

Lecture Notes in Artificial Intelligence 5650
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Lorraine McGinty David C. Wilson (Eds.)

Case-Based Reasoning
Research
and Development

8th International Conference
on Case-Based Reasoning, ICCBR 2009
Seattle, WA, USA, July 20-23, 2009
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Lorraine McGinty
University College Dublin
UCD School of Computer Science and Informatics
Belfield, Dublin 4, Ireland
E-mail: lorraine.mcginty@ucd.ie

David C. Wilson
University of North Carolina at Charlotte
College of Computing and Informatics
Department of Software and Information Systems
9201 University City Boulevard, Charlotte, NC 28223-0001, USA
E-mail: davils@uncc.edu

Library of Congress Control Number: 2009929550

CR Subject Classification (1998): I.2, J.4, J.1, F.4.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-02997-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02997-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12717316 06/3180 5 4 3 2 1 0

Preface

The International Conference on Case-Based Reasoning (ICCBR) is the pre-
eminent international meeting on case-based reasoning (CBR). ICCBR 2009
(http://www.iccbr.org/iccbr09/) was the eighth in this series of biennial in-
ternational conferences highlighting the most significant contributions to the field
of CBR. The conference took place during July 20–23, 2009 in Seattle, Wash-
ington, USA. Previous ICCBR conferences have been held in Belfast, Northern
Ireland, UK (2007), Chicago, USA (2005), Trondheim, Norway (2003), Vancou-
ver, Canada (2001), Seeon, Germany (1999), Providence, Rhode Island, USA
(1997), and Sesimbra, Portugal (1995).

Day 1 of the conference hosted an Applications Track and introduced the first
ICCBR Doctoral Consortium. The Applications Track focused on real-world ex-
amples of the use of CBR in industrial fielded applications and provided a coop-
erative forum for the cross-fertilization of ideas between academic and industry
attendees. The Doctoral Consortium concentrated on providing a supportive
atmosphere for early-stage CBR researchers. Participants were matched with
mentors, who provided guidance on their research trajectory, as well as advice
about writing and presenting their research.

Day 2 featured topical workshops on “Reasoning from Experiences on the
Web,” “Case-Based Reasoning for Computer Games,” “Uncertainty, Knowledge
Discovery and Similarity in Case-Based Reasoning, ” and “CBR in the Health Sci-
ences.” In addition, the second CBR Computer Cooking Contest was held follow-
ing on from its success at the 9th European Conference on Case-Based Reasoning
(ECCBR 2008) held in Trier, Germany. Students and research groups described
their entries in terms of the application of case retrieval, adaptation, and combi-
nation methods for cooking recipes, and participated in an energetic live demon-
strative competition that was enjoyed by all attendees of the conference.

Days 3 and 4 comprised presentations and posters on theoretical and applied
CBR research, as well as invited talks from two distinguished researchers: Susan
Craw, Director of the Research Institute for Innovation, DEsign And Sustainabil-
ity (IDEAS) at the Robert Gordon University, and Edwina L. Rissland from the
Department of Computer Science at the University of Massachusetts at Amherst.
The presentations and posters covered a wide range of CBR topics of interest
both to practitioners and researchers, including: textual CBR, reinforcement
learning, biologically inspired CBR, Web search and CBR, case-based recom-
mender systems, CBR tools and system design, CBR quality management, case
library maintenance, case-based planning, case representation, case similarity
and retrieval, multi-dimensional indexing, spatial prediction, case-based decision
analysis, automatic case generation, temporal CBR, active learning, real-time
CBR, games and simulations, legal reasoning, ambient intelligence, evaluation

VI Preface

methodology, case adaptation, hybrid AI systems, collective classification, video
understanding, multi-agent collaborative systems, machine learning.

This volume comprises papers of all the presentations and posters. These
34 papers were selected from a total of 55 submissions; 17 papers for oral pre-
sentation and 17 papers for poster presentation. Each paper was reviewed by
at least three Program Committee members and revised in line with the con-
structive feedback provided. The papers in this volume provide a representative
snapshot of current CBR research. We have organized the proceedings into three
categories: Invited Talks (2 short papers), Theoretical/Methodological Research
Papers (25 papers), and Applied Research Papers (9 papers).

Many people participated in making ICCBR 2009 a success. Local Confer-
ence Chair Isabelle Bichindaritz, from the University of Washington at Tacoma,
devoted a great deal of her time to organizing the local arrangements and liaising
with our sponsors. Everything from the room arrangements to the conference
banquet was handled by Isabelle, and for this we are very grateful. Also, special
thanks to Bill Cheetham and Kareem Aggour our Applications Track Chairs,
Susan Fox for organizing the Doctoral Consortium, and Mirjam Minor, David
Leake, and Armin Stahl for arranging and over-seeing the second CBR Cooking
Contest. We appreciate the sterling work of Workshop Coordinator Sarah Jane
Delany and all the chairs of the respective workshops and their various com-
mittee members. Sincere thanks to the Program Committee and the additional
reviewers for their co-operation during the paper review process. In addition,
we would like to thank our invited speakers, all of the authors who submitted
papers to the conference, and gratefully acknowledge the generous support of
our sponsors.

Finally, we would like to express our gratitude to the previous ICCBR and
ECCBR conference organizers who gave us very valued advice, and to Springer
for its continued support with respect to publishing this series of conference
proceedings.

July 2009 Lorraine McGinty
David C. Wilson

Organization

Program Chairs

Lorraine McGinty University College Dublin, Ireland
David C. Wilson University of North Carolina at Charlotte,

USA

Conference Chair

Isabelle Bichindaritz University of Washington at Tacoma, Seattle,
USA

Applications Track Chairs

William E. Cheetham General Electric Research, USA
Kareem S. Aggour General Electric Research, USA

Workshop Coordinator

Sarah-Jane Delany Dublin Institute of Technology, Ireland

Doctoral Consortium Chair

Susan Fox Macalester College, MN, USA

Cooking Contest Chairs

Mirjam Minor University of Trier, Germany
David Leake Indiana University, USA
Armin Stahl DFKI, Germany

Program Committee

Agnar Aamodt Norwegian University of Science and
Technology

David W. Aha Naval Research Laboratory, USA
Klaus-Dieter Althoff Fraunhofer IESE, Germany
Josep-Lluis Arcos IIIACSIC, Spain
Kevin Ashley University of Pittsburgh, USA
Paolo Avesani FBK-IT, Italy

VIII Organization

Ralph Bergmann University of Hildesheim, Germany
Enrico Blanzieri University of Trento, Italy
Derek Bridge University College Cork, Ireland
Robin Burke DePaul University, Chicago, USA
Hans-Dieter Burkhard Humboldt University Berlin, Germany
Susan Craw Robert Gordon University, Scotland, UK
Pádraig Cunningham University College Dublin, Ireland
Belen Diaz-Agudo Complutense University of Madrid, Spain
Peter Funk Mälardalen University, Sweden
Ashok Goel Georgia Institute of Technology, USA
Mehmet H. Göker PriceWaterhouseCoopers, USA
Andrew Golding Lycos Inc., USA
Pedro A.

González-Calero Complutense University of Madrid, Spain
Christiane Gresse

von Wangenheim Universidade do Vale do Itajai, Brazil
Kalyan Moy Gupta Knexus Research Corporation, USA
Eyke Hüllermeier University of Marburg, Germany
Igor Jurisica Ontario Cancer Institute, Canada
Deepak Khemani IIT Madras, India
Luc Lamontagne Université Laval, Canada
David Leake Indiana University, USA
Ramon López

de Mántaras IIIA-CSIC, Spain
Michel Manago kiolis, France
Cindy Marling Ohio University, USA
David McSherry University of Ulster, Northern Ireland, UK
Mirjam Minor University of Trier, Germany
Héctor Muñoz-Avila Lehigh University, USA
David Patterson University of Ulster, Northern Ireland, UK
Petra Perner Institute of Computer Vision and Applied CS,

Germany
Enric Plaza IIIA-CSIC, Spain
Luigi Portinale University of Eastern Piedmont, Italy
Lisa S. Purvis Xerox Corporation, NY, USA
Francesco Ricci ITC-irst, Italy
Michael Richter University of Calgary, Canada
Thomas Roth-Berghofer DFKI, Germany
Rainer Schmidt Universität Rostock, Germany
Barry Smyth University College Dublin, Ireland
Raja Sooriamurthi Carnegie Mellon University, USA
Armin Stahl German Research Center for Artificial

Intelligence (DFKI), Germany
Brigitte Trousse INRIA Sophia Antipolis, France

Organization IX

Ian Watson University of Aukland, New Zealand
Rosina Weber Drexel University, USA
Nirmalie Wiratunga Robert Gordon University, Scotland, UK
Qiang Yang Hong Kong University of Science and

Technology

Additional Referees

Ibrahim Adeyanju
Mobyen Uddin Ahmed
Kerstin Bach
Enrico Blanzieri
Alessio Bottrighi
Sutanu Chakraborti
Mykola Galushka

Nadezhda Govedarova
Sidath Gunawardena
Alexandre Hanft
Chad Hogg
Tor Gunnar Houeland
Stephen Lee-Urban
Giorgio Leonardi

Babak Mougouie
Erik Olsson
M.A. Raghunandan
Meike Reichle
Niall Rooney
Ilya Waldstein
Ning Xiong

Sponsoring Institutions

ICCBR 2009 was supported by The Boeing Company, The Defense
Advanced Research Projects Agency/Information Processing Techniques Office
(DARPA/IPTO), Empolis, The US Naval Research Laboratory, and Verdande
Technology.

Table of Contents

Invited Talks

We’re Wiser Together . 1
Susan Craw

Black Swans, Gray Cygnets and Other Rare Birds 6
Edwina L. Rissland

Theoretical/Methodological Research Papers

Case Retrieval Reuse Net (CR2N): An Architecture for Reuse of
Textual Solutions . 14

Ibrahim Adeyanju, Nirmalie Wiratunga, Robert Lothian,
Somayajulu Sripada, and Luc Lamontagne

Case-Based Reasoning in Transfer Learning . 29
David W. Aha, Matthew Molineaux, and Gita Sukthankar

Toward Modeling and Teaching Legal Case-Based Adaptation with
Expert Examples . 45

Kevin Ashley, Collin Lynch, Niels Pinkwart, and Vincent Aleven

Opportunistic Adaptation Knowledge Discovery . 60
Fadi Badra, Amélie Cordier, and Jean Lieber

Improving Reinforcement Learning by Using Case Based Heuristics 75
Reinaldo A.C. Bianchi, Raquel Ros, and Ramon Lopez de Mantaras

Dimensions of Case-Based Reasoner Quality Management 90
Annett Bierer and Marcus Hofmann

Belief Merging-Based Case Combination . 105
Julien Cojan and Jean Lieber

Maintenance by a Committee of Experts: The MACE Approach to
Case-Base Maintenance . 120

Lisa Cummins and Derek Bridge

The Good, the Bad and the Incorrectly Classified: Profiling Cases for
Case-Base Editing . 135

Sarah Jane Delany

An Active Approach to Automatic Case Generation 150
Michael W. Floyd and Babak Esfandiari

XII Table of Contents

Four Heads Are Better than One: Combining Suggestions for Case
Adaptation . 165

David Leake and Joseph Kendall-Morwick

Adaptation versus Retrieval Trade-Off Revisited: An Analysis of
Boundary Conditions . 180

Stephen Lee-Urban and Héctor Muñoz-Avila

Boosting CBR Agents with Genetic Algorithms . 195
Beatriz López, Carles Pous, Albert Pla, and Pablo Gay

Using Meta-reasoning to Improve the Performance of Case-Based
Planning . 210

Manish Mehta, Santiago Ontañón, and Ashwin Ram

Multi-level Abstractions and Multi-dimensional Retrieval of Cases with
Time Series Features . 225

Stefania Montani, Alessio Bottrighi, Giorgio Leonardi,
Luigi Portinale, and Paolo Terenziani

On Similarity Measures Based on a Refinement Lattice 240
Santiago Ontañón and Enric Plaza

An Overview of the Deterministic Dynamic Associative Memory
(DDAM) Model for Case Representation and Retrieval 256

Stefan Pantazi

Robust Measures of Complexity in TCBR . 270
M.A. Raghunandan, Sutanu Chakraborti, and Deepak Khemani

S-Learning: A Model-Free, Case-Based Algorithm for Robot Learning
and Control . 285

Brandon Rohrer

Quality Enhancement Based on Reinforcement Learning and Feature
Weighting for a Critiquing-Based Recommender . 298

Maria Salamó, Sergio Escalera, and Petia Radeva

Abstraction in Knowledge-Rich Models for Case-Based Planning 313
Antonio A. Sánchez-Ruiz, Pedro A. González-Calero, and
Belén Dı́az-Agudo

A Scalable Noise Reduction Technique for Large Case-Based Systems . . . 328
Nicola Segata, Enrico Blanzieri, and Pádraig Cunningham

Conceptual Neighborhoods for Retrieval in Case-Based Reasoning 343
Ben G. Weber and Michael Mateas

CBR Supports Decision Analysis with Uncertainty 358
Ning Xiong and Peter Funk

Table of Contents XIII

Constraint-Based Case-Based Planning Using Weighted MAX-SAT 374
Hankui Zhuo, Qiang Yang, and Lei Li

Applied Research Papers

A Value Supplementation Method for Case Bases with Incomplete
Information . 389

Kerstin Bach, Meike Reichle, and Klaus-Dieter Althoff

Efficiently Implementing Episodic Memory . 403
Nate Derbinsky and John E. Laird

Integration of a Methodology for Cluster-Based Retrieval in jColibri 418
Albert Fornells, Juan Antonio Recio-Garćıa, Belén Dı́az-Agudo,
Elisabet Golobardes, and Eduard Fornells

Case-Based Collective Inference for Maritime Object Classification 434
Kalyan Moy Gupta, David W. Aha, and Philip Moore

Case-Based Reasoning for Situation-Aware Ambient Intelligence:
A Hospital Ward Evaluation Study . 450

Anders Kofod-Petersen and Agnar Aamodt

Spatial Event Prediction by Combining Value Function Approximation
and Case-Based Reasoning . 465

Hua Li, Héctor Muñoz-Avila, Diane Bramsen, Chad Hogg, and
Rafael Alonso

Case-Based Support for Forestry Decisions: How to See the Wood from
the Trees . 479

Conor Nugent, Derek Bridge, Glen Murphy, and Bernt-H̊avard Øyen

A Case-Based Perspective on Social Web Search . 494
Barry Smyth, Peter Briggs, Maurice Coyle, and
Michael P. O’Mahony

Determining Root Causes of Drilling Problems by Combining Cases
and General Knowledge . 509

Samad Valipour Shokouhi, Agnar Aamodt, P̊al Skalle, and
Frode Sørmo

Author Index . 525

We’re Wiser Together

Susan Craw

Computing Technologies Centre
Robert Gordon University, Aberdeen

s.craw@rgu.ac.uk

Abstract. Case-Based Reasoning solves new problems by reusing solu-
tions from individual experiences stored in the case base. This paper ex-
plores beyond the explicit knowledge captured as individual experiences
for problem-solving. Instead, the collective knowledge of the case base
provides additional implicit knowledge that may be exploited to improve
traditional case-based reasoning systems through additional knowledge
containers and to provide a new form of self-adaptive case-based rea-
soning. This paper presents a view that individual experiences are more
fully utilised through the wisdom of collective memory.

1 Introduction

Case-Based Reasoning (CBR) solves new problems by retrieving similar prob-
lems and reusing the solutions [1,2]. The collection of previously solved problems
forms the main knowledge source for a CBR system and this case base is at the
heart of any CBR system.

The individual experiences captured in cases provide wisdom locally in the
problem-solving space. However, the case base is a collection of individual ex-
periences and this paper proposes that the implicit knowledge captured in a
collection of cases offers greater potential. This paper explores how this knowl-
edge can be discovered, extracted, understood and exploited to achieve greater
wisdom than the sum of the individual parts.

2 Knowledge Containers

Richter’s ICCBR-95 keynote proposed further CBR knowledge containers in ad-
dition to the case base: representation language, similarity knowledge and adap-
tation knowledge [3]. He notes that the containers’ content is not fixed and that
knowledge can be shifted between containers. Here, we explore how the collec-
tion of case knowledge enables the discovery of implicit representation, retrieval
and adaptation knowledge that improves the performance of a CBR system.

2.1 Retrieval Knowledge

CBR retrieval often combines indexing to identify a relevant cases in the case
base and a nearest neighbour retrieval to select the most similar cases for reuse.
In this scenario retrieval knowledge includes the attributes selected for indexing

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 1–5, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 S. Craw

the case base and the relative weightings of attributes for nearest neighbour re-
trieval. We have used the case base as a source of training data to learn attribute
selections and weightings [4]. A simple genetic algorithm (GA) wrapper approach
represents the attribute selections and weights as binary- and real-valued genes.
The GA fitness function is the accuracy from a leave-one-out testing on the case
knowledge in which the retrieval is instrumented with the attribute selections
and weights. This leave-one-out accuracy determines the population of most fit
attribute selections and weights for the next GA iteration.

The learned retrieval knowledge improved the predictive accuracy for a de-
manding pharmaceutical application. Designing a tablet to deliver a new drug
involves choosing ingredients for other components (filler, binder, disintegrant
lubricant and surfactant) and their quantities to enable a viable tablet to be
manufactured. Many of the components and quantities showed significant im-
provement. Predicting the filler and binder components is particularly important
and improving retrieval alone was not sufficient. Learning retrieval knowledge
was also effective when the formulation task changed and this semi-automated
re-engineering of the knowledge was competitive with an expensive hand-crafting
of rules to cope with the changes [5].

2.2 Adaptation Knowledge

Differences between pairs of cases that solve each other are a source of implicit
knowledge about solution adaptations. Our adaptation learning for tablet for-
mulation built on the leave-one-out testing employed for retrieval knowledge.
Adaptation training examples were created from the contents and differences of
the new excluded problem and its retrieved neighbours, and their solutions. Ef-
fective adaptation knowledge was learned using various decision tree and nearest
neighbour algorithms [6].

But binder prediction is a particularly demanding task and remained elusive.
Binder classification required a less coarse adaptation than simply suggesting a
new binder because the choice of binder is a tradeoff between different properties
of the drug and the other components. The solution was to create novel property-
based adaptations and an ensemble approach to adaptation [7]. A substantial
improvement was achieved for binder prediction; a 1-NN adaptation ensemble
doubled the average binder accuracy from 34% to 74%!

A consensus approach to adaptation has also proved effective for a similarly
challenging workflows application where balancing conflicting requirements is
achieved by exploiting “wisdom of crowds” [8].

2.3 Representation Knowledge

In textual CBR the discovery of attributes is more refined than simply selection
as in section 2.1. Variety in vocabulary usage and the absence of structure are
interesting semantic challenges for textual case representation. Exploitation of
document collections provides examples and evidence from which to identify
keywords and phrases, to define and organise key concepts, and to index and
retrieve cases that are stored as textual documents [9,10,11]. These approaches

We’re Wiser Together 3

have proved successful for reusing satellite anomaly reports and occupational
therapy reports about SmartHouse solutions for independent living.

3 Meta-knowledge

The case base is often assumed to be representative of the problem-solving
domain and so collections of cases provide meta-knowledge case knowledge.

3.1 Models and Maintenance

Smyth & McKenna’s competence model groups cases that solve, and are solved
by, each other [12]. Competence groups map out the landscape of cases and
how they are related to each other. Our complexity-based model focuses on
interactions at class boundaries [13]. We gain insight into the global structure
of the case base by constructing a profile of case complexities that indicates
the level of redundancy and complexity in the case base, and the complexity
score for individual cases identifies areas of regularity compared to more complex
class boundaries. An understanding of relationships in the case knowledge makes
explicit meta-knowledge implicit in the case base.

The resulting models of competence enable case acquisition tools that discover
new cases [13], and case base editing tools that discover new cases or remove
redundant or noisy cases [14,15].

3.2 Agile CBR

This paper has focused on exploiting implicit knowledge in the case base for
the acquisition and maintenance of the various CBR knowledge containers. This
section proposes a new type of CBR that captures some of the key features
of the agile approachnow popular in software development. Agile CBR targets
the CBR cycle rather than CBR knowledge, and considers how it can utilise
the experience collection as well as the individual experiences in new ways to
provide more sophisticated reasoning.

One approach to Agile CBR replaces the standard Retrieve-Reuse-Revise
cycle of traditional CBR with a Retrieve-Validate-Revise meta-cycle that
utilises the standard CBR cycle in different ways at each stage [16]. Agile retrieve
will reuse a retrieved experience from the case base, but not to solve the prob-
lem, instead to suggest a new part of an evolving solution; i.e. some next steps
towards a solution. Agile validate will seek corroboration for these suggested
partial solutions from the case base to approve and prioritise the suggestions.
Agile revise will search the case base for refinements to the solution that reflect
differences in the new problem. Thus the case base is used as a source of indi-
vidual problem solving experiences, but also as a collection of cases that may
help to confirm and/or revise parts of the solution.

Viewing the case base as general experiences that can be utilised in different
ways is reminiscent of Goel’s early research on Router for robot spatial reasoning
[17], Laird’smore recentEpisodicMemory [18], theCBE (Case-BasedEngineering)
architecture that imitates a human engineer’s targeted trial-and-error experiments

4 S. Craw

to discover the right inputs for givenoutputs, or to specify some inputs and outputs
in order to discover others [19], and Goel’s current research on Meta-CBR [20].

Agile CBR exploits the experiences in the case base in different ways both
individually but also more generally as representing a problem-solving landscape.
Thus Agile CBR transforms traditional CBR into a dynamic, knowledge-rich,
self-organising, cooperative problem-solving. The need for more flexible, adaptive
techniques is beginning to be recognised for designing processes and workflows
[21]. Agile CBR aims to embed agility in the reasoning rather than in the case
representation and similarity matching.

4 Conclusions

This paper has contrasted a case-based problem-solving from individual cases
with a knowledge enriched CBR problem-solving where knowledge in other
knowledge containers has been automatically acquired by exploiting the col-
lective knowledge in the case collection. This has led to the prospect of self-
adapting CBR where firstly the case base provides an understanding of the
problem-solving landscape that enables self-adaptation of the case base, to self-
adaptive case-based reasoning where Agile CBR itself determines the next piece
of reasoning and the individual cases suggest partial solutions, but the case-base
provides evidence to support validation and suggestions for revision.

CBR is synonymous with reasoning from experiences, but until recently has
in practice meant reasoning from one or more individual experiences. Thus CBR
equates to Wisdom from similar individuals. This paper has emphasised the
added value from a collection of experiences. Thus reasoning from experiences
goes far beyond the original reuse of similar cases to exploiting the collective
experiences to tailor CBR with additional knowledge, to enable self-adaptation
of the case knowledge, to offer flexible, opportunistic problem-solving through
Agile CBR. From localised individual expertise to collective endorsement of
problem-solving from a variety of experiences.

Acknowledgments
I wish to thank Nirmalie Wiratunga, Jacek Jarmulak and Stewart Massie for con-
tributions to this research. Ray Rowe, now at the Institute of Pharmaceutical
Innovation, offered us the opportunity to work with the fascinating tablet formu-
lation task that started this CBR research. Thanks are also given to many CBR
researchers and anonymous reviewers who have helped to shape my research
through comment and constructive feedback. This work has been supported in
part by EPSRC (GR/L98015).

References

1. Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AICOM 7(1), 39–59 (1994)

2. López de Mántaras, R., et al.: Retrieval, reuse, revision, and retention in case-based
reasoning. Knowledge Engineering Review 20(3), 215–240 (2005)

We’re Wiser Together 5

3. Richter, M.M., Aamodt, A.: Case-based reasoning foundations. Knowledge Engi-
neering Review 20(3), 203–207 (2005)

4. Jarmulak, J., Craw, S., Rowe, R.: Self-optimising CBR retrieval. In: Proc. 12th
IEEE Int. Conf. on Tools with AI, pp. 376–383. IEEE Press, Los Alamitos (2000)

5. Craw, S., Jarmulak, J., Rowe, R.: Maintaining retrieval knowledge in a case-based
reasoning system. Computational Intelligence 17(2), 346–363 (2001)

6. Jarmulak, J., Craw, S., Rowe, R.: Using case-base data to learn adaptation knowl-
edge for design. In: Proc. 17th IJCAI, pp. 1011–1016. Morgan Kaufmann, San
Francisco (2001)

7. Craw, S., Wiratunga, N., Rowe, R.C.: Learning adaptation knowledge to improve
case-based reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)

8. Kendall-Morwick, J., Leake, D.: Four heads are better than one: Combining sug-
gestions for case adaptation. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009.
LNCS (LNAI), vol. 5650, pp. 165–179. Springer, Heidelberg (2009)

9. Wiratunga, N., Koychev, I., Massie, S.: Feature selection and generalisation for text
retrieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI),
vol. 3155, pp. 423–437. Springer, Heidelberg (2004)

10. Wiratunga,N.,Lothian,R.,Chakraborti, S.,Koychev, I.:Apropositional approach to
textual case indexing. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama,
J. (eds.) PKDD 2005. LNCS, vol. 3721, pp. 380–391. Springer, Heidelberg (2005)

11. Asiimwe, S., Craw, S.,Wiratunga,N., Taylor, B.: Automatically acquiring structured
case representations: The SMART way. In: Proc. 27th BCS Int. Conf. on Innovative
Techniques and Applications of AI, pp. 45–58. Springer, Heidelberg (2007)

12. Smyth, B., McKenna, E.: Modelling the competence of case-bases. In: Smyth,
B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 208–220.
Springer, Heidelberg (1998)

13. Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case based
reasoning. In: Proc. 20th AAAI, pp. 216–221. AAAI Press, Menlo Park (2005)

14. Smyth, B., McKenna, E.: Competence models and the maintenance problem. Com-
putational Intelligence 17(2), 235–249 (2001)

15. Craw, S., Massie, S., Wiratunga, N.: Informed case base maintenance: A complexity
profiling approach. In: Proc. 22nd AAAI, pp. 1618–1621. AAAI Press, Menlo Park
(2007)

16. Craw, S.: Agile case-based reasoning: A grand challenge towards opportunistic rea-
soning fromexperiences. In:Proc. IJCAI2009WorkshoponGrandChallenges inRea-
soning from Experiences (in press, 2009)

17. Goel, A., Ali, K., Donnellan, M., Gomez, A., Callantine, T.: Multistrategy adaptive
navigational path planning. IEEE Expert 9(6), 57–65 (1994)

18. Nuxoll, A.M., Laird, J.E.: Extending cognitive architecture with episodic memory.
In: Proc. 22nd AAAI, pp. 1560–1565. AAAI Press, Menlo Park (2007)

19. Woon, F.L., Knight, B., Petridis, M., Patel, M.: CBE-Conveyer: A case-based rea-
soning system to assist engineers in designing conveyor systems. In: Muñoz-Ávila,
H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 640–651. Springer,
Heidelberg (2005)

20. Murdock, J.W., Goel, A.: Meta-case-based reasoning: Self-improvement through
self-understanding. Journal of Experimental and Theoretical Artificial Intelli-
gence 20(1), 1–36 (2008)

21. Minor, M., Tartakovski, A., Bergmann, R.: Representation and structure-based
similarity assessment for agile workflows. In: Weber, R.O., Richter, M.M. (eds.)
ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 224–238. Springer, Heidelberg (2007)

Black Swans, Gray Cygnets
and Other Rare Birds

Edwina L. Rissland

Department of Computer Science
140 Governors Drive

University of Massachusetts
Amherst, MA 01003-9264
rissland@cs.umass.edu

Abstract. Surprising, exceptional cases — so-called black swans — can
provoke extraordinary change in the way we do things or conceptualize
the world. While it is not unreasonable to be surprised by a black swan, to
be surprised by subsequent cases that are similar enough that they might
cause the same sort of upheaval is unforgivable. The problem is how to
reason about these almost novel, not totally unforeseen, subsequent cases
that I call gray cygnets.

1 Introduction

From time to time there are unanticipated, exceptional cases that provoke ex-
traordinary change in the way we do things or conceptualize the world. It is
popular today to call such events black swans (e.g., [24]). They can be either
positive or negative in the sense that they can expand or contract a conceptu-
alization or approach. Not only do black swans trigger great changes, but also
they are usually outside our conceptualization of the world and thus, come to
us unheralded and seemingly out of the blue. They are said to exist in the “fat
tail” of concepts.

While it is not unreasonable to be surprised by a black swan, to be surprised
by subsequent cases that are similar to the black swan — in fact, similar enough
that they might cause the same sort of upheaval — is unforgivable. As is often
said: fool me once, shame on you; fool me twice, shame on me. If an entity
— person or machine — cannot learn not to be fooled by essentially the same
circumstance a second, or a third time, it is hardly intelligent.

The problem is how to spot and reason about cases that are similar enough
to the original black swan that their effect might be similarly significant and
exceptional. These almost novel, not totally unforeseen, subsequent cases are
what I call gray cygnets.

2 The Gray Cygnet Problem: Four Research Issues

There are several aspects of the gray cygnet problem that are particularly rel-
evant to case-based reasoning (CBR) and for which CBR is particularly well-
suited. These include:

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 6–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Black Swans, Gray Cygnets and Other Rare Birds 7

1. Similarity assessment. How similar to a black swan is similar enough for
an event to be considered a gray cygnet? This is the classic CBR concern of
“similarity assessment”. Further, given a new problem situation, how should
a highly similar past black swan case be weighed against a highly similar past
run-of-the-mill case? Which case, if any, should guide the system’s response?
This is the classic “best case selection” issue.

2. Hypotheticals. How can hypotheticals be used to anticipate gray cygnets
and explore the space of possible future cases and/or boundaries of current
models, assumptions, policies, conceptualizations, etc. For instance, hypos
based on a black swan can be created by simplifying it, pushing it to ex-
tremes, softening it to be a near hit or near miss, etc. and these can be
used to plumb the instance space, particularly the fat tail where real data is
sparse.

3. Re-representation. How — and when — should the representation of a
concept, plan, model, policy, etc. be changed in response to a black swan and
gray cygnets? For instance, how often should an underlying causal model
be revised? What are the trade-offs between aggressive re-modeling with
its risks of unstable model oscillations versus a “lazy” approach with its
risks of using a model no longer valid? Should notions of what is typical or
prototypical be revised? Should the validity of past analyses and solutions
be revisited or even called into question?

4. Analogical Mapping and Explanation. How should lessons learned from
the black swan be mapped over or applied to a gray cygnet? For instance,
should one reason analogically. Should a new — “other” or anomaly — class
that includes cygnet and swan be created, perhaps with minimal deep reason-
ing. What is the role of deeper explanation, and how should the exceptional
treatment of a black swan and/or gray cygnets be explained?

Understanding the gray cygnet problem is important for several reasons. First,
it is necessary for building intelligent systems that are not only robust in ever
changing and challenging contexts but that can also be pro-active in such do-
mains. Given that change is ubiquitous, it is necessary to understand how sys-
tems, including CBR systems, can learn in response to surprising, exceptional,
and provocative events. Second, understanding the gray cygnet problem can shed
insights on what is meant by concepts and how to represent them. Most concepts
in the world are “messy” in the sense that they cannot be represented by univer-
sally valid necessary and sufficient conditions — compared with mathematical
concepts, say — but yet there is often a great deal of regularity in them. This is
the view pioneered by Rosch and colleagues in psychology research on notions
of “typicality”, “prototypes”, and “atypical” instances (e.g., [22] , [21]). How do
swans and cygnets participate in such conceptualizations?

Similar viewpoints are found in legal philosophy concerning the differences be-
tween reasoning, and the nature of cases themselves, in the so-called “core of set-
tled meaning”, where there are regularities and general heuristic truths and in the
“penumbra”, where the cases are sui generis in the sense that each is somewhat
unique and does not fit in the mold of cases in the settled core [5]. In CBR, an

8 E.L. Rissland

analogous concern is the use of hybrid representations and reasoning, like rules or
models and cases [20],[2],[7],[13], and more generally, mixed model-plus
-extensional approaches for representation, such as frames or logic plus actual
exemplars, which has long been of interest to me [18].

3 Examples of Black Swans and Gray Cygnets

Appellate law offers many examples of the scenario in which a black swan case
creates an initial exception under which a line of gray cygnets emerge, so many
so that eventually the accepted rule or approach becomes obsolete. For instance,
the contract case Thomas and Wife v. Winchester (discussed in [12]) was the
black swan that opened the way for a whole bevy of gray cygnets that even-
tually caused reversal of the “privity of contract” doctrine (that required a di-
rect relationship between the manufacturer of a product and a party harmed
by the product) and heralded legal changes now reflected in modern consumer
rights law (that allows a consumer to recover damages for harm caused by a
product, such as a car, bought through an intermediary like a dealer or store).

Another legal example is the 1925 prohibition era case of Carroll v. United
States, 267 U.S. 132 (1925). This black swan created the so-called “automobile
exception” under which police do not need a warrant to search a car. This excep-
tion flew in the face of the longstanding existing Fourth Amendment jurispru-
dence that said a warrant was necessary. The Carroll case created an exception
that grew large enough to drive a truck through, and created a bifurcation in the
concept of constitutionally valid searches — essentially the dichotomy of homes
versus cars — that persisted for nearly 50 years, when the (not unimaginable)
case of a house on wheels (i.e., a truck with a camper compartment) presented it-
self [17],[16]. Imagine if a hypo of a car used in a homelike way — say, for camping
— had been raised in 1925. This is not an unimaginable hypo: think of Conestoga
wagons, an example of a vehicle used for both transportation and homelike activ-
ities. Would the automobile exception have occurred or been justified as it was?

Black swans can occur in many disciplines, for instance, crashes or burst
bubbles in economic markets. Financial black swans are the main focus of the
Taleb book. The Great Depression is often treated as a black swan since it cre-
ated great upheaval and was deemed a rare event. It is yet to be seen whether
the recent “crash” in October 2008 will earn the title; it certainly created up-
heaval and change, but whether it was a true surprise is an open question.

Black swans can occur in medicine, often with quite negative results. For
instance, the so-called Libby Zion case precipitated a drastic change in the
way patients are treated in the Emergency Room and residents are trained
and practice medicine. Libby Zion, an 18 year old college student, was seen
in the ER for fever and mysterious jerking movements, admitted and sedated
with an opiate (meperidine), and subsequently physically restrained and given
further sedation (haloperidol) when she became agitated again. The next morn-
ing she died from cardiac arrest triggered by an alarming (107 ◦) fever. While
the cause of death was not determined definitively, it is suspected to have been

Black Swans, Gray Cygnets and Other Rare Birds 9

from drug interactions with the anti-depressant (phenelzine) she was taking.
The only doctors that saw her were residents in training and they were rou-
tinely exhausted from long shifts. Training and protocols are now markedly
different. ER physicians pale at the thought of creating a Libby Zion cygnet.

Even mathematics and science are not immune to black swans. Lakatos [10]
discusses various treatments of some surprising counter-examples (e.g., Kepler’s
stellated dodecahedron) in the history of mathematics concerning Euler’s for-
mula. Weintraub [25] discusses examples from the long history of what heavenly
objects are considered planets. For example, in the days of the early Greeks,
Earth was not classified as a planet but the Sun was; the Copernican revolution
switched their statuses. Pluto, discovered in 1930, was originally classified as a
planet. Since then however, the discovery of a plethora of Trans-Neptune Objects
has played havoc with the planet concept. Many astronomers feel that there are
now far too many Pluto-like objects for them all to be called “planets”; so, to
handle them, a new category called Plutinos was invented. If consistency is to
be maintained, Plutinos along with Pluto should all be in or out of the concept
class of planet. So the choice is either Pluto flips to being a non-planet or there
are scores of new planets. Many feel that this enlarges the concept class too far.

In these examples, a drastic change is first heralded by a surprising, excep-
tional case (the black swan) that is then followed by a whole flotilla of sub-
sequent, similar, exceptional cases (the gray cygnets). If one thinks of the set
of positive instances of a concept, model, or a rule application as a disc, the
black swan creates a puncture in it and the gray cygnets enlarge the hole.
Eventually, there might not be much left of it. There might even be excep-
tions to the exceptions: positive islands within negative holes. Black swans
can also occur near the boundary region and cause the concept to stretch or
contract, thus flipping the classification of some nearby, borderline instances.

Gray cygnets, while perhaps not as “black” as the original event or case in
the sense that they are obviously no longer as novel, can still be exceptional and
have far-reaching ramifications, for instance by establishing a line of cases that
solidify concept change. In precedent-based domains like law, gray cygnets tend
to cite back to the original black swan case as justification, and once an excep-
tion has been allowed (e.g., not dismissed as a wrongfully-decided mistake), it
is inevitable that more cases will be treated similarly. Eventually, this flock of
exceptions might become the norm, when, as is often said, ‘the exception swal-
lows the rule’. In planning tasks, cygnets can indicate problems in underlying
assumptions (e.g., unanticipated co-occurrences of circumstances).

4 Recognition of Swans and Vigilant Monitoring for
Cygnets

There are two separate problems involving swans and cygnets: (1) recognizing
a black swan, and (2) vigilant monitoring for subsequent, similar gray cygnets.

With regard to recognition, I note that it is often difficult to recognize a black
swan event contemporaneously with its occurrence, especially in weak theory

10 E.L. Rissland

domains, the forte of CBR, where one might need to await future commentary
since it is often only in retrospect that there is recognition that one has occurred.
This might have been the scenario in Levi example; the Winchester case was
probably not considered a black swan when it was decided. It is often only when
subsequent cases cite back to the black swan case as the enabling precedent —
often with the rubric “landmark” case or use of its name as a shorthand to
stand for a new way of thinking — that a black swan is truly recognized as
such. In other domains, like planning, recognition might be more timely because
the suspected black swan causes an immediately obvious surprise like an unan-
ticipated failure or success [8]. That a case badly fits current expectations can
lead to the hypothesis that a black swan event has occurred or is occurring [9].
However, it is typically only through closer analysis that one understands why it
is exceptional, and this often requires more knowledge than just the case itself.

Once a surprising potentially paradigm-threatening case has occurred — even
if not dubbed a black swan — one should not be snookered by similar, poten-
tially disruptive, subsequent cases, that is, gray cygnets. One needs to be on the
alert for them and invest in the reasoning required to understand their possible
ramifications and monitor the case-stream for similar occurrences. While in some
tasks, there is a rich enough domain knowledge to support pre-emptive measures,
in many there is not, and watchful vigilance is the only alternative. That some
cases turned out to be much ado about nothing and that vigilance wasted some
resources does not, for me, obviate this approach since the cost-benefit trade-offs
in many domains place a high penalty on missing cygnets. The worst possible
approach in my opinion would be to dismiss the original black swan or subse-
quent cygnets as mere outliers or mistakes. This would open one up to making
the same mistake twice, the hallmark of the opposite of an intelligent system.

5 Hypotheticals and Synthetic Cygnets

Creating hypotheticals is a way to approach the gray cygnet problem proactively.
Hypos help perform a knowledge-based search of the case space (cf, statistical
sampling) and provide useful ersatz data when real data is sparse. They can be
used to probe the current conceptual regime. A hypothetical gray cygnet can be
particularly telling.

One way to create synthetic cygnets is to take a black swan as a starting
“seed” case and modify it heuristically in ways that are important in the domain
to create derivative hypos or an entire “constellation” of them. Methods based
on “dimensions” have been used to implement this approach in HYPO-style
systems as well as analyze how experts do it [19],[17]:

(i) Make a case weaker or stronger along a dimension
(ii) Make a case extreme
(iii) Enable a near miss (near negative)
(iv) Dis-able a near win (near positive)

Black Swans, Gray Cygnets and Other Rare Birds 11

(v) Add a closely coupled aspect
(vi) Add potentially conflicting aspects
(vii) Weaken a clear win (solid positive) to be a near win.

For instance, in the warrantless search area, major dimensions are “expectation
of privacy” and “exigency”. One can strengthen a fact situation on the first
dimension by making a vehicle more homelike by adding features that indicate
use of the vehicle’s interior for living (e.g., privacy curtains, bedding, cooking
equipment). One can weaken the exigency dimension by compromising a vehicle’s
mobility (e.g., by having it hooked up to utilities in an RV park, parked up on
blocks). One can create a conflict hypo by making a situation extremely strong on
both, for instance, a fully equipped RV capable of traveling at highway speeds.
Such hypos were actually used in actualSupreme Court oral arguments by the
Justices to explore the ramifications of potential analyses and decisions [17].

Besides dimension-based techniques, there are others used in the CBR com-
munity, for instance those based on distance metrics. For instance, using the
k-NN metric, one can create a mid-point hypo or the “nearest unlike neighbor”
or “NUN” [15],[14].

6 Responsive Re-representation

Once a black swan and gray cygnets have been discovered, the issue is how
to revise the conceptual regime. Some responses can mimic those discussed by
Lakatos, for instance, “surrender” (reject the old regime or model entirely) or
“monster barring” (bar them from being a legitimate case in the instance space).

In Anglo-American common law, the standard response is to add the black
swan to the case base and then simply allow exceptional gray cygnet cases to
accrete in the case base so long as they are justified in a precedent-based manner
(e.g., citing the black swan). The law does not explicitly remove from the case
base cases that are discredited by the black swan, or that rely on them. They
are still in the case base, but it is up to legal practitioners to know that they
might no longer be good law and of little precedential value. Eventually, the
set of black swan plus gray cygnets can dominate the case-base or be declared
by some (appellate) court to be the correct approach. Levi’s privity of contract
example and the automobile exception examples illustrate these phenomena.

In statutory law where there are rules as well as cases, the black swan and its
cygnets can create exceptions, temporary updates, or implicit work-arounds to
the statutory rule. Eventually the body that wrote that statute (e.g., Congress)
can re-write the rule to reflect the swan and cygnets in a revised statute. In some
cases, like tax law, new regulations and advisories can be issued to say how such
cases are to be handled. My lab’s hybrid rule and case-based system CABARET
used cases in this way (see [20], [23]).

In a domain with an explicit theory, an appropriate theory revision mechanism
can be used. For instance, if the domain theory is an ontology, it can be revised
by splitting or removing subclasses. If there is a causal model, causal pathways

12 E.L. Rissland

can be added or removed, parameter ranges restricted or expanded, new variables
introduced, etc. Of course, such revisions can be difficult because they can involve
age-old AI problems like credit assignment.

In my lab, we continue to investigate hybrid CBR and representations for
concepts, domain models, policies, etc. We use (a) a general summary represen-
tation PLUS (b) a set of exemplars, called the E-set, a selective subset of the
case knowledge base. The summary representation might take the form of defi-
nitional rules, HYPO-style dimensions, prototypes, or causal models. The E-set
includes both positive and negative instances and is the repository for “atypical”
or “penumbral” or “surprising” cases. Black swans and gray cygnets can be cap-
tured and stored as members of the E-set. Re-representation can occur through
accretion of cases in the E-set and/or explicit revision of the summary aspect.
Management of the E-set is an interesting problem in itself. For instance, when
a summary representation is revised, should the old E-set be retained for future
use: totally, in part, not at all?

Finally, mapping over the lessons learned from a black swan or gray cygnet
involves analogy and explanation. In addition to HYPO-style analogical rea-
soning [1], there is much relevant work by Gentner and Forbus on “structure
mapping” that can provide an approach to analogy [4],[3]. It was fundamental
to Branting’s GREBE project in a statutory legal domain [2]. A different and
also highly effective approach was used in Hammond’s CHEF [6]. Of course,
there is much powerful research by Roger Schank, David Leake and others on
explanation involving cases [11].

References

1. Ashley, K.D.: Modeling Legal Argument: Reasoning with Cases and Hypotheticals.
MIT Press, Cambridge (1990)

2. Branting, L.K.: Building Explanations from Rules and Structured Cases. Interna-
tional Journal of Man-Machine Studies (IJMMS) 34(6), 797–837 (1991)

3. Falkenheimer, B., Forbus, K.D., Gentner, D.: The Structure-Mapping Engine: Al-
gorithm and Examples. Artificial Intelligence 41(1), 1–63 (1989)

4. Gentner, D.: Structure-Mapping: A Theoretical Framework for Analogy. Cognitive
Science 7(2), 155–170 (1983)

5. Hart, H.L.A.: Positivism and the Separation of Law and Morals. Harvard Law
Review 71, 593–629 (1958); reprinted in Hart, Essays in Jurisprudence and Philos-
ophy. Oxford (1983)

6. Hammond, K.J.: Case-Based Planning: Viewing Planning as a Memory Task. Aca-
demic Press, London (1989)

7. Hastings, J., Branting, L.K., Lockwood, J.: CARMA: A Case-Based Rangeland
Management Advisor. AI Magazine 23(2), 49–62 (2002)

8. Horling, B., Benyo, B., Lesser, V.: Using Self-Diagnosis to Adapt Organizational
Structures. In: Proc. AGENTS 2001, Montreal (2001)

9. Horvitz, E., Apacible, J., Sarin, R., Liao, L.: Prediction, Expectation, and Surprise:
Methods, Designs, and Study of a Deployed Traffic Forecasting System. In: Proc.
UAI (2005)

10. Lakatos, I.: Proofs and Refutations. Cambridge (1976)

Black Swans, Gray Cygnets and Other Rare Birds 13

11. Leake, D.B.: Evaluating Explanations: A Content Theory. Lawrence Erlbaum,
Mahwah (1992)

12. Levi, E.H.: An Introduction to Legal Reasoning. Chicago (1949)
13. Marling, C., Rissland, E.L., Aamodt, A.: Integrations with case-based reasoning.

Knowledge Engineering Review 20(3), 241–246 (2005)
14. Massie, S., Wiratunga, N., Craw, S., Donati, A., Vicari, E.: From anomaly reports

to cases. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp.
359–373. Springer, Heidelberg (2007)

15. Massie, S., Craw, S., Wiratunga, N.: Complexity-Guided Case Discovery for Case
Based Reasoning. In: Proc. AAAI 2005, pp. 216–221 (2005)

16. Rissland, E.L.: AI and Similarity. IEEE Information Systems 21(3), 39–49 (2006)
17. Rissland, E.L.: Dimension-based Analysis of Hypotheticals from Supreme Court

Oral Argument. In: Proc. Second International Conf. on AI and Law (ICAIL 1989),
Vancouver, BC, pp. 111–120 (1989)

18. Rissland, E.L.: Epistemology, Representation, Understanding and Interactive Ex-
ploration of Mathematical Theories. Ph.D. dissertation, Department of Mathemat-
ics, MIT (1977)

19. Rissland, E.L., Ashley, K.D.: Hypotheticals as Heuristic Device. In: Proceedings
Fifth International Conference on Artificial Intelligence (AAAI 1986), pp. 289–297
(1986)

20. Rissland, E.L., Skalak, D.B.: CABARET: Statutory Interpretation in a Hybrid
Architecture. International Journal of Man-Machine Studies (IJMMS) 34, 839–887
(1991)

21. Rosch, E., et al.: Basic Objects in Natural Categories. Cognitive Psychology 8(3),
382–439 (1976)

22. Rosch, E., Mervais, C.B.: Family Resemblance: Studies in the Internal Structure
of Categories. Cognitive Psychology 7, 573–605 (1975)

23. Skalak, D.B., Rissland, E.L.: Arguments and Cases: An Inevitable Intertwining.
Artificial Intelligence and Law 1(1), 3–44 (1992)

24. Taleb, N.N.: The Black Swan. Random House (2007)
25. Weintraub, D.: Is Pluto a Planet? Princeton (2007)

Case Retrieval Reuse Net (CR2N): An
Architecture for Reuse of Textual Solutions

Ibrahim Adeyanju1, Nirmalie Wiratunga1, Robert Lothian1,
Somayajulu Sripada2, and Luc Lamontagne3

1 School of Computing
Robert Gordon University, Aberdeen, Scotland, UK

{iaa,nw,rml}@comp.rgu.ac.uk
2 Department of Computing Science,

University of Aberdeen, Aberdeen, Scotland, UK
yaji.sripada@abdn.ac.uk

3 Department of Computer Science and Software Engineering,
Université Laval, Québec (Québec), Canada

luc.lamontagne@ift.ulaval.ca

Abstract. This paper proposes textual reuse as the identification of
reusable textual constructs in a retrieved solution text. This is done by
annotating a solution text so that reusable sections are identifiable from
those that need revision. We present a novel and generic architecture,
Case Retrieval Reuse Net (CR2N), that can be used to generate these
annotations to denote text content as reusable or not. Obtaining evi-
dence for and against reuse is crucial for annotation accuracy, therefore
a comparative evaluation of different evidence gathering techniques is
presented. Evaluation on two domains of weather forecast revision and
health & safety incident reporting shows significantly better accuracy
over a retrieve-only system and a comparable reuse technique. This also
provides useful insight into the text revision stage.

1 Introduction

Textual Case Based Reasoning (TCBR) solves new problems by reusing previous
similar problem-solving experiences documented as text. TCBR is a subfield of
Case Based Reasoning (CBR) but has evolved as a specialized research area due
to challenges associated with reasoning with textual attributes as opposed to
structured attributes consisting of numeric and symbolic values [1].

In structured CBR, a case is typically described using a fixed number of at-
tributes; therefore, the reuse stage will propose a solution containing values for
these fixed attributes. Although a solution is also proposed for reuse in TCBR,
number of attributes differ when the solution is textual and its decomposition
into sections (keywords, phrases or sentences) is viewed as attributes. The num-
ber of sections in a retrieved textual solution is also likely to differ from the
actual solution. Therefore, the reuse stage for TCBR must identify sections of

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 14–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

CR2N: An Architecture for Reuse of Textual Solutions 15

a solution text that are relevant (reusable) to a given problem. The rest are
candidates for revision which may take the form of deletion.

In this paper, we present a novel architecture for textual reuse which identi-
fies sections of a retrieved text as reusable or alternatively needing revision. Our
architecture extends the Case Retrieval Net (CRN) and establishes evidence in
support of either reuse or revision by analysing the retrieval neighbourhoods.
We design an algorithm to formalise our architecture and evaluate it on two ap-
plication domains: post-editing of weather forecast texts and health and safety
incident reporting. Common to both domains is that the problem and solution
are in textual form. However, the domains also exhibit different textual charac-
teristics such as in vocabulary size, problem and solution vocabulary overlap and
the use of synonyms. Such differences allows us to evaluate the transferability of
our technique across domains.

Section 2 discusses related work in CBR reuse and distinguishes textual from
structured reuse. We then explain details of our novel architecture for textual
reuse in Section 3 and compare it with an existing technique in Section 4. This
is followed by experimental setup and discussion of results in Section 5 with
conclusions in Section 6.

2 Related Work

The concept of CBR reuse was introduced in [2] to cover different ways in which
knowledge is processed from retrieved cases prior to revision. In broad terms,
this consists of generative and transformational reuse. Generative reuse (also
called replay) involves a trace of the retrieved solution in the context of the new
problem. A search-based approach to generative reuse was proposed for config-
uration tasks in [3]. Solutions in this domain consist of a complex structure of
elements which are captured as states ; a domain-specific representation of a par-
tially specified solution. A solution to a given problem is therefore generated by
searching the space of solutions guided by the retrieved solution. This technique
is not directly applicable to textual content because of the difficulty in capturing
a partially specified text content without losing its contextual meaning within
the entire solution.

Transformational reuse on the other hand is one in which the contents (all
attributes and values) of a retrieved solution are copied verbatim or aggregated
by consensus of retrieved solutions. This technique was exploited for automatic
story plot generation [4]. A plot structure is obtained by reusing stories from a
case base of tales and an ontology of explicitly declared relevant knowledge. The
ontology enables measuring of semantic distance between words/structures in
the query and previous problems while the solution in each case consist of fairy
tale texts analysed and annotated according to Propp’s morphology. Natural
Language Generation (NLG) techniques are then used to describe the story plot
in natural language. Although the story generated is a complete sketch of the
plot, it assists screen writers in fast prototyping of story plots which can easily
be developed into a story. The approach is knowledge intensive and use of a

16 I. Adeyanju et al.

domain specific ontology limits its transferability. However, it paves the way to
exploit other interesting synergies between NLG and CBR.

A restricted form of textual reuse is presented for report writing applied to
the air travel incident domain [5]. Here, textual cases consist of incident reports
with one or more paragraphs grouped under a specific heading as a section. The
most similar document to a query is retrieved and textual reuse is facilitated for
each section of the retrieved report. This is done by presenting a cluster of other
documents containing similar text under the same heading. This technique ig-
nores the context of each section within the entire report which leads to unuseful
clusters. The approach is restrictive since it cannot be used in the absence of
common section headings across the set of documents.

The drawbacks observed in the work reviewed above are addressed by a text
reuse technique called Case Grouping (CG) [6]. The technique demonstrated on
a semi-automated email response application involves reuse of previous email
messages to synthesize new responses to incoming requests. A response is a
sequence of statements satisfying the content of a given request and requires
some personalization and adjustment of specific information to be reused in
a new context. The reuse technique annotates sentences as reuse if there is
sufficient evidence that similar past problems contain this sentence. The evidence
is quantified by dividing the case base into two clusters that contain similar
sentence and those that don’t. Query similarity to a centroid case formed for each
cluster determines whether or not to reuse. The centroid case has the average
value for each feature across all cases in a cluster. The use of similarity knowledge
to guide reuse/revision is novel; however, use of centroids to achieve this is less
desirable because two clusters could have the same centroid if the spread of cases
result in similar intra-cluster distance ratios. Also, use of the entire casebase to
form clusters implies that the computation is influenced by cases which have no
similarity to the query nor to the retrieved case.

3 Case Retrieval Reuse Net (CR2N)

Our approach to reuse involves automated annotation of retrieved solution text
as relevant or not. Essentially, textual units (keywords, phrases, sentences etc)
annotated as relevant suggests that they can be reused without revision. In order
to achieve this, we propose an extension to the CRN architecture called CR2N.
The CR2N architecture consists of two CRNs: the original Case Retrieval Net
(CRN) [7] which indexes the problem vocabulary and a second CRN referred to
as Case Reuse Net (CReuseNet) which indexes the solution vocabulary.

3.1 Case Retrieval Net (CRN)

A CRN is a memory model that can efficiently retrieve a relatively small number
of relevant cases from a case base. The model in its basic form was proposed by
Lenz & Burkhard [7] although several extensions to the basic CRN such as the
lazy propagation CRN [8], Microfeature CRN [8] and Fast CRN [9] have been

CR2N: An Architecture for Reuse of Textual Solutions 17

proposed. The CRN is efficient because it avoids exhaustive memory search and
can handle partially specified queries; complete because it assures that every
similar case in memory is found during retrieval[7]. It is also flexible as there are
no inherent restrictions concerning the circumstances under which a particular
piece of knowledge can be recalled and this is particularly useful for text.

Case1

Case2

Case3

Case4

10212Case4

01101Case3

22212Case2

02021Case1

glovenursebedstaffpatient

10212Case4

01101Case3

22212Case2

02021Case1

glovenursebedstaffpatient

P
ro

bl
em

 d
es

cr
ip

tio
n

vo
ca

bu
la

ry

patient

staff

bed

nurse

glove

Fig. 1. Partial CRN for the health & safety dataset with matrix representation

The CRN uses a net-like case memory to spread activation for retrieval of
similar cases to a query. It consists of four components: case nodes, Information
Entities nodes (IEs), relevance arcs and similarity arcs. An IE consists of an
attribute-value pair and a case consists of a set of IEs. A relevance arc connects
IEs to cases and shows the presence and strength of an IE in a case while a
similarity arc connects two IEs and indicates how similar an IE is to another. A
case retrieval is performed by activating IE nodes which occur in a given query,
propagating this activation according to similarity through the net of IEs and
aggregating activation in the associated case nodes. Cases are ranked according
to this aggregation and solution from the top k cases are retrieved.

When used in TCBR, each IE node is used to represent a single textual unit
(keyword, phrase or sentence) depending on the granularity of indexing and
similarity matching. Similarities between the textual units are then captured by
the similarity arcs. A trivial CRN built for our incident reporting application is
illustrated in figure 1 with its corresponding matrix representation. The figure
shows how health & safety keywords relate to incident cases. A relevance arc
connects an IE to a case when the keyword associated with the IE is contained
in the case. For example the keywords “patient”, “staff”, “bed”, and “glove”
occur in case Case4. The weight on the arc typically denotes the importance
of the keyword in a case. Here, we use term frequency weighting and each row
in the matrix relates to a case represented as a feature vector. The similarity
arc between “staff” and “nurse” indicates that the two keywords are similar

18 I. Adeyanju et al.

and could be learnt using word co-occurrences or from an ontology. Aggregation
network activations are implemented using matrix multiplication [9].

3.2 From CRN to CR2N

The trivial example used to illustrate the components of the CR2N in figure 2
has a case base of six cases and five/four keywords in the problem/solution vo-
cabulary respectively. The CRN retrieves the most similar case(s) to a query
while the Case Reuse Net (CReuseNet) generates text annotation on the pro-
posed solution. CRN represents the problem vocabulary of indexed cases as a
mapping between IE nodes and cases containing such IEs. Case nodes are de-
noted as C and the problem description IEs are denoted as PIE. Mapping of
IEs onto cases are shown as relevant arcs while the similarity arcs indicate the
similarity between IEs. Solution description IEs in the CReuseNet are denoted
as SIE to differentiate these from problem description IEs.

Case Retrieval Net

then Reuse SIEIf more of then Reuse SIEIf more of

PIE3

Pr
ob

lem
 d

es
cr

ipt
ion

 vo
ca

bu
lar

y Solution description vocabulary

SIE1

C6

C2

C3

C4

C5

C1

Case Reuse Net

SIE3

PIE2

PIE4

SIE2

PIE1

SIE4
Query

Pr
op

os
ed

 S
olu

tio
n

PIE5PIE5

Fig. 2. The Case Retrieval Reuse Net (CR2N) architecture

A query spreads activation in the CRN through its PIEs. The most similar
case is identified as that having the highest aggregation of activations (C2 in
figure 2). Each SIE from the most similar case then spreads activation in the
CReuseNet to determine its reusability to the query. We decide the reusability
of the SIE by comparing two retrieval sets: RS1, the set of cases activated in the
CRN by a query and RS2, the set of cases activated by an SIE in the CReuseNet.
A large intersection between RS1 and RS2 implies reuse of SIE otherwise revise.
In other words, an SIE is reusable if a majority of the cases it activates in
CReuseNet have already been activated in the CRN. For example in figure 2,

CR2N: An Architecture for Reuse of Textual Solutions 19

C2 (most similar to the query) contains SIE2 & SIE4. SIE2 is determined to be
reusable because all cases (C2, C4 & C5) activated by the query in the CRN
are also activated by the SIE2 node. On the other hand, SIE4 is likely to need
revision because it only activates one (C2) out of the three cases activated by
the query in the CRN.

4 Evidence for Annotations: Neighbouring vs. All Cases

We illustrated a simple view of our reuse architecture in figure 2 with six cases
being considered in the creation of the sets RS1 and RS2. However, a casebase will
contain many more cases. Since these sets provide evidence for our annotation
judgements, we need to establish how these sets are formed for a larger casebase
size. Clearly, it is sensible to use local neighbourhoods for evidence in our reuse
computation rather than the entire casebase.

problem space

Q

problem space

Q

solution spacesolution space

Fig. 3. Neighbourhoods in the problem and solution spaces

It is natural to use the problem space neighbourhood (i.e. query’s neighbours)
since similar problems should have similar solutions. This implies that evidence
for reuse is computed using the query’s neighbouring cases. For instance in
figure 3, Q appearing in the problem space represents a query and the filled-
in circle represents the best match case. The evidence for reuse/revise can be
obtained from four cases nearest to the query as indicated by the outline around
Q in the problem space. Alternatively, we could focus on the solution space
neighbourhood consisting of the retrieved solution’s neighbours. The use of this
neighbourhood allows each retrieved SIE to be put in context of the entire solu-
tion during reuse computation. Such contextualisation for example enables the
solution keyword “plate” in “food plate” to be disambiguated from “plate kit”
used in surgery when applied to our health and safety incident reports.

4.1 Text Reuse with Case Grouping

Case Grouping (CG) [6] is a strategy which obtains evidence for textual reuse
from the entire case base in its original form. An SIE in a proposed solution is
annotated as reusable if there is sufficient evidence that similar past problems

20 I. Adeyanju et al.

also contained it in their solution. The key idea is the use of all cases in the
casebase to gather evidence for or against reusing a proposed solution SIE. For
each SIE in the retrieved solution, the case base is divided into 2 clusters: support
and reject. The support cluster consists of cases that contain a similar SIE in
their solution while the reject cluster contains cases that don’t. A centroid case
is then formed for each cluster by combining problem vectors of every case in
the cluster. An SIE is annotated as reusable if the support centroid case is more
similar to the query than the reject centroid; otherwise, the SIE is annotated as
revise. Notice here that evidence for annotation is based on the whole casebase.

4.2 Text Reuse with CR2N

CR2N emphasizes the use of local neighbourhoods as opposed to CG’s use a
global view of the whole casebase. We formalise our CR2N architecture as an
algorithm (see Figure 4) to automatically generate our textual reuse annota-
tions (i.e. reuse/revise). The algorithm uses a generic CRN function to retrieve
cases given a partial case description and an indexing vocabulary. There are two
CRN function calls, with the first retrieving over the problem vocabulary, Vp,
and the second over the solution vocabulary, Vs. The retrieval sets returned by
the CRNs are qualified by two further Select functions: SelectK returns the top
k cases, and SelectT returns all cases with similarity above a specified thresh-
old. Although other retrieval mechanism (e.g. feature based matching) can be
used, we employed CRN because of its efficiency on larger applications and its
similarity arcs allows for more semantic retrieval.

The best match case Cbest, is identified by retrieving over Vp in response to
a query Q. Here Q is a case consisting of just the problem description and RS1
is the resultant retrieval set by retrieving over Vs with the retrieved solution
from Cbest. The reuse stage involves iterating over the proposed textual solution
content (i.e. Cbest’s solution) to identify and annotate relevant parts. Like the
second CRN call, the third CRN retrieves cases over the solution vocabulary
given some partial solution text, which is formally denoted as a set of solution
IEs or {siei} in figure 4. The resultant retrieval set is RS2. It should be noted
that {siei} must be a subset of Cbest’s solution.

A solution IE is reusable by the query if cases containing it are similar to
the query. In other words we want to establish if cases with similar problem
descriptions to the query also contain the solution IE of interest, {siei}. For
this purpose the retrieval sets RS1 and RS2 are compared. The intersection of
these sets contain cases (AS) that have similar solution to the retrieved solution
and also contain the siei, whilst the set difference identifies cases (BS) that are
similar to the retrieved solution but not containing {siei}. The annotation is
conditioned on the average similarity of the query to cases in the intersection
(SA) versus that of the set differences (SB). The solution is determined to be
reusable if SA is greater than SB else it needs revision.

The SelectK(CRN(Vs, Cbest), k) function retrieves k cases similar to the re-
trieved solution. The function thereby allows the retrieved solution’s overall con-
text to be taken into account even when IEs are used for activation one at a time.

CR2N: An Architecture for Reuse of Textual Solutions 21

CB= {C1,. . . ,Cn}, set of cases in the case base
Vp= {pie1,. . . ,piem}, set of problem IEs in CB
Vs= {sie1,. . . ,siel}, set of solution IEs in CB
C= {P, S}, where(C ∈ CB) ∧ (P ⊂ Vp) ∧ (S ⊂ Vs)
Q= a query, where Q ⊂ Vp

k= local neighbourhood used for reuse calculation, where k<= n

Cbest= SelectK(CRN(Vp, Q),1)
RS1= SelectK(CRN(Vs, Cbest), k)
for each {siei} ∈ Cbest

RS2= SelectT(CRN(Vs, {siei}), σ)
AS= RS1 ∩ RS2

BS= RS1\RS2

SA= 1
|AS|

∑
a∈AS Sim(a, Q)

SB= 1
|BS|

∑
b∈BS Sim(b, Q)

if SA > SB

then
REUSE {siei} (relevant to the query)

else
REVISE {siei} (irrelevant to query)

Fig. 4. The CR2N Algorithm

Alternatively, neighbours of the query could have been used but our previous ex-
periments reported in [10] showed that using neighbourhoods from solution space
perform better than the problem space. The use of a specified k-neighbourhood
increases the efficiency of the algorithm since a smaller number of cases are used
for reuse computation. Small values of k ensure that a local neighbourhood is
used for reuse computation and remove the influence of cases with little similar-
ity to the retrieved. This is important since these cases could negatively affect
the reuse computation because they reduce average similarity of AS.

The CR2N algorithm is generic because IEs can represent any form of textual
units (keywords, phrases, sentences etc). Also the algorithm could still be used if
each IE represents a keyword and we want to annotate larger textual units like
sentences or paragraphs. This is done by using all keywords in the textual unit as
a set for activation in the function SelectT(CRN(Vs, {siei}), σ). The best values
for parameters k and σ on a given domain must be established empirically.

4.3 Distinguishing CR2N from CG

CR2N is similar to CG (see section 4.1) in that both exploit the indirect relation
between a query and each textual unit in a retrieved solution by forming two
sets of cases (AS/support & BS/reject). However, CR2N addresses drawbacks
identified in CG as follows.

22 I. Adeyanju et al.

1. CR2N uses knowledge from a specified local neighbourhood to determine
reusability of a solution’s textual unit instead of an entire case base used in
CG. This removes the influence of cases that are dissimilar to the retrieved
case during reuse computation.

2. Average similarity of cases in each group to the query is employed for
reuse/revise evidence in CR2N rather than centroid vectors used in CG.
This is more intuitive since it takes into account similarity to the query of
each case individually rather than as a group of cases.

3. Unlike CG, retrieval and reuse are integrated into a single architecture.

5 Evaluation Methodology

We evaluate the effectiveness of the reuse strategies by measuring accuracy of
their annotations. We chose a retrieve-only system as our baseline since reuse
succeeds retrieval and its use should improve upon retrieval results. We are also
interested in the effect of different neighbourhood sizes (k) on reuse performance,
we therefore repeated our experiments for increasing values of k. We compared
the baseline with two textual reuse algorithms.

1. CR2N as explained in section 4.2
2. CG, as reviewed in section 4.1 but modified to use neighbourhoods (instead

of the entire casebase) of the query to make it comparable to CR2N

We use a ten-fold cross validation and cosine similarity computation at both
retrieval and reuse stages. Each IE in the CR2N represents a keyword from our
domain vocabulary. We chose keywords as our textual units to be annotated
because the size of each retrieved solution text in our application domains is
small (typically 1 sentence with an average of 7 keywords).

We evaluate effectiveness of the CR2N using average accuracy, precision and
recall. Our underlying hypothesis is that an effective reuse of retrieved similar
cases would enhance revision and should perform better than the retrieve-only
baseline. Accuracy of the CR2N is measured as a ratio of retrieved keywords
correctly annotated as reuse/revise to the total number of keywords retrieved.
We measure precision as a ratio of the number of keywords from the actual
solution present in the proposed solution to all keywords in proposed solution.
Recall is a ratio of keywords from actual solution present in the proposed solution
to all keywords in actual solution. These measures are commonly used to evaluate
TCBR systems [11] but have practical limitations as they are surface measures
devoid of most semantics in the context of a sentence. Accuracy shows predictive
performance of the CR2N and the retrieval precision is used as baseline accuracy
since all retrieved keywords are deemed reusable if no annotation is done. On the
hand, precision/recall indicates overall performance of our TCBR system when
keywords annotated as revise by CR2N are deleted. A higher reuse precision with
comparable recall over a retrieve-only system would indicate better effectiveness
for a simplified TCBR system in which only delete operations are carried out
during revision. However, a complete revision stage will also include substitute
and insert edit operations; we intend to tackle this in our future work.

CR2N: An Architecture for Reuse of Textual Solutions 23

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

3 7 17 31 101 311 403 599 700 900 1500 2000 2172

Absolute k Neighbourhood

Ac
cu

ra
cy

CR2N

CG

CRN

Fig. 5. Accuracy results for CR2N, CG and CRN in weather forecast revision

The problem and solution texts are preprocessed using the GATE library,
available as part of the jCOLIBRI [12] framework. These attributes are divided
into keywords using the GATE Splitter. Suitable stop words are also removed
and keywords stemmed to cater for morphological variations.

5.1 Weather Forecast Revision

The wind dataset was extracted from a post-edit corpus [13] of an NLG weather
forecast system called Sumtime Mousam (SM). The dataset consists of weather
forecast text generated from numerical data by SM and its edited form after
revision by domain experts. A case in our experiments therefore consists of the
NLG system generated text (Unedited Text) as problem and its revised form by
domain experts (Edited text) as solution.

The SM weather corpus has the following peculiar properties:

– The problem text is more similar to its solution text in a single case than to
any problem text from other cases. This means that the problem & solution
vocabularies are identical unless forecasters introduce new terminology. Al-
though this is unlike most TCBR applications where the problem & solution
have very few vocabulary in common (e.g. incident report datasets [14,15]),
we expect that similar edit operations are applicable on solution texts.

– The indexing vocabulary is small i.e. 71/ 140 keywords in problem/ solution
vocabulary respectively.

– The problem (Unedited text) is very consistent because it is generated by
an NLG system with abstracted rules but the solution is not as consistent
and may contain typing errors (e.g. middnight, lessbecoming).

A total of 2414 cases (from 14690) were extracted for experiments and we en-
sured that the average size of problem/solution text is about 1 sentence since the

24 I. Adeyanju et al.

reuse techniques were tested at keyword granularity. Figure 5 shows an accuracy
graph comparing the retrieved similar solution (CRN), CR2N and CG from our
experiments with the wind forecast dataset. The average accuracy of the CR2N
clearly outperforms the baseline (precision of the retrieved solution) and CG as
its curve is above them. Also, CR2N’s accuracy increases with k neighbourhood
of the retrieved solution, attains its best value when k=700 (about one-third of
2172 cases in the training set) and starts to decrease thereafter. This increase in
accuracy with k can be attributed to the CR2N having more contextual knowl-
edge to predict the reuse/revise of a keyword better. The decrease thereafter
establishes the fact that comparison of local neighbourhoods is sufficient rather
than the entire case base. The local neighbourhood is large because the vo-
cabulary is small, therefore, majority of cases have common keywords in their
solution text. CG shows a different trend; the accuracy is initially below that of
the baseline (until k=17) but increases subsequently outperforming the baseline
(after k=311). The initial decrease could be attributed to the misleading and
unpredictable evidence from the use of centroids even when a smaller number of
cases are used to create the clusters.

The average precision/recall values plotted against the absolute neighbour-
hood values is shown in figure 6. These curves show a similar pattern in effec-
tiveness with the CR2N surpassing the others. The average recall of the CR2N
becomes comparable to the average retrieval recall when k=900 but with higher
precision. The recall of CR2N cannot be greater than the retrieval recall as
keywords annotated as revise are currently treated as deletes. The CR2N’s per-
formance is generally above that of CG on the graph except when k=3 and

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

3 7 17 31 101 311 403 599 700 900 1500 2000 2172

Absolute k Neighbourhood

A
vg

 P
re

ci
si

on
/ R

ec
al

l v
al

ue
s

CR2N Prec

CR2N Rec

CG Prec

CG Rec

CRN Prec

CRN Rec

Fig. 6. Precision/Recall results for CR2N, CG and CRN in weather forecast revision

CR2N: An Architecture for Reuse of Textual Solutions 25

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

3 7 17 31 75 101 167 211 269 326

Absolute k Neighbourhood

Ac
cu

ra
cy

CR2N

CG

CRN

Fig. 7. Accuracy results for CR2N, CG and CRN in H&S incident reporting

k >700 for average precision and recall respectively. The higher average re-
call values show that CG is more conservative because it tends to reuse most
keywords in a retrieved solution.

5.2 Health and Safety Incident Reporting

We also evaluated our technique on health and safety (H&S) incident reports
from hospitals provided (by NHS Grampian). A report consists of a textual
description of the incident and the action taken by the health personnel on duty.
Each record is also labelled with 1 of 17 care stage codes which identifies a group
of records such as accidents that result in personal injuries, incidents during
treatment or procedures etc. Our intention is to build a TCBR system that
assists less experienced health personnels when resolving/recording incidents by
using previous similar experiences. Therefore, the incident description serves as
our problem while the solution is the action taken to resolve the incident for
each case in our experiments.

Unlike the weather forecast revision domain, health and safety incident report-
ing is a typical TCBR application where problem and solution vocabulary share
little in common and indexing vocabulary is large (e.g. 732 keywords in solution
vocabulary). Also, both problem and solution texts may contain typing errors
since they are manually recordedby humans. We extracted a total of 362 cases that
were grouped under a similar care stage code and having just 1 sentence in both
the problem and solution texts. This allows us not only to evaluate our reuse tech-
nique at keyword granularity but makes it comparable to results from the weather
domain. During evaluation, synonym keywords were matched using WordNet [16]
as well as keywords with the same lemma but different stems (e.g gave and given).

Figure 7 shows an average accuracy graph comparing the baseline (CRN),
CR2N and CG from our experiments with the H&S incident reports. The per-
formance of the reuse techniques exceed the baseline as shown by their accuracy

26 I. Adeyanju et al.

plots. There is no clear distinction between CR2N and CG’s performance but
CR2N is marginally better with 6 wins out of the ten neighbourhood sizes eval-
uated. Overall, CR2N is most consistent with an initial increase in accuracy
followed by a decrease that tappers as the neighbourhood size increases. This
indicates an optimal performance when neighbourhoods are used for reuse com-
putation as opposed to the entire case base. CG on the other hand shows a less
predictable pattern with increasing neighbourhood size. In particular, the initial
high accuracy is surprising. A closer look at this point (CG at k = 3) shows that
one of the two clusters used for centroid creation was always absent leading to
random behaviour that was advantageous in this instance.

CR2N’s precision outperforms those of CG and CRN (see figure 8). However,
the average recall of CG is better than that of CR2N emphasizing that CG is
more conservative and tends to reuse most retrieved keywords. After an initial
dip, CR2N’s recall results remain mostly constant. The initial decline in CR2N’s
recall is attributed to similar problems in the dataset not sharing the same
solution keywords though their solutions might have the similar meaning.

Overall, the retrieval accuracy, precision and recall results obtained are com-
paratively low in this domain (values are less than 0.5). A closer look suggests
that values are misleading as regards the actual effectiveness of the TCBR sys-
tem. This is because quantitative measures used in our evaluation only count
matching keywords using their stems, lemma or synonyms. Therefore, they are
unable to capture sentences that have similar meanings when expressed by a
slightly different set of keywords. Poor accuracy results are also reported when
the retrieved solutions are more detailed than the actual. Table 1 shows three
incident queries as well as the retrieved case, similarity value and retrieval
accuracies. With query 1, although the retrieved and actual solutions are similar
in meaning, retrieval accuracy is calculated as just 0.333. This is because 1 out
0f 3 keywords (“nurse/nursing”) is matched in the retrieved solution. Query 3

0.1

0.15

0.2

0.25

0.3

0.35

3 7 17 31 75 101 167 211 269 326

Absolute k Neighbourhood

A
vg

 P
re

ci
si

on
/ R

ec
al

l v
al

ue
s CR2N Prec

CR2N Rec

CG Prec

CG Rec

CRN Prec

CRN Rec

Fig. 8. Precision/Recall results for CR2N, CG and CRN in H&S incident reporting

CR2N: An Architecture for Reuse of Textual Solutions 27

Table 1. Sample retrievals from the Health & Safety incident reports

 Query Retrieved
Problem

Similarity Retrieved Solution Actual
Solution

Retrieval
Accuracy

1 nurse slipt and
fell on wet
floor

staff member slid
on something
wet and fell to
the floor

0.61237 examined by
nursing staff

nurse given first
aid

0.333

2 patient fell to
the ground as
Nurse assisted
him to bed.

patient fell out of
bed.

0.7071 examined by
medical staff.

Patient was
advised to get
assistance in
and out of bed.

0.0

3 Needlestick
injury
sustained.

needlestick
injury sustained
by a member of
staff.

0.7746 first aid, blood
sample taken,
visited occupational
health.

occupational
health
contacted.

0.333

poses a similar challenge whilst query 2 highlights a slightly different problem.
Here, the omission of information (the fact that the patient would have been
examined first) caused the accuracy to be calculated as 0.0. These examples
demonstrate the challenges posed by variability in vocabulary and the need for
semantics-aware evaluation metrics for TCBR.

6 Conclusions and Future Work

The contribution of this work is two fold. Firstly, it proposes the reuse stage
in TCBR as identification of reusable textual constructs in a retrieved solution
text; the similarity assumption is used to determine reusable constructs. This is
then followed by the revision of constructs that have been deemed to be non-
reusable. Secondly, it provides an integration of the retrieval and reuse stages in
TCBR into a single architecture called CR2N.

Three issues of when, what and how to revise need to be addressed when
revising a piece of text. CR2N introduced in this paper addresses the issue of
what to revise at the reuse stage by automatically annotating components of a
solution text as reuse or revise. This is done by extending the CRN architecture
and obtaining evidence for reuse/revise from neighbouring cases in the solution
space. Experiments with CR2N on two datasets from the domains of weather
forecast revision and health & safety incident reporting show better accuracy
over a comparable reuse technique (CG) and a retrieve-only system (baseline).

We intend to improve CR2N by capturing context (e.g. influence of left and
right adjacent keywords) for each keyword in the CReuseNet and to experiment
with other levels of text granularity such as phrases and sentences. A qualitative
evaluation (human validation) of our technique is needed to address problems en-
countered with quantitative evaluation on the health and safety incident report.
We also intend to experiment with compositional text reuse where k-nearest cases
of a query are combined after identifying reusable keywords by our technique.

Acknowledgements. This research work is funded by the Northern Research
Partnership (NRP) and the UK-India Education and Research Initiative
(UKIERI).

28 I. Adeyanju et al.

References

1. Brüninghaus, S., Ashley, K.D.: Reasoning with textual cases. In: Muñoz-Ávila, H.,
Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 137–151. Springer, Heidelberg
(2005)

2. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AICom 7, 39–59 (1994)

3. Plaza, E., Arcos, J.L.: Constructive adaptation. In: Craw, S., Preece, A.D. (eds.)
ECCBR 2002. LNCS, vol. 2416, pp. 306–320. Springer, Heidelberg (2002)

4. Gervás, P., Dı́az-Agudo, B., Peinado, F., Hervás, R.: Story plot generation based
on CBR. In: Twelveth Conference on Applications and Innovations in Intelligent
Systems. Springer, Heidelberg (2004)

5. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A.: Textual cbr in jcolibri:
From retrieval to reuse. In: Proceedings of the ICCBR 2007 Workshop on Textual
CBR: Beyond Retrieval, pp. 217–226 (2007)

6. Lamontagne, L., Lapalme, G.: Textual reuse for email response. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 234–246. Springer,
Heidelberg (2004)

7. Lenz, M., Burkhard, H.D.: Case retrieval nets: Basic ideas and extensions. In:
Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 227–239. Springer,
Heidelberg (1996)

8. Lenz, M., Burkhard, H.D.: Case retrieval nets: Foundations, properties, implemen-
tations and results. Technical report, Humboldt University, Berlin (1996)

9. Chakraborti, S., Lothian, R., Wiratunga, N., Orecchioni, A., Watt, S.: Fast case
retrieval nets for textual data. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir,
H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp. 400–414. Springer, Heidelberg
(2006)

10. Adeyanju, I., Wiratunga, N., Lothian, R., Sripada, S., Craw, S.: Solution reuse for
textual cases. In: 13th UK Workshop on Case-Based Reasoning, pp. 54–62. CMS
Press, University of Greenwich (2008)

11. Brüninghaus, S., Ashley, K.D.: Evaluation of textual cbr approaches. In: Proceed-
ings of the AAAI 1998 Workshop on Textual CBR, pp. 30–34. AAAI Press, Menlo
Park (1998)

12. Dı́az-Agudo, B., González-Calero, P.A., Recio-Garćıa, J.A., Sánchez, A.: Building
cbr systems with jcolibri. Special Issue on Experimental Software and Toolkits of
the Journal Science of Computer Programming 69, 68–75 (2007)

13. Sripada, S.G., Reiter, E., Hunter, J., Yu, J.: Sumtime-meteo: Parallel corpus of nat-
urally occurring forecast texts and weather data. Technical Report AUCS/TR0201,
Department of Computer Science, University of Aberdeen (2002)

14. Massie, S., Wiratunga, N., Craw, S., Donati, A., Vicari, E.: From anomaly reports
to cases. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp.
359–373. Springer, Heidelberg (2007)

15. Mudambi-Ananthasayanam, R., Wiratunga, N., Chakraborti, S., Massie, S., Khe-
mani, D.: Evaluation measures for TCBR systems. In: Althoff, K.-D., Bergmann,
R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 444–458.
Springer, Heidelberg (2008)

16. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998), http://wordnet.princeton.edu

http://wordnet.princeton.edu

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 29–44, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Case-Based Reasoning in Transfer Learning

David W. Aha1, Matthew Molineaux2, and Gita Sukthankar3

1 Navy Center for Applied Research in Artificial Intelligence,
Naval Research Laboratory (Code 5514), Washington, DC 20375

2 Knexus Research Corporation, Springfield, VA 22153
3 School of Electrical Engineering and Computer Science,

University of Central Florida, Orlando, FL 32816
david.aha@nrl.navy.mil, matthew.molineaux@knexusresearch.com,

gitars@eecs.ucf.edu

Abstract. Positive transfer learning (TL) occurs when, after gaining experi-
ence from learning how to solve a (source) task, the same learner can exploit
this experience to improve performance and/or learning on a different (target)
task. TL methods are typically complex, and case-based reasoning can support
them in multiple ways. We introduce a method for recognizing intent in a
source task, and then applying that knowledge to improve the performance of a
case-based reinforcement learner in a target task. We report on its ability to
significantly outperform baseline approaches for a control task in a simulated
game of American football. We also compare our approach to an alternative
approach where source and target task learning occur concurrently, and discuss
the tradeoffs between them.

1 Introduction

There is a huge body of research on the study of transfer in psychology and education
(e.g., Thorndike & Woodworth, 1901; Perkins & Salomon, 1994; Bransford et al.,
2000), among other disciplines. Transfer is, more specifically, a focus of some re-
search related to case-based reasoning (CBR), namely psychologically plausible theo-
ries of analogical transfer (e.g., Gentner, 1993; Hinrichs & Forbus, 2007). Arguably,
case-based reasoning is the study of computational models for knowledge transfer,
which plays a central role in the crucial topic of lifelong learning. Given this, there are
surprisingly few publications on this topic in the CBR literature today.

Recently, this changed due to an increased emphasis on the study of Transfer
Learning (TL), motivated in part by a DARPA research program of the same name.1
TL concerns the study of how learning to solve tasks in a source domain can impact
an agent’s ability to learn to solve tasks from a target domain, where the focus is on
positive transfer (i.e., involving improvements on measures of task performance). For
example, we would expect that knowledge obtained from learning how to play one
real-time strategy game (e.g., AGE OF EMPIRES) may assist us in learning to play a
related, but different, game in the same genre (e.g., EMPIRE EARTH).

1 http://www.darpa.mil/ipto/programs/tl/docs/TL_Brief.ppt

30 D.W. Aha, M. Molineaux, and G. Sukthankar

In this paper, we provide an overview of Transfer Learning and CBR techniques
for achieving TL. We also introduce a method that uses intent recognition to create an
abstraction of an actor’s intentions to facilitate the TL process. This could enable the
learner to reformulate problem instances involving the same actor. We conceptualize
the actor's behavior as being governed by a set of hidden state variables that can be
discovered through intent recognition and utilized by the transfer learner.

In the following sections, we discuss transfer learning, how CBR has served and
can serve in some TL methods, introduce and evaluate a novel method that uses intent
recognition to facilitate transfer learning for a case-based reinforcement learner per-
forming a target task, and examine the tradeoffs of TL approaches versus a concurrent
learning method (i.e., that gains experience from the source and target tasks, simulta-
neously) (Molineaux et al., 2009). Our study involves tasks drawn from an American
Football simulator (RUSH 2008). We will conclude with future research suggestions at
the intersection of CBR, TL, and plan recognition.

2 Transfer Learning and Case-Based Reasoning

Research on machine learning has traditionally focused on tasks in which examples
are repeatedly and independently drawn from an identical distribution (i.i.d.) (Simon,
1983). This simplifying assumption is the basis of most ML research to date, as well
as most research on case-based learning. In particular, it underlies the mathematical
foundations of many existing supervised learning algorithms, and permits the study of
their ability to generalize from training data.

This contrasts with reality; people frequently leverage their experience gained from
one task to improve their performance on different, novel tasks. That is, they perform
transfer learning:

Definition. Transfer learning (TL) is the practice of recognizing and applying
knowledge and skills learned from one or more previous tasks to more efficiently
and/or effectively learn to solve novel tasks (in new domains).

Thus, the i.i.d. assumption does not (normally) hold in TL tasks. Yet general methods
for TL hold the promise for being exceedingly useful; they could dramatically de-
crease the amount of training/cases required to achieve a given level of problem-
solving competence in one domain by successfully employing knowledge obtained
from solving problems for different, but related, tasks. This gap has motivated the
development of computational models for TL, which has been the focus of recent
workshops at NIPS-05, ICML-06, and AAAI-082, in addition to a large number of
publications (e.g., Marx et al., 2005; Raina et al., 2006; Shapiro et al., 2008).

To clarify, Figure 1 summarizes a TL method and its evaluation process. The
learning agents, tasks, performance metrics, and environments may all differ between
the source and target domains. The key object handed off from source to target is the
learned knowledge from the source domain. An evaluation of the process typically
compares two conditions: the transfer condition (depicted by the entirety of Figure 1),
in which case a Mapper is used to transform knowledge acquired from training on the

2 http://teamcore.usc.edu/taylorm/AAAI08TL/index.htm

 Case-Based Reasoning in Transfer Learning 31

Fig. 1. Transfer learning conditions, method, and evaluation strategy

source task to solve target tasks, and the non-transfer condition (depicted as a subsec-
tion in Figure 1), in which no such source task knowledge is leveraged. (The dotted
line emanating from the Mapper indicates that it is referenced only by the transfer
condition.) For these two conditions, two sets of learning curves are generated accord-
ing to the target task’s performance metric. These, along with a TL metric, are given
to an analysis component for significance testing. We discuss examples of these for
our study in Section 3.

TL problems vary widely, and a large variety of learning agents have been exam-
ined. For example, in some agents, only trivial mapping takes place, while in others
mapping is a comprehensive, focal task. In most cases, the mapping is an abstraction
designed to assist with relating source and target tasks.

While transfer has been long-studied in CBR (e.g., Goel & Bhatta, 2004), we re-
view only a subset of recent relevant research to provide the context for our contribu-
tion. In this context, Table 1 summarizes and distinguishes five branches of prior
research. In their TL processes, CBR is used for mapping, for learning in the target
domain, or both. For example, Kuhlmann and Stone (2007) enumerate a constrained
space of related game descriptions and store graph representations of them as cases.
They then use graph isomorphism to map stored cases so as to reuse reinforcement
learning (RL) value functions learned from solving source tasks (i.e., related game
variants). Liu and Stone (2006) instead use a domain-tailored variant of the structure-
mapping engine (SME) (Falkenhainer et al., 1989) to perform source-target task map-
ping. Their cases encode agent actions in KeepAway soccer games as qualitative
dynamic Bayesian networks. The focus is again on value function reuse. Von
Hessling and Goel (2005) propose to learn abstractions of Q-learned policies (i.e., as
decision trees) indexed by the environment’s features. The policies are to be reused in
similar environments. Sharma et al. (2007) focus on learning and reusing Q values for
state-action pairs, where the feature vector states are case indices representing situa-
tions in a real-time strategy game. Their CBR/RL algorithm updates the Q values and
eligibility traces of stored cases, where actions denote tactical decisions at the middle
level of a three-level action hierarchy.

32 D.W. Aha, M. Molineaux, and G. Sukthankar

Table 1. Summary of some related work on CBR and transfer learning

TL Tasks Reference CBR Use TL
Levels Source Target

Environment
Type

(von Hessling &
Goel, ICCBR-05 WS)

Maps <world, decision tree policy>
cases/models for Q fn. xfer in RL 2,5 Navigation in Civ.

Turn-based Game
Same; Vary map

Turn-Based Strategy:
Microworld

(Liu & Stone,
AAAI-06)

Map QDBN task models: Modified
SME for value fn. xfer in RL 4 KeepAway

Same; Vary # of
units

Team Sports:
RoboCup Soccer

(Sharma et al.,
IJCAI-07)

Map case models via Euclidean
state sim. for Q fn. xfer for CBR/RL 1,4 Military control

Same; Vary # units
or locations

Real-Time Strategy:
MadRTS

(Klenk & Forbus,
AAAI-07)

Map solutions via knowledge-
intensive structure-mapping for CBR 1-6 Mechanics

Problem Solving Several variations!
Question answering:

AP Physics
(Kuhlmann & Stone,
ECML-07)

Map game description task models
via graph isomorphism for RL 3-5 Board games

(e.g., mini-chess)
Same; Vary board
size, # pieces, etc

General Game
Playing: GGP

This Paper Map feature learned via intent
recognition to learn Q fn. for CBR/RL 9 Identify Play of

Defense
Control QB in
Football Play

Team Sports:
Rush 2008

In stark contrast, Klenk and Forbus (2007) do not rely on RL. Instead, they employ
SME in a context where cases are solutions to mechanics problems represented in
predicate calculus. Given a new problem, they use the candidate inferences generated
by SME to construct the necessary model (e.g., applicable equations and assumptions)
to arrive at a solution.

Unlike these prior studies, we use an intent recognition approach in the source task
to learn a crucial feature (i.e., the defensive team’s play) for use in the target task (i.e.,
controlling the offensive team’s Quarterback). The source and target tasks in previous
work used similar control problems for both tasks, differing, for example, only in the
number of agents on the playing field. One way to distinguish transfer learning tasks
was suggested in the DARPA TL program, which proposed 11 categories (levels1) of
TL tasks. While intended to be only an initial categorization scheme that ranges from
simple Memorizing (i.e., generalization over i.i.d. examples) to complex Differing
(i.e., distant-transfer) tasks, it was not subsequently refined by TL researchers. Still, it
is useful for our needs: the prior work described above focused on tasks in which, for
example, the set of components/units were modified, or the map/formulation differs
among the source and target tasks. We instead focused on TL level 9, Reformulating,
in which a representation transformation is needed to relate the two tasks. This is not
to say that our task is more challenging, but rather that it involves different issues.

In addition, our task environment differs; it is a multiagent team sports simulator
for American football, in which agents differ in their capabilities and pre-determined
responsibilities, and the target task concerns controlling a specific agent.

We discuss related work on intent recognition for TL in Section 5. Due to page
limitations, please see (Molineaux et al., 2009) for a discussion of related work on
case-based reinforcement learning, which is not the focus of our current investigation.

3 Case Study: Intent Recognition for Transfer Learning

In this section, we introduce and evaluate a TL agent that performs intent recognition
in a source task to improve the performance of a case-based reinforcement learner
on a distinct target task. We describe the tasks, the learning algorithms, and their
analyses. Our empirical study instantiates the methodology summarized in Figure 1.

 Case-Based Reasoning in Transfer Learning 33

Fig. 2. Left: The RUSH 2008 starting formation we used for the offense (blue) and defense
(red), with some player/position annotations. Right: Six of the QB’s eight possible actions. Not
shown are Throw RB and Noop.

3.1 Environment, Tasks, and State Representations

Our source and target tasks both use the RUSH 20083
 environment, which we adapted

from the open-source RUSH 20054
 simulator to support intelligent agent studies. RUSH

simulates a simplified American football game on a small field (100x63 yards) where
both the offensive and defensive teams have only eight players (see Figure 2). The source
task concerns supervised intent recognition: learn to predict the play of the defensive
team after observing the first few moments of the play. The defense always starts in the
same formation and randomly selects one of 8 possible strategies appropriate for his
formation. The defensive players act as follows:

Defensive Lineman (DL) (2 Players): These line up across the line of scrimmage
(LOS) from the OL (see acronyms below) and try to tackle the ball handler.

Linebacker (LB) (2): Starting behind the DL, they will blitz the QB or guard a zone
of the field or an eligible receiver (i.e., the RB, WR1, or WR2).

Cornerback (CB) (2): These line up across the LOS from the WRs and guard a
player or a zone on the field.

Safety (S) (2): These begin 10 yards behind the LOS and provide pass coverage or
chase offense players.

The target task, in which the identity of the defensive play is not revealed (i.e., is a
hidden state variable), is to learn to control the quarterback’s actions on repeated
executions of a pass play, where the offensive players perform the following actions:

Quarterback (QB): Given the ball at the start of each play while standing 3 yards
behind the center of the LOS, our QB agent decides whether and when to run (in
one of four possible directions), stand, or throw (and to which receiver).

3 http://www.knexusresearch.com/projects/rush/
4 http://rush2005.sourceforge.net/

34 D.W. Aha, M. Molineaux, and G. Sukthankar

Running Back (RB): Starts 3 yards behind the QB, runs to an initial position 7 yards
left and 4 yards downfield, then charges straight toward the goal line.

Wide Receiver #1 (WR1): Starts 16 yards to the left of the QB on the LOS, runs 5
yards downfield and turns right.

Wide Receiver #2 (WR2): Starts 16 yards to the right of the QB a few yards behind
the LOS, runs 5 yards downfield, and waits.

Tight End (TE): Starts 8 yards to the right of the QB on the LOS and pass-blocks.

Offensive Linemen (OL): These 3 players begin on the LOS in front of the QB and
pass-block (for the QB).

All players are given specific behavioral instructions (i.e., for the offense, a series of
actions to execute) except for the QB, whose actions are controlled by our learning
agent. The simulator is stochastic; each instructed player’s actions are random within
certain bounds (e.g., the RB will always go to the same initial position, but his path
may vary). Each player has varying ability (defined on a 10-point scale) in the catego-
ries power, speed, and skill; these affect the ability to handle the ball, block, run, and
tackle other players. The probability that a passed ball is caught is a function of the
number and skills of defenders near the intended receiver (if any), the skills of the
receiver, and the distance the ball is thrown.

RUSH uses a simplified physics; players and the ball each maintain a constant ve-
locity while moving, except that the ball will accelerate downwards due to gravity.
Objects are represented as rectangles that interact when they overlap (resulting in a
catch, block, or tackle).

For the source task, we found that plays from a given starting formation are usually
distinguishable after 3 time steps (Sukthankar et al., 2008). Given this, we use a fea-
ture vector representation of length 17 for source task examples. This includes 16
features for the 8 defensive players’ displacement in two-dimensional space over the
first 3 time steps, plus a label indicating the defensive play’s name.

At the start of each play (for both tasks), the ball is placed at the center of the LOS
along the 50 yard line. For the target task, the agent’s reward is 1000 for a touchdown
(i.e., a gain of at least 50 yards), -1000 for an interception or fumble, or is otherwise
ten times the number of yards gained (e.g., 0 for an incomplete pass) when the play
ends. A reward of 0 is received for all actions before the end of the play. Touchdowns
(0.01%-0.2%), interceptions, and fumbles (combined: 1%-3%) rarely occur.

For the target task, our learning agent attempts to control the QB’s actions so as to
maximize total reward. The QB can perform one of eight actions (see Figure 2) at
each time step. The first four (Forward, Back, Left, and Right) cause the QB to
move in a certain direction for one time step. Three more cause the QB to pass to a
receiver (who is running a pre-determined pass route): Throw RB, Throw WR1, and
Throw WR2. Finally, Noop causes the QB to stand still. The QB may decide to run
the football himself, and will choose actions until either he throws the ball, crosses
into the end zone (i.e., scores a touchdown by gaining 50 yards from the LOS), or is
tackled. If the QB passes, no more actions are taken, and the play finishes when an
incompletion or interception occurs, or a successful receiver has been tackled or
scores a touchdown.

 Case-Based Reasoning in Transfer Learning 35

The state representation in the target task contains only two features. The first denotes
the defensive strategy (predicted after the third time step), while the second is the time
step. For the transfer condition, the first feature’s value will be predicted using the model
transferred from learning on the source task. For the non-transfer condition, it will in-
stead be randomly selected, chosen according to a uniform distribution over the defensive
plays in use.

3.2 Learning Algorithms

Many multi-class supervised learning algorithms can be used for the source task. We
considered both support vector machines (SVMs) (Vapnik, 1998), due to their popu-
larity and success, and the k-nearest neighbor classifier (using Euclidean distance),
because it is a simple case-based algorithm. A soft-margin SVM for binary classifica-
tion projects data points into a higher dimensional space, specified by a kernel func-
tion, and computes a maximum-margin hyperplane decision surface that most nearly
separates two classes. Support vectors are those data points that lie closest to this de-
cision surface; if these data points were removed from the training data, the decision
surface would change. More formally, given a labeled training set T =
{(x1,y1),(x2,y2),…,(xn,yn)} with feature vectors xi∈ℜn and class labels yi∈{-1,1}, a soft
margin SVM solves the following to find the maximal hyperplane that (most nearly)
separates the two classes:

constrained by:

where w is the normal vector lying perpendicular to the hyperplane, b is a bias, ξi is a
slack variable that measures the degree of misclassification of xi, C is a constant, and
function φ(.) is represented by a kernel function K(xi,xj)= φ(xi,xj)φ(xi,xj). We use the
radial basis function kernel:

To work on our 8-class problem, we employ a standard one-vs-one voting scheme
where all 28 (i.e., 8*(8-1)/2) pair-wise binary classifiers are trained and the most
popular class is selected. For our studies, we use the LIBSVM (Chang & Lin, 2001)
implementation, and set C=1 and γ=0.008.

In the transfer condition, the model learned from the source task will be provided
to the target task learner. The Mapper (Figure 1) will apply this model to the scenario
data and output the predicted value of the first (of two) features.

Our recent focus has been on examining the behavior of novel case-based RL algo-
rithms (Molineaux et al., 2008; 2009). Here we use a related algorithm, named Case-
Based Q-Lambda with Intent Recognition (CBQL-IR), for the target learning task.
Based on the Q(λ) algorithm (Sutton & Barto, 1998), it uses a set of case bases to ap-
proximate the standard RL Q function and the trained supervised algorithm from the
source task to add opponent intent information to the state.

36 D.W. Aha, M. Molineaux, and G. Sukthankar

The Q function approximation maps state-action pairs to an estimate of the long-
term reward for taking an action a in a state s. There is one Qa case base in this set for
each action a∈A, where A is the set of 8 actions defined by the environment. Cases in
Qa are of the form <s, v>, where s is a feature vector describing the state and v is a
real-valued estimate of the reward obtained by taking action a in state s, then pursuing
the current policy until the task terminates. These case bases support a case-based
problem solving process (López de Mantaras et al., 2005). At the start of each ex-
periment, each Qa case base is initialized to the empty set. Cases are then added and
modified as new experiences are gathered, which provide new local estimates of the
Q function.

At each time step, a state is observed by the agent, and an action is selected. With
probability ε, a random action will be chosen (exploration). With probability 1-ε,
CBQL-IR will predict the (estimated) best action to take (exploitation). To exploit, it
reuses each Qa case base by performing a locally-weighted regression using a Gaus-
sian kernel on the retrieved k nearest neighbors of the current observed state s. (For
faster retrieval, we use kd-trees to index cases.) Similarity is computed using a nor-
malized Euclidean distance function. This produces an estimate of the value of taking
action a in the current observed state s. CBQL-IR selects the action with the highest
estimate, or a random action if any case base has fewer than k neighbors.

Once that action is executed, a reward r and a successor state s’ are obtained from
RUSH 2008. This reward is used to improve the estimate of the Q function. If the case
is sufficiently novel (greater than a distance τ from its nearest neighbor) a new case is
retained in Qa with state s and , where denotes the
current estimate for a state in Qa and 0≤γ<1 is the discount factor. If the case is not
sufficiently novel, the k nearest neighbors are revised according to the current learn-
ing rate α and their contribution β to the estimate of the state’s value (determined by a
normalization over the Gaussian kernel function, summing to 1). The solution value
(i.e., reward estimate) of each case is updated using:

.
Finally, the solution values of all cases updated earlier in the current trial are updated
according to their λ-eligibility:

,
where t is the number of steps between the earlier use and the current update, and
0≤λ<1 is the trace decay parameter.

3.3 Empirical Evaluation

We hypothesized that transferring an intent recognition model learned from the
source task (i.e., described in Section 3.1) can significantly increase a learner’s abil-
ity in the target task. To investigate this, we applied the algorithms described in
Section 3.2 for the transfer and non-transfer conditions. We also tested, as a baseline,
a simple non-learning agent on the transfer task to provide additional insight on the
difficulty of performing that task.

The methodology we use for testing is shown in Figure 1. We have described the
learning agents, environments, the model learned from the source task, our source-target

 Case-Based Reasoning in Transfer Learning 37

mapping, and the performance metrics. For our evaluation, we use the Lightweight Inte-
gration and Evaluation Toolkit (LIET) as the evaluator. That is, we use LIET, a variant of
TIELT5 (Molineaux & Aha, 2005), to integrate the learning agents with RUSH, and to
conduct the evaluation.

For the source task, we varied the amount of training data (between 8 and 40 ex-
amples) given to the supervised learners; it wasn’t clear, a priori, how much training
would suffice to obtain good accuracy for predicting the defensive team’s strategy.
For the target task, we trained each condition for 100K trials. After every 250 training
trials, the performance of the CBQL-IR agent was tested 10 times against each of the
defensive strategies. The total reward from all 50 testing trials was averaged to obtain
an estimate of average performance at each time step. This evaluation was conducted
20 times to ensure repeatability and obtain statistically significant measures of overall
transfer performance.

We use three standard TL metrics to measure transfer performance. The first, jump
start, measures the difference in performance between the transfer and non-transfer
conditions before training begins on the target task. Next, asymptotic gain is the same
measure, but applied to the end of the curves rather than the beginning. Finally, k-step
regret measures the increase in performance over the entire learning period, defined
as the integral difference between two learning curves, divided by the area of the
bounding box that extends from the origin horizontally through the last trial of the
curve (or the first trial at which they have both reached asymptotic performance) and
vertically to the highest accuracy achieved by either averaged curve. Intuitively, this
is a percentage of the maximum performance gain possible between an algorithm
that always achieves worst-case performance and an algorithm that always achieves
best-case performance.

For the analyzer, we used USC/ISI’s implementation of randomized bootstrap
sampling6, which bins the two sets of curves and repeatedly draws a pseudosample
(with replacement) for both sets. Applying a TL metric to each pseudosample yields a
distribution, which is used to assess whether the two original sets differ significantly.

3.4 Results and Analysis

Both supervised learners on the source task generalized well (i.e., recorded test accu-
racies above 95%) after training on only 1 example from each of the 8 defensive
plays. Therefore, we used the trained SVM or k-nearest neighbor classifier with only
8 training examples to provide the transferred model for the transfer condition.

Figure 3 shows the performance on the target task, averaged over the 20 evalua-
tions, for each of three conditions: transfer using a trained support vector machine,
transfer using a k-nearest neighbor classifier, and a non-transfer version which pre-
dicts any one of the defensive strategies used in the target task with uniform probabil-
ity. Transfer from 2 and 5 examples of each play yielded performance similar to the
kNN and SVM curves depicted, so their performance is not shown. Also not shown is
the average performance (over 10K trials) of the non-learning agent on the transfer
task because its performance was so low (i.e., -61.1986).

As expected, both transfer variants significantly outperform the non-transfer vari-
ant of the agent in terms of both asymptotic advantage and k-step regret. Thus, we

5 http://www.tielt.org/
6 http://eksl.isi.edu/cgi-bin/page.cgi?page=project-tl-evaluation.html

38 D.W. Aha, M. Molineaux, and G. Sukthankar

Fig. 3. Target task performance on the Quarterback control task for the transfer condition (us-
ing either SVM or kNN to learn from the source task), and non-transfer condition’s (Random’s)
play predictions

accept our hypothesis as stated in Section 3.3. The regret of the kNN variant over the
non-transfer agent is 78.57 (measured over the first 50,000 trials), while the regret of
the SVM variant over the non-transfer agent is 78.87 (measured over the first 70,000
trials). The asymptotic advantage of kNN over the non-transfer agent is 59.5; for
SVM, it’s 66.66. All of these measures are highly statistically significant with
p<0.0001. For jump start, there is no statistical advantage between the three curves.
This is because CBQL-IR acts randomly when there are no stored cases, as is true
before any training occurs; so all three pursue the same policy before training. The
differences between SVM and kNN are not statistically significant using either the
k-step-regret or asymptotic advantage measures.

4 A Concurrent Learning Alternative

Transfer learning is intuitively appealing, cognitively inspired, and has led to a burst
of research activity, much of which concerns new techniques involving hierarchical
RL. However, transfer is not always cost-effective, and can sometimes result in de-
creased performance (i.e., negative transfer). Also, determining what to transfer is a
research question itself (e.g., Rosenstein et al., 2005; Stracuzzi, 2006). Yet seemingly
overlooked in the literature is a more fundamental question: Should learning be per-
formed separately on the source and target tasks, or can the knowledge learned on the

 Case-Based Reasoning in Transfer Learning 39

Fig. 4. Target task performance for the SVM and kNN transfer conditions and the concurrent
learning (clustering) algorithm (for 10K (top) and 100K (bottom) trials)

source task be instead learned during the target task? What are the tradeoffs of doing
this versus transfer learning? We found no investigations on this issue.

We briefly address this here, referring to the alternative as concurrent learning. In
this approach, intent recognition takes place during (rather than prior to) learning to
control the QB. As usual during the target task, the label of the defensive play is not
given, and must be inferred. We model this as an online unsupervised learning task
that clusters the observable movements of the defensive players into groups. The
perceived movement m∈M for each defensive player is the direction that player is
moving during a time step, which has nine possible values:

M = {None, Forward, Left, Right, Back, Forward-Right, Forward-Left, Back-Right,
Back-Left}

These directions are geocentric; Forward is always in the direction of play (down-
field), and all other directions are equally spaced at 45° angles. Clustering is per-
formed after the third time step of each play, at which time we observe the offsets of
the players from their starting formation positions. Thus, 16 features are used to rep-
resent defensive plays (i.e., the two-dimensional offsets of each of 8 defensive play-
ers). For the first 1000 trials, examples were added to the batch to be clustered, but the
predicted cluster (i.e., the recognized plan) was not used in action selection.

40 D.W. Aha, M. Molineaux, and G. Sukthankar

We used the Expectation-Maximization (EM) algorithm from the Weka7 suite of
machine learning software for clustering. EM iteratively chooses cluster centers and
builds new clusters until the centers move only marginally between iterations. Also, it
increases the number of clusters to discover until successive steps decrease the aver-
age log-likelihood of the correct clustering of all points. We selected EM after re-
viewing several other algorithms; the clusters it found correctly disambiguated the
defensive plays over 99% of the time with less than 1000 examples.

Figure 4 compares the performance of the online clustering agent, which learns
two tasks concurrently, with the SVM and kNN transfer agents introduced in
Section 3. Performance differences are not statistically significant using any of our
metrics over the full training period (100,000 trials). However, there is a significant
benefit to performing transfer during early learning; transfer achieves good perform-
ance far more quickly. As shown, both TL algorithms learn quickly during the first
500 trials, reaching a total reward greater than 60 on average. The concurrent learning
algorithm instead takes 2,000 trials to reach the same performance level.

Regret for the kNN TL agent versus the concurrent learning agent for the first
2,000 trials is 29.4, and for the SVM agent is 29.3. Both TL agents statistically
outperform the online agent with p<0.0001 during this early stage of learning.

The concurrent learner’s initial learning rate is low due to the time it must spend
learning to recognize opponent behaviors, which the TL algorithms learned from the
source task. Also, it discovered more clusters than the actual number of defensive
plays used. Finally, early examples provided by the CBR/RL agent aren’t helpful;
they are either too short, or atypical, because that agent does not yet have a successful
policy for controlling the QB, whose actions affect the play outcome and the actions
of the defensive team. The benefit of TL is that the QB used in the target task is
already an expert at “reading” the defense, and so good examples can be obtained
starting with the first trial on the target task.

The benefits of TL versus concurrent learning should increase with task complex-
ity because more complex tasks typically require more knowledge to learn, which is
often easier to obtain via transfer from simpler tasks. However, there is a cost to TL,
both in terms of engineering (in some cases, the source task may be in an entirely
different domain) and in higher overall computational complexity. Practitioners
interested in multi-task learning may benefit by instead using concurrent learning.

5 Discussion: Intent Recognition, TL, CBR, and Future Work

In his seminal work on plan recognition, Kautz (1987) described his event hierarchy
circumscription framework as a process for determining “which conclusions are abso-
lutely justified on the basis of the observations, the recognizer's knowledge, and a
number of explicit closed-world assumptions.” In general, this union of observations,
prior knowledge, and closed-world assumptions characterizes research efforts on plan
recognition. Typically this prior knowledge is encapsulated into a plan library of gen-
erative models (either logical (Kautz, 1987) or probabilistic (Bui, 2002)) that the
recognizer matches against streams of observations.

7 http://www.cs.waikato.ac.nz/ml/weka/

 Case-Based Reasoning in Transfer Learning 41

In intent recognition, the recognizer attempts to identify useful features relating to
an actor's future actions (e.g., the next action to be performed) without an explicit
representation of the plan generation model. Even without knowledge of the underly-
ing generative model, being able to discriminate between different types of plans or
actions sufficiently in advance can be extremely valuable (e.g., as shown in our
study). For instance, in applications involving opponent or user modeling, having
limited knowledge of the actor's intentions at an early stage can be more useful than
having complete information about the entire plan later in the execution process.

Prior work on TL and plan recognition has focused on the problem of transferring
recognition models between different actors. Liao et al. (2005) demonstrated a method
for using data from other users to learn priors for a discriminative location-based activ-
ity recognition model; an alternate approach is to use prior knowledge to dictate the
structure of the model rather than the parameters (Natarajan et al. 2007). A general
issue is that plan generation models based on propositional representations (e.g., the
basic HMM) do not generalize well across different users, so there has been work on
inference methods for more expressive relational and hierarchical HMM variants that
have superior generalization properties (Natarajan et al. 2008; Blaylock & Allen,
2006). In our work, the source task (learning a discriminative model of the opponent's
play) is quite dissimilar from the target task (learning an optimal single-agent play
policy) and we do not address the problem of generalizing across actors.

While several researchers have addressed the topic of CBR and intent or plan rec-
ognition, none have proposed its use to facilitate transfer learning. For example, Fa-
gan and Cunningham (2003) analyze a method for predicting a player’s actions in a
computer game, where the task was supervised learning rather than transfer learning.
Kerkez and Cox (2003) represent plans as state-action sequences, index them using an
abstract representation (i.e., the number of generalized predicates instantiated in a
state), and analyze a case-based algorithm for action prediction for multiple domains.
However, no transfer was performed.

Case-based methods that leverage knowledge of intentions and/or plans have sig-
nificant potential for TL. We demonstrated a simple approach of this type where the
beneficiary was a case-based reinforcement learner. Our future work includes investi-
gating our techniques on more comprehensive tasks (e.g., learning to control all
offensive players to win an entire football game), including those requiring transfer
between different problem domains. More generally, CBR can also be used to map
the learned knowledge, and in other roles. An excellent line of future research con-
cerns the study of how case-based algorithms can support continuous learning and
planning processes in environments with intentional agents where performance de-
pends on the ability to master multiple tasks, and where reuse can significantly reduce
the time required before competent performance emerges.

6 Summary

We introduced and evaluated a transfer learning strategy that uses intent recognition
to assist a case-based reinforcement learner. It significantly improved task perform-
ance for an application involving the control of an agent in a multi-agent team sports
environment. Our work is novel in its use of intent recognition for this purpose.

42 D.W. Aha, M. Molineaux, and G. Sukthankar

We also briefly examined the typically ignored issue of whether concurrent learn-
ing strategies should be considered as an alternative to transfer learning. We discussed
some of their tradeoffs, but leave their formal analysis for future research.

Case-based reasoning can play significant roles in transfer learning, yet it has re-
ceived only a limited amount of attention (e.g., Klenk & Forbus, 2007). This is sur-
prising, given its potential as a focal process for mapping learned knowledge, and
reducing overall learning time. In our future work, we will examine how case-based
approaches can support lifelong learning in multi-task, multi-agent environments in
which knowledge of intentions and (e.g., adversarial) plans (e.g., Sukthankar et al.,
2008) can be leveraged to improve performance for decision support applications.

Acknowledgements

This research was supported by DARPA’s Information Processing Techniques Office
and the Naval Research Laboratory. Thanks also to Matthew Klenk for his suggestions
on this paper.

References

Blaylock, N., Allen, J.: Fast hierarchical goal schema recognition. In: Proceedings of the
Twenty-First National Conference on Artificial Intelligence, pp. 796–801. AAAI Press, Bos-
ton (2006)

Bui, H.: A general model for online probabilistic plan recognition. In: Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, pp. 1309–1318. Morgan
Kaufmann, Acapulco (2002)

Bransford, J.D., Brown, A.L., Cocking, R.R. (eds.): How people learn: Brain, mind, experience,
and school. National Academy Press, Washington (2000)

Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Fagan, M., Cunningham, P.: Case-based plan recognition in computer games. In: Ashley, K.D.,
Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 161–170. Springer, Heidelberg
(2003)

Falkenhainer, B., Forbus, K.D., Gentner, D.: The structure-mapping engine: Algorithm and
examples. Artificial Intelligence 41(1), 1–63 (1989)

Gentner, D.: The mechanisms of analogical learning. In: Buchanan, B.G., Wilkins, D.C. (eds.)
Readings in knowledge acquisition and learning: Automating the construction and im-
provement of expert systems. Morgan Kaufmann, San Francisco (1993)

Goel, A., Bhatta, S.: Design patterns: A unit of analogical transfer in creative design. Advanced
Engineering Informatics 18(2), 85–94 (2004)

von Hessling, A., Goel, A.: Abstracting reusable cases from reinforcement learning. In: Aha,
D.W., Wilson, D.C. (eds.) Computer gaming and simulation environments: Proceedings of
the ICCBR Workshop (2005); S. Bruninghaus (ed.) Workshop Proceedings of the Sixth
ICCBR. DePaul University, Chicago

Hinrichs, T., Forbus, K.: Analogical learning in a turn-based strategy game. In: Proceedings of
the Twentieth International Joint Conference on Artificial Intelligence, pp. 853–858. Profes-
sional Book Center, Hyderabad (2007)

Kautz, H.: A formal theory of plan recognition. Doctoral dissertation, University of Rochester,
Rochester, NY (1987)

 Case-Based Reasoning in Transfer Learning 43

Kerkez, B., Cox, M.T.: Incremental case-based plan recognition with local predictions. Interna-
tional Journal on Artificial Intelligence Tools 12(4), 413–463 (2003)

Klenk, M., Forbus, K.D.: Measuring the level of transfer learning by an AP physics problem-
solver. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
pp. 446–451. AAAI Press, Vancouver (2007)

Kuhlmann, G., Stone, P.: Graph-based domain mapping for transfer learning in general games.
In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A.
(eds.) ECML 2007. LNCS, vol. 4701, pp. 188–200. Springer, Heidelberg (2007)

Liao, L., Fox, D., Kautz, H.A.: Location-based activity recognition using relational Markov
networks. In: Proceedings of the Nineteenth International Joint Conference on Artificial In-
telligence, pp. 773–778. Professional Book Center, Edinburgh (2005)

Liu, Y., Stone, P.: Value-function-based transfer for reinforcement learning using structure
mapping. In: Proceedings of the Twenty-First National Conference on Artificial Intelli-
gence, pp. 415–420. AAAI Press, Boston (2006)

López de Mantaras, R., McSherry, D., Bridge, D.G., Leake, D.B., Smyth, B., Craw, S., Falt-
ings, B., Maher, M.L., Cox, M.T., Forbus, K.D., Keane, M., Aamodt, A., Watson, I.D.: Re-
trieval, reuse, revision and retention in case-based reasoning. Knowledge Engineering Re-
view 20(3), 215–240 (2005)

Marx, Z., Rosenstein, M.T., Kaelbling, L.P., Dietterich, T.G.: Transfer learning with an ensem-
ble of background tasks. In: Silver, D., Bakir, G., Bennett, K., Caruana, R., Pontil, M., Rus-
sell, S., Tadepalli, P. (eds.) Inductive Transfer: 10 Years Later: Papers from the NIPS Work-
shop, Whistler, BC, Canada (2005), http://iitrl.acadiau.ca/itws05/

Molineaux, M., Aha, D.W.: TIELT: A testbed for gaming environments. In: Proceedings of the
Twentieth National Conference on Artificial Intelligence, pp. 1690–1691. AAAI Press,
Pittsburgh (2005)

Molineaux, M., Aha, D.W., Moore, P.: Learning continuous action models in a real-time strat-
egy environment. In: Proceedings of the Twenty-First International FLAIRS Conference,
pp. 257–262. AAAI Press, Coconut Grove (2008)

Molineaux, M., Aha, D.W., Sukthankar, G.: Beating the defense: Using plan recognition to
inform learning agents. To appear in Proceedings of the Twenty-Second International
FLAIRS Conference. AAAI Press, Sanibel Island (2009)

Natarajan, S., Bui, H.H., Tadepalli, P., Kersting, K., Wong, W.-K.: Logical hierarchical hidden
Markov models for modeling user activities. In: Železný, F., Lavrač, N. (eds.) ILP 2008.
LNCS, vol. 5194, pp. 192–209. Springer, Heidelberg (2008)

Natarajan, S., Tadepalli, P., Fern, A.: A relational hierarchical model for decision-theoretic
assistance. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS,
vol. 4894, pp. 175–190. Springer, Heidelberg (2008)

Perkins, D.N., Salomon, G.: Transfer of learning. In: Husen, T., Postelwhite, T.N. (eds.) Inter-
national Handbook of Educational Research, pp. 6452–6457. Pergamon Press, Oxford
(1994)

Raina, R., Ng, A.Y., Koller, D.: Constructing informative priors using transfer learning. In:
Proceedings of the Twenty-Third International Conference on Machine Learning, pp. 713–
720. ACM, Pittsburgh (2006)

Rosenstein, M.T., Marx, Z., Kaelbling, L.P., Dietterich, T.G.: To transfer or not to transfer. In:
Silver, D., Bakir, G., Bennett, K., Caruana, R., Pontil, M., Russell, S., Tadepalli, P. (eds.)
Inductive Transfer: 10 Years Later: Papers from the NIPS Workshop, Whistler, BC, Canada
(2005), http://iitrl.acadiau.ca/itws05/Papers/
ITWS10-RosensteinM05_ITWS.pdf

44 D.W. Aha, M. Molineaux, and G. Sukthankar

Shapiro, D., Könik, T., O’Rorke, P.: Achieving far transfer in an integrated cognitive architec-
ture. In: Proceedings of the Twenty-Third Conference on Artificial Intelligence, pp. 1325–
1330. AAAI Press, Chicago (2008)

Sharma, M., Holmes, M., Santamaria, J.C., Irani, A., Isbell Jr., C.L., Ram, A.: Transfer learning
in real-time strategy games using hybrid CBR/RL. In: Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 1041–1046 (2007),
http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-168.pdf

Simon, H.A.: Search and reasoning in problem solving. Artificial Intelligence 21, 7–29 (1983)
Stracuzzi, D.: Memory organization and knowledge transfer. In: Banerjee, B., Liu, Y.,

Youngblood, G.M. (eds.) Structural Knowledge Transfer for Machine Learning: Papers
from the ICML Workshop, Pittsburgh, PA (2006),

 http://orca.st.usm.edu/~banerjee/icmlws06/
Sukthankar, G., Molineaux, M., Aha, D.W.: Recognizing and exploiting opponent intent in

Rush Football (Technical Note AIC-09-062). Naval Research Laboratory, Navy Center for
Applied Research in Artificial Intelligence, Washington (2008)

Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT Press, Cambridge (1998)
Thorndike, E.L., Woodworth, R.S.: The influence of improvement in one mental function upon

the efficiency of other functions (I). Psychological Review 8, 247–261 (1901)
Vapnik, V.: Statistical learning theory. Wiley & Sons, New York (1998)

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 45–59, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Toward Modeling and Teaching Legal Case-Based
Adaptation with Expert Examples

Kevin Ashley1, Collin Lynch2, Niels Pinkwart3, and Vincent Aleven4

1 Intelligent Systems Program (ISP), Learning Research and Development Center &
School of Law, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

ashley@pitt.edu
2 ISP, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

collinl@cs.pitt.edu
3 CSI, Clausthal U. of Technology, Clausthal, Germany

niels.pinkwart@tu-clausthal.de
4 Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh,

Pennsylvania, USA
aleven@cs.cmu.edu

Abstract. Studying examples of expert case-based adaptation could advance
computational modeling but only if the examples can be succinctly represented
and reliably interpreted. Supreme Court justices pose hypothetical cases, often
adapting precedents, to evaluate if a proposed rule for deciding a problem needs
to be adapted. This paper describes a diagrammatic representation of adaptive
reasoning with hypothetical cases based on a process model. Since the diagrams
are interpretations of argument texts, there is no one “correct” diagram, and re-
liability could be a challenge. An experiment assessed the reliability of expert
grading of diagrams prepared by students reconstructing examples of hypotheti-
cal reasoning. Preliminary results indicate significant areas of agreement, in-
cluding with respect to the ways tests are modified in response to hypotheticals,
but slight agreement as to the role and import of hypotheticals. These results
suggest that the diagrammatic representation will support studying and model-
ing the examples of case-based adaptation, but that the diagramming support
needs to make certain features more explicit.

Keywords: Case-based adaptation, Hypothetical reasoning, Legal reasoning.

1 Introduction

A repository of transcripts of human experts solving problems through case-based
adaptation can be a valuable resource for CBR research as a modeling and teaching
tool. Given the continuing dearth of empirical data about how humans modify cases
to solve problems [24], this resource could support developing computational models
of and teaching case-based adaptation [9, p. 7].

The oral arguments of the U.S. Supreme Court (SCOTUS) are one such repository.
The transcripts record the use by human expert decision-makers (i.e., the Justices) of
case-based reasoning to explore a space of possible solutions as they respond to the

46 K. Ashley et al.

recommendations urged by advocates. Each transcript is an extended argument about
how to decide the case in the form of a “multilogue” between one advocate at a time
and the nine Justices. The arguments are inherently case-based and include proposing
tests (i.e., rules) for deciding the case, drawing analogies to past cases (i.e., prece-
dents), justifying the analogies in terms of principles and policies underlying the legal
domain, challenging the proposed tests by posing hypothetical cases and responding
to the hypotheticals, for instance, by modifying the proposed test [3].

Designing the hypotheticals and modifying the tests are a kind of case-based adap-
tation that we hope to study empirically and to model computationally. In order to
flesh out a model for generating hypotheticals and adapting tests, we need more, and
more detailed, SCOTUS examples and a way to represent them. For our LARGO
program, we developed a diagrammatic representation capturing arguments involving
hypothetical reasoning in a succinct way that is partially interpretable by the program.

Given our modeling and pedagogical goals, it is important that the argument dia-
grams are interpretable in a reliable way. Humans must be able to understand and
evaluate argument diagrams reliably in order to model the examples, especially if the
diagrams will someday be an input/output medium for a program that instantiates the
computational model. Inter-rater reliability in interpreting the argument diagrams is,
therefore, a precondition for making further progress in modeling and teaching.

Since the diagrams are interpretations of argument texts, however, there will not be
a single “correct” diagram. These are complex real examples of case-based adapta-
tion, expressed in text of which the diagrams are interpretations. The texts may be
incomplete, and even if not, multiple reasonable interpretations of the texts are nor-
mal. Legal problems are ill-defined; there is no one right answer but often competing
reasonable arguments employing different interpretations of open-textured terms.
That is the reason hypothetical reasoning is important as a technique for dealing with
open textured legal terms. This implies that reasonable people may differ as to the
description of the role and import of a hypothetical or the level of abstraction with
which to formulate the proposed tests.

Thus, it is an empirical question whether the diagrams can be interpreted reliably.
An experiment assessed the reliability of expert grading of diagrams prepared by
students as they reconstructed examples of hypothetical reasoning in SCOTUS oral
arguments. This paper presents preliminary results with respect to inter-rater reliabil-
ity. In Section 2, we present an example of hypothetical reasoning that highlights the
case-based adaptation and a process model of hypothetical argument that provides a
high-level account of it. Section 3 relates the current work to previous work on case-
based adaptation and reasoning with examples and hypotheticals. Section 4 illustrates
the diagrammatic representation of the same example using our LARGO program, an
intelligent tutoring system (ITS) designed to teach law students the process of hypo-
thetical argument. The experiment to assess the reliability of interpreting LARGO
diagrams of hypothetical reasoning is described in Section 5, where the results are
presented and discussed. Conclusions follow in Section 6.

2 Reasoning with Hypothetical Cases and Adaptation

The resolution of a case before a court may be subject to conflicting legal principles.
The resolution comprises: (1) a result (e.g., the winner is the party that brings suit, the

 Toward Modeling and Teaching Legal Case-Based Adaptation 47

plaintiff, or the opponent against whom suit is brought, the defendant); (2) a rule that
generates that result when applied to the case facts; and (3) a justification of the result
and the rule as consistent with precedents and principles/policies.

Hypothetical reasoning involves generating and testing a rule for deciding the dis-
pute. The proposed test is a hypothesis about how to decide the case in the form of
rule the advocate proposes and defends as consistent with past cases and underlying
principles/policies. A hypothetical is an imagined case that involves such a hypothesis
(i.e., a proposed test) and is designed to explore its meaning or challenge it.

The process of hypothetical reasoning incorporates case-based adaptation, both in
the design of an appropriate hypothetical and in the modification of the test. While the
hypotheticals are figments of the Justices’ imagination, often, they are adaptations of
the facts of the current case or past cases. The hypothetical often is designed so that
the proposed test applies but reaches a result that contradicts one or more of the un-
derlying principles/policies. That is, the test is too broad. In other situations it is con-
structed so that the test does not apply but should do so according to one or more of
the principles/policies (i.e., the test is too narrow.) In response to the hypothetical, an
advocate may adapt the test, narrowing or broadening it as appropriate.

2.1 Example of Reasoning with Hypotheticals

We have assembled examples of hypothetical reasoning from a variety of SCOTUS
oral arguments, including cases involving freedom of religion, the search warrant
requirement, copyright infringement, and, as illustrated here, personal jurisdiction. A
standard topic addressed in first year legal process courses, personal jurisdiction
refers to the power of a court under the U.S. Constitution to compel a party from
outside the state in which the court is located to appear and defend a lawsuit. The
underlying legal principles/polices include the due process concern of ensuring fair-
ness to the defendant in requiring him to appear in court within the state versus the
state’s interest in adjudicating issues and disputes affecting its residents.

The example is based on the petitioner’s argument in Asahi Metal Industry Co. v.
Superior Court of California, 480 U.S. 102 (1987), a case that involved an issue of
personal jurisdiction. Specifically, the question is whether Asahi, a Japanese com-
pany, may be called into a California court to answer in a civil suit for injuries caused
by a blowout of an allegedly faulty motorcycle tire of which Asahi manufactured one
component, the tube’s valve assembly. Over a fourteen year period, Asahi sold at
least 100,000 tire valve assemblies to Cheng Shin, the Taiwanese tube manufacturer.
Evidence suggested that Asahi was aware that at least some of its tire valve assem-
blies would end up in the United States. Furthermore, about twenty percent of the
Cheng Shin tires exported to the United States were sold in California.

SCOTUS oral arguments occur after the parties have submitted briefs but before
the Justices decide a case or draft an opinion; each side’s advocate has one half hour
to press his case before the Justices. Since the Court may not be bound to follow the
rule in a precedent, or may reinterpret a rule, much of the “action” involves debating
about how best to formulate/interpret a rule for deciding the case. For instance,
Asahi’s advocate, Mr. Staring (Mr. S) argued (in ll. 36-43) that even if it were fore-
seeable that Asahi’s products would end up in California (CA), that was not enough to
subject Asahi to the jurisdiction of a CA court. In Fig. 1, box [a] shows an interpreta-
tion of Mr. S’s point as a proposed test for deciding the case in favor of his client. It is

48 K. Ashley et al.

Propose test:
36-43. Mr. S: If a non-US
company manufactures a
component of a product that
is exported by a third party to
CA, then the manufacturer is
not subject to jurisdiction,
even though it is foreseeable
that the component would
end up in CA.

Attack test as too broad:
58. Q: “Where would you
draw the line? Suppose I
manufacture washing
machines, including all of
the components, and I sell
the washing machine in
Japan, to a company which
I know exports them to CA.”

Attack test as too broad:
61. Q: “If I understand you, I
have to be the one who
sends the thing into the
market. Is that where you're
drawing the line? I have to
be the one that sends it?”

Abandon test:

Modify test:
59. Mr. S: If a non-US
company manufactures of a
component of a product that
is exported by a third party
to CA, then the
manufacturer is not subject
to jurisdiction even though
it is foreseeable that the
component would end up in
CA, except if it commits
some act by which it
positively seeks to serve the
market in CA and direct its
components to CA.

Justify test:

Abandon test:

Modify test:
63. Mr. S: If a non-US
company manufactures a
component of a product that is
exported by a third party to CA,
then the manufacturer is not
subject to jurisdiction even
though it is foreseeable that the
component would end up in
CA, except if it encourages
sending its components to CA.

Justify test:

1
2

3.b

2

3.b

Principle: Fairness

Principle: State’s Interest

(Circled Numbers refer to process model steps, Figure 2)

[a] [b]

[c]
[d]

[e]

Fig. 1. Posing Hypotheticals to Attack Proposed Test as Too Broad and Modifying Tests

an “interpretation”, because, as frequently occurs in oral argument, the advocate’s and
Justices’ positions need to be inferred from what they say; in the oral medium under
extreme time pressure, their comments are often very brief.

This proposed test leads the Justice (in box [b], l. 58 – the line numbers are in-
cluded to show the proximity of the moves in the transcript) to respond with a hypo-
thetical that suggests the advocate’s test is too broad in defining what would not be
sufficient for jurisdiction and that a line needs to be drawn somewhere. (The circled
numbers in Fig. 1 refer to the steps in the process model of Fig. 2. Posing a hypotheti-
cal to challenge the test as too broad is Step 2.) Surely, it would be sufficient if the
manufacturer knew that his purchasing exporter was going to send them to California.
The change in facts may seem innocuous, but it has a significant effect. In posing the
hypothetical, the Justice implies that it clearly would satisfy due process fairness to
subject a manufacturer to jurisdiction in a state where he knew his product would be
shipped. In response, Mr. S. makes his proposed test more specific (in box [c]) by
introducing an exception requiring some kind of positive act by the manufacturer
to serve the California market. (The exception to the test’s definition of what is not
subject to jurisdiction acts as a limitation or narrowing of this test.)

The advocate’s narrowing of the test does not sufficiently address one Justice’s
concerns about where to draw a line; he worries that the modified test, with its excep-
tion requiring some positive act, is still too broad in defining what is not subject to
California’s jurisdiction. In box [d], the Justice poses a hypothetical implying that
subjecting a manufacturer to a state’s jurisdiction only if he sends the product to the
state, limits too severely the state’s interest in enabling its citizens to redress injuries
through its courts. In response, box [e], Mr. S. again narrows his test by expanding the

 Toward Modeling and Teaching Legal Case-Based Adaptation 49

exception somewhat. He concedes that if the manufacturer encourages the sending of
the product to California, then it should be subject to California’s jurisdiction. At the
same time, Mr. S. would maintain, Asahi did nothing to encourage the sending of the
tube assemblies to California, distinguishing the case at hand from the hypothetical.

2.2 Process Model of Hypothetical Argument

The Process Model of Hypothetical Argument presented in Fig. 2, provides a partial
account of the hypothetical reasoning examples we have encountered in SCOTUS
oral arguments [3], including the Asahi example in Fig. 1. An advocate proposes a test
(i.e., a general rule) for deciding the case at hand (step 1 in Fig. 2 illustrated in box
[a], Fig. 1). The Justices challenge the proposed test, posing a hypothetical case in
order to determine how the proposed test would handle it. Their goal may be to cri-
tique the proposed test as too broad (step 2 in Fig. 2, illustrated in boxes [b] and [d],
Fig. 1) or too narrow (steps 2′ and 3′ below the ellipsis, Fig. 2). Alternatively, the
Justices may pose a hypothetical case, not in order to critique the test, but simply to
explore if the test applies to the hypothetical case and with what result. In modeling
this more exploratory use of hypothetical cases, one can relax certain criteria in step 2
or 2′, but we do not pursue that here.

In responding at step 3 (or 3′), Fig. 2, the advocate may: (a) stick with his test, jus-
tifying it as correctly deciding the case at hand despite the hypothetical, (b) modify
the test so that it still assigns the advocate’s preferred result in the case but also ac-
commodates the hypothetical, or (c) give up the test and propose another. In the Asahi
example, Fig. 1, the advocate modifies the test in boxes [c] and [e].

The Process Model incorporates some traditional case-based moves. When re-
sponding that the test is not too broad (step 3), justifying the test (3.a) involves analo-
gizing the hypothetical and case; modifying the test (3.b) involves distinguishing the
hypothetical from the case. Responding that the test is not too narrow (step 3′) in-
volves just the reverse: distinguishing in 3′.a and analogizing in 3′.b. The analogizing
involves pointing out relevant shared facts that are reasons for deciding the case and
hypothetical the same way. Distinguishing involves pointing out relevant unshared
facts that are reasons for deciding the real and hypothetical cases differently.

Facts are relevant, and thus suitable for analogizing and distinguishing, if and to
the extent that they matter given the principles/policies of the law. When case facts
connect to the law’s and regulations’ underlying principles/policies, they justify de-
ciding the case consistently with those principles/policies. These principles/policies
embody the goals that laws and legal regulations are designed to achieve, for exam-
ple, to avoid intentionally-inflicted personal injuries, encourage economic competi-
tion, discourage frivolous lawsuits, or protect citizens from arbitrary government
power. This last is the goal of the law of personal jurisdiction: the due process con-
cern with fairness protects out-of-state citizens from having to defend themselves in
court in states to which they have no substantial connections.

2.3 Case-Based Adaptation in the Process Model

The Process Model also incorporates more complex moves involving case-based
adaptation. In step 2 (or 2′) the hypothetical case is designed to demonstrate that the

50 K. Ashley et al.

 1. Propose Test: For proponent, propose test for deciding the current fact situation
(cfs): Construct a proposed test that leads to a favorable decision in the cfs and is consis-
tent with applicable underlying legal principles/policies and important past cases, and give
reasons.

 2. Pose Hypothetical: For interlocutor, pose hypothetical example to probe if pro-
posed test is too broad: Construct a hypothetical example that:

(a) emphasizes some normatively relevant aspect of the cfs and
(b) to which the proposed test applies and assigns the same result as to the cfs, but
(c) where, given legal principles/policies, that result is normatively wrong in the hypo-

thetical.
 3. Respond: For proponent, respond to interlocutor’s hypothetical showing test too
broad:

(3.a) Justify the proposed test: Analogize the hypothetical example and the cfs and
argue that they both should have the result assigned by the proposed test. Or

(3.b) Modify the proposed test: Distinguish the hypothetical example from the cfs,
argue that they should have different results and that the proposed test yields the
right result in the cfs, and add a condition or limit a concept definition so that the
narrowed test still applies to the cfs but does not apply to, or leads to a different re-
sult for, the hypothetical example. Or

(3.c) Abandon the proposed test and return to (1) (i.e., construct a different proposed
test that leads to a favorable decision in the cfs and is consistent with applicable
underlying legal principles/policies, important past cases, and hypotheticals…)

…
 2′. Pose hypothetical: For interlocutor, pose hypothetical example to probe if pro-

posed test is too narrow: Construct a hypothetical example that:
(a) emphasizes some normatively relevant aspect of the cfs, and
(b) that normatively should have the same result as the cfs, but
(c) to which the test does not apply or assigns a different result.

 3′. Respond: For proponent, respond to hypothetical example showing test too nar-
row:

(3′.a) Justify the proposed test: Distinguish the hypothetical and the cfs, arguing that
they should not have the same result or that they should have the same result but
for different reasons. Or

(3′.b) Modify the proposed test: Analogize the hypothetical example to the cfs, con-
ceding that the result should be the same in each and arguing that the proposed test
yields the right result in the cfs, and eliminate a condition or expand a concept
definition so that the test applies to both the cfs and the hypothetical example and
leads to the same result in each. Or

(3′.c) Abandon the proposed test and return to (1) (i.e., construct a different proposed
test that leads to a favorable decision in the cfs and is consistent with applicable
underlying legal principles/policies, important past cases, and hypotheticals…)

Fig. 2. Process Model of Hypothetical Argument

test is too broad (or too narrow). Frequently, the seed for the hypothetical lies in the
facts of the case at hand (i.e., the cfs) or of a relevant precedent. The Justices appear
to focus on some legally relevant aspect and adapt the seed so that the proposed test

 Toward Modeling and Teaching Legal Case-Based Adaptation 51

applies to the hypothetical and assigns it the same result as the advocate proposes for
the case at hand, but where that result would be wrong in light of the underlying legal
principles/policies. Similar adaptations occur in step 2′, but the hypothetical is
designed so that normatively, it should have the same result as the cfs but does not
because the proposed test does not apply or assigns a different result.

Case-based adaptation also occurs in step 3.b (or 3′.b), where the advocate re-
sponds to the hypothetical by modifying the proposed test. Having distinguished the
hypothetical case from the cfs and argued that they should have different results, the
advocate adapts the test by adding a condition or limiting a concept definition so that
the narrowed test still applies to the cfs but no longer applies to the hypothetical or
leads to a different result. Similar adaptations occur in step 3′.b. Having analogized
the hypothetical case and cfs, conceding that the result should be the same in each, the
advocate broadens the test, eliminating a condition or expanding a concept definition
so that the revised test applies. Although the thing that is modified is the test, the
adaptation is still clearly case-based. In each step, the modifications are informed and
guided by the distinctions or analogies between the case and hypothetical. Since
a Justice designed the hypothetical, these analogies and distinctions indicate his
concerns; the modifications to the test are designed to allay those concerns.

One sees both kinds of adaptation in the Asahi example of Fig. 1. The Justice’s
first hypothetical, box [b], changes: (1) the manufacturer of a component part into a
manufacturer of the whole product; (2) the assumption that it is foreseeable the prod-
uct would end up in CA into the company’s knowing that it will be exported to CA.
The first change simplifies the analysis for purposes of argument; any complexities
due to the fact that Asahi is the manufacturer of only a component part are temporar-
ily set aside. Arguably, there might be some reason for treating component parts
manufacturers more leniently. The second change makes a clearer case for finding
that it is fair to subject the manufacturer to personal jurisdiction in CA; it is not just
foreseeable that his product will end up there, he knows it will.

The advocate’s two adaptations are also interesting. Through successive broaden-
ing of the exception, each narrows the scope of who is not covered by personal juris-
diction. The first exception, Fig. 1, box [c] covers only those who somehow “commit
some act [that] positively seeks to serve the market in CA and direct its components
to CA.” The second, box [e] is broader; one need only encourage the sending of the
component to CA. The impetus for the second adaptation is responding to the Jus-
tice’s “sending” hypothetical, used both to clarify Mr. S’s somewhat obtuse “positive
act” requirement and to establish a boundary on extending personal jurisdiction. It is
as if the Justice said, “You don’t really mean to suggest that personal jurisdiction only
applies to one who actually sends the product into CA? CA’s interest in protecting its
citizens extends farther than that, doesn’t it?”

As the example suggests, the details of the adaptations are quite subtle and involve
the integration of extensive background knowledge, much of which remains implicit.
In fact, this may be the reason Justices employ hypothetical reasoning; it is a re-
markably succinct (some might say laconic) way of plumbing the complex implica-
tions of a proposed rule. The Process Model skims the surface of these subtleties;
extending the model depends on studying more examples in greater detail.

52 K. Ashley et al.

3 Related Work

Reasoning with hypothetical cases is a staple of SCOTUS arguments and common
law decision making [4; 8; 19], American legal education [5; 22; 23 pp. 66, 68, 75],
civil law (i.e., continental European) legal reasoning [14, pp. 528f], ethical reasoning
[7] and mathematical discovery [10]. The process model of hypothetical argument of
Fig. 2 adapts patterns of hypothetical reasoning observed in legal opinions to a dia-
logue between an advocate and a judge [4, p. 100]. It adapts three common modes of
responding to hypotheticals in order to resolve the dissonance created when a pro-
posed test reaches an arguably undesirable result in a hypothetical [5, pp. 120f]. It
focuses on accommodating the conflicting underlying principles at stake [7, pp. 221-
8]. The model is similar to Lakatos’ mathematical reasoning method of proof and
refutations [10, p. 50]. SCOTUS oral arguments are working examples of reasoners’
employing hypothetical counterexamples as in the artificial Socratic tutorial dialogue
Lakatos reconstructed from centuries-long communications of mathematicians.

As noted, the Process Model provides a high-level account for two types of case
adaptation, designing the hypothetical and modifying the proposed test; the above
sources, however, do not explain how these subtle adaptations are performed. CBR
research on adaptation provides some help. Adaptations like the above can be catego-
rized in terms of the adaptation methods and strategies in [9, p. 395]. Clearly, substi-
tution is involved, but it is a kind of model- and explanation-based substitution based
on the knowledge that “knowing” is not only more specific than “foreseeable” but
also more strongly supports a legal inference of personal responsibility for the conse-
quences. The other adaptations are based on the knowledge that “sending” is a kind of
“positive act” and that “encouraging the sending” is broader than actually sending.
Based on other examples, we have suggested the ontological requirements for model-
ing this kind of model-based substitution with domain facts and factors, legal con-
cepts, principles and policies, and various orderings capturing the kind of legal
knowledge illustrated above [2].

A major open question, however, involves the mechanisms to control inferences
and moves associated with hypothetical reasoning. The example in Fig. 1 suggests a
rhetorical strategy; it shows the beginnings of a slippery slope as the Justice maneu-
vers Mr. S into needing to explain why supplying component parts to products one
knows at least some of which will enter CA is not the very kind of “encouraging the
sending” that, according to Mr. S’s last test, would subject Asahi to jurisdiction in
CA. Some AI research in computationally modeling Lakatos’ methods of proof and
refutations [6; 15; 12] and reasoning with examples and hypotheticals [1; 20; 21]
provides insights into the control problem.

Applying these insights intelligently, however, requires studying many real-world
examples. Conducting that kind of empirical study requires a means for adequately
representing the examples, namely LARGO diagrams to which we now turn.

4 Representing Hypothetical Reasoning Diagrammatically

In order to extend the Process Model to provide a more detailed account of case-based
adaptation, to implement the Model computationally, and to teach students this

 Toward Modeling and Teaching Legal Case-Based Adaptation 53

process of hypothetical reasoning, a succinct representation of the examples is useful.
This is especially true since the oral argument examples are described in text, are
often distributed across multiple argument “moves” (i.e., turns taken by advocates and
Justices), and involve background novel that is only implicit in the transcripts.

We have developed a diagrammatic representation of argument moves involving
hypothetical cases, based on our Process Model of Hypothetical Argument [3]. Using
the LARGO (Legal ARgument Graph Observer) intelligent tutoring system, students
can represent in diagrammatic form portions of SCOTUS oral arguments that relate to
hypothetical reasoning [16, 18]. LARGO is intended to help law students learn the
process of arguing with hypotheticals by diagrammatically reconstructing examples of
SCOTUS oral arguments according to the Process Model. Fig. 3 shows a student’s
LARGO diagram representing the same portion of the Asahi oral argument discussed
in Fig. 1. A scrollable pane (not shown) contains the argument transcript. A student
prepared the diagram by selecting and connecting the elements and relations and
linking the latter to corresponding passages with a text highlighting feature. There are
elements for representing the facts of the case for decision, proposed tests, hypotheti-
cals, and five kinds of relations among them: modifying a test, distinguishing or
analogizing a hypothetical, a hypothetical’s leading to a test or modification, and a
generic relation. The test element is structured to encourage students to prepare a
logical formulation with slots for “if”, “then”, “and”, “unless”, and “even though”.

A somewhat simplified version of the Process Model, together with educationally
targeted feedback messages, has been implemented, but a full implementation of the
model that would allow the program to make arguments has not been completed.
Although LARGO cannot make or respond to hypothetical arguments, it does give
advice to students, based on the Process Model, about their argument diagrams.
Whenever a student selects the Advice button (not shown), the program provides
three new hints on improving the diagram or reflecting on its significance. The advice
concerns where to look in the transcript for passages that should be represented in the
diagram, how to repair or augment portions of the diagram that appear not to conform
to the Process Model, and what patterns of diagram elements appear to be worth re-
flecting about in terms of the model. In LARGO, a “graph grammar” of rules enforces
the expectations embodied in the Process Model. The grammar parses the diagram
represented in graph notation [17] in order to flag parts of the diagram where the
elements and relations miss relevant parts of the text, do not conform to the Process
Model, or are complete enough to warrant reflection.

The graph grammar rules employ classification concepts including a number that
focus on CBR functions, for example, distinguishing (or analogizing) without provid-
ing reasons, using a general relation between a hypothetical and the cfs rather than
analogizing or distinguishing, a hypothetical in isolation (offering an opportunity to
enquire if it should connect to a test) and a hypothetical connected to multiple tests
(offering an opportunity to discuss if the hypothetical played a role in the modifica-
tion of one test to another). LARGO’s version of the Process Model does not (yet)
explicitly cover the ideas of broadening / narrowing tests and the ways in which
hypotheticals are crafted to solicit these test revisions.

54 K. Ashley et al.

Fig. 3. Sample LARGO Diagram of Asahi Oral Argument

LARGO’s advice is couched as a recommendation rather than as a declaration
that something is incorrect. The program does not have a “definitive” argument repre-
sentation; an instructor’s marked-up transcript only indicates where process-model-
related components are located in the text. Sometimes, multiple ways of representing
argument moves are reasonable, for instance, where different diagrammers interpret
the tests at different levels of abstraction. In addition, a Justice may move on to an-
other topic before the advocate can finish; the diagram will be incomplete according
to the model but it accurately reconstructs the argument.

The student’s diagram in Fig. 3 satisfies some conventions in the Process Model
but violates others. Some relations are mislabeled or omitted. For instance, hypotheti-
cal H2 should not be labeled as being modified into test T4. A hypothetical leads to a
proposed test’s modification. The student shows that H2 is distinguished from the
case facts, but leaves the “distinguished by virtue of” relation unfilled. Where a stu-
dent has analogized or distinguished a hypothetical as in Fig. 3, LARGO encourages
him to explain why this matters (e.g., “Usually, attorneys should give a reason why
the distinction matters from a legal viewpoint. For instance, does it matter in terms of
the principles and policies underlying the issue? Please enter this in the highlighted
distinction relation.”). This student has not done so.

5 Experiment to Assess Reliability of Interpreting Diagrams

Given our intention to employ LARGO in computational modeling and teaching, the
question is whether humans can interpret the argument diagrams reliably. We have

 Toward Modeling and Teaching Legal Case-Based Adaptation 55

been comparing argument diagrams created by first and third year law students. The
first year students used LARGO as part of a study to determine if the system helped
students learn skills of hypothetical reasoning better than a more traditional approach
involving reading and note-taking but not diagramming [18]. The third year students
used the system in the same ways and context as the first years. In [3] we presented
evidence that features of LARGO argument diagrams are correlated with two inde-
pendent measures related to argumentation ability: standardized test scores that assess
ability to evaluate reasoning and arguments and students' number of years in law
school. LARGO diagram features, including advice-related classification concepts
mentioned above, are also correlated with post-test performance [13].

5.1 Experimental Procedure

This experiment involved grading argument diagrams prepared by first and third year
law students at the University of Pittsburgh. First year students are typically recent
college graduates. Since the third year is the last year of a law school education, it is
fair to assume that third year students are more expert in their understanding of legal
argument than first years. We used the full set of first diagrams produced by all stu-
dents who completed the study. This comprised 33 diagrams, prepared in fall 2007 by
first year students in their first semester legal process course as part of their regular
coursework, and 23 diagrams prepared by volunteer third year students in the middle
of their final year. Unlike first-years, the third year students were selected from the
top half of their class in terms of law school GPAs and prepared their diagrams for
pay outside of class work. The third-years, however, performed the same tasks as the
first year students: a pre-test and instruction with LARGO, sessions diagramming
three SCOTUS cases, and a post-test, all spread over four two-hour sessions.

Two senior law school professors graded the diagrams following a double-blind
procedure. The graders were not aware of whether any diagram was prepared by a
first-year or third-year student. The procedure was as follows:

1. Both graders trained on LARGO using the same cases as the students. The
graders each produced their own diagrams for the three cases. When grading
student diagrams, each grader had his own diagram available.

2. The graders first graded a sample of 6 diagrams drawn from a different study
using a draft set of criteria. They graded the diagrams independently and then
met to discuss the results and refine the criteria. This ensured that they agreed
on and understood the criteria and led to some minor revisions of the criteria.

3. Each grader received the diagrams-to-grade in anonymized form; each diagram
had a randomly assigned ID that did not identify the diagrams’ author or group.
Each grader’s diagrams-to-grade were shuffled to ensure that they did not grade
them in the same order. Each grader also had the oral argument transcript for
which the diagrams were constructed. Annotations on each diagram indicated
whether or not an element was linked to the transcript text, and if so to what
segment (see Fig. 3, top right lined icon of test and hypothetical elements).

4. Each grader partitioned the diagrams into three bins: poor, medium and good.
He then divided each bin into better and worse. This binning resulted in a six-
point grading of diagrams based on an initial gestalt inspection. The binning
was designed to avoid the reassessment phenomenon in which graders routinely
alter their criteria as they grade a set of materials.

56 K. Ashley et al.

Table 1. General Grading Criteria and Inter-rater Agreement

Category Criterion κ
How well does the diagram cover …
1. … all of the essential tests in the argument? 0.05***
2. … all of the essential hypotheticals in the argument? 0.75***
3. … all of the essential relationships in the argument? 0.62***
4. How well are the diagram components related to the appropriate facts of the
case?

0.56***

Coverage

5. … the argument components as a whole? 0.71***
How well does the diagram…
1. … reflect the ways in which the hypotheticals challenge the tests? 0.64***
2. … reflect the ways in which tests are modified in response to hypotheticals? 0.69***
3. … reflect analogizing and distinguishing of hypotheticals with respect to
other hypotheticals and essential case facts?

0.35**

4. … capture the role of policies and principles in the argument (e.g., in
analogizing and distinguishing)?

0.28**

Correct-
ness

5. Overall, how correctly does the diagram represent the argument? 0.7***
How well does the student understand…
1. … this particular argument both in factual and procedural terms? 0.59***
2. … the role of proposed tests in legal argument? 0.71***
3. … the role of hypothetical cases in argument? 0.09***
4. … the process of analogizing and distinguishing hypothetical cases? 0.3*
5. … the general process of arguing with tests and hypotheticals? 0.07***

Compre-
hension

6. … the role of policies and principles in arguments of this type? 0.3**

5. Each grader reshuffled the diagrams and (a) assigned detailed grades according
to three categories of General Grading Criteria (i.e., coverage, correctness, and
comprehension), Table 1; (b) graded each Test and Hypothetical element in the
diagram independently according to criteria specific to each type of element,
Table 2; and assigned an overall grade to each diagram on a 12 point scale
reflecting their by then more complete judgment of the diagram’s quality. (One
grader assigned overall grades on a 6 point scale. In all of the analyses below,
overall grades have been rescaled for comparison.) As Tables 1 and 2 indicate,
many of the grading criteria pertain directly to how well student diagrams
reflect features of the Process Model of adaptation with hypothetical cases.

5.2 Preliminary Results and Discussion

Inter-rater reliability is often measured in terms of the kappa coefficient, which ranges
between -1 and 1. How high a kappa value must be to indicate agreement is subject to
debate and varies according to the domain, task, and purpose of the grading. Given
the lack of domain-specific guidance, we adopted the standards in [11] for strength of
agreement for the kappa coefficient: ≤ 0=poor, .01–.20=slight, .21–.40=fair,
.41–.60=moderate, .61–.80=substantial, and .81–1=almost perfect.

In analyzing the grades, a comparison of the gestalt rankings using Spearman’s
Rho, shown in Table 3, line (1), reveals a strong correlation between the graders’
scores. As shown in line (2), these rankings were also highly correlated with the grad-
ers’ final grades, an indication that the more detailed grading process tended to con-
firm initial assessments rather than alter them. Finally, there was strong inter-grader
agreement on the final grades as shown in line (3). For the overall grades we aligned

 Toward Modeling and Teaching Legal Case-Based Adaptation 57

Table 2. Test/Hypothetical Grading Criteria and Inter-rater Agreement

Category Criterion κ

1. Is the test summary test like (formulated as a logical rule with applicable
conditions and a relevant legal conclusion for deciding an issue or the case)?

0.48***

2. Is the test linked to an appropriate segment of the argument? 0.02***
3. Is this test correctly related to the relevant preceding tests? 0.58***
4. Is this test correctly related to the relevant hypotheticals? 0.62***

Test
Element

5. How well does the diagram capture the role this test plays in the argument? 0.51***
1. How well does the summary reflect the hypothetical posed in the text? 0.15*
2. Is this hypothetical correctly related to the relevant test nodes? 0.04***
3. How well does the diagram capture the role of this hypothetical in the
argument with respect to challenging the tests? For instance, does it capture the
judge's implication with the hypothetical (i.e., probing the test as too broad, too
narrow, or exploring what the test means)?

0.03***

Hypothet-
ical
Element

4. How well does the diagram capture the analogizing and distinguishing of this
hypothetical with respect to other hypotheticals and essential case facts?

0.01

Table 3. Grader Agreement

Measure Agreement
(1) Inter-grader ranking agreement ρ = 0.71, p < .001
(2) Intra-grader rank-score agreement κ = 0.73 for grader 1, p < .001

κ = 0.84 for grader 2, p < .001
(3) Inter-grader score agreement κ = 0.74, p < .001

the grades, converting one grader’s overall grade to a 12 point scale and correcting the
sets to compensate for a difference in mean grades. We then computed agreement
using Cohen’s weighted kappa with squared weights. Under the standard in [11], the
kappa value in Table 3, line (3) indicates “substantial agreement.”

The levels of agreement with respect to the General Grading Criteria most relevant
to hypothetical reasoning and case-based adaptation vary. There is substantial agree-
ment on coverage of essential hypotheticals (Coverage 2), correctness showing ways
hypotheticals challenge tests and ways in which tests are modified in response to
hypotheticals (Correctness 1, 3), comprehension of the role of proposed tests (Com-
prehension 2), and whether the test is correctly related to relevant hypotheticals
(Table 2, Test Element 4). There is moderate agreement with respect to whether the
diagram captures the role of a test (Table 2, Test Element 5).

There is only fair agreement, however, concerning the correctness and comprehen-
sion of how the diagram reflects analogizing and distinguishing hypotheticals or the
role of policies and principles (Correctness 3, 4; Comprehension 4, 6). Agreement is
slight re: comprehension of the argument role of hypothetical cases and of the general
process of arguing with tests and hypotheticals (Comprehension 3, 5), and how well
the summary reflects the test and the hypothetical is related to relevant tests, how well
the diagram captures the role of the hypothetical, and how well the hypothetical is
analogized and distinguished (Table 2, Hypothetical Element 1 – 4).

Generally, these inter-grader agreement results suggest that the diagrams can be in-
terpreted reliably for purposes of instruction and modeling of some aspects of the
Process Model, but that the role and import of hypotheticals is problematic. Of
course, these are preliminary results, dealing with diagrams of only the first of three
cases. The other two sets of diagrams have been graded, but the data are still being

58 K. Ashley et al.

entered and analyzed. Since Asahi was the first case graded, the graders may have
been uncertain about the criteria associated with the role and import of hypotheticals;
the graders may have converged later as they gained practice grading.

In addition, as noted, representing the role and import of hypotheticals is subtle.
The diagrams were constructed with our first version of LARGO. We were aware that
our tool was unrefined for representing the role of principles/policies in informing
analogizing and distinguishing and for representing details about how hypotheticals
challenge tests as too broad or narrow. We are exploring the use of pull-down menus
with which students annotate the kinds of links between hypotheticals and tests shown
in Fig. 3 with information about the role and import of the hypothetical.

6 Conclusions

The Supreme Court oral arguments are a repository of examples of hypothetical rea-
soning and case-based adaptation. A hypothetical case is designed to help evaluate if
a test or rule proposed for deciding a problem is consistent with underlying princi-
ples/policies and often leads to adaptation of the test to improve consistency. Studying
these examples could advance computational modeling of case-based adaptation,
especially inference control, strategic reasoning, and creative design in support of
case-based adaptation, and aid in teaching the process. A key requirement for pro-
gress in modeling and teaching, however, is a means for succinctly representing these
examples in a way that humans can interpret reliably.

This paper has described a diagrammatic representation of hypothetical reasoning
based on a process model that explains important features of the oral argument exam-
ples. An experiment was undertaken to assess the reliability of expert grading of dia-
grams prepared by students as they reconstructed examples of hypothetical reasoning
in the oral arguments. Preliminary results indicate some significant areas of agree-
ment, including with respect to the correctness of ways tests are modified in response
to hypotheticals. With respect to other features associated with case-based adaptation
such as the role and import of hypotheticals, agreement was slight. These results sug-
gest that the diagrammatic representation will support studying and modeling the
examples of case-based adaptation, but that the diagramming support needs to make
certain features more explicit.

The researchers plan to reevaluate the results once grading data for two additional
cases are analyzed, and to improve the ways in which the diagrams reflect the role
and import of the hypotheticals in arguments. They also plan to computationally
model realistic legal arguments involving adaptation with hypotheticals.

Acknowledgments. NSF Grant IIS-0412830, Hypothesis Formation and Testing in an
Interpretive Domain, supported this work.

References

1. Ashley, K.: Modeling Legal Argument: Reasoning with Cases and Hypotheticals. MIT
Press, Cambridge (1990)

2. Ashley, K.: What a Legal CBR Ontology Should Provide. In: Proceedings of the 22nd Int’l
FLAIRS Conf. Case-Based Reasoning Track, Sanibel Island, FL (May 2009)

 Toward Modeling and Teaching Legal Case-Based Adaptation 59

3. Ashley, K., Lynch, C., Pinkwart, N., Aleven, V.: A Process Model of Legal Argument
with Hypotheticals. In: Legal Knowledge and Info. Sys., Proc. Jurix 2008, pp. 1–10 (2008)

4. Eisenberg, M.: The Nature of the Common Law. Harvard U. Press (1988)
5. Gewirtz, P.: The Jurisprudence of Hypotheticals. J. of Legal Education 32, 120–124

(1982)
6. Hayes-Roth, R.: Using proofs and refutations to learn from experience. In: Michalski, R.,

et al. (eds.) Machine Learning: An A. I. Approach, Tioga, Palo Alto, pp. 221–240 (1983)
7. Hurley, S.: Coherence, Hypothetical Cases, and Precedent. Oxford J. Legal Studies 10,

221–251 (1990)
8. Johnson, T.: Oral Arguments and Decision Making on the U. S. Supreme Court, SUNY

(2004)
9. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)

10. Lakatos, I.: Proofs and Refutations. Cambridge University Press, London (1976)
11. Landis, J., Koch, G.: The measurement of observer agreement for categorical data.

Biometrics 33, 159–174 (1977)
12. Lenat, D.B., Brown, J.S.: Why AM and EURISKO appear to work. Artificial

Intelligence 23(3), 269–294 (1984)
13. Lynch, C., Pinkwart, N., Ashley, K., Aleven, V.: What do argument diagrams tell us about

students aptitude or experience? In: Workshop on ITSs for Ill-structured Domains, ITS
2008, Montreal (2008)

14. MacCormick, D., Summers, R. (eds.): Interpreting Precedents Ashgate/Dartmouth (1997)
15. Pease, A., Colton, S., Smaill, A., Lee, J.: Lakatos and Machine Creativity. In: Proceedings

of the ECAI Creative Systems Workshop (2002)
16. Pinkwart, N., Aleven, V., Ashley, K., Lynch, C.: Evaluating legal argument instruction

with graphical representations using LARGO. In: Proc. AIED 2007 (July 2007)
17. Pinkwart, N., Ashley, A., Aleven, V., Lynch, C.: Graph Grammars: an ITS Technology for

Diagram Representations. In: Proc. 21st Int’l FLAIRS Conf., ITS Track, Coral Gables
(May 2008)

18. Pinkwart, N., Lynch, C., Ashley, K., Aleven, V.: Re-evaluating LARGO in the Classroom:
Are Diagrams Better than Text for Teaching Argumentation Skills? In: Woolf, B.P.,
Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 90–100.
Springer, Heidelberg (2008)

19. Prettyman Jr., E.: The Supreme Court’s Use of Hypothetical Questions at Oral Argument.
Catholic University Law Review 33, 555–591 (1984)

20. Rissland, E.: Constrained Example Generation. COINS TR 81-24. U. Mass (1981)
21. Rissland, E.: Dimension-based Analysis of Hypotheticals from Supreme Court Oral

Argument. In: Proc. 2nd Int’l Conf. on Artificial Intelligence and Law, pp. 111–120. ACM
Press, New York (1989)

22. Stuckey, R., et al.: Best Practices for Legal Education, pp. 214–215. Clin. Leg. Ed. Assc.
(2007)

23. Sullivan, W., Colby, A., Wegner, J., Bond, L., Shulman, L.: Educating Lawyers, 62, 66,
68, 75 The Carnegie Foundation for the Advancement of Teaching (2007)

24. Visser, W.: Reuse of Knowledge: Empirical Studies. In: Aamodt, A., Veloso, M.M. (eds.)
ICCBR 1995. LNCS (LNAI), vol. 1010, pp. 335–346. Springer, Heidelberg (1995)

Opportunistic Adaptation Knowledge Discovery

Fadi Badra1, Amélie Cordier2, and Jean Lieber1

1 LORIA (CNRS, INRIA, Nancy Universities)
BP 239, 54506 Vandœuvre-lès-Nancy, France

{badra,lieber}@loria.fr
2 LIRIS CNRS UMR 5202, Université Lyon 1, INSA Lyon, Université Lyon 2, ECL

43, bd du 11 novembre 1918, Villeurbanne, France
Amelie.Cordier@liris.cnrs.fr

Abstract. Adaptation has long been considered as the Achilles’ heel of case-
based reasoning since it requires some domain-specific knowledge that is diffi-
cult to acquire. In this paper, two strategies are combined in order to reduce the
knowledge engineering cost induced by the adaptation knowledge (AK) acquisi-
tion task: AK is learned from the case base by the means of knowledge discovery
techniques, and the AK acquisition sessions are opportunistically triggered, i.e.,
at problem-solving time.

1 Introduction

Case-based reasoning (CBR [6]) is a reasoning paradigm based on the reuse of pre-
vious problem-solving experiences, called cases. A CBR system often has profit of a
retrieval procedure, selecting in a case base a source case similar to the target problem,
and an adaptation procedure, that adapts the retrieved source case to the specificity of
the target problem. The adaptation procedure depends on domain-dependent adaptation
knowledge (AK, in the following). Acquiring AK can be done from experts or by using
machine learning techniques. An intermediate approach is knowledge discovery (KD)
that combines efficient learning algorithms with human-machine interaction.

Most of previous AK acquisition strategies are off-line: they are disconnected from
the use of the CBR system. By contrast, recent work aims at integrating AK acquisi-
tion from experts to specific reasoning sessions: this opportunistic AK acquisition takes
advantage of the problem-solving context. This paper presents an approach to AK dis-
covery that is opportunistic: the KD is triggered at problem-solving time.

The paper is organized as follows. Section 2 introduces some basic notions and no-
tations about CBR. Section 3 presents the CBR system TAAABLE, which constitutes
the application context of the study, and motivates the need for adaptation knowledge
acquisition in this application context. Section 4 presents the proposed opportunistic
and interactive AK discovery method. In Sect. 5, this method is applied to acquire
adaptation knowledge in the context of the TAAABLE system. Section 6 discusses this
approach and situates it among related work. Section 7 concludes and presents some
future work.

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 60–74, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Opportunistic Adaptation Knowledge Discovery 61

2 Basic Notions About CBR

In the following, problems are assumed to be represented in a language Lpb and so-
lutions in a language Lsol. A source case represents a problem-solving episode by a
pair (srce,Sol(srce)), in which srce ∈ Lpb is the representation of a problem
statement and Sol(srce) ∈ Lsol is the representation of its associated solution. CBR
aims at solving a target problem tgt using a set of source cases CB called the case base.
The CBR process is usually decomposed in two main steps: retrieval and adaptation.
Retrieval selects a source case (srce,Sol(srce)) from the case base such that srce
is judged to be similar to tgt according to a given similarity criterion. Adaptation con-
sists in modifying Sol(srce) in order to propose a candidate solution ˜Sol(tgt) for
tgt to the user. If the user validates the candidate solution ˜Sol(tgt), then ˜Sol(tgt)
is considered to be a solution Sol(tgt) for tgt.

3 Application Context: The TAAABLE System

The TAAABLE system [3] is a cooking CBR system. In the cooking domain, CBR
aims at answering a query using a set of recipes. In order to answer a query, the sys-
tem retrieves a recipe in the recipe set and adapts it to produce a recipe satisfying
the query. The TAAABLE system was proposed to participate to the Computer Cook-
ing Contest (CCC) challenge in 2008 [4]. In the CCC challenge, queries are given in
natural language and express a set of constraints that the desired recipe should sat-
isfy. These constraints concern the ingredients to be included or avoided, the type of
ingredients (e.g., meat or fruit), the dietary practice (e.g., nut-free diet), the type of
meal (e.g., soup) or the type of cuisine (e.g., chinese cuisine). An example of query is:
“Cook a chinese soup with leek but no peanut oil.” Recipes are given in textual form,
with a shallow XML structure, and include a set of ingredients together with a tex-
tual part describing the recipe preparation. The TAAABLE system is accessible online
(http://taaable.fr).

3.1 Representation Issues

A Cooking Ontology. The system makes use of a cooking ontology O represented in
propositional logic. Each concept of O corresponds to a propositional variable taken
from a finite setV of propositional variables.O is mainly composed of a set of concepts
organized in a hierarchy, which corresponds, in propositional logic, to a set of logical
implications a ⇒ b. For example, the axiom leek ⇒ onions of O states that leeks
are onions.

Problem and Solution Representation. In TAAABLE, a problem pb ∈ Lpb represents
a query and a solution Sol(pb) of pb represents a recipe that matches this query.Lpb

and Lsol are chosen fragments of propositional logic defined using the vocabularyV
introduced in the cooking ontology O. One propositional variable is defined in Lpb

and Lsol for each concept name of O and the only logical connective used in Lpb and

http://taaable.fr

62 F. Badra, A. Cordier, and J. Lieber

Lsol is the conjunction ∧. For example, the representation tgt ∈ Lpb of the query
mentioned above is:

tgt = chinese ∧ soup ∧ leek ∧ ¬peanut oil

The case base CB contains a set of recipes. Each recipe is indexed in the case base by a
propositional formula R ∈ Lsol. For example, the index R of the recipe Wonton Soup
is:

R = chinese ∧ soup ∧ green onion ∧ . . . ∧ peanut oil ∧ Nothing else

Nothing else denotes a conjunction of negative literals ¬a for all a ∈ V such that
chinese∧soup∧green onion∧ . . .∧peanut oil �O a. This kind of “closed
world assumption” states explicitly that for all propositional variable a ∈ V, either
R �O a (the recipe contains the ingredient represented by a) or R �O ¬a (the recipe
does not contain the ingredient represented by a).

Each recipe index R represents a set of source cases: R represents the set of source
cases (srce,Sol(srce)) such that Sol(srce) = R and srce is solved by R, i.e.,
srce is such that R �O srce.

Adaptation Knowledge. In TAAABLE, adaptation knowledge is given by a set of re-
formulations (r,Ar) in which r is a binary relation between problems and Ar is an
adaptation function associated with r [13]. A reformulation has the following seman-
tics: if two problems pb1 and pb2 are related by r —denoted by pb1 r pb2— then for
every recipe Sol(pb1) matching the query pb1,Ar(pb1,Sol(pb1),pb2) = ˜Sol(pb2)
matches the query pb2.

In this paper, binary relations r are given by substitutions of the form σ = α� β,
where α and β are literals (either positive or negative). For example, the substitution
σ = leek� onions generalizes leek into onions.

Adaptation functions Ar are given by substitutions of the form Σ = A � B in
which A and B are conjunctions of literals. For example, the substitution Σ = soup ∧
pepper � soup ∧ ginger states that pepper can be replaced by ginger in soup
recipes. A substitution Σ can be automatically generated from a substitution σ: Σ =
b� a if σ is of the form a� b and Σ = ∅� ¬a if σ is of the form ¬a� ∅.

The main source of adaptation knowledge is the ontology O. A substitution σ =
a � b is automatically generated from each axiom a ⇒ b of O and correspond to
a substitution by generalization. A substitution σ = a � b can be applied to a query
pb if pb �O a. σ generates a new query σ(pb) in which the propositional variable
a has been substituted by the propositional variable b. For example, the substitution
σ = leek� onions is generated automatically from the axiom leek⇒ onions
of O. σ can be applied to the query tgt to produce the query σ(tgt) = chinese ∧
soup∧onions∧¬peanut oil, in which leek has been substituted by onions.
For each propositional variable a of V, an additional substitution of the form σ =
¬a� ∅ is generated. Such a substitution can be applied to a problem pb if pb �O ¬a
and generates a new problem σ(pb) in which the negative literal ¬a is removed. This
has the effect to loosen the constraints imposed on a query e.g., by omitting in the query
an unwanted ingredient. For example, the substitution ¬peanut oil� ∅ applied to

Opportunistic Adaptation Knowledge Discovery 63

tgt generates the query σ(tgt) = chinese∧soup∧leek, in which the condition
on the ingredient peanut oil is omitted.

However, when O is the only source of adaptation knowledge, the system is only
able to perform simple adaptations, in which the modifications made to Sol(srce)
correspond to a sequence of substitutions that can be used to transform srce into tgt.
Therefore, an additional adaptation knowledge base AKB is introduced. AKB contains a
set of reformulations (σ, Σ) that capture more complex adaptation strategies.

3.2 The CBR Process in TAAABLE

Retrieval. The retrieval algorithm is based on a smooth classification algorithm on
an index hierarchy. Such an algorithm aims at determining a set of modifications to
apply to tgt in order to obtain a modified query srce that matches at least one recipe
Sol(srce) of the case base. The algorithm computes a similarity path, which is a
composition of substitutions SP = σq ◦ σq−1 ◦ · · · ◦ σ1 such that there exists at least
one recipe Sol(srce) matching the modified querysrce = σq(σq−1(. . . σ1(tgt) . . .)),
i.e., such that Sol(srce) �O srce holds. Thus, a similarity path SP can be written:

Sol(srce) �O srce
σq←− σq−1←−− · · · σ1←− tgt

For example, to solve the above query tgt, the system generates a similarity path
SP = σ2 ◦ σ1, with:

tgt = chinese ∧ soup∧ leek∧ ¬peanut oil

σ1 = ¬peanut oil� ∅, σ2 = leek� onions

srce = chinese ∧ soup∧ onions
Sol(srce) = chinese ∧ soup∧ green onion∧ . . . ∧ peanut oil ∧ Nothing else

In this similarity path, Sol(srce) is the propositional representation of the recipe Won-
ton Soup. Since the ontology O contains the axiom green onion ⇒ onions, the
modified query srce = σ2 ◦ σ1 (tgt) verifies Sol(srce) �O srce.

Adaptation. To a similarity path is associated an adaptation path AP, which is a com-
position of substitutions AP = Σ1 ◦ Σ2 ◦ · · · ◦ Σq such that the modified recipe
˜Sol(tgt) = Σ1(Σ2(. . . Σq(Sol(srce)) . . .)) solves the initial query tgt, i.e., verifies
˜Sol(tgt) �O tgt. Thus, an adaptation path AP can be written

Sol(srce)
Σq−→ Σq−1−−−→ · · · Σ1−→ ˜Sol(tgt) �O tgt

The adaptation path AP is constructed from the similarity path SP by associating a sub-
stitution Σi to each substitution σi. To determine which substitution Σi to associate to
a given substitution σi, the external adaptation knowledge base AKB is searched first.
For a substitution σi = α � β, the system looks for a substitution Σ = A � B such
that A �O β and B �O α. For example, if σ2 = leek � onions is used in SP
and AKB contains the reformulation (σ, Σ) with σ = σ2 and Σ = green onion �
leek ∧ ginger, Σ will be selected to constitute the substitution Σ2 in AP since

64 F. Badra, A. Cordier, and J. Lieber

srce

Sol(srce)

pb

˜Sol(pb)

tgt

˜Sol(tgt)

σ1σ2

Σ2 Σ1

Fig. 1. A similarity path and the associated adaptation path

green onion �O onions and leek ∧ ginger �O leek. If no substitution Σ
is found in AKB for a given substitution σi then Σi is generated automatically from σi.

In the previous example, AKB is considered to be empty so Σ1 and Σ2 are generated
automatically from the substitutions σ1 and σ2: Σ1 = ∅ � ¬peanut oil since
σ1 = ¬peanut oil � ∅ and Σ2 = onions � leek since σ2 = leek �
onions. According to the axiom green onion⇒ onions ofO, the system further
specializes the substitution Σ2 into the substitution green onion � leek and the
user is proposed to replace green onions by leek in the recipe Wonton Soup and to
suppress peanut oil. The generated adaptation path is AP = Σ1 ◦ Σ2 (Fig. 1), with:

Sol(srce) = chinese ∧ soup∧ green onion∧ . . . ∧ peanut oil ∧ Nothing else

Σ2 = green onion� leek, Σ1 = ∅� ¬peanut oil

˜Sol(tgt) = chinese ∧ soup∧ leek∧ . . . ∧ ¬peanut oil ∧ Nothing else

tgt = chinese ∧ soup∧ leek∧ ¬peanut oil

The inferred solution ˜Sol(tgt) solves the initial query tgt: ˜Sol(tgt) �O tgt.

3.3 Why Learning Adaptation Knowledge in TAAABLE?

In the version of the TAAABLE system that was proposed to participate in the CCC
challenge, AKB = ∅ so adaptation knowledge is inferred from the ontology O. The
main advantage of this approach lies in its simplicity: no external source of adaptation
knowledge is needed and the system is able to propose a solution to any target problem.
However, the system’s adaptation capabilities (simple substitutions) appear to be very
limited and the user has no means to give some feedback on the quality of the proposed
adaptation.

For example, the substitution Σ1 = ∅ � ¬peanut oil suggests to remove the
ingredient peanut oil in the retrieved recipe, but as the oil is used in this recipe to saute
the bok choy, the adapted recipe turns out to be practically unfeasible. A better adap-
tation would suggest to replace peanut oil by e.g., sesame oil, which can be modeled
by the substitution Σ1 = peanut oil � sesame oil. To generate this substi-
tution automatically, the system could for example exploit the fact that the concepts
peanut oil and sesame oil are both sub-concepts of the concept oil in O. But
still, some additional knowledge would be needed to express the fact that peanut oil
should be replaced by sesame oil, and not by olive oil or hot chili oil, as olive oil
and hot chili oil are also sub-concepts of oil in O. Besides, the system should

Opportunistic Adaptation Knowledge Discovery 65

be aware that this substitution is recommended only in Asian cuisine, which can be
modeled by the more precise substitution Σ1 = asian ∧ peanut oil� asian ∧
sesame oil.

Furthermore, the second substitution Σ2 = green onions � leek suggests to
solely replace sliced green onions by uncooked leek. But the green onion was used in
the original Wonton Soup for garniture, so the user might consider that raw leek added as
garniture alters too much the taste of a soup. A better adaptation would consist in frying
leek with e.g., tempeh and red bell pepper to prepare the garniture. Such an adaptation
can be modeled by the substitution Σ2 = green onions � leek ∧ tempeh ∧
red bell pepper. This substitution, which reflects a cooking know-how, can hardly
be generated automatically from the ontology.

These examples show that in order to improve its adaptation capabilities, the sys-
tem would greatly benefit from the availability of a set of adaptation rules that would
capture more complex adaptation strategies. These adaptation rules cannot be gener-
ated automatically from the ontology and need to be acquired from other knowledge
sources. These examples also show that the human expert plays a major role in adapta-
tion knowledge acquisition and that in the cooking domain, adaptation rules are often
highly contextual.

4 Opportunistic Adaptation Knowledge Discovery

The presented AK acquisition method combines two previous approaches of AK ac-
quisition. The first one was implemented in the CABAMAKA system [5] and learns
AK from differences between cases by the means of knowledge discovery techniques
(section 4.1). The second one was implemented in the IAKA system [8] and acquires
adaptation knowledge at problem-solving time through interactions with the user (sec-
tion 4.2).

4.1 Adaptation Knowledge Discovery from the Case Base

Machine learning algorithms aim at extracting some regularities from a set of observa-
tions. Knowledge discovery techniques combine efficient machine learning algorithms
with human-machine interaction. In [5], AK is learned from differences between cases
by the means of knowledge discovery techniques. A set of pairs of sources cases is taken
as input of a frequent itemset extraction algorithm, which outputs a set of itemsets. Each
of these itemsets can be interpreted as an adaptation rule. This approach of AK learning
was motivated by the original idea proposed by Kathleen Hanney and Mark T. Keane
in [11], in which the authors suggest that AK may be learned from differences between
cases. The main assumption is that the differences that occur between cases in the case
base are often representative of differences that will occur between future problems and
the case base.

To learn adaptation rules from differences between cases, representing variations be-
tween cases is essential. In [2], expressive representation formalisms are proposed and
it is shown that defining a partial order on the variation language can help organizing
the learned rules by generality.

66 F. Badra, A. Cordier, and J. Lieber

4.2 Opportunistic and Interactive Knowledge Acquisition

Experiential knowledge, or know-how, can often be acquired on-line, when users are
using CBR tools. It is the aim of interactive and opportunistic knowledge acquisition
strategies to support such an acquisition. In these strategies, the system exploits its in-
teractions with its user to build new pieces of knowledge, to test them and, in case
of success, to retain them. Moreover, the knowledge acquisition process is often op-
portunistic, i.e, triggered by a previous reasoning failure: reasoning failures highlight
missing knowledge and thus constitute a guidance for the acquisition process. A major
advantage of interactive knowledge acquisition strategies is that they ensure that the
user is in a favorable context when he participates to the acquisition process. In [7], a
review of interactive and opportunistic knowledge acquisition approaches is proposed,
and two strategies are developed. This work illustrates the efficiency of interactive and
opportunistic knowledge acquisition approaches to acquire specific knowledge. On the
other hand, it shows that such approaches only allow the systems to acquire small pieces
of knowledge at a time.

4.3 Combining the Two Approaches

When properly used, knowledge discovery techniques may have the strong advantage of
automating a part of the knowledge acquisition process. In these approaches, dedicated
human-machine interfaces allow the expert, through predefined interactions, to provide
feedback on a set of suggestions generated automatically by the system. The role of
the expert is thus reduced to the validation of a pre-selected set of knowledge pieces.
The acquired knowledge is directly usable by the system, without the need for an ad-
ditional formalization step. Automatic approaches also benefit from efficient machine
learning algorithms that can be applied, as in [2], to learn adaptation rules at different
levels of generality. However, these approaches still produce a large number of candi-
date knowledge units that have to be validated by a domain expert out of any context,
which constitutes an important drawback.

Acquiring adaptation knowledge offline, i.e., independently of a particular problem-
solving session, appears to be problematic. Offline AK acquisition forces the system’s
designer to anticipate the need for adaptation knowledge in problem-solving and to ac-
quire it in advance, which can be very tedious, if not impossible. Offline acquisition
of adaptation knowledge also makes difficult to come up with fine-grained adaptation
rules, since adaptation knowledge is often highly contextual. For example, in the cook-
ing domain, an egg can sometimes be substituted by 100 grams of tofu, but this adap-
tation rule may be applied only to certain types of dishes, like cakes or mayonnaise,
and has proved to be irrelevant in order to adapt a mousse recipe or an omelet recipe.
Acquiring such a rule would require to circumscribe its domain of validity in order to
avoid over-generalization.

Moreover, initial acquisition of adaptation knowledge prevents the system from
learning from experience. A CBR system with fixed adaptation knowledge has no way
to improve its problem-solving capabilities, except by retaining in the case base a new
experience each time a problem has been solved, as it is usually done in traditional
CBR systems [6].

Opportunistic Adaptation Knowledge Discovery 67

On the other hand, interactive and opportunistic knowledge acquisition approaches
heavily rely on the human expert but ensure that the expert is “in context” when vali-
dating knowledge units that are to be acquired. Combining knowledge discovery tech-
niques and interactive approaches, as it is proposed here, could overcome one of the
limitations of KD by dramatically reducing the number of candidate adaptation rules
presented to the expert. By triggering the process in an opportunistic manner, the ex-
pert is able to parametrize the KD in order to focus on specific knowledge to acquire in
context. The resulting AK discovery process:

– is performed on-line, i.e., in the context of a problem-solving session,
– is interactive as adaptation knowledge is learned by the system through interactions

with its user who acts as an expert,
– is opportunistic as it is triggered by reasoning failure, and, consequently, often helps

repairing a failed adaptation,
– makes use of knowledge discovery techniques to provide assistance to the user in

the formulation of new knowledge: the user is presented with a set of suggestions
that are generated automatically from the case base.

5 Applying Opportunistic AK Discovery to TAAABLE

In this section, an opportunistic AK discovery process is applied to the context of the
TAAABLE system.

5.1 AK Discovery

In TAAABLE, the AK discovery process consists in learning a set of substitutions from
the case base by comparing two sets of recipes.

The Training Set. The training set TS is formed by selecting from the case base a set of
pairs of recipes (Rk,R�) ∈ CB×CB and by representing for each selected pair of recipes
(Rk,R�) the variationΔk� from Rk to R�. The choice of the training set TS results from a
set of interactions with the user during which he/she is asked to formulate the cause of
the adaptation failure and to pick up a repair strategy.

Representing Variations. The variationΔk� from a recipe Rk to a recipe R� is represented
in a language LΔ by a set of properties. Three properties a-, a+ and a= are defined in
LΔ for each propositional variable a ofV, and Δk� ∈ LΔ contains:

– the property a- if Rk �O a and R� �O a,
– the property a+ if Rk �O a and R� �O a,
– the property a= if Rk �O a and R� �O a.

For example, if:

Rk = chinese ∧ soup ∧ . . . ∧ peanut oil ∧ Nothing else

R� = chinese ∧ soup ∧ . . . ∧ olive oil ∧ Nothing else

68 F. Badra, A. Cordier, and J. Lieber

then Δk� = {chinese=,soup=,oil=,peanut oil-,olive oil+, . . .}, provided
that peanut oil �O oil, olive oil �O oil, R� �O peanut oil and Rk �O
olive oil.

The inclusion relation⊆ constitutes a partial order onLΔ that can be used to organize
variations by generality: a variation Δ is more general than a variation Δ′ if Δ ⊆ Δ′.
Mining. The learning process consists in highlighting some variations Δ ∈ LΔ that are
more general than a “large” number of elements Δk� of TS. More formally, let

support(Δ) =
card {Δk� ∈ TS | Δ ⊆ Δk�}

card TS

Learning adaptation rules aims at finding the Δ ∈ LΔ such that support(Δ) ≥ σs,
where σs ∈ [0; 1] is a learning parameter called the support threshold. It can be noticed
that if Δ1 ⊆ Δ2 then support(Δ1) ≥ support(Δ2). The support threshold also has
an influence on the number of generated variations. The number of generated variations
increases when σs decreases. Thus, specifying a high threshold restricts the generation
of variations to the most general ones, which can limit the number of generated vari-
ations and save computation time but has the effect to discard the most specific ones
from the result set.

Each learned variation Δ = {p1,p2, . . . ,pn} ∈ LΔ is interpreted as a substitution of
the form A� B such that:

– A �O a and B �O a if a- ∈ Δ,
– A �O a and B �O a if a+ ∈ Δ,
– A �O a and B �O a if a= ∈ Δ.

For example, the variationΔ = {oil=,peanut oil-,olive oil+} is interpreted as
the substitution Σ = peanut oil� olive oil. The conjunct oil is not present
neither in A nor in B since it is useless: peanut oil �O oil and olive oil �O
oil.

Filtering. For a retrieved recipe Sol(srce), the result set can be filtered in order to
retain only the substitutions Σ = A � B that can be applied to modify Sol(srce),
i.e., such that Sol(srce) �O A.

Validation. Knowledge discovery aims at building a model of reality from a set of
observations. But as a model of a part of reality is only valid with respect to a particular
observer, any learned substitution has to be validated by a human expert in order to
acquire the status of piece of knowledge.

5.2 Opportunistic Adaptation Knowledge Discovery

The AK discovery process turns the case base into an additional source of adaptation
knowledge. This new source of knowledge is used during a problem-solving session to
provide the CBR system with adaptation knowledge “on demand”. A set of variations
Δ is learned from the case base by comparing two sets of recipes and each learned
variation Δ is interpreted as a substitution Σ that can be used to repair the adaptation

Opportunistic Adaptation Knowledge Discovery 69

path AP. Each learned substitutionΣ is presented to the user for validation together with
the corrected solution ˜Sol(tgt) resulting from its application. When the user validates
the corrected solution, a new reformulation (σ, Σ) is added to the adaptation knowledge
base AKB so that the learned substitutionΣ can be later reused to adapt new recipes. The
AK discovery process is triggered either during the adaptation phase, to come up with
suggestions of gradual solution refinements (see section 5.4 for an example), or during
the solution test phase to repair a failed adaptation in response to the user’s feedback
(see section 5.5 for an example).

5.3 Implementation

To test the proposed adaptation knowledge acquisition method, a prototype was imple-
mented that integrates the TAAABLE system [3] and the CABAMAKA system [5]. The
case base contains 862 recipes taken from the CCC 2008 recipe set. The TAAABLE

system is used to perform retrieval and adaptation. The CABAMAKA system is used
to learn a set of substitutions Σ from the case base from the comparison of two sets
of recipes. As in [5], the mining step is performed thanks to a frequent closed itemset
extraction algorithm.

5.4 A First Example: Cooking a Chocolate Cake

An example is presented to illustrate how the case base is used as an additional source
of adaptation knowledge. The AK discovery process is parametrized automatically and
is used to provide assistance to the user by suggesting some gradual refinements for the
proposed solution.

1. Representing the Target Problem. In this example, the user wants to cook a choco-
late cake with baking chocolate and oranges. The target problem is:

tgt = cake ∧ baking chocolate ∧ orange
In the TAAABLE interface, the field “Ingredients I Want” is filled in with the tokens
baking chocolate and orange and the field “Types I Want” is filled in with
the token cake.

2. Retrieval. The retrieval procedure generates the similarity path SP = σ1 in which
the substitution σ1 = baking chocolate � chocolate is generated
automatically from the ontology O from the axiom baking chocolate ⇒
chocolate. SP is applied to tgt in order to produce the modified query
srce = cake ∧ chocolate ∧ orange. The system retrieves the recipe Ul-
tralight Chocolate Cake, whose representation Sol(srce) is:

Sol(srce) = cake ∧ cocoa ∧ orange ∧ . . . ∧ Nothing else

Since the ontology O contains the axiom cocoa ⇒ chocolate, Sol(srce)
solves the query srce: Sol(srce) is such that Sol(srce) �O srce.

3. Adaptation. AKB is assumed to be empty, so to construct the adaptation path
AP, the substitution chocolate � baking chocolate is generated auto-
matically from σ1. This substitution is further specialized into the substitution

70 F. Badra, A. Cordier, and J. Lieber

Σ1 = cocoa � baking chocolate, according to the axiom cocoa ⇒
chocolate of O. A first solution ˜Sol(tgt) is computed by applying to
Sol(srce) the adaptation path AP = Σ1. The user suggests that an ingredient
is missing in ˜Sol(tgt) but could not identify a repair strategy. An AK discovery
is triggered in order to suggest gradual refinements of ˜Sol(tgt).

4. Choosing the Training Set. The training set TS is chosen fromΣ1: AK is learned by
comparing the recipes containing cocoa with the recipes containing baking choco-
late. TS is composed of the set of variations Δk� ∈ LΔ between pairs of recipes
(Rk,R�) ∈ CB × CB such that {cocoa-,baking chocolate+} ⊆ Δk�.

5. Mining and Filtering. A value is given to the support threshold σs and the mining
step outputs a set of variations. A filter retains only the variations that correspond
to substitutions applicable to modify Sol(srce).

6. Solution Test and Validation. The user selects the learned variation
Δ = {cocoa-,baking chocolate+,oil-} from the result set. Δ is in-
terpreted as the substitution Σ = cocoa∧ oil� baking chocolate, which
suggests to replace cocoa by baking chocolate in the retrieved recipe and to remove
oil. The user explains this rule by the fact that baking chocolate contains more fat
than cocoa, and therefore substituting cocoa by baking chocolate implies to reduce
the quantity of fat in the recipe.

Further solution refinements are proposed to the user. The set of learned varia-
tions is filtered in order to retain only the substitutions Δ′ that are more specific
than Δ, i.e., such that Δ ⊆ Δ′. Among the retained variations is the variation
Δ′ = {cocoa-,baking chocolate+,oil-,vanilla-}, which is interpreted
as the substitution Σ′ = cocoa ∧ oil ∧ vanilla � baking chocolate.
Σ′ suggests to also remove vanilla in the recipe Ultralight Chocolate Cake. The
user is satisfied with the refined solution ˜Sol(tgt) resulting from the appli-
cation of the adaptation path AP = Σ′ to Sol(srce), so the reformulation
(baking chocolate � chocolate, cocoa ∧ oil ∧ vanilla �
baking chocolate) is added to the adaptation knowledge base AKB.

5.5 A Second Example: Cooking a Chinese Soup

A second example is presented in which the AK discovery process is triggered in re-
sponse to the user feedback in order to repair the adaptation presented in Sect. 3. In
this example, the user is encouraged to formulate the cause of the adaptation failure. A
repair strategy is chosen that is used to parametrize the AK discovery process.

1. Representing the Target Problem. In this example, the target problem tgt is:

tgt = chinese ∧ soup ∧ leek ∧ ¬peanut oil

In the TAAABLE interface, the field “Ingredients I Want” is filled in with the token
leek, the field “Ingredients I Don’t Want” is filled in with the token peanut oil
and the field “Types I Want” is filled in with the tokens chinese and soup.

2. Retrieval. As in Sect. 3, two substitutions σ1 = ¬peanut oil � ∅ and
σ2 = leek � onions are generated automatically from the ontology O. The

Opportunistic Adaptation Knowledge Discovery 71

similarity path SP = σ2 ◦ σ1 is applied to tgt in order to produce the modified
query srce = chinese∧soup∧onions. The system retrieves the recipe Won-
ton Soup, whose representation Sol(srce) solves the query srce: Sol(srce)
is such that Sol(srce) �O srce.

3. Adaptation. Initially, AKB = ∅, so to construct the adaptation path AP, two sub-
stitutions Σ1 = ∅ � ¬peanut oil and Σ2 = green onion � leek are
automatically generated from σ1 and σ2.

4. Solution Test and Validation. The solution ˜Sol(tgt) is presented to the user for
validation, together with the adaptation path AP = Σ1 ◦ Σ2 that was used to gener-
ate it.

5. The User is Unsatisfied! The user complains that the adapted recipe is practically
unfeasible because the proposed solution ˜Sol(tgt) does not contain oil anymore,
and oil is needed to saute the bok choy.

6. What has Caused the Adaptation Failure? The cause of the adaptation failure is
identified through interactions with the user. The user validates the intermedi-
ate solution ˜Sol(pb) that results from the application of the substitution Σ2 =
green onion � leek to Sol(srce). But the user invalidates the solution
˜Sol(tgt) that results from the application of Σ1 = ∅ � ¬peanut oil to
˜Sol(pb). The substitution Σ1 is identified as responsible for the adaptation fail-
ure since its application results in the removal of oil in the recipe.

7. Choosing a Repair Strategy. A repair strategy is chosen according to the user’s
feedback. The user expresses the need for oil in the adapted recipe, so the repair
strategy consists in replacing peanut oil by another oil. An AK discovery process
is triggered to decide which oil to replace peanut oil with.

8. Choosing the Training Set. A set of recipes that contain peanut oil is compared with
a set of recipes containing other types of oil. The training set TS is composed of
the set of variations Δk� ∈ LΔ between pairs of recipes (Rk,R�) ∈ CB × CB such
that {oil=,peanut oil-} ⊆ Δk�.

9. Mining and Filtering. A value is given to the support threshold σs and the mining
step outputs a set of variations. A filter retains only the variations that correspond
to substitutions applicable to modify Sol(pb).

10. Solution Test and Validation. The user selects the learned variation
Δ = {oil=,peanut oil-,olive oil+} from the result set. Δ is inter-
preted as the substitution Σ = peanut oil � olive oil, which suggests
to replace peanut oil by olive oil in the retrieved recipe. The adaptation path
AP = Σ ◦ Σ2 is computed and the repaired solution ˜Sol(tgt) is presented to the
user for validation. The user is satisfied with the corrected solution ˜Sol(tgt),
so the reformulation (∅ � ¬peanut oil, peanut oil � olive oil) is
added to the adaptation knowledge base AKB.

6 Discussion and Related Work

AK acquisition is a difficult task that is recognized to be a major bottleneck for CBR
system designers due to the high knowledge-engineering costs it generates. To over-
come these knowledge-engineering costs, a few approaches (e.g., [5,9,11]) have applied

72 F. Badra, A. Cordier, and J. Lieber

machine learning techniques to learn AK offline from differences between cases of the
case base. In [11], a set of pairs of source cases is selected from the case base and each
selected pair of source cases is considered as a specific adaptation rule. The featural
differences between problems constitute the antecedent part of the rule and the feat-
ural differences between solutions constitute the consequent part. Michalski’s closing
interval rule algorithm is then applied to generalize adaptation rule antecedents. In [9],
adaptation knowledge takes the form of a set of adaptation cases. Each adaptation case
associates an adaptation action to a representation of the differences between the two
source problems. Machine learning algorithms like C4.5 or RISE are applied to learn
generalized adaptation knowledge from these adaptation cases in order to improve the
system’s case-based adaptation procedure.

When applying machine learning techniques to learn adaptation knowledge from
differences between cases, one main challenge concerns the choice of the training set:
which cases are worth comparing? Arguing that (1) the size of the training set should be
reduced to minimize the cost of the adaptation rule generation process and that (2) the
source cases that are worth comparing should be the ones that are more similar, only
the pairs of source cases that were judged to be similar according to a given similarity
measure are selected in [9] and [11]. However, committing to a particular similarity
measure might be somewhat arbitrary. Therefore, in [5], the authors decided to include
in the training set all the pairs of distinct source cases of the case base. This paper
introduces a third approach: the choice of the training set is determined interactively
and according to the problem-solving context, taking advantage of the fact that the AK
discovery process is triggered on-line. This approach appears to be very promising since
the learning algorithm can be parametrized in order to learn only the knowledge that is
needed to solve the target problem.

The examples presented above also show that knowledge discovery techniques allow
to come up with more complex adaptation strategies than the simple one-to-one ingre-
dient substitutions generated from the ontology O. In particular, these techniques can
help identifying interactions between the different ingredients that appear in the recipes
(like e.g., that cocoa contains less fat than baking chocolate, so oil should be removed)
as well as co-occurrences of ingredients (like say, that cinnamon is well-suited with ap-
ples). Besides, adaptation knowledge is learned at different levels of generality, so the
user can be guided into gradual solution refinements.

Several CBR systems make use of interactive and/or opportunistic knowledge ac-
quisition approaches to improve their learning capabilities. For example, in Creek, an
approach that combines case-based and model-based methods, general knowledge is
acquired through interactions with the user [1]. This knowledge acquisition process is
provided in addition to the traditional case acquisition and allows the system to ac-
quire knowledge that cannot be captured through cases only. In the Dial system, adap-
tation knowledge is acquired in the form of adaptation cases: when a case has to be
adapted, the adaptation process is memorized in the form of a case and can be reused to
adapt another case. Hence, adaptation knowledge is acquired through a CBR process
inside the main CBR cycle. It must be remarked that adaptation cases can either be
built automatically by adaptation of previous adaptation cases or manually by a user
who interactively builds the adaptation case in response to a problem by selecting the

Opportunistic Adaptation Knowledge Discovery 73

appropriates operations to perform [12]. Hence, knowledge acquisition in Dial appears
to be both interactive and opportunistic. Chef is obviously related to the work described
here [10]. Chef is a case-based planner in the cooking domain, its task is to build recipes
on the basis of a user’s request. The input of the system is a set of goals (tastes, textures,
ingredients, types of dishes) and the output is a plan for a single recipe that satisfies all
the goals. To solve this task, Chef is able to build new plans from old ones stored in
memory. The system is provided with the ability to choose plans on the basis of the
problems that they solve as well as the goals they satisfy, but it is also able to predict
problems and to modify plans to avoid failures (plans are indexed in memory by the
problems they avoid). Hence, Chef learns by providing causal explanations of failures
thus marking elements as ”predictive” of failures. In other words, the acquired knowl-
edge allows the system to avoid identical failures to occur again. In our approach, we
propose to go one step further by using failure to acquire knowledge that can be more
widely used.

7 Conclusion and Future Work

In this paper, a novel approach for adaptation knowledge acquisition is presented in
which the knowledge learned at problem-solving time by knowledge discovery tech-
niques is directly reused for problem-solving. An application is proposed in the context
of the cooking CBR system TAAABLE and the feasibility of the approach is demon-
strated on some use cases. Future work will include developing a graphical user in-
terface and doing more extensive testing. Opportunistic and interactive knowledge dis-
covery in TAAABLE implies that the user plays the role of the domain expert, which
raises several issues. For example, how to be sure that the knowledge expressed by
a particular user is valuable? How to ensure that the adaptation knowledge base will
remain consistent with time? Besides, TAAABLE is meant to be multi-user, so if the
system’s knowledge evolves with experience, some synchronization problems might
occur. Therefore, the envisioned multi-user, ever-learning TAAABLE system needs to
be thought of as a collaborative tool in which knowledge acquired by some users can
be revised by others.

References

1. Aamodt, A.: Knowledge-Intensive Case-Based Reasoning in Creek. In: Funk, P., González
Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 1–15. Springer, Heidelberg (2004)

2. Badra, F., Lieber, J.: Representing Case Variations for Learning General and Specific Adap-
tation Rules. In: Cesta, A., Fakotakis, N. (eds.) Proceedings of the Fourth Starting AI Re-
searcher’s Symposium (STAIRS 2008), pp. 1–11 (2008)

3. Badra, F., Bendaoud, R., Bentebibel, R., Champin, P.-A., Cojan, J., Cordier, A., Després,
S., Jean-Daubias, S., Lieber, J., Meilender, T., Mille, A., Nauer, E., Napoli, A., Toussaint,
Y.: Taaable: Text Mining, Ontology Engineering, and Hierarchical Classification for Tex-
tual Case-Based Cooking. In: Schaaf, M. (ed.) Computer Cooking Contest - Workshop at
European Conference on Case-Based Reasoning (ECCBR 2008), pp. 219–228 (2008)

4. Schaaf, M. (ed.) ECCBR Workshops, ECCBR 2008, The 9th European Conference on Case-
Based Reasoning, Workshop Proceedings (2008)

74 F. Badra, A. Cordier, and J. Lieber

5. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case Base Mining
for Adaptation Knowledge Acquisition. In: Proceedings of the International Conference on
Artificial Intelligence, IJCAI 2007, pp. 750–756 (2007)

6. de Mántaras, R.L., Plaza, E.: Case-Based Reasoning: An Overview. AI Communica-
tions 10(1), 21–29 (1997)

7. Cordier, A.: Interactive and Opportunistic Knowledge Acquisition in Case-Based Reasoning,
Phd Thesis, Université Lyon 1 (2008)

8. Cordier, A., Fuchs, B., Lana de Carvalho, L., Lieber, J., Mille, A.: Opportunistic Acquisition
of Adaptation Knowledge and Cases - The IakA Approach. In: Althoff, K.-D., Bergmann,
R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 150–164. Springer,
Heidelberg (2008)

9. Craw, S., Wiratunga, N., Rowe, R.: Learning Adaptation Knowledge to Improve Case-Based
Reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)

10. Hammond, K.: CHEF: A model of case-based planning. In: Proceedings of the 5th National
Conference on Artificial Intelligence, pp. 267–271. AAAI Press, Menlo Park (1986)

11. Hanney, K., Keane, M.T.: The Adaptation Knowledge Bottleneck: How to Unblock it By
Learning From Cases. In: Proceedings of the 2nd International Conference on CBR, pp.
359–370 (1997)

12. Leake, D., Kinley, A., Wilson, D.: Acquiring Case Adaptation Knowledge: A Hybrid Ap-
proach. In: Proc. of the 13th National Conference on Artificial Intelligence, pp. 684–689
(1996)

13. Melis, E., Lieber, J., Napoli, A.: Reformulation in Case-Based Reasoning. In: Smyth, B.,
Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 172–183. Springer, Hei-
delberg (1998)

Improving Reinforcement Learning by Using Case
Based Heuristics

Reinaldo A.C. Bianchi1,2, Raquel Ros2, and Ramon Lopez de Mantaras2

1 Centro Universitário da FEI, São Bernardo do Campo, Brazil
rbianchi@fei.edu.br

2 Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain
{ros,mantaras}@iiia.csic.es

Abstract. This work presents a new approach that allows the use of cases in a
case base as heuristics to speed up Reinforcement Learning algorithms,
combining Case Based Reasoning (CBR) and Reinforcement Learning (RL) tech-
niques. This approach, called Case Based Heuristically Accelerated Reinforce-
ment Learning (CB-HARL), builds upon an emerging technique, the Heuristic
Accelerated Reinforcement Learning (HARL), in which RL methods are acceler-
ated by making use of heuristic information. CB-HARL is a subset of RL that
makes use of a heuristic function derived from a case base, in a Case Based
Reasoning manner. An algorithm that incorporates CBR techniques into the
Heuristically Accelerated Q–Learning is also proposed. Empirical evaluations
were conducted in a simulator for the RoboCup Four-Legged Soccer Competi-
tion, and results obtained shows that using CB-HARL, the agents learn faster
than using either RL or HARL methods.

1 Introduction

Case Based Reasoning (1; 2) techniques have been shown to be useful in a multitude
of domains, with widespread applications ranging from the optimization of autoclave
loading (3), the diagnosis and treatment of many medical problems (4), to the synthesis
of high quality expressive music (5).

Reinforcement Learning (RL) is also a very successful Artificial Intelligence sub-
area. RL algorithms are very useful for solving a wide variety problems when their
models are not available a priori, since many of them are known to have guarantees of
convergence to equilibrium (6; 7). Unfortunately, the convergence of a RL algorithm
may only be achieved after an extensive exploration of the state-action space, which is
usually very time consuming.

One way to speed up the convergence of RL algorithms is making use of a con-
veniently chosen heuristic function, which can be used for selecting the appropriate
actions to perform in order to guide exploration during the learning process. Several
Heuristically Accelerated Reinforcement Learning (HARL) methods that makes use of
a heuristic function have been recently proposed (8; 9). These techniques are very at-
tractive: as RL, they are based on firm theoretical foundations. As the heuristic function
is used only in the choice of the action to be taken, many of the conclusions obtained

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 75–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 R.A.C. Bianchi, R. Ros, and R. Lopez de Mantaras

for RL remain valid for HARL algorithms, such as the guarantee of convergence to
equilibrium in the limit and the definition of an upper bound for the error.

Although several methods have been successfully applied for defining the heuris-
tic function, a very interesting option had not been explored yet: the reuse of previ-
ously learned policies, using a Case Based Reasoning approach to define an heuristic
function. This paper investigates the combination of Case Based Reasoning (CBR) and
Heuristically Accelerated Reinforcement Learning (HARL) techniques, with the goal
of speeding up RL algorithms by using previous domain knowledge, stored as a case
base. To do so, we propose a new algorithm, the Case Based Heuristically Accelerated
Q–Learning (CB-HAQL), which incorporates Case Based Reasoning techniques into
an existing HARL algorithm, the Heuristically Accelerated Q–Learning (HAQL).

The application domain of this paper is that of the RoboCup Standard Platform
League, Four-Legged Soccer Competition (10), where teams consisting of four Sony
AIBO robots operating fully autonomously and communicating through a wireless net-
work compete in a 6 x 4 m field. This domain is one of many RoboCup challenges,
which has been proven to be an important domain for research, and where RL tech-
niques have been widely used. Nevertheless, the technique proposed in this work is
domain independent.

The paper is organized as follows: Section 2 briefly reviews the Reinforcement
Learning problem; Section 3 describes the HARL approach and the HAQL algorithm,
while section 4 describes Case Based Reasoning. Section 5 shows how to incorporate
CBR techniques into HARL algorithms, in a modified formulation of the HAQL algo-
rithm. Section 6 describes the robotic soccer domain used in the experiments, presents
the experiments performed, and shows the results obtained. Finally, conclusions are
presented in Section 7.

2 Reinforcement Learning and the Q–Learning Algorithm

Reinforcement Learning (RL) algorithms have been applied successfully to the on-line
learning of optimal control policies in Markov Decision Processes (MDPs). In RL, this
policy is learned through trial-and-error interactions of the agent with its environment:
on each interaction step the agent senses the current state s of the environment, chooses
an action a to perform, executes this action, altering the state s of the environment, and
receives a scalar reinforcement signal r (a reward or penalty).

The RL problem can be formulated as a discrete time, finite state, finite action
Markov Decision Process (MDP). The learning environment can be modeled by a 4-
tuple 〈S,A, T ,R〉, where:

– S: is a finite set of states.
– A: is a finite set of actions that the agent can perform.
– T : S × A → Π(S): is a state transition function, where Π(S) is a probability

distribution over S. T (s, a, s′) represents the probability of moving from state s to
s′ by performing action a.

– R : S × A → �: is a scalar reward function.

The goal of the agent in a RL problem is to learn an optimal policy π∗ : S → A
that maps the current state s into the most desirable action a to be performed in s.

Improving Reinforcement Learning by Using Case Based Heuristics 77

Table 1. The Q–Learning algorithm

Initialize Q̂t(s, a) arbitrarily.
Repeat (for each episode):

Initialize s randomly.
Repeat (for each step):

Select an action a using equation 2.
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a) according to equation 1.
s ← s′.

Until s is terminal.
Until some stopping criterion is reached.

One strategy to learn the optimal policy π∗ is to allow the agent to learn the evaluation
function Q : S × A → R. Each action value Q(s, a) represents the expected cost
incurred by the agent when taking action a at state s and following an optimal policy
thereafter.

The Q–learning algorithm (11) is a well-know RL technique that uses a strategy
to learn an optimal policy π∗ via learning of the action values. It iteratively approxi-
mates Q, provided the system can be modeled as an MDP, the reinforcement function
is bounded, and actions are chosen so that every state-action pair is visited an infi-
nite number of times (the complete algorithm is presented in Table 1). The Q learning
update rule is:

Q̂(s, a)← Q̂(s, a) + α
[
r + γ max

a′
Q̂(s′, a′)− Q̂(s, a)

]
, (1)

where s is the current state; a is the action performed in s; r is the reward received; s′ is
the new state; γ is the discount factor (0 ≤ γ < 1); and α is the learning rate. To select
an action to be executed, the Q–Learning algorithm usually considers an ε − Greedy
strategy:

π(s) =

{
arg maxa Q̂(s, a) if q ≤ p,

arandom otherwise
(2)

where:

– q is a random value uniformly distributed over [0, 1] and p (0 ≤ p ≤ 1) is a pa-
rameter that defines the exploration/exploitation tradeoff: the larger p, the smaller
is the probability of executing a random exploratory action.

– arandom is an action randomly chosen among those available in state s.

In RL, learning is carried out online, through trial-and-error interactions of the agent
with the environment. Unfortunately, convergence of any RL algorithm may only be
achieved after extensive exploration of the state-action space. In the next section we
show one way to speed up the convergence of RL algorithms, by making use of a heuris-
tic function in a manner similar to the use of heuristics in informed search algorithms.

78 R.A.C. Bianchi, R. Ros, and R. Lopez de Mantaras

3 Heuristic Accelerated Reinforcement Learning and the HAQL
Algorithm

Formally, a Heuristically Accelerated Reinforcement Learning (HARL) algorithm (8) is
a way to solve a MDP problem with explicit use of a heuristic functionH : S ×A → �
for influencing the choice of actions by the learning agent. H(s, a) defines the heuristic
that indicates the importance of performing the action a when visiting state s. The
heuristic function is strongly associated with the policy: every heuristic indicates that
an action must be taken regardless of others.

The heuristic function is an action policy modifier, which does not interfere with the
standard bootstrap-like update mechanism of RL algorithms. A possible strategy for
action choice is an ε− greedy mechanism where a heuristic mechanism formalized as
a function H(s, a) is considered, thus:

π(s) =

{
argmaxa

[
F(s, a) �	 ξH(s, a)β

]
if q ≤ p,

arandom otherwise
(3)

where:

– F : S × A → � is an estimate of a value function that defines the expected
cumulative reward. If F(s, a) ≡ Q̂(s, a) we have an algorithm similar to standard
Q–Learning.

– H : S × A → � is the heuristic function that plays a role in the action choice.
H(s, a) defines the importance of executing action a in state s.

– �	 is a function that operates on real numbers and produces a value from an ordered
set which supports a maximization operation.

– ξ and β are design parameters that control the influence of the heuristic function.
– q is a parameter that defines the exploration/exploitation tradeoff.
– arandom is an action randomly chosen among those available in state s.

The first HARL algorithm proposed was the Heuristically Accelerated Q–Learning
(HAQL) (8), as an extension of the Q–Learning algorithm. The only difference be-
tween them is that in the HAQL makes use of an heuristic function in the action choice
rule defined in Equation (3), where F = Q, the �	 operator is the sum, and β = 1:

π(s) =

{
argmaxa

[
Q̂(s, a) + ξH(s, a)

]
if q ≤ p,

arandom otherwise,
(4)

where all variables are defined as in Equation (3).
As a general rule, the value of H(s, a) used in HAQL should be higher than the

variation among the Q̂(s, a) values for the same s ∈ S, in such a way that it can
influence the choice of actions, and it should be as low as possible in order to minimize
the error. It can be defined as:

H(s, a) =

{
max

i
Q̂(s, i)− Q̂(s, a) + η if a = πH(s),

0 otherwise.
(5)

Improving Reinforcement Learning by Using Case Based Heuristics 79

Table 2. The HAQL algorithm

Initialize Q̂t(s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Update the values of Ht(s, a) as desired.
Select an action a using equation 4.
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a) according to equation 1.
s ← s′.

Until s is terminal.
Until some stopping criterion is reached.

where η is a small real value (usually 1) and πH(s) is the action suggested by the
heuristic policy.

Convergence of the HAQL algorithm was presented by Bianchi, Ribeiro and Costa
(8), together with the definition of an upper bound for the error in the estimation of Q.
The complete HAQL algorithm is presented in Table 2. The same authors investigated
the use of HARL in multiagent domain, proposing a multiagent HARL algorithm – the
Heuristically Accelerated Minimax-Q (9) – and testing it in a simplified simulator for
the robot soccer domain.

Despite the fact that RL is a method that has been traditionally applied in Robotic
Soccer domains, only recently have HARL methods been used in this domain. Bianchi,
Ribeiro and Costa (9) investigated the use of a multiagent HARL algorithm in a sim-
plified simulator for the robot soccer domain and Celiberto, Ribeiro, Costa and Bianchi
(12) studied the use of the HARL algorithms to speed up learning in the RoboCup 2D
Simulation domain.

4 Case Based Reasoning

Case based reasoning (CBR) (1; 2) uses knowledge of previous situations (cases) to
solve new problems, by finding a similar past case and reusing it in the new problem
situation. In the CBR approach, a case usually describes a problem and its solution, i.e.,
the state of the world in a defined moment and the sequence of actions to perform to
solve that problem.

According to López de Mántaras et al (2), solving a problem by CBR involves “ob-
taining a problem description, measuring the similarity of the current problem to previ-
ous problems stored in a case base with their known solutions, retrieving one or more
similar cases, and attempting to reuse the solution of the retrieved case(s), possibly af-
ter adapting it to account for differences in problem descriptions”. Other steps that are
usually found in CBR systems are the evaluation of the proposed solution, the revision
of the solution, if required in light of its evaluation, and the retention (learning) of a
new case, if the system has learned to solve a new problem.

80 R.A.C. Bianchi, R. Ros, and R. Lopez de Mantaras

The case definition used in this work is the one proposed by Ros (13; 14; 15; 16),
which is composed of three parts: the problem description (P), the solution description
(A) and the case scope (K), and is formally described as a 3-tuple:

case = (P, A, K).

The problem description P corresponds to the situation in which the case can be used.
For example, for a simple robotic soccer problem, the description of a case can include
the robot position, the ball’s position and the positions of the other robots in the game.
For a game with n robots, P can be:

P = {xB, yB, xR0 , yR0 , . . . , xRn , yRn}.

The solution description is composed by the sequence of actions that each robot must
perform to solve the problem, and can be defined as:

A = {R0 : [a01 , a02 , ..., a0p0
], . . . , Rn : [an1 , an2 , ..., anpn

]},

where n is the number of robots in the team, a0i is an individual or joint action that robot
Ri must perform and pi corresponds the number of actions the robot Ri performs.

The case scope defines the applicability boundaries of the cases, to be used in the
retrieval step. For example, Ros (16) define it as “the regions of the field within which
the ball and the opponents should be positioned in order to retrieve that case”. In the case
of a simple robot soccer problem, K can be represented as ellipsoids centered on the ball’s
and opponents’ positions indicated in the problem description. It can be defined as:

K = {(τx
B , τy

B), (τx
R0

, τy
R0

) . . . , (τx
Rn

, τy
Rn

)},

where τx
B, τy

B corresponds to the x and y radius of the ellipsoid region around the ball
and (τx

R0
, τy

R0
) . . . , (τx

Rn
, τy

Rn
) the radius of the regions around the n robots in the game

(teammates and opponents).
Case retrieval is in general driven by a similarity measure between the new problem

and the solved problems in the case base. In this work we use the case retrieval method
proposed by Ros (16), where the similarity along three important aspects are evaluated:

– the similarity between the problem and the case;
– the cost of adapting the problem to the case, and;
– the applicability of the solution of the case.

The similarity function indicates how similar a problem and a case are. In most cases,
the function is defined by the distance between the ball and the robots in the problem
and in the case.

Sim(p, c) = dist(Bc, Bp) +
n∑

i=0

dist(Ri
c, Ri

p),

where Bc is the position of the ball in the case and Bp its position in the problem, Ri
c

the position of the Robot i in the case and Ri
p its position in the problem, and dist(a, b)

is the Gaussian distance between object a and b. This distance is computed as follows:

Improving Reinforcement Learning by Using Case Based Heuristics 81

dist(a, b) = exp

(
−

[(
ax − bx

τx

)2

+
(

ay − by

τy

)2
])

,

where τx, τy are the radius of the scope around the object (ball and robots positions).
The Gaussian distance is used because the larger the distance between two points, the
lower the similarity between them. Also, the τx, τy parameters are used as a thresh-
old that defines a maximum distance allowed for two points to have some degree of
similarity: if the distance is greater than a limit, Sim(a, b) = 0.

The cost of adapting the problem to the case is computed as a function of the
distances between the positions of the team robots in the problem and the positions
specified in the case. The adaptation cost is defined as:

cost(p, c) =
n∑

i=1

dist(ri, adaptPosi)

where n is the number of robots that take part of the case solution, dist is the Euclidian
distance, ri is the current position of robot i and adaptPosi the adapted position for
robot i.

The applicability of the solution of the case depends on the position of the opponents,
and combine two functions: the free path function, which considers if the trajectory of
the ball indicated in the case is free of opponents, in order for the evaluated case to
be applicable and the opponent similarity, which computes if the opponents represent
a significant threat for the robots to fulfill the task, such as an opponent blocking the
ball or an opponent located near enough to get the ball first. These functions and the
complete case retrieval algorithm are described in detail in Ros (16).

In recent years, CBR has been used by several researchers in the Robotic Soccer
domain. To mention a few, Lin, Liu and Chen (17) presented a hybrid architecture for
soccer players where the deliberative layer corresponds to a CBR system, Ahmadi et
al (18) presented a two-layered CBR system for prediction for the coach, and Karol
et al (19) presented high level planning strategies including a CBR system. Finally, the
works of Ros (13) presents the most ample use of CBR techniques in the Robotic Soccer
domain, proposing the use of CBR techniques to handle retrieval, reuse and acquisition
of a case base for the action selection problem of a team for the Four-Legged robots.

5 Combining Case Based Reasoning and Reinforcement Learning

In order to give HARL algorithms the capability of reusing previous knowledge from a
domain, we propose a new algorithm, the Case Based HAQL, which extends the HAQL
algorithm with the abilities to retrieve a case stored in a base, adapt it to the current
situation, and build a heuristic function that corresponds to the case.

As the problem description P corresponds to one defined state of the set of states S
in an MDP, an algorithm that uses the RL loop can be implemented. Inside this loop,
before the action selection, we added steps to compute the similarity of the cases in the
base with the current state and the cost of adaptation of these cases. A case is retrieved
if the similarity is above a certain threshold, and adaptation cost is low. After a case
is retrieved, an heuristic is computed using Equation 5 with the sequence of actions

82 R.A.C. Bianchi, R. Ros, and R. Lopez de Mantaras

Table 3. The CB-HAQL algorithm

Initialize Q̂t(s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Compute similarity and cost.
If there is a case that can be reused:

Retrieve and Adapt if necessary.
Compute Ht(s, a) using Equation 5 with the

actions suggested by the case selected.
Select an action a using equation 4.
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a) according to equation 1.
s ← s′.

Until s is terminal.
Until some stopping criterion is reached.

suggested by the case selected, and this heuristic is used for a certain amount of time,
equal to the number of actions of the retrieved case. After that time, a new case can be
retrieved. The complete CB-HAQL algorithm is presented in Table 3.

Although this is the first paper to combine CBR with RL by the use of an explicit
heuristic function, this is not the first work on combining the CBR and RL fields. Drum-
mond (20) was probably the first to use CBR to speed up RL, proposing to accelerate
RL by transferring parts of previously learned solutions to a new problem, exploiting
the results of prior learning to speed up the process. The system identifies subtasks
on the basis of stable features that arise in the multi-dimensional value function due to
the interaction of the learning agent with the world during the learning process. As the
agent learns, it can access a case base that contains clipped parts of previous learned
value functions that solves individual problems, speeding up the convergence time.

Several other authors have been studying the use of RL together with CBR and the
relation between them. Sharma et al (21) makes use of CBR as a function approximator
for RL, and RL as revision algorithm for CBR in a hybrid architecture system; Gabel
and Riedmiller (22) also makes use of CBR in the task of approximating a function over
high-dimensional, continuous spaces; Juell and Paulson (23) exploit the use of RL to
learn similarity metrics in response to feedback from the environment; Auslander et al
(24) uses CBR to adapt quickly an RL agent to changing conditions of the environment
by the use of previously stored policies and Li, Zonghai and Feng (25) proposes an
algorithm that makes use of knowledge acquired by reinforcement learning to construct
and extend a case base.

Finally, works on Transfer Learning have also combined CBR and RL. For example,
van Hessing and Goel (26) describes a technique for abstracting reusable cases from RL,
enabling the transfer of acquired knowledge to other instances of the same problem.

Our approach differs from all previous research combining CBR and RL because of
the heuristic use of the retrieved case: as the case is used only as a heuristic, if the case

Improving Reinforcement Learning by Using Case Based Heuristics 83

base contains a case that can be used in one situation, there will be a speed up in the
convergence time. But if the case base does not contain any useful case – or even if it
contains cases that implement wrong solutions to the problem, the agent will learn the
optimal solution anyway, by using the RL component of the algorithm.

6 Experiments in the Robotic Soccer Domain

Empirical evaluations of the CB-HAQL approach were carried out in an extended ver-
sion of the PuppySim 2 simulator, created by the CMDash team (27) and extended by
Ros (16). This simulator represents the basic aspects of the RoboCup Standard Platform
League, Four-Legged Soccer Competition (28), and is used to test the robot’s behav-
ioral response under ideal environmental conditions: the robots’ perception is noiseless,
but the outcome of the actions the robots perform have a certain degree of randomness.

Using this simulator experiments were performed using two attackers against a de-
fender and a goalie. The attackers are two robots controlled by one of the algorithms to
be evaluated: the Q–Learning, described in section 2, the HAQL, described in section 3
or the CB-HAQL, proposed in section 5 and we have also compared them to the results
of the CBR system alone obtained by Ros (16). The opponents perform the same reac-
tive behavior when playing against any of the evaluated approaches. The defender and
the goalie have a home region which cannot go beyond. If the ball is within its home
region, then the robot moves towards the ball and clears it. Otherwise, the robot remains
in the boundary of its home region, facing the ball to maintain it in its point of view.
Each trial begins with the attackers being positioned in the field in a random position,
and the defender, the goalie and the ball in a fixed location (ball in the center, and de-
fender and goalie in the center of their home region). Figure 1 shows the PuppySim 2

Fig. 1. The PuppySim2 users’ interface showing the robots at their initial positions

84 R.A.C. Bianchi, R. Ros, and R. Lopez de Mantaras

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

G
oa

ls

Trials

CBR
Q-Learning

HAQL
CB-HAQL

Fig. 2. Percentage of goals scored in each trial using the CBR (constant line at 35%), Q–learning,
the HAQL and the CB-HAQL algorithms

users’ interface with one starting configuration. A trial ends either when the attackers
score a goal, the ball goes out of the field or the goalie touches it.

The heuristic used in the HAQL algorithm was defined using a simple rule: if holding
the ball, go to the opponents goal, not taking into account the opponents positions,
leaving the task of how to divert the opponent to the learning process. The heuristic
used in the CB-HAQL is computed during the games, as described in section 5. The
case base used for the experimentation is composed of 136 cases, which cover the most
significant situations that can occur in the evaluation presented in this work. From this
set, 34 cases are initially defined, while the remaining ones are automatically generated
using spatial transformations exploiting the symmetries of the soccer field. The reward
the agents receive are the same for all algorithms: the agent receives −100 every time
the ball go out of the field or the goalie touches it and +100 a robot scores a goal.

In order to evaluate each trial we classify the possible outcomes as:

– goal : the ball enters the goal.
– close : the ball goes out of the field but passes near one of the goalposts. More

precisely, at most 25cm to the left (right) of the left (right) goalpost.
– block : the goalie stops or kicks the ball.
– out : the ball goes out the field without being a goal or close to goal.

We also consider the “to-goal” balls, which correspond to balls that are either goals or
close to goal. This measure indicates the degree of goal intention of the kicks. Thus,
although the balls might not enter the goal, at least they were intended to do so.

Twenty five training sessions were run for the three algorithms, with each session
consisting of 1000 trials. Figures 2 to 5 shows the learning curves for all algorithms

Improving Reinforcement Learning by Using Case Based Heuristics 85

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

C
lo

se
 to

 G
oa

l

Trials

CBR
Q-Learning

HAQL
CB-HAQL

Fig. 3. Percentage of balls that passed close to the goals in each trial, for the CBR (constant line
at 5%), Q–learning, the HAQL and the CB-HAQL algorithms

(the CBR alone and the three learning algorithms) and presents the percent of goals
scored (Fig. 2) by the learning team, balls that passed close to the goals (Fig. 3), balls
blocked by the defenders (Fig. 4) and balls that went out (Fig. 5) in each trial. It is
possible to verify in Fig. 2 that at the beginning of the learning phase HAQL has worse
performance than the CB-HAQL, and as the trials proceed, the performance of both al-
gorithms become similar, as expected, since all the algorithms converge to equilibrium.
The Q–learning is clearly the one with the worst performance, since it takes much more
trials for it to start to learn even basic policies, as not to kick the ball out of the field.
In this figure it can also be observed the performance of two agents using only the case
base. Student’s t–test was used to verify the hypothesis that the use of heuristics speeds
up the learning process. Using the data from Fig. 2, the result is that the CB-HAQL is
better (makes more goals) than HAQL and Q–Learning until the 300th trial, with a level
of confidence greater than 5%. After this trial the results of the CB-HAQL and HAQL
are comparable.

Finally, table 4 summarizes the ball classification outcome obtained (results in per-
centage) using the CBR approach and the three learning algorithms. The results for the
CBR approach are the average of 500 trials, and the results for the Q–learning, HAQL
and CB-HAQL are the average of 100 trials, using the Q-table that the three algorithms
had at the end of the 1000th trial. As we can see the percentage of balls to goal with
the CB-HAQL approach is higher compared to either the HAQL or the Q-Learning
algorithms. Moreover, the percentage of balls out are lower when using CBR, indicat-
ing that the defender had less opportunities to take the ball and kick it out of the field,
and that the agent performed less random exploration.

86 R.A.C. Bianchi, R. Ros, and R. Lopez de Mantaras

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

B
lo

ck
ed

 b
al

ls

Trials

CBR
Q-Learning

HAQL
CB-HAQL

Fig. 4. Percentage of balls blocked by the defenders for the CBR (constant line at 38%), Q–
learning, the HAQL and the CB-HAQL algorithms

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

O
ut

 o
f t

he
 fi

el
d

Trials

CBR
Q-Learning

HAQL
CB-HAQL

Fig. 5. Percentage of balls that went out of the field in each trial, for the CBR (constant line at
22%), Q–learning, the HAQL and the CB-HAQL algorithms

Improving Reinforcement Learning by Using Case Based Heuristics 87

Table 4. Ball outcome classification (results in percentage)

Approach Goal Close To-Goal Blocked Out
Goal + Close

CBR 35 5 40 38 22
Q–Learning 2 2 4 22 74

HAQL 16 4 20 20 60
CB-HAQL 40 7 47 36 17

The parameters used in the experiments were the same for all the algorithms: α =
0, 9, the exploration/ exploitation = 0.2, γ = 0.9 and η = 1 Values in the Q table
were randomly initiated. The experiments were programmed in Python and executed in
a MacBook Pro, with 4GB of RAM in a Mac OS X platform.

7 Conclusion

This work presented a new algorithm, called Case Based Heuristically Accelerated
Q–Learning (CB-HAQL), which allows the use of a case base to define heuristics to
speed up the well-known Reinforcement Learning algorithm Q–Learning. This ap-
proach builds upon an emerging technique, the Heuristic Accelerated Reinforcement
Learning (HARL), in which RL methods are accelerated by making use of heuristic
information.

The experimental results obtained showed that CB-HAQL attained better results than
HAQL and Q–Learning for the domain of robotic soccer games. For example, the Q–
Learning, after 1000 learning trials, still could not produce policies that scored goals
on the opponent, while the HAQL was able to score some goals but significantly less
than the CBR alone and the CB-HAQL. Another interesting finding is that the goals
scored by the CB-HAQL after 1000 trials was even slightly higher than the number of
goals scored by the CBR approach alone, indicating that the learning component of the
CB-HAQL algorithm was able to improve the initial case base.

Another important finding of this work is that the CBR approach generated better
results than the Q–learning algorithm, for the same experimental setup. Experiments
executed until the 10.000 th trial showed that the Q-Learning still had not converged,
indicating the slow rate of learning of this algorithm, in this domain.

Finally, since Heuristic functions allow RL algorithms to solve problems where the
convergence time is critical, as in many real time applications, in future work we plan
to incorporate CBR in other well known RL algorithms, like SARSA, Q(λ), Minimax-
Q, Minimax-Q(λ), and Nash-Q, and expand this framework to deal with General Sum
Markov Games.

Acknowledgement. This work has been partially funded by the 2005-SGR-00093 grant
of the Generalitat de Catalunya, the MID-CBR project TIN 2006-15140-C03-01, and
FEDER funds. Reinaldo Bianchi acknowledge the support of the CNPq (Grant No.
201591/2007-3) and FAPESP (Grant No. 2009/01610-1).

88 R.A.C. Bianchi, R. Ros, and R. Lopez de Mantaras

References

[1] Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological varia-
tions, and system approaches. AI Commun. 7(1), 39–59 (1994)

[2] de Mántaras, R.L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B.,
Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse,
revision and retention in case-based reasoning. Knowl. Eng. Rev. 20(3), 215–240 (2005)

[3] Hennessy, D., Hinkle, D.: Applying case-based reasoning to autoclave loading. IEEE Ex-
pert: Intelligent Systems and Their Applications 7(5), 21–26 (1992)

[4] Althoff, K.D., Bergmann, R., Wess, S., Manago, M., Auriol, E., Larichev, O.I., Bolotov, A.,
Zhuravlev, Y.I., Gurov, S.I.: Case-based reasoning for medical decision support tasks: The
inreca approach. In: Artificial Intelligence in Medicine, January 1998, pp. 25–41 (1998)

[5] López de Mántaras, R., Cunningham, P., Perner, P.: Emergent case-based reasoning appli-
cations. Knowl. Eng. Rev. 20(3), 325–328 (2005)

[6] Szepesvári, C., Littman, M.L.: Generalized markov decision processes: Dynamic-
programming and reinforcement-learning algorithms. Technical report, Brown University,
CS-96-11 (1996)

[7] Littman, M.L., Szepesvári, C.: A generalized reinforcement learning model: convergence
and applications. In: Proceedings of the 13th International Conference on Machine Learning
(ICML 1996), pp. 310–318 (1996)

[8] Bianchi, R.A.C., Ribeiro, C.H.C., Costa, A.H.R.: Accelerating autonomous learning by us-
ing heuristic selection of actions. Journal of Heuristics 14(2), 135–168 (2008)

[9] Bianchi, R.A.C., Ribeiro, C.H.C., Costa, A.H.R.: Heuristic selection of actions in multia-
gent reinforcement learning. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
pp. 690–695 (2007)

[10] RoboCup Technical Committee: Standard platform league homepage (2009),
http://www.tzi.de/spl

[11] Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, University of Cambridge
(1989)

[12] Celiberto, L.A., Ribeiro, C.H.C., Costa, A.H.R., Bianchi, R.A.C.: Heuristic reinforcement
learning applied to robocup simulation agents. In: Visser, U., Ribeiro, F., Ohashi, T., Del-
laert, F. (eds.) RoboCup 2007: Robot Soccer World Cup XI. LNCS, vol. 5001, pp. 220–227.
Springer, Heidelberg (2008)

[13] Ros, R., Arcos, J.L., de Mantaras, R.L., Veloso, M.: A case-based approach for coordinated
action selection in robot soccer. Artificial Intelligence 173(9-10), 1014–1039 (2009)

[14] Ros, R., de Mántaras, R.L., Arcos, J.L., Veloso, M.: Team playing behavior in robot soccer:
A case-based approach. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI),
vol. 4626, pp. 46–60. Springer, Heidelberg (2007)

[15] Ros, R., Arcos, J.L.: Acquiring a robust case base for the robot soccer domain. In: Veloso,
M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pp. 1029–1034. AAAI Press, Menlo Park (2007)

[16] Ros, R.: Action Selection in Cooperative Robot Soccer using Case-Based Reasoning. PhD
thesis, Universitat Autònoma de Barcelona, Barcelona (2008)

[17] Lin, Y., Liu, A., Chen, K.: A hybrid architecture of case-based reasoning and fuzzy behav-
ioral control applied to robot soccer. In: Workshop on Artificial Intelligence, International
Computer Symposium (ICS 2002), Hualien, Taiwan, National Dong Hwa University, Na-
tional Dong Hwa University (2002)

[18] Ahmadi, M., Lamjiri, A.K., Nevisi, M.M., Habibi, J., Badie, K.: Using a two-layered case-
based reasoning for prediction in soccer coach. In: Arabnia, H.R., Kozerenko, E.B. (eds.)
MLMTA, pp. 181–185. CSREA Press (2003)

http://www.tzi.de/spl

Improving Reinforcement Learning by Using Case Based Heuristics 89

[19] Karol, A., Nebel, B., Stanton, C., Williams, M.A.: Case based game play in the robocup
four-legged league part i the theoretical model. In: Polani, D., Browning, B., Bonarini, A.,
Yoshida, K. (eds.) RoboCup 2003. LNCS, vol. 3020, pp. 739–747. Springer, Heidelberg
(2004)

[20] Drummond, C.: Accelerating reinforcement learning by composing solutions of automati-
cally identified subtasks. Journal of Artificial Intelligence Research 16, 59–104 (2002)

[21] Sharma, M., Holmes, M., Santamarı́a, J.C., Irani, A., Isbell Jr., C.L., Ram, A.: Transfer
learning in real-time strategy games using hybrid cbr/rl. In: Veloso, M.M. (ed.) IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyder-
abad, India, January 6-12, pp. 1041–1046 (2007)

[22] Gabel, T., Riedmiller, M.A.: CBR for state value function approximation in reinforcement
learning. In: Muñoz-Avila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 206–221.
Springer, Heidelberg (2005)

[23] Juell, P., Paulson, P.: Using reinforcement learning for similarity assessment in case-based
systems. IEEE Intelligent Systems 18(4), 60–67 (2003)

[24] Auslander, B., Lee-Urban, S., Hogg, C., Muñoz-Avila, H.: Recognizing the enemy: Com-
bining reinforcement learning with strategy selection using case-based reasoning. In: Al-
thoff, K.D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp.
59–73. Springer, Heidelberg (2008)

[25] Li, Y., Zonghai, C., Feng, C.: A case-based reinforcement learning for probe robot path
planning. In: 4th World Congress on Intelligent Control and Automation, Shanghai, China,
pp. 1161–1165 (2002)

[26] von Hessling, A., Goel, A.K.: Abstracting reusable cases from reinforcement learning. In:
Brüninghaus, S. (ed.) ICCBR Workshops, pp. 227–236 (2005)

[27] Veloso, M., Rybski, P.E., Chernova, S., McMillen, C., Fasola, J., von Hundelshausen, F.,
Vail, D., Trevor, A., Hauert, S., Ros, R.: Cmdash 2005: Team report. Technical report,
School of Computer Science, Carnegie Mellon University (2005)

[28] RoboCup Technical Committee: RoboCup Four-Legged League Rule Book (2008)

Dimensions of Case-Based Reasoner Quality
Management

Annett Bierer1 and Marcus Hofmann2

Chemnitz University of Technology
Faculty for economics and business administration
1Chair of management accounting and controlling

2Chair of business process management and knowledge management
Thüringer Weg 7, D-09126 Chemnitz, Germany

Tel.: +49(0)371/531-33975; Fax: +49 (0) 371/531-26529
{annett.bierer,marcus.hofmann}@wirtschaft.tu-chemnitz.de

Abstract. CBR systems are increasingly applied in practice. There, the
system’s ability to provide users with the information they need depends
on the quality of the system’s knowledge base and its long-term assur-
ance and continuous improvement. Currently, in CBR research quality
is rather an abstract term and maintenance takes a center stage. But in
practice, there is a need for a broader and more detailed focus on quality
aspects. Hence, the paper extends the maintenance view to a quality-
oriented view. A framework is presented containing relevant aspects of
a CBR system’s quality management (CBRQM). It will be shown that
maintenance approaches are not independent from a CBRQM.

Keywords: case-based reasoner quality management, case-based
reasoner maintenance, CBRQM framework.

1 Introduction

Today, more and more CBR systems are applied in practice, e.g., in medicine,
credit assessment, aerospace. The growing use of large-scaled and long-term CBR
systems has brought with it an increased demand for systematic maintenance,
especially of the knowledge items in the system’s knowledge base. This is be-
cause the quality of the knowledge items, i.e. its ability to provide appropriate
information and solution suggestions to the users in a given application domain,
is vitally important for the acceptance of the CBR system in a company.

In the past, maintenance approaches and methods (maintenance algorithms,
concepts to guide the maintenance process) for preserving, restoring or improv-
ing the quality of the knowledge items have been developed. Up to now, it is often
disregarded that CBR systems are not independent from the regular business
(e.g., revision of solutions by the user) and other business applications (e.g., use
of customer information in credit assessment). There is currently a lack in consid-
ering environmental aspects influencing the maintenance of the knowledge items
(e.g., purpose of the CBR system, integration of maintenance into the business
process, coordination between maintenance and knowledge management).

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 90–104, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dimensions of Case-Based Reasoner Quality Management 91

The paper extends case-based reasoner maintenance (CBRM)[1] by a more
quality-oriented view of the CBR system. First, the quality and quality man-
agement concept are introduced. Then, a common framework for structuring
relevant environmental aspects and needed elements for a CBR system’s quality
management (CBRQM) is described. In order to show that CBRM and CBRQM
are complementary concepts, selected CBRM approaches and methods are cat-
egorized using the elements of the CBRQM framework.

2 Defining Case-Based Reasoner Quality Management

As a basis for the framework, the term quality of the knowledge base and
case-based reasoner quality management (CBRQM) are characterized.

2.1 Quality of the CBR System’s Knowledge Base

The knowledge base of a CBR system represents explicit knowledge of a partic-
ular application domain. So, the knowledge base can be seen as a representation
of the real-world knowledge as perceived by users if the state of the knowledge
base at a given time enables the inference of a state of the real-world knowledge
(at the same or another time)[2]. This implies that the knowledge base should
map the current state of the relevant real-world knowledge.

The performance of the CBR system degrades if inconformities appear be-
tween the view of the real-world knowledge that can be inferred from the repre-
senting knowledge base and the view that can be obtained by directly observing
the real-world knowledge (figure 1)[3].

Inconformities are signs of quality defects within the knowledge base. They
appear as data defects or knowledge defects. Data Defects are all anomalies
within the knowledge base that arise from erroneous representations of correct
knowledge items, i.e., the knowledge base represents the current state of the real-
world knowledge, but there are missing or wrong values. Knowledge defects are all
anomalies within the knowledge base that can be traced back to unsynchronized
knowledge states, i.e., the knowledge items do not have data defects, but they
are outdated.

Against this background, the derivation of a quality concept for the knowl-
edge base of CBR systems is guided by the requirements of the users and the

user‘s view of
real-world
knowledge

user‘s view of real-
world knowledge

as inferred from the
knowledge base

knowledge base
of the CBR system

potentialpotential
qualityquality defectsdefects

Fig. 1. Quality Defects in CBR Systems

92 A. Bierer and M. Hofmann

traceability of the quality defects to their sources of appearance and even to the
causes of their origins. This corresponds to an information-oriented (user-based)
view at the quality of the knowledge base. Based upon the requirements of the
users and the state of the real-world knowledge as perceived by the domain
experts and the IT-experts, technical requirements for the knowledge contain-
ers and knowledge items (product-based view) and the problem solving process
(manufacturing-based view) are derived.

The quality concept for the knowledge base of CBR systems is mainly user-
based, but also incorporates the other views. Quality can be defined as: a mul-
tidimensional measure for the applicability of the knowledge base to fulfil its
purpose, whereas this applicability may change over time if data and knowledge
defects appear or the underlying needs of the users change [4].

2.2 Case-Based Reasoner Quality Management

In its classical meaning quality management is an executive function. Conse-
quently, it is an organizational issue. An efficient quality management should be
fixed in all management ranks (normative level, strategic level, and operational
level) and established in all structures, activities, and behavioural patterns of
the management and the staff [5].

Today’s quality management is based upon the ideas of Total Quality Man-
agement (TQM) [6]. TQM is an integrated approach for establishing a quality
culture within an organization. It is characterized by an enhanced customer ori-
entation, cross-functional cooperation within the organization, the initialization
of quality improvements, stronger integration of the people as relevant factor,
a proactive quality assurance, and the integration of quality goals into the cor-
porate policy [7]. A TQM-conformant quality management for CBR systems is
based upon the three basic principles: customer-, process-, and staff-orientation.
It refers to all management activities that constitute the CBR system-relevant
aspects of quality policy, goals, and responsibilities, and their transformation
into operational planning, controlling, assurance, and improvement processes.

So, case-based reasoner quality management (CBRQM) aims at identifying
the expectations and needs of the users, translating them - under consideration
of environmental conditions - into requirements for the knowledge items and the
problem solving process, and implementing and maintaining the CBR system
with respect to maximum user satisfaction [4]. To do so, CBRQM has to en-
compass all relevant organizational structures, activities and behaviour of the
management and the staff.

For operational quality-related structures and activities the process-oriented
plan-do-check-act-cycle (PDCA-cycle) has been established [8]. It represents the
idea of continuous improvement through the cyclic sequence of quality plan-
ning (plan), control (do), assurance (check) and improvement (act). In qual-
ity planning the needs of the users are acquired and gradually transferred into
guidelines for the design and use of a CBR system (goals, measures, processes,
etc.) [9]. During quality control the quality level is checked and verified to hold
fixed specifications and to guarantee the mastery of the required processes [9].

Dimensions of Case-Based Reasoner Quality Management 93

Activities in quality assurance and improvement are the selection and execution
of maintenance operations. They also encompass CBRM.

The behavioural development supports structures and activities by defining
incentives that are able to affect the perceptual and behavioural patterns of the
staff interacting with the CBR system and the management.

3 A General Framework for CBRQM

The goal of describing the CBRQM framework (figure 2) in this paper is three-
fold. First, the framework overviews all basic elements of a methodic quality
measurement and control. Second, with the framework a procedure for the design
and implementation of quality measurement and control is displayed (denoted
by the gray arrows in figure 2). Third, the framework is used as a categoriza-
tion scheme to exemplify the interrelation between CBRQM and approaches and
methods of CBRM.

Using the basic principles of TQM, the bottom layer describes general poli-
cies of quality management as they are relevant for CBRQM. The middle layer
contains basic premises and conditions of the system’s environment. They have
to be clarified in the run up to the system development or the design of qual-
ity measurement and control. They can be understood as a requirement for an
efficient operational quality management. The layer distinguishes between man-
agerial guidelines, structures, business activities/processes, and implementation
premises and hurdles. The upper layer describes the operational elements that
are needed to implement a continuous quality measurement and control.

Elements of Operational Quality Measurement and Control

Basic Conditions and Premises

General Principles
customer

orien-
tation

leader-
ship

involve-
ment of
people

process
orien-
tation

system
approach to
management

continuous
improve-

ment

factual
approach to

decision making

mutually bene-
ficial supplier
relationships

managerial
conditions

organizational
conditions

technical
conditions

Störgrößen
– Anwender,
– Lieferant,
– Erfahrungs-

wissen,
– Rohdaten,
– Methode,
– Messbarkeit
– Umfeld

– Subsysteme
des iFISAE
(Wissens-
container, …)

Regelstrecke

– technisch

– sozio-
technisch

Regler

+

+

–

–
Stellgröße(n)

Soll-
größe(n)

Regel-
größe(n)

quality-related
closed-loops

quality goals/
quality criteria/

measures

quality inspections
and processes

behavioural
elements

aktuelle Werte zur
Datenqualität

liegen vor

aktuelle Werte mit
vorgegebenen

Sollwerten
vergleichen

Qualitätsniveau für
einzelne oder

mehrere Kriterien
ist in Ordnung

Qualitätsniveau für
einzelne oder

mehrere Kriterien ist
nicht in Ordnung

Mängel- und
Fehlerliste

ist nicht leer

Analysen zur
Identifizierung der

Abweichungs
ursache durchführen

Fehler- und
Mängelanalysen

durchführen

Abweichungen und
Abweichungsursache

identifziert

Fehler und
Fehlerursache

identifiziert

training
documentation

quality
database

roles
Expertenteam im

Angebotsengineering
(DSII.1)

Ü bergang zum
FIS (SBII.1)

technisch und betr.wirt .
spezifiziertes

Kundenproblem
(RDII.1; RDII.2) Anfrage erfassen

(PBII.1)

technisch und betr.wirt .
spezifiziertes

Kundenproblem
(CDII.1 ; CDII.2)

Eingabe - und
Konsistenz -

Pr üfungen (QB II.1)

erfasstes Kundenproblem
(CDII.3; CDII.4)

Anfrage speichern
(PB II.2)

gepr ü ftes
Kundenproblem

(CDII.5, CDII.6)

Qualit ä ts -
Datenbank

(STO 5)

gepr ü ftes Kundenproblem
(CDII.5, CDII.6, CDII.7; CDII.8)

Merkmale und Merkmalsbeschreibungen;
Abh ängigkeitsbeziehungen und/oder
Ausschlusskombinationen zwischen

Merkmalsauspr ä gungen
(RDII.3, RDII.4, RDII.5)

Metadatenbank
(STO 4)

Qualit ätsdaten
erfassen (QB II.2)

gepr ü ftes Kundenproblem
(CDII.5, CDII.6, CDII.7; CDII.8)

Fig. 2. CBRQM Framework

94 A. Bierer and M. Hofmann

3.1 General Policies

As mentioned above, CBR systems are not independent from the business pro-
cess in the relevant application domain and the company’s application environ-
ment. They are applied for a given purpose, e.g. to support help desk operators,
for product recommendation, decision making in offer engineering. Against its
specific purpose, the CBR system may have strategic importance if its output
contributes to an improving company’s success.

The intended purpose also determines basic conditions and premises of quality
measurement and control. It has to realize the user requirements in the specific
domain (user orientation). A managerial component is needed. Its tasks are: es-
tablishing quality awareness to the staff and the management by communication
and coordination, and taking charge of the CBR system’s quality management
(leadership). All members of staff (e.g., users, knowledge suppliers) having a
direct or indirect stake in the CBR system should be involved in the quality
measurement and control to enable their ability to make real contributions to
the success of the system (involvement of people).

Due to the fact that the real-world knowledge of an application domain and
the quality of the CBR system’s knowledge base are dynamic dimensions con-
tinual quality measurement and control is needed (continual improvement). To
realize this requirement, quantifiable information of the current quality level
and its history has to be collected and analyzed periodically (factual approach
to decision making). The tasks of quality measurement and control - collection,
assessment, analysis, and modification - are interconnected sequences of activ-
ities. Therefore, they must be designed and implemented as processes (process
orientation). In addition to that, the CBR system and its application domain are
part of the overall system "enterprise" and are correlated with other departments
and business processes (system approach to management).

3.2 Basic Conditions and Premises

The conditions and premises of the system’s environment are basic for the design
and implementation of quality-related activities and the definition of quality
criteria for the knowledge base. They are determined by the management, the
application domain and parameters of the technical infrastructure.

Managerial conditions. The management is responsible for setting the stage
for an effective CBRQM, reviewing the effectiveness of quality activities and
measures, and intervening if problems arise [11]. For example, managerial con-
ditions force the quality policy for the CBR system. Depending on the strategic
importance of a CBR system in the company the policy could call for reactive or
proactive activities. Communication and coordination interfaces to other man-
agement sub systems (e.g., information management, knowledge management)
are defined.

Organizational conditions. Organizational conditions are a direct prerequisite
for a process-oriented integration of operational CBRQM into the existing busi-
ness processes of the company. They describe all operational and organizational

Dimensions of Case-Based Reasoner Quality Management 95

structures influencing the design and implementation of quality-related activities
and being influenced by these activities.

Technical conditions. Beyond organizational conditions, implemented func-
tionality and technical properties of the CBR system and the system platform
have to be documented. The functionality gives information about problem solv-
ing tasks executed by the system (e.g., only executing retrieval or also executing
reuse and revision) and what methods are used (e.g., as retrieval algorithm, adap-
tation rules). Technical properties describe i.e. data structures used to represent
the knowledge items and whether the CBR system is a stand alone-application
or an integrated one. They provide indications of the implementation options
for measurement, evaluation and modification tasks and methods.

3.3 Procedural Elements

In consideration of the basic conditions and premises the upper layer of the
framework specifies procedural elements of quality measurement and control.

Quality goals are derived from the expectations and needs of the users and
the requirements of the CBR system’s quality policy. Out of them, information-
oriented and maintenance-oriented quality criteria are derived (figure 3).

In the next step, appropriate quality metrics and quality data are attributed
to these quality criteria. They realize the general policies customer orientation
and factual approach to decision making. Figure 4 visualizes the derivation of
metrics and data using the Goal Question Metric Approach [12], an approach for
defining and evaluating a set of operational goals by measurements. The goals
are defined in a tractable way by refining them into a set of quantifiable questions

competence
problem
solving

efficiency

solution
quality

information

coverage
problem
solution

regularity
reachability

accuracy of
similarity
measures

generality of
vocabulary

appropriateness
of feature weights
(global sim. meas.)

…

retrieval
time

portability
of found
solutions

………

Fig. 3. Pyramid of Needs for Deriving Quality Criteria

96 A. Bierer and M. Hofmann

accuracy of
similarity
measures

accuracy of
similarity
measures

appropriateness of
feature weights (global

similarity measure)

appropriateness of
feature weights (global

similarity measure)

What‘s the current
accuracy of similarity

assessment?

Is the accuracy of
similarity assessment
improving with time?

average maximum
similarity of

retrieved cases

average number of
queries with „most

similar“ cases in
the retrieved set

reusability mark
at the cases in the

retrieved set
(on-line measure)

query
counter
(on-line
measure)

stored retrieval
results (queries with

found cases and
similarity assessment)

(off-line measure)

time period
(system

parameter)

comparison
between current
average accuracy

and a baseline

an externally
expected/given

average accuracy
(off-line measure)

Do the feature weights
represent the currently

valid weights?

…

Goal/
Criterion

Question

Metric

Measured
Quality Data

Fig. 4. Deriving Quality Metrics and Data using the Goal Question Metric Approach

that are used to define a specific set of quality metrics and quality data, and
provide a framework for interpretation.

Quality inspections are used to evaluate the quality level on the basis of the
quality criteria. Three types of inspections are differentiated. Static inspections
identify the quality of knowledge items at a given point in time, including re-
dundancy checks, inconsistency checks of the case base. Dynamic inspections are
used if static inspections do not provide adequate basis for quality evaluations.
Here, quality data are collected diachronically over a period of time to display
time series of the quality level (e.g., for the accuracy of similarity measures,
appropriateness of adaptation rules). A third type of inspection is prompted on
deficiencies and alteration lists that enable users and knowledge suppliers to give
feedback of detected errors and changed real-world knowledge.

Together with the subsequent activities of initializing and executing mainte-
nance operations the quality inspections are integrated into quality processes.
Single tasks like the collection of quality data or input checks can be executed
during an active problem solving cycle (figure 5). Specific processes are defined
like automated test processes, semi-automated and manual collection processes.

Other tasks should be executed in a separate maintenance cycle. In contrast to
the application cycle, the activities here are universal (in the majority of cases).
Therefore, a common process can be defined including all activities from the
quality data collection to the execution of maintenance operations (figure 6).

To meet the policy of continual improvement inspections and processes are
combined to quality closed-loops. For every quality criterion a closed-loop com-
prises the whole cycle of measurement, evaluation and modification (figure 7).

The administration of quality-related data and information in a quality data-
base follows the general policies of process orientation and continual improve-
ment. In particular, the collected data from the dynamic quality inspections and

Dimensions of Case-Based Reasoner Quality Management 97

CBR system
memory

load cases
check for

uniqueness of
the case base

CBR system
memory

load attributes
and values of

the current
query

attributes of
the current

query

check for
attribute

consistency

calculate
local similarity

calculate
global similarity

display the
most similar

cases

Metadata
Repository

quality
database

collect
quality data

cases unique
cases

unique cases

checked
attributes

local
similarities

local
similarities

global
similarities

global similarity
measure,
feature weights

most similar cases,
local and global
similarities, OR
empty set

maximum number
of cases
in initial match OR
minimum similarity
in initial matchlocal similarity measures

most similar cases, local
and global similarities,

OR empty set

mark the reusable
and unreusable
cases and set a

case utility order

collect
quality data

usabality
marks

utility order

most similar
cases,

similarities

usabality
marks

utility order

attributes of
the current

query

Fig. 5. Example application process similarity assessment with a runtime check of case
base uniqueness and quality data collection (modified from [4])

collecting
quality data in the
quotation process

collecting quality
data from the

knwoledge items
(REVIEW)

computing metrics
and aggregating

criteria
(REVIEW)

comparisons of
target/actual values

identifying errors
(REVIEW)

variance
analyses

(REVIEW)

selecting/initializing
correction/mainte-
nance operations

(RESTORE)

executing
maintenance
operations

(RESTORE)

Fig. 6. Common Quality Process in the Maintenance Cycle

the deficiencies and alterations lists should be recorded in order to decide about
maintenance operations and maintenance dates for several quality defects.

3.4 Behavioural Elements

The second category on the upper layer is the behavioural elements. They are
essential, because social and cultural aspects are key factors of the CBR system’s
quality. They are divided in two subcategories. First, incentives and measures for
increasing motivation and quality awareness of all people directly and indirectly
interacting with the CBR system are needed. They follow the general policies
of involvement of people and mutual beneficial supplier relationships. For exam-
ple, feedback processes should be implemented to provide users and knowledge
suppliers an opportunity to point out quality defects. Knowledge suppliers have
a stake in the knowledge acquisition processes as they inform about changes in

98 A. Bierer and M. Hofmann

model of controlled system
(similarity measures)

controlled system
(case-based reasoning system)

controller

controlled variable
(similarity between solved
problem and primary query)

disturbance variable
(decreasing expenses for the

diameter because of employment
of a new machine)

reference variables
(changed cost

distribution because
of new machine)

manipulating variable
(selection and realisation

of maintenance)

comparing
reference and
controlled

values

executing
test

queries

deciding
about

revision

activate
maintenance

global similarity measure:

assemblypressurecovering

diameterlengthi

sim,sim,sim,
sim,sim,,q)sim(c

250250150
050300

Fig. 7. Closed-Loop Example

relevant real-world knowledge. Users assess the quality of the provided solution
suggestions and give feedback to the maintenance staff if they detect data or
knowledge defects.

Second, a role and authorization scheme is needed to avoid unclear and over-
lapping assignment of the maintenance tasks. With the role and authorization
concept the policies involvement of people and leadership are realized.

4 Integrating CBRM and CBRQM

In order to show that CBRM and the introduced CBRQM framework are not
independent concepts, approaches and methods of CBRM are categorized using
the elements of the CBRQM framework. Table 1 contains the categories and lists
exemplary approaches and methods of CBRM.

General Policies. The exemplary contributions do not explicitly concentrate on
TQM and its basic principles. But, approaches and basics are selected that
could corroborate the ideas of TQM. Here, one can find the experience fac-
tory, an approach for organizational learning and reuse of experience in software
engineering [14,15], and the quality improvement paradigm, an evolutionary im-
provement paradigm for software engineering companies [13,12]. Both are basic
for INRECA, a methodic approach for the development of industrial CBR sys-
tems [16]. Only Roth-Berghofer highlights the relationship between CBRM
and Total Quality Management. He requires "maintenance efforts regarding the
knowledge of a Case-Based Reasoning system, of course, must be embedded into
the quality management system of an organization" ([10], p.37).

Dimensions of Case-Based Reasoner Quality Management 99

Table 1. Sample CBRM Approaches and Methods Placed Along the CBRQM Elements

General Principles
TQM principles: e.g., Basili et al. [13,12,14], Althoff et al. [15], Roth-Berghofer
[10], Bergmann et al. [16]

Basic premises and conditions
managerial conditions, organizational conditions, technical conditions: e.g.,
Göker/Roth-Berghofer [17], Bergmann et al. [16]

Procedural and Behavioral Elements
quality goals: e.g., Racine/Yang [18], Smyth/McKenna [20,21,22]
quality criteria, quality metrics, quality data: e.g., Racine/Yang [18], Roth-
Berghofer [10], Pal/Shiu [19], Iglezakis [23], Smyth/McKenna [20]
quality inspections, quality processes, quality closed loops: e.g., Leake/Wilson
[24,1], Stahl [25], Roth-Berghofer et al. [10,26], Watson [27]
maintenance and knowledge acquisition methods: e.g., Iglezakis [23],
Racine/Yang [18,28], Stahl [25,29], Gabel [30], Li et al. [31], Montaner et al.
[32], Yang/Zhu [33], Shiu et al. [34], Srinivasan et al. [35]
quality database: e.g. Nick et al. [36,37,38], Menzies [39]
training, management integration: e.g., Roth-Berghofer [10], Nick et al. [36]

Basic premises and conditions. The contributions use software process modeling,
a complementary approach to the experience factory and the quality improve-
ment paradigm. Similar to the required basic conditions in the CBRQM frame-
work, process models describe managerial processes (e.g., planning and control-
ling of software engineering projects), organizational processes (e.g. identifying
need for changes in the business processes the system should be embedded), and
technical processes (e.g., phases of software engineering - analysis, conceptual
design) [17,16]. Despite the differences between the specification of these pro-
cesses and the conditions of the framework, the processes can be starting points
for conditions and premises analyzes.

Procedural Elements - Quality Goals. To guide maintenance activities so called
top-level goals have been introduced [41]. They act as indicators for case base
and CBR system performance assessment. Often mentioned goals are:

– effectiveness of the case base as its ability "to answer as many queries as
possible efficiently and correctly" [18],

– competence as the range of target problems a given system can solve [20],
– efficiency as the computational cost of solving a set of target problems [21],
– problem solving efficiency as the average problem solving time [22], and
– solution quality as the average quality of a proposed solution [22].

Using these goals as a basis for CBRQM causes the problem that they do not
shed light on sources and causes of quality defects. They have to be split up to
more fine-grained criteria in order to localize the quality defects.

Procedural Elements - Quality Criteria. There are many quality criteria available
in the CBRM literature, but mostly for the case base. Most frequently mentioned

100 A. Bierer and M. Hofmann

are redundancy/uniqueness, consistency, coverage, reachability, correctness, and
completeness [18,21,23]. Roth-Berghofer proposes more customized criteria
for help desk-applications, e.g, first-call resolution rate, number of escalations
needed, and speed up in help-desk operator training [10]. To assess the quality
level by the criteria quality data are collected and quality metrics are calcu-
lated. In order to collect correct data und calculate right metrics, Nick et al.
[36,37,38] apply the Goal Question Metric Approach [12,14].

Procedural Elements - Quality Inspections, Quality Processes, Quality Closed-
Loops. To support the definition of these elements, various approaches/procedures
exist. As a start, there is the framework for categorizing maintenance operations
by Wilson/Leake [24,1]. It describes steps of a common maintenance process
from data collection to execution of maintenance operations and policies when
and how the steps are executed. As a by-product of his method for learning
similarity measures, Stahl extends the steps of the CBR cycle by additional
tasks and methods in order to collect data on-line for maintaining the similarity
measures. This corresponds with the information by Aamodt/Plaza that "re-
tain" is the last step in case-based problem solving and learning from experience.
Roth-Berghofer et al. [10,26] and Watson recommend the introduction of
additional phases – review and reflect [27] or review restore [10] to enable off-line
data collection, evaluation and so on. The three approaches may be combined
to realize several activities of operational quality evaluation and modification
during the application and maintenance cycle.

Maintenance and Knowledge Acquisition Methods. They are not a separate ele-
ment of the CBRQM framework. But, maintenance and knowledge acquisition
methods are needed for executing quality assurance and improvement. They
are part of the quality evaluation and modification processes. There are pure
maintenance methods like data cleansing algorithms to remove redundancies or
inconsistencies etc. [18,23,28], algorithms for initial and continual knowledge ac-
quisition [25,29,31,32,33], and algorithms for knowledge base optimization by
knowledge transfers between the knowledge containers [30,34,35].

Procedural Elements - Quality Database. The term quality database is not of-
ten used in CBRM. Past successful and unsuccessful maintenance operations
are qualified as maintenance knowledge, and may be stored for reuse in addi-
tional knowledge containers. Based upon that assumption, the EMSIG approach
describes three knowledge containers for maintenance knowledge [37]: Quality
knowledge describes quality goals, criteria, metrics and data to be collected,
and records the collected data and the assessed quality criteria. Maintenance
process/procedure knowledge defines how maintenance is performed. Mainte-
nance decision knowledge describes under what circumstances maintenance ac-
tivities should be executed. To realize separate quality databases or additional
knowledge containers Menzies describes meta knowledge, "knowledge about the
structure, assessment, or modification of different knowledge types" ([39], p.11).
For quality knowledge, he distinguishes between non-functional requirements

Dimensions of Case-Based Reasoner Quality Management 101

(e.g., security, portability), product-oriented assessment knowledge (e.g., for ex-
ploration of internal syntactic structures of programs), inconsistency knowledge
(for detection of inconsistencies), and critical success metrics (for the contribu-
tion of the CBR system to the business success) [39].

Behavioural Elements - Roles and Responsibilities. The contributions in the ta-
ble describe role concepts for two different application domains. Nick et al.
specify roles and responsibilities for the maintenance of experience bases in soft-
ware engineering. They name an experience factory manager (defines goals and
improvement programs), experience managers (responsible for structure, con-
tent and quality of the experience base), project supporter (e.g., recording new
experience), experience engineers (e.g., packaging and analyzing existing knowl-
edge), and librarians (technical tasks of maintenance) [36]. Roth-Berghofer
describes a role concept for case-based help desk systems. It contains the help
desk user (e.g. use the system, reports errors or changes in knowledge), the
maintenance engineer (carrying out maintenance operations), knowledge engi-
neer (responsible for continual knowledge acquisition), and administrator (e.g.,
deciding on maintenance guidelines, scheduling maintenance) [10].

Behavioural Elements - Training and Management Integration. There are only
few contributions pointing explicit at training programs for users and manage-
ment integration. In the process models of the INRECA methodology one can
find a reference at the design and implementation or the change of training
activities for the software engineering project team [17,16]. Roth-Berghofer
mentions the need for training, for example with the quality criterion "speedup
in help-desk operator training" [10]. With the statement that help-desk opera-
tors "must constantly widen and deepen their knowledge. This is encouraged by
management with training courses and seminars." ([10], p.118] he includes the
importance of management integration.

5 Conclusion

In summary, the paper introduced CBRQM as an important enhancement of
CBRM for large-scaled and long-term CBR systems in practice. Major elements
that play an important role in a CBR system’s quality management are summa-
rized in a common framework. The CBRQM framework also describes a proce-
dure for the design and implementation of quality measurement and control. On
the basis of exemplary approaches and methods from CBRM it could be pointed
out the interrelationship of the two concepts.

Further work may be done with respect to the application of concrete mainte-
nance operations and learning algorithm, in triggering and integrating them into
the CBR processes and in user interaction. Secondly, the development of quality
databases and of quality knowledge containers should be analyzed in more detail
to realize dynamic quality inspections and deficiencies and alteration analyzes.

Finally, a problem of CBR system development and use is still the cost aspect.
With the increasing use of these systems in practice, information about the cost

102 A. Bierer and M. Hofmann

of their maintenance, quality assurance and improvement would lead to more
systematic maintenance and, perhaps, better acceptance by the users.

References

1. Wilson, D.C., Leake, D.B.: Maintaining case-based reasoners: dimensions and di-
rections. In: Computational Intelligence, May 2001, vol. 17, pp. 196–213 (2001)

2. Wand, Y., Wang, R.Y.: Anchoring Data Quality Dimensions in Ontological Foun-
dations. Communications of the ACM 39(11), 86–95 (1996)

3. Huang, K., Lee, Y.W., Wang, R.Y.: Quality Information and Knowledge. Prentice
Hall, New Jersey (1999)

4. Bierer, A.: Qualitätsmessung und -steuerung in Fallbasierten Systemen am Beispiel
eines Fallbasierten Systems im Angebotsengineering. Dissertation Technische Uni-
versität Chemnitz, online resource. Chemnitz (2008),
http://archiv.tu-chemnitz.de/pub/2009/0010/index.html

5. Seghezzi, H.D.: Integriertes Qualitätsmanagement: das St. Galler Konzept. Carl
Hanser Verlag, München (1996)

6. Deutsches Institut für Normung (DIN) e.V.: DIN 55350-11. Begriffe zum Qualitäts-
management – Teil 11: Ergänzung zu DIN EN ISO 9000:2005 (Entwurf). Beuth
Verlag, Berlin (2007)

7. Helfert, M., Herrmann, C., Strauch, B.: Datanqualitätsmanagement. Bericht BE
HSG/CC DW2/02, Universität St. Gallen, Institut für Wirtschaftsinformatik. St.
Gallen (2001)

8. Deming, W.E.: Out of the Crisis. MIT Press, Cambridge (1986)
9. Helfert, M.: Proaktives Datenqualitätsmanagement in Data-Warehouse-Systemen –

Qualitätsplanung und Qualitätslenkung. Dissertation Universität St. Gallen. Logos
Verlag, Berlin (2002)

10. Roth-Berghofer, T.: Knowledge Maintenance of Case-Based Reasoning Systems.
The SIAM Methodology. Dissertation der Universität Kaiserslautern. Disserta-
tionen zur Künstlichen Intelligenz Nr. 262. Akademische Verlagsgesellschaft Aka
GmbH, Berlin (2003)

11. Pfeifer, T.: Praxishandbuch Qualitätsmanagement. Hanser Verlag, München (1996)
12. Basili, V.R.: Software Modeling and Measurement: The Goal/Question/Metric

Paradigm. Technical Report CS-TR-2956. Department of Computer Science, Uni-
versity of Maryland. College Park (1992)

13. Basili, V.R.: Software Development: A Paradigm for the Future. In: Knafl, G.J.
(ed.) Proceedings of the 13th Annual International Computer Software and Appli-
cations Conference, pp. 471–485. IEEE Computer Society, Washington (1989)

14. Basili, V.R., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach.
In: Marciniak, J.J. (ed.) Encyclopedia of Software Engineering, vol. 1, pp. 528–532.
John Wiley & Sons, Chichester (1994)

15. Althoff, K.-D., Birk, A., Tautz, C.: The Experience Factory Approach: Realizing
Learning from Experience in Software Development Organizations. IESE-Report
No. 013.97/E. Kaiserslautern (1997)

16. Bergmann, R., et al.: Developing Industrial Case-Based Reasoning Applications.
The INRECA Methodology. Springer, Heidelberg (2003)

17. Göker, M., Roth-Berghofer, T.: Development and Utilization of a Case-Based Help-
Desk Support System in a Corporate Environment. In: Althoff, K.-D., Bergmann,
R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 132–146. Springer,
Heidelberg (1999)

http://archiv.tu-chemnitz.de/pub/2009/0010/index.html

Dimensions of Case-Based Reasoner Quality Management 103

18. Racine, K., Yang, Q.: On the Consistency Management of Large Case Bases: the
Case for Validation. In: Proceedings of the 13th National Conference on Artificial
Intelligence, Workshop on Validation and Verification of Knowledge-Based Sys-
tems, Portland, Oregon (1996)

19. Pal, S.K., Shiu, S.C.: Foundations of Soft Case-Based Reasoning. Hoboken (2004)
20. Smyth, B., McKenna, E.: Modelling the Competence of Case-Bases. In: Smyth,

B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 208–220. Springer,
Heidelberg (1998)

21. Smyth, B., McKenna, E.: Building Compact Competent Case-Bases. In: Althoff,
K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650,
pp. 329–342. Springer, Heidelberg (1999)

22. Smyth, B., McKenna, E.: Footprint-Based Retrieval. In: Althoff, K.-D., Bergmann,
R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 343–357.
Springer, Heidelberg (1999)

23. Iglezakis, I.: Case-Base Maintenance of Case-Based Reasoning Systems in Classi-
fication Domains. Dissertation an der Universität Kaiserslautern. Shaker Verlag,
Aachen (2004)

24. Leake, D.B., Wilson, D.C.: Categorizing Case-Base Maintenance: Dimensions and
Directions. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488,
pp. 196–207. Springer, Heidelberg (1998)

25. Stahl, A.: Learning of Knowledge-intensive Similarity Measures in Case-Base
Reasoning. Dissertation Universität Kaiserslautern. Verlag dissertation.de, Berlin
(2004)

26. Iglezakis, I., Reinartz, T., Roth-Berghofer, T.: Maintenance Memories: Beyond
Concepts and Techniques for Case Base Maintenance. In: Funk, P., González
Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 227–241. Springer, Hei-
delberg (2004)

27. Watson, I.: Workshop Summary. CBR Workshop at the 17th International Joint
Conference on Artificial Intelligence,
http://www.ai-cbr.org/ijcai99/workshop.html (called: 2006-07-27)

28. Racine, K., Yang, Q.: Redundancy and Inconsistency Detection in Large and Un-
structured Case Bases. Technical Report TR97-11. School of Computing Science,
Simon Fraser University, Burnaby/CN (1997)

29. Gabel, T., Stahl, A.: Exploiting Background Knowledge when Learning Similar-
ity Measures. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS,
vol. 3155, pp. 169–183. Springer, Heidelberg (2004)

30. Gabel, T.: On the Use of Vocabulary Knowledge for Learning Similarity Measures.
In: Althoff, K.-D., et al. (eds.) Contributions to the 3rd Conference Professional
Knowledge Management – Experiences and Visions, April 2005, Kaiserslautern
(WM 2005), pp. 253–258. Fraunhofer Publica, Kaiserslautern (2005)

31. Li, Y., et al.: Case-Base Maintenance using Soft Computing Techniques. In: Wang,
X., Yeung, D. (eds.) Proceedings of the 2003 International Conference on Machine
Learning and Cybernetics, Hebei, China, vol. 4, 5, pp. 1768–1773 (2003)

32. Montaner, M., López, B., de la Rosa, J.L.: Improving case representation and case
base maintenance in recommender agents. In: Craw, S., Preece, A.D. (eds.) ECCBR
2002. LNCS, vol. 2416, pp. 234–248. Springer, Heidelberg (2002)

33. Yang, Q., Zhu, J.: A Case-Addition Policy for Case-Base Maintenance. In: Com-
putational Intelligence, May 2001, vol. 17, pp. 250–262 (2001)

34. Shiu, S.C.K., et al.: Transferring Case Knowledge to Adaptation Knowledge: An
Approach for Case-Base Maintenance. In: Computational Intelligence, vol. 17, May
2001, pp. 295–314 (2001)

http://www.ai-cbr.org/ijcai99/workshop.html

104 A. Bierer and M. Hofmann

35. Srinivasan, P., et al.: Vocabulary Mining for Information Retrieval: Rough Sets
and Fuzzy Sets. Information Processing & Management 37(1), 15–38 (2001)

36. Nick, M., Althoff, K.-D.: Systematic Evaluation and Maintenance of Experience
Bases. In: Funk, P., Roth-Berghofer, T., Wilson, D.C. (eds.) Proceedings of the
Workshop on Flexible Strategies for Maintaining Knowledge Containers at the
14th European Conference on Artificial Intelligence, Berlin, pp. 14–21 (2000)

37. Nick, M., Althoff, K.-D.: Acquiring and Using Maintenance Knowledge to Support
Authoring for Experience Bases. In: Weber, R., Gresse von Wangenheim, C., Naval
Research Laboratory (eds.) Proceedings of the Workshop Program at the 4th In-
ternational Conference on Case-Based Reasoning (ICCBR 2001), Washington, pp.
38–41 (2001)

38. Nick, M., Althoff, K.-D., Jedlitschka, A.: Acquiring Knowledge for Linking Main-
tenance and Evaluation of Experience Based Information Systems. In: Bergmann,
R., Schaaf, M. (eds.) Proceedings German Workshop on Knowledge and Experi-
ence Management (FGWM 2003), Karlsruhe (October 2003),
http://km.aifb.uni-karlsruhe.de/ws/LLWA/fgwm/Resources/
FGWM03_04_Markus_Nick.pdf

39. Menzies, T.: Knowledge Maintenance: State of the Art. Knowledge Engineering
Review 14(1), 1–46 (1999)

40. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodologi-
cal Variations, and System Approaches. AI Communications 7(1), 39–59 (1994)

41. Leake, D.B., Wilson, D.C.: Remembering Why to Remember: Performance-Guided
Case-Base Maintenance. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS
(LNAI), vol. 1898, pp. 161–172. Springer, Heidelberg (2000)

http://km.aifb.uni-karlsruhe.de/ws/LLWA/fgwm/Resources/FGWM03_04_Markus_Nick.pdf
http://km.aifb.uni-karlsruhe.de/ws/LLWA/fgwm/Resources/FGWM03_04_Markus_Nick.pdf

Belief Merging-Based Case Combination

Julien Cojan and Jean Lieber

Orpailleur, LORIA, CNRS, INRIA, Nancy University,
BP 239, 54506 Vandœuvre-lès-Nancy

��������	
�����������������
������

Abstract. Integrity constraint belief merging aims at producing from several
knowledge bases, that may be mutually inconsistent, a synthetic knowledge base
satisfying a given integrity constraint. It is applied here to case combination for
case-based reasoning. This approach is shown to extend Eyke Hüllermeier’s cred-
ible case-based inference and to be reducible under some assumptions to linear
programming.

1 Introduction

Case-based reasoning (CBR [1]) aims at solving problems thanks to a set of previously
solved problems accompanied with their solutions (the source cases). At least, two gen-
eral approaches of CBR exist. The first one consists in the adaptation of a sole retrieved
case. The second one consists in the combination of k ≥ 1 retrieved cases. Actually,
case combination is a generalization of case adaptation: this latter is a case combination
with k = 1.

In [2], an approach to adaptation based on a belief revision operator, the so-called
conservative adaptation, is presented. A belief revision operator � associates to two
knowledge bases A and B a knowledge base A � B that entails B and keeps as much
as possible from A. Conservative adaptation of a source case ���� by a target case ���
consists in a revision ����(����) � ����(���) where ����(����) and ����(���)
are respectively ���� and ��� interpreted according to the domain knowledge.

Now, belief revision is generalized by integrity constraint (IC) belief merging [3] that
integrates several knowledge bases altogether with constraints.

The purpose here is to substitute belief revision by IC belief merging in conservative
adaptation to define a case combination approach.

After the introduction of a running example and a preliminary section, the IC be-
lief merging theory is presented in section 4 and its application to case combination in
section 5. Section 6 shows that credible case-based inference [4] is a kind of case com-
bination. The computation of belief merging in numerical spaces is studied in section 7,
before a related work review and the conclusion.

2 Introduction of the Running Example

Assume you have an egg allergic guest and you have the experience of some dishes that
can be made without eggs. Your guest loves chocolate and chocolate mousse would be

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 105–119, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

106 J. Cojan and J. Lieber

a perfect desert, even if you don’t have an egg-free recipe at disposal. Several recipes
–the source cases ����i– can be combined to solve the target case ���:

���: egg-free chocolate mousse recipe

����1: chocolate mousse recipe

����2: egg-free Chantilly recipe

����3: egg-free chocolate cream recipe

The expected solution would be to follow the main lines from ����1 but to substitute
the egg-snow by egg-free Chantilly from ����2 and the chocolate mix –that contains
egg yolks– by the chocolate cream from ����3.

3 Preliminaries

3.1 Set Theory Notations

A boolean interpretation I on a set of variablesV = {a1, a2, . . . , an} is a mapping from
V to the set of boolean values B = {��	�,
���}. It can be assimilated to (x1, . . . , xn) ∈
B

n where I(ai) = xi for i = 1 to n. Thus, the models �f� of a formula f –the set of the
interpretations satisfying f– is assimilated to a subset of U = B

n. Following the princi-
ple of irrelevance of syntax, the formulas are assimilated in this paper to their models and
thus to subsets ofU . In particular conjunction∧, entailment�, and logical equivalence≡
represent intersection∩, inclusion⊆, and set equality = on subsets ofU . More precisely,
�f ∧ g� = �f� ∩ �g�, f � g iff �f� ⊆ �g�, and f ≡ g iff �f� = �g�.

Propositional logic can then be generalized considering any set U , in particular
attribute-values formalisms correspond to sets of the kind U = D1 × . . . ×Dn where
D1, . . . , Dn are more elementary sets like integers Z, positive real numbers R

+, etc.
In order to ease the reading, a variable xi that can take any value from Di is just

written ’_’, eg. if n = 3 and a1 ∈ D1, a3 ∈ D3, {(a1, _, a3,)} = {(a1, x2, a3) |x2 ∈
D2}. So, U = {(_, _, _)}.

3.2 Metric Spaces

Definition 1. A pseudo-distance1 on a set U is a function d : U × U → [0; +∞]
satisfying the separation axiom:

for any x, y ∈ U , d(x, y) = 0 iff x = y

A distance on U is a pseudo-distance on U taking only finite values (for any x, y ∈ U ,
d(x, y) < +∞) that satisfies the symmetry axiom:

for any x, y ∈ U , d(x, y) = d(y, x)

and the triangular inequality:

1 We slightly abuse words here as this may not be in agreement with common definition of
pseudo-distance.

Belief Merging-Based Case Combination 107

for any x, y, z ∈ U , d(x, z) ≤ d(x, y) + d(y, z)

A (pseudo-)metric space is a pair (U , d) where d is a (pseudo-)distance on the set U .

2U denotes the set of subsets of U . A pseudo-distance d on U is extended on subsets of
U as follows:

A y
A

B

d(A, y) = inf
x∈A

d(x, y) d(A, B) = inf
x∈A,y∈B

d(x, y) = inf
y∈B

d(A, y)

where A, B ∈ 2U , and x, y ∈ U (note that d : 2U × 2U → [0; +∞] is not necessary a
pseudo-distance).

A ∈ 2U is bounded if there exists K ∈ R
+ such that for each x, y ∈ A, d(x, y) ≤ K .

Given a pseudo-distance on U , x, y ∈ U and r ∈ [0; +∞], the right closed ball of center
x and radius r is the set BU

r (x) = {y ∈ U | d(x, y) ≤ r} and the left closed ball of
center y and radius r is the set B′U

r (y) = {x ∈ U | d(x, y) ≤ r}. The distinction
between these two definitions is relevant when d is not symmetrical, otherwise they are
equal.

Definition 2. A (pseudo-)discrete metric space (U , d) is a (pseudo-)metric space such
that, for any x ∈ U and r ∈ [0; +∞[, BU

r (x) and B′U
r (x) are finite.

This definition is stronger than the usual definition of (pseudo-)discrete metric space
which states that for any x ∈ U , there is an r > 0 such that BU

r (x) = B′U
r (x) = {x}.

If (U , d) is discrete then for A, B two subsets of U , if A is bounded, then A is finite
and d(A, B) = d(A, y) for some y ∈ B. Moreover {z ∈ U | d(A, z) = 0} = A (i.e. A
is closed).

To avoid continuity issues, like no minimum for a distance, only discrete spaces will
be considered in the following. In particular R will be approximated by decimals of a
fixed maximum length.

3.3 CBR: Definitions and Hypotheses

Cases and domain knowledge. Case-based reasoning (CBR) aims at solving problems
of a given application domain with the help of previous solving episodes, or cases.
In this paper, these notions are formalized as follows. Let U�� and U��� be two sets:
x ∈ U�� is a problem instance, X ∈ U��� is a solution instance. A problem �� is a
class of problem instances: �� ∈ 2U�� . A solution �� is a class of solution instances:
�� ∈ 2U��� .

Let U = U�� × U���. A case is a subset of U . A singleton case is a case with only
one element: ��� = {(x, X)}. Given x and ���, a problem instance and a case,
Φx (���) denotes the projection of x on solution instances:

Φx (���) = {X ∈ U��� | (x, X) ∈ ���}

In particular, if ��� = {(x, X)} is a singleton case then Φx (���) = {X}.

108 J. Cojan and J. Lieber

The relationship stating that a solution �� solves a problem �� is formalized by a
binary relation� on U = U�� × U���: �� is solved by �� if, for every x ∈ �� exists
X ∈ �� such that x� X .
� is not assumed to be completely known. By contrast, it is assumed that a finite

set of cases, the case base �� and some domain knowledge are available, and that any
case of the case base �� –called a source case and denoted by ����– has the following
property: for each x ∈ U��, if Φx (����) �= ∅ then there exists X ∈ Φx (����) such
that x� X (see figure 1).

U��

U���

����

x

Φx (����)

{(x, X) | x� X}

Fig. 1. A source case ����

The target case, denoted by ���, is the case for which the solution part has to be
made more precise by the current CBR session. In general, before the CBR inference,
nothing is known about this solution: ��� = ��� × U��� with ��� ∈ 2U�� , the target
problem (Fig. 2). A singleton target problem is a target problem with only one element:
��� = {x0}.

The domain knowledge states that some pairs (x, X) are not licit: x �� X . Thus,
it corresponds to a necessary condition for x � X . It is formalized by a subset �� of
U = U�� × U��� and satisfies the implication: x � X implies (x, X) ∈ �� (or, by
contraposition, (x, X) �∈ �� implies x �� X). For ���, a given case, its elements
(x, X) that are not consistent with �� have not to be considered (they are known to
be illicit). Thus, ��� is to be considered in conjunction with ��, i.e. in its context
����(���) = �� ∩ ���. If no domain knowledge is available, then �� = U : every
pair (x, X) ∈ U is a priori licit.

Case-based inference. Given a target case ���, a case base �� and the domain knowl-
edge �� ⊆ U , the case-based inference aims at proposing a case ��������� that makes
��� more precise (Fig. 2):

�� ∩ ���������⊆ �� ∩ ��� (1)

Two main approaches for this inference are described in the CBR literature. The first
one is based on adaptation and the second one on combination.

Belief Merging-Based Case Combination 109

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

U��

U���

����1

����2

���

���

��

�
�������

Fig. 2. Result of a CBR session, ��� has been specialized into �
�������

3.4 Formalization of the Example

The cooking problem specification consists in the three following conditions: whether
the dish is frothy, whether it contains eggs, and whether it contains chocolate. U�� =
U1 × U2 × U3.

Only the ingredient amounts and the volume of froth will be considered for the so-
lution. All the values are taken for a single serving –which explains the real values for
the eggs number. U��� = U4 × U5 × . . .× U9. And finally U = U�� × U���. The cases
values are given in table 1.

Table 1. Formalization of the egg free chocolate mousse example

attribute ��� ����1 ����2 ����3

U1 = B is frothy ���� ���� ���� �����

U2 = B has eggs ����� ���� ����� �����

U3 = B has chocolate ���� ���� ����� ����

U4 = R froth volume (ml) _ 200 225 0
U5 = R number of eggs _ 0.67 0 0
U6 = R chocolate mass (g) _ 35 0 25
U7 = R cream mass (g) _ 10 0 125
U8 = R sugar mass (g) _ 65 50 _
U9 = R soya volume (ml) _ 0 170 0

The domain knowledge is given by ��:

�� = R����	
 ∩R
�����	
 ∩R
���� ∩R
���
�����	�

where R����	
 states that the froth obtained from an egg is at most 200 ml and 220 ml
from 170 ml of soya milk (220/170 � 1.32):

R����	
={(_, _, _, ������, ���, _, _, _, ���) |������ ≤ 200×���+1.32×���}

110 J. Cojan and J. Lieber

R
�����	
, R
����, and R
���
�����	� force ������� (resp. ����� and
�����������) to be true only when there is froth (resp. eggs and chocolate) in the
recipe:

R
�����	
 = {(�������, _, _, ������, _, _, _, _, _) |
������� = ��	� iff ������ �= 0}

R
���� = {(_, �����, _, _, ���, _, _, _, _) |����� =
��� iff ��� = 0}
R
���
�����	� = {(_, _, �����������, _, _, ���������, _, _, _) |

����������� =
��� iff ��������� = 0}

Therefore, the fifth component of �� ∩ ��� is (�� ∩ ���)5 = 0.
The following distance d is defined on U , for x, y ∈ U , by:

d(x, y) = d��(x, y) + d���(x, y)

d��(x, y) =
3∑

i=1

wi ×
{

0 if xi = yi

1 otherwise

d���(x, y) =
9∑

i=4

wi|yi − xi|

The choice of the weights wi reflects the relative importance of the different dimen-
sions. In particular here, the eggs and soya milk are used to generate froth, thus froth’s
dimension should get a higher importance than egg’s and soya’s.

4 Integrity Constraint Belief Merging

The following scenario illustrates the notion of integrity constraint belief merging. Let
us consider an agent that has some knowledge about the world that he/she considers to
be inviolable: this is his/her integrity constraints (IC). Now, he/she receives from several
sources some knowledge about the world. Taking the conjunction of all these sources
does not necessarily lead to a knowledge base consistent with the IC of the agent.

Various operators may be used to merge these sources of knowledge in a result con-
sistent with the integrity constraints. Such an IC merging operator should satisfy some
postulates [3], as it is explained in section 4.1. A straightforward generalization of this
work to a more general formalism is presented in section 4.2. Then, an example of
IC merging operator is presented (section 4.3).

4.1 IC Merging in Propositional Logic

The definition below is a reformulation from [3], with substitution of propositional
formulas on V by subsets of B

n:

Definition 3. Let U = B
n. An IC merging operator on U is a mapping� : (IC, M) �→

�IC(M), where IC ∈ 2U is the integrity constraint and M –the set of beliefs to
be merged– is a finite multi-set of non empty subsets of U , satisfying the following
postulates:

Belief Merging-Based Case Combination 111

(�-1) �IC(M) ⊆ IC
(�-2) If IC �= ∅ then�IC(M) �= ∅
(�-3) If

⋂
M ∩ IC �= ∅ then�IC(M) =

⋂
M ∩ IC

(�-4) If A1 ⊆ IC and A2 ⊆ IC then
�IC({A1, A2}) ∩A1 �= ∅ iff�IC({A1, A2}) ∩A2 �= ∅

(�-5) �IC(M1) ∩�IC(M2) ⊆ �IC(M1 ∪M2)
(�-6) If�IC(M1) ∩�IC(M2) �= ∅ then�IC(M1 ∪M2) ⊆ �IC(M1) ∩�IC(M2)
(�-7) �IC1(M) ∩ IC2 ⊆ �IC1∩IC2(M)
(�-8) If�IC1(M) ∩ IC2 �= ∅ then�IC1∩IC2(M) ⊆ �IC1(M)

where IC, IC1, IC2, A1, A2 ∈ 2U , A1 �= ∅, A2 �= ∅ and M , M1, and M2 are three
multisets of non empty subsets of U . M1 ∪ M2 denotes the multi-set union of M1
and M2.

Note that there is another postulate in [3] that expresses the principle of irrelevance of
syntax. By working on interpretations the independence to the syntax is already implied,
thus this postulate is reformulated in the following tautology: if M1 = M2 and IC1 =
IC2 then�IC1(M1) = �IC2(M2).

IC merging and belief revision. Belief revision is usually presented as the change of an
agent belief A after some facts B are known by him. Some beliefs in A may have to be
left as being in contradiction with B but others may not have interference and should
be kept. The resulting belief A � B should entail B and keep “as much as possible”
of A. The notion of IC merging can be considered as a generalization of the notion of
revision in the sense that if � is defined by

A � B = �B({A}) (2)

with � an IC merging operator, then � satisfies the postulates of revision (i.e., the
postulates of the “AGM theory” [5], that have been applied to propositional logic in [6]).

4.2 Generalization

The definition of an IC merging operator on a given set U is the same as definition 3,
except that U is any set, not necessarily B

n.

Definition 4. A pre-IC merging operator on a set U is a mapping � : (IC, M) �→
�IC(M), where IC ∈ 2U and M is a finite multi-set of subsets of U , satisfying the
postulates (�-1), (�-3) to (�-8), and (�-2′) a weakened version of (�-2):

(�-2′) If IC �= ∅ and every set in M is bounded, then�IC(M) �= ∅

Definition 5. An IC merging operator is a pre-IC merging operator that satisfies
postulate (�-2).

112 J. Cojan and J. Lieber

4.3 Example of Pre-IC Merging Operator

The operator presented in this section is inspired from one of the DA2 operators [3].
Let (U , d) be a pseudo-metric space. Let dΣ be the function associating to the pair

(M, y) –where M is a finite multiset of subsets of U , and y ∈ U– the real number

dΣ(M, y) =
∑

A∈M

d(A, y)

For IC ∈ 2U , let dΣ(M, IC) = inf
y∈IC

dΣ(M, y). Let �d,Σ be the operator defined as

follows:
�d,Σ

IC (M) =
{
y ∈ IC | dΣ(M, y) = dΣ(M, IC)

}
Proposition 1. If (U , d) is discrete,�d,Σ satisfies the postulates (�-1), (�-2′), (�-3),
(�-5), (�-6), (�-7), and (�-8).

If d is symmetrical (i.e., it satisfies the symmetry axiom) then �d,Σ satisfies (�-4).
It is then a pre-IC merging operator.

A proof for this proposition is given in appendix.
Note, that (�-2) is not satisfied in general. ConsiderU = {log(n) |n ∈ N\{0}}with

d(x, y) = |y−x|, IC = {log(2p) | p ∈ N\{0}}, M = {A}with A = {log(2p+1) | p ∈
N}. Then�d,Σ

IC (M) = ∅.

5 Case Combination Based on a Pre-IC Merging Operator

5.1 Conservative Adaptation

Conservative adaptation [2] is an approach to adaptation based on belief revision. Its
principle is to reuse “as much as possible” of ���� while being consistent with ���.
Both ���� and ��� must be considered according to domain knowledge ��. As for
belief revision, the meaning of “as much as possible” is variable. The idea is to define
conservative adaptation parameterized by a belief revision operator�:

��������� = (�� ∩ ����) � (�� ∩ ���)

This inference is called �-conservative adaptation.

5.2 �-Combination of Cases

Definition. Let ��� = {����1, . . . , ����k} be a subset of the case base ��. Let � be
a pre-IC merging operator on U = U��×U���.�-combination of cases is a generaliza-
tion of �-conservative adaptation: � is generalized in � and the sole selected case is
generalized in the set of source cases ���. Thus, ��������� = �����(���, ���) with

�����({����1, . . . , ����k}, ���) = ���∩�	({�� ∩ ����1, . . . , �� ∩ ����k}) (3)

I.e., the contribution of the source cases are merged in a result that specializes the target
case.

If k = card(���) = 1, then �����(���, ���) is a �-conservative adaptation, with �
defined by (2).

Belief Merging-Based Case Combination 113

Properties. In this section, the consequences of the postulates of (pre-)IC merging op-
erators are discussed from a�-combination of cases viewpoint.

(�-1) entails that �� ∩ ��������� ⊆ �� ∩ ��� which is the property (1) required
for the case-based inference (cf. section 3.3).

(�-2′) entails that if the target case is consistent with the domain knowledge –�� ∩
��� �= ∅– and each source case is bounded, –e.g., singleton cases– then ��∩���������
is satisfiable. (�-2) is stronger as it does not require the source cases to be bounded.

(�-3) entails that if the cases of ��� are consistent altogether with ��, then
��������� is the conjunction of ��, ���, and every ���� ∈ ���.

(�-4) enforces equity between the source cases: if two source cases are consistent
with the target context, then either both of them are taken into account in the combina-
tion or none of them.

(�-5) to (�-8) characterize the maximal preservation of the source cases according
to the local decomposition of ��� and ���.

(�-5) and (�-6) state
that if the combination
of two subsets of ���

provide consistent so-
lutions, then the combi-
nation of the whole is
the conjunction of both
solutions.

��� ∩ ��

����1

����2

����3

����4

�����({����1, ����2}, ���)
�����({����3, ����4}, ���)

�����({����1, ����2, ����3, ����4}, ���)

(�-7) and (�-8)
state that if ��� is spe-
cialized into ���′ that
is consistent with the
case combination for
���, then the case com-
bination for ���′ is ob-
tained by conjunction
with ���′.

��� ∩ ��

���′ ∩ ��

����1

����2

����3 �����({����1, ����2, ����3}, ���)

�����({����1, ����2, ����3}, ���′)

5.3 Application to the Example

Consider the merging operator defined in section 4.3 using the distance d defined in
section 3.4. The values of dimensions Ui for i = 1, 2, 3, 5 are fixed in �� ∩ ���, so the
space to be explored for the minima of dΣ corresponds to i = 4, 6, 7, 8, 9.

From the structure of d, it can be shown that the minimum can be searched indepen-
dently for dimensions Ui with i = 6, 7, 8 as there is no constraint relating their values.
Then the minima does not depend on the weight wi, it is reached for:

x6 = 25 x7 = 10 50 ≤ x8 ≤ 65

U4, U5, and U9 are related through R����	
, the search must then follow this restriction:
x4 ≤ 200× x5 + 1.32× x9. As x5 = 0 it becomes: x4 ≤ 1.32× x9.

114 J. Cojan and J. Lieber

As seen in section 3.4, the volume of froth should be given priority over the ways to
making it. From the structure of dΣ used in �d,Σ , it can be shown that the condition
w4 > 3 × (w9 + w5) is enough to ensure that priority (3 for the number of cases and
w9, w5 because these are the dimensions in competition). Under this assumption, the
minima is obtained for:

x4 = 200 x9 = 165

This result matches with what was expected in section 2: the froth volume and chocolate
mass are close to those of ����1. The use of soya milk to generate froth is taken from
����2 with an adaptation according to the froth volume. ����3 had little influence,
however its selection as source case offsets the absence of chocolate in ����2.

6 Application to CCBI

6.1 Credible Case-Based Inference

Assumptions. Credible case-based inference (CCBI [4]) is an approach to CBR for
which the problem-solution relation is assumed to be a partial function: if x � X and
x � X ′ then X = X ′. Moreover, each source case is a singleton ����i = {(xi, Xi)}
and the target case is specified by a singleton target problem: ��� = {x0} × U���.

CCBI is based on the idea that the CBR principle “Similar problems have similar
solutions” can be modeled thanks to d��, a symmetrical pseudo-distance on U��, d���,
a symmetrical pseudo-distance on U���, and h, a similarity profile, i.e., a function h :
[0; +∞]→ [0; +∞] such that for most x, y ∈ U��, if x� X and y � Y then

d���(X, Y) ≤ h(d��(x, y)) (4)

Thus, the similarity between solutions is constrained by the similarity between prob-
lems.2 A way to learn h from the case base is also described in [4] and it is proven,
under technical assumptions, that the probability of having the constraint (4) violated
converges to 0 as the size of the case base grows.

Definition of CCBI. Given a set ��� of source cases ����i = {(xi, Xi)} and a target
problem x0, if x = xi and y = x0 satisfies (4) for any i, then the solution X0 of x0
satisfies d���(Xi, X0) ≤ h(d��(xi, x0)). In other words (Fig. 3):

X0 ∈ CCCBI =
⋂
i

BU���

h(d��(xi,x0))
(Xi) (5)

Therefore, ��������� = {x0} × CCCBI solves ���.
This inference is only credible and not certain since (4) is only satisfied for most

x, y ∈ U��.

2 In fact, CCBI is introduced in [4] thanks to similarity measures S�� and S��� on U�� and U���,
but the definition presented in the current paper is equivalent. Indeed, a similarity measure S
on U verifying S(x, y) = 1 iff x = y can be defined thanks to a pseudo-distance d on U by
S(x, y) = 1

1+d(x,y)
and vice-versa.

Belief Merging-Based Case Combination 115

U��

U���

x

x1 x2

x3

X1

X2

X3

r1
r2

r3

h(r1)
h(r2)

h(r3)
CCCBI

Fig. 3. Credible Case-Based Inference

6.2 �d,Σ-Combination of Cases Extends CCBI

Proposition 2. CCBI assumption about the case base is made (cf. section 6.1).
Let d be the pseudo-distance on U = U�� × U��� defined for (x, X), (y, Y) ∈ U by

d((x, X), (y, Y)) = max{h(d��(x, y)), d���(X, Y)}

Let CCCBI be the result of CCBI, and C�d,Σ be the result of the �d,Σ-combination of
cases without domain knowledge (�� = U):

CCCBI =
n⋂

i=1

BU���

h(d��(xi,x0))
(Xi)

C�d,Σ = Φx0

(
��U�d,Σ (���, ���)

)
If CCBI provides a consistent result –CCCBI �= ∅– then it coincides with the�d,Σ-case
combination:

CCCBI = C�d,Σ

A proof for this proposition is given in appendix.

7 Computing IC Merging in Numerical Spaces

The computation of the merging �d,Σ
IC (M) is considered in this section with the

assumptions:

116 J. Cojan and J. Lieber

– U=D1×. . .×Dn with Di an interval of Z or of R.

– For x, y ∈ U d(x, y) =
n∑

i=1

wi|yi − xi|.

– IC can be defined by a finite set of linear inequalities.
– M = {A1, . . . , Ap} and every Aj can also be defined by a finite set of linear

inequalities.

The computation of �d,Σ
IC (M) is equivalent to the minimization of the function y �→

dΣ(M, y) under the constraint y ∈ IC.

Proposition 3. The computation of �d,Σ
IC (M) is reducible to a linear programming

problem [7].

Sketch of proof. Minimizing dΣ(M, y) is reducible to minimizing
p∑

j=1

n∑
i=1

wi|yi − xj
i |

under the constraints xj ∈ Aj . It is itself reducible to minimizing
p∑

j=1

n∑
i=1

wiz
j
i with the

additional constraints: zj
i ≥ yi − xj

i and zj
i ≥ xj

i − yi, which is a linear programming
problem. �

This property shows that if every Di is an interval of R, i.e. it is reducible to a real linear
programming problem, then the computation cost is polynomial in n× p. If any Di is a
subset of Z it is a mixed integer linear programming (which is an NP-hard problem).

In particular, the running example of this paper has been computed this way (cf. sec-
tion 5.3): the boolean dimensions are replaced by the integer interval [0, 1]Z = {0, 1}.

8 Conclusion, Related Work, and Future Work

The main contribution of this paper is to define an approach to case combination based
on an IC belief merging operator. It can be applied to case adaptation as a particular
case combination. It is shown to extend credible case-based inference. This approach
is, a priori, applicable to any formalism on which a pre-IC merging operator can be
defined, eg. a pseudo-metric space. Provided that cases are represented by numerical
attributes and that the constraints and the distance are linear, belief merging can be
reduced to linear programming. The complexity is then polynomial if there are only
real value attributes (linear programming) and NP-hard otherwise (mixed integer linear
programing). In propositional logic, IC merging and thus �-combination is NP-hard,
see [3].

Ongoing works are the implementation of a case combination basedon an IC merging
operatoras defined in section 7, with the purpose of experimentation. The possibility to
reduce other merging operators to linear programming should be investigated too.

As future work a systematic comparison with other case combination approaches
should be performed. The convergence of these approaches should be investigated to
determine in particular which ones can be covered by an IC merging operator. The fol-
lowing criteria –inspired by the case combination approaches review given in [8]– can

Belief Merging-Based Case Combination 117

guide the comparison: how is structured the participation of each source case, whether
the source cases are reused simultaneously or iteratively, and how the consistency is
maintained.

Different ways of structuring the combination exist. Static structures as in Decentral-
ized CBR (DZCBR) [9] where a set of contexts (or viewpoints) is set for the system.
Every context generates a local solution according to its local domain knowledge and
adaptation knowledge. Structure contained in cases as in DÉJÀ VU where the prob-
lem solving episodes are decomposed into a hierarchy of cases from the most abstract
one that gives the main frame of the solution to the most concrete ones that solve sub-
problems. Coverage of the target case by a set of source cases as in IDIOM [10] and
COMPOSER [11] –a source case represent a partial solution with constraints for its
inclusion in a global solution. In the approach presented in this paper all the source
cases are equally considered, no explicit structure appears.

While COMPOSER, DZCBR, and the approach presented in this paper reuse the
cases simultaneously, DÉJÀ VU and IDIOM do it iteratively. In DÉJÀ VU the resolu-
tion of a new query starts from the reuse of an abstract source case and is iterated on the
resulting subproblems. In IDIOM a solution is built by iteratively incorporating source
cases. A further investigation could be to investigate the possibility to express this ap-
proach to an iteration of conservative adaptation3 and to relate it to a combination based
on an IC merging operator.

Finally the approaches can be distinguished by the way the consistency is main-
tained. In DZCBR bridge rules between the contexts enforce the coherence of the local
solutions altogether to form a global solution. IDIOM and COMPOSER use a conflict
resolution algorithm. In our approach the inconsistencies between cases are managed
by an IC merging operator. This motivates the investigation of relationships between
conflict resolution and IC merging.

References

1. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates,
Inc., Hillsdale (1989)

2. Cojan, J., Lieber, J.: Conservative adaptation in metric spaces. In: Althoff, K.-D., Bergmann,
R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 135–149. Springer,
Heidelberg (2008)

3. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelligence 157(1-2),
49–79 (2004)

4. Hüllermeier, E.: Credible Case-Based Inference Using Similarity Profiles. IEEE Transaction
on Knowledge and Data Engineering 19(6), 847–858 (2007)

5. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet
functions for contraction and revision. J. of Symbolic Logic 50, 510–530 (1985)

6. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 52(3), 263–294 (1991)

7. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinator-
ica 4(4), 373–396 (1984)

3 I.e.. first computing �
�������1 = ����(����1) � ����(���) and then iteratively
�
�������i+1 = ����(����i) � ����(�
�������i).

118 J. Cojan and J. Lieber

8. Gebhardt, F., Voß, A., Gräther, W., Schmidt-Belz, B.: Reasoning with complex cases.
Kluwer, Boston (1997)

9. d’Aquin, M., Lieber, J., Napoli, A.: Decentralized case-based reasoning for the semantic web.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 142–155. Springer, Heidelberg (2005)

10. Smith, I., Lottaz, C., Faltings, B.: Spatial composition using cases: IDIOM. In: Aamodt, A.,
Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 88–97. Springer, Heidelberg (1995)

11. Purvis, L., Pu, P.: An Approach to Case Combination. In: Voß, A. (ed.) Proc. of the ECAI
1996 Workshop: Adaptation in Case-Based Reasoning, pp. 43–46 (1996)

Appendix

Proof of Property 1

(�-1) The satisfaction of (�-1) is straightforward from the definition of
�d,Σ

IC (M).
(�-3) If

⋂
M ∩ IC �= ∅, let y be an element of

⋂
M ∩ IC, y ∈ A for any A ∈ M ,

thus d(A, y) = 0 and dΣ(M, y) = 0. So dΣ(M, IC) = 0 and y ∈ �d,Σ
IC (M).

On the other way round, if y ∈ �d,Σ
IC (M), then dΣ(M, y) = 0 and d(A, y) = 0

for any A ∈ M (d(A, y) ≥ 0 for any A). The discretion assumption of (U , d)
implies then that y ∈ A. Indeed, consider the set {x ∈ A | d(x, y) ≤ 1} ⊆ B′U

1 (y),
it is finite and since d(A, y) < 1 it is not empty, thus d(A, y) is reached for an
x ∈ A. d(x, y) = 0 which implies by the separation assumption that y ∈ A.
Finally, y ∈

⋂
M and by definition of�d,Σ

IC (M) y ∈ IC which entails the result.
(�-5) and (�-6) Their satisfaction is obvious when�d,Σ

IC (M1) ∩�d,Σ
IC (M2) = ∅.

In the contrary, let y be an element of�d,Σ
IC (M1) ∩�d,Σ

IC (M2),

dΣ(M1, IC) + dΣ(M2, IC) = dΣ(M1, y) + dΣ(M2, y)

≥ inf
z∈IC

(
dΣ(M1, z) + dΣ(M2, z)

)
≥ dΣ(M1 ∪M2, IC)

However

dΣ(M1, IC) + dΣ(M2, IC) = inf
z∈IC

dΣ(M1, z) + inf
z∈IC

dΣ(M2, z)

≤ inf
z∈IC

(
dΣ(M1, z) + dΣ(M2, z)

)
≤ dΣ(M1 ∪M2, IC)

Thus all the inequalities can be replace by equalities, in particular the lower bound
of dΣ(M1, z) + dΣ(M2, z) for z ∈ IC is dΣ(M1, y) + dΣ(M2, y) = dΣ(M1 ∪
M2, IC), and as for i = 1, 2 dΣ(Mi, z) ≥ dΣ(Mi, y) this lower bound is reached
when dΣ(Mi, z) = dΣ(Mi, y) = dΣ(Mi, IC), ie. z ∈ �d,Σ

IC (M1 ∪M2) iff z ∈
�d,Σ

IC (M1) ∩�d,Σ
IC (M2).

(�-7) and (�-8) Similarly, if�d,Σ
IC1

(M) ∩ IC2 = ∅, the result is obvious.

Otherwise, let y be an element of�d,Σ
IC1

(M) ∩ IC2.

dΣ(M, IC1) = inf
z∈IC1

dΣ(M, z) ≤ inf
z∈IC1∩IC2

dΣ(M, z) = dΣ(M, IC1 ∩ IC2)

dΣ(M, y) = dΣ(M, IC1) ≤ dΣ(M, IC1 ∩ IC2) ≤ dΣ(M, y)

Belief Merging-Based Case Combination 119

Thus dΣ(M, IC1) = dΣ(M, IC1∩IC2) and�d,Σ
IC1

(M1)∩IC2 = �d,Σ
IC1∩IC2

(M1).
(�-2′) Assume IC �= ∅ and every set in M is bounded.

If M = ∅ then
⋂

M = U and according to postulate (�-3),�d,Σ
IC (M) = IC �= ∅.

If M �= ∅, then there exists an A ∈ M , A �= ∅ and is bounded so finite. Let
r = dΣ(M, IC) + 1 and consider S = {y ∈ IC | dΣ(M, y) ≤ r}. S is finite,
indeed S ⊆ {y ∈ U | dΣ(A, y) ≤ r} =

⋃
a∈A BU

r (a) which is a finite disjunction
of finite sets. Moreover S �= ∅ as IC �= ∅ and the lower bound of x �→ dΣ(x, M) on
IC and S are equal. S being finite this lower bound is reached and�d,Σ

IC (M) �= ∅.
(�-4) Assume d is symmetrical and consider three sets IC, A1 ⊆ IC and A2 ⊆ IC.

If�d,Σ
IC ({A1, A2}) ∩A1 �= ∅, let y1 be an element of this set.

dΣ({A1, A2}, IC) = dΣ({A1, A2}, y1) = d(A1, y1) + d(A2, y1)

as y1 ∈ A1, d(A1, y1) = 0 thus dΣ({A1, A2}, IC) = d(A2, y1). From the discre-
tion assumption, as A2 �= ∅ there is y2 ∈ A2 such that d(y1, y2) = d(y2, y1) =
d(A2, y1).

dΣ({A1, A2}, IC) = d(y1, y2) ≥ d(A1, y2) = dΣ({A1, A2}, y2)

As y2 ∈ IC dΣ({A1, A2}, y2) ≥ dΣ({A1, A2}, IC) thus, there is equality and
y2 ∈ �d,Σ

IC ({A1, A2}) which entails that�d,Σ
IC ({A1, A2}) ∩A2 �= ∅.

The other implication is symmetrical. �

Proof of Property 2

For X ∈ CCCBI, d���(Xi, X) ≤ h(d��(xi, x0)) for any 1 ≤ i ≤ n, so

d((xi, Xi), (x0, X)) = h
(
d��(xi, x0)

)
≤ min

Y ∈U���

d((xi, Xi), (x0, Y))

and

dΣ(��, (x0, X)) =
n∑

i=1

d((xi, Xi), (x0, X)) ≤
n∑

i=1

(
min

Y ∈U���

d((xi, Xi), (x0, Y))
)

≤ min
Y ∈U���

(
n∑

i=1

d((xi, Xi), (x0, Y))

)
= min

(x0,Y)∈U
dΣ(��, (x0, Y))

Thus, (x0, X) ∈ ��U�d,Σ (��, ���) and X ∈ C�d,Σ , which shows that CCCBI ⊆ C�d,Σ .

Moreover, if CCCBI �= ∅, (ie. there is such an X), then min
Y ∈U���

dΣ(��, (x0, Y)) ≤

dΣ(��, (x0, X)) and the previous inequalities are equalities. Thus, if Y ∈ U��� min-

imizes dΣ(��, (x0, Y)), then
n∑

i=1

d((xi, Xi), (x0, Y)) =
n∑

i=1

d((xi, Xi), (x0, X)). As

for any 1 ≤ i ≤ n d((xi, Xi), (x0, Y)) ≥ d((xi, Xi), (x0, X)), this means that

d((xi, Xi), (x0, Y)) = d((xi, Xi), (x0, X)) = h
(
d��(xi, x0)

)
ie. Y ∈ CCCBI, which shows that C�d,Σ ⊆ CCCBI. �

Maintenance by a Committee of Experts:
The MACE Approach to Case-Base Maintenance

Lisa Cummins and Derek Bridge

Department of Computer Science,
University College Cork,

Ireland
{l.cummins,d.bridge}@cs.ucc.ie

Abstract. Case-base administrators face a choice of many maintenance
algorithms. It is well-known that these algorithms have different biases
that cause them to perform inconsistently over different datasets. In this
paper, we demonstrate some of the biases of the most commonly-used
maintenance algorithms. This motivates our new approach: maintenance
by a committee of experts (MACE). We create composite algorithms that
comprise more than one individual maintenance algorithm in the hope
that the strengths of one algorithm will compensate for the weaknesses
of another. In MACE, we combine algorithms in two ways: either we put
them in sequence so that one runs after the other, or we allow them to run
separately and then vote as to whether a case should be deleted or not.
We define a grammar that describes how these composites are created.
We perform experiments based on 27 diverse datasets. Our results show
that the MACE approach allows us to define algorithms with different
trade-offs between accuracy and the amount of deletion.

1 Introduction

In this paper we examine the most commonly-used case-base maintenance algo-
rithms, and we present a new approach to maintenance, the MACE approach,
which uses a committee of experts to make maintenance decisions.1

Case-base maintenance has the goal of restoring a degree of efficiency to the
retrieval step of the CBR cycle by removing cases from the case-base, while, at
the same time, preserving, or even enhancing, the accuracy of the system. The
most common case-base maintenance algorithms are listed in Table 1.

As the Table shows, there are two types of case-base maintenance algorithm:
those that delete noisy (or harmful) cases, and those that delete redundant cases.
Noise reduction algorithms improve solution quality by removing cases that are
considered to have a negative effect on system accuracy. Redundancy reduction
algorithms improve system efficiency by removing cases which do not contribute
to case-base competence.

1 This material is based upon work supported by the Science Foundation Ireland under
Grant Number 05/RFP/CMS0019.

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 120–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Maintenance by a Committee of Experts 121

Table 1. Atomic case-base maintenance algorithms, and classic composites

Name used Name in the
in this paper literature Description

Atomic noise reduction algorithms
RENN RENN Repeated Edited Nearest Neighbour [15]
BBNR BBNR Blame-Based Noise Reduction [5]

Atomic redundancy reduction algorithms
ICFR — Redundancy reduction phase of ICF [2]
RCR — Redundancy reduction phase of RC [10]
CRR CRR Conservative Redundancy Reduction [5]

Classic composite algorithms
RENN→ICFR ICF Brighton & Mellish’s Iterative Case Filtering [2]
RENN→RCR RC McKenna & Smyth’s algorithm [10]
BBNR→CRR CBE Delany & Cunningham’s Case-Base Editing algorithm [5]

In practice, case-base maintenance algorithms are often composites, compris-
ing a noise reduction phase followed by a redundancy reduction phase. For ex-
ample, Brighton & Mellish’s Iterative Case Filtering (ICF) algorithm comprises
a RENN noise-filtering phase followed by their redundancy reduction phase [2].

The individual components of these composites have not always been tested
individually, nor have they been tested in combination with other of the algo-
rithms. For example, how does ICF’s redundancy reduction phase perform if it is
not preceded by RENN? How does it perform if it is preceded by BBNR instead
of RENN? To answer questions like these, we need to separate the composites
into their two constituent parts. This is why we have extracted the redundancy
reduction phase of the composite algorithms, naming them in the Table, and
treating them as separate algorithms. For example, ICFR is our designation for
the redundancy reduction phase of ICF.

In the next section we will analyse these algorithms in greater detail. Section 3
presents the MACE approach to case-base maintenance. Section 4 presents our
experimental methodology. Then Sections 5, 6, 7 and 8 present overall results,
results concerning noise reduction algorithms, results concerning the effect of
class boundary complexity, and results for the special case of spam, respectively.

2 Comparison of Existing Algorithms

2.1 Empirical Comparisons

It is well-known that the composite algorithms in Table 1 perform differently on
different datasets (see, e.g., [2]). The results in Table 2 from our own implemen-
tations of these algorithms exemplify this.2 (Our experimental methodology is
explained in detail later in this paper, Section 4.)

2 Our implementations are publicly available as they are part of the open source
jColibri framework, http://gaia.fdi.ucm.es/projects/jcolibri/

122 L. Cummins and D. Bridge

Table 2. Results for existing algorithms with highest results highlighted

27 datasets Breathalyser Credit Lenses
Algorithm Del (%) Acc (%) Del (%) Acc (%) Del (%) Acc (%) Del (%) Acc (%)

RENN→ICFR 78.76 73.58 77.53 74.00 84.02 83.38 44.38 52.50
RENN→RCR 88.75 75.09 87.66 66.80 87.84 86.38 86.25 55.00
BBNR→CRR 55.31 77.67 61.95 71.20 55.90 83.62 68.13 65.00

If we consider the results averaged over 27 datasets, we see that RENN→RCR
is the most aggressive and BBNR→CRR is the most conservative. Perhaps sur-
prisingly, RENN→RCR is only slightly behind BBNR→CRR in accuracy even
though it deletes over 30% more. Also, even though RENN→ICFR deletes 10%
less than RENN→RCR, it is less accurate. However, since these results are aver-
aged over 27 datasets, they hide details about individual datasets. For example,
although RENN→RCR beats RENN→ICFR in the average results, this is not
necessarily the case for each dataset.

If we look at the results from some of the individual datasets we see that
RENN→ICFR has highest accuracy on the Breathalyser dataset, RENN→RCR
on the Credit dataset, and BBNR→CRR on the Lenses dataset. On all three
datasets, RENN→RCR deletes most. RENN→ICFR deletes more than BBNR→
CRR on two of the datasets but the reverse is true for the Lenses dataset.

All of this simply serves to confirm what is well-known: in case-base mainte-
nance, there is no clear ‘winning’ algorithm. The differences in performance of
the algorithms are caused by their having different biases.

2.2 An Analysis of Algorithm Biases

Each of the different atomic maintenance algorithms targets different types of
cases to remove. In this section, we attempt to further illustrate these biases by
looking at some scenarios in detail.

The two atomic noise reduction algorithms define noise differently. RENN
regards a case as noisy if it has a different class to the majority of its k nearest
neighbours. After each case has been checked, RENN deletes all cases that are
flagged as noisy. This is then repeated until no more cases are removed [15].
BBNR identifies and removes cases which cause other cases to be misclassified
[5]. It first classifies each case in the case-base using its neighbours. It removes
neighbours that cause misclassifications, provided their removal does not cause
cases that were previously correctly classified to become misclassified. Figures 1
and 2 illustrate scenarios which reveal biases in RENN and BBNR.

If we take k = 3, in the situation shown in Figure 1, each case has one nearest
neighbour of the same class as itself and two of the other class. This means that
the majority of the nearest neighbours of each case are of a different class and
so RENN will flag each for deletion, leaving this case-base empty after the first
deletion pass is made. This problem does not occur with BBNR because c4 does

Maintenance by a Committee of Experts 123

Fig. 1. RENN problem situation

Fig. 2. BBNR problem situation

not cause any misclassification and so it will not be considered for deletion. It
will be left as the only case in the case-base after BBNR is run.

The bias is the opposite in the scenario shown in Figure 2. Here, if we take
k = 3, each of c1, c2 and c3 contributes to the misclassification of c4, but if any
of them is deleted then the others would be misclassified, so BBNR will delete
nothing. RENN will only delete c4 because it is the only case with the majority
of its k nearest neighbours of a different class.

In the case of the atomic redundancy reduction algorithms, all aim to remove
cases that do not contribute to coverage, but they differ in how they decide which
cases contribute. As a result they delete different types of cases. ICFR and CRR
both aim to retain cases on the boundaries between classes because these cases
are important for classification accuracy. ICFR removes cases that are solved by
more cases than they themselves solve [2]. CRR removes cases that solve other
cases [5]. It arranges the cases in the case-base in ascending order of how many
cases they solve. It then adds each case c to a new case-base and removes from
the original case-base any cases that c solves. RCR, however, aims to retain a
case if it is surrounded by many cases of the same class, while deleting those
that surround it [10]. It orders cases by descending relative coverage, which is
a measure of the coverage contribution of each case in relation to how much it
itself is covered. As each case is added to a new case-base, the cases that it solves
are removed from the original case-base. Given these different biases, RCR will
typically delete more cases than either ICF or CRR but this more aggressive
deletion may result in lower accuracy in datasets with complex class boundaries.

It is apparent from both our experimental results and our brief analysis of
biases that it is not the case that ‘one size fits all’ in case-base maintenance. The

124 L. Cummins and D. Bridge

<System> ::= <AtomicAlgorithm> | <Sequence> | <Committee>

<AtomicAlgorithm> ::= <AtomicNoiseReductionAlgorithm> |
<AtomicRedundancyReductionAlgorithm>

<AtomicNoiseReductionAlgorithm> ::= ‘RENN’ | ‘BBNR’

<AtomicRedundancyReductionAlgorithm> ::= ‘ICFR’ | ‘RCR’ | ‘CRR’

<Sequence> ::= <System>‘→’<System>

<Committee> ::= ‘{’ <System> <System> <System>* ‘}’ 〈VotingRule〉

<VotingRule> ::= ‘S’ | ‘M’ | ‘U’

Fig. 3. The MACE approach, defined by an EBNF grammar

question naturally arises whether novel composites, that combine algorithms
with different biases, can do better than the atomic algorithms and the classic
composites. We explore this in the next section, in which we present the MACE
approach, where maintenance is done by a committee of experts.

3 Maintenance by a Committee of Experts (MACE)

In the MACE approach, we consider each atomic algorithm to be an expert
that recommends cases for deletion. The MACE approach then defines different
ways in which these atomic algorithms combine to form novel composite case-
base maintenance algorithms. The easiest way to show how MACE forms these
composites is by giving a grammar. This grammar is shown in EBNF in Figure 3.

The grammar’s start symbol is <System>, which has three expansions:

<System> ::= <AtomicAlgorithm> In the simplest case, a maintenance sys-
tem comprises just one of the atomic algorithms. The atomic algorithms are
here divided into the noise reduction algorithms (RENN, BBNR), and the
redundancy reduction algorithms (ICFR, RCR, CRR).

<System> ::= <Sequence> A composite maintenance system may put systems
into sequence, denoted by writing an arrow between them. An example is a
classic composite such as BBNR→CRR. When we write this, we mean that
the algorithm comprises two phases, where the second (CRR) is executed
after the first (BBNR). This rule allows us to create all of the classic com-
posites but novel composites that have not previously been tested too, such
as ICFR→BBNR. (The recursion in the grammar also allows the possibil-
ity of sequences that comprise more than two algorithms, although this is a
degree of freedom that we shall not explore in this paper.)

<System> ::= <Committee> Another way to create a composite is to form a
committee (from which the MACE approach takes it name). A committee
comprises a set of two or more systems, which we write between curly braces.
Each system within a committee is executed, but cases are not deleted. If a
member of a committee would ordinarily delete a case, we treat this instead
as a vote for the deletion of that case. Committees must therefore also have

Maintenance by a Committee of Experts 125

a voting rule, which we write in superscript following the closing curly brace,
which determines how votes are tallied. We explain the voting rules in the
next paragraph. An example of a committee is {BBNR, RENN}U where
each of BBNR and RENN separately proposes a set of cases to delete; and
the committee deletes each case for which the voting is unanimous (U).

We define three voting rules for committees:

Single (S): If any member of the committee votes to delete case c, then the
committee deletes c.

Majority (M): If more than half of the members of the committee vote to
delete c, then the committee deletes c.

Unanimous (U): If all of the members of the committee vote to delete c, then
the committee deletes c.

Single voting allows us to define committees that can aggressively delete large
parts of a case-base, especially if the committees’ constituents have very different
biases. For example, {BBNR, RENN}S deletes all the cases that BBNR identifies
as noisy, plus all the cases that RENN identifies as noisy. On the other hand, with
unanimous voting, we can define very conservative committees. For example, if
{BBNR, RENN}U deletes a case, we can be fairly confident that the case is
noisy since both algorithms agree.

The real power of the grammar, however, comes from the mutual recursion in
the rules. We will illustrate this with just three examples.

Since a sequence comprises two systems, and a system can be a commit-
tee, the grammar allows for sequences of committees. An example is {BBNR,
RENN}S→{ICFR, RCR, CRR}U , which first runs an aggressive noise reduction
committee, followed by a very conservative redundancy reduction committee.

Similarly, since a committee comprises two or more systems, and a system can
be a sequence, the grammar allows for committees of sequences. An example is
{RENN→ICFR, RENN→RCR, BBNR→CRR}M , which uses majority voting
of the three classic algorithms.

Finally, since a committee comprises two or more systems, and a system can
be another committee, the grammar allows for committees with sub-committees.
An example is {{RENN, BBNR}U , RCR}S, in which RCR votes alongside a
noise sub-committee.

Related Work. The idea of combining techniques with different biases is not
new. In machine learning, ensembles classify new problems using each of the
classifiers in the ensemble [6,14]. Ensembles have similarly been been used in
CBR [4,9,12]. Similarly, distributed CBR [13] deals with the use of multiple
case-bases and how the system works in combining these.

The work in case-based ensembles and in distributed CBR tends to imply the
use of multiple case-bases, with goals such as improved accuracy, efficiency, or
personalisation. Brodley & Friedl also use multiple case-bases (in fact, multiple
folds of the same case-base) in their approach to case-base maintenance [3]. They
split the case-base and use a classifier that is trained on one part to classify the

126 L. Cummins and D. Bridge

Table 3. Details of the datasets used in experiments

Dataset Name Cases Features Classes Accuracy (%)
Balance 625 4 3 85.12
Breast Cancer Diagnostic 569 30 2 96.90
Breast Cancer Prognostic 198 33 2 71.58
Breathalyser 127 5 2 71.60
Credit Approval 690 15 2 86.92
Dermatology 366 34 6 97.75
Flags 194 28 8 52.89
Glass Identification 214 9 7 69.05
Haberman’s Survival 306 3 2 69.51
Heart Disease Cleveland 303 14 5 53.22
Hepatitis 155 19 2 80.63
Ionosphere 351 33 2 86.71
Iris 150 4 3 97.00
Lenses 24 4 3 72.50
Lettings 756 5 2 84.97
Liver Disorders 345 6 2 64.20
Lung Cancer 32 56 3 48.00
Pima Indians Diabetes 768 8 2 70.78
Post-Operative Patient 90 8 3 64.71
Spam (5 datasets) 1000 700 2 95.55
Teaching Assistant Evaluation 151 5 3 55.33
Wine 178 13 3 96.67
Zoo 101 16 7 91.50
Average over 27 datasets - - - 79.46

remaining part; they repeat this for each of several splits; and they then remove
any cases that were misclassified. This use of multiple case-bases, however, is
not a feature of the MACE approach: we are combining different algorithms.
Closest to our work is arguably Wiratunga et al [17]. We are using a committee
of maintenance experts, whereas they use a committee of adaptation experts.

4 Experimental Methodology

Datasets. Table 3 lists the 27 datasets that we use to evaluate maintenance al-
gorithms in this paper: 20 from the UCI repository [1]; the Breathalyser dataset
[7]; the Lettings dataset [11]; and five email datasets [5]. We have datasets
of varying sizes, with different numbers of attributes and different numbers of
classes. The datasets also have varying amounts of noise and redundancy.

MACE Algorithms. The MACE grammar defines an infinite set of mainte-
nance algorithms. In our experiments, we put a number of restrictions on the
sequences and committees that we created. We limited the sequences to ones
that comprise either two atomic algorithms or one atomic algorithm and one

Maintenance by a Committee of Experts 127

committee, and we obviously ensured that a sequence contained distinct algo-
rithms (e.g. BBNR→BBNR is excluded). We similarly excluded duplicates from
committees, and kept the length to five or less. We allowed sub-committees,
but not sub-sub-committees, and a committee that contained a sub-committee
could only contain one other component (which was allowed to be an atomic al-
gorithm, a sequence or a sub-committee). With all of these restrictions in place,
we created 307 algorithms from the grammar for experimentation.

Methodology. For evaluation, we performed repeated holdout on each of the
datasets. Each dataset was divided randomly into three splits: a 60% training
set, a 20% test set, and a final 20% which was required for evaluation of other
systems in our research (not reported in this paper) and hence was discarded
here. We created 10 different splits of the data.

We ran each algorithm on the training set and recorded the percentage of cases
deleted. We also recorded the accuracy of the resulting case-base by using the test
set as queries and recording the percentage correctly classified. We also recorded
the accuracy before performing any maintenance to provide a benchmark figure.
Table 3 contains these benchmark accuracies.

5 General Results

In this section, we compare overall performance, averaged over the 27 datasets.
But there is an immediate problem: case-base maintenance is a multi-objective
problem. We wish to optimise both the percentage of cases deleted, but also the
accuracy of the final case-base. This is not possible: algorithms that do well on
one of the criteria do not necessarily do well on the other. It comes as no surprise,
for example, that our experimental results show that committees with many
members and single voting delete many cases, but at a severe cost in accuracy;
the opposite is the case with committees with few members and unanimous
voting. Case-base administrators must strike a balance between accuracy and
deletion. They need ways of seeing the trade-offs, so they can make informed
decisions. We looked at two ways of presenting this.

5.1 Harmonic Mean

We could present the arithmetic mean of the percentage of cases deleted and the
case-base accuracy. But this can be misleading. The arithmetic mean in the case
of an algorithm with very high accuracy and very low deletion will be similar
to the arithmetic mean in the case of an algorithm with medium accuracy and
deletion. To avoid this, we instead use the harmonic mean (Equation 1). The
harmonic mean penalises large differences between two values so that a high
mean is only produced if both individual values are high. In this way we can
find algorithms which have a high value for both accuracy and deletion.

HarmonicMean(Acc, Del) =
2×Acc×Del

Acc + Del
(1)

128 L. Cummins and D. Bridge

Table 4. Top five algorithms ordered by harmonic mean over 27 different datasets

Algorithm Deletion (%) Accuracy (%) Harmonic mean
{RENN, BBNR, RCR}S 90.12 74.94 81.83

RENN→RCR 88.75 75.09 81.35
{RENN, RCR}S 88.20 74.15 80.57
RCR→BBNR 89.67 72.63 80.26

{{RENN, BBNR}U , RCR}S 83.26 77.42 80.23

Table 4 shows the algorithms with the top five harmonic means. We can see
that these algorithms have high values for both accuracy and deletion.

These algorithms perform well when compared with the average accuracy
when no deletion occurs (79.46%). We can see that the algorithm with the best
accuracy, {{RENN, BBNR}U , RCR}S , only causes a 2% drop in accuracy while
deleting 83.26%. This seems to be a reasonable compromise.

Additionally, we can see that novel MACE algorithms are performing well.
In the top five, there are three committees, all of which are quite conservative.
There is also one novel sequence, RCR→BBNR, and one classic, RENN→RCR.
Interestingly, all five are some combination of RCR and a noise reduction algo-
rithm. On its own, the atomic RCR algorithm has much lower deletion (76.67%)
and therefore a much lower harmonic mean value (76.53). Our results show the
strength of combining algorithms in sequences and committees: the weaknesses in
RCR that cause the accuracy drop are compensated for by the noise algorithms.

A problem with this way of presenting the results, however, is that it does
not give the case-base administrator much sense of what trade-offs can be made.
For example, what does she do if she is not happy to see accuracy fall by 2%.

5.2 Pareto Front

Another way to handle a multi-objective problem is to compute the Pareto
front. The Pareto front contains algorithms that are not dominated by any other
algorithms. We take one maintenance algorithm to dominate another if and only
if it both deletes more and is more accurate. This finds a set of algorithms which
are not bettered by other algorithms and which are all either equal to one another
or incomparable with one another (e.g. because one of them deletes more, but
the other has higher accuracy).

In Figure 4, we plot all 307 of our algorithms. The percentage of cases deleted
is on the x-axis, and the percentage accuracy is on the y-axis. Each point rep-
resents one algorithm: red squares are algorithms on the Pareto front; blue dia-
monds are algorithms that are dominated by those in the Pareto front.

The Pareto front in Figure 4 contains algorithms that delete everything and
hence have extremely low accuracy, and vice versa. However, it also contains
algorithms with a good balance between the two. These are very easy to identify
on the graph because we can see where accuracy begins to fall rapidly. This is
the point where 80% or more of the case-base is deleted. We have circled these

Maintenance by a Committee of Experts 129

Fig. 4. Result on 27 different datasets, highlighting the Pareto front

algorithms on the graph. The four algorithms we have circled are: {{RENN,
BBNR}U , RCR}S , BBNR→RCR, RENN→RCR and {RENN, BBNR, RCR}S .
Again, we can see that sequences and committees containing RCR and the noise
algorithms perform strongly.

The advantage of the graph is that a case-base administrator can investigate
the compromises that need to be made. For example, if she wants to delete 50%
of the case-base, the graph shows that this can be done while retaining 78%
accuracy; but if she wants to delete 90%, then accuracy drops to 75%. Similarly,
if she wants to keep accuracy above 79%, the most that she can delete is about
45%. Of course, to be truly useful, the administrator needs a graph that shows
the Pareto front for her particular case-base, not an average over 27 datasets.

6 Noise-Filtering

The idea of using an initial noise reduction phase followed by a redundancy
reduction phase probably originates with Wilson et al [16]. All three classic
case-base maintenance algorithms follow suit. Here, inspired by the numerous
alternatives that the MACE approach defines, we wanted to determine how
beneficial a noise-filtering phase is. Accordingly, in Table 5, we compare all five
atomic algorithms, all three classic composite algorithms, algorithms in which
atomic redundancy reduction algorithms are paired with noise reduction algo-
rithms that they have never previously been paired with (e.g. BBNR→RCR),
and algorithms in which the noise reduction phase comes after the redundancy

130 L. Cummins and D. Bridge

Table 5. Results for different uses of noise reduction algorithms

27 datasets Breathalyser Lenses
Algorithm Del (%) Acc (%) Del (%) Acc (%) Del (%) Acc (%)

RENN 24.27 76.57 25.84 68.80 36.25 52.50
BBNR 23.85 79.06 25.97 71.60 41.25 60.00
ICFR 60.77 74.60 61.30 66.00 40.00 67.50
RCR 76.67 76.40 77.40 70.80 63.75 72.50
CRR 35.76 77.51 41.17 72.00 32.50 72.50

RENN→ICFR 78.76 73.58 77.53 74.00 44.38 52.50
RENN→RCR 88.75 75.09 87.66 66.80 86.25 55.00
RENN→CRR 60.27 76.23 66.62 67.20 71.25 55.00
BBNR→ICFR 74.95 74.69 72.08 67.20 70.00 55.00
BBNR→RCR 84.99 75.90 85.19 66.80 80.00 65.00
BBNR→CRR 55.31 77.67 61.95 71.20 68.13 65.00
ICFR→RENN 85.43 64.20 87.79 50.80 79.38 45.00
RCR→RENN 91.65 65.46 92.60 52.00 92.50 45.00
CRR→RENN 64.95 73.35 72.73 62.40 75.63 47.50
ICFR→BBNR 81.47 72.39 80.52 59.20 76.88 57.50
RCR→BBNR 89.67 72.63 87.79 69.20 91.88 45.00
CRR→BBNR 60.46 78.20 64.68 70.00 75.63 62.50

reduction phase, rather than before it (e.g. RCR→RENN). In addition to aver-
ages over all 27 datasets, we look separately at the Breathalyser dataset, which
is known to be very noisy (since it was collected in Dublin pubs!), and the Lenses
dataset, which is known to be noise-free. As Table 3 shows, the accuracy of these
datasets is 79.46%, 71.60% and 72.50%, respectively without maintenance.

Firstly we look at the atomic algorithms and their performance over the
datasets. We see that the atomic noise reduction algorithms (RENN, BBNR)
never actually improve accuracy, even on the noisy Breathalyser data (although
BBNR does maintain the same accuracy here while deleting 25.97%). We also see
that they both delete a large proportion of the Lenses dataset even though this
is noise-free, and they both cause large accuracy drops as a result. Unexpectedly,
all three atomic redundancy reduction algorithms have higher accuracy than the
noise reduction algorithms on this dataset. In fact, CRR has a higher accuracy
than RENN across the table, and only loses to BBNR on the results averaged
over the 27 datasets. RCR has similar accuracy to both RENN and BBNR on
the Breathalyser dataset while deleting over 50% more of the case-base.

Secondly, we look at the changes in accuracy and deletion when each of the
noise reduction algorithms is run before each of the redundancy reduction algo-
rithms. For each such algorithm, on the Lenses dataset, there is a large drop in
accuracy. This is not surprising given the fact that the atomic noise reduction
algorithms performed so badly on this dataset. For the Breathalyser dataset,
only RENN→ICFR increases accuracy; BBNR→CRR has the smallest fall in
accuracy and yet deletes the most. In the results averaged over the 27 datasets,
changes in accuracy are quite small. Using BBNR in the noise reduction phase
gives slightly less loss of accuracy than using RENN.

Maintenance by a Committee of Experts 131

When we look at the deletion results, we can see that these composites do
delete more than their constituents on their own, as we would expect. Mostly,
deleting more cases lowers accuracy. But there are exceptions where accuracy
improves (e.g. RENN→ICFR on the Breathalyser dataset) and where accuracy
falls only a little while the case-base shrinks a lot (e.g. BBNR→CRR on the
Breathalyser dataset). Interestingly, these good results come from ‘classic’ algo-
rithms (RENN→ICFR, BBNR→CRR). But there are novel combinations that
are doing well on the average results, e.g. RENN→CRR, which might be worthy
of investigation on other individual datasets.

Finally, we look at the effect of switching around the sequences so that the
redundancy reduction algorithm comes before the noise reduction algorithm.
The results here are very consistent. In all situations, the resulting algorithm
deletes a greater amount than it does in the conventional ordering. On the other
hand, the resulting algorithm is always less accurate than its original with three
exceptions: CRR→BBNR is more accurate than BBNR→CRR on the averaged
data, RCR→BBNR is more accurate than BBNR→RCR on the Breathalyser
data, and ICFR→BBNR is more accurate than BBNR→ICFR on the Lenses
dataset. Of these, RCR→BBNR might be worthy of further investigation.

In summary, this analysis shows that the noise reduction phase that is used by
so many case-base maintenance algorithms is not always useful, and in some cases
may be quite detrimental to the accuracy of the algorithm. It also shows that
the three classic composite algorithms do not necessarily use the best algorithm
for their noise reduction phase, and that the best algorithm to use can change
depending on the dataset.

7 The Effect of Boundary Complexity

The complexity of the boundary between classes in a dataset may have an ef-
fect on the performance of the different maintenance algorithms. For example,
as noted previously, since RCR retains a case c if it is surrounded by cases of
the same class as c, rather than retaining boundary cases, it may cause a loss
of accuracy when boundaries are complex. To explore this idea, we computed a
boundary complexity measure on the datasets. The boundary complexity mea-
sure that we use is the intra/inter class distance ratio [8]. We looked at the two
datasets with highest complexity (Lettings and Flags) and the two with lowest
complexity (Zoo and Iris) according to this measure. For each of these datasets,
we found the top five algorithms ordered by harmonic mean. These top five
algorithms are shown in Tables 6 and 7.

We can see that the top five algorithms for the datasets with highest complex-
ity are quite similar. Almost all of them are committees of two sequences, where
the sequences comprise a noise reduction algorithm along with either RCR or
CRR. The top algorithms for the datasets with lowest complexity are also very
similar to each other, with three algorithms common to both datasets. We can
see that these algorithms are much more like the ones that did well overall
(Section 5) containing one or both of the noise reduction algorithms along with
RCR. We also note that the top algorithms for the complex datasets are quite

132 L. Cummins and D. Bridge

Table 6. Top five algorithms ordered by harmonic mean for most complex datasets

Lettings Flags
{BBNR→CRR, RENN→RCR}S {RENN→CRR, CRR→BBNR}S

{RCR→BBNR, CRR→RENN}S {RENN, BBNR, CRR}S

{CRR→RENN, RCR→BBNR}S {RENN→RCR, RCR→BBNR}U

{RENN→RCR, CRR→BBNR}S {RENN→CRR, RCR→RENN}U

{RCR→RENN, RENN→ICFR}S {CRR→RENN, RCR→BBNR}U

Table 7. Top five algorithms ordered by harmonic mean for least complex datasets

Zoo Iris
RENN→RCR {RENN, RCR}S

{RENN, BBNR, RCR}S {RENN, BBNR, RCR}S

{RENN→RCR, RCR→RENN}U RENN→RCR
{{RENN, BBNR}U , RCR}S {{RENN, BBNR}U , RCR}S

RCR BBNR→RCR

different to the top algorithms for the simple datasets. Interestingly too, the
classic RENN→RCR algorithm is in the top three for both the Zoo and the Iris
datasets. However, it comes in 16th place for the Flags dataset, and in 52nd place
for the Lettings dataset. This suggests that there is a need for investigation of
maintenance algorithms that are suited to datasets with complex boundaries.

8 The Special Case of Spam

Spam-filtering is a task with special characteristics [5]. Of particular relevance
here are the facts that spam is heterogeneous (hence, it is a disjunctive concept),
and there is a high cost of false positives. We decided, therefore, to look sepa-
rately at how the maintenance algorithms perform on our five spam datasets.

As well as recording the percentages of accuracy and deletion for each of the
algorithms, we also recorded the rate of false positives, the rate of false negatives
and the within-class error rate (the average of the other two rates) [5]. Table 8
shows the best five algorithms, ordered by increasing within-class error rate.

Table 8. Top five algorithms ordered by within-class error rate for the spam datasets

Algorithm Del Acc FP Rate FN Rate Err Rate
BBNR 5.84 96.16 2.64 5.02 3.82

{{CRR, RCR, ICFR}U , BBNR}S 35.58 95.86 2.42 5.84 4.14
{RCR, BBNR}U 4.54 95.64 2.46 6.26 4.36

{BBNR→CRR, BBNR→ICFR, ICFR→BBNR, 28.88 95.60 2.44 6.30 4.38
CRR→BBNR, BBNR→RCR, RCR→BBNR}U

{CRR→BBNR, BBNR→RCR}U 38.14 95.56 2.22 6.66 4.44

Maintenance by a Committee of Experts 133

We can see that the algorithms that do well on the spam datasets are quite
different from the algorithms that have done well on other datasets. BBNR
performs very strongly, with the lowest rate of error overall. It also provides
the noise removal component of all of the sequences and committees in the top
five; RENN is not contained in any of the top five. Since BBNR was developed
specifically to remove noise from spam datasets, this result is not surprising.
However, it does confirm the strength of the algorithm for this domain.

It is also interesting to note that CRR, the algorithm developed specifically
to remove redundancy from spam datasets, does not perform as strongly. It is
contained in three of the top five algorithms, but appears less often than RCR.
Also, the ‘classic’ BBNR→CRR composite comes only in 62nd place.

This indicates that, while the BBNR part of the composite algorithm is well
suited to spam datasets, CRR is not as well suited. In fact, it appears that
no single redundancy removal algorithm on its own deals well with the spam
datasets. The committees in the top five all contain at least two atomic redun-
dancy removal algorithms, if not all three. This may be due to the fact that spam
is heterogeneous; it is more difficult to be sure that spam cases are redundant
because they are distributed quite widely across the case base.

9 Conclusions and Future Work

In this paper we have investigated the most commonly-used case-base mainte-
nance algorithms and have shown their strengths and weaknesses. We presented
our MACE approach, which allows us to combine these algorithms. We investi-
gated the performance of 307 algorithms defined by MACE using 27 datasets.

Our MACE algorithms performed strongly: four of the top five algorithms
were new sequences or committees. As well as reporting the top algorithms over
the 27 datasets, we looked at three particular areas where results could be dif-
ferent. We examined the initial noise reduction phase that the classic algorithms
use and concluded that it is not always beneficial. We looked at boundary com-
plexity and the effect that this has on the maintenance algorithms. We showed
that the RCR algorithm, which works well on simple datasets, performs less
well on those with complex boundaries. We also looked at the spam domain and
showed that the BBNR algorithm does very well on this domain.

Our ongoing work consists of predicting a good maintenance algorithm for a
given dataset based on properties of that dataset. In particular, we are investi-
gating using a ‘meta-case-base’ for this task.

References

1. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007)
2. Brighton, H., Mellish, C.: On the Consistency of Information Filters for Lazy Learn-

ing Algorithms. In: Rauch, J., Zytkow, J.M. (eds.) PKDD 1999. LNCS, vol. 1704,
pp. 283–288. Springer, Heidelberg (1999)

3. Brodley, C.E., Friedl, M.A.: Identifying and Eliminating Mislabeled Training In-
stances. In: AAAI/IAAI, pp. 799–805. AAAI Press, Menlo Park (1996)

134 L. Cummins and D. Bridge

4. Cunningham, P., Zenobi, G.: Case Representation Issues for Case-Based Reasoning
from Ensemble Research. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS,
vol. 2080, pp. 146–157. Springer, Heidelberg (2001)

5. Delany, S.J., Cunningham, P.: An Analysis of Case-Based Editing in a Spam Filter-
ing System. In: Funk, P., González-Calero, P. (eds.) ECCBR 2004. LNCS, vol. 3155,
pp. 128–141. Springer, Heidelberg (2004)

6. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

7. Doyle, D., Cunningham, P., Bridge, D.G., Rahman, Y.: Explanation Oriented Re-
trieval. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155,
pp. 157–168. Springer, Heidelberg (2004)

8. Ho, T.K., Basu, M.: Measuring the Complexity of Classification Problems. In:
Procs. of the 15th International Conference on Pattern Recognition, 2000, pp. 43–
47 (2000)

9. Leake, D.B., Sooriamurthi, R.: When Two Case Bases Are Better than One: Ex-
ploiting Multiple Case Bases. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS,
vol. 2080, pp. 321–335. Springer, Heidelberg (2001)

10. McKenna, E., Smyth, B.: Competence-Guided Case-Base Editing Techniques. In:
Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 186–197.
Springer, Heidelberg (2000)

11. Nicholson, R., Bridge, D., Wilson, N.: Decision Diagrams: Fast and Flexible Sup-
port for Case Retrieval and Recommendation. In: Roth-Berghofer, T., Göker, M.H.,
Altay Güvenir, H. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 136–150.
Springer, Heidelberg (2006)

12. Orecchioni, A., Wiratunga, N., Massie, S., Craw, S.: k-NN Aggregation with a
Stacked Email Representation. In: Althoff, K.D., Bergmann, R., Minor, M., Hanft,
A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 415–429. Springer, Heidelberg (2008)

13. Plaza, E., McGinty, L.: Distributed Case-Based Reasoning. The Knowledge Engi-
neering Review 20(3), 261–265 (2006)

14. Quinlan, R.J.: Bagging, Boosting, and C4.5. In: AAAI/IAAI, vol. 1, pp. 725–730.
AAAI Press, Menlo Park (1996)

15. Tomek, I.: An Experiment with the Edited Nearest-Neighbor Rule. IEEE Trans-
actions on Systems, Man, and Cybernetics 6(6), 448–452 (1976)

16. Wilson, D.R., Martinez, T.R.: Instance Pruning Techniques. In: Fisher, D. (ed.)
Procs. of the 14th International Conference on Machine Learning, ICML, pp. 403–
411. Morgan Kaufmann, San Francisco (1997)

17. Wiratunga, N., Craw, S., Rowe, R.: Learning to Adapt for Case-Based Design.
In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS, vol. 2416, pp. 421–435.
Springer, Heidelberg (2002)

The Good, the Bad and the Incorrectly
Classified: Profiling Cases for Case-Base Editing

Sarah Jane Delany

Dublin Institute of Technology, Dublin, Ireland
sarahjane.delany@dit.ie

Abstract. Case-based approaches to classification, as instance-based
learning techniques, have a particular reliance on training examples that
other supervised learning techniques do not have. In this paper we
present the RDCL case profiling technique that categorises each case
in a case-base based on its classification by the case-base, the benefit it
has and/or the damage it causes by its inclusion in the case-base. We
show how these case profiles can identify the cases that should be re-
moved from a case-base in order to improve generalisation accuracy and
we show what aspects of existing noise reduction algorithms contribute
to good performance and what do not.

1 Introduction

Unlike many other supervised learning techniques, lazy learning techniques are
instance-based and depend greatly on individual training examples. This has
motivated considerable research into the identification of appropriate training
examples for case-based maintenance tasks. Case-base editing involves reducing
a case-base or training set to a smaller number of cases while trying to maintain
and even improve the generalisation accuracy. A key aspect of case-base editing
is to identify and remove noisy or exceptional cases that can cause a degradation
in the generalisation accuracy.

In this paper we present a technique for associating a competence profile with
each case in a case-base. The case profile categorises each case based on three
characteristics;

(i) whether the case is classified correctly or not by the rest of case-base,
(ii) what benefit (or good) if any, it brings to the case-base by its inclusion, and
(iii) whether or not it causes damage (or harm) to the case-base by its inclusion.

Different combinations of the three characteristics result in a case having one of
eight possible profiles. Building on established case-base maintenance research
[1,2], these case profiles are derived from a competence model constructed on
the case-base by a leave-one-out classification of all cases.

A key advantage of identifying the types of cases in a case-base is that it
exposes the effect of removing cases of different types from a training set. This
facilitates identifying which case types are the most useful in maintaining and
improving generalisation accuracy.

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 135–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

136 S.J. Delany

A further important benefit of this profiling methodology is that it reveals the
biases of existing noise reduction techniques and shows what aspects contribute
to good performance and what aspects do not. Resulting from our analysis of
these case profiles we present in this paper a simple noise reduction technique
based on these profiles that consistently improves generalisation accuracy and we
compare its performance to existing noise reduction techniques across a number
of datasets.

The rest of this paper is structured as follows. Section 2 of this paper reviews
the extensive existing case-editing literature. Section 3 presents our case profiling
approach while section 4 describes the investigations we performed into showing
which types of cases are most beneficial to remove from a case-base. This section
also includes an investigation into what kinds of cases existing noise reduction
algorithms remove and presents our profile-based noise reduction technique. Sec-
tion 5 concludes with some directions for future work.

2 Case-Base Editing

Case-base editing techniques have been categorised as competence preservation or
competence enhancement techniques [3,4]. Competence preservation corresponds
to redundancy reduction, removing superfluous cases that do not contribute
to classification competence. Competence enhancement is effectively noise reduc-
tion, removing noisy or corrupt cases from the training set. Competence preserva-
tion techniques aim to remove internal cases in a cluster of cases of the same class
and can predispose towards preserving noisy cases as exceptions or border cases.
Competence enhancement on the other hand aims to removenoisy or corrupt cases
but can remove exceptional or border cases which may not be distinguishable from
true noise, so a balance of both can be useful in a case editing algorithm.

Editing strategies normally operate in one of two ways; incremental which
involves adding selected cases from the training set to an initially empty edited
set and decremental which involves contracting the training set by removing
selected cases.

An early competence preservation technique is Hart’s Condensed Nearest
Neighbour (CNN) [5]. CNN is an incremental technique which adds to an ini-
tially empty edited set any case from the training set that cannot be classified
correctly by the edited set. This technique is very sensitive to noise and to the
order of presentation of the training set cases, in fact CNN by definition will tend
to preserve noisy cases. Ritter [6] reported improvements on the CNN with their
Selective Nearest Neighbour (SNN) which imposes the rule that every case in
the training set must be closer to a case of the same class in the edited set than
to any other training case of a different class. Gates [7] introduced a decremental
technique which starts with the edited set equal to the training set and removes
a case from the edited set where its removal does not cause any other training
case to be misclassified. This technique will allow for the removal of noisy cases
but is sensitive to the order of presentation of cases. More recent improvements
to CNN have been proposed by Chou et al. [8] and Angiulli [9] with Hao et al.
[10] proposing a variation appropriate for text classification.

The Good, the Bad and the Incorrectly Classified 137

Competence enhancement or noise reduction techniques start with Wilson’s
Edited Nearest Neighbour (ENN) algorithm [11], a decremental strategy, which
removes cases from the training set which do not agree with their k nearest
neighbours. These cases are considered to be noise and appear as exceptional
cases in a group of cases of the same class.

Tomek [12] extended this with his repeated ENN (RENN) and his all k-NN
algorithms. Both make multiple passes over the training set, RENN repeating
the ENN algorithm until no further eliminations can be made from the training
set while all k-NN uses incrementing values of k for each case and removes the
case if a misclassification occurs for any value of k. These techniques focus on
noisy or exceptional cases and do not result in the same storage reduction gains
as the competence preservation approaches. A variation on ENN using k nearest
centroid neighbours instead of k nearest neighbours was proposed by Sánchez
et al. [13]. There is also work which considered relabelling examples rather than
deleting them [14,15].

Later editing techniques can be classified as hybrid techniques incorporating
both competence preservation and competence enhancement stages. Aha [16]
presented a series of Instance Based (IB) learning algorithms to reduce storage
requirements and tolerate noisy instances. IB2 is similar to CNN adding only
cases that cannot be classified correctly by the reduced training set. IB2’s sus-
ceptibility to noise is handled by IB3 which records how well cases are classifying
and only keeps those that classify correctly to a statistically significant degree.
Other researchers have provided variations on the IBn algorithms [17,18,19].

More recently, Pan et al. [20] proposed a case-base mining algorithm Kernel-
based Greedy Case-base Mining (KGCM) guided by theoretical results to edit
a case-base. It involves using a kernel transformation to map the original case-
base to a new feature space and using FDA to help remove noise and identify
the predictive features. KGCM is an incremental approach that considers cases
from this new space for addition based on their diversity.

Also, Massie et al.’s [21] recent work on case-base profiling introduces a decre-
mental noise reduction strategy called Threshold Error Reduction (TER) that
removes cases based on a complexity measure called the Friend:Enemy (F:E)
Ratio. This measure compares the distances to a case’s nearest like neighbours
with distances to its nearest unlike neighbours. Their case-editing algorithm
iteratively removes cases with F:E ratios higher than certain thresholds to re-
move noisy cases and to smooth out the boundary. They point out that different
datasets are threshold dependent.

2.1 Competence-Based Case-Base Editing

More recent approaches to case-base editing build a competence model of the
training data and use the competence properties of the cases to determine which
cases to include in the edited set. Measuring and using case competence to
guide case-base maintenance was first introduced by Smyth & Keane [1]. They
introduced two important competence properties, the reachability and coverage
sets for a case in a case-base [1]. The reachability set of a case c is the set of

138 S.J. Delany

all cases that can successfully classify c, and the coverage set of a case c is the
set of all cases that c can successfully classify. The coverage and reachability
sets represent the local competence characteristics of a case and are used as
the basis of a number of editing techniques. Smyth & Keane first used these
case competence properties in their Footprint Deletion policy which identified a
series of case categories using these competence properties to provide a means of
ordering cases for deletion. The competence footprint is a subset of the case-base
that provides the same competence as the entire case-base.

McKenna & Smyth [22] later presented a family of competence-guided editing
methods for case-bases which combine both incremental and decremental strate-
gies. This family of algorithms is based on different combinations of policies for
adding and removing cases, policies for presenting cases for consideration and
for competence model update. These algorithms also include an RENN based
initial pass to remove noise. Brighton & Mellish [3] also use the coverage and
reachability properties of cases in their Iterative Case Filtering (ICF) algorithm.
ICF is a decremental strategy contracting the training set by removing those
cases c, where the number of other cases that can correctly classify c is higher
that the number of cases that c can correctly classify. This strategy focuses on
removing cases far from class borders. ICF also includes a pre-processing noise
reduction stage, effectively RENN, to remove noisy cases.

Wilson & Martinez [23] presented a series of Reduction Technique (RT) algo-
rithms which they later enhanced into the Decremental Reduction Optimisation
Procedures (DROP) [4]. Although these were originally published before the
definitions of coverage and reachability, they could also be considered to use a
competence model. They define the set of associates of a case c which is compa-
rable to the coverage set of McKenna and Smyth except that the associates set
will include cases of a different class from case c whereas the coverage set will
only include cases of the same class as c. The RTn and DROPn algorithms use
a decremental strategy.

In contrast to the earlier approaches to noise reduction which tend to focus
on removing the cases that are misclassified, Delany & Cunningham’s Blame
Based Noise Reduction (BBNR) [2] attempts to identify those cases causing
the misclassifications and uses this information to identify training cases the
case-base would be better off without. BBNR extends Smyth & Keane’s case
competence model by including an additional set, the liability set which is the
set of all cases that c causes to be misclassified. This attempts to model the
situation of a case being classified incorrectly because of the retrieved cases
that contributed to its classification rather than the case being itself a noisy or
mislabelled case.

3 Case Profiles

In this section we propose an approach to modelling the competence of a case-
base with a view to categorising the competence of each case in the case-base.
We then have the opportunity to investigate the effect that each type of case
can have on case-base competence.

The Good, the Bad and the Incorrectly Classified 139

3.1 Enhanced Competence Model

Smyth & Keane’s [1] case-base competence modelling approach proposed two
sets to model the local competence properties of a case, the reachability set of
a case c, the set of all cases that can successfully classify c and the coverage
set of a case c, the set of all cases that c can classify. Using the case-base itself
as a representative of the target problem space, these sets can be estimated as
shown in Equations 1 and 2. Delany & Cunningham’s [2] extension included an
additional property; the liability set of a case c, the set of all cases that c causes
to be misclassified and can be estimated by Equation 3.

ReachabilitySet(c ∈ C) = {t ∈ C : Classifies(c, t)} (1)
CoverageSet(c ∈ C) = {t ∈ C : Classifies(t, c)} (2)
LiabilitySet(c ∈ C) = {t ∈ C : Misclassifies(t, c)} (3)

In the above equations Classifies(t, c) means that case c contributes to the cor-
rect classification of target case t. This means that target case t is successfully
classified and case c is returned as a nearest neighbour of case t and has the same
classification as case t. Misclassifies(t, c) means that case c contributes in some
way to the incorrect classification of target case t. In effect this means that when
target case t is misclassified by the case-base, case c is returned as a neighbour of
t but has a different classification to case t. For k-NN with k = 1, case c causes
the misclassification but for k > 1 case c contributes to the misclassification.
Case t is therefore a member of the liability set of case c.

We propose to further extend the competence properties of a case to include
an additional property, the dissimilarity set, which complements the reachabil-
ity set in the same way as the liability set complements the coverage set. The
dissimilarity set of a case c is the set of cases that misclassify case c and can be
represented by Equation 4.

DissimilaritySet(c ∈ C) = {t ∈ C : Misclassifies(c, t)} (4)

The first point to note about these sets is that one of the reachability set or
the dissimilarity set will always be empty. In effect, if we consider that a set
exists for a case only if that set is non empty, then the reachability set and the
dissimilarity set are mutually exclusive. If a case has a non empty reachability
set then it has been classified correctly by the case-base and, as such, will have
an empty dissimilarity set and vice versa. However, a case can have one, none
or both of the coverage and liability sets. The coverage set of a case c identifies
the potential benefit or usefulness of c in the case-base, represented by the cases
that c contributes to classifying correctly. On the other hand the liability set of
a case c identifies the damage or harm that c causes in the case-base represented
by the cases that it causes to be misclassified. It is possible for a case to be both
useful for some targets and damaging for others.

140 S.J. Delany

Fig. 1. Composition of datasets with different generalisation accuracies showing the
proportion of cases of each profile type. Breast Cancer has 95% 10-fold cross validation
accuracy, ecoli has 81% accuracy while glass has 66% accuracy.

3.2 Categorising Cases

This leads us to being able to associate an individual case profile with each case
in a case-base. We call the profile the RDCL profile of a case; it is derived from
the competence model of the case-base and includes three characteristics:

(i) Firstly, it is possible to indicate whether the case is correctly or incorrectly
classified by the case-base. This is identified by the case having either a
reachability set (R) or a dissimilarity set (D).

(ii) Secondly, we can consider whether the case is useful, by the existence of a
coverage set (C), and

(iii) Finally whether the case is harmful and causes damage, by the existence of
a liability set (L).

Taking all possible combinations of these characteristics, each case in a case-base
can have one of eight different case profiles as described below. Fig 1 helps to
interpret these by giving the proportion of the different case profiles in different
case-bases.

R A case which is correctly classified but is not used for classifying any
other case in the case-base.

D A case which is misclassified but is not used for classifying any other
case in the case-base.

RC A case which is correctly classified and is useful in that it has con-
tributed to the correct classification of other cases in the case-base.
This profile and the R profile are generally the majority case profile
types as illustrated in Fig 1.

RL A case which is correctly classified but is harmful in the case-base
causing damage by contributing to other cases being misclassified.

DC A case which is misclassified but is useful in the case-base.

The Good, the Bad and the Incorrectly Classified 141

DL A case which is misclassified and is harmful in the case-base, (more
of these occur in the case-base with poorer generalisation accuracy in
Fig 1).

RCL A case which is correctly classified and is both useful and harmful in
the case-base.

DCL A case which is misclassified and is both useful and harmful in the
case-base.

4 Experimental Analysis

The ability to associate a competence case profile with each case in a case-base
offers the opportunity to investigate the structure of case-bases at a case level
and the effect of removing different types of cases from a case-base. This section
outlines a number of different investigations and evaluations performed using
case profile information on a variety of datasets. The datasets used throughout
this paper are listed in Table 1 with a description of their characteristics. All
datasets are available in the UCI repository [24].

Table 1 also includes the baseline 10-fold cross validation accuracy achieved
on each dataset using a k-NN classifier with a Euclidean distance measure and
k = 1. As the objective is to consider the effect of different case editing strategies,
k = 1 was selected as the effect of noise in the data will be more evident with
this value since higher values of k are more noise tolerant.

4.1 Removal of Different Types of Cases

Table 2 shows the effect of removing all the cases of each different type of case
profile from each dataset. The accuracy was calculated using 10-fold cross vali-
dation, using the same folds as the original baseline accuracy given in Table 1. A
competence model was build on each training set of nine folds and the training

Table 1. Datasets

#cases #classes #features class cv

distribution(%) accuracy(%)

breastcancer 683 2 9 65/35 95.5
cmc 1473 3 9 28/16/56 43.3
glass 214 6 9 33/8/35/6/4/14 65.9
musk2 6598 2 166 15/85 73.8
waveform 5000 3 21 33/33/33 77.2
spectf 267 2 44 21/79 71.5
ecoli 336 8 7 42/23/15/10/6/2/1/1 81.0
wine 178 3 13 33/40/27 94.9
ionosphere 351 2 34 68/32 86.0
hill-valley 1212 2 100 50/50 59.4

142 S.J. Delany

Fig. 2. Accuracy difference, averaged across all datasets, between the unedited dataset
and the dataset edited with all cases of the specified case profile removed

set was edited to remove all cases with the specified case profile. The cases in
the remaining fold were classified using the edited training set.

Fig 2 shows the difference, averaged across all datasets, of removing cases
with the specified profile. This figure illustrates some interesting facts which are
discussed below:

DL/DCL Cases: The cases that cause the greatest improvement in accuracy
by their removal are the DL cases. DL cases are cases that are misclassified
by the rest of the case-base and are themselves also causing harm as they are
misclassifying other cases. It is to be expected that removing cases such as these
would have a beneficial effect on the generalisation accuracy. Considering the
individual results in Table 2, the removal of the DL cases is damaging in just
one of the datasets where the decrease in accuracy is less than 1%.

DCL cases are somewhat similar to DL cases. The only difference is that these
cases, in spite of being misclassified and doing harm, also do some good in that
they are used to correctly classify other cases. Looking at the individual dataset
results the removal of these cases doesn’t typically decrease generalisation ac-
curacy, in all cases but one accuracy remains constant or increases. Overall the
effect is beneficial, albeit marginal. This suggests that we are better off without
these cases.

Considering the beneficial effect of removing DC and DCL cases separately,
Fig 2 and Table 2 also include the results of removing both DC and DCL cases
from each dataset. This only has the effect of decreasing, marginally, the accuracy
for one dataset, glass. It also results in a higher average increase than removing
cases of either profile.

R Cases: Cases with an R profile are cases that are classified correctly by
the rest of the case-base but are not used in the classification of any other
case in that case-base. This suggests that these cases are redundant cases and

The Good, the Bad and the Incorrectly Classified 143

Table 2. Accuracy values (%) on editing the datasets by removing cases with a specific
case profile. Accuracy values which show an increase over the baseline are highlighted
in bold. Decreases in generalisation accuracy are in italic.

Dataset R RC RL RCL D DC DL DCL DL&DCL

breastcancer 95.5 94.4 95.9 95.5 95.9 95.6 96.1 95.5 95.9

cmc 42.6 42.8 42.9 42.8 42.8 42.7 46.2 44.1 47.0

glass 65.9 62.2 66.4 64.5 65.4 65.9 65.0 65.9 65.4

musk2 72.4 70.5 74.0 74.5 74.9 73.7 74.9 73.8 74.8

waveform 76.7 74.6 77.2 76.9 77.2 77.0 78.0 77.6 78.5

spectf 70.4 67.8 71.9 72.7 72.7 70.8 73.4 71.5 74.2

ecoli 78.1 77.1 80.4 81.0 82.1 80.1 83.3 81.0 83.0

wine 93.8 93.8 94.9 94.9 94.4 94.9 94.9 94.9 94.9
ionosphere 87.2 81.5 86.3 86.3 85.8 84.6 86.3 86.6 86.9

hill-valley 57.7 59.3 59.7 59.7 53.1 57.8 59.5 59.1 59.7

are not needed. Removing such cases should show no change in generalisation
accuracy. Interestingly enough, the removal of these cases causes a decrease in
generalisation accuracy on average, with only one of the datasets showing an
actual increase in accuracy. This indicates that these cases, although not used
to classify the training data, are useful in the classification of unseen data and
necessary to maintain good generalisation accuracy. This suggests that R cases
may be outlier cases, not well covered by other cases and should not be removed
from the case-base.

D/DC Cases: Cases with a D profile are cases that are misclassified by the
rest of the case-base but are not used in the classification of any other case in
that case-base. Corresponding to the reasoning above for the R cases, it might
be considered that these cases are redundant cases, as they are not used for
classification and could be removed. As these cases are also misclassified, there
is an even stronger impetus to remove them from the case-base. However, as Fig 2
shows, overall the removal of these cases has a surprisingly detrimental effect on
the generalisation accuracy. In only four of the datasets is the generalisation
accuracy increased. This suggests, analogous to the R cases, that D cases may
be border cases, situated near the decision boundary which are not well covered
by other cases in the case-base.

DC cases are cases that are themselves misclassified by the case-base but that
are useful as they contribute to the correct classification of other cases. Similar to
the D cases, the removal of these in general decreases the generalisation accuracy
of the case-base with a marginal increase of 0.1% shown in only one dataset. This
suggests that these cases should not be deleted.

It is also interesting to note that both these types of case, D and DC, are
removed by the standard Wilson noise reduction technique used by many case
editing algorithms.

144 S.J. Delany

RC Cases: RC cases are cases that are correctly classified and are used to
correctly classify other cases. It is to be expected that the removal of these cases
would have a detrimental effect on the generalisation accuracy which we can see
is the case. In fact all datasets show a decrease in generalisation accuracy by
removing RC cases, with some very significant harmful effects including a drop
of over 5% for the ionosphere, spectf and glass datasets.

RL/RCL Cases: RL cases are classified correctly but cause harm contributing
to the misclassification of other cases. RCL cases are the same but also do good
by contributing to the correct classification of other cases. This suggests that
these cases are border cases, but considering Fig 2 and Table 2 there is no
strong evidence to support the removal of such cases.

It is interesting to note here that both these types of cases, RL & RCL, are
removed by another noise reduction algorithm, the BBNR algorithm.

4.2 What Existing Noise Reduction Algorithms Do

The original ENN noise reduction technique proposed by Wilson [11] is the algo-
rithm upon which the noise reduction phases of many of the existing case-base
editing techniques are based, with a number of them using RENN as a noise
reduction stage [3,22,23]. Wilson’s technique removes cases that would be mis-
classified by the other cases in a training set, assuming that these are incorrectly
labelled and are therefore noisy cases. In terms of our profiling, this would be
cases that have a dissimilarity set. The later BBNR approach [2] focusses more
on the ‘unhelpful’ or harmful cases that cause misclassification, i.e. the cases with
a liability set. The differences between the principles behind these approaches is
evident in Fig 3 which shows for both the RENN and the BBNR algorithms the
proportion of deleted cases that were of each case profile type, averaged across
all datasets.

RENN removes all cases which are misclassified, which means they contain a
D in their profile as they have a dissimilarity set (i.e. it removes 100% of cases
with a D, DC, DC or DCL profile). As RENN is an iterative algorithm repeating
until no more changes are made to the dataset, it can also remove cases with
profiles other than those containing D. This can be seen in Fig 3 where on average
7.3% of the deleted cases have profile R with smaller percentages for RL, RC
and RCL cases. Overall, RENN removes on average 10% of the total R cases,
20% of the RL cases, less than 1% of the RC cases and almost 2% of the RCL
cases. A high proportion of the cases removed by RENN are, on average, D or
R cases (just over 50%); we saw from our analysis of case profiles that removing
these cases tends on average to have a bad effect on generalisation accuracy.

BBNR removes all cases which do harm, meaning they have L in their profile,
as they contain a liability set. It is obvious from Fig 3 that there is only a small
likelihood of overlap in the cases deleted by the two algorithms. If we follow our
conclusions from section 4.1 above, BBNR focusses more on the types of cases that
are beneficial to generalisation accuracy than RENN (59% of the deleted cases are
DL and DCL cases for BBNR whereas 39% are for RENN). In section 4.3 below,

The Good, the Bad and the Incorrectly Classified 145

Fig. 3. Proportion of deleted cases that are of the specified profile for each noise re-
duction algorithm averaged across all datasets

we investigate the effect of implementing both algorithms on the selected datasets
and will see that RENN has quite inconsistent behaviour which may be due to its
focus on case types which are not beneficial to generalisation accuracy.

It is also worth noting that neither algorithms removes the RC cases, which
our investigations show would have a bad impact on accuracy if removed.

The BBNR algorithm is straightforward in dealing with cases that just do
damage, regardless of how they are classified. These cases, DLs and RLs are
simply removed. Where a case has a liability set but also a coverage set the
BBNR algorithm adopts the principle of ‘not causing even more harm’. BBNR
only removes a DCL or RCL case if its removal will not cause even more harm,
in other words all cases in its coverage set will still be classified correctly if the
DCL or RCL case is removed. This is evident in our experiments, as although
100% of DL and RL cases are removed by BBNR, only on average 55% and 61%
of DCL and RCL cases respectively are removed.

We ran an experiment to see the effect of this ‘not causing even more harm’
principle. We only removed a DCL or RCL case if its removal did not result in
any of its coverage set being misclassified. The overall results are displayed in
Fig 4. It shows that the effect of keeping some of the DCL and RCL cases, those
that cause even more harm (labelled v2 in Fig 4) has a worse effect, albeit small,
than removing all of them. This raises questions about the benefit of this aspect
of the BBNR algorithm.

4.3 Comparison of Editing Algorithms

The analysis shown in Fig 2 suggests another noise reduction algorithm, the
identification and removal of the DL and DCL cases in a dataset. In this section
we compare the performance of existing noise reduction algorithms, RENN and
BBNR and this new algorithm. Table 3 presents the results of a 10-fold cross

146 S.J. Delany

Fig. 4. Percentage accuracy difference, averaged across all datasets, between the
unedited datasets and the datasets edited with the specified case profile removed; v1
figures show the result of deleting all cases with the specified profile, v2 figures show
the results of keeping those profile cases that cause even more harm by their removal

validation accuracy (on the same folds) across these noise reduction algorithms.
The statistical significance of the differences in accuracy of each algorithm against
the unedited alternative was calculated using McNemar’s test [25]. Where there
were small levels of disagreement (15 cases or less) an exact sign test was used.

The main point to note here is the more consistent performance of removing
just DL & DCL cases from the datasets. In just one dataset the generalisa-
tion accuracy of the dataset reduces; in all others but one the accuracy actu-
ally increases. Compare this with the performance of RENN. For a number of

Table 3. Comparison between different noise reduction algorithms. Algorithms which
show an increase in accuracy over the unedited case-base are highlighted in bold. De-
creases in generalisation accuracy are in italic. Differences significant at the 95% level
using McNemar’s test [25] are highlighted with an asterisk.

Unedited cv RENN cv BBNR cv DL & DCL

accuracy (%) accuracy (%) accuracy (%) cv accuracy (%)

breastcancer 95.5 96.6∗ 96.5∗ 95.9

cmc 43.3 46.1∗ 45.1∗ 47.0∗

glass 65.9 63.1 65.4 65.4

musk2 73.8 76.0∗ 75.1∗ 74.8∗

waveform 77.2 78.9∗ 78.4∗ 78.5∗

spectf 71.5 75.3 71.9 74.2

ecoli 81.0 85.7∗ 82.7 83.0∗

wine 94.9 93.8 94.9 94.9
ionosphere 86.0 84.9 86.9 86.9

hill-valley 59.4 48.5 ∗ 58.3 59.7

Avg Diff -0.1% 1.0% 1.9%

The Good, the Bad and the Incorrectly Classified 147

the datasets the generalisation accuracy is in fact higher for RENN than for
DL&DCL, with a highest difference of 2.7% for the ecoli dataset. However the
performance of the RENN algorithm is not consistent with considerable decreases
in generalisation accuracy for a number of datasets, including a significant 18%
drop for hill-valley and more than 3% for glass and ionosphere.

The performance of BBNR seems better, recording only a lower generalisation
accuracy over the unedited case-base in two datasets. However, removing DC &
DCL cases records equivalent or higher generalisation accuracy than BBNR for
all but one of the datasets.

5 Conclusions and Future Work

A methodology for categorising cases in a case-base into individual case profile
types was presented in this paper. The profile is based on three characteristics
that are derived from constructing a competence model of the case-base. These
characteristics indicate whether the case has been classified correctly or not,
whether the case is helpful to the case-base by its inclusion and/or whether it
causes damage in the case-base. Using these profiles we investigated the effect of
removing the different types of cases from the case-base. Based on this analysis a
simple noise reduction algorithm based on case profiles, was proposed which was
more consistent at improving generalisation accuracy on a number of evaluation
datasets that the other noise reduction techniques considered.

The ability to categorise cases within a casebase allowed the identification
of the types of cases that are removed by existing noise reduction algorithms.
Knowing the effect of removing different types of cases, we were able to identify
the aspects of the algorithms that contribute to good performance and those
that do not.

The work presented in this paper offers opportunities for further work in a
number of directions. With a case profiling strategy available, we hope to gain
further insights into other case editing algorithms, such as Massie et al.[21]’s TER
algorithm, investigating exactly which types of cases are removed. We would like
to investigate further into the case profiles, by quantifying the good and harm
performed by the cases to allow prioritising cases within a profile for deletion.

Acknowledgements

The author is grateful to Pádraig Cunningham for discussions about this work.
This material is based upon works supported by the Science Foundation Ireland
under Grant No. 07/RFP/CMSF718.

References

1. Smyth, B., Keane, M.: Remembering to forget: A competence preserving case dele-
tion policy for CBR systems. In: Mellish, C. (ed.) Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, IJCAI, pp. 337–382. Mor-
gan Kaufmann, San Francisco (1995)

148 S.J. Delany

2. Delany, S.J., Cunningham, P.: An analysis of case-based editing in a spam filtering
system. In: Funk, P., González-Calero, P. (eds.) ECCBR 2004. LNCS (LNAI),
vol. 3155, pp. 128–141. Springer, Heidelberg (2004)

3. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning
algorithms. Data Mining and Knowledge Discovery 6, 153–172 (2002)

4. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning
algorithms. Machine Learning 38, 257–286 (2000)

5. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Informa-
tion Theory 14, 515–516 (1968)

6. Ritter, G.L., Woodruff, H.B., Lowry, S.R., Isenhour, T.L.: An algorithm for a selec-
tive nearest neighbor decision rule. IEEE Transactions on Information Theory 21,
665–669 (1975)

7. Gates, G.W.: The reduced nearest neighbor rule. IEEE Transactions on Informa-
tion Theory 18, 431–433 (1972)

8. Chou, C.H., Kuo, B.H., Chang, F.: The generalized condensed nearest neighbor rule
as a data reduction method. In: ICPR 2006: Proceedings of the 18th International
Conference on Pattern Recognition, Washington, DC, USA, pp. 556–559. IEEE
Computer Society, Los Alamitos (2006)

9. Angiulli, F.: Fast nearest neighbor condensation for large data sets classification.
IEEE Transactions on Knowledge and Data Engineering 19, 1450–1464 (2007)

10. Hao, X., Zhang, C., Xu, H., Tao, X., Wang, S., Hu, Y.: An improved condensing
algorithm. In: Seventh IEEE/ACIS International Conference on Computer and
Information Science, ICIS 2008, pp. 316–321 (2008)

11. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man and Cybernetics 2, 408–421 (1972)

12. Tomek, I.: An experiment with the nearest neighbor rule. IEEE Transactions on
Information Theory 6, 448–452 (1976)

13. Sánchez, J.S., Barandela, R., Marqués, A.I., Alejo, R., Badenas, J.: Analysis of
new techniques to obtain quality training sets. Pattern Recognition Letters 24,
1015–1022 (2003)

14. Jiang, Y., Zhou, Z.: Editing training data for knn classifiers with neural network
ensemble. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173,
pp. 356–361. Springer, Heidelberg (2004)

15. Koplowitz, J., Brown, T.A.: On the relation of performance to editing in nearest
neighbor rules. Pattern Recognition 13, 251–255 (1981)

16. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine
Learning 6, 37–66 (1991)

17. Brodley, C.: Addressing the selective superiority problem: Automatic algo-
rithm/mode class selection. In: Proceedings of the 10th International Conference
on Machine Learning (ICML 1993), pp. 17–24. Morgan Kaufmann Publishers Inc.,
San Francisco (1993)

18. Cameron-Jones, R.M.: Minimum description length instance-based learning. In:
Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, pp.
368–373. Morgan Kaufmann Publishers Inc., San Francisco (1992)

19. Zhang, J.: Selecting typical instances in instance-based learning. In: Proceedings of
the 9th International Conference on Machine Learning (ICML 1992), pp. 470–479.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

20. Pan, R., Yang, Q., Pan, S.J.: Mining competent case bases for case-based reasoning.
Artificial Intelligence 171, 1039–1068 (2007)

The Good, the Bad and the Incorrectly Classified 149

21. Massie, S., Craw, S., Wiratunga, N.: When similar problems don’t have similar
solutions. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626,
pp. 92–106. Springer, Heidelberg (2007)

22. McKenna, E., Smyth, B.: Competence-guided editing methods for lazy learning.
In: Horn, W. (ed.) ECAI 2000, Proceedings of the 14th European Conference on
Artificial Intelligence, pp. 60–64. IOS Press, Amsterdam (2000)

23. Wilson, D., Martinez, T.: Instance pruning techniques. In: ICML 1997: Proceedings
of the Fourteenth International Conference on Machine Learning, pp. 403–411.
Morgan Kaufmann Publishers Inc., San Francisco (1997)

24. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
25. Dietterich, D.T.: Approximate statistical tests for comparing supervised classifica-

tion learning algorithms. Neural Computing 10, 1895–1923 (1998)

An Active Approach to Automatic Case
Generation

Michael W. Floyd and Babak Esfandiari

Department of Systems and Computer Engineering
Carleton University

1125 Colonel By Drive
Ottawa, Ontario

Abstract. When learning by observing an expert, cases can be auto-
matically generated in an inexpensive manner. However, since this is a
passive method of learning the observer has no control over which prob-
lems are solved and this can result in case bases that do not contain a
representative distribution of the problem space. In order to overcome
this we present a method to incorporate active learning with learning by
observation. Problems that are not covered by the current case base are
automatically detected, during runtime or by examining secondary case
bases, and presented to an expert to be solved. However, we show that
these problems can not be presented to the expert individually but need
to be part of a sequence of problems. Creating this sequence of cases
is non-trivial, and an approach to creating such sequences is described.
Experimental results, in the domain of simulated soccer, show our ap-
proach to be useful not only for increasing the problem coverage of the
case base but also in creating cases with rare solutions.

1 Introduction

In case-based reasoning (CBR), the solutions to novel problems are determined
using the solutions of previously encountered problems. These previously en-
countered cases are crucial to the problem solving ability of CBR systems, so
it is important that cases be of a high quality and representative of the entire
problem space. The initial set of cases used by a CBR system is typically pro-
vided by an expert, either manually authored or transfered in another manner.
However, having an expert manually author cases can be an expensive task and
requires the expert to be able to encode their knowledge in case form. Another
approach to transferring knowledge from an expert into cases is to have a system
that learns from observation.

In existing CBR systems that learn from observing an expert [1,2,3] cases are
generated by remembering how the expert behaves (its outputs) in response to
sensory stimuli (its inputs). A limitation of such a passive learning approach
is that the learnt cases are directly related to the observed behaviour of the
expert. If the expert does not encounter specific problems while being observed

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 150–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Active Approach to Automatic Case Generation 151

then there will be no cases created related to those problems. Even if the expert
is observed for an extended period of time, or on multiple occasions, there is
no guarantee that a representative sample of the entire problem space will be
encountered. If there is no way to directly interact with the expert, like asking
for a specific problem to be solved, then there can exist areas of the problem
space that are not represented in the case base.

We examine a hybrid approach that incorporates active learning in order
to explore areas of the problem space that are not represented in a case base
that was created using passive learning. When a problem is identified that is
not sufficiently similar to any existing case in the case base, that problem is
artificially1 presented to the expert. The resulting actions of the expert can then
be assumed to be the solution to that problem and a new case can be added to
the case base.

A flaw with this simple approach to active case learning is that it assumes
that the solution provided by the expert is only dependant on the currently
encountered problem. If a temporal link exists between problems [4], such that a
set of problems can be ordered based on the time they are encountered, then the
solution to a problem can instead be a function of the current problem as well as
several previous problems. Such a situation can occur when the expert maintains
an internal model of the world. If problems are not presented to the expert in
the proper order then the world model may not be properly built, resulting in
the expert reacting differently than if the problems had been presented in the
correct order.

In order to overcome this, we look to estimate a set of problems that were
likely to have occurred before the problem of interest. Initially, the case from the
case base that is most similar to the problem is found. A series of problems that
connect the similar case to the problem of interest are then created. This is done
by performing a series of alterations to the case such that each new intermediate
problem is slightly more similar to the problem of interest, compared to the
previously created intermediate problem. The entire series of problems can then
be sequentially presented to the expert. As an added benefit, the solutions to
these intermediate problems will also be determined and can therefore be added
to the case base.

The remainder of this paper will present an approach for actively acquiring
cases when cases are learnt by observing a teacher. In Section 2, work related to
automatic case generation and learning from observation is presented. Section 3
deals with capturing an expert’s behaviour in cases. Approaches for identifying
problems that may be of interest and actively acquiring their solutions is dis-
cussed in Section 4. Next, Section 5 presents a method to generate a sequence
of intermediate cases that link two cases. Section 6 details experimental results
and Section 7 provides conclusions and directions for future work.

1 In a simulated environment this would involve altering the input messages sent to
the expert. In a physical environment it would require altering the sensory inputs of
the expert, like with a virtual reality system.

152 M.W. Floyd and B. Esfandiari

2 Related Work

In our previous work, we demonstrated how a soccer playing agent can learn,
using CBR, by observing the behaviour of another agent [1]. While we examined
how the case base can be preprocessed to select representative cases [5], the cases
were created in a passive manner. Similarly, Romdhane and Lamontagne [2] have
used case-based reasoning to teach an agent how to play the game of Tetris by
observing an experienced player. In a real-time strategy domain, Ontañón et al.
[3] build cases for use in case-based planning by watching a human. Flinter and
Keane [6] automatically extract cases from logs of grandmaster chess matches,
so their CBR system attempts to play chess like the grandmaster would. Much
like our work, these approaches all collect cases in a passive manner so the CBR
systems have no control over the problem space covered by the resulting case
base.

Learning from observation has also been explored using learning methods
other than case-based reasoning. Atkeson and Schaal [7] present a method for
teaching a robotic arm to rotate and balance a pendulum by watching a human
perform the task. Similarly, Coates et al. [8] teach a robotic helicopter aerobatic
manoeuvres by having a human control the robot during a series of demonstra-
tions. A common experimental result in these works is that while the robots are
able to perform parts of the learnt tasks well, there exist parts that are difficult
to perform. If the learners were able to actively produce more data, in these prob-
lem areas, they might be able to improve their ability to perform those tasks.
Grollman and Jenkins [9] attempt to overcome this by allowing a soccer playing
robot to be simultaneously controlled by a human and an autonomous system.
If the human is actively controlling the robot the autonomous system learns
by comparing what it would have done to what the human actually did. The
autonomous system controls the robot otherwise. While this allows for active
learning, the autonomous system is not able to automatically detect areas that
require further learning and requires an expert to initiate the learning process.

In Yang et al. [10], aviation maintenance cases are generated in an automated
manner from a pair of data sources. Text reports, from technicians, as well as
computer generated fault messages are mined for data and combined to create
cases. Their method places a significant importance on automatically extracting
information from text, as does Asiimwe et al. [11] where cases are extracted from
reports about home upgrades that help people deal with disabilities. Automatic
Case Elicitation (ACE), which has been applied to checkers [12] and chess [13],
uses reinforcement learning to rate automatically created cases. Solutions, in
the form of which game piece should be moved, are randomly generated and
applied to the current game board and a case is created. Any cases created
during a winning game gain positive reinforcement, whereas losing games have
their cases reinforcement values decreased. This approach allows a measurement
of the usefulness of generated cases but requires a way to determine if a case
resulted in a positive outcome, which may not always be easily determined.

Active learning has been used in case-based reasoning using measures of com-
plexity [14] and coverage [15]. These approaches are successful in identifying

An Active Approach to Automatic Case Generation 153

areas of the case base that are poorly covered but only present individual prob-
lems to the expert to solve which may not be applicable if the expert reasons
using information from a series of past problems. The method we use to create
a series of connecting cases is similar to the idea of adaptation paths [16]. Adap-
tation paths are used to create a series of slightly different problems in order
to transform the initial problem into a problem with a known solution. These
adaptation paths are not presented to the expert to be solved, but are instead
intermediate steps used to trace out the logic used during adaptation.

3 Modelling an Expert’s Behaviour

When using a case-based reasoning system to learn from observation, the goal
is to determine how the expert behaves in response to the state of the environ-
ment. A case, C, can then be defined as a tuple containing the sensory stimulus,
S, received by the expert and the corresponding actions, A, performed by the
expert.

C = (S, A)

During a period of observation a series of N cases will be learnt from the expert,
with a temporal relationship existing between these cases. Since each case rep-
resents the expert’s stimulus at a moment in time, and subsequently performed
actions, the ith case will have been observed before the (i + 1)th case.

Our existing representation of a case, however, assumes the expert behaves
in a purely reactive manner. The actions of the expert are only considered to
be a function of the current stimulus, Ai = f(Si), so no information about the
preceding stimuli is included. If the expert does not simply react to the current
stimulus but maintains an internal model of the world then the cases will not
contain all of the information that the expert reasons with. Thus, the actions
of the expert are actually a function of the current stimulus as well as the k
previously encountered stimuli (Ai = f(Si, Si−1, . . . , Si−k)). If these previously
encountered stimuli are changed, but the current stimulus remains the same,
then the actions performed by the expert may change.

This introduces the need to have the cases ordered and for a case to be aware
of the cases that precede it. The definition of a case can then be extended to
include a timestamp, T , that is used to provide a temporal ordering to the cases.
This allows a case to identify and use information from preceding cases.

C = (S, A, T)

An alternate approach, which would remove the need for a timestamp, would
be to have each case include the k preceding cases. While such an approach
would encapsulate all of the information needed for reasoning in a single case,
it requires knowing how many preceding stimuli are required. If the observer
has no information about the expert being watched it will not know how many
previous stimuli should be included in each case. For example, a purely reactive

154 M.W. Floyd and B. Esfandiari

expert would not require any previous stimuli whereas experts who maintain
world models would. Using a timestamp allows for a more dynamic approach,
and reduces duplication of information, since it is possible to go back (or forward)
any number of cases.

4 Improving Passive Learning with Active Case
Generation

Learning by observation, by its nature, is a passive learning method. The ob-
server watches an expert and attempts to learn the behaviour the expert demon-
strates. Interaction occurs between the expert and the environment as the envi-
ronment produces stimuli that are sensed by the expert and the expert performs
actions that influence the environment. As shown in Figure 1, the observer can
then view and learn from these interactions. There is no direct interaction be-
tween the observer and expert and the expert may not even be aware it is being
watched.

Fig. 1. Passive learning by observing an expert

As was mentioned in the previous section, the observer will create a series
of cases while watching the expert. These cases will capture the interactions
between the expert and the environment over a period of time. Thus, only the
expert and the environment have any control over the cases that are produced.
The environment controls which stimuli are contained in the cases and the expert
controls the actions. In such a passive approach, even if the observer watches for
an extended period of time there is no guarantee that every possible action will
be performed or that a representative sample of the possible stimuli will have
been sensed.

Ideally, we want the observer to be able to examine the cases it has learnt
and identify areas of the problem space that it should explore further. When
interesting problems that are not represented in the case base are identified,
active learning can be used to complement the passive learning process. During

An Active Approach to Automatic Case Generation 155

active learning, the observer can present problems to the expert to solve, thereby
gaining a level of control over the contents of the cases. It should be noted
that although active learning gives more control over the problems that are
solved it is more invasive than passive learning and, as we will see in the next
section, requires more computations. Active learning, therefore, will be used as
a secondary learning method with the majority of the learning being done using
passive learning.

We present two methods that can be used to identify potential problems to
be solved using active learning. These methods are not mutually exclusive and
can be used in combination or separately.

– Runtime Identification: After the observer has learnt a number of cases,
it can then use those cases to attempt to imitate the behaviour of the expert.
During runtime, the observer will receive a stimulus from its own environ-
ment and search its case base for cases with similar stimuli. The actions
from these cases are then used to determine an action for the observer to
perform. If no cases in the case base are similar enough to the input stimu-
lus, then the observer may not select the correct action to perform. For this
approach, during each case base search if no case, Ci, has a similarity to the
input stimulus, I, above a threshold, T , then the input stimulus is logged so
it can be solved using active learning (∀Ci, sim(I, Ci) < T). This threshold
value will influence the number of stimuli that are used for active learning,
with higher threshold values resulting in more stimuli being logged.

– Secondary Case Base: When learning from observation, different case
bases can be created depending on the expert being observed. For each type
of expert that is observed a separate case base is created that represents
the behaviour of that expert. Two experts may perform the same task, like
playing soccer, but may do so in different ways and with different levels of
skill. The two experts may react differently when presented with the same
stimuli, so it may not be appropriate to have cases from two different experts
in a single case base2. Even if these case bases can not be combined directly,
it is still possible to extract information from other related case bases. Given
two case bases, a primary and secondary, cases from the secondary case base
can be compared to those in the primary case base. Similarly to the runtime
approach, any cases that have no similar cases in the primary case base can
be logged for active learning. Secondly, if the secondary case base has cases
with actions that are rare or non-existent in the primary case base those
cases can be logged as well. While there is no guarantee that the problems
in these cases will result in the expert performing those rare actions, after
active learning, it does help guide the search for cases with rare solutions.

A third method that could be applied would be to randomly create problems.
This approach, however, is limited in that there is no guarantee of the validity
of these randomly created problems. In the previous two approaches, all of the
2 For example, if one expert is a defender and the other is an forward on a soccer

team. The observer may only want to behave in an defensive manner.

156 M.W. Floyd and B. Esfandiari

problems have been encountered while observing an expert so these problems
are known to be valid. There may be underlying constraints on problems, such
as the acceptable values of stimuli, that need to be considered when creating
problems. If these constraints were unknown, it would be possible to create
problems that are impossible to actually encounter. For example, when observing
a soccer playing expert there is a limit to the number of opponents that the
expert could ever see in the environment due to the rules of soccer. If this limit
was unknown to the observer, a randomly created problem could be created that
contained more opponents than are allowed.

5 Determining a Connecting Sequence

When a problem is identified for active learning using the techniques described in
the previous section, it must be presented to the expert to be solved. The most
direct approach would be to present each problem to the expert individually.
However, as was described in Section 3, the expert might maintain a world
model based on previously encountered problems. Only presenting the expert
with a single problem may result in different behaviour than if the expert was
given that problem as part of a sequence.

In order to ensure that the expert is able to solve the problem in the proper
context, by building a world model before encountering the problem, it becomes
necessary to determine a series of problems to present to the expert before the
problem of interest. However, for a given problem, a series of preceding problems
may not be known. We look to determine these unknown preceding problems
using the following method:

1. For a problem, P1, find the most similar case, C, in the case base.
2. Extract the problem, P2, from C.

Fig. 2. Changing number of objects visible in the expert’s field of vision

An Active Approach to Automatic Case Generation 157

3. Determine a series of connecting problems, L, such that the stimuli change
by no more than α between the ith and (i+1)th problems in L. The α value
represents the percentage of change between the stimuli. For example, the
position of an object would change by at most α percent between problems.

The goal of this is to minimize the number of connecting problems that must
be created, by starting with a problem that is similar to the final problem,
and to gradually change the stimuli. Stimuli are changed gradually so there are
no sudden large changes in what the expert senses. For example, if the visual
stimulus received by the expert changed drastically it might appear like visible
objects are suddenly changing locations.

We further decompose the stimulus received by the expert, S, into a collection
of individual stimuli. For example, these stimuli might be visible objects, sounds,
touch, or other sensory inputs. We define each stimulus, Si, to be composed of ki

sub-stimuli (Si = {si1, . . . , siki}). Each stimulus potentially having a different
number of sub-stimuli is due to the fact that the expert may not have a complete
view of the environment. The expert will only sense a subset of the possible
stimuli, with the remaining stimuli being unknown to the expert. For example,
in Figure 2 we can see that objects can move out of (or into) the experts field
of vision, thereby changing the number of stimuli the expert can sense.

In Algorithm 1, we describe how a series of connecting problems can be cre-
ated that link together start and end problems. Each stimulus, ss, from the start
problem is matched3 with a stimulus, se, from the end problem. The start stim-
ulus is then modified, by a maximum of α, to be more like the end stimulus.
This modified stimulus, sc, is then added to the connecting problem that is cur-
rently being constructed, Pc. If Pc is equal to the end problem, the algorithm
terminates. Otherwise, Pc is added to the series of connecting problems and is
then used recursively as the next start problem.

Unlike when problems are randomly created, the connecting problems will be
guaranteed to have a valid number of stimuli of each type. This is because the
number of stimuli will be bound between the number in the start problem and
the number in the end problem. For example, if Ps contained 5 stimuli and Pe

contained 2 stimuli then all connection problems would contain between 2 and 5
stimuli. However, no testing is performed to ensure the validity of the relations
between the stimuli. For example, all flags must be a fixed distance apart from
each other but the algorithm never tests to ensure this it true in connecting
cases. Future work will involve identifying these rules and forcing connecting
cases to follow them.

6 Experimental Results

Due to the possibility that the start and end problems can have different numbers
of stimuli, two situations can arise. First, if there are more start stimuli than
end stimuli then not all start stimuli will have a match. The modify function will
3 A detailed description of how stimuli can be matched is described in [1].

158 M.W. Floyd and B. Esfandiari

Algorithm: L = connectors(Ps, Pe, α)

Data: start problem Ps, end problem Pe, maximum change α
Result: the series of connecting problems L
L = {∅};
Pc = {∅};
M = Pe;
foreach ss ∈ Ps do

se = match(ss, M);
M -= se;
sc = modify(ss, se, α);
Pc += sc;

end
foreach se ∈ M do

sc = modify(∅, se, α);
Pc += sc;

end
if Pc == Pe then

return ∅;
else

L = Pc + connectors(Pc, Pe, α);
return L;

end
Algorithm 1. Determine a series of connecting problems

attempt to remove those stimuli. An example would be to move the position of
an object outside the field of vision so it can no longer be seen. Second, when
there are more end stimuli than start stimuli it means stimuli needed to be
added. This could involve introducing an object at the boundary of the field of
vision.

The experiments we perform will attempt to answer the following questions:

– Are there certain experts that require problems to be presented in a specific
sequence or can they be presented in a random order?

– Does estimating a series of preceding problems, and presenting that series
along with the problem of interest to the expert, help in determining the
correct solution?

– Can secondary case bases be mined in order to identify problems that may
result in rare solutions?

6.1 Experimental Setup

The domain we use is simulated RoboCup soccer [17]. In the RoboCup Simula-
tion League, the environment contains objects that belong to a fixed number of
object types. Although each individual object on the field is unique, an agent is
often unable to distinguish between objects of the same type due to noise. For
example, the agent would be able to see a teammate but might not be able to
tell what specific teammate it is. Additionally, the agent may not care which

An Active Approach to Automatic Case Generation 159

specific object it is but only what type of object it is. For these reasons, objects
of the same type are treated as interchangeable. In the RoboCup Simulation
League we define the following object types:

Type = {Ball, Goalnet, F lag, Line, T eammate, Opponent, Unknownplayer}

The stimuli contained in a case are then a collection of objects that are within
the expert’s field of vision (as shown in Figure 3), and their location relative to
the expert. The expert can then perform an action: kick, dash, or turn.

Fig. 3. Field of vision of a soccer playing agent

The expert that will be observed is a player from the CMUnited4 soccer team
[18]. CMUnited are the former champions of the RoboCup Simulation League
and use a layered learning architecture and a number of strategies including
formation strategies. CMUnited players can have multiple states of behaviour
and maintain internal models of the world, making them a good candidate to
experiment on.

Data was generated by watching the CMUnited team playing against a very
simple opposing team5, with each team composed of 11 players. Cases were
generated by observing complete soccer games, with a total of 25 complete games
being observed.

In the RoboCup Simulation League, the players connect to a server that main-
tains the model of the environment and acts as a referee for the game. The server
sends the agent messages that contain information on the objects the agent can

4 The standard CMUnited source code was modified slightly. The default version of
the code would stop functioning if unexpected inputs were given, for example if
stimuli were given in a random order.

5 The team used was Krislet [19] who simply chase the ball around the field and kick
it toward the opponents goal.

160 M.W. Floyd and B. Esfandiari

currently see, and the agent can then send messages to the server about the ac-
tion it wishes to perform. For the active learning process, we create a fake server
for the agents to connect to. The fake server can then send messages to the agent
related to the problems that are to be solved, and the resulting messages from
the agent can then be logged.

Since each problem used in these experiments will be extracted from a pre-
existing case, there will also be a known solution to those problems in the case.
The known solution will be compared to the solution generated with active learn-
ing and the f-measure will be used to measure the performance. We define the
f-measure, F, for a single action type, i, as:

Fi =
2× precisioni × recalli

precisioni + recalli
(1)

with
precisioni =

ci

ti
(2)

and
recalli =

ci

ni
(3)

In the above equations, ci is the number of times the known action and generated
action matched, ti is the total number of times the action was generated and ni

is the number of times the action should have been generated. The f-measure
takes into account how accurately an action is selected (the recall) as well as
if when the action is selected it is selected correctly (the precision). The global
f-measure, combining the f-measures for all A actions, is:

Fglobal =
1
A

A∑
i=1

Fi (4)

6.2 Importance of Problem Order

Thus far, the assumption has been made that some experts will only solve prob-
lems correctly when given a sequence of problems, not just an individual prob-
lem. In order to validate this we modify the ordering of problems presented to
the expert during active learning and examine the affects. Two variations of the
ordering were examined: a random ordering and the original ordering. The case
bases, for each of the 25 complete games, were presented to the expert using
each of the orderings with the results presented in Table 1.

We can see from the results that there is a large performance difference be-
tween using the original ordering and using a random ordering. Using the original
ordering, which maintains the temporal ordering of problems, performs signif-
icantly better. This verifies our assumption that the CMUnited team relies on
past stimuli to maintain an internal world model. In fact, the CMUnited agent
would often output warning messages when the random ordering was used since
the stimuli it was receiving was changing so drastically. One item of note is that

An Active Approach to Automatic Case Generation 161

even when the original ordering was used there were still situations where the
expert responded with a different solution than the known solution. A likely
reason for this is that the expert has some degree of randomness in its action
selection process or relies on other stimuli which are not encoded in the cases.

Table 1. Comparison of results

Precision Recall
f-measure dash turn kick dash turn kick

Original 0.82 (+/- 0.04) 0.85 0.77 0.81 0.89 0.75 0.85
Random 0.54 (+/- 0.11) 0.62 0.44 0.56 0.56 0.42 0.65
With Connecting 0.80 (+/- 0.03) 0.86 0.77 0.75 0.78 0.79 0.85
Without Connecting 0.68 (+/- 0.06) 0.77 0.72 0.58 0.68 0.68 0.67

6.3 Applying Active Learning

These experiments aim to demonstrate the benefit of estimating a series of pre-
ceding problems and presenting those problems to the expert before the problem
of interest. A case is selected at random from among the CMUnited cases, and
a sequence of 20 cases is extracted from the case base such that the randomly
selected case is at the end of the sequence6. A randomly sized sequence of pre-
ceding cases, between 1 and 10 cases, were then removed from the sequence. This
left the sequence containing the first 9 to 18 cases from the original sequence
as well as the last case. The last case and the case that now preceded it were
then used to estimate a sequence of problems that connect them. The problems
portions of these two cases were used as input to Algorithm 1, with a value of α
= 5%, in order to generate connecting problems.

Active learning was then used on the sequence, both with the connecting
problems included in the sequence and without. Each run of the experiments
extracted 100 sequences, and the runs were performed 25 times. The results can
be found in Table 1.

With these result, we can see a distinct improvement in performance when
connecting problems are created and included in the sequences used in active
learning. This is likely due to the fact that the connecting problems help to
gradually change the stimuli presented to the expert, rather than cause a large
instantaneous change. When connecting problems are used there is only a slight
decrease in performance (and not a statistically significant difference using a t-
test with p=0.05) compared to presenting problems to the expert in the original
order they were observed. This tells us that the connecting problems are accurate
estimates of the actual problems that preceded a case. We can also see that not
using connecting problems performed poorly, but not as poorly as presenting
problems in a random order. This is because part of the sequence is preserved,
but a gap exists in the sequence that can cause stimuli to change drastically.
When the results were examined in more detail, it was found that the method
6 If there are not that many cases before it, that case is not used.

162 M.W. Floyd and B. Esfandiari

that did not use connecting sequences performed better when fewer cases were
removed from the original sequence due to the smaller gap that was created.

As a second set of experiments, we look to examine other case bases to identify
problems with specific solutions. In previous work in learning by observing a
RoboCup player [1,5], the solution space was found to be highly imbalanced
(approximately 67.8% dash, 32.1% turn and 0.1% kick). Using passive learning,
there would be significantly more dash actions compared to kick actions. This
solution imbalance resulted in difficulty correctly selecting these rare actions.
Thus, being able to generate more cases that have these rare solutions might
be useful for increasing the performance of the CBR system. Such a solution
imbalance could also occur depending on the circumstances under which the
expert is observed. For example, if a soccer playing agent is observed playing
a game against a far superior opponent it may never get the opportunity to
perform certain behaviours like kicking the ball.

Case bases that were created by observing another soccer agent, called Krislet
[19], are examined and all cases that have the kick action are extracted. While
we cannot use these cases directly, since Krislet plays soccer differently than
CMUnited and may react differently to stimuli, the problems in these cases can
provide a good starting point for active learning. The method for determining
connecting case, described in Section 5, was used on on the problems in these
cases (using α = 5%) and then the resulting sequences of problems are pre-
sented to the CMUnited agent. In total, cases from Krislet playing 25 full games
of soccer were examined and 883 cases were found that had the kick action. Of
those, active learning found CMUnited produced the kick action in 634 of the
problems. Comparatively, selecting 883 cases at random only resulted in CMU-
nited performing the kick action 67 times. We can see that using such a targeted
approach helps guide the search for problems with rare solutions.

Identifying these rare actions does not guarantee an improvement in the per-
formance but is likely to improve performance is some situations. In an extreme
situation where there were no kick actions in the case base, the f-measure for the
kick action would be 0 since no test cases would ever be properly classified as
kicks. By actively obtaining cases with a kick action, it would then be possible to
properly classify some of the kick test cases and thereby increase the f-measure
results. This can be thought of as a sampling method, since it helps increase the
number of cases for a specific class of action.

7 Conclusions and Future Work

Our work has attempted to address the limited control over the problems in a
case base when cases are obtained through passive learning, specifically when
learning is done by observation. We present an approach that incorporates ac-
tive learning by identifying problems that are not represented in the case base,
either during runtime or by examining other case bases, and presenting those
problems to an expert to solve. This approach aims to make the active learning
as nonintrusive as possible by making the expert think the problems, made up

An Active Approach to Automatic Case Generation 163

of sensory stimuli, are coming from the environment and not from an outside
source.

Our results show that problems can not be presented to an expert individually.
Instead problems must be provided in the proper context, by giving the expert a
sequence of problems, so that the expert can properly build a world model before
attempting to solve the problem of interest. This is a result of the inherent
temporal link between cases that are learnt from observation. The approach
described, where two problems are linked with a series of connecting problems,
was found to produce solutions which are highly similar to the expected solutions.
Additionally, we show how mining a related case base can be used to identify
problems that have solutions which are rare. This technique can be used to
help balance the distribution of the solution space by boosting the number of
occurrences of rare solutions. Our results show that even when a set of cases that
represent a complete soccer game are presented to the expert, in the correct
order, that the solution accuracy is not perfect. This could be due to stimuli
that are not included in a case, like inter-agent communication, or an amount
of randomness in the action selection process.

While this work has shown the benefit of active learning using a series of con-
necting problems in a simulated soccer domain, the results could be applicable in
a variety of domains. Providing the proper context for a problem, in the form of a
series of preceding problems, would be applicable when learning from any expert
that uses previously solved problems to maintain a world model. Although the
limited scope of our experiments do not allow us to draw broader conclusions
about the performance benefit of our techniques, our results are promising and
future work will examine other domains and non-classification tasks. Another
area of interest is examining if there are certain problems that can produce mul-
tiple solutions and if the cause of this can be identified. If there exist highly
similar problems that have different solutions this might indicate that other in-
formation, like previous problems, are being used during reasoning. Also, future
work will look at if examining the influence of problem ordering can be used to
measure the complexity of an expert’s reasoning process in order to determine
how long a sequence needs to be given to the expert.

Full results, data sets, sourcecode and videos related to this work are available
online7.

References

1. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitat-
ing RoboCup players. In: Twenty-First International Florida Artificial Intelligence
Research Society Conference, pp. 251–256 (2008)

2. Romdhane, H., Lamontagne, L.: Reinforcement of local pattern cases for playing
Tetris. In: Twenty-First International Florida Artificial Intelligence Research So-
ciety Conference, pp. 263–268 (2008)

7 http://rcscene.sf.net

164 M.W. Floyd and B. Esfandiari

3. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution
for real-time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007.
LNCS, vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

4. Jære, M.D., Aamodt, A., Skalle, P.: Representing temporal knowledge for case-
based prediction. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS, vol. 2416,
pp. 174–188. Springer, Heidelberg (2002)

5. Floyd, M.W., Davoust, A., Esfandiari, B.: Considerations for real-time spatially-
aware case-based reasoning: A case study in robotic soccer imitation. In: Althoff,
K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239,
pp. 195–209. Springer, Heidelberg (2008)

6. Flinter, S., Keane, M.T.: On the automatic generation of cases libraries by chunking
chess games. In: 1st International Conference on Case-Based Reasoning, pp. 421–
430 (1995)

7. Atkeson, C.G., Schaal, S.: Robot learning from demonstration. In: 14th Interna-
tional Conference on Machine Learning, pp. 12–20 (1997)

8. Coates, A., Abbeel, P., Ng, A.Y.: Learning for control from multiple demonstra-
tions. In: 25th International Conference on Machine Learning, pp. 144–151 (2008)

9. Grollman, D.H., Jenkins, O.C.: Sparse incremental learning for interactive robot
control policy estimation. In: IEEE International Conference on Robotics and Au-
tomation, pp. 3315–3320 (2008)

10. Yang, C., Farley, B., Orchard, R.: Automated case creation and management for
diagnostic CBR systems. Applied Intelligence 28(1), 17–28 (2008)

11. Asiimwe, S., Craw, S., Taylor, B., Wiratunga, N.: Case authoring: From textual
reports to knowledge-rich cases. In: Weber, R.O., Richter, M.M. (eds.) ICCBR
2007. LNCS, vol. 4626, pp. 179–193. Springer, Heidelberg (2007)

12. Powell, J.H., Hauff, B.M., Hastings, J.D.: Evaluating the effectiveness of explo-
ration and accumulated experience in automatic case elicitation. In: Muñoz-Ávila,
H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 397–407. Springer, Heidel-
berg (2005)

13. Powell, J.H., Hastings, J.D.: An empirical evaluation of automated knowledge dis-
covery in a complex domain. In: Workshop on Heuristic Search, Memory Based
Heuristics and their Applications: Twenty-First National Conference on Artificial
Intelligence (2006)

14. Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case
based reasoning. In: The Twentieth National Conference on Artificial Intelligence,
pp. 216–221 (2005)

15. McSherry, D.: Automating case selection in the construction of a case library.
Knowledge-Based Systems 13(2-3), 133–140 (2000)

16. Lieber, J., d’Aquin, M., Badra, F., Napoli, A.: Modeling adaptation of breast cancer
treatment decision protocols in the kasimir project. Applied Intelligence 28(3), 261–
274 (2008)

17. RoboCup: Robocup official site (2009), http://www.robocup.org
18. Stone, P., Riley, P., Veloso, M.M.: The CMUnited-99 champion simulator team.

In: Veloso, M.M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS, vol. 1856,
pp. 35–48. Springer, Heidelberg (2000)

19. Langner, K.: The Krislet Java Client (1999),
http://www.ida.liu.se/~frehe/RoboCup/Libs

http://www.robocup.org
http://www.ida.liu.se/~frehe/RoboCup/Libs

Four Heads Are Better than One:
Combining Suggestions for Case Adaptation�

David Leake and Joseph Kendall-Morwick

Computer Science Department, Indiana University, Lindley Hall 215
150 S. Woodlawn Avenue, Bloomington, IN 47405, U.S.A.

{leake,jmorwick}@cs.indiana.edu

Abstract. How to automate case adaptation is a classic problem for
case-based reasoning. Given the difficulty of developing reliable case
adaptation methods, it is appealing to consider methods which can ex-
ploit the strengths of a set of alternative adaptation methods. This paper
presents a framework for combining suggestions from multiple adaptation
methods, and illustrates and evaluates the approach in the context of in-
teractive support for user modification of scientific workflows. The paper
presents four adaptation methods for this domain, describes a method for
assessing their confidence, proposes four strategies for suggestion combi-
nation, and evaluates the performance of the approach. The evaluation
suggests that, for this domain, results depend more strongly on the adap-
tation methods chosen than on the specific combination method used,
and that they depend especially strongly on a confidence threshold used
for limiting irrelevant and incorrect suggestions.

1 Introduction

How to automate case adaptation is a classic problem for case-based reasoning.
Numerous adaptation methods have been developed, requiring varying amounts
of knowledge (see [1] for an overview). The use of “Knowledge light” approaches
(e.g., [2]) facilitates the development of adaptation systems, but may not capture
important aspects of the domain; knowledge-rich approaches are powerful, but
the needed knowledge may be expensive to encode, and may have gaps if the
knowledge engineer fails to correctly anticipate future adaptation problems.

Each case-based reasoning system normally relies on a single adaptation
method, selected for the system based on the task characteristics and knowledge
availability. Given the potential trade-offs of different adaptation methods, an
interesting alternative is to endow each CBR system with a range of methods—
potentially including a standard mix of knowledge-light methods with any avail-
able knowledge-rich methods—for the system to automatically assess the set of

� This material is based on work supported by the National Science Foundation under
Grant No. OCI-0721674. We thank Beth Plale and the Indiana University SDCI
group at IU for their vital contributions to this work and the anonymous reviewers
for their helpful comments.

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 165–179, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

166 D. Leake and J. Kendall-Morwick

suggestions and exploit whichever it expects to be most useful, given the task
context and the relationships between the current suggestions.

This paper presents a framework for combining suggestions from multiple
adaptation methods, and illustrates and evaluates the approach in the setting of
an interactive system. The system provides incremental adaptation suggestions
to a user who selects the suggestion to use, providing feedback to the system.
The paper’s examples consider the combination of methods at varying levels of
domain independence; the methods for combination would be equally applicable
to combining suggestions in a knowledge-rich adaptation setting.

Our approach bases combination decisions on both (1) confidence assessments
for individual methods and (2) the context provided by the suggestions of other
methods. Together, these are used to estimate confidence for the proposed adap-
tations. We present several methods for performing this combination task and
evaluate them in a case study of Phala, an ongoing research project to develop
a case-based system to assist scientific workflow generation [3].

This paper begins with a brief overview of Phala and its task domain. It then
describes a set of individual adaptation methods and strategies for their combi-
nation. It closes with an evaluation examining the performance of the individual
adaptations and of different combination methods. Because the usefulness of in-
teractive systems also depends on how they balance suggestion quality against
the frequency with which they present suggestions, the paper also also evaluates
how suggestion quality trades off against a user-specified suggestion rate.

Combining multiple adaptation methods relates to previous work on learning
multiple local adaptation methods [4], but the approach presented here contrasts
in considering multiple adaptation methods (which may change with experience)
for each problem, rather than generating single methods for each region. The
approach is in the spirit of the ensemble techniques which have been applied to
CBR (e.g., [5]), but it emphasizes combining different types of methods which
may not individually be capable of generating solutions for the entire space.
This enables the system’s starting set of adaptation methods to be chosen not
for global characteristics, but for the degree to which the methods complement
each other and fill specific knowledge gaps in the system.

2 Case Study Context: Intelligent Assistance for Authors
of Scientific Workflows

2.1 Background

The scientific community is placing considerable emphasis on information tech-
nology to facilitate experimentation, and particularly on e-Science—in silico ex-
perimentation in which all experimental activities are simulated on a computer.
Workflow technology plays a major role in supporting e-Science processing [6].
Workflows represent the control and data flow through experiments which may
use a number of services for simulation, analysis, and transformation of data. For
example, services might be selected to perform a specific simulation and then to
analyze its results.

Four Heads Are Better than One 167

Workflows are represented by labeled directed multi-graphs in which nodes
represent services and edges can represent either control or dataflow between
these services, as well as input and output from the workflow itself. Scientists
developing e-Science experiments must define the workflows for these experi-
ments, but authoring a workflow can be a difficult task. The technology is often
complicated, involving numerous steps, and authors are faced with many choices
throughout the process. Consequently, a number of efforts have aimed to assist
scientists in workflow generation, using both interactive and generative planning
approaches (e.g., [7,8]).

The Phala project (described in detail in [3]) investigates case-based work-
flow generation support. Phala applies CBR to workflow author assistance by
exploiting provenance information—cataloged traces of control and data flow
from previous executions of individual workflows—as its source of cases. Phala
is interactive, making suggestions to users for incremental improvements to par-
tially completed workflows. Once a workflow is completed and executed, the
resulting provenance is recaptured and included as a new case in the case-base.
When a user builds a workflow, Phala uses the stored cases to incrementally
suggest additions to the workflow, based on choices reflected in previous work-
flows. We refer to this process as case-based suggestion extraction. In addition
to generating suggestions from past cases, Phala can generate suggestions based
on global statistics for nodes likely to be connected in a workflow. We combined
these methods into a hybrid method which outperformed each method individu-
ally [3]). The success of this combination method suggested investigating a more
general combination approach.

3 Towards a General Framework for Combining
Adaptation Suggestions

Two primary factors determine the performance of suggestion systems: The per-
centage of instances in which they make suggestions and the quality of the sug-
gestions made. Managing both of these depends on the CBR system being able
to assess confidence in the suggestions generated and to reconcile conflicting sug-
gestion information. This requires addressing three main issues which apply to
suggestion systems in general: (1) determining which of overlapping suggestions
are relevant to the user’s task, (2) determining levels of confidence in the relevant
suggestions, (3) combining the advice of those suggestions.

3.1 Determining Confidence in Candidate Suggestions

Confidence scores for suggestions can aid users as they select suggestions to ap-
ply, and can also facilitate internal choices by stand-alone systems. However,
unless confidence can be normalized according to a uniform criterion, it may
be difficult to compare confidence estimates for suggestions provided by differ-
ent methods. In addition, it is possible that different suggesters could provide

168 D. Leake and J. Kendall-Morwick

both positive and negative information about a single suggestion (e.g., if a case-
based suggester system has recorded a failure when the suggestion was applied
previously, supporting a “contra-suggestion” that another suggester’s suggestion
should not be followed). In the following sections, we illustrate how confidence
estimates can be developed and how contra-suggestions can be integrated into
the combination process.

3.2 Determining Relevance of Overlapping Suggestions

To facilitate discussion of overlapping suggestions, we first define some termi-
nology to be used in the remainder of the paper. We refer to any aspect of a
query for which an optimal suggestion strategy would produce a suggestion as
an “opportunity” to make a suggestion. A query may contain many opportuni-
ties for suggestions to be made, and multiple suggestions may be returned for
each query. For evaluation purposes, we assume that an oracle outside the sug-
gester provides a set of desired suggestions, which we refer to as the “expected”
suggestions.

Which suggestions are relevant depends on the problem context in which the
suggestions are generated. For example, for the workflow domain, we consider the
problem context to consist of two components. The first is the type of suggestion
(e.g., adding a service, adding an edge designating that output from one service
is provided as input to another, deleting an edge, or replacing a service. The
second is the location of the edit; specifically, the adjacent nodes for an added
edge, deleted edge, or an altered or newly added node.

We classify suggestions as Irrelevant, Matching, Non-Matching, or Unused.

– Irrelevant suggestions: If the suggestion has no problem context in com-
mon with an expected suggestion, we consider it irrelevant (all other sugges-
tions are “relevant”).

– Matching suggestions: For the purpose of evaluation, if both the problem
context and the solution of a system-generated suggestion match an expected
suggestion, then the system’s is “Matching”.

– Non-Matching suggestions: If the problem context of a system-generated
suggestion overlaps with an expected suggestion’s but their solutions do not
match, the suggestion is “Non-Matching.”

– Unused suggestions: When considering a set of mutually exclusive sug-
gestions (i.e., suggestions for which adopting one suggestion would rule out
adopting any of the others), the system first presents to the user the sug-
gestion with the highest confidence. This is the only suggestion considered
in the evaluation, with the remaining mutually exclusive suggestions consid-
ered “unused” rather than non-matching, regardless of whether or not they
contain a matching suggestion. This way, the system is judged by its pri-
mary decisions, though in practice users may request to view the additional
results.

Figure 1 illustrates problem context and matching in the workflow domain.

Four Heads Are Better than One 169

BA

C

FE

Existing
Services

Existing Edge

Service Addition
Suggestion

Edge Addition
Suggestions

Fig. 1. Example suggestions for
Phala

Suppose that an expected suggestion adds an
edge from B to C, and that the system gen-
erates two edge addition suggestions, adding
an edge from B to C and an edge from C
to F. Both system suggestions would share
problem context because they both include
a node from the expected suggestion. How-
ever, only the edge suggestion from B to C
is matching. An add service suggestion from
C to E, despite being linked from the same
node, is irrelevant because it is a different
type of suggestion.

3.3 Combining Suggestions and Suggestion Confidence

Suggestions that partially or fully overlap may be combined to produce con-
sistent and less confusing advice for the user. Likewise, if identical suggestions
are generated from multiple suggesters, the overall confidence that the system
has in those suggestions should reflect the individual confidence scores, requir-
ing combination methods. The combination problem also presents issues such
as how to deal with the confidence of mutually exclusive suggestions and how
contra-suggestions should be combined with other suggestions.

If two independent suggesters generate the same suggestion, and each has
high confidence in that suggestion, we might consider those independent con-
firmations to increase the overall confidence. However, if both suggesters base
their suggestions on overlapping knowledge, the effect of the repeated suggestions
on confidence is not as clear. The following section explores some combination
methods reflecting this.

3.4 A General Framework for Producing and Combining
Adaptation Suggestions

Given a set of suggestion methods, our framework combines their results by a
three-step process. We introduce the general approach in this section and then
examine it with a case study in the following section.

The steps in our framework are:

1. Generate suggestions using each component method
2. Critique suggestions among component methods
3. Combine suggestions

In the first step, each method is presented with an adaptation query for which
it develops a set of suggestions (in our case, the query is a user request for
suggestions of edits to a partially completed workflow). The resulting suggestions
are then shared, with each method given the opportunity to review the current
pool of candidate suggestions and either provide additional suggestions (these

170 D. Leake and J. Kendall-Morwick

may overlap with those offered by other methods) or contra-suggestions. For each
suggestion and contra-suggestion, the method provides an estimate of confidence
indicating the degree to which the component considers it a correct suggestion or
not. Upon completion of the critiquing step, confidence scores are transformed
to estimated probabilities of correctness and a combination method is applied
to the estimated probabilities for the suggestions, resulting in a subset of the
suggestions with new confidence values. Finally, resulting combined suggestions
are presented to the user for approval and feedback. The feedback is captured
for future case-based use either as additional suggestion support or to be used
as a contra-suggestion.

We note that a similar framework was proposed in the context of information
extraction by Frietag, who developed a scheme for combining multiple classi-
fiers [9]. Frietag transforms confidence scores into correctness probabilities and
uses these scores in one of three combination schemes (two of which are the basis
for schemes described later in this paper). However, in addition to bringing such
an approach to the adaptation combination task for CBR, our framework differs
in elaborating on the issue of suggestion overlap and how it should be handled
by general combination methods, in particular through the new contributions of
suggestion review before combination and consideration of contra-suggestions,
as well as the two new combination strategies described in the next section.

4 A Case Study of the Framework: Implementation in
Phala

4.1 Component Suggestion Methods

Phala includes four suggestion strategies, each drawing on a different type of
knowledge: (1) extraction of suggestions from provenance cases, (2) reuse of
feedback cases, (3) link frequency, and (4) heuristics for the workflow domain.

Extraction from Provenance Case. This was the first case-based method devel-
oped for Phala [3]. This method draws from a case library which is mined from
provenance traces of prior completed workflows. Cases with similar components
to the query are retrieved, and workflow components in the retrieved case that
do not exist in the query are extracted as potential additions to the query work-
flow. Suggestions extracted via this method do not represent complete solutions,
but rather an incremental step in an interactive approach to generating an entire
workflow. The final workflow is recaptured by the system when the completed
workflow is executed and the resulting provenance trace is mined. This method
uses single nearest neighbor retrieval, where similarity and confidence are both
determined by edit distance from a stored workflow case to the query workflow.

Reuse of Feedback Cases. This is a second case based method, which generates
suggestions from feedback cases rather than stored workflows. Whenever the
system presents a suggestion to the user, the user has the option of providing

Four Heads Are Better than One 171

feedback as to whether it is a good suggestion. When feedback is received, a
new case is created in the feedback case base, where cases are individual queries
(incomplete workflows) rather than the complete workflows used by the Extrac-
tion method. This method uses 3-NN retrieval to retrieve prior solutions and
re-presents them as potential solutions for the query. Confidence is determined
by a combination of edit distance and prior confidence.

Link Frequency. This suggestion method was previously used as a baseline for
evaluating the Extraction method [3]. For any service in the workflow, this
method suggests adding the new service which is most often linked to (or from)
the given service. The confidence is calculated as the ratio between the number
of times the new service is linked with the given service and the number of times
any service is linked with the given service in the cases of the case library.

Workflow Heuristics. This is our only method which relies on domain knowledge
outside of the workflow case base and feedback case base. This method applies a
collection of rules of thumb about workflow development. For example, a service
within a workflow often takes a static number of inputs. Thus, in the critiquing
round of combination, this method may suggest against an attempt to add more
inputs than typical to a particular service. In this instance, the variance of the
number of inputs is used to determine confidence.

4.2 Refitting to Insure Comparable Confidence Values

One solution to the problem of confidence comparability is to view confidence
as a probability estimate. Frietag adopts such a strategy aiming to estimate
the probability that a particular text fragment represents a field [9]. In order
to produce these estimated probabilities, Frietag produces transformations for
the confidence scores, mapping them to probabilities by producing a regression
model from a set of mapped datapoints. Phala applies a similar approach, using
an estimated probability that a suggestion will be matching or the probability
that a contra-suggestion will be non-matching. These estimates are derived from
confidence values using linear regression.

4.3 Methods for Combining Suggestions

We have developed a set of methods to combine suggestions by considering
their problem context, solution, and confidence values. When a set of sugges-
tions is presented to any of these combination methods, it is first partitioned by
shared problem context. The following subsections describe how each method se-
lects among one of these partitioned sets. Figure 2 provides algorithms for each
method. In the algorithms, S is the relation which determines if two suggestions
share a solution, M is the relation determining if suggestions share a source, and
sugg is the set of all suggestions being presented to the combination method,
partitioned by problem context. conf, prob, and sol respectively represent the
confidence, problem context, and solution for a particular suggestion.

172 D. Leake and J. Kendall-Morwick

(a) The Maximum Combiner (b) The Average Combiner

(c) The Independent Combiner (d) The Balanced Combiner

Fig. 2. Combination Methods

Maximum. The suggestion with the highest confidence score is chosen. If this is
a contra-suggestion, all suggestions with matching solutions are removed from
the set and the process is repeated. If no suggestions remain, none is returned.
This is based on the CMax method used by Freitag [9].

Average. This method first partitions suggestions by shared solution. The confi-
dence scores for each of these partitions are averaged (confidence scores for contra-
suggestions are negative). If the average is negative, the suggestion is switched to
a contra-suggestion. The resulting suggestions are then passed through the Max-
imum combination method.

Independent. This method also first partitions suggestions by shared solution.
Under the assumption that each confidence score is independent, the probability
that a solution is correct is decided by calculating the probability that all match-
ing positive suggestions are not wrong and that all matching contra-suggestions
are wrong. For each partition, one solution is returned with this recalculated
probability score. These results are then passed through the Maximum combi-
nation method. This is derived from the CProb method used by Freitag which
calculates the probability that at least one prediction for a particular solution is
correct [9].

Note that a problem with the Independent combination method is that confi-
dence scores are not always independent. Although, ideally, suggesters will com-
plement each other, in practice some knowledge may be shared by the suggesters.

Balanced. Suggesters are not restricted from making multiple suggestions with
the same problem context or even the same solution. This is not necessarily

Four Heads Are Better than One 173

incorrect. For example, the Extraction suggester might make 6 suggestions to add
the same service in a particular location, because in the stored case 6 instances
of that service were executed in parallel. However, the Independent combination
method would consider each of these to be independent support, potentially
causing the Independent suggester to prefer it over better individual solutions
provided by other Suggesters. The Balanced combiner addresses this problem
by first partitioning suggestions by which method was used to generate them
and reducing each partitioned set to a single suggestion by using the Average
combiner.

Some suggesters could produce many irrelevant suggestions. For example, Link
Frequency is ignorant of solution relevance, and consequently makes many ir-
relevant suggestions. These suggestions are unlikely to be supported by other
suggestion methods. Consequently, the Balanced combiner also reduces irrel-
evant suggestions by ignoring suggestions which (1) lack the support of other
methods, (2) have low confidence scores and (3) are produced by methods known
to create many irrelevant suggestions. This is done by requiring each suggestion’s
confidence to surpass a specific confidence threshold in order to be considered,
unless it is supported by other methods. After this and the previous step, all
remaining suggestions are combined with the Independent combiner.

5 Experimental Design

5.1 General Factors and Trade-Offs

Ideally, a combiner would maximize matching suggestions and minimize non-
matching and irrelevant suggestions. We shall consider the ratio of matching
suggestions to opportunities as the “matching rate” and the ratio of irrelevant
suggestions to opportunities as the “irrelevance rate”. In Phala, irrelevant sug-
gestions are only generated when the user does not identify a problem context,
leaving the system to guess where suggestions are most applicable. These are
the only scenarios we consider in our evaluation. We also identify the ratio of
relevant suggestions to opportunities as the “suggestion rate”, ideally maximized
as well, however, not at the expense of either of the prior listed goals. We use
the term matching rate instead of precision because we cannot know if alter-
native suggestions may actually be relevant. A user’s previous choices are not
a complete representation of potential relevance. Thus, the matching rate is a
lower bound on precision. Likewise, the irrelevance rate is an upper bound on
true irrelevance.

An additional factor is a user-selected threshold for the the minimum con-
fidence a suggestion can have, which can be used to limit the number of non-
matching and irrelevant suggestions presented. Our evaluation also examines
how the above rates change when a minimum confidence threshold is enforced.
For instance, a method with a matching rate of 30% might have a 70% matching
rate with a higher confidence threshold, though this necessarily means that it
will have a lower suggestion rate as well. In order to take this into account, we

174 D. Leake and J. Kendall-Morwick

graph matching and irrelevance rates against suggestion rate. These values can
be found by adjusting the minimum confidence threshold until a desired sugges-
tion rate is achieved. Note that methods typically have a maximum suggestion
rate below 1.0, which means that the graphs we produce will not be defined at
all points.

5.2 Dataset

Our evaluation of the alternative methods is performed with a current snapshot
of the 447 public workflows available at myexperiment.org[10]. This collection
focuses mainly on the bio-sciences, but includes a diverse contribution of work-
flows from other disciplines as well. These workflows are used to build up the
provenance case-base and also as queries through leave-one-out testing.

5.3 Leave-One-Out Tests

The evaluation is based on a series of unique leave-one-out tests which test
Phala through several different suggestion scenarios. In each test, one workflow
is withheld from the case-base and altered in some way. Phala is then queried
and the expected suggestions should return the workflow to its previous state.
The tests are:

– Service Addition Test: One service is deleted and must then be suggested
as an addition.

– Service Replacement Test: One service is replaced with an erroneous
service and the original must be suggested as a replacement.

– Edge Addition Test: One edge is deleted and must then be suggested as
an addition.

– Edge Deletion Test: An erroneous edge is added and a suggestion to delete
it must then be made.

– Reconstruction Test: The reconstruction test rebuilds a workflow from
its input and output components through multiple incremental suggestion
sessions. This is intended to model a more realistic user session.

6 Results

Results from each constituent method and each combiner method for the service
addition test are listed in Table 1 and results for each combiner method for the
remaining tests are listed in Table 2. For a 95 % confidence Z-test, Maximum,
Average, and Independent combination methods do not significantly differ in
matching or suggestion rates. They also do not significantly differ in irrelevance
rates except between Independent and either Maximum or Average for the ser-
vice addition test. Balanced differs significantly from these combiners for all
rates in all cases. Given that Balanced has a nearly identical matching rate with

Four Heads Are Better than One 175

Table 1. Each method’s performance for the Add Service test (1638 Opportunities)
(note: Both Workflow-Heuristics and Feedback produce many contra-suggestions which
are not included in this table but are important to the success of the combiner methods)

Method Matching (Rate) Non-Matching Relevant (Rate) Irrelevant (Rate)
Extraction 331 (65.7%) 173 504 (30.8%) 14990 (9.15)
Feedback 12 (85.7%) 2 14 (0.85%) 28 (0.017)

Link Frequency 450 (40.7%) 655 1105 (67.5%) 30199 (18.43)
Maximum 531 (48.1%) 573 1104 (67.4%) 36023 (22.0)
Average 529 (47.9%) 575 1104 (67.4%) 36023 (22.0)

Independent 528 (47.7%) 577 1105 (67.5%) 41176 (25.1)
Balanced 463 (65.2%) 247 710 (43.4%) 20125 (12.3)

(a) Matching rate vs. suggestion rate (b) Irrelevance rate vs. suggestion rate

Fig. 3. Service Addition Test Performance

Extraction, a significantly higher suggestion rate, and a significantly lower irrel-
evance rate, these data suggest using one of these two methods. If the suggestion
rate is important to the user, Balanced has a clear advantage in our tests.

However, this does not take into account a user’s ability to specify a min-
imum confidence threshold for suggestions returned by the system. Because
each of the other combination methods have higher suggestion rates than Bal-
anced, it is possible that they would also have a higher matching rate were
the confidence threshold raised to the point that their suggestion rate equaled
that of Balanced in the table above. To investigate this possibility, we graphed
matching rate against suggestion rate for the combiners and Extraction and
Link Frequency constituent methods in Figure 3(a). This figure shows that
the combiners make many more suggestions at the point at which they are
most accurate than either of the constituents. At these points, both of the con-
stituent methods are less accurate and continue to be for all scenarios with
higher suggestion rates. Thus the combiners produce superior results. Though

176 D. Leake and J. Kendall-Morwick

irrelevance rates are fairly high for all methods in Tables 1 and 2, this graph
also illustrates how the user can significantly lower the irrelevance rate to a
level which may be more acceptable by increasing the minimum quality
threshold.

Also notable in this graph is that each combiner method shares similar per-
formance regardless of suggestion rate (with the exception of Balanced hav-
ing a smaller upper bound on possible suggestion rates). This was a surprising
result as the derived combiners were less consistent in Freitag’s work [9]. In
Figure 3(b), irrelevance rates are graphed for each of the methods, showing that
in this testing situation, the Balanced combiner fares better than the other com-
biners through nearly all of its higher suggestion rates. In this testing scenario,
unless a very high suggestion rate is desired, the Balanced combiner seems to be
the best compromise.

However, this trend was not observed on all tests. The irrelevance rates
for the combiner methods on the reconstruction test are listed in Figure 4.
Each method again shared similar matching rates in this test, but Balanced
no longer has a superior irrelevance rate. Although Balanced was more success-
ful in other scenarios, it seems that, at least for this particular system, the most
reliable factor in reducing unwanted or incorrect suggestions is not the selec-
tion of combiner method, but rather the proper management of the confidence
threshold.

Table 2. Combiner performance for various tests

Method Matching (Rate) Non-Matching Relevant (Rate) Irrelevant (Rate)
Reconstruction Test (2620 Opportunities)
Maximum 379 (48.9%) 396 775 (29.6%) 42243 (16.12)
Average 380 (49.1%) 393 773 (29.5%) 42249 (16.13)

Independent 375 (46.6%) 429 804 (30.7%) 44952 (17.16)
Balanced 340 (58.1%) 245 585 (22.3%) 24482 (9.34)

Edge Suggestion Test (1638 Opportunities)
Maximum 379 (78.1%) 106 485 (29.6%) 37837 (23.10)
Average 379 (78.3%) 105 484 (29.5%) 37840 (23.10)

Independent 387 (71.0%) 158 545 (33.3%) 42882 (26.18)
Balanced 377 (77.7%) 108 485 (29.6%) 20501 (12.52)

Edge Deletion Test (1994 Opportunities)
Maximum 648 (84.7%) 117 765 (38.4%) 24711(12.39)
Average 639 (83.7%) 124 763 (38.3%) 24712 (12.39)

Independent 648 (84.7%) 117 765 (38.4%) 28065 (14.07)
Balanced 644 (84.2%) 121 765 (38.4%) 13700 (6.87)

Service Replacement Test (1852 Opportunities)
Maximum 320 (52.1%) 294 614 (33.2%) 37558 (20.28)
Average 319 (52.0%) 295 614 (33.2%) 37558 (20.28)

Independent 319 (52.0%) 295 614 (33.2%) 43206 (23.33)
Balanced 316 (67.2%) 154 470 (25.4%) 20595 (11.12)

Four Heads Are Better than One 177

(a) Matching rate vs. suggestion rate (b) Irrelevance rate vs. suggestion rate

Fig. 4. Reconstruction Test Performance

7 Related Work

The most salient aspect of our framework is its general approach to hybridization.
Related CBR work includes the ensemble techniques such as those by Craw et
al. [11] and Plaza et al. [5], though Plaza et al.’s study does not use distinct
methods between agents, only distinct knowledge sources. A similar distinction
can be made with multi-case based reasoning [12]. The cited ensemble techniques
approach the issue of combining solutions through voting schemes which are more
applicable to solution representations which lack a notion of “problem context”.

Our framework is more similar to previously cited work in Information Extrac-
tion from which some of our methods are derived [9], though we have expanded
the information content of solutions and developed new combination methods.
Other information extraction work expanding on Freitag’s makes relevant con-
tributions to solution combination and also utilizes “merged templates” which
is an example of partitioning by problem context [13]. Work in boosting is also
relevant [14].

There is also work related to the domain and the individual suggesters utilized
in Phala, much of which is noted in a previous paper [3]. There has been work
on mining adaptation knowledge from a case-base, which is a strategy taken by
the Workflow Heuristics and Link Frequency methods (e.g., [15]). The Feedback
method utilizes a case base of acquired knowledge for adaptation in the spirit of
work by Leake, Kinley, and Wilson [16]. This work also relates to recent interest
in case-based confidence (e.g., [17]), but differs in that it concerns confidence not
in cases, but in candidate adaptations to apply to them.

8 Future Work

Our results illustrate the importance in maintaining a proper confidence thresh-
old to meet user goals. This being the case, we hope to develop methods for
automating setting of this and other relevant system parameters so that the
user is not required to experiment in order to achieve desired results. Because
of the importance of confidence values, we also seek to improve the confidence

178 D. Leake and J. Kendall-Morwick

translation. Regression in this context is not straight-forward because data points
must be derived from a proportion of binary values. We hope to achieve a better
solution than those offered in the literature or in our current implementation,
though we also expect that a larger training set would yield better performance
even with the current methods. We also intend to explore additional suggesters,
including more knowledge-rich methods (such as employing an ontology or user
generated semantic tagging).

In our current implementation we consider problem contexts and solutions
to be only matching or non-matching, when in fact these entities may partially
match. This raises a host of issues, from implementation of combination methods
to performing a suitable evaluation, which we hope to address in future work.
In addition, we would like to expand our notion of problem contexts to facilitate
discovery and exploitation of particular contexts in which particular methods
may excel.

9 Conclusions

In conclusion, our framework for combining suggestions is a promising means
for facilitating adaptation in interactive CBR systems, yielding results superior
to the constituent methods. This framework relies on effective confidence scores
which are important for combining suggestions. We show that the confidence
scores can also be used to select more desirable results and improve overall
system performance by meeting specific user preferences on various trade-offs in
performance.

We have demonstrated that this framework as well as several new constituent
methods can be effectively applied to the domain of supporting the creation of
scientific workflows. We have found that the choice and number of these methods
had a greater impact on the results than the method of combination, in contrast
to previous results on combiners for classification. We see techniques we have
presented as applicable to other approaches within our domain as well as to
problems in other domains and plan to investigate this potential in future work.

References

1. Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings,
B., Maher, M., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval,
reuse, revision, and retention in CBR. Knowledge Engineering Review 20(3) (2005)

2. Wilke, W., Vollrath, I., Althoff, K.D., Bergmann, R.: A framework for learning
adaptation knowledge based on knowledge light approaches. In: Proceedings of the
Fifth German Workshop on Case-Based Reasoning, pp. 235–242 (1997)

3. Leake, D., Kendall-Morwick, J.: Towards case-based support for e-science workflow
generation by mining provenance information. In: Althoff, K.-D., Bergmann, R.,
Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 269–283. Springer,
Heidelberg (2008)

4. Patterson, D., Rooney, N., Galushka, M.: A regression based adaptation strat-
egy for case-based reasoning. In: Proceedings of the Eighteenth Annual National
Conference on Artificial Intelligence, pp. 87–92. AAAI Press, Menlo Park (2002)

Four Heads Are Better than One 179

5. Plaza, E., Ontañón, S.: Ensemble case-based reasoning: Collaboration policies for
multiagent cooperative CBR. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS,
vol. 2080, p. 437. Springer, Heidelberg (2001)

6. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing.
SIGMOD Rec. 34(3), 44–49 (2005)

7. Xiang, X., Madey, G.R.: Improving the reuse of scientific workflows and their by-
products. In: ICWS, pp. 792–799. IEEE Computer Society, Los Alamitos (2007)

8. Maechling, P., Chalupsky, H., Dougherty, M., Deelman, E., Gil, Y., Gullapalli, S.,
Gupta, V., Kesselman, C., Kim, J., Mehta, G., Mendenhall, B., Russ, T., Singh,
G., Spraragen, M., Staples, G., Vahi, K.: Simplifying construction of complex work-
flows for non-expert users of the southern california earthquake center community
modeling environment. SIGMOD Rec. 34(3), 24–30 (2005)

9. Freitag, D.: Machine Learning for Information Extraction in Informal Domains.
PhD thesis, Carnegie Mellon University (1998)

10. Roure, D.D., Goble, C., Bhagat, J., Cruickshank, D., Goderis, A., Michaelides, D.,
Newman, D.: Myexperiment: Defining the social virtual research environment. In:
4th IEEE International Conference on e-Science (August 2008)

11. Craw, S., Wiratunga, N., Rowe, R.C.: Learning adaptation knowledge to improve
case-based reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)

12. Sooriamurthi, R.: Multi-case-base reasoning. PhD thesis, Indiana University (2007)
13. Sigletos, G., Paliouras, G., Spyropoulos, C.D., Hatzopoulos, M.: Combining infor-

mation extraction systems using voting and stacked generalization. J. Mach. Learn.
Res. 6, 1751–1782 (2005)

14. Dietterich, T.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.)
MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

15. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case
base mining for adaptation knowledge acquisition. In: Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 750–755.
Morgan Kaufmann, San Mateo (2007)

16. Leake, D., Kinley, A., Wilson, D.: Learning to improve case adaptation by intro-
spective reasoning and CBR. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995.
LNCS, vol. 1010, pp. 229–240. Springer, Heidelberg (1995)

17. Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning
systems. In: Funk, P., González, P. (eds.) ECCBR 2004. LNCS, vol. 3155, pp.
106–118. Springer, Heidelberg (2004)

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 180–194, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Adaptation versus Retrieval Trade-Off Revisited: An
Analysis of Boundary Conditions

Stephen Lee-Urban and Héctor Muñoz-Avila

Department of Computer Science and Engineering, 19 Memorial Drive West,
Lehigh University, Bethlehem, PA 18015

{sml3,hem4}@lehigh.edu

Abstract. In this paper we revisit the trade-off between adaptation and retrieval
effort traditionally held as a principle in case-based reasoning. This principle
states that the time needed for adaptation reduces with the time spent searching
for an adequate case to be retrieved. In particular, if very little time is spent in
retrieval, the adaptation effort will be high. Correspondingly, if the retrieval
effort is high, the adaption effort is low. We analyzed this principle in two
boundary conditions: (1) when very bad and (2) when highly capable adaptation
procedures are used. We conclude that in the first boundary condition the adap-
tation-retrieval trade-off does not necessarily exist. We also claim that the
second does not hold for a class of planning domains frequently used in the lit-
erature. To validate this claim, we performed experiments on two domains of
this type.

Keywords: cased-based reasoning, planning, retrieval, adaptation, trade-offs.

1 Introduction

One of the crucial principles of case-based reasoning is the trade-off between the
retrieval time, the time it takes to find a relevant case for a given problem from the
case base, and the adaptation time, the time it takes to adapt the retrieved case. The
trade-off has been summarized in Fig. 1, taken from [1]. There are three tenets of this
principle:

1. If little time is spent on retrieval, then, on average, the adaptation effort in-
volved in using the retrieved cases to solve the given problem will be high.
This is basically the result of stopping the retrieval process too early, which
results in the retrieval of cases that are not easy to adapt.

2. If too much time is spent on retrieval, then the adaptation effort to solve the
given problem will be small. This is basically the result of spending enough
time to ensure that a case is retrieved that is easier to adapt. However, any re-
duction in the adaptation time is counterbalanced by the time spent in retrieval,
which may result in a high overall problem-solving time (adding up retrieval
and adaptation times).

 Adaptation versus Retrieval Trade-Off Revisited 181

Effort

Cases Visited During Retrieval

high

R: Retrieval effort

T: Total effort (R + A)

low
a few cases many cases

A: Adaptation effort

optimal point

Fig. 1. Adaptation and retrieval trade-off (Veloso, 1994)

3. There is an optimal intermediate point at which a case that is good enough to
adapt is retrieved and adapting it produces the smallest overall time.

The tenants of this principle have been recurrently discussed over the years. It was in
part the motivation for retrieval strategies in case-based planning systems such as
CAPLAN/CbC [2], derSNLP+EBL [3], and MRL [4]. It was also observed by studies
about the occurrence of the utility problem in case-based reasoning [5]. It continues to
be encountered in a number of domains including software design [6], travel domain
[7], and process planning [8].

Improvements in retrieval procedures (e.g., [9], [10]) can be seen as an effort to re-
duce the time to find cases “good enough” for fruitful adaptation. Analogously, im-
provements in adaptation (e.g., [11], [12], [13], [14], [15]) can be seen as indirectly
reducing the time needed for retrieval because as adaptation is improved, less time
need be spent on finding “good enough” cases to be adapted. Hence both kinds of
improvements, in adaptation and retrieval, can be seen as moving the optimal point
depicted in Fig. 1, and described in the third tenet, downward, making the overall
problem-solving effort less costly.

The rest of the paper proceeds as follows: In Section 2 presents our analysis of the
two boundary conditions. Section 3 provides an illustrative plan adaptation example.
In Section 4, we describe domain-configurable plan adaptation by first reviewing
partial-order planning (4.1), then by explaining the domain-configurable plan adapta-
tion knowledge (4.2) used by our adaptation procedure (4.3). Next, Section 5 gives
an example of domain-configurable plan adaptation. The details of our empirical
evaluation are presented in Section 6, followed by concluding remarks.

2 Analyses of Boundary Conditions

An implicit assumption in the adaptation-retrieval trade-off principle is that the adap-
tation algorithm is only capable of solving problems quickly enough when the re-
trieved case is reasonably similar to the input problem. If the retrieved case is not
sufficiently similar to the new problem then the adaptation effort will take a signifi-
cant amount of time. It is worth noting that despite advances in adaptation algorithms,
there is still a search process needed in a potentially exponential search space. The

182 S. Lee-Urban and H. Muñoz-Avila

relationship between this search space and techniques for its exploration can be
loosely summarized as follows: A case sufficiently similar to the input problem is
retrieved and adjusted in a sensible way. The output of this process is an “adjusted
plan” where the retrieved plan is partially adapted but is an incomplete solution to the
input problem. Hence, further search is required to reach a solution node of the new
problem starting from the adjusted plan. This search can be performed either by first-
principles search as in [11] or by retrieving and adapting another case as in [12] or
by composing multiple planning cases as in [16] or by combining further
retrieval/adaptation of cases and first-principles search as in [1] and [17].

To make this assumption explicit, we will study two boundary cases: when the
adaptation algorithm is capable of solving only those problems for which it has al-
ready stored solutions in the case base (naïve) and when a highly capable adaptation
procedure (omniscient) is used.

2.1 Analysis of a Naive Adaptation Algorithm

Fig. 2 (left) illustrates the situation of a naïve adaptation procedure, capable of solving
only those problems for which it already has a solution. The dotted segments repre-
sent discontinuities in problem-solving time, reflecting those problems for which a
solution does not exist in the case base (CB) and therefore no data point can be drawn.
The adaptation time for those problems for which a solution is already stored is zero
because the solution is taken as-is. Consequently, the linear search of the retrieval
procedure (as in Fig. 1, assume a constant time to compute similarity between case
and problem, and a sequential search through the cases), yields an overall linear time
for problem solving. Basically, the problem-solving time is the time taken for the
retrieval procedure to find the solution in the case base, if one is already stored. This
is an analogy of the CB working as a sequential database. In this situation there is no
trade-off between adaptation and retrieval. The retrieval mechanism must continue
looking for a solution until it finds an exact match or it has exhausted the whole case
base.

2.2 Analysis of an Omniscient Adaptation Algorithm

More interesting and difficult is to analyze the situation where an omniscient adapta-
tion algorithm is given. First, we would like to characterize such an algorithm. An

Fig. 2. Naïve (left) and omniscient (right) adaptation algorithms without a trade-off

 Adaptation versus Retrieval Trade-Off Revisited 183

omniscient adaptation procedure is one where it would not need to backtrack to reach
the adjusted plan nor backtrack during search to further refine the adjusted plan into a
complete solution of the new problem. That is, somehow the algorithm finds the path
in the search space to first reach the adjusted plan and then reach the solution plan
without needing to explore alternative branches in the search space.

Our hypothesis is that there exists a class of planning domains such that the time it
takes an omniscient adaptation algorithm to adapt any two cases to solve a new prob-
lem is roughly the same, regardless of the similarity of the individual cases to the new
problem, and given that the problems solved by the cases and the new problem are of
the same size (i.e., they have the same number of objects in their initial states). Once
again, combined with the linear search of the retrieval procedure, this hypothesis
gives an overall linear time for problem solving. Basically, the problem-solving time
is proportional to the time it takes for the retrieval procedure to retrieve a case. We
claim that in this situation there is no trade-off between adaptation and retrieval as
illustrated in Fig. 2 (right).

This class of planning domains is one where the graph consisting of all world states
is a directed, strongly connected graph. In this graph, the vertexes are world states and
the directed edges are actions (i.e., an edge from vertex x to vertex y represents the
action transforming the state x into state y). We called these connected domains. In a
connected domain, there always exists a directed path (sequence of actions) between
any two vertexes (states) in the graph. The logistics transportation domain [1] is an
example of a connected domain, provided that there is at least one truck and one air-
port in each city, as well as at least one airplane. With these provisions, a package in
any location can always be relocated into any other location. Similarly, the blocks
world [18] also meets this property: any configuration of blocks can always be recon-
figured into any other configuration of these same blocks. An example of a domain
that does not meet this property is a logistics domain variant where there are one-way
routes between locations [3]. As a result, a package in a certain location may not
always be reachable by a truck.

An important question is whether it is possible to construct an omniscient algo-
rithm for connected domains. This is particularly compelling, considering that many
experiments designed to demonstrate efficiency gains of new case-based planning
techniques use connected domains. Additionally, these domains have an exponential
search space and, hence, the question of whether adaptation procedures could be built
that somehow adapt the retrieved plans without exploring unnecessary branches in the
search space is a good one.

In this paper we will report on an omniscient adaptation algorithm, DCPOP-A (for:
domain-configurable partial-order plan adapter). In Section 6, we report the results of
experiments that demonstrate, for the connected domains described above, the non-
existence of a trade-off between adaptation and retrieval in our omniscient adaptation
algorithm as depicted in Fig. 2 (right).

3 A Plan Adaptation Example

Fig. 3 illustrates a snippet of the search space for state-space planning in blocks
world. It shows 15 states (five of them labeled p1, state 1, state 2, state 3 and final)

184 S. Lee-Urban and H. Muñoz-Avila

Fig. 3. Snippet of the search space with 4 blocks

out of the 73 possible states with 4 blocks. Lines connecting states represent transi-
tions by the only action in the domain: Move(?x ?y ?z). This action puts a clear block
?x (i.e., a block with no other block on top of it) currently on top of a block ?y (or on
the table; ?y = table) on top of another clear block ?z (or on the table).

Transitions do not have a direction because with a change of parameters and/or ac-
tions they can go in either direction. Problems can be simply defined as pairs of states
(s, s') where s is the initial state and s' is the goal state. Suppose that two cases are
stored in the case base, Case 1 and Case 2. Case 1 solves the problem (state 1, final)
and Case 2 solves the problem (state 2, final). Their solutions follow the path between
these two states denoted by the bold line-connectors (the double-line parts represent
common portion of the solutions). Suppose that a new problem (state 3, final) is
given. Of these two cases, Case 2 is a much better choice. In fact if starting from state
3, there are only 3 possible transitions, two of which lead directly to the solution plan
of Case 2 and the third one (the 4 block pile) which is a dead-end. Case 1 might not
be a good choice. For example, from state 3 a path of length 4 leading to the dead-end
representing the 4-block pile [B, A, D, C] can be explored. There is also a length 2
path to p1 which would allow it to use the solution path of Case 1 but a first-
principles search might take a significant amount of time before this path is found
because it may first explore dead-end paths.

4 Domain-Configurable Plan Adaptation

Our approach for plan adaptation is motivated by existing research in domain-
configurable planning. In this form of planning, domain-specific knowledge enhancing
the action schemas is given. This knowledge is used to guide the planning process, which
like first-principles planning generates a plan from scratch. Domain-configurable plan-
ners have been shown to solve problems more quickly and to scale much better with

 Adaptation versus Retrieval Trade-Off Revisited 185

problem size than first-principles planners. Because of their scalability, their increasing
number of applications, and their ability to drop classical planning assumptions, domain-
configurable approaches are believed to be closing the gap between academic research in
AI planning and real-world applications [19].

We developed DCPOP-A, a domain-configurable plan adaptation algorithm, in or-
der to investigate the adaptation-retrieval trade-off in a system capable of performing
“omniscient” search with ideal inputs. This new problem-solving paradigm for plan
adaptation uses domain-specific knowledge to guide a domain-independent plan adap-
tation process. The domain-independent property allows the semantics of the resulting
planning algorithms to be clear. Domain-specific knowledge allows problem-solving to
scale well with problem size. This, in addition to previous analyses of the search space,
illustrates the potential for substantial speed-up gains in the plan adaptation process,
thus providing a suitable framework in which to re-evaluate the adaptation-retrieval
trade-off.

We used partial-order planning (POP) as the underlying planning formalism to
conduct our research. POP was the dominant planning paradigm some 15 years ago
because of its ability to flexibly interleave actions, rather than totally order them,
while solving problems. POP drops the classical requirement for actions to be totally
ordered, which is particularly useful for plan adaptation (e.g., [11], [12]). However,
interest in POP waned when other paradigms such as analysis of planning graphs and
more recently planning with heuristics, demonstrated significant gains in planning
speed and solvable problem size. More recently, there has been a revival of POP as
heuristic methods have been developed that perform comparably to other state-of-the-
art first-principles planners. Researchers have pointed out the importance of POP
planning for real-world domains because in many real world situations actions can be
performed in parallel and the planner should not commit to step orderings unless
necessary (e.g., [20], [21], [22], [23]).

4.1 Partial-Order Planning

Partial-order planning begins with an input action schema and a symbolic initial and
goal state specification of the problem. Actions have a name, zero or more parame-
ters, preconditions, and effects. Next an initial plan is created, consisting of two
special steps. The first of these steps has as effects those atoms appearing in the prob-
lem’s initial state; the second has as preconditions those atoms appearing in the goal
state. Partial-order planning refines this initial plan by adding constraints and plan
steps, ordered between the two initial steps, until a complete partial-order plan is
obtained (complete plans are defined below). A partial-order plan is defined as a 4-
tuple (S, , CL, B) of sets of POP plan elements. S is the set of plan steps, which
represent the application of actions in the plan. The set contains the ordering con-
straints between plan steps, which take the form s s', indicating that step s must be
executed before step s'. The set CL contains causal links, s p s', indicating that the
precondition p needed by the action in step s' is produced as an effect of the action in
step s. Step s might be an existing step in the plan or a new one added to satisfy p.
The set B indicates variable binding constrains, ?x ≠ ?y or ?x = ?y, indicating that
whenever variable ?x occurs in the plan it must take a different (respectively the
same) value as the variable ?y (?x represents that x is a variable symbol). Set B is

186 S. Lee-Urban and H. Muñoz-Avila

A
B

C
D E

F

Initial State

s0

move(B,A,table)

move(E,F,table)

move(A,table,B)

move(D,C,table)
move(E,table,D)

move(F,table,E)

move(C,table,A)
A
B

C

D
E
F

Goal State

s∞

x

x
x

Fig. 4. Example of a partial-order plan

empty when planning without variables (i.e. “grounded”). A partial-order plan is
complete if it has no flaws. There are two kinds of flaws in POP: open preconditions
and causal threats. An open precondition occurs when a step s' in the plan has a pre-
condition p, written p@ s', for which no causal link s p s' exists. A threat occurs
when a causal link s p s' and a step s'' exist such that s'' has as effect the negation of
p (i.e., ¬p), written s'' ¬p, and s'' can occur between s and s', written s'' || (s p s'),
in a linearization of the plan. A linearization of a plan is a sequencing of all steps in a
manner consistent with the ordering constraints such that, for every two steps s and s',
s will always be listed before s' if either s p s' or s s' hold. The objective of the
POP planning process is to refine the initial plan into a complete partially-ordered
plan. Any linearization of this complete partially-ordered plan is a solution to the
planning problem. There are four possible POP plan refinements: adding ordering
constraints, adding steps, adding causal links, and adding binding constraints. Order-
ing constraints and binding constraints are added to solve causal threats. Steps and
causal links are added to satisfy open preconditions.

Fig. 4 shows an example of a partial-order plan in the Blocks World domain. The
arrows represent causal links and ordering constraints. The meaning of the “x” beside
some of the plan steps will be explained in a later discussion and may be ignored for
now. If nothing is underneath a block, this means that the block is on the table (not
shown), For example, in the initial state block C is on the table and in the goals block
B is on the table. This plan unstacks all blocks on the table and then stacks them to
form the configuration indicated by the goals.

4.2 Domain-Configurable Partial-Order Plan Adaptation Knowledge

Domain-configurable partial-order knowledge in DCPOP-A is encoded as rules of the
following form:

if (+/–) <POP plan element> [,(+/–) <POP plan element>]
then (do:/undo:) <POP plan refinement> [, (do:/undo:) <POP plan refinement>]

The conditional part of the rule is a conjunction of one or more POP plan elements as
defined in the previous section. These POP plan elements are preceded by either a
plus or a minus. The consequent part is a sequence of POP plan elements, preceded
by do or undo symbols. The semantics of a rule are as follows. The rule is satisfied if
each of the POP plan elements preceded by a plus sign occurs in the current plan and
none of the POP plan elements preceded by the minus sign occur in the current plan.
The consequent part indicates each of the POP plan refinements to add, if it is pre-
ceded by a do, or to delete, if it is preceded by an undo. When a plan step s is deleted
(i.e., by an undo), any ordering constraint or causal link connecting to/from s is also

 Adaptation versus Retrieval Trade-Off Revisited 187

removed. When an ordering constraint, a causal link, or a binding constraint is de-
leted, no other plan element is removed. The POP domain-configurable rules, which
henceforth we refer to as POP rules, are a natural extension of POP refinements and
in fact all POP refinements can be expressed using these rules. We also allow as con-
ditions same(?x,?y) and different(?x,?y) indicating that two variables take the same
(or different) value. We write instead ?x = ?y (or ?x ≠ ?y) for readability.

We use two classes of POP rules: retraction rules and refinement rules. Retraction
rules indicate POP plan elements that must be removed from the plan. As a result,
they always have the undo: label in the consequent part of the rule. Refinement rules
indicate POP plan elements that must be added to the plan. As a result, they always
have the do: label in the consequent part of the rule. This distinction facilitates the
systematic search performed by the adaptation algorithm that will be discussed in the
next section.

Table 1. POP rules partially encoding the unstack-stack strategy

(1)
if + s0 (on ?x ?y)
 + s0 (block ?y)
 – s (on ?x table)
then do: s': (move ?x ?y table)
 do: s0 (on ?x ?y) s'

(2)
if + s: (move ?x ?y table)
 + s': (move ?z table ?w)
 – s s'
then do: s s'

(3)
if + s: (move ?x ?y table)
 + s0 (block ?y)
 + s0 (on ?x ?y)
 – s0 (on ?x ?y) s
then do: s0 (on ?x ?y) s

(4)
if + s: (move ?x table ?y)
 – ((on ?x ?y) @ s∞)
then undo: s:(move ?x table ?y)

Table 1 shows an example of POP rules in the Blocks World domain. These POP
rules encode the strategy, which we call unstack-stack, that first unstacks all blocks to
the table and then stacks them in the required configuration. This is the strategy fol-
lowed to generate the plan in Fig. 4. The first POP rule unstacks block ?x to the table.
The first two conditions check if block ?x is on top of another block ?y in the initial
state. The third condition checks that no existing step unstacks ?x to the table. This
rule makes two refinements: it adds a step s' unstacking ?x to the table and adds a
causal link connecting the step s0 to achieve a precondition of s'. The second POP rule
ensures that unstacking steps (e.g., step s) are done before stacking steps (e.g., step s').
The third POP rule is intended as a refinement of an input plan so that it commits to
the encoded strategy. It checks if a block (?x) that is unstacked by an step s is linked
to the condition (on ?x ?y) in the initial state. If it is not, it adds a causal link connect-
ing the condition and s. This rule can be triggered in situations where in the initial
state of the retrieved plan, block ?x was on top of a block ?y and later in that plan ?x
was unstacked to the table by an step s. This plan would not have been generated by
the strategy encoded in Table 1. The fourth POP rule is a retraction rule. It removes
any stacking step from the table that does not achieve a goal.

188 S. Lee-Urban and H. Muñoz-Avila

Any step removed by the fourth rule does not need to be added back because in the
stack-unstack strategy, blocks are stacked only to achieve goals. After all these steps
are removed, the four POP refinement rules of Table 1 will produce incomplete plans
that can be further refined without backtracking on any of the refinements made by
applying these rules. This is a highly desirable property as in some domains it might
be difficult to obtain a collection of POP rules that produce a complete plan. Conse-
quently, rules can be given for the more computationally complicated details (e.g.,
how to achieve the goals), leaving the rest to standard POP. Ideally, the intermediate
plan produced from adaptation will be easier to complete than the initial plan. The
unstack-stack strategy, partially encoded in Table 1, can be fully encoded to ensure
that the resulting plans are complete. Furthermore, no backtracking will be needed
during the plan adaptation process. Hence, when used in DCPOP-A, these rules will
result in an omniscient plan adaptation algorithm. This will be confirmed in the ex-
perimental evaluation where no backtracking occurred in any of the plan adaptation
instances. We omit presenting all the POP rules due to the lack of space.

4.3 Domain-Configurable Partial-Order Plan Adaptation Algorithm

Fig. 5 presents the pseudocode of the proposed plan adaptation algorithm on top of
POP. It receives as input the initial state, goal state, and actions. It also receives the
plan to be adapted, πold, and the POP rules R (as described in Section 4.2). The output
is a complete plan solving (S,G,A) or fail if none is found. DCPOP-A begins by ad-
justing πold relative to (S,G) (Line 1). Adjust plan works by repeatedly (1) removing a
step s that mentions objects in the retrieved plan that are not mapped into objects in
the new problem, and (2)
removing any ordering
constraint or causal link
connecting to/from s.
This is a common step
for adaptation in first-
principles POP planning
(e.g., [24], [13], [25]).
Then, a set of plans is
found by repeatedly
applying retraction rules
in R until none is appli-
cable (Line 2). These
plans are added to P, the
list of current candidate
plans to be refined. The
next part of the pseu-
docode continues iterat-
ing while there is at least
one candidate plan to be
refined and no solution
has been found (lines 3-
14). When the list of

Procedure DCPOP-A(S, G, A, πold, R)
//input: initial state S, goals G, actions A, plan πold,
POP rules R
//output: complete plan for (S,G) or fail

1. πadj adjust-plan(S, G, πold)
2. P doAllDCRetractions(πadj, R)
3. while (P ≠ Ø) do
4. π heuristicSelectPlan(P, A)
5. P P – {π}
6. if flaws(π) = Ø then
7. return π
8. else
9. P' doOneStepDCRefinements(π, R)
10. if (P' = ∅) then
11. f heuristicSelectFlaw(π)
12. P P ∪ refinements(π, f, A)
13. else
14 P P ∪ P'
15. return fail

 Fig. 5. Pseudo-code of DCPOP-A

 Adaptation versus Retrieval Trade-Off Revisited 189

candidate plans is empty, a failure is returned (Line 15). At each iteration, a candidate
plan π is selected using the heuristics and is removed from P (lines 4 and 5). If this
candidate plan has no flaws, it is returned (lines 6 and 7). Otherwise each plan com-
puted by applying an applicable POP rule to π is added to P (lines 9 and 14). If no
domain configurable refinements are found, standard POP refinements are added to P
(lines 11 and 12). In principle, DCPOP-A could use any relevant plan and flaw selec-
tion heuristics described in [26] for lines 4 and 11; however our implementation uses
last-in-first-out selection for both plans and flaws.

5 Example of Domain-Configurable Plan Adaptation

Fig. 6 shows an example of a plan obtained by adapting the plan from Fig. 4 using the
unstack-stack strategy partly encoded in Table 1. The new problem has almost the
same initial state as before with the exception that block F does not exist, and there
are several differences in the goals. Underlined steps indicate steps retained from the
retrieved plan. Continuous lines indicate causal links and ordering constraints retained
from the retrieved plan (only a subset is shown). Dashed lines indicate new causal
links and ordering constraints added (only a subset is shown). The steps marked “x”
in Fig. 4 are steps that have been removed; The steps move(E,F,table) and
move(F,table,E) were removed by adjust-plan because F does not occur in the new
problem. The step move(C,table,A) was removed by the fifth POP rule because it is
inconsistent with the goal. The step move(B,table,C) was added by the third POP rule
because it achieves a goal. In this specific example the maximum possible number of
steps is retained from the retrieved plan. In general, this is not the case because steps
that could have been retained to form a complete plan will be removed if they are
inconsistent with the unstack-stack strategy.

Recall from the example in Fig. 3 that Case 1 solves (state 1, final) and Case 2
solves (state 2, final). A caveat must be made that the search space in Fig. 3 repre-
sents states of the world whereas DCPOP-A’s search space is a space of plans. How-
ever a mapping can be made from the state space to the plan space such that any tran-
sition made between states represents the corresponding action being added to the
plan in the transition between plans. Continuing with the example, if we apply the
unstack-stack strategy to the new problem (state 3, final), then for both cases it will
take the path for node p1 (meaning it will unstack all blocks). If Case 1 is being
adapted then it will follow the plan laid out from p1 all the way to the goal state. If
Case 2 is being adapted then it will add the step stacking C on D from p1 and then
continue the rest of the plan from Case 2, which stacks the remaining blocks B and A
in that order. So it takes 2 refinements if Case 1 is reused and 3 refinements if Case 3
(solves problem (state 3, final)) is reused and no exploration of failed nodes is made.

A

B

C

D

E

Initial State

s0

move(B,A,table)
move(B,table,C)

move(D,C,table) move(E,table,D)

move(A,table,B)
B
C

A

D
E

Goal State

s∞

Fig. 6. Adapted partial-order plan

190 S. Lee-Urban and H. Muñoz-Avila

6 Empirical Evaluation

We performed experiments by encoding POP rules for the logistics transportation
domain and blocks world. In the logistics transportation domain, packages must be
relocated into target locations. There are two transportation means: trucks, which can
be used to relocate packages within locations in the same city and airplanes, which
can be used to relocate packages that are in different cities. The blocks world is a
puzzle-like domain in which piles of blocks on a table must be reconfigured into a
target configuration. The basic restriction is that blocks can only be moved either
from the top of a pile to the top of another pile or to the table. We encoded the
unstack-stack strategy described in Section 4.2 for the blocks world; therefore we
attained an omniscient plan adaptation algorithm.

6.1 Transportation Domain Encoding

For the logistics transportation domain we encoded the following basic strategy:

1. We remove steps from the retrieved plan that load and unload any packages not
at the destination city. So for example if a package p5 needs to be relocated to
loc2 in city3, then any load and unload steps of that package in any city other
than city3 will be removed. This eliminates potential threats that would cause
backtracking.

2. We take advantage of any steps in the plan relocating a package into the desti-
nation location in the destination city by keeping those steps and adding con-
necting steps as needed. So, for example, if the retrieved plan relocates p5 from
a location loc6 in city3 to loc2 but in the new problem the package begins at air-
port4 in city3, then steps are added that relocate p5 into loc6 from airport4.

3. We added steps to the plan that relocate packages to the destination city if
needed, taking advantage of any existing steps driving a truck or flying an air-
plane whenever possible. So for example, if p5 was initially in loc7 in city2,
then it will be relocated to an airport in city2. If an existing step in the plan al-
ready moves p5 from loc7 to an airport in city2, this step will be reused. Other-
wise a new step will be created. Steps are also added relocating p5 from air-
port1 to airport4. If an existing step in the plan flies p5 from airport1 to airport4
it will be reused. Otherwise a new step is created.

These encodings ensure that DCPOP-A will be omniscient when solving problems
in the logistics transportation domain.

6.2 Experimental Setup

For each domain we constructed a case base of 100 cases and a testing set of 10 prob-
lems. All problems have the same goals but their initial state is randomly generated.
For the blocks world the goal is to achieve a 5-block pile and for logistics a particular
configuration of 4 packages required to be at 4 different locations. The initial state for
the blocks world is a configuration of the 5 blocks. So the total number of problems
that can be generated is 501. The initial state for the transportation domain is a con-
figuration of 3 cities, each having 3 locations (including 1 airport), each city has 1

 Adaptation versus Retrieval Trade-Off Revisited 191

truck and there are 2 airplanes. So the total number of problems that can be generated,
given that the packages can start in any of the 9 locations and that the start locations
of the trucks and airplanes are fixed, is 6561. For each problem p in the testing set we
adapt each of the cases c stored in the case base. We run each problem-case pair (p,c)
30 times and average the results. So the total runs for each domain was 10 * 100 * 30
= 30,000 runs.

Fixing the goals is a simplifying way to simulate how our retrieval algorithms
would work with an omniscient adaptation algorithm. Namely, we will simply re-
trieve any case that achieves the same goals regardless of the similarity. In experi-
ments reported in [27], it is shown that modifying features in the initial state can re-
sult in a significant change in the adaptation process on top of a partial order planner.
For historical context, in Prodigy/Analogy [1] retrieval occurs by iterating two steps.
At the first step the system uses a hash table to identify if there are cases stored
achieving the same number goals and then, in the second step, computes similarity
based on the initial state. If a sufficiently similar case is found (e.g., the similarity of
the initial states is greater than a pre-defined threshold) then the case is retrieved.
Otherwise it repeats the two steps by removing one goal. With an omniscient adapta-
tion algorithm the second step would be unnecessary. A similar process to Prod-
igy/Analogy is performed in CAPlan/CbC and derSNLP.

6.3 Results

Fig. 7 shows the run-time results for the blocks world (left) and the logistics transpor-
tation domain (right) respectively. The x axis corresponds to the 100 cases * 10 prob-
lems and the y axis correspond to the average time in seconds over the 30 runs for
each (case, problem) adaptation process. The x-axis is sorted so the first 100 averaged
data points are shown with the first given problem, then again the next 100 points
with the second given problem, and so forth. Thus, the vertical bars in the graphs
separate data for each of the 10 problems; between those bars (i.e., for a given prob-
lem), the data points show the averaged times to adapt each of the cases in the CB
into a solution for the problem. In the blocks world domain, we observe that the run-
ning times for adapting each case to a given problem is clustered around the same
time intervals. For example, for the 4th problem the average time to adapt all cases is

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 101 201 301 401 501 601 701 801 901

0

2

4

6

8

10

12

14

1 101 201 301 401 501 601 701 801 901

Fig. 7. Adaptation times for blocks world (left) and logistics (right)

192 S. Lee-Urban and H. Muñoz-Avila

0.155 seconds with a standard deviation of 0.012 seconds. We observed similar results
across all other problems. In the logistics domain, there is no significant time differ-
ence between solving times across all given problems; the average problem solving
time, across all pairs (case, problem), is 9 seconds with a standard deviation of 0.5
seconds. The results for both domains support our hypothesis that regardless of which
any two cases are retrieved for a given problem, their adaptation times will be roughly
the same, regardless of the individual cases similarity to the new problem, and given
that the problems solved by the cases and the new problem are of the same size.

7 Conclusions

In this paper we revisited the adaptation and retrieval trade-off traditionally held as a
principle in case-based reasoning research and even practice. We argue that this prin-
ciple involves an implicit assumption that the adaptation algorithm is capable of solv-
ing problems fast enough only when the retrieved case is reasonably similar to the
input problem. If the retrieved case is not sufficiently similar to the new problem then
the adaptation effort will take a significant amount of time. To make this assumption
explicit, we analyzed this principle under two boundary conditions: (1) for naïve and
(2) for omniscient adaptation algorithms. Using a simple complexity analysis, we
conclude the adaptation-retrieval trade-off does not necessarily exist for the naïve
adaptation procedures. We also claim that the adaptation-retrieval trade-off does not
necessarily hold for connected domains, and validated this hypothesis empirically on
two classical connected domains used widely in the case-based planning literature.

A provocative implication of our results is that, because for omniscient plan adap-
tation there is no adaptation-retrieval trade-off, we can substantially reduce the case
base by simply having one case for each combination of goals indexed by a hash table
so that the retrieval procedure would run in constant time by simply identifying the
case that achieves the same goals (or even use an empty CB and plan from scratch).
However, running time is but one criterion by which we can measure the effective-
ness of the overall case-based reasoning process. Other, arguably at least as important
criteria, such as quality of the resulting plan, should be considered. Indeed, one of the
motivational scenarios for case-based reasoning is a case base storing a collection of
hand-crafted solutions. In this scenario, the retrieval task is to find a very similar case,
if not the most similar one, and the adaptation task is to commit to the retrieved plan
as much as possible. Throwing away half of the solution, as encoded in the unstack-
stack strategy, would not make any sense in this scenario regardless of how fast the
adapted solution is generated. Instead we envision highly tuned POP rules that are
sensible towards retaining crucial steps identified by the user and retrieval procedures
that ensure that plans meeting certain constraints are produced, as recent research on
retrieval has suggested (e.g., [28], [29]).

For future work we are planning to investigate the adaptation-retrieval trade-off for
non connected domains such as the logistics transportation domain with one-way
routes. Unlike connected domains, there is no guarantee that the adjusted plan can
always be extended to reach a solution. Hence, the question is whether POP rules can
be written that rapidly remove parts of the adjusted plan in such a way that (1) a sig-
nificant portion of the retrieved plan is reused in the adjusted plan and (2) this ad-
justed plan can rapidly be refined to obtain a solution.

 Adaptation versus Retrieval Trade-Off Revisited 193

Acknowledgements. This research was supported by grants from the Air Force Re-
search Laboratory and the National Science Foundation Grant No. NSF 0642882.

References

1. Veloso, M.M.: Planning and Learning by Analogical Reasoning. Springer, Heidelberg
(1994)

2. Muñoz-Avila, H., Weberskirch, F.: Planning for Manufacturing Workpiececs by Storing,
Indexing and Replaying Planning Decisions. In: AIPS 1996, pp. 150–157. AAAI Press,
Menlo Park (1996)

3. Ihrig, L., Kambhampati, S.: Storing and Indexing Plan Derivations through Explanation-
Based Analysis of Retrieval Failures. JAIR 7, 161–198 (1997)

4. Koehler, J.: Avoiding Pitfalls in Case-based Planning. In: AIPS 1994, pp. 104–109 (1994)
5. Francis, A., Ram, S.: A Comparative Utility Analysis of Case-based Reasoning and Con-

trol-rule Learning Systems. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS,
vol. 912. Springer, Heidelberg (1995)

6. Gomes, P., Pereira, F.C., Seco, N., Pavia, P., Carreiro, P., Ferreira, J., Bento, C.: Combin-
ing Case-Based Reasoning and Analogical Reasoning in Software Design. In: Proceedings
of the 13th Irish International Conference on Artificial Intelligence and Cognitive Science
(2002)

7. Smyth, B., McKenna, E.: Footprint-Based Retrieval. In: Althoff, K.-D., Bergmann, R.,
Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, p. 343. Springer, Heidelberg (1999)

8. Chang, H., Dong, L., Liu, F., Lu, W.: Indexing and Retrieval in Machining Process Plan-
ning Using Case-Based Reasoning. Artificial Intelligence in Engineering 14 (2000)

9. Bonzano, A., Cunningham, P., Smyth, B.: Using Introspective Learning to Improve Re-
trieval in CBR: A Case Study in Air Traffic Control. In: Leake, D.B., Plaza, E. (eds.)
ICCBR 1997. LNCS, vol. 1266, pp. 291–302. Springer, Heidelberg (1997)

10. Stahl, A., Gabel, T.: Using Evolution Programs to Learn Local Similarity Measures. In:
Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689. Springer, Heidelberg
(2003)

11. Ihrig, L., Kambhampati, S.: Design and Implementation of a Replay Framework Based on
a Partial Order Planner. In: AAAI/IAAI 1996, pp. 849–854. AAAI Press, Menlo Park
(1996)

12. Muñoz-Avila, H., Weberskirch, F.: A Case Study on the Mergeability of Cases with a Par-
tial-Order Planner. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 325–337. Springer,
Heidelberg (1997)

13. van der Krogt, R., de Weerdt, M.: Plan Repair as an Extension of Planning. In: ICAPS
2005, pp. 161–170. AAAI Press, Menlo Park (2005)

14. Gerevini, A., Serina, I.: Fast Plan Adaptation through Planning Graphs: Local and System-
atic Search Techniques. In: Proc. of AIPS 2000, pp. 112–121. AAAI Press, Menlo Park
(2000)

15. Warfield, I., Hogg, C., Lee-Urban, S., Muñoz-Avila, H.: Adaptation of Hierarchical Task
Network Plans. In: FLAIRS 2007, pp. 429–434 (2007)

16. Goel, A., Ali, K., Donnellan, M., Gomez, A., Callantine, T.: Multistrategy Adaptive Navi-
gational Path Planning. IEEE Expert 9(6), 57–65 (1994)

17. Tonidandel, F., Rillo, M.: Case Adaptation by Segment Replanning for Case-Based Plan-
ning Systems. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp.
579–594. Springer, Heidelberg (2005)

194 S. Lee-Urban and H. Muñoz-Avila

18. Fikes, R., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence 2, 189–208 (1971)

19. Nau, D., Au, T., Ilghami, O., Kuter, U., Muñoz-Avila, H., Murdock, J., Wu, D., Yaman,
F.: Applications of SHOP and SHOP2. IEEE Intelligent Systems 20(2), 34–41 (2005)

20. Knoblock, C.: Generating Parallel Execution Plans with a Partial-Order Planner. In: AIPS
1994, pp. 98–103. AAAI Press, Menlo Park (1994)

21. Paulokat, J., Wess, S.: Planning for Machining Workpieces with a Partial-Order, Nonlinear
Planner. In: Proceedings of the AAAI 1994 Fall Symposium on Planning and Learning,
AAAI Press, Menlo Park (1994)

22. Nguyen, X., Kambhampati, S.: Reviving Partial Order Planning. In: IJCAI 2001, pp. 459–
466. Morgan Kaufmann, San Francisco (2001)

23. Vidal, V., Geffner, H.: Branching and Pruning: An Optimal Temporal POCL Planner
Based on Constraint Programming. Artificial Intelligence 170(3), 298–335 (2006)

24. Hanks, S., Weld, D.S.: A Domain-Independent Algorithm for Plan Adaptation. JAIR 2,
319–360 (1995)

25. Kuchibatla, V., Muñoz-Avila, H.: An Analysis on Transformational Analogy: General
Framework and Complexity. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.)
ECCBR 2006. LNCS, vol. 4106, pp. 458–473. Springer, Heidelberg (2006)

26. Younes, H., Simmons, R.: VHPOP: Versatile Heuristic Partial Order Planner. Journal of
Artificial Intelligence Research 20, 405–430 (2003)

27. Muñoz-Avila, H., Hüllen, J.: Feature Weighting by Explaining Case-Based Planning Epi-
sodes. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 280–294.
Springer, Heidelberg (1996)

28. McSherry, D.: Completeness Criteria for Retrieval in Recommender Systems. In: Roth-
Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp.
9–29. Springer, Heidelberg (2006)

29. Nicholson, R., Bridge, D., Wilson, N.: Decision Diagrams: Fast and Flexible Support for
Case Retrieval and Recommendation. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir,
H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp. 136–150. Springer, Heidelberg (2006)

Boosting CBR Agents with Genetic Algorithms

Beatriz López, Carles Pous, Albert Pla, and Pablo Gay

University of Girona,
Campus Montilivi, edifice P4, Girona, Spain
{beatriz.lopez,carles.pous}@udg.edu,

{apla,pgay}@eia.udg.edu

http://exit.udg.edu

Abstract. In this paper we present a distributed system in which several
case-based reasoning (CBR) agents cooperate under a boosting schema.
Each CBR agent knows part of the cases (a subset of the available at-
tributes) and is trained with a subset of the available cases (so not all
the agents know the same cases). The solution of the system is then com-
puted by means of a weighted average of the solutions provided by the
CBR agents. Weights are actively learnt by a genetic algorithm. The sys-
tem has been applied to a breast cancer application domain. The results
show that with our methodology we can improve the results obtained
with a case base in which attributes have been manually selected by
physicians, saving physicians work in future.

Keywords: Distributed CBR, genetic algorithms, boosting, multi-agent
systems.

1 Introduction

Distributed environments offer a new way of addressing case-based reasoning
(CBR) approaches [24]. For example, we can design a multi-agent platform in
which several agents cooperate in the solution to new problems with different
experiences (or case bases); we can have agents with different domain models,
so that each one can be specialized in a particular field of knowledge; or we can
have agents with different competence models, thus they follow a CBR approach
with different methods and criteria. From a machine learning point of view,
this distributed approach of CBR based agents can be considered as ensemble
learning [21].

Ensemble learning with CBR agents has been introduced in recent years[17,15].
Among the principal kinds of ensemble techniques, we have boosting, bagging
and stacking. In a boosting scenario, a new problem is solved as the weighted
vote of all the agents’ solutions. Each agent has its own case base, that has
been actively designed to coordinate agents’ experiences. Second, bagging con-
sist of using a weighted voting schema, but in this case experiences are ran-
domly assigned to each agent so the construction of complementary learners is
left to chance and to the variability of the learning methods [27]. Finally, in
staking techniques each agent follows different reasoning techniques. So, we can

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 195–209, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://exit.udg.edu

196 B. López et al.

have CBR agents with different similarity measures or decision criteria. Sev-
eral authors have also studied how experiences should be stored in the overall
system [16].

Our work is related to boosting CBR agents since we are actively seeking
complementarity of learners. Therefore, the key issue is the weight assigned to
each agent1. AdaBoost [8] is one of the best known learning algorithms for this
purpose, which today has a lot of variants. However, Adaboost exibits greedy be-
havior and recent papers [28] argue in favor of other approaches, such as genetic
algorithms, that outperform Adaboost. Our research is related to extend the
application of genetic algorithms, for boosting purposes, in a multi-agent envi-
ronment where CBR agents cooperate to solve a problem. Particularly, our CBR
agents only know part of the cases, as in [15], following the implicit knowledge
distribution of an organization. Thus, each agent solves a problem by means of
CBR, and the solution is then combined by a coordinator agent who has learnt
the agent’s weight according to a GA.

This paper is organized as follows. First we introduce the boosting schema
in which our CBR agents cooperate. Next, we describe the GA we propose.
We continue by providing the information about the application domain we are
working on and the results obtained. Finally, some related work is highlighted
and some conclusions and discussion are provided.

2 Boosting CBR Agents

Our boosting approach consists of n case-based agents that cooperate for solving
a problem as in a multi-agent system (MAS). Each agent provides its advice
or solution about a case, and a coordinator makes a final decision based on a
weighted voted schema (see Figure 1).

Each agent is trained with a set of examples that can differ from one agent to
the other. Each agent receives only a part of the examples’ attributes (as in [15]).
Thus, each agent is specialized in a particular field of knowledge of the domain.
That is, if cases are composed of attribute-value pairs < (a1, v1), . . . , (am, vm) >,
then each agent j has information related to a subset of these attributes, that
we represent as follows:

< (aj
1, v

j
1), . . . , (a

j
nj

, vj
nj

) > (1)

The attribute sets among the different agents are disjoints, so:

{aj
1, . . . , a

j
nj
}

⋂
{ak

1 , . . . , ak
nk
} = ∅ (2)

When a new case C needs a solution, the coordinator agent broadcasts the case to
the CBR agents. CBR agents compute internally a solution for the case following
1 This is a particularly view of boosting, since, traditionally, boosting is sequentially

adding learners when the previous fails in some instances, while we start with a fixed
set of classifiers (with different instance sets) and we are looking the complementarity
by their weights.

Boosting CBR Agents with Genetic Algorithms 197

Agent 1 Agent 2 Agent n

(classe)

Case base 1 Case base 2 Case base n

(class1 1)

(classe2, 2)

(classei, n)

New case
New case

Coordinator

2 … n1

New case

Case solutionNew case

Fig. 1. Agent’s interaction

a case-based reasoning process. That is, in the retrieval phase of the CBR cycle,
each agent, j, evaluates the similarity between the new case C and each case Cj

i

in its memory as follows:

Simj(C
j
i , C) =

nj∑
x=1

wj
x ∗ simAt(vj

x, vx)

nj∑
x=1

wj
x

(3)

where wj
x is the internal weight used for the j agent regarding the x attribute; nj

the number of attributes handled by the j agent; and simAt(vj
x, vx) the similarity

function at the attribute level between the j agent’s case memory attribute aj
x

and the new case attribute ax. Note then, that each agent has its own similarity
measure Simj(X, Y) and knowledge related to the weight it assigns to each
attribute. All cases retrieved with a similarity higher than a given threshold λ
are selected and passed to the reuse phase.

Each agent follows the same reuse method in order to determine the solution
of a case given the selected cases Cj

i1
, . . . , Cj

ik
. Particularly, we are considering

diagnosis domains with only two possible solutions: positive class (or illness) and
negative class (or healthy). Thus, we define a decision variable δj that relates
the number of positive solution in the selected cases rated to the total number
of cases selected [19], as follows:

δj =

∑
Cj,+

i

Simj(C
j,+
i , C)

k∑
x=1

Simj(C
j
ix

, C)

(4)

198 B. López et al.

Table 1. Example of the individual agent’s answers

class confidence weight
αj wj

agent 1 + 0.7 0.8
agent 2 + 0.6 0.2
agent 3 - 0.9 0.3
agent 4 + 0.8 0.1
agent 5 - 0.7 0.7
agent 6 - 0.9 0.3
agent 7 + 0.8 0.2
agent 8 - 0.9 0.4

where Cj,+
i are the selected cases with positive class as a solution, and Cj

ix
the

x case selected by the j agent. Whenever we get enough evidence about the
positive class, the solution is +. That is, if δj > τ , where τ is a given threshold,
then the CBR agent’s answer is the positive class.

Next, the CBR agents reply to the coordinator with a tuple < classj, αj >
that contains the class to which the case belongs according to its case-base, say
classj, and the confidence αj it has on that solution, a value in [0,1], where 1
means highly confident.

The confidence value is obtained through the δj value, and taking into account
the results of the reuse phase (equation 4), and so it is related to the work of
Cheetham [4]. Hence, the αj value is set according to the following rule: αj = δj

if classj = + (as in equation 4 we look for the positive evidence), or αj = 1− δj

if classj = −.
Afterwards, the coordinator agent combines the different answers in order to

find information related to the final solution. For this purpose, the coordinator
has a weight wi on each agent concerning the reliability on the information
provided by the agents (as trust values [2]). Thus, the coordination gathers all
the evidence regarding the positive class (v+) and all the evidence regarding the
negative class (v−), as follows:

v+ =

∑
classj=+

ωj ∗ αj∑
classj=+

ωj

v− =

∑
classj=−

ωj ∗ αj∑
classj=−

ωj

(5)

Note, then, that we are computing the average of the results of the individual
CBR agents, regarding positive and negative classes. If v+ � v−, then the final
answer of the multi-agent system is the positive class with the v+ evidence value.
Otherwise, it is the negative class with the v− evidence value. 2

For example, let us suppose that we have a boosting system composed of eight
CBR agents, and that they reply to the coordinator agent with the outcomes
2 Note, that our approach based on positive and negative classes is performed before

obtaining any feedback; so it differs from the measures proposed in [6].

Boosting CBR Agents with Genetic Algorithms 199

shown in Table 1. Let also suppose that the coordinator has the weight values
for each agent expressed in the third column of the table. Then, the following
evidences for the positive and negative classes are computed: v+ = 0.71 and
v− = 0.82. Thus, the solution of the case is ”negative”, with an evidence of 0.82.

3 Learning Boosting Weights with GA

In the previous section we have seen how the CBR agents are organized in a
boosting schema in order to obtain a solution to a problem. The procedure
depends on the weight each agent has in the system (see equation 5). In this
section we explain how these weights are obtained via a genetic algorithm.

Our genetic algorithm (GA) consists of the following steps, as any classical
GA [13]:

1. Start with a randomly generated population of chromosomes
2. Calculate the fitness of each chromosome in the population
3. Repeat

(a) Select a pair of chromosomes from the current population
(b) With a probability pc crossover the pair to form two offspring
(c) With a probability pm mutate the two offspring

4. Replace the current population with the new one (reinsertion)
5. Goto step 2 until some ending condition holds.

As it is possible to observe in the algorithm, randomness is involved in this
kind of algorithms and several runs are required in order to deal with it [13].
Hence, two runs with different random-number seeds will generally produce
different detailed behaviours. But finally, a single, averaged weight should be
assigned to a boosting agent. Thus, we assume that we have a set cases (or
examples), BC, from which the weights can be learnt. Then, by using a cross-
validation methodology, we define k-folds, fold1, . . . , foldk, each one containing
a set of training cases for building a case base, bci, and a set of test cases, testi.

BC

m cases

GA 1

GA 2

GAk

…

Error 1

1
1weight 1

2weight 1
nweight

…

Error 2

2
1weight 2

2weight 2
nweight

…

Error m

mweight1
mweight2

m
nweight

Fold 1

bc 1 test 1

Fold 2

bc 2 test 2

Fold k

bc k test k

Fig. 2. GA runs

200 B. López et al.

Table 2. GA for weight learning. Observe that we are using array operations

Let be W the array of weights

Let be BC the set of cases

Define k folds, f i ⊂ BC
For each fold i=1, ... k

W i ← Run GA

end for

W =

k∑
i=1

W i

k

We apply the GA once on each fold. From each fold, we obtain a weight vec-
tor W i (one weight for each agent, see Figure 2), and finally, we set the agents’
weights with the averaged results W . See in Table 2 the corresponding algorithm.

Next, we detail how the chromosome is defined, the fitness function, the selec-
tion, crossover and mutation operation, the reinsertion technique and the ending
condition.

3.1 Chromosome

Each chromosome crx in the population represents a weight assignment in the
multi-agent system. Thus, the chromosome is an array of real variables in [0,1] of
n length, where n is the number of CBR agents in the system. The real variable i
in the array represents the weight assigned to the agent i in the boosting schema.

3.2 Fitness Function

We want to minimise the error of the boosting CBR system according to a given
case base. Thus, in order to obtain the fitness value of a chromosome, we built
the boosting CBR system it represents, we use the training set of the current
fold i as the case base, we run the test cases, and we obtain an error value (see
Figure 3).

Particularly, we can define the error of the boosting CBR system codified in
a chromosome crx as the average of the individual errors for each case in testi.
Formally,

error(cx) =

l∑
j=1

|realj − predictedj|

l
(6)

where l is the number of cases with which the GA is tested; realj is the real
class or solution of the j test case (1 for the positive class and 0 for the negative
class); and predictj is the evidence predicted by the boosting CBR system. That
is, predictj = v+ if the class is +, and predictj = 1− v− if the class is negative.

Boosting CBR Agents with Genetic Algorithms 201

CBR Agent

1

Weight 1 Weight 2 … Weight n

CBR Agent

2

CBR Agent

n

…

test i
Coordinator

Error i

bc 1

bc 2

bc n

Fig. 3. Decodification process of a chromosome into a boosting CBR system to test it
and obtain the error rate

Observe, that in the optimal case in which the results of the boosting CBR
system was perfect, then the error is 0; while in the worse case (an error of 1 for
each test case), the error is 1.

Since GA maximize the fitness function, and we need to minimize the error,
we define the fitness in our GA as the inverse of the error as follows,

fitness(crx) = (1− error(crx))3 (7)

3.3 Selection

Selection determines which individuals are chosen for mating [18]. We have fol-
lowed a truncation selection schema: individuals are sorted according to their
fitness and only the best individuals are selected for parents. Particularly, we
have chosen a proportion of 50% as truncation threshold. That means that the
50% of the best parents have been selected. This value has been studied in [3],
and defines a selection intensity of 0.8; that is, the loss of diversity and variance
of the individuals is close to the mean possible value.

Other alternatives, such as roulette-wheel selection [13] have been tried too,
but the truncation selection has produced better results.

3.4 Crossover

Crossover define how the offspring are generated from the parents. We are using
the uniform crossover [14]: a crossover bit mask is generated at random with the
same length as the chromosome structure and the values in the mask indicate
which parent will supply the variable value of the offspring. If there is a 1 value,
the variable value is taken from the first parent; otherwise, the variable value is
taken from the second parent. This method is identical to discrete recombination
[18].

202 B. López et al.

Initial population

Crossover

Offsprings

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Cr0

Cr1

Cr2

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Fitness=0.8

Fitness=0.7

Fitness=0.5

Fi 0

Cr10

Cr11

Cr12

Fitness=0.9

Fitness=0.8

Fitness=0.6
G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Cr3

Cr4

Cr5

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Fitness=0.5

Fitness=0.2

Fitness=0.1

Cr13

Cr14

Fitness=0.2

Fitness=0.2

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Resultant population

Cr10 Fitness=0.9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Cr11

Cr1

Cr12

Fitness=0.8

Fitness=0.7

Fitness=0.6

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

Cr2 Fitness=0.5

Cr3 Fitness=0.5

Fig. 4. Elitism schema for reinsertion

Particularly, we define a parameter η that we initialize to 0.5. Then, we generate
a random value r in [0,1]. If r ≤ η, the bit mask is set to 1; otherwise to 0.

3.5 Mutation

After recombination offspring can be mutated with low probability [13]. Thus,
a random value ϕ is generated; if ϕ > pm, where pm is the mutation probability
(see the mutation step of the GA), then the offspring is mutated.

The mutation procedure is the following:

1. Let pm be the mutation probability
2. For each variable y of the chromosome crx

(a) rm = random value in [0,1]
(b) If rm ≥ pm then crx(y)= random value in [0,1].

3.6 Reinsertion

After producing offspring a new population should be determined [14]. We are
using an elitism schema: at each generation, the best offspring and parents re-
place the population. Elitism schemas are maybe the most recommended method
since they prevent loss of information in case that the parents do not produce
better offspring. In such a situation, the average fitness of the population can
decrease. Thus, using an elitism schema, the best individuals can live for many
generations.

Figure 4 graphically shows how the elitism schema works in our GA. On the
left, we have the initial population with six chromosomes, cr0, . . . , cr5 each of

Boosting CBR Agents with Genetic Algorithms 203

them representing different boosting CBR systems (through the different weights
they codify). They are sorted according to their fitness, being the top one the
chromosome with the highest fitness value. After crossover, we obtain the off-
spring on the right. There are some offspring with a higher fitness than their
parents, but there are also some others with a worse fitness. Then, the reinser-
tion operator takes the best of all of them, resulting in the new chromosomes
(next population or generation) shown at the bottom of the figure.

3.7 Ending Condition

We are computing the average error for all the chromosomes in the current
generation Ei. Thus, when the error difference of two consecutive iterations is
smaller than a given parameter ε (i.e. |Ei − Ei+1| < ε), we run the GA for 50
additional iterations, and then we terminate it. We have set ε = 0.05.

4 Application to Breast Cancer

In this section we provide a brief description of the case base used for experi-
mentation. Afterwards, some details about the experimental setup are presented.
Next, the results obtained are shown.

4.1 Breast Cancer Case Base

We have used a breast cancer data base provided by the team of physicians we
are working with. It consists of 871 cases, with 628 corresponding to healthy
people and 243 to women with breast cancer. There are 1199 attributes for each
case. Since there are redundant, wrong and useless information a preprocess
was carried out. Also, the preprocess was used to obtain data corresponding
to independent individuals, since there are patients in the database that are
relatives. As a consequence, the database was reduced to 612 independent cases,
having 1106 attributes per case.

Data has been partitioned in 8 groups, following the questionnaire criteria
with which physicians have collected the data and that are related to different
medical specialisations (epidemiology, family information, etc.). Each group of
data has been assigned to an agent, resulting in 8 CBR agents in our system.

In addition to that, two different case bases have been considered for experi-
mentation purposes:

– Total: in which each case is described as original provided by the physicians,
that is, with the complete set of attributes (1106).

– Manual: in which the physicians have manually selected relevant attributes
(85 attributes).

204 B. López et al.

80%
agent1
bc11

90%
Training
bc1

80%
agent2
bc21

Fold 1
…

80%
agentn
bcn1

Fold 1

Cases

10%
Test
t 1

m

80%
agent1
bc1

…

90%
Training

bck

bc1k

80%
agent2
bc2k

80%
agentn
bcnk

Fold k
…

10%
Test
t k

Fig. 5. Cross validation extended for boosting CBR agents

4.2 Experimental Set Up

The implementation of our method has been done as an extension of the eXiT*
CBR tool [20]. This tool allows us to easily define CBR agents in a parameter-
based way. Then, we have extended the platform for the boosting and genetic
algorithm explained in this paper.

We have followed a cross-validation procedure taking into account the boost-
ing purposes of our method. Hence, we have defined 10 folds, with 90% of the
cases for training and 10% for testing. However, regarding the training cases, dif-
ferent examples have been assigned to each agent (see Figure 5). Thus, among
90% of training cases, only 80% of them are assigned randomly to an agent. This
assures us that there are some differences in the composition of the case bases
of each agent. Future experiments should contemplate other proportions.

Therefore, with the 10 folds, 10 GA runs have been performed, one per fold.
Since we have 8 agents, we finally obtain 10*8 weights, that we averaged in the
final 8 weights, one per agent. Concerning the other parameters of the GA, we
have chosen the following values:

– Number of chromosomes (individuals) in the population: 50
– Chromosome length = 8, since we have n = 8 agents.
– Crossover probability: always 1, since we are applying the elitism mecha-

nism in the reinsertion procedure, it makes sense to always generate new
individuals.

– Mutation probability: randomly generated for each GA run.

Boosting CBR Agents with Genetic Algorithms 205

Our hypothesis is that we can obtain a better performance with our boost-
ing CBR agent scenario, in which the weights are learnt via GA, than without
learning weights, even if the features are selected by the physicians. Therefore,
the following experimental settings have been defined:

– TotalTrust1 : all the CBR agents weights have been set to 1, and the complete
set of attributes has been used (1106).

– TotalGA: the CBR agents weights have been set according to the results of
the GA runs, and the attributes as in TotalTrust1.

– ManualTrust1 : all the CBR agents weights (as in equation 4) have been set
to 1, and the attributes used to represent the cases are the ones manually
selected by the physicians (85).

– ManualGA: the CBR agents weights have been set according to the results
of the GA runs, and the attributes as in ManualTrust1.

The attribute weights (in equation 3) have been set to 1 in all of the experiments.
The results obtained in each experimental configuration are detailed in the

next section.

4.3 Results

We have used ROC (Receiver Operator Characteristics) curves to analyse the
results. ROC curves depict the tradeoff between true positives and false positives
regarding to a changing threshold [7] (τ in our case). Physicians use to work
with this kind of plots and they feel comfortable interpreting the results on this
graphic manner.

In Figure 6 left we show the results obtained in the scenarios in which all the
attributes have been used. We can see how the TotalGA line outperforms the
TotalTrust1 line, meaning that we have significantly increased the performance
of the system when learning the agents weights. This improvement can also be
achieved in the scenarios in which the attributes were manually selected by the
physicians, as shown on Figure 6 right.

Analysing in detail the results, we obtain the following AUC (Area Under the
Curve) values:

– TotalTrust1 : 0.770
– TotalGA: 0.849
– ManualTrust1 : 0.706
– ManualGA: 0.853.

Therefore, our hypothesis is validated. What is important, here, is to remark that
even for the case in which the space of attributes has been manually reduced,
the results are maintained. So, the effort that the physician has dedicated to
perform this selection can be saved in future. Results with our methodology do
not significantly change due to the space reduction, as shown in Figure 7.

Finally, we have compared our boosting approach with a non-boosting ap-
proach. The results are quite closer, even that the non-boosting approach per-
forms slightly better (the AUC values are 0.84 and 0.89 correspondingly).

206 B. López et al.

Fig. 6. Left : Results obtained when using the complete set of attributes: TotalTrust1
when all the agents have the same weight (=1); TotalGA when using the weights learnt
with our GA. Right : Results obtained when using the set of attributes selected by the
physicians: ManualTrust1 when all the agents have the same weight (=1); ManualGA
when using the weights learnt with our GA.The x-axis shows the false positive rate,
while the y-axis the true positive rate.

However, we need to assume that it is not always possible to follow a centralized
approach. As in our case, each agent corresponds to the information gathered in
a particular unit of a hospital, and the information is kept in private inside each
unit. So a centralized approach is not suitable.

Fig. 7. Comparison of the results obtained with our methodology in the two case bases:
Total, the original one; Manual with the number of attributed reduced

Boosting CBR Agents with Genetic Algorithms 207

5 Related Work

There are several works related to boosting CBR agents in particular, and ensem-
ble learning in general [25,24,12]. For example, in [17] two schemas are proposed:
bagging and boosting. In this work, the authors focus on how cases should be
shared among agents. We are not so worried about that, but in how to set up
the weights assigned to the agents for the boosting voting schema.

A work closer to ours is [15], in which the authors propose a corporate memory
for agents, so that each agent knows about a piece of the case, as in our case.
In [15], however, the authors propose a negotiated retrieval method based on
distributed constraint optimisation techniques. We are using a simpler, but easier
way of computing the solution based on weighting the vote of the CBR agents.
Other similar approaches that also specialize the classifiers on particular parts
of the domain problems are [26] and [5]. However, these approaches focus on
learning different attribute weights, instead of the voting weight of the classifier.

Regarding research works on the use of GA in a boosting environment, it is
important to distinguish the approach followed in [28]. Here, the authors analyse
the greedy behaviour of Adaboost and suggest to use GAs to improve the results.
Another interesting work is [9], in which the GAs are used to search on the
boosting space for sub-ensembles of learners. However, none of these approaches
are using CBR or distributed CBR approaches as we are doing. In [22] a GA is
also used to combine several k-nearest neighbor approaches in a more similar to
our approach, in the sense the authors are using GA to select the appropriate
classifier.

Other applications of GA in CBR are related to the retrieval phase for fea-
ture and instance learning, as in [1] and [10]. We understand that in a future
we need to complement our approach with these works and study the syner-
gies between feature learning and classifier weight learning, together with local
similarity measures as the ones studied in [23].

Finally, an interesting study to which our research work is related is [11]. In
this case, agent’s trust is studied under the evolutionary paradigm. We believe
that our approach based on specialised agents is equivalent to it. This view of
ensemble weights as trust has also been studied in [2].

6 Conclusions

Distributed case-based reasoning has been a matter of study in the recent years.
We can find boosting or bagging agents that, with different case bases, cooperate
in the solution of a problem. In this paper we have presented a boosting schema
in which several CBR agents cooperate to solve a new problem. Our agents do
not know the complete case, but a piece of it. In addition, each CBR agent has a
different case-base. Weights related to the voting schema implicit in the boosting
organization are learnt by means of a GA.

We have described how these weights can be coded in a chromosome and all
the parameters involved in a GA in order to evolve these candidate weights to
some other ones that improve the boosting system.

208 B. López et al.

We have applied our method to develop a boosting CBR system to deal with
breast cancer diagnosis. We have obtained successful results, even when the
number of attributes varies.

As future work, we need to explore other ways to combine our CBR agents.
For example, we should consider different methods and criteria in order to fit
the most suitable CBR technique to the available data. That is, until now, we
have defined the set of agents according to different domain specializations. So,
each agent knows about a subset of the different attributes related to a case.
Other issues, such as the criteria or methods to deal with the attributes should
be studied in future.

Acknowledgments. This research project has been partially funded by the
Spanish MEC projects DPI 2006-09370, CTQ2008-06865-C02-02/PPQ,
TIN2008-04547/TIN, and Girona Biomedical Research Institute (IdiBGi)
project GRCT41.

References

1. Ahn, H., Kim, K.-j., Han, I.: Hybrid genetic algorithms and case-based reasoning
systems. In: Zhang, J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp.
922–927. Springer, Heidelberg (2004)

2. Birk, A.: Boosting cooperation by evolving trust. Applied Artificial Intelligence 14,
769–784 (2000)

3. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation 4(4) (1996)

4. Cheetham, W.: Case-based reasoning with confidence. In: Blanzieri, E., Portinale,
L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 15–25. Springer, Heidelberg (2000)

5. Cunningham, P., Zenobi, G.: Case representation issues for case-based reasoning
from ensemble research. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS,
vol. 2080, pp. 146–157. Springer, Heidelberg (2001)

6. Delany, S.J., Cunningham, P., Coyle, L.: An assessment of case-based reasoning
for spam filtering. Artificial Intelligence Review 24(3), 359–378 (2005)

7. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27,
861–874 (2006)

8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boostingg. Journal of Computer and System Sciences 55(1),
119–139 (1997)

9. Hernández-Lobato, D., Hernández-Lobato, J.M., Ruiz-Torrubiano, R., Valle, Á.:
Pruning adaptive boosting ensembles by means of a genetic algorithm. In: Cor-
chado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp.
322–329. Springer, Heidelberg (2006)

10. Jarmulak, J., Craw, S., Crowe, R.: Genetic algorithms to optimise CBR retrieval.
In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 136–147.
Springer, Heidelberg (2000)

11. Komathyk, K., Narayanasamy, P.: Trust-based evolutionary game model as-
sisting aodv routing againsts selfishness. Journal of network and computer-
application 31(4), 446–471 (2008)

Boosting CBR Agents with Genetic Algorithms 209

12. Martin, F.J., Plaza, E., Arcos, J.L.: Knowledge and experience reuse through com-
munication among competent (peer) agents. International Journal of Software En-
gineering and Knowledge Engineering 9(3), 319–341 (1999)

13. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

14. Muhlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic
algorithm: I. continuous parameter optimization. Evolutionary Computation 1(1),
25–49 (1993)

15. Nagendra-Prasad, M.V., Plaza, E.: Corporate memories as distributed case li-
braries. In: 10th Banff Knowledge Acquisition for Knowledge-based Systems Work-
shop, pp. 1–19 (1996)

16. Ontañón, S., Plaza, E.: A bartering approach to improve multiagent learning. In:
Int. Conf. Autonomous Agents and Multiagent Systems (AAMAS), pp. 386–393
(2002)

17. Ontañón, S., Plaza, E.: Cooperative multiagent learning. In: Alonso, E., Kazakov,
D., Kudenko, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636,
pp. 1–17. Springer, Heidelberg (2003)

18. Pohlheim, H.: Genetic and evolutionary algorithm toolbox for use with matlab
(1994), http://www.geatbx.com/docu/index.html

19. Pous, C., Gay, P., Pla, A., Brunet, J., Sanz, J., López, B.: Modeling reuse on
case-based reasoning with application to breast cancer diagnosis. In: Dochev, D.,
Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 322–332.
Springer, Heidelberg (2008)

20. Pous, C., Gay, P., Pla, A., López, B.: Collecting methods for medical CBR devel-
opment and experimentation. In: Schaaf, M. (ed.) Workshop Proceedings of the
9th European Conference on Case-Based Reasoning, CBR in the Health Sciences
(ECCBR-HC), Trier, pp. 89–98. Tharax-Verlag (2008)

21. Russell, S., Norvig, P.: Artificial Intelligence: A modern approach, 2nd edn.
Prentice-Hall, Englewood Cliffs (2003)

22. Santos, E.M.D., Sabourin, R., Maupin, P.: Overfitting cautious selection of classifier
ensembles with genetic algorithms. Information Fusion 10(2), 150–162 (2009)

23. Stahl, A., Gabel, T.: Local similarity measures using evolution programs to learn.
In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 537–551.
Springer, Heidelberg (2003)

24. Sun, Z., Finnier, G.R.: Case based reasoning in multiagent systems (ch. 7). In: Intel-
ligent techniques in E-commerce: A case-based reasomning perspective. Springer,
Heidelberg (2004)

25. Teodorescu, E.I., Petridis, M.: An architecture for multiple heterogeneous case-
based reasoning employing agent technologies. In: CIMAS (2008),
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-375/

26. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for
ensemble feature selection. Information Fusion 6(1), 83–98 (2005)

27. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

28. Yalabik, I., Yarman-Vural, F.T., Uçoluk, G., Sehitoglu, O.T.: A pattern classifica-
tion approach for boosting with genetic algorithms. In: 22nd International Sympo-
sium on Computer and Information Sciences, pp. 1–6 (2007)

http://www.geatbx.com/docu/index.html
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-375/

Using Meta-reasoning to Improve the
Performance of Case-Based Planning

Manish Mehta, Santiago Ontañón, and Ashwin Ram

CCL, Cognitive Computing Lab
Georgia Institute of Technology

Atlanta, GA 30332/0280
{mehtama1,santi,ashwin}@cc.gatech.edu

Abstract. Case-based planning (CBP) systems are based on the idea of
reusing past successful plans for solving new problems. Previous research
has shown the ability of meta-reasoning approaches to improve the per-
formance of CBP systems. In this paper we present a new meta-reasoning
approach for autonomously improving the performance of CBP systems
that operate in real-time domains. Our approach uses failure patterns to
detect anomalous behaviors, and it can learn from experience which of
the failures detected are important enough to be fixed. Finally, our meta-
reasoning approach can exploit both successful and failed executions for
meta-reasoning. We illustrate its benefits with experimental results from
a system implementing our approach called Meta-Darmok in a real-time
strategy game. The evaluation of Meta-Darmok shows that the system
successfully adapts itself and its performance improves through appro-
priate revision of the case base.

1 Introduction

Learning is a competence fundamental to intelligence, reflected in the ability of
human beings to learn from their successes to make future progress and from
their mistakes to improve themselves. Developing systems with learning abilities
can therefore help us understand better the nature of intelligence. In order to
create intelligent systems, it is thus important to provide systems with the ability
to learn from their own experience (both successful and failed) and improve
themselves. Failed experiences in problem solving play a role in learning, as they
provide both humans and artificial systems with strong cues on what needs to
be learned [5,9,10,15]. Likewise, successful experiences provide clues on ways to
make progress and prosper in the problem domain. Meta-reasoning approaches
have utilized successful and failed system experiences to create self-improving AI
systems [1,6]. This paper investigates this ability of meta-reasoning approaches
to improve the performance of case-based planning (CBP) systems that operate
under real-time constraints.

Meta-reasoning systems are typically composed of a base reasoner that is in
charge of the performance task, and a meta-reasoner that observes and modi-
fies the base reasoner’s plan. Meta-reasoning is the process of monitoring and

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 210–224, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Using Meta-reasoning to Improve the Performance of Case-Based Planning 211

controlling the reasoning process of the base reasoner, to adjust that reasoning
process as needed. Previous research on introspective CBR (See Section 2) has
shown that meta-reasoning can enable a CBR system to learn by refining its
own reasoning process. In this paper we present a new meta-reasoning approach
for case-based planning. Our approach is based on using a collection of author-
defined failure patterns, which are explicit descriptions of anomalous situations.
Failure patterns provide a case-based solution for detecting failures in the execu-
tion of the base reasoner. After failures have been detected, fixes have to be made
in the system to prevent those failures from happening again. Our work has four
main contributions: First, it can be used in real-time domains, and instead of
modifying the plans in the case-base modifies the behavior of the base system
by creating daemons that operate in real time. Second, we present a generic
representation for failure patterns using finite state machines (FSM). Third, our
system automatically learns which of the failures detected in the behavior of
the system are important or not by comparing successful and unsuccessful past
executions, whereas previous approaches required an explicit model of “correct
behavior” in order to detect failures. Finally, our approach can learn both from
successful and unsuccessful experiences.

In this paper we are going to use Darmok [13,14] as the base reasoning system,
which is a case-based planning system designed to play real-time strategy (RTS)
games. The system resulting from applying our approach to Darmok is called
Meta-Darmok, with extends Darmok by giving it the ability to be introspec-
tively aware of successful and failed execution, analyze the differences between
the two executions and further adapt and revise the executing plans based on
deliberating over the analyzed differences.

The rest of the paper is organized as follows. In Section 2, we present the
related approaches that use meta-reasoning to improve the performance of CBR
systems. Section 3 introduces our case based planning system, Darmok, and
WARGUS, the RTS game used in our experiments. In Section 5, we present our
meta-reasoning approach and Meta-Darmok. We present evaluation of Meta-
Darmok in Section 6. Finally we conclude with future steps in Section 7.

2 Related Work

Application of CBR systems to real-world problems has shown that it is difficult
for developers to anticipate all possible eventualities. Changing circumstances
necessitate that a CBR system learns from its experiences and improve its per-
formance over a period of time. Fox and Leake [8] developed a system to improve
the retrieval of a CBR system using meta-reasoning. Their work used a model
for the correct reasoning behavior of the system, and compared the performance
of the model with the actual system performance to detect and diagnose rea-
soning failures. The approach, however, requires the development of a complete
model of correct reasoning behavior, which is difficult to construct for a system
operating in a complex real-time strategy game scenario like ours. Unlike their
approach, our work doesn’t depend upon an author created correct model of

212 M. Mehta, S. Ontañón, and A. Ram

Fig. 1. A screenshot of the WARGUS game

the system’s performance but uses successful problem solving experiences as a
benchmark model with which to compare the failed experience.

The DIAL system [11] uses introspective techniques to improve case adap-
tation. The system stores the traces of successful adaptation transformations
and memory search paths and utilizes them to improve the system performance.
Arcos [2] presents a CBR approach for improving solution quality in evolving en-
vironments. The approach however learns only from system’s successes whereas
in our approach we utilize both the successful and failed experiences. There are
other system that have explored meta-reasoning approaches to identify system
failures and improve system’s performance. The Meta-Aqua system, for example,
by Cox and Ram [7] uses a library of pre-defined patterns of erroneous inter-
actions among reasoning steps to recognize failures in the story understanding
task. The Autognostic system by Stroulia and Goel [16] uses a model of the
system to localize the error in the system’s element and and uses the model to
construct a possible alternative trace which could lead to the desired but un-
accomplished solution. The Introspect system [4] observes its own behavior so
as to detect its own inefficiencies and repair them. The system has been im-
plemented for the game of Go, a deterministic, perfect information, zero-sum
game of strategy between two players. Ulam et. al. [18] present a model based
meta-reasoning system for FreeCiv game that uses a self-model to identify the
appropriate reinforcement learning space for a specific task. All these systems
however are limited to learning from failed experience (and ignoring successful
experiences) to improve the system performance.

3 Case-Based Planning in WARGUS

WARGUS is an open source clone of Warcraft II, a successful commer-
cial real-time strategy game. Each player’s goal in WARGUS is to survive and
destroy the other players. Each player controls a number of troops, buildings,

Using Meta-reasoning to Improve the Performance of Case-Based Planning 213

Fa
Plan

M difi ti

Daemons

Pa

Fa

Modification

Routines

PlanDaemons
DetModification

Daemon
TManager Trac

Sta

Plan

Retrieval
plans

Plan

Expansion

Pl

Game

goals

state

Case

Base

Pl

Adap
Base

C

plans

Case

Learner
Expert Traces

Meta-Level Plan

Adaptationailure Adaptation
atterns

ailure Abstracted

tection

TraceTrace Diff.
Diff

Trace

RecordingCalculatorce Diff.

tistics

Execution

Trace

Wargus
actions

sensors
Plan

Execution

lan

e State

Trace

lan

ptation

Darmok

Fig. 2. Overview of the Meta-Darmok architecture

and workers (who gather resources such as gold, wood and oil in order to pro-
duce more units). Buildings are required to produce more advanced troops, and
troops are required to attack the enemy. The calculations inherent in the combat
system make the game non-deterministic. The game involves complex strategic
reasoning, such as terrain analysis, resource handling planning, and scheduling,
all of them under tight time constraints. For example, the map shown in Fig-
ure 1 is a 2-player version of the classical map “Nowhere to run, Nowhere to
hide”(NWTR), one of the maps from Battlenet regularly player by human play-
ers, characterized by a wall of trees that separates the players. This map leads
to complex strategic reasoning, such as building long range units (such as cat-
apults or ballistas) to attack the other player before the wall of trees has been
destroyed, tunneling early in the game through the wall of trees trying to catch
the enemy by surprise, or other strategies, as explained in Section 6.

In this section we will briefly describe the Darmok [13,14] system, which serves
as the base reasoner for our meta-reasoning approach. In order to play WAR-
GUS Darmok learns plans from expert demonstrations, and then uses case-based
planning to play the game reusing the learnt plans. The lower part of Figure 2
shows a simplified overview of the Darmok system. Basically, Darmok is divided
in two main processes:

– Case Acquisition: involves capturing plans for playing the game using ex-
pert demonstrations. Each time a human plays a game, an expert trace is

214 M. Mehta, S. Ontañón, and A. Ram

generated (containing the list of actions performed in the game). The expert
then annotates the trace stating which goals he was pursuing with each ac-
tion. From the annotated traces, plans are extracted and stored in the case
base.

– Plan Execution: The execution engine consists of several modules that to-
gether maintain a current plan to win the game. The Plan Execution module
executes the current plan, and updates its state (marking which actions suc-
ceeded or failed). The Plan Expansion module identifies open goals in the
current plan and expands them. In order to do that it relies on the Plan Re-
trieval module, which retrieves the most appropriate plan to fulfill an open
goal. Finally, the Plan Adaptation module adapts the retrieved plans.

Let us present some additional detail on the Darmok system, required to
understand our meta-reasoning approach.

Cases in Darmok consist of two parts: plan snippets and episodes. Snippets
store plans, and episodes contain information on how successful was a plan in a
particular situation. Specifically, a snippet has four main parts:

– A goal, which is a representation of the intended goal of the plan.
– A set of preconditions that must be satisfied before execution.
– A set of alive conditions that must be satisfied during the execution of the

plan for it to have chances of success.
– The plan itself.

During execution, Darmok interleaves case-based planning and execution.
The plan expansion, plan execution and plan adaptation modules collaborate
to maintain a current plan that the system is executing. A plan in Darmok is
represented as a tree consisting of goals and plans (like in HTN planning [12]).
Initially, the plan consists of a single goal: “win the game”. Then, the plan ex-
pansion module asks the plan retrieval module for a plan for that goal. That plan
might have several subgoals, for which the plan expansion module will again ask
the plan retrieval module for plans, and so on. When a goal still doesn’t have
an assigned plan, we say that the goal is open.

Additionally, each subplan in the plan has an associated state that can be:
pending (when it still has not started execution), executing, succeeded or failed. A
goal that has a plan assigned and where the plan has failed is also considered to
be open. Open goals can be either ready or waiting. An open goal is ready when
all the plans that had to be executed before this goal have succeeded, otherwise,
it is waiting.

The plan expansion module is constantly querying the current plan to see if
there is any ready open goal. When this happens, the open goal is sent to the
plan retrieval module. The retrieved plan is sent to the plan adaptation module,
and then inserted in the current plan, marked as pending.

The plan execution module has two main functionalities: check for basic ac-
tions that can be sent to the game engine and check the status of plans that are
in execution. Basic actions that are ready and with all its preconditions satisfied
are sent to WARGUS to be executed. If the preconditions are not satisfied, the

Using Meta-reasoning to Improve the Performance of Case-Based Planning 215

action is sent back to the adaptation module to see if it can be repaired. If it
cannot, then the action is marked as failed. Whenever a basic action succeeds
or fails, the execution module updates the status of the plan that contained it.
When a plan is marked as failed, its corresponding goal is open again. If the alive
conditions of an executing plan or action are not satisfied, it is also marked as
failed, and if its success conditions are satisfied, then it is marked as succeeded.

4 Plan Adaptation

Plan adaptation in Darmok is divided into two difference processes: parameter
adaptation and structure adaptation. When a plan is retrieved from the case
base, structure adaptation is used (removing or inserting actions and or goals),
and when each one of the actions in a plan is about to be sent to execution,
parameter adaptation is used (which will adapt the parameters of the actions:
locations and unit identifiers). Let us briefly explain these two processes.

During parameter adaptation, Darmok attempts to adapt the coordinates and
unit identifiers present in the actions so that they can be applied to the game
at hand. For instance, if in an action the expert demonstrated that “ a farm
has to be built at coordinates 26,25”, Darmok will analyze which properties the
coordinates 26,25 satisfy (e.g. they represent an empty extension of grass, far
from the enemy and close to a forest), and look for a location in the current
map that is the most similar. Darmok will do the same with the unit identifiers
(looking to use the most similar units in the current game that the expert used
in his demonstration game).

For structure adaptation, Darmok analyzes a plan and determines whether
all the actions are required or not in the current game. For instance, maybe a
plan specifies that a “barracks” has to be built, but in the current game, we
already have “barracks”. Darmok also determines whether additional actions
have to be executed in order to make the plan executable in the current game.
For instance maybe the plan makes reference to some “worker units” but in the
current game we don’t have them, so actions in order to obtain them are required.
Structure adaptation is achieved by generating a plan dependency graph using
the preconditions and success conditions of the actions. The plan dependency
graph is a directed graph where each node in the graph is a primitive action
and each link represents the dependency relationship between the parent and
the child.

5 Meta-level Plan Adaptation

The Darmok system is able to play the game of WARGUS after observing ex-
pert traces. However, once it has learnt, the system is not able to modify the
plans it has learnt. Although Darmok has the capability of learning from experi-
ence (by remembering which plans succeeded and which ones failed in different
situations), it does not have any capability to fix the plans in its case base. If
the expert that Darmok learnt from made a mistake in one of the plans, Darmok

216 M. Mehta, S. Ontañón, and A. Ram

will repeat that mistake again and again each time Darmok retrieves that plan.
The meta-reasoning approach presented in this paper provides Darmok exactly
with that capability, resulting in a system called Meta-Darmok, shown in Figure
2. By analyzing past performances, Meta-Darmok can fix the plans in the case
base, improving the performance over Darmok.

Our meta-level plan adaptation approach consists of five parts: Trace Record-
ing, Trace Difference Calculation, Failure Detection, Plan Modification, and the
Daemon Manager. During trace recording, a trace holding important events hap-
pening during the game is recorded. Trace difference calculation involves keeping
track of differences across successful and unsuccessful games. Failure detection
involves analyzing the execution trace and differences across various games to
find possible issues with the executing plans by using a set of failure patterns.
These failure patterns represent a set of pre-compiled patterns that can identify
the cause of each particular failure by identifying instances of these patterns in
the trace. Once a set of failures has been identified, the failed conditions can be
resolved by appropriately revising the plans using a set of plan modification rou-
tines. These plan modification routines are created using a combination of basic
modification operators (called modops). The modops are in the form of modify-
ing the original elements of the plan (i.e. actions), introduction of new elements
or reorganization of the elements inside the plan. Finally, some of the modifi-
cations take form of daemons, which monitor for failure conditions to happen
when Darmok retrieves some particular behaviors. The daemon manager triggers
the execution of such daemons when required. We describe each of the different
parts of the meta-level plan adaptation in detail next.

5.1 Trace Recording

In order to analyze the behavior of Darmok, the meta-reasoning module records
an execution trace when Darmok is playing a game. The execution trace is used
to record important events happening during the execution of Darmok. These
events are in the form of information regarding the plans that were executing,
their start and end times, their final execution status i.e. whether the plans
started, failed or succeeded.

The trace also contains the external state of the game recorded at various
intervals so that different information can be extracted from it during reasoning
about the failures happening at execution time. The trace provides a considerable
advantage in performing adaptation of plans with respect to only analyzing the
instant in which the failure occurred, since the trace can help localize portions
that could possibly have been responsible for the failure.

During its run, Darmok records a low level execution trace that contains
information related to basic events including the identifier of the plan that was
being executed, the corresponding game state when the event occurred, the time
at which the plan started, failed or succeeded, and the delay from the moment the
plan became ready for execution to the time when it actually started executing.
All this information is recorded in the execution trace, which the system updates
as events occur at runtime. The execution trace also records any modifications

Using Meta-reasoning to Improve the Performance of Case-Based Planning 217

performed by the various system components to the executing goal and plans.
As explained earlier, this is carried out by the plan adaptation modules. The
plan adaptation module makes various changes to the list of goals and plans
that are currently executing.

Once a game finishes, an abstracted trace is created from the execution trace
that Darmok generates. The abstracted trace is the one used by the rest of
components of the meta-reasoning module. The abstracted trace consists of:

– Unit Data: information regarding units such as hit points, status (whether
a unit is idle, for example), location, etc.,

– Idle Data: which units were idle and the cycle intervals for which they were
idle.

– Kill Data: the cycles at which particular units were attacked and killed.
– Resource Data: for each entry in the trace, the corresponding resources that

were available, such as the amount of food, gold, wood and oil.
– Attack Data: the units that were involved in an attack. For example, the

enemy units that were attacking and the AI units that were under attack.
– Basic Plan Failure Data: the reason for plan failures, such as whether it was

due to insufficient resources or not having a particular unit available to carry
out a plan.

– Trace Data: contains information including the number of goals and plans
that were pursued, number that succeeded, failed, didn’t finish and didn’t
start. The data also includes number of times a goal was pursued, num-
ber of times it restarted, the total number of resource gathering plans that
were used and type of resource that was gathered by those plans as part of
satisfying that goal.

Once the abstracted trace is generated, it is both sent to the failure detection
component and to the trace difference calculation component. The trace differ-
ence calculator records the differences between the stored repository traces and
the new execution trace as we explain next, and the failure detection component
uses this information to find failures in the trace.

5.2 Trace Difference Calculation

Each trace records various statistics as explained previously to help calculate
differences across them. The differences among other things include various
statistics:

– Actions level: holds the difference in terms of the actions that are carried
out. These differences are for example, differences in parameters like location
where the unit is built, number of units built by an action, number and type
of resources gathered.

– Non-Existent Plan/Goal: holds goals and plans that were present in a par-
ticular game and absent in other.

– Plan/Goal Type: differences in the type of plans/goals that were used during
execution.

218 M. Mehta, S. Ontañón, and A. Ram

– Cycle Level: differences in start and end cycle of plans and goals.
– Goal Count: comparison of number of times a goal was pursued.
– Action Plan Stats: differences in terms of number of actions that succeeded,

failed, didn’t start or finish.
– Resource Gathering Plans: holds the difference in terms of number of re-

source gathering plans that were used and the type of resource that was
gathered, the number that succeeded and failed.

– Score differences: differences in scores at the end of completion of a basic
operator plan and higher level goal and plan.

– Restart differences: differences in terms of the number of times a goal was
restarted.

– Plan/Goal Count: differences in terms of number of goals/plans that were
used and count of particular type of plans that were used.

The trace difference calculator module calculates the differences for the trace
pairs involving a) Type SuccVsUnsucc: successful vs unsuccessful traces and b)
Type UnsuccVsUnSucc: unsuccessful vs unsuccessful traces. As Darmok plays
more games of WARGUS the trace difference calculator, keeps updating the
trace difference statistics. These statistics contain the probability of the differ-
ences being present across both types of trace pairs. These probability estimates
are used by failure detection as explained next.

5.3 Failure Detection

Failure detection involves localizing the fault points. Although the abstracted
trace defines the space of possible causes for the failure, it does not provide
any help in localizing the cause of the failure. Traces can be extremely large,
especially in the case of complex games on which the system may spend a lot
of effort, thus analyzing the trace looking for failures might be a complicated
problem for two reasons: first, traces might be huge, and second, it is not clear
what to look for in the trace, since it is not clear what a “failure” looks like in
a trace.

In order to solve both problems, our meta-reasoning module contains a collec-
tion of failure patterns, which can be used to identify the cause of each particular
failure by identifying instances of these patterns in the trace [3,5,17]. The fail-
ure patterns essentially provide an abstraction mechanism to look for typical
patterns of failure conditions over the execution trace. The failure patterns sim-
plify the blame-assignment process into a search for instances of the particular
problematic patterns. Specifically, failure detection conceptually consists of two
phases, matching and filtering:

1. Failure Pattern Matching: during this phase, all the failure patterns stored
in the system are matched against the abstracted trace, and all the matches
are recorded.

2. Filtering Non-important Failures: during this phase, the trace difference
statistics are used to discern which failures are important and which ones

Using Meta-reasoning to Improve the Performance of Case-Based Planning 219

can be ignored. The result of this phase is the set of failures that are passed
along to the plan modification component.

In our approach both phases are fused in a single process. Failure patterns are
represented as finite state machines (FSM), which encode information needed to
perform both phases mentioned earlier (matching and filtering). Figure 3 shows
an example of one of the failure patterns defined in our system. Specifically,
the pattern specifies that a failure is detected if a “plan restart” is found in
the current trace, and if the probability of such failure satisfies some thresholds
according to the trace difference statistics database.

An example of a failure detected from the abstracted trace, related to the
functioning of plan adaptation module, is Important Goals or Plans Removed
failure. The failure pattern detects whether important goals and plans have
been removed from the trace. As explained earlier, the plan adaptation module
potentially removes and/or adds goals and plans to existing list of goals and
plans. This failure allows to detect whether, due to some failure in processing
of plan adaptation module, some goals which are important for executing the
current plan are removed. For example, the plan adaptation module may remove
a “build tower goal” that is not considered necessary, which results in system
losing in one of the maps. The fix for this failure would be to reinsert back the
important goal or plan that has been removed back into the currently executing
plan.

There are other failures that are detected based on the probability estimates
from the trace pairs. The differences which have a high probability of presence in
Type SuccVsUnsucc and low in Type UnsuccVsUnsucc are flagged for repair as
part of the failure detection. This helps find the differences that are important
and try to remove only those failures. These statistics help gauge probability
values on whether a particular difference reflects some factor that is present or
absent in successful as compared to unsuccessful games. An example of such
a difference could be the restart difference. In Darmok, a goal restarts when
it doesn’t finish successfully in the previous attempt. In unsuccessful traces, it
could happen that the goal restarts multiple times whereas in successful traces
the goal finishes successfully in one or two attempts. This would lead to a lot
of time and resources spent by the system in pursuing the restarted goal in
unsuccessful traces. After analysis of the Type SuccVsUnsucc and Type Unsuc-
cVsUnsucc traces, restart difference would have a high probability of presence in
Type SuccVsUnsucc traces and low in Type UnSuccVsUnsucc. Once this differ-
ence is flagged, the failure pattern restart failure is detected (shown in Figure 3).
A fix for this failure would be to add a constraint on the number of times the goal
could be restarted. Other examples of failure patterns and their corresponding
plan modification routines are given in Table 1.

5.4 Plan Modification

Once the cause of the failure is identified, it needs to be addressed through
appropriate modification. These modifications are in the form of inserting or

220 M. Mehta, S. Ontañón, and A. Ram

Init Restart Diff Remove

<Restart diff> found
P(< Restart diff>) Thres2 in SuccVsUnsucc and

P(<Restart diff>) Thres1 in UnsuccVsUnSucc

Init

State

Restart Diff

Pres.

Remove

Diff.

P(< Restart diff>) < Thres2 in SuccVsUnsucc or

P(<Restart diff>) > Thres1 in UnuccVsUnSucc

Ignore Diff.

Fig. 3. The figure shows the failure pattern restart failure in WARGUS. The failure is
addressed when there is a high probability (greater than Thres2) of presence in Type
succVsUnsucc and low probability (less than Thres1) in Type UnSuccVsUnSucc.

Table 1. Some example failure patterns and their associated plan modification routine
in WARGUS

Failure Pattern Plan Modification Routine

Plan Composition failure (e.g., issues with
plan feature like its parameters, its type
etc)

Change the plan according to the particu-
lar composition issue i.e change the loca-
tion, parameter etc

Goal/Plan count Failure Constrain the number of times a plan/goal
is pursued.

Restart failure Constrain the number of time a plan/goal
is restarted

Goal/Plan Missing failure Add a plan/goal at appropriate time dur-
ing the execution

Plan Step(s) Missing failure Add step(s) to a particular plan
Basic Operator failure Adding a basic action that fixes the failed

condition

removing a new appropriate plan at the correct position in the failed plan, or
removing some steps or changing some parameter of an executing plan. The plan
modification step involves applying these operators to modify the failed plans
appropriately.

Once the failure patterns are detected from the execution trace, the corre-
sponding plan modification routines and the failed conditions are inserted as
daemons for the map in which these failed conditions are detected. The dae-
mons act as a meta-level reactive plan that operates over the executing plan at
runtime. The conditions for the failure pattern become the preconditions of the

Using Meta-reasoning to Improve the Performance of Case-Based Planning 221

plan and the plan modification routine consisting of basic modops become the
steps to execute when the failure pattern is detected. The daemons operate over
the executing plan, monitor their execution, detect whether a failure is about to
happen and repair the plan according to the defined plan modification routines.

Notice thus, that Meta-Darmok does not directly modify the plans in the
case-base of Darmok, but reactively modifies those plans when Darmok is about
to use them, in case some failure is about to happen. In the current system, we
have defined 20 failure patterns and plan modification routines for WARGUS.

The adaptation system can be easily extended by writing other patterns of
failure that could be detected from the abstracted trace and the appropriate
plan modifications to the corresponding plans that need to be carried out in
order to correct the failed situation. In order to understand the process better,
let us look at an example.

5.5 Exemplification

In order to understand the working of the meta-level plan adaptation module
let us look at an illustrated example. In some runs, we observed that the plan
adaptation module of Darmok inserted a large amount of resource gathering
goals (in particular sending peasants to gather wood) for the following reason.
In some of the expert traces, the expert sent a very small set of peasants to gather
wood at the very beginning of the game. Those few peasants would gather enough
wood for the rest of the game, since they would start gathering wood very early.
Sometimes, Darmok would reassign one of those peasants to another task. Thus,
when the need for wood arises later in the game, Darmok will be low on wood.
Since wood is harvested very slowly, Darmok sends several peasants to gather
wood at the same time in order to have the wood on time. This situation is fine
in the short term, but in the long term, in a map like the one shown in Figure 1
(“Nowhere to Run, Nowhere to Hide” or NWTR), a hole in the wall of trees will
be opened quickly (since there are lots of peasants chopping wood). This allows
the enemy to enter through the wall of trees and attack Darmok before Darmok
is ready to reply. Let us see how the meta-level adaptation module can help fix
this problem.

After playing several games, the trace difference calculator module accumu-
lates statistics, and in particular one of them is that the average number of
gathering resource goals for the NWTR map is much higher for unsuccessful
traces than for successful traces. After the analysis of the Type SuccVsUnsucc
and Type UnsuccVsUnsucc traces, the difference in statistics for the occurrence
of the resource gathering goal will have a high probability of presence in Type
SuccVsUnsucc traces and low in Type UnsuccVsUnsucc, thus the difference will
be flagged. One of the failure patterns incorporated in our system is called
Goal/Plan Count Failure. This failure pattern gets triggered when the differ-
ence in statistics for the occurrence of the goal or plan has a high probability
of presence in Type SuccVsUnsucc traces and low in Type UnsuccVsUnsucc.
When the meta-level is analyzing a new unsuccessful trace in the NWTR map,
the Goal/Plan Count Failure pattern will be triggered.

222 M. Mehta, S. Ontañón, and A. Ram

The plan modification routine associated with the Goal/Plan Count Failure
pattern consists of creating a new daemon that counts the number of times a
particular goal appears during the course of a game, and if it is beyond some
threshold, the daemon will delete such goals from the current plan. In particular,
in our example, the daemon will be instantiated to look for resource gathering
goals, and the threshold will be set to the typical value found in the successful
traces in the trace difference statistics data base.

In this particular example, once the daemon was inserted, we observed that
the daemon prevents addition of resource gathering goals beyond a certain point.
In the short term, Darmok will struggle to have resources, since Darmok needs
them to build buildings and train units. However, the daemon simply prevents
the wall of trees to get destroyed. As a result resources are gathered at a slower
pace and the few peasants gathering resources finally obtain enough wood, to
enable Darmok to successfully complete the plan without destroying the wall of
trees too early.

6 Meta-level Plan Adaptation Results

To evaluate Meta-Darmok, we conducted two different experiments turning the
meta-reasoner on and off respectively. When the meta-reasoning is turned off, the
execution traces are recorded as part of the execution. When the meta-reasoning
is turned on, these execution traces are used as the starting point to calculate
the trace statistics as new traces accumulate.

The experiments were conducted on 5 different variations of the NWTR map
(shown in Figure 1). NWTR maps have a wall of trees separating the opponents
that introduces a highly strategic component in the game (one can attempt
ranged attacks over the wall of trees, or prevent the trees to be chopped by
building towers, etc.). 3 different expert demonstrations were used for evalua-
tion from NWTR maps (which lead to three different sets of plans to be used
by Darmok). Moreover, Darmok can learn from more than one demonstration,
so we evaluate results when Darmok learns from one, two and from all three
demonstrations.

Table 2 shows the results of the experiments with and without meta-reasoning.
NT indicates the number of expert traces. For each experiment 6 values are

Table 2. Effect of plan adaptation on game statistics

No MetaLevel Adaptation MetaLevel Adaptation
NT W D L ADS AOS WP W D L ADS AOS WP improvement.

1 4 4 7 1333 1523 26.67% 9 3 3 2096 582 60.00% 125.00%
2 5 2 8 1234 1010 33.33% 9 3 3 2628 356 60.00% 80.00%
3 5 3 7 1142 1762 33.33% 6 5 4 2184 627 40.00% 20.00%

11 8 26 3709 4295 31.11% 24 11 10 6908 1565 53.33% 75.00%

Using Meta-reasoning to Improve the Performance of Case-Based Planning 223

shown: W, D and L indicate the number of wins, draws and loses respectively.
ADS and AOS indicate the average Darmok score and the average opponent score
(where the “score” is a number that WARGUS itself calculates and assigns to
each player at the end of each game). Finally, WP shows the win percentage.
The right most row presents the improvement in win percentage comparing meta-
reasoning with respect to no meta-reasoning. The bottom row shows a summary
of the results. The results show that meta-reasoning leads to an improvement of
the percentage of wins as well as the player score to opponent score ratio. An
improvement occurs in all cases irrespective of the number of traces used. Notice
that in the case where Darmok learnt from 3 expert traces, the meta-reasoner
is not able to bring the performance up to 60% like in the other two scenarios.
This is because one of the traces used in our experiments was clearly inferior to
the other two, and the performance of Darmok strongly depends on the quality
of the expert traces [14]. However, meta-reasoning is still able to significantly
improve the performance.

7 Conclusion

In this paper, we have presented a meta-reasoning approach to improve the
performance of case-based planning systems, and a particular system, Meta-
Darmok, that implements it. Meta-Darmok is based on the Darmok system,
which plays an RTS game domain. We have shown that meta-reasoning can im-
prove the performance of a CBP system that operates in a real-time domain.
Failure patterns are useful to characterize typical failures. Moreover, by analyz-
ing the differences between the successful and failed executions Meta-Darmok
can determine which of the differences detected in failed executions with respect
to successful executions are important or not. Finally, we have shown that dae-
mons can be used to introduce reactive elements in the execution of the system
that will adapt the behavior if failures are detected in real time. Our experi-
mental results indicate that our approach improves the performance of the CBP
system (overall improvement of 75%).

There were a few occasions when the meta-reasoning module introduced un-
wanted changes that degraded the system performance. However, in the few
times it happened, the issue could be resolved if the system kept track of the
system performance with the introduction of daemons for a particular map. If
the system loses the map with the introduction of certain daemons, it could
realize that the adaptation is causing unwanted changes in system performance.
This might involve incorporating the actions of the meta-reasoning module into
the execution trace to allow the meta-reasoner to introspect itself. We plan to
explore this line in our future research. We also plan to apply our approach to
other case-based planning systems to validate the generality of the approach.
Finally, we also plan to investigate strategies to automatically generate failure
patterns or tools for easy authoring of such failure patterns.

224 M. Mehta, S. Ontañón, and A. Ram

References

1. Anderson, M.L., Oates, T.: A review of recent research in metareasoning and met-
alearning. AI Magazine 28, 7–16 (2007)

2. Arcos, J.L.: T-air: A case-based reasoning system for designing chemical absorption
plants. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS, vol. 2080, pp. 576–
588. Springer, Heidelberg (2001)

3. Carbonell, J.G., Knoblock, A.C., Minton, S.: Prodigy: An Integrated Architecture
for Planning and Learning. Lawrence Erlbaum Associates, Mahwah

4. Cazenave, T.: Metarules to improve tactical go knowledge. Inf. Sci. Inf. Comput.
Sci. 154(3-4), 173–188 (2003)

5. Cox, M.T., Ram, A.: Failure-driven learning as input bias. In: Proceedings of the
Sixteenth Annual Conference of the Cognitive Science Society, pp. 231–236 (1994)

6. Cox, M.T.: Metacognition in computation: a selected research review. Artif. In-
tell. 169(2), 104–141 (2005)

7. Cox, M.T., Ram, A.: Introspective multistrategy learning: On the construction of
learning strategies. Technical report (1996)

8. Fox, S., Leake, D.: Introspective reasoning for index refinement in case-based rea-
soning. Journal of Experimental and Theoretical Artificial Intelligence 13, 63–88
(2001)

9. Hammond, K.J.: Learning to anticipate and avoid planning problems through the
explanation of failures. In: Proceedings of the Fifth National Conference on Arti-
ficial Intelligence, pp. 556–560 (1986)

10. Kolodner, J.L.: Capitalizing on failure through case-based inference. In: Proceed-
ings of the Ninth Annual Conference of the Cognitive Science Society, pp. 715–726
(1987)

11. Leake, D.B., Kinley, A., Wilson, D.: Learning to improve case adaptation by intro-
spective reasoning and CBR. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995,
vol. 1010, pp. 229–240. Springer, Heidelberg (1995)

12. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Wu, D., Yaman, F., Muñoz-Avila, H.,
Murdock, J.W.: Applications of shop and shop2. Intelligent Systems 20(2), 34–41
(2005)

13. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-based planning and execution
for real-time strategy games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007.
LNCS, vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

14. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: On-line case-based planning. Com-
putational Intelligence (to appear)

15. Schank, R.C.: Dynamic memory: A theory of reminding and learning in computers
and people. Cambridge University Press, Cambridge (1982)

16. Stroulia, E., Goel, A.K.: Functional representation and reasoning in reflective sys-
tems. Journal of Applied Intelligence 9, 101–124 (1995)

17. Sussman, J.G.: A Computational Model of Skill Acquisition. American Elsevier,
Amsterdam (1975)

18. Ulam, P., Jones, J., Goel, A.K.: Combining model-based meta-reasoning and rein-
forcement learning for adapting game-playing agents. In: AIIDE (2008)

Multi-level Abstractions and Multi-dimensional
Retrieval of Cases with Time Series Features

Stefania Montani1, Alessio Bottrighi1, Giorgio Leonardi2, Luigi Portinale1,
and Paolo Terenziani1

1 Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria, Italy
2 Dipartimento di Informatica e Sistemistica, Università di Pavia, Pavia, Italy

Abstract. Time series retrieval is a critical issue in all domains in which
the observed phenomenon dynamics have to be dealt with. In this paper,
we propose a novel, domain independent time series retrieval framework,
based on Temporal Abstractions (TA). Our framework allows for multi-
level abstractions, according to two dimensions, namely a taxonomy of
(trend or state) symbols, and a variety of time granularities. Moreover,
we allow for flexible querying, where queries can be expressed at any level
of detail in both dimensions, also in an interactive fashion, and ground
cases as well as generalized ones can be retrieved. We also take advantage
of multi-dimensional orthogonal index structures, which can be refined
progressively and on demand. The framework in practice is illustrated by
means of a case study in hemodialysis.

1 Introduction

Several real world applications require to capture the evolution of the observed
phenomenon over time, in order to describe its behaviour, and to exploit this
information for future problem solving. In these applications, (many) process
features are naturally collected in the form of time series, often automatically
sampled and recorded by control instruments, as it happens e.g. in Intensive
Care Unit patient monitoring [20], or in hemodialysis [17].

Case-based Reasoning (CBR) [1] is recently being recognized as a valuable
knowledge management and decision support methodology in these domains,
as testified by the relatively wide number of works in the field (see section 5).
However, adopting CBR is typically non trivial in these situations, since the
need for describing the process dynamics impacts both on case representation
and on case retrieval, as analysed in [16]. In particular, similarity-based time
series retrieval has to be addressed and optimized.

In the literature, most of the approaches to similarity-based time series re-
trieval are founded on the common premise of dimensionality reduction, which
also simplifies knowledge representation (see the survey in [9]). Dimensionality
is often reduced by means of a mathematical transform able to preserve the
distance between two time series (or to underestimate it). Widely used trans-
forms are the Discrete Fourier Transform (DFT) [2], and the Discrete Wavelet
Transform (DWT) [7]. Another well known methodology is Piecewise Constant

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 225–239, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

226 S. Montani et al.

Approximation (PCA) (see e.g. [12,13]), which consists in dividing a time series
into k segments, and in using their average values as a k-dimensional feature vec-
tor (where obviously k << n, the original data dimensionality). Retrieval then
works in the transformed time series space, and, with respect to the non-technical
end users (e.g. the physicians), it seems to operate in a black-box fashion: the
users just have to input the query, and to collect the retrieved cases, but do not
(need to) see (and might not understand the meaning of) the transformed time
series themselves.

In the Artificial Intelligence (AI) literature, a well known methodology is
Temporal Abstractions (TA) [27,3,21,15]. TA, among the other things, have been
employed for:

1. reducing time series dimensionality;
2. supporting a flexible description of phenomena at different levels of time

granularity (e.g. hours, minutes, seconds);
3. providing a knowledge-based interpretation of temporal data.

Rather interestingly, TA have been scarcely explored in the CBR literature (see
section 5). On the other hand, as we will extensively explain in the following,
we propose to widely resort to this methodology, both for a data preprocessing
step, in which time series dimensionality is reduced (see item 1 above), and as
a means for supporting multiple time granularities abstractions (see item 2), at
the data structure level as well as at the query level.

As regards item 1, in particular, through TA huge amounts of temporal in-
formation, like the one embedded in a time series, can be effectively mapped
to a compact representation, that not only summarizes the original longitudinal
data, but also abstracts meaningful behaviours in the data themselves.

Operatively, the basic principle of such TA methods is to move from a point-
based to an interval-based representation of the data [3], where: the input points
(events henceforth) are the elements of the discretized time series, and the output
intervals (episodes henceforth) aggregate adjacent events sharing a common be-
haviour, persistent over time. More precisely, the method described above should
be referred to as basic TA [3]. Basic TA can be further subdivided into state TA
and trend TA. State TA are used to extract episodes associated to qualitative
levels of the monitored feature, e.g. low, normal, high values; trend TA are ex-
ploited to detect specific patterns, such as increase, decrease or stationarity, in
the time series. Through basic TA, a time series is therefore converted into a
string of symbols, each one corresponding to an interval of raw data, and rep-
resenting the (state or trend) value persistent over such an interval. Of course
symbols can be mapped to intervals of different length (but a minimum time
granularity is typically defined).

Despite the fact that TA are not as popular as the mathematical methodolo-
gies for reducing time series dimensionality, we believe they represent a valuable
alternative with respect to more classical techniques in many domains (e.g. in
medical or financial domains, in which TA methods are indeed well known),
especially when: (i) a more qualitative abstraction of the time series values, as
the one coded by abstraction symbols, is needed/sufficient; (ii) a user-friendly

Multi-level Abstractions and Multi-dimensional Retrieval of Cases 227

mapping between raw and transformed data has to be made available. Since the
output of the TA process is a sequence of symbols, usually easier to interpret for
the end user with respect to the one of a mathematical transform, which would
require the implementation of an additional explanatory component, we suggest
that it would be useful to calculate further levels of user-interpretable abstrac-
tions over such sequence, according to two dimensions (see also [29]), namely:
(i) a symbol taxonomy, and (ii) a time granularity taxonomy. Actually, symbols
can be organized in a taxonomy, in order to provide different levels of detail in
the description of episodes (of e.g. states or trends). For instance, a taxonomy of
trend symbols can be introduced (see figure 1), in which the symbol I (increase)
is further specialized into IW (weak increase) and IS (strong increase), accord-
ing to the slope. On the other hand, time granularities allow one to describe
episodes at different levels of temporal detail, which is the form of TA described
as item 2 above. For instance, a series of three adjacent episodes of I, I and S
(stationarity), each one with a duration of 1 hour, can be merged into a single
I episode, with a duration of 3 hours.

Stemming from these considerations, we are developing a domain independent
framework for supporting time series retrieval, in which we work on cases with time
series features, pre-processed by means of basic TA (henceforth TA-based time se-
ries), and stored in a database1. On such data, we support multi-level abstractions,
i.e. abstractions at different detail levels according to the two dimensions outlined
above. Moreover, we allow for flexible querying, where queries can be expressed at
any level of detail in both dimensions, also in an interactive fashion, and ground
cases as well as generalized ones (i.e. cases with features abstracted at a higher de-
tail level, see section 3) can be retrieved. In our opinion, such flexibility and inter-
activity represent an additional advantage of TA-based time series retrieval with
respect to more classical techniques, in which end users are unable to intervene in
the retrieval process. Our framework takes advantage of multi-dimensional orthog-
onal index structures, which can be refined progressively and on demand, and which
allow for early pruning and focusing during the retrieval process.

The paper is organized as follows. Section 2 introduces the data structures
and functions which are needed to implement multi-level abstractions and to
calculate distances for supporting flexible querying. Section 3 introduces our
multi-dimensional index structures, and section 4 presents index definition and
navigation algorithms, illustrating them by means of an example, taken from the
hemodialysis domain. Section 5 introduces some comparisons with related work.
Finally section 6 is devoted to conclusions and future work.

2 Data Structures and Functions for Multi-level
Abstractions and Flexible Querying

As anticipated in the Introduction, we support multi-level abstractions, i.e. ab-
straction at different detail levels, according to two dimensions: (i) a taxonomy
of symbols, and (ii) a taxonomy of time granularities.

1 For the sake of clarity, in our description we will focus on cases with a single feature.

228 S. Montani et al.

One of the main goals of our approach is generality: we aim at proposing a
methodology that, in principle, can be applied to any domain in which time
series are used and TA output is of interest. In particular, we want to allow
maximal flexibility both in the description of the domain (i.e., in the taxonomy
of symbols, and in the distance function measuring distances between symbols)
and in the accuracy of temporal information (i.e., in the taxonomy of time gran-
ularities, and in the function for scaling up from a granularity to a coarser one -
called up henceforth). On the other hand, we aim at assuring the “consistency”
of the different descriptions. To do so, we have identified a set of general “consis-
tency” constraints, that any meaningful choice must satisfy. Such constraints are
motivated and illustrated below, within a description of the data structures for
supporting multi-level abstractions (i.e. the taxonomies) and of their properties.

It is also worth noting that our approach allows to manage and integrate do-
main knowledge, when available, basically in the form of additional abstraction
levels, both in dimension (i) and (ii) above (see figures 1 and 2 below for an
example). However, also in absence of domain knowledge, our approach is ap-
plicable, since it can be reduced to a classical TA-based approach with one-level
(i.e. flat) taxonomies in the worst case.

The symbol taxonomy is a conventional isa taxonomy that allows to de-
scribe the domain (states or trends) at increasingly more abstract levels of detail,
starting from the bottom level, provided by the preprocessing TA step. An exam-
ple taxonomy of symbols for trend TA is the one illustrated in figure 1. Of course,
depending on the application domain, the tree can become wider or higher. The
overall set of symbols in the taxonomy composes the symbol domain.

Fig. 1. An example symbol taxonomy

An important property of many symbol domains is ordering2. Such an order-
ing naturally emerges from the interpretation of the underlying row data, from
which bottom symbols in the taxonomy have been abstracted. For instance, DS

2 Our framework allows to treat both ordered and unordered domains. However, we
will focus on ordered ones, since ordering imposes additional constraints on the
domain description which are unnecessary otherwise.

Multi-level Abstractions and Multi-dimensional Retrieval of Cases 229

(strong decrease) may abstract curve portions with slopes from −90 to −45 de-
grees, thus preceding DW (weak decrease) (referring e.g. to slopes from −44
to −10 degrees), in the symbol domain ordering. Henceforth, we will use the
symbols <d and ≤d to denote (strict) precedence in the symbol domain.

Of course, the symbol taxonomy must respect the ordering (see also [4,23]),
if any, as stated by the following axiom:

∀x, y, x′, y′ ∈ Ds isa(x, x′) ∧ isa(y, y′) ∧ x′ �= y′ ∧ x <d y → x′ <d y′ (1)

where Ds is the symbol domain, x is a child of x′, and y is a child of y′ in the isa
taxonomy. For instance, if DW preceds IW in the trend symbol ordered domain,
then also D must preceed I.

A distance function may be used in order to measure the distance between
symbols in the taxonomy. As regards the distance function choice, any one can be
selected. We just enforce the staightforward general constraint that the distance
of each symbol from itself is zero:

∀x ∈ Ds d(x, x) = 0 (2)

where Ds is the symbol domain, and d(x, x) denotes the distance between two
identical symbols x.

While we do not impose any further constraint on the distance function for
unordered symbol domains, we enforce the fact that distance must be “consis-
tent” with ordering (if any). Specifically, distance monotonically increases with
ordering, as requested by the following axiom:

∀x, y, z ∈ Ds x <d y <d z → d(x, y) < d(x, z) (3)

where Ds is the symbol domain, and d(x, y) denotes the distance between symbol
x and symbol y.

For instance, referring to the trend symbol domain in figure 1, where the
ordering is naturally given by the increasing slope values, axiom 3 states that
the distance between D and S must be smaller than the distance between D
and I.

The granularity taxonomy, on the other hand, allows one to describe the
episodes at increasingly more abstract levels of temporal aggregation, starting
from the bottom level provided by the preprocessing TA step (see figure 2 for
an example). Obviously, the number of levels and the dimension of granules can
be differently set depending on the application domain. Observe that the time
dimension requires that aggregation is “homogeneous” at every given level, in
the sense that each granule at a given level must be an aggregation of exactly the
same number of consecutive granules at the lower level (while this number may
vary from level to level; for instance, two 30 minutes long granules compose a 1
hour long granule, while three 10 minutes long granules compose a 30 minutes
long granule). Such an “homogeneity” restriction is motivated by the fact that,
in such a way, the duration of each episode is (implicitly) represented in the
sequence of symbols. For example, at the time granularity level of 10 minutes,

230 S. Montani et al.

Fig. 2. An example time granularities taxonomy

the string IIISDD may represent a 30 minutes episode of I followed by 10
minutes of S and 20 minutes of D.

In order to abstract along the temporal dimension, a function for scaling
up from one level to the coarser one in the taxonomy must be provided (called
up henceforth). Abstracting from one granularity to a coarser one is a highly
domain-dependent procedure. In order to retain the maximal generality, our
framework allows one to freely define the rule. Once again, however, we impose
some very general constraints, to grant for the meaningfulness of the function and
for its “consistency” with respect to the other knowledge sources. The following
axiom grants the fact that up preserves “persistence”: the result of coarsening
two granules with the same symbol x is a larger granule still labeled as x. Here
and in the following, for the sake of simplicity and brevity we apply the up
function to two granules (but the definitions can be generalized to n-ary up
operators):

∀x ∈ Ds up(x, x) = x (4)

where Ds is the symbol domain, and up(x, x) denotes the symbol obtained by
abstracting two adjacent intervals, both labelled with the same symbol x, at a
coarser time granularity.

On the other hand, the two following axioms state the relationships between
ordering and up, enforcing a sort of “monotonicity”: in some sense, they state
that ordering is preserved by the up function. In particular:

∀x, y ∈ Ds x <d y → x ≤d up(x, y) ≤d y (5)

where Ds is the symbol domain, and up(x, y) denotes the symbol obtained by ab-
stracting two adjacent intervals, labelled with the symbols x and y respectively,
at a coarser time granularity. Moreover:

Multi-level Abstractions and Multi-dimensional Retrieval of Cases 231

∀x, y, z ∈ Ds x <d y <d z → up(x, y) ≤d up(x, z) (6)

where Ds is the symbol domain.
Given such axioms, some unclear (or, more precisely, meaningless) situations

are automatically ruled out. For instance, it can never happen that, if a 1 hour
long episode of D, followed by a 1 hour long episode of I, abstracts to a 2 hours
long episode of D, it also happens that a 1 hour long episode of D, followed by
a 1 hour long episode of S, abstracts to a 2 hours long episode of S.

It is worth stressing that the axioms above code the relationships between
the symbol ordering (if any) and the isa relation, the distance function, and the
up function respectively. As a consequence, the combination of such axioms also
fixes the constraints between any “combination” of such primitive notions. For
instance, axioms 1 and 3 state that distance “preserves” ordering also in case
isa relationships between symbols are involved.

3 Multi-dimensional Index Structures for Retrieval
Optimization

Although the use of a symbol taxonomy and/or of a temporal granularity tax-
onomy has been already advocated in other works (e.g. in a data warehouse
context, see [29]), to the best of our knowledge we are proposing the first ap-
proach attempting to fully exploit the advantages of taxonomical knowledge in
flexible case retrieval (see section 5).

Our basic idea is simple. Given the symbol taxonomy (which directly induces
the abstraction function defined by the isa relation), the time granularity taxon-
omy, and the time granularity abstraction function up, any query can be easily
abstracted at any level of symbol and/or time granularity detail (coarser than
the level of the query itself). Therefore, if we provide a multi-level indexing struc-
ture addressing the different levels of abstraction, we can easily use it in order to
focus our search. Starting from the most abstract level of detail, and comparing
the abstracted query to the index structure nodes at progressively more accurate
detail levels, our methodology can efficiently provide an early pruning of all the
cases that are addressed by intermediate index layers which do not match with
the query abstractions (further details on query answering will be provided in
section 4).

In particular, we advocate the introduction of a forest of index structures,
providing a flexible indexing of cases at different levels of the symbol and/or time
granularity taxonomies. The root node of each index structure is represented by
a string of symbols, defined at the highest level in the symbol taxonomy (i.e. the
children of “Any”, see figure 1) and in the time granularity taxonomy. Potentially,
a whole taxonomy of nodes can stem from each root, describing each possible
refinement along the symbol and/or time granularity dimension. An example,
taking as a root the D symbol, is provided in figure 3. Here, the root node D is
refined along the time dimension from the 4 hours to the 2 hours granularity, so

232 S. Montani et al.

Fig. 3. An example multi-level orthogonal index structure

that the nodes DD, DS and SD stem from it, provided that up(D, S) = D and
up(S, D) = D (see figure 3).

Moreover, we advocate that each node in each index structure belonging to
the forest is itself an index, and can be defined as a generalized case, in the sense
that it summarizes (i.e. it indexes) a set of ground cases. In the indexed cases,
the feature can be abstracted as in the internal node itself (i.e. resulting in the
same string), provided that we work at the same time granularity and symbol
taxonomy level of the node being considered.

This means that the same ground case is typically indexed by different nodes
in one index (and in the other indexes of the forest). As we will see in section 4,
this supports flexible querying, since, depending on the level at which the query
is issued, one of the nodes can be more suited for providing a quick answer.

Although the full generation of the forest of index structures, considering each
possible level of symbol and granularity detail, is theoretically possible, for the
sake of efficiency we advocate:

– the choice of a leading dimension, i.e. of a fixed order for abstractions (e.g.
time granularity abstractions first, and then symbol abstractions);

– a dynamic generation/refinement of indexes, starting from a basic set of
skeletal indexes which has to be defined in each specific domain/application
(note that it makes sense to provide at least indexes at the coarsest symbol
and time granularity levels as an initialization).

The choice of a leading dimension allows to quite naturally organize the index
structure in an orthogonal way, in which, from each node of the leading dimension
structure, another index stems, built according to the secondary dimension (see
figure 3). In particular, the orthogonal index takes the leading index node as a
root, and then progressively specializes it in the secondary dimension, keeping
the leading dimension abstraction level always fixed.

It is important to stress that, although in principle the choice of a fixed order
for abstractions lets our methodology loose some degree of flexibility, it does not
in any way affect the expressiveness of our index structures, since, in principle,
all levels of 〈symbol, time−granularity〉 detail can be coped with (just the order
in which levels are organized is affected). On the other hand, such a strategy

Multi-level Abstractions and Multi-dimensional Retrieval of Cases 233

makes the process of abstracting queries and searching for the corresponding
indexes much easier and faster, since an a priori fixed order of abstraction and
search can be exploited. In particular, in figure 3 and in the rest of the paper,
we have chosen time as the leading dimension.

4 Index Generation and Navigation

As already observed, we advocate a progressive and on-demand definition of the
index structures. In particular, in the beginning it makes sense to provide a forest
of trees, composed by skeletal indexes, each one rooted at a set of symbols, at
the coarsest detail level, in both dimensions. Such indexes develop in the leading
dimension (i.e. in time in our current approach), and are as much detailed as
the domain knowledge suggests.

Further index refinement can then be automatically triggered by the types of
queries which have been issued so far.

Ground queries can be answered by resorting to our abstraction mechanism
and index structures. Moreover, we are able to easily treat non-ground queries as
well. We just ask that all symbols in the query are at the same time granularity3.

If queries have often involved a time granularity which is not yet represented
in the index(es), the corresponding level can be created. A proper frequence
threshold for counting the queries has to be set to this end. We proceed analo-
gously by creating an orthogonal index from each node which fits the frequent
queries time granularity, but does not match their symbol taxonomy level.

This policy allows to augment the indexes discriminating power only when
it is needed, while keeping the memory occupancy of the index structures as
limited as possible.

We will now illustrate query answering in our approach, by means of an ex-
ample, taken from the hemodialysis domain. In order to highlight the most
innovative features of our approach, we will show an example of a non-ground
query.

Hemodialysis is the most widely used treatment for End Stage Renal Disease,
a severe chronic condition which, without medical intervention, leads to death.
Hemodialysis relies on a device, called hemodialyzer, which clears the patient’s
blood from catabolites, to re-establish acid-base equilibrium and to remove water
in excess. On average, hemodialysis patients are treated for four hours three times
a week. Each single treatment is called a hemodialysis session, during which the
hemodialyzer collects several variables, most of which are in the form of time
series. Considering a case as a hemodialysis session, we want to query the case
base to search for similar cases, having preprocessed the time series by means of
TA.
3 On the other hand, queries with symbols at different levels in the symbol taxonomy

dimension can be easily dealt with in our approach. In particular, it is sufficient to
translate every symbol at the lowest level present in the query, thus obtaining a set
of queries equivalent to the original one, but easily indexable. The logic or of the
single queries results has finally to be calculated.

234 S. Montani et al.

In particular, we will focus on a single case feature, for the sake of clarity:
namely, diastolic pressure. Diastolic pressure is a very powerful indicator for
evaluating water reduction from the patient’s blood during a session. The reduc-
tion of water from the blood during the haemodialysis session causes a constant
decrease of the blood pressure. This behaviour is correct and, even if it can
sometimes cause minor problems to the patient (e.g. light head spinning), it is
necessary to achieve a good water and metabolites reduction. However, in certain
conditions (in particular for patients suffering from cardiovascular diseases), the
reduction of water is not constant, but can be characterised by stationarity peri-
ods and sudden increasing or decreasing trend episodes. In particular, problems
arise when the pressure remains stationary for the most of the time (at least half
of the session), which means that no water reduction takes place. Then (sharp)
decreasing episodes take place, destabilising the cardiovascular system of the
patient, causing problems such as faints or collapses.

An example query summarizing this negative situation is the following:
SSDSDW , where each symbol represents a 1 hour long episode (thus globally
covering the overall 4 hours duration).

We will now show how such a query can be answered, by taking advantage of
the orthogonal index structure.

Generally speaking, to answer a query, in order to enter the index structure, we
first progressively generalize the query itself in the symbol taxonomy direction,
while keeping time granularity fixed. Then, we generalize the query in the time
dimension as well. Following the generalization steps backwards, we can enter
one of the indexes in the forest from its root, and then descend along it, until we
reach the node which fits the original query time granularity. If an orthogonal
index stems from this node, we can descend along it, always following the query
generalization steps backwards. We will stop when we reach the same detail level
in the symbol taxonomy as in the original query.

If the query detail level is not represented in the index, because the index
is not complete, we will stop at the most detailed possible level, which, since
the abstraction order is fixed, exists and can be univocally identified. We then
return all the cases indexed by the selected node.

In our example, the query generalization in the direction of the symbol taxon-
omy generates the sequence SSDD; starting from the latter, the generalization
in time generates the sequences: SD (2 hours long episodes), and then D (4
hours long episode). The complete generalization procedure is shown in figure 4.

The output of the generalization process allows to identify a single index
structure in the forest, namely the one whose root is D (i.e. the tree shown in
figure 3) as a support for a quick query answering. Matching the steps in the
generalization process to the nodes in the index structure (in the time direction),
we can descend through the nodes SD, and then SSDD. Now, we can move
“horizontally” in the symbol taxonomy direction, to reach the node SSDSDW ,
which matches exactly our query. As a result, we can retrieve all the cases indexed
by such a node.

Multi-level Abstractions and Multi-dimensional Retrieval of Cases 235

Fig. 4. Generalization steps for the diastolic pressure query

Once a set of candidate cases for a given query have been selected by nav-
igating the index structures, distance values can be calculated by introducing
any distance function which satisfies the constraints illustrated by the axioms in
section 2.

In our example, among the others, the case in figure 5 is retrieved4. As the
figure shows, in such a case the pressure remains constant for approximately half
of the session. Then, the two decrease episodes we were searching for take place:
a strong decrease followed by a weak decrease.

Fig. 5. Diastolic pressure in one of the retrieved cases

The query SSDSDW reflects a very important - but quite uncommon - sit-
uation to be investigated. Therefore, a limited number of cases are typically

4 We are currently working on a real cases database, containing 1475 cases, belonging
to 37 different patients.

236 S. Montani et al.

retrieved by answering this query. We may want to generalize the required be-
haviour, in order to retrieve a larger number of cases. Interactive and progressive
query relaxation and refinement are supported in our framework. For instance,
we can allow any combination of decreasing episodes in the second half of the
session. This can be obtained by relaxing the query in the direction of the sym-
bols, using e.g. the sequence SSDD. A subsequent relaxation, compatible with
the same set of situations, can be made in the direction of time, by using as a
query the sequence SD (at a two hours granularity).

Query relaxation (as well as refinement) can be repeated several times, until
the user is satisfied with the obtained results.

Finally, the user may want to retrieve a generalized case, i.e. to stop the search
at a proper internal node in the index structure. This node subsumes a set of
ground cases, but the user may just be interested in calculating the distance
between the query and the node, which summarizes the retrieval set, without
entering the details of all the elements composing it. For example, if the user
is interested in cases with a basically stationary behaviour for the first 2 hours,
and a substantially decreasing one for the following 2 hours, node SD in figure
3 can be retrieved in our framework.

5 Comparisons with Related Work

In recent years, several CBR works dealing with cases with time series features
have been published, in various application domains: robot control [22], process
forecast [18,24], process supervision [8], pest management [6], prediction of faulty
situations [11], and medical problems [26,25,19,17]. These approaches often rely
on classical mathematical dimensionality reduction techniques, such as DFT [17]
and DWT [19]. Sometimes (see e.g. [25]) TA are used for data pre-processing,
but basically as a noise filtering tool. Moreover, each approach has substantially
been thought to support a specific application, and its generalizability is limited
or not discussed at all.

A more general framework for case representation and retrieval with time
dependent features has been proposed in [10]. This paper deals with the problem
of time series similarity and proposes a complex retrieval strategy; we believe
that our TA-based approach is more flexible, and more easily interpretable for
end users. The work in [14] presents an application independent logic formalism
addressing case representation when process dynamics have to be dealt with.
Temporal knowledge representation for CBR is also discussed in [5]. Nevertheless,
these papers do not deal with dimensionality reduction, and do not focus on
retrieval solutions.

As regards TA, they have been extensively resorted to in the literature, es-
pecially in the medical field (see the survey in [28]), but typically with the aim
to solve a data interpretation task [27] (see item 3 in the Introduction), and not
as a retrieval support facility. For instance, TA have been adopted to study the
co-occurrence of certain episodes in a set of clinical time series, which may justify
a given diagnosis; obviously, this kind of problems are strongly based on domain
knowledge, and are hardly generalizable.

Multi-level Abstractions and Multi-dimensional Retrieval of Cases 237

Therefore, our domain independent approach for TA-based time series re-
trieval appears to be significantly innovative in the recent literature panorama.

It is worth noting that a database querying tool has been introduced in [29];
in this work a symbolic query (in the form of string of symbols, like the ones
produced by TA) can be answered over a database of raw time series data, by
producing those substrings that best match the query itself, following a set of
abstraction rules, operating on a symbol taxonomy and on different time gran-
ularities. The paper thus basically introduces the same data structures we rely
upon (see section 2), but exploits them only to support roll-up and drill-down
operations in a data warehouse context, where the query abstraction level de-
termines the level at which the retrieved data have to be transformed. Instead,
we provide a more general and flexible retrieval support framework, in which
orthogonal index structures optimize the response time, and both ground and
generalized cases can be obtained. On the other hand, by now our approach oper-
ates on string matching, and not on substring matching and with the alignement
problem: however, we envision such an extension as a future work.

6 Conclusions

In this paper, we have presented a domain independent framework for supporting
time series retrieval, in which time series dimensionality is preliminarily reduced
by means of TA. The use of TA provides an easily interpretable output, also for
end users. Moreover, we support multi-level abstractions of TA-based time se-
ries, both along the time dimensions, and along the symbol taxonomy one, thus
increasing the flexibility of the retrieval facility, especially in query definition.
Queries, at various level of detail, can be made finer or coarser interactively.
Query answering is also made faster by the use of orthogonal index structures,
which can grow on demand. Indexes obviously allow for early pruning and fo-
cusing during the retrieval process.

In our opinion, flexibility and interactivity represent a relevant advantage of
our approach to time series retrieval with respect to more classical techniques,
in which end users are typically unable to intervene in the retrieval process,
that often operates in a black-box fashion. In this work we have illustrated the
framework in practice by means of a case study in hemodialysis. In the future,
we plan to complete the framework implementation, and to extensively test the
methodology by considering different domains, thus validating its significance,
and studying ways of making it more and more efficient and usable.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations and systems approaches. AI Communications 7, 39–59 (1994)

2. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence
databases. In: Lomet, D. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993)

238 S. Montani et al.

3. Bellazzi, R., Larizza, C., Riva, A.: Temporal abstractions for interpreting diabetic
patients monitoring data. Intelligent Data Analysis 2, 97–122 (1998)

4. Bergmann, R., Stahl, A.: Similarity measures for object-oriented case represen-
tations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, p. 25. Springer, Heidelberg (1998)

5. Bichindaritz, I., Conlon, E.: Temporal knowledge representation and organization
for case-based reasoning. In: Proc. TIME 1996, pp. 152–159. IEEE Computer So-
ciety Press, Washington (1996)

6. Branting, L.K., Hastings, J.D.: An empirical evaluation of model-based case match-
ing and adaptation. In: Proc. Workshop on Case-Based Reasoning, AAAI 1994
(1994)

7. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proc. ICDE
1999, pp. 126–133. IEEE Computer Society Press, Washington (1999)

8. Fuch, B., Mille, A., Chiron, B.: Operator decision aiding by adaptation of supervi-
sion strategies. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS (LNAI),
vol. 1010, pp. 23–32. Springer, Heidelberg (1995)

9. Hetland, M.L.: A survey of recent methods for efficient retrieval of similar time
sequences. In: Last, M., Kandel, A., Bunke, H. (eds.) Data Mining in Time Series
Databases. World Scientific, London (2003)

10. Jaczynski, M.: A framework for the management of past experiences with time-
extended situations. In: Proc. ACM conference on Information and Knowledge
Management (CIKM) 1997, pp. 32–38. ACM Press, New York (1997)

11. Jaere, M.D., Aamodt, A., Skalle, P.: Representing temporal knowledge for case-
based prediction. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI),
vol. 2416, pp. 174–188. Springer, Heidelberg (2002)

12. Keogh, E.: Fast similarity search in the presence of longitudinal scaling in time
series databases. In: Proc. Int. Conf. on Tools with Artificial Intelligence, pp. 578–
584. IEEE Computer Society Press, Washington (1997)

13. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and Information
Systems 3(3), 263–286 (2000)

14. Ma, J., Knight, B.: A framework for historical case-based reasoning. In: Ashley,
K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 246–260.
Springer, Heidelberg (2003)

15. Montani, S., Bottrighi, A., Leonardi, G., Portinale, L.: A CBR-based, closed loop
architecture for temporal abstractions configuration. Computational Intelligence
(in press)

16. Montani, S., Portinale, L.: Accounting for the temporal dimension in case-based
retrieval: a framework for medical applications. Computational Intelligence 22,
208–223 (2006)

17. Montani, S., Portinale, L., Leonardi, G., Bellazzi, R., Bellazzi, R.: Case-based re-
trieval to support the treatment of end stage renal failure patients. Artificial Intel-
ligence in Medicine 37, 31–42 (2006)

18. Nakhaeizadeh, G.: Learning prediction from time series: a theoretical and empir-
ical comparison of CBR with some other approaches. In: Wess, S., Richter, M.,
Althoff, K.-D. (eds.) EWCBR 1993. LNCS (LNAI), vol. 837, pp. 65–76. Springer,
Heidelberg (1994)

19. Nilsson, M., Funk, P., Olsson, E., von Scheele, B., Xiong, N.: Clinical decision-
support for diagnosing stress-related disorders by applying psychophysiological
medical knowledge to an instance-based learning system. Artificial Intelligence in
Medicine 36, 159–176 (2006)

Multi-level Abstractions and Multi-dimensional Retrieval of Cases 239

20. Palma, J., Juarez, J.M., Campos, M., Marin, R.: A fuzzy approach to temporal
model-based diagnosis for intensive care units. In: Lopez de Mantaras, R., Saitta,
L. (eds.) Proc. European Conference on Artificial Intelligence (ECAI) 2004, pp.
868–872. IOS Press, Amsterdam (2004)

21. Portinale, L., Montani, S., Bottrighi, A., Leonardi, G., Juarez, J.: A case-based
architecture for temporal abstraction configuration and processing. In: Proc. IEEE
International Conference on Tools with Artificial Intelligent (ICTAI), pp. 667–674.
IEEE Computer Society Press, Los Alamitos (2006)

22. Ram, A., Santamaria, J.C.: Continuous case-based reasoning. In: Proc. AAAI Case-
Based Reasoning Workshop, pp. 86–93 (1993)

23. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: Proc. IJCAI, pp. 448–453 (1995)

24. Rougegrez, S.: Similarity evaluation between observed behaviours for the prediction
of processes. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS
(LNAI), vol. 837, pp. 155–166. Springer, Heidelberg (1994)

25. Schmidt, R., Gierl, L.: Temporal abstractions and case-based reasoning for medical
course data: Two prognostic applications. In: Perner, P. (ed.) MLDM 2001. LNCS,
vol. 2123, pp. 23–34. Springer, Heidelberg (2001)

26. Schmidt, R., Heindl, B., Pollwein, B., Gierl, L.: Abstraction of data and time for
multiparametric time course prognoses. In: Smith, I., Faltings, B.V. (eds.) EWCBR
1996. LNCS (LNAI), vol. 1168, pp. 377–391. Springer, Heidelberg (1996)

27. Shahar, Y.: A framework for knowledge-based temporal abstractions. Artificial
Intelligence 90, 79–133 (1997)

28. Terenziani, P., German, E., Shahar, Y.: The temporal aspects of clinical guidelines.
In: Ten Teije, A., Miksch, S., Lucas, P. (eds.) Computer-based Medical Guidelines
and Protocols: A Primer and Current Trends (2008)

29. Xia, B.B.: Similarity search in time series data sets. Technical report, School of
Computer Science, Simon Fraser University (1997)

On Similarity Measures Based on a Refinement
Lattice

Santiago Ontañón1 and Enric Plaza2

1 CCL, Cognitive Computing Lab Georgia Institute of Technology,
Atlanta, GA 303322/0280
santi@cc.gatech.edu

2 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain
enric@iiia.csic.es

Abstract. Retrieval of structured cases using similarity has been stud-
ied in CBR but there has been less activity on defining similarity on de-
scription logics (DL). In this paper we present an approach that allows
us to present two similarity measures for feature logics, a subfamily of
DLs, based on the concept of refinement lattice. The first one is based on
computing the anti-unification (AU) of two cases to assess the amount
of shared information. The second measure decomposes the cases into
a set of independent properties, and then assesses how many of these
properties are shared between the two cases. Moreover, we show that
the defined measures are applicable to any representation language for
which a refinement lattice can be defined. We empirically evaluate our
measures comparing them to other measures in the literature in a variety
of relational data sets showing very good results.

1 Introduction

Knowledge intensive case-based reasoning (CBR) has traditionally used struc-
tured representation of cases and in the recent past it has moved more close to
ontology engineering and knowledge representation formalisms like description
logics. Retrieval of structured cases using similarity has been studied in CBR
(see section 6) but there has been less activity on defining similarity on descrip-
tion logics (DL) for CBR. Part of the problem is that one can define a variety
DLs: should we define a different similarity measure for each DL?

In this paper we present an approach that allows us to present two similar-
ity measures for feature logics [8], a subfamily of DLs, based on the concept of
refinement lattice. The concept of refinement lattice is taken from the general-
ization space notion of inductive learning [16], and as such is general: it is the
lattice generated by a collection of refinement operators that relate two general-
izations. Since any specific DL formalism can be, in principle, equipped with its
own refinement operators (that induce a refinement lattice) the two similarity
measures we present here can also be applied to them.

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 240–255, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Similarity Measures Based on a Refinement Lattice 241

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 1. Trains data set as introduced by Michalski [15]

Specifically, we present two similarity measures based on a refinement lattice
for feature logics. The first one computes the anti-unification (AU) of two cases,
representing all the information common to these two cases; then it assesses how
much information is contained in the AU with respect to the total amount of
information in the two cases. We will call it AU-based similarity (Sλ). The second
measure is called property-based similarity (Sπ); Sπ decomposes the cases into
a set of independent properties, and then assesses how many of these properties
are shared between the two cases.

The remainder of this paper is organized as follows. In Section 2 we will
briefly introduce some notions of relational machine learning required to define
our measures. Sections 3 and 4 present the anti-unification-based measure and
the property-based measure respectively. In Section 5 we describe our empirical
evaluation of the measures, comparing them to other measures in the literature
in a variety of relational data sets. Section 6 presents related work on relational
similarity measures. Section 7 summarizes the contributions of this paper and
outlines future lines of research.

2 A Refinement Lattice for Feature Logics

Feature logics [8] (also called feature terms, feature structures or Ψ -terms) are
a generalization of first-order terms that have been introduced in theoretical
computer science in order to formalize object-centered capabilities of declarative
languages. In this paper we use a concrete formalization (that may differ from
that of [8] or [1]), used in the language NOOS [2].

As an example, consider the apparently simple trains data set introduced
by Michalski [15], and shown in Figure 1. The original task is to find the rule
that discriminates from east-bound and west-bound trains. Notice, however, that
not all the trains have the same number of cars, and that, in principle, a train
can have an unbounded number of cars. Thus, it is unclear how to represent
this data using a feature vector without losing information. Using a relational
representation, we can just represent each car as a term, and define that a

242 S. Ontañón and E. Plaza

Fig. 2. A train represented using the feature terms representation formalism

train is a set of cars, without restricting the number of cars of the train or the
complexity of the load each train is carrying. For instance, Figure 2 represents
the first west-bound train using feature terms.

Feature terms can be defined by its signature: Σ = 〈S,F ,≤,V〉. Where S
is a set of sort symbols (including ⊥, which represents both the most general
sort and term), ≤ is a partial order among the sorts in S (representing the is-a
relation common to object oriented languages), F is a set of feature symbols,
and V is a set of variable names. We can define a feature term ψ as:

ψ ::= X : s[f1
.= Ψ1, ..., fn

.= Ψn]

where ψ points to the root variable X (that we will note as root(ψ)), X ∈ V ,
s ∈ S, fi ∈ F , and Ψi might be either another feature term ψi, an already defined
variable Y ∈ V or a set of feature terms {ψ1, ..., ψm}. Finally, we also consider
the basic data types (numbers and symbols) to be feature terms.

Fig. 3. a) Example of a refinement lattice defined by the subsumption relation, where
each node represents a term, and the most general node is ⊥. b) Example of two terms
ψ1 and ψ2 in the refinement lattice with their unification ψu and anti-unification, ψa.

On Similarity Measures Based on a Refinement Lattice 243

The basic operation between feature terms is subsumption, formally defined for
feature terms in [2]. We say that a term ψ1 subsumes another term ψ2 when ψ1 is
more general than ψ2 and we denote that as ψ1 � ψ2. The subsumption relation
allows us to structure the space of possible feature terms in a semi lattice, where
the root node is ⊥, also called any. The refinement lattice is defined over the semi
lattice defined by subsumption in the following way: a term ψ1 is a refinement
of ψ2 if ψ2 � ψ1 and it does not exist any ψ3 such that ψ2 � ψ2 � ψ1.

Figure 3.a shows an illustration of the refinement lattice, where each node
represents a term, and arrows represent subsumption. Another interpretation of
subsumption is that if a term ψ1 subsumes another term ψ2, all the information
in ψ1 is also contained in ψ2. Typically, such space is only considered relevant
for inductive learners since it defines the hypothesis space [17]. However, in this
paper we are going to make use of it in order to define similarity measures.

One way to build the refinement lattice is by defining refinement operators.
A refinement operator ρ maps a feature term to a set of feature terms that
are either generalizations of specializations depending if it is a specialization re-
finement operator or a generalization refinement operator. Refinement operators
for subsets of first order logic have been defined in the literature [16, 21]. Such
refinement operators can be used in the definition of inductive systems that
systematically or heuristically explore the hypothesis space.

Given the subsumption relation, and any two terms ψ1 and ψ2, we can define
the anti-unification of two terms as their least general generalization [19]. The
anti-unification of two terms is relevant for defining similarity measures, since it
contains all the information that is common to both ψ1 and ψ2, thus, it encap-
sulates in a single description all that is common to two given terms. Moreover,
depending on the representation language being used, it might not be unique (it
is not unique in the case of feature terms). A complementary operation to the
anti-unification is that of unification, which is the most general specialization
of a given set of terms. Figure 3.b graphically illustrates both concepts. Notice
that both unification and anti-unification are operations over the refinement lat-
tice: anti-unification corresponds to finding the most specific common “parent”
(generalization), where as unification corresponds to finding the most general
common “descendant” (specialization).

A fast algorithm to compute one of the anti-unifications of a set of terms T
can be informally defined using a systematic search process over the refinement
lattice in the following way. The search starts by having an initial candidate
to be the anti-unification c0 = ⊥. At each step t of the algorithm, we will
generate specialization refinements of the current candidate ct. If any of those
refinements subsumes all the terms in T , then that term will be taken as ct+1.
When in one cycle t none of the refinements subsume all of the terms in T , we will
know that ct is an anti-unification of T . Notice that this algorithm only finds
one anti-unification out of all the possible ones. Moreover, the specialization
refinement operator used for this algorithm must be complete, i.e. it has to
be able to generate all the immediate successors of any term in the refinement
lattice. It is also interesting to know the number of iterations required to find the

244 S. Ontañón and E. Plaza

anti-unification of two terms (since the larger the number of steps, the larger the
anti-unification, and thus the more information shared among the terms).

Notice that the previous algorithm for computing the anti-unification, al-
though defined here for feature terms, is independent of the representation lan-
guage used as long as a suitable refinement operator and subsumption operation
are available. However, for completeness, next section very quickly presents a re-
finement operator for feature terms that can be proven to be complete (although
the proof is not included in this paper for the sake of space).

2.1 Refinement Operators for Feature Terms

The specialization refinement operation ρ(ψ) for feature terms will be defined by
five simpler refinement operators: ρ(ψ) = ρ[s](ψ) ∪ ρ[f](ψ) ∪ ρ[v](ψ) ∪ ρ[e](ψ) ∪
ρ[c](ψ), as follows:

1. ρ[s] generates all the possible specializations by specializing sorts in a term.
2. ρ[f] generates specializations by taking each undefined feature in a term and

adding them a variable with the most general sort that feature can take.
3. ρ[v] generates specializations by adding “variable equalities”, i.e. for any

two variables X, Y in a feature term that can be unified, this operator will
generate refinements where X = Y .

4. ρ[e] generates all the possible specializations by expanding any set in a fea-
ture term (including converting single values into a set of two values). The
value added is the most general value allowed in that set.

5. ρ[c] generates refinements by replacing variables by constants.

Notice that in general there are an infinite number of possible refinements of
a feature term (just imagine that we have a variable representing a real number,
the ρ[c] operator can refine that term by substituting the variable by any concrete
real number). In order to make the operator tractable, it is possible to define
an alternative definition ρ(ψ, O), where O is a set of feature terms, and only
terms that subsume at least a term in O are generated. This makes the number
of refinements generated always finite (e.g. the set of constants to substitute
variables for can be taken from the set of constants used in O).

Given this refinement operator, it is easy to define the dual operation γ(ψ), the
generalization refinement operation. The purpose of defining the specialization
refinement operation is to navigate through the refinement graph. Intuitively,
ρ(ψ) is an operation that maps a term to its immediate successors in the re-
finement lattice, and γ(ψ) is an operation that maps a term to its immediate
ancestors (generalizations) in the lattice.

3 Anti-unification-Based Similarity

The anti-unification of two feature terms ψ1 and ψ2 naturally introduces a simi-
larity measure between any two terms. The anti-unification of two terms contains

On Similarity Measures Based on a Refinement Lattice 245

Fig. 4. Illustration of the anti-unification based similarity, between two feature terms
ψ1, and ψ2, whose anti-unification is ψ

all the shared information of two terms. Thus, based on that, the anti-unification
based similarity (Sλ) can de defined as: the ratio of shared information divided
by the total amount of information. If two terms are very similar, the amount
of common information will be very similar to the total information contained
in both terms, and thus the similarity will approach 1.

We need a way to count the amount of information contained in a feature
term. Using the refinement lattice, we can define the amount of information in
a feature term ψ as the distance in the refinement lattice from ψ to the object
⊥ (the most general feature term). In other words, the number of times that
a refinement operator has to be applied to ⊥ to generate the feature term ψ.
Figure 4 illustrates this idea, where a is the number of refinement steps from ⊥
to the anti-unification of ψ1 and ψ2, b is the number of refinement steps from
the anti-unification ψ to ψ1, and c is the number of refinement steps from the
anti-unification to ψ2. Thus, we can define the similarity as:

Sλ(ψ1, ψ2) =
a

a + b + c

Notice that by using the anti-unification algorithm outlined in Section 2, it
is easy to compute a as the number of iterations required to compute the anti-
unification. Moreover, in order to compute b, the same algorithm can be used, but
using the anti-unification term as a starting point and taking the set T = {ψ1};
c can be computed analogously.

The resulting similarity is a simple measure that can be used to compare
any two cases represented using feature terms. This measure has, however, two
main issues. First of all is its computational complexity. Although computing the
anti-unification of two terms requires (using the algorithm mentioned in Section
2) a linear number of calls to the subsumption operator in function of the size
of the terms, the subsumption operation might have an exponential complexity
depending on the representation language used. Thus, in domains where the cases
in the case base are large structures, this similarity measure might not be feasible.

246 S. Ontañón and E. Plaza

A second problem is that this similarity measure considers each refinement in
the refinement lattice as equally important, it is like an edit distance where each
operation has the same weight. Weights could be defined for each refinement
operation, but it is not obvious how to generate them automatically.

4 Property-Based Similarity

To address the problems introduced by the anti-unification-based similarity, we
developed the property-based similarity. In our framework, a property is some
condition that a term might satisfy or not. For example, in the trains domain
introduced before, a property might be that “a train has at least 3 cars”, and
some trains might satisfy it and some might not. The main idea of the property-
based similarity is to count, out of the set of properties that two cases satisfy,
how many do they share.

In a feature-value representation it is easy to define the set of properties
that a case satisfies: the set of features by which it is defined. However, in a
complex relational representation such as feature terms, it is not obvious. In our
framework, we will define a property as a pattern ψ1, and given a term ψ2, we
say that ψ2 satisfies the property if: ψ1 � ψ2. Therefore, the set of properties
that a term satisfies is the set of all the patterns that subsume it. Notice that
that set might be very large (or even infinite). Therefore, we will rely again in the
notion of refinement operators to define the set of properties that a term satisfies.
Each time a refinement operator is applied to a term to make it more specific,
information is added to the term, and thus the term “gains a new property”. If
we take the path in the refinement lattice from ⊥ to a particular term ψ, each
one of the refinement operators in that path defines a property, for which an
appropriate pattern can be constructed as explained below.

4.1 An Illustrative Example

Before formally explaining the process of constructing the property patterns, let
us illustrate it with an example. Imagine that we have a description ψ of a train,
as shown on the top of Figure 5. The train contains two cars, one of them is a
long engine, and the other one is a short open rectangle car with two circles on
it. Moreover, we know that the engine is in front of the open rectangle car.

If we compute the path in the refinement lattice required to reach ⊥ from
ψ by using the γ(ψ) generalization refinement operator, we will see that we
need 17 refinements to reach it. Each one of those 17 generalization refinements
removes a piece of information from the term, and thus “removes a property”.
For instance, let’s say that the first generalization takes the value long of the
feature ln in the car represented by variable X2 and generalizes it to a variable
of type length. The property that the train has lost is that one of the cars is long.
Thus, the first property ψ1 can be generated, as shown in Figure 5. The next
generalization might generalize the value engine to a more general value shape.
Leading to the second property ψ2, that states that one of the cars of the train

On Similarity Measures Based on a Refinement Lattice 247

Fig. 5. A simple train represented as a feature term, and all the properties that can
be extracted from it

has shape engine. This process can go on until we reach ⊥. Figure 5 shows all
the different properties that will get created in the process. Notice that there are
only 14 properties in this example, but 17 refinement steps. This is because some
of the properties generated result in the same pattern, and thus we have removed
duplicates. Once we have the set of properties, we can use them to approximate
the amount of shared information in between two cases by counting how many
properties do they share.

At this point we can already see that a property associated with a general-
ization refinement captures exactly that piece of information that was removed
from the term when generalizing. The intuition is that if we compute the uni-
fication of all the properties generated we should obtain the original term. In
the case of feature terms, since unification is not unique, we can only say that
one of the possible unifications of all the properties results in the original ob-
ject. Therefore, the intuitive definition of a property pattern is that a pattern
associated with a generalization refinement should be the smallest feature term

248 S. Ontañón and E. Plaza

that if unified with the generalization allows us to reconstruct the original term.
Although computing such patterns can be also done in a domain independent
way using the refinement lattice, next section presents a fast way to compute
them when feature terms are used as the representation language.

4.2 Constructing the Properties

Given a term ψ, it is possible to use the generalization refinement operator γ(ψ)
to generalize the term step by step until ⊥ is reached and construct properties
along the way. Notice that in order to generate the generalization refinements,
subsumption is not required, and thus the process of generalizing a term until ⊥
is reached is not computationally expensive1. Notice that computing the shortest
path from ψ to ⊥ might be computationally expensive, but for our similarity
purposes, it is enough with finding one path (not necessarily the shortest).

Each refinement will generate a property. The generalization operator γ(ψ)
manipulates a set of variables in a feature term in order to construct the gener-
alizations. For instance, it might “change the sort s of a variable X to a more
general sort s′”, or “remove an element X from the feature f of another variable
Y ”. In order to generate the pattern that corresponds to a property it is neces-
sary to obtain the minimum set V of variables that constitute a path from the
root of a feature term to all the variables involved in the generalization opera-
tor. For example, in the example shown in Figure 5, a generalization step might
take the value engine of the feature cshape of variable X2 and generalize it by
changing it to Y : shape. For simplicity, engine did not have any variable name
associated with it in the figure, but let us assume that its variable name is X4
Notice that the set of involved variables are {X2, X4}. Since the root variable is
X1, the minimum set is V = {X1, X2, X4}.

Once V has been computed, we have to compute which is the minimum set of
features that each one of the variables in V require. For instance, X1 requires cars
(since it’s the only way to reach X2), and X2 requires cshape. These variables and
features will be the ones appearing in the pattern associated with the property.

4.3 Property-Based Similarity Definition

Given a set of properties P (that can be generate by extracting them from all
the cases in the case base and from the problem at hand), the first step is to
compute a weight wi for each property pi ∈ P . Since each property divides the set
of cases in two subsets, those which satisfy them and those which don’t, a simple
measure such as Quinlan’s Information Gain [20] can be used to compute feature
weights, where the weight of each feature is directly the normalized information

1 One consideration has to be made when using feature terms: It is possible to con-
struct infinite generalization chains when terms have cycles. However, by carefully
selecting which generalizations to generate (basically, forbidding generalizations that
increase the number of variables in a term, which are never necessary to reach ⊥),
it can be proved that this problem can be completely avoided.

On Similarity Measures Based on a Refinement Lattice 249

gain (which is the method used in our experiments to compute weights). Let
us define as P (ψ) the set of properties that a particular term ψ satisfies, the
similarity between two terms can be computed as:

Sπ(ψ1, ψ2) =

∑
pi∈P (ψ1)∩P (ψ2) wi∑
pi∈P (ψ1)∪P (ψ2) wi

In other words, it is the sum of the weights of those properties shared by
the two terms, divided by the sum of the weights of all the properties that at
least one of the term satisfies. Notice, moreover, that even if the definition of the
measure involves subsumption, it is actually subsumption between a property
and a full term, and subsumption when one of the terms is a property is not an
expensive operation. Section 5 shows a comparison in execution time between
both measures, showing that the property-based measure is very efficient.

One of the main advantages of having a list of properties is that a weight
can be assigned for each property. Thus, once we have two terms that we want
to compare and we have extracted a set of properties, we can use information
theoretical measures such as Information Gain [20], or the RLDM distance [9]
to automatically assign a weight to each property.

Another interesting fact about properties, is that, under certain assumptions,
if we compute the unification of all the properties that define a term, we obtain
the original term2. In the same way, if we compute the unification of all the
shared properties among a set of terms, we obtain the anti-unification of that
set of terms. For that reason, if there is a single path in the refinement lattice
from ⊥ to the anti-unification, Sλ should provide the exact same results as Sπ

(if uniform weights are used for the properties).
Another advantage of the property-based similarity is that its computational

requirements are lower, as we will see in our experimental results section. For
data sets with complex cases, computation of the anti-unification of two terms
might be very costly, while properties can be extracted at a reasonable cost.
The only downside of the property-based similarity, is that the anti-unification
between two terms is not explicitly computed. However, it can be computed by
unifying all the shared properties (at an additional computational cost). A formal
evaluation of the computational complexity of both similarity measures is subject
to our future work. An explicit anti-unification can be used for explanation
purposes [18], as well as for adaptation purposes (since it makes explicit the
similarities between a problem and the retrieved case) [7].

Finally, notice that since each property is a pattern, any other pattern genera-
tion method can be used. For instance, any relational inductive learning method
that could learn descriptions that distinguish among cases in the case base could
be used to generate additional patterns.

2 This property holds only when there are no set-valued features in the involved terms.

250 S. Ontañón and E. Plaza

5 Experimental Results

In order to evaluate our similarity measures, we used three different data sets:
sponges, trains, and kinship. Trains is the data set shown in Figure 1, as presented
by Michalski [15]. Kinship is a small but complex relational data set consisting
of two families, each one with 12 members (thus 24 persons in total), proposed
originally by [11], and used to evaluate several relational learning algorithms.
The goal is to learn family relations. In our experiments the target relation to
learn was “uncle”. The representation is purely relational, and each family is
a graph (there are 4 positive examples and 20 negative examples). Finally, the
sponges data set is a relational data set composed of 503 sponges belonging to 8
different solution classes. For the sponges data set, we report results both using
the complete data set as well as using a subset of it (consisting of 280 sponges
and 3 solution classes). We used the trains and uncle data sets as examples of
data sets that are highly relational and where the value of features is not as
important as the structure of the terms, and the sponges data set is a complex
relational data set where both structure and feature values are important.

Table 1 shows the classification accuracy for several similarity measures in
the data sets used for our evaluation. We report results for the two similarity
measures presented in this paper, as well as two other relational similarity metrics
for comparison purposes. For each similarity metric we measured classification
accuracy using both a nearest neighbor as well as a 3-nearest neighbor by means
of a leave-one-out method. We used SHAUD [3] and RIBL [10] (explained in
detail in the next section) to compare our measures. SHAUD is a relational
similarity metric defined for feature terms that has been shown to obtain very
good results in complex relational data sets, and RIBL is a well known similarity
measure for first order logic (FOL). RIBL requires examples to be represented
in FOL and not as feature terms, but feature terms can be actually converted to
FOL predicates without losing information. We used such conversion to evaluate
RIBL. Moreover, RIBL and SHAUD require to know the ranges of each numeric
feature before hand in order to compute similarity. We used the minimum and
maximum values observed in the data set to define such ranges. Finally, RIBL
requires a maximum depth parameter which was set to 10 in our experiments
(large enough, since the deepest of the data sets is the Kinship data set where
depth 5 is enough to capture each example). Finally, SHAUD only works for
acyclic graphs, and thus could not be applied to the Kinship data set.

Table 1. Classification accuracy in percentage measured using a leave one out method
for different similarity measures

Sλ Sπ SHAUD RIBL
1-NN 3-NN 1-NN 3-NN 1-NN 3-NN 1-NN 3-NN

Sponges-280 95.00 94.29 96.43 96.43 95.71 95.00 91.67 91.67
Sponges-503 89.66 88.27 92.25 90.46 88.27 87.08 88.93 86.43
Trains-10 50.00 60.00 60.00 70.00 40.00 30.00 50.00 70.00

Kinship-24 100.00 91.67 100.00 75.00 - - 83.33 83.33

On Similarity Measures Based on a Refinement Lattice 251

The first thing that we can observe in Table 1 is that the property-based
similarity, Sπ achieves the highest classification accuracy in all data sets. In the
Kinship data set, the only important thing is the structure. SHAUD cannot
handle it since cases are cyclic graphs, and RIBL concludes that all cases have
similarity 0, since they have no values in any feature (there are no numerical
or symbolic values in any of the terms in Kinhip, only a graph relating each
member of the family to each other). Notice that RIBL achieves an accuracy of
83.33% only because it always predicts “negative”, and there are only 4 positive
examples out of 24. Both Sλ and Sπ are able to capture the structure of the
cases, and achieve an accuracy of 100.00%. Trains is an apparently simple but
complicated data set, since there are lots of features in each train, but only
two are key to determine the class. Sλ does not compute weights for any of the
differences it finds, so it cannot distinguish from differences that matter from
the ones that do not matter. Sπ and RIBL perform the best in this data set.

Finally, in the sponges data set Sπ achieves the best results. SHAUD and
Sλ achieve also good results but not as good, and finally RIBL gets the lowest
accuracy. The problem for RIBL is that it does not exploit completely the infor-
mation in the sort hierarchy, and that is important in this data set. Moreover,
we would like to remark that RIBL can accept weights in both predicates and
attributes, but there is no simple way to compute them directly (like with the
properties in Sπ), and thus we used uniform weights. Thus, the results reported
here for RIBL might be suboptimal, although weights won’t be able to help at all
in the uncle data set. Finally, we would like to note that the accuracy achieved
by Sλ is the highest reported to date in the sponges data set.

In terms of execution time, Sλ takes 13.98 seconds per problem in the Sponges
503 data set, Sπ takes 1.54 (including the time to learn the weights), SHAUD
takes 4.09 seconds per problem, and RIBL is the fastest with 1.05 seconds per
problem. Those times correspond to computing 502 similarities (since there are
503 examples in that data set). Time differences are similar for other data sets.
We see that Sλ and SHAUD are the slowest since they require computing the
anti-unification, and RIBL is the fastest. Sπ is also very fast, since extracting
properties does not rely on anti-unification.

We can conclude that Sπ is the most balanced similarity overall, achieving
the highest classification accuracy in most data sets while being computation-
ally efficient. Moreover, both Sλ and Sπ are conceptually very simple, and it is
easy to understand what is being measured, whereas in more complex measures
such as SHAUD and RIBL, it is hard to conceptually understand what exactly
is being measured. Comparing Sλ to Sπ, Sλ has the advantage of computing
an explicit symbolic similarity and of being conceptually very simple, however
it is computationally expensive. Sπ on the other hand is computationally less
expensive and it is more accurate but has the disadvantages of not computing
an explicit symbolic similarity term and of being conceptually more complicated
(it requires the property generation step).

252 S. Ontañón and E. Plaza

6 Related Work

Hutchinson [12] presented a distance metric based on the anti-unification of two
terms. Given the anti-unification of two terms, Hutchinson measures the size of a
variable substitution required to unify the anti-unification with each of the terms.
The distance becomes the addition of the size of the two substitution required
(for each one of the two terms we are comparing). This measure is very related
to our anti-unification-based measure, but it fails to take into account some of
the information, since it only counts the number of variable substitutions. For
example, substituting a term number by integer or substituting it by the number
45, will count as a single substitution in Hutchinson’s formalism, however, in our
measure changing number to integer counts as one refinement, where as number
to 45 requires two refinements. Thus, our measure is a more fine-grained one than
the one presented by Hutchinson.

Borgida, Walsh and Hirsh [6] differentiate three generic classes of similarity
measures for description logics. Our two measures fall into two of their categories.
Sλ is what they call an information-content based model, and Sπ is a feature-
based model. They already point out that the main problem of feature-based
models is identifying what constitutes a feature (a property). In this paper we
have given a particular answer to that question based on refinement operators.

RIBL (Relational Instance-Based Learning) was presented by Emde and
Wettschereck [10] as an approach to apply lazy learning techniques based on
the nearest neighbor algorithm using first-order logic as the representation for-
malism. The similarity measure of RIBL uses the intuition that the similarity
among two terms is the average of the similarity of the value of their features
(calling this function recursively if the values are terms, thus being better suited
for acyclic graphs). Moreover, they define special similarity measures if the val-
ues are numeric or symbolic. Compared to our anti-unification-based measures,
RIBL has the strong point of handling naturally numerical values. However, our
similarity measures are more general in the sense that we do not make any as-
sumption about the representation language being used, but only rely on the
existence of a subsumption operation and refinement operators. The fact that
terms are trees, graphs or lists is irrelevant to our similarity measures. Moreover,
because of the recursive way that RIBL computes similarity, values deep in the
tree are bound to have less importance in the computation, where as in our
property-based measure, it is left to the weight computation heuristic to decide
which properties are important and which ones are not. An earlier similarity
measure related to RIBL was that of Bisson [5].

An extension of the RIBL similarity measure was presented by Horváth et
al [22] in order to let RIBL handle lists and terms. The extension consists of
a specialized routine that uses an edit-distance to compute similarities among
lists and terms added to the basic similarity measure of RIBL. The downside of
the similarity metric of RIBL (including this improvement) is that specialized
measures have to be defined for different type of data, where as our similarity
measures can handle any kind of data uniformly.

On Similarity Measures Based on a Refinement Lattice 253

Another approach to similarity among structured terms is that of Bergmann
and Stahl [4]. They present a similarity metric specific for object oriented repre-
sentations based on the concepts of intra-class similarity (measuring similarity
among all the common features of two objects) and inter-class similarity (pro-
viding a maximum similarity given to object classes). The similarity is defined
in a recursive way, thus limiting the approach to tree representations.

SHAUD, presented by Armengol and Plaza [3] is another similarity metric
related to RIBL but designed for feature terms. SHAUD also assumes that the
terms are acyclic graphs, and in the same way as RIBL and Bergmann and Stalh’s
it can handle numerical values in a natural way by using specialized similarity
measures for different data types. Another benefit of our similarity measures
with respect to RIBL and SHAUD is that it can handle comparisons among
generalizations (i.e. terms that have unbound variables). Hutchinson distance
can handle generalizations by using a language change representation trick map-
ping variables to constants, and Bergmann and Stahl define some special cases
to handle this situation. Notice that this is because both similarity measures
presented in this paper do not make any assumptions about the data other than
assuming a subsumption relation and refinement operators.

Concerning the applicability of our measures to other formalisms, other au-
thors have proposed refinement operators for different subsets of first-order log-
ics or other description logics, such as Laag and Nienhuys-Cheng [14] or Shapiro
[21]. Thus, making our similarity measures applicable to those representation for-
malisms. Moreover, feature terms can represent naturally object oriented data,
making our approach applicable to those representations.

Finally, extracting properties of a term is related to the propositionalization
operation that can map relational terms to flat feature vectors, see [13] for an
overview.

7 Conclusions

In this paper we have presented two similarity measures for relational cases that
can be used for case-based reasoning systems with complex case representations.
Both similarity measures have been presented and evaluated for the feature-term
representation formalism, but can be easily applied to other representation for-
malisms by defining an appropriate subsumption relation and refinement opera-
tors. Moreover, we have evaluated our measures with several relational data-sets
showing very good results.

Compared to other similarity measures, our measures have the advantage
of being independent on the representational formalism of the cases (they can
work with flat feature vectors, trees, graphs, or any other if adequate refinement
operators are available). The down side of the measures presented is that, due
to their generality, might be computationally more expensive than other ad-hoc
similarity measures, and that due to their symbolic nature, they cannot naturally
handle proper comparisons among real numbers.

As part of our future work, we plan to formally evaluate the computational
complexity of the measures and study ways to incorporate natural comparisons

254 S. Ontañón and E. Plaza

for real-number valued data and evaluate the similarity for other representation
formalisms. Other interesting lines of future work are the combination of induc-
tive learning techniques for generating more informative patterns for a property-
based similarity, and the use of the symbolic similarity and dissimilarity terms
that can be computed by unifying the shared and not shared properties among
two cases for different purposes such as explanation generation and adaptation.

Acknowledgements. Support for this work came from the project MID-CBR
TIN2006-15140-C03-01.

References

[1] Aı̈t-Kaci, H., Podelski, A.: Towards a meaning of life. Technical Report 11, Digital
Research Laboratory (1992)

[2] Arcos, J.L.: The Noos representation language. PhD thesis, Universitat
Politècnica de Catalunya (1997)

[3] Armengol, E., Plaza, E.: Relational case-based reasoning for carcinogenic activity
prediction. Artif. Intell. Rev. 20(1-2), 121–141 (2003)

[4] Bergmann, R., Stahl, A.: Similarity measures for object-oriented case represen-
tations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 8–13. Springer, Heidelberg (1998)

[5] Bisson, G.: Learing in fol with a similarity measure. In: Proceedings of AAAI
1992, pp. 82–87 (1992)

[6] Borgida, A., Walsh, T., Hirsh, H.: Towards measuring similarity in description
logics. In: Horrocks, I., Sattler, U., Wolter, F. (eds.) Proceedings of the 2005
International Workshop on Description Logics (DL 2005), Edinburgh, Scotland,
UK, July 26-28. CEUR Workshop Proceedings, vol. 147, CEUR-WS.org (2005)

[7] Börner, K.: Structural similarity as a guidance in case-based design. In: Haton, J.-
P., Manago, M., Keane, M.A. (eds.) EWCBR 1994. LNCS, vol. 984, pp. 197–208.
Springer, Heidelberg (1994)

[8] Carpenter, B.: Typed feature structures: an extension of first-order terms. In:
Saraswat, V., Ueda, K. (eds.) Proceedings of the International Symposium on
Logic Programming, San Diego, pp. 187–201 (1991)

[9] López De Mántaras, R.: A distance-based attribute selection measure for decision
tree induction. Mach. Learn. 6(1), 81–92 (1991)

[10] Emde, W., Wettschereck, D.: Relational instance based learning. In: Saitta, L.
(ed.) Proceedings of 13th International Conference on Machine Learning, pp. 122–
130. Morgan Kaufmann Publishers, San Francisco (1996)

[11] Hinton, G.E.: Learning distributed representations of concepts. In: Proceedings
of CogSci. (1986)

[12] Hutchinson, A.: Metrics on terms and clauses. In: van Someren, M., Widmer, G.
(eds.) ECML 1997, vol. 1224, pp. 138–145. Springer, Heidelberg (1997)

[13] Kramer, S., Lavrač, N., Flach, P.: Propositionalization approaches to relational
data mining, pp. 262–286 (2000)

[14] van der Laag, P.R.J., Nienhuys-Cheng, S.-H.: Subsumption and refinement in
model inference. Technical report (1992)

[15] Larson, J., Michalski, R.S.: Inductive inference of vl decision rules. SIGART Bull.
(63), 38–44 (1977)

On Similarity Measures Based on a Refinement Lattice 255

[16] Lavrač, N., Džeroski, S.: Inductive Logic Programming. Techniques and Applica-
tions. Ellis Horwood (1994)

[17] Mitchell, T.: Generalization as search. Artificial Intelligence 18(2), 203–226 (1982)
[18] Plaza, E., Armengol, E., Ontañón, S.: The explanatory power of symbolic simi-

larity in case-based reasoning. Artif. Intell. Rev. 24(2), 145–161 (2005)
[19] Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5 (1970)
[20] Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
[21] Shapiro, E.Y.: Inductive inference of theories from facts. Technical Report 624,

Department of Computer Science, Yale University (1981)
[22] Horváth, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with

lists and terms. Machine Learning 43(1-2), 53–80 (2001)

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 256–269, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Overview of the Deterministic Dynamic Associative
Memory (DDAM) Model for Case Representation and

Retrieval

Stefan Pantazi

School of Health Sciences, Community Services and Biotechnology,
Conestoga College Institute of Technology and Advanced Learning

299 Doon Valley Drive
Kitchener, ON, Canada, N2G 4M4
spantazi@conestogac.on.ca

Abstract. The Deterministic Dynamic Associative Memory (DDAM) is a novel
associative memory model which generalizes the trie model and addresses the
issues of case representation and retrieval. This paper is an overview of the
DDAM model outlining its rationale, some of its design principles and its
similarities with existing models and approaches. The paper will also report on
a selection of experimental results.

Keywords: case representation, case retrieval, similarity assessment, visualization,
case adaptation, CBR system design, unsupervised grammar induction, context-
dependent information processing.

1 Introduction

Solving the closely related problems of representing and retrieving knowledge on
conceptual principles in an unsupervised, human-like manner, using existing
computational means, is of high interest to Artificial Intelligence (AI) and Case-Based
Reasoning (CBR) research communities. The topic is also of fundamental importance
to the general Computer Science community, in light of the following statement:

“It is interesting to note that human brain is much better at secondary key retrieval
than computers are; in fact, people find it rather easy to recognize faces or melodies
from only fragmentary information, while computers have barely been able to do this
at all. Therefore it is not unlikely that a completely new approach to machine design
will someday be discovered that solves the problem of secondary key retrieval once
and for all, making this entire section obsolete.” [1]

Within this very general context, there is an acute need for intelligent approaches that
can address the high complexity and sensitivity of Medical Informatics (MI)
applications [2]. We have postulated this need in form of the axiom that "medical
information systems must be, at the same time, usable and useful" [3]. This has
supported the identification of more immediate, achievable objectives in the form of

 An Overview of the DDAM Model for Case Representation and Retrieval 257

context-dependent information processing and CBR research on associative (or
content-addressable) memory models capable of unsupervised representation and
retrieval of knowledge, on similarity principles [4]. The unification of these objectives
was proposed in the form of the general problem of managing associative concept
representation spaces characterized by four fundamental properties: high
dimensionality, sparseness, dynamicity and similarity based organization [4].
Addressing each of the four fundamental properties of concept spaces led to the
definition of a novel memory model, the Deterministic Dynamic Associative Memory
(DDAM) model. This paper reports on this research by providing an overview of the
DDAM model.

The rest of the paper is structured as follows. It begins with a background on the
relevance of CBR to Medical Informatics (MI) and on the important role of
Algorithmic Information Theory (AIT) in explaining this relevance at a fundamental
level. The design principles of the DDAM model are discussed, followed by a
characterization of the model from the perspective of the interrelated tasks of case
representation and retrieval. Case representation is illustrated through the
generalization of trie model and through the unsupervised grammar induction
functionality. The similarity-based retrieval is illustrated by an analogy followed by
experimental results. The article concludes with a description of model limitations
and future work.

2 Background

The importance of considering similar cases in clinical decision making is very high
in clinical medicine. This is why we consider Medical Informatics (MI) a case-based
discipline [2] that can be defined as “context-dependent medical information
processing” [3]. The high complexity, dependence on context and dynamic nature of
clinical environments where often what works in one place may not work in others
(spatial context-dependence) and what works today may not work tomorrow
(temporal context-dependence) place serious limitations on the applicability to
clinical medicine of highly distilled, general evidence derived from the study of large
populations of patients. This reality differentiates MI from dominating paradigms
(e.g., Biostatistics, Epidemiology, Evidence Based Medicine (EBM)) which purposely
aim at removing the context around individual cases (e.g., through randomization) in
order to achieve a more universal applicability of findings. As a context-dependent,
case-based discipline which relies on knowledge derived from the analysis of
complex descriptions of individual cases, MI is therefore a complement to population-
based approaches. A more detailed discussion of the implications, including a
proposal for redefining the notion of clinical evidence to account for individual case
data, is available elsewhere [5].

A unifying view of scientific endeavor has provided us with some initial insights
into the relevance of CBR and information retrieval to MI through the notion of
“knowledge spectrum.” The relevance was further strengthened by the argument that
CBR has the potential to address a fundamental issue in AI: the “frame problem” [3].
A subsequent attempt to explain at a more fundamental level why, in naturalistic
environments (e.g. clinical medicine), medical decision-making is biased and often

258 S. Pantazi

departs from the objectiveness of normative decision models, has identified AIT as a
relevant area of inquiry [3]. The tenets of AIT (e.g., algorithmic complexity,
randomness, data compression, minimum description length (MDL)) have been used
to define the notion of algorithmic significance as the mere reoccurrence (i.e., at least
twice) of a sufficiently long sequence of observations (i.e., a significant pattern).
Algorithmic significance may explain some of the characteristics of clinical reasoning
which are based on the natural ability of recognizing patterns or regularities in data
and to further the relevance of memory-based approaches, analogical reasoning and
CBR to clinical medicine. In addition, because the ability of recognizing patterns or
regularities in data is, in essence, a form of data compression, the opportunity to
formulate a critique of the idealized MDL principle and to propose an alternative
named minimum description work (MDW), was also taken. Unlike MDL, MDW is
adaptable to the case of biological information processing models, where spatio-
temporal complexity trade-offs seem to favor the reduction of time complexity at the
expense of space complexity (i.e., memory based approaches). In terms of memory
models, MDW essentially allows for a computational complexity tradeoff that aims at
minimizing the read/retrieval complexity at the expense of more complex
write/updates. Therefore this proposal challenges the MDL assumption that all
information processing models have a limited memory that needs to be saved to the
maximum extent possible through forms of extreme compression.

Finally, the MDW perspective of information processing is in agreement with the
definition of “statistically rare but algorithmically significant patterns” (or algorithmic
significance) where the lengths of descriptions are more important than their counts
(i.e., statistics). This very idea links back to our original proposal to redefine the
notion of clinical evidence to include individual case data where description lengths
(i.e., algorithmic significance) are more important than their counts, as a complement
to what is currently accepted as evidence by the Evidence Based medicine (EBM)
movement, where counts are the sole criterion for judging significance (i.e., statistical
significance).

In sum, the definition of algorithmically significant regularities or patterns, while
less useful for short descriptions, becomes important for longer descriptions. This also
warrants the development and evaluation of approaches that are able to discover,
memorize (potentially redundantly according to the MDW rather than MDL principle)
and recall efficiently the regularities whose descriptions are as long as possible and
hence, as significant as possible. Functionally, such approaches are associative
memories able to discover and represent algorithmically significant regularities in
case data. Structurally they are compositional representations of concept spaces where
significant regularities are features. Of importance to CBR, the novel memory model
overviewed in this paper is a case representation and retrieval model.

3 The Design Principles of the DDAM Model

DDAM is a memory model capable of representing associative concept spaces
characterized by four fundamental properties: high dimensionality, sparseness,
dynamicity and similarity based organization. The design principles and approaches
stem from the need to address each of the four fundamental properties and are
summarized in Table 1.

 An Overview of the DDAM Model for Case Representation and Retrieval 259

Table 1. Summary of the approaches needed to address each one of the four properties of
concepts spaces

Property Approach
High
dimensionality

- Hierarchical, compositional representations
- Dimensionality reduction (compression, grammar induction)

Sparseness - No arrays
- Linked lists
- Hash functions

Dynamicity - No “ontological commitment”
- Unsupervised, dynamic grammar induction

Similarity based
organization

- No hash functions
- Trie memory models

3.1 High Dimensionality

One of the most important reasons for using hierarchical and compositional
approaches to overcome the high dimensionality of complex case representation is the
inherent information compression capability of hierarchical models. Compositional
hierarchies are often described in cognitive science, psychology and memory research
literature. The structure of the medical language which is used commonly to represent
clinical case data, is also hierarchical. Therefore an important structural property of
the DDAM memory model must be its hierarchical nature. In fact, DDAM is a
directed graph model which generalizes hierarchical representations.

In addition, the process of grammar induction, a fundamental capability of most
information processors, can be regarded as a compositional approach to
dimensionality reduction. The DDAM model must therefore be capable of
unsupervised grammar induction.

3.2 Sparseness

In the context of existing computer technology, the discussion around sparseness of
case representations boils down to a simple, pragmatic question: how do we represent
strings of various lengths in a computer? If the strings also have a compositional
structure, such as in the case of many non-random natural sequences (e.g., case
descriptions), the alternative to represent them efficiently consists of linked lists
which link the components that make sequences (characters, words, phrases, etc.)
explicitly. Using such an approach allows representation of strings of heterogeneous,
unknown lengths limited only by the available memory, while at the same time
allowing for efficient update (INSERT, DELETE) functions. The fact that, in a linked
list representation of a sequence, an element is used to retrieve the next element, is
considered by Kanerva a good model of human memory [6]. As a result, DDAM aims
at representing strings as directed graphs.

3.3 Dynamicity and Similarity-Based Organization

In addition to the preference for linked lists to fixed arrays, hash functions appear to
be the ideal choice for addressing sparseness of data and for implementations of
content addressable memories such as search and retrieval systems, content
addressable memories, and other applications, which require references to information
by content rather than by address. However, hash functions do not organize

260 S. Pantazi

information by similarity and preclude the possibility of similarity based retrieval in
the manner envisioned by Kanerva. Because they do not preserve the existing
structure of information, hash codes are highly artificial creations and “a poor model
of human memory” [6]. Fortunately, similar results can be achieved with an
associative memory model first proposed by E. Fredkin in 1960. Tries encode content
information and allow for efficient similarity-based retrieval of all sequences with a
given prefix or suffix. In addition to their associative property, tries are n-ary tree data
structures that support efficient FIND, INSERT and DELETE operations [7]. Most
importantly, in the n-ary array implementation, the time complexity of these
operations does not depend on the number, but on the length of the items stored,
which is of relevance to the algorithmic significance of memory content. Although
efficient for dynamic applications, the n-ary trie data structure is wasteful in cases
where the data is sparse and the typical number of children of each node tends to be
small such as in the case of many natural sequences.

In sum, linked lists and tries are the data structure closest to the DDAM model.
Similar to them DDAM provides efficient access to stored sequences, is sensitive only
to the length of the alphabet on which the sequences are built, while data retrieval
remains virtually independent of the number of stored sequences. The limitations of
the representational power of trie models is addressed by DDAM through the use of
more general structures (e.g., partial order sets, directed graphs).

3.4 Existing Approaches

A detailed formal description of the DDAM model is outside the scope of this paper
but is available elsewhere [4]. The following is only an inventory of models,
approaches and representation concepts relevant to DDAM with a focus on a few, key
aspects of the model. From this perspective, DDAM can be considered:

─ A generalization of the trie memory model
─ A computational model for representing strings in a computer
─ A directed graph
─ A sequence alignment algorithm
─ A unsupervised grammar induction algorithm
─ A generalization of combinatorial compositions
─ A deterministic memory model
─ An automated indexing approach for case retrieval
─ An experimental model for similarity-based retrieval

In addition, DDAM has been shown [4] to be equivalent to variable-order Markov or
n-gram models and to share similarities to Self Organizing Maps (SOM), Latent
Semantic Indexing (LSI) [8] and Formal Concept Analysis (FCA) [9] models as well
as with connectionist models such as Kanerva’s Sparse Distributed Memory model
[6]. Of interest for CBR, the DDAM model was also shown to allow for a natural
mechanism for case adaptation [4] and which forms the object of future work.

The relevance of FCA to DDAM arises only from the similarity of the underlying
mathematical concepts that the two share, namely that of partial order set (poset). The
highly abstract nature of poset definition (a base set together with a reflexive,
antisymetric and transitive binary relation) allows such structures to be constructed in

 An Overview of the DDAM Model for Case Representation and Retrieval 261

various ways depending on the choice of the base set and binary relation. Unlike FCA
where the base set is usually a collection of smaller unordered sets and the binary
relation is the set inclusion, the DDAM is a finite word poset [10] based on the more
restricted binary relation is subsequence of . This allows for the use of a base set
which is a collection of strings (i.e., a language). The fact that in languages the order
or characters is important (i.e., strings are ordered sets, tuples) implies that the
DDAM partial order set has an inherent ability to represent unstructured sequential
data while, at the same time, restricting the complexity of the structure. On the other
hand, FCA also relies on apriori knowledge in form of existing features (e.g.,
attributes) required to define its highly structured formal contexts in form of tables
with rows and columns whose order is immaterial. The representational power of
FCA approaches based on set inclusion may be higher than that of DDAM, but FCA
may also exhibit high space complexity issues that require pruning methods [11]. One
fundamental question is how can one represent a case base with a few thousands of
free text cases as a formal FCA context without any loss of information, i.e., having
each case description fully retrievable from the context itself not from linked copies
of the cases?

The choice of a restricted partial order relation in case of DDAM overcomes some
of the spatial complexity while allowing for the possibility to represent fully
retrievable unstructured sequential data (e.g., unstructured text) and with virtually no
apriori knowledge. From this perspective, this approach to case representation is
fundamentally different from existing case representation approaches based on FCA
described in [12, 13] where cases are highly structured formal contexts.

4 Case Representation with the DDAM Model

Semi-structured and free text case representations are common in CBR. The challenge
with such representations is the automated detection of case features that one can
index on in order to enable similarity based retrieval. As demonstrated further, the
case representation capabilities of the DDAM are based on its ability to discover
patterns and to perform unsupervised grammar induction of the case data. Therefore
case data is stored as a collection of grammars induced automatically from the data.

4.1 The Generalized Trie Memory Model

In order to illustrate how DDAM generalizes the trie memory model, a small
collection of strings (e.g., weekday names) was represented in the model. The relative
small number of nodes and edges resulting from the adaptive composition algorithm
on this particular data set allows us to have a complete view of the underlying
structure of the memory model in Fig. 1.

In addition, force-directed automated graph layout approaches have been employed
in order to obtain a more aesthetic visualization of the structure. The self-organization
of the graph structure results in a similarity preserving, two-dimensional display
where similar elements are closely represented. The DDAM model combined with
force-directed automatic layout algorithms shares similarities with self-organizing
maps [14]. This kind of similarity was also noticed by researchers on force directed
automatic layout algorithms on general graphs [15].

262 S. Pantazi

ay,7

day),7

at,1

ne,1

un,1

esda,2 nesday,1

sday,3
rsday),1

esday),2
sd,3

da,7

uesday,1

ue,1

We,1

on,1

dn,1

rsda,1

Sa,1

ed,1

ur,2

hurs,1

Tu,1

nd,2

onda,1

unda,1

turd,1

iday,1

es,2

uesd,1

(T,2

Th,1 Fr,1(W,1

(S,2

hu,1 rd,1

rs,1

nesd,1

(F,1

tu,1

Su,1

y),7

Mo,1

(,7

y,7

ay),7t,1

esday,2
nesday),1

e,3
nes,1

n,3

und,1

sda,3

day,7

sday),3d,8

a,8

T,2 (Tu,1

edn,1

h,1

ues,1

ond,1

rsday,1

uesday),1

Wed,1

dne,1

Sat,1

r,3

urs,1

u,4

Tue,1

W,1

S,2

(Sa,1

nda,2

urd,1

onday,1

unday,1

iday),1

esd,2

uesda,1

s,3

F,1

Fri,1tur,1

hur,1

nesda,1

rda,1

rsd,1

o,1

Sun,1
(Th,1

(M,1

nday,2

onday),1

unday),1

ri,1 rday,1

),7

M,1

(Su,1

nday),2

i,1 rday),1
id,1 ida,1

Fig. 1. Depiction of the compositions of the seven strings that name the seven days of week
showing all the substring elements in the memory; a representation begins at a common node
marked by an open round parenthesis ‘(’ and end at the ‘)’ node on the right side of the image;
the string representations overlap is evident towards the end of each representation as these
particular representations share common suffixes (e.g., “-day”)

Retaining only the string composition elements in the graphical display yields
simpler structures such as that in Fig. 2 which is a generalization of the prefix and
suffix trie structures derived from the strings in the same data set.

The structure in Fig. 2 illustrates that the representational nodes in DDAM are
actually not corresponding directly to letter symbols but to more complex patterns
which capture the necessary amount of context required to minimize the ambiguity of
representations. For example, the 8 instances of the character d in the seven weekday
names correspond in reality to the 8 distinct patterns rda, onday, unday, iday, rsday,
uesday, nesday and edn. By capturing enough prefix and suffix context around each
of the 8 d character instances, these more complex patterns have all become unique
and have rendered the representations of weekday names non-ambiguous. The
representation algorithms in DDAM aim at obtaining the same kind of representations
from arbitrary unstructured sets of sequences.

The generalization of trie memory models consists of combining the prefix and
suffix tries into a common data structure such as the one in Fig. 2. This generalized
structure ceases to be a tree and becomes a directed graph. The DDAM model, as a
generalization of the trie structure, is therefore a directed graph that is able to achieve
representations of sequential data with variable levels of ambiguity that range from
highly ambiguous (i.e., trivial) to non-ambiguous (i.e., optimal) representations. One
of the most important features of the DDAM model is that all representations of a

 An Overview of the DDAM Model for Case Representation and Retrieval 263

(

ay)

(Tu

edn

Sat

t

(Su

h

o

Sun

(Th

W

dne

Tue

Wed

ues

(M
(S

(T
(W

(F

y)

Tu

dn

at

tu

Su

hu

on

un

We

Sa

Fr

Th

ne

ue

ed

)

M

(Sa

F

tur

hur

ond

Fri

Mo

turd

hurs

onda

ri

uesd

day)nday)

rday)

sday)

iday)

onday)

unday)

rday

esday)

rsday)

iday

onday

unday

uesday)

nesday)

rsday

uesday

nesday

urd

urs

nes

i

uesda

rd

rs

nesd

id

rda

und

rsd

nesda

ida

unda

rsda

Fig. 2. A subset of the elements in Fig. 1 showing only the elements that make the final
compositions of the seven strings

sequence in DDAM are aligned and can be transformed from one into another by an
adaptive string composition algorithm.

4.2 Unsupervised Grammar Induction

In DDAM, string compositions with certain properties correspond to formal
grammars. The non-terminals in these grammars could be regarded as features that
can be used to dynamically search and organize a dataset in context/content-
dependent, meaningful categories. For example, in Table 2 the machine induced
formal grammar of the seven strings that name the days of week (shown on the right
hand side) was used to categorize the days of week according to their content (and
context) by creating an inverted representation which indexes on the features (e.g., -
nday, -sday). This led to the creation of a multiple hierarchy that captures similarity
relationships between items and their features (e.g., Sunday and –nday) as well as
between features themselves (e.g., -sday) and –esday)). Creating such multiple
hierarchies is identical to the general concepts of inverted file [16] and inverted index
[17] which are fundamental to information retrieval and can be successfully used in a
search and retrieval on secondary keys.

264 S. Pantazi

Table 2. Example of inverted (feature indexed) multiple hierarchy derived from a machine
induced formal grammar

Multiple hierarchy Grammar rules
(T-

(Tuesday)
(Thursday)

(S-
(Saturday)
(Sunday)

-ur-
(Saturday)
(Thursday)

-da-
-day)

(Friday)
(Saturday)
–nday)

(Monday)
(Sunday)

–sday)
(Thursday)
-esday

(Tuesday)
(Wednesday)

10 -> (T
13 -> 10 u 11
14 -> 10 h 7 12
 6 -> (S
 8 -> 6 a t 7 2
 9 -> 6 u 1
 7 -> u r
 8 -> 6 a t 7 2
14 -> 10 h 7 12
 4 -> d a
 3 -> 4 y, 2 → 3)
16 -> (F r i 2
 8 -> 6 a t 7 2
 1 -> n 2
 5 -> (M o 1
 9 -> 6 u 1
12 -> s 2
14 -> 10 h 7 12
11 -> e 12
13 -> 10 u 11
15 -> (W e d n 11

5 Similarity-Based Retrieval (IR) with the DDAM Model

The main goal of similarity-based (associative) organization of a memory model is to
enable retrieval based on similarities with a query, a process that is key to human
cognition and of importance for CBR. In addition, if the retrieval is deterministic,
then data must be recalled exactly. Computationally, similarity based retrieval is what
Minsky and Papert referred to as “the best match problem” and, as Kanerva described
it [6], it could be thought of as the retrieval of all binary descriptions stored in an
associative (i.e., where similar descriptions are close), multidimensional and highly
sparse binary space, within a certain bit radius of a query which is also represented as
a binary description in the same space. Therefore, in a conceptual space whose
organization obeys similarity principles, this kind of similarity-based retrieval would
be just a read function that returns the items residing within a predefined search radius
from a given query. While many case similarity measures can be defined on such a
space, one of the simplest measures is just the distance in bits between the
representations of two cases.

5.1 The “Hyperspace Telescope” Analogy

One of the best analogies for this kind of associative recall is that of a hypothetical
“hyperspace telescope”, which can be centered on a query, allowing one to visualize
the high dimensional similarity neighborhood of that query, within a predefined recall
radius expressed in bits. The radius value corresponds to the associative recall radius
that limits the number of items that can be visualized at one time with the telescope.

For example, in Fig. 3, a hypothetical hyperspace telescope with an increasingly
larger associative recall radius of up to 4.0 bits was centered on the query abcde in the
context of a collection of 10,000 strings of lengths up to 9 characters, generated

 An Overview of the DDAM Model for Case Representation and Retrieval 265

Fig. 3. Hypothetical hyper-space telescope with an objective radius (i.e., recall radius) ranging
from 2.0 to 4.0 bits and which allows the “observation” (i.e., retrieval) of the most similar items
to the query “abcde”

randomly from the alphabet {a, b, c, d, e, f, g, h, i, j}. The representation space of
the randomly generated strings is highly sparse as it contains only 104 elements out
of all possible 109+108+…+101+100 strings, that is, just about 0.001% of all
possible strings. Through the hyperspace telescope we are able to visualize the
items in the associative memory which are similar to the query, within a specified
radius. The shapes of the objective of the hyperspace telescope are projections of
the multi-dimensional pattern space onto a 2-dimensional display. The exact form
of the objective is determined by the properties of the pattern space which, in turn,
are determined by the algorithmic properties of the patterns that are represented in
that space. In Table 3, the retrieved strings are shown on columns that correspond to
the distance, in bits, from the query on which the hyperspace telescope was
centered.

Table 3. The results of the DDAM associative recall on the query “abcde” on a collection of
10,000 random strings constructed from the alphabet {a, b, c, d, e, f, g, h, i, j} using an
increasingly large bit radius, from 0.0 bit to 4 bit; direct similarities with the query “abcd” are
shown bold and underlined, indirect associative similarities are shown in italics and underlined

0.0 2.0 2.3 3.0 3.3 3.6 3.9
abcde ifbcdeefa jcabcdhfa eehddcde cdjjediif bdfbffcde hfbcdffaa
 cbcdeigce hcabcdjje ijgfecde gcdegfjjh hhbddjcde jhbcdffij
 hcdhabcdf jidcaacde gcdeefadh jiijjicde
 fabcdagje hcggdhcde jcdhabjig jbedifcde igceieidf
 chbcdegff bifbcabei ggdaijcde digcejbaa
 bhbcdefdb edadegffb gbgdcjcde ifhhfigce
 deefajhac gbhcaicde gadhhigce
 dhabcjgie
 cdabcdabb jajdaefdb
 ddabcdahe hcfbaefdb
 bcdjjeej

 baeeeeefa
 bigagdhfa

266 S. Pantazi

Upon closer inspection, a direct consequence of this kind of associative recall can
be observed. Besides strings that show obvious similarities with the query (e.g.,
cbcdeigce) there are others that appear to have little in common with the original
query (e.g., igceieidf, digcejbaa). Yet they actually do, yet not directly, but indirectly
through other mediating patterns (e.g., igce) to which they are strongly associated.
These strong associations make it possible for spurious patterns that appear to have
little in common with the original query to be retrieved within the search radius.
Translated to a real information retrieval situation where strings are representations of
cases and where patterns in the representation are features (e.g., morphemes, words,
phrases, etc.), the mechanism would allow the retrieval of documents which do not
necessarily contain the query but may contain other features which are indirectly but
strongly enough associated with the query (e.g., synonymous words, similar phrases,
relevant contextual cues, etc.). This kind of functionality likens the DDAM model to
existing approaches such as latent semantic indexing (LSI) [8], which are also known
to be able to represent and recall information based on indirect associations (e.g., a
query on “streptococcus” may recall documents in a biomedical collection that
contain the phrase “throat infection” due to the strong association between the two).

This associative recall mechanism was inspired by Kanerva’s Sparse Distributed
Memory (SDM) model [6] and is fundamental to the information retrieval capabilities
of the DDAM model. At the same time, such a mechanism is extremely relevant to
CBR and IR, two apparently different fields of research whose strong association was
already established [18].

5.2 A Medical Terminology Experiment

In another experiment on representing a dataset of 1,700 compound medical terms
gleaned from the various data sources, the DDAM model was queried with the term
“hematoma,” which was among the terms in the dataset. The retrieved strings, shown
in Table 4, are placed in columns corresponding to the concentric hyperspheres
having bit radii that range from 0.0 bits to 2.0 bits. The similarity based retrieval
mechanism shows among others, at 2.0 bits, an indirect association which causes
terms such as hydroxymyristoyl which appears in the results set because of the
similarity with peristalsis which, in turn, has obvious similarities with a close match
(namely peristomal) to the original query hematoma.

Table 4. The results of the DDAM associative recall on the query “hematoma” on a collection
of 1,700 medical compound terms within a bit radius ranging from 0.0 to 2.0 bits

0.0 1.0 1.6 2.0
hematoma hematomas angioedema hemangiomas
 cephalhaematoma hemangioma
 hematuria angiofibriomas
 lymphohematopoietic hematopoietic
 hepatoma manometric
 hepatomegaly prematurity
 peristomal premature
 perisplenitis
 peristalsis
 hydroxymyristoyl

 An Overview of the DDAM Model for Case Representation and Retrieval 267

It is therefore clear that this approach to similarity based retrieval is bound to yield
result sets that contain spurious hits caused by the combination of indirect associative
recall and the potentially significant sparseness of the pattern space. However, as it
was demonstrated in [4], the spurious hits can be weeded out by simply representing
additional information into the model. Essentially, representing new information in
the model fills some of the pattern space gaps between a query and the representations
that are marginally or indirectly similar to it and which cause spurious results. To use
the hyperspace telescope analogy, adding additional information in the memory
effectively “knocks out” spurious elements further from the centre of the telescope
objective and makes them retrievable only at higher bit radii.

To support this idea an additional experiment was done on an extended dataset
which included the following terms: stomach, periost, stomatitis, anastomosis. As a
result, because the new terms share similarities with the spurious result peristomal, on
the very same query hematoma, the term peristomal which was initially retrieved
within a 1.0 bit radius, was effectively “pushed” outwards from the query in the
conceptual space and was retrievable only at 2.0 bit radius. Therefore, by adding
relevant additional information into the system, we were able to overcome
problematic associations and weed out spurious results. To generalize, this supports
the idea that similarity-based retrieval can be improved incrementally and
continuously by dynamically adding relevant information into a system, a property
which is in perfect agreement with the functional principles of CBR and of significant
importance to Medical Informatics (MI).

5.3 Unsupervised Equivalence Set Induction

The DDAM capabilities have also been tested in equivalence set induction experiments
[4]. These experiments have culminated with the discovery of one equivalence set of
extraordinary algorithmic significance. In terms of retrieval by similarity from case
bases with complex descriptions (e.g., textual) such occurrences would be also highly
unusual, unless some cases exist in multiple very similar versions.

The data sources used in the following experiments are the MedTest collection, a
collection of 75 queries and 2,344 documents used for evaluation of the SAPHIRE
information retrieval system [19]. Each document contains an abstract and metadata
(title, authors, journal, and MeSH index terms). The collection was originally created
for the evaluation of the MEDLINE system in clinical settings, and was later adapted
for the evaluation of retrieval systems in biomedicine.

In an experiment, DDAM formed an equivalence set containing two distinct strings
that shared extremely long identical subsequences. The sheer length of these
regularities implied that their frequency to appear by chance in two distinct
documents is extremely low. This occurrence is therefore an extraordinary event, with
high algorithmic significance and which is highly indicative of only one, virtually
unequivocal scenario: the text must have been copied from one document into the
other in some way. A search on this paragraph in the original MedTest collection
turned out two distinct abstracts with the identification numbers 803 and 1972,
respectively. The subsequent inspection of the metadata revealed that the documents
have been written by the exact same authors but published in different years in two
different journals.

268 S. Pantazi

5.4 Limitations and Future Work

The main limitation of the DDAM model is related to its scalability. This is so
because the memory (i.e., space) requirements are, in the worst case, a quadratic
function of the length of represented sequences. However, DDAM was implemented
and ran successfully on systems with only 2 gigabytes of RAM, demonstrating
acceptable performance in tasks involving the MedTest collection, which is the
equivalent of a case base with about 2,400 free text case descriptions.

We have also identified an immediate need for short-term applications that can
overcome scalability limitations and truly demonstrate the potential of the DDAM
model approach. In this regard, recent development in distributed and grid computing
are of interest in pursuing. An example of immediate demonstration of the usefulness
of the DDAM model is in the area of user interface design and whose efficiency could
be improved through a “suggest as you type” approach that can go beyond the usual
limitations of the prefix trie approach.

An additional limitation of the DDAM stems from the fact that the more distant
two patterns in a sequence, the more difficult for this model to explicitly capture and
represent the associations between them. Though overcoming this limitation was
already envisioned through additional innovations, these will most likely increase the
spatial and temporal complexity of the model.

Another important avenue of future research is the extension of the DDAM model
to the representation of cases that contain multimedia and biosignal data. The
rationale for this is based on the observation that the representations of 1-dimensional
sequences in DDAM are 2-dimensional combinatorial objects named Dyck paths.
Generalizing, it appears that in order to achieve DDAM representations of objects
with a certain dimensionality, one might have to devise models that use
representations whose dimensionality is necessarily higher. For example, in order to
process 2-dimensional objects such as images, the representation model may have to
be extended to employ 3-dimensional as “Dyck surfaces.” Though Dyck surfaces are
hypothetical combinatorial objects that nobody described yet, their computational
complexity would necessarily be higher than that of the images they represent but not
excessively higher if data were sufficiently sparse. In sum, there appears to be little
reasons that preclude the information processing model developed in this dissertation
to be extended to processing representations whose dimensionality is higher than that
of 1-dimensional sequences.

Finally, an important objective of this research is to continue the exploration of
advanced case adaptation and retrieval that works on conceptual principles. Such
similarity based retrieval approach has the potential to allow for queries such as
“retrieve the most similar/relevant cases and explain their similarities to the following
case description, in the following context/scenario” a capability of extreme
importance in the context of CBR and the emerging Electronic Health Records.

Acknowledgements

The author wishes to acknowledge the useful comments of the reviewers, in particular
those of reviewer #4.

 An Overview of the DDAM Model for Case Representation and Retrieval 269

References

1. Knuth, D.E.: Retrieval on Secondary Keys. In: The art of computer programming: Sorting
and Searching, pp. 392–559. Addison-Wesley, Reading (1997)

2. Pantazi, S.V., Arocha, J.F., Moehr, J.R.: Case-based Medical Informatics. BMC Journal of
Medical Informatics and Decision Making 4(1) (2004)

3. Pantazi, S.V., Kushniruk, A., Moehr, J.R.: The usability axiom of medical information
systems. International Journal of Medical Informatics 75(12), 829–839 (2006)

4. Pantazi, S.V.: A Deterministic Dynamic Associative Memory (DDAM) Model for
Concept Space Representation, in School of Health Information Science, p. 366.
University of Victoria, Victoria (2006),
http://hi.conestogac.on.ca/files/dissertation-final.pdf
(accessed March 6, 2009)

5. Pantazi, S.V., Bichindaritz, I., Moehr, J.R.: The case for context-dependent dynamic
hierarchical representations of knowledge in Medical Informatics. In: ITCH 2007,
Victoria, BC (2007)

6. Kanerva, P.: Sparse distributed memory. MIT Press, Cambridge (1988); xxii, 155
7. Ellard, D., Ellard, P.: S-Q Course Book (2003),

http://www.eecs.harvard.edu/~ellard/Courses/ (cited January 24, 2006)
8. Landauer, T., Dumais, S.: A Solution to Plato’s Problem: The Latent Semantic Analysis

Theory of Acquisition, Induction and Representation of Knowledge. Psychological
Review 104(2), 211–240 (1997)

9. Wille, R.: Formal Concept Analysis as Mathematical Theory of Concepts and Concept
Hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS,
vol. 3626, pp. 1–33. Springer, Heidelberg (2005)

10. Erdos, P.L., Sziklai, P., Torney, D.C.: A finite word poset. The Electronic Journal of
Combinatorics 8(2), 1–10 (2001)

11. Ventos, V., Soldano, H.: Alpha Galois Lattices: An Overview. In: Ganter, B., Godin, R.
(eds.) ICFCA 2005. LNCS, vol. 3403, pp. 299–314. Springer, Heidelberg (2005)

12. Díaz-Agudo, B., González Calero, P.A.: Classification based retrieval using formal
concept analysis. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS, vol. 2080, p. 173.
Springer, Heidelberg (2001)

13. Bichindaritz, I.: Memory Structures and Organization in Case-based Reasoning. In:
Perner, P. (ed.) Case-based Reasoning on Images and Signals, pp. 175–194. Springer,
Heidelberg (2008)

14. Kohonen, T.: Self-Organizing Maps. In: Huang, T.S. (ed.), 3rd edn. Springer series in
information sciences, vol. 30, p. 501. Springer, Heidelberg (2001)

15. Frick, A., Ludwig, A., Mehldau, H.: A Fast Adaptive Layout Algorithm for Undirected
Graphs. In: DIMACS Workshop on Graph Drawing. Springer, Heidelberg (1995)

16. Knuth, D.E.: The art of computer programming: Sorting and Searching, 2nd edn., vol. 3.
Addison-Wesley, Reading (1997)

17. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing,
xxxvii, p. 680. MIT Press, Cambridge (1999)

18. Bichindaritz, I.: Memory Organization As the Missing Link Between Case Based
Reasoning and Information Retrieval in Biomedicine. In: ICCBR 2005 Workshop on CBR
in the Health Sciences (2005)

19. Hersh, W.R., Hickam, D.H., Haynes, B.: A performance and failure analysis with a
MEDLINE test collection. J. Am. Med. Inform. Assoc. 1, 51–60 (1994)

Robust Measures of Complexity in TCBR

M.A. Raghunandan, Sutanu Chakraborti, and Deepak Khemani

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai-600036, India
maraghu@cse.iitm.ac.in, {sutanuc,khemani}@iitm.ac.in

Abstract. In TCBR, complexity refers to the extent to which similar
problems have similar solutions. Casebase complexity measures proposed
are based on the premise that a casebase is simple if similar problems
have similar solutions. We observe, however, that such measures are vul-
nerable to choice of solution side representations, and hence may not be
meaningful unless similarities between solution components of cases are
shown to corroborate with human judgements. In this paper, we redefine
the goal of complexity measurements and explore issues in estimating
solution side similarities. A second limitation of earlier approaches is
that they critically rely on the choice of one or more parameters. We
present two parameter-free complexity measures, and propose a visual-
ization scheme for casebase maintenance. Evaluation over diverse textual
casebases show their superiority over earlier measures.

1 Introduction

Textual Case Based Reasoning (TCBR) involves answering queries expressed in
free-form text, by reusing past problem solving episodes, which are themselves
recorded as cases expressed in text. A case in TCBR is typically composed of a
problem and its associated solution, both of which are unstructured texts. The
underlying assumption is that a case whose problem description is sufficiently
“similar” to a query, is likely to have a solution which is relevant in answering
the query. Computing similarity between textual problem descriptions of cases
is non-trivial, since surface level features like words may not have direct bear-
ing with the underlying meaning. Thus, free-form descriptions are often mapped
to richer representations, to ensure that the comparisons are meaningful; this
may involve using a combination of background (domain specific) and linguistic
knowledge. A central problem in TCBR is choosing the right representation for
the problem descriptions. The proof of the pudding is in the eating, and thus
a good representation is one that maximizes the chance that a retrieved case
will be useful in solving the query problem. Evaluation measures from Informa-
tion Retrieval like accuracy, precision and recall have been used in TCBR to
measure retrieval effectiveness and can act as posterior estimates of how good
a representation is. Recent studies have attempted to characterize a casebase
using complexity measures like cohesion [8], alignment [9], and global alignment

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 270–284, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Robust Measures of Complexity in TCBR 271

[13], and to demonstrate that knowledge of these characteristics can be useful in
predicting the CBR system performance even in the absence of unseen queries
and corresponding human relevance judgements.

Complexity measures find several applications. First, we can use complexity
to guide our choice of casebase representations, with the goal of improving re-
trieval effectiveness. Secondly, given a choice of representation, we can compare
across different casebases and use these measures to explain varying retrieval
effectiveness. Thirdly, problematic cases or features can be identified, and this
may be useful in suggesting case-base maintenance operations (like deleting or
modifying existing cases, or adding new cases and/or features) that can lead to
improved competence of the system.

This paper revisits the assumptions behind the measures proposed so far. We
argue that these measures are brittle in two ways. Firstly, these measures are
founded on the following hypothesis:

A case-base is simple if solutions of similar problems are similar.
Raghunandan et al. [13] evaluate the goodness of complexity measures by

showing that they positively correlate with accuracies over diverse casebases.
Chakraborti et al. [11] use a similar approach, but across different representa-
tions of the same casebase. In this paper, we highlight a salient limitation of
these approaches, in that the measures are critically dependent on the choice of
solution side representations. Thus, we could obtain a high correlation simply
by arbitrarily tweaking solution representations such that the resulting solution
similarities result in complexity measures that show strong positively correlation
with accuracy. Note that a given choice of problem representations can thus give
rise to very different complexity measures, thus rendering comparisons across
representations and across casebases meaningless. We argue that the governing
criterion should be changed to the following:

A case base is simple if small changes in the query only effect small changes
in the “result set”, i.e. the set of cases regarded as relevant by an expert.

Alternatively, A casebase is simple if result sets of similar queries are similar.
In effect, we assert that for complexity measures proposed in [13] to work,

we need to ensure that solution side similarities are supported by human judge-
ments. This raises the question: if both accuracy and complexity measures are
reliant on human judgements, why would we need complexity measures in the
first place? We argue that evaluation measures like accuracy and complexity
measures have complementary goals. While accuracy is a black box estimate
and is agnostic to the technique used internally to perform retrieval, complexity
is strongly tied to instance based learning: complexity tells us how well suited
CBR (the instance based learner) is, for the problem at hand.

A second limitation of the complexity measures is that all of them involve
more than one free parameter, which need to be set appropriately, often using
trial and error. The correlation studies reported are thus critically dependent on
these parameter settings. In this paper we present two parameter free evaluation
measures that overcome these limitations. In addition to these measures we
also present a novel visualization technique inspired by one of these complexity

272 M.A. Raghunandan, S. Chakraborti, and D. Khemani

measures. The visualization technique allows us to identify problematic pairs of
cases, and would thus be useful for maintenance tasks.

The paper is organized as follows. Section 2 surveys related work and po-
sitions our work in context. Section 3 argues that solution similarity need to
corroborate with human judgements, for complexity measures to be meaningful.
We provide empirical results to substantiate this. Section 4 presents two robust
algorithms for measuring complexity, and also proposes a novel visualization
technique for casebase maintenance. Section 5 discusses our evaluation method-
ology and presents empirical findings on how well the two measures fare over
datasets of varying size and complexity. We highlight our main contributions
and conclude in Section 6.

2 Related Work

Researchers in both TCBR and Information Retrieval (IR) have been interested
in the problem of characterizing a collection of documents using complexity
measures that can be predictive of the retrieval effectiveness. In section 2.1, we
establish a mapping between CBR and IR retrieval goals. We then take a quick
tour of existing work, identify their shortcomings and motivate our current work
in that context.

2.1 TCBR and IR

IR aims at retrieving documents from a collection that are relevant to answering
a query. In TCBR the query is a problem description, and the task is to suggest
a solution based on cases whose problem descriptions are similar to the query.
While past studies have highlighted differences between CBR and IR [3], we
propose that each document in IR can, in fact, be treated as a case. Though
the goal is to retrieve a documents, the documents are not compared directly
with the query. Rather, a characterization of these documents in terms of a
set of underlying indices is compared against the query and relevance rankings
produced. We can draw parallels between the document characterizations in IR
and problem representations of textual cases in TCBR, in that they are both
matched against the query during retrieval. In TCBR, a case base is simple if
solutions corresponding to similar problem descriptions are regarded as similar
by humans. Extending this to IR, a document collection in IR is regarded as
simple if we can ascertain that documents with similar characterizations will be
adjudged as similar by humans. Thus, complexity measures designed for TCBR
are likely to be relevant for IR as well.

2.2 Complexity Measures in TCBR

Raghunandan et. al. [13] present a consolidated study, and empirical comparison,
of three different complexity measures proposed in the context of TCBR. Two
of them, namely case cohesion and case alignment are local measures in the

Robust Measures of Complexity in TCBR 273

sense that they assign an alignment score of a particular case based on in its
neighborhood, and then aggregate the alignments of all the cases to obtain the
casebase alignment. The third was a global measure, which compared the linear
ordering of cases on the problem and the solution side, to arrive at a complexity
estimate.

The case cohesion measure presented in Lamontagne [8] defines alignment
in terms of the degree of overlap between the nearest neighbours of a case on
the problem and the solution side. The case-specific cohesion values can be ag-
gregated to define a cohesion value for the entire casebase. One limitation of
the approach is that the problem and solution sides are treated symmetrically.
This goes against the intuition that similar problems having dissimilar solutions
harm alignment a lot more than dissimilar problems having similar solutions.
One more disadvantage of this measure is that all neighbouring cases are treated
equally, irrespective of their distance to the case in question. The case alignment
measure presented in [9] overcomes some limitations of cohesion. Firstly, it re-
stricts attention to cases in the neighbourhood of a given case based on problem
side similarities, thus respecting asymmetry between problem and solution side
similarities. Secondly, the effect of each case on the alignment is weighted by
its problem similarity to the target case. Hence nearby cases have a more pro-
nounced effect on the measure than cases which are farther away. The global
alignment measure presented in [13] is based on the notion of stacking, which
has the effect of generating an ordered list of cases such that cases which are
similar to each other are stacked closed to each other. Two such lists are gener-
ated, one using problem side similarities, and the the other using solution side
similarities. The key intuition is that well aligned casebases should lead to good
solution side clustering of cases when the problem side ordering is imposed on
the solution side. As discussed in Section 4, imposing a linear order on cases may
lead to a representation that is not rich enough to capture associations between
cases.

We note that all work till date define alignment measures in terms of solution
side similarities derived from solution representations of cases. As explained in
Section 3, this does not always work. In addition to this, all the methods studied
earlier are (sometimes critically) dependent on the setting of some parameters.
There are no standard values of these parameters that have been found to work
in a large variety of setting, nor are there any guidelines for choosing their values.
Hence it becomes difficult to determine which value of the parameter gives an
accurate alignment value.

3 Challenges in Estimating Solution Similarity

3.1 Pitfalls in Earlier Approaches

A case-base is said to be simple or well aligned when similar problems have
similar solutions. But when can we say that two solutions are similar? Earlier
approaches have taken some measure of text similarity on the problem and so-
lution side, and used that to calculate alignment. This alignment measure is

274 M.A. Raghunandan, S. Chakraborti, and D. Khemani

then used to guide design choices such as representation and similarity measure
chosen. We observe however, that the solution representation can be arbitrarily
chosen such that the solution similarities lead to high alignment even though
this is barely indicative of system performance in the face of human evaluation.
Therefore we must be careful in estimating solution similarities. In classifica-
tion problems, where class labels are used as solutions, when two cases have the
same class label, then they are similar, and if they have different class labels,
then they are dissimilar. Further, if the class labels were to come from a tax-
omomy or an ordering then one could define a similarity measure on the class
labels. In both these cases, the solution similarities are implicitly derived out
of human judgments. Hence higher alignment can be expected to predict higher
classification accuracies. However, in unsupervised settings, where the solutions
are in free-text form, estimation of solution similarities is not straightforward.
Earlier works ([8],[9],[13]) use representations of solution texts to estimate simi-
larities; we demonstrate in section 3.2 why this is not a good idea. To overcome
this shortcoming, we need indirect ways of estimating solution similarities from
human relevance judgements; one such approach is presented in section 3.3.

3.2 Empirical Demonstration

We consider the NHS medical dataset [13], which consists of over 4000 incident
reports in the medical domain. The problem describing an incident and solution
describing an action taken are in free text form. In addition, there are six labels
for every case, that describe different aspects of the case. We generated eleven
different case-bases from the original case-base. Dataset 1 is the least complex,
having just 1 class, whereas dataset 11 is the most complex with 11 classes.
Classification accuracy was calculated with each of the labels as the class label.
Alignment was measured, first using the solution text, and then using the labels.
The results are shown in table 1. We observe that in most cases, the correlation
between alignment and accuracy was better when a combination of labels were
used, than with solution text. This shows that the labels, which are a form of
user feedback, are more reliable indicators of solution similarity than free text.

Table 1. Alignment - Medical dataset

Class Label Corr. with text Corr. with labels
care stage -0.598 0.050

detail -0.629 0.202
adv event -0.516 0.280

result 0.406 0.235
severity 0.138 -0.248

type -0.291 0.102

That solution similarities based on solution text alone may not lead to robust
estimates can also be seen from results reported by Gabrilovich et. al. [12] who
carry out experiments over a collection of 50 documents from the Australian
Broadcasting Corporations news mail service, which were paired in all possible

Robust Measures of Complexity in TCBR 275

ways and 8-12 human judgements were averaged for each pair. A bag of words
similarity measure had a poor correlation (0.1 - 0.5) with human judgements,
whereas LSA based similarities yielded a correlation of 0.6.

3.3 Estimating Similarities in the Presence of Human Judgment

The similarity between two problems is determined by the representation and
similarity measures used for retrieval. However, estimating the similarity be-
tween two solutions is not so straightforward. This is because a solution does
not participate in retrieval, hence we have no principled way of choosing between
representations. To circumvent this problem, we observe that we can have a pref-
erence ordering of representations, based on how well the solution similarities
generated therefrom correspond with human judgements.

For text data, similarity is calculated by using a cosine measure on a vector
representation of the text in the term space, or in some derived space, like the
LSA concept space described in Deerwester et. al. [1], or the LDA topic space
described in Blei et. al. [7]. In an IR setting, given a set of documents D, and a
query qi, a human can identify the set of documents reli ⊆ D that are relevant to
the query. The set of documents irreli = D− reli are assumed irrelevant. In the
TCBR context, we can treat the problem components of cases as queries, and
the lists of relevant cases reli (cases whose solutions are deemed by an expert
to be relevant in answering the query) as the solutions si. We can now use the
overlap between two relevance lists as an estimate of the similarity between the
two solutions. Thus,

sim(si, sj) ∼ sim(reli, relj) =
|reli ∩ relj |
|reli ∪ relj |

An interesting research direction is to look at the problem of solution side sim-
ilarity estimation, when very little explicit human judgement is available. Re-
searchers in IR have looked at the problem of implicit relevance feedback [4],
which is relevant in this context.

4 Calculating Complexity

Let us consider two out of the four possible relationships between two cases in the
case-base. If two cases are dissimilar on the problem side, and yet have similar
solutions, this may not adversely affect complexity, but we have an interesting
scenario that warrants a closer look. However, two cases which are similar on the
problem side having dissimilar solutions contribute to increased complexity in the
case-base. Neighbourhoods of such cases may pose a challenge for instance based
learners, since retrieval will not be robust to very small changes in the query.
Complexity measures are designed to quantify and aggregate the contributions
of such pathological pairs of cases.

276 M.A. Raghunandan, S. Chakraborti, and D. Khemani

In this section we look at two measures of calculating alignment between
the problem and solution spaces. The first measure calculates a spanning tree
on the problem and solution side, and then compares them to determine the
alignment. The second is based on the correlation between the problem and
solution similarity values. These measures address the limitations of the previous
measures, as identified in section 2. We also describe a visualization of the case-
base that naturally follows from the spanning tree approach.

4.1 MST Method

The minimum spanning tree of a graph, is a tree, the sum of whose edges weights
is minimal. Consider a fully connected, undirected graph with the nodes repre-
senting cases, and edge weights representing the distance between cases. We pro-
pose that the minimal spanning tree (MST) of this graph captures, in essence,
the most important links in the case-base. We have two such graphs, one each
on the problem and solution side; the corresponding MSTs can be compared to
give us an estimate of complexity. A simple casebase will have many edges in
common between the two trees, whereas a complex casebase will have largely
different trees.

Let us consider a simple case-base that has five cases. The problem- and
solution-side graphs are as shown in figures 1a and 1b. (To avoid clutter, all
edges are not shown.) The edges which belong to the MST are shown dark,
whereas others are dotted. Since the two trees are different, we can see that the
case-base is complex. To calculate alignment, we assign the solution-side weights
to the problem-side tree, to get a sum of weights, cost. The sum of weights
of the solution side MST, costmin, is the minimum sum for any tree on the
solution-side. We can similarly compute a costmax, which is the sum of weights
of the maximal spanning tree on the solution side. We now define the alignment
between the problem and solution space as,

alignMST =
cost− costmin

costmax − costmin

4.2 Correlation Method

In well-aligned case bases, cases having a high similarity on the problem side are
expected to have a high similarity on the solution side as well. This observation
leads to the consideration of the correlation between the problem similarities,
and the solution similarities of cases, as a measure of alignment. Directly taking
the correlation between these two sets of values doesn’t bring out the asymmetry
between the problem and solution side. Essentially, case pairs which have higher
problem similarity should have a greater bearing on the alignment. This leads
us to use weighted correlation measure between the two sets of similarities, with
the weights equal to the problem similarities. This formulation is given below:

Robust Measures of Complexity in TCBR 277

(a) Problem graph (b) Solution graph

Fig. 1. Case-base graphs

In a case-base having n cases, consider the set of problem similarity values
given by,

PS = {psi,j : 1 ≤ i < j ≤ n}
where psi,j is the similarity of the problems of cases i and j. The set of solution
similarities SS is similarly defined. The alignment between the problem and
solution space is given as,

alignCorr = wtCorr(PS, SS, PS)

where,

– the weighted correlation function Wt Corr between two sets of values x and
y, with weights w, is given by,

wtCorr(x, y, w) =
wtCov(x, y, w)

wtCov(x, x, w) ∗ wtCov(y, y, w)

– the weighted covariance function Wt Cov between two sets of values x and
w, with weights w, is given by,

wtCov(x, y, w) =
∑

i wi(xi −m(x, w))(yi −m(y, w))∑
i wi

– and the weighted mean m(x, w) of a set of values x, with weights w, is given
by,

m(x, w) =
∑

i wixi∑
i wi

For example, consider the set of problem and solution similarities,

PS = {0.9, 0.7, 0.6, 0.5, 0.4, 0.3}, SS = {0.6, 0.7, 0.6, 0.5, 0.4, 0.3}

The correlation between these two sets yields the value 0.539, but the weighted
correlation gives 0.450, thus greatly penalizing similar problems having dissimilar
solutions.

278 M.A. Raghunandan, S. Chakraborti, and D. Khemani

4.3 Visualization Using MST

Visualization is aimed at gaining a bird’s eye view of a system usually for the
purpose of design, tuning and maintenance. Visualization of a case base should
ideally display the structure and properties of the cases highlighting proper-
ties like alignment, but also bringing out deficiencies in coverage and regions of
misalignment. A good visualization should be powerful enough to capture and
present the overall structure of a case-base in a single picture, and at the same
time sensitive enough to identify anomalies and interesting patterns in small
regions of the case-base. The method of visualization used will depend on the
objective of visualization. We focus on complexity-driven visualization. The vi-
sual representation of a case should give a clear idea of the degree of alignment of
the case-base as a whole, as well as those of the various regions of the case-base.

Chakraborti et. al. [11] give a method of visualization called stacking, based
on the representation of a case-base as a document-feature matrix. This method
helps in identifying interesting patterns in the arrangement of cases and features.
However, it imposes a linear ordering on the cases, and doesn’t capture the
relationships between the problem and the solution side. Our proposed method
addresses these two limitations of the stacking approach.

The MSTs of the problem and solution sides of a case-base (section 4.1) give
a good idea of the structure of the case-base. It would be useful if we could
combine the information in both the graphs into a single graph. To this effect,
the case-base is represented as a graph, with the nodes representing the cases.
Each edge eij between two cases i and j, having solution similarity ssij , solution
distance sdij = 1− ssij , and problem similarity psij has these characteristics:

– The edge belongs to the MST of the solution graph.
– The length of the edge is directly proportional to the solution distance be-

tween the two cases.
length(eij) ∝ sd(i, j)

Hence, edges between cases which are similar on the solution side will be
shorter.

– The thickness of the edge is directly proportional to the problem similarity
between the two cases.

thickness(eij) ∝ ps(i, j)

Hence, edges between cases which are similar on the problem side will be
thicker. Thus ideally as an edge becomes longer it should also become thin-
ner. Thick, long edges, point to similar problems having dissimilar solutions,
which indicates high complexity.

– In addition to the above, we employ a color encoding scheme to depict which
side of the ideal an edge deviates on (hue), and by how much (saturation),
according to the following equations:
• hue = BLUE, if psij >= ssij , and RED, if ssij > psij

• saturation = 1− ssij

psij
, if psij >= ssij , and 1− psij

ssij
, if ssij > psij

Robust Measures of Complexity in TCBR 279

(a) Edge Color Scheme (b) Case-base visualization using MST

Fig. 2. Visualization using MST

This roughly translates to the color scheme shown in figure 2a. An example
visualization is shown in figure 2b.

From this figure, we can clearly make out the similarity of the cases on the
problem and the solution side. The coloring scheme helps us to quickly narrow
down on interesting and complex regions of the case-base, thus aiding in main-
tenance tasks such as addition and deletion of cases. For example, the red (thick
and long) edges (C4C5, in this case), show the regions where solution side simi-
larity is lower than that of the problem side, indicating a misalignment. We can
choose to add/delete/modify some of the cases in such regions, to improve the
alignment.

For the purpose of experimentation, we created two synthetic datasets. In
the first one, called Syn-sim (table 2), similar problems have similar solutions,
whereas in the second, called Sym-dissim (table 3), similar problems have dis-
similar solutions.

Table 2. Some cases from synthetic dataset 1 - Syn-sim

Case No. Problem Solution
1 Translation of instructions written in a high level lan-

guage, to assembly code.
computer, programming, compiler

2 Description of a set of instructions, which have to then be
coded as a program.

computer, programming, algorithm

7 Increasing number of cars, bikes, buses, and autos, com-
peting with each other for space.

traffic, congestion, vehicle

8 Jams on the roads, incorrect signalling, and no footpaths.
This means hell for people who like to walk.

traffic, conjestion, pedestrian

The figure 3 shows the visualization of the synthetic datasets by the above
method.

This method can be extended to be more dynamic. The visualization can be
hierarchical, wherein many cases are collapsed into one node in the graph. The
node can be colored to show misalignment among its cases. The user can then
decide to zoom in on that node, to greater level of detail.

280 M.A. Raghunandan, S. Chakraborti, and D. Khemani

Table 3. Some cases from synthetic dataset 2 - Syn-dissim

Case No. Problem Solution
1 The program can be easily selected by using either the

mouse or the keyboard.
computer, interface, user-friendly

2 The mouse delighted us by playing the keyboard like a
maestro. Everyone enjoyed the program.

music, audience, performance

8 All was lost when the king was captured in the end by the
enemy and killed.

war, death, defeat

9 To protect the king from being captured, good players
move the king only towards the end, after many pieces
are off the board.

chess, strategy, game

(a) Syn-sim (b) Syn-dissim

Fig. 3. Synthetic dataset visualization

5 Evaluation

TCBR datasets, especially those with human relevance judgments, are hard to
come by. For our experiments, we required datasets from which we can indi-
rectly obtain human judgments in solution similarities. We used four datasets
in our experiments. For each of the datasets, classification accuracy (acc) was
calculated using weighted k-NN. The alignment was calculated using each of
the measures - weighted correlation (alignCorr, section 4.2), MST (alignMST,
section 4.1), flips (alignFlips, [11]), and global alignment (alignGame, [13]). In
addition, experiments were conducted using two local measures of alignment, the
case alignment (alignMassie, [9]) and the case cohesion (alignCohesion, [8]). The
measures, alignCorr, and alignMST are paramter free, hence only one alignment
value is reported for each dataset. However, the alignFlips, alignGame, align-
Massie, and alignCohesion measures require the neighborhood size parameter to
be set. For these measures, two values of alignment, corresponding to different
parameter values, are reported.

5.1 Synthetic Datasets

Consider the synthetic dataset in 4.3. We would expect a good alignment measure
to assign a high alignment to the Syn-sim, and a low alignment to Syn-dissim.

Robust Measures of Complexity in TCBR 281

Table 4. Alignment - Synthetic dataset

Dataset acc alignCorr alignMST alignFlips alignGame
Syn-sim 0.278 0.571 0.866 0.900,0.900 0.697,0.737

Syn-dissim 0.211 0.497 0.500 0.919,0.919 0.596,0.596

The alignment results for these datasets, using the measures described are as
shown in table 4.

The alignCorr, alignMST and alignGame values agree with the accuracy re-
sults, whereas alignFlips does not, and in fact indicates the opposite. The local
measures alignCohesion and alignMassie perform poorly as well.

5.2 Deerwester Dataset

The Deerwester toy dataset (table 5) is a collection of nine documents, five
of which are about human-computer interaction, and four about graphs. The
vocabulary used in the cases is aligned well with the class label. Hence the
classification accuracy is high. With the addition of some random terms to each
of the cases, however, the accuracy decreases. The alignment results are as in
table 6. DW-N0 is the original dataset DW-Nx has ‘x’ noise terms added to the
problem part of each case.

We see that the alignCorr, alignMST, and alignFlips have high correlation
with accuracy, although the alignFlips values are not indicative of the com-
plexity. alignGame values do not agree with the complexity values. The local
measures alignCohesion and alignMassie perform well, with correlations in the
range [0.704,0.976] and [0.799,0.870] respectively, although the value depends on
the choice of parameter.

Table 5. Deerwester dataset

Problem Solution
Human machine interface for Lab ABC computer applications hci
A survey of user opinion of computer system response time hci
The EPS user interface management system hci
System and human system engineering testing of EPS hci
Relation of user perceived response time to error measurement hci
The generation of random, binary, unordered trees graphs
The intersection graphs of paths in trees graphs
Graph minors 4: widths of trees and well quasi ordering graphs
Graph minors: A survey graphs

Table 6. Alignment - Deerwester dataset

Dataset acc alignCorr alignMST alignFlips alignGame
DW-N0 0.889 0.683 1.000 0.500,0.500 0.421,0.619
DW-N1 0.778 0.632 0.857 0.376,0.376 0.737,0.774
DW-N2 0.667 0.589 0.714 0.376,0.376 0.737,0.774
DW-N3 0.667 0.510 0.429 0.376,0.376 0.737,0.774
Correlation 0.894 0.866 0.870,0.870 -0.870,-0.870

282 M.A. Raghunandan, S. Chakraborti, and D. Khemani

5.3 NHS Medical Dataset

The NHS dataset described in section 3.2 has a “care stage” label which cat-
egories the case into one of 18 categories. Using weighted 3-nearest neighbour
on the problem text, the classification accuracy was calculated with the “care
stage” attribute as the class label. We found that the classification accuracy was
poorer in datasets having more class labels. A study of alignment was carried
out in [13], using solution text similarities. These may not be indicative of hu-
man judgments. To overcome this problem we considered the class labels as the
solutions, and, as pointed out in 3.2, the alignment values are more indicative
of accuracy. The alignment values, using a variety of techniques, as well as their
correlation with accuracy, are shown in table 7.

Table 7. Alignment - Medical dataset

Dataset acc alignCorr alignMST alignFlips alignGame
1 1.000 0.691 0.863 0.283,0.303 0.757,0.778
2 0.830 0.785 0.703 0.455,0.374 0.635,0.728
3 0.758 0.826 0.692 0.357,0.316 0.750,0.832
4 0.690 0.849 0.593 0.485,0.465 0.672,0.778
5 0.600 0.795 0.553 0.414,0.394 0.764,0.839
6 0.539 0.816 0.548 0.396,0.376 0.799,0.864
7 0.469 0.757 0.532 0.381,0.351 0.828,0.895
8 0.423 0.722 0.450 0.447,0.417 0.814,0.887
9 0.455 0.688 0.413 0.469,0.469 0.829,0.851
10 0.400 0.647 0.355 0.495,0.475 0.782,0.841
11 0.343 0.616 0.310 0.541,0.510 0.762,0.832

Correlation 0.431 0.970 -0.679,-0.711 -0.592,-0.726

The alignCorr has low correlation with accuracy, while alignMST does very
well. Both of these outperform the alignFlips and alignGame measures, which
show a negative correlation. Among local measures, alignCohesion gives corre-
lation values in the range [-0.927,0.547], showing high sensitivity to the choice
of the neighborhood size, while alignMassie is more stable, giving correlation
between 0.978 and 0.987.

5.4 20 Newsgroups Dataset

The 20 Newsgroups dataset [2] contains data from 20 different newsgroups. The
partitions of the data are derived from a tree of topics. High level topics include
“comp”, “talk”, “sci”, “rec”, etc., and these are further divided into subgroups
such as “rec.sport.baseball”, “talk.politics.guns”, etc. We created 5 datasets of
varying complexity from the original dataset. The alignment results for these
using the various measures, are given in table 8.

We observe that although alignCorr and alignMST have high correlation with
accuracy, the alignCorr values do not show the range of variation in accuracy.
alignMST is better in this regard. alignFlips shows negative correlation with
accuracy, while alignGame is not able to differentiate the complexity of the

Robust Measures of Complexity in TCBR 283

Table 8. Alignment - 20 Newsgroups dataset

Dataset acc alignCorr alignMST alignFlips alignGame
1 0.740 0.536 0.755 0.045,0.023 0.976,1.000
2 0.656 0.529 0.643 0.053,0.030 0.976,1.000
3 0.630 0.523 0.602 0.061,0.037 0.975,1.000
4 0.578 0.519 0.598 0.074,0.040 0.966,1.000
5 0.501 0.519 0.512 0.050,0.050 1.000,1.000

Correlation 0.929 0.973 -0.360,-0.988 -0.531,–

datasets. Among local measures, again alignCohesion shows high sensitivity to
parameter setting, with correlation varying from -0.885 to 0.955. alignMassie is
more stable, with correlations in the range [0.949,0.925].

6 Conclusions

The main contributions of this paper are threefold. Firstly, we highlight that
existing complexity measures can provide meaningful predictions about system
performance only when solution similarities are directly or indirectly supported
by human judgements. In the light of this observation, we redefine the problem
of complexity measurement and discuss an approach for estimating solution sim-
ilarity based on human relevance judgements. Secondly, we propose two robust
complexity measures that, unlike previously proposed measures, need no param-
eter settings. Thirdly, we present a visualization scheme that aids maintenance
tasks by identifying pairs of cases that contribute to increasing complexity. In
future, we plan to incorporate more features into the current visualization tool,
and work on devising interesting ways for estimating solution similarities based
on scant human feedback. In practical settings, indirect approaches to infer rel-
evance judgements as in IR, such as click behaviour, could be used; with more
feedback accumulating, solution similarities are expected to stabilize with time.
As a community, we need to look at interesting ways of collaborating to create
TCBR datasets with human judgements, so that retrieval approaches as well as
complexity measures can be standardized.

References

1. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by Latent Semantic Analysis. Journal of the American Society for Information
Science 41(6), 391–407 (1990)

2. Mitchell, T.: Machine Learning. Mc Graw Hill International (1997)
3. Lenz, M., Ashley, K.: Papers from the AAAI Workshop. AAAI Press, Menlo Park

(1998)
4. Kelly, D., Belkin, N.J.: Reading Time, Scrolling, and Interaction: Exploring Implicit

Sources of User Preferences for Relevance Feedback During Interactive Information
Retrieval. In: Proc. of the SIGIR (2001)

5. Bergmann, R.: Experience Management: Foundations, Development Methodology,
and Internet-Based Applications. Springer, Heidelberg (2002)

284 M.A. Raghunandan, S. Chakraborti, and D. Khemani

6. Singh, S.: Prism, Cells and Hypercuboids. Pattern Analysis and Applications 5
(2002)

7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine
Learning Research 3(2003), 993–1022 (2003)

8. Lamontagne, L.: Textual CBR Authoring using Case Cohesion. In: TCBR 2006
- Reasoning with Text, Proceedings of the ECCBR 2006 Workshops, pp. 33–43
(2006)

9. Massie, S., Craw, S., Wiratunga, N.: Complexity profiling for informed case-base
editing. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006.
LNCS, vol. 4106, pp. 325–339. Springer, Heidelberg (2006)

10. Vinay, V., Cox, J., Milic-Fralyling, N., Wood, K.: Measuring the Complexity of a
Collection of Documents. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros,
A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 107–118.
Springer, Heidelberg (2006)

11. Chakraborti, S., Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Watt, S.: A
Simple Approach towards Visualizing and Evaluating Complexity of Textual Case
Bases. In: Proc. of the ICCBR 2007 Workshops (2007)

12. Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using
Wikipedia-based Explicit Semantic Analysis. In: Proceedings of The Twentieth
International Joint Conference for Artificial Intelligence, Hyderabad, India, pp.
1606–1611 (2007)

13. Raghunandan, M.A., Wiratunga, N., Chakraborti, S., Massie, S., Khemani, D.:
Evaluation Measures for TCBR Systems. In: Althoff, K.-D., Bergmann, R., Mi-
nor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 444–458. Springer,
Heidelberg (2008)

14. Correlation - Wikipedia, http://en.wikipedia.org/wiki/Correlation

http://en.wikipedia.org/wiki/Correlation

S-Learning: A Model-Free, Case-Based
Algorithm for Robot Learning and Control

Brandon Rohrer

Sandia National Laboratories, Albuquerque, NM 87185, USA
brrohre@sandia.gov

Abstract. A model-free, case-based learning and control algorithm
called S-learning is described as implemented in a simulation of a light-
seeking mobile robot. S-learning demonstrated learning of robotic and
environmental structure sufficient to allow it to achieve its goal (reach-
ing a light source). No modeling information about the task or calibra-
tion information about the robot’s actuators and sensors were used in
S-learning’s planning. The ability of S-learning to make movement plans
was completely dependent on experience it gained as it explored. Initially
it had no experience and was forced to wander randomly. With increas-
ing exposure to the task, S-learning achieved its goal with more nearly
optimal paths. The fact that this approach is model-free and case-based
implies that it may be applied to many other systems, perhaps even to
systems of much greater complexity.

1 Introduction

S-learning is a general learning and control algorithm modeled on the human
neuro-motor system [2,8,9]. It is model-free in the sense that it makes no as-
sumptions about the structure or nature of the system being controlled or its
environment. S-learning accomplishes this using case-based reasoning. It uses
previous experience to help it select actions. This paper describes the implemen-
tation of S-Learning in computer code and the application of S-learning to a
simulated mobile robot.

1.1 Relation to Previous Work

Most approaches to robot control assume the existence of an explicit system
model. Even the majority of learning algorithms take the form of a search
in parameter space, with the underlying structure determined beforehand.
Other methods make a less constraining assumption: that the vectors of state
information occupy a metric space. This allows the use of distance metrics, such
as the L2 norm, to interpret its state history. These include finite state ma-
chines [11], variants of differential dynamic programming [7,12], the Parti-game
algorithm [6], and probabilistic roadmaps [3]. But even this seemingly benign

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 285–297, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

286 B. Rohrer

assumption implies a good deal about the system being modeled. It is violated by
any sufficiently non-smooth system, such as one containing hard-nonlinearities
or producing categorical state information.

There are still a number of algorithms that are similar to S-learning in that
they make no assumptions about the system being learned and controlled.
These include Q-learning [13], the Dyna architecture [10], Associative Mem-
ory [4], and neural-network-based techniques including Brain-Based Devices [5]
and CMAC [1]. These approaches, together with S-learning, can be categorized
as reinforcement learning (RL) algorithms, or solutions to RL problems. How-
ever, these all assume a static reward function, where S-learning does not.

1.2 Dynamic Reinforcement Learning Problem Statement

To be more precise, S-learning addresses a general class of reinforcement learning
(RL) problem, referred to hereafter as the dynamic RL problem: how to maxi-
mize reward in an unmodeled environment with time-varying goals. More specif-
ically, given discrete-valued action (input) and state (output) vectors, a ∈ A and
s ∈ S, and an unknown discrete-time function f , such that

st = f(ai≤t, si<t, t), (1)

(where the notation ai≤t denotes the set of all ai such that i ≤ t) and a scalar
reward, r, and known reward function, g, such that

rt = g(si≤t, t), (2)

maximize the total reward over time:

V =
∞∑

i=0

ri (3)

Equation 3 shows an infinite-horizon formulation, but finite- and receding-
horizon variations of the dynamic RL problem are similarly structured.

The dynamic RL formulation is relevant to a large class of problems. It is
applicable in instances where 1) the model is unavailable and 2) the reward
function varies with time. Models may be unavailable for a number of reasons.
Systems may be too complex to model accurately with the resources available.
Also, systems may have characteristics that vary with age, such as joint fric-
tion or tire pressure, or may even have minor sensor and actuator failures. Time
varying reward functions are introduced whenever the system’s goals are mod-
ified, as in response to an operator command. Despite the importance of the
dynamic RL problem, no other published solutions exist. The nature of the
dynamic RL problem—that the only information available is the robot’s action-
state history—suits it well to a case-based reasoning approach.

S-Learning: A Model-Free, Case-Based Algorithm 287

2 Method

S-learning operates by recording sequences of state-action pairs. The resulting
libraries contain a reduced version of the system’s history, a system memory.
The memory can then be used to make predictions and guide the selection of the
system’s actions. When the system encounters a previously-experienced state, it
retrieves sequences beginning with that state. The system can then re-execute
the actions of recalled sequences that terminate in a reward state, as in a case-
based approach.

2.1 S-Learning Algorithm

S-learning handles state-action (s-a) pairs, σ. An ordered sequence of state-
action pairs is called a sequence, φ, and an unordered collection of φ is a library,
κ. Both φ and κ may have any length of one or more, given by nσ (number of
state-action pairs) and nφ (number of sequences), respectively.

An S-learning implementation can be broken into three main function blocks:
the Agent, the Environment, and the Sequence Library. (Figure 1.)

Agent Environment

Sequence Library

Fig. 1. Block diagram of S-learning. The Environment represents the system dynamics,
f , and the Agent contains the reward function, g. The Sequence Library is created from
the time history of s-a pairs.

Environment. The Environment is the embodiment of the system dynamics, f
(Equation 1). It receives action commands from the Agent and reports its state
to Sequence Library and back to the Agent. In practice the Environment may be
a continuous-time system, as long as it includes a means to execute discrete-time
commands, a, and to report discrete-time sensor information, s.

The formulation of the dynamic RL problem places no constraints on the Envi-
ronment. It may contain its own internal control system, stochastic elements, and
learning capabilities. The Environment may do a large amount of pre-processing
on its sensor data and return highly-interpreted information. Alternatively, it
may return nearly raw sensor data, binned and discretized in time. It may be
physical or simulated, and there are no explicit limits to the complexity it can
have.

288 B. Rohrer

Agent. The Agent contains the reward function, g, and uses it to evaluate the
plan candidates it receives from the Sequence Library. It executes the plans it
selects by passing the corresponding actions to the Environment. The procedure
the Agent follows during its operation is outlined below:

1. Define a target, τ , consisting of the most recent σ.
2. Query the Sequence Library for sequences that begin with τ , φ(τ). The set

of these form κ(τ), a collection of candidate plans.
3. Select a plan to execute from κ(τ):

(a) Select the candidate plans that maximize the expected reward, r, from
the states that follow τ in each φ(τ).

(b) If there are more than one of these, select the shortest among them, that
is, minimize nσ.

(c) If there is still more than one candidate, randomly select from among
the remaining candidate plans such that a single plan, φ̂, is selected.

4. Execute the actions, a, associated with each element of φ̂.
5. Return to step 1.

The Agent also passes copies of the actions it executes, a, to the Sequence
Library, so that it can assemble each a-s pair into a σ.

Sequence Library. The Sequence Library is at the heart of S-learning. It
allows S-learning to learn from its experience, use new learning as it is gained,
generalize that learning to unfamiliar situations, make predictions, and attain
goals. It has two primary functions: to pass candidate plans to the Agent and
to record state space trajectories as they are observed. Candidate plans, φ(τ)
are selected on the basis of whether they begin with the target subsequence, τ ,
passed in by the Agent. The set of φ(τ), κ(τ), is returned to the Agent. The
process for recording newly observed states in the library is described below.

Due to the fact that S-learning is an experience-based learning algorithm,
there is no distinction between memory and learning. Both are accomplished by
the storage of sequences. As the Agent passes in actions, a, and the Environ-
ment passes in output states, s, the Sequence Library assembles them into a-s
pairs, σ. A working memory of the most recently observed states is maintained.
Sequences, φ, of length nσ are stored in the library, κ. For φj that begins with
σi, φj+1 will begin with σi+1, that is, the subsequent sequences overlap by nσ−1
states. Through this accrual process, κ becomes the repository of the system’s
experience.

2.2 Robot Simulation

The S-learning algorithm was coded in Java and demonstrated with a simple
simulated system. The simulation consisted of a mobile wheeled robot with two

S-Learning: A Model-Free, Case-Based Algorithm 289

light sensors and eight contact sensors. (Figure 2) The robot occupied a 25 × 25
cell grid world. The robot could be positioned in the center of any one of the 625
cells in any one of the eight directions of the compass rose (up, down, right, left,
and the directions offset 45 degrees from them). Contact sensors were located
on the front, rear, sides, and corners of the robot. These registered whether
the robot was in the border rows of the grid and in which direction were the
contacted wall(s). The steering angle of the robot was also fed back with the
sensory data.

Fig. 2. Representation of the simulated robot. The steering angle of the front wheels,
wall contact in any of 8 directions, and the sensed intensity at the two light sensors
were all included in the state vector information.

A light source occupied another one of the grid cells and provided input to
the light sensors. The two light sensors were each oriented 45 degrees from the
robot’s heading, one on the right and one on the left. The intensity of the light
reaching the robot was the inverse of the square of the Euclidean distance from
the robot to the light source and was determined by the following equation:

I =
1

(xs − xr)2 + (ys − yr)2 + ε
(4)

where xr, yr, xs, and ys are the x− and y−coordinates of the robot and light
source, respectively. ε = 10−7 was added to denominator to maintain numerical
stability. The off-angle sensitivity, Ω, for each sensor was determined by the
square of the cosine of the off-angle. This yielded a sensitivity of one in the
direction of the sensor and a sensitivity of zero at an off-angle of ± 90 degrees.
Sensitivity at greater angles was also zero. The sensed intensity for each sensor,
Î was the product of the intensity and the off-angle sensitivity:

Î = IΩ (5)

290 B. Rohrer

The steering angle could have one of three values—straight ahead or 45 degrees
to the right or left—and the robot could either drive forward or reverse. Steering
and locomotion commands were incremental. A ‘steer right’ command increased
the steering angle by 45 degrees unless it was already at its maximum value.
‘Steer left’ worked similarly. Movements forward and backward were made in
one-cell increments. When the robot’s heading was diagonal to the grid array,
movements were made to the nearest diagonal cell. Motion was executed by first
rotating the robot in place by the steering angle before moving either forward
or backward. When it attempted to drive into a wall head-on or into a corner,
the robot was not permitted to do so and it remained where it was. When it
attempted to drive into a wall at a 45 degree angle, it instead moved to the next
cell along the wall and maintained its heading. The robot was also not permitted
to drive backward through the light source. Simultaneous ‘steer right’ and ‘steer
left’ commands resulted in no change to the steering angle, and simultaneous
‘forward’ and ‘reverse’ commands resulted in no locomotion.

Action-State Pair Vector, σ. The σ vector at each timestep was composed
of binary elements representing the command issued and the sensory state after
executing the command. The composition of σ is detailed in Table 1. The light
sensor data was a binned Î, with the bin number given by the following:

b = 50− ceil

(
1

(Î + ε)0.5

)
(6)

The actual bin number, b̂, was limited to the bins available:

b̂ =

⎧⎨⎩
1 if b < 1

50 if b > 50
b otherwise

(7)

b̂ = 1 corresponded to very little to no light reaching the sensor, and b̂ = 50
corresponded to very intense light exposure. Both light sensors simultaneously

Table 1. Composition of σ for the simulated robot

Sensory modality or Number of
command type elements

Command: steering 2
movement 2

Sensors: contact 8
steering angle 3
light (right) 50
light (left) 50

Total: 115

S-Learning: A Model-Free, Case-Based Algorithm 291

achieved b̂ = 50 only when the robot drove forward into the light source. Vector
elements corresponding to active sensor or command elements were equal to one.
All others were zero.

Reward. The goal of the system emerged from the nature of the reward. A
reward vector, ρ, was created with the same length as σ, such that the total
reward, r, was given by the following:

r =
∏

i

ρi for all i where σi = 1 (8)

In this formulation, ρ served as a set of multiplicative weights for σ. Sensory
states were rewarded or penalized by assigning higher or lower values of ρ. The
ρ used in the simulation was constructed in the following way:

– ρ values for steering angle positions were all set to 1, so as to neither reward
nor penalize them.

– ρ values for contact sensors were set to 0.7 to penalize contact with the
borders of the grid.

– For the light sensors, the 50 reward vector elements that corresponded to
the gradations in intensity were set according to the relation ρi = i/50 . The
most intensely sensed light produced a ρ of 1, resulting in no penalty, while
the weakest sensed light produced a ρ of 0.02, a strong penalty.

Sequence Library Creation. At each timestep, the action that was executed
and the state that resulted from that action were combined into a state-action
pair, σ. The sequence of nmax

σ most recently observed sequences was maintained,
where nmax

σ was the maximum sequence length, a parameter manually set in
software. As described above, the longest sequence not in the library already
(up to the maximum sequence length) was added to the Sequence Library. Due
to the simplicity of the system, all the information necessary to make reasonably
accurate predictions about the system was available at each timestep. In this case
a maximum sequence length of nmax

σ = 2 was sufficient. More complex systems
would benefit from a greater nmax

σ , as it would be able to compensate somewhat
for partial or noisy state information.

As sequences were added to the library, they were assigned an initial strength
value, 106. At each timestep, the strength was decreased by 1. The strength of
each sequence was multiplied by 10 after each repeat observation. If strength
ever decayed to 0, the sequence was dropped from the library. This provided
a mechanism for rarely observed sequences to be forgotten. The deterministic
nature of the simulated system did not need to make use of this (hence the
large initial strength), but it is a feature of S-learning that suits it for use with
more complex systems as well. It can also be seen that after several repeated
observations a sequence’s existence in the library would be assured for the life of
the system. This is analogous to recording an experience in long-term memory.

292 B. Rohrer

Action Selection. The Agent referred to the Sequence Library to help deter-
mine which action command to send at each timestep. All sequences that began
with the most recent state were used as a set of predictions. (The most recent
state might be contained in multiple σ’s, since several actions may have resulted
in that state in the system’s history. Sequences beginning with all σ’s match-
ing the most recent state were returned.) Each sequence represented a possible
future. The Agent compared the reward at the final state of each sequence to
the reward at the initial state, and the sequences with the greatest increase in
reward were selected as the most promising.

The actions pertaining to each sequence defined a plan. By executing the
actions in the same order, it was possible to create the same sequence of states.
However it was not guaranteed to do so. Some state information, such as distance
to the grid borders when not in contact with them, was not directly sensed and so
introduced some variability into the effects produced by a given series of actions.
Although it was a relatively minor effect with the simulated robot, with more
complex systems containing more limited state information, the variability of the
effects of a given action would increase greatly. The most promising sequences
found in the Sequence Library represented the best case scenarios for each plan.
In order to make a more informed decision, the expected value of the final reward
for each plan (up to 50 of them) was calculated in the following way.

The library was queried for all the sequences starting from the most recent
state and executing each plan. The final rewards for the sequences executing a
given plan were averaged, weighted by the log of the strength of each sequence:

r =
∑

i ri log (ωi + 1)∑
i log (ωi + 1)

(9)

where r is the weighted average reward and ri is the reward and ωi is the
strength associated with each sequence. One was added to ωi to ensure that the
log remained non-negative.

r represented the expected value of the reward a given plan would produce.
The plan with the highest value of r was selected for execution, given that r was
greater than the reward at the most recent state. In the case of the simulated
robot, with a maximum sequence length of two, the plan always consisted of a
single action; that action command was passed to the robot at that timestep.

If no plans were expected to increase the reward, then the robot generated a
random exploratory plan. Exploratory plans were also initiated at random inter-
vals (on average one out of sixty timesteps). In addition, a ‘boredom’ condition
was met if the same state was observed more than five times within the last fifty
timesteps. This also resulted in the creation of an exploratory plan. Exploratory
plans were of random length, up to 4 actions long. Each action was randomly
generated with each of the 4 elements of the action vector having an indepen-
dent, 25% chance of being active. Exploration provided some random variation
to S-learning’s operation, allowing it to explore its environment and avoid get-
ting caught in highly non-optimal behavior patterns, such as infinitely-repeating
cycles.

S-Learning: A Model-Free, Case-Based Algorithm 293

Task Structure. The robot was able to increase its reward by orienting it-
self toward the light source and approaching it. When the robot drove forward
into the light source, both light sensors registered their maximum intensity, and
generated the maximum reward. This was defined to be the completion of the
task. After the task was completed, the robot and the light source were both
randomly repositioned in the grid and the task began again. The measure of the
performance in each run was the number of timesteps required to complete the
task.

3 Results

On the first run the robot did not approach the light source in any direct way.
The beginning of the run is shown in Figure 3. Initially, the Sequence Library
was empty and all movements were random and exploratory. Learning gained
during the first movements was used as soon as it was applicable. Notably, the
somewhat direct descent from the upper-right region of the grid to the lower-
middle region was the repeated application of single successful movement.

The earliest runs consisted mostly of exploration and were relatively lengthy.
The first twenty runs averaged over 350 timesteps per run. As the Sequence
Library became more complete and the state space was better explored the
number of timesteps required to reach the goal decreased rapidly. (Figure 4)
At 200 runs, the average number of timesteps had decreased to 50. From that
point, performance continued to improve, but much more slowly. After 1400
runs, a typical run lasted 40 timesteps.

O

X

Fig. 3. The initial movements of a typical näıve simulation run

294 B. Rohrer

tim
estep

s p
er ru

n
(20-ru

n
 averag

e)

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400

number of simulation runs

Fig. 4. Goal acquisition performance. The average performance is shown for 20-run
blocks. Running on a 2.66 GHz Intel Xeon Processor with 8 GB of RAM under a
64-bit Linux, these data were generated in 16 minutes.

Later runs show a much more direct approach to the goal. Figure 5a shows
an optimally direct run. Figure 5b and c show nearly direct runs that have been

O

X

O

X

X
O

a)

c)

b)

Fig. 5. Three typical simulation runs after 1400 runs

S-Learning: A Model-Free, Case-Based Algorithm 295

interrupted by exploratory movements. Occasionally the robot wandered for a
time before closing in on the goal, particularly when it began far from the goal,
with its sensors facing away from it. This, together with exploratory interludes,
caused the average performance to stay as high as it did, rather than drop to
optimal levels—closer to 20.

4 Discussion

This work has demonstrated the implementation and operation of S-learning,
a model-free learning and control approach that is fundamentally case-based.
S-learning was able to learn to control a simple robot in a simple environment.

S-learning is capable of addressing some dynamic reinforcement learning prob-
lems, although it should be noted that the light-seeking robot simulated here is
not one. The addition of multiple light sources of different colors, and time vary-
ing rewards associated with different colors would be an example of a dynamic
RL problem. For examples of S-learning solving dynamic RL problems, see [2,8].

The two degree-of-freedom, non-holonomic mobile robot simulated here could
be modeled with a trivial amount of effort. In fact, this model existed in the
simulation in order to generate the appropriate behavior. However, S-learning
didn’t make use of that model (except for the structured sensory information
that the simulation produced), but treated the robot system as a black box.
The key aspect of S-learning’s operation is that it relied only on the system’s
prior experience, rather than on a priori knowledge. This simulation does not
showcase the extent of S-learning’s capability. Rather, it’s purpose was to detail
an instantiation of the S-Learning algorithm.

4.1 Limitations of S-Learning

The robustness and model-independence of S-learning comes at a price. The
largest cost is in long learning times. Significant training time, approximately
75,000 timesteps, was required to learn to control a relatively simple system. This
raises the question of when it would be appropriate to use S-learning. In any im-
plementation where a model is available, the trade-off between which portions
to learn and control with S-learning and which to control with a more conven-
tional model-based controller is a trade-off between learning time (short-term
performance) and robustness (long-term performance). This question can only
be answered based on the specific goals and constraints of each implementation.

Some of the details of S-learning’s implementation are specific to the sys-
tem. One of these details is the maximum sequence length, nmax

σ . As described
previously, nmax

σ = 2 was known to be appropriate to the simulation due to its
determinism and simplicity. However, other systems may benefit from larger val-
ues of nmax

σ . Humans’ capability to remember 7±2 chunks of information suggest
that nmax

σ = 7 is an estimate with reasonable biological motivation. Similarly
the dynamics of sequence strength, underlying consolidation and forgetting of
sequences, may need to be varied to achieve good performance on different sys-
tems. Initial tests show that the most critical design decisions in an S-learning

296 B. Rohrer

implementation are the discretization of sensor data and the assignment of re-
ward vectors that produce desirable behaviors. Some primary considerations
when discretizing sensors are discussed in [8,9], but additional work is required
to fully identify the trade-offs involved.

4.2 Implications

Due to its model agnosticism, S-learning’s case-based reasoning approach to
robot control is potentially applicable to hard problems, such as bipedal lo-
comotion and manipulation. In the case of locomotion, the system model can
be extremely, if not intractably, complex, and environments may be completely
novel. In addition, extra-laboratory environments can be harsh, and insensitiv-
ity to sensor and actuator calibration may be desirable as well. In the case of
manipulation, mathematical modeling of physical contact is notoriously difficult
and requires a lot of computation to perform well. It also requires high-fidelity
physical modeling of the entire system, which is not possible when handling un-
familiar objects. These attributes suggest that locomotion and manipulation are
two examples of hard problems to which S-learning may provide solutions.

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the United States Department of Energy under con-
tract DE-AC04-94AL85000.

References

1. Albus, J.: A new approach to manipulator control: Cerebellar model articulation
controller (CMAC). Journal of Dynamic Systems, Measurement and Control 97,
220–227 (1975)

2. Hulet, S., Rohrer, B., Warnick, S.: A study in pattern assimilation for adaptation
and control. In: 8th Joint Conference on Information Systems (2005)

3. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabalistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans-
actions on Robotics and Automation 12(4), 566–580 (1996)

4. Levinson, S.E.: Mathematical Models for Speech Technology, pp. 238–239. John
Wiley and Sons, Chichester (2005)

5. McKinstry, J.L., Edelman, G.M., Krichmar, J.L.: A cerebellar model for predicitive
motor control tested in a brain-based device. Proceedings of the National Academy
of Sciences 103(9), 3387–3392 (2006)

6. Moore, A.W., Atkeson, C.G.: The parti-game algorithm for variable resolution rein-
forcement learning in multidimensional state-spaces. Machine Learning 21, 199–233
(1995)

7. Morimoto, J., Zeglin, G., Atkeson, C.G.: Minimax differential dynamic program-
ming: Application to a biped walking robot. In: Proceedings of the IEEE/RSJ Intl.
Conference on Intelligent Robots and Systems, pp. 1927–1932 (2003)

S-Learning: A Model-Free, Case-Based Algorithm 297

8. Rohrer, B.: S-learning: A biomimetic algorithm for learning, memory, and control
in robots. In: Proceedings of the 3rd International IEEE EMBS Conference on
Neural Engineering (2007)

9. Rohrer, B.: Robust performance of autonomous robots in unstructured environ-
ments. In: Proceedings of the American Nuclear Society 2nd International Joint
Topical Meeting on Emergency Preparedness and Response and Robotics and Re-
mote Systems (2008)

10. Sutton, R.S.: Planning by incremental dynamic programming. In: Proceedings of
the Eighth International Workshop on Machine Learning, pp. 353–357. Morgan
Kaufmann, San Francisco (1991)

11. Tarraf, D.C., Megretski, A., Dahleh, M.A.: A framework for robust stability of sys-
tems over finite alphabets. IEEE Transactions on Automatic Control (June 2008);
To appear as a regular paper in the IEEE Transactions on Automatic Control
(scheduled for June 2008)

12. Tassa, Y., Erez, T., Smart, B.: Receding horizon differential dynamic programming.
In: Advances in Neural Information Processing Systems, pp. 1465–1472. MIT Press,
Cambridge (2008)

13. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, Cambridge Uni-
versity, Cambridge, England (1989)

Quality Enhancement Based on Reinforcement
Learning and Feature Weighting for a

Critiquing-Based Recommender

Maria Salamó1, Sergio Escalera1,2, and Petia Radeva1,2

1 Dept. Matemàtica Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de
Barcelona, Gran Via de les Corts Catalanes 585, 08007, Barcelona, Spain

{maria,sergio,petia}@maia.ub.es
2 Computer Vision Center, Dept. of Computer Science, Universitat Autònoma de

Barcelona, 08193, Bellaterra, Spain

Abstract. Personalizing the product recommendation task is a major
focus of research in the area of conversational recommender systems.
Conversational case-based recommender systems help users to navigate
through product spaces, alternatively making product suggestions and
eliciting users feedback. Critiquing is a common form of feedback and in-
cremental critiquing-based recommender system has shown its efficiency
to personalize products based primarily on a quality measure. This qual-
ity measure influences the recommendation process and it is obtained
by the combination of compatibility and similarity scores. In this paper,
we describe new compatibility strategies whose basis is on reinforcement
learning and a new feature weighting technique which is based on the
user’s history of critiques. Moreover, we show that our methodology can
significantly improve recommendation efficiency in comparison with the
state-of-the-art approaches.

1 Introduction

Conversational case-based recommender systems guide user through a prod-
uct space, alternatively making product suggestions and eliciting user feed-
back [2,9,3,21]. Recommender systems can be distinguished by the type of
feedback they support; examples include value elicitation, ratings-based feedback
and preference-based feedback [22]. In this paper, we are especially interested in a
form of user feedback called critiquing [5,14], where a user indicates a directional
feature preference in relation to the current recommendation. For example, in a
travel/vacation recommender, a user might indicate that she is interested in a
vacation that is longer than the currently recommended option; in this instance,
longer is a critique over the duration feature.

As part of the recommendation process, conversational systems aim to retrieve
products that satisfy user preferences at each cycle. It is expected that over the
course of a recommendation session, the recommender learns about user pref-
erences, and therefore, the system could better prioritize products [15,5,13,20].

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 298–312, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Quality Enhancement Based on RL and Feature Weighting 299

In this sense, we focus on incremental critiquing [17], which has shown to en-
hance the recommendation efficiency prioritizing products based on a quality
measure. This quality measure is obtained by the combination of compatibility
and similarity scores.

In this paper, we consider that compatibility and similarity may improve
quality measure taking into account user preferences. In the literature, the com-
patibility score [17] is essentially computed as the percentage of critiques in the
user model that a case satisfies. We argue that the moment in which a critique
was made is important enough to influence the compatibility score, and thus, in
the final quality measure. Note that the user increases her knowledge of the do-
main along cycles and her preferences are more accurate over time. In particular,
previous work on this direction showed that using a simple Monte Carlo rein-
forcement learning strategy to compute the compatibility score obtains better
case quality results [18].

Reinforcement learning (RL) [24,11] is concerned with how an agent ought to
take actions in an environment. Common applications of RL techniques are re-
lated to robotics and game theory [16]. In the context of recommenders, an initial
attempt to include RL techniques has been performed on web-recommendation
systems where a possible analysis of finite-state Markov decision process based
on pages links is possible [10]. However, in the content-based recommendation
domain, it is quite difficult to infer which are possible good future actions since
the environment changes with the decisions of the user. For instance, suppose
that the user initially is looking for a particular video camera. The initial ex-
pectations may change with the learning process of the user while navigating in
the recommendation system. While navigating, the user notices that she needs
to spend more money to obtain the required product performance, and thus,
critiques change. Because of this reason, instead of looking for RL techniques
that predict based on how an action affects future actions, in this paper, we are
going to focus on RL techniques which are based on the user specialization. This
specialization is grounded on past actions, where the time of the action is closely
related to the user critiquing compatibility. We review different state-of-the-art
RL techniques based on Monte Carlo and Time Dynamics, and also propose two
new RL techniques adapted to conversational recommender systems.

Moreover, we also argue that quality is influenced by similarity. Conversational
case-based recommender systems use a similarity function (usually based on
nearest neighbor rules) to recommend the most similar product at each cycle [15].
Nevertheless, similarity functions are sensitive to irrelevant, interacting, and also
most preferred features [1]. This problem is well-known in Case-Based Reasoning
(CBR) systems because it can degrade considerably the system performance. In
order to avoid it, many similarity functions weight the relevance of features
[25,12]. Previously, in the work of [19], a local user preference weighting (LW)
was presented, which was shown to reduce the number of critiquing cycles. In
this paper, we present a global user preference weighting (GW). This method
basis on the satisfied critiques from the whole set of cases. We show how the new

300 M. Salamó, S. Escalera, and P. Radeva

weighting strategy enhances the quality, and results in a shorter session length
than using the local user preference weighting.

Summarizing, this paper describes new strategies for compatibility and
weighting based on user’s critiquing history for enhancing quality. The paper
is organized as follows: Section 2 overviews the incremental critiquing approach
as the baseline to present our methodology. Section 3 describes state-of-the-art
RL approaches applied to conversational CBR and presents two new approaches
adapted to critiquing. Section 4 introduces the new methodology to weight the
similarity component of quality, and Section 5 presents the experimental evalu-
ation of the presented strategies. Finally, Section 6 concludes the paper.

2 Background

The incremental critiquing [17] implementation assumes a conversational recom-
mender system in the style of Entrée [4]. Each recommendation session starts
with an initial user query resulting in the retrieval of a product p (also known as
case) with the highest quality. The user will have the opportunity to accept this
case, thereby ending the recommendation session, or to critique it as a means to
influence the next cycle. The incremental critiquing algorithm consists of four
main steps: (1) a new case p is recommended to the user based on the current
query q and previous critiques; (2) the user reviews the recommendation and
applies a directional feature critique, cq; (3) the query, q, is revised for the next
cycle; (4) the user model, U = {U1, .., Ui}, i ≤ t is updated by adding the last
critique cq and pruning all the critiques that are inconsistent with it. Finally,
the recommendation process terminates either when the user retrieves a suitable
case, or when she explicitly finishes the recommendation process.

This recommendation process is highly influenced by the user model U con-
taining previous consistent critiques, which is incrementally updated at each
cycle. Incremental critiquing modifies the basic critiquing algorithm. Instead of
ordering the filtered cases on the basis of their similarity to the recommend case,
it also computes a compatibility score C as follows:

Cp′
t (U) =

∑
∀i:(1≤i≤t) δ(p′, Ui)

|U | (1)

where Cp′
t (U) is the compatibility score of candidate case p′ at time t given an

user model U . The satisfaction function δ returns 1 if case p′ satisfies the critique
Ui or 0 otherwise, and |U | stands for the total number of critiques in the user
model U . Thus, the compatibility score is essentially the percentage of critiques
in the user model that case p′ satisfies. Then, the compatibility score and the
similarity of a candidate case p′ to the current recommendation p are combined
in order to obtain an overall quality score Q:

Q(p′, p, U) = β · Cp′
t (U) + (1− β) · S(p′, p) (2)

Quality Enhancement Based on RL and Feature Weighting 301

where S is the similarity function, and β is set to 0.75 by default. The quality
score Q is used to rank the filtered cases prior to the next cycle, and the case
with the highest quality is then chosen as the new recommendation.

3 Compatibility Using Reinforcement Learning

In this section, we analyze the compatibility component of the quality measure.
As shown in [18], RL techniques can enhance compatibility efficiency. Thus, we
review and propose RL techniques that are used as new compatibility scores to
conversational CBR systems.

Among the different classes of RL families that exists in literature, we find
Dynamic Programming Methods. These strategies are difficult to adapt to our
problem since a complete and accurate model of the environment is required,
and we are not able to predict future behavior of the user in the recommendation
system [24]. On the other hand, Monte Carlo methods do not require a model,
and are conceptually simple. Finally, temporal-difference methods (TD) also do
not require a model, and are fully incremental, though they are more complex
to analyze. Thus, both TD and Monte Carlo methods seem to be useful to use
the user experience in order to solve the prediction problem, and retrieve the
optimal product to the user reducing the number of critiquing cycles. In our
case, we want to model the current compatibility Cp′

t of a candidate case p′ at
instant t based on its corresponding previous compatibility. For this task, the
initial RL model for compatibility computation can be a simple Monte Carlo
method [18]:

Cp′
t = Cp′

t−1 + α ·
(
Rp′

t − Cp′
t−1

)
(3)

This Monte Carlo method is also called constant-α MC [24]. The term Rp′
t is the

satisfaction of case p′ at time t (i.e., Rp′
t = 1 if the candidate case p′ satisfies the

current critique, or Rp′
t = 0 otherwise), and α is a constant step-size parameter.

With the simple constant-α MC of eq. (3) we can update the compatibility of
a case p′ at time t based on what happens to p′ after current critique. Low
values of α ∈ [0..1] makes the compatibility of p′ to be increased/reduced slowly,
meanwhile using high values of α makes the new results to affect more the
compatibility of the case. We could also use incremental dynamic updates of α
depending of our problem domain (i.e., we could think that initial critiques of
the user should have less influence that last critiques since the user still does not
have a high knowledge of the recommendation environment).

In Figure 1 we show four cases and its corresponding critique satisfaction over
ten cycles in an hypothetical recommender. We suppose, for this example, that
each cycle t ∈ [1, .., 10] generates a new critique in our user model. The response
R of each case p′ at each time t is 1 if the case satisfies the current critique, or 0
otherwise. Note that all cases p′ have the same number of 1’s and 0’s but they
differ in the instant they have been satisfied. So, our expectation is that the order

302 M. Salamó, S. Escalera, and P. Radeva

of compatibility should be: first case 1, since all satisfied critiques are produced
at the last cycles; next, case 4 and case 3, since both alternate 1 and 0 but the
case 4 satisfies the last critique; and finally case 2 with the less compatibility
since all 1’s are produced at the initial cycles.

Fig. 1. Case base satisfaction of critiques in a toy problem

Figure 2(a) shows the RL values for constant-α MC method for the case base
shown in Figure 1. Note that the final order of compatibility is the expected
based on the previous criterion. We set up the compatibility at time t = 0 to
0.5. The graph shows a logarithmic growing of the compatibility when satisfying
critiques, and the same influence decreasing the compatibility for non satisfied
cases.

(a) (b)

Fig. 2. (a) constant-α MC and (b) EMC numerical representation for the case base
shown in Figure 1

On the other hand, we could require that changes between different results Rt

modify the compatibility of p′ in a different magnitude. For example, we could
think that a wrong result for the case p′ defined as Rp′

t = 0 to have less influence
than a good result Rp′

t = 1. Then, we propose the Exponential Monte Carlo
(EMC) as follows:

Cp′
t =

{
Cp′

t−1 + α ·
(
Rp′

t + Cp′
t−1

)
if Rp′

t = 1

Cp′
t−1 − α · Cp′

t−1 if Rp′
t = 0

(4)

Quality Enhancement Based on RL and Feature Weighting 303

Note that the Monte Carlo variant EMC defined in eq. (4) varies the logarith-
mic increasing of the compatibility in eq. (3) by an exponential tendency for an
input sequence of satisfied critiques Rp′

[1,..,t] = 1, as shown in Figure 2(b). With
the exponential tendency the compatibility score is more significant when more
critiques are satisfied in the last cycles of the recommendation process.

Concerning to TD methods, the Backward TD(λ) used in literature [24] con-
siders an internal variable ep′

t defined as the elegibility trace of case p′ at instant
t. This variable is defined as follows:

es
t =

{
γ · λ · es

t−1 if s /∈ st

γ · λ · es
t−1 + 1 if s ∈ st

(5)

where s is the state being analyzed, st is the set of valid states at time t, γ is
the discount rate, and λ is related to the eligibility trace influence. In our case,
considering the state s as a candidate case p′, we can express eq.(5) as follows:

Cp′
t = γ · λ · Cp′

t−1 + Rp′
t (6)

where Rp′
t = 1 if the case p′ satisfies the current critique and use the eligibility

trace as a measure of the compatibility of p′. This method has a similar tendency
than the constant-α MC, with a logarithmic increasing of the measure for an
input sequence of satisfied critiques Rp′

[1,..,t] = 1, as shown in Figure 3(a). In this
case, the desired compatibility order of the cases is also maintained. Note that
the behavior of this strategy in the case of the figure is very similar to that one
shown by the constant-α MC method, but working on a different compatibility
range.

(a) (b)

Fig. 3. (a) TD Backward and (b) EHL numerical representations for the case base
shown in Figure 1

The only case from the previous methods that consider an exponential ten-
dency for an input sequence of satisfied critiques Rp′

[1,..,t] = 1 corresponds to
the EMC RL strategy, the rest of strategies have a logarithmic compatibility

304 M. Salamó, S. Escalera, and P. Radeva

increasing. However, we can also think that in the recommendation process, as
the user increases her knowledge along cycles, maybe first matches are finally
not relevant meanwhile consecutive or final matches can be more confident to
the user preferences. This effect could be modelled by a RL technique which
changes the logarithmic increasing to an exponential one. In order to observe
if this hypothesis works in conversational recommendation systems, we propose
the Exponential Hit-Loss RL technique (EHL) as follows:

Cp′
t =

{
h← h + 1, Cp′

t = Cp′
t−1 · (1 + α)(h

p′
+t)k if Rp′

t = 1
f ← f + 1, Cp′

t = Cp′
t−1 · (1− α)(f

p′
+t)k if Rp′

t = 0
(7)

where hp′
and fp′

are the number of times that candidate case p′ has satisfied
(hit) or not (loss or fall) the critiques, respectively (for each case in the data
set these values are initialized to zero at time t=0), and k is a regularization
factor (fixed to k = 1

2 in our experiments). This technique has an exponential
behavior, which varies based on the amount of hit and losses in the history of
each p′ and the instant of time, as shown in Figure 3(b). Note that the desired
compatibility order is also satisfied.

4 Similarity Using User Preference Weighting

As explained before, the basic idea of the recommender is to present the product
that best satisfy user’s preferences and we aim to do it by means of enhancing
compatibility and similarity. Similarity plays, as in traditional CBR, an impor-
tant role in the recommender. At each cycle, in the standard or the incremental
recommendation process, the similarity between the candidate case p′ to the
recommended case p is computed as follows:

S(p′, p) =
∑
∀f

d(p
′
f , pf) (8)

where the similarity is the combination of distances d between the candidate p′

case and the recommended case p for each feature f .
A common tendency in CBR systems is to use weighting in the similarity

measure. In this sense, we propose to change the similarity measure as follows:

S(p′, p) =
∑
∀f

W (p
′
f) · d(p

′
f , pf) (9)

where W (p
′
f) is the weight associated to the f feature of the candidate case p′.

Next, we review the local user preference weighting (LW) proposal and pro-
pose the global user preference weighting (GW). Both strategies are based on the
history of critiques made by the user along the session. This history is the user
model U defined previously, which specifies the user preferences in the current
session.

Quality Enhancement Based on RL and Feature Weighting 305

4.1 Local User Preference Weighting

The local user preference weighting (LW) [19] discovers the relative importance
of each feature in each case as a weighting value for computing the similarity,
taking into account the user preferences. LW is basically motivated by the fact
that most compatible cases are quite similar on their critiqued features and
differences mainly belong to those features that have not been yet critiqued.
So, the aim of the local weighting method is to prioritize the similarity of those
features that have not yet been critiqued. The weight of the local approach is
defined over each feature p

′
f of candidate case p′ as follows:

W (p
′
f) = 1− 1

2

(∑
∀i∈Uf δ(p

′
i, U

f
i)

|Uf |

)
(10)

where |Uf | is the number of critiques in U that refer to feature f , Uf
i is a critique

over feature f . This generates a feature weight vector for each case. A feature
that has not been critiqued will assume a weight value of 1.0, and a decrement
will be applied when a critique is satisfied by the case. As such, the feature
weight will be proportional to the number of times a critique on this feature
is satisfied by the case. However, as shown in eq. (10), weights never decrease
to a 0 value. For example, in a travel vacation recommender with a user model
that contains two critiques [price, >, 1000] and [price, >, 1500], a case with two
features {duration, price} whose price is 2000 will have as price weight a 0.5
value because it satisfies both critiques whereas the duration weight will be 1.0
because there is no critique on this feature. It is important to recap that the key
idea here is to prioritize the similarity of those features that have not yet been
critiqued in a given session.

4.2 Global User Preference Weighting

LW computes a feature weight vector for each case depending on the degree
of satisfaction of the user critiques for this case. However, considering that the
compatibility function is correctly focusing into the product space, the remaining
set of cases are similarly satisfying the preferences of the user, so their feature
weight vectors will also be similar and a global weighting vector is feasible.

The idea is to compute a vector of weights that will be used for the whole set
of candidate cases. This weighting method only enhances the set of features that
may produce better recommendation to all the cases. For each case p′ in the list
of candidate cases, the global weighting is defined as follows:

W (f) = 1− 1
2

(∑
∀p′⊆P ′ δ(p′, Uf

i)
|P ′|

)
(11)

where |P ′| is the total number of cases in the list of candidate cases. The final
weight for each feature f depends on the number of cases that satisfy a critique
on this feature. Similarly to LW, the most satisfied critiques will have the lowest

306 M. Salamó, S. Escalera, and P. Radeva

weight for a feature, since the system looks for prioritizing features that have
not been previously critiqued. As before, weights never decrease to a 0 value.
The maximum decrease is 0.5 which has experimentally shown to obtain the best
performance.

The rationale behind prioritizing with the highest weight values the non cri-
tiqued features is based on the idea that they are the most important to denote
differences on similarity between two cases. This happens because the compat-
ibility score correctly focuses the product space and thus, the candidate cases
are similar in the critiqued features. Consequently, the effort of the similarity is
to show where the differences are in the features that the recommender is not
able to focus with the compatibility because there are not critiques about them.

5 Empirical Evaluation

In previous sections we described different reinforcement learning measures and
two weighting approaches to improve the quality measure of a conversational
recommender system. We argue that quality measure may benefit from im-
provements on compatibility and similarity. As a result, the tendency of the
quality measure is to recommend cases that better satisfy user preferences. In
this section, we test our proposals using a well-known recommender data set.
In particular, we look for the performance of the recommender system when us-
ing reinforcement learning techniques and also the combination of both RL and
weighting proposals.

5.1 Setup

The evaluation was performed using the standard Travel data set (available
from http://www.ai-cbr.org) which consists of 1024 vacation cases. Each case is
described in terms of nine features. The data set was chosen because it contains
numerical and nominal features and a wide search space.

First, we evaluate the different RL measures: Monte Carlo (MC), Exponential
Monte Carlo (EMC), BackwardTD (BTD), and Exponential Hit-Loss (EHL).
Second, we also test the combination of RL with the weighting strategies in our
recommender. The configurations analyzed are LW-MC (which corresponds to
a local user preference weighting combined with a Monte Carlo compatibility),
LW-BTD, LW-EHL, LW-EMC, GW-MC, GW-BTD, GW-EHL, and GW-EMC.
We use incremental critiquing-based recommender (IC) [17] as baseline.

We follow the evaluation methodology similar to that one described in [23].
Accordingly, each case (which is called the ’base’) in the case-base is temporarily
removed and used in two ways. First, it serves as a basis for a set of queries
by taking random subsets of its features. We focus on subsets of one, three,
and five features to allow us to distinguish between hard, moderate, and easy
queries, respectively. Second, we select the case that is most similar to the original
base. These cases are the recommendation targets for the experiments. Thus,
the base represents the ideal query for a user, the generated query is the initial

Quality Enhancement Based on RL and Feature Weighting 307

query provided by the user, and the target is the best available case for the
user. Each generated query is a test problem for the recommender, and at each
recommendation cycle the user picks a critique that is compatible with the known
target case. We repeat each leave-one-out ten times and the recommendation
sessions terminate when the target case is returned. Different statistics are also
used to evaluate the statistical significance of the obtained results.

5.2 Reinforcement Learning Recommendation Efficiency

We analyze the recommendation efficiency —by which we mean average recom-
mendation session length— when comparing our RL measures to incremental
critiquing. RL measures need to set up a parameter α that fix the learning rate
(in the case of BTD we modify the parameter λ). We run different variations
of α, λ ∈ [0.1, ..., 0.5] in order to appreciate the influence of this parameter over
each strategy. Before to compute the quality for each product, we normalize the
compatibility term C so that it ranges between ε and one for the lowest and
highest compatibility, respectively. This is computed as Cp′

= Cp′

max∀a′⊆P ′(Ca′) ,

where Cp′
is the compatibility of the case p′ to be normalized. This normal-

ization makes comparable the results obtained by the different RL strategies.
Figure 4 (a) presents a graph with the evolution of the average session length
for different values of α and λ. We can see that MC and BTD present a ten-
dency to increase and decrease the average session length when increasing α and
λ, respectively. The best configuration for MC is α = 0.1 and, although not
shown in the graph, the best configuration for BTD is λ = 0.9. This large value
for BTD suggests that high changes on the compatibility value may improve
(reduce) session lengths. The EMC and EHL strategies consider an exponential
tendency in order to make final critiques more relevant to the user preferences
than the initial ones. As shown in Figure 4 (a), the exponential behavior of these
strategies, in contrast to the logarithmic one of the remaining, results in shorter
session lengths.

(a) (b)

Fig. 4. Figure (a) corresponds to session lengths evolution for different α, λ-values and
Figure (b) represents session length benefit over incremental critiquing

308 M. Salamó, S. Escalera, and P. Radeva

We also found that the exponential EMC and EHL configurations have a more
stable average session length than the rest of RL techniques for different values
of α, ranging from 10.37 to 10.24. In Figure 4 (b) we present EMC and EHL
benefit compared to incremental critiquing. We compute the percentage benefit
as Benefit(y,x) =

(
1− y

x

)
·100, where y and x stands for the number of cycles

of the compared strategy and IC, respectively. The EMC and EHL benefit ranges
from 2% to 3.5%. Although the result seems low, we want to point out that the
only difference between IC and our EMC and EHL methods is how we compute
the compatibility measure. Note that in our previous work [18], we introduced
the MC strategy in combination with a product recommendation strategy called
Highest Compatibility Selection (HCS) [19], whose benefit applied together in
the recommender system was around 2% to under 4%. Our new RL measures
are able to obtain the same benefit by themselves without introducing the HCS
methodology. Thus, we can state that EMC and EHL RL exponential strate-
gies are able to focus on those products that best satisfy the user preferences,
obtaining more accurate quality measurements.

Additionally, in Figure 5 (a) we summarize the average session lengths results
over all types of queries for different variations of β using EMC (set up with
α = 0.2) and EHL (set up with α = 0.3). Once again, the results are quite
similar between EMC and EHL. Session lengths are maintained between β = 0.5
to β = 0.9. It is significant that session lengths remain shorter for β = 1.0 than
β = 0.1. Note that β = 1.0 means that each recommendation cycle is influenced
by the compatibility measure with no similarity and a β = 0.1 specifies that the
most important role for recommendation is the similarity.

Figure 5 (b) presents EMC and EHL benefit over incremental critiquing for the
β-values for which RL techniques obtain better results. EMC and EHL reduce
the session length from nearly 2% to 3.5%. The best results are obtained for
the values of β = 0.6 and β = 0.75, respectively. The last value coincides with
the best result obtained by the incremental critiquing. Thus, we decided to fix
β = 0.75, α = 0.1 for MC, α = 0.2 for EMC, α = 0.9 for BTD, and α = 0.3 for
EHL in the next experiments, respectively.

(a) (b)

Fig. 5. Figure (a) corresponds to session lengths evolution for different β-values and
Figure (b) represents benefit over incremental critiquing

Quality Enhancement Based on RL and Feature Weighting 309

5.3 Quality Recommendation Efficiency

Earlier we mentioned how quality, apart from the compatibility, also uses simi-
larity to optimize recommendations. In this section, we analyze the benefits over
incremental critiquing when applying both weighting and reinforcement learning
to compute the quality measure.

In Figure 6 we present the average benefit to different levels of query dif-
ficulty. Figure 6 (a) depicts the results for the combination of local weighting
with RL measures. These combinations result for all algorithms tested in a re-
duction in session length that ranges from 0.5% up to 8%. On the other hand,
see Figure 6(b), global weighting and RL measures gives the highest benefit,
ranging from 3.44% to 11.13%. Combining weighting and reinforcement learning
compatibility further enhances recommendation performance, resulting in better
recommendation for all queries (hard, moderate, and easy).

We also statistically analyze the benefits of using our methodology instead
of the standard incremental critiquing. As before, we separately evaluate local
and global weighting. The algorithms analyzed are: (1) IC, LW-MC, LW-EMC,
LW-BTD, and LW-HLE, and (2) IC, GW-MC, GW-EMC, GW-BTD and GW-
HLE. First of all, we compute the mean rank (r) of each algorithm considering
all the experiments (five algorithms and three different queries for each test).
The rankings are obtained estimating each particular ranking rj

i for each query
i and each algorithm j, and computing the mean ranking R for each algorithm
as Rj = 1

N

∑
i rj

i , where N is the total number of queries. Compared with
mean performance values, the mean rank can reduce the susceptibility to out-
liers which, for instance, allows a classifier’s excellent performance on one query
to compensate for its overall bad performance [6]. Second, we apply the Fried-
man and Nemenyi tests to analyze whether the difference between algorithms is
statistically significant [7,8].

The Friedman test, recommended by Demšar [6], is effective for compar-
ing multiple algorithms across multiple data sets, in our case, across multiple

(a) (b)

Fig. 6. Average benefit over incremental critiquing. Each figure represents a different
benefit weighting where (a) corresponds to local weighting and (b) corresponds to
global weighting.

310 M. Salamó, S. Escalera, and P. Radeva

queries. It compares mean ranks of algorithms to decide whether to reject the
null hypothesis, which states that all the methods are equivalent and so their
ranks should be equal. The Friedman statistic value is computed as X2

F =
12N

k(k+1)

[∑
j R2

j −
k(k+1)2

4

]
. Since this value is undesirable conservative, Iman and

Davenport proposed a corrected statistic, FF = (N−1)X2
F

N(k−1)−X2
F

.
When we apply the Friedman test in our experimental setup with five algo-

rithms and three different queries, FF is distributed according to the F distri-
bution with (5 − 1) = 4 and (5 − 1) · (3 − 1) = 8 degrees of freedom. The
critical value of F (4, 8) = 3.83 at the 0.05 critical level. We obtained the values
of XF = 11.42 and FF = 40.06 for the local weighting rankings and XF = 9.86
and FF = 9.22 for the global weighting rankings. As the values of FF are always
higher than 3.83 we can reject the null hypothesis in both cases.

Once we have checked for the non-randomness of the results, we can perform
a post hoc test to check if one of the techniques can be singled out. For this
purpose we use the Nemenyi test —two techniques are significantly different if
the corresponding average ranks differ by at least the critical difference value,

CD = qα

√
k(k+1)

6N , where qα is based on the Studentized range statistic divided

by
√

2. In our case, when comparing five algorithms with a critical value α = 0.1,
q0.1 = 2.45 for a two-tailed Nemenyi test. Substituting, we obtain a critical
difference value CD = 3.17. Thus, for any two pairs of algorithms whose rank
difference is higher than 3.17, we can infer —with a confidence of 90%— that
there exists a significant difference between them.

The results of the Nemenyi test are illustrated in Figure 7. In the figure,
bullets represent the mean ranks of each algorithm. Vertical lines across bullets
indicate the ’critical difference’. The performance of two algorithms is signifi-
cantly different if their corresponding mean ranks differ by at least the critical
difference. For instance, Figure 7 (a) reveals that LW-EMC and LW-EHL are
significantly better than IC. We cannot say the same with regard to LW-MC and
LW-BTD, though. The same behavior occurs in the case of the global weighting
analysis of Figure 7 (b). However, note that the global weighting of Figure 6(b)

(a) (b)

Fig. 7. Application of the Nemenyi test critical difference to algorithms mean rank
considering their session length for (a) local weighting and (b) global weighting

Quality Enhancement Based on RL and Feature Weighting 311

shows more stable results for all combination of strategies than local weighting,
obtaining higher benefits in terms of session length.

6 Conclusions

Retrieving the most suitable product for a user during a live customer interac-
tion is one of the key pieces in conversational case-based recommender systems.
Specifically, in incremental critiquing the recommendation process is primarily
guided by a quality measure. In this paper we have proposed new strategies
for compatibility computation and feature weighting that enhance quality. We
reviewed the state-of-the-art on reinforcement learning which can be applied to
conversational CBRs, and proposed two new compatibility strategies which of-
fer better benefit in terms of session length. Concerning the similarity score, we
presented a global weighting strategy, which uses a common weight over all cases
based on the number of satisfied critiques. Our experiments show significantly
improvements in comparison to the state-of-the-art approaches.

Acknowledgements

This work has been supported in part by projects TIN2006-15308-C02, FIS
PI061290, and CONSOLIDER-INGENIO CSD 2007-00018.

References

1. Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms. International Journal of Man-Machine Studies 36(2), 267–287
(1992)

2. Aha, D.W., Breslow, L.A., Muñoz-Avila, H.: Conversational Case-Based Reason-
ing. Applied Intelligence 14, 9–32 (2000)

3. Burke, R.: Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial
Intelligence Review 18(3-4), 245–267 (2002)

4. Burke, R., Hammond, K., Young, B.: Knowledge-Based Navigation of Complex
Information Spaces. In: Proceedings of the 13th National Conference on Artificial
Intelligence, Portland, OR, pp. 462–468. AAAI Press/MIT Press (1996)

5. Burke, R., Hammond, K., Young, B.C.: The FindMe Approach to Assisted Brows-
ing. Journal of IEEE Expert 12(4), 32–40 (1997)

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
Machine Learning Research 7, 1–30 (2006)

7. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the American Statistical Association 32(200),
675–701 (1937)

8. Friedman, M.: A comparison of alternative tests of significance for the problem of
m rankings. The Annals of Mathematical Statistics 11(1), 86–92 (1940)

9. Göker, M.H., Thompson, C.A.: Personalized conversational case-based recommen-
dation. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp.
99–111. Springer, Heidelberg (2000)

312 M. Salamó, S. Escalera, and P. Radeva

10. Golovin, N., Rahm, E.: Reinforcement learning architecture for web recommenda-
tions. In: Proceedings of the International Conference on Information Technology:
Coding and Computing, Washington, DC, USA, vol. 2, p. 398. IEEE Computer
Society Press, Los Alamitos (2004)

11. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement Learning: A survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

12. Kohavi, R., Langley, P., Yun, Y.: The utility of feature weighting in nearest-
neighbour algorithms. In: Poster at ECML 1997 (Unpublished)

13. McGinty, L., Smyth, B.: Comparison-Based Recommendation. In: Craw, S. (ed.)
ECCBR 2002. LNCS, vol. 2416, pp. 575–589. Springer, Heidelberg (2002)

14. McGinty, L., Smyth, B.: Tweaking Critiquing. In: Proceedings of the Workshop
on Personalization and Web Techniques at the International Joint Conference on
Artificial Intelligence. Morgan Kaufmann, San Francisco (2003)

15. McSherry, D.: Similarity and Compromise. In: Ashley, K.D., Bridge, D.G. (eds.)
ICCBR 2003. LNCS, vol. 2689, pp. 291–305. Springer, Heidelberg (2003)

16. Moon, A., Kang, T., Kim, H., Kim, H.: A service recommendation using reinforce-
ment learning for network-based robots in ubiquitous computing environments.
In: EEE International Conference on Robot & Human Interactive Communication
(2007)

17. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental Critiquing. In:
Bramer, M., Coenen, F., Allen, T. (eds.) Research and Development in Intelligent
Systems XXI. Proceedings of AI 2004, Cambridge, UK, pp. 101–114. Springer,
Heidelberg (2004)

18. Salamó, M., Reilly, J., McGinty, L., Smyth, B.: Improving incremental critiquing.
In: 16th Artificial Intelligence and Cognitive Science, pp. 379–388 (2005)

19. Salamó, M., Reilly, J., McGinty, L., Smyth, B.: Knowledge discovery from user
preferences in conversational recommendation. In: Jorge, A.M., Torgo, L., Brazdil,
P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS, vol. 3721, pp. 228–239.
Springer, Heidelberg (2005)

20. Shimazu, H.: ExpertClerk: A Conversational Case-Based Reasoning Tool for De-
veloping Salesclerk Agents in E-Commerce Webshops. Artificial Intelligence Re-
view 18(3-4), 223–244 (2002)

21. Shimazu, H., Shibata, A., Nihei, K.: ExpertGuide: A Conversational Case-Based
Reasoning Tool for Developing Mentors in Knowledge Spaces. Applied Intelli-
gence 14(1), 33–48 (2002)

22. Smyth, B., McGinty, L.: An Analysis of Feedback Strategies in Conversational
Recommender Systems. In: Cunningham, P. (ed.) Proceedings of the 14th National
Conference on Artificial Intelligence and Cognitive Science, Dublin, Ireland (2003)

23. Smyth, B., McGinty, L.: The Power of Suggestion. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco
(2003)

24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction. MIT Press,
Cambridge (1998)

25. Wettschereck, D., Aha, D.W.: Weighting features. In: Aamodt, A., Veloso, M.M.
(eds.) ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)

Abstraction in Knowledge-Rich Models
for Case-Based Planning�

Antonio A. Sánchez-Ruiz, Pedro A. González-Calero, and Belén Dı́az-Agudo

Dep. Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain

antonio.sanchez@fdi.ucm.es, {pedro,belend}@sip.ucm.es

Abstract. Abstraction in case-based planning is a mechanism for plan
retrieval and adaptation. An abstract case is a generalization of a con-
crete case that can be reused in different situations to that where the
original case was obtained. Additional knowledge is also required to in-
stantiate an abstract case for a new concrete solution.

In this paper, we show how the cases built by a generative planner,
that uses Description Logics to represent knowledge-rich models of the
state of the world, can be automatically abstracted by using the same
knowledge model. An algorithm for case abstraction is presented, along
with the conditions that a new problem must fulfill for being solvable by
an abstract case.

1 Introduction

Abstraction has played an important role in different approaches to Case-Based
Reasoning, sometimes under different names such as generalized cases, proto-
types or scripts. After reviewing previous work, in [1] a definition of abstract
case was proposed that has been widely accepted in the CBR community: an
abstract case is a particular type of generalized case, in the sense that it serves as
a substitute for a set of concrete cases, that, in addition, is represented through a
somehow simplified (abstracted) formalism with regard to that used in concrete
cases.

Abstraction plays also a key role within the field of Knowledge Representation
[2]. The is-a relationship is at the core of frame systems and semantic nets,
although not very well formalized. Actually, modern knowledge representation
technologies such as Description Logics (DLs) have been successful in replacing
previous approaches due to its well-founded semantics for abstraction in concept
hierarchies. Concept abstraction can be reduced to logic entailment, which can
be computed in restricted subsets of first-order predicate logic such as DLs.

In spite of their common roots (Schank’s scripts were a sophisticated form of
semantic nets), work on CBR has been only lightly connected to advances in
Knowledge Representation technology. Abstraction in CBR systems has mainly
� Supported by the Spanish Ministry of Science and Education (TIN2006-15140-C03-

02, TIN2006-15202-C03-03).

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 313–327, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

314 A.A. Sánchez-Ruiz, P.A. González-Calero, and B. Dı́az-Agudo

Table 1. Concept constructors

Name Syntax Name Syntax
conjuction C
 D disjunction C � D

negation ¬C nominal {a}
existencian restr. ∃r.C universal restr. ∀r.C

at-least restr. (≥ nrC) at-most restr. (≤ nrC)

used simple taxonomies, in the form of type hierarchies where a set of values (la-
bels) can be abstracted by its type (another label). Our goal is to bring expressive
knowledge representation formalisms into Case-Based Planning systems.

It has been identified as a challenging area of research the integration of exist-
ing planning algorithms with rich representations of domain-specific knowledge
about planning tasks and objectives, actions and events as part of a plan, and
the complex relations among them [3]. Our work focuses on the representation
of the domain vocabulary and the planning state using Description Logics. This
way the planner can deal with incomplete knowledge, perform complex infer-
ences and check the consistence of the model during the whole planning process.
In addition, such a planner can work on reusable knowledge models (ontologies)
that have not been built specifically for planning.

In this paper, we show how plans generated by such a planner can be au-
tomatically abstracted through the knowledge included in the domain ontology
used to represent the world state in the planner. At the same time, the algorithm
used for abstracting a plan serves also to index the resulting abstract case. And,
finally, that same declarative knowledge will guide the reuse process by guiding
the specialization of an abstract case to solve a new concrete problem.

The rest of the paper runs as follows. Next Section briefly describes the basic
ideas of knowledge representation in Description Logics and introduces an exam-
ple domain that will be used along the paper. Section 3 presents the generative
planner that is used to generate cases in our approach. Next, Sections 4 and 5
describe the abstraction process and how abstract cases are reused to solve new
concrete problems. Section 6 discusses the update semantics behind operators.
Finally, last Section presents related work and concludes the paper.

2 Abstraction in Description Logics

Description Logics (DLs)[4] are expressive subsets of First Order Logic with good
reasoning properties that are specially designed to represent structured knowl-
edge. DLs represent knowledge using concepts, roles and individuals. Concepts
represent categories or types described by means of potential complex formulas,
roles are binary relations, and individuals (concept instances) are entities that
represent objects in the domain. The main property is the is-a relation that
defines a hierarchy in which general concepts subsume more specific ones.

Abstraction in Knowledge-Rich Models for Case-Based Planning 315

Concepts and roles are defined using a predefined set of constructors, that
determine the expressive power of the DL. Table 1 shows a standard set of
constructors that can be used to inductively build complex concepts from a set
NC of concept names, a set NR of role names, and a set NI of individual names.

A Knowledge Base has two different parts: the TBox or terminological compo-
nent1, and the ABox or assertional component. Intuitively, the TBox describes
the domain vocabulary and a set of domain axioms that will be used to infer
new knowledge and to check the model consistency. Note that using the concept
constructors we can define complex vocabularies with several dependencies be-
tween terms. While the TBox represents fixed information about the domain,
the ABox represents knowledge about the current state that may change.

Let A ∈ NC be a concept name, C a general concept, then a TBox is a
collection of axioms of the form A � C (A is subsumed by C) or A ≡ C (A is
equivalent to C).

An interpretation I gives meaning to concepts, roles and individual names
by assigning them a denotation (subset of the domain world). The semantics of
TBox definitions is the usual: we say that an interpretation I is a model of a
TBox KT (I |= KT) iff it satisfies all its axioms.

Let C be a concept, r a role, and a and b individuals, then an ABox is
a collection of assertions of the form C(a), r(a, b) and ¬r(a, b) representing
respectively that a is an instance of C, a and b are and are not related using r.
We say that an interpretation I is a model of an ABox KA iff it satisfies all its
assertions.

Finally, a Knowledge Base (KB from now on) K = (KT , KA) is a tuple where
KT is a TBox and KA is an ABox. We say that a KB K is consistent if there
exists an interpretation I that is a model of both KT and KA.

It is important to emphasize that reasoning in DLs is made under the Open
World Assumption (OWA), i.e., the default truth value of every assertion is un-
known. In other words, the ABox is only a partial description of the state and
it admits several different models, one for each possible concrete state matching
the partial description. We can take advantage of this feature to reason in incom-
plete knowledge scenarios that, due to their complexity or uncertainty, we are
not able to describe completely. The more knowledge we provide to the reasoner
the more inferences will be able to do, but new knowledge will never invalidate
any of the previous inferences.

We can perform queries to retrieve information from a KB. Let V be a set of
variable names, C a concept, r a role, and x, y ∈ V ∪NI individuals or variable
names, then a conjunctive query Q is a conjunction of atoms of form C(x), r(x, y)
or ¬r(x, y). The result of executing a query on a KB K is a set of substitutions
{θ1 . . . θn} that bind variables to individuals such that KA |= θiQ, where θQ are
the assertions that result from applying the substitution to the query. We say
that the query is satisfiable if the substitution set is not empty.

In summary, DLs are a powerful tool to represent knowledge and to reason at
different levels of abstraction because (a) we can define a domain hierarchy of

1 From the TBox we can explicitly name RBox as the finite set of role inclusion axioms.

316 A.A. Sánchez-Ruiz, P.A. González-Calero, and B. Dı́az-Agudo

Fig. 1. Some toppings from the Pizza Restaurant ontology

concepts to describe both, general and concrete scenarios, and (b) any reasoning
made in an abstract scenario will be still valid in a more concrete one.

2.1 The Pizza Restaurant Domain Example

In this section we introduce a domain about a pizza restaurant that will be used
in the rest of the paper2. The vocabulary of this domain, formalized in OWL-DL
[5], is an extension of the ontology described in the well-known OWL tutorial
of Manchester University [6]. Figure 1 shows a very small part of this KB that
counts with more that 130 different concepts about pizzas, toppings, bases, etc.

Toppings are classified using their types (meat, fish, cheese, fruit, etc) and
their spiciness (mild, medium, hot). Pizzas, on the other hand, are classified
according to their ingredient types (meaty, vegetarian, spicy ...), pizza base (thin,
deep pan, etc), size (small, regular, familiar) and number of toppings. Besides,
the KB contains some standard pizzas that can be found in any restaurant like
FourSeasons, Margherita or Napoletana.

The concept hierarchy provides a large vocabulary to describe situations with
different levels of detail. For example, MushroomTopping or DeepPanBase rep-
resent concrete types of ingredients and bases, while VegetarianPizza or Spicy-
Topping are abstract concepts that will be useful to describe situations in which
we do not know or we do not care about the real ingredient types.

Next, we show some axioms from the TBox as an example of possible concept
formulas. Very briefly, axiom (1) sets the different types of spiciness, (2) defines

2 Available in http://gaia.fdi.ucm.es/people/antonio/data/iccbr09/

pizzeria.owl

http://gaia.fdi.ucm.es/people/antonio/data/iccbr09/pizzeria.owl
http://gaia.fdi.ucm.es/people/antonio/data/iccbr09/pizzeria.owl

Abstraction in Knowledge-Rich Models for Case-Based Planning 317

what a spicy topping is, (3) and (4) describe two concrete topping types, (5)
defines that a pizza is spicy if it has at least one hot topping, (6) is similar for
pizzas having meat, (7) says that a pizza is interesting when it has at least 3
toppings, and at last, (8) defines a margherita pizza as a pizza with tomato and
cheese.

Spiciness ≡ Hot � Medium � Soft (1)

Spicy ≡ Topping
 Hot (2)

Olives � V egetable
 Soft (3)

Morrarella � Cheese
 Soft (4)

SpicyP izza ≡ Pizza
 ∃hasTopping.Spicy (5)

MeatyP izza ≡ Pizza
 ∃hasTopping.Meat (6)

InterestingP izza ≡ Pizza
 (≥ 3hasTopping) (7)

Marguerita ≡ Pizza
 (= 2hasTopping)
 ∃hasTopping.Cheese
 (8)

∃hasTopping.T omato

We can describe different states using ABox assertions, for example:

SpicyP izza(p),MeatyP izza(p), hasTopping(p, t1), Olives(t1),

hasTopping(t2),Mozzarella(t2)

It is important to remember that due to OWA this is just a partial description
of a real state and, therefore, it only says that there is a meaty and spicy pizza
that has olives and mozzarella. Nothing else is assumed, i.e., the pizza could have
any type of base or even other toppings different from t1 and t2. Actually, from
those assertions the reasoner will infer that the pizza must have at least another
(unknown) topping of type spicy meat, because neither olives nor mozzarella
are spicy or meat. This way, the pizza must have 3 or more toppings and will
be classified as an instance of InterestingPizza. This is just an example of the
complex inferences that the KB can produce.

Finally, by way of example we show a query to retrieve all the pizzas having
at least one vegetarian topping:

Pizza(?x), hasTopping(?x,?y), V egetarian(?y)

3 Generative Planning Using DLs

The idea of using the expressivity power of DLs in complex planning scenarios is
not new [3], but it has acquired more importance during the last years with the
development of the Semantic Web and the problem of composing Web Services
[7]. In this section we introduce a planning model that uses DLs in order to deal
with incomplete knowledge and to perform complex inferences during the plan-
ning process. In particular, we propose to use DLs to describe: first, a rich domain

318 A.A. Sánchez-Ruiz, P.A. González-Calero, and B. Dı́az-Agudo

vocabulary that can be used to define planning actions and complex domain con-
straints; and second, incomplete planning states (or abstract states) that represent,
in a compact way, all the states that fit in the given partial description.

A planning domain, in our approach, consists of a knowledge base K =
(KT , KA) and a set of planning operators. The KB describes the domain vo-
cabulary and a set of axioms that will be used to infer new knowledge and to
detect inconsistencies during the planning process. Operators, on the other hand,
describe atomic actions using the domain vocabulary. A planning problem con-
sists of an initial planning state and a planning goal. A planning state is another
KB S = (ST , SA) with ST = KT and SA = KA ∪K

′
A, i.e., the domain KB plus

a new set of assertions that define a particular instantiation in a specific instant
of time. Due to the OWA, the state is an incomplete or partial description of
the real state, that is unknown. The planning goal is represented by means of a
conjunctive query that must be satisfied in the goal state. To solve the planning
problem, we must find a valid plan, that is, a sequence of ground operators that
makes the system evolve from the initial state to another state which satisfies
the goals.

A planning operator O = (Opre, Opost) is a tuple where:

– Opre, the precondition, is a conjunctive query.
– Opost, the postcondition, is another conjunctive query.
– both, Opre and Opost, share the same set of variables.

The informal semantics of the operator is: the operator is applicable if its pre-
condition is satisfiable in the current state, and after applying it the system will
change to another state that satisfies the postcondition. Note that this approach
differs from the classic STRIPS [8], in which operators have to specify the asser-
tions that must be added to/removed from the current state. It is well known
that, as the domain becomes more complex, it is an increasingly difficult task
to explicitly list all the possible consequences that might occur, depending upon
the details of the situation in which the action is executed (ramification problem
[9]). Our approach is more declarative, the planner has to decide how to update
the state to satisfy the postcondition.

Let S = (ST , SA) be the current state and O = (Opre, Opost) a planning
operator:

– we say that O is applicable in S iff Opre is satisfiable in S, i.e., exists a
substitution θ such that S |= θOpre.

– the result of applying O in S will be another state S
′
= (ST , S

′
A) such that

S
′ |= θOpost and S

′
A represents a minimal change w.r.t. SA.

Unfortunately, there is no consensus about the meaning of minimal change,
and there exist different semantics regarding the effects of applying an operator
[10,11,12]. Actually, there is no consensus on a single correct solution even for
propositional KBs. Katsuno and Mendelzon [13] propose some basic character-
istics an update operation should have, but the update semantics developed in
literature do not agree on these properties as examined in detail by Herzig and
Rifi [14].

Abstraction in Knowledge-Rich Models for Case-Based Planning 319

In this paper we will assume an update operator based on the basic WIDTIO
approach (When In Doubt Throw It Out [15]). According to this approach,
if we reach an inconsistent state after applying an operator, we will remove
assertions to make the new state consistent again. Obviously, we cannot remove
assertions that are necessary to satisfy the postcondition neither assertions that
are part of the domain KB (domain constraints). Note that, usually, there will
be several different ways to solve the inconsistencies removing different sets of
assertions, and therefore, the application of an operator may lead to different
states. Intuitively, those states represent different ways of applying the operator.
The concrete semantics used in our approach is described later in section 6.

Finally, a plan is a sequence of pairs (Oiϕi) where Oi represent ground plan-
ning operators and ϕi sets of assertions that must be removed in order to make
the new state consistent. A plan represents a generic way to solve problems in
which the initial state is more concrete than the initial state used to generate
the plan.

3.1 Planning in the Pizza Restaurant Domain

In this section we use the pizza restaurant ontology to define a basic planning
domain. Besides the ontology, that sets the domain vocabulary and constraints
(or axioms), we need to define planning operators. As one might expect, plan-
ning operators will be related with the creation of pizzas. In particular there is
one operator to select the pizza base (selectBase) and some others to add top-
pings depending on the number of toppings in the current pizza (addTopping0,
addTopping1, ...). Due to the OWA we need to assert explicitly the number
of toppings in the resulting pizza to prevent the existence of other “unknown”
toppings.

oper : selectBase

pre : NewItem(?pizza),Base(?base),Available(?base)

post : Pizza(?pizza), hasBase(?pizza, ?base), P izza0Toppings(?pizza)

oper : addTopping0

pre : Topping(?top),Available(?top), P izza0Toppings(?pizza)

post : hasTopping(?pizza,?top), P izza1Toppings(?pizza)

. . .

Next, we propose a very simple planning problem consisting in the creation
of a margherita pizza with thin base. We can describe this goal using the fol-
lowing query {Margherita(?x), hasBase(?x, ?y), ThinBase(?y)}. Let’s suppose
that the initial state is:

NewItem(p1),Available(b1), ThinBase(b1), Available(t1),

SundriedTomato(t1),Available(t2), Cheese(t2), Available(t3),

V egetarian(t3), Spicy(t3), Mushrooms(t4)

320 A.A. Sánchez-Ruiz, P.A. González-Calero, and B. Dı́az-Agudo

Note that we do not know what type of cheese t2 is, neither the real type of
t3 nor even if t4 is available, but that information is not needed to solve the
problem. Next we show a valid solution plan, where assertions between brackets
are the ones that must be deleted after applying the operator in order to solve
inconsistencies:

selectBase{?pizza = p1, ?base = b1}[NewItem(p1), Available(b1)],

addTopping0{?pizza = p1, ?top = t1}[Available(t1), P izza0Toppings(p1)],

addTopping1{?pizza = p1, ?top = t2}[Available(t2), P izza1Toppings(p1)]

4 Creating Abstract Cases

The planning model introduced in the previous section is able to solve abstract
problems, i.e., problems where the initial state and the goal state are partially
described. Plans generated will be useful to solve other problems having a more
specific initial state and a more generic goal. From this point of view any pair
problem-solution is a potential abstract case.

A case C is a tuple (CS , CG, CP) where:

– CS , the case precondition, is a conjunctive query.
– CG, the case goal, is another conjunctive query.
– CP is a generalized plan, i.e., a sequence {O1ϕ1 . . . Onϕn} that may use

variables of CS .

The intended meaning of a case is that we can reuse a pre-computed plan if the
current state satisfies CS and the goal is CG or a more general goal. Intuitively,
we say that a query Q1 is more general that other query Q2 (Q2 � Q1 or Q1
subsumes Q2) if every solution of Q2 is also a solution of Q1 [7].

We will try to generalize the problem-solutions obtained from the genera-
tive planner before storing the corresponding cases in the case base, in order
to create cases applicable in a broader spectrum of situations. The algorithm of
generalization takes advantage of the domain concept hierarchy, using the fol-
lowing intuitive idea: parents of a concept describe more general categories and
the children more specific ones.

We can generalize a problem (S0, G) and its solution P using the following
steps:

1. explicitly add to the initial state every assertion α such that S0 |= α.
2. remove any assertion from the initial state that is not necessary to solve the

problem using P .

The first step just adds to the initial state every assertion that can be inferred
(using parent concepts and roles in the hierarchy), so we obtain an equivalent
initial state. The second step tries to remove assertions that are not necessary,
but now, as a result of the previous step, to delete an assertion does not imply
to loose all the information that was deduced using it (because that information

Abstraction in Knowledge-Rich Models for Case-Based Planning 321

is still asserted). Note that to perform this generalization we need to execute
the plan each time we remove an assertion from the initial state in order to
ensure that the plan is still valid. This process can easily be improved with a
proper analysis, but to simplify we will suppose that the generation of cases is
performed off-line and performance is not a issue.

4.1 An Example of Case in the Pizza Restaurant Domain

We are going to create a generalized case using the problem about the margherita
pizza that was solved in section 3.1. First we represent the initial state using
explicitly all the assertions that can be inferred:

NewItem(p1),Available(b1), ThinBase(b1), Base(b1),Available(t1),

SundriedTomato(t1), T omato(t1), V egetable(t1), V egetarian(t1),

T opping(t1),Available(t2), Cheese(t2), V egetarian(t2), T opping(t2),

Available(t3), V egetarian(t3), Spicy(t3), T opping(t3),Mushrooms(t4),

V egetable(t4), V egetarian(t4), T opping(t4)

Then we remove all the assertions that are not necessary to solve the problem,
and the remaining initial state is:

NewItem(p1),Available(b1), ThinBase(b1),Available(t1),

T omato(t1),Available(t2), Cheese(t2)

Finally, we replace individuals with variables obtaining the following case:

CS : NewItem(?x1),Available(?x2), ThinBase(?x2),Available(?x3),

T omato(?x3),Available(?x4), Cheese(?x4)

CG : Margherita(?x), hasBase(?x,?y), ThinBase(?y)

CP : selectBase{?pizza =?x1, ?base =?x2)[NewInd(?x1), Available(?x2)],

addTopping0{?pizza =?x1, ?top =?x3}[Available(?x3), P izza0Toppings(?x1)],

addTopping1{?pizza =?x1, ?top =?x4}[Available(?x4), P izza1Toppings(?x1)]

Intuitively, the knowledge represented in this case is: to build a margherita pizza
with thin base you only need a thin base and two toppings of types tomato and
cheese; take the base, add the tomato and finally add the cheese.

4.2 Case Base Indexing and Retrieval

We need to structure the case base in order to retrieve relevant cases quickly.
In our context, by relevant we mean cases in which the precondition is satisfied
in the current initial state and the goal describes a more specific state than the
goal of the current problem.

322 A.A. Sánchez-Ruiz, P.A. González-Calero, and B. Dı́az-Agudo

The Case-Based Planner uses two different KBs to represent the planning
state and to store cases. The KB of cases contains a new concept Case and a
new role hasSK to relate each case to its information. In particular, we will store
the cases indexed by their goals, replacing the variables in the goal query with
new skolem individuals, and using the role hasSK to relate each case with all its
skolem individuals.

For example, we can store the marguerita case of the previous section using
the following assertions. The first line results from replacing variables in the
goal query with new individuals sk1 and sk2, and the second line sets that this
information belongs to the case c1.

Margherita(sk1), hasBase(sk1, sk2), ThinBase(sk2)

Case(c1), hasSK(c1, sk1), hasSK(c1, sk2)

Let’s suppose that now we have to solve a new problem consisting in building
a vegetarian pizza with thin base. We can retrieve the cases whose goal is more
specific using the following query. Note that c1 will be bound to variable ?z
becase Margherita pizza is inferred to be a VegetarianPizza since all its toppings
are vegetarian.

V egetarianP izza(?x), hasBase(?x,?y), ThinBase(?y)

Case(?z), hasSK(?z, ?x), hasSK(?z, ?y)

Once all those cases have been retrieved we need to check which ones of them are
applicable in the current planning state. This is easily accomplished executing
their preconditions in the state KB and selecting those cases that have at least
one solution.

5 Case Reuse

We say that a case C = (CS , CG, CP) can be used to solve a problem P = (S0, G)
iff:

– CG |= G, i.e., the goal of the problem subsumes the goal of the case.
– S0 |= CP , i.e., the case precondition is satisfiable in the initial state.

The solution stored in the case is a valid solution for the problem, although it
is possible that during the plan execution we will have to remove some extra
assertions to reach consistent states. The execution of the case precondition in
the current initial state provides the required bindings to execute the plan in
the new context.

For example, let’s suppose that we have to solve a problem in which the goal
is to make a vegetarian pizza using the following ingredients:

NewItem(np1), ThinBase(nb1), Available(nb1), SlicedTomato(nt1),

Available(nt1), Parmesan(nt2),Available(nt2), Beef(nt3), Available(nt3)

Abstraction in Knowledge-Rich Models for Case-Based Planning 323

Using the goal of the problem as a query in the KB of cases we retrieve the case
c1 because:

Margherita(?x), hasBase(?x, ?y), ThinBase(?y) � V egeratianP izza(?x)

Besides, the current initial state satisfies the precondition of the case using the
substitution {?x1 = np1, ?x2 = nb1, ?x3 = nt1, ?x4 = nt2}. Finally, a solution
of the problem is computed from the case solution:

selectBase{?pizza = np1, ?base = nb1)[NewInd(np1), Available(nb1)],

addTopping0{?pizza = np1, ?top = nt1}[Available(nt1), P izza0Toppings(np1)],

addTopping1{?pizza = np1, ?top = nt2}[Available(nt2), P izza1Toppings(np2)]

Note that during the case reuse we have implicitly replaced SundriedTomato with
SlicedTomato and Cheese with Parmesan. This is a very simple example but in
complex scenarios we can perform more interesting adaptations. The important
part is that all the process of generalization and concretion are based on the
inferences that the reasoner is able to do from a declarative description of the
domain.

6 Operator Semantics

We have not described the real semantics behind an operator execution until now,
leaving the intuitive notion of deleting problematic assertions when we reach an
inconsistent state during the planning process. In this section we provide the
details required in order to understand how operators are applied and why a
generalized plan can be used to solve more specific problems.

First of all, in order to minimize the destructive effects of the WIDTIO ap-
proach, when we remove an assertion from the current state we do not want to
lose the information that could be inferred from it. We can obtain this effect
either using states that explicitly contain all the possible inferred assertions or
explicitly adding the adequate information when we remove an assertion. We
consider from now on that states explicitly contain all the assertion that can be
deduced.

Let ST be a satisfiable TBox, then we say that a set of assertions φ is an
inconsistency w.r.t ST iff the KB (ST , φ) is inconsistent and for any α ∈ φ
(ST , φ\{α}) is consistent. An inconsistency represents a minimal set of assertions
that cause a KB to be inconsistent, and to solve it we only have to remove
one of them. Note that, in general, there will be several inconsistencies in an
inconsistent KB. Besides, if some inconsistencies share an assertion α, we can
solve them just removing α from the KB. We use inc((ST , SA)) to represent the
set of inconsistencies in (ST , SA).

Let S = (ST , SA) be an inconsistent state, we say that a set of assertions ϕ
is a inconsistency solver of S iff (ST , SA \ ϕ) is consistent. We say that ϕ is a
minimal inconsistency solver (mis) of S iff ϕ is an inconsistency solver and there
is no other inconsistency solver ψ ⊂ ϕ.

324 A.A. Sánchez-Ruiz, P.A. González-Calero, and B. Dı́az-Agudo

Now we can define how operators update the planning state. Let S = (ST , SA)
be a consistent state and O = (Opre, Opost) a planning operator, then apply(S, O)
is the set of possible next states that is computed as follows:

– if SA ∪Opost is consistent w.r.t ST then S
′
A = SA ∪Opost and apply(S, O) =

{(ST , S
′
A)}.

– in other case, Si
A = SA ∪ Opost \ ϕi where ϕi is a mis of (SA ∪ Opost), and

apply(S, O) = {(ST ,
⋃

Si
A)}.

Using mis we prevent the deletion of too many assertions, for example, deleting
all the ABox assertion but Opost. The union of an operator and a mis univocally
determines the next state: apply(S, O, ϕ) = (ST , SA ∪Opost \ ϕ).

A plan P = (O1ϕ1 . . . ϕnϕn) is a sequence of operators and mis. We say that
the plan P is executable from the state S0 = (ST , S0

A) if:

– S0 |= O1
pre

– for all Si = apply(Si−1, Oi, ϕi) holds that Si |= Oi+1
pre

The intuitive idea behind plan reuse is that if an operator O transforms the state
S into S

′
, and another state R is more specific than S, then there must be at

least one way of applying O in R that leads to another state R
′

more specific
than S

′
. Next we formalize it and show the main ideas behind the demonstration.

Proposition 1. Let S = (KT , SA) be a state, O = (Opre, Opost) an operator
applicable in S, ϕ a mis of (SA ∪ Opost), R = (KT , RA) another state more
specific than S (RA |= SA), then:

1. operator O is applicable in state R.
2. there exists a set of assertions ψ mis of (RA ∪Opost), such that

ϕ ⊆ ψ and apply(R, O, ψ) |= apply(S, O, ϕ).

First part is trivial because RA |= SA and SA |= Opre.
To demonstrate the second part we will build the set ψ. It is easy to see

that (RA ∪ Opost) |= (SA ∪ Opost) because we add the same information to
both ABoxes, and then inc(SA ∪ Opost) ⊆ inc(RA ∪ Opost). Let newInc =
inc(RA ∪ Opost) \ inc(SA ∪ Opost) be the set of new inconsistencies, then every
inconsistency φ ∈ newInc has at least one assertion α ∈ (RA ∪ Opost) \ (SA ∪
Opost), i. e., an assertion that depends on (RA \ SA). Then there exist a set of
assertions μ mis of (RA ∪Opost) \ϕ that is empty or only contains assertions of
(RA ∪Opost) \ (SA ∪Opost). We build ψ = ϕ ∪ μ.

Proposition 2. Let S0 be a state and (O1ϕ1 . . . Onϕn) an applicable plan such
that Si = apply(Si−1, Oi, ϕi) and Sn satisfies a goal G. Let R0 be another state
such that R0 |= S0, then there exists at least one applicable plan (O1ψ1 . . . Onψn)
with Ri = apply(Ri−1, Oi, ψi) such that ϕi ⊆ ψi and Rn |= G.

Using the previous result every Ri |= Si with ϕi ⊆ ψi. Each Oi is applicable in
Ri because it is applicable in Si that is more generic. Finally, if Rn |= Sn then
Rn |= G.

Abstraction in Knowledge-Rich Models for Case-Based Planning 325

7 Related Work and Conclusions

In [16] a framework is presented for describing and analyzing systems where cases
are reused at different levels of abstraction. Systems are classified according to
different criteria: the kind of stored cases (abstract and concrete); how abstract
cases are acquired (manually or automatically); whether abstract cases are used
for indexing; whether abstract cases are directly reused or refined into concrete
cases; and whether storing abstract cases allows to delete concrete ones. The
work presented here can be classified within this framework as one where: only
abstract cases are stored; abstract cases are automatically obtained; abstract
cases are used for indexing; abstract cases are refined into concrete cases when
reused; and only abstract cases are stored.

Several works have emphasized the integration of generative and case-based
planning as a way of coping with those situations where a complete domain
theory and/or a complete world state are not available [17,18]. In such mixed-
initiative planners a conversational case-based planner takes control whenever
none of the generative planner operators can be applied. A case-based planner
can generate answers given incomplete domain theories, and its conversational
component may gather additional information from the user about the world
state so that the generative planner can later proceed. Without the conversa-
tional component, the work described in [19] extends HTN planning to cope
with domains where there is no complete domain theory by using cases instead
of methods for task decomposition. However, these systems reuse cases without
adaptation (basically a case propose a task decomposition), and do not consider
abstracting the cases. Also, the system can not demonstrate the correctness of
its answers since no preconditions are represented for the cases, and it is the user
responsibility to choose among retrieved cases which one is going to be applied.

Regarding the use of abstraction for indexing, the work described in [20,21]
proposes the use of abstraction of the planning states as an indexing mecha-
nism. For every plan recorded as a case in the system, its intermediate states
are abstracted through a simple mechanism that replaces literals by its type
(’PostOffice-1’ is replaced by ’Location’) and such abstractions serve as indexes
for plans containing the original concrete states. This technique is used in the
context of plan recognition, where at every state the system tries to identify the
next most probable action based on recorded cases.

Regarding plan adaptation, the work described in [22] proposes a knowledge-
based technique that can modify a retrieved plan so that whenever some goals of
the retrieved plan are not required for the current situation, superfluous actions
are eliminated. The technique is specially designed for real-time strategy games
where plan generation and execution is interleaved because the post-conditions
of the actions can not be guaranteed and no complete plan can be generated
before-hand. They also propose an additional step of case-based planning for
obtaining additional goals not fulfilled by the retrieved plan. The idea of re-
planning fragments of a retrieved case is also presented in [23] where they apply
an adaptation-guided similarity measure [24], based on the well known FF plan-
ning heuristic, to identify portions of a retrieved plan that can be improved by

326 A.A. Sánchez-Ruiz, P.A. González-Calero, and B. Dı́az-Agudo

re-planning. They actually follow a two step process, first repairing a retrieved
plan with a generative planner (a STRIPS-like version of the original FF plan-
ning system) and then trying to improve the quality of the resulting plan by
substituting portions of it with sub-plans retrieved from the case base. Never-
theless, such method has only been tested in STRIPS like simple problems and
it is unclear how well it can scale-up to complex domains.

In this paper, we have presented a case-based planning approach for reusing
plans obtained by a generative planner that represents the state of the world
using Description Logics. Cases are automatically abstracted through the knowl-
edge included in the domain ontology used to represent the world state in the
planner. We are able to reuse available ontologies which have not been specif-
ically designed for planning. We have also demonstrated that, under certain
assumptions, when the goal of an abstract case is subsumed by the goal of a new
problem, and the case precondition is satisfiable in the initial state of the new
problem, according to the domain ontology used to abstract the cases, then the
abstract case can be reused to obtain a correct solution for the new problem.

Regarding implementation, the generative planner has been actually deployed
under the name of DLPlan3: a planner that takes as input a domain model
represented in OWL-DL and employs a DLs engine (Pellet) to make inferences
about the domain axioms during planning. DLPlan can solve both hierarchical
and non-hierarchical planning problems. Our short term goal is to incorporate
the case-based techniques here described into the system.

References

1. Maximini, K., Maximini, R., Bergmann, R.: An Investigation of Generalized Cases.
In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 261–275.
Springer, Heidelberg (2003)

2. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers, San Francisco (2004)

3. Gil, Y.: Description Logics and Planning. AI Magazine 26, 73–84 (2005)
4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.

(eds.): The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, New York (2003)

5. W3C Consortium: OWL web ontology language guide. W3C recommendation
(2004), http://www.w3.org/tr/owl-guide/

6. Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C.: A Practical Guide
To Building OWL Ontologies Using The Protege-OWL Plugin and CO-ODE Tools
Edition 1.0 (2004)

7. Sirin, E.: Combining Description Logic Reasoning with AI Planning for Composi-
tion of Web Services. PhD thesis, Department of Computer Science, University of
Maryland (2006)

8. Fikes, R., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artif. Intell. 2, 189–208 (1971)

9. Finger, J.J.: Exploiting Constraints in Design Synthesis. PhD thesis, Stanford Uni-
versity, Stanford, CA, USA (1987)

3 Freely available at http://sourceforge.net/projects/dlplan/

http://www.w3.org/tr/owl-guide/

Abstraction in Knowledge-Rich Models for Case-Based Planning 327

10. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating Description Logic ABoxes. In:
KR, pp. 46–56 (2006)

11. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating Description
Logics and Action Formalisms: First Results. In: AAAI, pp. 572–577 (2005)

12. Reiter, R.: On Specifying Database Updates. J. Log. Program. 25, 53–91 (1995)
13. Katsuno, H., Mendelzon, A.O.: On the Difference Between Updating a Knowledge

Base and Revising it. In: Ganderfors, P. (ed.) Cambridge Tracts in Theoretical
Computer Science, vol. 29, pp. 183–203. Cambridge University Press, Cambridge
(1991)

14. Herzig, A., Rifi, O.: Propositional Belief Base Update and Minimal Change. Artif.
Intell. 115, 107–138 (1999)

15. Ginsberg, M.L., Smith, D.E.: Reasoning About Action I: A Possible Worlds Ap-
proach. Artif. Intell. 35, 165–195 (1988)

16. Bergmann, R., Wilke, W.: On the Role of Abstraction in Case-Based Reasoning.
In: Smith, I.F.C., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168, pp. 28–43.
Springer, Heidelberg (1996)

17. Muñoz-Avila, H., Aha, D.W., Breslow, L., Nau, D.S., Weber-Lee, R.: Integrating
Conversational Case Retrieval with generative Planning. In: Blanzieri, E., Porti-
nale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 210–221. Springer, Heidelberg
(2000)

18. Muñoz-Avila, H., McFarlane, D.C., Aha, D.W., Breslow, L., Ballas, J.A., Nau,
D.S.: Using Guidelines to Constrain Interactive Case-Based HTN Planning. In:
Althoff, K.D., Bergmann, R., Branting, K. (eds.) ICCBR 1999. LNCS, vol. 1650,
pp. 288–302. Springer, Heidelberg (1999)

19. Macedo, L., Cardoso, A.: Case-Based, Decision-Theoretic, HTN Planning. In:
Funk, P., González-Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 257–271.
Springer, Heidelberg (2004)

20. Kerkez, B., Cox, M.T.: Incremental Case-Based Plan Recognition Using State In-
dices. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS, vol. 2080, pp. 291–305.
Springer, Heidelberg (2001)

21. Kerkez, B., Cox, M.T.: Incremental Case-Based Plan Recognition with Local Pre-
dictions. International Journal on Artificial Intelligence Tools 12, 413–463 (2003)

22. Sugandh, N., Ontañón, S., Ram, A.: Real-Time Plan Adaptation for Case-Based
Planning in Real-Time Strategy Games. In: Althoff, K.D., Bergmann, R., Minor,
M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp. 533–547. Springer, Hei-
delberg (2008)

23. Tonidandel, F., Rillo, M.: Case Adaptation by Segment Replanning for Case-
Based Planning Systems. In: Muñoz-Avila, H., Ricci, F. (eds.) ICCBR 2005. LNCS,
vol. 3620, pp. 579–594. Springer, Heidelberg (2005)

24. Tonidandel, F., Rillo, M.: An Accurate Adaptation-Guided Similarity Metric for
Case-Based Planning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS,
vol. 2080, pp. 531–545. Springer, Heidelberg (2001)

A Scalable Noise Reduction Technique
for Large Case-Based Systems

Nicola Segata1, Enrico Blanzieri1, and Pádraig Cunningham2

1 DISI, University of Trento, Italy
2 Computer Science, University College Dublin, Dublin, Ireland

Abstract. Because case-based reasoning (CBR) is instance-based, it
is vulnerable to noisy data. Other learning techniques such as support
vector machines (SVMs) and decision trees have been developed to be
noise-tolerant so a certain level of noise in the data can be condoned.
By contrast, noisy data can have a big impact in CBR because inference
is normally based on a small number of cases. So far, research on noise
reduction has been based on a majority-rule strategy, cases that are out
of line with their neighbors are removed. We depart from that strategy
and use local SVMs to identify noisy cases. This is more powerful than a
majority-rule strategy because it explicitly considers the decision bound-
ary in the noise reduction process. In this paper we provide details on
how such a local SVM strategy for noise reduction can be made scale
to very large datasets (> 500,000 training samples). The technique is
evaluated on nine very large datasets and shows excellent performance
when compared with alternative techniques.

1 Introduction

While many learning algorithms can be modified to be noise tolerant it is difficult
to make instance-based learning (IBL) algorithms such as k-nearest neighbour
(k-NN) classifiers or case-based reasoning (CBR) robust against noise. Thus
noise reduction is important for improving generalisation accuracy in IBL. A
further motivation for noise reduction in CBR is explanation – a capability
that is perceived to be one of the advantages of CBR [1,2]. Since case-based
explanation will invoke individual cases as part of the explanation process it is
important that noisy cases can be eliminated if possible. Even if noise reduction
will not improve the classification accuracy of learning algorithms that have been
developed to be noise tolerant, researchers have argued that noise reduction as
a preprocessing step can simplify resulting models, an objective that is desirable
in many circumstances [3].

In k-NN and CBR the problem of noise reduction has traditionally been con-
sidered part of the larger problem of case-base maintenance. Since large training
sets can influence the response time of lazy learners an extensive literature is
dedicated to the development of data reduction techniques that preserve train-
ing set competence. On the other hand, there has also been a lot of research on
competence enhancing techniques that preprocess the training data to remove

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 328–342, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Scalable Noise Reduction Technique for Large Case-Based Systems 329

noisy instances. Much of this work is based on variations on the majority rule
principle whereby examples that disagree with their neighbors are removed. In
the work reported here we construct local support-vector machines (SVMs) in
the region of a data point and use the decision surface of the SVM to determine if
a data point should be removed. We present a strategy that reduces the number
of local SVMs used in the noise reduction process to manageable proportions.

It is well-known that the classification error of the NN classifier is bounded
by twice the Bayes error as the number of training samples n goes to infinity.
This bound can be lowered to the Bayes error using the k-NN classifier with
an high k (it is required that k → ∞, n → ∞, k/n → 0), or using the 1-NN
classifier on an edited training set such that it guarantees the perfect training set
classification [4]. This suggests that, for practical problems, if we are interested
mainly in generalization accuracies, two aspects are crucial: the ability to detect
and remove noisy samples in order to theoretically approach the Bayes error
with the 1-NN classifier, and the possibility to use as much data as possible in
order to approximate the n → ∞ condition. We tackled the first aspect with
LSVM noise reduction (see [5] and Section 2.1) based on Local SVM [6,7] which
was demonstrated to outperform existing noise reduction techniques mainly due
by bringing local class boundaries into consideration. In this paper we focus on
the second aspect, namely on developing a noise reduction technique (based on
LSVM noise reduction) that can be applied to large and very large datasets. The
developed noise reduction method, called FaLKNR, is part of the Fast Local Ker-
nel Machine Library (FaLKM-lib) [8] freely available for research and education
purposes at http://disi.unitn.it/~segata/FaLKM-lib.

1.1 Motivation

The local nature of case-based reasoning entails a vulnerability to noise in train-
ing data. Thus CBR has a dependency on individual training samples that other
supervised learning techniques do not have. Other techniques have been devel-
oped to be noise tolerant by incorporating into the induction process mechanisms
that attempt to avoid overfitting to noise in the training set. Examples of this
include early stopping for artificial neural networks [9], the post-pruning of de-
cision trees [10] and using soft-margin Support Vector Machines which relax
the constraints on the margin maximisation [11]. However, instance based tech-
niques such as k -NN that rely on specific retrieved instances for induction are
affected by noise. These techniques generally lack the induction step that other
noise tolerant techniques can adapt. The dependance on the specific retrieved
instances can be reduced by retrieving more instances (i.e. k -NN, with k > 1
is more noise tolerant than 1-NN) but accuracy will not always increase with
larger values of k. At some point a large k will result in a neighbourhood that
crosses the decision surface and accuracy will drop.

An additional motivation for noise reduction in IBL associated with this de-
pendency on individual training samples is case-based explanation. A learning
system that can provide good explanations for its predictions can increase user
confidence and trust and give the user a sense of control over the system [12].

http://disi.unitn.it/~segata/FaLKM-lib

330 N. Segata, E. Blanzieri, and P. Cunningham

Case-based explanations are generally based on a strategy of presenting simi-
lar past examples to support and justify the predictions made [2,13]. If specific
cases are to be invoked as explanations then noisy cases need to be identified
and removed from the case-base.

Despite the importance of noise reduction for IBL and CBR, little work has
been done on making competence enhancement techniques applicable to large
data collections in order to better approach the theoretical Bayes error rate on
unseen samples with the simple NN classifier.

Finally there are specific application areas where noise reduction is important.
It is generally accepted that inductive learning systems in the medical domain
are dependent on the quality of the data [14] and there has been significant
research into data cleansing in bioinformatics [15,16,3,17]. Although instance
based techniques such as k-NN are not generally used for classification in much
of this research, noise reduction is an important element in the process as it can
result in the simplification of the models created. Lorena and Carvalho [3], for
example, found that preprocessing the training data to remove noise resulted
in simplifications in induced SVM classifiers and higher comprehensiveness in
induced decision tree classifiers. Both in data cleansing in bioinformatics and as
a preprocessing step for different classifiers, the scalability issue is often crucial.

1.2 Related Work

Editing strategies for IBL and CBR may have different objectives as discussed for
example by Wilson and Martinez [18] and Brighton and Mellish [19]. According
to them, editing techniques can be categorised as competence preservation or
competence enhancement techniques. Competence preservation techniques aim
to reduce the size of the training set as much as possible without significantly
affecting the generalisation accuracy thus achieving a reduction in the storage
requirements and increasing the speed of execution. The main goal of competence
enhancement techniques is to increase the generalisation accuracy primarily by
removing noisy or corrupt training examples. Some strategies aim to tackle both
objectives at the same time and for this reason are called hybrid techniques [19].

In this work we are focusing on competence enhancement and for this reason
we briefly review the existing techniques that demonstrate good generalisation
accuracy (for a recent review of competence preservation and hybrid methods
the reader can refer to [5]).

CompetenceEnhancement Methods. The objective of competence enhance-
ment methods is to remove noisy, mislabelled and borderline examples that are
likely to cause misclassification thus allowing k-NN classifiers to model smoother
decision surfaces. They start with Wilson’s Edited Nearest Neighbor algorithm
(ENN) [20], a decremental strategy that simply removes from the training set those
examples that do not agree with the majority of their k nearest neighbours.

Tomek [21] proposed two improvements to ENN; Repeated Edited Nearest
Neighbor (RENN) and All-kNN (AkNN). Both RENN and AkNN make multi-
ple passes over the training set repeating ENN. RENN just repeats the ENN

A Scalable Noise Reduction Technique for Large Case-Based Systems 331

algorithm until no further eliminations can be made from the edited set while
AkNN repeats ENN for each sample using incrementing values of k each time
and removing the sample if its label is not the predominant one at least for one
value of k. It is worth noting that for k = 1, ENN and AkNN are equivalent and
for k > 1 AkNN is more aggressive than ENN.

A slightly different approach is introduced by Koplowitz and Brown [22] which
considers the relabelling of some examples instead of their removal. This idea is
expanded on by Jiang and Zhou [23] using an ensemble of neural networks to
determine the label for the examples that are to be relabelled. Another modi-
fication of ENN and RENN proposed by Sánchez et al [24] entails substituting
the k nearest neighbours with the k nearest centroid neighbours (k-NCN) where
the neighbourhood of an example is defined not only based on distances from
the example but also on the symmetrical distribution of examples around it.

The detecting of mislabeled samples in high-dimensional spaces with small
sample size (typical of high-throughput bioinformatics) is addressed by Malossini
et al [15] based on a leave-one-out perturbation matrix and a measure of the
stability of the label of a sample with respect to label changes of other samples.

In the context of editing training data for spam filtering, Delany and Cun-
ningham [25] advocate putting the emphasis on examples that cause misclassifi-
cations rather than the examples that are themselves misclassified. The method
which is called Blame Based Noise Reduction (BBNR) enhances the competence
properties of coverage and reachability with the concept of a liability set.

Benchmarking Noise Reduction and Generalisation Accuracy
Enhancement. The main editing techniques developed before 2000 have been
extensively evaluated by Wilson and Martinez [18]. The overall result of their anal-
ysis is that DROP3 (a hybrid technique [18]) has the best mix of generalisation ac-
curacy and storage reduction. However, looking at generalisation capability only,
they conclude that their DROP3 method has somewhat lower accuracy that the
group of methods including ENN, RENN and AkNN. In particular, among these
last three methods, AkNN has “the highest accuracy and lowest storage require-
ments in the presence of noise” [18]. The comparisons of ICF (a competence preser-
vation method [19]) with DROP3 by Brighton and Mellish [19] highlights that they
have similar performance but, considering the accuracy results only, it is clear that
ENN outperforms both in the majority of the datasets.

k-NCN seems to be more accurate than AkNN and ENN [24], but the anal-
ysis is performed on five datasets only and does not include an assessment of
statistical significance. Moreover k-NCN substitutes real samples with synthetic
ones preventing case-based explanation. Without considering the competence
preserving methods as our objective is competence enhancement, the remaining
approaches (including the neural network ensemble approach presented by [23]
and KGCM [26]) do not provide any comparison with ENN, RENN or AkNN and
the reproduction of these techniques is non trivial as they are embedded in com-
plex frameworks. The approach proposed by Malossini et al. [15] is conceived for
very high dimensional datasets with very few samples and thus it is not suitable
for general real datasets.

332 N. Segata, E. Blanzieri, and P. Cunningham

Taking this into consideration, we chose to empirically compare our proposed
noise reduction technique with AkNN as, despite its simplicity, it still represents
the state-of-the-art for competence enhancement. We also include comparisons
with ENN and RENN as they are the most popular noise reduction techniques
used in the literature.

As far as we know, the only work that focus on the computational perfor-
mances of the editing techniques, is the competence preservation method pre-
sented by Angiulli [27] where processing time is O(n2) in the number of examples.

2 Fast Noise Reduction with Local Kernel Machines

We introduce here the Fast Local Kernel Machine Noise Reduction (FaLKNR),
which is scalable for large datasets. It is developed starting from the LSVM
noise reduction method, described in [5] and summarized in Section 2.1. Various
modifications and optimization strategies are introduced in Section 2.2 to make
it suitable for large CBR systems. In Section 2.3 the computational complexity
of the obtained noise reduction technique is analysed.

2.1 The LSVM Noise Reduction Technique

The local SVM noise reduction [5] is a reduction technique based on local Sup-
port Vector Machines [6,7] (LSVM) which brings the benefits of maximal margin
classifiers to bear on noise reduction. This provides a more robust alternative to
the majority rule used by most competence enhancing techniques augmenting
it with the kernel-space maximal margin principle. Roughly speaking, LSVM
trains for each training sample an SVM on its neighbourhood and if the SVM
classification for the central sample disagrees with its actual class there is evi-
dence in favour of removing it from the training set. By extending LSVM with a
probabilistic output it is possible to apply it on the training set to remove noisy,
corrupted and mislabelled samples. In other words local SVM noise reduction
removes those samples that, with respect to the maximal separating hyperplanes
built on the feature space projections of their neighbourhoods, are too close to
or on the wrong side of the decision boundary.

We need to briefly recall some SVMs [11] basics. Consider a training set X with
samples (xi, yi) with i = 1, . . . , n, xi ∈ �p and yi ∈ {+1,−1}. The SVM decision
rule is SVM(x) = sign(〈w, Φ(x)〉F + b) where Φ(x) : �p → F is a mapping in a
transformed feature space F with inner product 〈·, ·〉F . The empirical risk term
is controlled through the following set of constraints:

yi (〈w, Φ(xi)〉F + b) ≥ 1− ξi ξi ≥ 0, i = 1, . . . , n (1)

where the slack variables ξi allow some misclassification on the training set.
The problem can be reformulated with Lagrange multipliers αi (i = 1, . . . , n)
and introducing a positive definite kernel (PD) function1 K(·, ·) that substitutes
1 For convention we refer to kernel functions with the capital letter K and to the

number of nearest neighbours with the lower-case letter k.

A Scalable Noise Reduction Technique for Large Case-Based Systems 333

the scalar product in the feature space 〈Φ(xi), Φ(x)〉F obtaining the following
decision rule: SVM(x) = sign (

∑n
i=1 αiyiK(xi, x) + b).

In the case of local SVM, that belongs to the class of local learning algo-
rithms [28,29], the classification problem is tackled differently from SVM. In
fact, instead of estimating a global decision function with a low probability of
errors on all possible unseen samples, local SVM tries to estimate a decision func-
tion with a low probability of error on labeling a given point. This is achieved
by retrieving for each point a neighborhood on which an SVM is built subject
to the following constraints:

yrx(i)
(
w · Φ(xrx(i)) + b

)
≥ 1− ξrx(i), with i = 1, . . . , k

where rx′ : {1, . . . , n} → {1, . . . , n} is a function that reorders the indexes of the
training points defined as:⎧⎪⎨⎪⎩

rx′(1) = argmin
i=1,...,n

‖Φ(xi)− Φ(x′)‖2

rx′(j) = argmin
i=1,...,n

‖Φ(xi)− Φ(x′)‖2 i �= rx′(1), . . . , rx′(j − 1) for j = 2, . . . , n

(2)
The computation is expressed in terms of kernels as ||Φ(x) − Φ(x′)||2 = 〈Φ(x),
Φ(x)〉F + 〈Φ(x′), Φ(x′)〉F − 2 ·〈Φ(x), Φ(x′)〉F = K(x, x)+K(x′, x′)−2 ·K(x, x′).
In this way the decision rule for a sample x and a training set X is:

kNNSVM(x; X) = sign

(
k∑

i=1

αrx(i)yrx(i)K(xrx(i), x) + b

)
. (3)

The probability output for this method can be obtained (following the approach
of Platt [30] refined by Lin et al [31]) as:

p̂ kNNSV M (y = +1|x; X) = [1 + exp(A · kNNSV M(x; X) + B)]−1

Noisy training samples can be detected by applying the LSVM method on each
training sample. The edited training set X ′ ⊆ X of training samples without the
noisy samples can be thus defined as

X ′ =
{
xi ∈ X

∣∣ p̂ kNNSV M (y = yi|xi; X \ {xi}) > γ
}

. (4)

where γ is a threshold that can be manually tuned to modify the amount of
noise to be removed and the probability level associated with non-noisy samples.
Notice that, for each i, the training sample xi that is tested to check if it is noisy
or not, is excluded from the training set on which the local SVM is trained. This
is done so that the testing point is not included in the SVM training process.

The experiments carried out in [5] highlight that LSVM noise reduction over-
comes the state-of-the-art noise reduction techniques for IBL in a number of real
datasets (with statistical significance), for datasets affected by Gaussian noise
and in the presence of uneven class densities.

334 N. Segata, E. Blanzieri, and P. Cunningham

2.2 Making LSVM Noise Reduction Scalable for Large Datasets

Our objective here is to reduce the computational overhead of LSVM noise
reduction. As a first step, we need to conceptually separate the point for which
a local SVM model is trained and the local SVM model itself in order to let
multiple points be evaluated with the same model thus reducing the number
of models that need to be retrieved and built. For achieving this we need to
generalize the decision rule of kNNSVM considering explicitly the training point
t which acts as the center of the model:

kNNSVMt(x; X) = sign

(
k∑

i=1

αrt(i)yrt(i)K(xrt(i), x) + b

)

where αrt(i) and b come from the training of an SVM on the k-nearest neighbors
of t in the feature space and rt(i) is the ordering function defined above.

The problem which arises now consists in covering the entire training set with
a relatively small number of local SVM models and to assign a certain number
of points to be classified as noise or not to each model. This is done by assigning
to the local model centered in a point c not only c itself but also the first k′

(with k′ ≤ k) nearest neighbors of c. In this way we aim to make a compromise
(controlled by k′) between the number of local SVMs trained and the specificity
of the local models to the data points being assessed. The set of points used to
select the k-nearest neighbors for the models can be defined as follows.

Definition 1. Given k′ ∈ N, a k′-neighborhood covering set of centers Ck′ ⊆ X
is a subset of the training set such that the following holds:⋃

c∈Ck′

{xrc(i) | i = 1, . . . , k′} = X.

Definition 1 means that the union of the sets of the k′-nearest neighbors of Ck′

corresponds to the whole training set. Theoretically, for a fixed k′, the minimiza-
tion of the number of local SVMs that we need to train can be obtained comput-
ing the SVMs centered on the points contained in the minimal k′-neighborhood
covering set of centers2 C. However, since identifying the minimal C is not a
simple and computationally easy task, a practical strategy to select each ci ∈ C
is the following:

ci = xj ∈ X with j = min
(
l ∈ {1, . . . , n}

∣∣xl ∈ X \Xci

)
where Xci =

⋃
l<i

{
xrcl

(h)
∣∣ h = 1, . . . , k′

}
. (5)

The idea of this definition is to recursively take as centers those points which
are not k′-neighbors of any point that has already been taken as center. So
c1 = x1 corresponds to the first point of X since, being c1 the first center,
2 From now on we simply denote Ck′ with C because we do not discuss here particular

values for k′.

A Scalable Noise Reduction Technique for Large Case-Based Systems 335

the union of the neighbors of the other centers is empty; c2, instead, is the
point with the minimum index taken from the set obtained eliminating from
X all the k′-neighbors of c1. The procedure is repeated until all the training
points are removed from X where X is a random reordering of the training set.
The data is randomized in order to avoid the possibility that a training set in
which the points are inserted with a particular spatial strategy affects the spatial
distribution of the k′-neighborhood covering centers.

The reason why we adopt this non-standard clustering method is twofold:
from one side we want each cluster to contain exactly k samples in order to be
able to derive rigourous complexity bounds, from the other side in this way we
are able to select a variable number of samples that are in the central region (at
least from a neighborhood viewpoint) of each cluster. Moreover the proposed
clustering strategy follows quite naturally from the kNNSVM approach.

With this setting, we need to train only |C| SVMs centered on each c ∈ C
obtaining the following models:

kNNSVMc(x; X), ∀c ∈ C.

Now we have to link the points of the training set with the precomputed SVM
models. This is necessary because a point can lie in the k′-neighborhood of
more than one center. In particular we want to consider the assignments of
each training point to a unique model such that it is in the k′-neighborhood of
the center on which the model is built. Formally this is done with the function
cnt(t) : X → C that assigns each point in the training set to a center:

cnt(xi) = xj ∈ C with j = min
(
l ∈ {1, . . . , n}

∣∣xl ∈ C and xi ∈ Xxl

)
where Xxl

=
{
xrxl

(h)
∣∣ h = 1, . . . , k′

}
.

(6)

With the cnt function, each training point is assigned to the first center whose
k′-nearest neighbors set includes the training point itself. The order of the ci

points derives from the randomization of X used for defining C. In this way each
training point is univocally assigned to a center and so the decision function of
each training set sample, is simply:

FastLSVM(x; X) = kNNSVMc(x; X) with c = cnt(xrx(1)) (7)

The edited training set X ′ ⊆ X without the noisy samples becomes

X ′ =
{
xi ∈ X

∣∣ FastLSVM(x; X) = yi

}
.

Notice that we do not convert the output of the SVM to a probability because we
want to avoid the tuning of the threshold parameter γ of Equation 4 (in the case
of datasets with two classes it is conceptually equivalent to set the threshold to
0.5) and to make the SVM model construction faster (the probabilistic approach
following [30] and [31] requires a cross-validation step).

336 N. Segata, E. Blanzieri, and P. Cunningham

Adopting the Cover Tree Data structure. A Cover Tree is a data structure
introduced in [32] for performing fast and efficient non-approximated nearest
neighbor operations. Cover Trees can be applied in general metric spaces without
assumptions on the structure and thus also in Hilbert Spaces calculating the
distances by means of kernel functions using the kernel trick.

In more detail, a Cover Tree can be viewed as a subgraph of a navigating
net [33] and it is a leveled tree in which each level (indexed by a decreasing
integer i) is a cover (i.e. is representative) for the level beneath it. Every node
of a Cover Tree T is associated with a point of a dataset S. Denoting with Ci

the set of points associated with nodes in T at level i, with base > 1 a constant,
and with dist(·, ·) the distance function defining the metric of the space, the
invariants of a Cover Tree are:

Nesting. Ci ⊂ Ci−1

Covering tree. For every p ∈ Ci−1 there exists a q ∈ Ci such that dist(p, q) <
basei and the node in level i associated with q is a parent of the node in
level i− 1 associated with p.

Separation. For all distinct p, q ∈ Ci, dist(p, q) > basei.

Intuitively, nesting means that once a point appears in a level, it is present for
every lower level. A covering tree implies that every node has a parent in the
higher level such that the distance between the respective points is less than
basei, while separation assures that the distance between every pair of points
associated to the nodes of a level i is higher than basei.

Cover Trees have state-of-the-art performance for exact nearest neighbor op-
erations for general metrics in low-dimensional spaces both in terms of compu-
tational complexity and space requirements. As theoretically proved by Beygelz-
imer et al. [32], the space required by the Cover Tree data-structure is linear in
the dataset size (O(n)) while the computational time of single point insertion,
deletion and exact nearest neighbor query is logarithmic (O(log n)). For these
reasons we used Cover Trees for implementing FaLKNR (and also ENN, RENN
and AkNN).

Moreover we exploit the separation invariant for selecting the centers of the
local models. More precisely, the idea is to apply Equation 5 used to chose
the centers for FastLSVM not to a random reordering of the training set, but
to the array of points XCT obtained traversing the Cover Tree built on the
training set from the root to the lowest level exploring each level completely
before exploring the lower one. In this way, the separation invariant ensures
that the distances of subsequent samples in XCT tends to be maximized; this
causes the centers, and thus the local SVM models, to be more evenly distributed
in the datasets. From another viewpoint, choosing iteratively the centers as far
as possible, minimizes the situations in which some of the k′-nearest neighbors
of the two centers coincides thus leading to a lower number of models needed to
cover the entire dataset. Preliminary experiments demonstrated that the use of
this reordering strategy decreases the number of local model that needs to be
built by between 5% and 10%.

A Scalable Noise Reduction Technique for Large Case-Based Systems 337

Local Model Selection for FaLKNR. When training an SVM model, it is
crucial to choose a proper kernel, to carefully tune the kernel parameters and
to set the soft margin regularization constant C. One of the most effective and
practical approaches for doing this is based on cross-validation. However, for
FaLKNR, cross validation is not a suitable technique because of its computational
overhead, and for the fact that the parameters are estimated globally, whereas
FaLKNR has the opportunity to set different values for each local model.

In our experiments we will use the RBF kernel which is a general purpose
kernel that has demonstrated very high classification accuracies for SVM. Its
definition is krbf (x, x′) = exp

(
− ‖x−x′‖2

σ

)
, where σ is the width of the kernel. In

our approach we set σ to be the double of the squared median of the histogram
of the distances in the local model. More formally, σ = 2 ·m2[‖x− x′‖�p

k] where
m[‖x − x′‖�p

k] is the median of the distance distribution in �p of the k points
of the local model. This procedure is motivated by the fact that the obtained
σ value is of the same order of magnitude as the distances that it weights. In
this way the kernel width is adaptive to the possibly different characteristics of
different sub-regions of the training set. For non-low values of k σ is computed
on a random subset of points for computational reasons.

The regularization parameter C is chosen with local model selection on a
subset of the local SVM models (typically 10 models). Since the local models
are used to classify only the k′ most internal points, they must be tuned to
be predictive especially in this internal region. For this reason we modified the
standard κ-fold cross-validation approach in the following way:

1. we separate the k′ most internal samples, called S, from the remaining ex-
ternal points, called SE ;

2. we randomly split S in κ disjoint internal validation sets Si with 0 < i < κ;
3. for each fold i we train a model with the SE ∪ (S \ Si) set evaluating it on

the correspondent Si set, taking the mean of the accuracies on the κ folds.

The set of possible C values from which the best parameter is estimated with
this modified κ-fold cross-validation is {1, 10, 100} using κ = 10.

2.3 Computational Complexity of FaLKNR

Hypothesizing the worst scaling behaviour for the training of each local SVM
model to be O(k3), and remembering that the nearest neighbor operations with
Cover Trees can be done in log(n), FaLKNR requires O(n log n) for building
the Cover Tree, O(|C| · log n · k) for retrieving the local models, O(|C| · k3) for
training the local SVMs, and O(k · n) for predicting if each training point is
a noisy point or not. This means that the overall complexity of FaLKNR is
O(n log n+ |C| · logn ·k+ |C| ·k3+k ·n), which is, assuming a fixed and reasonably
low value for k, sub-quadratic (in particular O(n log(n))) even considering the
worst case in which k′ = 1 and thus |C| = n. Moreover, FaLKNR can be very
easily parallelized, because the training (and testing) of the local SVMs can
occur in parallel on different processors.

LSVM noise reduction, as presented in [5], has a complexity of O(n2 log n +
n · k3). The only work that, as far as we know, is focused on computational

338 N. Segata, E. Blanzieri, and P. Cunningham

performances for noise reduction ([27]) has a complexity of O(n2). ENN, using a
brute-force nearest neighbor approach, scales like O(n2 log k) but, using Cover
Trees, its complexity can be lowered to O(n log n + k · n log n), which is thus
of the same complexity class of FaLKNR with respect to n. RENN and AkNN
have the same complexity as ENN, with the addition of a small constant (for
RENN the number of recursive applications, for AkNN the neighborhood size k).

As for the computational space requirements, since FaLKNR performs SVM
training on small subregions (assuming a reasonable low k), there are no prob-
lems with fitting the kernel matrix into main memory. This results in an overall
space requirement of O(n + |C| · k2), i.e. linear in n.

3 Empirical Evaluation of FaLKNR

We compare FaLKNR to ENN, RENN and AkNN the state-of-the-art methods for
competence enhancing as discussed in Section 1.2. The comparison is made on
the basis of nearest neighbor (NN) generalisation accuracies. We implemented
FaLKNR using our Cover Trees implementation and LibSVM [34] for local SVM
training and prediction; the source code of FaLKNR is freely available as a mod-
ule of the Fast Local Kernel Machine Library (FaLKM-lib) [8]. The Cover Trees
are used to implement ENN and AkNN as well. Although it is not computation-
ally efficient, RENN can be realised by simply recursively applying ENN until
no samples are removed. LSVM noise reduction is not considered because is
not scalable for large datasets3. The experiments are carried out on an AMD
Athlon

TM
64 X2 Dual Core Processor 5000+, 2600MHz, with 3.56Gb of RAM.

3.1 Experimental Procedure

The k and k′ parameters of FaLKNR are set to 1000 and 250 respectively. There
are no particular strategies to select such values, but we intuitively considered
them a good compromise between local and global behaviours (for k) and be-
tween generalisation accuracies and computational performance (for k′). The
other parameters are chosen or estimated as detailed in Section 2.2. In the case
of ENN, RENN and AkNN we fixed k = 3 as done, among others, by Wilson and
Martinez [18]. Notice that, choosing an odd number for k, ties in the majority
rule are avoided4. However, for AkNN, the k = 2 case is considered and thus the
number of ties in the majority rule can be large. Two versions of AkNN are thus
taken into account: in AkNN a sample is removed in the case of a tie, while in
AkNNc (more conservative) the sample is not removed in the case of a tie.

For the evaluation we used the datasets with less than 60 features and more
than 45000 training samples available on the LibSVM [34] and UCI [35]
3 LSVM noise reduction on the smallest dataset we present here takes more than 10

hours without considering model selection.
4 Ties in the majority rule can still happens even with k = 3 if multiple points are

at the same distance from the query point at the k-th position. However in the
datasets considered here the number of points at the same position is negligible and
the dimensionality is low, and thus ties with odd k values are extremely rare.

A Scalable Noise Reduction Technique for Large Case-Based Systems 339

Table 1. The datasets used for the empirical evaluation

name # training # testing # features # classes sourcesamples samples
ijcnn1 49990 91701 22 2 LibSVM Rep. [34]

connect-4 50669 16888 41 3 UCI Rep. [35]
seismic 78823 19705 50 3 LibSVM Rep. [34]

acoustic 78823 19705 50 3 LibSVM Rep. [34]
2-spirals 100000 100000 2 2 Segata et al. [36]

census-income 199523 99762 41 2 UCI Rep. [35]
poker-hand 300000 725010 10 2 UCI Rep. [35]

rna 364651 121549 8 2 Uzilov et al. [37]
cover-type 571012 10000 54 2 LibSVM Rep. [34]

repositories, an artificial dataset described in [36] and the bioinformatics dataset
provided in [37]. If no separate testing sets are available we randomly chose one
quarter of the data for testing, apart for the cover-type dataset for which we
selected 10000 testing points (this because for this dataset it is necessary to
have almost all the points for good classification results) and for poker-hand for
which we added 275000 testing samples to the training set in order to make it
larger. The datasets are listed in Table 1 and are all scaled in the range [0, 1]
(apart for 2-spirals which is in the [−2, 2] range).

3.2 Results and Discussion

Table 2 reports the NN generalisation accuracies obtained using the original
(unedited) training set and the training sets edited with the analysed techniques.
FaLKNR improves on the accuracy achieved with the unedited training sets for
7 of the 9 datasets and in a number of cases the improvements are considerable.
ENN, RENN, AkNN and AkNNc are also able to improve the NN generalisation
accuracy in the majority of the datasets, but their improvements are always
lower than the LSVM noise reduction ones. If we use the Wilcoxon signed-ranks
test to assess the significance of this table of results [38], the improvements due
to FaLKNR are statistically significant (α = 0.05) with respect to all the other
analysed techniques and with respect to the unedited training set.

The total computational times for FaLKNR (including local model selection
and the local SVM training/prediction) are between 39 seconds for ijcnn1 and
about 38 minutes for poker-hand (2230 seconds). In the last column of Table 2
we report the speedups of FaLKNR with respect to ENN (implemented using
Cover Trees). We chose ENN for this comparison because it is in any case faster
than RENN and AkNN, and thus the speedups of FaLKNR with respect to RENN
and AkNN are higher than reported in the table. The speedups are always higher
than 1 except for the 2-spirals dataset (97 seconds for FaLKNR, 44 for ENN).
These favourable computational results are due to the fact that it is faster to
perform |C| retrievals of the k = 1000 nearest neighbors than it is to perform n
retrievals of k = 3 nearest neighbors. This advantage is maintained when training
|C| local SVMs, confirming that the training (and the prediction) of SVMs with
1000 points is extremely fast. The only dataset in which this does not hold is the

340 N. Segata, E. Blanzieri, and P. Cunningham

Table 2. NN accuracies using the analysed techniques to edit the training sets. In bold
and italics are highlighted the best and worst results. We report also the speedups of
FaLKNR with respect to ENN (the fastest among ENN, RENN and AkNN).

NN accuracies (in %) comput. speedup
dataset unedited FaLKNR ENN RENN AkNN AkNNc FaLKNR vs ENN

ijcnn1 96.6 96.7 96.3 96.0 96.0 96.2 1.6
connect-4 66.2 69.8 69.3 68.3 69.3 69.4 2.7

seismic 65.3 73.3 71.9 72.6 72.2 71.8 3.2
acoustic 67.4 75.3 73.7 74.2 74.0 73.8 8.0
2-spirals 83.2 88.6 87.6 88.1 87.9 87.7 0.5

census-inc 92.6 94.5 94.2 94.3 94.4 94.3 9.0
poker-hand 56.6 60.7 57.8 58.3 58.3 58.0 7.6

rna 96.3 95.8 94.0 94.0 94.3 94.3 6.1
cover-type 95.8 95.4 95.2 95.0 95.1 95.2 1.5

2-spiral dataset because it is a very complex classification problem and thus the
local SVM models are rather slow to train and because it has only two features
and thus the nearest neighbor operations of ENN are very efficient.

Although our objective here is competence enhancement, it is interesting to
look at the size of the edited training sets reported in Fig. 1. The correlation be-
tween the unedited training set NN accuracies and the size of the edited training
sets is evident, and this is an indirect confirmation that the tested techniques do
home in on noisy samples. FaLKNR is the method that removes less samples in
almost all the datasets. One may thus argue that the reason why FaLKNR outper-
forms the other techniques in improving NN accuracies is related to the fact that
it is less aggressive in removing samples. However, we can notice that the differ-
ence in training set reduction between AkNN and AkNNc is consistent, but AkNNc
does not permit better NN accuracies. This let us conclude that the advantages of
FaLKNR over other techniques is not simply due to its more conservative policy.

0

20

40

60

80

100

ijcnn1
connect-4

seismic
acoustic

2-spirals
census-inc

poker-hand

rna cover-type

T
ra

in
in

g
se

t
re

du
ct

io
n

ra
te

(i
n

%
)

FaLKNR
ENN

RENN
AkNN

AkNNc

Fig. 1. Percentage sizes of the training sets edited with the analysed techniques

A Scalable Noise Reduction Technique for Large Case-Based Systems 341

4 Conclusions

We have presented FaLKNR, a scalable noise reduction technique based on the
predictions of a set of local SVM models built on the training set. FaLKNR
is based on the LSVM noise reduction technique we presented in [5] and in-
cludes a number of optimizations to achieve a theoretical complexity bound of
O(n log (n)) for non high-dimensional data. This makes it possible to apply the
method on datasets with more than 500000 samples. Our empirical evaluation
carried out in comparison with the state-of-the-art noise reduction techniques
represented by ENN, AkNN and RENN, demonstrated that FaLKNR is the fastest
and permits the highest NN accuracy improvements.

References

1. Leake, D.B.: CBR in context: The present and future. In: Leake (ed.) Case Based
Reasoning: Experiences, Lessons, and Future Directions, pp. 3–30. MIT Press,
Cambridge (1996)

2. Cunningham, P., Doyle, D., Loughrey, J.: An evaluation of the usefulness of case-
based explanation. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS,
vol. 2689, pp. 122–130. Springer, Heidelberg (2003)

3. Lorena, A.C., Carvalho, A.: Evaluation of noise reduction techniques in the splice
junction recognition problem. Genet. Mol. Biol. 27, 665–672 (2004)

4. Devijver, P., Kittler, J.: Pattern recognition: a statistical approach, Englewood
Cliffs, London (1982)

5. Segata, N., Blanzieri, E., Delany, S., Cunningham, P.: Noise reduction for instance-
based learning with a local maximal margin approach. Technical Report DISI-08-
056, DISI, University of Trento, Italy (2008)

6. Blanzieri, E., Melgani, F.: Nearest neighbor classification of remote sensing images
with the maximal margin principle. IEEE Trans. Geosci. Remote Sens. 46(6) (2008)

7. Segata, N., Blanzieri, E.: Empirical assessment of classification accuracy of Local
SVM. In: Proc. of Benelearn, pp. 47–55 (2009)

8. Segata, N.: FaLKM-lib v1.0: a Library for Fast Local Kernel Machines. Technical
report, DISI, University of Trento, Italy (2009),
http://disi.unitn.it/~segata/FaLKM-lib

9. Cataltepe, Z., Abu-mostafa, Y.S., Magdon-ismail, M.: No free lunch for early stop-
ping. Neural Comput. 11, 995–1009 (1999)

10. Quinlan, J.: The effect of noise on concept learning. In: Michalski, R., Carboneel,
J., Mitchell, T. (eds.) Mach Learn. Morgan Kaufmann, San Francisco (1986)

11. Cortes, C., Vapnik, V.: Support-vector networks. Mach Learn., 273–297 (1995)
12. Roth-Berghofer, T.: Explanations and case-based reasoning: Foundational issues.

In: Funk, P., González-Calero, P. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 389–
403. Springer, Heidelberg (2004)

13. Nugent, C., Doyle, D., Cunningham, P.: Gaining insight through case-based expla-
nation. Int. J. Intell. Inf. Syst. (2008)

14. Pechenizkiy, M., Tsymbal, A., Puuronen, S., Pechenizkiy, O.: Class noise and super-
vised learning in medical domains: The effect of feature extraction. In: CBMS 2006,
Washington, DC, USA, pp. 708–713. IEEE Computer Society, Los Alamitos (2006)

15. Malossini, A., Blanzieri, E., Ng, R.T.: Detecting potential labeling errors in mi-
croarrays by data perturbation. Bioinformatics 22(17), 2114–2121 (2006)

http://disi.unitn.it/~segata/FaLKM-lib

342 N. Segata, E. Blanzieri, and P. Cunningham

16. Gamberger, A., Lavrac, N., Dzeroski, S.: Noise detection and elimination in data
preprocessing: experiments in medical domains. Appl. Artif. Intell., 205–223 (2000)

17. Tang, S., Chen, S.P.: Data cleansing based on mathematic morphology. In: iCBBE
2008, pp. 755–758 (2008)

18. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning
algorithms. Mach. Learn. 38(3), 257–286 (2000)

19. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning
algorithms. Data Min. Knowl. Discovery 6(2), 153–172 (2002)

20. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Trans. Syst. Man Cybern. 2(3), 408–421 (1972)

21. Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst.
Man Cybern. 6(6), 448–452 (1976)

22. Koplowitz, J., Brown, T.A.: On the relation of performance to editing in nearest
neighbor rules. Pattern Recognit. 13(3), 251–255 (1981)

23. Jiang, Y., Zhou, Z.: Editing training data for knn classifiers with neural network
ensemble. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173,
pp. 356–361. Springer, Heidelberg (2004)

24. Sánchez, J.S., Barandela, R., Marqués, A.I., Alejo, R., Badenas, J.: Analysis of new
techniques to obtain quality training sets. Pattern Recognit. Lett. 24(7) (2003)

25. Delany, S.J., Cunningham, P.: An analysis of case-base editing in a spam filtering
system. In: Funk, P., González Calero, P. (eds.) ECCBR 2004. LNCS (LNAI),
vol. 3155, pp. 128–141. Springer, Heidelberg (2004)

26. Pan, R., Yang, Q., Pan, S.J.: Mining competent case bases for case-based reasoning.
Artif. Intell. 171(16-17), 1039–1068 (2007)

27. Angiulli, F.: Fast nearest neighbor condensation for large data sets classification.
IEEE Trans. Knowl. Data Eng. 19(11), 1450–1464 (2007)

28. Bottou, L., Vapnik, V.: Local learning algorithms. Neural Comput. 4(6) (1992)
29. Vapnik, V.N., Bottou, L.: Local algorithms for pattern recognition and dependen-

cies estimation. Neural Comput. 5(6), 893–909 (1993)
30. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods. In: Adv. in Large Margin Classifiers, pp. 61–74
(1999)

31. Lin, H.T., Lin, C.J., Weng, R.: A note on Platt’s probabilistic outputs for support
vector machines. Mach. Learn. 68(3), 267–276 (2007)

32. Beygelzimer, A., Kakade, S., Langford, J.: Cover Trees for Nearest Neighbor. In:
ICML 2006, pp. 97–104. ACM Press, New York (2006)

33. Krauthgamer, R., Lee, J.: Navigating nets: simple algorithms for proximity search.
In: SODA 2004, Society for Industrial and Applied Mathematics, pp. 798–807
(2004)

34. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001)
35. Asuncion, A., Newman, D.J.: Uci machine learning repository (2007)
36. Segata, N., Blanzieri, E.: Fast local support vector machines for large datasets. In:

Proc. of MLDM (2009) (accepted for publication)
37. Uzilov, A., Keegan, J., Mathews, D.: Detection of non-coding RNAs on the basis

of predicted secondary structure formation free energy change. BMC Bioinf. 7(1),
173 (2006)

38. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

Conceptual Neighborhoods for Retrieval in
Case-Based Reasoning

Ben G. Weber and Michael Mateas

University of California, Santa Cruz
Santa Cruz, CA 95064, USA

{bweber,michaelm}@soe.ucsc.edu

Abstract. We present a case-based reasoning technique based on con-
ceptual neighborhoods of cases. The system applies domain knowledge
to the case retrieval process in the form of recall and generalize methods.
Recall methods utilize domain specific preconditions and perform exact
matching, while generalize methods apply transformations that general-
ize features in queries. The system uses a similarity function based on
edit distances, where an edit distance considers only a subset of the fea-
tures. This retrieval strategy enables the system to locate conceptually
similar cases within the feature space. We demonstrate the performance
of this approach by applying it to build-order selection in a real-time
strategy game. Our results show that the system outperforms nearest
neighbor retrieval when enforcing imperfect information in a real-time
strategy game.

1 Introduction

One of the main challenges in case-based reasoning is constructing effective case
representations and retrieval techniques. A common retrieval strategy involves
using feature vectors for case descriptions and applying similarity functions for
retrieval. The advantage of this approach is that techniques from the machine
learning literature can be applied to case-based reasoning. However, the draw-
backs of this approach are that it requires a comprehensive example set in order
to achieve good results and is sensitive to noise [1].

Case retrieval can be improved by applying domain knowledge to case rep-
resentation and retrieval. This can be achieved through the use of structural
representations or deep features. Using symbolic representations enables case-
based reasoning to integrate with other symbolic systems, such as planning. The
main advantage of this approach is that a richer case representation enables do-
main specific retrieval and adaptation methods. The drawbacks of this approach
are that it is computationally expensive and often requires annotated examples.
Additionally, it can be difficult to encode spatial and temporal domain knowl-
edge structurally.

We present a case-based reasoning technique that maps examples to concep-
tual neighborhoods of cases. The system uses a basic feature vector representa-
tion, but applies domain specific retrieval and adaptation methods. This enables

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 343–357, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

344 B.G. Weber and M. Mateas

domain knowledge to be described symbolically, rather than solely through fea-
ture vector weighting. This approach is suitable for knowledge rich domains that
are difficult to represent structurally.

We apply conceptual neighborhoods to build-order selection in a real-time
strategy (RTS) game. Build-order selection is a knowledge rich aspect of RTS
games that incorporates temporal reasoning. Cases for build order can be ex-
tracted directly from game traces. The case-based reasoning system is integrated
with the reactive planning agent of McCoy and Mateas [2]. Retrieval using con-
ceptual neighborhoods is compared with variations of nearest neighbor while
enforcing imperfect information in a RTS game.

The remainder of this paper is structured as follows: in the next section we
discuss retrieval strategies for case-based reasoning. Section 3 introduces our
approach to case retrieval using conceptual neighborhoods. We then apply con-
ceptual neighborhoods to an RTS game in Section 4. Section 5 provides an
overview of the system implementation and Section 6 reports our results. We
compare our approach to previous work on case-based reasoning in RTS games
in Section 7. Finally, we provide conclusions and future work in Section 8.

2 Retrieval in Case-Based Reasoning

Case retrieval selects cases based on a similarity metric. Nearest neighbor re-
trieval evaluates similarity by projecting cases in feature space and computing a
distance between points. Structural approaches evaluate similarity by computing
the number of transformations needed to translate cases to match a given query.

2.1 Nearest Neighbor Retrieval

Nearest neighbor is a form of instance-based learning [3] that has has been
applied to classification problems and case retrieval in case-based reasoning sys-
tems. Nearest neighbor utilizes cases with a feature vector representation. Given
a query, nearest neighbor retrieves the nearest case within the feature space.
Similarity between cases is computed using a distance function.

The general form for computing the distance between a query, q, and a case,
c, is defined by the Lp norm:

d(q, c) =

⎛⎝ n∑
j=1

|qj − cj |p
⎞⎠1/p

where qj and cj are features and n is the number features in the case description.
This family of distance functions is also known as the Minkowski distance [4].
Common Lp norms are L1, Manhattan distance, and L2, Euclidean distance. Do-
main specific similarity functions can also be used for nearest neighbor retrieval.
For example, edit distance, which computes the number of modifications needed
to translate a case into the query, can be augmented with specific knowledge
about data to produce knowledge-based similarity measures [5].

Conceptual Neighborhoods for Retrieval in Case-Based Reasoning 345

Nearest neighbor is sensitive to irrelevant and noisy features [1]. Variations of
nearest neighbor have been developed to reduce these issues. Wettschereck and
Aha [1] introduce a framework for automating the process of weighting features,
which assigns low weights to irrelevant features. Bergmann and Vollrath show
that a case can cover a region rather than a point in feature space [6]. They
explore the use of generalized cases and present similarity functions for this
representation. Another variation of nearest neighbor is neighborhood counting
[7]. Wang defines neighborhoods as regions in feature space. To measure the
distance between two data points, the similarity function computes the number
of neighborhoods that cover a case and the query.

2.2 Structural Retrieval

Structural cases provide richer representations for case-based reasoning. Cases
are commonly encoded as graphs, where the concepts of the problem domain are
represented as nodes and relations between concepts are represented as edges.
Edges can represent spatial, temporal, or causal relationships between nodes.
Bunke and Messmer [8] introduce a similarity measure based on a weighted
graph edit distance.

Structural representations enable case-based reasoning systems to perform
problem solving, rather than just classification. For example, MINSTREL is an
author-modeling story generator [9] that uses symbolic case-based reasoning.
The system has a knowledge base of King Arthur stories and general knowledge
about characters in this domain. MINSTREL’s case representation enables the
system to invent new stories that satisfy character and story goals.

Problem solving in MINSTREL uses knowledge representations known as
Transform-Recall-Adapt Methods (TRAM). TRAMs are bundled knowledge rep-
resentations that know how to transform a problem into a related problem, recall
a solution to the new problem and adapt the solution back to the original prob-
lem. An example TRAM is Cross-Domain-Solution, which ontologically maps a
problem into a new domain, solves the problem in that domain and adapts the
solution by reversing the mapping. MINSTREL also uses TRAMs recursively.
When performing recursive problem solving, MINSTREL transforms the origi-
nal problem with multiple TRAMs, recalls a solution to the new problem and
applies the adaptation step of the TRAMs to the recalled solution.

3 Conceptual Neighborhoods

We present a case-based reasoning system based on conceptual neighborhoods.
The system is a hybrid approach between nearest neighbor retrieval and symbolic
case-based reasoning. It shares with nearest neighbor methods the use of feature
vector representations, while sharing with symbolic case-based reasoning the use
of domain specific transform and recall rules.

Conceptual neighborhoods provide a way to organize cases using deep fea-
tures. Representations based on conceptual neighborhoods have been shown to

346 B.G. Weber and M. Mateas

allow for reasoning on imprecise knowledge [10]. Conceptual neighborhoods have
been applied to case-based reasoning in the legal domain. Hypo [11] uses claim
lattices to represent conceptual neighborhoods of cases and exploit connections
among cases relevant to the current problem. Conceptual neighborhoods can also
be applied to case-based reasoning systems that use a feature vector representa-
tion by mapping surface features to deep features. Generalizing a deep feature
in this representation enables exploration of a neighborhood of cases.

Our approach maps features to concepts and projects cases in concept space.
Concepts can be composed of several features, resulting in a dimensionality
reduction. This process is similar to systems that map surface features to deep
or knowledge-intensive features [12]. The goals of this mapping are to reduce the
effects of noise and enable generalization for case retrieval.

3.1 Case Retrieval

Case-based reasoning with conceptual neighborhoods resembles problem solving
using TRAMs [9]. However, our approach differs from MINSTREL in that our
system does not bound transformations to specific recall methods. An overview of
the process is shown in Figure 1. First, the transform step selects 0 to n generalize
methods and applies them to the query, where n is the maximum number of
generalizations allowed. Next, the recall step performs matching using a set
of recall methods. Then the system evaluates the recalled cases by computing
a distance metric based on the applied generalize methods. Finally, a case is
selected from the set of recalled cases.

Recallmethods performexactmatching using a subset of the concepts.Concepts
that aremarked as generalizeddo not require an exactmatch,but incur a cost based
on a distance metric. The subset of concepts to select is domain specific and is de-
rived fromdomainknowledge.Matching functions can test for equivalence,greater-
than or less-than relations or a domain specific matching function. Recall methods
match only on cases with the corresponding class or behavior. Therefore, each re-
call method matches against a disjoint subset of the case library. Recall methods
contain preconditions, which verify that retrieved cases are valid given the query.

Fig. 1. Retrieval with conceptual neighborhoods

Conceptual Neighborhoods for Retrieval in Case-Based Reasoning 347

Preconditions for recall methods can specify additional domain knowledge to im-
prove recall performance. The use of recall methods enables the system to evaluate
feature subsets based on possible solutions, which differs from previous work [12]
that selects feature subsets based on the problem.

Generalize methods transform the query by flagging an individual concept in
the query as generalized. There is a generalize method for each concept in the
query that can be generalized. Generalize methods enable the system to search
the problem space and solution space [9].

The evaluation step computes a distance metric for a case by summing the
distance metrics of each generalize method applied to the case. Generalize meth-
ods compute an edit distance [8] for the generalized concept between the query
and recalled case. The edit distance can be based on individual features mapped
to the concept. The distance is zero if the generalized concept is not contained
in the subset of concepts used by the recall method that selected the case. The
evaluation step then selects a case using a selection strategy, such as highest
similarity or weighted random selection.

3.2 Retrieval in Concept Space

The conceptual neighborhood approach maps features to concepts and retrieves
cases in concept space. An example query is shown in Figure 2. The first graph
(a) shows the query, s, and three cases. The second graph (b) demonstrates

Fig. 2. Retrieval in concept space (a) The game state, s, and three cases (b) Retriev-
ing c1 using nearest neighbor (c) Retrieving c1 using conceptual neighborhoods (d)
Retrieving c2 using conceptual neighborhoods

348 B.G. Weber and M. Mateas

retrieval using nearest neighbor. The distance for retrieving c1 using nearest
neighbor is computed as follows:

d =
√

(c1A − sA)2 + (c1B − sB)2

The remaining graphs demonstrate retrieval using conceptual neighborhoods.
The steps to retrieve c1 in the third graph (c) are the following:

1. Recall fails at r1, because c1A �= sA

2. Generalize method gA generalizes concept A
3. Recall fails at r2, because c1B �= sB

4. Generalize method gB generalizes concept B
5. Recall succeeds at r3
6. d = distance(sA, c1A) + distance(sB, c1B)

where distance(sj, cj) is a domain specific edit distance. The steps to retrieve
c2 in the fourth graph (d) are the following:

1. Recall fails at r1, because c2A �= sA

2. Generalize method gA generalizes concept A
3. Recall succeeds at r2, because the recall method for c2 does not consider

concept B
4. d = distance(sA, c2A)

Note that different recall methods were used to retrieve c1 and c2. The recall
method used to retrieve c1 matched against both concepts, while the recall
method used to retrieve c2 matched against only concept A.

3.3 Applying Conceptual Neighborhoods

Conceptual neighborhoods can be applied to case-based reasoning systems that
use a feature vector representation. The first step is to select a set of concepts and
map the original features to concepts. The next step is to create a recall method
for each class or behavior in the domain. The third step is to select concept
subsets for each recall method. The final step is to select which concepts can be
generalized and to determine edit distances for these concepts. This process is
demonstrated in the next section.

4 Conceptual Neighborhoods in RTS Games

In this section we describe how conceptual neighborhoods can be applied to
build order in Wargus1, a clone of the game Warcraft II which was developed by
Blizzard EntertainmentTM. The purpose of the case-based reasoner is to select
the next unit or building to produce based on the current game state.

RTS games present a variety of research problems, including decision making
under uncertainty, opponent modeling and adversarial planning [13]. RTS games
1 http://wargus.sourceforge.net

Conceptual Neighborhoods for Retrieval in Case-Based Reasoning 349

enforce imperfect information through a “fog of war”, which limits visibility
to portions of the map where the player controls units. In order to acquire
information about an opponent, it is necessary to actively scout the map to find
out which buildings and units the opponent is producing. Scouting is vital in RTS
games, because different strategies have different types of counter strategies.

One of the focuses of strategic play in RTS games is build order. A build
order defines the sequence in which buildings are constructed, units are produced
and technologies are researched. Build order is a knowledge-rich aspect of RTS
gameplay and players can improve their skills by studying replays of professional
matches and learning which build orders work best against counter strategies on
a variety maps.

4.1 Case Representation

We define a case as a behavior and game state pair. Behaviors are discussed in
more detail in the following section. Game state includes the following concepts:
player technological state (player tech), enemy technological state (enemy tech),
number of combat units, number of workers, number of production buildings
and map properties. The mapping of features to concepts is shown in Table 1.

4.2 Recall Methods

The build order behaviors in Wargus can be classified by the following actions:
train worker unit, train combat unit, build tech building, build production build-
ing and research upgrade. The system contains a recall method for each behav-
ior type. The subsets of concepts evaluated by the recall methods are shown in
Table 2. The following concepts require an exact match between the query and a
case: map properties, player tech, enemy tech and number of production build-
ings. The number of workers and number of combat units concepts require that
the query contains at least as many units as a case.

We selected the concept subsets for each recall method based on analyzing ex-
pert replays. Domain knowledge is demonstrated by the research-upgrade recall
method, which matches against only the player tech and number of combat unit
concepts. If the player possesses several combat units and the tech buildings re-
quired to research an upgrade, then researching the upgrade is a preferred action.

Table 1. Game state features mapped to concepts

Concept Features
Player Tech Lumber Mill, Blacksmith, Stronghold, Mound
Enemy Tech Enemy Barracks, Lumber Mill, Blacksmith, Stronghold, Mound
Prod. Buildings Barracks
Workers Units Peons
Combat Units Grunts, Axe throwers, Catapults, Ogres
Map Properties Distance to opponent base, Open path to opponent base

350 B.G. Weber and M. Mateas

Table 2. Concept subsets for recall methods

Map Player Enemy Worker Combat Production
properties tech tech units units buildings

Train worker � � � � �
Train combat unit � � � � �
Tech building � � � �
Production building � � � � � �
Research upgrade � �

4.3 Generalize Methods

The system includes a generalize method for each concept in the case represen-
tation, excluding the player tech concept. Generalize methods mark a concept
as not requiring an exact match at the cost of an edit distance. The edit dis-
tance computes the distance between the query and recalled cases based on the
amount of in-game resources required to translate the query to a recalled case for
a particular concept, by computing a linear combination of the gold and wood
resources.

Generalize number of workers marks the number of workers concept as gen-
eralized. The edit distance is the cost of a worker unit times the difference
in number of worker units between the query and a recalled case.

Generalize number of production buildings marks the number of produc-
tion buildings concept as generalized and computes the edit distance based
on the difference in number of production buildings times the cost of a pro-
duction building.

Generalize number of combat units marks the number of combat units
concept as generalized and computes the distance based on the difference
in combat units between the query and recalled case. Although the number
of combat units concept is an aggregation, the distance is computed based
on the individual unit types. Therefore, the distance metric distinguishes
between expensive and inexpensive units.

Generalize enemy tech computes a distance metric based on the difference
in enemy tech buildings between the query and recalled case. The distance
metric sums the cost of the buildings that are different.

Generalize map property causes recall methods to ignore map properties
when retrieving cases. The distance metric is a constant cost and is incurred
if any of the map properties differ between the query and a recalled case.

4.4 Case Selection

A case is selected from the set of retrieved cases using weighted random selection.
Weights are computed using an inverse distance relation:

weight =
1

δ +
n∑

j=1

distancej(qj , cj)

Conceptual Neighborhoods for Retrieval in Case-Based Reasoning 351

where qj is a concept of the query, cj is a concept of a case, distancej is the edit
distance for concept j, n is the number of concepts and δ is a constant to adjust
so the value is finite if the edit distance is zero.

A randomized selection is used to enable constrained exploration of the case
library. This leads to small variations in build order. Also, always picking the
best case can cause problems in an imperfect information environment, because
noise can cause the similarity function to be inaccurate. The system uses an
inverse distance relation, but other approaches could be used, such as exponential
weighting.

4.5 Retrieval Example

An example query with three cases is shown in Figure 3. The cases correspond to
training a peon (c1), building a blacksmith (c2) and building a barracks (c3). In
Wargus, the cost of a worker unit is 400 gold and the cost of a first-tier combat
unit is 600 gold. Retrieving c1 consists of the following steps:

1. Recall fails at r1, because c1w �= sw

2. gw generalizes the number of worker units
3. Recall fails at r2, because c1c �= sc

4. gc generalizes the number of combat units
5. Recall succeeds at r3
6. dc1 = distance(sw, c1w) + distance(sc, c1c) = 1 ∗ 400 + 2 ∗ 600 = 1600

Retrieving c2 consists of the following steps:

1. Recall fails at r1, because c2w �= sw

2. gw generalizes the number of worker units
3. Recall succeeds at r2
4. dc2 = distance(sw, c2w) = 2 ∗ 400 = 800

Retrieving c3 consists of the following steps:

1. Recall fails at r1, because c3w �= sw

2. gw generalizes the number of worker units
3. Recall succeeds at r2
4. dc3 = distance(sw, c3w) = 3 ∗ 400 = 1200

Weights are computed based on these distances. Setting δ = 400 results in
the following weights: wc1 = 0.0005, wc2 = 0.00083 and wc3 = 0.00063. These
weights are used to perform a weighted random selection.

5 Implementation

Our system uses the integrated agent framework of McCoy and Mateas [2].
The case-based reasoning system communicates with the framework using the
blackboard pattern. McCoy and Mateas’ agent was modified to produce buildings
and units based on events posted to the blackboard. Reconnaissance capabilities
were also added to the agent. Six case retrieval strategies were implemented to
evaluate the performance of conceptual neighborhoods.

352 B.G. Weber and M. Mateas

Fig. 3. An example query. The cases correspond to training a peon (a), building a
blacksmith (b) and building a barracks (c).

5.1 Architecture

The game-playing agent consists of an ABL agent connected to the Wargus
RTS engine. A behavior language (ABL) is a reactive planning language [14]
and communicates with Wargus using JNI. Different competencies in the agent
communicate with each other through ABL’s working memory. ABL’s work-
ing memory serves as a blackboard and enables communication through the
blackboard pattern. An overview of the agent architecture is shown in
Figure 4.

Fig. 4. Agent architecture

The agent is composed of distinct managers, each of which is responsible for
performing one or more subtasks. The strategy manager is responsible for high-
level strategic decisions and focuses on build order. The production manager is
responsible for producing units and buildings, based on messages generated by
the strategy manager. The tactics manager decides when and where to engage
the opponent. The scouting manager is responsible for assigning worker units to
scout the opponent base.

Conceptual Neighborhoods for Retrieval in Case-Based Reasoning 353

5.2 Build Order Selectors

Six retrieval strategies were implemented for the build order selector. The goal
of implementing several retrieval strategies was to determine if retrieval with
conceptual neighborhoods outperforms nearest neighbor and to evaluate if both
generalize and recall methods are necessary for the conceptual neighborhood
approach to be effective.

Random build order selector (Rand) picks cases randomly from the set of
valid cases.

Nearest neighbor selector (NNS) performs case retrieval using Manhattan
distance. The case description contains a feature for each unit type, for both
players.

Case feature selector (CFS) performs case retrieval using the concepts and
edit distances discussed in the previous section, but does not use generalize
or recall methods.

Generalize methods only selector (GMS) performs exact matching using
generalize methods. This approach does not use concept subsets for recall.

Recall methods only selector (RMS) performs partial matching using re-
call methods and concept subsets.

Conceptual neighborhood selector (CNS) uses both generalize and recall
methods to perform case retrieval.

5.3 Case Generation

A case library was generated by running several different scripted builds against
each other on several different maps. The scripts were selected from eight hand-
coded build orders with specific timing attacks. The validation scripts, discussed
in the results section, were not used for case generation. The map pool consisted
of maps with varying distances between bases (close, medium, far) and open and
closed paths between bases. Four scripts were selected for each map and tested
against the other scripts, for a total of six games per map. Cases were added
to the library only for the winning script. The case library contains 36 games
traces and over 1500 cases. The case library is much larger than previous work
utilizing game traces [15,16].

6 Results

The agent was evaluated against the built-in AI of Wargus, two well-established
scripts and a new script. Four different maps were used, where the first three
maps contain a direct land route to the opponent’s base of varying distance
(close, medium, far) and the last map (NWTR) is a variation of the map
“Nowhere to run, nowhere to hide”. The agent was tested in perfect and im-
perfect information environments. In games with perfect information, the game
state is fully observable. In games with imperfect information, the “fog of war” is
enforced, limiting the visibility of the agent to areas where units are controlled.

354 B.G. Weber and M. Mateas

Table 3. Win rates for perfect and imperfect information environments over 32 trials

Perfect Imperfect
Information Information

Rand 31% 19%
NNS 69% 50%
CFS 56% 44%
GMS 44% 41%
RMS 50% 47%
CNS 75% 66%

Table 4. Win rates versus scripted builds over 8 trials

Land Soldier’s Knight’s Fast
Attack Rush Rush Ogre Overall

Rand 62% 12% 0% 0% 19%
NNS 62% 62% 38% 38% 50%
CFS 100% 50% 12% 12% 44%
GMS 75% 50% 25% 12% 41%
RMS 88% 62% 25% 12% 47%
CNS 100% 75% 50% 38% 66%

Games were run with perfect and imperfection information and results are
shown in Table 3. The conceptual neighborhood selector won 66% of games in
an imperfect information environment. Also, the success rate of the conceptual
neighborhood selector decreased by only 9% when enforcing imperfect informa-
tion, while the success rate of the nearest neighbor selector decreased by 19%.

Win rates against the scripted builds with imperfect information enforced are
shown in Table 4. The conceptual neighborhood selector outperformed all of the
other selectors. All of the retrieval strategies outperformed random selection,
but the case feature, generalize methods only, and recall methods only selectors
performed worse than nearest neighbor retrieval. The conceptual neighborhood
selector achieved a success rate of at least 50% on every map (see Table 5).
These results indicate that the conceptual neighborhood approach was better at
adapting to new game situations.

Table 5. Win rates on the map pool over 8 trials

Open Open Open
Close Medium Far NWTR

Rand 25% 25% 25% 0%
NNS 62% 12% 88% 25%
CFS 38% 50% 50% 38%
GMS 50% 12% 62% 38%
RMS 50% 50% 62% 25%
CNS 75% 62% 75% 50%

Conceptual Neighborhoods for Retrieval in Case-Based Reasoning 355

7 Related Work

Case-based reasoning has been applied to several aspects of RTS play, including
strategic [17] and tactical [18] levels of gameplay. There are two approaches that
have been applied to case-based reasoning in RTS games: bootstrap learning
systems that rely on exploration of the state space and systems that utilize
game traces to automatically acquire knowledge about RTS gameplay.

Aha et al. [17] use case-based reasoning to defeat strategies randomly selected
from a pool of fixed strategies. The system uses the building-specific state lattice
developed by Ponsen et al. [19], which abstracts Wargus game states into a state
lattice and specifies a set of counter strategies for each state. This knowledge is
used to explore the state space and build a case library of counter strategies. Our
system differs in that a state lattice is not used to constrain the set of possible
strategies.

Molineaux et al. [18] apply case-based reasoning to tactical situations in RTS
games. They claim that tactical gameplay in RTS games is knowledge poor
and therefore a state-space taxonomy is insufficient to encompass all relevant
tactical decisions. They combine case-based reasoning and reinforcement learning
in order to explore the state space. Our system varies from this approach, because
our system makes use of domain knowledge.

Game traces have been used by case-based reasoning systems to play full
RTS games. Ontañón et al. [15] present a case-based planning approach that
uses game traces to interleave planning and execution, and play at the same
action granularity as a human player. The system uses expert-annotated game
traces to automatically acquire domain knowledge from expert players. Cases
are extracted from traces and specify primitive actions or additional subgoals
for the current behavior to pursue. Our approach differs in that we define a clear
division between planning and case-based reasoning and case-based reasoning is
applied only to build order.

Mishra et al. [12] extend the case-based planner by introducing situation
assessment for improved case retrieval. They noticed that the performance of
previous systems [15,16] suffers when the case library stores numerous plans
representing several strategies played over maps of different sizes. Mishra et al.
introduce the concept of a situation and use situation assessment to aid in case
retrieval. A situation is defined by a high-level representation of the game state
including map properties and current goals of the player. Situations are then
used to select relevant features for case retrieval. The main difference between
this approach are our system is that Mishra et al. select feature subsets based
on the current game state, while the conceptual neighborhood approach selects
feature subsets based on the type of case being recalled. Additionally, previ-
ous work [15,16,12] has investigated smaller numbers of game traces, which also
required annotation.

Our results are compared to reported success rates from the literature in
Table 6. All prior work, to our knowledge, has used perfect information. We
report results for the performance of the system in perfect and imperfect infor-
mation environments, which achieved the same win rates against the standard

356 B.G. Weber and M. Mateas

Table 6. Reported win rates versus the conceptual neighborhood selector with perfect
information (PI) and imperfect information (II)

Ponsen Ontañón McCoy& CNS CNS
et al. et al. Mateas PI II

Land Attack 76% 89% — 100% 100%
Soldier’s Rush 29% — 80% 75% 75%
Knight’s Rush 13% — 53% 50% 50%

scripts. Aha et al. [17] report an average success rate of over 80%, but do not
specify win rates against the soldier’s and knight’s rushes.

8 Conclusion

In this paper we have demonstrated how conceptual neighborhoods can be ap-
plied to retrieval in case-based reasoning. Our contributions include the applica-
tion of conceptual neighborhoods to retrieval, which enables additional domain
knowledge to be applied to case retrieval, and evaluation of conceptual neigh-
borhoods versus other retrieval strategies. We validated our approach by apply-
ing conceptual neighborhoods to build order in a RTS game. The results indi-
cate that retrieval using conceptual neighborhoods outperforms nearest neighbor
when enforcing imperfect information.

Our results show two interesting properties. First, the conceptual neighbor-
hood approach achieved similar success rates to nearest neighbor retrieval in a
perfect information environment, while outperforming nearest neighbor retrieval
when imperfect information is enforced. This leads us to conclude that the con-
ceptual neighborhood approach is better at adapting to new game situations.
Second, the approaches that did not use both generalize and recall methods
performed worse than nearest neighbor retrieval. If the generalize methods only
selector had outperformed nearest neighbor, then the success of the system could
be attributed to the use of domain specific distance metrics. However, our results
show that the use of concept subsets was necessary to improve retrieval. This
indicates that the interaction between generalize and recall methods is necessary
to capture domain knowledge for retrieval with conceptual neighborhoods.

Future work will explore different types of transformations and the applica-
tion of conceptual neighborhoods to additional aspects of case-based reasoning,
including case adaptation and on-line learning.

References

1. Wettschereck, D., Aha, D.: Weighting features. In: Aamodt, A., Veloso, M.M. (eds.)
ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)

2. McCoy, J., Mateas, M.: An Integrated Agent for Playing Real-Time Strategy
Games. In: Proceedings of the Twenty-Third AAAI Conference on Artificial In-
telligence, Chicago, Illinois, pp. 1313–1318. AAAI Press, Menlo Park (2008)

Conceptual Neighborhoods for Retrieval in Case-Based Reasoning 357

3. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine
Learning 6(1), 37–66 (1991)

4. Bagherjeiran, A., Eick, C.F.: Distance function learning for supervised similarity
assessment. In: Case-Based Reasoning on Images and Signals, pp. 91–126. Springer,
Heidelberg (2008)

5. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
IEEE Transactions on Knowledge and Data Engineering (forthcoming)

6. Bergmann, R., Vollrath, I.: Generalized Cases: Representation and Steps Towards
Efficient Similarity Assessment. In: Burgard, W., Christaller, T., Cremers, A.B.
(eds.) KI 1999. LNCS, vol. 1701, pp. 195–206. Springer, Heidelberg (1999)

7. Wang, H.: Nearest Neighbors by Neighborhood Counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence 28(6), 942–953 (2006)

8. Bunke, H., Messmer, B.: Similarity Measures for Structured Representations. In:
Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR 1993. LNCS, vol. 837, pp.
106–118. Springer, Heidelberg (1994)

9. Turner, S.R.: The Creative Process: A Computer Model of Storytelling and Cre-
ativity. Lawrence Erlbaum Associates, Mahwah (1994)

10. Freksa, C.: Temporal Reasoning Based on Semi-Intervals. Artificial Intelli-
gence 54(1), 199–227 (1992)

11. Ashley, K., Rissland, E.: A case-based approach to modeling legal expertise. IEEE
Expert: Intelligent Systems and Their Applications 3(3), 70–77 (1988)

12. Mishra, K., Ontañón, S., Ram, A.: Situation assessment for plan retrieval in real-
time strategy games. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.)
ECCBR 2008. LNCS, vol. 5239, pp. 355–369. Springer, Heidelberg (2008)

13. Buro, M.: Real-Time Strategy Games: A New AI Research Challenge. In: Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, pp. 1534–1535. Morgan Kaufmann, San Francisco (2003)

14. Mateas, M., Stern, A.: A Behavior Language for Story-Based Believable Agents.
IEEE Intelligent Systems 17(4), 39–47 (2002)

15. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-Based Planning and Execu-
tion for Real-Time Strategy Games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR
2007. LNCS, vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

16. Sugandh, N., Ontañón, S., Ram, A.: On-Line Case-Based Plan Adaptation for
Real-Time Strategy Games. In: Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, Chicago, Illinois, pp. 702–707. AAAI Press, Menlo Park
(2008)

17. Aha, D., Molineaux, M., Ponsen, M.: Learning to Win: Case-Based Plan Selection
in a Real-Time Strategy Game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005.
LNCS, vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

18. Molineaux, M., Aha, D.W., Moore, P.: Learning Continuous Action Models in
a Real-Time Strategy Environment. In: Proceedings of the Twenty-First Florida
Artificial Intelligence Research Conference, Coconut Grove, Florida, pp. 257–262.
AAAI Press, Menlo Park (2008)

19. Ponsen, M.J.V., Muñoz-Avila, H., Spronck, P., Aha, D.W.: Automatically Acquir-
ing Domain Knowledge For Adaptive Game AI Using Evolutionary Learning. In:
Proceedings of the Twentieth National Conference on Artificial Intelligence, Pitts-
burgh, Pennsylvania, pp. 1535–1540. AAAI Press, Menlo Park (2005)

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 358–373, 2009.
© Springer-Verlag Berlin Heidelberg 2009

CBR Supports Decision Analysis with Uncertainty

Ning Xiong and Peter Funk

School of Innovation, Design and Engineering
Mälardalen University

SE-72123 Västerås, Sweden
{Ning.Xiong,Peter.Funk}@mdh.se

Abstract. This paper proposes a novel approach to case-based decision analysis
supported by case-based reasoning (CBR). The strength of CBR is utilized for
building a situation dependent decision model without complete domain
knowledge. This is achieved by deriving states probabilities and general utility
estimates from the case library and the subset of cases retrieved in a situation
described in query. In particular, the derivation of state probabilities is realized
through an information fusion process which comprises evidence (case)
combination using the Dempster-Shafer theory and Bayesian probabilistic
reasoning. Subsequently decision theory is applied to the decision model learnt
from previous cases to identify the most promising, secured, and rational
choices. In such a way we take advantage of both the strength of CBR to learn
without domain knowledge and the ability of decision theory to analyze under
uncertainty. We have also studied the issue of imprecise representations of
utility in individual cases and explained how fuzzy decision analysis can be
conducted when case specific utilities are assigned with fuzzy data.

Keywords: Case-based decision analysis, case-based reasoning, decision
model, similarity, basic probability assignment, information fusion.

1 Introduction

Decision making is prevalent in solving many engineering, health care and
management problems. It has also gained increasing importance for intelligent agent
systems [1] to interact with the environment autonomously. The main challenges in
most practical decision problems are how to cope with uncertain characteristics in the
environment and how to make choices in the presence of these uncertain features.
Decision theory [2, 3] has offered useful tools in analyzing uncertain situations to
identify the “best” course of actions from a reasonable perspective. However,
practical applications of decision theory entail formulating a real world problem into a
perfect decision model, which may be hard to achieve in many circumstances due to
complexity, poor domain knowledge, as well as incomplete information.

A more pragmatic method to make decisions is to visit previous similar situations
as reference. It was argued in [4] that decision making under uncertainty is at least
partly case-based. With a case-based method we don’t require fully understood

 CBR Supports Decision Analysis with Uncertainty 359

domain knowledge for building a precise decision model. The research into this realm
is strongly supported by the methodology of case-based reasoning (CBR) [5].
Recently CBR has been widely employed as decision support for explanation [6, 7],
label ranking [8], as well as recommendation and advice giving [9-13] in numerous
practical applications.

This paper proposes a novel approach to support decision analysis using CBR
methods. The power of CBR is utilized for creating a situation dependent decision
model from past similar experiences. Further, decision theory is applied to the
decision model learnt from past experiences to find out optimal, rational, and low risk
solutions. With such integration we create a unified framework in which CBR and
decision theory can complement each other. CBR helps decision analysis dealing with
complicated problems with poor domain knowledge and incomplete information,
while decision theory helps CBR handling uncertain information and features in the
problem domain.

The kernel of the proposed work is the case-based learning of a decision model.
This is a bit different from the common practice in many CBR systems where finding
solutions to the query case appears the main goal of the CBR task. What we seek here
is to derive, from previous experiences, a probabilistic characterization of the current
situation in terms of likelihoods, risks and probable consequences. We hope this
would offer a useful means to tackle the inherent nature of uncertainty in a CBR
process, in particular when similar situations don’t have similar solutions.

The paper is organized as follows. Section 2 outlines the proposed approach for
case-based decision analysis at a general level. We explain derivation of state
probabilities for a query situation in section 3, which is followed by estimation of
general utilities of actions under states in section 4. Then, in section 5, we discuss
decision analysis based on a decision model learnt from cases. Section 6 presents
some related work. Finally this paper is concluded in section 7.

2 Case-Based Decision Analysis: The Proposed Approach

This section outlines the proposed approach for case-based decision analysis. We start
with basics about the decision tree as a decision model. We shall then present the
general idea of creating a decision tree from cases to support decision analysis.

2.1 Decision Model for Decision Analysis

The decision problem for an agent can be abstracted as follows. Given an
environment with possible states s1, s2, …,sn, the agent has to make a choice from a
set of alternative actions {a1, a2, …, am}. The outcome or consequence of an action is
dependent on the real state of the environment. A general utility function has been
defined for all possible outcomes regarding actions and states. By uij we denote the
general utility of performing action ai when state sj is true, i.e.,)|(jiij saUu = . But

the agent has no exact knowledge about the state of the environment, only a
probability distribution of the states is available for decision analysis.

360 N. Xiong and P. Funk

This (decision) problem can also be modelled as a decision tree as shown in Fig. 1,
where pi refers to the probability of state si (i=1…n). The availability of such a model
is prerequisite to apply well founded decision analysis methods such as Bayesian
decision theory [2] and the principle of general risk constraints [14] for making
profitable, secured, and rational choices

However, constructing a perfect decision tree to abstract an underlying situation is
not trivial. It requires thorough understanding of the circumstance and detailed
domain knowledge for elicitation of all relevant information. In many cases it is hard
to define accurate values for probabilities concerning states of the environment and
general utilities regarding actions and states in a decision tree. First of all, estimates
for probabilities of states are very likely to be subjective or imprecise. It was observed
in [15] that most people usually can not distinguish between probabilities roughly
ranging from 0.3 to 0.7. Moreover, general utilities regarding actions and states
correspond to a sort of generalized information which is hard to explicate without
deep domain knowledge. Instead of giving utility in a general sense, users in real life
would feel more natural and confident to specify individual utility scores associated
with specific cases by evaluation of concrete results therein. Later we will show in the
paper how both the state probabilities and the (general) utilities in the decision tree
can be estimated from previous cases for a new situation by using a case-based
approach.

pn

a1

a2

am

p1

p2

u11

 u12

 u1n

 u21

 u22

 u2n

 um1

 um2

 umn

p1

pn

p1

pn

Fig. 1. A decision problem modelled as a decision tree

2.2 Case-Based Learning of Decision Trees

We consider decision trees as vehicles for carrying knowledge and information about
candidate actions and their probable consequences. The content of the vehicle is
situation dependent. In different situations we may have different alternatives, varying
probabilities and different consequences. Here we propose a case-based approach to

 CBR Supports Decision Analysis with Uncertainty 361

creating situation dependent decision trees. The basic idea is to derive the right
content of the decision model by resorting to previous similar cases with respect to a
given new situation. This approach is different from conventional ways CBR works to
recommend final solutions based on a subset of retrieved cases. Contrarily, in this
paper, we apply CBR in an intermediate stage for creation of a qualified decision
model, which can then be utilized by various decision analysis methods to find out
rational, justified choices.

A procedure for case-based learning of decision trees is shown in Fig. 2. It starts
with similarity matching between a new situation and previous cases in the case
library. Every case in the case library receives a similarity score according to a
predefined similarity metric. We will not detail the issue of similarity measures due to
the scope of this paper, but interested readers can refer to the references [16-19] for
recent advancements of similarity modelling in CBR research. After similarity
matching, a subset of cases that get the highest similarity scores or pass a specified
similarity threshold are selected and retrieved. In the next step, we perform
probability and utility derivation based on the subset of retrieved cases and the case
library. The purpose is to exploit the information residing in the cases to acquire
probabilities of environment states in the current situation as well as (general) utility
estimates of alternative actions given different states. Finally, the derived probability
and utility values are entered into the decision tree for decision analysis.

Similarity
matching

Retrieved
cases

Probability &
utility derivation

Decision
tree

Case
library

New
situation

Fig. 2. Case-based learning of decision trees

As basic notation, we assume that a case Cj in the case library is indexed by a 4-
tuple Cj=(Bj, Ej, Aj, Uj), where

• Bj is the description of the situation associated with the case. It can, for instance,
consist of a set of observed or user-acquired attribute values.
• Ej =(Pj(s1), Pj(s2), …, Pj(sn)) represents the known probability distribution for states
s1, s2, …, sn in the situation associated with the case. States are usually not observable
but reflect internal properties of the environment. Sometimes the probability of a state
in a case is also notated as)|()(jiij CsPsP = .

• Aj denotes an action that was performed in the situation associated with the case.
• Uj is an individual utility score evaluating the outcome of performing action Aj in the
situation associated with the case. Hence it is also notated as U(Aj|Cj) later in the paper.

362 N. Xiong and P. Funk

3 Deriving State Probabilities from Previous Cases

The procedure for deriving probabilities of states based upon available cases is
depicted in Fig. 3. Given a new target situation Q, we look for its similar cases in the
case library and a subset of cases is retrieved according to the rule of KNN (k nearest
neighborhoods) or a specified similarity threshold. The retrieved cases are then
delivered along with their similarity degrees to the block “information fusion” for
assessing the probabilities of states in the new situation Q. The information fusion
block is further divided into two successive steps, as will be described in subsections
3.1 and 3.2 respectively. The first step concerns evidence combination using the
Dempster-Shafer theory (simply D-S theory) [20-21] to yield initial beliefs in states.
The D-S theory enables distinguishing different cases in the information fusion
process according to their similarity degrees. The second step aims to refine these
initial beliefs into final probability evaluations via probabilistic reasoning.

Evidence
combination

Retrieved
cases

Case Library

Similarity
degrees

Probalistic
reasoning

Belief
degrees

New target
situation Q State Crisp

probabilities

Information Fusion

?

Fig. 3. Derivation of state probabilities based on cases

3.1 Reasoning Degrees of Belief Using the D-S Theory

We consider every retrieved case as a source of information. The evidence
combination rule of the Dempster-Shafer theory is employed to aggregate information
from relevant cases for assessing the degrees of beliefs in possible states in the query
situation.

3.1.1 Evidence Combination Rule of the D-S Theory
The D-S theory is a powerful tool tackling uncertainty. But we do not intend to have
an extensive discussion of it in this paper. We shall only introduce some basic
concepts of this theory that are relevant for our task of belief aggregation from
multiple cases.

 CBR Supports Decision Analysis with Uncertainty 363

In the D-S theory, a sample space of the problem domain is called a “frame of
discernment”, notated as X. It is assumed that one’s total belief due to a piece of
evidence can be partitioned into various probability masses, each assigned to a subset
of X. These probability masses are specified by basic probability assignment (BPA),
which is a function m performing mapping from the power set of X to the interval [0,
1] satisfying:

0)(=∅m (1)

1)(=∑
⊆ XF

Fm
(2)

In particular the subsets F of X such that 0)(>Fm are called the focal elements of

the D-S belief structure.
Owing to imprecision of information, we can not figure out exact probability

values for arbitrary subsets of X from a BPA function. The following two measures
are therefore introduced to impose bounds on the probability of a hypothesis.

Let hypothesis F be a subset of X, the belief of F, denoted Bel(F), is defined as

∑
⊆

=
FG

GmFBel)()(
(3)

The plausibility of F, denoted Pl(F), is defined as

∑
∅≠

=
FG

GmFPl
∩

)()(
(4)

It was shown in [22] that, for any subset F of X , we have the inequality below

)()()(FPlFPFBel ≤≤ (5)

This reads that the belief and plausibility measures provide lower and upper bounds
on the probability of a hypothesis.

Suppose there are two bodies of evidences over the same frame of discernment, but
induced from independent information sources. The BPA functions associated with
the two bodies of evidences are m1 and m2 respectively. The task now is to combine
the evidence related functions m1 and m2 into an aggregated (basic) probability
assignment function 2112 mmm ⊕= . According to the evidence combination rule of

the D-S theory, the basic probability mass for a hypothesis F (XF ⊆), incorporating
both pieces of evidences, is calculated as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==∅ ∑

=

)()()(,0)(22111212

21

FmFmKFmm
FFF ∩

 (6a)

1

2211)()(1
21

−

∅=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑ FmFmK

FF ∩

 (6b)

The above combination rule reads that m12(F) is calculated from the summation of
the products m1(F1)m2(F2) where the intersection of F1 and F2 equals F. The quantity
K plays the role of normalization such that the sum of basic probability numbers for

364 N. Xiong and P. Funk

all subsets of X equals one. K is computed on all pairs of F1 and F2 that have no
intersections with each other. Next we shall use this combination rule to estimate the
degrees of belief in various states based on the cases retrieved from the case library.

3.1.2 Combining Retrieved Cases as Evidences
Suppose Nr cases are retrieved from the case library after similarity matching.
Without loss of generality, we denote the set of retrieved cases by

},,,{ 21 NrCCCE = (7)

The similarity degrees of these retrieved cases against the query situation are given by
},,,{ 21 NrSim ααα= where αj represents the degree of similarity of case Cj. Our task

here is to aggregate the information of the cases in E to acquire combined degrees of
belief in various states in the current situation.

Obviously the frame of discernment, X, in our problem domain is the set of states
in the environment. In order to apply the evidence combination rule stated above, we
first have to interpret the probability distributions in individual cases into a form
complying with the D-S belief structure. This can be easily done by restricting the
focal elements of the belief structure to individual states as singleton subsets of X.
Hence the probability distribution in a case Cj can be interpreted as a basic probability
assignment function written as

(){ }nisPsCBP ijij 1,)(,)(== (8)

where si denotes a state in the environment and Pj(si) is the probability that state si is
true in the situation described by case Cj.

Now consider the basic probability assignment function that is induced by the
evidence of a retrieved case Cj. Let m(i, j) be the basic probability value to which the
hypothesis that state si is true is supported by case Cj as evidence. This probability
mass should be reduced from function (8) with similarity degree αj as discounting
factor. Hence we have

NrjnisPjim ijj ,,1;,,1)(),(==⋅= α (9)

As the sum of basic probabilities of states is now smaller than one according to (9),
we introduce an extra subset S containing all possible states. The subset S receives the
remaining probability mass unassigned to any individual state. Thus we can write

NrjsPjimjSm jij

n

i
j

n

i

,,1,1)(1),(1),(
11

=−=−=−= ∑∑
==

αα (10)

Having established basic probability assignments induced by retrieved cases, we now
attempt to aggregate these assignment functions into an overall assessment using the
evidence combination rule. Denote Et as the set of the first t retrieved cases as follows:

},,,{ 21 tt CCCE = (11)

Let m(i, Et) be the basic probability mass to which the hypothesis that state si is true is
supported by all evidences (retrieved cases) in Et. By m(S, Et) we denote the
remaining probability mass unassigned to individual states after all evidences in Et

 CBR Supports Decision Analysis with Uncertainty 365

have been combined. The algorithm to fuse case information according to the
evidence combination rule can be formulated in a recursive form as follows:

())1,(),()1,(),()1,(),(),(11 +++++= ++ timESmtSmEimtimEimKEim ttttt

ni 1=

(12a)

)1,(),(),(11 += ++ tSmESmKESm ttt (12b)

11)1,(),(1

1

1 1
1 −=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+−=

−

=
≠
=

+ ∑∑ NrttjmEimK
n

i

n

ij
j

tt

(12c)

where Kt+1 is a normalizing factor to make the sum of the basic probability values
induced by the evidences in Et+1 equal one. It bears noting that, to start with the
above recursive form, we have),(),(1 1imEim = and),(),(1 1SmESm = . The final

outcomes of this combination procedure are m(i, ENr) and m(S, ENr), which correspond
to the basic probability values after incorporating all retrieved cases as evidences.

In terms of the belief function defined in (3), the probability mass m(i, ENr) also
represents the degree of belief in state si after considering all retrieved cases. Hence
the combined degrees of belief are directly given by

niEim Nri 1),(==β (13a)

∑
=

−==
n

i
iNrS ESm

1

1),(ββ (13b)

where βS refers to the degree of belief unassigned to any individual state after all
retrieved cases have been incorporated. It indicates a degree of ignorance or
incompleteness of information in the generated assessment.

Further, from the plausibility definition in (4), the value of plausibility for the
hypothesis that state si is true is equal to βi+βS. It is the upper bound of the likelihood
for the truth of state si. The lower bound for the likelihood of state si is reflected by
the belief degree βi. In other words, we obtain the interval [βi, βi+βS] as estimate of the
probability for state si (i=1…n) by using the D-S combination rule. In the next
subsection we shall discuss how to refine these initial estimates to obtain crisp
probability values of states by doing probabilistic reasoning.

3.2 Reaching Final Probabilities via Probabilistic Reasoning

The probability intervals derived from the D-S rule can be refined via probabilistic
reasoning. Without any prior knowledge, the initial probability P0(si) for a state is defined
by equally distributing the unassigned probability βS among all states. Thus we have

ni
n

sP S
ii 1)(0 =+= ββ (14)

Then we perform probability updating based on the Bayes theorem.

366 N. Xiong and P. Funk

As cases in the case base were collected independently of each other, we utilized
the similar relation with every retrieved case, sr(Cj), as an independent observation to
update the prior probabilities according the Bayes theorem. Define Hj as the set of the
first j observations (similar relations) as follows:

)}(,),(),({ 21 jj CsrCsrCsrH = (15)

The Bayesian reasoning for probabilities of states can be summarized in a recursive
form by

1,,0
)|()|)((

)|)(()|(

)|(),|)((

),|)(()|(
)|(

1 1

1

1 1

1
1

−=
⋅

⋅
=

⋅

⋅
=

∑

∑

= +

+

= +

+
+

Nrj
HsPsCsrP

sCsrPHsP

HsPsHCsrP

sHCsrPHsP
HsP

n

k jkkj

ijji

n

k jkkjj

ijjji
ji

 (16)

Note that we have)()|(00 ii sPHsP = to start with this recursive form.

It can be seen from Eq. (16) that, to update probabilities of states, we need the
conditional probability P(sr(Cj)|si) for all the retrieved cases Cj (j=1…Nr). Such
probability can be regarded as the likelihood of a randomly picked case from the case
base being similar to Cj provided that the state in this case is known as si. Hence we
have

NrjnisCPsCsrP

jCtosimilarC
BaseCaseC

iij 1,1)|()|)((=== ∑
∈

 (17)

Further, we apply the Bayes theorem and transform the probability P(C|si) to the
following form:

ni
CPCsP

CsPCP
sCP

baseCaseC
kki

i
i

k

1
)()|(

)|()(
)|(=

⋅
⋅=

∑
∈

(18)

Since we assume all cases in the case library are equally probable to be selected, Eq.
(18) is simplified to

ni
sP

CsP

CsP

CsP
sCP

k
ik

i

baseCaseC
ki

i
i

k

1
)(

)|(

)|(

)|(
)|(===

∑∑
∀∈

(19)

At this point, it has been obvious that we can calculate the probability P(C|si) by using
probabilistic information stored in individual cases in the case library, which further
enables updating state probabilities in terms of Eqs. (16) and (17).

However, one disadvantage of the above calculation with Bayes theorem is that
different similarities (thereby importances) of the cases are not taken into account. For
more accurate results, we are not directly adopting such assessment as final
probability values. Instead we utilize the probability values yielded from Bayesian
reasoning as factors to divide the unassigned probability βS across various states. This
means that every state si receives an additional probability mass from βS in proportion

 CBR Supports Decision Analysis with Uncertainty 367

to P(si|HNr). This additional mass is then added to the lower bound of probability, βi,
to settle the final probability assessment. In other words, after information fusion in
two steps, the probability for state si is finalized as

niHsPsP SNriii 1)|()(=⋅+= ββ (20)

4 Derivation of General Utilities of Actions Given States

The basic idea is to derive the general utility of performing one action under a given
state by using information from the case library. However, owing to the fact that no
exact information is known about states in cases, case specific utilities recorded can
not provide direct answers to our inquiries. As an alternative, we here attempt to
estimate this utility with an expected value by considering all those cases in which the
underlying action was performed. By Sub(a) we denote the subset of cases in the case
library in which the action a was performed. Then the expected value of the general
utility of performing action a given state si can be given by:

)|()|()|(
)(

ita
aSubC

ti sCPCaUsaU
t

⋅= ∑
∈

(21)

As U(a|Ct) represents the known utility recorded in case Ct, what remains to resolve is
the probability Pa(Ct|si). By employing the Bayes theorem, this probability is
reformulated as

∑
∈

⋅
⋅=

)(

)|()(

)|()(
)|(

aSubC
kika

tita
ita

k

CsPCP

CsPCP
sCP

(22)

Considering that cases in the subset Sub(a) are equally probable to be picked up, Eq.
(22) is reduced to

∑
∈

=

)(

)|(

)|(
)|(

aSubC
ki

ti
ita

k

CsP

CsP
sCP

(23)

Since P(si|Ck) is available as the probability of state si in case Ck, we easily resolve
Eq. (23), leading to computation of the expected value of the general utility according
to Eq. (21). This expected value then enters the decision tree as estimation of the
(general) utility of action a given state si.

5 Decision Analysis Using Case-Based Decision Model

Once a decision model is constructed from cases, it can be applied to analyse and
evaluate alternative actions in the current situation, taking into account both
likelihoods and probable consequences. We will first introduce a well established
principle for doing such analysis of decisions, followed by discussions of how this

368 N. Xiong and P. Funk

basic principle can be applied in circumstances when utility values specified in
individual cases are fuzzy or imprecise.

5.1 Principle of Maximizing Expected Utility

With complete information in the decision tree derived, we can now compute the
expected utility of the various alternative actions. The expected utility of action aj is
defined as

)|()()|()()|()()(2211 njnjjj saUsPsaUsPsaUsPaEU ⋅++⋅+⋅= (24)

where P(si) and U(aj|si) represent the probability and (general) utility values derived
from the retrieved cases and the case library respectively. Then a choice should be
made among the alternatives according to the principle of maximizing the expected
utility [2], which is formulated as follows:

The principle of maximizing expected utility (MEU): In a given decision situation
the deciding agent should prefer the alternative with maximal expected utility. That
means that alternative a1 is preferred to a2 if and only if)()(21 aEUaEU > .

The expected utility of an action approximates the mean utility score that will be
obtained if an agent or decision maker meets the situation many times and chooses
and conducts the same action constantly. In view of this, the significance of the MEU
principle is to optimize the long term performance of decision making under
uncertainty.

The merit of doing decision analysis after CBR can be illustrated with the
following example. Assume that, given a target situation, two cases C1 and C2 are
retrieved from the case base and they have actions a1 and a2 respectively. Both cases
are assigned with good utility values as evaluations of their outcomes, but case C1 is
more similar to the target situation. Then, according to CBR alone, action a1
associated with case C1 will be judged more suitable as solution to the new situation.
Nevertheless, if we further consider more information in the decision tree, we might
change our preference after decision analysis.

For instance, suppose that the state probabilities and utilities of actions under
possible states (s1 and s2) are derived from previous cases as follows:

6.0))(),(|(211 =CsrCsrsP 70)|(11 =saU 40)|(12 =saU

4.0))(),(|(212 =CsrCsrsP 90)|(21 −=saU 60)|(22 =saU

The expected utilities of a1 and a2 are calculated as EU(a1)=6 and EU(a2)=48
respectively in the current situation. Hence we will prefer action a2 according to the
MEU principle. We believe that a2 is a more rational choice considering the high risk of
action a1 under state s2. This rational choice is achieved by taking advantage of the case-
based decision tree which accommodates more information than case similarity alone.

5.2 When Utility Values from Cases Are Fuzzy

Until now we have assumed that a crisp utility value is assigned in every case in the
case library. However, in numerous practical applications, it is frequently difficult for

 CBR Supports Decision Analysis with Uncertainty 369

human users and even domain experts to assign an exact utility as their evaluation of
the consequences. They would be more likely to say that the outcome in a case should
receive a utility score of, say, around 60. Here “around 60” is an imprecise value and,
in terms of fuzzy set theory [23], it is considered as a fuzzy number. Our intention is
to extend the representation to allow for users to specify vague, fuzzy data as
evaluations of utility in specific cases. But, by doing this, we will not exclude the
possibility that users assign crisp utility values if they prefer. Considering that crisp
numbers are special singleton fuzzy numbers, this extension would bring a useful
generalization of the theory and methods making our framework applicable to more
general types of data and information.

In fuzzy set theory, a fuzzy number is a fuzzy subset of R that is convex and
normal. So, in principle, users can define any convex and normal fuzzy subset of R as
fuzzy utility in a specific case. But, for reducing computational complexity, we would
prefer to recommend triangular fuzzy numbers which are intuitive, simple, and easy
to manipulate. A triangular fuzzy number F can be depicted by a 3-tuple: F = (f1, f2,
f3), with its membership function being illustrated in Fig. 4.

x

µF(x)

f1 f2 f3

1.0

0

Fig. 4. A triangular fuzzy number

Two nice properties of triangular fuzzy numbers are that the addition of two
triangular fuzzy numbers is still a triangular fuzzy number and that the multiplication
of a constant with a triangular fuzzy number is still a triangular fuzzy number [24].
That is to say that, given two triangular fuzzy numbers F = (f1, f2, f3), and G = (g1, g2,
g3), and a constant γ, we have

),,(332211 gfgfgfGF +++=+ (25)

),,(321 fffF ⋅⋅⋅=⋅ γγγγ (26)

Owing to the properties depicted in Eqs. (25) and (26), we clearly see that the general
utility estimation in (21) and the expected utility of actions in (24) are also triangular
fuzzy numbers as long as utilities in individual cases are specified as triangular fuzzy
numbers. Consequently, evaluating alternatives according to the EMU principle turns
to studying the fuzzy dominance relations between the fuzzy expected utilities

370 N. Xiong and P. Funk

represented as fuzzy numbers. This task is not trivial in the sense that a natural order
does not exist with the quantities as fuzzy numbers.

Let Fi and Fj be two fuzzy numbers corresponding to the fuzzy expected utilities
for alternative actions ai and aj respectively. The fuzzy relation that ai is dominated by
aj (or Fi is dominated by Fj) is defined by the degree of possibility and the degree of
necessity of the event

ji FF < , which are given by

())(),(minsup)(yxFF
ji FF

yx
ji μμ

<
=<Π

(27)

())(),(minsup1)(yxFFN
ji FF

yx
ji μμ

≥
−=< (28)

Further, we investigate to what extent an action is a dominated one. Since the
statement that ai is dominated becomes true if ai is dominated by at least one of the
other alternatives, we apply an s-norm as logical disjunction to connect the dominance
relations between ai and the others. If the maximum operator is adopted as the means
for s-norm, the degrees of possibility and necessity of alternative ai being dominated
are respectively defined as

())(max)(ji
ji

i FFaPoss <Π=
≠

 (29)

())(max)(ji
ji

i FFNaNec <=
≠

 (30)

By means of the possibility and necessity values given in (29) and (30), we
actually have defined a fuzzy subset of dominated alternative actions. Finally, we
define an α-β-cut of this fuzzy subset to reach a crisp subset DOM. The membership
function of the crisp subset DOM is given by

⎩
⎨
⎧ ≥≥

=
otherwise

aNecandaPoss
a ii

iDOM 0

)()(1
)(

βα
μ (31)

where α, β (0< β< α<1) are parameters controlling the number of dominated actions.
The remaining alternatives are subsequently recommended to the decision maker as
non-dominated solutions.

6 Related Work

A probabilistic model for CBR was first proposed in [25]. The basic idea presented
there is to consider the CBR principle that similar problems have similar solutions as
a “rule of thumb” rather than a universally valid rule. According to this probabilistic
model, the conventional CBR principle can be reformulated into a heuristic rule
stating that similar problems are at most likely to have similar solutions. The merit of
this formulation is that it allows for exceptions to the CBR rule.

Later, a similarity-based inference scheme [26] was developed from the CBR
probabilistic model [25] by the same author. The method is to represent information
from relevant cases into belief functions for characterizing confidence of alternative
solutions for a new problem at hand. Then the belief functions from individual cases

 CBR Supports Decision Analysis with Uncertainty 371

are combined in the framework of information fusion. This method can be useful in
the overall problem solving process by measuring different confidence levels of
different candidate solutions.

We proposed a framework for case-based decision analysis in [27], in which the
probabilistic information from individual cases was integrated solely with the Bayes
theorem. The weakness is that it can not take into account the different degrees of
similarity of retrieved cases in probabilistic calculation. This problem is overcome
with the work presented here by using the D-S theory for evidential combination with
respect to cases. Our work differs from [25] and [26] in that it does not directly
evaluate solutions and their confidences. Instead it aims to produce an intermediate
decision model by fusing information from cases to highlight all possibilities and
consequences. Decision analysis can then be conducted on the derived decision model
to identify the most promising solution in view of expected outcomes.

7 Conclusion

This paper presents a new framework for case-based decision analysis supported by
CBR. We claim that CBR and decision theory can complement each other in a
coherent, hybrid system. CBR has the strength of creating a situation dependent
decision model without domain knowledge. This is achieved by deriving states
probabilities and general utility estimates from previous cases through an information
fusion process comprising evidence combination and probabilistic reasoning. It
follows that more accurate and objective data will be available in the decision model,
promoting more reliable results of decision analysis. On the other hand, decision
theory helps CBR better tackling the uncertainty issue by considering all probable
consequences, risks, and likelihoods rather than similarity of cases alone. This would
endow the agent or decision maker with more complete awareness of the situation and
environment for making predictive, secured and rational choices. Besides, we have
shown that fuzzy numbers can be used to represent case specific utility values for
decision analysis and that fuzzy and probabilistic information are well utilized
together in our case-based framework.

In future we will apply our approach to support decision making in strategic
maintenance scenarios in industry. Therein a machine or production line under
investigation can be considered as the environment, and evaluation grades or faults of
the machine refer to the internal states of the environment. We plan to not only assess
probable grades for machines but also carry out decision analysis based on previous
cases to find out effective, rational, low risk counter-measures (maintenance plans,
repair alternatives, etc.) as decision support.

References

1. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.
MIT Press, Cambridge (1999)

2. Gärdenfors, P., Sahlin, N.E.: Introduction: Bayesian Decision Theory – Foundations and
Problems. In: Decision, Probability, and Utility, pp. 1–15. Cambridge University Press,
Cambridge (1997)

372 N. Xiong and P. Funk

3. Raiffa, H.: Decision Analysis: Introductory Readings on Choices under Uncertainty.
McGraw Hill, New York (1997)

4. Gilboa, I., Schmeidler, D.: Case-Based Decision Theory. The Quarterly Journal of
Economics 110, 605–639 (1995)

5. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. Artificial Intelligence Com. 7, 39–59 (1994)

6. Doyle, D., Cunningham, P., Bridge, D., Rahman, Y.: Explanation Oriented Retrieval. In:
Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 157–168.
Springer, Heidelberg (2004)

7. Roth-Berghofer, T.R.: Explanations and Case-Based Reasoning: Foundational Issues. In:
Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 389–403.
Springer, Heidelberg (2004)

8. Brinker, K., Hullermeier, E.: Label Ranking in Case-Based Reasoning. In: Weber, R.O.,
Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp. 77–91. Springer, Heidelberg
(2007)

9. Coyle, L., Cunningham, P.: Improving Recommendation Ranking by Learning Personal
Feature Weights. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS,
vol. 3155, pp. 560–572. Springer, Heidelberg (2004)

10. McSherry, D.: Completeness Criteria for Retrieval in Recommender Systems. In: Roth-
Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp.
9–29. Springer, Heidelberg (2006)

11. Nicholson, R., Bridge, D., Wilson, N.: Decision Diagrams: Fast and Flexible Support for
Case Retrieval and Recommendation. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir,
H.A. (eds.) ECCBR 2006. LNCS, vol. 4106, pp. 136–150. Springer, Heidelberg (2006)

12. Stahl, A.: Combining Case-Based and Similarity-Based Product Recommendation. In:
Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS, vol. 4106,
pp. 355–369. Springer, Heidelberg (2006)

13. Aamodt, A.: CBR for Advice Giving in a Data-Intensive Environment. In: Proceedings of
10th Scandinavian Conference on Artificial Intelligence, Stockholm, pp. 201–205 (2008)

14. Ekenberg, L., Boman, M., Linneroth-Bayer, J.: General Risk Constraints. Journal of Risk
Research 4, 31–47 (2001)

15. Shapira, Z.: Risk Taking: A Managerial Perspective. Russel Sage Foundation, Thousand
Oaks (1995)

16. Stahl, A., Gabel, T.: Using Evolution Programs to Learn Local Similarity Measures. In:
Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 537–551. Springer,
Heidelberg (2003)

17. Cheng, W., Hullermeier, E.: Learning Similarity Functions from Qualitative Feedback. In:
Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS,
vol. 5239, pp. 120–134. Springer, Heidelberg (2008)

18. Gabel, T., Riedmiller, M.: Increasing Precision of Credible Case-Based Inference. In:
Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS,
vol. 5239, pp. 225–239. Springer, Heidelberg (2008)

19. Xiong, N., Funk, P.: Learning Similarity Metric Reflecting Utility in Case-Based
Reasoning. Journal of Intelligent and Fuzzy Systems 17, 407–416 (2006)

20. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton
(1976)

21. Smets, P.: Belief Functions. In: Smets, P., Mamdani, E.H., Dubois, D., Prade, H. (eds.)
Non-Standard Logics for Automated Reasoning, pp. 253–277. Academic Press, London
(1988)

 CBR Supports Decision Analysis with Uncertainty 373

22. Dempster, A.P.: Upper and Lower Probabilities Induced by a Multi-Valued Mapping.
Ann. Math. Stat. 38, 325–339 (1967)

23. Zadeh, L.A.: The Concept of a Linguistic Variable and Its Applications to Approximate
Reasoning. Information Sciences 8, 199–249 (1975)

24. Kaufmann, A., Gupta, M.: Introduction to Fuzzy Arithmetic. Theory and Applications.
Van Nostrand Reinhold Company Inc. (1985)

25. Hullermeier, E.: Toward a Probabilistic Formalization of Case-Based Inference. In:
Proceedings of International Joint Conference on Artificial Intelligence, pp. 248–253
(1999)

26. Hullermeier, E.: Similarity-Based Inferences as Evidential Reasoning. In: Proceedings of
14th European Conference on Artificial Intelligence, pp. 55–59 (2000)

27. Xiong, N., Funk, P.: A novel framework for case-based decision analysis. In: Proceedings
of 10th Scandinavian Conference on Artificial Intelligence, Stockholm, Sweden, pp. 141–
148 (2008)

Constraint-Based Case-Based Planning Using Weighted
MAX-SAT

Hankui Zhuo1, Qiang Yang2, and Lei Li1

1 Software Research Institute, Sun Yat-sen University, Guangzhou, China
zhuohank@gmail.com, lnslilei@mail.sysu.edu.cn

2 Computer Science and Engineering, Hong Kong University of Science and Technology,
Clearwater Bay, Kowloon, Hong Kong

qyang@cse.ust.hk

Abstract. Previous approaches to case-based planning often finds a similar plan
case to a new planning problem to adapt to solve the new problem. However,
in the case base, there may be some other cases that provide helpful knowledge
in building the new solution plan. Likewise, from each existing case there may
be only certain parts that can be adapted for solving the new problem. In this
paper, we propose a novel constraint-based case-based planning framework that
can consider all similar plans in a case base to the current problem, and take only
portions of their solutions in adaptation. Our solution is to convert all similar plan
cases to constraints, and use them to solve the current problem by maximally ex-
ploiting the reusable knowledge from all the similar plan cases using a weighted
MAX-SAT solver. We first encode a new planning problem as a satisfiability
problem, and then extract constraints from plan cases. After that, we solve the
SAT problem, including the extracted constraints, using a weighted MAX-SAT
solver and convert the solution to a plan to solve the new planning problem. In
our experiments, we test our algorithm in three different domains from Interna-
tional Planning Competition (IPC) to demonstrate the efficiency and effectiveness
of our approach.

1 Introduction

Automatic planning aims to find an action sequence that transforms an initial state
to a goal state. Researchers have built different algorithms to solve the problem effi-
ciently. Classical planning involves the generation of plans by state or partial plan space
search in order to satisfy a given goal [16,17]. Because planning is often difficult to do,
case-based Reasoning has been introduced as a general problem-solving paradigm that
makes use of the notion of analogy. Case-based reasoning uses domain-specific knowl-
edge of previously experienced, concrete problem solutions in order to solve a new
problem. It accomplishes this task by finding a similar past case and reusing it in the
new problem situation. Part of its feasibility is founded on psychological studies, where
it is found that humans often solve new problems by analogy. Several studies have
given empirical evidence for the dominating role of specific, previously experienced
situations in human problem solving.

In previous case-based planning approaches, one way is to build a plan by transfor-
mational analogy which is a problem-solving technique in which a pre-selected plan,

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 374–388, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Constraint-Based Case-Based Planning Using Weighted MAX-SAT 375

defined as a sequence of actions, is modified to solve a new problem [20]. Possible mod-
ifications to the plan include removing actions, adding new actions, and changing the
parameters from actions. The CHEF system constructs cooking recipes, which are plans
because recipes are sequences of cooking steps such as boiling a certain amount of water
[7]. These recipes are modified depending on factors such as the ingredients currently
available. Interest on case-based planning has revived recently, e.g., in the work of [5].

The previous approaches on case-based planning mainly focus on adapting a single
similar plan case in its entirety, which is found from the set of plan cases, to a new one
that solve a new planning problem. However, there may be some other cases in the same
case base that can provide some helpful knowledge in building the new plan, although
they may not be so similar to the new problem. Similarly, it may not be the case where
a plan is completely reusable; instead, each case that is being reused may only partially
contribute to the new solution. Thus, it is important for us to develop a new method to
exploit all the partially helpful information to help build a new plan, in order to improve
the planning efficiency and improve its effectiveness.

In this paper, we propose a novel case-based planning framework called MAXCBP,
which stands for using a weighted MAX-SAT solver to do Cases-Based Planning . In
this algorithm, we extract the useful information from all the similar plan cases in the
form of constraints. We also formulate the new planning problem as a constraint via a
procedure similar to Graphplan[6]. We add the two sets of constraints to help search for
a plan for a new planning problem.

In particular, our MAXCBP algorithm works in the following three steps. First, we
encode the planning problem as a set of clauses (a satisfaction problem). Secondly, we
extract constraints that can be also converted as a set of clauses, from all the plan cases.
Finally, we assign weights to all the clauses and solve them with a weighted MAX-SAT
solver. We then convert the final solution to a plan solution to the new planning problem.
Compared to previous approaches, our algorithm has the advantage that it can selectively
use partial knowledge from each case solution as needed to solve a new problem. In
addition, we make use of all available cases in the case base to solve a new problem.

The rest of the paper is organized as follows. We first give some related work to
this paper, and then address our problem definition. After that, we describe the detailed
steps of our algorithm. In the experiment section, we evaluate our algorithm in three
planning domains. Finally, we conclude the paper and discuss future work.

2 Related Work

2.1 Case-Based Planning

Case-based planning (CBP) uses a set of cases that consist of a past problem, a goal and
a plan that makes a transition from the problem to the goal [7]. Given a new problem,
CBP systems retrieve one or more cases whose problem is similar to the current one and
adapt the plans contained in the retrieved cases to achieve the new goal. Case retrieval
involves an intelligent search among all cases to find the ones that are adequate to solve
the new problem. The result of the plan adaptation process is a solution that includes
parts that are derived from selected case and new parts derived by first-principle based
planning. [5] analyzes the current state of art in case-based plan adaptation research. This

376 H. Zhuo, Q. Yang, and L. Li

work presents six dimensions for categorizing various aspects of existing case-based plan
adaptation algorithms, including the type of transformation, the role of the case content,
the use of case merging, the representation formalism, and the computational complexity
of the algorithm. It uses these dimensions as a framework to compare various systems.

[11] presents a scheme for learning the case quality based on its utility during a
validation phase. The quality obtained determine the way in which these cases are pre-
ferred in the retrieval and replay processes. It shows that the planning performance can
be improved when case utilities are used. [9] proposes a general framework for transfor-
mational analogy. It demonstrates that transformational analogy does not meet a crucial
condition for a well-known worst-case complexity scenario, and that plan adaptation
can be computationally harder than planning from the scratch, is not applicable for
transformational analogy. [8] develops an on-line case-based planning framework. In
this framework, when a plan is retrieved, a plan dependency graph is inferred to capture
the relations between actions in the plan. Then the plan is adapted in real-time using
its plan dependency graph, which allows the system to create and adapt plans in an
efficient and effective manner while performing the task.

2.2 Planning as Satisfiability and Weighted MAX-SAT

[2] develops a formal model of planning based on satisfiability. The satisfiability ap-
proach uses the best-known logical formalization of planning, based on the situation
calculus [4]. In this system, the execution of an action is explicitly represented by the
application of a function to a term representing the state in which the action is per-
formed. The satisfiability approach provides not only a more flexible framework for
stating different kinds of constraints on plans, but also a more accurate theory behind
modern constraint-based planning systems. [3] describes a two-phase algorithm for
MAX-SAT and weighted MAX-SAT problems. Firstly, it uses the GSAT heuristic to
find a good solution to the problem. Secondly, it uses an enumeration procedure based
on the Davis-Putnam-Loveland algorithm to find a provably optimal solution.

2.3 Learning for Planning

Planning problems are often formulated as heuristic search and the choice of the heuris-
tic function plays a significant role in the performance of planning systems. [12] pro-
poses an approach to learning heuristic functions from previously solved problem
instances in a given domain. The approach is based on approximate linear program-
ming, which is commonly used in reinforcement learning. [13] presents a novel
approach for boosting the scalability of heuristic planners based on automatically learn-
ing domain-specific search control knowledge from planning contexts in the form of
relational decision trees. The contexts are defined as the set of helpful actions extracted
from the relaxed planning graph of a given state, the goals remaining to be achieved,
and the static predicates of the planning task. [14] introduces a novel feature space for
representing control knowledge. It defines features in terms of information computed
via relaxed plan extraction, which has been a major source of success for non-learning
planners, which gives a new way of leveraging relaxed planning techniques in the

Constraint-Based Case-Based Planning Using Weighted MAX-SAT 377

context of learning. The authors show that the approach is able to surpass state-of-the-
art non-learning planners across a wide range of planning competition domains.

3 Problem Formulation

In this work, we consider the restrained form of STRIPS model [15], leaving more
complex models such as ADL as our further work. A planning domain is defined in this
work as Σ = (S, A, γ), where S is the set of states, A is the set of action models, γ is
the deterministic transition function S×A→ S. Each action model in A is composed of
three parts: an action name with zero or more arguments, a set of preconditions which
should be satisfied before the action is executed, and a set of effects which are the
results of executing the action. A planning problem can be defined as P = (Σ, s0, g),
where s0 is an initial state, and g is a goal state. A solution to a planning problem
is an action sequence (a0, a1, . . . , an) called a plan, which makes a projection from
s0 to g. Each ai is an action schema composed of an action name and zero or more
arguments. Furthermore, a plan case is defined as T = (s0, a0, a1, . . . , an, g). Notice
that the intermediate states between actions can be computed using the action models.
In this paper, we denote a set of plan cases as PC.

Our problem can be formulated as follows. We are given a planning domain Σ, a set
of plan cases PC and a new plan problem P . Our algorithm MAXCBP outputs a plan for
the new plan problem P using the helpful information from PC. An example problem
description is given in Table 1, which is from the domain of blocks1.

Table 1. An example problem description

input: the domain of blocks
predicates action models
(on ?x - block ?y - block) (pick-up ?x - block)
(ontable ?x - block) preconditions: (clear ?x)(ontable ?x)(handempty)
(clear ?x - block) effects: (holding ?x)(not(ontable ?x))(not(clear ?x))(not(handempty))
(handempty) (put-down ?x - block) (preconditions & effects omitted)
(holding ?x - block) (stack ?x - block ?y - block) (preconditions & effects omitted)

(unstack ?x - block ?y - block) (preconditions & effects omitted)

input: plan cases
plan case 1: (ontable A) (ontable B) (clear A) (clear B) (handempty), (pick-up A)

(stack A B), (handempty) (on A B)
plan case 2: (ontable B) (on A B) (clear A) (handempty), (unstack A B) (put-down A)

(pick-up B) (stack B A), (on B A) (ontable A)
...

input: a new planning problem
initial state s0 goal g

(ontable A) (clear A) (on A B)
(holding B) (ontable B)

output: a plan for the new planning problem
(put-down B) (pick-up A) (stack A B)

1 http://www.cs.toronto.edu/aips2000/

378 H. Zhuo, Q. Yang, and L. Li

4 The MAXCBP Algorithm

Our solution is to first encode the new planning problem into a constraint satisfaction
problem. The idea similar to Graphplan [6], where we consider K steps of actions in
which to solve a problem. When we solve the problem using a constraint satisfaction
problem formulation, the solution may be time-consuming, Thus, we make use of the
knowledge from the case base PC, which we convert to another set of constraints. The
two sets of constraints are combined into a new satisfiability problem, which is solved
using a MAXSAT solver.

In the following, we first give an overview of our algorithm MAXCBP. A detailed
description of each steps will be given in sections 4.1-4.4.

4.1 Encoding Planning Problem

In step 1 of Algorithm 1, we encode a planning problem P as a satisfiability problem
[2], which is simply a set of axioms with the property that any model of the axioms
corresponds to a valid plan. Some of these axioms describe the initial s0 and goal states
g. For the example in Table 1, s0 and g can be described as

(ontable A 1) ∧ (clear A 1) ∧ (holding B 1) ∧ (on A B ∞) ∧ (ontable B ∞)

The other axioms describe the actions in general, which include the standard effect and
frame axioms, plus others that rule out the anomalous models.

First, we rule out the possibility that an action executes despite the fact that its pre-
conditions are false. This can be done by asserting that an action implies its precondi-
tions as well as effects; e.g., for preconditions of the action pick-up in Table 1,

∀x, i.(pick-up x i)→ (clear x i) ∧ (ontable x i) ∧ (handempty i)

and for effects,

∀x, i.(pick-up x i)→ (holding x i+1) ∧ ¬(clear x i+1)
∧¬(ontable x i+1) ∧ ¬(handempty i+1)

Algorithm 1. Overview of our MAXCBP algorithm
Input: a new planning problem P = (Σ, s0, g), a set of plan cases PC;
Output: a plan P for the planning problem P ;

1: we first consider a plan graph according to Graphplan [6], where the plan is of length k (k is
set to one initially, and incremented by one if no solution is found). We encode the planning
problem P as a set of clauses C (a satisfaction problem) for a solution plan of up to length
k;

2: build constraints C1-C5 from PC;
3: assign each constraint of C1-C5 with its appearing frequency as its weight;
4: assign each clause in C with a high weight that the clause should hold;
5: solve all the weighted constraints with a weighted MAXSAT solver;
6: if no solution is found, we increment k by one, and go to step 1.
7: convert the solved result to a plan P ;
8: return P ;

Constraint-Based Case-Based Planning Using Weighted MAX-SAT 379

It is interesting to note that in this formulation preconditions and effects are treated
symmetrically.

Next, we state that only one action occurs at a time, e.g.,

∀x, x′, i.(x �= x′)→ ¬(pick-up x i) ∨ ¬(pick-up x′ i)

Finally, we assert that some action occurs at every time step. This is not a significant
restriction, since we can always introduce an explicit “do nothing” action if desired. For
the action pick-up in Table 1, the axiom schema is

∀i < N.∃x, (pick-up x i)

(An existentially-quantified formula expands to the disjunction of its instantiations.)
If a planning problem is specified by asserting a complete initial state then these

axioms guarantee that all models correspond to valid plans. This is so because every
model contains a sequence of actions whose preconditions are satisfied, and the execu-
tion of an action in a state completely determines the truth-values of all propositions in
the next state. The only model of the simple two step planning problem is the intended
model containing (put−down B 1), (pick−up A 2) and (stack A B 3). A simple
planning system can be constructed by linking a routine that instantiates such a given
set of axiom schemas and initial and goal state specifications to a Boolean satisfiability
algorithm.

4.2 Building Constraints

In step 2, we wish to build constraints to represent the relationship between actions in
PC. We observe that there are five kinds of relationships between each two actions in
a plan case, i.e.,

1. one action provides a precondition for its subsequent action (we call this relation-
ship as an add-pre constraint);

2. one action adds an effect but deleted by its subsequent action (we call this relation-
ship as an add-del constraint);

3. one action deletes an effect but added by its subsequent action (we call this rela-
tionship as a del-add constraint);

4. one action shares a precondition with its subsequent action (we call this relationship
as a pre-pre constraint);

5. a precondition of one action is deleted by its subsequent action (we call this rela-
tionship as a pre-del constraint).

We denote a plan case pc ∈ PC as pc = (a1, a2, . . . , an), each action pair in pc as
〈ai, aj〉 where 1 ≤ i < j ≤ n. We formulate the idea as follows.

C1: add-pre constraints. For each action pair 〈ai, aj〉, the idea that ai provides a pre-
condition for aj is, there is a proposition p which is added by ai and used as a
precondition of aj . We denote a list of effects added by ai as addi, and a list of
preconditions of aj as prej . Then, we can formulate this constraint as follows.

p ∈ addi ∧ p ∈ prej

380 H. Zhuo, Q. Yang, and L. Li

where parameters of p are included by ai and aj . Intuitively, the action aj requires
that ai should be executed first in a plan, that aj can be executed and produce some
useful effects.

C2: add-del constraints. For each action pair 〈ai, aj〉, the idea that ai adds an effect
but deleted by aj is, there is a proposition p which is added by ai and used as a
precondition of aj . We denote a list of effects deleted by aj as delj . Then, we can
formulate this constraint as follows.

p ∈ addi ∧ p ∈ delj

Intuitively, aj needs to be executed to deleted a redundantly added effect by ai, that
no unnecessary actions will be executed after aj in a plan.

C3: del-add constraints. For each action pair 〈ai, aj〉, there is a proposition p which is
deleted by ai and added by aj . Then, this constraint can be formulated by

p ∈ deli ∧ p ∈ addj

This constraint specifies that, aj is needed to add an effect which is unexpectedly
deleted by ai.

C4: pre-pre constraints. For each action pair 〈ai, aj〉, there is a proposition p which is
a precondition of ai and aj . Then, this constraint can be formulated by

p ∈ prei ∧ p ∈ prej

This constraint specifies that different actions may be executed together under the
same preconditions, e.g., frame axioms which are not changed between these ac-
tions in a plan.

C5: pre-del constraints. For each action pair 〈ai, aj〉, there is a proposition p which is
a precondition of ai but deleted by aj . Then, this constraint can be formulated by

p ∈ prei ∧ p ∈ delj

This constraint specifies that aj should be executed to delete p that actions with the
precondition p will not be executed again in a plan.

With respect to the restrained form of STRIPS model, we assert that the above five
kinds of constraints encode all the possible relationship between actions. Before giving
proof to this conclusion, we provide the following two requirements according to the
restrained form of STRIPS model, i.e.,

R1: A proposition p added by action ai should not be a precondition of ai, i.e.,

p ∈ addi → p �∈ preStatei

where preStatei is a list of propositions that exist before ai is executed. Notice
that prei ⊆ preStatei.

R2: A proposition p deleted by action ai should be a precondition of ai, i.e.,

p ∈ deli → p ∈ prei

Constraint-Based Case-Based Planning Using Weighted MAX-SAT 381

Then, we have the theorem under the conditions of R1-R2, as shown in the following.
Notice that, when we consider a proposition referring to an action pair 〈ai, aj〉, we
assume that there is no other actions between ai and aj that affect the proposition.

Theorem: constraints C1-C5 encode all the possible relationships between two actions
of 〈ai, aj〉 in a plan.

proof : For each action pair 〈ai, aj〉, the relationships between ai and aj can be specified
as whether or not, a proposition p in addi,prei, or deli is also in addj , prej , or delj .
That is to say, there are nine kinds of relationships: {p ∈ addi∧p ∈ prej , p ∈ addi∧p ∈
addj , p ∈ addi∧p ∈ delj , p ∈ deli∧p ∈ prej , p ∈ deli∧p ∈ prej , p ∈ deli∧p ∈ addj ,
p ∈ deli∧p ∈ delj , p ∈ prei∧p ∈ prej , p ∈ prei∧p ∈ addj , and p ∈ prei∧p ∈ delj}.
In another word, we only need to prove that {p ∈ addi∧p ∈ addj , p ∈ deli∧p ∈ prej ,
p ∈ deli ∧ p ∈ delj , and p ∈ prei ∧ p ∈ addj} can be deduced by C1-C5, or they are
contradictive with R1-R2.

First, if p ∈ addi ∧ p ∈ addj holds, then p ∈ preStatej holds. That is to say, p ∈
addj∧p ∈ preStatej holds, which is contradictive with R1. Thus, p ∈ addi∧p ∈ addj

is contradictive with R1.
Second, if p ∈ deli ∧ p ∈ prej holds, then p �∈ preStatej ∧ p ∈ prej holds. Since

prej ⊆ preStatej holds, p �∈ preStatej ⇒ p �∈ prej , which implies p �∈ prej ∧ p ∈
prej , i.e., contradiction is generated.

Third, if p ∈ deli ∧ p ∈ delj holds, then p �∈ preStatej ∧ p ∈ delj holds. And
then p �∈ preStatej ∧ p ∈ prej holds. Similar to the second one, contradiction will be
generated.

Finally, from C3, we have p ∈ deli ∧ p ∈ addj . Then we have p ∈ prei ∧ p ∈ addj

by R2. On the other hand, if we have p ∈ prei∧p ∈ addj , then we have p ∈ prei∧p �∈
preStatej by R1, which implies p ∈ deli. Thus, p ∈ deli ∧ p ∈ addj holds. That is
to say, p ∈ prei ∧ p ∈ addj is unnecessary, since C3 and R1-R2 have encoded the
information it provides.

Briefly, by considering R1-R2, C1-C5 have encoded all the possible relationships
between ai and aj . �

4.3 Assigning Weights

By steps 1-2, we have built a list of constraints. In this section, we present how to assign
weights to constraints, which corresponds to steps 3-4 of Algorithm 1. Our basic idea
is that (1) the weights of constraints built by step 1 should be high enough to ensure
a planning problem being solved correctly; (2) the correct information included by the
plan cases PC corresponds to the constraints frequently satisfied by PC, while the
other information corresponds to the constraints infrequently satisfied. Thus, to explore
the correct information, we calculate the frequency of constraints satisfied by PC as
weights. Based on this idea, we give the algorithm of assigning weights to constraints
in Algorithm 2.

In step 14 of Algorithm 2, each constraint in Ck is unified by substituting all the
parameters of p, ai and aj with unified variables. We get the weights of constraints
of C1-C5. Since we wish to solve a new planning problem correctly, we set weights

382 H. Zhuo, Q. Yang, and L. Li

Algorithm 2. assigning weights to constraints
Input: a planning domain Σ, a set of plan cases PC;
Output: the weights W1, W2, W3, W4, W5 for C1, C2, C3, C4, C5;

1: C1 = C2 = C3 = C4 = C5 = ∅ are sets of constraints of C1-C5 respectively;
2: for each plan case pc ∈ PC do
3: for each two actions ai and aj in pc do
4: if i < j and there is a proposition p that is not affected by actions between ai and aj

(can be asserted by executing the actions using Σ) then
5: for k = 1 to 5 do
6: if p, ai and aj form a constraint c that satisfies Ck then
7: put c in Ck;
8: end if
9: end for

10: end if
11: end for
12: end for
13: for k = 1 to 5 do
14: unify Ck into variable form;
15: count the appearing number of each constraint in Ck; the results are stored in a vector

Wk, viewed as weights;
16: end for
17: return W1, W2, W3, W4, W5;

(denoted as W0) of constraints (clauses, denoted as C) generated in step 1 of Algorithm
1 as high as possible, by considering the effect of R1-R2 simultaneously. To do this, we
first find the maximal value from W1, W2, . . . , W5, which is denoted as wmax. Then,
we set W0 by the following way:

∀k > 0, W0(k) = βwmax

where W0(k) is a weight of kth constraint (clause) in C. β is a parameter to adjust the
value of W0(k). By setting different value of β, the weights of constraints in C will
be changed. As a result, the importance of the constraints in C will be changed corre-
spondingly in the whole solving process of our algorithm MAXCBP. In our subsequent
experiments, we will test different value of β to see its effect on the experiment result.

4.4 Obtaining a Final Solution Plan

In steps 5-7 of Algorithm 1, we solve the weighted constraints of C and C1-C5 using
a weighted MAX-SAT solver, the result of which is an assignment to all the axioms of
constraints. With the assignment, we attain a plan by this way: first, we select all the
axioms assigned with a true value; and then we convert all the selected axioms, which
represent actions being executed or not, to a plan. Next, we will give a whole example
for our algorithm MAXCBP in the following.

Example: For the planning problem in Table 1, the solving process of our algorithm
MAXCBP is shown in Fig. 1. In this figure, the omitted parts denoted by “...” are the

Constraint-Based Case-Based Planning Using Weighted MAX-SAT 383

---- Begin ----
Step 1: initial state and goal: (ontable A 1) ^ (clear A 1) ^ (holding B 1) ^ (on A B) ^ (ontable B)
 action: forall x, i. (pick-up x i) (clear x i) ^ (ontable x i) ^ (handempty i)

 other constraints: forall x, x', i. (x x') ¬(pick-up x i) V ¬(pick-up x' i)
 forall i < N, exists x. (pick-up x i)

Step 2: C1-C5 from plan cases 1 (likewise for plan case 2):
C1 add-pre constraints: (holding A 2) add(pick-up1) ^ (holding A 2) pre(stack2)
C2 add-del constraints: (holding A 2) add(pick-up1) ^ (holding A 2) del(stack2)

Step 3: assigning weights of C1-C5:
2 (holding A 2) add(pick-up1) ^ (holding A 2) pre(stack2)
2 (holding A 2) add(pick-up1) ^ (holding A 2) del(stack2)

Step 4: assigning weights of C:
*2 (ontable A 1) ^ (clear A 1) ^ (holding B 1) ^ (on A B) ^ (ontable B)
*2

Step 5: solving weighted clauses from Step 3 and Step 4 using a weighted MAX-SAT solver, the
result is:
 (put-down B 1) true
 (pick-up A 2) true
 (stack A B 3) true

Step 6: convert the result of Step 5 to a plan to the new planning problem:
 (put-down B) (pick-up A) (stack A B)

---- End ----

Fig. 1. An example of solving a new planning problem using MAXCBP

ones can be builded similarly by what are builded prior to them. In steps 3 and 4, the
numbers “2” and “β ∗2” are weights of C1-C5 and C respectively. In step 6, except the
ones assigned to be true, there are other propositions assigned to be false or true (e.g.,
initial state and goal), which are not shown in the figure (denoted by “...”). From this
example, we can see the detail steps about how to find a plan using a weight MAX-SAT
solver.

5 Experiment Results

In this section, we evaluate our algorithm MAXCBP in the following three benchmark
planning domains: blocks, depots2 and driverlog2. We generated 150 plan cases from
each domain. Furthermore, we generated 50 planning problems from each domain,

2 http://planning.cis.strath.ac.uk/competition/

384 H. Zhuo, Q. Yang, and L. Li

which will be solved by our algorithm MAXCBP. We evaluate MAXCBP by testing the
running time and average length of all the plans according to different number of cases
and different value of β which is a coefficient of wmax. Notice that we consider the ef-
ficiency and effectiveness of our algorithm MAXCBP by testing the running time and av-
erage length of plans respectively. We run our algorithm on the PC with CPU 2.26GHZ
and memory 1GMB. We define the average length of all the plans as

A =

∑
p∈P lengthof(p)

|P |

where P is a set of plans and the procedure lengthof(p) returns the length of the plan
p. In the following, we give the experimental results according to different number of
cases and different values of β.

5.1 Different Number of Cases

In this experiment, we test the running time of our algorithm according to different
number of plan cases being used in three different domains. The result is shown in
Fig. 2, where the vertical line denotes the CPU time which is taken to solve all the
50 planning problems, and the horizontal line denotes the number of plan cases. In this
figure, likewise for Fig. 4, the horizontal line signed with “without cases” shows the run-
ning result with the SATPLAN3 without exploiting any information of plan cases, and
the curve signed with “with cases” shows the running result of our algorithm MAXCBP.

From Fig. 2, we find that the running time of our algorithm MAXCBP that exploits the
information of plan cases is generally lower than the one without using any information.
Furthermore, from the curves in Fig. 2 (a)-(c), we also find that the CPU time of our
algorithm MAXCBP goes down when the number of plan cases goes up. That is because,
the more the plan cases are given, the more the information can be used, that a plan can
be found by MAXCBP more efficiently with the help of the information.

30 60 90 120 150
40

60

80

100

120

140

160

180

200

220

number of plan cases

cp
u

tim
e

(s
)

↑
without cases

← with cases

(a) blocks

30 60 90 120 150
40

60

80

100

120

140

160

180

200

220

number of plan cases

cp
u

tim
e

(s
)

↑
without cases

← with cases

(b) depots

30 60 90 120 150
40

60

80

100

120

140

160

180

200

220

number of plan cases

cp
u

tim
e

(s
)

← with cases

(c) driverlog

↑
without cases

Fig. 2. The CPU time with respect to the number of plan cases

3 http://www.cs.rochester.edu/u/kautz/satplan/index.htm

Constraint-Based Case-Based Planning Using Weighted MAX-SAT 385

30 60 90 120 150
20

30

40

50

60

70

80

90

number of plan cases

av
er

ag
e

of
 p

la
n

le
ng

th

blocks→

← depots

← driverlog

Fig. 3. The average of plan length with respect to the number of plan cases

To see the effect our algorithmMAXCBP introduces, we show the result of the average
of plan length A with respect to the number of plan cases in Fig. 3. From this figure,
we find that the curves are generally go down when the number of plan cases increases.
That is because, the information of plan cases can help MAXCBP to find a shorter plan,
rather than a longer one. Generally speaking, a shorter plan to a problem suggests that
the problem is solved more efficiently (with fewer actions).

5.2 Different Values of β

In section 4.3, we assign the weights of the clauses C as W0(k) = βwmax, where
different β will result in different CPU time or plan length. The results can be seen
from Fig. 4 and 5, where we fix the number of plan cases as 150 and test β with the
values from 1 to 5.

For the CPU time in Fig. 4, we find that the CPU time is generally lower when using
the information of plan cases than without it, by comparing the curves denoted with
“with cases” for planning using the case base, and the horizontal lines denoted with
“without cases” to denote planning from first principles without using the case base,
from Fig. 4 (a)-(c). After testing the weight factor β, we find that the CPU time generally
increases with the value of β . That is because, when β increases, the information that
plan cases can provide is reduced, which means MAXCBP will take more CPU time to
find a plan when using less information from the plan cases.

For the plan length in Fig. 5, we find that the average length of plans for all the 50
problems is generally going up when the value of β increases. Similar to Fig. 4, when

386 H. Zhuo, Q. Yang, and L. Li

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

β

cp
u

tim
e

(s
)

↑
without cases

← with cases

(a) blocks

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

β

cp
u

tim
e

(s
)

← with cases

(b) depots

↑
without cases

1 2 3 4 5
40

60

80

100

120

140

160

180

200

220

β

cp
u

tim
e

(s
)

← with cases

(c) driverlog

↑
without cases

Fig. 4. The CPU time with respect to different values of β

1 2 3 4 5
20

30

40

50

60

70

80

90

β

av
er

ag
e

of
 p

la
n

le
ng

th

blocks→

← depots

← driverlog

Fig. 5. The average length of plans with respect to different values of β

β increases, the effect of plan cases on helping finding a shorter plan is weakened, that
the plans being found by MAXCBP will be longer.

From Fig. 2-5, we conclude that, our algorithm MAXCBP, which is to maximally
exploit the information of plan cases, will help improve the efficiency and effectiveness
of finding a plan to a new planning problem.

6 Conclusion

In this paper, we presented a novel approach for case-based planning called MAXCBP.
Our algorithm makes maximal use of the cases in the case base to find a solution by

Constraint-Based Case-Based Planning Using Weighted MAX-SAT 387

maximally exploiting the information of plan cases via using a weighted MAX-SAT
solver. Our system can take a piece of the useful plan knowledge in the form of con-
straints even when the entire plan may not be useful for solving a new problem. Our
empirical tests show that our method is both efficient and effective in solving a new
planning problem. In real world applications, attaining a set of plan cases by hand is
difficult and time-consuming. Thus, in our future work, we will consider the situation
that plan cases are observed automatically by machine such as sensors. In this situation,
plan cases will contain noise, which makes our task more difficult. Thus, one of our
future works is to extend the framework by considering more noisy cases.

Acknowledgment

We thank the support of Hong Kong CERG Grant HKUST 621307, NEC China Lab.

References

1. Kuchibatla, V., Muñoz-Ávila, H.: An Analysis of Transformational Analogy: General Frame-
work and Complexity. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR
2006. LNCS, vol. 4106, pp. 458–473. Springer, Heidelberg (2006)

2. Kautz, H., Selman, B.: Planning as Satisfiability. In: ECAI (1992)
3. Borchers, B., Furman, J.: A Two-Phase Exact Algorithm for MAX-SAT and Weighted MAX-

SAT Problems. Journal of Combinatorial Optimization 2(4), 299–306 (1998)
4. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Standpoint of Artificial

Intelligence. Machine Intelligence, 463–502 (1969)
5. Munoz-Avila, H., Cox, M.T.: Case-Based Plan Adaptation: An Analysis and Review. IEEE

Intelligent Systems (2007)
6. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial Intelli-

gence (90), 1636–1642 (1997)
7. Hammond, K.J.: Case-Based Planning: Viewing Planning as a Memory Task. Academic

Press, San Diego (1989)
8. Sugandh, N., Ontanon, S., Ram, A.: On-Line Case-Based Plan Adaptation for Real-Time

Strategy Games, pp. 702–707. AAAI, Menlo Park (2008)
9. Kuchibatla, V., Muñoz-Ávila, H.: An Analysis on Transformational Analogy: General

Framework and Complexity. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.)
ECCBR 2006. LNCS, vol. 4106, pp. 458–473. Springer, Heidelberg (2006)

10. Bajo, J., Corchado, J.M., Rodriguez, S.: Intelligent Guidance and Suggestions Using Case-
Based Planning. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp.
389–403. Springer, Heidelberg (2007)

11. de la Rosa, T., Garcı́a Olaya, A., Borrajo, D.: Using cases utility for heuristic planning im-
provement. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp. 137–
148. Springer, Heidelberg (2007)

12. Petrik, M., Zilberstein, S.: Learning Heuristic Functions Through Approximate Linear Pro-
gramming. In: ICAPS (2008)

13. de la Rosa, T., Jimenez, S., Borrajo, D.: Learning Relational Decision Trees for Guiding
Heuristic Planning. In: ICAPS (2008)

14. Yoon, S., Fern, A., Givan, R.: Learning Control Knowledge For Forward Search Planning.
JMLR 9(APR), 683–718 (2008)

388 H. Zhuo, Q. Yang, and L. Li

15. Fikes, R., Nilsson, N.J.: Strips: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence, 189–208 (1971)

16. Yang, Q.: Intelligent Planning: A Decomposition and Abstraction Based Approach. Springer,
Berlin (1997)

17. Chapman, D.: Planning for Conjunctive Goals. Artificial Intelligence 32, 333–377 (1987)
18. Wilkins, D.E.: Recovering from Execution Errors in SIPE. Computational Intelligence 1,

33–45 (1985)
19. Selman, B., Levesque, H., Mitchell, D.: Hard and Easy Distributions of SAT Problems. In:

Proc. of the 10th National Conference on Artificial Intelligence, San Jose, CA, July 1992,
pp. 440–446. AAAI Press/MIT Press (1992)

20. Carbonell, J.G.: Learning by analogy: formulating and generalizing plans from past expe-
rience. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An
Artificial Intelligence Approach, Tioga, Palo Alto, California (1983)

A Value Supplementation Method for Case
Bases with Incomplete Information

Kerstin Bach, Meike Reichle, and Klaus-Dieter Althoff

Intelligent Information Systems Lab
University of Hildesheim

Marienburger Platz 22, 31141 Hildesheim, Germany
{bach,reichle,althoff}@iis.uni-hildesheim.de

Abstract. In this paper we present a method for supplementing incom-
plete cases with information from other cases within a case base. The
acquisition of complete and correct cases is a time-consuming task, but
nevertheless crucial for the quality and acceptance of a case-based rea-
soning system. The method introduced in this paper uses association
rules to identify relations between attributes and, based on the discov-
ered relations we are able to supplement values in order to complete
cases. We argue that using these related attributes when retrieving sup-
plementation candidates will yield better results than simply picking the
case with the highest global similarity. The evaluation of the method is
carried out using four different publicly available case bases.

1 Introduction

Incomplete information in cases is a problem often encountered in various areas
of Case-Based Reasoning (CBR). For instance, Bogaerts and Leake [1] discuss
how to assess the similarity of incomplete problem descriptions in Conversational
CBR applications, while Selvamani and Khemani [2] discuss how missing infor-
mation can be completed using decision tree induction. Further on when cases
are collected from WWW sources, like blogs, websites or web communities as in
[3], completing cases or dealing with incomplete information is one of the major
challenges.

Missing attributes can happen for a number of reasons. For instance, con-
sidering products as cases as within our example case bases, attributes can be
empty either because the attribute’s value is unknown or because a certain at-
tribute doesn’t apply to a certain case/product. Obviously only the first group
should be substituted, so a substitution strategy should ideally also include a
set of rules or constraints that controls when an empty attribute is substituted
and when a substitution is not applicable. Such constraints could for example
be based on other attribute’s values (“If a PC is a Desktop do not substitute the
battery attribute”) or a similarity-based comparison with other products and
their missing values.

In this paper we present a method for supplementing incomplete cases in
Structured CBR (SCBR) applications [4] using only the case base itself, the

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 389–402, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

390 K. Bach, M. Reichle, and K.-D. Althoff

knowledge already included in the cases and the similarity model. In SCBR a
case can be represented as attribute-value tables, in an object-oriented manner,
trees or graphs as well as in predicate logic [5]. We focus on the representation
in attribute-value tables, because it is one of the most common kind of case
representation in CBR. Cases in SCBR are represented by a predefined set of
attributes and the range of the attributes’ values (mostly nominal and numerical)
is given in a vocabulary [6].

This paper picks up on previous experiments on the subject, raises them to a
more general level, evaluates the results of the method and identifies constraints
on its applicability.

The aim of this paper is to demonstrate that – given the necessity to supple-
ment cases – our method leads to more accurate supplementations than doing a
standard CBR retrieval on the case to be supplemented and simply supplement-
ing it with the attribute values from the most similar case. Our method provides
a result set which is optimized towards retrieving the best fitting supplementa-
tion candidates, even if they are not actually the most similar cases.

The work in this paper is structured as follows: Section 2 gives a short overview
on the preliminary work already carried out on the subject and the first practical
results achieved within our project docQuery [7]. Section 3 presents and eval-
uates the method in a more generalized way: in subsection 3.1 we describe the
experiments used to evaluate the general applicability of our method, followed
by the presentation of the results of the individual experiments in subsection
3.2 and the interpretation of the results as well as a concluding estimation of its
general applicability in section 3.3. Section 4 presents related work on compara-
ble topics. The paper concludes with a brief summary and an outlook on future
work in section 5.

2 Preliminary Work

We initially presented this approach in [8] as an improvement to adaptation in
case bases consisting of a complete set of cases but with individual cases suffering
from incomplete information. In that first scenario we dealt with a geographic
case base, which was used in the context of travel medicine. This case base
included cases for all known countries but with a heavily varying information
quality, i.e. some attributes were always present, such as the vaccinations that
are obligatory in order to enter a country, others were often empty. Since the
application required a complete case for its next steps to work out we had to de-
velop a method for filling those attributes with values. A closer study of the case
format revealed that there are certain attributes that are related with regard to
their content, in that case for instance the necessary vaccinations and the general
list of infection risks. The content of the vaccinations attributes suggested, at
least partly, the contents of the general infection risk, and thus lent itself to be
used in order to derive a sensible value for that attribute.

Assuming that similar vaccinations suggest similar general infection risks, we
then developed a 2-step retrieval method in order to find the optimal case from

A Value Supplementation Method 391

which to take over the necessary values. Applied to the given example the method
was carried out as follows:

1. Select the desired country from the case base. Since we identify the countries
by name, which is a unique attribute, this can be done using similarity based
retrieval as well as a simple selection.

2. If the country’s general infection risks are not indicated, extract the content
of the vaccinations attribute.

3. Send a new query, this time using the country’s name and vaccinations as
query input.

4. Take the result set, remove the best hit (which will again be the country
in question), randomly pick one of the remaining countries with the highest
similarity.

5. Extract the randomly picked country’s general infection risks and use them
to supplement the original country’s information. If the picked country also
has an empty general infection risks attribute pick another case of the same
similarity.

In order to evaluate the quality of the resulting supplementations we manually
prepared a test case base (countries of South East Asia) with complete infor-
mation and then subsequently took every country, emptied its general infection
risks and restored them using once the 2-step retrieval method and once using
only a geographic taxonomy as the similarity measure in order to pick out a
supplementation candidate.

Using the 2-step retrieval method we were able to significantly reduce the
number of supplementation candidates in 90% of the test. Evaluating the quality
of the supplementations done with the respective remaining candidates we found
that in a total of 90 supplementations using the taxonomy based retrieval 62%
of the supplemented cases contained all of the expected infection risks. Using the
2-step retrieval method on the same cases amounted in 76% of the supplemented
cases containing all expected infection risks. Although both retrieval variants also
returned false positives in most of the tests, the solutions of the 2-step retrieval
method were generally more reliable, especially with respect to false negatives,
which were the more serious problem in this particular application scenario.

Our application scenario and its underlying architecture SEASALT [3] uses
modularized knowledge bases. For the combination of information retrieved from
these knowledge bases we do a subsequent retrieval and the more information one
solution contains, the more possibilities the algorithm has for further retrieval
steps. If we would only have a single retrieval step, a more precise similarity
measure including specialised domain knowledge would probably work as well.

3 Generalization

Phrased more generally, according to the 4-R model [9] our supplementation
steps in after the retrieve step, but before a potential reuse step. Thus in our
point of view we replace the general retrieve step, with two steps: first we retrieve

392 K. Bach, M. Reichle, and K.-D. Althoff

the desired case as usual, but then we check it for completeness, and, if the
values of a related attribute are missing, we do a second retrieval in order to
get a supplementation candidate case. We then use its values to supplement the
desired case and finally pass it on to reuse, revise, and retain.

In order to see if the method is generally suited for supplementing incomplete
cases we identified the following research hypotheses:

1. There are pairs of attributes that are related with respect to their content,
i.e. the value of one attribute determines – with a certain confidence – the
value of the other attribute. If a case format includes such relations between
attributes they can . . .
(a) be identified automatically and
(b) be used to supplement missing values of related attributes.

2. The supplementation candidates retrieved using only related attributes will be
the most fitting, i.e. the results of the supplementation will be better than the
results when using a global similarity measure to retrieve the supplementation
candidates.

3.1 Experiments towards an Extensions of the Initial Scenario

In order to be as representative as possible we used publicly available test case
bases from UCD, namely the PC and Whiskey case bases [10], the camera case
base [11] and AI-CBR’s travel case base1. These case bases each provide a set of
cases as well as a case format and the associated similarity measures. We used
the models and measures as indicated.

The camera case base consists of 210 case described with four nominal and
six numerical attributes. The numerical attributes have a predefined range de-
pending on their values. The global similarity measure is calculated using each
attribute with the same weight. The whiskey case base consists of 553 cases and
each case is represented by ten attributes, five nominal and five numerical at-
tributes. The global similarity measure is calculated using each attribute with
the same weight. The PC case base contains 120 cases which are represented
by eight attributes and the global similarity measure is calculated using each
attribute with the same weight. Three attributes are nominal and five are nu-
merical with a defined range of possible values. The travel case base contains
1024 cases and the case representation consists of six nominal and three numer-
ical attributes. The global similarity measure is calculated using each attribute
with the same weight.

As a first step we calculated the related attributes. For this purpose we used
a simple 1R algorithm [12] for finding association rules within the cases of one
case base. Then we compared for each attribute combination the respective rules
with a confidence ≥ 67% against the total number of all value combinations for
those attributes within the case base, resulting in a final correlation score.

1 We gathered the XML files describing the case bases from the Case-Based Reasoning
Wiki at http://cbrwiki.fdi.ucm.es/wiki/index.php/Case Bases

A Value Supplementation Method 393

c-score(A1,A2) =
of rules from A1 to A2 with a confidence ≥ 67%

of combinations from A1 to A2 within the case base
∗ 100

For example considering the Whiskey case base there are 193 different com-
binations of values of the attributes Proof and Finish. 77 of these combinations
could serve as an association rule with a confidence ≥ 67%. Thus the c-score for
Proof → Finish amounts to 39.9.

We then iterated over each case base and, for each case, we tried to supplement
the identified attributes using the respective related attributes. We did this twice
for each case, once using the whole case for the second query, once using only the
identified related attribute. In order to simulate an incomplete case base we each
time randomly removed three attribute values from the complete cases, but never
the related attribute, so the supplementation in the first test was based on the
retrieval results using all remaining attributes. The second test supplementation
was based on a query using only the related attributes.

To illustrate this with an example let’s consider the camera case base. In this
case base one of the highest rating attribute pairs was Weight → Format, we
will thus try to supplement the Format attribute. We consider the case listed in
table 1 and try to supplement the value of Format. In the first test we simply use
the whole case in order to find the most similar camera and use its Format for
supplementation. The result set naturally lists the original case first, then, with
the second best amount of similarity, there are two supplementation candidate
cases. One of these cases has the desired value “SLR” and the other one “Com-
pact”, so there would have been a 50% chance of a correct supplementation. In

Table 1. Example case from the camera case base. Format is the attribute to be sup-
plemented, Manufacturer, Model and Storage Included have been randomly removed.

Attribute Value

ID Case140

Manufacturer - removed -

Model - removed -

Price ($) 900

Format - missing -

Resolution (M Pixels) 1.92

Optical Zoom (X) 3.2

Digital Zoom (X) 2

Weight (grams) 630

Storage Type Compact Flash

Storage Included (MB) - removed -

394 K. Bach, M. Reichle, and K.-D. Althoff

the second test we only use the related attribute Weight for retrieval. The re-
sult is computed analogously. This time the chance of a correct supplementation
would have been 71.42%, because 10 out of 14 supplementation candidate cases
suggest the correct value.

We did this once for each case in each of the four case bases using the following
attribute pairs2:

– Camera
• Camera.Weight → Camera.Format
• Camera.Weight → Camera.OpticalZoom
• Camera.Weight → Camera.StorageType
• Excluded attributes: CaseId (unique, avg. frequency 1), Model (avg. fre-

quency 1.005), Price (avg. frequency 1.2)
– PC
• PC.Monitor → PC.Type
• PC.DriveCapacity → PC.Type
• PC.ProcessorSpeed → PC.ProcessorType
• Excluded attributes:Price (avg. frequency 1.5)

– Travel
• Travel.Hotel → Travel.Accommodation
• Travel.Hotel → Travel.Region
• Travel.Hotel → Travel.Transportation
• Travel.Region → Travel.Transportation
• Excluded attributes:Price (avg. frequency 1.6)

– Whiskey
• Whiskey.Proof → Whiskey.Finish
• Whiskey.Proof → Whiskey.Availability
• Whiskey.Proof → Whiskey.Sweetness
• Whiskey.Proof → Whiskey.Peatiness
• Excluded attributes: none

3.2 Results

Considering the supplementation results it can be noted that our first research
hypothesis (There are pairs of attributes that are related with respect to their
content, i.e. the value of one attribute determines – with a certain confidence –
the value of the other attribute. If a case format includes such relations between
attributes they can (a) be identified automatically and (b) be used to supple-
ment missing values of related attributes.) is confirmed by the results of our
experiments. We were able to reliably detect meaningful correlations between
attributes and with very few exceptions the attribute pairs with the highest cor-
relation score were also the ones with the best supplementation results. Even

2 Attribute pairs including unique or almost unique attributes (i.e. attributes with
values with an average frequency near 1) were manually excluded.

A Value Supplementation Method 395

when supplementation using all available attributes performed better overall,
the difference between the results is smaller the higher the correlation score is.

Our second research hypothesis (”The supplementation candidates retrieved
using only related attributes will be the most fitting, i.e. the results of the supple-
mentation will be better than the results when using other retrieval methods to
retrieve the supplementation candidates.”) only held for some of the case bases.

In detail the results were as follows: In the Camera case base (see results in
table 2) supplementation based on a retrieval using all available attributes out-
performed supplementation based on a search using only the related attribute in
all of the tests. In the Whiskey case base (see results in table 3) supplementation

Table 2. Successful supplementations in the camera case base: based on all available
attributes vs. using only the related attribute

A
tt

P
a
ir

C
o
rr

e
la

ti
o
n

S
c
o
re

C
o
rr

e
c
t

su
p
p
s

a
ll

a
tt

s
[%

]

C
o
rr

e
c
t

su
p
p
s

o
n
ly

re
l
a
tt

[%
]

Im
p
ro

v
e
m

e
n
t

[%
]

Weight → Format 68.52 76.00 63.00 -13.00

Weight → OpticalZoom 56.10 63.00 47.00 -16.00

Weight → StorageType 50.00 72.00 30.00 -42.00

Camera Case Base

Table 3. Successful supplementations in the whiskey case base: based on all available
attributes vs. using only the related attribute

A
tt

P
a
ir

C
o
rr

e
la

ti
o
n

S
c
o
re

C
o
rr

e
c
t

su
p
p
s

a
ll

a
tt

s
[%

]

C
o
rr

e
c
t

su
p
p
s

o
n
ly

re
l
a
tt

[%
]

Im
p
ro

v
e
m

e
n
t

[%
]

Proof → Finish 39.90 47.00 66.66 19.66

Proof → Availability 38.01 18.90 18.75 -0.15

Proof → Sweetness 32.96 26.10 10.40 -15.70

Proof → Peatiness 32.60 22.70 8.30 14.40

Whiskey Case Base

396 K. Bach, M. Reichle, and K.-D. Althoff

based on a retrieval using all available attributes was outperformed by supplemen-
tation based on a search using only the related attribute in 25% of the tests. In the
PC case base (see results in table 4) supplementation based on a retrieval using all
available attributes was outperformed by supplementation based on a search us-
ing only the related attribute in 66% of the tests. The outperformed attribute pair
was also the one with the lowest correlation score. In the Travel case base (see re-
sults in table 5) supplementation based on a retrieval using all available attributes
was outperformed by supplementation based on a search using only the related at-
tribute in 100% of the tests. The result tables each indicate the used attribute pair,

Table 4. Successful supplementations in the PC case base: based on all available
attributes vs. using only the related attribute

A
tt

P
a
ir

C
o
rr

e
la

ti
o
n

S
c
o
re

C
o
rr

e
c
t

su
p
p
s

a
ll

a
tt

s
[%

]

C
o
rr

e
c
t

su
p
p
s

o
n
ly

re
l
a
tt

[%
]

Im
p
ro

v
e
m

e
n
t

[%
]

Monitor → Type 46.67 51.00 65.00 14.00

DriveCapacity → Type 45.00 45.30 46.70 1.40

ProcSpeed → ProcType 37.50 76.00 56.00 -20.00

PC Case Base

Table 5. Successful supplementations in the travel case base: based on all available
attributes vs. using only the related attribute

A
tt

P
a
ir

C
o
rr

e
la

ti
o
n

S
c
o
re

C
o
rr

e
c
t

su
p
p
s

a
ll

a
tt

s
[%

]

C
o
rr

e
c
t

su
p
p
s

o
n
ly

re
l
a
tt

[%
]

Im
p
ro

v
e
m

e
n
t

[%
]

Hotel→ Accomodation 99.44 64.37 99.38 36.01

Hotel → Region 98.04 41.68 98.57 56.89

Hotel → Transportation 90.21 88.22 92.76 4.54

Region → Transportation 77.33 89.46 93.53 10.07

Travel Case Base

A Value Supplementation Method 397

their respective correlation score and the percentage of correct supplementations
in both tests as well as the difference between both tests (Improvement).

3.3 Evaluation of the Experiments and Their Results

Summarizing the results of all four case bases we think that our supplementation
method shows promise also on a more general level. The very different nature of
the case bases used in these experiments allows us to draw first conclusions with
regard to the general applicability of our method. We are very satisfied with
the results of our identification of related attribute couples. Although it uses a
very simple algorithm and is overall implemented in a rather pragmatic way it
achieves very good results. The method also seems to perform equally well on
case bases with more and fewer numerical attributes. An additional benefit of
detecting such related attributes is the possibility to use this knowledge in order
to improve the system’s similarity model. The determining attributes obviously
possess a high information value. On the other hand the attributes that can be
deduced from them are not necessarily redundant but have more of a supporting
role. This knowledge can for instance be reflected in assigning a higher weight
to the determining attributes and a lower one to the supporting attributes. By
recalculating the correlation scores on a regular basis and automatically adapting
the attribute weights accordingly the correlation score provides an easy way of
improving the similarity model along with the case base’s competence.

Regarding the supplementation results, the Travel case base’s results are ob-
viously best, since the identified attribute pairs are very closely related, which
is also reflected in the very high correlation scores. However there are also case
bases in which a retrieval with all available attributes performs better than our
method, the most prominent example being the Camera case base. We assume
that these bad results of our method are caused by weak attribute pairs, i.e. an
inexact computation of correlation scores. The Camera case base is compara-
tively small (210 cases) but has a rather high number of attributes (10), many
of which again have a large range of possible values. This means that the major-
ity of possible value combinations is not covered in the case base and that the
amount of covered combinations might even not be representative. As presented
by MacDonald et. al. [13] a high number of attributes and possible values also
requires a high number of cases. Otherwise the minimum similarity threshold
has to be specified so low that result quality is no longer acceptable. We assume
that the same holds for attribute correlations.

Concerning the applicability of our approach there are of course certain lim-
its, mostly with respect to the application domain. Most of all there have to be
attributes which are related with regard to their content, but it should also be
kept in mind that any supplementation method comes down to more or less edu-
cated guessing and thus should not be used in domains that are safety critical or
require high precision data. Also, as mentioned in the introductory notes, not all
missing values require supplementation. Attributes that don’t necessarily apply
in any case should possess a null value that indicates a deliberately empty value.
Also attributes with a high similarity weight could be treated more carefully

398 K. Bach, M. Reichle, and K.-D. Althoff

(e.g. by requiring a higher confidence value when doing supplementations) in
order to avoid too much of an effect on the retrieval results.

Finally it would be advisable to reflect the fact that a case has been sup-
plemented in the case’s description, thus allowing the ranking mechanism to
favour more complete and thus more reliable cases and also creating a higher
transparency towards the user.

4 Related Work

Several researchers have presented works on topics related to the work presented
in this paper. Data Mining or Knowledge Discovery techniques have already
been combined with CBR in the past. O’Sullivan et. al. [14] used data mining
algorithms to maintain similarity knowledge in order to improve case-based col-
laborative filtering recommendations. Dı́az-Agudo et. al. [15] used the Formal
Concept Analysis (FCA) as an inductive technique to extract domain specific
knowledge from cases. They used FCA in knowledge intensive applicatioons to
enrich domain ontologies or change the organization of case bases.

Dubois et al. [16] also consider similarities between a case’s attributes and
combine that knowledge with fuzzy logic in order to deal (among other things)
with incomplete cases.

The relations between attributes have also been investigated by Tawfik and
Kasrin [17] who represent them using dependency graphs which are then sec-
tioned using either d-separation [18] or multiply sectioned Bayesian networks
[19]. Tawfik and Kasrin use the resulting subgraphs/-cases to generate com-
pletely new cases for the purpose of increasing case base coverage. By using the
subgraphs they aim to detect dependencies between attributes and thus prevent
intra-case inconsistencies [20] when generating new cases.

Redmond [21] introduced an approach for combining information from differ-
ent cases. They define a case as a set of information pieces, like snippets in [22],
consisting of an attribute-value-pair. Each snippet is assigned to a particular goal
and holds information on how to pursuit this goal. Since the reference application
originates in CBR-diagnosis, the snippets also contain information (links) that
preserve the structure of the diagnosis. Further on, they use a case-based rea-
soning process to retrieve single snippets and based on the predefined links they
put together a problem’s solution. The snippet information is highly dependent
on the domain and has to be modeled by hand. The approach presented in our
paper focuses on a more general method that also uses information from different
cases by employing knowledge contained in the different knowledge containers
[23], without explicitly modeling additional case information. However, both ap-
proaches have in common that the reasoning processes are used to supplement
incomplete information in order to find better solutions.

The approach of doing several, subsequent retrieval steps instead of only one
can also be found in the works of several authors. Weibelzahl [24,25] present an
approach based on two different case bases. On the one hand they use a specific
case base to create an enriched query that uses the given information more effec-
tively and on the other hand they do regular CBR. They evaluate the approach

A Value Supplementation Method 399

in a system on holiday recommendation consisting of two case bases with dif-
ferent knowledge models. The first case base, called customer case base, holds
information on the customers’ needs and desires which are mapped to attributes
describing products provided in the second case base. In the first step the query
containing the user’s expectations on their vacation is analysed in order to fill
relevant attributes creating a request which can be sent to the product case
base. The second request contains especially those product attributes which the
user would not request on their own, but which help to find an appropriate so-
lution in the product case base. In comparison to our approach, we use the case
base’s knowledge model to enhance the query aiming at a more differentiated
result while Weibelzahl points out that users cannot exactly describe their de-
sires by framing a request. The incremental approach kind of matches the users
statement to correct attribute-value pairs.

A similar approach is presented by Cunningham et al. in [26,27]. They in-
troduce the Incremental CBR (I-CBR) mechanism for diagnosis. The I-CBR
approach separates information in “free” and “expensive” features and starts
the first retrieval steps based on the free features before the user is asked to give
information about expensive features to narrow the set of cases. In comparison
with their approach we have a different point of view. The method presented in
our paper is able to indicate attributes that are determining for the retrieval and
those which can be derived from the knowledge within the case base. In contrast
to Cunningham’s method, our approach does not classify “free” and “expensive”
attributes; instead we are able to supplement missing information and thus do
not require “expensive” information at all.

Another approach on how I-CBR can influence the result sets has been pre-
sented in [28], but in comparison to our approach Jurisica et. al. did not receive
additional information from existing cases, they used query series and user in-
teraction instead.

5 Conclusion and Outlook

Case acquisition is an extensive and time-consuming task, and often has to deal
with incomplete information, resulting in incomplete cases. Supplementing such
incomplete cases with information adapted from other cases is a relatively easy
way to improve a case base. However, when carrying out such a supplementation
the choice of which cases to supplement from is of paramount importance, since a
wrong supplementation may actually worsen a case’s information quality or even
make it inconsistent. Association rules are a handy tool to identify attributes
that are related with regard to their content, a knowledge which can be used
well when choosing the optimal candidate for a supplementation.

In this paper we presented a method for supplementing incomplete cases using
attributes from other cases that makes use of association rules and similarity
based retrieval in order to pick an optimal supplementation candidate. On the
one hand our method produces better supplementation candidates than using
a CBR system’s standard case retrieval and global similarity measure, since

400 K. Bach, M. Reichle, and K.-D. Althoff

it focuses on the related attributes. On the other hand, it could neither be
replaced by a simple rule-based approach since it makes use of the CBR system’s
underlying similarity model and thus, if no valid supplementation candidate can
be found, it will at least come up with a most similar value instead of none.

After having tested the method in one of our projects already, we now evalu-
ated it using publicly available test case bases. The results of these evaluations
are promising in so far as that our research hypotheses hold and the method
performs well in most scenarios. However not all results are good, so there is
still room for further research and improvement.

This further research will for instance concern the question under which cir-
cumstances the identification of related attributes works best, i.e. if there is a
minimum number of cases and/or attribute combinations necessary in order for
our method to yield satisfactory results. We will also do a few experiments on
other association rule learning algorithms in order to find out how far the rel-
ative simplicity of the 1R algorithm influences the overall result quality. Apart
from other association rule learning algorithms we will also evaluate our method
against other substitution methods, e.g. not randomly picking the substitution
value from the substitution candidates but using the most frequent value or a
mathematic mean.

We are also interested in trying our method on other case bases in order
to gain even more insight in the conditions of its general applicability and its
behavior under different conditions. It would be especially interesting to evaluate
our method with a more realistic test case base, that is a case base where we don’t
have to randomly delete values but already have missing values that derive from
an real life application nd are thus not as uniformly distributed. Alternatively,
if such a test case base is not available, we will do some more experiments with
varying amounts of removed values.

Another aspect that will receive greater attention in our future work are the
possibilities to integrate the correlation score in automated improvement of the
system’s similarity model, as already sketched out in section 3.3, and possibly
other areas of CBR research such as maintenance and adaptation. Finally a topic
that might become more relevant in future experiments is the performance of
our method and whether/how it can be improved with regard to computation
time.

References

1. Bogaerts, S., Leake, D.B.: Facilitating CBR for incompletely-described cases: Dis-
tance metrics for partial problem descriptions. In: Funk, P., González-Calero, P.A.
(eds.) ECCBR 2004. LNCS, vol. 3155, pp. 62–76. Springer, Heidelberg (2004)

2. Selvamani, R.B., Khemani, D.: Decision tree induction with CBR. In: Pal, S.K.,
Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 786–791.
Springer, Heidelberg (2005)

3. Bach, K., Reichle, M., Althoff, K.D.: A domain independent system architecture
for sharing experience. In: Proceedings of LWA 2007, Workshop Wissens- und Er-
fahrungsmanagement, September 2007, pp. 296–303 (2007)

A Value Supplementation Method 401

4. Börner, K., Pippig, E., Tammer, E.C., Coulon, C.H.: Structural similarity and
adaptation. In: Smith, I.F.C., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168,
pp. 58–75. Springer, Heidelberg (1996)

5. Bergmann, R.: Experience Management: Foundations, Development Methodology,
and Internet-Based Applications. LNCS, vol. 2432. Springer, Heidelberg (2002)

6. Bergmann, R., Althoff, K.D., Minor, M., Reichle, M., Bach, K.: Case-based reason-
ing - introduction and recent developments. Künstliche Intelligenz: Special Issue
on Case-Based Reasoning 23(1), 5–11 (2009)

7. Bach, K.: docquery - a medical information system for travellers. Internal project
report (September 2007)

8. Reichle, M., Bach, K.: Improving result adaptation through 2-step retrieval. In:
Nalepa, G.J., Baumeister, J. (eds.) Proceedings of the 4th Workshop on Knowledge
Engineering and Software Engineering (KESE 2008) at the 31st German Confer-
ence on Artificial Intelligence (KI 2008), September 2008, pp. 73–84 (2008)

9. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 1(7) (March 1994)

10. McGinty, L., Smyth, B.: Adaptive selection: An analysis of critiquing and
preference-based feedback in conversational recommender systems. Int. J. Elec-
tron. Commerce 11(2) (06-7), 35–57

11. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in dynamic cri-
tiquing. In: IUI 2005: Proceedings of the 10th international conference on Intelli-
gent user interfaces, pp. 175–182. ACM, New York (2005)

12. Holte, R.C.: Very simple classification rules perform well on most commonly used
datasets. Machine Learning, 63–91 (1993)

13. MacDonald, C., Weber, R., Richter, M.M.: Case base properties: A first step. In:
Schaaf, M. (ed.) ECCBR Workshops, pp. 159–170 (2008)

14. O’Sullivan, D., Wilson, D.C., Smyth, B.: Improving case-based recommendation:
A collaborative filtering approach. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002.
LNCS, vol. 2416, pp. 278–291. Springer, Heidelberg (2002)

15. Dı́az-Agudo, B., González-Calero, P.A.: A declarative similarity framework for
knowledge intensive CBR. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS,
vol. 2080, pp. 158–172. Springer, Heidelberg (2001)

16. Dubois, D., Esteva, F., Garcia, P., Godo, L., Mántaras, R.L.d., Prade, H.: Case-
based reasoning: A fuzzy approach. In: L. Ralescu, A. (ed.) IJCAI-WS 1997. LNCS,
vol. 1566, pp. 79–90. Springer, Heidelberg (1999)

17. Tawfik, A.Y., Kasrin, N.: Integrating causal knowledge in case-based retrieval:
Causal decomposition of cases. In: Petridis, M., Wiratunga, N. (eds.) Proceedings of
the Thirteenth UK Workshop on Case Based Reasoning (UKCBR 2008). University
of Cambridge, UK (2008)

18. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

19. Xiang, Y., Poole, D., Beddoes, M.P.: Multiply sectioned bayesian networks and
junction forests for large knowledge-based systems. Computational Intelligence 9,
171–220 (1993)

20. Racine, K., Yang, Q.: On the consistency management of large case bases: the
case for validation. In: Proceedings of the AAAI 1996 Workshop on Knowledge
Base Validation, American Association for Artificial Intelligence (AAAI), pp. 84–
90 (1996)

21. Redmond, M.: Distributed cases for case-based reasoning: Facilitating use of mul-
tiple cases. In: AAAI, pp. 304–309 (1990)

402 K. Bach, M. Reichle, and K.-D. Althoff

22. Kolodner, J.L.: Retrieving events from a case memory: A parallel implementation.
In: Proc. of a Workshop on Case-Based Reasoning, Holiday Inn, Clearwater Beach,
FL, pp. 233–249 (1988)

23. Richter, M.M.: Introduction. In: Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D.,
Wess, S. (eds.) Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400, p. 1.
Springer, Heidelberg (1998)

24. Weibelzahl, S.: Conception, implementation, and evaluation of a case based learn-
ing system for sales support in the internet. Master’s thesis, Universität Trier
(1999)

25. Weibelzahl, S., Weber, G.: Benutzermodellierung von Kundenwünschen durch Fall-
basiertes Schliessen. In: Jörding, T. (ed.) Adaptivität und Benutzermodellierung
in interaktiven Softwaresystemen, ABIS 1999, Magdeburg, pp. 295–300 (1999)

26. Cunningham, P., Bonzano, A., Smyth, B.: An incremental case retrieval mechanism
for diagnosis (1995)

27. Cunningham, P., Smyth, B., Bonzano, A.: An incremental retrieval mechanism for
casebased electronic fault diagnosis (1998)

28. Jurisica, I., Glasgow, J., Mylopoulos, J.: Incremental iterative retrieval and brows-
ingfor efficient conversational CBR systems. Applied Intelligence 12(3), 251–268
(2000)

Efficiently Implementing Episodic Memory

Nate Derbinsky and John E. Laird

University of Michigan
2260 Hayward Street

Ann Arbor, MI 48109-2121
{nlderbin, laird}@umich.edu

Abstract. Endowing an intelligent agent with an episodic memory af-
fords it a multitude of cognitive capabilities. However, providing efficient
storage and retrieval in a task-independent episodic memory presents
considerable theoretical and practical challenges. We characterize the
computational issues bounding an episodic memory. We explore whether
even with intractable asymptotic growth, it is possible to develop effi-
cient algorithms and data structures for episodic memory systems that
are practical for real-world tasks. We present and evaluate formal and
empirical results using Soar-EpMem: a task-independent integration of
episodic memory with Soar 9, providing a baseline for graph-based, task-
independent episodic memory systems.

1 Introduction

Episodic memory, as first described by Tulving [23], is a long-term, contextual-
ized store of specific events. Episodic memory, what an individual “remembers,”
is contrasted with semantic memory, a long-term store of isolated,
de-contextualized facts that an individual “knows.” As an example, a memory
of viewing artwork during one’s last vacation would be episodic, whereas recall-
ing the name of a famous gallery would likely be semantic (unless, for example,
producing this information relied upon a memory of reading a brochure).

Nuxoll and Laird [14] demonstrated that an episodic store can afford an in-
telligent agent a multitude of cognitive capabilities. For example, an agent that
recalls the results of actions taken previously in situations similar to its current
state may learn to predict the immediate consequences of future actions (i.e.
action modeling). In this paper, we extend this previous work, augmenting and
refining the underlying implementation and providing a theoretical and empiri-
cal analysis of the algorithms and data structures necessary to support effective
and efficient episodic memory.

Episodic memory research is closely related to studies in case-based reasoning
(CBR). The goal of CBR is to optimize task performance given a case-base,
where each case consists of a problem and its solution [6]. In CBR systems, case
structure is typically pre-specified, case-base size is either fixed or grows at a
limited rate, and the cases usually do not have any inherent temporal structure.
In contrast, an episodic store grows monotonically with experience, accumulat-
ing snapshots of an agent’s experiences over time. An agent endowed with this

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 403–417, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

404 N. Derbinsky and J.E. Laird

memory can retrieve relevant episodes to facilitate reasoning and learning based
upon prior events.

In Section 2, we characterize episodic memory and introduce performance
goals for its effective use in computational systems. We then compare our goals
for episodic memory with related work. In Section 3, we present a brief overview
of Soar-EpMem, the integration of episodic memory with Soar 9 [8], together
with the domain we will use for evaluation. In Section 4, we present the details
of Soar-EpMem, formally characterize its performance, and empirically evalu-
ate its performance on a complex domain (>2500 features) over one million
episodes. Earlier versions of Soar-Epmem [14] emphasized the cognitive capa-
bilities episodic memory affords, while this work describes a completely new,
robust, efficient, more complete implementation, together with the formal char-
acterization and empirical evaluation.

2 Characterizing Episodic Memory

In this section, we first enumerate the relevant functional and implementa-
tion requirements for episodic memory. We then contextualize episodic mem-
ory within related case-based reasoning work. Finally, we analyze an existing
task-independent episodic memory system apropos efficient implementation.

2.1 Episodic Memory Constraints

Episodic memory is distinguished from other memory systems by a set of func-
tional requirements [13]. First, episodic memory is architectural : it is a func-
tionality that does not change from task-to-task. Second, episodic memory is
automatic: memories are created without a deliberate decision by the agent.
Because memories are experiential, there is some temporal relationship between
episodes. Furthermore, in contrast to most case-based reasoning systems, the set
of features that can occur in an episodic memory is not pre-specified, but re-
flects whatever data is available via agent sensing and internal processing. Also,
there is not a pre-specified subset of the episode that is used for retrieval nor
is there a pre-specified subset that is the result, so that the complete episode is
reconstructed during retrieval.

For this work, we adopt two additional restrictions on episodic memory:

1. Stored episodes do not change over time: memories do not decay and are not
removed from the episodic store (no forgetting).

2. The goal of retrieval is to find the episode that is the Nearest Neighbor (NN)
to the cue based upon qualitative matching (using recency of the episode as
a tie-breaking bias).

This specification imposes challenging complexity bounds: the lack of episode
dynamics dictates a monotonically increasing episodic store and capturing full
agent state over time requires storage at least linear in state changes.

Efficiently Implementing Episodic Memory 405

2.2 Related Case-Based Reasoning Work

Efficient NN algorithms have been studied in CBR for qualitative and quan-
titative retrieval [11] [21] [24]. The underlying algorithms and data structures
supporting these algorithms, however, typically depend upon a relatively small
and/or static number of case/cue dimensions, and do not take advantage of the
temporal structure inherent to episodic memories.

Considerable work has been expended to explore heuristic methods that ex-
change reduced competency for increased retrieval efficiency [19], including re-
fined indexing [2] [3], storage reduction [25], and case deletion [17]. Many
researchers achieve gains through a two-stage cue matching process that initially
considers surface similarity, followed by structural evaluation [4]. In this work,
we take advantage of this approach and apply it to a monotonically growing,
task-independent episodic memory.

The requirement of dealing with time-oriented problems has been acknowl-
edged as a significant challenge within the CBR community [1], motivating work
on temporal CBR (T-CBR) systems [16], and research on the representation of
and reasoning about time-dependent case attributes [5], as well as preliminary
approaches to temporal case sequences [12] [18]. However, existing T-CBR work
does not deal with accumulating an episodic store, nor does it take advantage
of temporal structure for efficient implementations.

2.3 EM: A Generic Memory Module for Events

EM [22] is a generic store to support episodic memory functionality in a vari-
ety of systems, including planning, classification, and goal recognition. EM is
an external component with an API, wherein host systems must implement a
thin interface layer. The term “episode” in EM defines a sequence of actions
with a common goal and is represented as a triple: context (“general setting”
of the episode), content (ordered set of the events that make up the episode),
and outcome (a domain/task-specific evaluation of the result of the episode).
Though meaningful in systems like planners, it may be difficult to pre-define
action sequences and outcome evaluation functions for long-living agents that
must contend with multiple, possibly novel, tasks.

EM queries are partially defined episodes and a single evaluation dimension.
EM utilizes a two-stage evaluation scheme, whereby a constant number (5) of po-
tential matches are found, which are then compared using a relatively expensive
semantic matcher. While Tecuci and Porter have shown results for learning in
short (250 episode), single-task domains, it is unclear whether the underlying al-
gorithms and data structures will scale to agents with many orders of magnitude
more episodes.

3 Integration of Episodic Memory in Soar

This section provides an introduction to the integration of episodic memory with
Soar 9 [8], followed by an overview of the task we will use for evaluation.

406 N. Derbinsky and J.E. Laird

3.1 Soar

Soar is a cognitive architecture that has been used extensively for developing
AI applications and cognitive models. One of Soar’s main strengths has been
its ability to efficiently represent and bring to bear large bodies of symbolic
knowledge to solve diverse problems using a variety of methods [10].

Although Soar has many components, the most relevant aspect of its design
to episodic memory is that it holds all of its short-term knowledge in its working
memory (WM). Working memory contains an agent’s dynamic internal state,
including perceptual data, situational awareness, current goals and intentions,
and motor commands. By recording the contents of working memory, episodic
memory can capture an agent’s history of experience.

Soar’s working memory is implemented as a directed, connected graph of
working memory elements (WMEs). Each WME is a triple: identifier (a node or
vertex), attribute (a link or edge), and value (a node or terminal value). Working
memory is a set: no two WMEs can have the same identifier, attribute, and value.

3.2 Episodic Memory Integration

Figure 1 depicts the high-level integration of episodic memory with Soar.
Episodes consist of snapshots of working memory and are automatically stored
in the episodic store. Episodes are retrieved when an agent deliberately creates
a cue, at which point Soar searches the store for candidate episodes, ranks them
with respect to the cue (cue matching), selects the best match, and then re-
constructs the episode in working memory (in a special area so that it does
not overwrite existing working memory structures, nor is the retrieved episode
confused with the agent’s current experience).

Working Memory
Input

Output

Cue

Retrieved

Perception

Action

Episode Storage

Cue Matching

Episode
Reconstruction

Episodic Store

Fig. 1. Soar-EpMem Architecture

Efficiently Implementing Episodic Memory 407

Soar’s representation of working memory as an arbitrary graph structure has
significant implications for the underlying implementation of episodic memory. A
simpler representation, such as a vector or propositional representation, would
make it possible to develop a simpler and faster implementation of episodic
memory, but at significant cost in expressability and generality. The underlying
implementation of episodic memory is independent of other details of Soar and
should generalize to other architectures with graph-based representations of their
dynamic data.

Soar agents interact with real-world, dynamic environments and these agents
have real-time constraints on reactivity. Based on our own experience with real-
time agents, Soar must execute its primitive cycle in 50-100ms to maintain reac-
tivity in real-world agents. This bound is easily achieved for Soar’s non-episodic
memory components and puts a limit on how much time can be spent on stor-
age, which can occur every cycle. However, there is more flexibility in retrieval,
which can occur in parallel with Soar’s other processing and can still be useful
if it takes small multiples of Soar’s primitive cycle time. Empirical evidence sug-
gests that a retrieval time of approximately 500ms is necessary to be useful in
real world applications.

3.3 Evaluation Domain

Our evaluation of Soar-EpMem is based on the TankSoar domain. TankSoar is a
pre-existing domain that has been used extensively in evaluating other aspects
of Soar and was used in the original episodic memory research in Soar [13]. In
TankSoar, each Soar agent controls an individual tank that moves in a discrete
15x15 two-dimensional maze. Agents have only limited sensing of the environ-
ment and their actions include turning, moving, firing missiles, raising shields,
and controlling radar. A TankSoar agent has access to a rich set of environmental
features through its senses, including smell (shortest-path distance to the near-
est enemy tank), hearing (the sound of a nearby enemy), path blockage, radar
feedback, and incoming missile data.

TankSoar includes an agent named mapping-bot that builds up an internal
map of the environment as it explores. The mapping-bot agent’s working memory
contains about 2,500 elements. Over 90% of these elements comprise a static
map of its environment. A large proportion of the remaining WMEs (usually
70-90%) are related to perception and they typically change within one episode.
For the experiments described below, a new episode was stored every time an
action was performed in the environment, which is approximately every primitive
decision cycle in Soar. The properties of this agent, especially the large working
memory and the large number of WMEs changing per episode, make TankSoar
an atypically stressful domain for episodic memory experimentation.

The tests were run on an Intel 2.8GHz Core 2 Duo processor and 4GB RAM.
The Soar-EpMem episodic store was managed using version 3 of the SQLite in-
process relational database engine [20]. The tests described below involved one
million mapping-bot episodes, averaged over ten trials.

408 N. Derbinsky and J.E. Laird

4 Soar-EpMem Structure and Evaluation

In this section, we present Soar-EpMem together with its evaluation. We begin
with a description of global data structures that summarize the structures found
in working memory. These global structures greatly decrease the amount of stor-
age and processing required for individual episodes. The remaining subsections
describe the different phases of episodic memory processing. The first is stor-
age of episodic memories, the second is cue matching to find a stored episodic
memory, and the final is episodic reconstruction, which involves finding all of the
components of an episode and adding it to Soar’s working memory.

The design of Soar-EpMem was motivated by the need to minimize the growth
in processing time for all of these operations as the number of episodes increases.
However, over long agent lifetimes, cue matching has the greatest growth po-
tential and the overall design is meant to minimize the time required for that
operation, without significantly impacting required memory or the time required
for the other operations.

4.1 Global Episodic Memory Structures

In order to eliminate duplicate representations of working memory elements and
speed cue matching, a global structure can be maintained that represents all the
structures that have existed in working memory. A näıve storage representation
would explicitly define an episode as a “bag” of pointers to such a global structure
(see Fig. 2, left). Termed an “instance” representation by Nuxoll and Laird [14],
such an approach requires time and storage linear in the average number of
working memory elements per episode.

Our design for Soar-EpMem takes advantage of the temporal structure of
episodes, namely that one episode usually will differ from the previous (and next)
episode only in a relatively small number of features. Thus, throughout its de-
sign, Soar-EpMem attempts to process only changes to working memory instead
of the complete episode. As a result, storing an episode involves only noticing
which elements have been added and which elements have been removed from
working memory, building up ranges of when working memory elements existed.
Termed an “interval” representation by Nuxoll and Laird, episodes are implic-

Fig. 2. Global Episodic Memory Structures [13]: Instance (left), Interval (right)

Efficiently Implementing Episodic Memory 409

map
{1}

current
{2}

square
{3}

square
{4}

square
{5}

4 5

x
{6}

y
{7}

5 5

x
{8}

y
{9}

6 5

x
{10}

y
{11}

Fig. 3. Working Memory Example

itly represented by associating valid temporal ranges with a global structure (see
Fig. 2, right). With this approach, episode storage is achieved in time and space
linear with respect to the changes in the agent’s working memory [13].

In Nuxoll’s original work [13], the graph structure of working memory was
simplified such that every attribute of an object was unique and that the overall
structure was a tree. Fig. 3 shows a simple working memory that violates both of
these assumptions. There are multiple squares ({3}, {4}, {5}) in the map ({1}),
and a “square” ({5}) and “current” ({2}) edge share a common descendant.
Under the assumption that working memory was a tree, Nuxoll’s system built
up a global structure (termed a Working Memory Tree) of all unique structures
that had ever occurred in working memory. Using a tree instead of a graph
for modeling working memory greatly simplified Nuxoll’s implementation and
was sufficient for him to explore applications of episodic memory; however these
simplifications make it impossible to correctly search and reconstruct episodes
based upon relational working memory structures, which is necessary for many
real-world applications. To correct this deficiency, Soar-EpMem implements a
new global structure, the Working Memory Graph (WMG), which captures all
information necessary for a faithful episode representation.

4.2 Episode Storage

The Working Memory Graph captures all distinct edges that have occurred in
Soar’s working memory. By associating valid temporal intervals (see Fig. 2, right)
with the unique ids of each edge (such as {1}, {2}, etc.), we implicitly define
structure for individual episodes. Episode storage is the process of efficiently
recording the start/end of these intervals.

In Soar-EpMem, interval ranges are started by executing the following algo-
rithm for every element of working memory:

410 N. Derbinsky and J.E. Laird

1. if element already points to the WMG, ignore
2. else:

(a) if a corresponding edge does not exist in the WMG, add it
(b) point the element to the corresponding WMG edge
(c) start a new interval at the pointed WMG edge

By ignoring elements with existing pointers (step 1), we process only new work-
ing memory elements. Later, following an element’s removal from working mem-
ory, Soar-EpMem records the end of the corresponding edge interval. Thus our
implementation only stores element changes.

Using this approach, Soar-EpMem storage time across one million episodes of
mapping-bot remained approximately constant, requiring 1.48-2.68 ms/episode.
Total episodic store size ranged from 625-1620 MB, averaging between 0.64 and
1.66 KB/episode (respectively).

4.3 Cue Matching

Episodic cues take the form of an acyclic graph, partially specifying a subset of
an episode. For example, an agent can create a cue of a position in the map to
recall what it sensed the last time it was in that position.

Episode retrieval proceeds as follows:

1. 2-Phase Nearest Neighbor Cue Matching
(a) Identify candidate episodes based upon surface cue analysis.
(b) Perform structural cue analysis on perfect surface matches.

2. Select and reconstruct the best matching episode (if it exists).

Candidate episodes are defined as containing at least one cue leaf element. Our
surface evaluation function returns the “balanced” sum of match cardinality
(number of matching leaf nodes) and feature weighting [15].

Candidate episodes with perfect match cardinality are considered perfect sur-
face matches and are submitted to a second phase of structural graph-match.
The graph-match algorithm implements standard CSP backtracking. The best
matching episode is either the most recent structural match or the highest scor-
ing surface match.

Soar-EpMem efficiently iterates over candidate episodes by implementing
Nuxoll and Laird’s [13] interval searching algorithm. The major insight of this
algorithm is that a candidate match score changes only at the endpoints of
episode element intervals. For example, consider Fig. 4. The dashed vertical line
at episode 6 indicates the time point of maximum coverage (i.e. maximum match
cardinality). If we begin from the most recent time point (time point 12) and
consider each candidate episode, we will examine 7 episodes before arriving at
this peak. However, after scoring episode 8, there will be no change in coverage
until time point 6: considering episodes between endpoints is redundant. Thus

Efficiently Implementing Episodic Memory 411

Fig. 4. Interval Search Example

if we just walk interval endpoints, incrementally updating match score, we can
achieve significant computational savings. By only processing changes, candidate
episode iteration achieves time linear in the relevant element changes (as opposed
to linear in the number of episodes).

As an optimization, Soar-EpMem will cease interval search upon reaching a
structural match. In Fig. 4, however, there is no perfect surface match (since no
episode is covered by all ranges). Thus, if we assume uniform feature weighting,
interval search will return episode 6 after processing all 10 endpoints.

Soar-EpMem efficiently implements Nuxoll and Laird’s interval search algo-
rithm by maintaining B+-tree indexes of all temporal interval endpoints (one for
interval start, one for interval end), keyed on episode nodes. Walking a node’s
endpoints in descending order of time entails finding the most recent time of
interest (log time with respect to the number of endpoints), and walking the leaf
nodes in order (constant time per endpoint). To process a multi-node cue, we
maintain parallel B+-tree leaf pointers for each cue node. All pointers within
a B+-tree are stored in priority queues (keyed on endpoint value). We then
efficiently walk endpoints as described above.

Because Soar’s working memory is implemented as a graph, cue leaf nodes
do not uniquely identify an edge in the Working Memory Graph. For example,
consider the cue in Fig. 5, left (relating to working memory as illustrated in
Fig. 3). The internal cue node representing a “square” can be satisfied by any
of the three working memory squares ({3}, {4}, {5}). Thus, the problem of
satisfying a leaf node is tantamount to satisfying the sequence of nodes that
leads to (and includes) the leaf node. To continue the example, we can formally
express the satisfaction of the two cue leaf nodes with the following monotonic,
disjunctive normal form (DNF) boolean statements (respecting ids in Fig. 3):

sat(x = 4) := ({1}
∧
{3}

∧
{6})

sat(y = 5) := ({1}
∧
{3}

∧
{7})

∨
({1}

∧
{4}

∧
{9})

∨
({1}

∧
{5}

∧
{11})

412 N. Derbinsky and J.E. Laird

Fig. 5. Retrieval Example: Cue (left), Corresponding DNF Graph (right)

Thus, the problem of efficiently implementing interval search with a Working
Memory Graph is analogous to efficiently tracking satisfaction of a set of DNF
boolean equations. Soar-EpMem solves this problem by only processing changes
to a corresponding DNF graph (depicted in Fig. 5, right).

The interval search process is initialized while processing the cue. During
a breadth-first search, we simultaneously create the priority queue of B+-tree
pointers (as discussed above) and the DNF graph. For clarity, a clause in a
DNF statement is represented as a root-to-leaf path in the DNF graph. Each
literal in the DNF graph (depicted as a diamond) has an associated count value,
initialized to 0, representing local satisfaction. A literal count is incremented
if its associated cue element node is “active” (i.e. our current state of interval
search is within the start/end endpoints of the node) OR its parent has a counter
value of 2. The root literal (shown with a special id of “T”) is initialized with
count 2 (thus initializing the count of all direct children to 1). If at least one
leaf literal is satisfied (i.e. has count value 2), the clause must be satisfied. We
additionally maintain a global match score, initialized to 0.

At each endpoint in the interval search algorithm, exactly one literal is ac-
tivated or de-activated (depending on whether we encounter an end/start). If
the literal is part of an internal cue node, this change may entail recursive prop-
agation to child literals. If during propagation we alter clause satisfaction, we
modify the global match score. Thus, we extend endpoint iteration to track only
changes in boolean satisfaction of the DNF graph and, by extension, modifica-
tions of candidate match score.

To compare Soar-EpMem cue matching performance with theoretical bounds,
we developed the following model to reflect the effects of operational algorithms
and data structures:

Cue Match = DNF + Interval Search + Graph Match
DNF = (X1)(log2[U * R])(L)

Interval Search = (X2)(1/T)(Distance)(Δ)

Efficiently Implementing Episodic Memory 413

Fig. 6. Cue Matching DNF Regression Data

The constants in the equations (X1, X2) reflect linear scaling factors for a given
computer. To derive these values for our experimental setup, we performed 100
isolated executions of primitive operations (DNF and Interval Search) on data
collected from 10 trials of mapping-bot data at 10 time points (100K, 200K, ...
1M). We collected the necessary episode statistics (described below) and per-
formed linear regressions to fit data points for 15 different queries. Low perfor-
mance timers (resolution was 1μs) caused most model noise.

The Cue Match operation comprises DNF construction and Interval Search.
The former is linearly dependent upon the logarithmic growth of the average
number, U, of historically unique internal and leaf nodes multiplied by R, the
total number of stored intervals, as well as linearly dependent upon L, the num-
ber of literals associated with the cue nodes. In our tests (see Fig. 6), we found
X1 to be 4.33μs (R2=0.996). In experiments with mapping-bot to one million
episodes, results depended greatly on the cue. For all cues that did not reference
“squares” on the agent’s internal map, DNF operation time was constant and
below 8 ms. Cues containing references to map “squares” (and thus referring to
over 250 underlying structures) brought this upper bound to 55.1 ms.

The Interval Search operation is expressed as a proportion of relevant cue
node intervals. T represents the total number of episodes recorded. Distance
represents the temporal difference between the current episode and the best
match. Δ represents the total number of intervals relevant to the cue. Intuitively,
the farther back in time we must search for an episode, the more intervals we
must examine. This ratio could be re-written as the product the minimal relative
co-occurrence probability of the cue nodes, and the total number of changes
experienced to date by these cue nodes. In our tests (see Fig. 7), the X2 constant
was 1.29μs (R2=0.989). We found absolute operation times depended greatly on
the supplied cue. For cues that did not compel distant searches, Interval Search
was constant with an upper bound of 2.5 ms. With cues crafted to force a linear
scan of the episodic store, time increased linearly to a maximum of 1.03 seconds
over one million episodes.

414 N. Derbinsky and J.E. Laird

Fig. 7. Cue Matching Interval Search Regression Data

Since the linear factors, L and Δ, grow proportionally to changes in agent
working memory, the first phase of Soar-EpMem cue matching achieves the lower
bound of growing linearly with agent changes.

The Graph Match operation, however, is much more difficult to characterize.
CSP backtracking depends upon cue breadth, depth, structure (such as shared
internal cue nodes), and corresponding candidate episodes, but can be combi-
natorial in the worst case (though our two-phase matching policy attempts to
minimize this cost). We have not extensively evaluated this component, but we
expect a studied application of heuristic search will effectively constrain graph-
match in the average case.

4.4 Episode Reconstruction

Given the temporal id of an episode, reconstruction in Soar-EpMem can be
summarized by the following two steps:

1. Collect contributing episode elements
2. Add elements to working memory

Given the episode elements, adding WMEs to Soar is a straight forward process
that takes advantage of Soar’s existing architectural primitives and thus we focus
on the former step.

Collecting episode elements in an “interval” representation (see Fig. 2, right)
is tantamount to an interval intersection query: collect all elements that started
before and ended after time t. To facilitate efficient episode reconstruction, Soar-
EpMem maintains a Relational Interval Tree (RI-tree) [7]. An RI-tree is a map-
ping of the interval tree data structure onto Relational Database Management
System (RDBMS) B+-tree indexes and SQL queries. As with a standard interval
tree, intersection queries execute in logarithmic time with respect to the number
of stored intervals.

Excluding system-specific step 2 above, we developed the following model for
episode reconstruction performance in Soar-EpMem:

Efficiently Implementing Episodic Memory 415

Reconstruction = RI-tree + Collect
RI-tree = (X3)(log2R)

Collect = (X4)(M)(1 + log2U)

To validate our model we performed 100 isolated executions of primitive oper-
ations (RI-tree and Collect) on the same data collected for cue-matching (10
trials, mapping-bot, 10 time points from 100K to 1M episodes). We collected the
necessary statistics (described below) for 50 episodes selected randomly (5 per
10,000 episodes through the first 100,000 episodes of exection) and performed
linear regressions to fit data points.

Total time for episode reconstruction is the sum of two operations: RI-tree
and Collect. RI-tree refers to the process of extracting pertinent intervals from
the Relational Interval Tree. The logarithmic dependent variable, R, refers to
the total number of ranges in the RI-tree structure. In our experiments, the X3
constant was 2.55μs (over 70% R2). After one million episodes, we recorded the
upper bound of RI-tree operation time as 0.1 ms.

The Collect operation refers to cross-referencing pertinent episode intervals
with structural information in the Working Memory Graph. This process de-
pends upon the average number, U, of historically unique internal and leaf nodes,
as well as the number of elements, M, comprising the episode to be reconstructed.
With mapping-bot we regressed an X4 value of 1.6μs. Because episode size does
not vary greatly in mapping-bot (2500-2600 elements, typically), the dominating
linear factor, M, highlighted noise in the experimental data and thus R2 was
73%. After one million episodes, we recorded an upper bound of 22.55 ms for
the collection operation with episodes ranging from 2521-2631 elements.

If we assume a constant or slowly growing average episode size, the M factor
can be considered a constant and thus Reconstruction becomes the linear sum of
logarithmic components R and U. Both R and U increases result from changes
in agent working memory. Thus, under these assumptions, Soar-EpMem episode
reconstruction achieves the lower bound of growing linearly with agent changes.

5 Conclusion

In this paper, we presented an implementation of a graph-based, task-
independent episodic memory and characterized the associated computational
challenges. We provided formal models of the costs associated with the different
phases of episodic processing and provided empirical results over one million
episodes.

In this work we applied efficient data structures and algorithms to limit
episodic computation, while still guaranteeing a best-match retrieval. Thus, we
consider that a typical cue is one for which retrieval does not require a linear scan
of the episodic store. Table 1 summarizes typical empirical results for mapping-
bot over one million episodes. Storage time remains nearly constant, and well
below the bound of 50ms, with linear growth in storage. Cue matching time
is within desired bounds, but suffers linear growth in the atypical case (with a

416 N. Derbinsky and J.E. Laird

Table 1. Soar-EpMem Typical Operation Costs: mapping-bot

episodes storage cue matching reconstruction total
1,000,000 2.68ms, 1620MB 57.6ms 22.65ms 82.93ms

maximum observed cost of 1.03 sec.). Episodic reconstruction time is dominated
by episode size but falls within desired bounds for over 2500 features. Although
these results achieve our initial performance goals, there is still much to be done:

– Additional Empirical Evaluation. We need to expand to additional do-
mains and establish a set of test cases for episodic memory systems. TankSoar
is a stressful test, useful for initial exploration and evaluation, but it is arti-
ficial and we need a collection of tasks that use episodic memory in a variety
of ecologically valid ways.

– Extended Evaluations. We also need to explore much longer runs. One
million episodes corresponds to approximately fourteen hours of real time.
Our goal is to have agents that exist continually for 1 year (42-420 million
episodes [9]).

– Cue Match Bounding. Although storage and reconstruction are relatively
well behaved, the cost of cue matching can be extremely variable depending
on the complexity of the cue and the structures in episodic memory. We
need to explore alternative or even heuristic graph-matching schemes that
provide tighter bounds.

References

1. Combi, C., Shahar, Y.: Temporal Reasoning and Temporal Data Maintenance in
Medicine: Issues and Challenges. Computers in Biology and Medicine 27(5), 353–
368 (1997)

2. Daengdej, J., Lukose, D., Tsui, E., Beinat, P., Prophet, L.: Dynamically Creating
Indices for Two Million Cases: A Real World Problem. In: Smith, I., Faltings, B.
(eds.) EWCBR 1996. LNCS, vol. 1168, pp. 105–119. Springer, Heidelberg (1996)

3. Fox, S., Leake, D.: Using Introspective Reasoning to Refine Indexing. In: Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence, pp.
391–399. Morgan Kaufmann, San Francisco (1995)

4. Forbus, K., Gentner, D., Law, K.: MAC/FAC: A Model of Similarity-based Re-
trieval. Cognitive Science 19(2), 141–205 (1995)

5. Jære, M., Aamodt, A., Skalle, P.: Representing temporal knowledge for case-based
prediction. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS, vol. 2416, pp.
174–234. Springer, Heidelberg (2002)

6. Kolodner, J.: An Introduction to Case-Based Reasoning. Artificial Intelligence Re-
view 6(1), 3–34 (1992)

7. Kriegel, H., Pötke, M., Seidl, T.: Managing Intervals Efficiently in Object-
Relational Databases. In: Proceedings of the 26th International Conference on
Very Large Databases, pp. 407–418. Morgan Kaufmann, San Francisco (2000)

Efficiently Implementing Episodic Memory 417

8. Laird, J.E.: Extending the Soar Cognitive Architecture. In: Proceedings of the 1st
Conference on Artificial General Intelligence, pp. 224–235. IOS Press, Amsterdam
(2008)

9. Laird, J.E., Derbinsky, N.: A Year of Episodic Memory. In: Workshop on Grand
Challenges for Reasoning from Experiences, 21st International Joint Conference
on Artificial Intelligence (2009)

10. Laird, J.E., Rosenbloom, P.: The Evolution of the Soar Cognitive Architecture.
Mind Matters: A Tribute to Allen Newell, pp. 1–50. Lawrence Erlbaum Associates,
Inc., Mahwah (1996)

11. Lenz, M., Burkhard, H.: Case Retrieval Nets: Basic Ideas and Extensions. In: Görz,
G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 227–239. Springer, Heidel-
berg (1996)

12. Ma, J., Knight, B.: A Framework for Historical Case-Based Reasoning. In: Ash-
ley, K., Bridge, D. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 246–260. Springer,
Heidelberg (2003)

13. Nuxoll, A.: Enhancing Intelligent Agents with Episodic Memory. PhD Dissertation,
University of Michigan, Ann Arbor (2007)

14. Nuxoll, A., Laird, J.E.: Extending Cognitive Architecture with Episodic Memory.
In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 1560–
1564. AAAI Press, Vancouver (2007)

15. Nuxoll, A., Laird, J.E., James, M.: Comprehensive Working Memory Activation in
Soar. In: Proceedings of the 6th International Conference on Cognitive Modeling,
pp. 226–230. Lawrence Erlbaum Associates, Inc., Mahwah (2004)

16. Patterson, D., Galushka, M., Rooney, N.: An Effective Indexing and Retrieval
Approach for Temporal Cases. In: Proceedings of the 17th International Florida
Artificial Intelligence Research Society Conference, pp. 190–195. AAAI Press, Van-
couver (2004)

17. Patterson, D., Rooney, N., Galushka, M.: Efficient Retrieval for Case-Based Rea-
soning. In: Proceedings of the 16th International Florida Artificial Intelligence Re-
search Society Conference, pp. 144–149. AAAI Press, Vancouver (2003)

18. Sánchez-Marré, M., Cortés, U., Mart́ınez, M., Comas, J., Rodŕıguez-Roda, I.: An
approach for temporal case-based reasoning: Episode-based reasoning. In: Muñoz-
Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 465–476. Springer,
Heidelberg (2005)

19. Smyth, B., Cunningham, P.: The Utility Problem Analysed: A Case-Based Reason-
ing Perspective. In: Smith, I., Faltings, B. (eds.) EWCBR 1996. LNCS, vol. 1168,
pp. 392–399. Springer, Heidelberg (1996)

20. SQLite, http://www.sqlite.org
21. Stottler, R., Henke, A., King, J.: Rapid Retrieval Algorithms for Case-Based Rea-

soning. In: Proceedings of the 11th International Joint Conference on Artificial
Intelligence, pp. 233–237. Morgan Kaufmann, San Francisco (1989)

22. Tecuci, D., Porter, B.: A Generic Memory Module for Events. In: Proceedings of
the 20th International Florida Artificial Intelligence Research Society Conference,
pp. 152–157. AAAI Press, Vancouver (2007)

23. Tulving, E.: Elements of Episodic Memory. Clarendon Press, Oxford (1983)
24. Wess, S., Althoff, K., Derwand, G.: Using k-d Trees to Improve the Retrieval Step

in Case-Based Reasoning. In: Wess, S., Althoff, K., Richter, M. (eds.) EWCBR
1993, vol. 837, pp. 167–181. Springer, Heidelberg (1994)

25. Wilson, D., Martinez, T.: Reduction Techniques for Instance-Based Learning Al-
gorithms. Machine Learning 38(3), 257–286 (2000)

http://www.sqlite.org

Integration of a Methodology for Cluster-Based
Retrieval in jColibri

Albert Fornells1, Juan Antonio Recio-Garćıa2, Belén Dı́az-Agudo2,
Elisabet Golobardes1, and Eduard Fornells1

1 Grup de Recerca en Sistemes Intel·ligents
La Salle - Universitat Ramon Llull

Quatre Camins 2, 08022 Barcelona, Spain
{afornells,elisabet,efornells}@salle.url.edu

2 Department of Software Engineering and Artificial Intelligence,
Universidad Complutense de Madrid, Spain
jareciog@fdi.ucm.es, belend@sip.ucm.es

Abstract. One of the key issues in Case-Based Reasoning (CBR) sys-
tems is the efficient retrieval of cases when the case base is huge and/or
it contains uncertainty and partial knowledge. Although many authors
have focused on proposing case memory organizations for improving the
retrieval performance, there is not any free open source framework which
offers this kind of capabilities. This work presents a plug-in called Thun-
der for the jcolibri framework. Thunder provides a methodology inte-
grated in a graphical environment for managing the case retrieval from
cluster based organizations. A case study based on tackling a Textual
CBR problem using Self-Organizing Maps as case memory organizing
technique is successfully tested.

Keywords: CBR Tools, Cluster Based Memory, Case Memory Organi-
zation, Soft Case-Based Reasoning, Textual CBR, jCOLIBRI.

1 Introduction

Now that Case-Based Reasoning (CBR) has become a mature and established
technology, there is a necessity for methodologies and tools to build CBR sys-
tems taking into account the accumulated practical experience of applying CBR
techniques to real-world problems. In the CBR community, different tools have
emerged: CBR*Tools [1], Orenge (the Open Retrieval engine from empolis.com)
[2], MyCBR [3], IUCBRF [4], jcolibri [5]. Each one of these tools offer different
features, and a variety of different methods for organizing, retrieving, utilizing
and indexing the knowledge retained in past cases, however none of them provide
a global support for different types of systems and knowledge sources. jcolibri
is becoming one of the most important tools due to its open architecture that
allows other people to contribute reusable methods and templates of systems.
Thanks to these contributions, its library offers a variety of methods big enough
to design different types of systems according to the specific domain and appli-
cation requirements [5].

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 418–433, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Integration of a Methodology for Cluster-Based Retrieval in jColibri 419

One of the problems to solve when dealing with real world problems is the effi-
cient retrieval of cases when the case base is huge and/or it contains uncertainty
and partial knowledge. There are many examples of domains and applications
where a huge amount of data arises, for example, image processing, personal
records, recommender systems, textual sources, and many others. Many authors
have focused on proposing case memory organizations to improve the retrieval
performance. For example, there are different proposals to manage huge case
memories organized in clusters such as in [6,7]. However none of the existing
tools has incorporated capabilities to efficiently manage big case bases. This pa-
per makes a first attempt to fill this gap providing a plugging called Thunder
for the jcolibri framework. Thunder allows CBR experts to manage case me-
mories organized in clusters and incorporates a case memory organization model
based on Self-Organizing Maps (SOM) [8] as a clustering technique. Clustering
is featured by grouping cases according to their similarities and represent each
one of these groups by prototypes. Thus, the retrieve phase carries out a se-
lective retrieval focused on using only the subset of cases potentially similar to
the new case to solve. The new case retrieval procedure consists in (1) selecting
the most suitable group of cases comparing the input case with the prototypes
and, (2) comparing the new input case with the cases from the selected clusters.
The benefits of such approach are both the reduction of computational time and
improved robustness with uncertain data. Nevertheless, some open issues still
remain such as to what extent the accuracy rate is degraded due to the cluster-
based retrieval, and furthermore, how many clusters and cases should be used
according to given requirements of computational time and accuracy degrada-
tion. Both problematical aspects were successfully solved in a methodology [9]
based on a procedure for selecting the most suitable configuration according to
the user requirements and the data complexity [10] 1. Because this issue is crucial
for the success of the retrieval, Thunder gives support to this methodology.

The paper is organized as follows. Section 2 reviews briefly the methodology
and the jcolibri framework. Section 3 describes the Thunder plug-in. Section 4
tests the plug-in using SOM as an organization technique in a textual domain.
Finally, section 5 ends with the conclusion and further research.

2 Background Work

The work described in this paper is based on two previous research lines. The
first one concerns about a methodology for selecting the most suitable case
retrieval strategy from clustered cases memories [9], while the second research
work involves the development of a framework (jcolibri) for supporting the
building of CBR applications [5]. This section describes both previous works to
provide the required background to understand the integration of cluster-based
retrieval processes in jcolibri.

1 The data complexity refers to the class separability and the discriminant power of
features, and not about its representation in the case memory.

420 A. Fornells et al.

Fig. 1. Strategy map for the taxonomy of cluster-based retrieval strategies

2.1 Case Retrieval from a Clustered Case Memory

This section summarizes the methodology to characterize the case retrieval
strategies from clustered case memories [9]. The characterization is based on
the sequential building of three innovative elements: (1) the strategy map, (2)
the complexity map, and (3) the scatter plot. At the end of the process, the user
is able to take advantage of this analysis to select the strategy that meets best
its requirements in terms of accuracy and computational resources through the
next steps: (1) to determine the complexity type of the dataset, (2) to decide
the minimal and maximal computational time improvement desired and, (3) to
select the most suitable configuration according to the impact in the accuracy.

The Strategy Map

The characterization of strategies starts by identifying the different ways in which
data can be retrieved. The strategy map is a taxonomy that characterizes any
case retrieval from a clustered case memory (see Fig. 1). The x-axis depicts the
number of clusters selected (‘The most similar’, ‘A set of the most similar’, or
‘All’) and the y-axis depicts the number of cases retrieved from each cluster (‘A
percentage’ or ‘All’). Enclosing the range of cases to explore implies a decrease
in computational time to the detriment of the accuracy. Areas 1, 2, and 3 mainly
include strategies that reduce drastically the computational time whereas areas
4, 5, and 6 correspond to conservative strategies.

The Complexity Map

Once the strategies are characterized, we should proceed by analyzing their be-
havior over a large set of problems. In this sense, the characterization of the
datasets, by means of their complexity, can provide us useful guidelines for an-
alyzing the performance of the cluster-based strategies. Previous studies have

Integration of a Methodology for Cluster-Based Retrieval in jColibri 421

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

N
1·N

2

F3

Type A

Type B

Type C

Fig. 2. The complexity map determines the complexity level of a dataset analyzing the
geometry of the class boundary. Figure shows the classification of 56 datasets selected
from UCI Repository [12] in [9].

demonstrated the capability of such measures to explain the intrinsic complex-
ity of the dataset and relate it to the classifier’s performance [11].

We base our characterization on three complexity metrics [10] that define a
complexity map depicted in three areas A, B, and C, ranging from lower to
higher complexity (see Figure 2). A low value of these measures indicates high
class separability, while a high value is usually related to high classifier errors and
thus, high complexity. The feature efficiency (F3) defines to what degree each
feature individually takes part in the class separability. The higher the value, the
greater the power of class discrimination. The length of the class boundary (N1)
and the intra/inter class nearest neighbor distances (N2) are measures that take
into account the class separability. The last two metrics are combined through
their product (N1·N2) to emphasize their behaviors.

The Scatter Plot

The scatter plot is a visual and intuitive way for comparing the strategies’ per-
formance -in terms of accuracy and computational time- as regards to a reference
strategy (see Fig. 3). The main benefit of this element is the drastic simplifica-
tion in comparison to analyze complex and huge numerical tables of results. The
x-axis measures the computational time improvement computed as the percent-
age of cases used with respect to a reference strategy in logarithmic scale. The
y-axis refers to the solving capabilities as the rank of each strategy averaged over
all datasets using the accuracy rate. The performance of each strategy is drawn
as a circumference whose diameter is proportional to the standard deviation of
the medium rank. Furthermore, the significant difference between any case re-
trieval strategy and the reference strategy is evaluated by the critical distance
(CD) using the Bonferroni-Dunn test [13]. The CD delimits a region where the
strategies placed inside do not present significant differences with regards to the

422 A. Fornells et al.

M
ed

iu
m

 r
an

k
CD

Best

Worst

 0% 15% 25% 40% 60% 100%

1

2

 3

Percentage of cases used from the case memory

S3

S2
S1

Fig. 3. The scatter plot for three case retrieval strategies. S2 and S3 obtain better
computational time than S1, but S2 maintains the same solving capabilities than S1.

reference strategy. Our proposal is to characterize the datasets by complexity
and then, analyze separately the strategies’ performance with the scatter plot.

Figure 3 shows an hypothetical example of the comparison between several
case retrieval strategies. Let S1 be the reference strategy which uses all cases
from all clusters. Let S2 be a strategy which uses all cases from some clusters.
Let S3 be a strategy which uses all cases from only one cluster. S2 and S3
improve drastically the computational time since they only use the 40% and
the 20% of cases in comparison with S1. The solving capabilities of S2 can be
considered similar to S1 because S2 is located inside the CD region, while S3 is
statistically different from S1.

2.2 The jCOLIBRI Framework

jcolibri framework is a platform for the design and generation of CBR systems
that proposes a reference architecture for the development of CBR systems,
along with its corresponding implementation [5].

jcolibri is currently a popular tool for the development of research prototypes
and for teaching purposes. It allows to the include third-party contributions with
the newest algorithms developed within the CBR community that increase the
value of the platform. Along these contributions we can cite the important num-
ber of Textual CBR algorithms [14] and Knowledge Intensive similarity measures
[15] included in the framework.

jcolibri was primarily designed as a platform for the implementation of KI-
CBR applications thanks to the inclusion and exploiting of ontologies and their
associated reasoning capabilities. This kind of CBR applications manage a few
but rich-defined cases and jcolibri includes specialized methods to process them
[16]. However, this specialization for KI-CBR applications has left aside the
development of methods for managing case bases with opposite features: many
but simple cases. These CBR systems are defined as Data Intensive because they

Integration of a Methodology for Cluster-Based Retrieval in jColibri 423

reason with an important number of cases and do not apply expensive reasoning
mechanisms because of performance issues.

The following section describes how authors have solved this lack of Data
Intensive capabilities in the jcolibri framework by including clustering tech-
niques. This addition enables the management of large case bases in an efficient
way and implies that jcolibri is now a real choice to consider when developing
large-scale CBR applications for the industrial world.

3 Thunder: The Clustered Case Memory Support

The jcolibri extension to support cluster-based retrieval processes is named
Thunder. It has been perfectly embedded in the framework due to its layered
architecture. jcolibri splits the problem of case base management in two sepa-
rate although related concerns: persistency mechanisms through connectors and
in-memory organization.

3.1 Connectors

Cases are often derived from legacy databases, thereby existing organizational re-
sources are converted into exploitable knowledge. In order to take advantage of
these already existing resources, to facilitate intelligent access to existing infor-
mation and to incorporate it as seed knowledge in the CBR system (the case base)
jcolibri offers a set of connectors to manage persistence of cases. Connectors are
objects that know how to access and retrieve cases from the storage media and
return those cases to the CBR system in a uniform way. Therefore, connectors
provide an abstraction mechanism that allows users to load cases from different
storage sources in a transparent way. As shown in Figure 4, jcolibri includes

Fig. 4. Persistence organization in jcolibri

424 A. Fornells et al.

connectors that work with plain text files, relational data bases and Description
Logics (DL) systems. Other connectors can be included depending on the specific
application requirements. This is the case of DI-CBR applications where large case
bases must be loaded. To support a uniform way for loading these large case based,
the Thunder extension provides a connector compatible with the ARFF format.
This format is a standard defined by the popular WEKA toolkit for data mining
and machine learning [17]. ARFF is currently a de-facto standard for large data
bases and the inclusion of a connector in jcolibri supporting this format sup-
poses a great extension of the capabilities of the framework. Moreover, the storage
of case bases using the WEKA format allows to compare results and techniques
with the algorithms included in this toolkit: clustering, classification, etc.

3.2 In-Memory Organization

In the same way, connectors provide a common interface for accessing the per-
sistence layer, once cases are loaded they are organized in-memory following
another common interface. This way, the organization and indexation chosen for
the Case Base will not affect the implementation of the methods. Apart from the
common interface, certain organizations may support additional operations on
the Case Base that specific methods can exploit. This is the case of the clustered
organization because it provides methods to access the director vectors of each
cluster.

The in-memory organization of the case base (linear, k-d trees, clusters, etc.)
may have a big influence on the CBR processes, so the framework leaves open the
election of the data structure that is going to be used. By default, jcolibri pro-
vides four organizations: linear, cached linear (changes are not directly reflected
in the persistence media), indexed by case id, and the new clustered organization.

Fig. 5. In-memory organization of case bases in jCOLIBRI

Integration of a Methodology for Cluster-Based Retrieval in jColibri 425

As is shown in Figure 5, there is a generic interface called Clustered Case Base
that defines the common functionality that any clustered organization of cases
must obey. This way, it makes possible to include any clustering techniques for
indexing the case base. Thunder incorporates as default Self-Organizing Maps
as clustering technique (see Section 4.2). The inclusion of clustering organiza-
tions for a case base must be performed taking into account the computation
time required to organize the memory of cases. This process is usually very time
consuming and may be configured with different similarity measures to group
the cases. As detailed next, both requirements are smartly addressed in jcolibri
thanks to its organization of CBR applications and the definition of similarity
functions:

Reduction of computational time. jcolibri splits the CBR applications in
precycle, cycle and postcycle. The precycle is executed only once when
launching the application and is in charge of preprocessing the data and
cases involved in the reasoning. This stage is very useful when managing
textual cases because natural language processing tasks are very time con-
suming. However, the incorporation of clustered memories has shown that
this stage is also very suitable because it frees the cycle for computing the
clustering algorithms. This way, the Thunder plug-in performs the index-
ing into clusters of the case base in the precycle. Then, the cycle uses this
pre-computed indexes to retrieve the cases in an efficient way. Finally, the
postcycle is in charge of releasing the loaded resources.

Computing similarities. The other element involved in the clustering of the
memory of cases is the similarity between cases. Similarity measures are
applied to compute the similarity between two cases when computing the
clusters and during the retrieval process. Of course, a correct retrieval of
cases must use the same similarity function that was applied to generate the
clusters in the case base. This requirement is easily solved through the simple
interfaces defined in jcolibri to implement similarity functions: compare
two objects and return a value representing the similarity. This way, the
simplicity of the interface allows to use these similarity functions both in the
clustering and retrieval processes. Moreover, it implies that the large number
of similarity functions already included in jcolibri can also be reused for
clustering the case base.

3.3 Execution of Case Retrieval Strategies

Thunder offers the possibility of applying the case retrieval strategies defined in
the strategy map through a graphical interface or directly invoking the method at
a source code level. The map configures a two-step retrieval method for clustered
case bases. This new method retrieves cases by comparing initially the query
with the prototype of each cluster and then comparing with the cases in the
most similar clusters. As we have explained, the first step is to characterize the

426 A. Fornells et al.

Fig. 6. Screenshot of the graphical environment for loading the dataset and also for
identifying its complexity. The complexity of the dataset used in the experiments (Sec-
tion 4.3) is characterized as type B.

dataset as the screenshot of Figure 6 shows. In this case, the loaded dataset is
the reported in Section 6 and its complexity is characterized as type B. Next, the
case memory has to be organized in clusters applying the clustering algorithm
selected. Thunder allows to load previously computed clusters or compute them
in real time during the precycle step. Next, the desired improvement must be
selected according to the scatter plots and the complexity of the dataset. These
plots are obtained from the evaluation of many configurations over a wide set
of datasets [18]. In this case, the scatter plots associated to SOM are available
in [9]. Finally, the number of clusters and cases to use in the retrieval pro-
cess is selected as the screenshot of Figure 7 shows. In addition, Thunder also
includes others functionalities to promote the reuse phase [19] and the retain
phase [20].

Integration of a Methodology for Cluster-Based Retrieval in jColibri 427

Fig. 7. Graphic tool for computing the different process of the CBR cycle

4 Case Study: SOM-Clustered Case Bases for Textual
CBR

To illustrate the capabilities of the clustering techniques included in jcolibri we
have chosen the Textual CBR field. Although it is not very common to apply this
kind of memory organizations with textual cases, we consider that this type of
CBR applications could be greatly improved by applying clustered organizations
of the texts. First, the textual CBR domain is presented. Next, a brief review of
SOM is described. Finally, the results of analyzing this domain are discussed.

4.1 Textual CBR

Textual case-based reasoning (TCBR) is a subfield of CBR concerned with re-
search and implementation on case-based reasoners where some or all of the
knowledge sources are available in textual format. It aims to use these textual
knowledge sources in an automated or semi-automated way for supporting prob-
lem solving through case comparison [21].

428 A. Fornells et al.

There does not appear to be a standard or consensus about the structure of a
textual CBR system. This is mainly due to the different knowledge requirements
in application domains. For classification applications only a basic stemmer al-
gorithm and a cosine similarity function is typically needed, while with other
applications more intense NLP derived structures are employed [22,23].

jcolibri already includes methods for implementing both approaches for
TCBR [14,24]. However, the management of large corpora of documents and
the associated performance problems have been always an important drawback.
An efficient management of large corpora is very important if we realize that ex-
periences (cases) are described using natural language in many scenarios where
CBR can be successfully applied. This way, CBR techniques must be able to
manage efficiently a large amount of textual documents to leave the academic
field and reach the commercial world.

4.2 Organization Based on Self-Organizing Maps

The improvement of performance through case memory organization has been
tackled from many points of view, such as representing the attributes in tree
structures [25] or graphs [26], grouping cases by their similarity [27], applying
knowledge-intensive approaches [28] or data-intensive approaches [6]. Neverthe-
less, many of these methods pay more attention to how to structure the data
rather to the underlying features of the domain: uncertainty and partial knowl-
edge. In this scenario, Soft-Computing techniques are more suitable than Hard-
Computing techniques since they are able to manage this kind of knowledge
[29,30]. In particular, Self-Organizing Map (SOM) [8] has become one of the
most used Soft-Computing clustering techniques to visualize and organize data
[31] thanks to its capability for discovering hidden patterns.

SOM translates complex and nonlinear statistical relations contained in high-
dimensional data into simple geometric relations on a low-dimensional space.
The architecture of this neural network is constituted of two layers: (1) the
input layer composed of N neurons, where each neuron represents one of the N -
dimensional features of the input case; and (2) the output layer composed of M×
M neurons, where each one represents a set of similar cases by a director vector of
N dimensions. Each input neuron is connected to all the output neurons. When
a new input case C is introduced in the input layer, each neuron X from the
output layer computes a degree of similarity between its director vector and the
input case C applying a distance such as the normalized Euclidean distance. The
result of the distance measures the level of cluster representativeness in relation
to the input case. This smart and powerful ability is the reason why some CBR’s
studies focus on indexing the case memory for improving the retrieve phase from
the point of view of clustering [32,33].

Although the Thunder contribution implements SOM for clustering the case
base, it is important to note that any other algorithm could be easily applied
because this possibility was taken into account when developing the contribution.

Integration of a Methodology for Cluster-Based Retrieval in jColibri 429

4.3 Experiments, Results and Discussion

Texts providean idealfield for testingdata intensive techniques thatmanageuncer-
tainty knowledge. In our experiments, we chose a corpus of 1.500documents. These
documents were taken from several electronic journals and each one had an asso-
ciated category: laws, history, medicine, and so on. These categories were useful to
measure the performance of the retrieval process. Documents were processed to re-
move stop words and extract the stem. Then the TF·IDF filter was applied to select
the most important 1.000 terms. The total number of categories was 20 and the pre-
cision was obtained through the leave-one-out testing method. Instead of using the
cosine measure, we decided to apply another similarity function named Kullback-
Liebler Divergence [34] that reported better results when comparing texts.

The goal of the experiments was to measure the improvement in the perfor-
mance when using a linear case base and a clustered organization. To assign a
category for a new query we used the majority-voting approach that selects the
most repeated category of the k nearest neighbors. Although we tested several
values for this k value, there were not significative differences in the results, so
we will skip this parameter. The other parameter measured in the experiment
was the number c of clusters used in the retrieval. Once the query was compared
to each director vector (the prototype that represents each cluster), the c most
similar clusters were used in the second step of the retrieval. Here, every case in
these c clusters was compared to the query. This way, we were using the strategy
number 4 in Figure 1.

Results (see Figure 8) illustrates how the precision changes according to the
percentage of cases used in the retrieval. This percentage of cases depends on
the number of clusters involved in the second stage of the retrieval process.
Retrieving from all clusters means that the system is using a linear organization
of the case base. As the number of clusters decreases, the percentage of cases
compared to the query also decreases. Since our goal consists on measuring the
impact in the precision when using just a part of the case base (some clusters),

Fig. 8. Outline of experimental results

430 A. Fornells et al.

we also include in Figure 8 the value of the precision divided by the number of
cases used in the retrieval. Finally, another point to be highlighted is the loss of
precision with regard to the linear case base. Although the precision of the system
may seem too low (independently of using a clustered or linear organization), it
is important to note that the presented problem was very complex because of
the high number of possible categories. Thus, a random classifier will obtain a
5% of precision having 20 different categories. So, precision values from 50% to
60% can be considered good results.

The experiment probes the improvement in the efficiency of the system when
using a clustered memory of cases. For example, configuring a value of c=7
(use the 7 most similar clusters), the precision only decreases a 10%, whereas
the number of cases compared are half the size of the case base (47%). This
important reduction of the cases involved in the retrieval implies a significant
improvement in the efficiency of the CBR system.

5 Conclusions and Further Work

Over the last years open source tools for developing CBR applications has be-
come a very interesting topic in the CBR community because it offers to the
experts the possibility of testing and comparing their approach to others. How-
ever, there is not any open source framework designed for the management of
clustered case memories. In this paper we have described Thunder, a plug-in
that allows the integration of cluster-based retrieval processes in jcolibri fol-
lowing the methodology defined in [9]. The main benefit of this approach is that
computational time is reduced while the accuracy rate is maintained. To do it,
a case retrieval based on two steps is followed: (1) a set of clusters represented
by a prototype are selected and, (2) a set of cases from the clusters are used.
Thunder offers the possibility of applying the case retrieval strategies defined in
the strategy map through a graphic interface or directly invoking the method
at a source code level. Moreover, Thunder incorporates a clustering algorithm
called SOM for testing the tool and a connector for working with ARFF files.

We have tested the applicability of the tool in a textual case base where we
have demonstrated how to increase the efficiency of retrieval through clusters
to organize the case base. The experiment has shown the improvement in the
retrieval performance when using a clustered organization of the textual case
base. We have shown how the cluster-based strategy behaves differently accord-
ing to the configuration of two parameters: the number of clusters selected and
the number of cases retrieved from the selected clusters.

Thunder is available and it will be distributed with jcolibri 2 next release.
As future work, we are including other clustering techniques in Thunder, test
the applicability of the clustering organization techniques in knowledge intensive
ontology based domains and promoting the understanding of relation between
data to promote the rest of CBR steps. Thus, it will be possible to perform
a wide comparison among all the clustering strategies for organizing the case
memory in order to find out the most suitable approach.

Integration of a Methodology for Cluster-Based Retrieval in jColibri 431

Acknowledgments

We would like to thank the Spanish Government for the support in MID-CBR
project under grant TIN2006-15140-C03 and the Generalitat de Catalunya for
the support under grant 2005SGR-302. We would like to thank Enginyeria i
Arquitectura La Salle of Ramon Llull University and Universidad Complutense
de Madrid for the support to our research groups as well.

References

1. Schulz, S.: CBR-works - a state-of-the-art shell for case-based application build-
ing. In: Procs. 7th German Workshop on CBR, GWCBR 1999, pp. 3–5. Springer,
Heidelberg (1999)

2. Schumacher, J.: Empolis Orenge – an open platform for knowledge management
applications. In: 1st German Workshop on Experience Management (2002)

3. Stahl, A., Roth-Berghofer, T.: Rapid prototyping of CBR applications with the
open source tool myCBR. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A.
(eds.) ECCBR 2008. LNCS, vol. 5239, pp. 615–629. Springer, Heidelberg (2008)

4. Bogaerts, S., Leake, D.: Iucbrf: A framework for rapid and modular case-based
reasoning system development. Technical Report 617, Indiana University (2005)

5. Dı́az-Agudo, B., González-Calero, P.A., Recio-Garćıa, J., Sánchez, A.: Building
CBR systems with jcolibri. Special Issue on Experimental Software and Toolkits
of the Journal Science of Computer Programming 69(1-3), 68–75 (2007)

6. Vernet, D., Golobardes, E.: An unsupervised learning approach for case-based clas-
sifier systems. Expert Update. The Specialist Group on Artificial Intelligence 6(2),
37–42 (2003)

7. Fornells, A., Golobardes, E., Vernet, D., Corral, G.: Unsupervised case memory
organization: Analysing computational time and soft computing capabilities. In:
Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS
(LNAI), vol. 4106, pp. 241–255. Springer, Heidelberg (2006)

8. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Heidelberg (2000)
9. Fornells, A., Golobardes, E., Martorell, J., Garrell, J., Bernadó, E., Macià, N.: A

methodology for analyzing the case retrieval from a clustered case memory. In:
Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp.
122–136. Springer, Heidelberg (2007)

10. Basu, M., Ho, T.: Data Complexity in Pattern Recognition. In: Advanced Infor-
mation and Knowledge Processing. Springer, Heidelberg (2006)

11. Bernadó, E., Ho, T.: Domain of competence of XCS classifier system in complexity
measurement space. IEEE Transaction Evolutionary Computation 9(1), 82–104
(2005)

12. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
13. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research 7, 1–30 (2006)
14. Recio-Garćıa, J.A., Dı́az-Agudo, B., Gómez-Mart́ın, M.A., Wiratunga, N.: Extend-

ing jCOLIBRI for textual CBR. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005.
LNCS (LNAI), vol. 3620, pp. 421–435. Springer, Heidelberg (2005)

432 A. Fornells et al.

15. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A., Sánchez-Ruiz-
Granados, A.: Ontology based cbr with jcolibri. In: Applications and Innovations in
Intelligent Systems XIV. In: SGAI 2006, pp. 149–162. Springer, Heidelberg (2006)

16. Dı́az-Agudo, B., González-Calero, P.A.: An Ontological Approach to Develop
Knowledge Intensive CBR Systems. In: Ontologies in the Context of Information
Systems, pp. 173–213. Springer, Heidelberg (2007)

17. Witten, I., Frank, E.: Data mining: Practical machine learning tools and techniques
with Java implementations. Morgan Kaufmann, San Francisco (2000)

18. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A.: jCOLIBRI 2 Tutorial.
Technical Report IT/2007/02, Departamento de Ingenieŕıa del Software e Inteligen-
cia Artificial. Universidad Complutense de Madrid (2007), ISBN 978-84-691-6204-
0, http://gaia.fdi.ucm.es/projects/jcolibri/jcolibri2/docs.html

19. Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M.: Patterns out of cases
using kohonen maps in breast cancer diagnosis. International Journal of Neural
Systems 18, 33–43 (2008)

20. Fornells, A., Golobardes, E.: Case-base maintenance in an associative memory or-
ganized by a self-organizing map. In: Corchado, E., Corchado, J., Abraham, A.
(eds.) Innovations in Hybrid Intelligent Systems, vol. 44, pp. 312–319. Springer,
Heidelberg (2007)

21. Weber, R.O., Ashley, K.D., Brüninghaus, S.: Textual case-based reasoning. The
Knowledge Engineering Review 20(3), 255–260 (2006)

22. Brown, M., Förtsch, C., Wißmann, D.: Feature extraction - the bridge from case-
based reasoning to information retrieval. In: Proceedings of the 6th German Work-
shop on Case-Based Reasoning (GWCBR 1998) (1998)

23. Brüninghaus, S., Ashley, K.D.: The role of information extraction for textual
CBR. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS, vol. 2080, pp. 74–
89. Springer, Heidelberg (2001)

24. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A.: Textual CBR in jcol-
ibri: From retrieval to reuse. In: Wilson, D.C., Khemani, D. (eds.) Proceedings of
the ICCBR 2007 Workshop on Textual Case-Based Reasoning: Beyond Retrieval,
August 2007, pp. 217–226 (2007)

25. Wess, S., Althoff, K., Derwand, G.: Using k-d trees to improve the retrieval step
in case-based reasoning. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) EWCBR
1993. LNCS, vol. 837, pp. 167–181. Springer, Heidelberg (1994)

26. Lenz, M., Burkhard, H., Brückner, S.: Applying case retrieval nets to diagnostic
tasks in technical domains. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS,
vol. 1168, pp. 219–233. Springer, Heidelberg (1996)

27. Yang, Q., Wu, J.: Enhancing the effectiveness of interactive cas-based reasoning
with clustering and decision forests. Applied Intelligence 14(1) (2001)

28. Rissland, E.L., Skalak, D.B., Friedman, M.: Case retrieval through multiple index-
ing and heuristic search. In: IJCAI 1993, pp. 902–908 (1993)

29. Cordón, O., Herrera, E.: Special issue on soft computing applications to intelli-
gent information retrieval on the internet. International Journal of Approximate
Reasoning 34, 2–3 (2003)

30. Cheetham, W., Shiu, S., Weber, R.: Soft case-based reasoning. The Knowledge
Engineering, 1–4 (2005)

http://gaia.fdi.ucm.es/projects/jcolibri/jcolibri2/docs.html

Integration of a Methodology for Cluster-Based Retrieval in jColibri 433

31. Oja, M., Kaski, S., Kohonen, T.: Bibliography of Self-Organizing Map (SOM)
Papers: 1998-2001 (2003), http://www.cis.hut.fi/research/refs/

32. Chang, P., Lai, C.: A hybrid system combining self-organizing maps with
case-based reasoning in wholesaler’s new-release book forecasting. Expert Syst.
Appl. 29(1), 183–192 (2005)

33. Fornells, A., Armengol, E., Golobardes, E.: Retrieval based on self-explicative mem-
ories. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008.
LNCS (LNAI), vol. 5239, pp. 210–224. Springer, Heidelberg (2008)

34. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

http://www.cis.hut.fi/research/refs/

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 434–449, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Case-Based Collective Inference
for Maritime Object Classification

Kalyan Moy Gupta1, David W. Aha2, and Philip Moore1

1 Knexus Research Corporation; Springfield, VA 22153
2 Navy Center for Applied Research in Artificial Intelligence,

Naval Research Laboratory (Code 5514), Washington, DC 20375
firstname.lastname@knexusresearch.com, david.aha@nrl.navy.mil

Abstract. Maritime assets such as merchant and navy ships, ports, and harbors,
are targets of terrorist attacks as evidenced by the USS Cole bombing. Conven-
tional methods of securing maritime assets to prevent attacks are manually
intensive and error prone. To address this shortcoming, we are developing a de-
cision support system that shall alert security personnel to potential attacks by
automatically processing maritime surveillance video. An initial task that we
must address is to accurately classify maritime objects from video data, which
is our focus in this paper. Object classification from video images can be prob-
lematic due to noisy outputs from image processing. We approach this problem
with a novel technique that exploits maritime domain characteristics and formu-
lates it as a graph of spatially related objects. We then apply a case-based col-
lective classification algorithm on the graph to classify objects. We evaluate our
approach on river traffic video data that we have processed. We found that our
approach significantly increases classification accuracy in comparison with a
conventional (i.e., non-relational) alternative.

1 Introduction

Maritime assets such as merchant and naval vessels are under a constant threat of ter-
rorist attacks. For example, the USS Cole was completely disabled in a bombing event
at the Port of Yemen that claimed the lives of 11 sailors.1 Existing approaches to
counter such threats use a combination of sensors such as radar, video surveillance, and
manual watchstanding. These approaches are manually intensive; potential threats can
be overlooked due to human factors such as information overload and fatigue. In addi-
tion, sensors such as radar are largely ineffective against small, fast moving vessels.
We are developing a decision support system, named the Maritime Activity Analysis
Workbench (MAAW), to address some of these problems. MAAW is being designed
to detect potentially threatening surface vessels by automatically processing maritime
surveillance video. A critical task in this context is that of classifying maritime objects.
If accurately predicted, MAAW can then assess their potential threat and issue alerts to
watchstanders, our primary end users.

1 http://en.wikipedia.org/wiki/USS_Cole_bombing

 Case-Based Collective Inference 435

Our object classifier must operate on potentially noisy data obtained from image
processing components yet perform robustly. When combined with a large number of
closely related vessel types, this poses a significant challenge for conventional classifi-
cation methods, which classify objects independently. However, in the maritime do-
main, we expect the context of maritime objects to provide important clues for object
classification. For example, a tugboat in a harbor often tows a cargo vessel. Given that
images of small vessels are harder to accurately classify than those of large cargo ves-
sels, their proximity could be an important clue for classifying tugboats. One approach
for incorporating contextual clues is collective classification. Unlike conventional ap-
proaches, collective classifiers concurrently classify a set of related objects. This ap-
proach has not previously been applied to the task of maritime object classification,
and its effectiveness on this task is unknown.

Our focus in this paper is an object classification method that exploits contextual
cues in a maritime video scene. Our contributions are as follows. First, we frame our
task as that of using contextual relational cues to increase object classification accu-
racy. We represent these cues by transforming a maritime scene into a graph of spa-
tially related objects. We then apply a case-based collective classifier, which includes
a conventional classifier, domain-specific parameterized similarity measures (learned
from the data), and a collective inference procedure. Finally, we evaluate our ap-
proach on maritime river traffic video captured by our system. We found that case-
based collective classification significantly outperforms a conventional independent
object classification approach on this task.

We briefly describe the topic of maritime surveillance and related work in
Section 2. In Section 3, we present an overview of our system. In Section 4, we de-
scribe its algorithm for case-based collective classification of maritime objects. We
discuss the evaluation of our approach in Section 5. Finally, we conclude the paper
with remarks on future research.

2 Maritime Video Surveillance and Related Work

Other researchers have addressed maritime domain awareness tasks not unlike the
port/harbor security task that is our ultimate focus. For example, Rhodes et al. (2005)
employ neural network classifiers (specifically, a modification of Fuzzy ARTMAP) to
learn normalcy models for anomaly detection in maritime environments. As with
MAAW, their objective is for operators to provide feedback for learning. We are ad-
dressing the task of using spatial and temporal relations to detect coordinated activi-
ties. However, their data combines metadata with automated identification systems
(AIS) data, rather than video imagery.

ObjectVideo2 deploys sophisticated products for maritime (and other types of) intelli-
gence surveillance, including those for real-time, high-speed, activity-based video index-
ing and retrieval. This can be used, for example, to perform forensic analysis (e.g., detect
the movement of suspicious objects). Motivated by the fact that humans cannot monitor a
vast number of vessels/objects simultaneously, their system automatically extracts object
descriptions (from a variety of sensors) using a statistical pixel modeling approach, and
employs user-provided rules to determine when to generate security alerts (Lipton et al.,

2 http://www.objectvideo.com

436 K.M. Gupta, D.W. Aha, and P. Moore

2009). A key difference of our approach is that we instead use a case-based statistical
relational learning approach for object recognition.

There is a long and rich history of research in case-based reasoning (CBR) on im-
age processing (Perner et al., 2005). Most of these have focused on images rather than
video. For example, Perner’s (1993) cases are graphically represented using spatial
relations, and structural similarity is computed to classify weld defects. In contrast,
our cases are related spatially and are not represented using only intrinsic attributes.
Also, we instead use collective inference for object classification.

Work on video data within CBR has primarily concerned methods for video re-
trieval. For example, Burke and Kass (1995) describe an approach for retrieving and
presenting stories from a video data base to support educational goals. Similarly,
Johnson et al. (2000) describe an ASK system (the Air Campaign Planning Advisor)
in which educational video recordings of domain experts can be retrieved through a
tailored interface and a hierarchical task decomposition model. Zhang and Nunamaker
(2004) index videos by their metadata. Their system retrieves cases using natural lan-
guage queries. While this genre of research focuses on user interfaces and video
retrieval, our focus in this paper is instead on object recognition in video data.

Some other uses of video have been the focus of CBR and related research. For ex-
ample, MacNeil (1991) describes a visual programming environment in which CBR is
used to capture and reuse knowledge pertaining to the creation of multimedia presen-
tations. In MacNeil’s TYRO, cases are generic temporal templates, abstracted from
video segments, which denote chunks of design experience. These general cases can
then be used to provide constraints for creating similar videos. In contrast, we focus
on specific case representations, and recognizing objects from video.

Our ultimate focus is on threat analysis: if we can accurately identify the objects in
these videos and recognize their behaviors, our next step will be to assess whether
these behaviors are threatening (i.e., to naval/maritime assets). A variety of CBR re-
search has focused on threat analysis techniques. For example, Jung et al. (1999) use
CBR to perform risk analysis for organizations in electronic commerce environments,
where cases are used to evaluate assets and assess threats and vulnerabilities by com-
parison with prior security accidents. Multiple groups have also used CBR to assist
intelligence analysts with constructing (Adams & Goel, 2007) and/or analyzing (Mur-
dock et al., 2003) hypothesized terrorist threats. CBR has also been used, several
times, to detect anomalies in computer networks (e.g., see a recent investigation de-
scribed by Micarelli and Sansonetti (2007)). A primary distinction of our work from
these investigations is that we are working with video data.

Finally, a distinguishing feature of our approach is that we use collective classifica-
tion to leverage the spatial and temporal relations among objects to increase predictive
accuracy. Previous work on collective classification, a form of statistical relational
learning (SRL), has not been applied to tasks involving video data (Sen et al., 2008).
This includes our own previous research on case-based collective classification
(McDowell et al., 2007a). However, other SRL approaches have been applied to simi-
lar tasks. In particular, Aboutalib and Veloso (2007) leverage human-provided cues,
detected from humans interacting with objects in video data, to recognize those objects
using probabilistic relational models. Unlike our work, they do not use a CBR
approach for this task, nor focus on maritime object recognition.

 Case-Based Collective Inference 437

3 The Maritime Activity Analysis Workbench

Our goal is to develop a decision support system for maritime security personnel (e.g.,
watchstanders, harbor masters) to assist them with their surveillance and decision
making tasks and improve their threat assessment capability. To meet this goal, we
are developing MAAW. It includes a series of adaptive processors, ranging from
video acquisition to threat analysis, designed to interact with its user to issue alerts,
provide threat assessments, and receive performance feedback with corrections (see
Figure 1). A crucial component in its pipeline of processors is the Object Classifier,
which we discuss in detail in Section 4. Here, we briefly review MAAW’s intended
functionality and explain the role of its Object Classifier.

MAAW’s Video Acquisition subsystem currently includes a fixed video camera
that captures maritime traffic video in black and white, digital format. It can also cap-
ture videos from online harbor cams. The acquisition system suitably compresses the
video and hands it off to the Video Processor for further processing. The Detector
within the Video Processor performs basic operations such as adaptive background
subtraction to detect moving maritime objects such as boats and ships. The Tracker,
also a component of the Video Processor, then groups the objects detected from a
series of video frames into tracks. It uses a combination of Appearance Models (not
shown in Figure 1) and clustering techniques to perform its task.

Fig. 1. MAAW’s Functional Architecture

The Video Processor outputs track information in a data structure suitable for con-
sumption by the Behavior Interpreter. The track is represented as a series of events,
each referring to a maritime object and its attributes such as position, speed, and

438 K.M. Gupta, D.W. Aha, and P. Moore

image signature. The Behavior Interpreter’s function is to classify the objects within a
track and the activities they are performing. We are combining supervised learning
approaches along with maritime surveillance domain knowledge to accomplish these
tasks. The Object Classifier and the Activity Labeler are the two components in the
Behavior Interpreter. They rely on two knowledge bases: a Maritime Ontology, and a
database of Annotated Tracks. We are annotating all the track data with objects
categories and activity descriptions chosen from this ontology, and expect users and
subject matter experts to do so minimally while using MAAW.

The maritime object classification task can be challenging because tracks extracted
by the Video Processor can be noisy depending on a variety of application conditions
such as the weather, time of day, the size and the number of objects, and occlusion.
For example, a single object in the scene could result in multiple spurious tracks with
inaccurate attribute value estimates. In this paper, we explore one way to address this
problem. We investigate whether taking application and scene context into account
can increase classification accuracy, even when the track data is noisy.

The Behavior Interpreter hands off the automatically labeled tracks to the Threat
Analyzer, which will fuse the labeled tracks with harbor database information to as-
sess threats and issue alerts. End users will be able to accept or reject MAAW’s deci-
sions and provide corrective feedback, which MAAW will use to update the track
database.

MAAW is, in part, an annotation tool for video processing. Rincón and Martínez-
Cantos (2007) survey other such tools, which differ from MAAW in that they do not
employ case-based collective classification to perform maritime object classification.

4 Case-Based Collective Classification of Maritime Objects

4.1 Collective Classification

Conventional classification methods assume that cases/instances are independently
drawn from an identical distribution (the i.i.d. assumption), and are otherwise not re-
lated. However, in many practical classification tasks cases can be explicitly or im-
plicitly related. For example, web pages can be explicitly related by hyperlinks and
emails can be implicitly related as requests and responses. Likewise, in a maritime
object classification task, cases that represent objects can be implicitly related spa-
tially and/or temporally. For example, a tugboat track can be spatially related to a
cargo-ship track that it is towing out of a harbor.

Relations across cases can provide valuable contextual information that can poten-
tially be leveraged to increase classification accuracy. For example, collective classifiers
use these relations to concurrently classify cases, which can often increase classification
accuracy (Sen et al., 2008). The magnitude of accuracy increase depends on a number of
factors that characterize the related cases. In particular, accuracy is an increasing function
of their autocorrelation (i.e., the correlation among attributes, and in particular the class
labels, of related cases), a decreasing function of relation density, and a decreasing func-
tion of attribute predictiveness (i.e., their correlation with class label) (Jensen & Neville,
2002; Sen et al., 2008). As explained below, the task of object classification on cases
extracted from maritime video exhibits some of these characteristics. Therefore, it is a
suitable candidate for collective classification.

 Case-Based Collective Inference 439

Two broad categories of collective classification algorithms have been studied, as
distinguished by how they perform inference:

1. Local collective inference: These algorithms operate on a vector space represen-
tation of attributes obtained by transforming a graph of related cases. The Itera-
tive Classification Algorithm (ICA) (Neville & Jensen, 2000), Gradual Commit
(McDowell et al., 2007b), and Gibbs sampling (Geman & Geman, 1984) are
some example techniques.

2. Global collective inference: These algorithms operate directly on a graph of re-
lated cases rather than attribute vectors. Examples in this category include loopy
belief propagation (Pearl, 1988) and relaxation labeling (Rosenfeld et al., 1976).

In this paper, we apply ICA to our task. We selected it due to its simplicity, efficiency,
and comparatively good performance (Sen et al., 2008).

Local collective classification algorithms operate on a representation of cases that in-
cludes both intrinsic and relational attributes, where the former describe properties of an
individual case and the latter denote relations among cases. In this context, collective
classification is a two-stage supervised learning process:

1. Bootstrap classification: Effective relational representations for a case typically
include attributes defined as relations on the values of the class labels of related
cases. For example, in the maritime domain, a relational attribute may include the
distance of one track to another and the category label of the related object. How-
ever, the dependency of relational attribute values on class labels of related cases
poses a problem: at the start of the classification, the class labels of the related
cases are sometimes unknown, which implies that their relational attribute values
cannot be computed. To jump start this process, an initial prediction for the class
labels must be obtained. This is accomplished by applying a classifier to only the
intrinsic attributes. Any conventional supervised learner (e.g., Naïve Bayes,
SVMs, a case-based classifier) can be used for bootstrap classification. In this
paper we use a simple case-based classifier.

2. Collective inference: This inherently parallel process is simulated by iterating over
a loop of two steps:

a. Predict relational attribute values: Based on the class labels obtained in the
previous step, these values are computed to complete the case representation.

b. Perform local classification: The classifier learned during the bootstrap step
is used to classify cases with their predicted relational attribute values.

Typically, the accuracy of relational attribute value predictions and local classifi-
cations increase over subsequent iterations. For the ICA algorithm, iterations of
collective inference cease when there are no changes to classification predictions
in successive iterations, or after a predetermined max number of iterations. Em-
pirical evaluations of ICA show that it typically converges in a relatively small
number of iterations (e.g., 10) (McDowell et al., 2007a).

In summary, the supervised classifier learned during the bootstrap step has access to
only the (non-relational) intrinsic attributes, whereas it also has access to the relational
attributes during collective inference.

440 K.M. Gupta, D.W. Aha, and P. Moore

In this paper, we assume no links between the training and test sets; this is known
as the out-of-sample task (Neville & Jensen, 2005). Thus, the classifier is trained on a
set of completely defined cases in step 2.b because the labels of related cases, from
which the relational attribute values are derived, are all available (i.e., either given or
predicted). We also assume that the relations to be used are pre-selected rather than
learned. We address the implications of these and other assumptions in our evaluation
in Section 5 and in the subsequent discussion in Section 6.

ICA (Tr,Te,NR,R,n,S)=
//Tr = Training data, Te = Test data, NR = non-relational features,
//R = rel.features, n = #iterations, S = supervised learner
1 Tr.R.values ←setRelFeatures(Tr,R) //Relational value estimation
2 M←learnModel(Tr,NR,R,S) //Learn initial relation model
3 Te.Labels ←classify(Te,Tr,M,NR,∅) //Bootstrap classification
4 for j=0 to n //Collective inference
5 Te.R.values ←setRelFeatures(Te,R) //Relational value estimation
6 Te.Labels ←classify(Te,Tr,M,NR,R) //Local classification
7 Return Te.Labels //Return final labels

Fig. 2. Pseudocode for the Iterative Collective Algorithm (ICA)

4.2 Case-Based Collective Inference

In Section 4.1, we described a simple collective classifier called the Iterative Classifi-
cation Algorithm. Figure 2 presents ICA’s pseudocode where, in this study, we use a
case-based algorithm (for S) to perform supervised learning and prediction.

Case-based classification predominantly involves retrieving similar cases and reus-
ing their class labels to predict the label for a new classification problem (López de
Mántaras et al., 2005). Below we describe our case representation for maritime object
classification, followed by the retrieval and reuse methods we use. Case retention can
be important in an application like ours, but we leave it for future work.

Case Representation: The object classifier receives a structured representation of
tracks as its input. A track comprises multiple events, each resulting from a change in
an object’s direction or speed. Ideally, a track represents a single moving maritime
object. However, MAAW’s Video Processor can make mistakes while grouping mul-
tiple events from a scene into multiple tracks. Our goal is to use the Object Classifier
to reduce errors in categorizing images and use vessel category labels provided by the
Object Classifier to correctly rebuild the tracks. That is, we classify objects for each
event in a track instead of the track as a whole. Moreover, in our application, the track
must be repeatedly classified as soon as it is detected and its classification revisited as
the track unfolds. Therefore, we represent each event in a track as a case within
MAAW.

We use a typical <problem, label> representation for our cases. Problems are repre-
sented by intrinsic and relational attributes. Intrinsic attributes of a case are those at-
tributes of a maritime object that are independent of other objects. For our task, these
include the following three groups of 19 attributes (see Figure 3):

 Case-Based Collective Inference 441

Fig. 3. Attributes representing problems in cases denoting related maritime objects

1. Object position: This represents the position of a maritime object in a two-
dimensional coordinate system detected and extracted by the Video Processor
from the maritime video. It is a tuple <px, py> comprising two continuous real
values.

2. Object velocity: This represents the velocity vector (i.e., speed and direction) of a
maritime object. Like object position, the velocity vector is represented in two
dimensions using a tuple <vx, vy> comprising two continuous real values.

3. Object image moments: Our Video Processor extracts images of objects from a
scene including its shape, which it converts into a characteristic shape signature.
Shape signatures or moments are a commonly used technique for analysis and
comparison of 2D shapes. They capture information such as orientation, size, and
shape boundary (Leu, 1991). We generate fourth order moments, which is a tuple
comprising 15 real continuous values <m0…m14>.

In addition to these attributes, we employ the following group of relational attributes:

4. Closest track object: These three attributes encode the spatial relationship of a
reference object (i.e., the object that the case represents) in a maritime scene to a
related maritime object that is the closest to it. The distance between a reference
object and a related object is computed based on their positions in the two-
dimensional real world coordinates. The attributes comprise a tuple of three
values <roc, rod, rob>:

a. Related object category (roc): This is a categorical label of the related object
selected from our Maritime Ontology.

b. Related object distance (rod): This is the distance of the related object from
the reference object represented by a continuous real value greater than or
equal to 0. (We define our distance function below.)

c. Related object bearing (rob): This is the angle between the velocity vector of
the reference object and the position vector of a related object.

442 K.M. Gupta, D.W. Aha, and P. Moore

Other (e.g., temporal) relationships among objects exist that we could use for maritime
object classification, but we leave their consideration for future study.

Case Retrieval: A new problem in MAAW refers to an unlabeled object in a mari-
time scene. We retrieve the k most similar stored cases by comparing each of them
with the new problem to assess their overall similarity. We compute the overall simi-
larity by a weighted aggregation of attribute similarities, where the definitions for
each of the four groups of attributes are defined as shown below.

i. Positional similarity: We compute the positional similarity PosSim(oi, oj) of two
objects oi and oj as follows:

jiMaxDistoodistooPosSim jiji ≠−= ,),(1),((1)

22)()(),(y
j

y
i

x
j

x
iji ppppoodist −+−=

22))min()(max())min()(max(yyxx ppppMaxDist −+−=

 where dist() is the Euclidean distance between two maritime objects computed
using the attributes representing their respective positions (i.e., the tuple (px,py)).
MaxDist is a similarity metric parameter representing the maximum possible dis-
tance for a pair of objects, computed from their position values over the entire
case base.

ii. Velocity similarity: We compute the similarity SpeedSim(oi, oj) of the speed of
two maritime objects oi and oj as follows (we ignore directional differences for
this task):

jioodiffooSpeedSim sjiji ≠−= ,),(1),(σ

22)()(),(y
j

y
i

x
j

x
iji vvvvoodiff −+−=

(2)

where σs is a similarity metric parameter representing the standard deviation (i.e.,
variance) of object speeds over the entire case base.

iii. Moment similarity: We compute the similarity MomSim(oi, oj) of the image mo-
ments of two maritime objects oi and oj as follows:

140,15),(),(≤≤= ∑ koomvSimooMomSim ji
k

ji
 (3)

)/)(,1min(1),(k
m

k
j

k
iji

k mvmvoomvSim σ−−=

(3.1)

Equation 3 averages the similarities across 15 moment value similarities, where
each moment value similarity mvSimk(oi,oj) is calculated using Equation 3.1,
which computes the minimum of the proportional difference of the kth moment
values mvk. This metric uses 15 parameters, σm

k, each representing the variance of
the kth moment value across the entire case base.

iv. Closest object similarity: This metric assesses the similarity of pairs of spatially
related objects. The attribute closest track object captures the spatial relation
between a reference object and its closest related object. This metric, ClobSim(oi,

 Case-Based Collective Inference 443

oj), compares this relation in two parts (see Equation 4). First, it checks to see if
the categories of related objects (i.e., roc) are the same. Then it compares the dis-
tance (i.e., rod) using rdistSim() and the bearing (i.e., rob) rbearingSim(). Equa-
tion 4 averages the distance and bearing similarities.

The distance similarity is computed using Equation 4.1, which uses a metric pa-
rameter, σrod, which represents the variation of rod across the entire case base. The
bearing similarity is computed in four parts based on the four quadrants of a circle
centered on the reference object (ð/2, ð, 3ð/2, 2ð) that roughly represent the for-
ward, rightward, backward, and leftward topological spaces of an object. These
are forward similarity (fsim), backward similarity (bsim), rightward similarity
(rsim) and leftward similarity (lsim), respectively:

))()""(,0),(jijiji rocrocNONErocrocifooClobSim ≠∨=∨= (4)

otherwiseoomrbearingSioordistSim jiji ,2/)),(),((+= (4.1)

)),min(),,min(min(),(

/1),(

lsimrsimbsimfsimoomrbearingSi

rodrodoordistSim

ji

rodjiji

=

−−= σ

 for θ = robi - robj

 fsim(θ) = 2*|π/2 - θ|/ π when 0 < θ < π/2
 = 1- 2*|2π - θ|/ π when 3π/2 < θ < 2π
 = 0 otherwise

 bsim(θ) = 1- 2*|π/2 - θ|/ π when π < θ < 3π/2
 = 1 when θ = π
 = 0 otherwise

 rsim(θ) = 1- 2*|3π/2 - θ|/ π when π < θ < 2π
 = 1 when θ = 3π/2
 = 0 otherwise

 lsim(θ) = 1- 2*|π/2 - θ|/ π when 0 < θ < π/2
 = 1 when θ = π/2
 = 0 otherwise

The function we use to compute aggregate similarity Osim(oi,oj) for the learned clas-
sifier is as follows:

Osim(oi,oj) = (PosSim(oi,oj)+ SpeedSim(oi,oj)+ MomSim(oi oj))/3 (5)

Osim(oi,oj) = (PosSim(oi,oj)+ SpeedSim(oi,oj)+ MomSim(oi,oj)+ ClobSim(oi,oj))/4 (6)

where Equation 5 refers to the computation before relational values have been com-
puted (i.e., during the bootstrap phase) and Equation 6 refers to the situation after the
relational values have been computed (i.e., during collective inference). For the sake
of simplicity, we ignore differential weighting of features in this paper, leaving this
for future study.

Case Reuse: We use the similarity-weighted voting kernel function for reusing the
labels from the k most closely matching cases. This kernel collates the votes for the
candidate category labels from each of the k cases, where each offers its Osim() value

444 K.M. Gupta, D.W. Aha, and P. Moore

as a vote toward its object label. The kernel then computes the total vote for each can-
didate label by summing over all the votes it receives, and selects the label with the
largest vote as the label for the new problem.

Supervised Learning: Learning a case-based classifier can include learning/tuning
its similarity metric from a memory of stored cases. This can involve, for example,
feature weight learning and computing the values of metric parameters. In this paper,
we perform only this latter task. We computed the settings of the parameters for each
of the four parameters described above (i.e., MaxDist for positional similarity, σs for
velocity similarity, k

mσ for moment similarity, and rodσ for closest object similarity).
This entails estimating their value over the entire case base. For example, rodσ is the
standard deviation, a statistic computed over the real-valued attribute rod.

5 Evaluation

5.1 Objective

Our objective was to evaluate whether using a collective classification approach for
our maritime object classification task attains a significantly higher accuracy than
does a conventional supervised learning algorithm. In other words, we formulate the
following null hypothesis:

H0 There is no difference between the maritime object classification accuracy ob-
tained by a collective classifier and the accuracy obtained by a conventional but
otherwise equivalent supervised learning algorithm.

5.2 Method

Data: We selected two days of video of maritime activities on the Potomac River in
Washington, DC. We used the Video Processor on this video to detect tracks of mov-
ing maritime objects and their attributes (e.g., position and velocities at different
points in time). Using MAAW, we then labeled all the events in a track with appro-
priate object categories (see Figure 4). These object category labels were chosen from
a Maritime Ontology (a taxonomy of objects, partially visible in Figure 4) that we
developed using MAAW. Typically, leaf nodes of the ontology were selected, but
subject matter experts were also allowed to select intermediate nodes when the object
could not be visually categorized at the most specific level.

Our database included 1578 cases of labeled objects. The database included cases
in 23 object categories from our Maritime Ontology, with proportions ranging from
46.64% to 0.13%. The top three most populous labels were wave (46.64%), small-
touring-vessel (9.76%), and wake (7.41%). Half the object categories (e.g., steam-
paddle-touring-vessel) were relatively rare and occurred less than 2% of the time in
our data set.

Algorithms: We implemented two algorithms to conduct a comparative empirical
evaluation. They were implemented using the Knexus Classification Workbench
(KCLAW), a proprietary Java library for classification tasks:

 Case-Based Collective Inference 445

Fig. 4. MAAW can be used to label the extracted maritime tracks

1. ICA0: This is a conventional case-based classifier (kNN) that does not perform
collective classification. It differs from ICA in that it performs no collective in-
ference, and does not employ relational attributes.

2. ICA: We summarized this simple collective classifier in Section 4.1 and detailed
its application to our maritime object classification task in Section 4.2.

Performance Measure: We used classification accuracy as the performance measure
with some modification. Given the nature of our domain, we considered graded mis-
classification costs based on the Maritime Ontology of object labels. In particular, we
permit misclassification costs to be less than 1, depending on the taxonomic relation-
ship between the correct and predicted labels. To do this, we used the Maritime On-
tology to compute a misclassification cost matrix. For example, if a small-motorboat
was classified as a medium-sized-motorboat the classification error was 0.5 rather
than 1.0 because they are siblings in this taxonomy.

Test Procedure: We adopted a leave-one-out cross validation (LOOCV) test proce-
dure with some modifications. Conventional LOOCV procedures use one case from
the database for testing and the remainder for training, cycling through the entire case
base and averaging the results of individual tests. We cannot use this here because
collective inference operates on a graph of related cases, and we choose to eliminate
any relations between the training and test cases. Therefore, we grouped cases that
refer to co-occurring tracks and events within the same track; each such grouping
yields a single fold (i.e., each fold’s cases have no relations with cases in other folds).
Next, we treated each fold as a test set and the union of cases from the remaining
folds as the corresponding training set (i.e., the case base). This yields 177 folds, of
which 77 contain cases with relational attribute values. The average number of cases-
per fold across the entire data set is 8.92. The average number of cases in relational
folds was marginally greater (10.79). ICA0 and ICA were applied to each test set (i.e.,
fold) and their classification accuracy was recorded.

Analysis: We used a paired student’s 1-tailed t-test to evaluate the null hypothesis H0.

446 K.M. Gupta, D.W. Aha, and P. Moore

Table 1. Average Classification Accuracies for the Collective and Non-Collective Classifiers
on the Maritime Object Classification Task

Comparison Scope ICA0 ICA Significance
Relational Only 46.90 51.85 0.0001
Overall 53.23 56.06 0.0019

5.3 Results and Analysis

We compared the performance of ICA0 and ICA under two dataset conditions:

1. Relational Only: To obtain insight on their true performance differences, we
compared the algorithms using only those 77 folds that contain relations.

2. Overall: To assess the overall impact of collective inference (at least, as embodied
in ICA) for our application, we compared the two algorithms using all 177 folds to
obtain an aggregate performance measure.

Table 1 summarizes the results. The average classification accuracies of ICA0 and
ICA for the Relational Only condition are 46.90% and 51.85% respectively
(p=0.0001). Thus, we reject our null hypothesis H0

 and confirm that ICA, a case-
based collective classifier, attains significantly higher accuracy than does an other-
wise equivalent conventional (i.e., non-relational, non-collective) case-based classifier
for our maritime object classification task. For the Overall condition, ICA still signifi-
cantly outperforms ICA0 (i.e., 53.23% and 56.06% respectively (p=0.0019)) although,
as expected, their performance difference is smaller (4.95 vs. 2.83). There are a large
number of classes in our domain and many of them occur rarely. Thus, ICA0’s classi-
fication accuracy for the Relational Only condition is substantially lower than it is for
the Overall condition.

6 Discussion

Our algorithm benefited greatly from experimenting with alternative similarity func-
tions. For example, while not reported here, we found no benefit for the collective
classifier until we used a similarity metric that transformed the bearing into topologi-
cal quadrants. Although we compared the performance of our algorithms using a
graded (non-binary) classification error measure, our conclusions remain valid when
we use a binary classification measure.

Performance could be further improved by using higher quality data and refining
the collective classification algorithm. First, the data we are using is noisy; there are
large variations in position detection (e.g., the position at which an object is detected
can be inaccurate due to low-resolution imagery). Also, the shape geometry uses
coarse techniques. We are currently addressing these issues. Also, we plan to improve
tracking by providing feedback from the Behavior Interpreter to the Video Processor
(see Figure 1) so as to facilitate the learning of more accurate appearance models.

Second, ICA’s behavior could be improved. While we are using the closest track
object relation, we have not yet examined alternative relations that may be more

 Case-Based Collective Inference 447

appropriate for this domain. Thus, we will study methods that can automatically iden-
tify relations, and potentially increase classification accuracy. Also, our similarity
metric is primitive; performance may be improved by assigning and learning the val-
ues of attribute weights. Likewise, our collective inferencing algorithm is non-
optimal. By eagerly using all the predicted labels in each iteration, if many are wrong,
then classification accuracy could suffer. Accuracy may increase if we use a cautious
variant of ICA (McDowell et al., 2007b), which would not use low-confidence classi-
fication predictions when computing relational attribute values. Finally, collective
classification accuracy can be increased by methods that can increase the data’s
autocorrelation (Aha, 2008), and we plan to test methods with this ability.

This paper describes our initial step towards developing a capability that can assist
watchstanders with force protection monitoring tasks. We plan to evaluate our algo-
rithm’s utility on additional video of ports, harbors, and other high-traffic maritime
areas. In addition, we would like to use additional sensors (e.g., 3-D cameras, infra-
red, long-range), and, ideally, arrange them on-board to provide 360%, real-time sur-
veillance coverage for use in a variety of conditions (e.g., night, fog, precipitation) in
many maritime environments.

7 Conclusion

Maritime surveillance for counter terrorism and force protection is manually intensive
and error prone due to information overload, fatigue, and imperfect sensors. Although
there is a significant opportunity for automated threat analysis from surveillance
video, this problem is challenging. For example, image processing techniques may
erroneously identify objects, and the low-level sensor data can be noisy.

In this paper, we focused on object recognition, an initial part of the problem
of performing automated threat analysis from surveillance video. We took a
unique approach to the problem by transforming a maritime scene into a graph of
spatially related objects, instead of considering each object independently. This
enabled us to represent and exploit the information contained in the contextual
cues (i.e., the relations among objects) by applying collective classification algo-
rithms. For one such algorithm, the Iterative Collective Algorithm (ICA),
we found that it can significantly increase classification accuracy when using a
case-based classifier.

We developed a novel representation for maritime object classification, applied a
case-based collective classifier, and empirically demonstrated its utility. We used a
domain-specific function for computing the similarity of topological relations.

There are many issues that we plan to address in our future work to improve on the
methods presented here. For example, we will explore the use of cautious approaches
for collective classification (McDowell et al., 2007b) and other more sophisticated
collective inference algorithms (Sen et al., 2008; Aha, 2008). We will also enhance
our relational representation to include temporal relations, and assess methods for
automatically transforming and selecting relations for our case representation. Finally,
we will investigate the use of similarity metric learning techniques.

448 K.M. Gupta, D.W. Aha, and P. Moore

Acknowledgements

Thanks to Ralph Hartley for implementing MAAW’s image processing software. This
research was supported by the Office of Naval Research and NRL.

References

Aboutalib, S., Veloso, M.: Towards using multiple cues for robust object recognition. In: Pro-
ceedings of the Sixth International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 189–196. ACM Press, Honolulu (2007)

Adams, S., Goel, A.K.: A STAB at making sense of VAST data. In: Geib, C., Pynadath, D.
(eds.) Plan, Activity, and Intent Recognition: Papers from the AAAI Workshop (Technical
Report WS-07-09). AAAI Press, Vancouver (2007)

Aha, D.W.: Object classification in a relational world: A modest review and initial contribu-
tions. In: Proceedings of the Nineteenth Irish Conference on Artificial Intelligence and Cog-
nitive Science, p. 1. Cork, Ireland (Unpublished)

Burke, R., Kass, A.: Supporting learning through active retrieval of video stories. Journal of
Expert Systems with Applications 9(5), 361–378 (1995)

Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. Transactions on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in relational
learning. In: Proceedings of the Nineteenth International Conference on Machine Learning,
pp. 259–266. Morgan Kaufmann, San Francisco (2002)

Johnson, C., Birnbaum, L., Bareiss, R., Hinrichs, T.: War stories: Harnessing organizational
memories to support task performance. Intelligence 11(1), 17–31 (2000)

Jung, J., Han, I., Suh, B.: Risk analysis for electronic commerce using case-based reasoning.
International Journal of Intelligent Systems in Accounting, Finance, & Management 8, 61–
73 (1999)

Leu, J.-G.: Computing a shape’s moments from its boundary. Pattern Recognition 24(10), 949–
957 (1991)

Lipton, A.J., Heartwell, C.H., Haering, N., Madden, D.: Critical asset protection, perimeter moni-
toring, and threat detection using automated video surveillance (2009) (unpublished manu-
script), http://www.objectvideo.com/products/onboard/whitepapers

López de Mantaras, R., McSherry, D., Bridge, D.G., Leake, D.B., Smyth, B., Craw, S., Falt-
ings, B., Maher, M.L., Cox, M.T., Forbus, K.D., Keane, M., Aamodt, A., Watson, I.D.: Re-
trieval, reuse, revision and retention in case-based reasoning. Knowledge Engineering Re-
view 20(3), 215–240 (2005)

MacNeil, R.: Generating multimedia presentations automatically using TYRO, the constraint,
case-based designer’s apprentice. In: Proceedings of the Workshop on Visual Languages,
pp. 74–79. IEEE Press, Kobe (1991)

McDowell, L.K., Gupta, K.M., Aha, D.W.: Case-based collective classification. In: Proceed-
ings of the Twentieth International FLAIRS Conference. AAAI, Key West (2007a)

McDowell, L., Gupta, K.M., Aha, D.W.: Cautious inference in collective classification. In:
Proceedings of the Twenty-Second Conference on Artificial Intelligence, pp. 596–601.
AAAI Press, Vancouver (2007b)

Micarelli, A., Sansonetti, G.: Case-based anomaly detection. In: Weber, R.O., Richter, M.M.
(eds.) ICCBR 2007. LNCS, vol. 4626, pp. 269–283. Springer, Heidelberg (2007)

Murdock, J.W., Aha, D.W., Breslow, L.A.: Assessing elaborated hypotheses: An interpretive
case-based reasoning approach. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS,
vol. 2689, pp. 332–346. Springer, Heidelberg (2003)

 Case-Based Collective Inference 449

Neville, J., Jensen, D.: Iterative classification in relational data. In: Getoor, L., Jensen, D. (eds.)
Learning Statistical Models from Relational Data: Papers from the AAAI Workshop (Tech-
nical Report WS-00-06). AAAI Press, Austin (2000)

Neville, J., Jensen, D.: Leveraging relational autocorrelation with latent group models. In: Pro-
ceedings of the Fifth International Conference on Data Mining, pp. 322–329. IEEE Press,
Houston (2005)

ObjectVideo. Intelligent video surveillance increases security at seaports,
http://objectvideo.com

Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Mor-
gan Kaufman, San Mateo (1988)

Perner, P.: Case-based reasoning for image interpretation in non-destructive testing. In: Pro-
ceedings of the First European Workshop on Case-Based Reasoning, vol. II, pp. 403–409.
University of Kaiserslautern, Kaiserslautern (1993)

Perner, P., Holt, A., Richter, M.: Image processing in case-based reasoning. Knowledge Engi-
neering Review 20(3), 311–314 (2005)

Rhodes, B.J., Bomberger, N.A., Seibert, M., Waxman, A.M.: Maritime situation monitoring
and awareness using learning mechanisms. In: Proceedings of Situation Management: Pa-
pers from the Military Communications Conf. IEEE, Atlantic City (2005)

Rincón, M., Martínez-Cantos, J.: An annotation tool for video understanding. In: Moreno Díaz,
R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 701–
708. Springer, Heidelberg (2007)

Rosenfeld, A., Hummel, R.A., Zucker, S.W.: Scene labeling by relaxation operations. Transac-
tions on Systems, Man, and Cybernetics 6(6), 420–433 (1976)

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classifica-
tion in network data. AI Magazine 29(3), 93–106 (2008)

Zhang, D., Nunamaker, J.F.: A natural language approach to content-based video indexing and
retrieval for interactive e-learning. Transactions on Multimedia 6(3), 450–458 (2004)

Case-Based Reasoning for Situation-Aware
Ambient Intelligence: A Hospital Ward

Evaluation Study

Anders Kofod-Petersen1 and Agnar Aamodt2

1 SINTEF ICT,
S. P. Andersens vei 15 b,
7465, Trondheim, Norway

akof@sintef.no
2 Department of Computer and Information Science,

Norwegian University of Science and Technology,
7491 Trondheim, Norway

agnar@idi.ntnu.no

Abstract. Ambient intelligent systems are defined as being able to per-
ceive their environment, being aware of the presence of people and other
agents, and respond intelligently to these agents’ needs. Today the hard-
ware requirements for achieving these capabilities are met. Earlier work
have argued that knowledge intensive case-based reasoning is a feasible
method for ambient intelligence. In this paper that argument is sup-
ported by testing of an implementation in a hospital ward domain, which
shows that despite some issues related to the current implementation the
case-based reasoner performs at an acceptable level.

1 Introduction

As computers are becoming more ubiquitous [1], pervasive [2], and ambient1

[4], the need for methods that assist their users in smart and intelligent ways
is rapidly increasing. In an ambient system an actual physical computer device
will be situated in various physical and social environments at different times,
and a challenge is therefore to identify and interpret that environment. Ambient
intelligent systems, as defined by the ISTAG group [5], are characterised by being
able to perceive their environments, be aware of the presence of people and other
agents, interpret their own role in that context, and respond intelligently to one
or more agents’ needs [6].

Realising ambient systems relies on miniaturisation of technology, high calcu-
lation power and interconnectivity. According to Satyanarayanan [7], all these
hardware tools are currently available. Yet, many of the scenarios described in
1 Recently the term everywhere computing [3] has also been introduced. Although all

these terms can be viewed as synonyms, a particular term typically indicates a par-
ticular perspective, e.g., a physical distributed system perspective vs. a functional-
oriented service perspective.

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 450–464, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Case-Based Reasoning for Situation-Aware Ambient Intelligence 451

Service at home

Home

Car

Service on the road

Service at work

Work

Seamless environment
management

Body

Service to the "body"

Knowledge
and
Interfaces

Networks
Mobil,
wireless,
fixed ...

Devices
electronics
systems

...

Computing
Computers,
systems
and basic
software

Fig. 1. The AmI space (adapted from [9])

the literature still seem like science fiction [8]. When inspecting the literature
it appears that the problems of “grasping” everyday life is assumed solved by
some sort of intelligent behaviour, but the methods that realise those behaviours
are seldom addressed explicitly. The long term vision of the ISTAG group is the
concept of AmI space, which comprises networked embedded systems that host
dynamically configurable services (see Figure 1). The AmI space realises the vi-
sion of ambient intelligence by integrating local functionality across a variety of
environments. This enables direct, natural and intuitive interaction between the
user and services spanning a collection of environments.

In earlier work we have reported on the feasibility of case-based reasoning as a
method for realising context-awareness in an ambient intelligent setting [10,11].
In particular, knowledge intensive case-based reasoning, in which the case-based
reasoning process is supported by a structural model of general domain knowl-
edge, appears promising. Case-based reasoning lends itself easily to reasoning
about context and situations. The fact that case-based reasoning springs from
work on understanding reasoning as an explanation process [12], and approaches
reasoning by storing and remembering specific episodes (situations), clearly sug-
gests it as a candidate for computational reasoning about situations.

The focus of the work presented here is on the situation awareness task, and
more specifically on classifying the situation types in question, based on context
elements such as location, time, or type of people involved. Our application
domain is the hospital ward domain. The setting is that several times during the
day medical personnel gather together for some purpose, with or without the
presence of patients. The system’s task is to determine what type of gathering
this is. An experimental system has been developed, within the framework of the
CREEK system [13,14], and adapted for use on mobile pocket-size computers
suitable for being carried around by ward personnel. The system’s architecture,

452 A. Kofod-Petersen and A. Aamodt

knowledge structures, and methods are presented in an earlier paper [10], which
also exemplifies how a ward situation is classified. In the present paper we briefly
review the system architecture and main components, and describe an evaluation
study that has been made to assess the system’s quality. The system, called
AmICREEK2, is evaluated according to its ability to classify situations correctly
[15]. The results are analysed and discussed within a larger evaluation framework
that also include some of the evaluation criteria put forth by Cohen [16].

The rest of the paper is structured as follows: First a short overview of related
work is presented. This is followed, in Section 3, by a summary of the architecture
of AmICreek. In Section 4 the hospital ward study is presented, with the outcome
analysed and discussed in Section 5. A conclusion and outlook on future work
ends the paper.

2 Related Work

Traditionally, case-based reasoning has been applied to monolithic decision sup-
port systems. Recently, however, case-based reasoning has also been applied
within the ambient intelligent community. Zimmermann [17] reported on case-
based reasoning used to generate recommendations based on the user’s context
in a mobile environment. The user context was encapsulated inside cases to
facilitate comparison of contexts, generating recommendations based on case
similarities, and learning of user behaviour. This work was part of a project
concerned with audio augmentation of the real world in the context of the art
museum in Bonn. Adapting solutions to particular users was also a focus in
the work by Ma et al. [18], where case-based reasoning was used to adapt the
behaviour of smart homes to users’ preferences. Multi-user smart homes can,
even with a very limited amount of connected devices, present themselves with
a very large amount of possible key processes and dependencies between them.
Case-based reasoning was in this work used to identify these interdependencies,
due to its ability to reason in ill understood and poorly structured domains.
Bénard et al. [19] investigated the use of case-based reasoning as a mechanism
for selecting suitable behaviour in different situations. They proposed an agent-
based architecture that uses perceived information, or context, as the findings
of a case and the proposed action as the solution. The authors ground their
context model in a psychological framework that resembles the idea of selective
interest and background context as argued by Dewey [20]. This is similar to
the approach taken in earlier work within our group [21], which focused on the
development of a comprehensive context model. As in that work, Bénard et al.
separated context into external and internal context. The former includes the
entities present in the environment, and the latter includes skills, states of the

2 AmICREEK is a recent label for the system, which in earlier reports has been referred
to merely as a CREEK system (referring to its framework and CBR method types),
or a TrollCREEK system (referring to the Java implementation of CREEK which it
was developed from).

Case-Based Reasoning for Situation-Aware Ambient Intelligence 453

agent, the agent’s strategies and the agent’s history. The existing cases in the
case base are pre-classified situations modelled by a domain expert.

Kwon et al. [22] applied case-based reasoning in a multi-agent environment,
to estimate the best purchase in comparative shopping. The goal of the system
was to achieve a best possible solution between seller and buyer. This system
was tested in simulation with several experiments. The three tests were: no
negotiation, only price negotiation, and price as well as quality negotiation. As
expected by the authors, the complex negotiation outperformed the other two,
with respect to buyer’s payoff, seller’s payoff, and seller’s rate of bid winning.

The MyCampus [23] system used case-based reasoning to learn a user’s
context-sensitive message filtering preferences. When a new message arrived it
was compared to the existing messages stored in the case base. The new case was
compared to the type of message, the sender of the message, the user’s current
calendar activity, the user’s current location, and the weather. An experiment
was carried out to validate the feasibility of the case-based approach. The ex-
periment showed that the accuracy of the filtering process grew from 50 % to
over 80 % when using the case-based reasoning approach.

The latter two methods were evaluated by assessing the quality of the best
solution, determined by the accuracy of the solution value when compared to
the expected value. This is a well-established approach [15], and also the as-
sessment strategy adopted to assess the AmICreek system. As pointed out in
[24], however, evaluating the quality of case-based reasoning systems may not
be as straightforward, for example when cases are complex structures which are
time consuming to construct, or when the user benefits from a larger part of a
rich case than just a particular value. These concerns should also make some
bells ring when building and evaluating user-interactive systems in health care.
Extended approaches to evaluation of case-based reasoning systems include the
work of Santamaria et. al [25] addressing the complexity of case-based reasoning
applications, the work by McSherry [26] on diversity as a criterion, and the work
by Smyth and McKenna [27] on case base competence. Cohen has addressed the
evaluation of AI systems in general [28], as well as case-based reasoning systems
in particular [16]. In addition to the common accuracy assessment, we relate our
result to some of Cohen’s criteria in the discussion chapter.

3 System Architecture

AmICREEK is an ambient intelligent system that spans a part of the AmI space
described in Section 1. AmICREEK observes the ongoing work, thereby becom-
ing aware of the presence of a person; assess ongoing situations, thus perceives
the needs of this person, and responds intelligently to ongoing situations. The
system is implemented as a three layer architecture where each layer has its own
specific responsibility [10]. The AmICREEK architectures is comparable to the
model of situation awareness as described by Endsley et al. [29].

The functional architecture is depicted in Figure 2. The main layer of interest
in the work presented here is the Awareness layer.

454 A. Kofod-Petersen and A. Aamodt

Creek Agent

Decomposer Agent

Application Agent

Application Agent

Application Agent

Perceived

World Knowledge

Perception Awareness Sensitivity

Previous
Cases

Retrieved
Case

New
Case

Situations
Context

Goal
Context

Goal

Fig. 2. Functional System Architecture

The initial layer is the Perception layer, which corresponds to the Perception
layer in Endsley’s model of situation awareness [29]. This layer is responsible
for perceiving the environment and acquiring the necessary knowledge to feed
the next two layers. The layer is implemented as a middleware solution that
structures gathered information into a coherent structure [30], here named the
Situation Context (see the middle part of Figure 2). Changes in the Situation
Context will trigger an event that will initiate the case-based reasoning cycle.

The second layer is the Awareness layer. This corresponds to the second layer
in Endsley’s model (comprehension), and is the layer that the work presented
here focuses on. This layer, which is the layer that exhibits the context-awareness,
is implemented using the CREEK method [13,14]. The awareness layer acquires
all relevant knowledge from the Perception layer and represents it as the findings
of a new case [10]. The new case is matched to the existing case base, the goal
is extracted from the best matching case and handed over to the third layer.

The third layer is the Sensitivity layer, which is comparable to the third layer
in Endsley’s model (Projection). This layer acquires the goal identified by the
case-based reasoning cycle and constructs a sequence of tasks to execute that
will satisfy the goal [31].

Context is used in two different ways within the architecture. Initially context
describes the information that is perceivable in the world, labelled as Situation
Context in Figure 2. This information constitutes the findings part of the cases,
and is important for retrieving similar cases. The second use, labelled Goal Con-
text in Figure 2, is the subset of the Situation Context that is relevant to the
goal extracted from a matching case. For at more thorough description of the
dualistic use of context and its place in the AmICREEK’s knowledge model,
please see [10].

4 A Hospital Ward Study

The test presented here tests the Awareness layer, by focusing on the ability of
the case-based reasoning system to assess situations correctly. The perception

Case-Based Reasoning for Situation-Aware Ambient Intelligence 455

Table 1. Essential Aspects of Situations

Parameter Description

Location The room where the situation occurred
User The user of the system
Role The role of the user
Present Other persons present
Role The role of each of the persons present
Time The time of day
Source Information sources and targets
I/O The direction of the information flow
Information Type of information
Situation The type of situation

layer and sensitivity layer have been tested separately on other occasions. The
reader is directed to [32] for further details.

4.1 Test Setup

The essential aspects of situations, in the hospital ward domain, are the nine pa-
rameters shown in Table 1. These parameters were noted in the ethnographical
study detailed in [11]. The topmost six parameters are used to describe the sit-
uation as a case and constitute the findings. The next three are used to describe
how a goal can be decomposed. Finally, the last parameter is the situation type
as classified by the hospital personnel.

For the initial test, the data observed by a human observer, following consul-
tant physician number nine (OL9) were chosen. The physician was the one with
the highest number of experienced situations, as well as the one who experienced
the highest number of different situations. For the purpose of this test, two days
(13 and 14) of observations of OL9 were used. The evaluation of the system’s
performance was initially done by a qualitative evaluation of the data from the
cardiology ward. This was carried out in order to review the context model and
the integration of the knowledge model. It is worth noticing that attending one
meeting can be viewed as many situations (in sequence). For example, a given
meeting of the type pre-ward-round will typically involve the discussion of sev-
eral patients. Thus, such a meeting is broken down into one pre-ward-round
situation per patient discussed.

4.2 Test Execution

The test was conducted as a three-step process. First the 25 different situations
that occurred on day 13 were added to the case base, partly as solved and un-
solved cases, and the retrieve-step was executed for each of the unsolved cases.
Secondly, the learning process of the case-based reasoning algorithm was man-
ually executed. That is, the former unsolved cases were classified and flagged

456 A. Kofod-Petersen and A. Aamodt

Table 2. Distribution of Observed Situations for OL9, day 13

Situation type Number of
situations

Percentage of
all situations
covered by
day 13

Initial number
of solve cases

Sample

Post-work 9 69% 6 1,2,3,4,6,9
Preparation 1 25% 1 1
Pre-ward-round 6 23% 4 2,3,4,6
Patient meeting 1 25% 1 1
Examination 2 25% 1 1
Ward-round 6 23% 4 3,4,5,6

as solved. Finally, all of the day 13 cases were used to classify the situations
occurring on day 14.

4.3 Initial Modelling

To get a representative distribution of solved and unsolved cases, the 25 dif-
ferent situations for day 13 were divided into two groups. 2

3 of the cases (17)
were randomly selected and marked as solved, the remaining 1

3 (8) were added
as unsolved cases. Table 2 describes the number of different situations, the per-
centages of the total situations, how many were initially selected as solved, and
the specific situations in question.

The column labelled Situation type describes the six different situations ex-
perienced by physician OL9. Number of situations counts the number of each
situation-type occurring on day 13. The column labelled Percentage of all situ-
ations covered by day 13 shows us how large a percentage the specific situation
type that occur on day 13. As an example, the nine observed situations of the
type Post-work covers 69 % of all observed situations of this type for both day 13
and 14. The column labelled Initial number of solved cases gives us the number
of cases chosen to be marked as solved. Finally, the column labelled Sample tells
us which specific situations were modelled as solved cases.

The situations chosen as solved were modelled as cases using the six upper
parameters shown in Table 1 as findings. The parameter Situation was used
to mark each of the cases with a top-level goal, in the sense that for e.g. the
Post-work situations the goal Post-work-goal was identified.

After the modelling of the cases marked as solved the remaining cases were
modelled as unsolved. Each of these case were modelled in exactly the same
fashion as those solved, except for obviously being marked as unsolved. Each of
the unsolved cases were then run through the retrieve-step and matched to the
solved cases.

4.4 Executing Day 13 Test

Table 3 demonstrates the result of the retrieve process for the unsolved cases of
day 13. The current implementation only selects the best matching case for goal

Case-Based Reasoning for Situation-Aware Ambient Intelligence 457

Table 3. Result of Matching Test (Run 1)

Input case Strength Matching case

Ward round 1301 89% Pre-ward round 1306
88% Pre-ward round 1304
88% Pre-ward round 1303

Ward round 1302 88% Ward round 1305
88% Pre-ward round 1306
88% Pre-ward round 1304

Pre-ward round 1301 100% Pre-ward round 1303
100% Pre-ward round 1304
99% Pre-ward round 1306

Pre-ward round 1305 100% Pre-ward round 1304
100% Pre-ward round 1306
100% Pre-ward round 1303

Examination 1302 100% Examination 1301
55% Post work 1304
54% Post work 1303

Post work 1305 100% Post work 1306
65% Preparation 1301
64% Post work 1304

Post work 1307 99% Post work 1306
66% Preparation 1301
64% Post work 1309

Post work 1308 66% Post work 1309
65% Preparation 1301
61% Consultation 1304

extraction. So when examining the cases in Table 3 that are classified correctly we
can disregard all but the best matching case. Following that line of reasoning only
Ward round 1301 has been misclassified. For Ward round 1302, Ward round
1305 gets selected due to the detailed mechanism for ranking matched cases not
apparent in Table 3. AmICREEK suggests that this particular ward round is a
pre-ward round, and that the best matching case is Pre-ward round 1306.

If we examine the two cases shown, see Figure 3, we will see that they do
not look like they should resemble each other to such a high degree as sug-
gested. The differences between the two cases have been marked with dashed-
lined circles. Starting with the Environmental Context, it contains Patient
#36, which the matching case does not. Obviously this missing feature should
suggest that the two cases differ. The CREEK method does support the ability
to lower the matching strength when a matching case misses features. However,
the AmICREEK does not yet implement this feature. Looking at the two time
values, we can observe that they are very close, and are indeed reported as being
98 % similar. The unknown case occurs in the patient room PR10, whereas the
best matching case takes place in the Doctor’s office 4. AmICREEK decides,
correctly, that these two locations do not syntactically match. However, both of

458 A. Kofod-Petersen and A. Aamodt

Pre-ward round 1306

Context

Social Context Spatio-temporal Context

Community

Environmental Context

Examination Responsible Role Group Leader Role

Doctor's Office 4 09:41

Solved

Nurse #8

Ward round 1301

Context

Social Context Spatio-temporal Context

Community

Examination Responsible Role Group Leader Role

PR 10 09:55

Unsolved

Environmental Context

Nurse #8 Patient #36

Patient Role

Fig. 3. Ward round 1301 vs. Pre-ward round 1306

these locations are instances of the general class Location, and as the knowl-
edge model is structured in a semantic network it should be possible to explain
that they are somewhat alike. The CREEK method does allow for this type
of reasoning by calculating the convergence point between two concepts [14].
However, currently AmICREEK has been focused on calculation of convergence
points between causal relations, thus the calculation for non-causal relations,
e.g., instance of and subclass of, results in convergence between all concepts, as
all concepts at some point are an instance of, or subclass of the top-most con-
cept Thing. Finally, the unknown case contains a Patient Role, not found in
the best matching case. This is the same problem as described above regarding
the patient in the Environmental Context.

If we examine the case base for known cases of the type Ward round, the best
matching case is Ward round 1303, which AmICREEK reports as matching
with a strength of 83 %, and as number seven in the list of matching cases. If we
examine that case we will discover that it resembles the unknown case a lot. Only
two parameters separates them: the time is 09:55 versus 10:13, something which
AmICREEK calculates as a 91 % match; and the fact that the patient present
is not Patient #36 but Patient #38. It would seem reasonable that these two
cases had a high matching strength, however as described above, other cases
do not get their matching strength lowered, thus better matching cases cannot
compete. This becomes quite evident if we change the patient present to Patient
#36, in that case the matching strength between the two cases are 99 %, easily
surpassing the matching strengths of the cases of the wrong type.

4.5 Executing Day 14 Test

As described above, Table 3 shows how AmICREEK classified the cases from
day 13 that had be flagged as unsolved. To extend this simulation, we can now
move into day 14 by manually executing the learning process, in other words
correctly classify these previously unsolved cases and flag them as solved. Table

Case-Based Reasoning for Situation-Aware Ambient Intelligence 459

Table 4. Result of Matching Test (Run 2)

Input case Strength Matching case

Pre-ward round 1402 100% Pre-ward round 1303
100% Pre-ward round 1301
100% Pre-ward round 1304

Pre-ward round 1404 100% Pre-ward round 1305
100% Pre-ward round 1306
100% Pre-ward round 1304

Pre-ward round 1407 100% Pre-ward round 1306
100% Pre-ward round 1305
100% Pre-ward round 1304

Examination 1404 55% Examination 1302
55% Examination 1301
54% Post work 1304

Examination 1405 54% Examination 1302
54% Examination 1301
54% Preparation 1301

Ward round 1402 88% Ward round 1305
88% Pre-ward round 1306
88% Pre-ward round 1305

Ward round 1405 99% Ward round 1305
99% Ward round 1304
89% Pre-ward round 1302

Ward round 1408 89% Pre-ward round 1302
88% Pre-ward round 1301
87% Ward round 1305

4 depicts the results of attempting to match the situations from day 14 that was
marked as unknown against all the situations from day 13.

If we examine Table 4 we will see that most of the cases were classified cor-
rectly. Only Ward round 1408 is classified wrongly, as a Pre-ward round. Look-
ing at Ward round 1408 it matches two pre-ward rounds before Ward round
1305 is matched with a matching strength of 87 %. Again the explanation lies in
the fact that semantic matching is currently not implemented and cases are not
being “punished” for missing parameters. In this case, the fact that Pre-ward
round 1302 is occurring at 11:10 and Ward round 1408 at 11:30 is the one
parameter that forces the ranking of the pre-ward round as the best match. As
with the example depicted in Figure 3, the pre-ward round neither contains a
patient nor a patient role, and the location is wrong.

4.6 Accuracy of the Classifications

The data gathered at the cardiology ward included an in situ classification car-
ried out by the physician observed [11]. When measuring the accuracy of the
classifications done in AmICREEK we start off from the assumption that these

460 A. Kofod-Petersen and A. Aamodt

Table 5. Absolute Accuracy of Case-Based Reasoning Test

Situation type Run 1 Run 2
best all best all

Post-work 100% 55% N/A N/A
Pre-ward-round 100% 100% 100% 100%
Examination 100% 33% 100% 66%
Ward-round 50% 16% 100% 50%

classifications are correct. Thus, we can compare AmICREEK’s classifications
to those carried out by an expert. If we examine Table 5 we can see the absolute
accuracy for the four different types of unknown situations that AmICREEK
attempted to classify. For both runs the table gives the percentage of times that
the best matching case was correct, and the percentage of cases that was correct
within the top-three across all matches of this type. The latter can be regarded
as the confidence of the classification. Thus, a low number will tell us that the
classification was distributed, whereas a high number will tell us that the classi-
fication was uniform. As an example, for the Post-work cases in Run 1 all the
best matching cases were correct. However, only 55 % of all top-three matches
were correct.

As shown in Table 5, AmICREEK does a reasonably good job of classifying
the situations correctly. Post-work, Pre-ward-round and Examination are all
classified correctly in Run 1, and all were classified correctly in Run 2 3. Yet,
Ward-wound situations were only classified correctly 50 % of the time in Run 1.

If we look at the distribution among the top-three matches for each situation
type we can see that except for situations of the type pre-ward-round, most
did not classify perfectly. However, as aforementioned, goal extraction was only
carried out for the best matching case.

5 Analysis and Discussion

The evaluation presented is an evaluation of case-based reasoning as a method
for achieving situation-awareness. The use of case-based reasoning as the method
of classification is rooted, not only in the desire to find the best suited algorithm
for a limited data set, but also in the fact that the theory on human cognition
that underlies case-based reasoning is one of situation classification. Thus, the
cognitive plausibility [33] of using case-based reasoning is to be found in the
general characterisation of case-based reasoning as a way of human reasoning.
Hence, the metric for evaluating the use of case-based reasoning in our work, is
not its cognitive validity [16], but rather the performances of the classification.

Classification performance can be evaluated in four ways [15]: i) absolute
accuracy, as determined by a domain expert; ii) the plausibility of incorrect

3 There were no situations of the type Post-work occurring on day 14.

Case-Based Reasoning for Situation-Aware Ambient Intelligence 461

classification, also determined by an expert; iii) performance can be compared
to other algorithms; and iv) performance can be compared to that of an expert.

Currently we have no other implementation of an alternative algorithm that
fits the data readily available, thus no comparison is available (part iii above).
Further, as stated above the choice of case-based reasoning as the algorithm of
choice is not purely a performance choice, but also one of origin. In addition, the
performance of AmICREEK is implicitly already comparable to that of a human
expert (part iv above). The subjects observed did already do classification during
data collection [11], and the classification was in situ, thus we must assume that
these classifications are correct. For the remaining part of the discussion we focus
on the accuracy of the classification and plausibility of incorrect classifications.

Regarding the plausibility of misclassifications, it could be argued that to
determine if any misclassifications are plausible an expert working at the partic-
ular hospital ward is required. However, given the nature of the observed data,
and the amount and distribution of parameters, it seems reasonable that the
same assumption regarding the expert with respect to accuracy also holds for
misclassifications.

Revisiting the results of the two runs described in Section 4 in light of absolute
accuracy, we can re-examine Table 5, we can summarise the accuracy as very
good. All possible classifications, except the situation type Ward-round were
classified correctly. Thus, the absolute accuracy is all in all very good compared
to the expert who classified the situations when they were observed.

If we investigate further, we can see that some of the classifications in the top-
three matches were not correct. In particular with respect to the situation type
Ward-round, the situation was misclassified half of the time in Run 1. To defend
the performance of AmICREEK an explanation for this incorrect classification
must be given. Section 4 did already include explanations as to why each of the
misclassified cases was classified as it was. The two main general reasons are as
follows:

Unsolved cases do sometimes contain features not found in the retrieved case.
These extra features should lower the matching strength of the retrieved case.
However, the particular implementation of how the matching strength is calcu-
lated does currently not take this into account. Thus, the retrieve process uses
incorrect matching strengths with respect to this effect. These extra features
are very obvious to a human expert, and disregarding them goes a long way in
explaining why some cases were misclassifies.

Secondly, when a feature is matched in the leaf nodes of the case structure,
symbols such as Location, Person or Role are only matched on the syntactical
level. This means that the fact that the instances of theses concepts are located
in the multi-relational semantic network is disregarded in the retrieve process.
As with the problem above, the fact that, for an example, a patient is present
is a strong indication for a domain expert that a Ward-round is taking place.
The fact that support for semantic matches of non-causal relations are not yet
implemented does explain why some cases were misclassified.

462 A. Kofod-Petersen and A. Aamodt

Finally, on day 13 only two Ward round cases were initially classified as solved,
yet as more cases were solved in day 14 the classification dramatically improved
(compare Table 3 and Table 4).

In summary, the situations are being classified at an acceptable level for this
first experiment compared to the human domain expert. As we must assume that
the classification gathered are correct, the human domain expert does slightly
outperform AmICREEK. However, some, if not all of the misclassification can
be explained by the way matching strengths are currently being calculated.

6 Conclusion and Further Work

The work presented here demonstrates that knowledge intensive case-based rea-
soning is a promising method for constructing situation-awareness systems. By
using the CREEK method, case-based reasoning is applied as the reasoning
mechanism to identify ongoing situations. The assessment of situations is the
very core of the intelligent behaviour of an ambient intelligent system. It has been
demonstrated that using a knowledge intensive case-based reasoning methodol-
ogy, where the cases are submerged into the general knowledge model, facilitates
situation-awareness.

However, it has also been shown that some deficiencies in the current im-
plementation of the CREEK method still exists. In particular with regard to
plausible inheritance, which currently only works with causal concepts, and with
the similarity function that currently does not calculate similarity correctly when
cases are missing parameters. Remedying these two issues should significantly
improve the system.

Finally, the results should be reproduced using publicly available open source
systems. Primarily to verify that it is not the idiosyncrasies of our implemen-
tation that allows the reasoning to work, and secondly to allow others to freely
use and scrutinise the system.

Acknowledgements

We would like to extend our gratitude to many of colleagues for their input
throughout this work, and in particular to Jörg Cassens, without whom this
work would not have been possible.

References

1. Weiser, M.: The computer for the 21st century. Scientific American, 94–104
(September 1991)

2. Hansmann, U., Merk, L., Nicklous, M.S., Stober, T.: Pervasive Computing: The
Mobile World. Springer Professional Computing (2003)

3. Greenfield, A.: Everyware: The Dawning Age of Ubiquitous Computing (Voices
That Matter). New Riders Publishing (2006)

Case-Based Reasoning for Situation-Aware Ambient Intelligence 463

4. Lugmayr, A.: The future is ‘ambient’. In: Creutzburg, R., Takala, J.H., Chen,
C.W. (eds.) Proceedings of SPIE. Multimedia on Mobile Devices II, vol. 6074.
SPIE (2006)

5. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: ISTAG
scenarios for ambient intelligence in 2010. Technical report, IST Advisory Group
(2001)

6. Aarts, E.H.L., Encarnação, J.L. (eds.): True Visions: The Emergence of Ambient
Intelligence. Springer, Heidelberg (2006)

7. Satyanarayanan, M.: A catalyst for mobile and ubiquitous computing. IEEE Per-
vasive Computing 1(1), 2–5 (2002)

8. Lueg, C.: Representation in pervasive computing. In: Proceedings of the Inaugural
Asia Pacific Forum on Pervasive Computing (2002)

9. ISTAG: IST advisory group, strategic orientations and priorities for IST in FP6
(June 2002)

10. Kofod-Petersen, A., Aamodt, A.: Contextualised ambient intelligence through case-
based reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) EC-
CBR 2006. LNCS, vol. 4106, pp. 211–225. Springer, Heidelberg (2006)

11. Cassens, J., Kofod-Petersen, A.: Using activity theory to model context awareness:
a qualitative case study. In: Proceedings of the 19th International Florida Artificial
Intelligence Research Society Conference, Florida, USA, pp. 619–624. AAAI Press,
Menlo Park (2006)

12. Schank, R.: Dynamic memory; a theory of reminding and learning in computers
and people. Cambridge University Press, Cambridge (1982)

13. Aamodt, A.: A knowledge-intensive, integrated approach to problem solving and
sustained learning. PhD thesis, University of Trondheim, Norwegian Institute of
Technology, Department of Computer Science, University Microfilms PUB 92-
08460 (May 1991)

14. Aamodt, A.: Knowledge-intensive case-based reasoning in CREEK. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 1–15. Springer,
Heidelberg (2004)

15. Bareiss, R.: The experimental evaluation of a case-based learning apprentice. In:
Proceedings of a Workshop on Case-Based Reasoning, Pensacola Beach, Florida,
USA, pp. 162–167. Morgan Kaufmann, San Francisco (1989)

16. Cohen, P.R.: Evaluation and case-based reasoning. In: Proceedings of a Workshop
on Case-Based Reasoning, Pensacola Beach, Florida, USA, pp. 168–172. Morgan
Kaufmann, San Francisco (1989)

17. Zimmermann, A.: Context-awareness in user modelling: Requirements analysis for
a case-based reasoning application. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR
2003. LNCS (LNAI), vol. 2689, pp. 718–732. Springer, Heidelberg (2003)

18. Ma, T., Kim, Y.D., Ma, Q., Tang, M., Zhou, W.: Context-aware implementation
based on CBR for smart home. In: Wireless And Mobile Computing, Networking
And Communications (WiMob 2005), pp. 112–115. IEEE Computer Society, Los
Alamitos (2005)

19. Bénard, R., Bossard, C., Loor, P.D.: Context’s modelling for participative simula-
tion. In: Proceedings of the 19th FLAIRS Conference, pp. 613–618. AAAI Press,
Menlo Park (2006)

20. Dewey, J.: Context and Thought. University of California Press (1931)
21. Öztürk, P., Aamodt, A.: A context model for knowledge-intensive case-based rea-

soning. International Journal of Human Computer Studies 48, 331–355 (1998)

464 A. Kofod-Petersen and A. Aamodt

22. Kwon, O.B., Sadeh, N.: Applying case-based reasoning and multi-agent intelligent
system to context-aware comparative shopping. Decision Support Systems 37(2),
199–213 (2004)

23. Sadeh, N., Gandon, F., Kwon, O.B.: Ambient intelligence: The mycampus experi-
ence. Technical Report CMU-ISRI-05-123, Carnegie Mellon University (July 2005)

24. Gu, M., Aamodt, A.: Evaluating CBR systems using different data sources: A case
study. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006.
LNCS, vol. 4106, pp. 121–135. Springer, Heidelberg (2006)

25. Santamaria, J.C., Ram, A.: Systematic evaluation of design decisions in CBR
systems. In: Proceedings of the AAAI Case-Based Reasoning Workshop, Seattle,
Washington, USA, pp. 23–29 (1994)

26. McSherry, D.: Diversity-conscious retrieval. In: Craw, S., Preece, A.D. (eds.) EC-
CBR 2002. LNCS (LNAI), vol. 2416, pp. 219–233. Springer, Heidelberg (2002)

27. Smyth, B., Mckenna, E.: Modelling the competence of case-bases. In: Smyth, B.,
Cunningham, P. (eds.) EWCBR 1998. LNCS, vol. 1488, pp. 208–220. Springer,
Heidelberg (1998)

28. Cohen, P., Howe, A.: How evaluation guides ai research. AI Magazine (9), 35–43
(1988)

29. Endsley, M.R., Bolté, B., Jones, D.G.: Designing for Situation Awareness: An Ap-
proach to User-Centered Design. Taylor & Francis, Abington (2003)

30. Kofod-Petersen, A., Mikalsen, M.: Context: Representation and reasoning – repre-
senting and reasoning about context in a mobile environment. Revue d’Intelligence
Artificielle 19(3), 479–498 (2005)

31. Gundersen, O.E., Kofod-Petersen, A.: Multiagent based problem-solving in a mo-
bile environment. In: Coward, E. (ed.) Norsk Informatikkonferance 2005, NIK 2005,
Institutt for Informatikk, Universitetet i Bergen, November 2005, pp. 7–18 (2005)

32. Kofod-Petersen, A.: A Case-Based Approach to Realising Ambient Intelligence
among Agents. PhD thesis, Department of Computer and Information Sciences,
Norwegian University of Science and Technology (2007)

33. Cohen, P.R., Howe, A.E.: How evauation guides AI research. AI Magazine 9(4),
35–43 (1988)

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 465–478, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Spatial Event Prediction by Combining Value Function
Approximation and Case-Based Reasoning

Hua Li1, Héctor Muñoz-Avila2, Diane Bramsen1, Chad Hogg2, and Rafael Alonso1

1 SET Corporation, 1005 N. Glebe Rd.,
Suite 400, Arlington, VA 22201

{hli,dbramsen,ralonso}@setcorp.com
2 Department of Computer Science and Engineering, 19 Memorial Drive West,

Lehigh University, Bethlehem, PA 18015
{hem4,cmh204}@lehigh.edu

Abstract. This paper presents a new approach for spatial event prediction that
combines a value function approximation algorithm and case-based reasoning
predictors. Each of these predictors makes unique contributions to the overall
spatial event prediction. The function value approximation prediction is particu-
larly suitable to reasoning with geographical features such as the (x,y) coordi-
nates of an event. The case-based prediction is particularly well suited to deal
with non-geographical features such as the time of the event or income level of
the population. We claim that the combination of these two predictors results in
a significant improvement of the accuracy in the spatial event prediction com-
pared to pure geographically-based predictions. We support our claim by re-
porting on an ablation study for the prediction of improvised explosive device
(IED) attacks.

Keywords: spatial prediction, case-based prediction, function value
approximation.

1 Introduction

Spatial event prediction is a problem for which the input is a series of events e1 ,e2, ..,
en and their location in a map [1,2,3]. These events have time stamps associated with
them, in addition to the locations in the map where they occur and some additional
information (e.g., type of event). Based on these locations, regions or influence zones
are found. Within an influence zone, cells may have different influence values, which
are weights associated with cells reflecting a prediction about the potential locations
of future events.

Figure 1 presents an example of an influence map generated by the PITS++ sys-
tem, our function value estimation predictor, for improvised explosive device (IED)
attacks in an urban location. PITS++ uses a function value approximation mechanism
to update the influence values each time a new IED event is entered into the system.
IED attacks are a type of attack where groups of insurgents place an explosive device
that is triggered to explode when a target moves close by. These kinds of attacks have

466 H. Li et al.

Fig. 1. PITS++ viewer showing the training (cyan) and test (magenta) events

become very common in Iraq and elsewhere and are frequently discussed by the news
media. The colors are not visible in black and white printout but, basically, we use
cyan colored numbers to indicate the locations of IED attacks and the colored-areas
indicate the likelihood of attacks. Each cell is colored white (zero likelihood), green
(very unlikely), yellow (somewhat likely), orange (likely), or red (very likely).

The PITS++ system is based on its predecessor PITS system [4], which computes
these influence maps based on purely geographical features such as the (x,y) location
of the map. Our goal is to enhance the influence map by adding non-geographical
features such as time or income level in the area of the attacks. To accomplish this we
added case-based reasoning capabilities to PITS++ to directly modify or “retouch” the
influence values to take into account the contribution of the non-geographical fea-
tures. The case-based reasoning module, DINCAT (Domain Independent Case-base
Assistant) stores copies of the events originally used to train the PITS++ system but
also annotated with the non-geographical features associated with the event such as
the time of the attack. Then, for each cell in the influence map it retrieves all cases
whose similarity to the features of the case is greater than a certain threshold.
These cases are then used to retouch the influence values by taking into account the
following factors:

• The time stamps from the retrieved cases
• The similarities of the retrieved cases
• The number of cases retrieved

 Spatial Event Prediction by Combining Value Function Approximation and CBR 467

In this paper we will discuss how these factors were combined into a retouching for-
mula and show in an ablation study on synthetic data that, CBR substantially im-
proves the accuracy of the prediction of the PITS++ system. To the best of our
knowledge, this is the first time that case-based reasoning approaches have been com-
bined with function value estimation predictors for the task of spatial event prediction.
Our results demonstrate the significant impact that CBR can have for this task.

The paper continues as follows: the next section describes the PITS++ system
function value estimation predictor; Section 3, the main section of the paper, de-
scribes in detail the CBR techniques used to enhance the spatial prediction process;
Section 4 discusses the results of our empirical evaluation; Section 5 discusses related
work; finally, we make concluding remarks.

2 PITS++: Function Value Estimation Prediction

SET Corporation’s PITS++ tool dynamically assesses the potential of IED threat, i.e.,
the likelihood of insurgents emplacing IEDs in a geographic area, by making an esti-
mation of the prediction function value based on a collection of input events.

The PITS++ tool is built on our previous work on PITS [4]. Note that the main dif-
ference between the two systems is that PITS++ incorporates a CBR mechanism into
the original PITS system. Figure 2 provides an overview of the original PITS system
function value estimation mechanism [4]. The inputs to PITS include terrain, IED
events, and a history of friendly (blue) and opponent (red) force activity. In PITS the
region of interest is a rectangle bounded by geographic coordinates and divided into
cells of configurable dimension. PITS extracts IED-relevant features from an input
message stream and populates each cell with the terrain and history data relevant to
that cell. PITS computes over these IED relevant features to determine the influence
value, which we call the PIT value, for each cell. These features (e.g., intersections
and corners) are systematically determined using behavioral heuristics as well as
knowledge from subject matter experts (SMEs). Each feature has a weight associated
with it that indicates the opponent’s preference for a feature in the context of IED
emplacement activities. The feature weights are dynamically adapted with the latest
IED events using function value estimation algorithms [5,6]. The cells are grouped
into IED influence regions based on a cell’s location and PIT value.

Prediction of IED emplacements is captured by the IED map, which is a grouping
of all the IED attractiveness regions in the terrain at a given point in time. Each cell in
the grid is thermally colored according to its potential IED threat level. In Figure 1,
past, future (during evaluation phases), and manually input (current) IED events are
indicated by numbers displayed in the lower left, upper right, and lower right corners
of the cells, respectively. As a temporally ordered list of events are entered into the
system, the corresponding PIT values are adjusted based on a scalar function on the
preferences elicited so far and the features. In Figure 2, The Feature Map lists all the
cells that contain non-zero values for each feature. The BattlefieldAOP class is a
representation of the area of interest as a grid of cells. It is responsible for populating
each cell with the terrain and history information relevant to the cell.

468 H. Li et al.

The following are the geographical features computed in PITS (their values are nor-
malized so they are always between 0 and 1). These features were obtained from
interviews with subject matter experts:

• Roads: We calculate this value by summing up the number of roads in the
cell.

• Corners/Intersections: Because of the data, we do not distinguish corners
from intersections. To calculate this value, we simply look to see if there is at
least one corner or intersection in the cell. If so, the cell gets a value of .5 for
this feature1. If the cell does not contain a corner or intersection, then the
value is 0. Multiple corners/intersections have no additional impact on the
feature value.

• Buildings: This feature is meant to identify dense areas of the city, so we are
looking to see if the cell contains at least 5 buildings. If so, we give it a value
of 1 for this feature, and 0 otherwise.

• Prior IEDs: If an IED has gone off in the cell, the cell will have a value of 1
for this feature, and 0 otherwise.

1 For this feature the values are either 0 or 0.5. We did not assign a max value of 1 when cor-

ners or intersections were present because this feature was deemed less significant as those
with max value of 1, e.g. Roads.

Fig. 2. Function value estimation mechanism of the Potential IED Threat System (PITS)

 Spatial Event Prediction by Combining Value Function Approximation and CBR 469

Fig. 3. Retouching PIT values with retrieved cases

3 Integrated Prediction with CBR

The basic premise is to update the PIT value (or influence values) by a “retouching”
process based on the cases stored in the case base. Retouching works as follows. Sup-
pose the latest IED attack occurred near a mosque. It will be saved in the case library
after being processed by the CBR module. At the time of prediction, for each cell in
the battlefield grid IED map, a query case will be created using all features associated
with this cell. The query case will be dispatched to the CBR module, which will re-
trieve a list of similar cases. In Figure 3, the case library contains three cases where
case1 is more recent than case2 and case3. Cell1 gets two similar cases (case1 and
case3) because they all share the fact that they are near a mosque. Cell3 gets two
similar cases (case2 and case3) because they are all linked to a gas station. Cell2, on
the other hand, failed to retrieve any similar cases because none of the cases in the
library is related to a hospital. Both cell1 and cell3 will have their PIT value bumped
up because they found similar cases whereas cell2 will not. In addition, cell1 will
have a larger increase than cell2 because the former contains a more recent case
case1.

For the purposes of using CBR in the context of IED attack prediction, cases repre-
sent IED events. Formally, we define a case to be:

 Case = (feature1, …, featuren) , (1)

where featurei includes both geographical features and non-geographical features.
Geographical features, such as if the cell contains a major road intersection, are repre-
sented in the original PITS system. Non-geographical features are divided into human
terrain (e.g., religion) and attack specific features (e.g., the type of explosive used)
[7]. Note that non-geographical features are not represented in the original PITS. So a
case can be seen as representing a possible correlation between the geographical and
non-geographical features.

470 H. Li et al.

3.1 Retouching Formula

The correlations between geographical and non-geographical features stored in the
cases are used to determine how the PIT value is retouched. Specifically, the incre-
ment in PIT value is a function of the following factors:

• Date stamp of the cases. Prediction should be influenced by the date when an
event took place. An event that occurred one year ago should carry less
weight than a week-old event.

• Similarity of the features of the event and the retrieved cases. Prediction
should be influenced by the similarity between the cell in consideration and
where an event took place. Closer events should carry more weight than those
farther away.

• Number of cases retrieved. The more cases are retrieved, the larger the
change in the PIT value.

The old PIT value is updated by a factor of the summation of the retrieved cases,
factoring in their similarity and their time stamps. We developed the following for-
mula which commits to these three constraints:

 (2)

Where:

• C is a variable iterating over all retrieved cases
• PITSOLD is the current PIT value for the cell
• PITSNEW is the value we are trying to compute
• PITSMIN,MAX is a scaling factor that determines the relative significance

of the original PIT value and the cases. It is currently defined as a factor
of a simple linear interpolation of the possible PIT values, (PITSMAX -
PITSMIN).

• SIM(C) is the similarity between the case and the PITS++ system cell
whose value is being retouched

• SIMMIN,MAX is a factor based on the minimum similarity and maximum
similarity values of the cases. We currently set it to 1.

• TIMENOW,MIN(C) is a factor based on how close is the case’s time stamp,
TIME(C), to the date when the retouch is done (NOW) and the earliest
date (MIN) for which we consider data useful. The closer the time stamp
of C to NOW, the smaller the value of TIMENOW,MIN(C), which in turn
makes the fraction larger. Conversely, the closer it is to MIN the larger
the value of TIMENOW,MIN(C), which in turn makes the fraction smaller. It
is currently defined as a simple linear interpolation: (TIME(C) - MIN) /
(NOW - MIN)

3.2 Similarity Metric

The similarity metric in DINCAT aggregates local similarities. The local similarities
measure how close are two values of the same feature. For example, if a feature repre-
sents the (x,y) location in a map, the similarity between two locations can be defined

 Spatial Event Prediction by Combining Value Function Approximation and CBR 471

Table 1. Non-geographical features currently implemented

Name Type Parameters Description
TimeIEDAttack numeric 0, 24 The time of the IED attack
DateIEDAttack date MM/DD/YYYY The date of the IED attack
DeliveryMode symbolic boat-borne, animal-borne,

collar-bombs, suicide-
bombers, platter-chargers,
explosively-formed-
penetrators, improvised-
rocket-assisted-munitions

Classification of the IED by
the delivery mechanism as
per JCS Pub 1-02

Target symbolic US-Armored-Vehicle,
Iraqi-Police-Vehicle, US-
Contractor-Vehicle, US-
Foot-Patrol, Iraqi-Foot-
Patrol, Civilian-vehicle,
Civilian-foot

Type of target of the IED
attack

TriggerMecha-
nism

symbolic infrared-light-beam,
radio-signal, hard-wire,
contact

Trigger mechanism used in
the IED

Academic symbolic academic, non-academic Indicates if the area of the
IED attack is close to an
university

Income symbolic 1, 2, …, 9 Indicates the income level in
the area of the IED attack (1
is lowest; 9 is highest)

Tribe symbolic AlDulaim, BaniTamim,
Shamar, AlJanabi,
Aljubour, Alazza

Tribe in the area of the IED
attack. There are more than
100 tribes in Iraq. Current
values reflect the fact that in
any one area only a few
tribes are present.

Religion symbolic Shia, Sunni, Christian Predominant religion in the
area of the IED attack. There
are more than 10 religions in
Iraq. Current values reflect
the fact that in any one area
only a few religions are
present.

as a function of the inverse of the distance between the two locations. Local similarity
simi() for a feature is defined such that it returns a value between 0 (non similar) and 1
(most similar). We define three forms of local similarities depending on the type of
feature:

• Symbolic. For symbolic features we assign 1 if they are the same and 0 if
they are different.

472 H. Li et al.

• Numeric. For numeric features we assume that the minimum (min) and
maximum (max) values are given, and we define the similarity between two
values X and Y as the inverse of the ratio of the distance between them and
the largest possible distance: 1 – (|X – Y|/(max – min)).

• Date. For date values, we convert them into absolute times measured in
hours relative to a fixed date in time. We assign min and max to be the abso-
lute time for the range dates for the events and use the same formula as with
the numeric features.

With these local similarities we compare two vectors of features <X> and <Y> by
computing the aggregated similarity metric of the local similarities, SIMGLOBAL(),
defined as:

SIMGLOBAL(X1..n,Y1..n) = α1sim1(X1,Y1) + … + αnsimn(Xn,Yn) , (3)

where the values of the vector weights, α1 + … + αn, sum to 1. As a result, SIM-
GLOBAL() also returns a value between 0 and 1 (1 been most similar). For our current
implementation we set each αi to 1/n.

3.3 Non-geographical Features

A non-geographical feature may take a date, a numeric value (between a minimum
value and a maximum value) or a symbolic value (from a predefined set). For each
feature (see Table 1) we identify the following elements:

• Name: indicates the name of the feature
• Type: indicates the type of the feature; this can be symbolic, numeric, or date.
• Parameters: for numeric features this will indicate the minimum and maxi-

mum value and for symbolic features this will indicate the set of possible
values.

• Description: a description of the feature

4 Empirical Evaluation

The purpose of the experiment is to evaluate the contributions, if any, of the CBR
approach to the event spatial prediction made by PITS. For this purpose we performed
an ablation study where we compared the results of PITS versus PITS++ (PITS aug-
mented with the CBR retouch mechanism) on the same data. As mentioned before,
cases can be seen as storing information of previous events co-relating geographical
and non-geographical features. Therefore, it is conceivable that using our CBR re-
touching approach will result in improvements in the prediction when, as a whole,
correlations exists between the geographical and non-geographical features. However,
it might be detrimental to use the CBR approach when no such co-relations exist.
Therefore, we created 3 data sets to observe the performance in 3 scenarios:

• Correlated. The data set consisted of 48 events in which 3 kinds of correla-
tions exist between the geographical and non-geographical features. Every
event in the data set commits to one of these correlations.

 Spatial Event Prediction by Combining Value Function Approximation and CBR 473

• Partially corre-
lated. The data set
consisted of 44 events
in which 5 kinds of
correlations exist be-
tween the geographi-
cal and non-
geographical features.
Roughly ¼ of the
events have no corre-
lation whatsoever.

• Chaotic. The data set
consists of 42 events.
No co-relations exist
between the geo-
graphical and non
geographical features.

Each data set was divided
into a training set consist-
ing of 3/4 of the data and a
testing set consisting of the
remaining 1/4 of the data.
The retrieval threshold was
set to 0.75.

The pseudo-ROC (Re-
ceiver Operating Charac-
teristics) curve was used to
evaluate the PITS++ sys-
tem’s performance as an
IED event predictor (Fig-
ure 4). It is defined as the
IED coverage, which is the
percentage of future IED
events covered by threat
regions, plotted as a func-
tion of the area coverage,
which is the percentage of
the playbox (i.e., area of
prediction) occupied by
threat regions. The threat
regions are determined by
the PITS++ IED threat
values. An area coverage
of 10% looks at the top
10% of cells that have the

Fig. 4. ROC curves for the chaotic (top), the correlated (mid-
dle), and the partially correlated (bottom) data sets with simi-
larity threshold at 0.75

474 H. Li et al.

highest IED attractiveness value. In general, the more rapidly the pseudo-ROC curve
rises, the better the predictor.

A random predictor has a curve close to the diagonal, which is drawn in the plots
as a solid black line. We also plot the curves that mark 2-standard deviations from the
random predictor as dotted lines around the diagonal (Figure 4). For a predictor to be
statistically better than the random predictor, its curve should be above the upper
dotted line.

Figure 4 shows the resulting ROC curves for the chaotic, partially correlated, and
correlated data sets. For each of these, two figures are drawn: one indicating the re-
sults with retouch and for PITS without any retouch. In addition we present the curve
Y = X, which indicates a random prediction. The X-axis denotes the area coverage for
the prediction. So 0.1 represents a prediction within 10% of the map whereas 1 repre-
sents all area. The Y-axis denotes the accuracy of the prediction. So, for example, the
random predictor achieves 100% prediction only when 100% of the area is covered.
Therefore, the results when comparing the two curves are particularly interesting for
lower values of X or at the very least to the first X-point where Y=1 is achieved.
Overall a good comparison of the performance is the area under their curves. We
compare the ratio: area(CBR)/area(non-CBR).

The results are as follows: for the correlated dataset the curve for the CBR is
always above the non-CBR approach until X = 0.7. The ratio of the CBR over the
non-CBR is 77.7% if we consider only the areas until both curves reaches Y = 1
(i.e., X = 0.7). The ratio reduces to 66.6% if we count all area between X = 0 and
X = 1. For the partially correlated, the performance is the same for both CBR and
non-CBR until X = 0.3. Between 0.3 and 0.9 the CBR performance improves over
the non-CBR and they are tied again between 0.9 and 1. The ratio of the CBR over
the non-CBR is 86.2% and it augments to 82% if we consider only the areas until
both curves reaches Y = 1 (i.e., X = 0.9). Although it is noteworthy that with CBR
it reaches 1 at X = 0.4 whereas non-CBR reaches 1 only at X = 0.9. Finally for
chaotic both curves are the same and only in the interval [0.2, 0.4] the non-CBR
does slightly better. However, the ratio of the non-CBR over the CBR is only
98.8% and it augments to only 97.2% if we consider only the areas until both
curves reaches Y = 1 (i.e., X = 0.5). We made only one run with each data set
because the system behaves deterministically: with the same input sequence of
events, PITS and the CBR retouching algorithm produces the same values. The
random predictor may produce multiple values, but on average it produces the y=x
curve shown in our analysis.

We ran student t-tests on the results obtained from the experiments comparing the
data points for the normal versus the retouched results. The difference in score for the
chaotic data set is not significant (t-test score: 87%), for the correlated data set is
significant (t-test score: 99.7%), and for the partially correlated data set is significant
(t-test score: 98.6%). In conclusion, if there is a co-relation between the geographical
and the non-geographical features, -even if only partial- the CBR retouch will im-
prove the performance of the prediction. If there is no co-relation the CBR retouch
would have a negligible negative impact on the prediction.

 Spatial Event Prediction by Combining Value Function Approximation and CBR 475

5 Related Work

Related approaches can be divided into three kinds: time prediction from time series,
prediction from influence maps, and case-based prediction. We briefly discuss each
insofar as to contrast with our approach. Each of these has been the subject of exten-
sive and well-established research. The problem of prediction from time series in its
most simple form can be defined as to obtain a time range prediction [t,t’] for an event
from a history of event in time t1, t2, .., tn [8]. This is a well-founded field. Some
methods assume an implicit model for time series while others assume an explicit
model. The problem of IED time prediction is dependent on geographical, human
terrain, and attack-specific features, for which, to the best of our knowledge, no time
prediction model exists capable of incorporating all of these kinds of features.

Influence maps is a method for spatial analysis which receives as input a series of
events e1 ,e2, .., en and their location in a map [1,2]. These events do not necessarily
have time stamps; just the locations in the map where they occur and some additional
information (e.g., type of event). Based on these locations, regions or influence zones
are found. Within an influence zone, cells may have different weights reflecting more
or less influence from the events in the cell. These weights are typically represented
with colors for visualization purposes. In influence maps the geographical location
(e.g., the “x,y” coordinates) play a significant role in how the regions are determined.
Whereas indeed the graphical locations are important, our work aims to find common
geographical features between attacks rather than just the “x,y” location. Moreover,
we want to incorporate non-geographical features (i.e., human terrain and attack-
specific) into the process of determining these regions. Again, to the best of our
knowledge no work exists accomplishing this.

Case-based prediction refers to the use of case-based reasoning (CBR) as the pre-
diction technique [9,10,11,12,13,14]. Predictions in CBR include time prediction as
well as class prediction (e.g., predict the kind of object based on partial observations),
and strategy prediction (e.g., predicting the next movement from an opponent) among
others. The difficulty of using CBR for IED prediction is that events might be related
at different and contrasting levels (e.g., they might be geographically close but rather
different from the perspective of the human terrain). Therefore, instead of tackling
the whole problem with CBR we aim at using CBR for making predictions with the
non-geographical features and combine this prediction with the one from the PITS
system which models the geographical features. Analogously, adding all features to
the PITS model, which is in essence the approach taken in Liu and Brown [3], would
introduce the curse of dimensionality. This is a well documented limitation of value
function approximation algorithms [15].

Case-based reasoning has been combined with value function approximation al-
gorithms such as reinforcement learning [16,17,18,19] and neural networks
[20,21]. The particular value function approximation algorithm developed in
PITS++ has been shown to be particularly useful for spatial event prediction and,
therefore, a suitable base line to measure performance gains by using case-based
reasoning techniques.

476 H. Li et al.

6 Conclusions

One major aspect of defeating the use of IEDs is defeating the device itself. There has
been intensive effort devoted to combining sensor data of various types to identify
those who planted the IEDs. There are several limitations in those approaches. First, it
typically tries to identify the emplacers after the attack. In other words, the current
work is post-mortem and reactive in nature rather than predictive and proactive. Sec-
ond, this work has been heavily relying on a human expert to perform the historical
pattern analysis and recognition. There is an outcry for predictive algorithms that
operate in an autonomous or semi-autonomous manner. Third, this work has limited
ability to fuse all potential data sources (geospatial and temporal event information,
social and cultural data, coalition traffic patterns, multi-spectral sources of sensor
data, etc). Existing methods could be used by adding all necessary features into a
given value function approximation algorithm. However, this will incur the curse of
dimensionality.

We presented an alternative approach in PITS++ for spatial event prediction that
combines function value estimation and a case-based prediction. PITS, the function
value estimation predictor, contributes with its capability to reason with geographical
features such as the (x,y) coordinates of an event. We enhance this capability by using
case-based reasoning techniques to model non-geographical features such as the time
of the event or trigger mechanism of the IED. Cases capture, in essence, instances of
correlations between geographical and non-geographical features. This correlation is
exploited by our system to update the geographical prediction of PITS. We observed
that this update results in a significant improvement of the accuracy in the empirical
prediction compared to pure geographically-based predictions when there is some
correlation between the geographical and the non-geographical features in the input
event traces. In the worst scenario, when no such a co-relation exists, CBR does not
help but it is not detrimental either. We support these claims with an experiment on an
ablation study for the prediction of improvised explosive device (IED) attacks.

There are several directions that we want to explore in the future. First, there was
little tuning in the CBR component. In particular, each local similarity metric was
assigned the same weight. It is conceivable that further improvements in the predic-
tion performance can be achieved if weights are tuned by, for example, performing
statistical analysis of the data. Second, the integration between the value function
approximation and the CBR prediction is one way; the CBR retouching process does
not permanently change the PIT values. Instead, it is currently designed to perform
the CBR retouch on the PIT values every time a new prediction is needed. We need to
investigate what would be the implication of keeping the retouched PIT values; par-
ticularly what does this means for the value function approximation process. Third,
we would like to perform an evaluation with real data. For the current evaluation we
used simulated data because of the unavailability of adequate real data at the time of
the study. Although public data exists about IED attacks, this contains mostly geo-
graphical features. Fourth, all features currently used in the study were manually
given based on interviews with Subject Matter Experts. A potential research direction
is to learn such features by extracting them from raw IED data (e.g., from a repository
of field reports). Fifth, the values of parameters in the retouch formula (Formula 2)
are currently set manually. A potential research direction is to use Bayesian or other

 Spatial Event Prediction by Combining Value Function Approximation and CBR 477

methods to learn these parameters. Sixth, we would like to investigate time prediction
of IED events, building on existing work for explicit representations and reasoning
methods for temporal events.

Acknowledgements

This research was supported by grants from the Air Force Research Laboratory and
the National Science Foundation Grant No. NSF 0642882. The opinions stated in this
paper are those of the authors and not of the funding agencies supporting this work.

References

1. Sweetser, P.: Strategic Decision-Making with Neural Networks and Influence Maps. AI
Programming Wisdom 2, Charles River Media (2004)

2. Tozour, P.: Influence Mapping. In: DeLoura, M. (ed.) Game Programming Gems 2, pp.
287–297. Charles River Media (2001)

3. Liu, H., Brown, D.E.: Spatial-Temporal Event Prediction: A New Model. In: Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics, San Diego, Cali-
fornia (October 1998)

4. Li, H., Bramsen, D., Alonso, R.: Potential IED Threat System (PITS). In: Proceedings of
2009 IEEE International Conference on Technologies for Homeland Security (HST 2009).
IEEE Xplore, Los Alamitos (to appear, 2009)

5. Alonso, R., Bloom, J.A., Li, H., Basu, C.: An Adaptive Nearest Neighbor Search for a
Parts Acquisition ePortal. In: Proceedings of the Ninth ACM International Conference on
Knowledge Discovery and Data Mining, SIGKDD 2003 (2003)

6. Alonso, R., Li, H.: Model-Guided Information Discovery for Intelligence Analysis. In:
Proceedings of CIKM 2005, Bremen, Germany (2005)

7. Kipp, J., Grau, L., Prinslow, K., Smith, D.: The Human Terrain System: A CORDS for the
21st Century. Military Review (September-October 2006)

8. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)
9. Faltings, B.: Probabilistic Indexing for Case-Based Prediction. In: Leake, D.B., Plaza, E.

(eds.) ICCBR 1997. LNCS, vol. 1266, pp. 611–622. Springer, Heidelberg (1997)
10. Hansen, B.K.: Weather prediction using case-based reasoning and fuzzy set theory. M.S.

thesis, Dept. of Computer Science, Technical University of Nova Scotia (2002)
11. Jære, M.D., Aamodt, A., Skalle, P.: Representing Temporal Knowledge for Case-Based

Prediction. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS, vol. 2416, p. 174.
Springer, Heidelberg (2002)

12. Zehraoui, F., Kanawati, R., Salotti, S.: Case base maintenance for improving prediction
quality. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689. Springer,
Heidelberg (2003)

13. Redmond, M., Line, C.B.: Empirical Analysis of Case-Based Reasoning and Other Predic-
tion Methods in a Social Science Domain: Repeat Criminal Victimization. In: Ashley,
K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689. Springer, Heidelberg (2003)

14. Weber, R., Evanco, W., Waller, M., Verner, J.: Identifying critical factors in case-based
prediction. In: Proceedings of the 18th FLAIRS Conference. AAAI Press, Menlo Park
(2004)

15. Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (1961)

478 H. Li et al.

16. Bridge, D.: The virtue of reward: Performance, reinforcement and discovery in case-based
reasoning. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, p. 1.
Springer, Heidelberg (2005)

17. Gabel, T., Riedmiller, M.: Multi-agent Case-Based Reasoning for Cooperative Reinforce-
ment Learners. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS, vol. 2416.
Springer, Heidelberg (2002)

18. Sharma, M., Holmes, M., Santamara, J.C., Irani, A., Isbell Jr., C.L., Ram, A.: Transfer
learning in real-time strategy games using hybrid CBR/RL. In: Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2007). AAAI Press, Menlo
Park (2007)

19. Auslander, B., Lee-Urban, S., Hogg, C., Muñoz-Avila, H.: Recognizing The Enemy:
Combining Reinforcement Learning with Strategy Selection using Case-Based Reasoning.
In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS,
vol. 5239, pp. 59–73. Springer, Heidelberg (2008)

20. Chen, D., Burrell, P.: Case-based reasoning system and artificial neural networks: A re-
view. Neural Computing and Applications (2001)

21. Fdez-Riverola, F., Corchado, J.M., Torres, J.M.: An Automated Hybrid CBR System for
Forecasting. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS, vol. 2416, p. 522.
Springer, Heidelberg (2002)

Case-Based Support for Forestry Decisions:
How to See the Wood from the Trees

Conor Nugent1,
, Derek Bridge2, Glen Murphy3,
and Bernt-Håvard Øyen4

1 Idiro Technologies, Ireland
nugentc@gmail.com

2 Department of Computer Science,
University College Cork, Ireland

d.bridge@cs.ucc.ie
3 Forest Engineering, Resources and Management Department,

Oregon State University, Corvallis, Oregon, USA
glen.murphy@oregonstate.edu

4 Norwegian Forest and Landscape Institute,
Bergen, Norway

bernt-havard.oyen@skogoglandskap.no

Abstract. In forestry, it is important to be able to accurately determine
the volume of timber in a harvesting site and the products that could
potentially be produced from that timber. We describe new terrestrial
scanning technology that can produce a greater volume of higher qual-
ity data about individual trees. We show, however, that scanner data
still often produces an incomplete profile of the individual trees. We de-
scribe Cabar, a case-based reasoning system that can interpolate missing
sections in the scanner data and extrapolate to the upper reaches of the
tree. Central to Cabar’s operation is a new asymmetric distance function,
which we define in the paper. We report some preliminary experimental
results that compare Cabar with a traditional approach used in Ireland.
The results indicate that Cabar has the potential to better predict the
market value of the products.

1 Introduction

Forest planners are responsible for deciding how the set of commercially-cultivated
forests that are under their control should be developed and eventually harvested.
At any given time, a number of different forests are available, and planning
how best to utilize them can be a difficult task. For example, forest planners
must combine information that comes from processing plants (e.g. sawmills)
with information about their forests to decide which forests to use and which
trees within those forests to fell.
� This work was carried out while the first author was a member of the Cork Constraint

Computation Centre (4C) at University College Cork. The project was an Innovation
Partnership (IP/2006/370/), jointly funded by Enterprise Ireland and TreeMetrics,
a company that provides forestry measurement systems.

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 479–493, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

480 C. Nugent et al.

Poor decisions in this planning process are commonplace. But they are not
necessarily due to poor judgement. They are often caused by inadequate infor-
mation at the root of the supply chain, the forest. Forests exhibit high inher-
ent spatial variability (e.g. two trees growing side by side may exhibit different
characteristics due to differences in genetics and micro-climate) and temporal
variability (e.g. trees continue to grow after being measured). In the vast major-
ity of cases the characteristics of a forest are only vaguely known. This means
that resources that have been cultivated over periods of thirty to more than
a hundred years are often underutilized based on ill-informed decisions made
quickly at the end of their life cycles [1,2,3,4]. These poor decisions and the lack
of quality forest information naturally have knock-on effects right through the
supply chain.

In this paper, we focus on three forest planning tasks:

Tree taper estimation: The task here is to estimate the diameter of a tree
stem at different heights. Diameters tend to taper, i.e. they decrease with
height, and this is why this is known as taper estimation.

Stem volume estimation: The task here is to estimate the volume of timber
that a tree will produce. This may be based on estimates of tree taper.

Product breakout estimation: The task here is to estimate what products
can be produced from a tree, e.g. size and quality of planks, amount of
wood-chip, and so on. This may be based on estimates of stem volume.

The rest of this paper is structured as follows. Section 2 presents state-of-
the-art methods for the tasks listed above; it explains the role of new scanner
technologies; it motivates the use of Case-Based Reasoning (CBR) to exploit the
scanner data; and it describes related work in CBR. Section 3 presents Cabar, our
case-based reasoning system for the tasks listed above. The focus in the section is
on case and query representation, along with a new asymmetric distance function
that we have defined. Section 4 describes experiments we have conducted and
presents our preliminary results.

2 The State of the Art: Motivating the Use of CBR

2.1 Current Practices

Much of current practice revolves around the prediction of the expected volume
of a forest, i.e. the amount of timber a forest is expected to yield. This aids the
selection of which of a set of forests to harvest.

In Ireland, a common approach is to take a set of measurements about a for-
est and use them to access a simple set of look-up tables that translate these
measurements into volume figures. The forest manager conducts a survey of
the forest, which records the diameter at breast height (DBH) and, perhaps, the
height of a number of sample trees.1. From these measurements, and perhaps also
1 In some parts of the world, the survey may also include assessments of stem shape,

curvature, and quality (e.g. size of branches, scarring, rot, wood density, etc.) [5].

Case-Based Support for Forestry Decisions 481

the forest age and the thinning strategy, the manager can then read-off predic-
tions of the expected volume and, sometimes, the typical dimensions of saw-logs
that the forest can yield. The look-up tables are compiled from extensive field
measurements and mathematical models. The disadvantages of this approach
include: the tables that are available to the manager may not adequately reflect
local conditions (soil, weather, tree species, species mixture, etc.); the predic-
tions are made from only a sample of trees in the forest and from only one or
two measurements about each tree; and the prediction is only a crude estimate
of overall forest volume, and not individual tree volume.

An alternative is to predict volumes on a tree by tree basis. This is usually
done by predicting the diameter of the tree stem at different heights along the
stem, from which the volume of the tree can be calculated. The equations for
predicting diameters are known as taper equations. For the most part, the input
parameters are the DBH and the height of the tree [6,7]. In many cases, the height
is not measured; rather, it is estimated from the DBH using a height model [8,9].
Many different taper equations exist, each making different assumptions about
tree shape, and hence using different geometrical principles and mathematical
functions. It is necessary to choose the right equation for the species of tree
and to calibrate the equation based on local conditions and historical data. The
disadvantages of this approach include: the equations that are available to the
manager may not adequately reflect local conditions; and the equations use only
small amounts of data about the tree (sometimes just the DBH).

From full taper and volume predictions, it is possible to estimate the product
breakout, i.e. the products that might be produced from a tree [10]. Some forest
managers use software to do this. The software simulates the algorithms that
are used in the field by harvesting machines, as explained below.

Trees are rarely transported from the forest as complete units. They are usu-
ally first cross-cut into smaller units (logs). The harvesting machine’s on-board
software decides how to cross-cut a tree. Obviously, its decisions have a major
bearing on what products the sawmill will ultimately be able to produce. The
harvester is pre-loaded with data about the products to be cut and their prior-
ities (in the form of a set of weights). The harvester begins by taking hold of
the base of a tree; it then both measures and infers the dimensions of the tree;
and it uses a priority cutting list or a mathematical programming technique
(e.g. dynamic programming [11], branch-and-bound [12], network analysis [13])
to determine the optimal or near-optimal way to cross-cut the tree.

By simulating the harvesting machine’s decisions in advance on taper and
volume predictions, a forest manager can decide which trees to harvest. But the
disadvantages include that poor predictions of taper and volume may render
estimates of product breakout too unreliable to be useful in practice.

2.2 New Technologies

New technologies offer the potential to overcome the lack of information about
forests. They may enable us to obtain a greater volume of higher quality data,
and to do so at low cost.

482 C. Nugent et al.

In our research, for example, we have been working with a companycalled Tree-
Metrics, who provide forestry measurement systems (www.treemetrics.com).
TreeMetrics has developed a portable 3-dimensional terrestrial laser scanning
technology [14,15]. Their technology makes it possible to capture 3D data about
standing trees in a forest prior to harvesting. For each individual tree in a scanned
plot the scanner can record hundreds of laser readings. TreeMetrics’ software
takes a set of readings, tries to work out which tree each reading belongs to,
and calculates tree diameters at fixed intervals along the length of the tree. For
each diameter, the centre point is also calculated and so curvature information
about the tree is also obtained. Such information makes it possible to accurately
determine the volume and a quality attribute (from the curvature data) of trees
in a forest in advance of harvesting.

2.3 A Role for Case-Based Reasoning

Although TreeMetrics’ technology provides vastly more tree information than
some more traditional approaches, it is not guaranteed to provide a complete
picture of each tree. Readings for some sections of a tree may be missing due
to occlusion by branches or other trees. This becomes increasingly common the
further up the tree the readings are sought due to the effects of branching and
the limitations of the laser at increased distances.

This leaves us with a tree profile prediction task, both in terms of interpolating
the missing sections and also in terms of extrapolating to the upper reaches of
a tree. There is also the task of smoothing or replacing diameter readings which
contain noise. In this paper we outline a Case-Based Reasoning (CBR) approach
which accomplishes these tasks.

We expect various advantages to accrue from the combined use of better data
in greater volumes and the use of CBR in place of pre-compiled look-up tables
and equations. These advantages include:

Flexibility: As described in Section 2, in Ireland the traditional approach is
to make predictions from measurements taken at fixed points, such as the
diameter at breast height. Even when more measurements are available, such
approaches cannot capitalize on the extra data. Equally, they cannot be used
to make predictions if the data they need is not available. The CBR system
that we propose can make predictions based on whatever readings are avail-
able. In particular, the new similarity measure that we define (Section 3.2)
handles any number of readings, and accommodates information about the
certainty of those readings.

Localized predictions: In traditional approaches, models (e.g. systems of
equations) can be calibrated to local circumstances. However, this is complex
and the costs of doing it are typically high. Hence it is common to gener-
alize over broad regions, which means that the models often fail to capture
finer-grained local variations. CBR offers an approach that can be readily
localized. The case base used for Sitka Spruce forests in southwest Ireland,
for example, need not be the same as the case base used for Norway Spruce

Case-Based Support for Forestry Decisions 483

forests in southeastern Norway. Case bases can be built from harvester data
or field measurements that come from the particular area in which the case
base will be used, thus implicitly capturing the local characteristics of that
area. This is not cost-free, but it is simpler than model calibration.

Immediate use of data: With CBR, there is no need for model calibration.
In some sense, calibration is implicit: the particular cases in the case base
calibrate the system to its local circumstances. Equally, since CBR is a strat-
egy for both problem-solving and learning, by judicious case base update,
case bases can be tailored to local conditions over time.

2.4 Related Work

Applications of CBR in forestry, while few in number, have a long history. In
1997, Goodenough et al. [16] described the SEIDAM system that tries to keep
forest inventories up-to-date through the integration of images and digital maps.
Their use of CBR is quite different from ours: they use it to form plans of
map update operations. In 1998, Kelly and Cunningham [17] investigated an
algorithm for selecting an initial case base from a database of Irish forestry data.
Our data is about individual trees, whereas the records in their database provide
information about forest ‘sub-compartments’. Their CBR system is judged by
how well it predicts the proportion of a sub-compartment that should be planted
with a particular species. There are also a number of examples of problems within
forestry, including the problem of estimating taper on unmeasured portions of a
felled tree stem while the stem is being harvested, for which solutions based on
k-NN have been suggested [18,19,20,4].

3 Cabar: A CBR Forestry System

Cabar is the name of the CBR system that we have developed.2 Cabar is designed
to deal with the particular characteristics of tree stem data, especially the kind
of data that we can obtain from TreeMetrics’ laser scanner technology. The
emphasis is on taper prediction, which we then use for stem volume prediction,
which we use in its turn for product breakout estimation. Cabar’s design and
operation are explained in the next three subsections.

3.1 Cases and Queries

Each case in our case base represents one tree and contains a sequence of real
values, which denote the diameter of the tree, usually at 10 cm intervals along
its entire length. Sometimes cases come from manual field measurements. But
they are also readily available from harvester machines. The on-board software
records an overbark profile of each tree that the harvester cuts. There is no
solution part to the cases.
2 “Cabar” is the Gaelic word, often spelled “caber” in English, for a wooden pole.

484 C. Nugent et al.

Fig. 1. Scanner readings and harvester measurements of the diameter of a tree

Queries in our system are also described by sequences of real values, denoting
the diameter of the tree at different heights. Whereas cases may be standing trees
that we have measured manually or trees that a harvester has previously felled
and measured, queries usually describe standing trees whose taper and volume
we wish to predict. They have been scanned, and we have a set of readings from
the laser scanner. Hence, we say that cases contain measurements and queries
contain readings.

However, as mentioned above, due to occlusion and the limitations of the
scanning technology, a query is often a fairly incomplete impression of the tree
profile. This is illustrated in Figure 1, which shows the profile of a tree as recorded
by TreeMetrics’ scanning device (diamonds) and the profile of the same tree as
recorded by a harvester after felling (squares).

The figure shows that the scanner data is noisy (due, e.g., to nodal swelling,
dead branch stubs, dead needles, partially hidden stem, etc.), and there are
sections of the tree for which the scanner has no readings. Taper prediction
involves interpolation of missing sections, extrapolation to the upper reaches of
the tree, and smoothing of noise.

In fact, for each reading in a query, we also have a confidence measure. This is
a measure of the confidence the TreeMetrics software has in the accuracy of the
reading. The software uses 3D image recognition techniques: the 3D coordinates
recorded by the scanner are assigned to different trees. The height at which a
reading is taken can be determined to a high level of accuracy, but diameters are
less reliable due, e.g., to occlusion by parts of neighbouring trees. (There is no
equivalent to these confidence measures in cases because, as we described above,

Case-Based Support for Forestry Decisions 485

cases describe trees that have been properly measured, either manually or by a
harvester. We assume that all readings in cases are ones we can be confident in,
although this can be achieved only under carefully controlled circumstances.)

Formally, a case c is a set of pairs, c = {〈i1, x1〉, . . . , 〈im, xm〉}, where x1, . . . , xm

aremeasurements, usually stem diameters, and i1, . . . , im are the heights at which
the measurements were made, e.g. 〈5, 300〉means that at a height of 5 m from the
base, the tree’s diameter is 300 mm. For each case, it is expected that i1, . . . , im
will be consecutive heights.

A query q is a set of triples, q = {〈i1, x1, w1〉, . . . , 〈in, xn, wn〉}, where x1, . . . , xn

are stem diameters calculated from scanner readings, i1, . . . , in are the heights
at which the readings were taken, and w1, . . . , wn measure confidence in the
readings. For queries, it is typically not the case that heights i1, . . . , in are
consecutive.

3.2 Similarity

We need to be able to compute the similarity between cases and queries. In fact,
we define a distance function, rather than a similarity measure, whose design
is informed in part by the following observations about cases (usually harvester
data) and queries (scanner data):

Sequence data: Cases and queries both have the characteristics of sequence
data. Each data point xj has a definite relationship with those either side of
it, xj−1 and xj+1. The data is effectively the description of a shape. There
is an analogy here between our cases and temporal cases, where values are
recorded at different points in time.

Varying lengths: Stems vary in height and the raw series data reflect this.
Since measurements and readings are taken at fixed intervals, the length
of a sequence varies from stem to stem. Cases need not be the same length;
queries need not be the same length; and queries need not be the same length
as cases. This means that any vector-based similarity measures that assume
fixed-length vectors cannot be used directly.

Partially incomplete: Both the cases (harvester data) and queries (scanner
data) can be incomplete sequences, in the sense that there may not be mea-
surements or readings at certain heights. However, they are incomplete in
distinct ways. The harvester data will have a measurement at every interval
up to a certain height but may not completely record the final taper of the
stem. The point at which the sequence terminates varies with each individ-
ual file. The scanner data in contrast contains many missing sections of data
due to occlusion from branches and other trees. These effects become more
prominent further up the stem. As a result there is typically more informa-
tion about the sequence at the base of the tree; readings are fewer and more
sparsely distributed further up the stem.

We investigated a number of variations of an existing shape-based similarity
measure [21], but without great success. We believe that this is because this

486 C. Nugent et al.

measure, the variants we tried, and others like it tend to assume that cases and
queries are quite homogeneous and symmetric. In our forestry system, however,
we have seen that cases and queries are quite different from each other.

For this reason, we have defined ASES, our own asymmetrical sequence-based
Euclidean distance function, which we believe is well-suited to the task at hand:

ASES (q, c) =

√∑
〈i,x,w〉∈q w × diff (i, x, c)∑

〈i,x,w〉∈q w
(1)

where

diff (i, x, c) =
{

x2 if i �∈ {i′|〈i′, x′〉 ∈ c}
(x− x′)2 such that 〈i, x′〉 ∈ c otherwise (2)

In essence, this global distance measure is a weighted sum of local distances,
where the weights are the confidence measures from the query. For each reading
in the query, a local distance is computed. If the query contains a reading 〈i, x, w〉
and the case contains a measurement that was taken at the same height i (i.e. if it
is the case that 〈i, x′〉 ∈ c), then the local distance is the square of the difference
between the query reading and the case measurement, (x−x′)2. If the case does
not contain any measurement taken at height i (i.e. i �∈ {i′|〈i′, x′〉 ∈ c}), then
the local distance is the square of the whole amount of the reading, x2. This has
the effect of penalizing cases that are too short to match all the readings in the
query.

3.3 Retrieval and Reuse

Of the four phases in the CBR cycle the two most critical in Cabar are the
retrieval and reuse phases. At present, we have experimental results only for
quite simple versions of these phases. We have tried more sophisticated tech-
niques, but we will not describe them here because they have not been verified
experimentally. We explain how we carry out tree taper prediction, stem volume
prediction, and product breakout estimation.

Tree Taper Prediction. Given a query q, we retrieve its k nearest neighbours
using the ASES distance measure. In the simple approach for which we have
experimental results, we use only k = 1. We use this nearest neighbour c for
query completion. In fact, the only approach for which we have experimental
results is the very simplest one: we take the whole of c unchanged (i.e. without
adaptation) in place of q.

Stem Volume Prediction. Stem volume prediction is trivial once the query
has been completed. It involves no more than computing the volume based on
the inferred diameters.

Case-Based Support for Forestry Decisions 487

Product Breakout Estimation. Product breakout estimation is the most
complex task that we carry out. Basically this involves giving a prospective
processing plant such as a sawmill a sense of the likely products that can be
produced from the stems captured by the scanning device.

As explained in Section 2.1, given a specification of the products that a pro-
cessing plant is interested in, we can use a cross-cutting algorithm to simulate the
actions that a harvester machine would carry out in the forest. Such cross-cutting
algorithms are commonly used in forestry and we have designed and developed
an adaptation of one which can utilize the extra 3D information captured by the
TreeMetrics scanning device. The extra information gives the algorithm knowl-
edge of tree curvature. Our algorithm therefore gives more accurate estimates of
the breakout because it better takes problems of curvature into account.

The cross-cutting algorithm we use is an adaptation of the branch-and-bound
approach proposed by Bobrowski, which is proven to produce the optimal solu-
tion [12]. As each possible solution path in its search tree is evaluated, our variant
of Bobrowski’s algorithm ensures that any restrictions the products place on ac-
ceptable curvature levels are taken into account.

4 An Experimental Evaluation of Cabar

Although being able to examine Cabar in real world situations is the ultimate
proof of concept, such studies often contain multiple sources of error. Such errors,
especially when unquantifiable, make it difficult to properly assess the perfor-
mance of a new technology and impossible to isolate different areas of failure.
In this paper we wish to examine and quantify the performance of Cabar over
a range of different scenarios, in particular where there are varying quantities
of data and varying levels of noise. To achieve this we developed a testbed to
simulate these situations.

The benchmark against which we compare Cabar’s performance is similar to
many used in forestry and much the same as those described in Section 2.1. It
predicts tree taper and then stem volume using a taper equation whose parame-
ter is a DBH measurement, and it estimates product breakout using a harvester
simulation model.

We first describe our experimental data; then we describe our benchmark
system; finally we present the results of our experiments.

4.1 Experimental Data

In our experiments we use harvester data, which we assume to be accurate.
Obviously, this is the source of our case data. But it is also the source of our
query data. We applied ablation and noise functions to harvester data in order
to simulate scanner data of varying quality. The reason we create queries from
harvester data is that we need to have a known ‘ground truth’ against which we
can compare Cabar’s predictions. What we need in future are readings produced
by laser scanning a stand of trees paired with harvester measurements on the

488 C. Nugent et al.

same trees after felling. Lacking enough data of this kind, we were obliged to use
harvester data alone. We expect this to be remedied in the future.

In particular, the harvester files used in our experiments are Sitka Spruce tree
files from Ireland. We removed from this set of harvester files any which did not
have a complete set of readings up to the 70 mm diameter point and also any files
in which substantial discontinuities occurred. This left a set of 389 tree stems.
We then split the remaining data into two separate, equal-sized data sets. One
set was used to generate queries of simulated scanner data; the other formed a
case base. We applied ablation and noise functions to the measurements in the
query data in order to simulate scanner data, as described in detail below. In
our experiments, confidence levels in the query data are all set to 1.

4.2 Ablation and Noise Functions

To decide whether to retain or delete a measurement 〈i, x〉 in a query, we sample a
random distribution. If a sampled value r is greater than probability of retention
P (α, β, i), then 〈i, x〉 is retained, and otherwise it is deleted. Retention/ablation
probabilities are based on the generalized exponential distribution [22]:

P (α, β, i) = e−
(i−α)

β (3)

α defines the shape of the distribution, and β is a scaling factor. We can adjust
the extent to which the readings that are higher in the tree are retained by
changing the value of β. For the remainder of this document we will refer to β
as the ablation factor.

Figure 2 shows an example harvester tree stem to which we have applied our
ablation function. The points remaining after ablation are shown as squares.
In this figure the effects of adding noise can also be seen (stars). The noise
we added was normally distributed with a variance set to be a percentage of
the original diameter. Our Treemetrics expert informally confirmed that this
simulated scanner data strongly resembles real scanner data.

We applied varying degrees of ablation and noise to the queries. We altered
the noise levels from no noise at all up to a noise level of 20%.3 The ablation
factor took on the values 1, 1.5 and 2.

4.3 The Malone Kozak Benchmark System

In order to benchmark the performance of the CBR system against a realistic
alternative, we developed a system similar to one of the approaches described
in Section 2.1. One important element of this estimate mechanism is the taper
equation used. We used a taper equation called the Malone Kozak. The Malone
Kozak has been especially calibrated for Sitka Spruce in Ireland [10]. This taper

3 Noise levels of up to 20% seemed reasonable at the time these experiments were run.
Data we have recently acquired for South Australian stems shows that we may need
in future to use a slightly larger variance.

Case-Based Support for Forestry Decisions 489

Fig. 2. A example of a query and the harvester stem data from which it was created

equation uses DBH and height measurements as its inputs. But since height
measurements are often not available, the Malone Kozak comes with a height
model that predicts height based on DBH. Since our data-sets did not give us
height measurements, we used the height model in our experiments. In generating
queries from harvester data (above), we were careful to ensure that we did not
ablate the DBH of each of the query trees and that we did not apply noise to the
DBH. The Malone Kozak would be particularly susceptible to such noise and
would be unusable without a DBH measurement.

For product breakout estimation, the benchmark system uses the same cross-
cutting algorithm as the one we developed for Cabar (Section 3.3).

4.4 Experimental Methodology

We took the queries and applied a particular level of ablation and noise. We then
used Cabar to predict tree taper, stem volume, and product breakout market
value. We repeated this 20 times using the same noise and ablation factors,
and averaged the results. We then changed the noise and ablation factors and
repeated this process for each different level of noise and ablation.

The Malone Kozak system, on the other hand, was run only once on the
query set. Only one run is needed because we ensure that the noise and ablation
factors do not alter the true DBH, which is the only input in the Malone Kozak
equations that we use (Section 4.3).

490 C. Nugent et al.

Table 1. A description of the products harvested from an Irish forest

Product Length (m) SED (mm) Market Value
4.9 Saw log 4.9 200 39
Pallet 3.1 140 25
Stake 1.6 70 19

To perform product breakout estimation, we need an example of product de-
mand. For this, we chose a small set of products which are typical of those
harvested in Ireland. A description of these products can be seen in Table 1.
The single most important feature of each product is its length. However, each
product is further described by other characteristics that restrict whether certain
sections of a given tree can produce such lengths. We use the small end diameter
(SED), which describes the minimum diameter that the upper or smaller diam-
eter of a cut section is allowed to be. These restrictions are taken into account
by our cross-cutting algorithm.

The cross-cutting algorithm also needs priorities, denoting the importance of
each type of product. For our experiments, we used indicative market values as
the set of weights describing the priorities.

The final outcome of the cross-cutting algorithm is the estimated overall value
of the whole query set using the market values in Table 1. We compare these
estimates from both systems to the ‘ground truth’, i.e. the market value of the
products that can be cross-cut from the original, noise-free, unablated query tree
data. We report the percentage error.

4.5 Results

Figure 3 shows the percentage error in the estimates of total product breakout
market values for the query set. Two systems are compared: Cabar and Malone
Kozak (with a generic height model). In the case of Cabar, there is a separate
trend line for each of the three ablation factors that we used. The graph plots the
error against different levels of noise. The Malone Kozak system is insensitive to
this, as explained in Section 4.4, because we use only the DBH and we ensured
that this was noise-free and never ablated. It can be seen that Cabar’s error
levels are far below the Malone Kozak levels. Of course, if the Malone Kozak
system had been calibrated not just for Sitka Spruce in Ireland, but for the
particular stand of trees used in the data-set, then its performance would be
more competitive. This reinforces the point about the importance (and cost) of
model calibration in approaches like this one. Similarly, supplying tree height
readings if they had been available instead of using the height model would have
made the Malone Kozak system more competitive.

The source of Cabar’s greater accuracy becomes clearer when we look at the
product breakout predictions for particular noise and ablation factors. Figure 4,
for example, shows the product breakout volumes by product type when the
noise and ablation values are 0.15 and 1.5 respectively. Cabar’s predictions are

Case-Based Support for Forestry Decisions 491

Fig. 3. Product breakout market value error results

Fig. 4. Product breakout volumes (noise factor 0.15; ablation factor 1.5)

generally reasonably close to the figures produced by the cross-cutting algorithm
on the actual stems (first two bars in each group of three). Malone Kozak,
by contrast, tends to greatly overestimate the sizes of the trees and hence the
product breakout volumes (third bar in each group). This indicates that the trees

492 C. Nugent et al.

used in the harvester data-set were shorter and had greater taper than predicted
by the Malone Kozak equations and height model.

5 Conclusions and Future Work

Improvements in terrestrial scanner technology mean that it is now possible to
collect far more information about a forest in advance of it being harvested.
However, this data does not offer complete profiles of the trees in the forest.
Systems that can ‘fill in the gaps’ are needed. Traditional approaches to these
estimation tasks were not designed with such rich data sources in mind and
are unable to exploit them. In this paper we presented Cabar, a Case-Based
Reasoning approach, which is better suited to dealing with the abundance of
scanner data but also the challenges such data poses. Our preliminary results
demonstrate that Cabar provides a viable alternative solution to some of the
challenges currently hindering the adoption of terrestrial scanning in forestry.

Although the work we have presented demonstrates that a CBR approach to
this problem is promising, there are several possible ways in which it might be
improved. The first step would be to extend our system to operate on the k near-
est neighbours for k > 1 and to develop a more sophisticated approach to case
completion from the nearest neighbours. We are also contemplating alternative
distance functions that take account of area rather than diameter, which would
tend to give greater weight to differences nearer the base of the tree. We are
also considering how to make more use of the curvature data that the scanning
technology gives us. We use it in our cross-cutting algorithm, but it is not used
in the distance function. Using it in the distance function raises methodologi-
cal problems because no harvester measures this attribute, hence ‘ground truth’
figures would not be readily available. More empirical evaluation is also called
for. We are collecting further data sets on which experiments can be run. In
particular, it is likely that we will have data that contains scanner readings and
harvester measurements for the same trees. With this, we will not need to use
simulated queries, and we can investigate the role of the confidence measures.

References

1. Boston, K., Murphy, G.: Value recovery from two mechanized bucking operations
in the Southeastern United States. Southern Journal of Applied Forestry 27(4),
259–263 (2003)

2. Murphy, G.: Mechanization and value recovery: worldwide experiences. In: Forest
Engineering Conference: Forest Engineering Solutions for Achieving Sustainable
Forest Resource Management – An International Perspective, pp. 23–32 (2002)

3. Kivinen, V.P.: Design and testing of stand-specific bucking instructions for use on
modern cut-to-length harvesters. PhD thesis, University of Helsinki (2007)

4. Marshall, H.D.: An Investigation of Factors Affecting the Optimal Log Output Dis-
tribution from Mechanical Harvesting and Processing Systems. PhD thesis, Oregon
State University (2005)

Case-Based Support for Forestry Decisions 493

5. Gordon, A., Wakelin, S., Threadgill, J.: Using measured and modelled wood qual-
ity information to optimise harvest scheduling and log allocation decisions. New
Zealand Journal of Forestry Science 36(2/3), 198–215 (2006)

6. Newnham, R.M.: Variable-form taper functions for Alberta tree species. Canadian
Journal of Forest Research 22, 210–223 (1992)

7. Lappi, J.: A multivariate, nonparameteric stem-curve prediction method. Canadian
Journal of Forest Research 36(4), 1017–1027 (2006)

8. Uusitalo, J.: Pre-harvest meaurement of pine stands for sawlog production plan-
ning. Department of Forest Resuorce Management Pubications, University of
Helsinki, Finland (1995)

9. Curtis, R.O.: Height-diameter and height-diameter-age equations for second growth
Douglas fir. Forest Science 13(4), 365–375 (1967)

10. Nieunwenhuis, M.: The development and validation of pre-harvest inventory
methodologies for timber procurement in Ireland. Silva Fennica 36(2), 535–547
(2002)

11. Nasberg, M.: Mathematical programming models for optimal log bucking. PhD
thesis, Linköping University (1985)

12. Bobrowski, P.M.: Branch-and-bound strategies for the log bucking problem. Deci-
sion Sciences 21(4), 1–13 (1990)

13. Sessions, J., Layton, R., Guangda, L.: Improving tree bucking decisions: a network
approach. The Compiler 6(1), 5–9 (1988)

14. Bienert, A., Scheller, S., Keane, E., Mohan, F., Nugent, C.: Tree detection and
diameter estimations by analysis of forest terrestrial laserscanner point clouds. In:
ISPRS Workshop on Laser Scanning 2007, pp. 50–55 (2007)

15. Bienert, A., Scheller, A., Keane, E., Mulloly, G., Mohan, F.: Application of ter-
restrial laser scanners for the determination of forest inventory parameters. Inter-
national Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences 36(5) (2006)

16. Goodenough, D.G., Charlebois, D., Bhogal, A.S., Matwin, S., Daley, N.: Automated
forestry inventory update with SEIDAM. In: Procs. of the IEEE Geoscience and
Remote Sensing Symposium, pp. 670–673 (1997)

17. Kelly, M., Cunningham, P.: Building competent compact case-bases: A case study.
In: Procs. of the Ninth Irish Conference in Artificial Intelligence & Cognitive Sci-
ence, pp. 177–185 (1998)

18. Amishev, D., Murphy, G.: Implementing resonance-based acoustic technology on
mechanical harvesters/processors for real-time wood stiffness assessment: Opportu-
nities and considerations. International Journal of Forest Engineering 19(2), 49–57
(2008)

19. Nummi, T.: Prediction of stem characteristics for pinus sylvestris. Scandinavian
Journal of Forest Research 14, 270–275 (1999)

20. Liski, E., Nummi, T.: Prediction of tree stems to improve efficiency in automatized
harvesting of forests. Scandinavian Journal of Statistics 22, 255–269 (1995)

21. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

22. Balakrishnan, N., Basu, A.P.: The Exponential Distribution: Theory, Methods, and
Applications. Gordon and Breach, New York (1996)

A Case-Based Perspective on Social Web Search�

Barry Smyth, Peter Briggs, Maurice Coyle, and Michael P. O’Mahony

CLARITY: Centre for Sensor Web Technologies
HeyStaks Ltd., NovaUCD, University College Dublin, Ireland
http://www.clarity-centre.org, http://www.heystaks.com

Abstract. Web search is the main way for millions of users to access
information every day, but we continue to struggle when it comes to
finding the right information at the right time. In this paper we build
on recent work to describe and evaluate a new application of case-based
Web search, one that focuses on how experience reuse can support collab-
oration among searchers. Special emphasis is placed on the development
of a case-based system that is compatible with existing search engines.
We also describe the results of a live-user deployment.

1 Introduction

Mainstream search engines like Google are the primary way that people access
information online, but their success is muted by the challenges that remain.
Even Google fails to deliver relevant results as much as 50% of time [1]. This
leads to poor search productivity but is as much a result of the vague queries
that are commonplace in Web search (e.g. [2]) as it is due to failings in core
search engine technology. Unfortunately vague queries are the reality of Web
search and so in response there has been considerable research on different ways
to improve result selection and ranking. For example, researchers have looked at
ways to add context to bias search in the direction of special types of information
(e.g., people, papers, etc.); see for e.g. [3]. Others have attempted to profile the
preferences of searchers to deliver more personalized result-rankings [4, 5, 6].

Case-based reasoning (CBR) researchers have also recognised the opportunity
for case-based techniques to improve Web search and information retrieval. For
example, the work of Rissland [7] looks at the application of CBR to legal infor-
mation retrieval, and [8] describe a case-based approach to question-answering
tasks. Similarly, in recent years there has been considerable research looking at
how CBR techniques can deal with less structured textual cases. This has led to
a range of so-called textual CBR techniques [9]. In the context of Web search,
one particularly relevant piece of work concerns the Broadway recommender sys-
tem [10], and specifically the Broadway-QR query refinement technique that uses
case-based techniques to reuse past query refinements in order to recommend new
refinements to searchers. The work of [11] apply CBR techniques to Web search
in a different way, by combining user profiling and textual case-based reasoning
to dynamically filter Web documents according to a user’s learned preferences.
� This work is supported by Science Foundation Ireland under grant 07/CE/I1147.

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 494–508, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.clarity-centre.org
http://www.heystaks.com

A Case-Based Perspective on Social Web Search 495

This paper also focuses on how CBR techniques can be applied to Web search.
It builds on previous work [12,13,14] which has already demonstrated the benefits
of reusing search experiences within community-based search case bases; each
case base representing the prior search experiences of a community of like-minded
searchers. The main contribution of this paper is not a new case-based Web
search technique per se – in fact we base our core CBR engine on the work of
[13] – but rather a novel application of CBR techniques, which has the potential

to contribute to mainstream Web search in a practical way. In the next section we
describe the HeyStaks (www.heystaks.com) Web search utility, which is designed
to work alongside search engines such as Google. HeyStaks allows searchers to
create case bases to better organise their search experiences. These can be shared
with friends and colleagues and used to augment Google’s own search results with
recommendations based on the search experiences of others. In Section 3 we
describe a detailed evaluation of a recent HeyStaks deployment to demonstrate
the value that HeyStaks brings to Web search; we show that users create and
share search experiences at will, and benefit frequently from the experiences of
others in a manner that mainstream search engines simply cannot support. In
short we argue that this implementation of case-based Web search adds a new
layer of collaboration to Web search by mediating the reuse of search experiences.

2 HeyStaks

HeyStaks is a new approach to case-based Web search, designed to work in
cooperation with rather than competing against mainstream search engines. We
describe HeyStaks as a search utility that seamlessly integrates with leading
search engines such as Google, via a browser toolbar/plugin, to offer a number
of practical features that are missing from today’s Web search engines.

2.1 A Motivating Example

To understand the motivation for HeyStaks, consider a common use-case: Stella
is a new machine learning PhD student. Her early work is dominated by back-
ground research and she spends a lot of time searching for relevant material and
papers on a range of research related topics. As a newcomer Stella often strug-
gles to find the right queries and successful searches can be elusive. She is not a
dedicated bookmarker and so often wastes time re-searching for information she
has found previously; recent research suggests that up to 30% of our searches
are about re-finding information that we have previously found; see [15].

Fortunately for Stella, she has joined a mature, cooperative research group
and she benefits from the generous wisdom of her colleagues when it comes to
better understanding the things she should be searching for. In the spirit of
collaboration colleagues will often email Stella links to Web sites and papers
that they have found. Once again, research supports the value of this type of
‘search’ collaboration: up to 70% of the time we find that colleagues and friends
have already found the type of things that we are looking for online; see [15].

496 B. Smyth et al.

Stella’s experience is common: whether it is a group of colleagues at work,
family members planning a vacation, or a set of friends researching an event,
collaboration is frequently based on shared search experiences.Yet mainstream
search engines offer no support for this type of collaboration, nor do they help
individuals to organise their own search experiences. We believe that CBR tech-
niques can play a key role in harnessing this type of collaboration in Web search.

The Stak-List

Tag, Share, Vote Actions

Create, Share, Remove Staks

Fig. 1. Selecting an active search stak at the start of a new search

HeyStaks adds these missing features (the ability to organise and share search
experiences) to Web search, via the HeyStaks browser toolbar. This allows Stella
to group her searches into staks to reflect her different search interests (spe-
cific projects or tasks at work, travel, events etc.); these staks are case bases
of search experiences. In the future, when Stella searches — her query defining
a new information need — HeyStaks recommends results that she may have
selected for similar queries. These reminders appear as promotions within the
standard Google result-list. Moreover, Stella can chose to share her search staks
with others, or she can join the search staks that others have created. Shared
staks combine the search experiences of many, so that members can benefit from
promotions that are derived from the experiences of others.

For example, in Fig 1 we see that Stella has joined staks created by other
group members. She selects the “Machine Learning” stak as she embarks on a
search for “stability clustering” and the result-list is shown in Fig. 2. The top
3 results are HeyStaks promotions, recommended from stak activity for similar
queries; these promotions may have been promoted from much lower down the
Google result-list, depending on stak activity. Google’s normal results remain
intact. At the top of the result-list is a reminder that HeyStaks has found addi-
tional recommendations. These come from Stella’s own “My Searches” stak, as
well as the “Machine Learning” stak, but are not quite relevant enough to merit
an automatic promotion. By expanding this list Stella can see these additional
promotions. In this way HeyStaks provides a very powerful collaboration plat-
form for Web search: users search with their favourite search engine as normal;

A Case-Based Perspective on Social Web Search 497

they organise their searches in to meaningful staks; and they benefit from the
search experiences of their friends and colleagues.

HeyStaks Promotions

Pop-up tag,
share, vote icons

Fig. 2. Google search results with HeyStaks promotions

2.2 System Overview

Fig. 3 outlines the basic HeyStaks architecture. The system is made up of a
number of key components including:

1. The HeyStaks Server is responsible for managing the core HeyStaks data
including the user and stak databases (DB), which contain all of the basic
user and stak information, and the search staks or case bases (CB), which
store the individual stak-based search experiences.

2. The Recommendation Engine performs a number of recommendation tasks,
the primary one being the selection of suitable results for promotion to the
user, given the current target query and active stak. In addition the recom-
mendation engine is also used to proactively suggest appropriate staks to

498 B. Smyth et al.

Fig. 3. The HeyStaks system architecture and outline recommendation model

Stak Term Cloud

Stak Activity Feed

Fig. 4. The HeyStaks search portal provides direct access to staks and past searches

A Case-Based Perspective on Social Web Search 499

searchers, according to their search context, but we will not focus on this
feature in this paper.

3. The HeyStaks Social Network provides users with access to their individual
profiles, the staks that they create and share, plus stak-related activity feeds
as a way to keep up to date with what friends and colleagues have been
searching for. It also provides a range of features to help users to maintain
their staks and to help them discover interesting results and staks; for ex-
ample Fig. 4 shows a stak page from the HeyStaks search portal for the
“Machine Learning” stak discussed previously.

4. The HeyStaks Toolbar is the key client-side component. It provides users
with various features to create and share staks and pages, and also acts as
a link between the underlying search engine (e.g. Google) and the HeyStaks
server, recording search experiences and inserting relevant promotions.

2.3 Case Bases of Search Experiences

As a CBR system, HeyStaks is distinguished in a number of interesting ways. In
conventional CBR systems there is often a single case base or, at best, a small
number of case bases, which have been created by trusted experts. HeyStaks is
very different. Each stak is a case base and each user can create many staks.
Moreover, there are few guarantees about the reliability of the information that
makes its way in to these case bases. Users might forget to select an appropriate
stak for their search, and although there is an automatic stak selection feature
(beyond the scope of this work) it is not 100% reliable. These problems are ex-
acerbated by the fact that a typical stak may be subscribed to by many different
stak members, each with his/her own individual agenda for participating in the
stak. All of this makes for a much more fluid and dynamic (and challenging) CBR
environment, where experiences are distributed across a multitude of evolving
case bases. It is, incidentally, also an environment in which understanding the
source of case knowledge is likely to be particularly important, because under-
standing the provenance of a case, and the reputation of the case and/or stak
creator, can play a vital role when it comes to evaluating the case’s reliability;
see [16, 14].

These ideas and challenges make fertile ground for future work but for now
we will focus on describing the basic case representation and recommendation
techniques that are used in HeyStaks. Each search stak (S) is a case base record-
ing the search experiences of the stak members. Each stak is made up of a set
of cases ((S = {c1, ..., ck}) and each case corresponds to a single result page
(pi) that has been ’selected’ for this stak. Each case is anonymously associated
with a number of implicit and explicit interest indicators, including: the total
number of times the result has been selected (sel) during a search, the query
terms (q1, ..., qn) that led to its selection, the snippet terms associated with the
result when it wasn’t selected (s1, ..., sm), the total number of times a result has
been tagged (tag) and the terms used to tag it (t1, ..., tw), the total votes it has
received (v+, v−), and the number of people it has been shared with (share);
see Eq. 1. In addition each term (query, tag, snippet) is linked with a hit-count

500 B. Smyth et al.

that reflects the number of times that this term has been associated with the
page in question; for example, hq1 refers to the number of times that the query
term q1 has been found in queries that have led to the selection of the page pi.

cS
i = {pi, (q1, hq1)...(s1, hs1)...(t1, ht1)...(tw , htw), v+, v−, sel, tag, share} (1)

In this way, each case is associated with term data (query, snippet, tag terms)
and usage data (the selection, tag, share, and voting counts). The former pro-
vides the basis for retrieving and ranking promotion candidates, while the latter
provides a source of evidence that can be used to filter results and to generate a
final set of recommendations. Thus, at search time, a set of recommendations is
produced in a number of stages: relevant results are retrieved and ranked from
a set of suitable staks; these promotion candidates are filtered, based on an evi-
dence model, to eliminate noisy recommendations; and finally they are added to
the Google result-list according to a set of recommendation rules.

Retrieval & Ranking. For a given target query, qt, HeyStaks generates a set
of promotion candidates. Briefly, there are two types of promotion candidates:
primary promotions are results that come from the active stak1 St; whereas
secondary promotions come from other staks in the searcher’s stak-list.

score(qt, cj) =
∑
tεqt

tf(tεcj) • idf(t)2 (2)

To generate these promotion candidates, the HeyStaks server uses qt as a
probe into each stak case base, Si, to identify a set of relevant stak cases C(Si, qt).
Each candidate case, cj is scored using a similar technique to that described by
[13] by using a TFIDF (term frequency • inverse document frequency) function
as the basis for an initial recommendation ranking; this approach prefers cases
that match terms in the query which have occurred frequently in the case, but
infrequently across the case base as a whole (see Eq. 2).

Evidence-Based Filtering. We have already mentioned that search staks are
inevitably noisy because searchers will often forget to set an appropriate stak at
the start of a new search session. As a result the retrieval and ranking stage may
select misclassified pages that are not relevant to the current query context.
To avoid making spurious recommendations HeyStaks uses an evidence filter,
which uses a variety of threshold models to further evaluate the relevance of a
particular result in terms of its usage evidence; for instance, tagging evidence is
considered more important than voting, which in turn is more important than
implicit selection evidence. The precise details of this model are beyond the
scope of this paper but, for example, pages that have only been selected once

1 That is, the stak that is currently active in the HeyStaks toolbar. This stak will either
have been selected by the user during a recent search or may have been automatically
selected by HeyStaks based on the current query/search context.

A Case-Based Perspective on Social Web Search 501

by a single stak member are not automatically considered for recommendation
and, all other things being equal, will be filtered out at this stage. In turn, pages
that have received a high proportion of negative votes will also be eliminated.

Recommendation Rules. The final task is to add the remaining qualified
recommendations to the Google result-list. HeyStaks uses a number of differ-
ent recommendation rules to determine when and where a promotion should be
added. Once again, space restrictions prevent a detailed account of this compo-
nent but, for example, the top 3 primary promotions are always added to the
top of the Google result-list, and labelled using the HeyStaks promotion icons.
If a remaining primary promotion is also in the default Google result-list then
this is labeled in its default Google position. If there are still remaining primary
promotions then these are added to the secondary promotion list, which is sorted
according to page TFIDF scores. These recommendations are then added to the
Google result-list as an optional, expandable list of recommendations, such as
that shown at the top of Fig. 2.

3 Evaluation

As an application-paper our main aim in this work is to describe the HeyStaks
application and, in particular, the results of a recent live-deployment obtained
from a usage analysis of 95 HeyStaks beta users (excluding those users directly
connected with the HeyStaks project) during the period October 2008 - January
2009. In this evaluation we will focus on two particular evaluation themes:

1. As a case-based reasoning system HeyStaks is interesting because it facili-
tates the casual creation and sharing of case knowledge, across multiple case
bases, in the form of search experiences. But do users actually take the time
to create these search case bases and do they share them with others?

2. As a search utility, HeyStaks is interesting because it promises to improve
Web search by facilitating collaboration among searchers. But do users ben-
efit from this collaboration? Do they respond positively to HeyStaks’ promo-
tions? Do they benefit from their own search experiences or those of others
or a mixture of the two?

Since this is a study of live-users in the wild there are certain limitations on
what we have been able to measure. There is no control group and it was not
feasible, mainly for data privacy reasons, to analyse the relative click-through
behaviour of users, by comparing their selections of Google results to their se-
lections of promotions. However earlier work does report on these type of results
in more conventional control-group laboratory studies (see for e.g. [15, 1]).

3.1 On the Creation and Sharing of Search Case Bases

A key element of the HeyStaks value proposition is that searchers need a better
way to organise and share their search experiences and, specifically, that the

502 B. Smyth et al.

ability to create and share search staks will provide them with these features.
But do users actually take the time to create staks? Do they share them or join
those created by others? As a user shares and joins staks they effectively create
a search network, the members of which are the other users who co-share these
staks. How do these search networks evolve as a result of stak sharing?

Fig. 5. The number of staks created and shared by users and the size of their respective
search networks (buddy lists)

These questions are addressed by Figure 5 which plots the number of staks
that are created and joined by the beta users; also shown are the number of
stak members (buddies) per stak. The results demonstrate that users do actively
engage in considerable stak creation activity and they do regularly join the staks
created by others. For instance, the plot shows that the most prolific stak creator
has created 11 new staks during the course of the beta trial, while other users join
up to 8 staks that others have created. And this sharing of search experiences
helps create search networks that extend to as many as 19 other users.

In fact, as per the Figure 5(a) insert we see that, on average, users create 3.2
staks and join another 1.4, to develop search networks that link them directly to
about 4 other users. Perhaps this is not surprising: most users create a few staks
and share them with a small network of colleagues or friends, at least initially.
Importantly though, the vast majority of users (70%) do make the effort to
share/join staks — these are the sociable users of insert Figure 5(b) — and for
staks that are shared, they benefit from an average of 3.6 members each.

In total more than 300 staks were created during the beta, on a wide range
of interests, from broad topics such as travel, research, entertainment, to more
niche interests including archaeology, black and white photography, and biking.

A Case-Based Perspective on Social Web Search 503

These data speak to the inherent willingness of users to take advantage of the
organisation and sharing features that HeyStaks makes available, resulting in the
creation of a large number of casual search case-bases that have the potential to
evolve over time to become significant repositories of topical search knowledge.

Of course the creation and sharing of search staks is really just a means to
an end: it is a way to help users partition their search interests to facilitate
recommendation and recovery. Ultimately the success of HeyStaks will depend
on whether users find these recommendations to be useful, which we will explore
further in the following sections.

3.2 Search Collaboration

One of the most important observations about users is the extent to which their
natural search activity creates a community of collaborating searchers. HeyStaks
is motivated by the idea that Web search is an inherently social or collaborative
activity, despite the absence of such collaboration features from mainstream
search engines. In this section we will examine the nature of this collaboration
effect, and the extent to which actual collaboration occurs in practice. As users
search, tag, and vote they effectively produce and consume search knowledge. A
user who is the first to select or tag a given result for a stak produces new search
knowledge. Later, if this result is promoted to another user and re-selected, then
this other user is said to have consumed that search knowledge.

These relationships between the producers and consumers of search knowledge
within staks effectively creates an implicit social network of search collaboration.
Fig. 6 presents a visualization of this network for the beta users. Each node
is a unique user and edges between nodes correspond to evidence for search

Fig. 6. A representation of the collaboration network among HeyStaks searchers: (a)
The percentage of searchers adopting consumer and producer roles; (b) The average
number of collaborating searchers for producers and cunsumers

504 B. Smyth et al.

collaboration. These edges are directed: an edge from user A (the producer) to
user B (the consumer) signifies that user B has selected at least one of the
search results that user A has been responsible for adding (through his/her
own selections, tagging or voting activity) to a search stak, which is shared
between both users. Of course a single edge can (and typically does) reflect
many collaboration instances between two users. In this example the diameter
of the nodes reflects the reputation of the user in terms of their relative ability
to help other users to search; however a detailed discussion of this reputation
mechanism is beyond the scope of this paper.

Perhaps the first thing to notice is the extent of the collaboration that is
evident among these users. From Fig. 6 we can see that the sharing of search
knowledge is not limited to a small clique of especially social searchers, far from
it: the graph includes 85% of beta users meaning that 85% of users have en-
gaged in actual search collaborations. Most users (81 out of 95) have acted as
consumers, benefiting from results that others have produced and 51% (48 out
of 95) have acted as producers, creating at least some new search knowledge that
others have consumed2; as shown in the Fig. 6(a) insert. Indeed when acting as
a consumer, the average searcher benefits from results that have been produced
by more than 7 other searchers. And when acting as a producer, searchers create
search knowledge that is consumed by more than 12 other users on average; as
shown in the Fig. 6(b) insert.

3.3 Search Leaders and Followers

These results tell us that searchers do appear to help others and that they are
helped by others in return. In this section we take a more detailed look at the
nature of search collaboration by examining the sources of promotions.

First let us start with an obvious next question by asking whether some users
are especially altruistic in their searches, helping others more often that they are
helped themselves? Figure 7 plots each user according to the number of other
users they have helped (y-axis) compared to the number of other users they have
been helped by (x-axis). As expected, given the data above, about half the users
(those that are never producers) are situated on the x-axis 3. These are the search
followers within HeyStaks, the novice searchers who benefit disproportionately
from the search experiences of others but are not seen to significantly contribute
to search knowledge themselves. The other half of the user-base presents with a
greater balance between the production and consumption of search knowledge,
as evidenced by the clustering of data points along the main diagonal.

Users who have helped more people than they themselves have been helped
by are net producers) and those who have been helped by more users than they
have helped themselves, are net consumers). As the insert in Figure 7 shows,
approximately 47% of users are net producers. This is especially important when
we remember that above we noted how 51% of users have produced at least some

2 Of course many users are both consumers and producers of search knowledge.
3 Due to overlapping data points it is impossible to resolve each user along this axis.

A Case-Based Perspective on Social Web Search 505

search knowledge that has been consumed by some other user. The vast majority
of these users, 94% of them in fact, are actually producing more search knowledge
than they consume. These are the search leaders within HeyStaks.

Fig. 7. Each HeyStaks user is plotted according to the number of other users that they
have helped and been helped by. The points above the main diagonal indicate the net
producers and those below are the net consumers.

3.4 Promotion Sources

So far we have looked at user-level collaboration and found that users do often
collaborate through the implicit production and consumption of search knowl-
edge. Now we will explore similar ideas but at the level of individual searches.
Overall, the beta users selected more than 11,000 promotions as they searched.
When a user performs a search and selects a promotion, how often is this pro-
motion derived from their own past search activities (self promotions) and how
often does it come from the shared search activities of other stak members (peer
promotions)? The intuition here is that the selection of self promotions cor-
responds to examples of HeyStaks helping users to recover results they have
previously found, whereas the selection of promotions from peers corresponds
to discovery tasks (see [17]), where the user is benefiting from new content that
might otherwise have been missed, or have been difficult to find.

Figure 8 presents this information as a plot of users located according to the
actual number of peer and self promotions selected. For example, the somewhat
isolated user represented by the data point in the top-left quadrant of the graph
has selected about 25 self promotions but more than 190 peer promotions, clearly
demonstrating the ‘discovery’ benefits of shared staks for this particular user.
At the other extreme there are users (towards the bottom right quadrant) who
benefit dispropotionately from their own self promotions.

506 B. Smyth et al.

Fig. 8. Each HeyStaks user is plotted according to the number of peer and self promo-
tions they have selected

As per Figure 8, 66% of all selected promotions are self promotions; users are
usually benefiting from their own past searches. This is not surprising, especially
during the early stages of stak development. Stak growth is initially led by the
stak creator, and so inevitably most of the promotions that are generated are in
response to the stak creator’s search queries. Most of these promotions will be self
promotions, derived from the creator’s own search activities. As staks are shared,
and more users join, the pool of searchers becomes more diverse: more results are
added by the actions of peers and more peer promotions are inevitably generated
and selected. It is an interesting task for future work to explore the evolution
of a search stak and to further investigate how stak content and promotions are
affected as more and more users participate. Are there well-defined stages in stak
evolution, for example, as self promotions give way to peer promotions? For now
it is satisfying to see that even in the early stages of stak evolution, where the
average stak has between 3 and 4 members, that 34% of the time members are
benefiting from promotions that are derived from the activities of their peers.

4 Conclusions

The social Web places emphasis on the sharing of experiences (e.g., comments,
opinions, ratings) and CBR has a opportunity to play an important role; see
[18]. This paper adds to a body of research on case-based Web search. The
main contribution is a description of the HeyStaks application and a detailed
evaluation of its beta launch. The results of this evaluation highlight the potential
for CBR to add value in the social Web. We have highlighted how the HeyStaks

A Case-Based Perspective on Social Web Search 507

approach helps to support a very beneficial form of search collaboration that has
been missing from mainstream search. In concluding, it is worth highlighting the
CBR questions that have emerged during the course of this work:

1. We have focused on recommending cases from an individual case base (stak)
but in HeyStaks there are many different case bases and the ability to sug-
gest a case base is a useful feature in highlighting a new source of search
knowledge to users. How might case bases be recommended?

2. Given that our search case bases are much noisier that expert-created case
bases, how should this influence retrieval, reuse, and maintenance?

3. As cases are reused they are enriched by the activities of others: each case
evolves to contain a trace of its reuse, as users re-select, tag, vote, and share
the page associated with the case; see also [19].

4. As case bases evolve there may be opportunities to merge related case bases,
or case bases may start to diverge as different contributors use them in
different ways. How might these opportunities to merge or split case bases
be recognised and handled?

These questions highlight new opportunities for research that will help to fur-
ther strengthen the role of CBR in the social Web. In turn, HeyStaks presents
many interesting challenges when it comes to addressing the type of scale that
will be faced in a broader deployment context. For example, additional recom-
mendation challenges exist when it comes to recommending pre-existing staks
for users to join, based on a user’s current search query or proactively, based on
their previous queries. Moreover, the issue of malicious users, and their ability
to influence stak promotions needs also to be addressed, perhaps by evaluating
the reputation of users and allowing this to influence promotions.

References

1. Coyle, M., Smyth, B.: Information recovery and discovery in collaborative web
search. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECIR 2007. LNCS,
vol. 4425, pp. 356–367. Springer, Heidelberg (2007)

2. Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.: Searching the web: the
public and their queries. Journal of the American Society for Information Science
and Technology 52(3), 226–234 (2001)

3. Lawrence, S.: Context in Web Search. IEEE Data Engineering Bulletin 23(3), 25–32
(2000)

4. Liu, F., Yu, C., Meng, W.: Personalized Web Search for Improving Retrieval Ef-
fectiveness. IEEE Transactions on Knowledge and Data Engineering 16(1), 28–40
(2004)

5. Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the
world wide web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web
2007. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)

6. Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated anal-
ysis of interests and activities. In: SIGIR 2005: Proceedings of the 28th annual
international ACM SIGIR conference on Research and development in information
retrieval, pp. 449–456. ACM Press, New York (2005)

508 B. Smyth et al.

7. Rissland, E.L., Daniels, J.J.: A hybrid CBR-IR Approach to Legal Information Re-
trieval. In: Proceedings of the 5th international conference on Artificial intelligence
and law, pp. 52–61. ACM Press, New York (1995)

8. Burke, R., Hammond, K., Kulyukin, V., Tomuro, S.: Question Answering from
Frequently Asked Question Files. AI Magazine 18(2), 57–66 (1997)

9. Lenz, M., Ashley, K.: AAAI Workshop on Textual Case-Based Reasoning, AAAI
Technical Report WS-98-12 (1999)

10. Kanawati, R., Jaczynski, M., Trousse, B., Andreloi, J.-M.: Applying the Broadway
Recommendation Computation Approach for Implementing a Query Refinement
Service in the CBKB Meta-search Engine. In: Conférence Française sur le Raison-
nement á Partir de Cas (RáPC 1999) (1999)

11. Godoy, D., Amandi, A.: PersonalSearcher: An Intelligent Agent for Searching Web
Pages. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000.
LNCS, vol. 1952, pp. 43–52. Springer, Heidelberg (2000)

12. Balfe, E., Smyth, B.: Case-based collaborative web search. In: Funk, P., González
Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 489–503. Springer, Heidel-
berg (2004)

13. Boydell, O., Smyth, B.: Enhancing case-based, collaborative web search. In: Weber,
R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp. 329–343. Springer,
Heidelberg (2007)

14. Briggs, P., Smyth, B.: Provenance, trust, and sharing in peer-to-peer case-based
web search. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR
2008. LNCS, vol. 5239, pp. 89–103. Springer, Heidelberg (2008)

15. Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting query
repetition and regularity in an adaptive community-based web search engine. User
Model. User-Adapt. Interact. 14(5), 383–423 (2004)

16. Leake, D.B., Whitehead, M.: Case provenance: The value of remembering case
sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp.
194–208. Springer, Heidelberg (2007)

17. O’Day, V.L., Jeffries, R.: Orienteering in an information landscape: how informa-
tion seekers get from here to there. In: Proceedings of the SIGCHI conference on
Human factors in computing systems (CHI 1993), pp. 438–445. ACM Press, New
York (1993)

18. Plaza, E.: Semantics and experience in the future web. In: Althoff, K.-D.,
Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS, vol. 5239, pp.
44–58. Springer, Heidelberg (2008)

19. Laflaquière, J., Settouti, L.S., Prié, Y., Mille, A.: Trace-based framework for ex-
perience management and engineering. In: Gabrys, B., Howlett, R.J., Jain, L.C.
(eds.) KES 2006. LNCS, vol. 4251, pp. 1171–1178. Springer, Heidelberg (2006)

L. McGinty and D.C. Wilson (Eds.): ICCBR 2009, LNAI 5650, pp. 509–523, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Determining Root Causes of Drilling Problems by
Combining Cases and General Knowledge

Samad Valipour Shokouhi1, Agnar Aamodt2, Pål Skalle1, and Frode Sørmo3

1 Department of Petroleum Technology (IPT)
2 Department of Computer and Information Science (IDI)

Norwegian University of Science and Technology (NTNU)
NO-7491, Trondheim, Norway

3 Verdande Technology AS
Stiklestadveien 1- Trondheim, Norway

valipour@ntnu.no, agnar.aamodt@idt.ntnu.no,
pal.skalle@ntnu.no, frode@verdandetechnology.com

Abstract. Oil well drilling is a complex process which frequently leads to op-
erational problems. In order to deal with some of these problems, knowledge
intensive case based reasoning (KiCBR) has clearly shown potential. An impor-
tant problem in oil well drilling is hole cleaning, in which a high number of ob-
served parameters and other features are involved. This paper presents how to
determine the root causes of poor hole cleaning episodes by means of KiCBR.
This will help the drilling crew to apply a proper remedy. The effect of general
domain knowledge was demonstrated in a comparative study, in which im-
proved results in terms of similarity assessment and explanation capability were
achieved.

Keywords: Case-based, knowledge intensive, oil well drilling.

1 Introduction

Drilling of oil wells is an expensive offshore operation, costing typically 200 000 US$
per day. Any loss of time caused by unwanted events is costly. During drilling all
material drilled out need to be removed, i.e. transported to the surface, a process
which is referred to as hole cleaning. Often some of the material remains in the well,
and hole cleaning is still among the most important problems to deal with during
drilling. It is also one of the most studied phenomena within the petroleum industry.
Insufficient hole cleaning can in extreme cases lead to loss of the well or a part of it,
i.e. stop of the drilling process and blocking of the hole. Due to the number of
parameters influencing hole cleaning and the complex mechanisms involved, the
phenomenon has not yet been fully understood [1].

Case-based reasoning (CBR) is an approach to problem solving and decision mak-
ing where a new problem is solved by finding one or more similar previously solved
problems, called cases, and re-using them in the new problem situation. Application-
oriented research in the area of case based reasoning has moved mature research

510 S. Valipour Shokouhi et al.

results into practical applications. Skalle et al [2] employed case based reasoning to
improve efficiency of oil well drilling. Their focus was on lost circulation, which
means that some of the drilling fluid that always fills the gap between the drill string
and the well wall gets lost into fractures in the geological formation. They built fifty
cases on the basis of information from one North Sea operator. A general domain
model was used to match non-identical features that were related in the model. Men-
des et al [3] presented an application of CBR in offshore well design. The result of
that work was a formalization of the methodology for planning of an oil well in a
case-based reasoning context. They used fuzzy set theory for the matching of index
features. Popa et al [4] presented an application of CBR for planning and execution of
well interventions, in order to improve the decision-making process. Abdollahi et al
[5] explained the applicability of CBR for diagnosis of well integrity problems in
order to reduce the risk of uncontrolled release of formation fluids into the well.

In the above systems general knowledge has been used in the case retrieval
process, for feature matching. None of the systems, or other CBR applications in this
domain, have taken advantage of general knowledge in order to help identify a
problem solution. In the study presented here a model-based method has been imple-
mented as a complementary tool in order to determine the root cause of a hole clean-
ing problem. In addition, parts of the model are also used to enhance matching
quality. An experiment has been undertaken to study the effect of the causal model
combined with cases, in comparison with cases only.

The rest of the paper is structured as follows: In chapter 2 we explain the hole
cleaning problem in some more detail, related to the functionality of our system.
Chapter 3 explains the case structure and similarity methods. In chapter 4 results from
the study of the effect of the causal model is reported. The types of input to the rea-
soning system, and their relationships with causes of hole cleaning problems are
described in chapter 5. The last chapter summarizes and concludes the paper.

2 The Hole Cleaning Problem

A drilling process consists of many steps, of which the actual drilling into the geo-
logical formation and the continuous cleaning of the borehole are core subprocesses.
Fig. 1 illustrates the process at an abstract level. The hole cleaning issues arise when
the drilling direction moves from vertical to deviated and horizontal hole angles.
Horizontal drilling is getting more and more common, due to the increasing distance
from the rig to productive wells. (“All the easy wells are already drilled”, as the
phrase goes). Accumulation of solids at a given depth is a common source of pack off,
which is a serious situation indicated by the building up of material inside the hole
wall, with reduced hole diameter as a result.

Many studies have been carried out by other researchers related to the cleaning of
deviated and horizontal holes [6], [7], [8], [9], [10], [11]. However, the results of the
studies have so far not provided clear operational recommendations. One reason may
be that such studies are focused on the role and effect of individual parameters. A
CBR approach, on the other hand, allows us to view a larger set of parameters as a
unit, without assuming particular restrictions on the parameters, such as parameter
independence.

 Determining Root Causes of Drilling Problems by Combining Cases 511

Bit

Hole

Produced
Materials

Downhole equipment

Vertical
Hole

Deviated
Hole

Horizontal
Hole

Transport of produced

m
aterials

to
the

surface

Circulating
Drilling Fluid

Drill String

Annulus
Gap between drill string and

borehole wall

Fig. 1. Schematic drawing of an oil well being drilled

Our application is targeted at reducing the risk of unwanted downtime (i.e. stopped
drilling). The drill plan acts as guidance to expected drilling behavior. The real-time
data from the drilling process is the main source of a situation description, which is
matched with a past case in order to identify possible hole cleaning problems ahead of
the drill bit. When a sufficiently similar past case is found, the root cause for that
problem is presented to the user. In our KiCBR approach this is supported by the
causal model, linking input features to root causes.

3 Knowledge Assessment

3.1 KICBR

A KiCBR system achieves its reasoning power through the set of previous cases com-
bined with some other source of knowledge about a certain domain. Our system is
designed for finding the root cause of a hole cleaning problem based on either the
case base or the general knowledge module alone, or both of them in combination.
To build the system, three knowledge models are needed:

- A taxonomy: extracting important terms from the domain.
- A causal model: building a model that describes causes and effects.
- A set of cases: concrete past problem solving experiences.

512 S. Valipour Shokouhi et al.

The approach for defining a taxonomical hierarchy depends strongly on the personal
view of the domain. If a developer has a systematic top-down view of the domain,
then it may be easier to use a top-down approach. A combined top-down and bottom-
up approach is often the most feasible for many ontology developers, since the
concepts “in the middle” tend to be the more descriptive concepts in the domain. A
taxonomical and causal model for the drilling domain has been developed, in which
all the entities are linked by binary relations. The causal model links the structured
nodes together in a semantic network. The three main types of relation are: structural
relations, e.g. has subclass; implication relations, e.g. causes; and associative
relations, e.g. occurs in. To express the degree of coverage of the implication
relations, quantifiers may be added to a relation, i.e. always, typically, sometimes, and
occasionally. The “typically” quantifier is the default is none are used. Such a model
facilitates model-based reasoning. In addition to the general knowledge, another
important experience source in the oil well drilling domain is past cases.

In this study a case represents a hole cleaning problem. To make a case, all the
relevant data and information are analyzed and a problematic situation is captured as a
case. The successful response and repair activities are stored for the future use. Few
cases were made in this study due to limited access to the data. The case-building
process required quite a lot of data to fill a case’s features.

A case’s features consist of administrative data, wellbore formation characteristics,
plan data, static and variable drilling data, the drilling activity performed before case
occurrence, and response action and conclusion that provides a solution to the
problem. The case structure is illustrated in Fig. 2.

Operator Company
Well Identification
Oil Field Identifier
DrillingContractor ….

Administrative Data

Lithology
Sandstone
Siltstone …

Geological Period

Wellbore Formation Characteristic

Well Geometry Parameter
Target Depth
Section TVD …

Fluid Operational Parameter
Mud Weight
PV
YP
Water Activity Of Mud ….

Drill String Parameter
BHA Length
Bit Run Number .. .

Drilling Operational Data

Interpreted Activity
Inferred Parameter

Exposure time
Openhole length ...

Indicator
Interpreted Event

Packoff
Tight spot ...

Variable Data

Case Series Start Time
Possible Case Start Time ...

Activity Before Case Occurrence

Case End Time
Response Action…

Response Activity Description

Final Section Consequence

Lesson Learned
General Lesson
Specific Lesson ….

Conclusion

Fig. 2. Case structure

3.2 Case Matching

The CBR cycle consists of four steps; retrieve, reuse, revise and retain. The retrieval
task starts with a (partial) problem description, and ends when a best matching previ-
ous case has been found [12]. A similarity assessment process has been defined that
can be run with or without the use of the causal model. The similarity method is an
adaptation and extension of the Creek method [13, 14]. Our method consists of two

 Determining Root Causes of Drilling Problems by Combining Cases 513

different similarity properties, one being direct or linear indexing, the other being
concept abstraction. The latter is used when the model based module is utilized.

Basic similarity is computed by the following equation.

(1)

CIN and CRE are the input and retrieved cases, n is the number of findings in CIN, m is
the number of findings in CRE, fi is the ith finding in CIN, fj the jth finding in CRE, and
sim(f1,f2) is simply given as:

For symbolic concepts:

(2)

(3)

For linear concepts:

The relevance factor is a number that represents the weight of a feature for a stored
case. The relevance factor of each feature was defined according to the feature’s im-
portance for the case description. They were decided based on a survey among five
experts to reduce subjectiveness of these values. The linear approach explicitly com-
putes the values of similarity according to the minimum and maximum values of each
concept. For example, minimum and maximum for true vertical depth has been set to
zero and 8000 meter respectively. TVD for case 1 and 6 are 2869 and 2242 meter
respectively, which provide 92 % similarity. Some of the indexing attributes will have
both a symbolic and a linear description. An example of the categorization of numeri-
cal values is shown in Table 1. If a numerical value is available, linear similarity will
be used and the symbolic terms will only be used in the model-based part.

Table 1. True Vertical Depth abstracted to symbolic entities

Very shallow Well <1000 meter
Shallow Well 1000-2000 meter
Medium Deep Well 2000-3000 meter
Deep Well 3000-4000 meter

True Vertical Depth (TVD)

Very Deep Well >4000 meter

3.3 Root Causes Assessment

The main objective is to determine the root cause starting out from three types of
features: Direct observations – i.e. measurements, inferred parameters – i.e. values
derived from observations, and interpreted events – i.e. particular concepts describing
important states which require particular awareness or action. The features and causes
are related through intermediate state concepts, see Fig. 3.

514 S. Valipour Shokouhi et al.

The model used is a semantic net-based model of entities linked by relations. Each
relation is labeled. The root causes and the case features are all represented as entities
in this model, and the model-based reasoner works by finding paths from the entities
representing case findings to the entities representing root causes. Fig. 8 shows an
example of two such paths (exampled in section 5).

The goal of the model-based reasoner is to determine which root causes or inter-
mediate states are manifested by the features. Only some paths provide support for
such a conclusion. In order to determine legal paths, plausible inheritance was used.
This method is a generalization of normal subclass inheritance that allows inheritance
of relationships over other relation types than ‘subclass of’ relations. Plausible inheri-
tance is governed by a set of rules declaring which relation-types can be inherited
over which relation-types. In this paper, causal relationships are transitive, and any
relationship can be inherited over ‘subclass of ‘ relationships. For more information,
see [13].

Assume there is a legal path from an observation to a root cause (see Fig. 3). Its
strength is the product of the strength of each relation leading from the finding to the
target entity [14].

 (4)

where n is the number of serial relations. Sometimes there is more than one explana-
tory path from different finding to each target entity (the root cause entity). The total
explanation strength for each target entity is determined with Eq. (5). This calculated
explanation strength will be a good indicator of being the possible root cause.

 (5)

where m is the number of paths. The strength of the indicating entities was decided
based on a survey among five experts to reduce subjectiveness of these values.
Weight of each indicating group, i.e. observation parameter, inferred parameters and
events are ¼, ½, and 1respectively.

Fig. 3. Schematic model of the causal knowledge

 Determining Root Causes of Drilling Problems by Combining Cases 515

Fig. 4. ‘Pack Off’ recognition from observed data

Fig. 3 shows three different clusters, namely events e.g. ‘Pack Off’; inferred
parameters e.g. ‘Open Hole Exposure Time’ (OHET); and observation e.g. ‘True
Vertical Depth’ and ‘Mud Weight’ (density of the drilling fluid).

Observation factors include well plan data (drilling fluid and drill string parameters,
well geometry), formation characteristic and case occurrence description.

In this section ‘Pack Off’ (of the event cluster) and ‘Open Hole Exposure Time’ (of
the inferred parameter cluster) are exemplified. Fig. 4 shows a snapshot from one of
the system’s screens, where ‘Pack Off’ event is interpreted from real time data. Ob-
served data collected from sensors, like flow rate and stand pipe pressure, cannot
explain the situation alone. They are more useful for case classification and for find-
ing the root cause when combined. In the Explanations (right part of the figure),
‘Flow rate’ is the pump rate of drilling fluid for transportation of produced material
from the bottom of the hole to the surface. ‘Stand Pipe Pressure’ is the pressure meas-
ured at the surface which may increase due to any obstacle inside the hole. Increasing
of the ‘Stand Pipe Pressure’ will indicate a ‘Pack Off’ situation while the variables
such as ‘Flow Rate’ are constant.

‘Open Hole Exposure Time’ (OHET) is one of the inferred parameters in this
study, shown in Fig. 5. OHET is the time period when the formation is in contact with
drilling fluid, which again may cause a problematic situation during the drilling op-
eration. Higher exposure time can contribute to higher problems.

Drilling time

D1

Bottom of the hole

Case 1

D2

D3

Case 2

OHET1= T3-T1

OHET2= T3-T2

T1 T2 T3

Fig. 5. Computation of the ‘Open Hole Exposure Time’ (OHET) for case 1 and case 2 when bit
has reached D3

516 S. Valipour Shokouhi et al.

Selected points, i.e. the points where the cases were tagged by drilling time and drill-
ing depth are shown in Fig. 5.

4 Case Matching Results

The case base contains seven cases related to poor hole cleaning problems experi-
enced in North Sea wells. As mentioned, a symbolic and linear similarity framework
was utilized. The case matching results for the case based module alone (CBR), the
model-based approach alone (Model-Based) and for the integrated model- and case-
based reasoning (KiCBR) will be presented. To evaluate the methods, a standard
cross-validation technique is used, taking one case at a time out of the case base and
matching against the six remaining cases. Fig. 6 shows the case matching results for
case 7 and case 5 as unsolved cases. For case 7, the retrieved case with highest simi-
larity was case 2 with 18% similarity using the CBR method. When the KiCBR
method was applied instead, case 3 was retrieved with 39% similarity.

In order to differentiate between the retrieved cases, they were grouped into three
levels according to severity (how much drilling downtime they caused). The three
levels of downtime are; insignificant, significant and highly significant repair time.

For instance, evaluation of downtime for case 7 revealed that this case required
highly significant repair time while cleaning the hole. However, the CBR method
retrieved case 2, which had insignificant repair time. On the other hand, the KiCBR
method retrieved case 3 which is more similar to case 7.

In another example, the case matching process was run for case 5 as an unsolved
case. When using the CBR matching method, case 2 was retrieved, while case 6 was
retrieved using KiCBR. Case 2 and case 6 are grouped in the same class in terms of
the downtime during the drilling, but detail study showed that case 6 had significant
downtime later in the operation around the same area, and this is similar to the situa-
tion in case 5. This means that case 6 is more similar than case 2.

The results show not only improvement for similarity assessment but also good
prediction in problem solving. The effect of including general knowledge was moni-
tored by changing not only the similarity but also the retrieved cases.

Similarity assessments are summarized in Fig. 7. The similarity growth was fluctu-
ating from about 20 % to 100 % or even higher. The most similar case by means of
case-based, model-based and KiCBR are summarized in Table 2.

Table 2. Similarity assessment by means of different reasoning methods

Unsolved case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Retrieved by Case-based Case 3 Case 6 Case 4 Case 3 Case 2 Case 2 Case 2
Retrieved by Model-based Case 7 Case 7 Case 7 Case 5 Case 4 Case 4 Case 3
Retrieved by KiCBR Case 3 Case 6 Case 7 Case 6 Case 6 Case 2 Case 3

Bold items in the above table represent the best case for each unsolved case ac-
cording to downtime and detail studies. KiCBR was able to retrieve the optimal case
in 5 out of 7 cases, while model-based and case-based retrieved only 3 optimal cases.

 Determining Root Causes of Drilling Problems by Combining Cases 517

Fig. 6. Case matching results (in %) for the case based module alone, and for the combined
case based and model based module. Unknown case 7 (upper) and case 5 (lower) were matched
against the remaining 6 cases. Lines between points are only used for better illustration.

In summary, two important phenomena can be observed from the above tests.
First, the general knowledge can generally increase the similarity for all cases in

different rates.
Second, general knowledge may also change which case obtains the highest similarity.

518 S. Valipour Shokouhi et al.

Fig. 7. Case matching using CBR without knowledge model (a) and with knowledge model (b)

 Determining Root Causes of Drilling Problems by Combining Cases 519

5 Determining Root Causes of Drilling Problems

Many parameters are involved in the drilling process, and deviation of one factor may
lead to hole cleaning issues and other problematic situations. Finding the root cause of
the problem from observable symptoms is a major challenge in drilling engineering.

The general domain knowledge serves as explanatory support for the case retrieval
and reuse processes, through a model-based reasoning (MBR) method. In this study,
the failure type/main root causes were divided into seven groups e.g. ‘Hole Cleaning’,
‘Hole Collapse’, ‘Swelling’, ‘Erosion of Weakened Wellbore’, ‘Thick Filter Cake’,
‘Lost Circulation’, and ‘Dissolving’.

Fig. 8 illustrate some of the parameters involved in hole cleaning. In this figure
two of the plausible inheritance paths were highlighted with solid and dotted lines
respectively.

Fig. 8. Part of the hole cleaning concepts with their relations

First plausible inheritance path:

‘High Mud Weight’ implies ‘High Mud Solids Content’ causes occasionally
‘Low ROP’ causes ‘Wear Of Shale’ subclass of ‘Erosion Of Weakened
Wellbore’.

The starting entity ‘High Mud Weight’ is an observed parameter. The strength of this
explanatory path is 0.11 calculated by Eq. (4).

520 S. Valipour Shokouhi et al.

Fig. 9. Path strength of 7 cases based on general model to determine level of the hole cleaning
problem

Second plausible inheritance path:

‘Open Hole Exposure Time’ has subclass ‘Long Exposure Time’ causes
sometimes ‘Erosion Of Weakened Wellbore’.

This link starts out from ‘Open Hole Exposure Time’ which is an inferred parameter.
The path strength for this explanatory path is 0.5.

For each root cause, all plausible inheritance paths from each inferred or observed
parameter in the cases is combined using Eq. (5), which determines the explanation
strength. This calculation yields a number between 0 and 1 for each root cause, with a
higher value indicating higher support for that root cause. Fig. 9 presents the value for
each root cause for each of the seven cases.

Textual sources written during or after the drilling operation (Daily Drilling Report
(DDR) and End of well report (EWR)) as well as real-time sensor logs showed us that
six of the seven cases were highly representative of hole cleaning problems. As
shown in Fig. 9 derived path strength of all seven cases points at poor hole cleaning
except for case 1. In case 1, no events and inferred parameters took place. Therefore,
explanation strength is based on just observed parameters, which results in a fairly
low value of the path strength.

Once the root cause is found, it can be treated by applying a repair action. Each
problem needs to be treated differently. A preliminary assessment of well data was
performed to determine the specific root cause. In figure 10, the results for two cases
(case 2 and 4) are shown. The plausible inheritance model provides strongest support
for the ‘Hole Collapse’ and ‘Erosion Of Weakened Wellbore’ to be the specific root
causes of poor hole cleaning for case number 2 and 4 respectively. Dissolving is zero
for all the cases since there was not any salty rock in the studied holes. The presence

 Determining Root Causes of Drilling Problems by Combining Cases 521

0

0.1

0.2

0.3
0.4

0.5

0.6
0.7

Hole
Collapse

Swelling

Erosion Of
Weakened
Wellbore

Thick Filter
Cake

Lost
Circulation

Dissolving

Case 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Hole
Collapse

Swelling

Erosion Of
Weakened
Wellbore

Thick Filter
Cake

Lost
Circulation

Dissolving

Case 2

Fig. 10. Finding of root causes by means of knowledge model for case 2 (left) and case 4
(right)

of claystone (i.e. a type of rock) and about 26 days of ‘Open Hole Exposure Time’
caused the claystone to react with drilling fluid and the formation around the hole
wall was eroded.

One of the main purposes of introducing knowledge based system is to advise the
user of how to modify the controllable drilling parameters with respect to the associ-
ated root cause. Whenever the cause of a problem is revealed, the proper remedy can
be applied. ‘Hole Collapse’ is one of the major causes of poor hole cleaning, mostly
resolved by adjusting the density of the drilling fluid (mud).

Indications so far although based on a small case base, indicate that the KiCBR
method may be better at retrieving the correct case, but even where this method is
used, the explanation facilities of the model-based approach is valuable, as it allows
the user to see what factors contribute to the problem by providing explanations. The
model-based approach also calculates the support for different root causes independ-
ently, allowing it to conclude that multiple problems can be present. This is important
as multiple problems requires multiple or complex remedies. For instance, for case 2
in Fig. 10 ‘Swelling’ has high support, although ‘Hole collapse’ has even higher sup-
port. Chances are, both of these problems are present.

6 Conclusion

The application of a relatively new methodology to reduce downtime during the oil
well drilling has been considered. A combination of symbolic and linear similarity
was utilized. Case similarity was changed by combining case based and model based
reasoning.

KiCBR obtained a higher similarity and accuracy than case based reasoning alone.
Similarity between an unsolved case and cases in the case base increased in average
by typically 50 % after introducing the knowledge module in the reasoning process.

The most probable root cause could be determined on basis of the knowledge model.
The root cause determined with the model-based approach had a good correlation with
the expert analysis from real-time sensor data.

522 S. Valipour Shokouhi et al.

6.1 Further Work

The results indicate that combining a causal model with case based reasoning im-
proves case matching. Furthermore, the knowledge model serves as explanatory sup-
port for finding root causes. But in this study few cases were available and the results
have to be tested out with more cases as soon as more data will be available. Our aim
is to implement this platform on more cases and perform a broader and more detailed
assessment of the methodology.

Acknowledgments

The work reported here has been partly funded by StatoilHydro and the Research
Council of Norway under the Petromaks program, contract no. 169463/S300. The
authors would like to express appreciation to people from StatoilHydro, through
its project leader Erik Nyrnes, and colleagues from Verdande Technology, for their
contributions to the results presented.

References

1. Datta, B.K., Ratnayake, C., Saasen, A., Omland, T.H.: Hole Cleaning and Pressure-Loss
Prediction From a Bulk Transport Perspective. Paper SPE 96315 presented at Offshore
Europe, 6-9, September 2005, Aberdeen, United Kingdom (2005)

2. Skalle, P., Sveen, J., Aamodt, A.: Improved Efficiency of Oil Well Drilling through Case-
Based Reasoning. In: Mizoguchi, R., Slaney, J.K. (eds.) PRICAI 2000. LNCS, vol. 1886.
Springer, Heidelberg (2000)

3. Mendes, J.R.P., Morooka, C.K., Guilherme, I.R.: Case-based reasoning in offshore well
design. Journal of Petroleum Science and Engineering 40, 47–60 (2003)

4. Popa, A., Popa, C., Malamma, M., Hicks, J.: Case-based reasoningapproach for well fail-
luer diagnostics and planning. SPE paper 114 229, presented at the 2008 SPE Western Re-
giounal and Pacific Section AAPG Joint Mtg, Bakersfield, March 31- April 2 (2008)

5. Abdollahi, J., Carlsen, I.M., Randhol, P., Tenold, E., Haga, H.B., Jakobsen, T.: A Case-
Based Approach to Understand the Complexity of Causal Connections Related to Well In-
tegrity Problems. In: IADC/SPE 111129, Presented at the 2008 IADC/SPE Drilling Con-
ference held in Orlando, Florida, U.S.A., March 4–6 (2008)

6. Yu, M., Takach, N.E., Nakamura, D.R., Shariff, M.M.: An experimental study of hole
cleaning under simulated downhole conditions. In: Paper SPE 109840 presented at SPE
Annual Technical Conference and Exhibition, Anaheim, California, November 11-14
(2007)

7. Lapierre, S., Courville, G., Song, J.: Achieving Technical Limits: Expanded Application of
Real-Time Pressure-While-Drilling Data Helps Optimize ROP and Hole Cleaning in
Large-Diameter, Directional Intervals. In: Paper SPE 99142-MS presented at IADC/SPE
Drilling Conference, Miami, February 21-23 (2006)

8. Adari, R.B., Miska, S., Kuru, E., Bern, P.: Selecting Drilling Fluid Properties and Flow
Rates For Effective Hole Cleaning in High-Angle and Horizontal Wells. In: Paper SPE
63050-MS presented at SPE Annual Technical Conference and Exhibition, Dallas, Octo-
ber 1-4 (2000)

 Determining Root Causes of Drilling Problems by Combining Cases 523

9. Sanchez, R.A., Azar, J.J., Bassal, A.A., Martins, A.L.: Effect of Drillpipe Rotation on
Hole Cleaning During Directional-Well Drilling. SPE Journal 4(2), 101–108 (1999)

10. Charlez, P.A.: Rock Mechanics: Petroleum Applications, p. 661. Editions Technip. (1997)
11. Peden, J.M., Ford, J.T., Oyeneyin, M.B.: Comprehensive Experimental Investigation of

Drilled Cuttings Transport in Inclined Wells Including the Effects of Rotation and Eccen-
tricity. In: Paper SPE 20925-MS presented at European Petroleum Conference, The
Hague, October 21-24 (1990)

12. Aamodt, A., Plaza, E.: Case-Based Reasoning: Fundamental Issues, Methodological
Variations, and System Approaches. Artificial Intelligence Communications 7(1), 39–59
(1994)

13. Sørmo, F., Aamodt, A.: Knowledge elaboration for improved CBR. In: Sixteenth Interna-
tional Joint Conference on Artificial Intelligence, Workshop ML-5: Automating the Con-
struction of Case-Based Reasoners, Stockholm, pp. 39–43 (1999)

14. Aamodt, A.: Knowledge-Intensive Case-Based Reasoning in CREEK. In: Funk, P., Gon-
zález Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 1–15. Springer, Heidelberg
(2004)

Author Index

Aamodt, Agnar 450, 509
Adeyanju, Ibrahim 14
Aha, David W. 29, 434
Aleven, Vincent 45
Alonso, Rafael 465
Althoff, Klaus-Dieter 389
Ashley, Kevin 45

Bach, Kerstin 389
Badra, Fadi 60
Bianchi, Reinaldo A.C. 75
Bierer, Annett 90
Blanzieri, Enrico 328
Bottrighi, Alessio 225
Bramsen, Diane 465
Bridge, Derek 120, 479
Briggs, Peter 494

Chakraborti, Sutanu 270
Cojan, Julien 105
Cordier, Amélie 60
Coyle, Maurice 494
Craw, Susan 1
Cummins, Lisa 120
Cunningham, Pádraig 328

Delany, Sarah Jane 135
Derbinsky, Nate 403
Dı́az-Agudo, Belén 313, 418

Escalera, Sergio 298
Esfandiari, Babak 150

Floyd, Michael W. 150
Fornells, Albert 418
Fornells, Eduard 418
Funk, Peter 358

Gay, Pablo 195
Golobardes, Elisabet 418
González-Calero, Pedro A. 313
Gupta, Kalyan Moy 434

Hofmann, Marcus 90
Hogg, Chad 465

Kendall-Morwick, Joseph 165
Khemani, Deepak 270
Kofod-Petersen, Anders 450

Laird, John E. 403
Lamontagne, Luc 14
Leake, David 165
Lee-Urban, Stephen 180
Leonardi, Giorgio 225
Li, Hua 465
Li, Lei 374
Lieber, Jean 60, 105
López, Beatriz 195
Lopez de Mantaras, Ramon 75
Lothian, Robert 14
Lynch, Collin 45

Mateas, Michael 343
Mehta, Manish 210
Molineaux, Matthew 29
Montani, Stefania 225
Moore, Philip 434
Muñoz-Avila, Héctor 180, 465
Murphy, Glen 479

Nugent, Conor 479

O’Mahony, Michael P. 494
Ontañón, Santiago 210, 240
Øyen, Bernt-H̊avard 479

Pantazi, Stefan 256
Pinkwart, Niels 45
Pla, Albert 195
Plaza, Enric 240
Portinale, Luigi 225
Pous, Carles 195

Radeva, Petia 298
Raghunandan, M.A. 270
Ram, Ashwin 210
Recio-Garćıa, Juan Antonio 418
Reichle, Meike 389
Rissland, Edwina L. 6
Rohrer, Brandon 285
Ros, Raquel 75

526 Author Index

Salamó, Maria 298
Sánchez-Ruiz, Antonio A. 313
Segata, Nicola 328
Skalle, P̊al 509
Smyth, Barry 494
Sørmo, Frode 509
Sripada, Somayajulu 14
Sukthankar, Gita 29

Terenziani, Paolo 225

Valipour Shokouhi, Samad 509

Weber, Ben G. 343
Wiratunga, Nirmalie 14

Xiong, Ning 358

Yang, Qiang 374

Zhuo, Hankui 374

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	We’re Wiser Together
	Introduction
	Knowledge Containers
	Retrieval Knowledge
	Adaptation Knowledge
	Representation Knowledge

	Meta-knowledge
	Models and Maintenance
	Agile CBR

	Conclusions
	References

	Black Swans, Gray Cygnets and Other Rare Birds
	Introduction
	The Gray Cygnet Problem: Four Research Issues
	Examples of Black Swans and Gray Cygnets
	Recognition of Swans and Vigilant Monitoring for Cygnets
	Hypotheticals and Synthetic Cygnets
	Responsive Re-representation
	References

	Theoretical/Methodological Research Papers
	Case Retrieval Reuse Net (CR2N): An Architecture for Reuse of Textual Solutions
	Introduction
	Related Work
	Case Retrieval Reuse Net (CR2N)
	Case Retrieval Net (CRN)
	From CRN to CR2N

	Evidence for Annotations: Neighbouring vs. All Cases
	Text Reuse with Case Grouping
	Text Reuse with CR2N
	Distinguishing CR2N from CG

	Evaluation Methodology
	Weather Forecast Revision
	Health and Safety Incident Reporting

	References

	Case-Based Reasoning in Transfer Learning
	Introduction
	Transfer Learning and Case-Based Reasoning
	Case Study: Intent Recognition for Transfer Learning
	Environment, Tasks, and State Representations
	Learning Algorithms
	Empirical Evaluation
	Results and Analysis

	A Concurrent Learning Alternative
	Discussion: Intent Recognition, TL, CBR, and Future Work
	Summary
	References

	Toward Modeling and Teaching Legal Case-Based Adaptation with Expert Examples
	Introduction
	Reasoning with Hypothetical Cases and Adaptation
	Example of Reasoning with Hypotheticals
	Process Model of Hypothetical Argument
	Case-Based Adaptation in the Process Model

	Related Work
	Representing Hypothetical Reasoning Diagrammatically
	Experiment to Assess Reliability of Interpreting Diagrams
	Experimental Procedure
	Preliminary Results and Discussion

	Conclusions
	References

	Opportunistic Adaptation Knowledge Discovery
	Introduction
	Basic Notions About CBR
	Application Context: The TAAABLE System
	Representation Issues
	The CBR Process in TAAABLE
	Why Learning Adaptation Knowledge in TAAABLE?

	Opportunistic Adaptation Knowledge Discovery
	Adaptation Knowledge Discovery from the Case Base
	Opportunistic and Interactive Knowledge Acquisition
	Combining the Two Approaches

	Applying Opportunistic AK Discovery to TAAABLE
	AK Discovery
	Opportunistic Adaptation Knowledge Discovery
	Implementation
	A First Example: Cooking a Chocolate Cake
	A Second Example: Cooking a Chinese Soup

	Discussion and Related Work
	Conclusion and Future Work
	References

	Improving Reinforcement Learning by Using Case Based Heuristics
	Introduction
	Reinforcement Learning and the Q–Learning Algorithm
	Heuristic Accelerated Reinforcement Learning and the HAQL Algorithm
	Case Based Reasoning
	Combining Case Based Reasoning and Reinforcement Learning
	Experiments in the Robotic Soccer Domain
	Conclusion
	References

	Dimensions of Case-Based Reasoner Quality Management
	Introduction
	Defining Case-Based Reasoner Quality Management
	Quality of the CBR System’s Knowledge Base
	Case-Based Reasoner Quality Management

	A General Framework for CBRQM
	General Policies
	Basic Conditions and Premises
	Procedural Elements
	Behavioural Elements

	Integrating CBRM and CBRQM
	Conclusion
	References

	Belief Merging-Based Case Combination
	Introduction
	Introduction of the Running Example
	Preliminaries
	Set Theory Notations
	Metric Spaces
	CBR: Definitions and Hypotheses
	Formalization of the Example

	Integrity Constraint Belief Merging
	IC Merging in Propositional Logic
	Generalization
	Example of Pre-IC Merging Operator

	Case Combination Based on a Pre-IC Merging Operator
	Conservative Adaptation
	δ-Combination of Cases
	Application to the Example

	Application to CCBI
	Credible Case-Based Inference
	$\delta^{d,Σ}$-Combination of Cases Extends CCBI

	Computing IC Merging in Numerical Spaces
	Conclusion, Related Work, and Future Work
	References

	Maintenance by a Committee of Experts: The MACE Approach to Case-Base Maintenance
	Introduction
	Comparison of Existing Algorithms
	Empirical Comparisons
	An Analysis of Algorithm Biases

	Maintenance by a Committee of Experts (MACE)
	Experimental Methodology
	General Results
	Harmonic Mean
	Pareto Front

	Noise-Filtering
	The Effect of Boundary Complexity
	The Special Case of Spam
	Conclusions and Future Work
	References

	The Good, the Bad and the Incorrectly Classified: Profiling Cases for Case-Base Editing
	Introduction
	Case-Base Editing
	Competence-Based Case-Base Editing

	CaseProfiles
	Enhanced Competence Model
	Categorising Cases

	Experimental Analysis
	Removal of Different Types of Cases
	What Existing Noise Reduction Algorithms Do
	Comparison of Editing Algorithms

	Conclusions and Future Work
	References

	An Active Approach to Automatic Case Generation
	Introduction
	Related Work
	Modelling an Expert’s Behaviour
	Improving Passive Learning with Active Case Generation
	Determining a Connecting Sequence
	Experimental Results
	Experimental Setup
	Importance of Problem Order
	Applying Active Learning

	Conclusions and Future Work
	References

	Four Heads Are Better than One: Combining Suggestions for Case Adaptation
	Introduction
	Case Study Context: Intelligent Assistance for Authors of Scientific Workflows
	Background

	Towards a General Framework for Combining Adaptation Suggestions
	Determining Confidence in Candidate Suggestions
	Determining Relevance of Overlapping Suggestions
	Combining Suggestions and Suggestion Confidence
	A General Framework for Producing and Combining Adaptation Suggestions

	A Case Study of the Framework: Implementation in Phala
	Component Suggestion Methods
	Refitting to Insure Comparable Confidence Values
	Methods for Combining Suggestions

	Experimental Design
	General Factors and Trade-Offs
	Dataset
	Leave-One-Out Tests

	Results
	Related Work
	Future Work
	Conclusions
	References

	Adaptation versus Retrieval Trade-Off Revisited: An Analysis of Boundary Conditions
	Introduction
	Analyses of Boundary Conditions
	Analysis of a Naive Adaptation Algorithm
	Analysis of an Omniscient Adaptation Algorithm

	A Plan Adaptation Example
	Domain-Configurable Plan Adaptation
	Partial-Order Planning
	Domain-Configurable Partial-Order Plan Adaptation Knowledge
	Domain-Configurable Partial-Order Plan Adaptation Algorithm

	Example of Domain-Configurable Plan Adaptation
	Empirical Evaluation
	Transportation Domain Encoding
	Experimental Setup
	Results

	Conclusions
	References

	Boosting CBR Agents with Genetic Algorithms
	Introduction
	BoostingCBRAgents
	Learning Boosting Weights with GA
	Chromosome
	Fitness Function
	Selection
	Crossover
	Mutation
	Reinsertion
	Ending Condition

	Application to Breast Cancer
	Breast Cancer Case Base
	Experimental Set Up
	Results

	Related Work
	Conclusions
	References

	Using Meta-reasoning to Improve the Performance of Case-Based Planning
	Introduction
	Related Work
	Case-Based Planning in WARGUS
	Plan Adaptation
	Meta-level Plan Adaptation
	Trace Recording
	Trace Difference Calculation
	Failure Detection
	Plan Modification
	Exemplification

	Meta-level Plan Adaptation Results
	Conclusion
	References

	Multi-level Abstractions and Multi-dimensional Retrieval of Cases with Time Series Features
	Introduction
	Data Structures and Functions for Multi-level Abstractions and Flexible Querying
	Multi-dimensional Index Structures for Retrieval Optimization
	Index Generation and Navigation
	Comparisons with Related Work
	Conclusions
	References

	On Similarity Measures Based on a Refinement Lattice
	Introduction
	A Refinement Lattice for Feature Logics
	Refinement Operators for Feature Terms

	Anti-unification-Based Similarity
	Property-Based Similarity
	An Illustrative Example
	Constructing the Properties
	Property-Based Similarity Definition

	Experimental Results
	Related Work
	Conclusions
	References

	An Overview of the Deterministic Dynamic Associative Memory (DDAM) Model for Case Representation and Retrieval
	Introduction
	Background
	The Design Principles of the DDAM Model
	High Dimensionality
	Sparseness
	Dynamicity and Similarity-Based Organization
	Existing Approaches

	Case Representation with the DDAM Model
	The Generalized Trie Memory Model
	Unsupervised Grammar Induction

	Similarity-Based Retrieval (IR) with the DDAM Model
	The “Hyperspace Telescope” Analogy
	A Medical Terminology Experiment
	Unsupervised Equivalence Set Induction
	Limitations and Future Work

	References

	Robust Measures of Complexity in TCBR
	Introduction
	Related Work
	TCBR and IR
	Complexity Measures in TCBR

	Challenges in Estimating Solution Similarity
	Pitfalls in Earlier Approaches
	Empirical Demonstration
	Estimating Similarities in the Presence of Human Judgment

	Calculating Complexity
	MST Method
	Correlation Method
	Visualization Using MST

	Evaluation
	Synthetic Datasets
	Deerwester Dataset
	NHS Medical Dataset
	20 Newsgroups Dataset

	Conclusions
	References

	S-Learning: A Model-Free, Case-Based Algorithm for Robot Learning and Control
	Introduction
	Relation to Previous Work
	Dynamic Reinforcement Learning Problem Statement

	Method
	S-Learning Algorithm
	Robot Simulation

	Results
	Discussion
	Limitations of S-Learning
	Implications

	References

	Quality Enhancement Based on Reinforcement Learning and Feature Weighting for a Critiquing-Based Recommender
	Introduction
	Background
	Compatibility Using Reinforcement Learning
	Similarity Using User Preference Weighting
	Local User Preference Weighting
	Global User Preference Weighting

	Empirical Evaluation
	Setup
	Reinforcement Learning Recommendation Efficiency
	Quality Recommendation Efficiency

	Conclusions
	References

	Abstraction in Knowledge-Rich Models for Case-Based Planning
	Introduction
	Abstraction in Description Logics
	The Pizza Restaurant Domain Example

	Generative Planning Using DLs
	Planning in the Pizza Restaurant Domain

	Creating Abstract Cases
	An Example of Case in the Pizza Restaurant Domain
	Case Base Indexing and Retrieval

	CaseReuse
	Operator Semantics
	Related Work and Conclusions
	References

	A Scalable Noise Reduction Technique for Large Case-Based Systems
	Introduction
	Motivation
	Related Work

	Fast Noise Reduction with Local Kernel Machines
	The LSVM Noise Reduction Technique
	Making LSVM Noise Reduction Scalable for Large Datasets
	Computational Complexity of {\sf FaLKNR}

	Empirical Evaluation of {\sf FaLKNR}
	Experimental Procedure
	Results and Discussion

	Conclusions
	References

	Conceptual Neighborhoods for Retrieval in Case-Based Reasoning
	Introduction
	Retrieval in Case-Based Reasoning
	Nearest Neighbor Retrieval
	Structural Retrieval

	Conceptual Neighborhoods
	Case Retrieval
	Retrieval in Concept Space
	Applying Conceptual Neighborhoods

	Conceptual Neighborhoods in RTS Games
	Case Representation
	Recall Methods
	Generalize Methods
	Case Selection
	Retrieval Example

	Implementation
	Architecture
	Build Order Selectors
	Case Generation

	Results
	Related Work
	Conclusion
	References

	CBR Supports Decision Analysis with Uncertainty
	Introduction
	Case-Based Decision Analysis: The Proposed Approach
	Decision Model for Decision Analysis
	Case-Based Learning of Decision Trees

	Deriving State Probabilities from Previous Cases
	Reasoning Degrees of Belief Using the D-S Theory
	Reaching Final Probabilities via Probabilistic Reasoning

	Derivation of General Utilities of Actions Given States
	Decision Analysis Using Case-Based Decision Model
	Principle of Maximizing Expected Utility
	When Utility Values from Cases Are Fuzzy

	Related Work
	Conclusion
	References

	Constraint-Based Case-Based Planning Using Weighted MAX-SAT
	Introduction
	Related Work
	Case-Based Planning
	Planning as Satisfiability and Weighted MAX-SAT
	Learning for Planning

	Problem Formulation
	The {\tt MAXCBP} Algorithm
	Encoding Planning Problem
	Building Constraints
	AssigningWeights
	Obtaining a Final Solution Plan

	Experiment Results
	Different Number of Cases
	Different Values of β

	Conclusion
	References

	Applied Research Papers
	A Value Supplementation Method for Case Bases with Incomplete Information
	Introduction
	Preliminary Work
	Generalization
	Experiments towards an Extensions of the Initial Scenario
	Results
	Evaluation of the Experiments and Their Results

	Related Work
	Conclusion and Outlook
	References

	Efficiently Implementing Episodic Memory
	Introduction
	Characterizing Episodic Memory
	Episodic Memory Constraints
	Related Case-Based Reasoning Work
	EM: A Generic Memory Module for Events

	Integration of Episodic Memory in Soar
	Soar
	Episodic Memory Integration
	Evaluation Domain

	Soar-EpMem Structure and Evaluation
	Global Episodic Memory Structures
	Episode Storage
	Cue Matching
	Episode Reconstruction

	Conclusion
	References

	Integration of a Methodology for Cluster-Based Retrieval in jColibri
	Introduction
	Background Work
	Case Retrieval from a Clustered Case Memory
	The jCOLIBRI Framework

	$Thunder$: The Clustered Case Memory Support
	Connectors
	In-Memory Organization
	Execution of Case Retrieval Strategies

	Case Study: SOM-Clustered Case Bases for Textual CBR
	Textual CBR
	Organization Based on Self-Organizing Maps
	Experiments, Results and Discussion

	Conclusions and Further Work
	References

	Case-Based Collective Inference for Maritime Object Classification
	Introduction
	Maritime Video Surveillance and Related Work
	The Maritime Activity Analysis Workbench
	Case-Based Collective Classification of Maritime Objects
	Collective Classification
	Case-Based Collective Inference

	Evaluation
	Objective
	Method
	Results and Analysis

	Discussion
	Conclusion
	References

	Case-Based Reasoning for Situation-Aware Ambient Intelligence: A Hospital Ward Evaluation Study
	Introduction
	Related Work
	System Architecture
	A Hospital Ward Study
	Test Setup
	Test Execution
	Initial Modelling
	Executing Day 13 Test
	Executing Day 14 Test
	Accuracy of the Classifications

	Analysis and Discussion
	Conclusion and Further Work
	References

	Spatial Event Prediction by Combining Value Function Approximation and Case-Based Reasoning
	Introduction
	PITS++: Function Value Estimation Prediction
	Integrated Prediction with CBR
	Retouching Formula
	Similarity Metric
	Non-geographical Features

	Empirical Evaluation
	Related Work
	Conclusions
	References

	Case-Based Support for Forestry Decisions: How to See the Wood from the Trees
	Introduction
	The State of the Art: Motivating the Use of CBR
	Current Practices
	New Technologies
	A Role for Case-Based Reasoning
	Related Work

	Cabar: A CBR Forestry System
	Cases and Queries
	Similarity
	Retrieval and Reuse

	An Experimental Evaluation of Cabar
	Experimental Data
	Ablation and Noise Functions
	The Malone Kozak Benchmark System
	Experimental Methodology
	Results

	Conclusions and Future Work
	References

	A Case-Based Perspective on Social Web Search
	Introduction
	HeyStaks
	A Motivating Example
	System Overview
	Case Bases of Search Experiences

	Evaluation
	On the Creation and Sharing of Search Case Bases
	Search Collaboration
	Search Leaders and Followers
	Promotion Sources

	Conclusions
	References

	Determining Root Causes of Drilling Problems by Combining Cases and General Knowledge
	Introduction
	The Hole Cleaning Problem
	Knowledge Assessment
	KICBR
	Case Matching
	Root Causes Assessment

	Case Matching Results
	Determining Root Causes of Drilling Problems
	Conclusion
	Further Work

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

