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Abstract. Adaptation has long been considered as the Achilles’ heel of case-
based reasoning since it requires some domain-specific knowledge that is diffi-
cult to acquire. In this paper, two strategies are combined in order to reduce the
knowledge engineering cost induced by the adaptation knowledge (AK) acquisi-
tion task: AK is learned from the case base by the means of knowledge discovery
techniques, and the AK acquisition sessions are opportunistically triggered, i.e.,
at problem-solving time.

1 Introduction

Case-based reasoning (CBR [6]) is a reasoning paradigm based on the reuse of pre-
vious problem-solving experiences, called cases. A CBR system often has profit of a
retrieval procedure, selecting in a case base a source case similar to the target problem,
and an adaptation procedure, that adapts the retrieved source case to the specificity of
the target problem. The adaptation procedure depends on domain-dependent adaptation
knowledge (AK, in the following). Acquiring AK can be done from experts or by using
machine learning techniques. An intermediate approach is knowledge discovery (KD)
that combines efficient learning algorithms with human-machine interaction.

Most of previous AK acquisition strategies are off-line: they are disconnected from
the use of the CBR system. By contrast, recent work aims at integrating AK acquisi-
tion from experts to specific reasoning sessions: this opportunistic AK acquisition takes
advantage of the problem-solving context. This paper presents an approach to AK dis-
covery that is opportunistic: the KD is triggered at problem-solving time.

The paper is organized as follows. Section 2 introduces some basic notions and no-
tations about CBR. Section 3 presents the CBR system TAAABLE, which constitutes
the application context of the study, and motivates the need for adaptation knowledge
acquisition in this application context. Section 4 presents the proposed opportunistic
and interactive AK discovery method. In Sect. 5, this method is applied to acquire
adaptation knowledge in the context of the TAAABLE system. Section 6 discusses this
approach and situates it among related work. Section 7 concludes and presents some
future work.
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2 Basic Notions About CBR

In the following, problems are assumed to be represented in a language Lpb and so-
lutions in a language Lsol. A source case represents a problem-solving episode by a
pair (srce,Sol(srce)), in which srce ∈ Lpb is the representation of a problem
statement and Sol(srce) ∈ Lsol is the representation of its associated solution. CBR
aims at solving a target problem tgt using a set of source cases CB called the case base.
The CBR process is usually decomposed in two main steps: retrieval and adaptation.
Retrieval selects a source case (srce,Sol(srce)) from the case base such that srce
is judged to be similar to tgt according to a given similarity criterion. Adaptation con-
sists in modifying Sol(srce) in order to propose a candidate solution ˜Sol(tgt) for
tgt to the user. If the user validates the candidate solution ˜Sol(tgt), then ˜Sol(tgt)
is considered to be a solution Sol(tgt) for tgt.

3 Application Context: The TAAABLE System

The TAAABLE system [3] is a cooking CBR system. In the cooking domain, CBR
aims at answering a query using a set of recipes. In order to answer a query, the sys-
tem retrieves a recipe in the recipe set and adapts it to produce a recipe satisfying
the query. The TAAABLE system was proposed to participate to the Computer Cook-
ing Contest (CCC) challenge in 2008 [4]. In the CCC challenge, queries are given in
natural language and express a set of constraints that the desired recipe should sat-
isfy. These constraints concern the ingredients to be included or avoided, the type of
ingredients (e.g., meat or fruit), the dietary practice (e.g., nut-free diet), the type of
meal (e.g., soup) or the type of cuisine (e.g., chinese cuisine). An example of query is:
“Cook a chinese soup with leek but no peanut oil.” Recipes are given in textual form,
with a shallow XML structure, and include a set of ingredients together with a tex-
tual part describing the recipe preparation. The TAAABLE system is accessible online
(http://taaable.fr).

3.1 Representation Issues

A Cooking Ontology. The system makes use of a cooking ontology O represented in
propositional logic. Each concept of O corresponds to a propositional variable taken
from a finite setV of propositional variables.O is mainly composed of a set of concepts
organized in a hierarchy, which corresponds, in propositional logic, to a set of logical
implications a ⇒ b. For example, the axiom leek ⇒ onions of O states that leeks
are onions.

Problem and Solution Representation. In TAAABLE, a problem pb ∈ Lpb represents
a query and a solution Sol(pb) of pb represents a recipe that matches this query.Lpb

and Lsol are chosen fragments of propositional logic defined using the vocabularyV
introduced in the cooking ontology O. One propositional variable is defined in Lpb

and Lsol for each concept name of O and the only logical connective used in Lpb and

http://taaable.fr
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Lsol is the conjunction ∧. For example, the representation tgt ∈ Lpb of the query
mentioned above is:

tgt = chinese ∧ soup ∧ leek ∧ ¬peanut oil

The case base CB contains a set of recipes. Each recipe is indexed in the case base by a
propositional formula R ∈ Lsol. For example, the index R of the recipe Wonton Soup
is:

R = chinese ∧ soup ∧ green onion ∧ . . . ∧ peanut oil ∧ Nothing else

Nothing else denotes a conjunction of negative literals ¬a for all a ∈ V such that
chinese∧soup∧green onion∧ . . .∧peanut oil �O a. This kind of “closed
world assumption” states explicitly that for all propositional variable a ∈ V, either
R �O a (the recipe contains the ingredient represented by a) or R �O ¬a (the recipe
does not contain the ingredient represented by a).

Each recipe index R represents a set of source cases: R represents the set of source
cases (srce,Sol(srce)) such that Sol(srce) = R and srce is solved by R, i.e.,
srce is such that R �O srce.

Adaptation Knowledge. In TAAABLE, adaptation knowledge is given by a set of re-
formulations (r,Ar) in which r is a binary relation between problems and Ar is an
adaptation function associated with r [13]. A reformulation has the following seman-
tics: if two problems pb1 and pb2 are related by r —denoted by pb1 r pb2— then for
every recipe Sol(pb1) matching the query pb1,Ar(pb1,Sol(pb1),pb2) = ˜Sol(pb2)
matches the query pb2.

In this paper, binary relations r are given by substitutions of the form σ = α� β,
where α and β are literals (either positive or negative). For example, the substitution
σ = leek� onions generalizes leek into onions.

Adaptation functions Ar are given by substitutions of the form Σ = A � B in
which A and B are conjunctions of literals. For example, the substitution Σ = soup ∧
pepper � soup ∧ ginger states that pepper can be replaced by ginger in soup
recipes. A substitution Σ can be automatically generated from a substitution σ: Σ =
b� a if σ is of the form a� b and Σ = ∅� ¬a if σ is of the form ¬a� ∅.

The main source of adaptation knowledge is the ontology O. A substitution σ =
a � b is automatically generated from each axiom a ⇒ b of O and correspond to
a substitution by generalization. A substitution σ = a � b can be applied to a query
pb if pb �O a. σ generates a new query σ(pb) in which the propositional variable
a has been substituted by the propositional variable b. For example, the substitution
σ = leek� onions is generated automatically from the axiom leek⇒ onions
of O. σ can be applied to the query tgt to produce the query σ(tgt) = chinese ∧
soup∧onions∧¬peanut oil, in which leek has been substituted by onions.
For each propositional variable a of V, an additional substitution of the form σ =
¬a� ∅ is generated. Such a substitution can be applied to a problem pb if pb �O ¬a
and generates a new problem σ(pb) in which the negative literal ¬a is removed. This
has the effect to loosen the constraints imposed on a query e.g., by omitting in the query
an unwanted ingredient. For example, the substitution ¬peanut oil� ∅ applied to
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tgt generates the query σ(tgt) = chinese∧soup∧leek, in which the condition
on the ingredient peanut oil is omitted.

However, when O is the only source of adaptation knowledge, the system is only
able to perform simple adaptations, in which the modifications made to Sol(srce)
correspond to a sequence of substitutions that can be used to transform srce into tgt.
Therefore, an additional adaptation knowledge base AKB is introduced. AKB contains a
set of reformulations (σ, Σ) that capture more complex adaptation strategies.

3.2 The CBR Process in TAAABLE

Retrieval. The retrieval algorithm is based on a smooth classification algorithm on
an index hierarchy. Such an algorithm aims at determining a set of modifications to
apply to tgt in order to obtain a modified query srce that matches at least one recipe
Sol(srce) of the case base. The algorithm computes a similarity path, which is a
composition of substitutions SP = σq ◦ σq−1 ◦ · · · ◦ σ1 such that there exists at least
one recipe Sol(srce) matching the modified querysrce = σq(σq−1(. . . σ1(tgt) . . .)),
i.e., such that Sol(srce) �O srce holds. Thus, a similarity path SP can be written:

Sol(srce) �O srce
σq←− σq−1←−− · · · σ1←− tgt

For example, to solve the above query tgt, the system generates a similarity path
SP = σ2 ◦ σ1, with:

tgt = chinese ∧ soup∧ leek∧ ¬peanut oil

σ1 = ¬peanut oil� ∅, σ2 = leek� onions

srce = chinese ∧ soup∧ onions
Sol(srce) = chinese ∧ soup∧ green onion∧ . . . ∧ peanut oil ∧ Nothing else

In this similarity path, Sol(srce) is the propositional representation of the recipe Won-
ton Soup. Since the ontology O contains the axiom green onion ⇒ onions, the
modified query srce = σ2 ◦ σ1 (tgt) verifies Sol(srce) �O srce.

Adaptation. To a similarity path is associated an adaptation path AP, which is a com-
position of substitutions AP = Σ1 ◦ Σ2 ◦ · · · ◦ Σq such that the modified recipe
˜Sol(tgt) = Σ1(Σ2(. . . Σq(Sol(srce)) . . .)) solves the initial query tgt, i.e., verifies
˜Sol(tgt) �O tgt. Thus, an adaptation path AP can be written

Sol(srce)
Σq−→ Σq−1−−−→ · · · Σ1−→ ˜Sol(tgt) �O tgt

The adaptation path AP is constructed from the similarity path SP by associating a sub-
stitution Σi to each substitution σi. To determine which substitution Σi to associate to
a given substitution σi, the external adaptation knowledge base AKB is searched first.
For a substitution σi = α � β, the system looks for a substitution Σ = A � B such
that A �O β and B �O α. For example, if σ2 = leek � onions is used in SP
and AKB contains the reformulation (σ, Σ) with σ = σ2 and Σ = green onion �
leek ∧ ginger, Σ will be selected to constitute the substitution Σ2 in AP since
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Fig. 1. A similarity path and the associated adaptation path

green onion �O onions and leek ∧ ginger �O leek. If no substitution Σ
is found in AKB for a given substitution σi then Σi is generated automatically from σi.

In the previous example, AKB is considered to be empty so Σ1 and Σ2 are generated
automatically from the substitutions σ1 and σ2: Σ1 = ∅ � ¬peanut oil since
σ1 = ¬peanut oil � ∅ and Σ2 = onions � leek since σ2 = leek �
onions. According to the axiom green onion⇒ onions ofO, the system further
specializes the substitution Σ2 into the substitution green onion � leek and the
user is proposed to replace green onions by leek in the recipe Wonton Soup and to
suppress peanut oil. The generated adaptation path is AP = Σ1 ◦ Σ2 (Fig. 1), with:

Sol(srce) = chinese ∧ soup∧ green onion∧ . . . ∧ peanut oil ∧ Nothing else

Σ2 = green onion� leek, Σ1 = ∅� ¬peanut oil

˜Sol(tgt) = chinese ∧ soup∧ leek∧ . . . ∧ ¬peanut oil ∧ Nothing else

tgt = chinese ∧ soup∧ leek∧ ¬peanut oil

The inferred solution ˜Sol(tgt) solves the initial query tgt: ˜Sol(tgt) �O tgt.

3.3 Why Learning Adaptation Knowledge in TAAABLE?

In the version of the TAAABLE system that was proposed to participate in the CCC
challenge, AKB = ∅ so adaptation knowledge is inferred from the ontology O. The
main advantage of this approach lies in its simplicity: no external source of adaptation
knowledge is needed and the system is able to propose a solution to any target problem.
However, the system’s adaptation capabilities (simple substitutions) appear to be very
limited and the user has no means to give some feedback on the quality of the proposed
adaptation.

For example, the substitution Σ1 = ∅ � ¬peanut oil suggests to remove the
ingredient peanut oil in the retrieved recipe, but as the oil is used in this recipe to saute
the bok choy, the adapted recipe turns out to be practically unfeasible. A better adap-
tation would suggest to replace peanut oil by e.g., sesame oil, which can be modeled
by the substitution Σ1 = peanut oil � sesame oil. To generate this substi-
tution automatically, the system could for example exploit the fact that the concepts
peanut oil and sesame oil are both sub-concepts of the concept oil in O. But
still, some additional knowledge would be needed to express the fact that peanut oil
should be replaced by sesame oil, and not by olive oil or hot chili oil, as olive oil
and hot chili oil are also sub-concepts of oil in O. Besides, the system should
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be aware that this substitution is recommended only in Asian cuisine, which can be
modeled by the more precise substitution Σ1 = asian ∧ peanut oil� asian ∧
sesame oil.

Furthermore, the second substitution Σ2 = green onions � leek suggests to
solely replace sliced green onions by uncooked leek. But the green onion was used in
the original Wonton Soup for garniture, so the user might consider that raw leek added as
garniture alters too much the taste of a soup. A better adaptation would consist in frying
leek with e.g., tempeh and red bell pepper to prepare the garniture. Such an adaptation
can be modeled by the substitution Σ2 = green onions � leek ∧ tempeh ∧
red bell pepper. This substitution, which reflects a cooking know-how, can hardly
be generated automatically from the ontology.

These examples show that in order to improve its adaptation capabilities, the sys-
tem would greatly benefit from the availability of a set of adaptation rules that would
capture more complex adaptation strategies. These adaptation rules cannot be gener-
ated automatically from the ontology and need to be acquired from other knowledge
sources. These examples also show that the human expert plays a major role in adapta-
tion knowledge acquisition and that in the cooking domain, adaptation rules are often
highly contextual.

4 Opportunistic Adaptation Knowledge Discovery

The presented AK acquisition method combines two previous approaches of AK ac-
quisition. The first one was implemented in the CABAMAKA system [5] and learns
AK from differences between cases by the means of knowledge discovery techniques
(section 4.1). The second one was implemented in the IAKA system [8] and acquires
adaptation knowledge at problem-solving time through interactions with the user (sec-
tion 4.2).

4.1 Adaptation Knowledge Discovery from the Case Base

Machine learning algorithms aim at extracting some regularities from a set of observa-
tions. Knowledge discovery techniques combine efficient machine learning algorithms
with human-machine interaction. In [5], AK is learned from differences between cases
by the means of knowledge discovery techniques. A set of pairs of sources cases is taken
as input of a frequent itemset extraction algorithm, which outputs a set of itemsets. Each
of these itemsets can be interpreted as an adaptation rule. This approach of AK learning
was motivated by the original idea proposed by Kathleen Hanney and Mark T. Keane
in [11], in which the authors suggest that AK may be learned from differences between
cases. The main assumption is that the differences that occur between cases in the case
base are often representative of differences that will occur between future problems and
the case base.

To learn adaptation rules from differences between cases, representing variations be-
tween cases is essential. In [2], expressive representation formalisms are proposed and
it is shown that defining a partial order on the variation language can help organizing
the learned rules by generality.
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4.2 Opportunistic and Interactive Knowledge Acquisition

Experiential knowledge, or know-how, can often be acquired on-line, when users are
using CBR tools. It is the aim of interactive and opportunistic knowledge acquisition
strategies to support such an acquisition. In these strategies, the system exploits its in-
teractions with its user to build new pieces of knowledge, to test them and, in case
of success, to retain them. Moreover, the knowledge acquisition process is often op-
portunistic, i.e, triggered by a previous reasoning failure: reasoning failures highlight
missing knowledge and thus constitute a guidance for the acquisition process. A major
advantage of interactive knowledge acquisition strategies is that they ensure that the
user is in a favorable context when he participates to the acquisition process. In [7], a
review of interactive and opportunistic knowledge acquisition approaches is proposed,
and two strategies are developed. This work illustrates the efficiency of interactive and
opportunistic knowledge acquisition approaches to acquire specific knowledge. On the
other hand, it shows that such approaches only allow the systems to acquire small pieces
of knowledge at a time.

4.3 Combining the Two Approaches

When properly used, knowledge discovery techniques may have the strong advantage of
automating a part of the knowledge acquisition process. In these approaches, dedicated
human-machine interfaces allow the expert, through predefined interactions, to provide
feedback on a set of suggestions generated automatically by the system. The role of
the expert is thus reduced to the validation of a pre-selected set of knowledge pieces.
The acquired knowledge is directly usable by the system, without the need for an ad-
ditional formalization step. Automatic approaches also benefit from efficient machine
learning algorithms that can be applied, as in [2], to learn adaptation rules at different
levels of generality. However, these approaches still produce a large number of candi-
date knowledge units that have to be validated by a domain expert out of any context,
which constitutes an important drawback.

Acquiring adaptation knowledge offline, i.e., independently of a particular problem-
solving session, appears to be problematic. Offline AK acquisition forces the system’s
designer to anticipate the need for adaptation knowledge in problem-solving and to ac-
quire it in advance, which can be very tedious, if not impossible. Offline acquisition
of adaptation knowledge also makes difficult to come up with fine-grained adaptation
rules, since adaptation knowledge is often highly contextual. For example, in the cook-
ing domain, an egg can sometimes be substituted by 100 grams of tofu, but this adap-
tation rule may be applied only to certain types of dishes, like cakes or mayonnaise,
and has proved to be irrelevant in order to adapt a mousse recipe or an omelet recipe.
Acquiring such a rule would require to circumscribe its domain of validity in order to
avoid over-generalization.

Moreover, initial acquisition of adaptation knowledge prevents the system from
learning from experience. A CBR system with fixed adaptation knowledge has no way
to improve its problem-solving capabilities, except by retaining in the case base a new
experience each time a problem has been solved, as it is usually done in traditional
CBR systems [6].
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On the other hand, interactive and opportunistic knowledge acquisition approaches
heavily rely on the human expert but ensure that the expert is “in context” when vali-
dating knowledge units that are to be acquired. Combining knowledge discovery tech-
niques and interactive approaches, as it is proposed here, could overcome one of the
limitations of KD by dramatically reducing the number of candidate adaptation rules
presented to the expert. By triggering the process in an opportunistic manner, the ex-
pert is able to parametrize the KD in order to focus on specific knowledge to acquire in
context. The resulting AK discovery process:

– is performed on-line, i.e., in the context of a problem-solving session,
– is interactive as adaptation knowledge is learned by the system through interactions

with its user who acts as an expert,
– is opportunistic as it is triggered by reasoning failure, and, consequently, often helps

repairing a failed adaptation,
– makes use of knowledge discovery techniques to provide assistance to the user in

the formulation of new knowledge: the user is presented with a set of suggestions
that are generated automatically from the case base.

5 Applying Opportunistic AK Discovery to TAAABLE

In this section, an opportunistic AK discovery process is applied to the context of the
TAAABLE system.

5.1 AK Discovery

In TAAABLE, the AK discovery process consists in learning a set of substitutions from
the case base by comparing two sets of recipes.

The Training Set. The training set TS is formed by selecting from the case base a set of
pairs of recipes (Rk,R�) ∈ CB×CB and by representing for each selected pair of recipes
(Rk,R�) the variationΔk� from Rk to R�. The choice of the training set TS results from a
set of interactions with the user during which he/she is asked to formulate the cause of
the adaptation failure and to pick up a repair strategy.

Representing Variations. The variationΔk� from a recipe Rk to a recipe R� is represented
in a language LΔ by a set of properties. Three properties a-, a+ and a= are defined in
LΔ for each propositional variable a ofV, and Δk� ∈ LΔ contains:

– the property a- if Rk �O a and R� �O a,
– the property a+ if Rk �O a and R� �O a,
– the property a= if Rk �O a and R� �O a.

For example, if:

Rk = chinese ∧ soup ∧ . . . ∧ peanut oil ∧ Nothing else

R� = chinese ∧ soup ∧ . . . ∧ olive oil ∧ Nothing else
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then Δk� = {chinese=,soup=,oil=,peanut oil-,olive oil+, . . .}, provided
that peanut oil �O oil, olive oil �O oil, R� �O peanut oil and Rk �O
olive oil.

The inclusion relation⊆ constitutes a partial order onLΔ that can be used to organize
variations by generality: a variation Δ is more general than a variation Δ′ if Δ ⊆ Δ′.
Mining. The learning process consists in highlighting some variations Δ ∈ LΔ that are
more general than a “large” number of elements Δk� of TS. More formally, let

support(Δ) =
card {Δk� ∈ TS | Δ ⊆ Δk�}

card TS

Learning adaptation rules aims at finding the Δ ∈ LΔ such that support(Δ) ≥ σs,
where σs ∈ [0; 1] is a learning parameter called the support threshold. It can be noticed
that if Δ1 ⊆ Δ2 then support(Δ1) ≥ support(Δ2). The support threshold also has
an influence on the number of generated variations. The number of generated variations
increases when σs decreases. Thus, specifying a high threshold restricts the generation
of variations to the most general ones, which can limit the number of generated vari-
ations and save computation time but has the effect to discard the most specific ones
from the result set.

Each learned variation Δ = {p1,p2, . . . ,pn} ∈ LΔ is interpreted as a substitution of
the form A� B such that:

– A �O a and B �O a if a- ∈ Δ,
– A �O a and B �O a if a+ ∈ Δ,
– A �O a and B �O a if a= ∈ Δ.

For example, the variationΔ = {oil=,peanut oil-,olive oil+} is interpreted as
the substitution Σ = peanut oil� olive oil. The conjunct oil is not present
neither in A nor in B since it is useless: peanut oil �O oil and olive oil �O
oil.

Filtering. For a retrieved recipe Sol(srce), the result set can be filtered in order to
retain only the substitutions Σ = A � B that can be applied to modify Sol(srce),
i.e., such that Sol(srce) �O A.

Validation. Knowledge discovery aims at building a model of reality from a set of
observations. But as a model of a part of reality is only valid with respect to a particular
observer, any learned substitution has to be validated by a human expert in order to
acquire the status of piece of knowledge.

5.2 Opportunistic Adaptation Knowledge Discovery

The AK discovery process turns the case base into an additional source of adaptation
knowledge. This new source of knowledge is used during a problem-solving session to
provide the CBR system with adaptation knowledge “on demand”. A set of variations
Δ is learned from the case base by comparing two sets of recipes and each learned
variation Δ is interpreted as a substitution Σ that can be used to repair the adaptation
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path AP. Each learned substitutionΣ is presented to the user for validation together with
the corrected solution ˜Sol(tgt) resulting from its application. When the user validates
the corrected solution, a new reformulation (σ, Σ) is added to the adaptation knowledge
base AKB so that the learned substitutionΣ can be later reused to adapt new recipes. The
AK discovery process is triggered either during the adaptation phase, to come up with
suggestions of gradual solution refinements (see section 5.4 for an example), or during
the solution test phase to repair a failed adaptation in response to the user’s feedback
(see section 5.5 for an example).

5.3 Implementation

To test the proposed adaptation knowledge acquisition method, a prototype was imple-
mented that integrates the TAAABLE system [3] and the CABAMAKA system [5]. The
case base contains 862 recipes taken from the CCC 2008 recipe set. The TAAABLE

system is used to perform retrieval and adaptation. The CABAMAKA system is used
to learn a set of substitutions Σ from the case base from the comparison of two sets
of recipes. As in [5], the mining step is performed thanks to a frequent closed itemset
extraction algorithm.

5.4 A First Example: Cooking a Chocolate Cake

An example is presented to illustrate how the case base is used as an additional source
of adaptation knowledge. The AK discovery process is parametrized automatically and
is used to provide assistance to the user by suggesting some gradual refinements for the
proposed solution.

1. Representing the Target Problem. In this example, the user wants to cook a choco-
late cake with baking chocolate and oranges. The target problem is:

tgt = cake ∧ baking chocolate ∧ orange
In the TAAABLE interface, the field “Ingredients I Want” is filled in with the tokens
baking chocolate and orange and the field “Types I Want” is filled in with
the token cake.

2. Retrieval. The retrieval procedure generates the similarity path SP = σ1 in which
the substitution σ1 = baking chocolate � chocolate is generated
automatically from the ontology O from the axiom baking chocolate ⇒
chocolate. SP is applied to tgt in order to produce the modified query
srce = cake ∧ chocolate ∧ orange. The system retrieves the recipe Ul-
tralight Chocolate Cake, whose representation Sol(srce) is:

Sol(srce) = cake ∧ cocoa ∧ orange ∧ . . . ∧ Nothing else

Since the ontology O contains the axiom cocoa ⇒ chocolate, Sol(srce)
solves the query srce: Sol(srce) is such that Sol(srce) �O srce.

3. Adaptation. AKB is assumed to be empty, so to construct the adaptation path
AP, the substitution chocolate � baking chocolate is generated auto-
matically from σ1. This substitution is further specialized into the substitution
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Σ1 = cocoa � baking chocolate, according to the axiom cocoa ⇒
chocolate of O. A first solution ˜Sol(tgt) is computed by applying to
Sol(srce) the adaptation path AP = Σ1. The user suggests that an ingredient
is missing in ˜Sol(tgt) but could not identify a repair strategy. An AK discovery
is triggered in order to suggest gradual refinements of ˜Sol(tgt).

4. Choosing the Training Set. The training set TS is chosen fromΣ1: AK is learned by
comparing the recipes containing cocoa with the recipes containing baking choco-
late. TS is composed of the set of variations Δk� ∈ LΔ between pairs of recipes
(Rk,R�) ∈ CB × CB such that {cocoa-,baking chocolate+} ⊆ Δk�.

5. Mining and Filtering. A value is given to the support threshold σs and the mining
step outputs a set of variations. A filter retains only the variations that correspond
to substitutions applicable to modify Sol(srce).

6. Solution Test and Validation. The user selects the learned variation
Δ = {cocoa-,baking chocolate+,oil-} from the result set. Δ is in-
terpreted as the substitution Σ = cocoa∧ oil� baking chocolate, which
suggests to replace cocoa by baking chocolate in the retrieved recipe and to remove
oil. The user explains this rule by the fact that baking chocolate contains more fat
than cocoa, and therefore substituting cocoa by baking chocolate implies to reduce
the quantity of fat in the recipe.

Further solution refinements are proposed to the user. The set of learned varia-
tions is filtered in order to retain only the substitutions Δ′ that are more specific
than Δ, i.e., such that Δ ⊆ Δ′. Among the retained variations is the variation
Δ′ = {cocoa-,baking chocolate+,oil-,vanilla-}, which is interpreted
as the substitution Σ′ = cocoa ∧ oil ∧ vanilla � baking chocolate.
Σ′ suggests to also remove vanilla in the recipe Ultralight Chocolate Cake. The
user is satisfied with the refined solution ˜Sol(tgt) resulting from the appli-
cation of the adaptation path AP = Σ′ to Sol(srce), so the reformulation
(baking chocolate � chocolate, cocoa ∧ oil ∧ vanilla �
baking chocolate) is added to the adaptation knowledge base AKB.

5.5 A Second Example: Cooking a Chinese Soup

A second example is presented in which the AK discovery process is triggered in re-
sponse to the user feedback in order to repair the adaptation presented in Sect. 3. In
this example, the user is encouraged to formulate the cause of the adaptation failure. A
repair strategy is chosen that is used to parametrize the AK discovery process.

1. Representing the Target Problem. In this example, the target problem tgt is:

tgt = chinese ∧ soup ∧ leek ∧ ¬peanut oil

In the TAAABLE interface, the field “Ingredients I Want” is filled in with the token
leek, the field “Ingredients I Don’t Want” is filled in with the token peanut oil
and the field “Types I Want” is filled in with the tokens chinese and soup.

2. Retrieval. As in Sect. 3, two substitutions σ1 = ¬peanut oil � ∅ and
σ2 = leek � onions are generated automatically from the ontology O. The



Opportunistic Adaptation Knowledge Discovery 71

similarity path SP = σ2 ◦ σ1 is applied to tgt in order to produce the modified
query srce = chinese∧soup∧onions. The system retrieves the recipe Won-
ton Soup, whose representation Sol(srce) solves the query srce: Sol(srce)
is such that Sol(srce) �O srce.

3. Adaptation. Initially, AKB = ∅, so to construct the adaptation path AP, two sub-
stitutions Σ1 = ∅ � ¬peanut oil and Σ2 = green onion � leek are
automatically generated from σ1 and σ2.

4. Solution Test and Validation. The solution ˜Sol(tgt) is presented to the user for
validation, together with the adaptation path AP = Σ1 ◦ Σ2 that was used to gener-
ate it.

5. The User is Unsatisfied! The user complains that the adapted recipe is practically
unfeasible because the proposed solution ˜Sol(tgt) does not contain oil anymore,
and oil is needed to saute the bok choy.

6. What has Caused the Adaptation Failure? The cause of the adaptation failure is
identified through interactions with the user. The user validates the intermedi-
ate solution ˜Sol(pb) that results from the application of the substitution Σ2 =
green onion � leek to Sol(srce). But the user invalidates the solution
˜Sol(tgt) that results from the application of Σ1 = ∅ � ¬peanut oil to
˜Sol(pb). The substitution Σ1 is identified as responsible for the adaptation fail-
ure since its application results in the removal of oil in the recipe.

7. Choosing a Repair Strategy. A repair strategy is chosen according to the user’s
feedback. The user expresses the need for oil in the adapted recipe, so the repair
strategy consists in replacing peanut oil by another oil. An AK discovery process
is triggered to decide which oil to replace peanut oil with.

8. Choosing the Training Set. A set of recipes that contain peanut oil is compared with
a set of recipes containing other types of oil. The training set TS is composed of
the set of variations Δk� ∈ LΔ between pairs of recipes (Rk,R�) ∈ CB × CB such
that {oil=,peanut oil-} ⊆ Δk�.

9. Mining and Filtering. A value is given to the support threshold σs and the mining
step outputs a set of variations. A filter retains only the variations that correspond
to substitutions applicable to modify Sol(pb).

10. Solution Test and Validation. The user selects the learned variation
Δ = {oil=,peanut oil-,olive oil+} from the result set. Δ is inter-
preted as the substitution Σ = peanut oil � olive oil, which suggests
to replace peanut oil by olive oil in the retrieved recipe. The adaptation path
AP = Σ ◦ Σ2 is computed and the repaired solution ˜Sol(tgt) is presented to the
user for validation. The user is satisfied with the corrected solution ˜Sol(tgt),
so the reformulation (∅ � ¬peanut oil, peanut oil � olive oil) is
added to the adaptation knowledge base AKB.

6 Discussion and Related Work

AK acquisition is a difficult task that is recognized to be a major bottleneck for CBR
system designers due to the high knowledge-engineering costs it generates. To over-
come these knowledge-engineering costs, a few approaches (e.g., [5,9,11]) have applied
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machine learning techniques to learn AK offline from differences between cases of the
case base. In [11], a set of pairs of source cases is selected from the case base and each
selected pair of source cases is considered as a specific adaptation rule. The featural
differences between problems constitute the antecedent part of the rule and the feat-
ural differences between solutions constitute the consequent part. Michalski’s closing
interval rule algorithm is then applied to generalize adaptation rule antecedents. In [9],
adaptation knowledge takes the form of a set of adaptation cases. Each adaptation case
associates an adaptation action to a representation of the differences between the two
source problems. Machine learning algorithms like C4.5 or RISE are applied to learn
generalized adaptation knowledge from these adaptation cases in order to improve the
system’s case-based adaptation procedure.

When applying machine learning techniques to learn adaptation knowledge from
differences between cases, one main challenge concerns the choice of the training set:
which cases are worth comparing? Arguing that (1) the size of the training set should be
reduced to minimize the cost of the adaptation rule generation process and that (2) the
source cases that are worth comparing should be the ones that are more similar, only
the pairs of source cases that were judged to be similar according to a given similarity
measure are selected in [9] and [11]. However, committing to a particular similarity
measure might be somewhat arbitrary. Therefore, in [5], the authors decided to include
in the training set all the pairs of distinct source cases of the case base. This paper
introduces a third approach: the choice of the training set is determined interactively
and according to the problem-solving context, taking advantage of the fact that the AK
discovery process is triggered on-line. This approach appears to be very promising since
the learning algorithm can be parametrized in order to learn only the knowledge that is
needed to solve the target problem.

The examples presented above also show that knowledge discovery techniques allow
to come up with more complex adaptation strategies than the simple one-to-one ingre-
dient substitutions generated from the ontology O. In particular, these techniques can
help identifying interactions between the different ingredients that appear in the recipes
(like e.g., that cocoa contains less fat than baking chocolate, so oil should be removed)
as well as co-occurrences of ingredients (like say, that cinnamon is well-suited with ap-
ples). Besides, adaptation knowledge is learned at different levels of generality, so the
user can be guided into gradual solution refinements.

Several CBR systems make use of interactive and/or opportunistic knowledge ac-
quisition approaches to improve their learning capabilities. For example, in Creek, an
approach that combines case-based and model-based methods, general knowledge is
acquired through interactions with the user [1]. This knowledge acquisition process is
provided in addition to the traditional case acquisition and allows the system to ac-
quire knowledge that cannot be captured through cases only. In the Dial system, adap-
tation knowledge is acquired in the form of adaptation cases: when a case has to be
adapted, the adaptation process is memorized in the form of a case and can be reused to
adapt another case. Hence, adaptation knowledge is acquired through a CBR process
inside the main CBR cycle. It must be remarked that adaptation cases can either be
built automatically by adaptation of previous adaptation cases or manually by a user
who interactively builds the adaptation case in response to a problem by selecting the
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appropriates operations to perform [12]. Hence, knowledge acquisition in Dial appears
to be both interactive and opportunistic. Chef is obviously related to the work described
here [10]. Chef is a case-based planner in the cooking domain, its task is to build recipes
on the basis of a user’s request. The input of the system is a set of goals (tastes, textures,
ingredients, types of dishes) and the output is a plan for a single recipe that satisfies all
the goals. To solve this task, Chef is able to build new plans from old ones stored in
memory. The system is provided with the ability to choose plans on the basis of the
problems that they solve as well as the goals they satisfy, but it is also able to predict
problems and to modify plans to avoid failures (plans are indexed in memory by the
problems they avoid). Hence, Chef learns by providing causal explanations of failures
thus marking elements as ”predictive” of failures. In other words, the acquired knowl-
edge allows the system to avoid identical failures to occur again. In our approach, we
propose to go one step further by using failure to acquire knowledge that can be more
widely used.

7 Conclusion and Future Work

In this paper, a novel approach for adaptation knowledge acquisition is presented in
which the knowledge learned at problem-solving time by knowledge discovery tech-
niques is directly reused for problem-solving. An application is proposed in the context
of the cooking CBR system TAAABLE and the feasibility of the approach is demon-
strated on some use cases. Future work will include developing a graphical user in-
terface and doing more extensive testing. Opportunistic and interactive knowledge dis-
covery in TAAABLE implies that the user plays the role of the domain expert, which
raises several issues. For example, how to be sure that the knowledge expressed by
a particular user is valuable? How to ensure that the adaptation knowledge base will
remain consistent with time? Besides, TAAABLE is meant to be multi-user, so if the
system’s knowledge evolves with experience, some synchronization problems might
occur. Therefore, the envisioned multi-user, ever-learning TAAABLE system needs to
be thought of as a collaborative tool in which knowledge acquired by some users can
be revised by others.
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