be annotated @Thread. There were no uses of
ThreadLocal to begin with, and none were added.

Though we have not annotated the entire DaCapo suite, we wanted to see
what fraction of objects are effectively thread-local. To measure this, we instru-
mented revision 15.182 of Jikes RVM [21] to report the fraction of live objects
that have been used from multiple threads. Detecting object accesses was done
using a read barrier. These measurements also include objects used by the VM,
which itself is heavily multi-threaded, hence even for single-threaded benchmarks
like ANTLR, BLOAT, and others, the rate is not 100%. As Tab. 2 shows, all
benchmarks have at least half of their heaps occupied by thread-local objects—
including heavily multi-threaded ones like Lucene Search. Perhaps unsurpris-
ingly, our results show that small objects tend to be more likely to be thread-
local, as evidenced by the rate of object thread-locality being higher than the
rate of heap usage by thread-local objects.

Class-Level Annotation Inference. To further test our assumption that most
classes can be annotated @Thread, we implemented a conservative backwards-
flow analysis to detect leakage of this. Classes that could leak this, or ex-
tended @Shared classes, were marked @Shared. The remaining classes were marked
@Thread. Applying the analysis on the GNU Classpath version of the Java stan-
dard API, 82% of all classes could be annotated @Thread, notably all collection
classes. For simplicity, we assumed that native code did not leak this. Assuming
native code always leaks, the number is 77% and e.g., all collection classes are
shared because of sparse uses of native code in some collection implementations.
We have also used our Jikes RVM instrumentation to check that all objects an-
notated thread-local were indeed accessed by a single thread, and we found that
this was the case. Thus, it seems that our implementation is correct.

We now briefly report on the most important realizations from annotating the
programs.

Static Methods. Our experiments with Loci shows that our simple defaults-to-
@Shared approach for static methods caused problems in many cases where static
methods were used as global functions. For example, the Vec class in Raytracer,
frequently uses methods like this:

public static Vec sub(Vec a, Vec b) {

return new Vec(a.x - b.x, a.y - b.y, a.z - b.z);

}

Since the a and b in the code about would be @Shared by default from being in
a static context, any thread-local vectors are precluded from using this purely
functional method. The simple solution for this problem was to simply make
these methods instance methods, which was a simple refactoring, but an annoy-
ing one. Similar refactorings were done for Lucene Search as well. In the spirit of
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simplicity, a possible solution to this problem is to allow explicit uses of @Context
(they must be explicit to preserve all-shared semantics of unannotated Java pro-
grams) on parameters to static methods. The existing type system would prevent
leakage as is. A more general but less lightweight solution is a parametric ap-
proach using “annotation parameters.” This also has use for the problem with
equals methods.

Exceptions. The Xalan benchmark uses exceptions to propagate broken XML
nodes to a problem reporter. As Exception defaults to shared in our system, this
caused a problem for making the XML parsing a thread-local computation as
thread-locality would be lost for a broken node wrapped in a shared exception.
This practice, and the fact that exceptions cannot propagate into another thread
short of being stored on the heap, caused us to rethink this default. We are
currently investigating the possibility of annotating Throwable and its subclasses
as @Thread and the default annotation on exceptions will be @Context.

Equals Methods. In a @Thread class C, the type of this is @Context C. This
automatically prevents the leaking of this into @Shared variables, but there are
also downsides. Consider the typing of Java’s equals method. If the parameter
to equals has type @Context, then a @Thread class cannot pass this to the equals

of a shared object, nor vice versa. This turned out to be a rare problem and
occurred only twice in Lucene and was solved by ignoring the warnings after
having manually inspected the code. Furthermore, we can only compare objects
living in the same heap(let), which is unfortunate.

A flexible solution to this problem is supporting annotation-polymorphic
methods1. This also solves problems with static methods discussed above. An
alternative solution is to use a different equals method for the three possible
combinations. As Java does not allow dispatching on annotations, these meth-
ods must be differently named, but since which method to use can be statically
determined, calls to equals can be automatically rewritten under the hood by
the tool to use the right version, and the different equals methods automatically
inferred from the @Shared case. Notably, unless we allow @Context to be used
explicitly in @Shared classes, receiver and argument on equals calls on @Shared

receivers with @Context arguments would have to be switched.

5.1 Removing Unnecessary Synchronization

For flexibility for library classes, @Thread classes can be used to create both
shared and thread-local objects. This requires extra work to elide locks in Loci.
To this end, we introduce a “shadow method,” a duplicate of a method where
synchronization on @Context objects is removed. Calls on thread-local receivers
will call shadow methods, prefixed Shadow if they exist. In shadow methods, this
is thread-local and thus all @Context variables are too. Loci creates these methods
1 Since Loci only has one annotation per type, this would not break polymorphism as

is the case for full-blown ownership types systems, see [35].
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1 @Thread class Foo {
2 @Thread Foo foo = null;

3 @Thread Foo synchronized m1() {
4 this.m2();
5 if (foo != null) m1();
6 return foo;
7 }

8

9

10

11

12

13

14 synchronized void m2() {
15 this.m1();
16 }

17

18

19

20 }

1 @Thread class Foo {
2 @Thread ThreadLocal<Foo> foo = ...

3 @Thread Foo synchronized m1() {
4 this.m2();
5 if (foo.get() != null) m1();
6 return foo.get();
7 }

8 @Thread Foo Shadow_m1() {

9 this.Shadow_m2();
10 if (foo.get() != null)
11 Shadow_m1();

12 return foo.get();
13 }

14 synchronized void m2() {
15 this.m1();
16 }

17 void Shadow_m2() {
18 this.Shadow_m1();
19 }

20 }

Fig. 9. “Ensugared” and “desugared” view of a class with synchronized methods.
Desugaring of line 2 is omitted since it is shown in Fig. 8.

automatically and transparently. Fig. 9 shows the “ensugared” (standard view)
and the “desugared” view of a piece of code. We have implemented this scheme
in Loci and tested it on our annotated programs. Without sufficiently annotated
Java standard libraries, we will not see any measurable performance benefits
due to default-to-@Shared. For example, the IndexReader class in Lucene Search,
which would be key to avoid a fair amount of synchronized methods calls, cannot
be annotated @Thread due to uses of library use in its methods and methods of
its subclasses.

6 Related Work

Domani et al. [17] propose thread-local heaps where each thread is given it own
chunk of memory in which to allocate objects. The goal is to remove locking from
the GC for thread local objects. They use a dynamic analysis to track thread-
locality and do not enforce it. Several researchers have employed compile-time
escape analysis to identify local and global objects [6,7,10,32,11]. These proposals
target compiler optimizations (e.g., the removal of unnecessary synchronization)
and memory management, and do not support static checking of programmer
intentions with respect to thread-locality. Currently, JVMs performs similar an-
alyzes under the hood (see e.g., [8,20]), but cannot enforce correct usage of
ThreadLocal or does not give any feedback to the programmer to help verify her
programs. Recently, Flanagan et al. [18] extended AtomicJava [19] with sup-
port for thread-local data for full-on Java. They target method atomicity and
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their system is powerful and distinguishes between five different kinds of atomic-
ities. Their system is more powerful than ours and allows any object to act as a
guard, whereas we only allow this to act as a guard for fields. As a result, their
system is more complicated and comes at the price of additional complexity and
annotation overhead.

Loci is simple ownership type system [24,15]. Several approaches using own-
ership types for concurrency control have been proposed [4,9,30,16,14]. None
of these systems use a thread-as-owners approach, nor focuses on thread-local
data. Guava [4] presents as an informal collection of rules which would require a
significantly more complex type system than the one we present here. Stream-

Flex [30] use a minimal notion of ownership, with little need for annotations,
to simplify memory management in a real-time setting. Cunningham et al. [16]
employ Universe Types to “carve up a heap” for safe locking. Their system is
similar to ours in that it is based on a simple ownership system [23], but fo-
cuses on eliminating data races rather than checking thread-locality. Joëlle [14]
proposes a minimal ownership types system in the active objects setting that
guarantees that only the thread of an active object will access its representation.
The system is built on a different set of principles—sharing is impossible, and
all inter-thread communication must be asynchronous or the thread-locality as-
sumption is void. Kilim [31] gives thread-locality through a linear type system
for actor-style programming in Java. Kilim replaces copying by transfer of own-
ership. Sadly, Kilim’s requirement that unique messages be tree-structured (due
to linearity) forces regular object structures used as internal representations of
communicating actors to be cloned into trees, at least on the sender’s side, before
being transferred.

7 Conclusion

We have presented Loci, a simple type system for thread-local data in Java
and Java-like languages. We have shown its formal semantics, and stated and
proven its crucial properties. Furthermore, we have described our realization of
Loci as an Eclipse tool and described how the Loci annotations apply to full-
on Java. Experiences with using Loci on known benchmarks showed that the
system is compatible with current Java practices, but that further extensions
are needed. We will continue to develop Loci while continuing the balance act
between simplicity of the annotations, usefulness and legacy integration.

In future work we intend to explore synergies of thread locality information
with other optimizations. If a dynamic analysis can make up for its overhead, we
envisioning allowing “casts” on the annotations. This will allow a simpler system
but also open up for run-time errors. We will also extend Loci to support generics
and experiment with the practical usefulness of adding a @Free annotation.
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Abstract. The primary goal of exception mechanisms is to help ensure
that when an operation fails, code that depends on the operation’s suc-
cessful completion is not executed (a property we call dependency safety).
However, the exception mechanisms of current mainstream programming
languages make it hard to achieve dependency safety, in particular when
objects manipulated inside a try block outlive the try block.

Many programming languages, mechanisms and paradigms have been
proposed that address this issue. However, they all depart significantly
from current practice. In this paper, we propose a language mechanism
called failboxes. When applied correctly, failboxes have no significant im-
pact on the structure, the semantics, or the performance of the program,
other than to eliminate the executions that violate dependency safety.

Specifically, programmers may create failboxes dynamically and exe-
cute blocks of code in them. Once any such block fails, all subsequent
attempts to execute code in the failbox will fail. To achieve dependency
safety, programmers simply need to ensure that if an operation B de-
pends on an operation A, then A and B are executed in the same failbox.
Furthermore, failboxes help fix the unsafe interaction between locks and
exceptions and they enable safe cancellation and robust resource cleanup.
Finally, the Fail Fast mechanism prevents liveness issues when a thread
is waiting on a failed thread.

We give a formal syntax and semantics of the new constructs, and
prove dependency safety. Furthermore, to show that the new constructs
are easy to reason about, we propose proof rules in separation logic. The
theory has been machine-checked.

1 Introduction

If a program is seen as a state machine, a programmer’s job may be seen as
writing code to deal with each of the states that the program may reach. How-
ever, programmer time is limited and some states are less likely to occur during
production than others. Therefore, in many projects it is useful to designate
the most unlikely states as failure states and to deal with all failure states in a
uniform way, while writing specific code only for non-failure (or normal) states.

An extreme form of this approach is to simply ignore failure states and not care
what the program does when it reaches a failure state (i.e., when it fails). This
� We used the term subsystems in preliminary work.
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is often what happens when subroutines indicate failure conditions as special
return values, and programmers have no time to write code at call sites to check
for them.

A major problem with this approach is that it is unsafe: a failure may lead to
the violation of any and all of the program’s intended safety properties. Specifi-
cally, the approach violates dependency safety, the property which says that when
an operation fails, code that depends on the operation’s successful completion
is not executed.

To fix this, modern programming languages offer constructs that make it easy
for programmers to indicate that a state is a failure state, and deal with failure
states by terminating the program by default. The underlying assumption is that
termination is always safe. For example, in Java, a failure state is indicated by
throwing an unchecked exception. We will focus on the Java language in this
paper; the related work section discusses other languages.

Whereas by default, when a program throws an exception it terminates im-
mediately, the programmer can override this default through the use of try-catch
statements and try-finally statements. Furthermore, in a multithreaded program,
when a thread’s main method completes abruptly (i.e., an exception was thrown
and not caught during its execution), only that thread, not the entire program,
is terminated. Also, when a synchronized block’s body completes abruptly, the
lock is released before the exception is propagated further.

These deviations from strict termination behavior are useful and are used for
two reasons. Firstly, not all exceptions indicate failure. Sometimes, programmers
throw and catch exceptions to implement the program’s functional behavior.
Typically, in Java, checked exceptions are used for this. Secondly, programmers
sometimes wish to increase the program’s robustness by not considering the
program to be a single unit of failure but rather by identifying multiple smaller
units of failure. Common examples are extensible programs, where poorly written
or malicious plugins (such as applets or servlets) should not affect the base
system; and command-processing applications (such as request-response-based
servers, GUI applications, or command-line shells) where a failure during the
processing of a command should simply cause an error response to be returned,
while continuing to process other commands normally.

However, by continuing to execute after a failure, the risk of safety violations
reappears. In particular, safety violations are likely if the code that fails leaves a
data structure in an inconsistent state and this data structure is then accessed
during execution of a finally block or after the exception is caught, or by another
thread. In other words, there is a safety risk if a try block manipulates an object
that outlives the try block. More generally, if we define dependency safety as
the property that if an operation fails, no code that depends on the operation’s
successful completion is executed, then dependency safety may be violated if
pieces of code outside a try block depend on particular pieces of code inside the
try block either not executing at all or executing to completion successfully. This
is the problem we address in this paper.
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To remedy this, we propose a language mechanism called failboxes. Program-
mers may create failboxes dynamically and execute blocks of code in them. Once
any such block fails, all subsequent attempts to execute code in the failbox will
fail. To achieve dependency safety, programmers simply need to ensure that if an
operation B depends on an operation A, then A and B are executed in the same
failbox. Furthermore, failboxes help fix the unsafe interaction between locks and
exceptions and they enable safe cancellation and robust resource cleanup. Fi-
nally, the Fail Fast mechanism prevents liveness issues in the presence of failure
in cooperating concurrent computations.

Failboxes are very lightweight: a failbox can be implemented as an object with
a boolean field indicating if the failbox has failed, and a parent pointer. Executing
a code block in a failbox essentially means that before and after executing the
block, the thread-local variable that designates the current failbox is updated,
and before a failbox is made current, it is checked that it has not failed.

We give a formal syntax and semantics of the new constructs, and prove
dependency safety. Furthermore, to show that the new constructs are easy to
reason about, we propose separation logic proof rules and prove their soundness.

The rest of the paper is structured as follows. In Section 2, we illustrate
the problem with an example and discuss existing approaches. In Section 3, we
introduce failboxes. We show additional aspects and benefits of the approach
for multithreaded programs in Section 4. Section 5 briefly discusses how the
approach enables safe cancellation and robust compensation. To show that it is
easy to reason about the new constructs, we propose separation logic proof rules
for the envisaged usage patterns in Section 6. We end the paper with sections
on implementation issues (Section 7), related work (Section 8), and a conclusion
(Section 9).

The theory of this paper has been machine-checked using the Coq proof as-
sistant [12].

2 Problem Statement

Consider the example program in Figure 1. It shows a program that continuously
receives commands and processes them. The code for processing commands is not
shown, except that it involves calls of compute and calls of addEntry on a Database
object db that is shared across all command executions. If the processing of a com-
mand fails, e.g. because it requires too much memory, the exception is caught, an
error message is shown to the user, and the next command is received.

This program is unsafe. Specifically, some executions of this program violate
the intended safety property that at the start of each loop iteration, object
db is consistent, i.e., satisfies the property that count is not greater than the
length of entries . In particular, consider an execution where method addEntry
is called in a state where entries is full. This means count equals entries .length.
As a result, after incrementing count , addEntry will attempt to allocate a new,
larger array. Now assume there is not enough memory for this new array and an
OutOfMemoryError occurs at location A. At this point, count is greater than the
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class Database {
int count ;
int[] entries := new int[10];
/* invariant: count ≤ entries.length */
void addEntry(int entry) {

count++;
if (count = entries .length + 1) {

int[] es := new int[count ∗ 2]; // *** A ***
System .arraycopy (entries , 0, es , 0, entries .length);
entries := es;
}
entries [count − 1] := entry ; // *** B ***

} . . . }
class Program {

public static void main(String [] args) {
Database db := new Database();
while (true)

/* invariant: db is consistent */
{

String cmd := readCommand();
try {
· · · compute(cmd); · · ·
· · · db.addEntry(· · ·); · · ·

} catch (Throwable e) { showErrorMessage(e); }
}} . . . }

Fig. 1. An unsafe program

length of entries and the Database object is inconsistent. Next, the exception is
caught in method main and the loop is continued, violating the safety property.

Note: In this case, the safety violation results in an ArrayIndexOutOfBounds-
Exception at location B in each subsequent call of addEntry ; however, in general,
safety violations might remain undetected and lead to data corruption, incorrect
results, or sending incorrect commands to hardware devices.
The following approaches exist to deal with this complication:

– Never catch unchecked exceptions. Never catching unchecked excep-
tions makes it easier to preserve safety properties, since the many implicit
control flow paths created by catching unchecked exceptions are avoided.
However, catching unchecked exceptions can be useful, as in the example.
Note also that try-finally blocks are equivalent to try-catch blocks that
catch unchecked exceptions; specifically, assuming S1 does not jump out of
the try block, a statement

try { S1 } finally { S2 }
is equivalent to

try { S1 } catch (Throwable t) { S2 throw t; } S2
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and is subject to the same complication: S2 might depend on the successful
completion of certain sub-computations within S1. Never catching unchecked
exceptions would imply never using try-finally blocks, or modifying their
semantics so that they ignore unchecked exceptions. The semantics of syn-
chronized blocks would need to be updated similarly.

– Always maintain consistency. It is often possible to ensure that objects
used across try-catch blocks, like the Database object in the example, are in a
consistent state at all times. Often it is sufficient to reorder assignments; e.g., in
the example, moving the count increment after the assignment to entries pre-
serves consistency. Another approach is to use a functional programming-like
approach, where a new object state is built up separately and then installed
into the object using a single assignment. In the example, method addEntry
would return a new Database object rather than updating the existing one.
Yet another approach is to use transaction-like technologies, such as software
transactional memory [19, 5]. However, these approaches either require the
programmer to perform non-trivial additional reasoning and/or programming
work, or impose a potentially significant performance overhead.

– Never fail during critical sections. It might be possible in some cases
to guarantee absence of failure at points where failure would violate safety.
This requires careful programming to avoid operations that might encounter
resource or implementation limitations, such as heap or stack memory al-
locations or operations on bounded integers, or to move these operations
out of the critical section. Furthermore, this might require virtual machine
support if the virtual machine may perform resource allocations implicitly.
For example, the .NET Framework’s JIT compiler may allocate memory at
any time to store a newly compiled piece of code. Therefore, starting with
version 2, the .NET Framework offers constructs to “prepare” a piece of
code that must execute without failure [21]. However, this approach imposes
a significant burden on the programmer.

– Ensure dependent code is not executed. In this approach, steps are
taken to ensure that if a computation fails with an unchecked exception,
then no computations that depend on the failed computation’s successful
completion ever get to run. There are at least two ways to achieve this:

• Use separate threads. In this approach, threads are adopted as the
units of failure. Within a thread, unchecked exceptions are never caught;
that is, an exception in the thread causes the entire thread to die. All
data structures are local to threads. Instead of running a block of code
in a try-catch block, it is run in a separate thread. During this time, the
original thread waits for the termination of the child thread; additionally,
the original thread may accept messages on a message queue. If the child
thread needs to perform an operation whose failure should cause the
parent thread to fail (such as an addEntry call on the Database object),
the child thread may perform a remote procedure call into the parent
thread via the parent thread’s message queue. This is more or less the
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approach used in operating systems, in the Erlang language [1], and in
the SCOOP multithreading approach for Eiffel [17].
• Guard dependent code manually. The programmer can manually

arrange to ensure that dependent code is not executed. For example, the
programmer could associate a boolean flag with each object used across
try-catch blocks that tracks whether the object is in a consistent state,
and check this flag before accessing the object [13]. If the flag is false, an
exception is thrown.

In this paper we present a new approach in the fourth category, which, like
the use of separate threads and manually guarding dependent code, supports
catching exceptions and does not require that consistency be maintained always
or that failures be avoided, but which has less programming and run-time over-
head than the use of separate threads and which has less programming overhead
than manually guarding dependent code.

3 Failboxes

In our approach, the language is extended with a notion of failboxes. Constructs
are added for creating a new failbox and for running a piece of code in a desig-
nated failbox. As soon as one such piece of code fails (i.e., completes abruptly
with an unchecked exception), any subsequent attempt to run code in the failbox
fails. To ensure dependency safety, the programmer simply needs to ensure that
if a computation B depends on a computation A, then A and B run in the same
failbox.

To facilitate composition of program modules, failboxes are ordered hierarchi-
cally. When creating a new failbox, a parent may be specified. If an exception
occurs in a failbox, both it and its transitive children are marked as failed.

3.1 Syntax and Semantics

The syntax of the new constructs is as follows:

s ::= . . .
| x := currentfb; | x := newfb; | x′ := newfb(x);
| enter (x) { s } catch { s′ }

where s ranges over statements, s ranges over sequences (i.e., sequential compo-
sitions) of statements, and x and x′ range over local variable names.

Note: For simplicity, we ignore checked exceptions and exception objects in
the formal developments.

A program state is a tuple of the form

(L, Σ, Φ, T )

where L, the lock map, is a partial function that contains a pair (o, t) if thread
t holds the lock of object o; Σ is a partial function that maps each allocated
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failbox to its parent failbox (and a root failbox to itself); Φ is the set of failed
failboxes ; and T is a partial function that maps each thread to its current state.
(We omit the heap since our constructs do not interact with it.)

A thread state is a tuple of the form

(f, V, s, b, F )

where f is the thread’s current failbox, V is a total function that maps each
variable name to a value, s, the continuation, is the sequence of statements to
be executed by the thread, b is the sequence of enclosing blocks, and F is the
sequence of enclosing activation records.

The syntax of an enclosing block is as follows:

b ::= enter (f) catch { s } s′ | synchronized (o); s

where an enclosing enter block records the failbox f that was current prior to
the enter statement (not the failbox that was entered), the catch block body
s, and the statements s′ that are to be executed after completion of the enter
statement; and an enclosing synchronized block records the object o whose lock
was acquired, and the statements s that are to be executed after completion of
the synchronized statement.

In the initial program state of a program with main method body s, the lock
map is empty, there is a single failbox f , whose parent is itself, no failbox is
marked as failed, and there is one thread t whose current failbox is f ; all of the
thread’s local variables are bound to null, and it has no enclosing blocks and no
enclosing activation records:

main s

initial (∅, {(f, f)}, ∅, {(t, (f, (λx.null), s, ε, ε))})
The statement x := currentfb; assigns the current failbox to variable x:

CurrentFB

(t, (f, V, x := currentfb; s, b, F )) ∈ T

(L, Σ, Φ, T )→ (L, Σ, Φ, T (t := (f, V (x := f), s, b, F )))

The statement x := newfb; creates a new root failbox and assigns it to x:

NewFB-Root

(t, (f, V, x := newfb; s, b, F )) ∈ T f ′ /∈ dom(Σ) Σ′ = Σ(f ′ := f ′)

(L, Σ, Φ, T )→ (L, Σ′, Φ, T (t := (f, V (x := f ′), s, b, F )))

If x is bound to a failbox f ′ and f ′ is not marked as failed, the statement
x′ := newfb(x); creates a new child failbox of f ′ and assigns it to x′:

NewFB-Child

(t, (f, V, x′ := newfb(x); s, b, F )) ∈ T
V (x) = f ′ f ′ /∈ Φ f ′′ /∈ dom(Σ) Σ′ = Σ(f ′′ := f ′)

(L, Σ, Φ, T )→ (L, Σ′, Φ, T (t := (f, V (x′ := f ′′), s, b, F )))
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If x is bound to a failbox f ′, and f ′ is not marked as failed, then statement
enter (x) { s′ } catch { s′′ } records the current failbox, the catch block body
s′, and the current continuation in a new enclosing block, makes f ′ the current
failbox, and starts executing the enter block body s′:

Enter

(t, (f, V, enter (x) { s′ } catch { s′′ } s, b, F )) ∈ T

V (x) = f ′ f ′ /∈ Φ b
′
= (enter (f) catch { s′′ } s) · b

(L, Σ, Φ, T )→ (L, Σ, Φ, T (t := (f ′, V, s′, b
′
, F )))

On normal completion of an enter block body, the former current failbox is
restored and the catch block is skipped, provided that the former current failbox
is not marked as failed:

Enter-Complete-Normal

(t, (f, V, ε, (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T f ′ /∈ Φ

(L, Σ, Φ, T )→ (L, Σ, Φ, T (t := (f ′, V, s′′, b, F )))

where ε denotes the empty sequence.
We model the occurrence of an exception as the replacement of the current

continuation with a throw statement. An exception can occur at any time; this
reflects the fact that in Java a virtual machine error can be thrown at any time
[10, §11.3.2].

Fail

(t, (f, V, s, b, F )) ∈ T s �= throw;

(L, Σ, Φ, T )→ (L, Σ, Φ, T (t := (f, V, throw; , b, F )))

If variable x is not bound to a failbox, or it is bound to a failbox but the failbox
is marked as failed, then both x′ := newfb(x); and enter (x) { s } catch { s′ }
throw an exception (of type FailboxException); this is covered by rule Fail.

On abrupt completion of an enter block body with an exception, the current
failbox and its descendants are marked as failed, the former current failbox is
restored, and the catch block is executed, provided the former current failbox is
not marked as failed:

Enter-Complete-Abrupt

(t, (f, V, throw; , (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T
Φ′ = Φ ∪ (Σ−1)∗(f) f ′ /∈ Φ′

(L, Σ, Φ, T )→ (L, Σ, Φ′, T (t := (f ′, V, s′ s′′, b, F )))

where (Σ−1)∗(f) denotes the set of f ’s descendants, including f itself.
On normal completion of an enter block body, if the former current fail-

box is marked as failed, it is restored but the catch block is skipped and a
FailboxException exception is thrown:

Enter-Complete-Normal-Fail

(t, (f, V, ε, (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T f ′ ∈ Φ

(L, Σ, Φ, T )→ (L, Σ, Φ, T (t := (f ′, V, throw; , b, F )))
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On abrupt completion of an enter block body with an exception, if after
marking the current failbox as failed, the former current failbox is marked as
failed, the former current failbox is restored but the catch block is skipped and
a FailboxException exception is thrown:

Enter-Complete-Abrupt-Fail

(t, (f, V, throw; , (enter (f ′) catch { s′ } s′′) · b, F )) ∈ T
Φ′ = Φ ∪ (Σ−1)∗(f) f ′ ∈ Φ′

(L, Σ, Φ, T )→ (L, Σ, Φ′, T (t := (f ′, V, throw; , b, F )))

3.2 Syntactic Sugar

We remove try-catch statements and try-finally statements from the language
as separate statements. Instead, we define them as syntactic sugar over the new
constructs. Specifically, the statement

try { s } catch { s′ }

is defined as

x := currentfb; x′ := newfb(x); enter (x′) { s } catch { s′ }

where x and x′ are fresh. That is, a try-catch statement executes the try block
in a new child failbox of the current failbox.

The statement
try { s } finally { s′ }

is defined as
try { s } catch { s′ throw; } s′

This means that a try-finally statement executes its try block in a new child
failbox of the current failbox.

Furthermore, we define the following shorthands:

enter (x) { s } ≡ enter (x) { s } catch { throw; }
reenter (x) { s } ≡ enter (x) { s } catch {}

In words, an enter statement propagates exceptions, and a reenter statement
does not. Note: in real implementations, a reenter statement would not cause
exception information to be lost, since the exception object would be associated
with the failbox at the time the failbox is marked as failed, and an API would
be provided to retrieve the stored exception object of a failed failbox.

3.3 Terminology

We use the following terminology: We say that an event in a thread t occurs in a
failbox f or a statement is executed (or executes) in f if the event occurs or the
statement execution starts at a time when f is the current failbox of t. We say that
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a failure occurs in t when an unchecked exception is thrown (i.e., the continuation
of t is a throw statement). We say that a statement execution fails if it completes
abruptly because of an unchecked exception. We say that a failbox f fails when
a failure occurs in f . We say that an execution step enters a failbox f if f is the
current failbox after the step and was not the current failbox before the step. Sim-
ilarly, we say that an execution step leaves a failbox f if is not the current failbox
after the step and was the current failbox before the step.

3.4 Example

The approach is illustrated and motivated by the example in Figure 2. (Note:
In the examples we use a more conventional syntax.) It shows how the unsafe
program of Figure 1 can be made safe using failboxes. A failbox f is created and
then both the main loop and calls of addEntry are executed in f . This ensures
that if a call of addEntry fails, the main loop terminates.

root child

Failbox

class Program {
public static void main(String [] args) {

Failbox f := Failbox .getCurrent();
Database db := new Database();
while (true)

/* invariant: db is consistent */
{

String cmd := readCommand();
try {
· · · compute(cmd); · · ·
enter (f) {

db.addEntry(· · ·);
}
· · ·

} catch (Throwable e) {
showErrorMessage(e);

}
}

}
. . .

}

Fig. 2. The example of Figure 1, fixed using failboxes. When an addEntry call fails,
failbox f is marked as failed. When control subsequently exits the try block, this is
considered an attempt to enter f ; therefore, a FailboxException is thrown. As a result,
the catch block is skipped, the loop is exited, and the program terminates safely. The
sequence diagram shows the failbox transitions.
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The example motivates why on entry to a try block, the failbox in which the
try-catch statement executes is no longer considered the current failbox. This
ensures that failures in method compute are properly caught by the try-catch
statement, and do not cause the program to terminate.

4 Multithreading

4.1 Synchronized Statements: Safety Issues

One common way that the strict termination approach of dealing with failures is
overridden, is through the use of synchronized blocks. A synchronized (o) S
block in Java acquires the lock of object o, executes statement S, and then
releases the lock of o, even if S failed. This helps prevent deadlocks, but it
creates a safety risk. In particular, if a failure occurs while o is inconsistent, the
commonly intended safety property that shared objects whose lock is not held
are consistent, is violated.

The problem is illustrated by the example program in Figure 3. It is a multi-
threaded version of the original example in Figure 1. Rather than processing each
command before receiving the next command, the program receives a command,
spawns a thread to process it, and immediately receives the next command. The
Database object is shared by all command processing threads; accesses to the
object are synchronized using a synchronized block.

class Program {
public static void main(String [] args) {

final Database db := new Database();
while (true) {

final String cmd := readCommand();
new Thread() {

public void run() {
try {
· · · compute(cmd); · · ·
· · · synchronized (db) { db.addEntry(· · ·); } · · ·

} catch (Throwable e) { showErrorMessage(e); }
}
}.start();

}
}
. . .

}

Fig. 3. An unsafe program. A failure in compute is handled correctly, but if a failure
occurs in method addEntry while the Database object is inconsistent, the object’s lock
is released, causing threads that subsequently acquire the lock to see the object in an
unexpected state, violating safety.
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This program is unsafe. In particular, in some executions, the intended safety
property that whenever a shared object’s lock is not held by any thread, the ob-
ject is consistent, is violated. This property is relied on to guarantee that method
addEntry is called only on objects that are consistent. Specifically, suppose a fail-
ure occurs in method addEntry while the Database object is inconsistent. This
causes the lock to be released. Subsequent command processing threads that
acquire the lock will then see the Database object in an inconsistent state.

4.2 Failboxes Approach for Safe Synchronized Statements

Failboxes can be used to write safe lock-based multithreaded programs, by asso-
ciating each shared object with a failbox and running the code that accesses a
shared object within the associated failbox. This way, when a failure occurs, the
failbox is marked as failed, so that when another thread subsequently attempts
to enter the failbox in order to access the object, an exception is thrown and the
thread is prevented from seeing inconsistent state. The modified safety property
is that whenever no thread holds a shared object’s lock, either the object is
consistent or its associated failbox is marked as failed.

The approach is illustrated in Figure 4. It is the example of Figure 3, made
safe using failboxes. Specifically, the example uses an enter statement to execute
the addEntry calls in the main thread’s root failbox. When an addEntry call fails,
this failbox is marked as failed before the lock is released. When another thread

class Program {
public static void main(String [] args) {

final Failbox f := Failbox .getCurrent ();
final Database db := new Database();
while (true) {

final String cmd := readCommand();
new Thread() {

public void run() {
try {
· · · compute(cmd); · · ·
· · · synchronized (db) { enter (f) { db.addEntry(· · ·); } } · · ·
} catch (Throwable e) { showErrorMessage(e); }

}
}.startInCurrentFailbox ();

}
}
. . .
}

Fig. 4. The example of Figure 3, made safe using failboxes. If a call of addEntry fails,
failbox f is marked as failed and subsequent attempts by other threads to enter the
failbox will fail. Furthermore, by the Fail Fast feature, a stop f signal is sent to all
threads running in the failed failbox f or a descendant of f . In the example, this means
the program terminates.
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subsequently acquires the lock and attempts to enter the failbox, an exception
is thrown, so that the thread is prevented from unsafely calling addEntry .

4.3 Multithreaded Failboxes

In a multithreaded program, it is possible for computations in multiple threads
to be executing in the same failbox f concurrently. If this happens, we say
f is multithreaded. The question then arises as to what happens when one
of these computations fails. There are two distinct concerns involved in this
matter: preserving the program’s intended safety properties, and ensuring useful
progress.

4.4 Multithreaded Failboxes: Safety

In a well-written program, a failure in one thread should not have safety im-
plications for operations executing concurrently in other threads. Specifically,
in a data-race-free program, where the program synchronizes accesses to shared
memory using the language’s synchronization constructs, an operation can see
the data that was being manipulated by a computation that failed only if the
operation is not concurrent with the failure, i.e., the operation was synchronized
with the failed computation. (Formally, the failure happens-before the operation.)
Therefore, to ensure safety, it is sufficient that synchronization constructs per-
form the necessary failboxes bookkeeping to ensure that if a failure happens in
a failbox, no operation that is ordered after this failure through synchronization
runs in this failbox. To achieve this, we specify the semantics of synchronized
statements with respect to failboxes as follows: after acquiring the lock, the
statement checks that the current failbox has not failed; otherwise, it throws a
FailboxException . Furthermore, before releasing the lock, if the body completed
abruptly with an exception, the current failbox is marked as failed. The step
rules are shown in Figure 5.

4.5 Properties

We are now ready to state and sketch the proof of the main properties of the
failboxes approach.

We first define some terms. An execution is a finite or countably infinite
sequence of program states. An execution point is a nonnegative integer that
serves as an index into an execution. A thread execution point (k, t) is a pair of
an execution point k and a thread identifier t.

Definition 1 (Happens-Before). The happens-before relation hbE→ on thread
execution points of an execution E = C0, C1, . . . is the smallest transitive relation
that satisfies the following properties:

– Any thread execution point of a thread t happens-before any subsequent thread
execution point of t

k1 < k2 ⇒ (k1, t)
hbE→ (k2, t)
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Synchronized

(t, (f, V, synchronized (x) { s′ } s, b, F )) ∈ T

V (x) = o o /∈ dom(L) f /∈ Φ b
′
= (synchronized (o); s) · b

(L, Σ, Φ, T )
t:acq(o)→ (L(o := t), Σ, Φ, T (t := (f, V, s′, b

′
, F )))

Synchronized-Reentrant

(t, (f, V, synchronized (x) { s′ } s, b, F )) ∈ T V (x) = o (o, t) ∈ L

(L, Σ, Φ, T )→ (L, Σ, Φ, T (t := (f, V, s′ s, b, F )))

Synchronized-Complete-Normal

(t, (f, V, ε, (synchronized (o); s) · b, F )) ∈ T

(L, Σ, Φ, T )
t:rel(o)→ (L \ {(o, t)}, Σ, Φ, T (t := (f, V, s, b, F )))

Synchronized-Complete-Abrupt

(t, (f, V, throw; , (synchronized (o); s) · b, F )) ∈ T

Φ′ = Φ ∪ (Σ−1)∗(f) T ′ = T (t := (f, V, throw; , b, F ))

(L, Σ, Φ, T )
t:rel(o)→ (L \ {(o, t)}, Σ, Φ′, T ′)

Fig. 5. Step rules for synchronized statements

– If execution step k1 is a release of some lock o by some thread t1, and sub-
sequent execution step k2 is an acquire of o by some thread t2, then (k1, t1)
happens-before (k2 + 1, t2)

Ck1

t1:rel(o)→ Ck1+1 ⇒ Ck2

t2:acq(o)→ Ck2+1 ⇒ k1 < k2 ⇒ (k1, t1)
hbE→ (k2 + 1, t2)

– If at execution step k thread t starts a new thread t′ (see Figure 6), then
(k, t) happens-before (k + 1, t′)

Ck
t:fork(t′)→ Ck+1 ⇒ (k, t) hbE→ (k + 1, t′)

The Main Lemma states that once an exception occurs in a failbox, no code
executes in that failbox “afterwards”.

Lemma 1 (Main Lemma). Consider an execution E of a program π of the
extended language, and consider two thread execution points (k1, t1) and (k2, t2)
in E, such that (k1, t1) happens-before (k2, t2). If t1 is executing in some failbox
f1 in state k1, and t2 is executing in some descendant f2 of f1 in state k2, then
if t1 is failing in state k1, then t2 is failing in state k2.

exec(π, E)⇒ (k1, t1)
hbE→ (k2, t2)⇒

Ck1 = (L1, Σ1, Φ1, T1)⇒ T1(t1) = (f1, V1, throw; , b1, F 1)⇒
Ck2 = (L2, Σ2, Φ2, T2)⇒ T2(t2) = (f2, V2, s2, b2, F 2)⇒

f2 ∈ (Σ−1
2 )∗(f1)⇒ s2 = throw;
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Proof. It suffices to prove for every prefix of some path from (k1, t1) to (k2, t2)
in the happens-before graph, that at the thread execution point (k3, t3) at the
end of the prefix, one or more of the following hold:

– the thread is failing and the current failbox is f1
– failbox f1 and its descendants have been marked as failed and one or more

of the following hold:
• the current failbox is not f1 or a descendant of f1, or
• the thread is failing.

This can be proved easily by induction on the length of the prefix and case
analysis on the last edge.

Now consider an execution E of a program π and a dependency relation D on
the thread execution points of E. We say E uses failboxes correctly with respect
to D, if whenever thread execution point p2 depends on thread execution point
p1, the current failbox at p2 is a descendant of the current failbox at p1. We
say E is dependency-safe with respect to D if whenever p2 depends on p1, and
p1 happens-before p2, and p1 is failing, then p2 is failing. We then have the
Soundness Theorem: if E uses failboxes correctly with respect to D, then E is
dependency-safe with respect to D. This follows directly from the Main Lemma.

A machine-checked proof of these properties is available online [12].

4.6 Multithreaded Failboxes: Ensuring Useful Progress

Even if a computation is safe, it might not be contributing to the useful work of
the application. Specifically, if multiple computations are running in the same fail-
box, then this is taken to mean that they depend on each other for useful progress.
As a result, if one of them fails, there is no point for the others to continue, so
they should be stopped to free up CPU cycles, memory, and other resources these
computations may be using. Therefore, in our approach, at the time a failbox f is
marked as failed, a stop f signal is sent to all threads currently running in f or a
descendant of f . When the signal arrives, this results in a FailboxException being
thrown in the target thread, provided it is still running in f or a descendant. To
allow efficient implementations, we do not impose timing constraints on the deliv-
ery of the signal, except that it must arrive eventually. We call this mechanism the
Fail Fast mechanism (after the Fail Fast principle [20]).

The usefulness of the Fail Fast mechanism is illustrated by the example in Fig-
ure 4. Once failbox f has failed, all subsequent attempts to access the database
fail. Assuming most commands access the database, this means the program’s
functionality is severely degraded. Therefore, it seems appropriate to escalate
the failure and terminate the program. This typically signals a system adminis-
trator or service management daemon to restart the program in a clean state,
hopefully restoring full service. In the example, this behavior is achieved by run-
ning not just the addEntry calls, but the main loop as well, in failbox f . When
an addEntry call fails, an asynchronous exception is thrown in the main thread,
which causes the loop to terminate.
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Fork

(t, (f, V, fork { s′ } s, b, F )) ∈ T

t′ /∈ dom(T ) T ′ = T (t := (f, V, s, b, F ), t′ := (f, V, s′, ε, ε))

(L, Σ, Φ, T )
t:fork(t′)→ (L, Σ, Φ′, T ′)

Thread-Complete-Abrupt

(t, (f, V, throw; , ε, ε)) ∈ T f /∈ Φ Φ′ = Φ ∪ (Σ−1)∗(f)
(L, Σ, Φ, T )→ (L, Σ, Φ′, T )

fork∗ { s } ≡ fork { x := newfb; reenter (x) { s } } where x is fresh

Fig. 6. Step rules for thread creation

In fact, since the existing command processing threads are unlikely to be able
to run to completion successfully, it makes sense to terminate these as well. This is
achieved in the example by running the command processing threads in failbox f
as well, by using method startInCurrentFailbox (added by our language extension)
instead of start to start these threads. (To ensure backward compatibility, method
start starts the new thread in a newly created root failbox, so that failure of the
new thread does not cause a stop signal to be sent to the original thread.)

In the example, the failbox hierarchy is as follows. Failbox f , a root failbox, has
one child for each try block execution. This ensures, as before, that exceptions
in method compute do not cause the program to terminate.

The step rules for thread creation are shown in Figure 6. In the formal
language, statement fork corresponds with method startInCurrentFailbox , and
fork∗ corresponds with method start .

4.7 Wait Dependency Safety

A sub-concern of the concern of ensuring useful progress is the concern of en-
suring progress. Specifically, one of the correctness properties that are difficult
to achieve in the presence of unchecked exceptions is wait dependency safety,
the property that if, in a given program execution, a wait operation W depends
on a computation A, then, assuming that W terminates if A does not fail, W
terminates. Analogously to the dependency relation used in the definition of de-
pendency safety, the wait dependency relation used here is an application-specific
relation; the intention is that if a wait operation W depends on a computation
A, this means that, abstractly speaking, W waits for a signal to be sent by A. In
Java, a typical example of this is when W is an Object .wait call on some object
o and A at some point performs an Object .notifyAll call on o.

Failboxes can be used to achieve wait dependency safety. We say that a
program uses failboxes correctly for the purpose of wait dependency safety if
whenever in a given program execution, a wait operation W depends on a com-
putation A, then A runs in a failbox f and W runs in a descendant of f . We
then have the property that if a program uses failboxes correctly for the purpose
of wait dependency safety, then the program is wait-dependency-safe. Indeed, if
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A fails, a stop signal is sent to the thread that is running W . As a result, when
the signal arrives, either W has already terminated, or W is terminated by the
FailboxException thrown by the Fail Fast mechanism. We call this property the
soundness of the Fail Fast mechanism.

A machine-checked proof of this property is available online [12].

5 Cancellation and Compensation

We propose the use of failboxes in programs to make them safe for failures. How-
ever, it turns out that if failboxes are applied correctly in a program, then this also
enables safe cancellation of computations, with no extra effort, and without the
need for polling, through the Fail Fast mechanism. In order to enable cancellation
of a computation, the program runs it in a dedicated failbox; to cancel the compu-
tation, it calls the Failbox object’s cancel method, which simulates the occurrence
of a failure in the failbox and triggers the Fail Fast mechanism. This achieves the
convenience of the deprecated Thread .stop approach, without the safety risk.

Consider for example the program of Figure 4. The main loop repeatedly
receives a command and starts a command thread to process it. The processing is
done inside a try-catch statement, and therefore in a per-command child failbox
of the root failbox. This program could be extended to enable cancellation of
commands as follows. In order to cancel a command, the program calls the
command failbox’s cancel method. If the command thread is executing in the
command failbox, it is stopped; however, if it is executing inside the database,
it is allowed to continue to execute until it leaves the root failbox and re-enters
the command failbox, at which point an exception is thrown. Contrast this with
calling stop on the command thread, which would stop the thread even if it was
running in the database, causing the entire program to fail.

The failboxes mechanism also enables safe compensation. By compensation, we
refer to the scenario where a client computation invokes a service offered by a
provider computation, which changes the provider’s state. This imposes the obli-
gation on the client to invokea compensating service to restore the provider’s state,
after the client is done using the service. The conventional approach to compensa-
tion is through try-finally statements. However, an unchecked exception can cause
the compensation action to be skipped, if the exception occurs after the action that
is to be compensated, but before the try block is entered, or if it occurs after the
finally block is entered, but before the compensation action completes.

This may be addressed using the failboxes mechanism by performing the fol-
lowing transformation:

init();
try {

// Use the service
} finally {

compensate();
}

⇒

enter (provider ) {
init();
reenter (client) {

// Use the service
}
compensate();
}
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Before invoking the service, the thread running the client computation enters
the provider’s failbox. After the service is invoked, it re-enters the client failbox
using a nested reenter statement where the client uses the service. When the
client is done using the service, it leaves the nested enter statement, causing
the thread to re-enter the provider failbox, perform the compensating action,
and finally leave the outer enter statement, re-entering the client failbox. This
approach guarantees that either the compensation occurs or the provider failbox
is marked as failed. If an exception occurs while the client uses the service, the
client failbox is marked as failed, but the exception is not propagated by the
reenter statement. This ensures that compensation is not skipped. When the
thread leaves the outer enter statement, it enters the client failbox, which was
marked as failed, and therefore the exception is propagated from that point, as
in the case of the try-finally statement.

6 Proof Rules

To show that it is easy to reason about programs that use failboxes, in this
section we propose separation logic proof rules for the main envisaged usage
patterns.

Recall the semantics of separation logic assertions: emp describes the empty
heap, and the separate conjunction P ∗Q describes a heap that can be split into
one that satisfies P and one that satisfies Q:

s, h � emp⇔ h = ∅ s, h � P ∗Q⇔ ∃h1, h2 •h = h1"h2∧s, h1 � P ∧s, h2 � Q

We extend the syntax of correctness judgments (but not the syntax of asser-
tions) to be failboxes-aware. Specifically,

Σ; f � {P} s {Q}

denotes the correctness of statement list s under commitment list Σ, current
failbox f , precondition P , and postcondition Q. The syntax of commitment lists
is as follows:

Σ ::= ε | Σ, f : P

We say that assertion P is committed to failbox f . Informally, this means that
to access the resources of P , f must first be entered. Failboxes are denoted using
logical variables.

The above correctness judgment implies the following validity statement:

�Σ� ∗ P ⇒ valid(s, �Σ� ∗Q, �Σ� ∗ true)

(under the assumption that s does not assign to any variables that Σ depends
on) where Σ is here interpreted as a separation logic assertion as follows:

�ε� ≡ emp �Σ, f : P � ≡ �Σ� ∗ (f ∈ Φ ∨ P )
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i.e., for each commitment f : P , either P holds (and is owned by the current
thread) or f has failed. valid(s, Q, R) is true under a given heap, failed set, and
variable environment, if after executing s in this state, upon normal completion
Q holds and upon abrupt completion R holds.

A throw statement always satisfies partial correctness.

C-Throw

Σ; f � {P} throw; {Q}

For verifying a try-catch statement, the heap is split into two parts: part Pf
is accessed by the try block only inside enter (f) statements, and part P is
accessed freely. The second premise of the rule ensures soundness for normal
completion of the try block. The third is for the case where the try block fails.

C-TryCatch

∀f ′ •Σ, f : Pf ; f ′ � {P} s {Q} Pf ∗Q⇒ Q′ Σ; f � {Pf} s′ {Q′}
Σ; f � {Pf ∗ P} try { s } catch { s′ } {Q′}

(under the assumption that Pf does not depend on any variables that s assigns
to).

An enter block can access the piece of heap associated with the failbox being
entered.

C-Enter

Σ; f � {P ∗ Pf} s {Q ∗ Pf}
Σ, f : Pf ; f ′ � {P ∧ x = f} enter (x) s {Q}

The compensation pattern can be verified as follows.

C-Compensation

Σ; f � {P ∗ Pf} s1 {Q1 ∗ P ′
f ∧ y = f ′}

Σ, f : P ′
f ; f

′ � {Q1} s2 {Q} Σ; f � {P ′
f } s3 {Pf}

Σ, f : Pf ; f ′ �
{P ∧ x = f} enter (x) { s1 reenter (y) { s2 } s3 } {Q}

(under the assumption that P ′
f does not care about any variables that s2 assigns

to). The compensation pattern allows the commitment f : Pf to be replaced
temporarily with the commitment f : P ′

f .
A machine-checked soundness proof of these proof rules is available online

[12].
We developed a prototype verifier based on these ideas [12].

7 Implementation Issues

We created a prototype implementation of the approach on the .NET Framework
as a C# 3.0 library. C# 3.0’s lambda expression syntax can be used to write
reasonably concise enter statements.
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A major complication for achieving a fully correct implementation of the
approach in the form of a library, is the fact that the .NET Framework Common
Language Runtime may throw an exception at any program point, due to an
internal resource limit being reached or an internal error being discovered within
the execution engine [21]. (The same holds for the Java Virtual Machine. See
the Java Virtual Machine Specification, Second Edition [14], Section 2.16.2.)
Specifically, if an enter block completes abruptly with an exception, no internal
exception must intervene between catching the exception and marking the failbox
as failed; otherwise, the enter statement completes without marking the failbox
as failed, breaking dependency safety.

Version 2.0 of the .NET Framework introduced constructs specifically for writ-
ing code that must execute reliably in the presence of internal exceptions [21].
We used these constructs in our prototype implementation to ensure that on
abrupt completion of the body of an enter statement, the failbox and its descen-
dants are marked as failed and stop signals are sent to other threads executing
in the failbox or its descendants. Specifically, we used the following API:

ExecuteCodeWithGuaranteedCleanup(t, c, u)

where t and c are delegates (similar to function pointers in C) and u is arbitrary
user data that is passed to t and c. The API first executes t. When t completes,
either normally or abruptly, the cleanup delegate c is executed. The API guar-
antees that no internal exceptions occur during the execution of c, provided that
c satisfies certain constraints, such as: no heap memory allocation, and no un-
bounded call stack memory allocation. Unfortunately, these constraints have not
been spelled out very precisely anywhere; we had to make some assumptions as
to what can reasonably be executed without the risk of internal exceptions.

We have performed a few microbenchmark performance tests. These indicate
the following approximate timings for the following statements:

Statement Timing Timing∗

try {} catch {} 13μs 1.9μs
try { enter (f) {} } catch {} 23μs 3.4μs

To measure the impact of the ExecuteCodeWithGuaranteedCleanup construct,
we replaced it with a dummy that uses a simple try-finally statement. The re-
sulting timings are shown in the third column. It turns out that the overhead of
this construct dominates the run time.

Even though the current performance is probably acceptable for most real-
world applications, we believe it can still be improved significantly, in particular
if the constructs are implemented directly in the virtual machine rather than as
a library. Performing such an implementation is future work.

We have also prepared a prototype implementation of failboxes as a library on
the Java virtual machine. However, due to the absence of constructs to prevent
internal or asynchronous exceptions on this platform, the implementation is not
safe in the presence of such exceptions.

The prototype implementations are available on line [12].
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8 Related Work

To the best of our knowledge, failboxes are the first approach for programmers
to achieve dependency safety of their Java-like programs that combines low pro-
gramming overhead, low performance overhead, and low reasoning overhead, and
is compositional (i.e. failboxes can be nested arbitrarily).

Languages as operating systems. Many extensions of Java have been proposed that
support running multiple programs or tasks in the same virtual machine. These can
typically be used to enforce dependency safety. However, in contrast to failboxes,
all of these have goals beyond dependency safety, typically including protection
againstmalicious code, and accounting of memory and other resources. As a result,
they impose greater programming and performance overhead on communication
between tasks than the overhead of switching between failboxes.

Perhaps the most closely related such system is Luna [11]. To support memory
accounting and immediate guaranteed memory reclamation when a task is killed,
the heap is logically partitioned among the tasks; the onlyway for one task to access
an object belonging to another task is through a remote pointer, which is distin-
guished from local pointers through its type. When a task is killed, remote pointers
pointing into it are revoked, so that if the task was holding a lock, other tasks do
not see inconsistent state. Failboxes offer no memory accounting or guaranteed
memory reclamation, but in turn impose a lower programming and performance
overhead. Specifically, passing data across tasks requires either copying or the use
of remote pointers, both of which incur a programming and performance overhead;
failboxes, in contrast, allow data to be passed around freely.

DrScheme [8, 7] is a Scheme environment designed for programs that serve as
platforms for other programs. In DrScheme, it is possible for two child programs
to share a mutable data structure and yet be killed independently. The solution
is to host the data structure in a separate thread, and to access it only via
message passing with this thread. DrScheme’s contribution is that it enables
two untrusted child programs to set up such a shared data structure without
circumventing resource policies and without the need for the shared structure
to be trusted by the kernel. However, from a dependency safety point of view,
the situation is as in Java: DrScheme requires either the use of message passing
between separate threads or manually guarding dependent code.

Erlang [1] is a language focused on reliability. Inconsistent data structures
within a process are ruled out because the language has no destructive up-
date. Processes communicate through asynchronous message passing. Fail-fast
is achieved by linking processes: when a process dies, an exit signal is sent to
linked processes, causing those to die as well by default.

Non-compositional approaches. Marlow et al. [16] propose an extension of con-
current Haskell with constructs that make it possible to write safe programs
where one thread throws an asynchronous exception in another thread. The
block e construct disables asynchronous exceptions during execution of e; e can
use unblock e′ to re-enable them during execution of a sub-expression e′. Unlike
failboxes, the block construct is not compositional; for example, in the program
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of Figure 4, the addEntry call could be protected against cancellation of jobs us-
ing block; however, imagine the command processing program is part of a larger
system. Then one may want to cancel the program as a whole, including any
addEntry calls. This is possible with failboxes (by cancelling failbox f , which
cancels its descendants as well), but not with the block construct. Also, the con-
struct does not help in dealing with failures; for example, a failure during the
addEntry call would not prevent further accesses to the database. However, the
block construct, or something similar, is useful and even necessary to be able to
robustly implement failboxes as a library in a given language.

Starting with version 2, the .NET Framework includes reliability features that
make it possible to write cleanup routines that are guaranteed to execute even
in the presence of failure or cancellation [21]. However, like the block construct,
the approach is not compositional: these cleanup routines cannot be cancelled;
furthermore, they must be carefully coded to rule out failures within the cleanup
routines themselves since those are not dealt with safely. The mechanism is
intended only for manipulation of execution environment resources; it is not for
general application use.

Three further reliability-related features in .NET Framework version 2 are
the following. Firstly, cancellation is disabled during finally blocks. This en-
ables safe cleanup in the presence of cancellation (but not failure). Secondly,
an unhandled exception in one thread kills all other threads, without executing
catch or finally blocks. However, in the thread that throws the unhandled ex-
ception, finally blocks are executed normally and locks are released, leaving a
time window between the release of the lock and the time the exception reaches
the toplevel (possibly after executing other finally blocks) where other threads
can see inconsistent state. Thirdly, a method Environment .FailFast was added,
which terminates the program immediately.

Rudys et al. [18] propose weaving code into an untrusted plugin (such as an
applet) that polls a cancellation request flag to enable forcibly cancelling the
plugin. The flag is also checked whenever the host system calls into the plugin.
In our approach, a thread running in one failbox may protect itself from cancel-
lation of its failbox by entering an ancestor failbox to which it has a reference;
however, separate techniques (e.g., perhaps by associating permissions with fail-
boxes) could be used to prevent this in case the thread is running untrusted
code.

The SCOOP multithreading approach for Eiffel [17] has a notion of subsys-
tems. A subsystem in SCOOP is a thread and a set of objects handled by that
thread. Brooke and Paige [3] suggest marking an object as “dead” when the
processing of an asynchronous incoming call fails, causing subsequent calls to
fail immediately. SCOOP subsystems cannot be nested.

Other related work. Garcia et al. [9] provide a survey of exception mechanisms.
However, the authors do not discuss the dependency safety issue. In fact, most
modern imperative and/or object-oriented languages have inherited the excep-
tion mechanism of CLU [15] and therefore suffer from the problems addressed
by our approach.
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Class-handlers, as proposed by Dony [4] and others, are exception handlers
associated with classes rather than blocks of statements; they apply to all meth-
ods of the class. They would facilitate manually guarding dependent code. For
example, a class-handler on the Database class could set a failed field to true
when an unchecked exception is caught and then re-throw the exception. The
field would still need to be checked manually on entry to each method.

Weimer and Necula [22] propose compensation stacks to make it easier to write
effective cleanup code. However, they do not address the safety issues identified
in Section 5.

Fetzer et al. [5] assume the viewpoint that “exception handling is only effective
if the premature termination of a method due to an exception does not leave
an object in an inconsistent state”. The paper proposes techniques to detect
and “mask” non-atomic exception handling, i.e. violations against failure atom-
icity. The paper assumes that after catching an exception, the entire application
should be in a consistent state, whereas we allow failed failboxes to remain in an
inconsistent state, while preventing control from entering a failed failbox. The
authors find a large number of Java methods that are not failure atomic. This
would strengthen the case for failboxes, because it indicates that exceptions do
indeed commonly leave objects in an inconsistent state.

An alternative way to deal with failures is to roll the state of the objects in-
volved back to a consistent state, through the use of transactions (e.g. Shavit and
Touitou [19], Welc et al. [23], Fetzer et al. [5]). However, this has a greater per-
formance overhead; also, it presents problems when the computation that failed
performed I/O. Our failboxes approach is more conservative from a semantic
and performance point of view.

This work was inspired by our research in program verification for Java-like
languages that is sound in the presence of failures. To the best of our knowledge,
no existing program verifiers for Java-like languages (including ESC/Java [6] and
Spec# [2]) have this property. In Jacobs et al. [13], we propose a verification
approach for Java programs where the programmer manually guards dependent
code using flag variables that track an object’s consistency. The present work
addresses the programming overhead of that approach.

9 Conclusion

We propose a language extension, called failboxes, that facilitates writing sequen-
tial or multithreaded programs that provably preserve intended safety properties
and that do not leak resources, even in the presence of failure, and that perform
safe cancellation of computations. To the best of our knowledge, it is the first
such extension of a Java-like language that combines low programming, perfor-
mance, and reasoning overhead, and that is compositional.

Future work includes gaining experience with our prototype implementation,
mainly to assess the applicability and the usability of the approach. We anticipate
the possible need to facilitate the placement of enter blocks, perhaps through
annotations on methods, classes, or packages, or through some inference scheme.
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Other work includes applying the failboxes idea to the problem of exception
handling in asynchronous and callback patterns.
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Are We Ready for a Safer Construction Environment?
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“Unfortunately, the mainstream languages C# and Java give access to the
object being constructed (through this) while construction is ongoing.”

Fähndrich and Leino [12]

Abstract. The semantics of many OO languages dictates that the constructor of
a derived class is a refining extension of one of the base classs constructors. As
this base constructor runs, it may invoke dynamically bound methods which are
overridden in the derived class. These invocations receive an “half baked object”,
i.e., an object whose derived class portion is uninitialized. Such a situation may
lead to confusing semantics and to hidden coupling between the base and the de-
rived. Dynamic binding within constructors also makes it difficult to enhance the
programming language with advanced mechanisms for expressing design intent,
such as non-null annotation (denoting reference values which can never be null),
read-only annotation for fields and variables (expressing the intention that these
cannot be modified after they are completely created) and class invariants (part
of the famous design by contract methodology). A read-only field for example
becomes immutable only after the creation of the enclosing object is complete.

We investigate the current programming practice in JAVA of calling dynami-
cally bound methods. In a data set comprising a dozen software collections with
over sixty thousand classes, we found that although the potential for such a situ-
ation is non-negligible (prevalence > 8%), i.e., there are many constructors that
make calls to methods which may be overridden in derived classes, actual such
dynamic binding is scarce, found in less than 1.5% of all constructors, inheriting
from less than 0.5% of all constructors. Further, we find that over 80% of these
incidents fall into eight “patterns”, which can be relatively easily transformed into
equivalent code which refrains from premature method invocation.

A similar predicament occurs when a constructor exposes the self identity to
external code, which then invokes methods overridden in the derived class. Our
estimate on the prevalence of this exposition is less accurate due to the complex-
ity of interprocedural dataflow analysis. Although the estimate is high, there are
indications that it arises from a relatively small number of base constructors.

1 Introduction

Women who have given birth can testify that the process is not infinitesimally short.
Objects are no different than babies in this respect: it takes time to mature a raw memory
block into a live object, and during that time computation may occur.

Consider a class D which inherits from a class B. Then, in most OO languages the
construction of a D-object is what we call a refinement of the construction of a B object,
in that the body of any constructor of D is executed only after an explicit or implicit

,
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invocation of one of the constructors of B. 1 What is the status of the D object in the
course of this invocation? On one hand, this object cannot be thought of as a mature,
ordinary object of class D, since D’s constructor was not invoked yet. On the other
hand, thinking of the object as an instance of class B, may lead to surprising results,
e.g., in the case that B is an abstract class. Concretely, suppose that B’s constructor
invokes a dynamically bound member function implemented in both B and D. The
dominating thesis, taken by languages such as JAVA [1] and C# [15], is that of dynamic
binding within constructors, i.e., D’s implementation is executed. The anti-thesis of
static binding, taken in languages such as C++ [26], dictates that B’s implementation
is executed.

This research sets its objective in understanding how such “half-baked” objects are
used in actual programs. Our research method is primarily empirical: Following the tra-
dition of works such as [5, 6, 2, 10] we apply static analysis techniques combined with
manual inspection to a large software data set. The interest in the study is raised by the
inherent limitations of both the dynamic- and the static- binding approaches. We briefly
describe here a synthesis of the approaches which addresses these limitations. But be-
fore this or any other new, competing proposal, can be considered, it must be evaluated
against the common programming practice which this research tries to discover.

1.1 The Static vs. the Dynamic Binding Semantics within Constructors

Object creation can be divided into three conceptual stages: (i) memory allocation,
(ii) preliminary field initialization, and (iii) establishing invariants. Allocation is often
automatic, especially in languages with memory management. Preliminary initializa-
tion also depends on the language model (vacuous in C++, as opposed to default zero
initialization in Java), and is not very interesting. What we are interested in here is the
final stage, that of establishing invariants, which often involves some computation. This
final stage is realized by the user-defined constructor. This section serves as a brief re-
minder of the distinction, in the context of constructors, between static- and dynamic-
binding semantics and its consequences.

Somewhat paradoxically, the static binding approach of C++ may compromise static
type safety, as demonstrated in Fig. 1. In the figure, we see an abstract class Shape

containing an abstract (“pure virtual” in the C++ jargon) function draw (Line 2) which
is then realized (Line 7) in the inheriting concrete class Circle. Instantiating Circle here
results in a runtime error: Circle’s constructor implicitly invokes the default constructor
of Shape, which in turn, as a consequence of the static binding semantics of C++, invokes
the pure virtual function Shape::draw.2 Clever compilers (GCC [25] is a case in point)
may detect and warn the programmer against this particular case in which the call to a
pure virtual function from within the constructor is so obvious. The general case, which
may involve a chain of aliases and virtual function calls is intractable [13].

1 It could be the case that this constructor of B invokes yet another constructor of B, which may
invoke yet another constructor B, or of a parent of B, in which case we say that the constructor
of D refines all of these constructors.

2 More precisely, the C++ semantics attributes this error to the attempt to dynamically invoke
a pure virtual function, rather than to the fact that this function has no body; for various rea-
sons, C++ allows defining pure-virtual functions with body, but the runtime error would have
occurred even if Shape::draw had body!
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The difficulty with this approach is that with modern software architectures, the pre-
defined state, i.e., null in all reference fields, 0 in numerical fields, etc., is too degenerate
to be useful. In our little example, it is not clear that a circle can be drawn before the
constructor of this class has set crucial data such as location and radius. More generally,
this predefined state contradicts non-null promises, final guarantees, etc.

Dynamic binding in
1 class Shape { public: Shape() { draw(); }
2 public: virtual void draw() = 0;
3 };

5 class Circle: public Shape {
6 public: Circle() { cout << "Circle::Circle()\n";}
7 public: void draw() { cout << "Circle::draw()\n";
}

8 };

Fig. 1. Pure virtual function call in C++

constructors means that
methods may be called
prematurely. When this
happens, methods are re-
stricted since they can-
not rely on any of the
fields of the derived class
for being properly ini-
tialized, and in general should be ready to deal with an object whose invariant was not
fully established. The working of the constructor is complicated by its coupling with
dynamically bound methods. The fact that the constructor is a method called precisely
once for each object, whereas other methods may be invoked any number of times may
add to the complexity.

Fig. 2 demonstrates the confusing situation of a prematurely called method in ac-
tual industrial code. In the figure we see (parts of) class Compiler, drawn from package
org.eclipse.jdt.internal.compiler of the Eclipse JDT. Note that the last statement of
the constructor of this class, calls function initializeParser, which as its name indi-
cates, is in charge of initializing instance variable parser.

1 public class Compiler {
2 public Parser parser;
3 public void initializeParser() {
4 this.parser = . . .;
5 }
6 public Compiler( . . . constructor’s arguments omitted for brevity . . . ) {
7 // create a problem handler given a handling policy
8 this.options = new CompilerOptions(settings);
9 // . . .

10 initializeParser(); // call to a non−final function
11 }
12 }

Fig. 2. A base class invoking a polymorphic function

The C++ design choice of static binding semantics within constructors is probably
due to the language defines no default initial value of data members. In languages with
such a default value, the dynamic binding approach makes sense: an object is in some
defined state even prior to actual invocation of the construction. The JAVA equivalent of
Fig. 1 behaves as follows when an instance of Circle is created: first the constructor of
Shape is invoked, which then invokes the Circle’s version of draw; then the constructor
of Circle is completed.

Consider now the implementation of the derived class CodeSnippetCompiler, as de-
picted in Fig. 3. We see in the figure (lines 3–6) that this class overrides function
initilializeParser, specializing the parser field with a parser suitable for parsing code
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1 public class CodeSnippetCompiler extends Compiler {
2 public void initializeParser() {
3 this.parser = new CodeSnippetParser(
4 this.problemReporter, this.evaluationContext,
5 this.options.parseLiteralExpressionsAsConstants,
6 this.codeSnippetStart, this.codeSnippetEnd);
7 }
8 EvaluationContext evaluationContext;
9 int codeSnippetStart, codeSnippetEnd;

11 public CodeSnippetCompiler( . . . initial arguments omitted for brevity . . .
12 EvaluationContext evaluationContext,
13 int codeSnippetStart, int codeSnippetEnd
14 ) {
15 super(environment, policy, settings, requestor, problemFactory);
16 this.parser = new CodeSnippetParser(
17 this.problemReporter, evaluationContext,
18 this.options.parseLiteralExpressionsAsConstants,
19 codeSnippetStart, codeSnippetEnd);
20 this.parseThreshold = 1;
21 }
22 }

Fig. 3. A derived class overriding a function called from the base constructor

function cannot complete its mission correctly, since the three data members it relies
on belong to the derived class and could not have been initialized yet.

In fact, we see that the constructor of CodeSnippetCompiler repeats (lines 16–19) the
body of function initializeParser (that is lines 3–6), immediately after the call to the
refined constructor. The fact that the constructor of CodeSnippetCompiler forgets to ini-
tialize the three said data members, even though it receives the values for these from its
arguments is probably an indication that the code was corrected after it was discovered
that the language does not support the design behind Compiler.

The “bad smell” code in figures 2 and other bugs (e.g., a call to an abstract function to
retrieve a member value—omitted from this excerpt) we found in our study show that
the dynamic binding is confusing. The fact that JAVA forbids making a call to a member
function when refining a base constructor or in delegating to another constructor of the
same class3 is also an indication that a call to an overridden function was not intended
to be allowed.

But, beyond the confusing semantics, and arguably more importantly, the dynamic
binding approach makes it difficult to introduce notions such as non-null [12, 6, 20],
immutability (e.g.,JAVARI [3, 28] and JAC [18]) and class invariant [22, 19] guaran-
tees into the language. Such guarantees are typically achieved by the constructor. But,

3 that is, the code class D extends B { D() {super(f()); }} is illegal if f is a function mem-
ber of either B or D

.

snippets. Three data members are passed to the constructor of of CodeSnippetParser in
the overridden version initilializeParser. These are: evaluationContext, codeSnippetStart
and codeSnippetEnd (defined in lines 8–9).

The constructor of this class starts by calling the base constructor in Line 15. This
refined base constructor calls the overridden version of initializeParser(), but this
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1.2 Hardhat Constructors and Destructors

Problems of this sort may occur not only when the constructor calls, directly or indi-
rectly, methods overridden in the derived class. It could also be the case that the con-
structor reveals this to code external to the class, either by passing it as a parameter to
an external function, or by storing it in an externally accessible field, making it possible
to invoke overridden methods before construction is complete. Detecting cases of this
sort could be difficult, especially in a multithreaded execution environment.

A similar problem occurs in C++ which imposes a refining semantics on destructors:
a class destructor implicitly invokes the destructor of the parent class after its body
completed execution. Runtime errors due to a call to a pure virtual function may thus
occur in the course of a destructor’s execution. The situation is exacerbated by the fact
that destructors are typically called implicitly, e.g., as part of stack unrolling due to
exception handling.

A natural and appealing resolution of the dilemma in choosing between the static and
dynamic approaches is in a synthesis which forbids the processes of object creation and
destruction from making any computation in which there is a difference between the
two binding semantics. (An interesting alternative is offered by EIFFEL [16] in which
the creation of a derived class does not involve a creation of a subobject of the base
class.) We propose a language model enforcing constructors and destructors in which
no polymorphic calls could be made, what we call hardhat execution. Thus, in this
model, the premature call to draw in Fig. 1 is simply signalled by the compiler. The
advantages should be clear:

1. Type Safety. The hardhat semantics avoids the type safety problem of the static
binding approach.

2. Reduced Coupling with Base Classes. A method defined in a class D can be certain
that it receives a D object (more precisely, an object for which a constructor of D
has at least begun its operation, or that the destructor of D has not finished its
execution.). This reduces and simplifies the dynamic binding’s typical coupling
between the class and its base, and makes the analysis of multithreaded programs a
bit easier.

3. Crisp Boundary Between Initialization and Use. Hardhat constructors are consis-
tent with the OO thinking by which objects are created and only then used. The
predicaments of a prematurely called method are avoided: a method should not be
aware of the fact that it may be called from a constructor of a base class, and the
analysis of multithreaded programs become

4. Simplified Language Extensions. With hardhat constructors the introduction of non-
nullity, immutability and invariant statement is simplified. (The problem in intro-
ducing these is not completely solved, since one still has to address the problem of
a method being called from a constructor of the class itself).

the possibility of methods being executed before the constructor even begun, makes
it impossible to rely on these guarantees. This is the reason that much of this work
introduces non-standard types and annotations to deal with half-baked objects, e.g.,
Fähndrich and Leino introduce [Raw] methods types [12] and Zibin and colleagues
@AssignsFields annotations [30].
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A constructor is hardhat if it is both monomorphic (that is, it does not make any
chain of of this method calls which raises the binding question) and modest
(that is, it does not expose the this reference by storing it in a variable or
passing it as an explicit parameter).

The auxiliary notions of monomorphism and modesty are explained in greater detail
below, but the intuition should be clear: The examples set in Fig. 1 and in Fig. 2 and
Fig. 3 demonstrate cases of polymorphic behavior during construction. To see why we
would like constructors to be “modest”, consider for example the standard JAVA class
Thread, depicted in part in Fig. 4.

1 public class Thread {
2 public Thread() {
3 init(null, null, "Thread-" + nextThreadNum(), 0);
4 }
5 private void init(ThreadGroup g, Runnable t, String n, long s) {
6 // . . .
7 setPriority(priority);
8 // . . .
9 }

10 public final void setPriority(int newPriority) {
11 checkAccess();
12 // . . .
13 }
14 public final void checkAccess() {
15 SecurityManager security = System.getSecurityManager();
16 if (security != null)
17 security.checkAccess(this);
18 // . . .
19 }
20 // . . .
21 }

Fig. 4. A constructor revealing a self reference

The no-arguments constructor invokes function init, which invokes setPriority which
then invokes function checkAccess. This calls’ chain poses no polymorphic construction
risk, since all functions in the chain are either final or private. But, further inspection
may be more difficult, since the runtime type of variable security is unknown: function
checkAccess() delegates (Line 17) part of its mission to an external class through the
security.checkAccess(this) call. The implementation of checkAccess in class SecurityManager
may choose to invoke methods on the passed parameter. If the invoked methods are
overridden in descendants of Thread, then they these may be surprised to find that their
receiver is an incomplete object.

This paper is concerned mostly with the cost to be paid in introducing hardhat con-
structors into languages such as JAVA. Towards this end, we try to estimate the preva-
lence of constructors which deviate from the hardhat model in existing code, and to
characterize the use of dynamic binding within constructors.

Our search for transgressing constructors in actual code relies on the following defi-
nition of hardhat execution:

To make constructors hardhat, we need to make a concrete language definition for-
bidding both polymorphic calls and identity exposition from within construction. There
is a variety of ways in which such concretization can be made: A naı̈ve, and probably
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A1 “The reference this can only be used for accessing fields and calling anonymous
methods of the current instance.”

A2 “Anonymity declarations must be preserved when overriding methods.”
A3 “The constructor called from an anonymous constructor must be anonymous as

well.”
A4 “Native methods must not be declared anonymous.”

An amalgam of the two extremes is in e.g., introducing of a new method tag init (which
could be realized as an annotation for example) which is to be used for a complete sep-
aration of the construction process from the invocation of methods on a constructed
object. The requirements are then that (i) init methods are called only by construc-
tors and other init methods; (ii) constructors and init cannot call non-init methods;
(iii) init methods cannot be overridden; and (iv) init are anonymous in the Bokowski-
Vitek sense. Or, one may also consider replacing requirement (iii) by the demand that
init methods “semi-static methods” (sometimes called raw in the literature), i.e., meth-
ods which are bound dynamically yet are not allowed to access neither this nor any
non-static fields or methods. (Obviously, in languages with destructors, there should
also be methods tagged as destruct, with similar requirements. But, for simplicity, we
shall henceforth concentrate in constructors.)

There is also an alternative perspective in which constraints are placed only on con-
structors which are invoked by constructors of a derived class; this requires a mecha-
nism for denoting a constructor as “final”, meaning that it cannot be refined in derived
classes. The language design space is further enriched by the many other variants for
providing the means that the self reference is not aliased: Bokowski and Vitek alone
enumerate and compare six different methods of alias control, and the body of liter-
ature on aliasing and ownership (see e.g., a dedicated journal issue [23] or a survey
in [29]) is still increasing at a staggering rate.

1.3 This Research

The evolution of programming language constructs tends to follow a three stage life
cycle: (a) intuitive understanding, (b) language legalese and (c) formalization. This re-
search begins from the premise that such concrete language definitions and placement
of restrictions on software designers require better understanding of how “half-baked”
objects are actually used in practice; our primary focus is on this study. Issues of the
actual language definition, and careful weighing of the relative merits of alternatives
sketched above and their formalization are left to future work.

This choice of ours is guided by our belief that greater care should be exercised before
introducing language constructs preventing self-aliasing in all constructors for example,
than in adding e.g., confined types which do not pertain to all code.

too restrictive, approach is to disallow any function calls from within constructors. A
more permissive alternative is to allow constructors to invoke only final methods which
are also anonymous, where anonymous methods are defined by Bokowski and Vitek’s
constraints [4]:
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help to evaluate the price of placing the hardhat requirement in a new language on the
customers..

Experiments were run in a software corpus comprising circa 75,000 JAVA user de-
fined types featuring some 85,000 class constructors assembled from a dozen different
collections drawn from a variety of application domains. Two principal kinds of mea-
sures are reported: First, our estimates on the number of cases of use of polymorphism
and immodesty should help in appreciation of the penalty designers have to pay if safe
constructors become in effect. A second kind of measure, should be indicative of the
amount of work required to correct and eliminate such unsafe behavior from the code.

It is difficult in general to define the relative size of a code fragment in which a certain
phenomena occurs. Cabral and Marques [5] relied on line counts for measuring the
relative code size dedicated to exception handling. Unfortunately, such a number may
be dependent on formatting style—the relative increase in line count due to a decision
to locate curly brackets on a separate line is not the same in small and large counts.
A better measure could be the number of tokens, but this number is still influenced
by style. More stable is the number of classes, functions and constructors; fortunately,
unlike the problem that Cabral and Marques [5] faced, this measure is suitable for our
case. This is the reason that our estimates of “unsafe” behavior are both class- and
constructor- based. We believe that both may be useful, and may be used together in
appreciating the tendency of unsafe constructors to accumulate in the same class.

Our investigation here concentrates on the occurrence of polymorphic behavior in
constructors. Nevertheless, we report quantitative data of immodest behavior in con-
structors and classes. As it turns out, our conservative estimates of the prevalence of
these are high, which made the task of manual analysis of these more difficult.
Outline. The remainder of this article is organized as follows: Sec. 2 describes the soft-
ware corpus used in our study. Sec. 3 presents our results on the prevalence of polymor-
phic behavior in constructors, while Sec. 4 describes the results of our manual analysis
of a large portion of these cases. Our finding on immodest constructors is presented in
Sec. 5. Sec. 6 concludes.

2 The Software Corpus

The software corpus used in our empirical study was assembled from the union of
collections used in the empirical study of Chalin and James [6] and that of Gil and
Maman [14]. We decided however to eliminate the SoenEA project from the ensemble
of Chalin and James in the interest of reproducibility—an official web page describing
the project could not be found. The impacts of this omission should be negligible since
this collection is relatively small (52 classes).

Accordingly, two hypotheses were initially set out for examination: (i) constructors
which are not hardhat in actual code are rarities, and (ii) most of these can be easily
made safe. Verification of the first conjecture should make the notion of hardhat con-
structors a candidate worthy of inclusion in new languages. Verification of the second
should help encourage changes in the semantics of current programming languages. Al-
ternatively, the understanding of actual use of non-hardhat constructors in code should
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Chalin and James [6], although, in contrast with their work which examined just the JDT
core, circa 1130 classes, we used the entire Eclipse implementation); Poseidon 2.5.1
community edition 7 (sources of were not available, binaries were apparently obfuscated
by an automatic tool); Tomcat 5.0.28 8; Scala 1.3.0.4 Just like Poseidon, sources of the
SCALA [24] distribution were largely unavailable, but this is because the compiler itself
is written in SCALA; JML 5.5 (a set of software tools used for the implementation of the
JAVA Modeling Language [19]); ANT 1.6.29; MJC 1.3 (MultiJAVA is a JAVA language
extension [7] which adds open classes and symmetric multiple dispatch to the language;
MJC is multiJAVA the compiler); JEdit 4.2; ESC 2.0b2 (the Extended Static Checker
programming tool that tries to check some of JML assertions through static analysis);
and Koa 10 (the Koa Tallying subsystem is a Dutch Internet voting application).

Tab. 2 summarizes the size properties of the software collections comprising our cor-
pus. Overall, we have more than 75,000 user defined types organized in some 3,500
packages. We also see that the total number of constructors is greater than 85,000 and
that there are a total of more than 66,000 classes.

Examining the table
Collection Packages Types Classes Interfaces Constructors Avg. No. of

Constructors

JBOSS 997 18,697 15,786 2,911 22,089 1.40
JRE 740 16,816 14,603 2,034 20,388 1.39
ECLIPSE 587 16,049 14,232 1,817 15,840 1.11
POSEIDON 593 10,045 8,686 1,359 11,078 1.28
TOMCAT 280 4,335 3,756 579 5,198 1.38
SCALA 96 3,379 2,754 625 3,144 1.14
JML 67 2,316 2,127 189 2,938 1.38
ANT 120 1,968 1,611 357 2,015 1.25
MJC 41 1,140 1,025 115 1,436 1.40
JEDIT 23 805 776 29 895 1.15
ESC 35 643 632 11 713 1.13
KOA 2 37 36 1 38 1.06
Total 3,581 76,230 66,024 10,027 85,772 1.30
Median 108 2,847 2,440 468 3,041 1.26

we see that the software
collections vary in size:
the largest collection is
JBoss with close to 16,000
classes, while the small-
est has less than forty
(the median size is 3,000
classes). We can also see
that the majority of the
code in our corpus is drawn
from three large collec-
tions: JRE, JBoss and Eclipse, which are of relatively the same size. The other collec-
tions are smaller.

7 http://www.gentleware.com
8 http://jakarta.apache.org
9 http://ant.apache.org

10 http://sort.ucd.ie

Overall, the corpus comprises twelve collections of JAVA code, all of which are freely
available on the web at least in binary form: JRE 1.6.0 01 4 (used in almost all empirical
studies of JAVA, e.g., [14, 8, 21, 2]); although naturally, each such experiment uses a
different version of the library); JBoss 3.2.6 5 (circa 1,000 packages of sources were
not available); Eclipse 3.0.1 6 (note that Eclipse was used in the empirical study of

4 http://download.java.net/jdk6
5 http://www.jboss.org
6 http://www.eclipse.org

The constructor count was produced by a binary analysis of the bytecode representa-
tion of the software. (In general, all automatic analysis reported in this work was done
on this representation. We turned to the source for manual inspection as necessary and
as described below.) In this representation, with the exception of interfaces, all classes

Table 1. Size statistics of the twelve collections in the corpus
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Tab. 2 shows how many base classes and how many “base constructors” were found
in the collections in the software corpus. That is to say, counts of the actual number of
classes that have subclasses in each of the collections, and the number of constructors
in those classes.

The three column groups
Internal External Total

Collection Classes Ctor’s Classes Ctor’s Classes Ctor’s

JBOSS 1, 809 2, 857 180 469 1, 989 3, 326
JRE 2, 212 3, 583 0 0 2, 212 3, 583
ECLIPSE 1, 537 1, 952 61 143 1, 598 2, 095
POSEIDON 1, 140 1, 714 308 689 1, 448 2, 403
TOMCAT 543 819 71 185 614 1, 004
SCALA 350 428 81 251 431 679
JML 391 578 70 211 461 789
ANT 230 328 39 102 269 430
MJC 149 233 63 195 212 428
JEDIT 41 66 71 223 112 289
ESC 106 126 31 91 137 217
KOA 2 2 13 39 15 41
Total 8, 510 12, 686 988 2, 598 9, 498 15, 284
Median 370.5 503 66.5 190 446 734

in the table demonstrate an
interesting experimental dif-
ficulty, raised in its full grav-
ity by this study. As might
be expected, other than the
JRE, software collections are
not self contained: inevitably,
there are classes in each such
collection which inherit from
classes found in other libraries
(most often the JRE). The in-

teraction between constructors of base classes found in one library with constructors of
derived classes found in another library may makes reasoning a bit more difficult.

As suggested by the table, our analysis considers also “external base classes”. In most
collections, the majority of base classes are internal. In JEDIT and in KOA however,
most base classes are external: JEDIT is a typical GUI application, with many of its
classes inheriting from the GUI classes of the JRE. KOA also relies on GUI and XML
processing services of the JRE, inheriting from the appropriate classes. We see that in
JEDIT the number of external bases is disproportionally large; in KOA, the number of
external base constructors is much greater than internal base constructors. This however
does not happen in other collections, and the relative number of external constructors
and external bases is typically small, with median and median value of the relative
number of external bases, both constructors and classes, is in the 1%–3% range.

It is a fundamental property of JAVA that every non-final class (with at least one
non-private constructor) may be subclassed. It is also fundamental that every such con-
structor may be refined. But, how many classes are subclassed in practice? How many
constructors are actually refined? Theoretically, the minimal number of classes with no
descendants and unrefined constructors is one. In practice, it can be inferred from Tab. 2

have at least one constructor, since a default, no-arguments constructor is generated by
the compiler for every class that has no programmer defined constructors.

Note that the number of constructors is close to the number of classes, but the num-
bers are not the same: a class has on average 1.3 constructors. This does not necessarily
mean that the relative number of constructors in which half-baked objects are used is
the same as the relative number of classes in which such objects are used.

As reported previously [14], there are inevitably duplications in the corpus: certain
classes occur more than once in the different collections. These repetitions are often
due to different versions of the same software base. There were even a few cases in
which the same class occurred more than once in the same collections. Nevertheless,
repetitions were not too frequent (less than 10%) and since we are trying to determine
the prevalence of a rather rare phenomena, the error in not eliminating these is small.

2. Base classes and constructors in the corpusTable
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considered, the average is still high: 1.49. If all bases, internal and external, are consid-
ered together, then the average is 1.61. We conjecture that this phenomenon is explained
by two properties of JAVA software (a) most classes are not intended to serve as bases
(as argued above), and (b) classes with more constructors are more likely to serve as
bases.

Applying the standard χ2-test to compare the distribution of the number of construc-
tors in classes with no children, and classes with children, supports claim (b). The test
reveals a significant difference between the two distributions and that the fraction of
classes with two constructors or more is significantly (99.99% confidence level) higher
in classes which serve as bases.

3 Polymorphic Constructors

Having described the data set, we turn now to the description of the research method
and results. This section is devoted to the study of the prevalence of polymorphic con-
structors. We say that a constructor is polymorphic if it may execute differently due to
overriding, that is if there is a chain of method calls with this as the receiver, starting at
the constructor which leads to a call to an overridden method.

In the following section we explain how such polymorphic behavior may be elimi-
nated. We exclude from our attention here and in the next section cases in which the
call to an overridden method occurs as a result of assigning this to a variable or passing
it as a parameter, and then using this variable or parameter as a receiver. This kind of
non-hardhat behavior is the subject of Sec. 5.

3.1 Definitions

As explained above, the polymorphic behavior during the construction process occurs
while a derived constructor refines a base constructor. To capture the subtleties of this
interaction we distinguish between three kinds of “polymorphic” constructors:

The observation that even in large software collections most classes do not have de-
scendants, and the majority of constructors are not refined guided our analysis and we
have separate measurements of constructors with potentially for non-hardhat behavior
and constructors in which this potential is realized.

Comparing the total number of external base classes (988) with the total number of
constructors found in these classes (2,598), we find that the average number of con-
structors in these classes is 2.63, i.e., much greater that the 1.30 average over all classes
(as can be computed in Tab. 2). If only internal base classes and base constructors are

hat about 15% of internal constructors are constructors of base classes. The fraction of
base constructors increases to about one in five if “external constructors” are included.
Also, even if a collection is augmented with all bases, only about one in seven classes
serves as a base for other classes.

Polymorphic Pitfall Constructors. Recall that only one in seven classes have descen-
dants, and that the majority of constructors are not refined at all. There are therefore
many constructors that bear the potential for polymorphic behavior, but the polymor-
phic behavior may, or may not be manifested, depending on whether the enclosing class
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Polymorphic Falls Constructors. The definition of polymorphic constructors puts the
“blame” on the polymorphic behavior on the refined constructor, which by definition
must be a polymorphic pitfall. Still, even though the fault occurs at the refined con-
structor; the problem is manifested only when the refining constructor is invoked. We
therefore say that a constructor of a derived class is a polymorphic fall if it refines
a polymorphic pitfall constructor, in such a way that the refined constructor makes a
method call chain in which a message, which is bound to different methods in the base
and in the derived classes, is sent to this. Again, determining whether a constructor is
a polymorphic fall can be decided by inspecting its enclosing class and all its bases.

The constructor Shape::Shape() in Fig. 1 is not a polymorphic fall since it refines
no other constructors. In contrast, the no-arguments constructor of the derived class,
Circle::Circle() is a polymorphic fall since it refines the polymorphic constructor
Shape::Shape() which calls method draw whose implementations in the base Shape and
the derived Circle are different. The constructor of class CodeSnippetCompiler is likewise
a polymorphic fall.

The case of abstract classes is somewhat special in that even if a constructor of such
a class may demonstrate polymorphic behavior, we classify it as a pitfall, since this
polymorphic behavior can only be realized if this constructor is refined.

With the above two definitions, we can give an alternative characterization of poly-
moprhic constructors: A polymorphic constructor is a polymorphic pitfall constructor
for which we found one or more refining polymorphic fall constructors. Thus, the deci-
sion of whether a polymorphic fall constructor is indeed polymoprhic is relative to the
code base.

3.2 Method

Our analysis was carried out first on the binary representation of the code, using the
Java Tools Language (JTL) [9]—a declarative language for code analysis. JTL itself is
implemented on top of the Byte Code Engineering Library (BCEL)11, formerly known
as JavaClass—a toolkit for static analysis and dynamic creation or transformation of
JAVA class files. The analysis was then completed by manual inspection of the source.

The JTL code in Fig. 5 demonstrates how the search for polymorphic fall constructors
was conducted. The unary predicate polymorphic_fall_constructor_class matches all
classes which have a polymorphic fall constructor. A constructor of a base class which
makes a call to a non-final non-static function, will thus be included in our report each
time a derived class overrides this function.

11 http://jakarta.apache.org/bcel/index.html

has any derived classes, and whether any of these derived classes overrides any of the
potentially polymorphic methods invoked by the constructor.

We say that a constructor of a certain class is a polymorphic pitfall if it calls, directly
or indirectly, a method of its class and of an ancestor class which might be overridden
in a derived class, i.e., a method which is non-final, non-static and non-private. De-
termining whether a constructor is a polymorphic pitfall, does not require whole-world
analysis; only the class itself and its ancestors must be inspected. In the example of
Fig. 1, the constructor Shape::Shape() is a polymorphic pitfall.
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were found, i.e., the accuracy of the analysis in this collection is about 90%. In 259
such cases inspected manually in the Eclipse collection, only one such false positive
was found. We therefore estimate the accuracy of the algorithm as being at least 85%.

The JTL equivalent for finding polymorphic pitfalls is much simpler and is not pro-
vided here. Polymorphic classes were found by analyzing the report of constructor falls.

3.3 Findings

Tab. 3 shows the prevalence of polymorphic behavior in constructors in each of the
collections in the software corpus.

base class is invoked for other purposes. Similarly, in tracing the chain of internal calls
by predicates internal_call* and internal_call, no attempt is made to ensure that these
are invoked on the implicit this parameter.

The analysis represented by Fig. 5 may therefore flag false positives, but it will not
allow any polymorphic fall constructors to go undetected. In our manual inspection of
226 cases of polymorphic falls in constructors found in the JRE only 24 false positives

this parameter. The predicate, however, also captures cases in which a constructor of a

It is important to note that the search is conservative: predicate refines is supposed
to match cases in which a constructor relies on a constructor of a base class to create its

The third column of the table tells us that in total, a polymorphic fall occurred in
only 1,200 constructors, which constitute slightly less than 1.4% of the total of 85,772
constructors in the corpus. The variety among the different collections is not too large:
in some collections no polymorphic construction behavior was found at all, and the
maximum ratio of such constructors is 2.91%, achieved at JEDIT. The relatively high
rate at this collection is explained by its heavy reliance and inheritance from GUI classes
with polymorphic behavior.

In the second column of the table we see the number of constructors which caused
these falls. In total, there were 390 such bad constructors, which make 0.45% of all
constructors. The second column in the table also shows the fraction of polymorphic
constructors from base constructors only. With 1.64% median value, even this fraction
is small.

polymorphic_fall_constructor_class := !abstract class {
exists constructor refines* C and infringes C;

};

refines* C := refines C | refines C’ and C’ refines* C;

refines C := invokespecial C, C constructor and
declared_in T, C declared_in T’, T extends T’;

infringes C :=
declared_in T, C internal_call* M, M overridden_in T;

internal_call* M := internal_call M
| internal_call* M’, M’ internal_call M;

internal_call M := declared_in T, invoke M, M declared_in T;

overridden_in T := T declares M, M overrides #;

Fig. 5. A JTL query for finding classes with polymorphic fall constructors
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Comparing the second and the third column we see that on average, every polymor-
phic pitfall is responsible to about three polymorphic falls..

The fourth column of the table gives the numbers of constructors (internals and ex-
ternals combined) which are polymorphic pitfalls, that is may cause a polymorphic fall
by descendants. We see that the numbers in this column are much higher, with median
prevalence exceeding 8%.

Every polymorphic constructor is necessarily a polymorphic pitfall, so it is no wonder
that the numbers in the fourth column are greater than those reported in the second. But,
a striking conclusion can be drawn from comparing the relative values: the density of
polymorphic constructors within base constructors is invariably smaller than the density
of polymorphic pitfalls among all constructors. For example, in Eclipse, only about
4% of base constructors created a polymorphic fall, whereas more than 10% of all
constructors in this collection have a polymorphic pitfall.

The fact that actual polymorphic behavior is smaller than what might be expected by
the potential for it can be attributed to two, non-mutually exclusive, reasons:

1. Few Descendants Conjecture. Classes with polymorphic pitfall constructors are less
likely to be extended

2. Unrealized Potential Conjecture. Potentially polymorphic constructors do not re-
alize this potential in full during inheritance, because the potentially polymorphic
methods invoked from a constructor of the base are not always overridden.

An experiment or measurement to verify the second conjecture is not simple. Our
research continued to test the first explanation against the null hypothesis by which the
occurrence of potentially polymorphic behavior within constructors does not change
the probability of a class serving as a base.

Consider now Tab. 4 which is similar to Tab. 3 except that it revolves around classes
instead of constructors. That is, in Tab. 4 we report on the number of classes whose con-
structors can be categorized according to the three varieties of polymorphic behavior.

Collection Polymorphic

Constructors

Polymorphic Fall

Constructors

Polymorphic Pit-

fall Constructors

JBOSS 70 (2.10%) 140 (0.63%) 1,570 (7.11%)
JRE 120 (3.35%) 396 (1.94%) 1,314 (6.44%)
ECLIPSE 86 (4.11%) 302 (1.91%) 1,671 (10.55%)
POSEIDON 55 (2.29%) 209 (1.89%) 1,281 (11.56%)
TOMCAT 12 (1.20%) 32 (0.62%) 335 (6.44%)
SCALA 9 (1.33%) 37 (1.18%) 259 (8.24%)
JML 25 (3.17%) 35 (1.19%) 260 (8.85%)
ANT 5 (1.16%) 10 (0.50%) 148 (7.34%)
MJC 7 (1.64%) 13 (0.91%) 141 (9.82%)
JEDIT 1 (0.35%) 26 (2.91%) 107 (11.96%)
ESC 0 (0.00%) 0 (0.00%) 27 (3.79%)
KOA 0 (0.00%) 0 (0.00%) 3 (7.89%)
Total 390 (2.55%) 1,200 (1.40%) 7,116 (8.30%)
Median 9 (1.48%) 32 (1.04%) 259 (8.07%)

3 Absolute and relative prevalence of polymorphic behavior in constructors (conservative
analysis)
Table .
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A comparison of the totals line in tables 3 and 4 shows that the relative prevalence of
constructors and classes is quite similar. The prevalence of polymorphic, polymorphic
falls and polymorphic pitfalls constructors is (respectively) 2.55%, 1.40%, and 8.30%
whereas the corresponding numbers for classes in which this behavior is found are
3.07%, 1.41% and 8.83%. The similarity also occurs in the median line, and (to a lesser
extent) in each of the prevalence values.

The similarity is a bit suspicious, since, as observed above (Sec. 2), classes which
serve as bases tend to have more constructors. We should therefore have expected that
base classes would be more prone to have at least one polymorphic constructor.

To better understand the situation, we applied a statistical test to check whether
classes with polymorphic behavior in one of their constructors have the same number
of descendants as other classes.

1. Classes with polymorphic pitfalls constructors tend to have more descendants than
classes without such constructors.

2. Classes with polymorphic constructors have a greater number of descendants than
other base classes.

Both results were found to be statistically significant (with confidence level of at least
99%) by a variant of the of the Mann-Whitney test for comparing ordinal non-normally
distributed unpaired data sets. These findings indicate that the second conjecture is more
likely to be true: polymorphic pitfalls are not realized as often as they can be during
inheritance.

Note again that the number of classes with polymorphic constructors is presented in
the table as a fraction of the total number of base classes. The 292 such classes are
however only 0.44% of the total of 66,024 classes of our corpus and only 0.38% of the
76,230 types in the corpus.

Also take note that each base class with a polymorphic constructor is, on average,
“responsible” for three classes in which an actual polymorphic call occurs.

Collection Classes with Poly-

morphic Construc-

tors

Classes with Poly-

morphic Fall Con-

structors

Classes with Poly-

morphic Pitfall

Constructors

JBOSS 44 (2.21%) 122 (0.77%) 1,192 (7.55%)
JRE 89 (4.02%) 262 (1.79%) 968 (6.63%)
ECLIPSE 67 (4.19%) 265 (1.86%) 1,498 (10.53%)
POSEIDON 43 (2.97%) 155 (1.78%) 1,119 (12.88%)
TOMCAT 9 (1.47%) 27 (0.72%) 256 (6.82%)
SCALA 9 (2.09%) 24 (0.87%) 236 (8.57%)
JML 18 (3.90%) 32 (1.50%) 199 (9.36%)
ANT 5 (1.86%) 10 (0.62%) 105 (6.52%)
MJC 7 (3.30%) 13 (1.27%) 124 (12.10%)
JEDIT 1 (0.89%) 18 (2.32%) 103 (13.27%)
ESC 0 (0.00%) 0 (0.00%) 24 (3.80%)
KOA 0 (0.00%) 0 (0.00%) 3 (8.33%)
Total 292 (3.07%) 928 (1.41%) 5,827 (8.83%)
Median 9 (2.15%) 24 (1.07%) 199 (8.45%)

4. Prevalence of classes with polymorphic behavior in their constructors (conservative anal-
ysis)

Table
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– About 98.6% of all constructors in the corpus do not have a polymorphic fall; also,
about 98.6% of all classes do not have a polymorphic fall.
The complement of this ratio is indicative of the total amount of work required to
eliminate such falls.

– These polymorphic falls are caused by the 390 polymorphic constructors; 99.55%
of all constructors are monomorphic; the ratio of classes with such behavior is
similar.
The complement of this ratio is indicative of the number of distinct cases to be
considered if such falls are to be eliminated. On average each such case involves
three descendant classes and four refining constructors.

– About 8% of all constructors are a polymorphic pitfall, that is, pose a risk to have
descendants with polymorphic falls. Still, even though classes with polymorphic
pitfall constructors tend to have more descendants, the fall is not realized in all of
these descendants.

Recall that these conclusions are drawn based on a conservative code analyzer, whose
errors are only false reports on polymorphic behavior. The true results are probably
(slightly) better, in the sense that polymorphic behavior is scarcer than the above num-
bers indicate.

3.4 Summary

Our experimental findings in this corpus show that polymorphic constructors are rather
rare—the prevalence of this phenomena is between 1% and 2%, depending on how the
measurements are made. More precisely, we found that:

4 Patterns of Polymorphic Behavior in Constructors

In order to better understand the nature of polymorphic calls in the code base, we con-
ducted a detailed manual inspection of 485 cases of polymorphic failures. A case of
polymorphic failure is defined as a triple of (i) a constructor of a base class, (ii) a re-
fining constructor of a derived class, and (iii) a method called by the base constructor
with different implementation in the base and the derived class. 226 of these cases were
drawn from the JRE; the remaining 259 cases were taken from Eclipse.

4.1 Polymorphic Solutions Patterns

Our manual inspection of the said cases revealed that the polymorphic behavior dur-
ing construction appears in a relatively small number of patterns. We have identified
those patterns and created a group of solutions targeted at each pattern: CONSTANT
INITIALIZER, SEMI-CONSTANT INITIALIZER, INITIALIZER OBJECT, FUNCTION OB-
JECT, MULTIFUNCTION OBJECT, FACTORY and INLINE DATA.

Fig. 6 depicts the relationship between these patterns. An arrow from one such pattern
to another indicates that the former generalizes the latter.

The most general pattern is MULTIFUNCTION OBJECT, while the most specific one is
CONSTANT INITIALIZER. Patterns FUNCTION OBJECT and INITIALIZER OBJECT both
generalize NON-CONSTANT INITIALIZER, while MULTIFUNCTION OBJECT general-
izes and unifies the behavior both. FACTORY and INLINE DATA are isolates in the sense
that they do not generalize, nor are being generalized by, any of the other patterns.
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1. CONSTANT INITIALIZER: the most common type of virtual methods called in-
side a constructor are methods that return a constant value, or a static field, that
is known in the subclass only, and needed by the superclass. Examples for this
type of behavior may be found in some of the large inheritance star shaped topolo-
gies such as those rooted by JRE’s com.sun.jmx.snmp.Enumerated and
com.sun.org.apache.xml.internal.security.utils.ElementProxy
and Eclipse’s org.eclipse.jdt.core.dom.ASTNode.
These virtual calls may be avoided by adding a parameter to the super constructor
and passing the constant value or static data member in the call to super(...).

2. SEMI-CONSTANT INITIALIZER: similarly to the previous case, a no-argument method
invoked from a superclass constructor may return different newly created objects,
depending on the subclass implementation. The overriding methods in each subtype
contain a single new statement to create and return a new object of a type specific
for each subclass. Furthermore, the constructor invocation uses no receiver fields.
An alternative for this is implemented as done for the CONSTANT INITIALIZER, by
making the new SomeField(...) expression a parameter of the super() call.

3. NON-CONSTANT INITIALIZER: a more general case requires the subclass to per-
form computation on its constructor arguments or static data members. As in the
previous case, this is performed inside the overridden method, resulting in a value
used for the superclass constructor.
Such polymorphism can be resolved as in the previous pattern: the computation
itself can be written as an argument in the call to super(...), thus passing the com-
puted value from the subclass to the superclass as a constructor parameter.

Fig. 6. Design patterns for devirtualization constructors
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JECT. The MUTLIFUNCTION-FUNCTION OBJECT is different than the FUNCTION
OBJECT because it externalizes more than just a single component initialization
method, and thus may be used for the setting of all the superclass’s data mem-
bers, as done by the INITIALIZER OBJECT for the simpler data members (which are
independent of other date members).

7. FACTORY: this solution is required when the construction process of the object
may conceptually be divided into two phases. The Factory is an auxiliary wrapper
class, which is responsible of creating and initializing objects of the superclass or
the subclasses types, without the need for their constructors to be public. Having
the construction wrapped by the Factory allows for the removal of polymorphic
initialization methods from the base constructor, as the Factory itself will handle
the second phase of the initialization.

8. INLINE DELTA: a derived class may refine a method invoked from its base class
for the purpose of adding on to the superclass functionality with initialization of
the derived class’s own data members. This implies that the fields of the subclass
are set during superclass construction, rather than during the construction of the
derived class itself. This case follows a pattern of an overriding method starting
by invoking the superclass’s version, and then adding a delta of subclass-specific
initialization. The solution for this type of polymorphic call is simply to inline the
section regarding the subclass into the subclass constructor, and thus avoid overrid-
ing the base class version of it.

An alternative is passing an INITIALIZER OBJECT as the super(...) parameter.
This object will be used to pass the setting values of multiple superclass fields.
Additionally, when creating the INITIALIZER OBJECT, its constructor may perform
any type of calculation on the values to be set in the superclass fields. In this manner,
any subclass may define an INITIALIZER OBJECT to meet its own needs, and use it
to set any number of fields in the superclass.

5. FUNCTION OBJECT: further generalization of the INITIALIZER OBJECT is targeted
at the setting of superclass data members that are composite components, and are
dependent on other data members. As a result, the computation of a dependent data
member needs to be delayed till the other data members are set.
This may be done using the FUNCTION OBJECT micro pattern [14]: the subclass
would call for super(...) with a new FUNCTION OBJECT. The creation of the Func-
tion Object may set some values from the subclass, that would be used for the su-
perclass data member computation. The superclass constructor will start by setting
independent data members. Next, it will invoke the main method of the FUNCTION
OBJECT, pass all the needed data members, and received the value of the composite
component as the return value of the FUNCTION OBJECT method.

6. MULTIFUNCTION OBJECT: finally, a combination of the INITIALIZER OBJECT
and the FUNCTION OBJECT can be implemented using a MULTIFUNCTION OB-

4. INITIALIZER OBJECT: the ability to write a computation as a function argument to
the super(...) call is limited to relatively short and simple expressions. Addition-
ally, passing a large number of parameters to the super(...) call may be inconve-
nient for the programmer.
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was found in 21.78% of the JRE cases, but only 10.85% of the Eclipse cases. The rest
of the patterns are less prevalent, and used to resolve a smaller number of specific cases.

Tab. 5 also includes some cases where the techniques described above were not ap-
plied:

1. A “code rewrite” solution applies for cases where the super constructor invokes a
public method that is part of the class interface. In such cases, the derived class
overrides the original implementation, but in fact, when invoked through the con-
structor of the base class, only the original implementation is executed. For exam-
ple, take class JDialog from the JRE’s javax.swing package. Its method setLayout()

is invoked (indirectly) through the constructor of class Window (from java.awt pack-
age). The implementation of the overridden version of setLayout() is depicted in
Fig. 7. This implementation queries a boolean data member in Line 9. This boolean

1 class JDialog {
2 protected boolean rootPaneCheckingEnabled = false;

4 protected boolean isRootPaneCheckingEnabled() {
5 return rootPaneCheckingEnabled;
6 }

8 public void setLayout(LayoutManager manager) {
9 if(isRootPaneCheckingEnabled())

10 getContentPane().setLayout(manager);
11 else
12 super.setLayout(manager);
13 }
14 }

Fig. 7. Overriding setLayout() in JDialog

is initialized to false, and is set only through the constructor of JDialog. As a result,
when JDialog::setLayout() is invoked through the super constructor, the value of

Collection JRE Eclipse Total

Constant-initializer 82 (40.59%) 110 (42.64%) 192 (41.74%)
Function-object 44 (21.78%) 28 (10.85%) 72 (15.65%)
Inline-delta 19 (9.41%) 59 (22.87%) 78 (16.96%)
Native 14 (6.93%) 0 (0.00%) 14 (3.04%)
Unresolved 14 (6.93%) 23 (8.91%) 37 (8.04%)
Non-constant-initializer 9 (4.46%) 5 (1.94%) 14 (3.04%)
Code-rewrite 9 (4.46%) 1 (0.39%) 10 (2.17%)
Semi-constant-initializer 5 (2.48%) 13 (5.04%) 18 (3.91%)
Redundant 5 (2.48%) 8 (3.10%) 13 (2.83%)
Multi-function-object 1 (0.50%) 1 (0.39%) 2 (0.43%)
Initializer-object 0 (0.00%) 5 (1.94%) 5 (1.09%)
Factory 0 (0.00%) 5 (1.94%) 5 (1.09%)

5. Applying the devirtualization design patterns on JRE and Eclipse

Tab. 5 depicts the prevalence of the various patterns found in our manual inspection.
The most common pattern is also the simplest— CONSTANT INITIALIZER, appearing

in over 40% of the cases in both JRE and Eclipse. The next most common pattern is the
FUNCTION OBJECT, which allows for a delayed execution of computation inside the
base constructor through an object that was passed by the derived class. This pattern

Table
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5 Immodest Constructors

Coding and maintenance is complicated when a constructor refines a polymorphic con-
structor, since in such a class methods may be executed before any of its own con-
structors started executing. Our search for polymorphic behavior during construction in
Sec. 3 was restricted to chains of direct message sends to the created object. But, such
half-baked objects can also be encountered through aliasing—an exposed reference can
be used to invoke dynamically bound methods on a half-baked object.

This section describes the results of our search for constructors which expose the
this-identity, what we call immodest constructors.

5.1 Definitions

Sec. 3.1 defined three varieties of polymorphic behavior during construction. The three
kinds of exposition defined are similar in nature.

Immodesty Pitfall Constructors. We say that a constructor is an immodesty pitfall if
it exposes the this identity, by assigning it into a variable, which may be accessed by
external code or serve as a target of an internal method, or by passing it as a parameter
to external code.

Immodest Fall Constructors. We say that a constructor is an immodest fall if it refines
a an immodesty pitfall constructor, and overrides a method defined by the class of the
pitfall constructor.

Immodest Constructors. A constructor is immodest if (i) it is an immodesty pitfall
constructor and (ii) it is a refined by an immodest fall constructor.

Consider for example the JAVA class Frame depicted in Fig. 8 (drawn from the java.awt

package). Then, both constructors of this class are immodesty pitfalls: The first since

the boolean data member will always be false, and so only the super version of
setLayout() is executed (Line 12).
The suggested code rewrite solution is done on the base class Window. An alter-
native to the invocation of setLayout() from the constructor of Window would be
to use a private method which contains the complete implementation of the orig-
inal setLayout(). Then, this private method may be invoked from both the public
setLayout() and from the constructor of Window.

2. A “native” case describes a case where the base class invokes an abstract method
whose implementation in a derived class is declared native. Since in these cases we
have no access to the native code, we could not analyze it. This case was encoun-
tered only in JRE and appeared in nine concrete subclasses of WComponentPeer
in sun.awt package (where the method create() is native), and in the superclass of
WCustomCursor from the same package (by invoking createNativeCursor()).

3. The “unresolved” cases are those where the overriding methods contains a complex
series of actions that are also very different than the original base implementation.
We marked 6.9% of the falls identified for JRE as “unresolved”, and less than 9%
in Eclipse.
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immodest falls since they necessarily refine one of Frame’s constructors which exposes
the this identity. If however, the said subclass overrides init, then all of its construc-
tors are by definition polymorphic falls (which would also make Frame’s constructors
polymorphic).

Note that the above reasoning also shows that there are constructors which are both
polymorphic and immodest. Since the overlap was small, we chose to categorize all
such cases as being polymorphic.

5.2 Method

What is known in the JTL jargon as pedestrian patterns were used to identify cases
in which constructors invoke, directly or indirectly, polymorphic member functions.
A more sophisticated analysis involving dataflow analysis (using scratches as they are
called in JTL), was used to identify cases in which constructors allow external code, i.e.,
code which is not part of the ancestors chain of a class, to access a half-baked object.

Our conservative search for incidents of immodesty used inexact yet conservative in-
terprocedural analysis starting at the base constructor and exact intraprocedural dataflow
analysis. The analysis was complemented by a laborious manual inspection of the vio-
lating code.

5.3 Findings

Tab. 6 shows the prevalence of immodest behavior in constructors in each of the collec-
tions in the software corpus.

Examining the second column of the table we see that there is a great variance in
the prevalence of immodest constructors, ranging from 0% to 9%; even the median
(2.42%) is very different from the average prevalence (5.94%). Comparing this average
with the average prevalence of polymorphic constructors (2.55% see Tab. 3) we see that
there are more than twice as many immodest constructors than there are polymorphic
constructors.

1 public class Frame {
2 public void init(String title, GraphicsConfiguration gc) {
3 this.title = title;
4 SunToolkit.checkAndSetPolicy(this, false);
5 }
6 public Frame(String title) throws HeadlessException {
7 init(title, null);
8 }
9 public Frame() throws HeadlessException {

10 this("");
11 }
12 }

Fig. 8. Constructors revealing a self reference in JAVA

it invokes method init which exposes the this pointer to an external class. The second
constructor is such pitfall since it delegates its construction task to the first constructor.
Observe however that both constructors are monomorphic.

To understand why immodesty is undesirable, consider again Fig. 8 and a subclass
of Frame. If this subclass does not override function init, then all of its constructors are
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These two phenomena occur also in the third column of the table: the prevalence of
immodest fall constructors is large (from less than 2% to almost 15%), and their total
number is greater than the number of polymorphic fall constructors by a factor greater
than 4.

Interestingly, the prevalence of immodest constructors with immodest behavior when
compared to the entire constructors population is still small and is equal to about 1.06%.
The prevalence of immodest pitfalls constructors is not quite as small: 5.64%.

Perhaps surprisingly, in examining the fourth column we find the number of immodest
pitfall constructors is smaller (!) than the number of polymorphic pitfall constructors.
But, the variety in this column is even greater than in the other columns (from less than
1.5% to more than 21%).

Tab. 7 shows the prevalence of classes with constructors with immodest behavior.

Collection Classes with Immodest Con-

structors

Classes with Immodest Fall

Constructors

Classes with Immodest Pit-

fall Constructors

JBOSS 61 (3.07%) 582 (3.69%) 650 (4.12%)
JRE 100 (4.52%) 894 (6.12%) 649 (4.44%)
ECLIPSE 117 (7.32%) 821 (5.77%) 1,374 (9.65%)
POSEIDON 115 (7.94%) 1,146 (13.19%) 1,018 (11.72%)
TOMCAT 7 (1.14%) 88 (2.34%) 61 (1.62%)
SCALA 43 (9.98%) 274 (9.95%) 312 (11.33%)
JML 9 (1.95%) 82 (3.86%) 98 (4.61%)
ANT 1 (0.37%) 15 (0.93%) 23 (1.43%)
MJC 4 (1.89%) 51 (4.98%) 74 (7.22%)
JEDIT 3 (2.68%) 123 (15.85%) 152 (19.59%)
ESC 1 (0.73%) 12 (1.90%) 15 (2.37%)
KOA 0 (0.00%) 4 (11.11%) 4 (11.11%)
Total 461 (4.85%) 4,092 (6.20%) 4,430 (6.71%)
Median 8 (2.68%) 105 (5.77%) 125 (7.22%)

7. Prevalence of classes with constructors with immodest behavior (conservative analysis)

Collection Immodest Constructors Immodest Fall Constructors Immodest Pitfall Constructors

JBOSS 129 (3.88%) 718 (3.25%) 957 (4.33%)
JRE 283 (7.90%) 1,111 (5.45%) 1,178 (5.78%)
ECLIPSE 186 (8.88%) 906 (5.72%) 1,704 (10.76%)
POSEIDON 215 (8.95%) 1,384 (12.49%) 1,351 (12.20%)
TOMCAT 10 (1.00%) 109 (2.10%) 81 (1.56%)
SCALA 53 (7.81%) 298 (9.48%) 402 (12.79%)
JML 15 (1.90%) 90 (3.06%) 183 (6.23%)
ANT 1 (0.23%) 18 (0.89%) 30 (1.49%)
MJC 6 (1.40%) 56 (3.90%) 130 (9.05%)
JEDIT 7 (2.42%) 131 (14.64%) 189 (21.12%)
ESC 3 (1.38%) 13 (1.82%) 21 (2.95%)
KOA 0 (0.00%) 4 (10.53%) 4 (10.53%)
Total 908 (5.94%) 4,838 (5.64%) 6,230 (7.26%)
Median 10 (2.16%) 109 (4.67%) 183 (7.64%)

6. Prevalence of immodest behavior in constructors (conservative analysis)Table

Table
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6 Conclusions and Further Research

Our main conclusion is that polymorphic construction is scarce, occurring in about
1.4% of all classes and 1.4% constructors. The base constructors and base classes re-
sponsible for this behavior are even scarcer; their prevalence is less than 0.5%. This
prevalence is in interesting contrast with the fact that the potential for such a poly-
morphic behavior occurs with at least 8% prevalence, and the fact that classes with
potentially polymorphic behavior tend to have (with statistical significance greater than
99%) more descendants.

It might be useful to repeat our study in a framework set of mind, That is, examine
polymorphic pitfall constructors manually, concentrating on those for which no corre-
sponding falls were found, in attempt to determine whether the pitfalls were intentional,
serving a “hot-spot” purpose.

Unfortunately, the results of the analysis of exposure were not as striking. We found
that there is a potential of leaking the this reference to external code in about 6% of
the constructors. It is not clear however whether this potential leakage is significant,
since it could be the case that the external code does not actually make use of this
reference. For example, this could be assigned to one of the class’s fields, as is often
done in initializing a circular linked list, but even though this field has default visibility,
no other class in the package uses it as a receiver, or even reads this field. Also, even if
the external code sends a message to the leaked this, this sending could be done only
after the class was fully constructed. Clearly, more work is required in this direction.

Based on an initial manual exploratory findings of immodest behavior we conjecture
that in the majority of immodesty cases, the external code does not send any messages
to the revealed reference, and if such messages are sent, they are rarely overridden in
any of the derived classes. If this conjecture is contradicted, and the incidents are found
to be of sufficient importance then perhaps the time is ripe for introducing two initial-
ization phases: one in which the object is constructed internally, and another in which
the object initial interconnection network is established. This second phase could be
useful e.g., for a model-view-controller architecture, in which the construction of each
view component includes storing its address in the update list of the model component.
We suspect however that such cases are rare, and could be addressed by construction
patterns tailored for this purpose.

The data in this table can be summarized as follows: The same phenomena we found
for immodest constructors in Tab. 6, including great variety in the prevalence of im-
modest and immodest falls types of behavior, and a higher incidence rate in these than
in their polymorphic counterpart.

The comparison of the finding regarding constructors and the findings regarding
classes indicate that an immodest constructor is “responsible” on average to almost six
actual immodesty falls, and that every class with immodest constructor has on average
almost 9 classes with immodesty pitfall constructors. This indicates that in immodest
constructors tend to be grouped together in a smaller number of classes.

We discussed alternatives for enforcing modest behavior on constructors (so to speak),
a prime alternative being a model similar to Bokowski and Vitek’s confined types. The
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only static and semi-static methods of the class. Semi-static methods are prohibited
from accessing instance methods and variables. A familiar example is JAVA’s getClass()
method. Such a feature is useful in constructors, as demonstrated by the construction
patterns that can be more readily implemented using this feature.
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Abstract. We present a type system for checking object immutability, read-only
references, and class immutability in an open or closed world. To allow object
initialization outside object constructors (which is often needed in practice), im-
mutable objects are initialized in lexically scoped regions. The system is simple
and direct; its only type qualifiers specify immutability properties. No auxiliary
annotations, e.g., ownership types, are needed, yet good support for deep im-
mutability is provided. To express object confinement, as required for class im-
mutability in an open world, we use qualifier polymorphism. The system has
two versions: one with explicit specification commands that delimit the object
initialization phase, and one where such commands are implicit and inferred. In
the latter version, all annotations are compatible with Java’s extended annotation
syntax, as proposed in JSR 308.

1 Introduction

1.1 Motivation

Immutable data structures greatly simplify programming, program maintenance, and
reasoning about programs. Immutable structures can be freely shared, even between
concurrent threads and with untrusted code, without the need to worry about modifica-
tions, even temporary ones, that could result in inconsistent states or broken invariants.
In a nutshell, immutable data structures are simple. It is therefore not surprising that
favoring immutability is a recommended coding practice for Java [3].

Unfortunately, statically checking object immutability in Java-like languages is not
easy, unless one settles for supporting only a restricted programming style that can
be enforced through final fields. Clearly, objects are immutable if all their fields are
final and of primitive type. Additionally, one can allow final fields of immutable
types, this way supporting immutable recursive data structures. Thus, Java’s final
fields support a style of programming immutable objects that mimics datatypes in func-
tional languages and is advocated, for instance, by Felleisen and Friedman [15].

Many immutable objects, however, do not follow this style. A prominent example
are Java’s immutable strings. An immutable string is a wrapper around a character ar-
ray. While final fields can prevent that a string’s internal character array is replaced by
another character array, final fields cannot prevent that the array elements themselves
are mutated. Moreover, Java’s type system provides no means for preventing represen-
tation exposure of the character array, which would allow indirect mutation of a string

� Supported by IST-FET-2005-015905 Mobius project.
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through aliases to its (supposedly) internal character array. Preventing this, not just for
arrays but for any internal mutable data structures, requires a richer type system with
support for object confinement.

It is also quite common to have immutable data structures that are not instances of
immutable classes. Examples include immutable arrays, immutable collections that are
implemented in terms of Java’s mutable collection classes (but are never mutated after
initialization), and immutable cyclic data structures, e.g., doubly linked lists, graphs or
trees with parent references. Concrete examples are given on pages 527, 529 and Figure 3.

This article presents the design of a pluggable type system for Java to specify and
statically check various immutability properties. A pluggable type checker operates on
Java’s abstract syntax trees and is optionally invoked after the standard type checker,
to ensure additional properties. A pluggable checker for object immutability guarantees
that immutable objects never mutate.

Syntactically, our immutability type system can be handled with Java’s extended an-
notation syntax as proposed by JSR 308 [19], to be included in Java 7, which allows
annotations on all occurrences of types. While in this paper we slightly deviate from
legal annotation syntax (for explanatory reasons), all proposed annotations are in syn-
tactic positions allowed by JSR 308.

1.2 Kinds of Immutability

The following classification of immutability properties has been used in various places
in the literature [34,22]:

– Object immutability: An object is immutable if its state cannot be modified.
– Class immutability: A class is immutable if all its instances in all programs are

immutable objects.
– Read-only references: A reference is read-only if the state of the object it refers to

cannot be modified through this reference.

Examples of immutable classes are Java’s String class and the wrapper classes for
primitive types, e.g., Integer and Boolean. All instances of immutable classes are
immutable objects.

Conversely, immutable objects need not be instances of immutable classes. For ex-
ample, immutable arrays are not instances of an immutable class, and neither are im-
mutable collections that are implemented in terms of Java’s mutable collection libraries.
Immutable objects that are not instances of immutable classes typically have public,
non-final fields or public mutator methods, but the pluggable type system disallows
assignments to these fields and calls to these methods.

An example for a read-only reference is the reference created by Java’s static method
Collection unmodifiableCollection(Collection c), which generates a wrap-
per around collection c. This wrapper refers to c through a read-only reference.

For class immutability, we further distinguish between an open and a closed world
[25]:

– Class immutability in a closed world assumes that all program components follow
the rules of the pluggable type system.
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– Class immutability in an open world assumes that immutable classes and the classes
they depend on follow the rules of the pluggable type system, but clients of im-
mutable classes are unchecked (i.e., they only follow Java’s standard typing rules).

Unchecked class clients may for instance be untrusted applets. Note that the closed
world assumption only makes sense if all code is checked with the additional type
rules. Java’s classes String, Integer and Boolean are immutable in an open world.
For class immutability in an open world it is essential that instances of immutable
classes encapsulate their representation objects. Open-world-immutable classes nec-
essarily have to initialize their instances inside constructors or factory methods, and
they should not provide accessible mutator methods or fields. Note also that, in an open
world, object immutability without class immutability can only be achieved for objects
that are never exposed to unchecked clients, because unchecked clients cannot be pre-
vented from calling mutator methods or assigning to accessible fields if these exist.
Similarly, in an open world, read-only references can only be achieved for references
that are never exposed to unchecked clients.

1.3 Specifying Immutability with Type Qualifiers

Following our earlier work [18], we support the distinction between mutable and im-
mutable objects through access qualifiers on types:

Access qualifiers:
p,q ::= RdWr read-write access (default)

Rd read-only access
. . .

Types:
T ::= q C C-object with q-access
C ∈ ClassId class identifiers

Objects of type RdC are called Rd-objects, and have immutable fields. Our type system
is designed to guarantee the following soundness property (see Theorem 2):

Well-typed programs never write to fields of Rd-objects.

For instance, the method bad() attempts an illegal write to a Rd-object and is forbidden
by our type system. On the other hand, good() legally writes to a RdWr-object:

class C { int f; }

static void bad(Rd C x) {

x.f = 42; // TYPE ERROR

}

static void good(RdWr C x) {

x.f = 42; // OK

}

An additional type qualifier, Any, represents the least upper bound of Rd and RdWr:

p,q ::= · · ·
Any “either Rd or RdWr”

Subqualifying:

Rd <: Any RdWr <: Any

Subtyping:

p <: q C <: D

p C <: q D

A reference of a type AnyC may refer to a Rd-object or a RdWr-object, so writes through
Any-references are forbidden. Beware of the difference between Rd and Any. A refer-
ence of type Any C is a read-only reference, meaning you cannot write to the object
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through this particular reference. A reference of type RdC is a reference to a read-only
object, i.e. to an object that nobody has write-access to.1

The following example shows how Any-references can be useful. The method m()
creates a RdWr-array and then applies the method foo() to the array. From the type of
foo() we can tell that foo() does not mutate the array: 2

interface Util {

void foo(int Any [] a);

}

static void m(Util util) {

int[] a = new int RdWr [] {42,43,44};

util.foo(a);

assert a[0] == 42;

}

In this example, we assume a closed world. In an open world, where there may be
unchecked classes that do not play by the additional rules our type system imposes,
there is still the possibility that foo() writes a to some heap location of type Any, so
that unchecked class could modify a[0] concurrently. Preventing foo() from writing
its parameter to the heap can be achieved by a more general method type that uses
qualifier polymorphism, as will be discussed in Section 2.3.

1.4 Flexible Object Initialization with Stack-Local Regions

A common problem of type systems for object immutability [4,18,34,22] and for non-
nullness (more generally, object invariants) [13,14,28] is object initialization. Whereas in
traditional type systems, values have the same types throughout program execution, this
is not quite true for these systems. Type systems for non-nullness face the difficulty that all
fields are initially null; type systems for object immutability face the difficulty that even
immutable objects mutate while being initialized. In these systems, each object starts out
in an uninitialized state and only obtains its true type at the end of its initialization phase.
Thus, objects go through a typestate transition from “uninitialized” to “initialized”.

Object initialization is often the most complicated aspect of otherwise simple type
systems, see for instance Fähndrich and Leino’s non-nullness type system [13]. Some of
the above type systems require that initialization takes place inside object constructors
[13,18,34]. Unfortunately, this does not really simplify matters because object construc-
tors in Java-like languages can contain arbitrary code (which may, for instance, leak
self-references or call dynamically dispatched methods). Moreover, initialization inside
constructors is often too restrictive in practice. For instance, cyclic data structures often
get initialized outside constructors, and array objects do not even have constructors.

One contribution of this paper is a simple but flexible object initialization technique
for immutability, using stack-local memory regions. Object initialization with stack-
local regions supports a programming style that is natural for programmers in main-
stream OO languages. In particular, programmers do not have to mimic destructive
reads, as required by type systems where object initialization is based on unique refer-
ences [4,22]. Statically checking object initialization with stack-local regions is simple,
as it does not require tracking aliasing on the heap, which is needed in more general

1 IGJ [34] uses the same three qualifiers, calling them @Mutable, @Immutable, and @ReadOnly

instead of Rd, RdWr and Any.
2 Following JSR 308 syntax, the qualifier of an array type C[] is written before the [].
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typestate-like systems based on static capabilities [10,29,6,11,5,7,2]. In order to facil-
itate modular static checking, these systems use additional program annotations in the
form of constraints, effects, or pre/postconditions. Our system, on the other hand, only
uses standard type annotations, largely hiding the typestate change from “uninitialized”
to “initialized” from programmers. To this end, we have designed an inference algo-
rithm that automatically infers the end of object initialization phases (see Section 3.4).

1.5 Object Confinement with Qualifier-Polymorphic Methods

A type system for class immutability in an open world must enforce several confine-
ment properties [3]. Specifically, it must guarantee that instances of immutable classes
encapsulate their representation objects and that their object constructors do not leak
self-references. In our earlier paper [18], we enforced these properties using two type-
based confinement techniques (in addition to the access qualifiers Rd and RdWr), namely
a dedicated ownership type system for enforcing encapsulation of representation ob-
jects, and so-called anonymous methods [32] for confining self-references during ob-
ject construction. Unfortunately, the resulting type system was more complex than one
would desire. One of the insights of this article is that, when combined with flexible
object initialization, the various confinement properties for class immutability can be
expressed in terms of methods that are polymorphic in access qualifiers.

To get an idea how polymorphism helps with confinement, consider the following
qualifier-polymorphic method signature:

<q> void foo(char q [] arg)

where <q> denotes universal quantification of the qualifier variable q, making the
method polymorphic in q. For a qualifier hierarchy without greatest element, this sig-
nature tells us that foo() does not write its parameter to a heap location, because the
type of such a location would need a single qualifier annotation that is greater than all
other qualifiers.3 This observation can be exploited to confine representation objects of
immutable objects and to confine self-references to constructors of immutable objects.

To support deep immutability we treat the access qualifier as an implicit class pa-
rameter. It is interesting that this single class parameter in combination with qualifier-
polymorphic methods and flexible object initialization suffices for satisfactorily encod-
ing class immutability. In particular, we do not need separate ownership annotations,
because the required confinement properties can be expressed in terms of these primi-
tives, in a similar way as in ownership type systems. Flexible initialization is a crucial
ingredient, as it allows us, for instance, to treat the internal character array of a string
as an immutable object (rather than as a mutable object that is owned by an immutable
one). This would not be possible if object initialization was tied to object constructors,
because then all arrays would necessarily be mutable4. As a result of treating the charac-
ter array inside a string as immutable, our type system can, for instance, easily support

3 Any is actually not the greatest element of our qualifier hierarchy, but the greatest qualifier for
initialized objects. We still name this qualifier Any (rather than Initialized). Fortunately,
qualifiers for uninitialized objects are inferred and never need to be written by programmers.

4 Supporting immutable arrays initialized by array initializers is not enough for the constructor
String(char[] c) of Java’s String class, because the length of c is not known statically.



Type-Based Object Immutability with Flexible Initialization 525

different strings sharing the same, immutable, character array for their representation,
which is often problematic with ownership types.

1.6 Summary of Contributions

Based on the ideas sketched in this introduction, we have designed a pluggable im-
mutability type system for Java-like languages. The primitives of the type language are
the type qualifiers Rd, RdWr and Any for specifying object access rights. The features of
the system are:

– expressiveness: the system supports object immutability, read-only references, and
class immutability in a closed and open world;

– simplicity and directness: the system only needs the type qualifiers Rd, RdWr and
Any plus qualifier polymorphism; its formal typing rules are simple; annotations are
only required on field types and in method signatures; no annotations are required
inside method bodies;

– flexible initialization: object initialization is not tied to object constructors; while
the type system is necessarily flow-sensitive in order to support object initialization,
it works for concurrency, too, because it enforces that threads only share initialized
objects and because types of initialized objects are persistent.

On the technical side, our contributions are:

– type system formalization and proof of soundness for object immutability: we for-
malize a subset of the type system for a small model language; this subset focuses
on what we believe is the most critical part of the system, namely, the initializa-
tion phase; we prove that the system is sound for object immutability: well-typed
programs never write to Rd-objects;

– a local annotation inference algorithm: we present a local annotation inference
algorithm that automatically infers the end of object initialization phases; we have
formalized this algorithm for our model language and proven it sound.

Outline. The rest of the paper has two parts. Section 2 informally discusses the type
system design. Section 3 contains the technical contributions: it formalizes the type
system for a small model language, presents the annotation inference algorithm, and
states soundness theorems, whose detailed proofs are contained in the companion report
[17]. Section 4 compares to related work and Section 5 concludes.

2 Informal Presentation

We carry on with the informal presentation, as started in Section 1.3.

2.1 Access Qualifier as Class Parameter

For aggregate object structures, it is desirable to associate a single access qualifier with
the entire aggregate, especially if the internal structure of the aggregate is hidden from
object clients. In order to support access control for aggregates through single access
qualifiers, we treat the access qualifier as an implicit class parameter. We have already
proposed this in [18] and so has IGJ [34]. Technically, we introduce a special access
variable myaccess that refers to the access qualifier of this. The scope of this variable
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is the entire class body. In particular, the myaccess variable can be used in field types
and signatures of methods and constructors. In the Square class below, myaccess an-
notates the type Point of its fields. Method m() takes an Any-square, so can neither
write to the Point-fields of the square, nor to the int-fields of its points.

class Point { int x; int y; }

class Square { myaccess Point upperleft; myaccess Point lowerright; }

static void m(Any Square s) {

s.upperleft = s.lowerright; // TYPE ERROR

s.upperleft.x = 42; // TYPE ERROR

}

It is also possible to assign a single access right to a cyclic structure. For instance:

class Person { myaccess Person partner; }

class Couple { myaccess Person husband; myaccess Person wife; }

Old-fashioned couples stick with each other forever: they have type Rd Couple. Modern
couples can divorce and the partners can re-marry: they have type RdWr Couple.

The access qualifier is a covariant class parameter. Generally, covariant class param-
eters are unsound, because upcasting a class parameter allows ill-typed writes to fields
whose types depend on this class parameter. Here, treating the access qualifier covariantly
is sound, because access qualifiers that permit write-access are minimal elements of the
qualifier hierarchy. Thus, upcasting access qualifiers makes object references read-only.

2.2 Flexible Initialization

For sound object initialization, we adapt a technique from region-based memory man-
agement [30], allowing initialization of immutable objects inside stack-local memory
regions (closely related to lexically scoped regions). A stack-local region is a part of the
heap that cannot be reached from the rest of the heap. All references into a stack-local
region are on the stack. Each stack-local region is owned by a method (or a constructor),
namely, the lowest method on the call stack that holds references into this region. All
objects inside a stack-local region have the same special type qualifier. The method that
owns the region (and only this method) is permitted to change this type qualifier to some
other qualifier, uniformly for all objects in the same region. When this typestate change
is performed, the owning method is on the top of the call stack, so all references into the
stack-local region come from local variables of this owning method. This means that all
references into the stack-local region at the time of the typestate change are statically
known: the static type system can easily modify the type qualifiers of these references.

Technically, to support flexible initialization, we add Fresh-qualifiers. These have a
name as an argument, which we call an initialization token.

p,q ::= · · ·
Fresh(n) fresh object under initialization

n ∈ Name token for initializing a set of related objects

An initialization token can be viewed as an identifier for a stack-local region that con-
tains Fresh(n)-objects. The token n is secret to the method that owns the associated
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region and grants permission to commit Fresh(n) to q, for any q. To syntactically
capture this semantics, we introduce two specification commands:

newtoken n create a new initialization token
commit Fresh(n) as q globally convert Fresh(n) to q

These are specification commands, i.e., they operate on auxiliary state (“ghost state”)
and have no runtime effect on concrete state or control flow. Our inference algorithm
can infer all specification commands, so they need not be written by the programmer.
In fact, all annotations inside method bodies can be inferred, so that programmers only
have to write qualifiers in field declarations and method signatures. In the examples
below, all inferred annotations are shaded gray.

The following method, for instance, creates an immutable array; it uses the flexible
initialization technique, to initialize the array r outside a constructor.

static char Rd [] copy (char Any [] a) {

newtoken n;

char[] r = new char Fresh(n) [a.length];

for (int i=0; i++; i < a.length) r[i] = a[i];

commit Fresh(n) as Rd;

return r;

}

To initialize immutable cyclic data structures, we use the same initialization token for
all members of the structure. Using the flexible initialization technique, we can set
cross-references (here husband and wife) after the constructors have been called:5

newtoken n;

Person alice = new <Fresh(n)>Person();

Person bob = new <Fresh(n)>Person();

alice.partner = bob; bob.partner = alice;

Couple couple = new <Fresh(n)>Couple();

couple.husband = bob; couple.wife = alice;

commit Fresh(n) as Rd;

Note that field types and method signatures cannot contain Fresh(n)-annotations,
because n is out-of-scope in field types and method signatures:

class C {

Fresh(n) D x; // TYPE ERROR: n out of scope

static Rd C commit(Fresh(n) C x) { // TYPE ERROR: n out of scope

commit Fresh(n) as Rd; return x; }

}

Because we do not allow methods that are parametrized by initialization tokens, each
initialization token is confined to a single method. As a result, only the method that
“owns” a Fresh(n)-region can commit it, which is crucial for the soundness of commit.

Figure 1 sketches a runtime configuration before a commit-statement. In this con-
figuration, the heap has three regions: a region of initialized objects, and two Fresh
regions with associated initialization tokens n1 and n2. The picture shows possible

5 Person() is a qualifier-polymorphic constructor, hence the angle brackets. See Section 2.4.
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RdWr-object
Rd-object
Any-object
Fresh(n1)-object
Fresh(n2)-object

Initialized
heap

stack-local region
Fresh(n1)

stack-local region
Fresh(n2)

top

rest
Stack

If the method that owns n1 “executes”
commit Fresh(n1) as Rd, then:

– the n1 region joins the initialized heap
– qualifiers of references into the n1 region

(by local variables of top frame) must be ad-
justed

Fig. 1. Committing the fresh region owned by the top stack frame

inter-region references. Importantly, the type system ensures that there are no incoming
references from the heap into Fresh regions. Furthermore, when the top of the stack
owns region n1, there are no references from the rest of the stack into this region. When
the commit-statement is executed, region n1 is merged with the initialized region. The
type system then has to adjust the qualifiers of all references into region n1. Fortu-
nately, this can be done statically, because all references into this region come from
local variables in its owning method.

2.3 Qualifier Polymorphism for Methods

Consider the following method:

static void copy(Point src, Point dst) {

dst.x = src.x; dst.y = src.y;

}

This method could accept both RdWr-points and Fresh-points as dst-parameters. To
facilitate this, we introduce bounded qualifier polymorphism for methods. The Hasse
diagram in Figure 2.3 depicts the qualifier hierarchy, including qualifier bounds. The
syntax for qualifier-polymorphic methods is as in Java Generics:

<ᾱ extends B̄> T m(T̄ x̄)q{ . . .} (method declaration)

We usually omit the qualifier bound Qual, writing <a extends Qual> as <a>. The
qualifier q is associated with the receiver parameter, that is, e.m() can only be called if
e’s access qualifier is a subqualifier of q. Receiver qualifiers are not present in static
methods. For subclassing, method types are treated contravariantly in the qualifiers on
input types (including the receiver qualifier) and covariantly in the qualifier on the out-
put type. These variances are as in IGJ [34]. We can now type copy() as follows:

static <a, b extends Writeable> void copy(a Point src, b Point dst) {

dst.x = src.x; dst.y = src.y;

}
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Rd

Any

RdWr Fresh(n) Fresh(m) · · ·

Qual

Writeable

Qualifier bounds:

B ::= Any | Writeable | Qual
α ∈QVar (qualifier variables)
p,q ::= · · · | α

e : q C q extends Writeable

e. f =v : ok

Fig. 2. The qualifier hierarchy. Qual and Writable are qualifier bounds, not qualifiers, so they
cannot be used as type qualifiers, only in extends-clauses.

Note that Writeable can only be used as a qualifier bound, but not as a qualifier.
Allowing Writeable as qualifier would lead to unsoundness for two reasons: Firstly,
Writeable would be a non-minimal qualifier that allows writes, which would make
covariance of the myaccess class parameter unsound. Secondly, Writeable could be
used as an annotation on field types. This would open the door for violating stack local-
ity of Fresh-regions, which would make the typestate transition at commits unsound.

Signatures of qualifier-polymorphic methods tell us which method parameters are
potentially mutated by the method. In addition, they also provide information about
which method parameters are potentially written to the heap. For instance:

– static <a> void foo(int a [] x);

• does not write to object x through reference x
• does not write object x to the heap

– static void faa(int Any [] x);

• does not write to object x through reference x
• may write object x to the heap (into Any-fields)

– static <a extends Writeable> void fee(int a [] x);

• may write to object x through reference x
• does not write object x to the heap

The method foo(x) cannot write x to the heap, because the qualifier hierarchy does not
have a greatest element, which would be needed as the type of a location that x can be
written to. Similarly, fee(x) cannot write x to the heap, because there is no qualifier
that bounds all writeable qualifiers.

In the following example, we use the qualifier for the receiver parameter to dis-
tinguish between inspector and mutator methods. Inspectors can be called on any re-
ceivers, whereas mutators can only be called on writeable receivers:

class Hashtable<K,V> {

<a> V get(K key) a { . . . } // inspector

<a extends Writeable> V put(K key, V value) a { . . . } // mutator

}

To create an immutable hash table we can use flexible initialization outside the con-
structor:
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newtoken n;

Hashtable<String,String> t = new <Fresh(n)>Hashtable<String,String>();

t.put("Alice", "Female"); t.put("Bob", "Male");

commit Fresh(n) as Rd;

t.get("Alice"); // OK

t.put("Charly", "Male"); // TYPE ERROR

2.4 Constructors

Constructor declarations have one of the following two forms:

<ᾱ extends B̄> q C(T̄ x̄) p{ body } (caller-commit constructor)
<ᾱ extends B̄> q C(T̄ x̄){ newtoken n; body } (constructor-commit constructor)

Caller-commit constructors are more common. In their signature, p represents the
qualifier of this when the constructor body starts executing. The typechecker assumes
this qualifier initially when checking the constructor body, and enforces that constructor
callers, through super() or this(), establish this precondition. The postcondition q
represents the qualifier of this when the constructor terminates.

A typical instance of caller-commit constructors looks like this:

<α extends Writeable> α C(T̄ x̄)α{ . . . }

In particular, the default no-arg constructors have this form. Note that, if in the above
constructor signature α does not occur in any of the parameter types T̄ , then we know
that the constructor does not leak references to this6. This is often desired for construc-
tors. Constructors that deliberately leak this could have the following form (which
prevents the creation of immutable class instances):

RdWrC(T̄ x̄)RdWr{ . . . }

Constructor-commit constructors enforce that the object is committed inside the con-
structor. This is useful in an open world to prevent object clients from ever seeing an
uninitialized object. In constructor-commit constructors, the precondition is omitted.
Instead, the constructor begins by generating a fresh token n. The body then initially
assumes that this has qualifier Fresh(n). The scope of n is the constructor body,
and therefore n cannot be mentioned in the constructor postcondition. To establish the
postcondition, the body is forced to commit Fresh(n) before it terminates. The type
system disallows calling constructor-commit constructors through super() or this().
Therefore, constructor-commit constructors are particularly suited for final classes.

Figure 3 shows an example with a caller-commit constructor. An immutable tree
with parent pointers is constructed from the bottom up. A single initialization token
is used for all nodes and is committed only after the root node has been initialized.
This example is interesting because Qi and Myers [28] identify it as a problematic
initialization pattern for other type systems [14]. It causes no problems for our system.

6 If α occurs in T̄ , the constructor could for instance leak this to a field x. f of a constructor
parameter α Dx, in case f ’s type in C is annotated with myaccess.
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class Tree {

myaccess Tree parent, left, right;

<a extends Writeable> a Tree (a Tree left, a Tree right) a {

this.left = left; this.right = right;

if (left != null) left.parent = this;

if (right != null) right.parent = this;

}

}

newtoken n;

Tree left leaf = new <Fresh(n)>Tree(null, null);

Tree right leaf = new <Fresh(n)>Tree(null, null);

Tree root = new <Fresh(n)>Tree(left leaf, right leaf);

root.parent = root;

commit Fresh(n) as Rd;

Fig. 3. Bottom-up initialization of a tree with parent pointers

2.5 Class Immutability in an Open World

In his book “Effective Java” [3], Bloch presents rules that ensure class immutability.
These rules require that fields of immutable classes are private and final, that public
methods are inspectors, that methods and constructors do not leak representation ob-
jects, that public constructors do not leak this, and that the behaviour of instances of
immutable classes does not depend on overridable methods. Some of these rules (e.g.,
that all fields are private and final) can very easily be checked automatically. The con-
ditions that methods of immutable classes are inspectors, that instances of immutable
classes do not leak representation, and that constructors of immutable classes do not
leak this can be expressed and checked by our type system.

If we specify class immutability with a class annotation Immutable, we could for
instance declare an immutable String class like this:

Immutable final class String {

private final char myaccess [] value;

. . .
}

Semantically, the Immutable annotation is meant to specify that String is an im-
mutable class in an open world, i.e., that all instances of String are Rd-objects that
cannot be mutated by possibly unchecked clients. In order to tie the access modifier
for the value array to the access modifier for the enclosing string, it is important that
we annotate the value field with myaccess instead of Rd. In combination with the
requirements on method and constructor signatures below, this prevents representation
exposure of the character array.

The following rules guarantee class immutability:

– immutable classes must be final and direct subclasses of Object
– methods and constructors may only call static or final methods or methods of final

classes (transitively)
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static <a, b extends Writeable>

void arraycopy(a Object src, int srcPos, b Object dst, int dstPos, int l);

public <a> Rd String(char a value[]) {

newtoken n;

int size = value.length;

char[] v = new char Fresh(n) [size];

System.arraycopy(value, 0, v, 0, size);

this.offset = 0; this.count = size; this.value = v;

commit Fresh(n) as Rd;

}

Fig. 4. A constructor of Java’s immutable String class

– all fields must be final
– public constructors must have the following form:

<ᾱ extends B̄> RdC(T̄ x̄){ newtoken n; . . . ;commit Fresh(n) as Rd; }
where myaccess does not occur in T̄

– types of public methods must have the following form:

<α, β̄ extends B̄>U m(T̄ x̄)α{ . . .}

We use the String example to explain the constructor rule: The rule ensures that
public constructors do not assign previously existing character arrays to the string’s
value field. This would only be possible, if the class parameter myaccess occurred
in one of the parameter types T̄ , which is forbidden. For instance, the constructor
String(char value[]) is forced to make a defensive copy of its input parameter,
as shown in Figure 4. Furthermore, constructors can not assign this or this.value
to heap locations outside the stack-local Fresh(n)-region. This would only be possible
if one of the parameter types T̄ mentioned myaccess, or if the commit-statement were
executed somewhere in the middle of the constructor, in which case the constructor
could write this.value or this to the heap as a Rd-object after the commit.

As for the method rule, we have already argued that the above method type enforces
that m is an inspector. Furthermore, the type forbids that m assigns the value array to
the heap, because the qualifier hierarchy does not have a greatest element. Note that
method types of the form U m(T̄ x̄)Any{ . . .} do not prevent representation exposure,
because they enable writing the value array to Any-fields, which is dangerous in an
open-world. Similarly, if the value field were annotated with Rd instead of myaccess,
the value array could be written to Rd-fields or Any-fields.

2.6 Threads

For type soundness in multi-threaded programs, we must ensure that thread-shared ob-
jects are initialized, i.e., they must have types Rd, RdWr or Any, but not Fresh. This
suffices for soundness, because types of initialized objects never change. As all thread-
shared objects are reachable from the sharing Thread-objects and as the initialized
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region is closed under reachability7, it suffices to require that Thread-objects are ini-
tialized when threads get started. Furthermore, we must assume this fact as the precon-
dition for verifying the body of Thread.run():

class Thread {

void run() RdWr { }

void start(); // Treated specially. Type system uses run()’s type.

}

Subclasses of Thread may override run() with receiver qualifier RdWr or Any (by con-
travariance)8. Calling start() on a receiver o, whose static type is a subtype MyThread
of Thread, requires that o has run()’s receiver qualifier from MyThread. Note that
treating Thread.start() specially is not a random special case, because conceptually
Thread.start() is a concurrency primitive for dynamic thread creation (a.k.a. fork
or spawn), which is always treated specially in verification systems for concurrency.

3 The Formal Model

We formalize our system for a model language that is deliberately simple. The main
objective is to prove soundness of the flexible initialization technique in a very simple
setting, to describe the local inference algorithm in the small as a high-level blueprint
for an implementation, and to prove soundness of the inference algorithm. Our simple
language is based on recursively defined records with nominal types, recursive function
definitions, and a simple command language. We include conditionals and while-loops,
because the type system and the associated inference algorithm are flow-sensitive, and
so branching and repetition are interesting.

Mathematical Notation. Let X → Y be the set of functions from X to Y , and X ⇀ Y the
set of partial functions, and SetOf(X) the set of all subsets of X . Functions f ∈ X ⇀ Y
induce functions in f̂ ∈ SetOf(X)→ SetOf(Y ): f̂ (X ′) = { f (x) | x ∈ X ′ ∩dom( f )}. We
usually omit the hat when the context resolves ambiguities. For f ∈ X ⇀ Y and Z some
set, let f |Z be the restriction of f to Z: f |Z = {(x,y) ∈ f | x ∈ Z}. For f ∈ X ⇀ Y
and g ∈ Y → Z, let g ◦ f = {(x,g( f (x))) | x ∈ dom( f )}. Note that g ◦ f ∈ X ⇀ Z. For
f ,g ∈ X ⇀ Y , let f [g] = g∪ ( f |{x | x �∈ dom(g)}). Let x 	→ y = {(x,y)}. We write
f ,x 	→ y instead of f [x 	→ y] when we want to indicate that x �∈ dom( f ). If f is a type
environment, we write f [x : y] and f ,x : y instead of f [x 	→ y] and f ,x 	→ y. We write π1

and π2 for the first and second projection that map pairs to their components.

3.1 A Model Programming Language with Access Qualifiers

Our model is based on records. We refer to named record types as classes, and to records
as objects. Record types are of the form q C, where q is an access qualifier and C a class
identifier. The void-type has only one element, namely null. We define a mapping

7 In this discussion, we ignore Java Generics. See [17] for a discussion of generics.
8 It would also be sound to use Rd as the receiver qualifier for Thread.run(). However, this

would be too restrictive, because it would globally enforce that threads never write to fields of
their Thread-objects.
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Δ ::= ε | Δ,α�B | Δ,n : Token (qualifier environments)
Δ,α�B,Δ′ 
 α�B Δ,n : Token,Δ′ 
 n : Token

q <: Any

Δ 
 q�Any

Δ 
 q�B

Δ 
 q�Qual Δ 
 RdWr�Writeable

Δ 
 n : Token

Δ 
 Fresh(n)�Writeable

Fig. 5. Qualifier typing, Δ 
 q�B and Δ 
 n : Token

that erases qualifiers from types: |q C| = C and |void| = void. Subqualifying is the
least partial order such that Rd <: Any and RdWr <: Any. Subtyping is the least partial
order such that p C <: q C for all p <: q. A class table is a set of class declarations for
distinct class identifiers. Class declarations may be (mutually) recursive. A method table
is a set of (mutually) recursive function declarations for distinct identifiers. The syntax
of the model language is shown below. The identifiers x and n in the forms (C x;e) and
(newtoken n;e) are binders with scope e, and we identify expressions up to renaming
of bound identifiers9. The judgment in Figure 5 formalizes boundedness (writing � for
extends) and ensures that arguments n of Fresh(n) represent initialization tokens.

n,o ∈ Name (names) α,β ∈QVar (qualifier variables, including myaccess)

p,q ∈Qual ::= Rd | RdWr | Any | Fresh(n) | α (access qualifiers)

f ,g ∈ FieldId (field identifiers) C,D ∈ ClassId (class identifiers)

class ::= classC { T̄ f̄ } (class declarations) T ∈ Ty ::= q C | void (types)

B ∈QualBound ::= Writeable | Any | Qual (qualifier bounds)

m ∈MethodId (method identifiers) x ∈ Var (local variables)

method ::= <ᾱ� B̄> T m(T̄ x̄){e} (method declarations)

v ∈OpenVal ::= null | n | x (open values)

e ∈ Exp ::= v | C x;e | newtoken n;e | h;e (expressions)

h ∈ HdExp ::= x=v | x=v. f | v. f =v | x=<q̄>m(v̄) | x=new q C |
if v e e | while v e | commit Fresh(n) as q

(head expressions)

Derived form, e;e′: v;e
Δ= e (h;e);e′ Δ= h;(e;e′) (C x;e);e′ Δ= C x;(e;e′) if x not free in e′

(newtoken n;e);e′ Δ= newtoken n;(e;e′) if n not free in e′

Derived form, e; : e;
Δ= e;null

Note that declarations of local variables associate a class C with the variable, but no
access qualifier q. The reason for this design choice is that local variables may change
their qualifier at commit-statements. We would find it misleading if our system fixed an
access qualifier for a local variable at its declaration site, even though later the variable
refers to objects with incompatible access qualifiers.

Our system also permits qualifier changes at assignments to local variables. This
seems a natural design choice, given that we have flexible qualifiers for local variables
anyway. When a local variable x is used, the type system assumes the access qualifier of
the object that most recently got assigned to x. For instance, assuming a context where
local variables r and w have types Rd Point and RdWr Point, respectively:

Point p; p=w; // now p has type RdWr Point

p.x=42; // this typechecks

p=r; // now p has type Rd Point

p.x=42; // type error: illegal write to Rd-object

9 See also the remark on the operational semantics of newtoken at the end of Section 3.2.
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3.2 Operational Semantics

Heaps are functions from names to objects. Each object is tagged with an access qual-
ifier. These tags are auxiliary state in the sense that they have no effect on concrete
program state or control flow, that is, they are erasable. The operational semantics also
tracks the pool of tokens that have so far been generated. Token pools are erasable.

ν ∈ Val ::= null | n obj ∈ Object
Δ= Qual× (FieldId ⇀ Val) ::= q{ f̄ = ν̄}

h ∈Heap
Δ= Name ⇀ Object t ∈ TokenPool

Δ= SetOf(Name)

Commit-environments are functions from names to access qualifiers. They are used to
track Fresh-qualifiers that have been committed.

δ ∈ CommitEnv
Δ= Name ⇀ Qual

Commit-environments δ induce functions δ̂ in Qual→ Qual, Ty→ Ty and Object→
Object: δ̂(Fresh(n)) = q if δ(n) = q, δ̂(q) = q otherwise; δ̂(q C) = δ̂(q) C, δ̂(void) =
void; δ̂(q{ f̄ = v̄}) = δ̂(q){ f̄ = v̄}. If the context resolves ambiguities, we omit the hat.

A stack frame is a pair of a local store σ and an expression e:

σ ∈ Var ⇀ Val fr ∈ Frame
Δ= (Var ⇀ Val)×Exp s ∈ Stack ::= nil | fr :: s

We extend the domain of functions σ to OpenVal, by setting σ(ν) = ν for ν ∈ Val.
Configurations are triples of stacks, heaps and token pools.

cfg ∈ Configuration
Δ= Stack×Heap×TokenPool

The rules in Figure 6 define the small-step operational semantics on configurations. In
the rules (Red Dcl) and (Red New Token), we implicitly use a bound-variable conven-
tion that allows us to rename bound variables and names appropriately.

(Red Dcl)
(σ,C x;e) :: s,h, t→ ((σ,x 	→ null),e) :: s,h, t

(Red New Token) n �∈ t
(σ,newtoken n;e) :: s,h, t→ (σ,e) :: s,h, t ∪{n}

(Red Set Local)
(σ,x=v;e) :: s,h, t→ (σ[x 	→ σ(v)],e) :: s,h, t

(Red Get) v �= null σ(v) = n
(σ,x=v. f ;e) :: s,h, t→ (σ[x 	→ π2(h(n))( f )],e) :: s,h, t

(Red Set) v �= null σ(v) = n
(σ,v. f =w;e) :: s,h, t→ (σ,e) :: s,h[n 	→ (π1(h(n)), π2(h(n))[ f 	→ σ(w)] )], t

(Red Call) <ᾱ� B̄>U m(T̄ x̄){e′}
(σ,x=<q̄>m(v̄);e) :: s,h, t→ (x̄ 	→ σ(v̄),e′[q̄/ᾱ]) :: (σ,x=<q̄>m(v̄);e) :: s,h, t

(Red Return)
(σ,w) :: (σ′,x=<q̄>m(v̄);e) :: s,h, t→ (σ′[x 	→ σ(w)],e) :: s,h, t

(Red New) classC { T̄ f̄ } n �∈ dom(h)
(σ,x=new q C;e) :: s,h, t→ (σ[x 	→ n],e) :: s,(h,n 	→ q{ f̄ =null}), t

(Red If True) σ(v) = null

(σ,(if v e e′);e′′) :: s,h, t→ (σ,e;e′′) :: s,h, t
(Red If False) σ(v) �= null

(σ,(if v e e′);e′′) :: s,h, t→ (σ,e′;e′′) :: s,h, t

(Red While True) σ(v) = null

(σ,(while v e);e′) :: s,h, t→ (σ,e;(while v e);e′) :: s,h, t
(Red While False) σ(v) �= null

(σ,(while v e);e′) :: s,h, t→ (σ,e′) :: s,h, t

(Red Commit) δ = (n 	→ q)
(σ,commit Fresh(n) as q;e) :: s,h, t→ (σ,e) :: s,(δ◦h), t

Fig. 6. Operational semantics
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3.3 Type System

A type environment is a function from variables and names to types.

ι ∈ Var∪Name Γ ∈ TyEnv
Δ= (Var∪Name) ⇀ Ty

Let Γ <: Γ′ whenever dom(Γ) = dom(Γ′) and Γ(ι) <: Γ′(ι) for all ι in dom(Γ). We
extend the domain of type environments to include null: Γ(null) = void.

We define: Δ
 q : ok iff Δ
 q�Qual; C : ok iff C is declared; Δ
 q C : ok iff Δ
 q : ok
and C : ok; Δ
 void : ok always; Δ
 Γ : ok iff Δ
 Γ(ι) : ok for all ι in dom(Γ); Δ
 δ : ok
iff Δ 
 n : Token and Δ 
 δ(n) : ok for all x in dom(δ).

Typing judgments for expressions have the following formats:

Σ 
 {Γ,δ}e : T{Γ′,δ′} Σ 
 {Γ,δ}h{Γ′,δ′}
(Γ,δ) represents the configuration before executing the expression, and (Γ′,δ′) the one
afterwards. We refer to (Γ,δ) as the precondition of the expression, and to (Γ′,δ′) as its
postcondition. Recall that we permit local variables to change the qualifier components
of their types. This is why we need to include type environments in postconditions. We
write Δ;Γ 
 v : T to abbreviate Δ 
 {Γ, /0}v : T{Γ, /0}.

Now we can present the typing rules for expressions:

(Null)
Δ 
 Γ,δ,T : ok

Δ 
 {Γ,δ}null : T{Γ,δ}

(Id)
Δ 
 Γ,δ : ok

Δ 
 {Γ,δ}ι : Γ(ι){Γ,δ}

(Sub)
Δ 
U,Γ′′ : ok T <: U Δ 
 {Γ,δ}e : T{Γ′,δ′} Γ′ <: Γ′′

Δ 
 {Γ,δ}e : U{Γ′′,δ′}

(Dcl)
Δ 
 q C : ok δ(q) = q Δ 
 {(Γ,x : q C),δ}e : T{(Γ′,x : U),δ′}

Δ 
 {Γ,δ}C x;e : T{Γ′,δ′}

(Seq) Δ 
 Γ,δ : ok
Δ 
 {Γ,δ}h{Γ′,δ′} Δ 
 {Γ′,δ′}e : T{Γ′′,δ′′}

Δ 
 {Γ,δ}h;e : T{Γ′′,δ′′}

(New Token)
Δ 
 Γ,δ,Γ′,δ′ : ok Δ,n : Token 
 {Γ,(δ,n 	→ Fresh(n))}e : T{Γ′,(δ′,n 	→ q)}

Δ 
 {Γ,δ}newtoken n;e : T{Γ′,δ′}

In the rule (Dcl), we assume that the newly declared local variable initially has type
q C, where q can be chosen appropriately. An automatic typechecker needs to delay
the choice of an appropriate q until the new variable first gets assigned to. This delayed
choice of q is subsumed by the inference algorithm in Section 3.4. The premise δ(q) = q
ensures that q is not a previously committed Fresh-qualifier.

In the typing rules for head expressions, note that we update the qualifiers of lo-
cal variables after assignments, implementing flexible qualifiers of local variables, as
discussed earlier. Crucially, the rule (Set) checks that the object is writeable:

(Set Local)
|Γ(v)|= |Γ(x)|

Δ 
 {Γ,δ}x=v{Γ[x : Γ(v)],δ}

(Get) classC {..T f ..}
Γ(v) = q C U = T [q/myaccess] |U |= |Γ(x)|

Δ 
 {Γ,δ}x=v. f{Γ[x : U ],δ}

(Set) classC {..T f ..}
Γ(v) = q C Δ 
 q�Writeable Δ;Γ 
 w : T [q/myaccess]

Δ 
 {Γ,δ}v. f =w{Γ,δ}

(Call) <ᾱ� B̄>U m(T̄ x̄){e}
δ(q̄) = q̄ Δ 
 q̄� B̄ Δ;Γ 
 v̄ : T̄ [q̄/ᾱ] V = U [q̄/ᾱ] |V |= |Γ(x)|

Δ 
 {Γ,δ}x=<q̄>m(v̄){Γ[x : V ],δ}

(New)
Δ 
 q C : ok δ(q) = q C = |Γ(x)|
Δ 
 {Γ,δ}x=new q C{Γ[x : q C],δ}

(If)
Δ;Γ 
 v : T Δ 
 {Γ,δ}e : void{Γ′,δ′} Δ 
 {Γ,δ}e′ : void{Γ′,δ′}

Δ 
 {Γ,δ}if v e e′{Γ′,δ′}

(While)
Δ;Γ 
 v : T Δ 
 {Γ,δ}e : void{Γ,δ}

Δ 
 {Γ,δ}while v e{Γ,δ}
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Well-typed stack frames, Δ;Δ′;Γ;Γ′ 
 fr : T and Δ;Δ′;Γ;Γ′ 
 fr : T →U:

Δ,Δ′;Γ,Γ′ 
 σ : Γ′′ Δ,Δ′ 
 {Γ′′,δ}e : T{Γ′′′,δ′} dom(δ)⊆ dom(Δ′) δ◦Γ′′ = Γ′′

Δ;Δ′;Γ;Γ′ 
 (σ,e) : T

fr = (σ,x=<q̄>m(v̄);e) Δ;Δ′;Γ;Γ′ 
 fr : U <ᾱ� B̄> T m(V̄ x̄){e′}
Δ;Δ′;Γ;Γ′ 
 fr : T [q̄/ᾱ]→U

Δ 
 Γ : ok (∀x ∈ dom(σ))(Δ;Γ 
 σ(x) : Γ′(x))
Δ;Γ 
 σ : Γ′

Well-typed stacks, Δ;Γ 
 s : ok and Δ;Γ 
 s : T → ok:

Δ 
 Γ,T : ok

Δ;Γ 
 nil : T → ok

Δ;Δ′;Γ;Γ′ 
 fr : T Δ;Γ 
 s : T → ok

Δ,Δ′;Γ,Γ′ 
 fr :: s : ok

Δ;Δ′;Γ;Γ′ 
 fr : T →U Δ;Γ 
 s : U → ok

Δ,Δ′;Γ,Γ′ 
 fr :: s : T → ok

Well-typed objects, Δ;Γ 
 obj : T :

classC { T̄ f̄ } Δ;Γ 
 ν̄ : T̄ [q/myaccess]

Δ;Γ 
 q{ f̄ = ν̄} : q C

Well-typed heaps, Δ;Γ 
 h : ok:

dom(Γ) = dom(h) (∀n ∈ dom(h))(Δ;Γ 
 h(n) : Γ(n))

Δ;Γ 
 h : ok

Well-typed token pools, Δ 
 t : ok:

dom(Δ) = dom(t) (∀n ∈ t)(Δ 
 n : Token)

Δ 
 t : ok

Well-typed configurations, cfg : ok:

Δ;Γ 
 s : ok Δ;Γ 
 h : ok Δ 
 t : ok

s,h, t : ok

Fig. 7. Typing rules for configurations

(Commit)
δ(n) = Fresh(n) Δ 
 q : ok δ(q) = q δ′ = n 	→ q

Δ 
 {Γ,δ}commit Fresh(n) as q{δ′ ◦Γ,δ′ ◦δ}

In the (While) rule, note that the environments are an invariant for the loop body. Con-
sequently, it is disallowed to commit inside a loop body a token that was generated
outside the loop body (as this would modify the commit-environment). On the other
hand, it is allowed to commit tokens that were generated inside the loop body, because
the rule (New Token) removes such tokens from pre- and postcondtions.

For checking class and method declarations, we use the following rules:

(Class)
myaccess�Qual 
 T̄ : ok

classC { T̄ f̄ } : ok

(Method)
ᾱ� B̄ 
U, T̄ : ok ᾱ� B̄ 
 {x̄ : T̄ , /0}e : U{Γ, /0}

<ᾱ� B̄>U m(T̄ x̄){e} : ok

Soundness. We extend the type system to configurations, as shown in Figure 7. The
judgment for stack frames has the format Δ;Δ′;Γ;Γ′ 
 fr : T . The type T is the type
of the return value. Whereas Δ and Γ account for tokens and objects that are known to
stack frames below fr, the environments Δ′ and Γ′ account for tokens and objects that
have been generated in fr or in stack frames that were previously above fr and have
been popped off the stack. The premise dom(δ) ⊆ dom(Δ′) in the first typing rule for
stack frames captures formally that the commit-environment for the top frame never
contains initialization tokens that have been generated in the rest of the stack. This is
important for the soundness of (Commit). Another judgment for stack frames has the
form Δ;Δ′;Γ;Γ′ 
 fr : T→U . Intuitively, it holds when Δ;Δ′;Γ;Γ′ 
 fr : U and in addition
fr currently waits for the termination of a method call that returns a value of type T .

We can now prove the following preservation theorem:

Theorem 1 (Preservation). If cfg : ok and cfg→ cfg′, then cfg′ : ok.

The proof of the preservation theorem is mostly routine and contained in the compan-
ion report [17]. The following theorem says that the type system is sound for object



538 C. Haack and E. Poll

immutability: well-typed programs never write to fields of Rd-objects. The theorem is a
simple corollary of the preservation theorem and the fact that a configuration is ill-typed
when the head expression of its top frame instructs to write to a field of a Rd-object.

Theorem 2 (Soundness for Object Immutability). If cfg : ok, cfg→∗ (σ,v. f =w;e) ::
s,h, t and σ(v) = n, then π1(h(n)) �= Rd.

3.4 Local Annotation Inference

Figure 8 presents the syntax for annotation-free expressions E , as obtained from the
expression syntax by omitting the specification statements newtoken and commit, as
well as the qualifier arguments at call sites and the qualifier annotations at object cre-
ation sites. The function e 	→ |e| erases specification commands and annotations from
annotated expressions. This section presents an algorithm that infers the erased infor-
mation, deciding the following question: Given Δ,Γ,E,T such that Δ 
 Γ,T : ok. Are
there e,Γ′ such that |e|= E and Δ 
 {Γ, /0}e : T{Γ′, /0}?

We have proven that our algorithm answers this question soundly: if the inference
algorithm answers “yes”, then the answer to this question is indeed “yes”. We believe
that the converse also holds (completeness), but cannot claim a rigorous proof. The
algorithm constructs an annotated expression e whose erasure is E . An implementation
does not have to really construct e, because knowing that e exists suffices. There are, of
course, many annotated expressions that erase to the same annotation-free expression.
So what is the strategy for inserting the specification commands without restricting
generality? Conceptually, the algorithm parses the unannotated E from left to right,
inserting specification commands newtoken and commit as needed.

Inserting Commits. For commits, we use a lazy strategy and only insert a commit if
this is strictly necessary. For instance, we never insert commits in front of local variable
assignment, because commits and local variable assignments can always be commuted
without breaking well-typedness or changing the erasure. The spots where commits do
get inserted are: (1) in front of field assignments when a value of type Fresh(n) is
assigned to a field of type q where q �= Fresh(n), (2) in front of method calls when
the method signature forces to commit types of arguments, (3) in front of the return
value when the return type forces to commit the type of the return value, (4) at the
end of conditional branches to match commits that have been performed in the other
branch, (5) at the end of loop bodies (for tokens generated inside the loop) to establish
the loop invariant, and (6) in front of loop entries (for tokens generated outside the
loop) to establish the loop invariant. Consider the following example with a while-
loop:

void r(Rd C x); void w(RdWr C x); <a � Writeable> f (a C x);

C x; x = new C; while x ( f(x); w(x); );

Generated annotated expression:
newtoken m; newtoken n; C x; x = new Fresh(n) C;

commit Fresh(n) as RdWr; while x ( <RdWr>f(x); w(x); );

commit Fresh(m) as Any;
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E ∈ AfreeExp ::= v | C x;E | H;E (annotation-free expressions)

H ∈ AfreeHdExp ::= x=v | x=v. f | v. f =v | x=m(v̄) |
x=newC | if v E E | while v E

(annotation-free head expressions)

| · | : Exp→ AfreeExp

|v| Δ= v |C x;e| Δ= C x; |e| |newtoken n;e| Δ= |e| |commit Fresh(n) as q;e| Δ= |e|
|h;e| Δ= |h|; |e|, if h �= commit Fresh( ) as

| · | : HdExp→ AfreeHdExp

|x=<q̄>m(v̄)| Δ= x=m(v̄) |x=new q C| Δ= x=newC |if v E E ′ | Δ= if v |E| |E ′ |
|while v E| Δ= while v |E| |h| Δ= h, otherwise

Fig. 8. Annotation-free expressions and erasure

In the above expression, the method call w(x) inside the loop body forces a commit in
front of the loop.10 In contrast, the following expression does not typecheck, because
the loop body forces x to have both a Writeable type and type Rd, which is impossible.

C x; x = new C; while x ( f(x); r(x); ); // TYPE ERROR

One could deal with while-loops by a fixed point computation that requires two it-
erations over the loop body, one to discover a candidate loop invariant and another one
to check if the candidate grants the access permissions required by the loop body. Our
algorithm is syntax-directed, because this is simpler to implement on top of the JSR
308 checkers framework [23].

Generating Tokens. Concerning the generation of initialization tokens, there are two
questions to answer. Firstly, when does the algorithm generate new initialization tokens,
and secondly, where does the algorithm insert the newtoken statements that bind the
tokens. Generation happens (1) at variable declaration sites, (2) at object creation sites,
and (3) at call sites for instantiation of qualifier parameters that occur in the method
return type but not in the method parameter types. At such sites, the algorithm generates
a new token n and uses Fresh(n) as the type of the newly declared variable, the newly
created object or the method return value. In the above example, m and n are the tokens
that were generated at the variable declaration site for x and at the object creation site
that follows it. Note that tokens generated at variable creation sites often do not occur
in the program text. Using Fresh(n) as the qualifier for newly created objects (and
similarly for variable declarations and method returns) is no restriction, because the
following type- and erasure-preserving transformation replaces qualifiers q at object
creation sites by Fresh(n):

x=new q C → newtoken n;x=new Fresh(n)C;commit Fresh(n) as q

As for where to insert newtoken, observe that these can always be pulled out of
conditional branches by the following type- and erasure-preserving transformation:

if v (newtoken n;e) e′ → newtoken n;if v e (e′;commit Fresh(n) as δ(n);)
where δ is the commit environment in the postcondition of e (as found in the type derivation)

10 Technically, the inference algorithm delays the generation of the prefix
newtoken m;newtoken n; and the postfix commit Fresh(m) as Any. These get inserted at
the top level, see Theorem 3.
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f ;g f ;g Δ= (g◦ f )∪g if dom( f )∩dom(g) = /0

ts ∈ Scopes ::= t | t :: ts |t| Δ= t |t :: ts| Δ= t ∪|ts| rest(t) Δ= /0 rest(t :: ts) Δ= |ts|

newtokens(t);e Δ= newtoken n1; . . . ;newtoken nk ;e if t = {n1, . . . ,nk}
commit(δ) Δ= commit Fresh(n1) as q1; . . . ;commit Fresh(nk) as qk ; if δ = {n1 	→ q1, . . . ,nk 	→ qk}

Fig. 9. Helpers

We cannot pull newtoken out of loops, though, because the typing rules prevent loop
bodies to commit tokens that were generated outside the loop. Consider the following
variation of the earlier example:

C x; while x ( x = new C; f(x); r(x); );

In contrast to the erroneous expression further up, this expression is well-typed. The
inference algorithm generates the following annotated expression for it:

newtoken m; C x; commit Fresh(m) as Rd; while x (

newtoken n; x = new Fresh(n) C; <Fresh(n)>f(x);

commit Fresh(n) as Rd; r(x); );

The newtoken command commutes with all other commands, and therefore the infer-
ence algorithm generates newtoken at the beginning of loop bodies only (leaving token
generation at the beginning of method bodies implicit).

Subqualifying Constraints. To deal with subqualifying the inference algorithm gener-
ates subqualifying constraints. We extend qualifiers by existential variables:

?α ∈ ExVar (existential variables) p,q ∈ Qual ::= · · · | ?α Δ 
?α�Qual

We partition the set of qualifiers into the sets PQual of persistent qualifiers and TQual
of transient qualifiers:

TQual
Δ= {Fresh(n) | n ∈ Name} PQual

Δ= Qual\TQual

A substitution is a function from existential variables to closed persistent qualifiers:

ρ ∈ Subst
Δ= ExVar ⇀ (PQual\ExVar)

Note that existential variables range over persistent qualifiers only. Substitutions ρ in-
duce functions ρ̂ in PQual→ PQual: ρ̂(?α) = ρ(?α) if ?α ∈ dom(ρ); ρ̂(q) = q other-
wise. Let ρ̂(T ) (resp. ρ̂(e)) denote the type (resp. expression) obtained by substituting
all qualifier occurrences q by ρ̂(q). We omit the hat when no ambiguities arise.

A constraint set contains pairs of the forms (q,B) and (p,q):

C ∈ Constraints
Δ= SetOf(PQual×QualBound ∪ PQual×PQual)

A Δ-solution of a constraint set C is substitution ρ such that Δ 
 ρ(q) � B and ρ(p) <:
ρ(q) for all (q,B), (p,q) in C .
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Inference Algorithm. The inference judgment has the following format, where ts,Γ,δpre

and T are inherited attributes, and the other attributes are synthesized.

ts;Γ 
 E : T ⇓ (Γ′,δ, ts′,t,C ) for (δpre
e)

The synthesized annotated expression e is such that |E| = e. An implementation does
not need to compute e or track δpre, as the other attributes do not depend on them.

– (Γ,δpre) represents the precondition for e.
– (Γ′,(δpre;δ)) represents the postcondition for e.
– ts contains the tokens in scope before e. ts has a stack structure that reflects the

nesting of enclosing while loops.
– ts′ contains the tokens in scope after e.
– t contains all tokens n in rest(ts′) such that the type derivation for e has a leaf of

the form Δ 
 Fresh(n)�Writeable. These tokens must be tracked because they
cannot be committed to Rd in front of enclosing while-loops. (See the example on
page 539.)

– C are the subqualifying constraints required for well-typedness of e.

For the details of the inference algorithm we refer to our report [17], where the follow-
ing soundness theorem is proven:

Theorem 3 (Soundness of Inference). Suppose ran(Δ)⊆QualBound, (Δ 
 Γ,T : ok),
Γ, T do not contain existential variables, /0;Γ 
 E : T ⇓ (Γ′, , t, ,C ) for ( /0
e) and ρ Δ-
solves C . Then (Δ 
 {Γ, /0}newtokens(t);ρ(e);commit(δ) : T{(δ;ρ) ◦ Γ′, /0}) for δ =
{(n,Any) | n ∈ t, δ̂(n) = Fresh(n)}.

4 Related Work

Immutability. Our type system supports class immutability, object immutability, and
read-only references, allows flexible object initialization, and is simple and direct (build-
ing only on the access qualifiers Rd, RdWr and Any). To the best of our knowledge, no
existing type system for a Java-like language meets all these goals at once: Our earlier
system Jimuva [18] supports object immutability and open-world class immutability,
but requires immutable objects to be initialized inside constructors and does not meet
the goal of simplicity and directness, as it requires ownership types, effect annotations
and anonymity annotations in addition to access qualifiers. IGJ [34] is simple, direct and
supports both object immutability and read-only references, but requires immutable ob-
jects to be initialized inside constructors and its support for deep immutability is limited.
For instance, IGJ has no way of enforcing that the character array inside an immutable
string is part of the string and should thus be immutable. This would either require im-
mutable arrays or a special treatment of owned mutable subobjects, neither of which
IGJ supports11. SafeJava [4] and Joe3 [22] are ownership type systems that support
immutable objects with long initialization phases, where the transition from “uninitial-
ized” to “initialized” is allowed through unique object references. In order to maintain

11 IGJ supports immutable arrays initialized by array initializers. This is not enough to check the
String-constructor String(char[] c), because the length of c is not known statically.
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uniqueness they use destructive reads, which is a rather unnatural programming style in
Java-like languages. These systems build on top of expressive ownership type systems,
thus violating our design goals of simplicity and directness. Frozen objects [20] support
immutable objects with long initialization phases, but builds on the Boogie verification
methodology [1], so is not suitable for an independent pluggable type system. The Uni-
verse type system [21] features read-only references. In particular, Generic Universe
Types [12] support covariant class parameters if the main modifier of the supertype is
Any (which is essentially what we and IGJ [34] do).

Unkel and Lam [31] automatically infer stationary fields, i.e., fields that may turn
immutable outside constructors and after previous assignments, and thus are not neces-
sarily final. Their fully automatic analysis requires the whole program. It only detects
fields that turn stationary before their objects have been written to the heap, and is in
this respect more restrictive than our system, which can deal with stack-local regions,
as needed for initializing cyclic structures. On the other hand, our system only works
at the granularity of objects. Interestingly, non-final stationary fields are reportedly
much more common than final fields.

Our system does not address temporary immutability, which would require heavier
techniques in order to track aliasing on the heap. On an experimental level, statically
checking temporary immutability has been addressed by Pechtchanski and Sarkar [24].
On a theoretical level, it is very nicely supported by fractional permissions [5].

Object confinement and ownership. For open-world class immutability, we use qualifier
polymorphism to express several confinement properties. Firstly, we express a variant
of so-called anonymous methods [32] in terms of qualifier polymorphism. Anonymous
methods do not write this to the heap. Our variant of anonymity for constructors of
immutable classes is slightly weaker and forbids that this is written to the heap outside
the Fresh region in which the instance of the immutable class is constructed. Secondly,
by combining the myaccess class parameter with conditions on method types, we can
express that representation objects of immutable objects are encapsulated, thus avoiding
the need to include both access qualifiers and ownership annotations in the system. To
this end, we make use of qualifier-polymorphic methods, similar to owner-polymorphic
methods in ownership type systems [4,9,18,27,33].

It is not clear if the myaccess parameter alone is enough to express tree-structured
ownership hierarchies in general, as facilitated in parametric ownership type systems
(e.g., [8], [4]) through instantiating the owner class parameter by rep or this, and
in the Universe type system [21] through the rep-modifier. Potanin’s system FGJ+c
for package-level confinement [26] is based on a static set of owner constants (for-
mally similar to Rd and RdWr but without the additional access semantics). It seems that
very similar confinement properties as in FGJ+c could be expressed purely in terms of
qualifier-polymorphic methods and without the owner constants. A subtle difference,
however, is this: FGJ+c, as most ownership type systems, allows methods to return con-
fined objects, ensuring safety by preventing “outside” class clients from calling such
methods. Our system, on the other hand, prevents methods from returning confined ob-
jects in the first place. In an open world, where class clients may not follow the rules of
the pluggable type system, the latter is the only safe choice.
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Type systems for flexible object initialization. There are several articles on initialization
techniques for non-nullness type systems [13,14,28]. Fähndrich and Xia’s system of
“delayed types” [14] is most closely related to our work, like us using lexically scoped
regions for safe typestate changes, and using a class parameter representing a “delay
time”, similar to our myaccess parameter. Unlike us, Fähndrich and Xia do not address
local annotation inference. Our system is considerably simpler than theirs, because the
initialization problem for immutability seems inherently simpler than the initialization
problem for object invariants. Intuitively, there are two reasons for this: Firstly, whereas
for object immutability the end of the initialization phase is merely associated with the
disposal of a write permission, for object invariants it is associated with an obligation to
prove the invariant. Secondly, a major complication in [14] is the need to permit insert-
ing uninitialized objects into initialized data structures. This is essential to satisfactorily
support cyclic data structures, but requires the use of existential types. Fortunately, this
complication does not arise for immutability, because no objects (whether uninitialized
or not) ever get inserted into immutable data structures.

J\mask [28] is a type-and-effect system for reasoning about object initialization. It is
based on a rich language for specifying partial object initialization, including primitives
for expressing that fields may or must be uninitialized, as well as conditional assertions.
It is designed to guarantee that well-typed programs never read uninitialized fields. It
is not designed for immutability, and consequently offers no support for specifying
deep immutability or object confinement, as needed for object and class immutability.
J\mask (based on a rich specification language for partial object initialization) is quite
different in nature to Fähndrich and Xia’s delayed types (based on a variant of lexi-
cally scoped regions combined with dependent types). Qi and Myers rightly claim that
J\mask supports some initialization patterns that delayed types do not, giving bottom-
up initialization of trees with parent pointers as an example where delayed types cannot
establish object invariants in the required order. This example causes no problems for
our immutability system, see Figure 3. In fact, our annotations for this example avoid
conditional assertions and are thus simpler than J\mask’s (but this comparison is not
quite fair, as J\mask and our system have different goals).

Lexically scoped regions. Stack-local regions are closely related to lexically scoped
regions [30] for region-based memory management (see also [16]). Whereas, in region-
based memory management, lexical scoping is used to statically determine when mem-
ory regions can safely be deallocated, here we use it to statically determine when the
types of memory regions can safely be changed. Lexically scoped regions do not have
a separate commit-statement, but associate the end of region lifetimes with the end of
region name scopes. We opted for a separate commit-statement, because it simplifies
the description of our inference algorithm, which works by a left-to-right pass over the
abstract syntax tree, inserting commits when field or method types enforce this.

5 Conclusion

We presented a pluggable type system for immutable classes, immutable objects, and
read-only references. The system supports flexible initialization outside constructors
by means of stack-local regions. Our system shows, for the first time, that support for
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the various forms of immutability, including open-world class immutability, is possible
without building on top of an expressive ownership type system (though the class pa-
rameter myaccess effectively provides some notion of confinement) and without using
effect annotations or unique references. A lesson we have learned is that parametric
qualifier polymorphism is a very expressive tool, both for flexibility and confinement.

Acknowledgments. We thank the anonymous ECOOP referees and James Noble for their
careful reviews, and comments and critique that helped improve the paper.
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Abstract. Program monitoring is a well-established and efficient ap-
proach to security policy enforcement. An implementation of program
monitoring that is particularly appealing for application-level policy en-
forcement is monitor inlining: the application is rewritten to push moni-
toring and policy enforcement code into the application itself. The
intention is that the inserted code enforces compliance with the pol-
icy (security), and otherwise interferes with the application as little as
possible (conservativity and transparency).

For sequential Java-like languages, provably correct inlining algorithms
have been proposed, but for the multithreaded setting, this is still an
open problem. We show that no inliner for multithreaded Java can be
both secure and transparent. It is however possible to identify a broad
class of policies for which all three correctness criteria can be obtained.
We propose an inliner that is correct for such policies, implement it for
Java, and show that it is practical by reporting on some benchmarks.

1 Introduction

Program monitoring is a well-established and efficient approach to prevent po-
tentially misbehaving software clients from causing harm, for instance by vio-
lating system integrity properties, or by accessing data to which the client is
not entitled [1,2]. The conceptual model is simple: Potentially dangerous actions
by a client program are intercepted and routed to a policy decision point in
order to determine whether the actions should be allowed to proceed or not. In
turn, these decisions are routed to a policy enforcement point, responsible for
ensuring that only policy-compliant actions are executed. For the purpose of this
paper, we will assume that policies are given as security automata in the style
of Schneider [3].

Program monitoring can be implemented in different ways. The monitor can
be external to the program being monitored: it could for instance be implemented
as a proxy API, as part of a virtual machine, or as part of an operating system
kernel.
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An alternative implementation approach which is particularly appealing for
application-level policy enforcement is monitor inlining [2]. Here, code rewriting
is used to push policy relevant functionality into the client programs themselves.

For sequential programs, external monitoring and inlined monitoring enforce
the same class of policies [4].1 We show that, somewhat surprisingly, this is not
true for multithreaded programs. The fact that the inlined monitor can only
influence the scheduler indirectly – by means of the synchronization primitives
offered by the programming language – has the consequence that certain policies
cannot be enforced securely and transparently by an inlined reference monitor.

We give a simple example of a policy which an inliner is either unable to en-
force securely, or else the inliner will need to affect scheduling by locking across
the entire method call. This, however, can result in loss of transparency, perfor-
mance degradation and, possibly, deadlocks. It is, however, possible to identify a
large class of policies for which inlining remains a practical and efficient enforce-
ment technique. We propose one such class, the race-free policies, and show that
policies in this class can be enforced correctly by inlining in multithreaded Java.
Moreover, we argue that the class of race-free policies is in fact the largest class
of policies that is meaningful in a multi-threaded setting; the non-race-free poli-
cies by definition rely on execution constraints that go beyond those enforceable
by inlining.

In particular, for many existing inlined monitoring systems whose formal
treatment did not include multithreading but whose implementations could deal
with multithreading [5,6,7], a non-race-free policy does most likely not express
what the policy writer intended.

In summary, the paper makes the following contributions:

– We show that inlined monitoring in multithreaded Java is strictly less pow-
erful than external monitoring.

– We characterize a class of policies that can be correctly enforced by inlining.
– We describe the design of an inlining algorithm and prove it correct for the

identified class of policies.
– We report on our experience with a prototype implementation.

Finally, we believe that our study of the impact of multithreading on program
rewriting in the context of monitor inlining is a first step towards a formal
treatment of more general aspect implementation techniques in a multithreaded
setting. Indeed, our policy language is a domain-specific aspect language, and
our inliner is a simple aspect weaver.

1.1 Related Work

Schneider [3] proposed the use of automata as a tool to formalize security poli-
cies, and monitor inlining to enforce such policies was examined in [2,8]. The
PoET/PSLang toolset by Erlingsson [8] implements monitor inlining for Java.

1 If we consider broader classes of policies than those expressible by security automata,
program rewriting can enforce strictly more policies.
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That work represents security automata directly in terms of Java code snippets,
making it difficult to formally prove correctness properties of the approach. Sub-
sequent work on monitor inlining that addresses correctness properties includes
[9] and [10], but these papers only consider sequential programs. Several papers
[8,11,7,12] report on inliner implementations for multithreaded Java-like pro-
grams with locking regimes that appear essentially identical to the one used in
our example algorithm. None of these works, however, analyze the implications of
multithreading and locking on the enforceable class of policies. In previous work
[13] we have examined the implication of locking across security relevant method
calls, and to which extent transparency can be preserved in such a setting.

Edit automata [14,15] are examples of security automata that go beyond pure
monitoring, as truncations of the event stream, to allow also event suppressions
and insertions. As a consequence, edit automata can enforce a richer class of poli-
cies, the infinite renewal policies. A practical implementation of edit automata
based on inlining is the Polymer system [6]. The main point of Polymer is to
support composition of policies, and studying the impact of concurrency is left
for future work.

There are many policy enforcement techniques, and the question of what
classes of policies each policy enforcement technique can handle has received a
considerable amount of attention. Schneider [3] kicked off this line of research,
and his results were refined and extended by Viswanathan [16], Hamlen et al. [4]
and others. Hamlen et al. distinguish three classes of enforcement mechanisms:
static analysis, execution monitoring and program rewriting. They prove that
when an execution monitor is afforded the same collection of intervention capa-
bilities as an inliner, the inlining approach is strictly more powerful. This paper
identifies an important domain where an external execution monitor has more
intervention capabilities: in particular, an external execution monitor can freeze
all threads in a program, whereas an inliner can only influence other threads by
means of the synchronization primitives offered by the programming language.

Finally, inlining is closely related to aspect weaving. Aspects have been
proposed by many authors as an implementation technique for security pol-
icy enforcement [14,17,18,19]. Other authors have generalized the events that an
inlined monitor can see from method invocations and returns to program events
specified by more general pointcut expressions [12].

1.2 Overview of the Paper

The rest of this paper is structured as follows. In Section 2, we briefly discuss the
formal model of the Java Virtual Machine that we use in the rest of the paper.
Next, in Section 3, we discuss what security policies we consider in this paper,
and we introduce notation for them. Then we define the notion of inliner, and
the correctness properties for inliners. Section 5 shows that these correctness
criteria cannot be met for the policies and programs that we consider. The
following section introduces the class of race-free policies, and Section 7 proposes
an inlining algorithm and shows it is correct for all race-free policies. Then we
report on experience with our implementation, and we offer a conclusion.
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2 Program Model

We want to prove properties of inliners that operate on Java bytecode. The
inlined code will monitor the interaction of the bytecode with a given API.
We abstract from the API implementation: it will in many cases be a native
implementation as policies typically talk about methods that perform IO.

Hence, our formal model is a standard model of the JVM extended with fa-
cilities to call an external API. Most of the results in this paper do not depend
on the details of this formal model: the limitations we identify for monitor inlin-
ing in a multithreaded setting hold for a wide class of imperative programming
languages and execution environments. In this section, we discuss those aspects
of the formal model that are relevant for the paper. An appendix gives a more
detailed exposition, as well as proofs for the correctness of the example inliner
that necessarily depend on these details.

The formal model is a standard small-step operational semantics that defines
a transition relation→JVM on JVM configurations. An execution E of a program
P is a (possibly infinite) sequence of JVM configurations C0C1 . . . where C0 is
the initial configuration. The external API is modeled as a set of classes (disjoint
from that of the client program) for which we have access only to the signature,
but not the implementation, of its methods. It is essential that we perform API
calls in two steps, to correctly model the fact that API calls are non-atomic
in a multithreaded setting. When an API method is called in some thread a
special API method stack frame is pushed onto the call stack, as detailed in the
appendix. The thread can then proceed by returning or throwing an exception.
When the call returns, an arbitrary return value of appropriate type is pushed
onto the caller’s evaluation stack; alternatively, when it throws an exception, an
arbitrary, but correctly typed exceptional activation record is returned.

For the purpose of this paper, we assume sequential consistency of the JVM
memory. This means we can reason about multithreaded executions as inter-
leavings of single-thread executions, compatible with the happens-before order.
The happens-before order [20] is a partial order on the transitions in an execu-
tion. It consists of the program order (ordering of two actions performed by the
same thread) and the synchronizes-with order (order induced by synchronization
constructs), and the transitive closure of the union of these.

The real Java memory model is weaker and this impacts our work in interest-
ing ways, but studying this impact is left for future work.

The JVM execution steps that are of interest in this paper are the steps where
an API method is entered or exited. Given an execution E the observable trace
ω(E) of E is defined as follows:

ω(C) = ε

ω(CC′E) = α ω(C′E) if C
α−→JVM C′

ω(CC′E) = ω(C′E) if C
τ−→JVM C′

where a transition from C to C′ performs an observable action α, denoted
C

α−→JVM C′, if and only if it transitions from the client code to the API or
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vice versa. Specifically, we represent a call from client code bound at run time
to an API method c.m on an object o with arguments v by a thread tid as

C
(tid ,c.m,o,v)↑−−−−−−−−−→JVM C′, and a normal return from this call with return value r

as C′′ (tid ,c.m,o,v,r)↓−−−−−−−−−−→JVM C′′′. We represent an exceptional return from this call

with exception object t as C′′ (tid ,c.m,o,v,t)⇓−−−−−−−−−−→JVM C′′′. All transitions other than
the above are non-observable, denoted C

τ−→JVM C′.
We refer to actions (tid , c.m, o,v)↑, (tid , c.m, o,v, r)↓, and (tid , c.m, o,v, t)⇓

as before actions, after actions, and exceptional actions, respectively, and we
collect them in sets Ω↑, Ω↓, and Ω⇓. We refer to after and exceptional actions
together as end actions, and we use start action as a synonym for before action.

The set of executions of a program P is exec(P ). We define the set T (P ) of
traces of P as T (P ) = {ω(E) | E ∈ exec(P )} .

We will assume for simplicity that program and API do not share fields.
This is not a restriction, as shared data can be modeled using fields defined in
the API implementation and accessed with getters and setters. This effectively
makes these field accesses observable.

In our program model all interactions between client code and API happen
through method invocations, and in such a setting sets of traces as defined above
are an adequate model for program behavior [21,22]: two programs with the same
set of traces are observationally equivalent.

3 Security Policies

In this paper we consider only security policies that can be represented as security
automata [3]. A security automaton is an automaton A = (Q, δ, q0) where Q is
a countable (not necessarily finite) set of states, q0 ∈ Q is the initial state, and
δ : Q×Ω ⇀ Q is a (partial) transition function, where Ω = Ω↑ ∪Ω↓ ∪Ω⇓. All
states q ∈ Q are viewed as accepting. Note that our notion of policy assumes
that policies only talk about API method invocations and returns. Many existing
enforcement systems make the same assumption ([8,6]). This design decision
limits our abilities to, for instance, perform any detailed data flow tracking.
Policies in such a framework are typically sparse: Only a small number of API
calls are actually security relevant, and calls to these methods are infrequent.
But, the framework is sufficiently rich to allow a wide range of interesting policies
to be expressed, and, in particular, it serves well as a generic setting in which to
examine the effects of multithreading.

Our work uses the ConSpec language [23] for policy specification. ConSpec is
similar to PSlang [8], but it has a formal semantics mapping ConSpec specifica-
tions to security automata.

An example of a ConSpec specification is given in Figure 1. The syntax is
intended to be largely self-explanatory: The specification in Figure 1 states that
the program has to ask the user for permission each time it intends to send a
file over bluetooth. It does so by storing after a confirmation dialog what file
the user has authorized to be sent, and to what URL it can be sent. Before an
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SECURITY STATE String requestorURL,
String requestedFile;

BEFORE BluetoothToolkit.sendFile(String destURL, String file)
PERFORM

requestorURL.equals(destURL) &&
requestedFile.equals(file) -> { }

AFTER reply = JOptionPane.showConfirmDialog(String query)
PERFORM

reply != 0 && goodFileQuery(query) -> {
requestedFile = queryFile(query);
requestorURL = queryRequestor(query) }

true -> { }

The macro goodFileQuery(query) returns true iff query is a well formulated file send
query and queryRequestor(query) and queryFile(query) returns the requestor and
file substrings of query respectively.

Fig. 1. A security specification example written in ConSpec

invocation of the sendFile method, it is checked that the actual parameters of the
invocation correspond to the stored filename and URL. Hence, if the program
would not pop up a confirmation dialog before sending, or if it would send a
different file or send to a different URL than those confirmed in the dialog, the
policy will block the send.

The example has two security relevant methods, JOptionPane.showConfirm-
Dialog and BluetoothToolkit.sendFile. We refer to invocations and returns
of such security relevant methods as security relevant actions. The specification
expresses the constraints on security relevant actions in terms of guarded com-
mands where the guards are boolean expressions and the updates are lists of
assignments to security state variables. Both the guards and the assignments
may mention the security state and the method call parameters. For an af-
ter action they may also mention the return value. In case the specification
needs to talk about the current thread identifier, a ConSpec policy can call the
Thread.currentThread() method. The only operation defined on thread iden-
tifiers is equality testing, so a policy can specify for instance that two invocations
should happen in the same thread.

The security state declaration is a list of variable declarations. These variables
represent the state space of the security automaton. For simplicity, we require
that the initial values for the security state variables specified by the policy are
the default initial values for their corresponding Java types. For example, the
requestedFile variable in Figure 1 will initially be null.

An event clause defines how the security automaton reacts to a security rel-
evant action. The event modifiers BEFORE, AFTER and EXCEPTIONAL specify if
the event clause applies to a before action, after action or exceptional action.
The method signature following the event modifier specifies the method that the
event clause applies to. A sequence of guarded updates specifies the behaviour of
the security automaton in response to actions matching the event clause. Guards
are evaluated top to bottom, in order to obtain a deterministic semantics. For
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the first guard that evaluates to true, the corresponding update block is exe-
cuted. If no clause guards hold, the call is violating, i.e. the security automaton
does not accept the action. We restrict our attention to security automata that
always accept return and exceptional actions. That is, we require that if the
event modifier is AFTER or EXCEPTIONAL, the guards are exhaustive.

A security automaton can be derived from a ConSpec policy in the obvious
manner. We refer to [9] for details.

Definition 1 (Policy Adherence). The program P adheres to security policy
S, if for all executions E of P , ω(E) is accepted by S.
We identify a policy S with the language of traces of observable actions that it
accepts, and hence we write policy adherence as T (P ) ⊆ S.

4 Inlining Correctness Properties

A security policy specified as a security automaton can be enforced by an ex-
ecution monitor [3]. An execution monitor is an enforcement mechanism that
can monitor the observable steps that a target program takes, and that can ter-
minate the program if a step does not comply with the policy. Such a monitor
could for instance be implemented in the Java Virtual Machine.

An alternative implementation mechanism for execution monitoring is inlined
reference monitors [5]. Inlining refers to the procedure of compiling a policy into
a bytecode based reference monitor and embedding it into a target program.
Formally, an inliner is a function I which for each policy S and program P
produces an inlined program I(S, P ). The intention is that the inserted code
enforces compliance with the policy, and otherwise interferes with the execution
of the target program as little as possible.

In this section we look at traditional correctness properties for inlined moni-
tors. There are three correctness properties of fundamental interest (cf. [15],[4]):
namely, the inliner should enforce policy adherence (security), it should not add
new behavior (conservativity), and it should not remove policy-adherent behav-
ior (transparency). More formally:

Definition 2 (Inliner Correctness Properties). An inliner I is:

– Secure if, for every program P , every trace of the inlined program I(S, P )
adheres to S, i.e. T (I(S, P )) ⊆ S.

– Conservative if, for every program P , every trace of the inlined program
I(S, P ) is a trace of P , i.e. T (I(S, P )) ⊆ T (P ).

– Transparent, if every adherent trace of the client program is also a trace of
the inlined program, i.e. if T (P ) ∩ S ⊆ T (I(S, P )).

Inliners are only allowed to rewrite the program, and not the API. This is a
realistic restriction. Even if an inliner rewrites all Java code, including the Java
API implementation, native calls for instance for IO will remain. In our model,
the Java API would then be considered part of the program, and the monitored
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API would only consist of the natively implemented methods. In principle it
would be possible to rewrite the native implementations as well, but the same
issues would reoccur at the level of system calls, or, ultimately, of physical IO.

An upshot of the model is that an inliner can never prevent an API method
from returning: inlined code can only be executed after the call has returned. This
is why we impose the restriction on policies that after actions and exceptional
actions should always be allowed (have exhaustive guards in ConSpec, i.e. at
least one guard should evaluate to true). These actions can still specify updates
to the security state. In particular, they might cause the automaton to enter a
state from which no further actions are possible.

5 Limitations of Inlining in a Multithreaded Setting

In this section, we show that the traditional correctness criteria for inlined mon-
itors are too strong in a multithreaded setting. While it is possible to securely
and transparently enforce any policy specified as explained in Section 3 by an ex-
ternal monitor implemented as part of the Java Virtual Machine, it is impossible
to do this with an inlined monitor.

A key factor that explains why there are policies that cannot be enforced by
inlining is the fact that the inlined code can only control the scheduler indirectly
through locking (whereas an external monitor can “freeze” the execution of the
program while taking security decisions). Here is an example that illustrates
this. Consider the policy in Figure 2. This policy says that C.n() can only be
called after a call to C.m() has been initiated (but not necessarily returned).
So the trace T1 = (tid , C.m, o,v)↑, (tid ′, C.n, o′,v′)↑ is allowed, but the trace
T2 = (tid ′, C.n, o′,v′)↑, (tid , C.m, o,v)↑ is not allowed by the policy.

But it is impossible to write any program P that has the trace T1 but that
does not have the trace T2 (unless API method C.m collaborates, for instance
by releasing a lock that is visible to the client on entry to C.m. But clearly this
is not something one can assume about every API method).

Consider an example program Pex that has trace T1, for instance the pro-
gram that starts two independent threads where one calls C.m() and the other
calls C.n(). Assume also that no lock is shared between the API and the client
program. There is no way an inliner can rewrite this program to securely and
transparently enforce this policy, because the inliner has no way of synchronizing
with the end of the before action of the C.m() call. The inliner can synchronize

SECURITY STATE
boolean ok = false;

BEFORE C.m()
PERFORM

true -> { ok = true; }
BEFORE C.n()

PERFORM
ok -> {}

Fig. 2. Not enforceable by inlining

SECURITY STATE
boolean ok = false;

AFTER C.m()
PERFORM

true -> { ok = true; }
BEFORE C.n()

PERFORM
ok -> {}

Fig. 3. Enforceable by inlining
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with the return from C.m(), for instance by acquiring a lock across the call to
C.m() and forcing the thread that calls C.n() to wait for that lock. But in that
case, the inliner is actually enforcing the stronger policy shown in Figure 3.

The key observation is that such synchronization is impossible for the policy
in Figure 2 (unless with help from the API, but the inliner cannot rewrite the
API), and hence the ordering of the two before actions is up to the scheduler.
Whatever the inliner does to the program, the inlined program will either have
both traces (and thus the inliner was not secure) or it will have neither of the
two traces (and thus the inliner was not transparent).

Lemma 1. Any program that has an observable trace with two consecutive before
actions, also has the same observable trace with these two before actions swapped.

Proof. Two consecutive before actions are necessarily in different threads: within
one thread, a before action is either the final action of that thread, or it is followed
by an after or exceptional action.

For two consecutive before actions in different threads, there can be no happens-
before relation between the two actions. This follows from the fact that the only
way to introduce such a happens-before relation would be the synchronization on
a lock: one thread would have to acquire the lock before doing the before action,
and the other thread would have to release the lock after doing the before action.
However, this would imply that this lock is shared between client program and
API (as a thread is in client code immediately before a before action, and in the
API immediately after a before action). Since we have ruled out such sharing,
the result follows. ��
The assumption that there is no shared lock between client and API is a rea-
sonable assumption for many API’s, and in particular for the native API.

Theorem 1. No inliner can be secure and transparent for the policy in Figure 2.

Proof. Consider the output P ′
ex of the inliner for the given policy and for the

example program Pex above. The program Pex has the traces T1 and T2 discussed
above. By lemma 1, P ′

ex either has both T1 and T2 (and hence the inliner was
not secure on Pex), or it has neither of these traces (and hence the inliner was
not transparent for Pex.) ��

6 Race-Free Policies

6.1 Definitions and Properties

Generalizing from the example in Figure 2, the key issue is that no client pro-
gram (not even after inlining) can arbitrarily constrain the set of observable
traces. Given a certain trace of observable actions, in general there will be per-
mutations of that trace that are also possible traces of the client program no
matter what synchronization efforts the client does. These permutations that
are always possible are captured by the notion of client-order-preserving permu-
tations. (Recall that start actions are before actions, and that end actions are
after or exceptional actions.)
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Definition 3. A permutation π(T ) of a trace T of observable actions is client-
order-preserving if, for any i and j such that i < j and Ti is an end action and
Tj is a start action, π(i) < π(j).

The intuition behind the definition is the following: the client can control start
actions, and can only observe end actions. If a start action comes later than an
end action, the client could have synchronized to ensure this ordering. The client
cannot perform such synchronization for concurrent before actions or concurrent
after actions. The definition also implies that actions within a single thread can
never be permuted: within a thread, start and end actions are strictly interleaved.

If a policy accepts a given trace, but rejects a client-order-preserving permu-
tation of the trace, then that policy is not securely and transparently enforceable
by inlining client code. This is captured by the following definition:

Definition 4. A policy is race-free iff, for any trace T and any client-order-
preserving permutation T ′ of T , if T is allowed, then T ′ is allowed.

As an example, the policy in Figure 1 is race-free. As a broader class of exam-
ples consider the class of policies where the security state is a set of permissions,
before actions require a permission to be present in this set and cause the per-
mission to be removed, and after actions restore the permission. Such policies
are race-free. This can be checked for instance by using Proposition 2 below.

We show further that the class of race-free policies is a lower bound on the
class of policies enforceable by inlining by constructing an inliner that is secure,
transparent and conservative for this class of policies.

The bound is tight if we want the inliner to work for all possible API imple-
mentations. This follows from the following theorem.

Theorem 2. No inliner can be secure and transparent for a non-race-free policy
for all possible API implementations.

Proof. Let T be a trace accepted by the policy, and T ′ a client-order preserving
transformation of T that is not accepted. Consider an API implementation that
performs no synchronization. By an argument similar to the one in Lemma 1,
any program that has the trace T necessarily also has the trace T ′: a client-order
preserving permutation is always compatible with the happens-before ordering
if the API does not perform any synchronization. Then, consider any program P
that has trace T . In order to be transparent, the inliner has to produce an inlined
P ′ that has T . But then P ′ also has T ′ and hence the inliner is not secure. ��
An interesting question is how to check if a policy is race-free.

Proposition 1. It is a necessary and sufficient condition for race-freedom that
all start actions are right-movers and all end actions are left-movers in the set
of allowed observable traces. (I.e., if a trace T is allowed, then swapping a pair
of consecutive actions x, y in different threads where x is a start action or y is
an end action yields an allowed trace.)

Proof. Such swappings generate the client-order preserving permutations. ��
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In particular, if such swappings always have the same effect on the policy state,
we know the policy is race-free:

Proposition 2. The following is a sufficient condition for race-freedom. For
any state s1 of the security automaton corresponding to the policy, and for any
pair of transitions with different thread identifiers starting in that state, s1

x→ y→
s2 where x is a start action or y is an end action, it holds that s1

y→ x→ s2.

Proof. These conditions imply the conditions from Proposition 1. ��
Sufficient syntactical conditions for the conditions of proposition 2 are easily
identified. For example, for the common case where the security state is a set of
permissions, a sufficient condition is that start actions only consume permissions
from the set, and after actions only add permissions.

6.2 Discussion

Are there interesting or practically relevant policies that are not race-free? A
policy that is not race-free imposes constraints not only on the client program,
but also on the API implementation and even on the scheduler. Hence, we argue
that such policies never make sense. Even if an enforcement mechanism (such
as an external execution monitor) could enforce the policy, the result of the
enforcement is most likely not what the policy writer intended to express. Policies
impose constraints on API method invocations because of the effects (such as
writing a file, reading from the network, activating a device, . . . ) that these API
implementations have. A policy such as the policy in Figure 2 intends to specify
that initiation of one effect should come after the initiation of another effect. But
without further information about the API implementations and the operation
of the scheduler, there is no guarantee that enforcing this ordering on the API
invocations will also enforce this ordering on the actual effects.

In other words, the race in the policy that makes it impossible for an inliner
to enforce the policy, also makes it impossible to interpret method invocations
soundly as initiations of effects.

Hence, a policy that is not race-free either indicates a bug in the policy (for in-
stance, the policy writer intended to specify policy 3 instead of policy 2 – an easy
mistake to make as in the single-threaded setting both policies are equivalent),
or it is an indication of a misunderstanding of the policy writer (for instance the
policy writer considers the start of the API method invocation as a synonym of
the start of the effect the API method implements).

As a consequence, the practicality of inlining as an enforcement mechanism is
not at stake, and detection of races in policies is useful as a technique to detect
bugs in policies.

7 Example Inliner

In this section we propose an inlining scheme that is secure, conservative and
transparent for race-free policies.
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The state of the inlined reference monitor might possibly be updated by sev-
eral threads concurrently. The updates to this state must therefore be protected
by a global lock. A key design choice is whether to keep holding this lock during
the API call, or to temporarily release the lock during the call and reacquire it
after the call has returned.

The first choice (locking across calls) is easier to prove secure, as there is a
strong guarantee that the updates to the security state happen in the correct
order. We will see below that this is much trickier for an inliner that releases the
lock during API calls. However, an inliner that locks across calls can introduce
deadlocks in the inlined program and is thus not transparent. Consider for in-
stance an API with a barrier method B that allows two threads to synchronize
as follows: When one thread calls B, the thread blocks until the other thread
calls B as well. Suppose this method is considered to be security-relevant, and
the inliner, to protect its state, acquires a global lock while performing each
security-relevant call. For a client program that consists of two threads, each
calling B and then terminating, the inliner will introduce a deadlock, as one
thread blocks in B while the other thread blocks on the global lock introduced
by the inliner.

Even if it does not lead to deadlock, acquiring a global lock across a potentially
blocking method call can cause serious performance penalties.

For this reason, our algorithm releases the lock before calling an API method.
In fact, our algorithm ensures that the global lock is only held for very short
periods of time. The design and security proof of an inliner locking across calls
is given in [13].

It is worth emphasizing that the novelty in this section is not the inlining
algorithm itself: the algorithm is similar to existing algorithms developed in the
sequential setting [10,5,6,9] and the locking strategy is relatively straightfor-
ward. The novelty is the correctness proof. The same proof will be applicable to
other inliners showing that, when one restricts oneself to race-free policies, these
inliners are also correct.

7.1 The Inlining Algorithm

In order to enforce a policy through inlining, it is convenient to be able to
statically decide whether a given policy clause applies to a given call instruction.
Therefore, in this example inliner, we impose the restriction on policies that they
should have simple call matching. We say a policy has simple call matching if for
any security-relevant method c.m, an invokevirtual d.m call is bound at run
time to method c.m if and only if d = c. Essentially, this means that we ignore
the issues surrounding inheritance and dynamic binding. These are orthogonal
to the results of this paper, and it has been described elsewhere how to deal with
them [10].

The inliner we propose, IEx , replaces each instruction L : invokevirtual
c.m where c.m is security-relevant by JVML code corresponding to the code in
Figure 4. The replacement contains blocks of code to update the security state
according to the before, after and exceptional clauses respectively. These three
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Inlined label Instruction Inlined label Instruction

L: ldc SecState
monitorenter

astore 0
...
astore n − 1

beforeG1 : [eval before G1]
ifeq beforeG2

[before update 1]
goto beforeEnd
...

beforeGi : [eval before Gi]
ifeq exit
[before update i]

beforeEnd: aload n − 1
...
aload 0

ldc SecState
monitorexit

invoke: invokevirtual c.m

invokeDone: ldc SecState
monitorenter

astore n

afterG1 : [eval after G1]
ifeq afterG2

[after update 1]
goto afterEnd
...

afterGj : [eval after Gj]
ifeq exit
[after update j]

afterEnd : aload n

ldc SecState
monitorexit

afterReleased: goto done

exceptionalG1 : ldc SecState
monitorenter

[eval exceptional G1]
ifeq exceptionalG2

[exceptional update 1]
goto exceptionalEnd
...

exceptionalGk : [eval exceptional Gk]
ifeq exit
[exceptional update k]

exceptionalEnd: ldc SecState
monitorexit

exceptionalReleased: athrow

exit: iconst −1
invokestatic System.exit

done:

Added entries in exception handler array:

From To Target Type
invoke invokeDone exceptionalG1 any
L exceptionalReleased exit any
exit done exit any

Fig. 4. The inlining replacement of L: invokevirtual c.m

blocks are referred to as blocks of inlined code. The security state is maintained
as static fields of an auxilliary class called SecState, created by the inliner. The
inliner locks the security state by acquiring the lock associated with the SecState
class, and stores arguments to the method call for use in event handler code.
Each piece of event code evaluates guards by reference to the security state and
the stored arguments, and updates the state according to the matching clause,
or exits, if no matching clause is found.

The Java Virtual Machine Specification [24] states that some unchecked ex-
ceptions such as InternalError or UnknownError can occur at any instruction.
In the theoretical development, we will ignore this possibility, i.e. we assume an
error-free JVM. Our implementation defensively catches any such exception and
exits the program. With such an implementation, security is guaranteed even
on JVM’s that do throw such exceptions, but clearly transparency is no longer
guaranteed should the JVM not be error-free.
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7.2 Correctness Properties

In this section we show that the inliner presented above is conservative, trans-
parent, and secure for race-free policies. In view of theorem 2 this is the best we
can do: The assumption of race freedom cannot be lifted without losing trans-
parency. As mentioned, other design choices are possible: For instance we may
choose to lock across the security relevant call [13]. Such a design choice sacrifices
transparency in favour of security.

To first prove security, the key observation is the following: While the se-
quence of actions seen by the monitor might be different from the sequence of
actual actions happening, the second is actually a client-order preserving per-
mutation of the first. And hence, by the definition of race-free policy, if the first
is accepted by the monitor, then the second is necessarily also accepted by the
policy. So if the monitor allows the execution, it is actually compliant with the
policy.

Theorem 3. The example inliner IEx is secure for race-free policies.

The full proof of the theorem is provided in the appendix of this paper. For
conservativity, our proof is based on the observation that there is a strong cor-
respondence between executions of an inlined program, and executions of the
underlying program before inlining. From an execution of the inlined program,
one can erase all the inlined instructions and the security state, and arrive
at an execution of the underlying program. Moreover, such an execution and
its erasure have the same observable trace of actions, hence conservativity fol-
lows.

Theorem 4. IEx is conservative.

Again, a full proof is provided in the appendix. Finally, for transparency:

Theorem 5. The example inliner IEx is transparent.

Proof. Consider a policy-adherent execution E of P . Insert policy checking steps
into E to obtain a sequence of configurations E′. Then E′ is an execution of the
inlined program. This follows, by induction on the length of E, from the fact
that E adheres to the policy. ��

8 Case Studies and Benchmarks

The inlining algorithm described above has been implemented in Java using the
ASM framework [25]. We present some results and benchmarks of this inliner
in four case studies. The inliner was designed and implemented as part of the
S3MS project, a project that investigates the applicability of inlined reference
monitoring for Java applications on mobile phones. Hence, the case studies are
all Java Micro Edition applications. The applications and the corresponding se-
curity policies are available at http://www.csc.kth.se/~landreas/inlining.
The inlining was performed off-device on an Intel Core 2 CPU at 1.83 GHz with
2 Gb memory. All policies were successfully enforced by our inliner.

http://www.csc.kth.se/~landreas/inlining
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ImageExchange (IE) ImageExchange is a combined server/client application
that allows users to exchange images over a Bluetooth connection.
The policy in this case study restricts the program to only send the file that
was last approved by the user. We adapt the bluetooth and gui API’s slightly
to allow this policy to be conveniently formulated.

Snake (SN) This is a classic game of snake in which the player may submit the
current score to a server over a network connection.
The policy prevents data from being sent over the network after reading
from phone memory.

MobileJam (MJ) The MobileJam application is a Bluetooth GPS based traffic
jam reporter which utilizes the online Yahoo! Maps API.
The policy prevents the application from connecting to any URLs other than
those starting with http://local.yahooapis.com.

BatallaNaval (BN) BatallaNaval is a multiplayer battleship game that com-
municates through SMS messages.
In this case the policy restricts the number of sent SMS’s to a constant.

The benchmarks for the case studies are summarized in table 1.When the
security relevant methods perform IO the runtime overhead of the monitor is
dwarfed by the IO overhead, and is too small to be measured. Since most policies
talk about methods that perform IO, it is fair to say that in practice, there is
close to no performance penalty.

To determine the runtime overhead impact of inlining more precisely, a pro-
gram that invoked an empty dummy security relevant method in a loop was
constructed. The execution time of this loop was then measured before and af-
ter inlining. The inlining caused the execution time to increase from 407 ms
to 1358 ms when the loop was iterated 106 times. This indicates an overhead
in this experiment of 951 nanoseconds per security relevant call. This includes
the time needed to do call disambiguation in the presence of dynamic bind-
ing (something we left out of scope for the theoretical study, see Section 7).
Given that security relevant calls in our framework typically occur at session
rate, this suggest that the runtime overhead of inlining is in practice
negligible.

To summarize, our experiments support the existing evidence [5,6] that inlin-
ing is a practical enforcement technique, even in a multithreaded setting.

Table 1. Benchmarks for the case studies

IE SN MJ BN
Security Relevant Invokes 2 2 4 2
Original Size of Binaries (kb) 35.2 23.2 196.2 210.7
Inlining Duration (s) 0.56 0.49 1.84 1.42
Size increase (%): 1.1 0.7 4.0 0.9

http://local.yahooapis.com
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9 Conclusions and Future Work

Inlining is a powerful and practical technique to enforce security policies. Several
implementations of inliners exist, even for multithreaded programs. Hence, the
study of the correctness of inlining algorithms is important, and has received
a substantial amount of attention the past few years. But, these efforts have
focused on inlining in a sequential setting.

This paper shows that inlining in a multithreaded setting brings a number of
additional challenges. Not all policies can be enforced by inlining in a manner
which is both secure and transparent. Fortunately, these non-enforceable policies
do not appear very important in practice: They are policies that constrain not
just the program, but also the API or the scheduler. We have identified a class
of so-called race-free policies that do allow effective enforcement by inlining,
and we have exhibited a concrete inlining algorithm which satisfies the required
correctness properties.

A number of extensions of this work merit attention. First, we do not yet ad-
dress inheritance. This extension is relatively straightforward: In order to eval-
uate the correct event clause, runtime checks on the type of the callee object
would be interleaved with the checks of the guards. This is spelled out for the
sequential setting in [10] for C#. We do not expect any issues to carry this over
to the multithreaded setting.

Another interesting direction is to consider proof-carrying code (PCC) for
monitor inlining. The advantage of such a framework would be to allow inlining
to be performed outside the application loader’s trust boundary. We have already
realized this for the case of sequential Java, and an extension to multithreaded
Java is currently under way.
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Appendix

This appendix contains the definitions for our formal model of the Java Virtual
Machine, and proofs of the security and conservativity theorems for our example
inliner.

9.1 Formal Model of the JVM

We assume that the reader is familiar with Java bytecode syntax, the Java
Virtual Machine (JVM), and formalisations of the JVM such as [26]. Here, we
only present components of the JVM, that are essential for the definitions in the
rest of the text. A few simplifications have been made in the presentation. In
particular, to ease notation a little we ignore issues concerning overloading.

Preliminary Conventions. We use c for class names, m for method names,
and f for field names. For our purpose it suffices to think of class names as fully
qualified.

To each method is associated a method definition as a pair of an instruction
array and an exception handler array. Exception handlers (b, e, t, c) catch ex-
ceptions of type c (and its subtypes) raised by instructions in the range [b, e)
and transfer control to address t, if the handler is the topmost handler in the
exception handler array that handles the instruction for the given type.

The set of values (of Java primitives and object references) is ranged over by
v. Values of object type are (typed) locations o, or the value null. Locations
are mapped to objects, or arrays, by a heap h. Objects are finite maps of non-
static fields to values. Static fields are identified with field references of the form
c.f . To handle those, heaps are extended to assignments of values to static field
references.

Configurations and Transitions. A configuration C = (h, Λ, Θ) of the JVM
consists of a heap h, a lock map Λ which maps an object o to a thread id tid iff
tid holds the lock of o, and a thread configuration map Θ which maps a thread
identifier tid to its thread configuration Θ(tid) = θ. A thread configuration θ is
a stack R of activation records. For normal execution, the activation record at
the top of an execution stack has the shape (M, pc, s, l), where:

– M is a reference to the currently executing method.
– The program counter pc is an index into the instruction array of M .
– The operand stack s ∈ Val∗ is the stack of values currently being operated

on.
– l is an array of local variables. These include the parameters.

For exceptional configurations, the top frame of an execution stack has the form
(o) where o is the location of an exceptional object, i.e. of class Throwable.

Activation records for API calls are special and are discussed below.
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Definition of the transition relation. We only present the rules for the
bytecode instructions mentioned in the paper. The rules for the other bytecode
instructions are similar and straightforward.

Notation. Besides self-evident notation for function updates, array lookups etc.
the transition rules use the following auxiliary operations and predicates:

– v :: s pushes v on top of stack s
– handler (M, h, o, pc) returns the proper target label given M , heap h, throw-

able o and pc pc in the standard way:
handler (M, h, o, pc) = handler2(H, h, o, pc) with H the exception handler
array of M
handler2(ε, h, o, pc) = ⊥
handler2((b, e, t, c) ·H, h, o, pc) ={

t if b ≤ pc < e and h 
 o : c
handler2(H, h, o, pc) otherwise

– v is an argument vector
– Stack frames have one of three shapes (M, pc, s, l), (o) (where o is throwable

in the current heap), and (�) (used for API calls).

Local Variables and Stack Transitions

Θ(tid)→ θ

(h, Λ, Θ)→ (h, Λ, Θ[tid 	→ θ])

M [pc] = aload n

(M, pc, s, l) :: R→ (M, pc + 1, l(n) :: s, l) :: R

M [pc] = astore n

(M, pc, v :: s, l) :: R→ (M, pc + 1, s, l[n 	→ v]) :: R

M [pc] = athrow

(M, pc, o :: s, l) :: R→ (o) :: (M, pc + 1, o :: s, l) :: R

M [pc] = goto L

(M, pc, s, l) :: R→ (M, L, s, l) :: R

M [pc] = iconst n

(M, pc, s, l) :: R→ (M, pc + 1, n :: s, l) :: R

M [pc] = ldc c

(M, pc, s, l) :: R→ (M, pc + 1, c :: s, l) :: R

M [pc] = ifeq L n = 0
(M, pc, n :: s, l) :: R→ (M, L, s, l) :: R

M [pc] = ifeq L n �= 0
(M, pc, n :: s, l) :: R→ (M, pc + 1, s, l) :: R
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Heap transitions

Θ(tid) = (M, pc, v :: s, l) :: R M [pc] = putstatic c.f

(h, Λ, Θ)→ (h[c.f 	→ v], Λ, Θ[tid 	→ (M, pc + 1, s, l) :: R])

Θ(tid) = (M, pc, s, l) :: R M [pc] = getstatic c.f

(h, Λ, Θ)→ (h, Λ, Θ[tid 	→ (M, pc + 1, h[c.f ] :: s, l) :: R])

Locking instructions

Θ(tid) = (M, pc, v :: s, l) :: R
M [pc] = monitorenter Λ(v) = ⊥

(h, Λ, Θ)→ (h, Λ[v 	→ tid ], Θ[tid 	→ (M, pc + 1, s, l) :: R])

Θ(tid) = (M, pc, v :: s, l) :: R
M [pc] = monitorexit Λ(v) = tid

(h, Λ, Θ)→ (h, Λ[v 	→ ⊥], Θ[tid 	→ (M, pc + 1, s, l) :: R])

Exceptional Transitions

Θ(tid) = (o) :: (M, pc, s, l) :: R
pc′ = handler (M, h, o, pc) pc′ �= ⊥

(h, Λ, Θ)→ (h, Λ, Θ[tid 	→ (M, pc′, s, l) :: R])

Θ(tid) = (o) :: (M, pc, s, l) :: R
handler (M, h, o, pc) = ⊥

(h, Λ, Θ)→ (h, Λ, Θ[tid 	→ (o) :: R])

API calls API calls are treated specially, as discussed in Section 2. The rules
below only deal with invocation of API methods. Other invocations (client code
calling client code) are standard, and we don’t spell out the rule here.

Θ(tid) = (M, pc, o :: v :: s, l) :: R
M [pc] = invokevirtual c.m c ∈ API

(h, Λ, Θ)→ (h, Λ, Θ[tid 	→ (�) :: (M, pc + 1, s, l) :: R])

Exceptional return from an API method:

Θ(tid) = (�) :: R

(h, Λ, Θ)→ (h, Λ, Θ[tid 	→ (o) :: R])

Normal return from an API method:

Θ(tid) = (�) :: (M, pc, s, l) :: R

(h, Λ, Θ)→ (h, Λ, Θ[tid 	→ (M, pc, v :: s, l) :: R])



566 M. Dam et al.

Programs and Executions. For the purpose of this paper we can view a pro-
gram P as a set of class declarations determining types of fields and methods
belonging to classes in P , and a method environment assigning method defi-
nitions to each method in P . An execution E of a program P is a (possibly
infinite) sequence of JVM configurations C0C1 . . . where C0 is an initial configu-
ration consisting of a single thread with a single, normal activation record with
an empty stack, no local variables, M as a reference to the main method of P ,
pc = 0, and for each i ≥ 0, Ci →JVM Ci+1. We restrict attention to configu-
rations that are type safe, in the sense that heap contents match the types of
corresponding locations, and that arguments and return/exceptional values for
primitive operations as well as method invocations match their prescribed types.
The Java bytecode verifier serves, among other things, to ensure that type safety
is preserved under machine transitions (cf. [27]).

Thread creation. To support thread creation we assume that there is a dis-
tinguished API method that has, besides the standard effect of an API call
discussed above, an additional side effect of creating an additional thread in the
configuration. The newly created thread starts with a single normal activation
record initialized to call the run() method of the object passed as a parameter
to the API method.

9.2 Proof of the Security Theorem

Since our inliner does not synchronize across security-relevant API method calls,
it is not guaranteed that updates to the inlined security state are completely syn-
chronized with the actual security relevant actions. For instance, if two security
relevant method invocations m1 and m2 happen concurrently, the following sce-
nario is possible. First, the inlined code before the m1 call is executed, then the
inlined code before the m2 call is executed, then m2 is invoked, and then m1 is
invoked. In other words, the sequence of actions as considered by the monitor
might not be equal to the sequence of actions as it actually happens. An imme-
diate consequence of this is that some policies cannot be enforced securely by
our inliner: for instance the policy in Figure 2 can not be securely enforced.

Fortunately, for the class of race-free policies, we can show that our inliner is
secure. The key observation is the following: while the sequence of actions seen by
the monitor might be different from the sequence of actual actions happening, the
second is actually a client-order preserving permutation of the first. And hence,
by the definition of race-free policy, if the first is accepted by the monitor, then
the second is necessarily also accepted by the policy. So if the monitor allows
the execution, it is actually compliant with the policy. We set out to prove this.

First some notation: We have to distinguish clearly between the actual secu-
rity relevant API actions (the observable actions of the program invoking the
API) and the execution of the corresponding monitor actions (the inlined code
manipulating the inlined security state). We use the notation mon(α) for the
monitor action corresponding to the observable action α. We define a moni-
tor action to take place at the step in the execution that performs the inlined
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monitorexit instruction. We refer to these points in an execution as the policy
commit points.

The policy commit points can be seen as the points where the monitor “sees”
an observable action: at the policy commit point, the changes to the inlined
security state for a given observable action are made visible by releasing the lock
on the inlined security state.

An execution E now gives rise to two traces: the trace of the actual security
relevant observable actions Ts, and the trace of the monitor actions Tm. In
addition, the given execution E determines an ordering that allows us to merge
these two traces into the full trace Tf .

For example, in the scenario discussed above, if we let α1 be the observable
action of calling m1 and α2 the observable action of calling m2, then the trace
Tf = mon(α1), mon(α2), α2, α1 is the full trace that illustrates that observable
actions and monitor actions can occur in different orders.

Lemma 2. The trace Tm of monitor actions in an inlined program always com-
plies with the policy.

Proof. All updates to the security state are done under a single lock, and hence
can be serialized. Since the actions seen by the monitor correspond to the mon-
itorexit steps on that single lock, they are synchronized with the updates to
the security state. So this lemma is equivalent to saying that the inlined code
correctly implements the security automaton in a sequential setting. ��
For a given execution, we first want to make sure that any start actions that
have been monitored but not yet executed are added to the traces Tf and Ts.
More precisely: if there are mon(α) actions with α a start action by a thread tid
in Tf such that no action by tid succeeds this action in Tf , then for any such
action add α to the end of Tf and to the end of Ts. Call the resulting traces T ′

f

and T ′
s. It follows that Tf is a prefix of T ′

f and Ts is a prefix of T ′
s.

In a similar way, if there are end actions α by a thread tid in Tf such that
no action by tid succeeds this action in Tf , then add mon(α) to the end of Tf

and to the end of Tm. Call the resulting traces T ′′
f and T ′

m. It follows that Tf is
a prefix of T ′′

f and Tm is a prefix of T ′
m. T ′

m complies with the policy because
of Lemma 2, and because after actions can only update the security state, they
can not break compliance with the policy.

Lemma 3. For each mon(α) action with α a start action by a thread tid in T ′′
f ,

there is exactly one immediately succeeding action by tid in T ′′
f , and this is the

action α. Furthermore, for each mon(α) action with α an end action by tid in
T ′′

f , there is exactly one immediately preceding action by tid in T ′′
f , and this is

the action α.

Proof. By induction on the length of the execution E. ��
As mentioned before, the trace Tm of monitor actions is not necessarily iden-
tical to the observable trace Ts = ω(E). But we show that T ′

s is a client-order
preserving permutation of T ′

m.



568 M. Dam et al.

Lemma 4. Consider an execution E of an inlined program. The trace T ′
s is a

client-order preserving permutation of T ′
m.

Proof. Because of Lemma 3, we can define a function f from T ′
m to T ′

s that
maps each monitor action mon(α) to the immediately succeeding action within
the same thread (for α a start action), or to the immediately preceding action
in the same thread (for α an end action).

f is injective, since for any start action by a thread tid in T ′′
f , only one action

by tid precedes it immediately, and similarly for return actions. Because of the
construction of T ′

m and T ′
s, f is also surjective, hence it is a bijection. Hence, when

we consider T ′
m and T ′

s as sequences of observable actions (and we don’t care
anymore about the distinction of whether this action is seen by the monitor and
hence in T ′

m, or an actual observable action and hence in T ′
s), f is a permutation.

We show that f is a client-order preserving permutation from T ′
m to T ′

s. Con-
sider an after action i in T ′

m and a before action j in T ′
m such that i < j. We

must now prove that f(i) < f(j).
Let us call im and is the injections from T ′

m and T ′
s in T ′′

f . Then im(i) < im(j).
We also have that, since i is an after action, is(f(i)) < im(i), and since j is a
before action, im(j) < is(f(j)). Therefore, we have that is(f(i)) < is(f(j)).
Since is is order-preserving, we have that f(i) < f(j). This means T ′

s is a client-
order preserving permutation of T ′

m. ��
Theorem 6. The example inliner IEx is secure for race free policies.

Proof. For any execution of the inlined program, by lemma 2, Tm complies with
the policy. Since T ′

m extends Tm only with after actions, T ′
m also complies with

the policy.
From Lemma 4 we know that T ′

s is a client-order preserving permutation of
T ′

m. Hence, by the definition of race-free policy, T ′
s also complies with the policy.

Finally, since Ts is a prefix of T ′
s, it also complies with the policy. ��

9.3 Proof of Conservativity

Our proof of conservativity is based on the observation that there is a strong
correspondence between executions of an inlined program, and executions of the
underlying program before inlining. From an execution of the inlined program,
one can erase all the inlined instructions and the security state, and arrive at
an execution of the underlying program. Moreover, such an execution and its
erasure have the same observable trace of actions, hence conservativity follows.

To make this precise, we first define the notion of the erasure of an execution
of an inlined program.

Definition 5. Given an execution E of IEx (S, P ). We define the erasure E′ of
E by recursion on the length of E. The erasure of an execution with a single
configuration C is C, with the SecState removed from the heap. Consider an
execution ECnC′

n+1. Let E′C′ be the erasure of ECn. Let tid be the thread that
performes the step CnCn+1. Then we define the erasure of ECnCn+1 as
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– E′C′ if the pc of tid in Cn points to an inlined instruction
– E′C′ followed by the configuration obtained by letting tid perform one step

in the context of the original program and state C′.

It follows that E′ is an execution of the uninlined program.

Definition 6. Given an activation record r = (M, pc, l, s) of IEx (S, P ) and an
activation record r′ = (M ′, pc′, l′, s′) of P , we say that r′ corresponds to r iff

– M = M ′

– l′ is l without the local variables introduced by the inliner
– if pc points to a non-inlined instruction then pc′ points to the same instruc-

tion and s′ is equal to s, otherwise pc′ and s′ equal the states of pc and s as
they were right before entering the block of inlined code. For instance if pc
equals beforeG1 then pc′ equals L and s′ equals l[0 . . . n− 1]s[n . . .].

Definition 7. Given a configuration C = (h, Λ, Θ) of an execution of the inlined
program and a configuration C′ = (h′, Λ′, Θ′) of the original program P we say
C′ corresponds to C iff

– h′ is the heap obtained by removing the SecState from h
– Λ′ is the lock map obtained by removing the SecState from Λ
– Dom(Θ′) = Dom(Θ) and for each (tid , R) ∈ Θ there is an R′ such that

(tid , R′) ∈ Θ′, |R| = |R′| and for each i ∈ [0, |R|), R′
i corresponds to Ri.

Lemma 5. Given a partial execution EC of the inlined program IEx (S, P ), then
for the erasure E′C′ of EC it holds that C′ corresponds to C and ω(E′C′) =
ω(EC).

Proof. By induction on the length of EC. The base case is trivial. Consider an
execution ECnCn+1 of the inlined program. Let E′C′ be the erasure of ECn. By
the induction hypothesis, we may assume that C′ corresponds to Cn and that
ω(E′C′) = ω(ECn). We have two cases

(1) if CnCn+1 is an execution of an inlined instruction then the erasure of
ECnCn+1 equals E′C′. We prove that C′ corresponds to Cn+1 and that
ω(ECnCn+1) = ω(E′C′) by case analysis on the label of the inlined instruc-
tion.

(2) otherwise, let E′C′C′′ be the erasure of ECnCn+1. We prove that C′′ cor-
responds to Cn+1 and that ω(E′C′C′′) = ω(ECnCn+1) by case analysis on
the non-inlined instruction.

��
Theorem 7. IEx is conservative.

Proof. For any execution of the inlined program, Lemma 5 gives us an execution
of the uninlined program with the same trace. ��
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Abstract. Event correlation has become the cornerstone of many reac-
tive applications, particularly in distributed systems. However, support
for programming with complex events is still rather specific and rudimen-
tary. This paper presents EventJava, an extension of Java with generic
support for event-based distributed programming. EventJava seamlessly
integrates events with methods, and broadcasting with unicasting of
events; it supports reactions to combinations of events, and predicates
guarding those reactions. EventJava is implemented as a framework to
allow for customization of event semantics, matching, and dispatching.
We present its implementation, based on a compiler transforming spe-
cific primitives to Java, along with a reference implementation of the
framework. We discuss ordering properties of EventJava through a for-
malization of its core as an extension of Featherweight Java. In a per-
formance evaluation, we show that EventJava compares favorably to a
highly tuned database-backed event correlation engine as well as to a
comparably lightweight concurrency mechanism.

1 Introduction

Events demark incidents in the execution of software, a change of state in some
component. In a distributed event-based system (DEBS), software components
communicate by transmitting and receiving event notifications, which reify the
events and describe the observed changes in state. Some examples of events in
different domains are (i) the reading from a temperature sensor, (ii) a stock
quote, (iii) a link failure in a network monitoring system, (iv) change of re-
lationship status in a social networking tool, or (v) drop in inventory below a
defined threshold. Interacting objects in a DEBS can act in two roles, namely
as (a) sources (notifying events), and/or (b) sinks (manifesting interest in be-
ing notified of events). Event notifications describe state changes by attributes
attached to them. Explicit attributes represent application-specific data; e.g, a
stock quote event has the name of the organization, the price of the stock and the
opening price as explicit attributes. These are sometimes paired with implicit at-
tributes conveying contextual information, such as wall clock time, logical time,
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geographical/logical coordinates, or sources. Henceforth, we will use the term
events to refer to both the incidents underlying such events as well as to their
incarnations and notifications.

Sinks are not always interested in single events. Events can be correlated with
other events, resulting in complex events. Examples are:1

– Average of temperature readings from 10 sensors inside a boiler.
– Average of temperature readings from a sensor within a 10 minute interval.
– The price of a stock decreases for 10 successive stock quotes immediately

after a negative analyst report.
– Two insider trades of a large volume (≥ 10000) immediately after a stock

price hits its 52 week high.
– Release of a new TV followed by 5 positive reviews in 1 month.

Event correlation is widely used in algorithmic trading and financial services,
patient flow monitoring in hospitals, routing and crew scheduling in transporta-
tion, monitoring service level agreements in call centers, consumer behavior in
on-line retailing and airline baggage handling, network monitoring and intrusion
detection [1] just to name a few. In pervasive computing, events are often viewed
as an adequate interaction abstraction due to their strongly asynchronous na-
ture [2]. Examples of specialized event correlators in the database community
are Cayuga [3], Aurora [4], and Borealis [5].

In DEBS, decoupling between the interacting objects (sources, sinks) is de-
sired because it can lead to greater scalability. Because of this decoupling between
components, interaction between them is asynchronous and often anonymous –
sources and sinks do not need to know the identities of each other. Anonymous
interaction is enabled by groups formed between sources and sinks. For exam-
ple, the object that publishes stock quotes and objects which monitor stocks
(at several stock brokers) are in a group – managed either using a group com-
munication middleware (e.g. Spread [6]) or a specialized event dissemination
middleware (e.g. Hermes [7], ActiveMQ [8]). The middleware is responsible for
delivering events to sinks and providing fault tolerance.

In support of an increasing family of programs based on events and event-
correlation in particular, we propose in this paper a novel extension of the main-
stream Java programming language, called EventJava. This paper presents its
design, semantics and implementation, starting by an illustration of its features
through examples. The technical contributions of EventJava and this paper are:

1. An object-oriented programming model with generic support for event-based
interaction. This model is implemented as an extension to Java, EventJava,
incorporating features for event correlation, broadcast and unicast of events.

2. An implementation framework for event correlation promoting customiz-
able propagation and matching of events. A reference implementation of this
framework is presented, based on the Rete pattern matching algorithm [9]

1 Source: www.thecepblog.com, www.complexevents.com,
www.event-based.org

www.thecepblog.com
www.complexevents.com
www.event-based.org
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in the Jess expert system shell [10], and the JGroups [11] group commu-
nication system. Empirical evaluation shows that these custom off-the-shelf
components can be used to achieve performance and scalability comparable
to highly specialized correlation engines or lightweight concurrency mecha-
nisms, illustrating the adequacy of the abstractions proposed in EventJava.

3. Formal semantics of event correlation in EventJava expressed as an extension
to Featherweight Java (FJ) [12]. We present a default semantics of Event-
Java, where events are correlated non-deterministically, and broadcast inter-
action between sources and sinks does not preserve the ordering of events of
the middleware layer. We then present the precise semantics for a more de-
terministic event correlation in our reference implementation, showing that
it preserves the ordering properties of the underlying middleware layer.

The remainder of this paper is organized as follows. Section 2 presents Even-
tJava through examples. Section 3 details its syntax and semantics. Section 4
presents an implementation of EventJava based on a framework for semantics
customization. Section 5 evaluates the performance of EventJava. Section 6 ex-
plains some of our design decisions and discusses various options in EventJava.
Section 7 presents related work and Section 8 draws conclusions. A companion
technical report [13] provides further details such as type checking rules.

2 EventJava by Example

This section gives an overview of EventJava, introducing its features stepwise
through simplified examples.

2.1 Event Methods

An application event type is implicitly defined by declaring an event method, a
special kind of asynchronous method. The formal arguments of event methods
correspond to the explicit attributes of the event type.

Handling events. Consider the example below of a travel agency which notifies
its customers of severe weather in cities that are part of their flight itineraries.
Instances of the Alerts class react to simple severeWeather events by retriev-
ing the email addresses of flight passengers (in- or outbound for the city) from
a database and sending emails to them. Sinks can specify additional constraints
on event attributes through predicates, which follow the when keyword.
class Alerts {

ItineraryDatabase db;
event severeWeather(String city, String description, String source)

when (source == "weather.com") {
Iterator<Itinerary> it = db.getItinerariesByCity(city).iterator();
while(it.hasNext()} { Messenger.sendEmail(it.getAssociatedEmail());}

}
}

In this example, the travel agency only trusts alerts from weather.com. The
method body is called a reaction and is executed asynchronously in a separate

weather.com
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thread (typically from a thread pool) upon occurrence of an event satisfying
the predicate. Arguments are considered to be values, i.e., of primitive types or
conforming to Serializable, to enable event notification across address spaces.
Events (event method invocations) that match the predicate are consumed by
the reaction.

Unicast. Invoking an event method on an object notifies the event to that
object. To that end, the source object needs a reference to the sink – a stub if
the sink is remote. For example, a severeWeather event can be notified to an
instance a of Alerts as follows:
a.severeWeather("Chicago", "Snow Storm 15 inches", "weather.com");

Broadcast. The same severeWeather event can be notified to all instances of
Alerts just like a static method call:
Alerts.severeWeather("Chicago", "Snow Storm 15 inches",
"weather.com");

When an event method e() is invoked on a class C it is broadcast to all live
instances of C and all instances of any subclass C′ of C. By all instances of a
class C, we mean all local instances and all remote instances of C within the
group (see Section 4 for remote interaction and Section 6 for bootstrapping).
When the invocation happens on an interface I, the event is broadcast to all
instances of all classes C implementing I.

2.2 Complex Events and Correlation Patterns

Complex events are defined by correlation patterns, comma-separated lists of
event method headers, e.g. e1(),e2(),...,eq() , preceded by the keyword event.
As we will detail later, the correlation semantics can be sensitive to order.

Consider an algorithmic trading example comparing earningsReport and
analystDowngrade events. If a stock has a negative earnings report (the actual
earnings per share, epsAct, is less than the estimate epsEst), followed by an
analyst downgrade to “Hold”, then the algorithm recommends selling the stock.
class StockMonitor {

Portfolio p;
event earningsReport(String firm, float epsEst, float epsAct, String period),

analystDowngrade(String firm1, String analyst, String from, String to)
when (earningsReport < analystDowngrade && firm == firm1 &&

epsAct < epsEst && to == "Hold") {
p.RecommendSell(firm);

}
}

The first condition earningsReport<analystDowngrade compares an event
earningsReport with an analystDowngrade event. It is a shorthand notation
for earningsReport.time < analystDowngrade.time. The time attribute is
a default implicit event attribute representing timestamps for events (explained
shortly). firm can be used in lieu of firm1 in analystDowngrade, but then the
event name followed by the attribute must be used in the predicate and reaction
for disambiguation, as in earningsReport.firm and analystDowngrade.firm.
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We refer to a predicate which compares attributes of two different events as a
Type-B predicate (e.g. firm == firm1). Predicates which compare an attribute
to a constant are referred to as Type-A predicates. As a comparison, our com-
panion technical report [13] sketches a possible implementation of the same cor-
relation pattern in standard Java.

Events that match the correlation pattern and satisfy the predicate are con-
sumed by the reaction. Formal arguments of event methods can be similarly
used in the reaction. An EventJava application developer is responsible for syn-
chronizing accesses to shared data structures that occur inside the body of a
reaction. One way to achieve synchronization is to add the synchronized key-
word in front of the pattern; it applies to the reaction, ensuring mutual exclusion
among its executions and those of other reactions and regular methods marked
as synchronized.

2.3 Streams

EventJava also supports correlation over event streams through array-like in-
dices on event methods in correlation patterns defining windows. Consider a
simple pattern in fraud detection, which looks for 3 different insider trades of a
stock with a combined volume ≥ 100000. This pattern specifies the number of
insiderTrade events being correlated, and the attributes of each of the events
are accessed in the predicate and reaction body using indices.

event insiderTrade[3](String firm, String name, String role, float price, long vol)
when (insiderTrade[0].name != insiderTrade[1].name &&
insiderTrade[1].name != insiderTrade[2].name &&
insiderTrade[0].name != insiderTrade[2].name &&
insiderTrade[0].firm == insiderTrade[1].firm == insiderTrade[2].firm &&
insiderTrade[0].vol + insiderTrade[1].vol + insiderTrade[2].vol >= 100000){...}

A pattern of the form event e[n] when (p) ... specifies that n events e are
correlated such that:

– ∀ i, j ∈ {0, ..., n − 1} i < j implies e[i].time < e[j].time, for example
with e=insiderTrade above.

– Although e[i].time < e[i+1].time, the n events need not be consecu-
tive. For example, there can be another event e′=insiderTrade(...) which
does not satisfy predicate p such that e[0].time < e′ .time < e[1].time.
If needed, windows of consecutive events can be achieved with additional
predicates e.g. based on monotonically increasing counter values assigned as
attributes to events of the same type.

Aggregated events can of course be correlated with non-aggregated ones. Con-
sider the following algorithmic trading scenario which seeks a stock decreasing
monotonically in value for 10 quotes after an analyst downgrade.
event analystDowngrade(String firm1, String analyst, String from,
String to),

stockQuote[10](String name, float sPrice)
when (analystDowngrade < stockPrice[0] &&

for i in 0..8 stockQuote[i].sPrice > stockQuote[i+1].sPrice &&
for i in 0..9 stockQuote[i].name == analystDowngrade.name) {...}
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A declaration e() without window is in fact simply treated like e[1](). Con-
sider implementing the TV example from Section 1: Release of a new TV followed
by 5 positive reviews in 1 month. We assume that on a scale of 0 to 5, a rating
above 3.5 is considered positive:

event tvRelease(String model, float price, String date),
tvReview[5](String model1, File review, float rating) when

(for i in 0..3 tvReview[i].model1 == tvReview[i+1].model &&
for i in 0..4 tvReview[i].rating >= 3.5 &&
tvReview[4].time - tvReview[0].time = 30*24*60*60*1000 &&
tvReview[0].model1 == tvRelease.model) {...}

2.4 Matching Semantics

Event correlation semantics have different parameters [14,15]. For instance, a
pattern event e1(), e2() can be matched by a sequence of events e1

1, e
2
1, e

1
2 ei-

ther as 〈e1
1, e

1
2〉 (FIFO) or 〈e2

1, e
1
2〉 (LIFO). In the latter case, one might even

want to discard the superseded e1
1. Different semantics can be of interest for

different settings. In tightly coupled concurrency scenarios, the latter suggestion
of discarding an event without consuming it seems wrong. In systems with dy-
namically joining and leaving participants and in the presence of predicates, it
becomes infeasible in general to ensure that any event is consumed at least
by one object, and obsolescence of events might be part of the application
semantics.

To be able to accommodate various application types, matching in EventJava
is implemented as part of a framework explained more in the following sections.
Our default semantics presented in the next section are non-deterministic in that
in the above example either outcome is possible. This reflects many concurrency
settings where non-determinism is desired to achieve some form of fairness. The
semantics of our reference implementation strike a balance between (a) static
settings, i.e., where by design and deployment every event is assured to be con-
sumed by at least one object (possibly by omitting predicates), and (b) dynamic
distributed settings. They will be presented in Section 4.2.

2.5 Context

Events can have explicit and implicit attributes. In EventJava, implicit attributes
form a context. The timestamps (*.time) used in Section 2.2 are but an example
– though an important one. The ordering underlying our matching semantics rely
on this notion.

Implicit event attributes are in fact fields defined globally by a Context class,
of which an instance is passed along with every event. The code required to
instantiate and pass this context is generated by our compiler. In the following
simple class, an event is simply timestamped with the local physical clock. Please
note that this is but a simple example, and that the notion of time is generally
more complex and has to be closely aligned with the underlying communication
infrastructure and the other parts of the framework (see Section 4).
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public class Context implements Comparable<Context> , Serializable
{

public long time;
... /* more fields */
public Context() { this.time = System.currentTimeMillis(); }
public Context(long time) { this.time = time; }
public int compare(Context other) {

if(timestamp == other.timestamp) return 0;
...

}
...

}

55km

55km 55km

55km(0.5°)
N

Fig. 1. Example
with geographic
coordinates

The Context class is verified at compilation for well-
formedness. Its public fields f1,f2,...,f q (in the order of dec-
laration) define the implicit event attributes. Constructors
can have formal arguments corresponding to subsequences of
those fields. An event method declaration can optionally list
the entire context, e.g. event e()[f1,...,f q], and an event
method invocation in special cases may want to explicitly pro-
vide values for the context corresponding to a constructor,
e.g. e()[f1,...,f j] (j∈[1..q]). Consider a Context class us-
ing geographic coordinates in addition to timestamps. The
following example shows how a correlation pattern can use
this context to collect rainfall readings from twenty different
sensors located in a square region (see Figure 1: 55km North
to 55km South and 55km East to 55km West) around the cur-
rent location (which is denoted by C). The latitude and longitude are in the
decimal degrees2 format, in which 0.1◦ =̂ 11km. Rainfall readings aggregated by
the pattern should be within a 60 minute interval.

public class Context implements Comparable<Context> , Serializable
{

public long time;
public float latitude; //in decimal degree format
public float longitude; //in decimal degree format
... //more fields and methods

}

class WeatherStats {
float currLatitude;
float currLongitude;
event rainfall[20](float rainInMM, String place, int sensorID) when

(for i in 0..19 Math.abs(rainfall[i].latitude - currLatitude) == 0.5 &&
for i in 0..19 Math.abs(rainfall[i].longitude - currLongitude) == 0.5 &&
for i in 0..18 rainfall[i].sensorID != rainfall[i+1].sensorID &&
for i in 0..19 rainfall[i].time - currTime == 60 * 60 * 1000) {

float sum = 0;
for(int j = 0 ; j < 20 ; j++) sum += rainfall[j].rainInMM;
float averageRainfall = sum/20;
...

}
}

2 http://en.wikipedia.org/wiki/Decimal_degrees

http://en.wikipedia.org/wiki/Decimal_degrees
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3 EventJava Syntax and Semantics

This section presents the syntax and semantics of EventJava in more detail,
as an extension Featherweight Java (FJ) [12], dubbed Featherweight EventJava
(FEJ). FEJ supports illustration, and reasoning about subtyping, inheritance,
and matching semantics.

3.1 Featherweight EventJava (FEJ) Syntax

The major additions of EventJava to Java are reflected in Figure 2. As in FJ, this
is a special variable x, and o represents a sequence o1...oq; separating symbols – if
any – depend on the context. A given element of a sequence is referred to as oj .
Two-level nested sequences o are also possible; in this case, an individual element
can be referred to as ok

j . The first bar above the o relates to the subscript index
j, whereas the second one refers to the superscript k; ok thus unambiguously
represents ok

1 ...ok
q . We use (o)1..q instead of o to explicitly specify the size q of o.

In FEJ, a program is a parallel execution of threads, where each thread is of
the form Ti(t;); the parallel composition operator || is commutative and asso-
ciative. In Ti(t;), i represents a unique identifier (not necessarily continuously
assigned). Threads can be created explicitly (new T(t;)) or by the system. Types
(T) encompass classes (C), immutable classes (I ), and value classes (D) which
reflect primitive types. B, I, F, S for instance refer to booleans, integers, floats,
and strings respectively. Instances of immutable and value classes are the only
permissible terms for event attributes (N ). Immutable classes are introduced to
abstract serialization and avoid costly cloning. No assignments can occur to fields
of such objects, and their fields have to be recursively immutable. (EventJava
applies a simple static analysis to attempt to infer immutability and reverts to
cloning if it fails.) Immutable classes cannot define patterns. FJ’s call-by-value
semantics are retained but as in other extensions (e.g. [16]), we introduce field
assignments (t.x:=...) and thus new A(...) terms evaluate to locations l(A) in mem-
ory. The latter terms are not used explicitly in programs; when not germane to
the discussion, the type A will be omitted for brevity.

Correlation patterns include a sequence of events E , a predicate, and a re-
action. Events can either declare their context (e[n](N x)[N ′ x′]), or omit it
(e[n](N x)). A predicate is a conjunction or disjunction (b-op) of simpler predi-
cates. Among those are comparisons of value objects (v-op), and universal quan-
tification (for i in[n..n] p). An event ej is always defined over a window of size
nj≥ 1, with nj commonly 1. Predicates only allow u terms which represent a
strict subgrammar of t, omitting for instance fields of this; even if type check-
ing can ensure that a field f is of an immutable type, its value could otherwise
change (by reassignment in another thread). In practice, the final modifier
helps overcome this limitation.

3.2 Evaluation

Figure 3 presents auxiliary definitions for FEJ. We use contextual semantics to
model dynamic semantics, introduced in Figures 4 and 5.
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program Q ::= ∅ | Q ||Ti(t;) value v ::= l(A) | new D(d)
mutable L ::= class C extends C{T f; K M P} type T ::= C | I | D

immutable J ::= class I extends I{N f; K M} class A ::= C | I

constructor K ::= A(T f){super(f); this.f:=f;} attribute N ::= I | D

method M ::= T m(T x){t; return t;} pattern P ::= event E when p{t;}
event E ::= e[n](N x)[N ′ x′] | e[n](N x)
filter u ::= u.f | (T)u | new D(d) | x[n] | x[i]
predicate p ::= u v-op u | p b-op p | ! p | for i in[n..n] p
term t ::= v | x | t.f | t.f:=t | t.m(t) | (T)t | t.e(t) | t.e(t)[t] | C.e(t)

|C.e(t)[t] | new A(t) | new T(t;)

d ∈ D

l ∈ dom(L)
n ∈ Z

+

(D, d, D)∈{(B, b, B), (I, z, Z), (F, r, R), (S, s, Σ∗), ...}
v-op ∈{==, <=, <}
b-op ∈{&&, ||}

Fig. 2. Featherweight EventJava (FEJ) syntax

fields(Object)=∅ [Obj-Class]

CT (E)=class E extends Object{}
[Ev-Class]

CT (A)=class A extends A′{T f ; ...}
fields(A′)=T ′ f ′

fields(A)=T ′ f ′, T f
[Field-Type]

CT (C)=class C extends ...{... P}
event... e[n](N x)... {t;}∈P

etype(e, C)=n×N �N→E
[Ev-Type]

CT (C)=class C extends C′{... P} 	 ∃...e...∈P

etype(e, C)=etype(e, C′)
[Ev-Type-Inh]

CT (C)=class C extends ...{... P}

event e[n](Nx)[N ′x′] when p{t;}∈P

rbody(e, C)= (xx′, p, t)
[React-Body]

CT (C)=class C extends ...{... P}
∀ j fresh xj=xj

1 ...xj
q q=|�N|

event e[n](Nx′) when p{t;}∈P

rbody(e, C)= (x′x, p, t)
[React-Body-Def]

CT (C)=class C extends C′{... P}
	 ∃...e......∈P

rbody(e, C)=rbody(e, C′)
[React-Body-Inh]

Fig. 3. Auxiliary definitions for FEJ

Contextual semantics. Event methods are typed (etype) just like ordinary
methods ([Ev-Type], [Ev-Type-Inh]), since they don’t have return values. E is used
as a placeholder for event and has neither methods nor fields. Evaluation takes
place on tuples; in the context of local evaluation −→, such a tuple is a term
together with an object store L and an event store S (see Figure 4). S (l) repre-
sents per-object queues of events of the form (e, vv′)·(e, vv′)·.... Global evaluation
=⇒ is similar to local evaluation, but relates programs instead of terms. −→∗ is
the transitive closure of −→ . L changes when vales are assigned to object fields
([Field-Ass-R]) and when new objects are created ([Loc-R]). In [Forall-R], quantifi-
cation over integers n..n′ is reduced to n′ − n + 1 predicates. We sometimes use
(o)1..q instead of o to make the size q of o explicit.

Contexts and broadcast. The context is represented by a set of terms ∇t
of types �N. In an event e[n](N x)[N ′ x′], we assume, without loss of gener-
ality, that the first term of the context x′

1 is used for ordering. In FEJ, values
for the context variables are either specified explicitly (t.e(t)[t], C.e(t)[t]) or
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instantiated during reduction ([Ev-Def-R, Ev-Bcast-Def-R]). To simplify the calculus
rules, we make two assumptions: (i) Either all events in a given pattern decla-
ration specify the context or omit it. (ii) In all invocations of an event method,
the context is either explicitly specified or instantiated during reduction. Rules
[Ev-Def-R] and [Ev-Bcast-Def-R] mimic actions performed by the runtime/middle-
ware in an implementation. In [Ev-Def-R] and [Ev-Bcast-Def-R], for a given object
l, the ∇tl1 terms assigned must evaluate to values that are totally ordered, in
increasing order. In [Ev-R], events are added to the queue corresponding to object
l. Broadcast ([Ev-Bcast-Def-R, Ev-Bcast-R]) is semantically equivalent to a sequence
of unicasts ([Ev-R]). Note that in both [Ev-Bcast-Def-R] and [Ev-Bcast-R], broadcast
is not atomic, because it takes q reduction steps, which can be interleaved with
reduction steps of other threads running in parallel. So there is no global total
order, i.e., events in different queues may be ordered differently.

Correlation. The core of the semantics is the reaction rule [React-R], which
relies on the match() predicate, and uses a number of auxiliary definitions.
πeS(l) is a projection that simply extracts a subsequence of events of type e
from an event queue S(l). Set complement S(l)\(...) and inclusion ∈ follow the
usual intuition, but are specified to simplify understanding of the weaknesses
of the present semantics and the refined semantics for our reference implemen-
tation presented in the next section. The match() predicate ([Patt-Match]) sim-
ply takes any set of events matching any pattern defined for a given object
(∈), regroups the corresponding events (N) and creates a corresponding vari-
able substitution (Θ). In case the predicate for the pattern evaluates to true,
[React-R] simply removes the events from the queue and creates a new thread
(thread pool in practice) to execute the reaction. Note that [React-R] does not
produce any side-effects in L, due to the constraints on predicates. Given the
non-deterministic nature of the event matching, paired by the simple reduction
of an event broadcast to a multi-send in [Ev-Bcast-R], two instances of a same class
receiving identical sets of broadcast (only) events will not necessarily correlate
the same events.

The matching semantics presented here are intentionally weak and serve
mostly as illustration. The handling of broadcast for instance does not assume
more than reliable point-to-point communication. Using expensive event dis-
semination protocols results in better ordering guarantees. The semantics of our
reference implementation (Section 4.2) uses deterministic selection of matching
events and total order broadcast to disseminate events, providing strong guar-
antees on the order of execution of reactions (Section 4.2). But, FEJ does not
force the use of a specific dissemination protocol or protocol family, because
the choice strongly depends on the application, and the underlying infrastucture
and system model. Ordering guarantees, for instance, induce a sensible overhead
most of the time. In specific cases, they may be achieved more easily or even
spontaneously (e.g. if the basic communication mechanism is broadcast-based
such as on a single Ethernet wire or in certain wireless settings) or simply not
be needed. Ordering properties, just like correlation semantics in general, can
not be automatically inferred from the application.
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Evaluation contexts
E ::= [] | (T)E |E.f |E.f:=t | v.f:=E |E.m(t)

| v.m(E) |E.e(t) |E.e(t)[t] | v.e(E)[t]
| v.e(E) | v.e(v)[E] |C.e(E) |C.e(E)[t]
|C.e(v)[E] | new A(E) | v;E;t | v,E,t
|E v-op t | v v-op E |E b-op p | v b-op E | ! E
|E; return t | v; returnE

〈Q,L,S〉 =⇒ 〈Q′,L′,S′〉

〈Q ||Ti(v;),L,S〉=⇒〈Q,L,S〉
[Thread-Kill-R]

j fresh

〈Q ||Ti(E[new T(t;)]),L,S〉=⇒
〈Q ||Ti(E[];)||Tj(t;),L,S〉

[Thread-Fork-R]

〈t,L,S〉−→〈t′,L′,S′〉
〈Q ||Ti(E[t];),L,S〉=⇒〈Q ||Ti(E[t′];),L′,S′〉

[Congruence-R]

match(S, l(C), e,N, Θ) j fresh

S′={S(l)\N/S (l)}S rbody(e, C)=(xx′, p, t)
〈Θ p,L,S〉−→∗〈new B(true),L,S〉
〈Q,L,S〉=⇒〈Q ||Tj(Θ t;),L,S′〉

[React-R]

S(l)=(e, vv′)·S′(l)

πeS(l)=(e, vv′)·πeS′(l)
[Ev-Proj-Incl]

S(l)=(e′, vv′)·S′(l)
πeS(l)=πeS′(l)

[Ev-Proj-Excl]

S(l)=S′(l)·(e, vv′)·S′′(l) (e, vv′) 	∈S′(l)

S(l)\{(e, vv′)}=S′(l)·S′′(l)
[Ev-Rem]

s=s′′ ·s′
1 ·s′′′ s′

2..q ∈ s′′′ P (s′
1, ..., s′

q)

s′
1..q ∈s P (s′

1, ..., s′
q)
[Ev-Seq-Incl]

∀ej ∈e

 
(ej , vj v′j)1..nj

∈πej
S(l(C))

etype(ej , C)=nj×...

!

rbody(e, C)=(xx′, p, t)

N=
S

k∈[1..nj ] (ej , vjv′j)
k

Θ={l/this, (vv′)k/ (x[k−1] x′[k−1])k∈[1..nj ]
}

match(S, l(C), e,N, Θ)
[Patt-Match]

Fig. 4. Contextual semantics of FEJ

3.3 Constraints on Event Methods

Event methods are specific methods, and their declaration and implementation
thus follows special restrictions.

R1 Event methods cannot throw exceptions and cannot return values. Their
return type is event. This simplifies broadcast – the absence of exceptions
and return values avoids dealing with multiple returns.

R2 Event method headers cannot be synchronized, as this would contradict
their asynchronous nature. Reactions may be defined to be synchronized

though by adding the keyword in front of the correlation pattern declaration.
R3 Similarly, final applies to correlation patterns. By prefixing a correlation

pattern with that keyword, all event methods in the correlation pattern are
transitively made final, and none of them can be overridden in a subclass
correlation pattern.

R4 Predicates, like reactions, can not be defined in interfaces. An interface, or
a class, can define an abstract event correlation pattern, which is strictly
the same as defining the respective event methods individually.

R5 A reaction body can make a call to a reaction body of a pattern in its super-
class through super only if the pattern involves the same set of events.

R6 An event method can only appear in a single correlation pattern within a
class. Without this restriction, semantics become much more complicated,
as elaborated in Section 6.



EventJava: An Extension of Java for Event Correlation 581

〈t,L,S〉 −→ 〈t′,L′,S′〉

L(l)= [f1 : v1, ..., fq : vq ]
〈l(A).fj ,L,S〉−→〈vj ,L,S〉 [Field-Acc-R]

L(l)= [f1 : v1, ..., fq : vq ]

L′={[f1:v1,...,fj :v′,...,fq :vq ]/ l}L
〈l(C).fj:=v′,L,S〉−→〈v′,L′,S〉

[Field-Ass-R]

A�T

〈(T)l(A),L,S〉−→〈l(A),L,S〉 [Obj-Cast-R]

D�T

〈(T)new D(d),L,S〉−→〈new D(d),L,S〉
[Val-Cast-R]

〈v;return v′,L,S〉−→〈v′,L,S〉 [Ret-R]

mbody(m, A)=(x, t)

〈l(A).m(v),L,S〉−→〈{v/x, l/this}t,L,S〉
[Meth-R]

〈for i in[n..n′] p,L,S〉−→
〈{n/ i}p&&...&&{n′

/ i}p,L,S〉 [Forall-R]

〈! new B(b),L,S〉−→〈new B(¬b),L,S〉
[Bool-Neg-R]

(b-op, a-op)∈{(&&,∧), (||,∨)}
〈new B(b) b-op new B(b′),L,S〉−→

〈new B(b a-op b′),L,S〉
[Bool-Op-R]

(v-op, a-op)∈{(==, =), (<=,≤), (<,≤)}
〈new D(d) v-op new D(d′),L,S〉−→

〈new B(d a-op d′),L,S〉
[Val-Op-R]

〈l.e(v),L,S〉−→〈l.e(v)[∇tl],L,S〉
[Ev-Def-R]

S′={S(l)·(e,v v′)/ l}S
〈l.e(v)[v′],L,S〉−→〈new E(),L,S′〉 [Ev-R]

fields(A)=T f l 	∈dom(L)
L′={[f1:v1,...,fq :vq ]/ l}L

〈new A(v),L,S〉−→〈l(A),L′,S〉 [Loc-R]

l={l | l(C)∈L ∧ C�C′}
〈C′.e(v),L,S〉−→

〈l1.e(v)[∇tl1];...;lq.e(v)[∇tlq],L,S〉
[Ev-Bcast-Def-R]

l={l | l(C)∈L ∧ C�C′}
〈C′.e(v)[v′],L,S〉−→

〈l1.e(v)[v′];...;lq.e(v)[v′],L,S〉
[Ev-Bcast-R]

Fig. 5. Contextual semantics of FEJ (cont’d). �denotes subtyping, refer to the com-
panion technical report [13] for the subtyping rules.

In FEJ, R1 is achieved by the introduction of the placeholder E. R2 and R3
are abstracted, R4 and R6 are enforced by inheriting from FJ. R5 is abstracted
in FEJ because FJ does not have super-calls.

3.4 Event Overloading, Event Overriding and Pattern Overriding

As in Java, an event method e1 overloads e2 if they have the same name but
different type signatures (etype in Figure 3). In EventJava, they are treated as
two different event methods and can appear in different correlation patterns in
the same class (subject to restriction R6). Overriding an event method e (with
window [n]) is possible (with [n’], n’≥n) iff e is not in a final pattern in the
(non-final) super-class. Consider a correlation pattern p1 in class C containing
event methods e1, ..., eq with windows n1, ..., nq. Assume that class C′ inherits
from class C, and defines a pattern p2 containing e1. Then, we say that p2
overrides p1. But p2 does not have to contain e2, ..., eq, which may be included
in other patterns of C′. So, a pattern in C can be overridden by more than one
pattern in C′. By restriction R6, since an event method can occur only in one
correlation pattern per class, if C′ does not define patterns containing e2, ..., eq,
then they become abstract just like the subclass C′ itself.
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3.5 Global Progress

Consider an object l(C) with a pattern event e[n](N x)[N x] when p{t;} defined
in C .

Definition 1 (Configurations). We refer to C = 〈Q,L,S〉 as a configuration.

– Ek
j (Q,L,S) = 〈Ti(E[dj.ej(vj v′j)]k) ||Q,L,S〉 is an event configuration.

– Re
l(C)(Θ, Q,L,S) = 〈T〈l(C),e〉(Θt;...) ||Q,L,S〉 is a reaction configuration.

Definition 2 (Run).
A run is a succession of configurations C=C1=⇒...=⇒Cq.

Theorem 1 (Global progress). Assume a run C s.t. ∀j ∈ [1..q], k ∈ [1..nj],
(i) dk

j ∈ l(C) ∪ {C′ | C � C′}, (ii) ∃Lk
j (l), (iii) ∃C = Ek

j (Qk
j ,Lj

k,Sk
j ) ∈ C,

(iv) 〈{l/ this,
(vjv′j)k/ (xjx′j )k∈[1..nj ]

}p, ...〉−→∗ 〈new B(true), ...〉 . Then ∀C′ = C=⇒
C′′ ∃ Re

l (Θ, Q,L,S) ∈ C′

Proof by induction on derivation of =⇒. (The theorem reads “If a pattern of an
object gets satisfied, the corresponding reaction will eventually be evaluated.”)

4 Implementation

This section first presents the implementation framework underlying EventJava.
Then, a reference implementation based on Jess [10] and JGroups [11] is pre-
sented along with its specific matching semantics, showing that these preserve
total ordering properties of message dissemination in JGroups.

4.1 Implementation Framework

The EventJava compiler, implemented using Polyglot [17], translates EventJava
programs to standard Java by (a) code transformations and (b) generation of
application-specific helper classes (e.g. for broadcasting).

Frameworkcomponents. Thegenerated code represents the gluebetweenEven-
tJava programs and the framework components shown in Figure 6. An event noti-
fication/method invocation is forwarded to the communication substrate, JGroups
in the case of our reference implementation,which takes care of remote communica-
tion including unicast and broadcast. In the broadcast case, the substrate delivers
all the serialized event method invocations to the resolver, which determines the
classes on which the methods were invoked and interacts with broadcast objects
for those classes. Broadcast objects deliver the events to the sinks, where they are
stored, typically but not necessarily, in event queues. The matcher — one instance
per sink — checks the stored events for a match to any of the correlation patterns
and spawns the reaction on its sink. Multi-threading can be used in various places,
with synchronizationdepending on the desired semantics. While the substrate and
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Communication substrate

Resolver

Broadcast
classes

Event queue

Matcher

Source Sink

Event queue

Event queue

Fig. 6. The EventJava framework. Ovals represent the application. Shaded boxes rep-
resent fixed components; others are customizable.

matcher, like the context, are defined as an API, the resolver and broadcast classes
are generated by our compiler to avoid costly dynamic invocations through reflec-
tion. The context of a given event is used and sometimes modified or augmented
throughout the substrate and the matcher.

Code transformations. On the source side, each event method invocation is
altered to create the context, serialize the explicit arguments, and invoke the
substrate. All the instances of any class C which has at least one event method
need to be tracked by its broadcast class. To that end, a static field instances is
added to every such sink class to track all of its instances with weak references.
Every new on a sink class is instrumented to add the created object to the class’
instances set. Broadcast objects for sink classes recursively store references to
broadcast objects for their sink subclasses.

Integration with Java RMI and garbage collection of sinks. Some
constraints in EventJava come from its integration with the Java RMI frame-
work [18]. This does not mean that remote communication in EventJava takes
place over Java RMI. EventJava is merely integrated with the interfaces, for
portability and interoperability with J2EE. The constraints introduced by this
integration lead to a leaner and simpler model and do not reduce expressive-
ness to the extent of offsetting the benefits of the integration. The integration
implies that events must be declared in interfaces subtyping java.rmi.Remote

(omitted in the examples so far for brevity), which means that sinks are re-
mote objects. Event methods become thereby public, and can not be static.
These last two restrictions are ensured by FEJ, as bare FJ only supports such
members. This integration with Java RMI also helps garbage collection of dead
sinks, and ensures that events are not delivered to dead sinks. The static field
instances added to the sink class uses weak references, which are periodically
purged.

4.2 Deterministic Matching in the Jess Reference Implementation

While non-determinism might be desired in certain cases, a trading algorithm
replicated for reliability by running several instances of the same class will
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yield contradictory results with the default semantics in Section 3.2, even if
the application-level algorithm is deterministic.

Rete-based matching. Figure 7 presents an alternative deterministic dis-
patching semantics describing our reference implementation of the matcher on
top of the Rete [9] algorithm in Jess [10]. In short, Rete treats events, with their
explicit and implicit attributes as typed data. The matcher implementation en-
sures that predicate evaluation is synchronized for a given sink. Correlation
patterns and predicates are encoded by our compiler as Jess rules. The matcher
delivers the matched events to a dispatch method. The dispatch method, gener-
ated by our compiler, has code to receive matched events and use threads from
a thread pool to execute the reaction bodies.

Semantics. In Figure 7, rules [Ev-Bcast-Def-R’], [Ev-Bcast-R’] and [Patt-Match’] re-
place [Ev-Bcast-Def-R], [Ev-Bcast-R] and [Patt-Match] respectively. Rules [React-R’1]

and [React-R’2] replace [React-R]. In [Ev-Bcast-Def-R’] and [Ev-Bcast-R’], when an
event is broadcast, the context terms are instantiated and the events are added
to the corresponding per-object queues of S in a single atomic step, i.e., to-
tal order broadcast is used. This differs from the default semantics of FEJ
where a multi-send is used. Again, in [Ev-Bcast-Def-R’], for a given object l,
the ∇tl1 terms assigned must evaluate to values that are totally ordered, in
increasing order. This, in combination with the use of total order broadcast,
ensures global total order, i.e., the events in all the queues of S are totally or-
dered.

In Rete-based matching, for pattern event e1(),...,eq() when p, the first re-
ceived instance of e1 is chosen for which an instance of each remaining event
type has been received such that the predicate p is matched. If there are several
instances of e2 for which instances of e3, .., eq exist such that p holds, then the
first one is chosen and so on. If an event ej has an assigned window of size nj

then the algorithm of course looks for the first sequence of length nj (relation
∈1 defined by [Ev-First-Seq-Incl]) such that there are instances of the remaining
event types.

Once a match is determined for a given correlation pattern, any event which
is of an event type within the correlation pattern and older than the respec-
tive matching one is discarded in addition to the matching one (\∗ ). Otherwise,
the total order determined by JGroups is not preserved. Furthermore, reac-
tions for a same correlation pattern on a same object are executed sequen-
tially in the order in which they are identified, by identifying threads by a
〈object, pattern〉 tuple ([React-R’1,2 ]). Synchronization code has to consider this.
Total order broadcast (as well as reaction serialization) can be disabled in our
reference implementation if an application does not require the ordering guaran-
tees. In the absence of ordering guarantees, an EventJava implementation could,
for instance, choose to handle reactions like transactions with an optimistic con-
currency model.
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s=s′′′ ·s′
1 ·s′′′′ s′

2..q∈1 s′′′′ P (s′
1, ..., s′

q)

	 ∃ s′′
1 ∈s′′′ :

 
s = ...·s′′

1 ·s′′′′′ s′′
2..q ∈s′′′′′

P (s′′
1 , ..., s′′

q )

!

s′
1..q∈1 s P (s′

1, ..., s′
q)

[Ev-First-Seq-Incl]

S(l)=S′(l)·(e, vv′)·S(l)′′ (e, vv′) 	∈S′(l)

S(l)\∗ {(e, vv′)}=S(l)′′

[Ev-Rem-All]

l={l | l(C)∈L ∧ C�C′}

S′={S(l1)·(e,v ∇tl1 )/ l1 ... S(lq)·(e,v ∇t
lq )/ lq

}S
〈C′.e(v),L,S〉−→〈new E(),L,S′〉

[Ev-Bcast-Def-R’]

l={l | l(C)∈L ∧ C�C′} S′={S(l)·(e,v v′)/ l}S
〈C′.e(v)[v′],L,S〉−→〈new E(),L,S′〉

[Ev-Bcast-R’]

match1(S, l(C), e,N, Θ) Q=Q′ ||T〈l,e〉(t′;)
rbody(e, C)=(xx′, p, t) S′={S(l)\∗ N/S (l)}S

〈Θ p,L,S〉−→∗〈new B(true),L,S〉
〈Q,L,S〉=⇒〈Q′ ||T〈l,e〉(t;Θ t;),L,S′〉

[React-R’1]

match1(S, l(C), e,N, Θ) Q 	=Q′ ||T〈l,e〉(t′;)
rbody(e, C)=(xx′, p, t) S′={S(l)\∗ N/S (l)}S

〈Θ p,L,S〉−→∗〈new B(true),L,S〉
〈Q,L,S〉=⇒〈Q ||T〈l,e〉(Θ t;),L,S′〉

[React-R’2]

“
(ej , vj v′j)1..nj

∈1 πej
S(l(C))

”
j=1..q

e = e1...eq etype(ej , C)=nj×...

rbody(e, C)=(xx′, p, t)

N=
S

k∈[1..nj ] (ej , vjv′j)
k

Θ={l/this, (vv′)k/ (x[k−1] x′[k−1])
k∈[1..nj ]

}

match1(S, l(C), e,N, Θ)
[Patt-Match’]

Fig. 7. Deterministic matching semantics in the Jess reference implementation

Ordering properties. We can prove that ordering at the JGroups level is
preserved by the matching semantics. Consider Definitions 1 and 2 for config-
urations and runs given in Section 3.5. Assume l(C) and l′(C), and a pattern
event e[n](N x)[N x] when p{t;} defined in C .

Theorem 2 (Order preservation). Assume a run C s.t. ∀C = Ek
j (Q,L,S) ∈

C dk
j �∈ {l(C), l′(C)}.

Then ∀Ci, Ci′ , Cj , Cj′ ∈ C | Ci = Re
l (Θ, Qi,Li,Si), Ci′ = Re

l (Θ′, Qi′ ,Li′ ,Si′),
Cj = Re

l′ (Θ, Qj ,Lj ,Sj), Cj′ = Re
l′ (Θ

′, Qj′ ,Lj′ ,Sj′) i < i′ ⇔ j < j′.

Proof by induction on derivation of =⇒. (The theorem reads: “For two instances
of a same class receiving only broadcast events, the objects will execute reactions
to a given pattern in the same order.”)

5 Evaluation

Given that there is a strong variance in workloads produced by distributed ap-
plications (same or different), over time depending on their deployment, we do
not evaluate our system with specific applications, but rather use stress testing
by varying the different parameters of the load. This section stress tests our
reference implementation of EventJava (referred to as EventJava) by compari-
son with (a) the highly tuned Cayuga correlation engine [3] and (b) lightweight
limited correlation for concurrency in Cω [22]. All tests use the more resource-
demanding ”\” semantics (see Section 6).
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5.1 Cayuga

Cayuga [3] is a highly tuned, database-backed, correlation engine. The paper by
Demers et al. [3] shows that Cayuga outperforms other correlation engines like
Aurora [4] and Borealis [5]. All measurement scenarios and settings were taken
from [3] to not favor EventJava. Figure 8 compares the throughput of Event-
Java with Cayuga with respect to the number of different event methods/event
types involved per sink.This experiment was conducted on an iMac dual core
2.0Ghz with 2GB RAM. Sink classes were generated with 1000, ... ,150000 (non-
abstract) event methods and 4 event methods per correlation pattern, i.e. for the
sink class with 100,000 event methods, there were 25,000 correlation patterns.
The number of event methods and correlation patterns is relevant because it
directly affects the performance of the matcher – the time taken by any search
algorithm to match an event to a pattern. The throughput (number of events
processed per second) of EventJava remains well above 10,000 events/sec even
for the case involving 150,000 event methods and 37,500 correlation patterns,
even outperforming Cayuga. Note though that according to [3], Cayuga scales
relatively better than EventJava, performance with EventJava drops relatively
sharper beyond 150,000 event methods per sink. Cayuga’s throughput drops be-
yond 10,000 event types, but Cayuga can scale even up to 400,000 event types
(their throughput is 2000 events/sec at 400,000 event methods). Also, Cayuga’s
memory footprint is smaller than EventJava. We weren’t able to reproduce these
results, and use the figures from [3] to plot the graph. Note that only one sink is
used because Cayuga has a single correlation engine and the goal is to compare
peak throughput of matching. We conclude that even when implemented with
custom off-the-shelf components such as Jess, the performance of EventJava is
comparable to a highly tuned correlation engine in substantial load scenarios.
This illustrates that the high-level programming abstractions of EventJava and
its resulting gains in safety, (e.g. when compared to queries expressed in SQL-like
grammars) do not entail any inherent penalty.

Fig. 8. Simple throughput comparison of
EventJava and Cayuga

Fig. 9. EventJava throughput w.r.t. num-
ber of event methods per pattern
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5.2 Complexity of Correlation Patterns

Figure 9 illustrates the scalability of EventJava with respect to the number of
event methods in a correlation pattern. The experiment was conducted using a
single sink with 100,000 different event methods. So, if there are 4 event methods
per correlation patten, there are 25,000 correlation patterns. The throughput
increases slightly with the number of events in the pattern, and in all cases the
throughput is well above 14,000 events/sec. Figure 9 shows five such scenarios
with 4, 8, 12, 16, and 20 event methods per pattern respectively. In Figure 9,
we measure throughput by randomly generating events. The throughput remains
fairly constant, irrespective of the number of events used in the measurement. For
each scenario, we measure average throughput over streams of 100,000 events to 1
million events. The variation in throughput for any scenario is within 250 events
per second, i.e., ∼2%. This shows that the throughput of EventJava does not
decrease over time when it faces continuous streams of events. This experiment
was conducted on an iMac 2.0 Ghz dual core with 2GB RAM.

5.3 Cω

Polyphonic C# [22], which is now part of Cω, implements the Join calculus [23]
in C#. The key differences between (the Polyphonic-C# part of) Cω and Event-
Java are (i) Cω does not support predicates (ii) Cω targets concurrent program-
ming, supporting one synchronous method per pattern at most (iii) Cω does not
explicitly support broadcast interaction (iv) Cω and EventJava differ in the algo-
rithms used for the storage and matching of events, and (v) Cω has stream types
which can be viewed as pointers to/iterators over a priori endless arrays, but they
are not integrated with chords and correlation over streams is not supported.
Correlation patterns without predicates are called chords in Cω terminology.
Calls to asynchronous methods part of a pattern (a chord in Cω terminology)
are queued, and a reaction can be dispatched when every method in the pattern
has been called. In Figure 10, we measure the matching performance of Event-
Java with Cω for predicate-less patterns which favors the concurrency scenarios
aimed at by Cω. The measurements in this case were conducted on an HP PC
with an Intel quad core 2.4Ghz processor and 3.5GB RAM.The throughput of
EventJava is actually 18-19% higher than that of Cω, which shows the versatility
of the reference implementation of EventJava. We conclude that EventJava can
be an alternative to Cω for concurrent programming. Note that the introduction
of predicates is in fact debated in [22], but not realized to retain the lightweight
matching implementation.

5.4 EventJava Latency

For completeness, and to argue for the integration of a broadcast substrate in
EventJava, we evaluate the end-to-end latency of EventJava in a distributed
settting. Latency here is measured as the time interval between the production
of the last event that instantiates a correlation pattern, and the dispatch of the
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Fig. 10. Simple throughput comparison
of EventJava and Cω

Fig. 11. End-to-end latency of EventJava
application with respect to the number of
sinks on different nodes

corresponding reaction at a possibly remote sink. For example if two events e1, e2
are used to match a pattern, and if the reaction at the remote sink is dispatched
at time t, then the end-to-end latency is t−max(e1.time, e2.time). These mea-
surements were conducted in a local area network, where clocks of hosts were
closely synchronized. Figure 11 compares the average latency of EventJava with
that of the same application implemented using Cω with .NET Remoting. The
sink objects were distributed in groups of 100 on 1, 3, 5, 7, 9, 11 nodes and the
source was on a different node. Each node was a Dell OptiPlex GX270 Work-
station with a 3Ghz Pentium 4 processor and 512 MB RAM running Microsoft
Windows XP. Figure 11 shows that average end-to-end latency remains closely
constant in the EventJava application as the number of sinks increases, while
average latency rapidly increases when performing a blunt multi-send with .NET
Remoting.

6 Discussion

We discuss issues related to the design and implementation of EventJava, includ-
ing three parameters for matching (M1, M2, M3) that can be set by the runtime.

Events in multiple patterns. As mentioned in Section 3.3, in a class, the same
event method cannot be a part of more than one correlation pattern. Consider a
class C, where an event method e occurs in more than one pattern p1 and p2. At
runtime, the implementation has two alternatives when an event matches more
than one pattern:

A1 Non-deterministic choice: Non-deterministically choose a pattern that con-
sumes the event. This breaks the order preservation property of our reference
implementation, which would defeat the purpose of many event dissemina-
tion protocols in the substrate. An application developer can easily separate
p1 and p2 into two separate classes C1 and C2, and if non-determinism is
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desired, the developer can easily introduce it by randomization. But, recon-
structing event order at the application level is much more complicated. If
A1 can also create scenarios where a pattern is starved, i.e. does not consume
any event for long periods of time.

A2 Cloning: Clone the event, thereby allowing all matching patterns to consume
the event. This alternative can also break the order preservation property.
Also, if events are cloned, the EventJava runtime has to maintain per-pattern
data structures to store events, because the consumption of an event by one
pattern is independent of other patterns. This degrades performance. A2 also
complicates inheritance; if a class C defines two patterns p1 and p2, both
containing event method e, and if class C′ extends C and defines pattern p3
containing e, does p3 override p1 or p2? Both? Neither? We would need to
add further syntax to EventJava to explicitly specify overridden events and
patterns.

Because of these drawbacks, EventJava does not permit the same event method
to occur in multiple patterns in a class.

Broadcast vs multicast. Through the presence of predicates in EventJava,
broadcasting leads to implicit multicasting, as not all instances of a sink class
C (and of its subsclasses) will necessarily deliver a given event C.e(...). An in-
termediate case between unicast and implicit multicast consists in an explicit
multicast where a select set of sinks are addressed – atomically as opposed to
a multi-send as portrayed in rule [Ev-Bcast-R] of Figure 5. Several middleware
systems propose such protocols natively, or they can be built on top. EventJava
supports such interaction through specific proxies. As the invocation then oc-
curs just like a regular unicast invocation (on the proxy) and many authors have
elaborated on that in the past (e.g., [19,20]) we omit its presentation.

Bootstrapping and groups. Bootstrapping of EventJava components occurs
like in any distributed application: a federated name is necessary for connecting
parties. This name defines a group, which delimits an EventJava application and
thereby also broadcasts. There are several ways of further reducing the scope of
broadcasts. Two dynamic solutions are alluded to above. (1) By adding a name
attribute to corresponding events, sinks can use predicates to specify subgroups
of interest. (2) Creating explicit multicast groups by the use of proxies and li-
braries. Additionally, configuration files can be used to define boundaries for
broadcasts on a per-event basis, e.g., through subnet masks.

Order. The ordering property stated above only holds for two instances of a
same class, and with respect to individual patterns. By matching following
the patterns of a class in a deterministic order (M1), which can be en-
abled in our implementation, the property can be widened to reactions to all
patterns of two instances of a same class. Given the possibility of redistributing
events across patterns and redefining predicates in subclasses, widening to sub-
classes is not possible straightforwardly. Similarly, causal order [21] is a useful
property in asynchronous distributed systems devoid of synchronized clocks, e.g.
for debugging. It can be inherently achieved with total order broadcast and local
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order [21], which our reference implementation provides, in settings considering
individual events. As opposed to traditional message-wise delivery, correlation
introduces the possibility of several and thus causally ordered events to be deliv-
ered simultaneously (in fact this is what many patterns are fishing for), but no
two events e1 < e2 (< representing a happens-before relation) can be handled by
two subsequent reactions r1 and r2 in the inverse order, i.e., r2 will not handle
e1 after r1 handles e2.

Event expiry. Predicates add to the possibility of events never being matched
– or matchable. Events of a given type can accumulate if events of other types
correlated with it are received at lower rates. Our reference implementation thus
allows for the setting of time-outs on events (M2), by sources (context) and
sinks. Furthermore, the deletion of all earlier events of a type when identifying
the first one matching its pattern ( ” \∗ ” in rules [React-R’1,2 ]) can be similarly
disabled, leading to retaining older non-matched events (by using ” \ ” in-
stead – M3). It is easy to show that this does not invalidate Theorem 2. However,
the order of the reaction executions, though still total, can go against the total
order determined on events by JGroups.

Language design issues. The Context class is not a superclass of all classes
containing event methods because of ongoing extensions to EventJava where
different event methods in a class can have different contexts. Another design
choice would be to have an implicit join if the same parameter name is used
in two event methods in a correlation pattern, rather than having it represent
two variables that have to be disambiguated. Implicit joins are elegant, but
programmers may accidentally use the same parameter name where a join is not
intended.

7 Related Work

In this section, we present related work on programming language support for
event-based programming with emphasis on correlation. An overview of the most
closely related languages/frameworks is given in Table 1.

Concurrency. Like Cω [22], Join Java [26] faithfully implements the Join cal-
culus [23] – providing a means to react to correlated asynchronous method invo-
cations, without predicates, broadcast, and customizable matching. Functional
languages like CML [28] and Erlang [34] provide powerful support for event-
based programming, but do not explicitly support event correlation. In CML,
events are essentially reified as function evaluations such as reads or writes on
channels, which can be combined. Event correlation can be achieved by a staged
event matching, in which a correlation pattern is matched in phases, where the
occurrence of an event of a first type is a precondition for the remaining match-
ing, which consumes that event. Staged event matching imposes an order on
how events are matched to a correlation pattern. This gives the programmer
much control over the exact matching semantics, but means implementing partial
matching schemes repeatedly. In many cases, more advanced schemes expressed



EventJava: An Extension of Java for Event Correlation 591

Table 1. Overview of inherent event programming features of related programming
languages/frameworks. Languages supporting broadcast also have unicast. Type-A and
Type-B predicates are described in Section 2.2.

Language Joins Type-A Type-B Streams Addressing
predicates predicates

ECO [24] - ✔ - - Broadcast
JavaPS [25] - ✔ - - Broadcast

Cω [22] ✔ - - - Unicast
Join Java [26] ✔ - - - Unicast
AWED [27] ✔ - ✔ - Broadcast
CML [28] ✔(staged) ✔ - - Broadcast

StreamFlex [29] ✔ - - ✔ Unicast
StreamIt [30] ✔ - - ✔ Unicast
Ptolemy [31] ✔(staged) - - - Unicast

Scala Joins [32] ✔ ✔ - - Unicast
Scala Actors [33] ✔(staged) ✔ - - Unicast

Erlang [34] ✔(staged) ✔ - - Unicast
EventJava ✔ ✔ ✔ ✔ Broadcast

with staged matching can require “re-inserting” an event, which quickly com-
plicates code. CML provides rich libraries with common operators to mitigate
the issues above. Actor-based languages like Erlang [34] and Scala Actors [33]
similarly support staged event matching. Scala Joins [32] provide Cω-like join
patterns, but does not support Type-B predicates and broadcast interaction.
Jeeg [35] is a concurrency extension of Java imposing ordering of method invo-
cations based on patterns described in Linear Temporal Logic (LTL) in a way
similar to the routines in many active object approaches, e.g., [36]. Like CML
these approaches do however not allow for the atomic reaction to combinations
of incoming calls/events. Responders [37] provide a means of writing responsive
threads in a state-machine manner, yielding a safe and effective way of arranging
event handling code. However, correlation is not supported, and reactions are
synchronous to ensure determinism.

Publish/subscribe, streams and aspects. ECO (events, constraints, ob-
jects) [24] and JavaPS [25] extend C++ and Java respectively for publish/
subscribe-like distributed programming, i.e., reacting to singleton events.

StreamIt [30] is a dataflow language targeting fine-grained highly parallel
stream applications and providing a highly optimizing native compiler (and a
Java translator). While StreamIt programs can be parallelized automatically,
the language is hardly suited for general purpose applications because of the
lack of data types offered and the restricted programming model. Also, there is
no support for event correlation or stream correlation. StreamFlex [29] is a Java
API for stream processing inspired by StreamIt but providing high-predictability
implemented on top of a real-time virtual machine. StreamIt provides filters
and channels, leading to a similar programming model as CML. DirectFlow [38]
is a domain specific language that simplifies programming information-flow
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components by hiding the control-flow interactions between them. Again, there
is no explicit support for event correlation. AWED (aspects with explicit distribu-
tion) [27]) is an aspect language supporting the remote monitoring of distributed
applications with distributed pointcuts and advice. EventJava can be viewed as
AWED turned inside-out: applications are intentionally written to interact with
specific events, which is achieved by the means of limited additional syntax. DJ-
cutter [40] extends AspectJ’s with remote joinpoints and pointcuts. However, at
the runtime level, DJcutter proposes a centralized aspect-server, which consti-
tutes a bottleneck in a large distributed systems; as many others of the others,
DJcutter lacks consistency guarantees as a consequence of poor integration with
distribution. Ptolemy [31] is an aspect-oriented language with quantified, typed
events, but doesn’t support correlation – joins can be performed in a staged
manner as described earlier.

8 Conclusions and Outlook

We have presented EventJava, a generic language for event-based programming
with event correlation. Our implementation framework allows for adaptation to
various settings and systems. We are for instance in the process of implementing
a lightweight version of EventJava for mobile computing. The notion of context
allows us to easily accommodate context-aware applications.

We are currently pursuing two further axes of research, centered around
matching semantics and the EventJava framework. First, we are devising an-
notations for flexibly configuring matching semantics on a per-pattern basis.
Second, we are investigating the use of domain-specific aspects for context ex-
pression and propagation and other parts of our framework.
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Abstract. Because Remote Procedure Calls do not compose efficiently, design-
ers of distributed object systems use Data Transfer and Remote Façade patterns to
create large-granularity interfaces, hard-coded for particular client use cases. As
an alternative to RPC-based distributed objects, this paper presents Remote Batch
Invocation (RBI), language support for explicit client-defined batches. A Remote
Batch statement combines remote and local execution: all the remote code is ex-
ecuted in a single round-trip to the server, where all data sent to the server and
results from the batch are communicated in bulk. RBI supports remote blocks, it-
eration and conditionals, and local handling of remote exceptions. RBI is efficient
even for fine-grained interfaces, eliminating the need for hand-optimized server
interfaces. We demonstrate RBI with an extension to Java, using RMI internally
as the transport layer. RBI supports large-granularity, stateless server interactions,
characteristic of service-oriented computing.

1 Introduction

The Remote Procedure Call (RPC) has long been the foundation of language-level ap-
proaches to distributed computing. The idea is simple: replace local calls with stubs
that transfer the procedure call to a remote machine for execution. RPC has been gen-
eralized for objects to create distributed object systems, including Common Object Re-
quest Broker Architecture (CORBA) [22], the Distributed Component Object Model
(DCOM) [8], or Java Remote Method Invocation (RMI) [29]. Stubs are defined on a
local object that acts as a proxy for a remote object. One advantage of this approach is
that it does not require language changes, but can be implemented using libraries and
stub generator tools.

Standard object-oriented designs, which focus on flexibility and extensibility through
the use of fine-grained methods, getters and setters, and small objects, do not perform
well when distributed remotely. Every method call on a remote proxy is a round trip to
the server. To achieve suitable performance, remote objects must be designed according
to a different set of principles1. Data Transfer Objects and Remote Façades are used to
optimize data transfer and combine operations to reduce the number of round trips [18].
One effect of this approach is that servers and protocols are hard-coded to support spe-
cific client invocation patterns. If a client changes significantly, then the entire system,
including the server and its interfaces, must be redesigned.
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1 Approaches using asynchronous messaging are discussed in related work.
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This paper presents Remote Batch Invocation (RBI), a new approach to distributed
object computing. Remote Batch Invocation allows multiple calls on remote objects to
be invoked in a batch, while automatically transferring arguments and return values in
bulk. The following example uses a Remote Batch in Java to delete low-rated albums
from a personal online music database.

int minimum = 5;
Service musicService = new Service("MusicCloud", Music.class);
batch (Music favoriteMusic : musicService) {
for (Album album : favoriteMusic.getAlbums())
if (album.rating() < minimum) {
System.out.println("Playing: " + album.getTitle());
try {
album.play();

} catch (Exception e) {
System.out.println("error: " + e.getMessage());

}}}

The batch mixes local and remote computation. In this case, all the computation is
remote except the two calls to System.out. The semantics of Java is modified within
the batch to first perform all remote operations, then perform all local operations. Thus
the typical ordering between local and remote statements is not necessarily preserved.
For example, all of the albums are played before any of the names are printed. All
loops and conditionals are executed twice: once on the server and then again on the
client. Exceptions on the server terminate the batch by default, and raise the error in the
analogous execution point on the client.

A remote batch transfers all data between client and server in bulk. In this case,
just the minimum rating is sent to the server. The server returns a list of all titles of
played albums. But it also returns a boolean for each album indicating whether it was
played. In general, any number of primitive or serializable values can be transfered to
and from the server. Remote Batch Invocation creates appropriate Data Transfer Objects
and Remote Façades on the fly, involving any number of objects and methods. Standard
Java objects can be published as a batch service by adding a single line of code. The
semantics of the batch statement require that only a single remote invocation is made
in the lexical block. This strong performance model is important, because the cost of
remote invocations may be several orders of magnitude higher than local invocations.

We demonstrate Remote Batch Invocation with an extension to Java. A source-to-
source translator converts the batch statement to plain Java which uses Batch Exe-
cution Service and Translation (BEST), our middleware library for batched execution
using Java RMI. Remote Batch Invocation is not tied to RMI, but could also be imple-
mented using other middleware transport, for example web services or mobile objects.
A server can publish a remote service by making a single library call.

The performance benefits of batching operations are well-known, especially in high-
latency environments. We evaluate our language extension by comparing it with other
approaches to batching such as implicit batching, mobile code, and the Remote Façade
pattern.

In summary, Remote Batch Invocation is a new approach to distributed objects that
supports service-orientation rather than remote procedure calls and proxies. The funda-
mental insight is that remote execution need not work at the level of procedure calls,
but can instead operate at the level of blocks, with bulk transfer of data entering and
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leaving the block. Unlike traditional distributed objects that maintain server side state,
Remote Batch Invocation has a stateless execution model that is characteristic of service
oriented computing [17,20].

2 Remote Batch Invocation

Remote Batch Invocation allows clients to combine remote operations into a single re-
mote invocation. We will illustrate the features of Remote Batch Invocation by example.
The basis of our examples is a sample remote service described by Fowler in Patterns
in Enterprise Application Architecture [18]. This simple remote music service is com-
prised of three classes: Album, Artist, and Track as shown in Figure 1. The Album
interface also provides the play method which returns the lyrics on the album and
plays the album on a sound system.

interface Album {
String getTitle();
void setTitle(String title);
Artist getArtist();
void setArtist();
Track[] getTracks();
void addTrack(Track t);
void removeTrack(Track t);
String play();

}

A natural remote interface to these three classes is shown below:

interface Music {
Album createAlbum(String id, String title);
Album getAlbum(String id);
Artist addArtist(String id, String name);
Artist getArtist(String id);
Track createTrack(String title);

}

Using the Music interface, a client can create and find artists and albums as well as
create tracks. A client may update object fields using the appropriate setters. We will
use this interface for our Remote Batch Invocation examples.

Unfortunately, this natural interface is too fine-grained in a system where individ-
ual method calls are expensive. Using the Remote Façade and Data Transfer patterns,
Fowler wraps the Music interface:

interface FowlerMusic {
String play(String id);
AlbumDTO getAlbum(String id);
void createAlbum(String id, AlbumDTO dto);
void updateAlbum(String id, AlbumDTO dto);
void addArtistNamed(String id, String name);
void addArtist(String id, ArtistDTO dto);
ArtistDTO getArtist(String id);

}
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Fig. 1. Fowler Album Class Diagram

FowlerMusic is a Remote Façade for the Music interface. For example, the
FowlerMusic.playmethod is simply calling the Music.getAlbummethod followed
by the Album.play method. The AlbumDTO, ArtistDTO, and TrackDTO are data
transfer objects (DTO) that transfer information in bulk to and from the remote server.
Fowler also defines AlbumAssembler, which maps between DTOs and objects resid-
ing on the server.

class AlbumAssembler {
public AlbumDTO writeAlbum(Album subject) {
AlbumDTO result = new ALbumDTO();
result.setTitle(subject.getTitle());
result.setArtist(subject.getArtist().getName());
writeTracks(result, subject);

}
void writeTracks(AlbumDTO result, Album subject) { ... }
void writePerformers(TrackDTO result, Track subject) { ... }
public void createAlbum(String id, AlbumDTO source) {
Artist artist = Registry.findArtistNamed(source.getArtist());
if (artist == null) throw new RuntimeException(...);
Album album = new Album(source.getTitle(), artist);
createTracks(source.getTracks(), album);
Registry.addAlbum(id, album);

}
void createTracks(TrackDTO[] tracks, Album album) { ... }
void createPerformers(Track newTrack, String[] performers) { ... }

}

Although AlbumAssembler encapsulates the logic of mapping between DTO and
model objects, it is not generic, containing a hard-coded decision about the DTO con-
tent. In the book, Fowler decides to have the Album DTO provide all the information
about a single album.

The next sub-sections give examples of using Remote Batch Invocation for batch
data retrieval, batch data transfer, loops, branching, and exceptions.
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2.1 Batch Data Retrieval

A simple client may want to print the title and name of the artist for an album. With the
fine-grained Music interface, the client must execute four remote calls: a call to find
the album, a call to get the title of the album, a call to get the artist for the album, and a
call to get the name of the artist for the album.

Using Remote Batch Invocation, the client can use the Music interface while still
executing a single remote call. The input to the remote batch is the id of the album “1”.
The output of the remote batch is the title of the album and the name of the artist of
the album. A remote batch can combine an arbitrary number of method calls as long as
they are invoked on objects transitively reachable from the root object of the batch, in
this case music.

batch (Music music : musicService) {
final Album album = music.getAlbum("1");
System.out.println("Title: " + album.getTitle());
System.out.println("Artist: " + album.getArtist().getName());

}

The same client using the remote façade FowlerMusic executes a single remote
method getAlbum which returns AlbumDTO. For this client, the DTO is an over-
approximation of the data needed; a Remote Façade optimized for this client would
need another DTO for albums that only provides the title and artist name.

AlbumDTO album = music.getAlbum("1");
System.out.println("Title: " + album.getTitle());
System.out.println("Artist: " + album.getArtistName());

For other clients, the DTO may be an under-approximation of the data needed. For
example, this client prints the title of two different albums.

batch (Music music : musicService) {
final Album album = music.getAlbum("1");
System.out.println("Title: " + album.getTitle());
final Album album = music.getAlbum("2");
System.out.println("Title: " + album.getTitle());

}

FowlerMusic does not contain a method that matches this client pattern. Consequently,
the same client using FowlerMusic must make an additional remote call compared
to using Remote Batch Invocation. Alternatively, the FowlerMusic interface can be
changed to include a method that takes two album IDs as input and returns a new DTO
containing two fields representing the titles of the input albums. This highlights one of
the disadvantages of the Remote Façade pattern; it creates a non-functional dependency
between the server interface and the client call patterns.

2.2 Batch Data Transfers

Remote Batch Invocation also allows clients to transparently transfer data in bulk to the
server. The following code creates Album, Artist, and Track objects and wires them
together. The input to the remote batch is all the information about the album, artist,
and track to be created and there is no output. The actual construction of the objects and
method calls occur entirely on the server.
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batch (Music music : musicService) {
final Album album = music.createAlbum("2", "First Album");
final Artist artist = music.addArtist("2", "John Smith");
album.setArtist(artist);
final Track track = music.createTrack("First track");
track.addPerformer(artist);
album.addTrack(track);

}

A client using FowlerMusic can also create the objects using a single remote invoca-
tion using the appropriate DTOs.

AlbumDTO album = new AlbumDTO("First Album");
AlbumDTO artist = new ArtistDTO("2", "John Smith");
album.setArtist(artist);
TrackDTO track = new TrackDTO("First Track");
track.addPerformer(artist);
album.addTrack(track);
music.createAlbum("2", album);

A drawback to using data transfer objects for creating and updating objects, is that DTO
is under-specifying some of the semantics of the operation. In particular, the DTO does
not tell the server whether the artist object is an artist object which should be created or
if it already exists. This is a well-known problem in data mapping and commonly arises
in distributed systems. A common approach and the one taken by Fowler in his book,
is to specify a convention to either always create objects, always use existing objects,
or create an object if it does not already exist. Another approach is to enrich the DTO
with status fields for each normal field that specify the right semantics. Sometimes this
status field is encoded into the field, for example, by using null as a special value.
A related problem is updating objects if the client only has a partial description of the
object. The client must be able to update the subset of fields which are known, but not
the fields which are unknown.

The remote batch is more explicit in that specifies that the artist is a new Artist
object. If the client wanted to reference an existing artist the code would be rewritten as
follows:

batch (Music music : musicService) {
final Album album = music.createAlbum("2", "First Album");
final Artist artist = music.getArtist("2");
album.setArtist(artist);
final Track track = music.createTrack("First track");
track.addPerformer(artist);
album.addTrack(track);

}

2.3 Loops

So far, we have shown that Remote Batch Invocation supports straightline code. How-
ever, it is common for a client to need more complex logic involving branching and
loops. Remote Batch Invocation allows for remoting of the enhanced for loop intro-
duced in Java 1.5 if the collection can be evaluated remotely. If data from the iterations
is needed locally, the remote batch constructs a data transfer object with an array of the
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data needed and transparently maps it on the client. Below is a simple example which
shows how explicit batching can operate over arrays. The input to the remote batch is
simply the id of the album and output is the title of all of the tracks, the name of all of
the performers on the tracks, and the lyrics returned by the play method.

batch (Music music : musicService) {
final Album album = music.getAlbum("1");
System.out.println("Tracks: ");
for (Track t : album.getTracks()) {
System.out.print(t.getTitle());
System.out.println(’,’);
System.out.print("Performed by: ");
for (Artist a : t.getPerformers()) {
System.out.print(a.getName());
System.out.print(’ ’);

}
System.out.print(’\n’);

}
System.out.println("Song: " + album.play());

}

The FowlerMusic.getAlbum method in Remote Façade nearly provides all the func-
tionality required by this client; however, it does not include a call to the Album.play
method.

2.4 Branching

Conditional statements, including if and else, are remoted if their condition is a re-
mote operation. Below is a simple example that shows such a remoted conditional state-
ment also containing the primitive operator &&.

batch(Music music : musicService) {
final Album album = registry.getAlbum("1");
if (album.getName().startsWith("A")

|| album.getName().startsWith("B")) {
album.play();
System.out.print("Title starts with A or B: " + album.getTitle());

} else {
System.out.print("Title does not start with A or B: "

+ album.getArtist().getName());
}}

RBI supports boolean and numeric primitive operators, both unary and binary. Condi-
tional code can also be included as part of operations on collections. In that case, the
conditions are reevaluated on each iteration over a collection. The following example
adds albums composed by Yo-Yo Ma to the favorites collection.

for (Artist a : t.getPerformers()) {
if (a.getName().equals("Yo-Yo Ma")) {
favorites.addArtist(a);

}}



602 A. Ibrahim et al.

2.5 Exceptions

Remote Batch Invocation separates exceptions caused by failures in communication
from logical exceptions that arise when executing the statements in the batch. The
batch statement itself can raise network exceptions, which must be handled by the sur-
rounding context. If there are no network errors, then exceptions raised by statements
in the batch can be handled in the client.

Within a batch, a remote operation can raise an exception on the server that will
terminate the batch. The thrown exception will be raised in the corresponding execution
point on the client. The client must use exception handlers as in regular Java code. In
addition, the execution of a remote batch may result in a RemoteException that can
be handled by wrapping an entire batch block with a try/catch block.

For example, the following code extends an earlier example to include an exception
handler when trying to play an album, and another handler that deals with network and
communication errors raised at any point of executing the batch.

try {
batch (Music favoriteMusic : musicService) {
...
try {
album.play();

} catch (PermissionError pe) {
System.out.println("No permission to play album"
+ album.getTitle());

}
} //end batch

} catch (RemoteException re) {
System.out.println("Error communicating batch.");

}

The default behavior of a batch is to abort processing when an exception is thrown.
As future work, we would like to be able to apply a different exception policy, for
example to continue execution or restart the batch. Batches also provide a natural unit
of atomic execution. In many cases it is desirable for the entire batch to succeed or
fail, so that incomplete operations are never allowed. One way to achieve this is to use
transactional memory on the server [7].

Even so, it is possible for the batch to succeed on the server but for a communication
error to prevent the client from completing the batch. A standard two-phase commit
could be used to ensure that both the server and client parts of the batch have executed
to completion. These topics are beyond the scope of our current research, but we do not
see any obstacles to combining RBI with distributed transactions.

2.6 Service Implementation

Implementing a Remote Batch Invocation service is much simpler than implementing
a server using traditional distributed object middleware, including RMI or CORBA.
There is no need to create method stubs. Instead, the server simply registers a root
object with a single call after creating the server implementation object.



Remote Batch Invocation for Compositional Object Services 603

Music musicServer = new MusicImpl(...);
rbi.Server server = new rbi.Server("MusicCloud", musicServer);

The client connects to this service by using the same name and interface.

rbi.Service musicService =
new rbi.Service("MusicCloud", Music.class);

As in most distributed systems, interface mismatches between client and server are
detected at runtime. Standard Java interfaces define the service contract.

2.7 Service-Oriented Interaction

Remote Batch Invocation supports a service-oriented style of interaction, so it does
not support object proxies. This is not a problem for many client/server interactions,
which can be naturally accomplished in a single round-trip. These interactions have the
following pattern:

client
input−→ server*

results−→ client
The client sends any number of inputs to the server, which performs multiple actions

and returns any number of results to the client. There may be cases; however, when a
server computation depends upon client input and previously defined server objects.

client
input−→ server*

results−→ client*
input2−→ server*

results2−→ client
�

This situation is easily handled in distributed object systems like CORBA and RMI,
since each server operation is controlled by the client and it can use proxies to refer to
the intermediate server results needed in the last step.

This interaction pattern requires some other solution in a stateless service-oriented
system. The simplest approach is to have the second server batch reload or recreate the
server objects that were defined in the first batch. The server may also provide public
identifiers for its objects. The first results can include a server object identifier, which
is used in the second batch to relocate the necessary server object. These patterns have
been studied extensively in the context of service-oriented computing [20,17].

2.8 Allowed Remote Operations

Any Java code may appear inside the batch block; however, the compiler enforces some
data flow restrictions described in Section 3. Many Java constructs such as constructor
calls, casts, while loops, and assignments cannot be remoted; they are always executed
on the client. Future work may relax some of these restrictions. If remote assignments
were allowed, then it would be possible to aggregate (e.g. sum or average) over collec-
tions remotely. General loops could also be remoted without significant changes to the
model.

Exceptions are a special case. The remote batch cannot catch exceptions remotely,
but it does propagate them to the client in the original location of the remote operation
that produced the exception. In this way, the client can catch exceptions raised remotely
and handle them locally.

Keeping the remoteable constructs simple and as universal as possible increases the
viability of using RBI against remote interfaces written in other languages.
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3 Semantics

Our Java implementation of Remote Batch Invocation uses the following syntax:

batch (Type Identifier : Expression) Block

The Identifier specifies the name of the root remote object. The Expression specifies the
service which will provide the root remote object. The Block specifies both remote and
local operations. A remote operation is an expression or statement executed on the server.
All remote operations inside the batch block are executed in sequence followed by the
local operations in sequence. A single remote call is made which contains all of the re-
mote operations. This is the key property as it provides a strong performance model to
the programmer albeit lexically scoped. Exceptions in a remote operation are re-thrown
in the local operation sequence at the original location of the remote operation. If the re-
mote operations fail due to a network error, then an exception is thrown before any of the
local operations execute. Operations inside the batch block are reordered and it is possi-
ble that the block executes differently as a batch than it normally would. The compiler
does try to identify some of these cases and warn the programmer, however, it is up to
the programmer to be aware of the different Java semantics inside the batch block.

Each expression in the batch is marked as local or remote. Local expressions are fur-
ther subdivided into static locals and non-static locals. Remote expressions execute on
the server, possibly with input from static local expressions. Local expressions execute
on the client, possibly with output from remote expressions. Static local expressions are
literals and variable expressions defined outside of the batch and not assigned within the
batch before their use. All other local expressions are non-static.

The compiler determines the location of an expression statically. A component of this
analysis is a forward flow-sensitive data-flow analysis that maps variables to locations.
Locations are ordered as a small lattice where static local < remote < non-static local.
The � operator adds or changes a mapping for a variable. The pred function returns
the predecessors of a statement node in the control flow graph. For simplicity, we will
assume in this paper that all assignments are statements; however, in Java they are
actually expressions. The data flow analysis is defined in Figure 2.

The batch variable is remote. Variables only assigned outside the batch are static
locals. Variables declared final and initialized with remote expressions are remote. All
other variables inside a batch block are non-static locals. Assignments may change the
mapping of a variable up the lattice of locations. For this analysis, the only case where
this happens is a variable mapped as a static local may be remapped as a non-static
local. It cannot happen for variables mapped as remote, because final variables cannot
be reassigned.

Figure 3 defines the location function which maps expressions to locations. To de-
termine the location of a variable expression, the analysis looks up the variable name
in the result of the data flow analysis flowing into the statement containing the variable
expression. The mutual definition of location and gen introduces a cyclic dependency
which is resolved by taking the fix point of the two functions starting with the bottom
value of our location lattice (static locals). The location of a primitive operation is the
join of the locations of the operands. The location of an instance method call expression
is the location of the target of the method call. All other expressions inside or outside
the batch statement are non-static local or static local respectively.
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n, m ∈ Statement

e ∈ Expression

inBatch(e) =

(
true e is an expression inside a batch statement
false otherwise

varBatch(e) =

(
v e is an expression inside a batch statement of the form batch(T v : e)
undefined otherwise

s � nil = s

s � [v �→ l] =

(
s ∪ [v �→ l] [v �→ ] �∈ s

(s − [v �→ k]) ∪ [v �→ l] [v �→ k] ∈ s

in[n] =
[

m∈pred(n)

out[m]

out[n] = in[n] � gen(n)

gen(n) =

8>>>>><
>>>>>:

[v �→ remote] n = [[batch(T v : e)]]
[v �→ static local]) n = [[v = e]] ∧ ! inBatch(n)
[v �→ non-static local] n = [[v = e]] ∧ varBatch(n) �= vb

[v �→ location(e)] n = [[final v = e]] ∧ varBatch(n) �= vb

nil otherwise

Fig. 2. Analysis of Java to identify local and remote variables

location([[v]]) = in[Stmt(v)](v)
location([[e1 op e2]]) = location(e1) � location(e2)
location([[o.m(ē)]]) = location(o)

location([[ ]]) =

{
non-static local inBatch( )
static local ! inBatch( )

Fig. 3. Location of Java expressions

One important thing to note in the rules is that general assignment is not supported in
the remote batch. Therefore, variables are only remote if they correspond to the batch
variable or if they are final and assigned remote expressions. Java 1.5 for statements
are executed remotely if their collection is a remote expression. A remote for loop is
replayed locally to support local expressions or statements inside the loop. Similarly,
conditional statements are executed remotely if their condition is a remote expression. A
remote conditional is replayed locally to support local expressions or statements inside
the if statement.

Data is passed by value from the client to the server and from the server to the client.
For example, the remote identity function returns a copy of the local argument. This
implies that all input and output values of the batch must be serializable and specifically
in Java implement the Serializable interface. Remote values not used locally are not
subject to this restriction. Remote expressions do have identity as long as they are part
of computations on the server, and similarly local expressions have the normal notion
of identity in Java.
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The compiler rejects all programs in which the remote operations cannot be legally
moved above the local operations. For example, parameter expressions in remote
method calls cannot contain local variables defined within the batch. The compiler also
rejects some programs in which moving the remote operations above the local oper-
ations might result in non-intuitive behavior. For example, parameter expressions in
remote method calls should not have their value changed in the local operations. The
following are considered illegal expressions by the compiler.

– Method invocations on remote values that have a parameter which is a non-static
local expression or is not serializable.

– Expressions with remote locations inside of an if block where the condition is a
local expression.

– Expressions with remote locations inside of a loop construct where the condition is
local.

– Nested batch statements.

One design goal was to ensure that programmers could easily understand the semantics
of the batch construct. To that end, our analysis uses a very simple local data flow
analysis and is lexically scoped. This may allow non-intuitive programs to be accepted
by the compiler, because they change the state of static local expressions via different
threads, heap aliasing, or local method calls [19]. The following example shows a case
where the compiler accepts a program that behaves non-intuitively from the point of
view of the programmer.

StringBuilder sb = new StringBuilder();
sb.append("My Album");
batch(Music music : musicService) {
m(sb);
music.createAlbum("1", sb);

}
...
void m(StringBuilder sb) { sb.append(": Blues"); }

The programmer might expect that the remote method call createAlbum will be
passed the string "My Album: Blues", but in a remote batch it will be passed the
string "My Album", because the remote method call will occur first. Unfortunately
Java reflection, virtual methods, and dynamic class loading all complicate whole pro-
gram analysis. Our local lexical analysis trades off catching some non-intuitive behavior
to gain simplicity, practicality, and locality.

4 Implementation

Support for Remote Batch Invocation in Java is implemented as a source to source
translator which takes code containing remote batch constructs and translates them into
regular Java code. The output of the source to source translator uses a script recording
API that sends the remote operations as a single batch to the remote server. In the current
implementation, the script recorder uses the transport layer and the service discovery
mechanism of Java RMI. The support system for RBI is called BEST, which is an
acronym for Batch Execution Service and Translation. BEST is implemented as a layer
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on top of Java RMI, without changes to the Java language or runtime. First, we discuss
the translation of the batch syntax. Then, we focus on the implementation issues of
BEST, its underlying techniques, and its integration with Java RMI. Section 5 quantifies
BEST performance benefits.

4.1 Language Translation

The source to source translator is implemented as an extension to JastAddJ [16]. Jas-
tAddJ is a Java compiler based on JastAdd and written as a circular attribute grammar.
JastAdd provides several useful features. As a circular attribute grammar, many static
analyses can be expressed naturally and fixed point computations are handled by the
JastAdd engine. In addition, JastAdd provides many aspect-oriented features which al-
low composition of different analyses and language features in a a modular fashion.
The data flow analysis is implemented on top of a control flow graph module written
by the authors of JastAddJ for Java 1.4. We modified the their module slightly to add
support for the new batch construct and to support Java 1.5. For each expression, the
translator computes its location as described in Section 3.

The translator traverses the program abstract syntax tree (AST) downwards starting
from the root AST node. Outside of a batch, the translator does not change the Java
code. Inside a batch, the translator always produces two code strings, one for the re-
mote operations and one for the local operations. Once the entire batch is translated,
some boilerplate code to setup the batch is generated first, then the remote operations
are inserted, then a call to execute the batch is generated, and finally the local operations
are inserted. While translating code in a batch, the translator has two different modes of
operation. Initially the translator is in local mode. Expressions in local mode produce
no remote operations and produce themselves as local operations. Most statements be-
have similarly except for remote loops and remote conditionals which produce both
remote and local operations. Once the translator reaches an expression whose location
is remote, it binds that remote value to a temporary variable as a remote operation and
enters remote mode for that expression. The translator also adds a local operation which
invokes the get method on the temporary variable. In remote mode, the translator can
safely assume all sub-expressions are remote operations.

Service musicService = new Service("MusicCloud", Music.class);
batch(Music music : musicService) {
final Album album = music.getAlbum("1");
if (album.getTitle().startsWith("A")) {
System.out.println("Tracks:");
for (Track t : album.getTracks()) {
System.out.print(’ ’);
System.out.print(t.getTitle());

}
} else {
System.out.print("Title does not start with A: "
+ album.getArtist().getName());

}}

Fig. 4. RBI source code
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// Remote part
Service service$ = musicService;
{ Batch batch$ = service$.getRoot();
Handle album$73751 = batch$.doInvoke(batch$,"getAlbum",
new Class[] {String.class}, new Object[] {"1"});

Handle var$0 = batch$.doInvoke(
batch$.doInvoke(album$73751,"getTitle", null, null),
"startsWith", new Class[] {String.class}, new Object[] {"A"});

batch$.rIf(var$0);
cursor.Cursor t$86036$Cursor = batch$.createCursor(

batch$.doInvoke(album$73751,"getTracks", null, null));
Handle var$1 = t$86036$Cursor.doInvoke(

t$86036$Cursor,"getTitle", null, null);
batch$.rElse();
Handle var$2 =
batch$.doInvoke(batch$.doInvoke(album$73751,"getArtist", null, null),
"getName", null, null);

batch$.rEnd();
batch$.flush();
// Local part
if((Boolean)var$0.get()){
System.out.println("Tracks:");
while (t$86036$Cursor.next()) {
System.out.print(’ ’);
System.out.print((String)var$1.get());

}
} else {
System.out.print("Title does not start with A: "
+ (String)var$2.get());

}}

Fig. 5. Translation of Figure 4

Figure 4 shows a RBI program which uses many of the supported features. Figure 5
shows the translation into Java code which uses BEST. An interesting part of the trans-
lation is how conditionals and loops require both remote and local operations.

4.2 BEST Client Interface

The main client interface of BEST is defined in Figure 6.
A Batch is a client object that represents a collection of statements. Method flush

delineates the boundary of a batch. When flush is called, all the recorded statements
are sent to the server in bulk, executed there, and the relevant results are returned back
together. Each recorded statement returns a Handle which is a placeholder for a remote
object, existing or created on the server. A Handle has two different semantics before
and after flush is called. Before flush, a Handle serves as a placeholder for a result
which has not yet been obtained. After flush, a Handle object holds a result of a
remote operation that can be retrieved.

The Batch interface describes a script recording service. To add a method to be in-
voked remotely, the API provides the method doInvoke. The parameters of this method
loosely mirror that of Method.invoke in the Java Reflection API. The method’s pa-
rameters are deliberately weakly-typed to enable greater flexibility. This design choice
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public interface Batch {
public Handle doInvoke(Object obj, String method,

Class[] types, Object[] args);
public Cursor createCursor(Handle value);
public Handle unary(Ops op, Handle val1);
public Handle binary(Ops op, Handle val1, Handle val2);
public Handle constant(Object o);
public Handle rIf(Handle condition);
public Handle rElse();
public Handle rEnd();
public void flush();

}

Fig. 6. Interface to the BEST batch execution runtime

fits well the BEST programming model, in which all the calls to the script recording
API are automatically generated by the source-to-source translator, thereby ensuring
that the resulting code is type safe.

The Batch interface also provides methods to express conditional remote control
flow and operators. These methods are used to express conditions and operations used
in a batch block. The translator maps Java conditional and primitive operators into
regular methods (e.g., rIf, rElse, binary) that are recorded for remote execution.

The makeCursor method takes a Handle parameter and returns a Cursor, which
represents an iteration context for the collection of objects existing on the server. The as-
sumption for calling makeCursor is that its Handle parameter represents an
Iterable object such as a java.util.Collection or an array.

The Cursor interface is implemented as follows:

public interface Cursor extends Batch {
public boolean next();
public void setPosition(int position)

throws IllegalArgumentException;
public int getPosition();

}

Remote operations recorded on a Cursor interface will be replayed on each element
of an Iterable collection on the server. After flush, the Cursor can be iterated to
retrieve the results of remote operations for every element.

The end result of recording operations using the Batch interface is a list of method
descriptors, which are serializable objects sent to the server. Each recorded operation is
assigned a sequence number which acts as an identifier for that call. The sequence num-
bers are sent to the server, so that method arguments can be matched to prior method
return values.

4.3 Batch Execution

When the client calls flush, the recorded operations are sent to the server as a batch
by calling a regular RMI method batchInvoke. To make the BEST functionality
available to all RMI remote objects, the batchInvoke method is added to
UnicastRemoteObject, a super class extended by RMI application remote classes.
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The BEST server runtime decodes method descriptors, invokes batched methods
one-by-one and returns the results back to the client. To implement conditional state-
ments such as if and else, the BEST server interprets the operations by evaluating
the specified conditional statements and changing the control flow of a batch based
on their results. Similar strategy is applied to executing unary and binary operations.
While at the script recording time on the client the operands are represented by han-
dles, their actual values are obtained during the execution of a batch on the server.
Then the interpretation simply operates on the actual values as was specified by the
script.

Cursor operations are interpreted analogously to regular operations, with the excep-
tion that each recorded operation is executed on each element of an Iterable server
object with the results stored in a table. The rows in the table correspond to the different
variables associated with a cursor and the columns correspond to each iteration of the
cursor.

4.4 Result Interpretation

For each non-cursor client Handle, the server returns a value, exception, or nothing.
The server returns no value for a client Handle associated with an unexecuted remote
operation. At most one Handle is assigned an exception, because the the remote batch
is terminated by the first exception. If a Handle has an exception, rather than a value,
then this exception is thrown when accessing its content.

For cursors, result interpretation is more complicated. Each time next is called on
a Cursor, the Handle objects associated with it are assigned values from the return
value array. The number of values in the array is the number of elements in the Cursor
times the number of Handle’s. Handle’s normally do not change value after they have
been assigned, with the exception when they are created within a cursor–the Handle
values may change on each iteration of the loop.

5 Performance

In essence, Batch Remote Invocation is a language level mechanism that optimizes re-
mote communication by leveraging the improved bandwidth characteristics of modern
networks [23], especially in high-latency environments. Although the performance ben-
efits of batching remote operations are well-known and have been the target of several
research efforts [6,21,9], the purpose of evaluating the performance of RBI is to en-
sure that the overhead of its runtime, BEST, does not impose an unreasonable perfor-
mance overhead. The following benchmark uses data objects with different numbers of
String fields: 1, 2, 4, 8, 16, 32, and 64. The benchmark emulates a common usage sce-
nario, in which the client retrieves the object from the server and updates its fields. This
scenario was implemented and measured using three different communication styles:
plain RMI, a hand-coded DTO, and RBI. Figure 7 shows the performance numbers for
each version.

All the experiments were run in the Windows XP version of JDK 1.6.0 13 (build
1.6.0 13-b03), with the server running Dual Core 3GHz processors, 2 GB of RAM, and
the client running Dual Core 2.4GHz Processors, 2GB of RAM, connected via a LAN
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Fig. 7. Performance Comparison between RMI, RBI, and DTO versions

with a 1Gbps, 1ms latency network. The results represent the average of running each
benchmark 1000 times after first running it 2000 times to warm the JVM. Warming
the JVM ensured that the measured programs had been dynamically compiled before
measurements.

As expected, the RMI version is the slowest, with its slope growing linearly at a
fixed rate, as the number of fields increases. The DTO and RBI versions exhibit compa-
rable performance, with DTO being faster by a small constant factor. These results
are predictable, as the execution time is dominated by the number of remote calls
performed by each version of the benchmark, and in most networking environments
the latency of a remote call is several orders of magnitude larger than that of a local
call.

The specific number of remote calls performed by each version of the benchmark
is as follows. If f is the number of fields, the RMI version performs 2 ∗ f remote
calls (to get and set every field); the DTO version performs only 2 calls (i.e., getting
and setting all fields in bulk); and finally, the RBI version performs exactly 1 remote
call.

Even though the RBI version performs only one remote call, whereas the DTO ver-
sion two, RBI is still slower due to the overhead imposed by its client and server run-
time. To provide flexibility, BEST uses Java language features that are known to have
a negative effect on performance, including reflection to locate and invoke methods as
well as multiple Object arrays to pass parameters. In addition, the current implemen-
tation of BEST has not been fine-tuned for performance. Finally, the BEST overhead
would be amortized more significantly in a higher-latency network environment. Com-
pared to the hard-coded interface of DTO, RBI makes it possible to create a flexible
DTO on the fly with the accompanying performance benefits due to the reduced net-
work communication enabled by its service-oriented execution model.
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6 Related Work

6.1 RPC Critique

Even though Remote Procedure Call (RPC) [32] has been one of the most prevalent
communication abstracts for building distributed systems, its shortcoming and limita-
tions have been continuously criticized [26,30,36]. Recently some experts even express
the sentiment that RPC has had an overwhelmingly harmful influence on distributed
systems development and wish that a different communication abstraction had become
dominant instead [34]. A frequently mentioned alternative for RPC is asynchronous
messaging and events, including publish-subscribe abstractions [12].

Despite all the criticisms of RPC and its object-oriented counterparts, exposing dis-
tributed functionality through a familiar procedure call paradigm has unquestionable
convenience advantages. Remote Batch Invocation is an attempt to address some of the
limitations of RPC, while retaining its advantages, without introducing the complica-
tions of asynchronous processing imposed by message- and event-based abstractions.

Among the main criticisms of RPC is its attempt to eliminate the distinction be-
tween the local and remote computing models, with respect to latency, memory access,
concurrency, and partial failure [36]. By combining multiple operations into a single
batch, RBI reduces latency. By executing all remote operations on the server in bulk,
RBI maintains the local memory access model for method parameters. As future work,
a transactional execution model can be combined with RBI to achieve an all-or-nothing
execution property. And while batch invocations in RBI are synchronous, the resulting
execution model is explicit, giving the programmer a clear execution and performance
model.

6.2 Explicit Batching

Software design patterns [18] for Remote Façade and Data Transfer Object (also called
Value Objects [3]) can be used to optimize remote communication. A Remote Façade
allows a service to support specific client call patterns using a single remote invocation.
Different Remote Façades may be needed for different clients. Remote Batch Invocation
provides a custom Remote Façade for each client as long as the client call pattern is
supported as a single batch. A Data Transfer Object is a Serializable class that
provides block transfer of data between client and server. As with the Remote Façade,
different kinds of Data Transfer Objects may be needed by different clients. Remote
Batch Invocation constructs an appropriate value object on the fly, automatically, as
needed by a particular situation. Remote Batch Invocation also generalizes the concept
of a data transfer object to support transfer of data from arbitrary collections of objects.

The DRMI system [21] aggregates RMI calls as a middleware library much like
BEST. DRMI uses special interfaces to record and delay the invocation of remote calls.
DRMI only supports simple call aggregation and simple branching, while Remote Batch
Invocation and BEST also support cursors, primitive operations, and exception han-
dling. Like BEST, DRMI requires that the programmer partition the remote and local
operations themselves. This often forces the programmer to replicate loops and con-
ditionals manually, whereas Remote Batch Invocation offers a more flexible style of
programming and relies on the source to source translator to partition the program into
remote and local operations.
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Detmold and Oudshoorn [15] present analytic performance models for RPC and its
optimizations including batched futures as well as a new optimization construct termed
a responsibility. Their analytic models could be extended to model the performance
properties of the new optimization constructs of Remote Batch Invocation such as cur-
sors and branching.

Sometimes a communication protocol defines batches directly, as is in the compound
procedure in Network File System (NFS) version 4 Protocol [27], which combines mul-
tiple NFS operations into a single RPC request. The compound procedure in NFS is not
a general-purpose mechanism; the calls are independent of each other, except for a
hard-coded current filehandle that can be set and used by operations in the batch. There
is also a single built-in exception policy. Web Services are often based on transfer of
documents, which can be viewed as batches of remote calls [11,35].

Cook and Barfield [11] showed how a set of hand-written wrappers can provide a
mapping between object interfaces and batched calls expressed as a web service doc-
ument. Remote Batch Invocation automates the process of creating the wrappers and
generalizes the technique to support branching, cursors, and exception handling. As
a result, Remote Batch Invocation scales as well as an optimized web service, while
providing the raw performance benefits of RPC [13]. Web services choreography [24]
defines how Web services interact with each other at the message level. Remote Batch
Invocation can be seen as a choreography facility for distributed objects.

6.3 Mobile Code

Mobile object systems such as Emerald [5] reduce latency by moving active objects,
rather than making multiple remote calls. JavaParty [25] migrates objects to adapt the
distribution layout of an application to enhance locality. Ambassadors is a communi-
cation technique that uses object mobility [14] to minimize the aggregate latency of
multiple inter-dependent remote methods. DJ [1] adds explicit programming constructs
for direct type-safe code distribution, improving both performance and safety.

Mobile objects generally require sophisticated runtime support not only for moving
objects and classes between different sites, but also for dealing with security issues. A
Java application can essentially disable the use of mobile code by not allowing dynamic
class loading. An RBI server is fairly simple to implement. Clients only gain access to
interfaces that are reachable from the service root.

Even in an environment that supports mobile code, there are advantages to Remote
Batch Invocation. This can be understood by considering a translation from RBI to
mobile code. A batch statement could be implemented using mobile code by writing
two mobile classes, one that is sent from the client to the server to execute the remote
operations, and another that is sent from the server back to the client to transport the
results in bulk to the client. The first class would contain member variables to store all
the local data sent to the server, and a method body to execute on the server. At the
start of this method an instance of the second class is created and populated with data
created by the remote method. At the end of the method the result object is sent back to
the client. A custom pair of classes is needed for each batch statement in the program.
While mobile code is more flexible and powerful than RBI, it can also be more work to
use this power to implement common communication patterns.
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6.4 Implicit Batching

Batched futures reduce the aggregate latency of multiple remote methods [6]. If remote
methods are restructured to return futures, they can be batched. The invocation of the
batch can be delayed until a value of any of the batched futures is used in an operation
that needs its value. There are several different client invocation patterns that cannot be
batched in this model. For example, unrelated remote method calls will not be batched
together.

Future RMI [2] communicates asynchronously to speed up RMI in Grid environ-
ments, when one remote method is invoked on the result of another. Remote results of
a batch are not transferred over the network, remaining on the server to be used for
subsequent method invocations.

Yeung and Kelly [9] use byte-code transformations to delay remote methods calls
and create batches at runtime. A static analysis determines when batches must be
flushed.

In all of these implicit batching techniques, it is not clear how to support loops,
branches, and exceptions as in Remote Batch Invocation. In addition, small changes in
the program, for example introducing an assignment to a local variable, or an exception
handler, can cause a batch to be flushed. This means the performance is very sensitive
to the ordering of remote and local operations. On the other hand, Remote Batch In-
vocation automatically tries to reorder remote and local operations to maintain a single
batch, while checking that the reordering makes sense.

6.5 Automatic Partitioning

Remote Batch Invocation can be seen as a language level abstraction for automatic ap-
plication partitioning, a semi-automatic approach for deriving a distributed application
from a centralized one.

One line of research has explored coarse grained program partitioning. The program-
mer, by means of a GUI or a configuration file, designates different parts of a centralized
application, typically at a class or object granularity, to run on different network nodes.
The resulting distribution specification then parameterizes a compiler-based tool that
automatically rewrites the centralized application for distributed execution. To intro-
duce distribution, a partitioning tool may need to both change the structure of the appli-
cation (e.g., to introduce a proxy indirection) and add middleware functionality (e.g., to
replace local calls with remote ones). In the Java world, recent automatic partitioning
tools include Addistant [31], Pangaea [28], and one of the co-author’s J-Orchestra [33].
Addistant and J-Orchestra partition programs at a class granularity; Pangaea can parti-
tion at the individual object level. J-Orchestra addresses the challenges of partitioning
programs safely in the presence of unmodifiable code that comes as part of their runtime
systems.

Automatic program partitioning has also been applied at finer granularaties. Swift
[10] partitions Java programs into a web application backend and Javascript at the Java
statement level. Constraints on the locations of statements is inferred from information
flow policies and the placement of statements is optimized to minimize round-trips
with respect to those constraints. Similarly, RBI infers the location of statements and
expressions from a forward data-flow analysis. Some of the co-authors have previously
developed Query Extraction [37]; a system for extracting database queries from Java
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code traversing persistent object structures. Query Extraction performs a very similar
analysis to RBI to extract the code operating over persistent data and converts that
code’s loops and conditions to join and where clauses in database queries.

6.6 Asynchronous Remote Invocation

Another approach to optimizing distributed communication is dispatching remote calls
asynchronously. One example is ProActive [4]. An asynchronous remote call in ProAc-
tive returns a future; a placeholder for to be computed results. When a client tries to
resolve the future’s actual value, the client blocks until the result is available.

Although asynchronous remote invocations can optimize many patterns in client-
server communication, they offer no performance improvements for chains of remote
calls (i.e., o.m1().m2()). Compared to asynchronous invocation, the RBI program-
ming model does not involve futures and can combine chains of remote calls into a
batch, thus improving their performance.

Although the current version of RBI does not take advantage of concurrent process-
ing, in the future the script recorder could also convey dependencies between batched
operations to the server, which can be used to safely introduce concurrency into the
batch execution on the server.

7 Conclusion

Most of the related work discussed in Section 6 improve distributed programming using
libraries and compiler optimizations. On the other hand, Remote Batch Invocation (RBI)
addresses distributed programming with a language extension. We argue that the ben-
efits of RBI over existing library and compiler approaches may overcome the natural
inertia to changing a programming language. The benefits of RBI include:

– RBI provides a strong performance model. One server round-trip is executed for
each lexical batch block.

– RBI allows multiple remote operations to be combined in a batch which is executed
in a single round-trip to a remote server. A batch supports both control and data flow
dependencies between remote operations. As a consequence, the remote server may
provide a flexible fine-grained interface.

– RBI allows the programmer to mix remote and local operations naturally. The com-
piler separates the remote operations and takes care of transferring multiple inputs
to the remote server and interpreting the multiple outputs.

RBI was implemented as a Java extension using a source to source translator and the
BEST runtime middleware library. In the future, we will look at incorporating transac-
tions and advanced failure handling approaches into RBI.

The performance of RBI was evaluated by comparing plain RMI and hand-coded
DTO designs. Predictably, RBI significantly outperforms RMI and is only marginally
slower than hand-optimized DTO implementations. Since RBI provides greater flex-
ibility and control to the programmer, the small overhead imposed by its runtime is
compensated by the added usability and expressiveness. RBI is also attractive compared
with implicit batching because it can combine a larger set of remote operations.
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RBI combines the convenience and flexiblity of fine-grained interfaces with the per-
formance advantages of coarser-grained interfaces. In addition, the RBI stateless exe-
cution model aligns well with the increasingly prevalent service-oriented architectures,
a rapidly-emerging industry standard.

Availability:

The implementation and examples discussed in the paper can be downloaded from:
http://research.cs.vt.edu/vtspaces/best
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Introduction to:
The Myths of Object-Orientation

Inviting a banquet speaker is a responsibility of the ECOOP Program Chair.
The charter of the speaker is to address an audience at the juncture between
information overload from a long day of conferencing and hunger from a walk
around town. Thus a successful banquet speech is at the same time entertaining,
thought provoking and brief. I have known James Noble for more than ten years
and he certainly fits the bill for a banquet speaker. James has worked on most
things OO, from the ownership types that he helped invent, to design patterns,
dynamic languages and, of course, his musings on post-modernism in software
construction. He is known for his wit and his ability to come up with ideas
that, at first, sound crazy, then appear insane, and are, in final analysis, quite
brilliant. I could not hope for a better speaker than James and was elated when
he accepted my invitation.

So why am I writing this introduction to last year’s ECOOP banquet speech?
Well, it turns out that due to circumstances out of this PC chair’s control,
circumstances that involve an electric bouzouki and folk dancing, very few people
got to hear James’ speech in its entirety. James surmounted a defective sound
system, did his best to pacify inebriated tourists, but had to give up when his
microphone was summarily cut off in favor of the above mentioned bouzouki.

The following paper is a reconstruction, almost one year later, of what James
had intended to say. I would like to thank James for revisiting a painful memory
and writing down his notes on paper.

April 2009 Jan Vitek
West Lafayette, IN
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The Myths of Object-Orientation

James Noble

School of Engineering and Computer Science,
Victoria University of Wellington,

New Zealand
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Abstract. Object-Orientation is now over forty years old. In that time,
Object-Oriented programming has moved from a Scandinavian cult to
a world-wide standard. In this talk I’ll revisit the essential principles —
myths — of object-orientation, and discuss their role in the evolution
of languages from SIMULA to Smalltalk to C++ to Java and beyond.
Only by keeping the object-oriented faith can we ensure full-spectrum
object-oriented dominance for the next forty years in the project for a
new object-oriented century!

In the beginning
So our myths and stories tell us
The programmer created the program
From the eternal nothingness of the void

This talk is about the myths of object-orientation: the myths, the lies that tell
the truth — the stories that were here before us, and that we will leave behind.
These are the stories we think about when we settle down in our cube to shuffle
cards, draw designs on whiteboards, to write tests, to write code, to debug. These
are the stories we think about to work out if some program is worthwhile or not,
if we will let ourselves be pleased by its shape, to measure our work against
the great programmers and designers of the past, whose names reverberate into
history and legend. These are the stories we tell our students — at least the
ones who have learned to program a little — myths to shape the programs they
write; myths to shape the way they think about the programs they write.

1 Abstraction

The founding myth of object-orientation is trinitarian. We hold these truths to
be self-evident: an object has state, behaviour, and identity:

– identity — an object can be distinguished from all other objects
– behaviour — objects communicate by sending messages; these messages

are interpreted by the receiving object (i.e. dynamic dispatch)
– state — an object has mutable variables, encapsulated fields that can be

changed from within the object.

S. Drossopoulou (Ed.): ECOOP 2009, LNCS 5653, pp. 619–629, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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These truths are not, of course, self-evident — they are myths we choose to
believe, to act upon, to teach. As a community, we need to share a common
language. I claim — offering no support — that these three principles are what
we mean when we say “my cat is object-oriented” [1]. Identity allows us to
distinguish one object from another, while state and behaviour allow us to build
abstractions using objects as components. The details of an object’s state and
behaviour are (or should be) hidden inside that object: an object should own its
own implementation. An object’s internal state and behaviour should only be
visible externally by examining the results returned by message sends.

To the longstanding devotee of objects, ECOOP, and OOPSLA, something
big may be missing here — Hierarchical Program Structures [2]: that is, classes
and inheritance. While inheritance has been a feature of almost every language
since SIMULA’s prefixing, some important languages based on prototypes [3,4]
lack classes and/or inheritance; the original version of JavaScript is probably the
most popular now. Inheritance is not a large part of the story I’m telling today.

To the more recent devotee, something else is missing: types. Smalltalk should
be a sufficient example that types are not essential to object-orientation!

2 Signification

The Scandinavians have another myth about object-orientation: “All Program-
ming is Simulation”. In writing up this talk I tried to find the reference, but
Google couldn’t track it down! When I’m teaching object-orientation these days,
I tend to use a slightly longer quote that has the virtue of actually existing:

A program execution is regarded as a physical model, simulating the
behaviour of either a real or an imaginary part of the world.

Object-Oriented Programming in BETA [5].

We can unpack this a little:

– program execution — the objects and bindings created by running pro-
gram: the stack and the heap

– physical model — the electronic and quantum effects in the CPU and
memory hardware that embody the program execution.

– simulating the behaviour — a program execution is designed to model,
that is, to signify, a referent outside the program itself. As the program exe-
cution evolves over time, so should the referent.

– part of the world — the referent, the part of the world, the business, the
context, that the program simulates.

– real or imaginary — the referent may predate the program (as in a manual
system that is being automated) or it may be created by the program (so
has to be imagined by the program’s developers).

An object-oriented program is always taken as relating to something — a referent
– outside the program itself. The program execution is not the main point of a
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program: the program execution must be taken as always referring to some other
thing in the world. Here is the program, here is the bank account to which that
program refers. The program plays the same part as the old ledger-books the
banker’s father used to write in with a fountain-pen: the numbers and signs in the
ledger signify just how much money you have in your account. And as computers
infiltrate further and further into society, the program’s simulation of the world
increasingly takes the place of the referent. If the bank’s computer says you have
no money, then you have no money, no matter what your documentation or your
records or the bank’s ledgers (superceded as physical models by the computer)
or even your lawyer may say.

One thing — the program — stands for something else — the bank account.
A program is a sign, a semêıon (since we are in Cyprus), a metaphor, a myth,
perhaps a lie — but again, the lie that tells the “truth”, that becomes the truth,
that embodies the truth.

3 Dirt Is Good

What about the physical model? Is it accidental that OO is a physical model?
More recently, I’ve been rethinking this: is there something in the physicality of
it all that is essential?

Ka Mate! Ka Mate! Ka Ora! Ka Ora! We believe in life, in death, in time,
in constructors and destructors and garbage collectors, change and decay in
all around we see, in mutable state — because these things, this entropy and
interconnectedness, is essential in the physical world. And then we leverage this
physical world to make models of itself.

So what is it about object-oriented programming languages that make them
good for building models? What is the big divide between object-oriented lan-
guages and their contemporary structured counterparts, such as Pascal?

Let’s consider object-orientation as “where Pascal went wrong.” The big gaps
in Pascal (and other structured languages including C) are dynamic memory al-
location with new, and variant records (the famous hole in Pascal’s type safety).
The behaviour of new and explicit pointers give a semantic model of individually
addressable dynamically allocated memory regions; updatable memory gives us
object state; and case statements or function pointers give object or type depen-
dent behaviour.

Marxists would say this was a small example of technological determinism.
Our myths, our aesthetics, our cultures of programming are built bottom up
from enabling features of programming languages. Perhaps these features are
incidental, or accidental, but it is our myths that make them essential!

4 A Digression

As an aside, other paradigms are not like this: they have other stories, other
myths. If object-orientation has “world envy” — we wish to model the world
— then other approaches have maths envy, or theory envy, or logic envy: they
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want programs to be weightless, to be insubstantial, abstract, zipless, to deny
the reality with which they must somehow engage.

Consider the “utter pointlessness” of monads in lazy functional languages.
These languages are designed to deny reality, to disavow entropy, to banish
time, to reject any causal relationship with the world outside the program, to
compute mathematically, with perfect strongly-typed abstractions. They’re great
for computing factorial functions — but can barely echo back user input.

And yet, the dirt of the world seeps back in — as Freud would say, the
repressed unconscious will always return. If we cannot stop the world, we can at
least stop the program, millions of times every second if necessary, to interact
with the world outside, to read or write that dirty mutable physical state. Or
we can contort our programs to simulate the mutability of the physical world.

So, if objects did not exist, we would need to (re)invent them. Consider the
history of other programming languages in the last 20 years: Tcl endlessly repli-
cating native C procedures and static data to represent widgets; Newsqueak and
parallel Prolog programs using infinite loops to represent objects; and most re-
cently, Erlang playing the same old tricks. As Suad Alagic memorably interjected
during Joe Armstrong’s ECOOP 2007 keynote: “that’s not a function — that’s
an object!”

5 Unification

Physics lives for unification: the grand unified theory of everything is physics’
holy grail. We know the unification of magnetism and electricity, of electromag-
netism and the weak nuclear force, and the strange duality between waves and
particles. In computer science we have our own unification and duality: code and
data.

Famously, in Lisp, code and data are the same: programs are lists; data are
lists; everything is a list — where list, of course, really means a cons-cell. Is this
really an accidental feature of low-level models of computation (Lisp, Turing
Machines, Lambda Calculus) and “homoiconic” programming languages [6,7],
or something more essential?

Object-orientation goes further than Lisp; we have real data structures; every-
thing is an object (an abstraction) not just a cons-cell; and as for code or data:
who can tell? who cares? Abstraction results in unification — object-orientation
unifies linked lists and arrays into collections. This is a big theoretical result: In
other disciplines they give people Nobel prizes for this!

Self, Eiffel, and C�, for example, also unify methods with fields and assign-
ments. Java lost this, but reinvented it with JavaBeans and Eclipse’s auto-
generated accessors, which evolved back into the language as properties in C�.
This abstraction — or unification — is more than syntax: I think object-
orientation captures something fundamental about computation, as objects ab-
stract away the differences between data particles that exist in memory space
and code waves that propagate in time.

Dynamic dispatch — rather than inheritance — enables this unification,
although inheritance makes the code shorter. This is why single dispatch is
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essential to object-orientation, because a single dynamic dispatch is enough to
ensure that as computation crosses an abstraction boundary the appropriate
behaviour ensues. This is why I prefer object-oriented programming (single dis-
patch on abstract types) to pattern matching (multiple dispatch on concrete
types).

The interesting observation here is that syntax precedes semantics; Dahl and
Nygaard built simulation systems before any notion of inheritance, and Kay read
the machine code of the B5000 file system before designing Smalltalk. Theorising
comes along after the concrete artifacts.

Or as Karl Marx (paraphrased in the comic book “Introducing Postmod-
ernism”) puts it: “what we produce is always miles ahead of what we think” [8].
Myths are the result of our reflecting on our systems and our designs.

6 A Stack Is Not an Object

If object-oriented programming started with Simula, then “object-orientation”
as an idea, a principle, a myth, started with Smalltalk. As Alan Kay (who did,
after all, win the Turing award for this — as Nygaard and Dahl did later) puts
it in the Early History of Smalltalk [9] (my emphasis):

a new design paradigm—which I called object-oriented.

A little further on in that chapter, there is another quote:

This [object-orientation] lead to the ubiquitous stack data type exam-
ple in hundreds of papers. To put it mildly, we were amazed at this.

I was quite amazed with this quote when I first read it, and for several years later
I really didn’t understand what Kay meant. By that stage I’d been using and
teaching object-oriented programming for several years, so of course I thought I
understood it. I was especially proud of my example stack object written in Self:
a top method, a pop method, a push: method, and I didn’t even inherit from
vector! But here is Alan Kay saying, pretty much, “A Stack is Not an Object”.
Oops.

Fifteen years later I think I understand better what Kay was writing about.
A stack is basically a data structure — an abstract data type. A good object
should be more than just a data structure: it should represent something outside
the program; it should be at a higher level than just a data structure; and it
should unify both data and behaviour. In the terms I’ve used in this talk:

– signification — objects should be physical components of a model of some-
thing in a world outside the program.

– abstraction — objects should represent “higher level goals” rather than
applying “procedures to data structures”.

– unification — objects encompass both state and behaviour (and abstract
both simultaneously). This is Kay’s “recursion on the idea of the computer
itself”.
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but I can’t claim this insight as either novel or original. Towards the end writing
out my talk notes for publication, I came across Ralph Johnson’s slides for his
Object-Oriented Programming and Design course [10,11]. As Ralph describes it:

I explain three views of OO programming. The Scandinavian view is
that an OO system is one whose creators realise that programming is
modelling. The mystical view is that an OO system is one that is built
out of objects that communicate by sending messages to each other, and
computation is the messages flying from object to object. The software
engineering view is that an OO system is one that supports data abstrac-
tion, polymorphism by late-binding of function calls, and inheritance.

Now, this seems rather better than I could manage. I’d just like to hold all three
views, simultaneously — as I suspect Ralph does.

7 History, Tragedy, Farce

According to George Santayana (via Google): “Those who cannot remember the
past are condemned to repeat it”. To paraphrase to Karl Marx (again, and also
via Google): “History repeats itself, first as tragedy, second as farce”.

This is as true in software as it is in any other human endeavour. We can
see it clearly with respect to object-oriented programming languages: we have
SIMULA (history) followed by Smalltalk (tragedy) and finally Java (farce). This
makes a great party game — choose any area of software and fill in the blanks
yourself! Table 1 gives one possible set of answers: some of these are better than
others.

Table 1. History, Tragedy, Farce

History Tragedy Farce

Object-orientation Simula Smalltalk Java
Nested object languages Simula BETA Scala
Smalltalk languages Smalltalk Self Newspeak
Systems languages BCPL C C++
Wirth languages Pascal Modula Oberon
Lisp languages LISP Scheme CommonLisp
ML languages ML O’CAML F�
Languages beginning with “C” C ANSI C C++
C++ languages C++ C+@ C�
C� languages C�1.0 C�2.0 C� 3.0
BASIC languages BASIC VB VB.net
Orthogonal languages Algol-68 PL/I Scala
Computer Companies DEC Sun Oracle
Haskell Haskell Haskell Haskell
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8 The Power of 11
2

This leads me to the original design principle behind Java. I call it the principle
of 1 1

2 — although perhaps the 1+N or 1+∞ principle would be fairer, it would
be less humourous and thus less memorable!

Java is not a symmetrical language. Coplien has argued symmetry-breaking is
a feature of C++ [12]: I’m not so sure. In three important places, Java’s design
has one first class component, and then a list of second class components (that’s
the half). So borrowing directly from C++, Java has dynamic single dispatch
(message sending) on one function argument to the left of the dot, combined
with static multiple dispatch (overriding) on any number of arguments to the
right of the dot.

Java’s inheritance design follows this scheme: a class extends one first class
parent — its superclass — and then implements any number of other second
class interfaces.

Java 1.5 generics also follow this pattern. A generic type has one first class
component — the underlying raw type — and then any number of type param-
eters that are erased at runtime. Overall, an accidental corner case of C++’s
design governs much more of the design of Java.

9 Terroir

I recall, as a graduate student, having several “discussions” with Brian Boutel
(then head of department) who strongly objected when — in a weak moment, I
claimed “I believe in object-orientation!” Yea, verily, I had taken Alan Kay into
my heart. While Brian was willing to concede a belief in objects may be useful
in the practical art of getting real software built, as a researcher he thought that
myths should be treated with a certain scepticism — as working hypotheses, not
personal beliefs. On reflection, I’ve come to see that he was right: myths are lies
we choose to believe in, knowingly and willingly. As academics, we interrogate
them; as researchers, we manufacture them. On further reflection, I remember
that Brian was a member of the first Haskell committee. So perhaps he had his
own myths too, and was more evangelical about them than he let on.

When I was learning Smalltalk, Brian also used to complain about “Califor-
nian” programming — no types, dynamic dispatch, a relaxed interactive pro-
gramming environment — much warmer, and much less bracing, than Oregon
or Glasgow that gave birth to his beloved Haskell. So I wonder if, like wine,
do programming languages have terroir? What influence does the environment
that nurtures a programming language, or a programming principle, or a myth,
have on the result? Smalltalk is Californian, Dick Gabriel has described how
Unix (and C) comes from the Bell Labs engineering culture [13], but what of the
rest? Can we see the clarity and austerity of Scandinavian fiords in the design
of SIMULA? The interlocking relations of a social-democracy in the design of
BETA? The Swiss sense of precision and cleanliness in the designs of Pascal (the
Mondaine railway clock); Modula (a Tag Heuer watch); and Oberon (Swatch).
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How much does a country, a city, a computing department in a city, or the bar
where the graduate students drink affect the languages we all end up using?

When I was in Aarhus one year, the graduate students proudly showed me
the bar (so they said) preferred by Kristen Nygaard, Bjarne Stroustrup, Anders
Hejlsberg, and Mads Tofte — and where most of the best ideas in programming
languages had been invented.

Bars after conferences can be good as well: Extreme programming, Aspect-
Oriented programming, and Design Patterns (at least) all came from drinking
sessions after conferences. And isn’t that why we’re all here: — to listen to the
talks, to Google stuff, and to wake up with next year’s ECOOP submission? I
still have a vivid memory of drafting the Flexible Alias Protection paper, on a
plane home, after drinking with Jan at OOPSLA ’97.

Which leaves us only with the question of the origin of Java. This story —
involving yet another trinity — has been relegated to the appendix, and for this,
I offer neither apology or explanation.

Acknowledgements. Thanks to Jan Vitek for inviting me to give the banquet
talk at ECOOP 2008, and for writing the introduction to this version; to the
Bouzouki players and glass-balancers for lending me the stage for five minutes;
to the English tourists for not throwing anything; to Peter Dickman for the
vodka afterwards; to Ewan Tempero for comments on drafts; and to Sophia
Drossopoulou for her encouragement and for printing this in the next year’s
proceedings.
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The Sing-Song of Old Man Java

With apologies to Rudyard Kipling [14].

Not always was Java as now we do behold him, but a Different Language with
very short types. He was small and he ran slowly, and his hype was inordinate:
he danced on a TV set in the middle of California, and he went to Big God
Gosling.

He went to Gosling at six before breakfast, saying, ‘Make me different from
all other languages by five this afternoon.’

Up jumped Gosling from his fortress on the multicore and shouted, ‘Go away!’
He was small and he ran slowly, and his hype was inordinate: he danced on a

set-top-box in the middle of California, and he went to Middle God Steele.
He went to Steele at eight after breakfast, saying, ‘Make me different from all

other languages; make me, also, wonderfully popular by five this afternoon.’
Up jumped Steele from his virtual reality and shouted, ‘Go away!’
He was small and he ran slowly, and his hype was inordinate: he danced on

desktop in the middle of California, and he went to the Little God Gilad.
He went to Gilad at ten before dinner-time, saying, ‘Make me different from

all other languages; make me popular and able to run anywhere by five this
afternoon.’

Up jumped Gilad from his office in Palo Alto and shouted, ‘Yes, I will!’
Gilad called C� — dotNet C� — always hungry, just in from Redmond and

showed him Java.
Gilad said, ‘C�! Wake up, C�! Do you see that gentleman dancing in a browser?

He wants to be popular and able to run anywhere. C�, make him SO!’
Up jumped C� — Microsoft C� — and said, ‘What, that hack-rabbit?’
Off ran C� — CLR C� — always hungry, grinning like a coal-scuttle, — ran

after Java 1.0.
Off went the proud Java with his short little types like a bunny.
This, O Beloved of mine, ends the first part of the tale!

* * *

He ran on the desktop; he ran on the mainframe; he ran on the handhelds; he
ran on the smartcards; he ran till his bytecodes ached.

http://www.cincomsmalltalk.com/userblogs/ralph
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He had to!
Still ran C� — Standard C� — always hungry, grinning like a rat-trap, never

getting nearer, never getting farther, — ran after Java 1.2.
He had to!
Still ran Java — Old Man Java. He ran through the widgets; he ran through

the phidgets; he ran through the applets; he ran through the servlets; he ran
through the Topics of EBJ and MIDP; he ran till his parser ached.

He had to!
Still ran C� — ECMA C� — hungrier and hungrier, grinning like a horse-collar,

never getting nearer, never getting farther; and they came to the J.C.P.
Now, there wasn’t any proof, and there weren’t any monads, and Java didn’t

know how to parameterise; so he stood on his types and hacked.
He had to!
He hacked through the Enums; he hacked through the Bignums; he hacked in

the deserts in the middle of California. He hacked like Java 1.5
First he hacked typevars; then he hacked raw types; then he hacked wildcards;

his types growing stronger; his types growing longer. He hadn’t any time for rest
or refreshment, and he wanted them very much.

Still ran C� — ISO C� — very much bewildered, very much hungry, and
wondering what in the world or out of it made Old Man Java hack?

For he hacked like Haskell; or Eiffel or Ada; or GJ or Scala or Meta-O-CAML.
He had to!
He hacked up variance; he hacked his invariants; he stuck out modules for a

balance-weight behind him; and he hacked up type inference too.
He had to!
Still ran C� — Dot Net’s C� — hungrier and hungrier, very much bewildered,

and wondering when in the world or out of it would Old Man Java stop.
Then came Gilad from his conference in Cyprus, and said, ‘It’s five o’clock.’
Down sat C� — ECMA Standard C� — always hungry, dusky in the sunshine;

hung out his tongue and howled.
Down sat Java — Old Man Java — stuck out his types like a milking-stool

behind him, and said, ‘Thank goodness that’s finished!’
Then said Gilad, who is always a gentleman, ‘Why aren’t you grateful to

Microsoft’s C�? Why don’t you thank him for all he has done for you?’
Then said Java — Tired Old Java — ‘He’s chased me out of the VMs of

my childhood; he’s chased me out of my pluggable semantics he’s altered my
classpath so I’ll never get it back; and he’s played Old Scratch with my types.’

Then said Gilad, ‘Perhaps I’m mistaken, but didn’t you ask me to make you
different from all other languages, as well as to make you able to run anywhere?
And now it is five o’clock.’

‘Yes,’ said Java. ‘I wish that I hadn’t. I thought you would do it by proofs
and incantations, but this is a practical joke.’

‘Joke!’ said Gilad from the bar in the lobby. ‘Say that again and I’ll whistle
up C� and run your primitive types off!’
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‘No,’ said Java. ‘I must apologise. Types are types, and you needn’t alter ’em
so far as I am concerned. I only meant to explain to Your Lordliness that I’ve
had nothing to drink since morning, and I’m very thirsty indeed.’

‘Yes,’ said C� — ISO C� — ‘I am just in the same situation. I’ve made him
different from all other languages; but what may I have for my tea?’

Then said Gilad from the lobby at the conference, ‘Come and ask me about
it tomorrow, because I’m going to eat.’

So they were left in the middle of Cyprus, Old Man Java and Microsoft C�,
and each said, ‘That’s your fault.’



Author Index

Adl-Tabatabai, Ali-Reza 123
Aldrich, Jonathan 27, 195
Ancona, Davide 2

Bartolomei, Thiago Tonelli 344
Beckman, Nels E. 195
Benz, Sebastian 52
Bergel, Alexandre 220
Bierhoff, Kevin 195

Click, Cliff 444
Cook, William R. 595
Coughlin, Devin 394
Czarnecki, Krzysztof 344

Dam, Mads 546
De Meuter, Wolfgang 220
de Moor, Oege 369
Diwan, Amer 394
Ducasse, Stéphane 220
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