

Lecture Notes in Computer Science 5644
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Nikos Mamoulis Thomas Seidl
Torben Bach Pedersen Kristian Torp
Ira Assent (Eds.)

Advances in Spatial
and Temporal Databases

11th International Symposium, SSTD 2009
Aalborg, Denmark, July 8-10, 2009
Proceedings

13

Volume Editors

Nikos Mamoulis
University of Hong Kong
Department of Computer Science
Pokfulam Road, Hong Kong, China
E-mail: nikos@cs.hku.hk

Thomas Seidl
RWTH Aachen University
Department of Computer Science
52056 Aachen, Germany
E-mail: seidl@cs.rwth-aachen.de

Torben Bach Pedersen
Kristian Torp
Ira Assent
Aalborg University
Department of Computer Science
Selma Lagerlöfsvej 300, 9220 Aalborg Ø, Denmark
E-mail: {tbp, torp, ira}@cs.aau.dk

Library of Congress Control Number: 2009929547

CR Subject Classification (1998): H.2.0, H.2.8, H.2-4, I.2.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-02981-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02981-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12716166 06/3180 5 4 3 2 1 0

Preface

SSTD 2009 was the 11th in a series of biannual events that discuss new and
exciting research in spatio-temporal data management and related technologies.
Previous symposia were successfully held in Santa Barbara (1989), Zurich (1991),
Singapore (1993), Portland (1995), Berlin (1997), Hong Kong (1999), Los Ange-
les (2001), Santorini, Greece (2003), Angra dos Reis, Brazil (2005), and Boston
(2007). Before 2001, the series was devoted solely to spatial database manage-
ment, and called SSD. From 2001, the scope was extended in order to also
accommodate temporal database management, in part due to the increasing
importance of research that considers spatial and temporal aspects jointly.

SSTD 2009 introduced several innovative aspects compared to previous events.
There was a demonstrations track which included ten presentations of systems
related to the topics of interest. In addition to that, the event included a poster
session with seven presentations of innovative research developed at an early
stage. For the first time in the SSTD series, the best paper of the symposium
was awarded and a few high-quality papers were selected and the authors were
invited to submit extended versions of their work to a special issue of the Geoin-
formatica journal (Springer). Prior to the symposium, there was a two-day ad-
vanced seminar, which hosted three half-day tutorials on state-of-the-art topics
within spatio-temporal data management, held by distinguished international
researchers.

SSTD 2009 received 62 research submissions and 11 demonstration submis-
sions from 20 countries (based on the affiliation of the first author). A thorough
review process led to the acceptance of 20 high-quality papers, geographically
distributed as follows: USA 6, Greece 3, Germany 2, Belgium 1, Brazil 1, Den-
mark 1, Hong Kong 1, Ireland 1, Israel 1, Singapore 1, South Korea 1, and
United Kingdom 1. The papers are classified in the following categories, each
corresponding to a conference session: (1) Spatial and Flow Networks, (2) In-
tegrity and Security, (3) Uncertain Data and New Technologies, (4) Indexing
and Monitoring Moving Objects, (5) Advanced Queries, and (6) Models and
Languages.

Distinguished members of the community delivered the three keynotes, cov-
ering diverse subjects. Mor Naaman (Rutgers University) discussed how the
spatio-temporal information tracked by social media services allows for a new
type of “spatio-tempo-social” analysis of world facts and human behavior. Sud-
hakar Menon (ESRI) gave an overview of the design and architecture of GIS
Servers for Web-based Information Systems, using ESRI’s ArcGIS Server sys-
tem as a concrete example. Lars Arge described some of the recent advances in
the development of worst-case efficient range search indexing structures.

The success of SSTD 2009 was the result of team effort. First, we would like
to thank the authors, irrespectively of whether their papers were accepted or

VI Preface

not, for their support of the conference series and for sustaining the high quality
of the submissions. Second, we are grateful to the members of the Program
Committee (and the external reviewers) for their thorough and timely reviews.
Third, we thank the invited speakers for their excellent keynotes. Fourth, we are
grateful to Christian S. Jensen for his advice and support and to Man Lung Yiu
and Hua Lu for maintaining the conference website and publicizing the event.
Finally, we would like to thank our sponsors ESRI, Det Obelske Familiefond,
and Otto Mønsteds Fond for their generous support. We believe that SSTD
2009 continued the successful tradition of the series, providing an interesting
program and lively discussions in a pleasant environment.

May 2009 Nikos Mamoulis
Thomas Seidl

Torben Bach Pedersen
Kristian Torp

Ira Assent

Organization

Program Chairs

Nikos Mamoulis University of Hong Kong, Hong Kong, China
Thomas Seidl RWTH Aachen University, Germany

General Chair

Torben Bach Pedersen Aalborg University, Denmark

General Co-chair

Kristian Torp Aalborg University, Denmark

Proceedings Chair

Ira Assent Aalborg University, Denmark

Program Committee

Walid Aref Ki-Joune Li Timos Sellis
Lars Arge Yannis Manolopoulos Cyrus Shahabi
Spiridon Bakiras Mohamed Mokbel Shashi Shekhar
Claudio Bettini Kyriakos Mouratidis Richard Snodgrass
Thomas Brinkhoff Mirco Nanni Kian-Lee Tan
Reynold Cheng Enrico Nardelli Yufei Tao
Hakan Ferhatosmanoglu Mario Nascimento Yannis Theodoridis
Ralf Hartmut Güting Dimitris Papadias Agnès Voisard
Marios Hadjieleftheriou Spiros Papadimitriou Ouri Wolfson
Erik Hoel Matthias Renz Michael Worboys
Panos Kalnis Philippe Rigaux Donghui Zhang
George Kollios Markus Schneider Baihua Zheng
Peer Kröger Bernhard Seeger

External Reviewers

Mohammad Ali Abam
Daniar Achakeyev
Daniel Ayala
Joel Booth

Guadalupe Canahuate
Jinchuan Chen
Chi-Yin Chow
Antonio Corral

Michel Crucianu
Ugur Demiryurek
Tobias Emrich
Mike Evans

VIII Organization

Dario Freni
Elias Frentzos
Nikos Giatrakos
Jian Gong
Franz Graf
Herman Haverkort
Ling Hu
James Kang
Leyla Kazemi
Mohamed Khalefa
Ali Khoshgozaran
Onur Kucuktunc
Justin Levandoski
Yimin Lin

Gerasimos Marketos
Sergio Mascetti
Praadeep Mohan
Joe Naps
Stavros Papadopoulos
Linda Pareschi
Kostas Patroumpas
Kyriacos Pavlou
Nikos Pelekis
Michalis Potamias
Philip Prange
Chedy Raissi
Daniele Riboni
Ioannis Roussos

Ahmet Sacan
Houtan Shirani-Mehr
Yannis Stavrakas
Liwen Sun
Panagiotis Symeonidis
Piotr Szczurek
Kostas Tsichlas
Michael Vassilakopoulos
Lixing Wang
Xike Xie
Bo Xu
Yin Yang
Jilian Zhang

Table of Contents

Keynotes

Spatio-Tempo-Social: Learning from and about Humans with Social
Media . 1

Mor Naaman

Recent Advances in Worst-Case Efficient Range Search Indexing 3
Lars Arge

Design and Architecture of GIS Servers for Web Based Information
Systems – The ArcGIS Server System . 5

Sudhakar Menon

Research Sessions

1. Spatial and Flow Networks

Versioning of Network Models in a Multiuser Environment 6
Petko Bakalov, Erik Hoel, Sudhakar Menon, and Vassilis J. Tsotras

Efficient Continuous Nearest Neighbor Query in Spatial Networks
Using Euclidean Restriction . 25

Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi

Discovering Teleconnected Flow Anomalies: A Relationship Analysis of
Dynamic Neighborhoods (RAD) Approach . 44

James M. Kang, Shashi Shekhar, Michael Henjum,
Paige J. Novak, and William A. Arnold

2. Integrity and Security

Continuous Spatial Authentication . 62
Stavros Papadopoulos, Yin Yang, Spiridon Bakiras, and
Dimitris Papadias

Query Integrity Assurance of Location-Based Services Accessing
Outsourced Spatial Databases . 80

Wei-Shinn Ku, Ling Hu, Cyrus Shahabi, and Haixun Wang

A Hybrid Technique for Private Location-Based Queries with Database
Protection . 98

Gabriel Ghinita, Panos Kalnis, Murat Kantarcioglu, and
Elisa Bertino

X Table of Contents

Spatial Cloaking Revisited: Distinguishing Information Leakage from
Anonymity . 117

Kar Way Tan, Yimin Lin, and Kyriakos Mouratidis

3. Uncertain Data and New Technologies

Analyzing Trajectories Using Uncertainty and Background
Information . 135

Bart Kuijpers, Bart Moelans, Walied Othman, and
Alejandro Vaisman

Route Search over Probabilistic Geospatial Data . 153
Yaron Kanza, Eliyahu Safra, and Yehoshua Sagiv

Utilizing Wireless Positioning as a Tracking Data Source 171
Spiros Athanasiou, Panos Georgantas, George Gerakakis, and
Dieter Pfoser

4. Indexing and Monitoring Moving Objects

Indexing Moving Objects Using Short-Lived Throwaway Indexes 189
Jens Dittrich, Lukas Blunschi, and Marcos Antonio Vaz Salles

Indexing the Trajectories of Moving Objects in Symbolic Indoor
Space . 208

Christian S. Jensen, Hua Lu, and Bin Yang

Monitoring Orientation of Moving Objects around Focal Points 228
Kostas Patroumpas and Timos Sellis

5. Advanced Queries

Spatial Skyline Queries: An Efficient Geometric Algorithm 247
Wanbin Son, Mu-Woong Lee, Hee-Kap Ahn, and Seung-won Hwang

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 265
Tobias Emrich, Hans-Peter Kriegel, Peer Kröger,
Matthias Renz, and Andreas Züfle

Approximate Evaluation of Range Nearest Neighbor Queries with
Quality Guarantee . 283

Chi-Yin Chow, Mohamed F. Mokbel, Joe Naps, and Suman Nath

Time-Aware Similarity Search: A Metric-Temporal Representation for
Complex Data . 302

Renato Bueno, Daniel S. Kaster, Agma Juci Machado Traina, and
Caetano Traina Jr.

Table of Contents XI

6. Models and Languages

Adaptive Management of Multigranular Spatio-Temporal Object
Attributes . 320

Elena Camossi, Elisa Bertino, Giovanna Guerrini, and
Michela Bertolotto

TOQL: Temporal Ontology Querying Language . 338
Evdoxios Baratis, Euripides G.M. Petrakis, Sotiris Batsakis,
Nikolaos Maris, and Nikolaos Papadakis

Supporting Frameworks for the Geospatial Semantic Web 355
Alia I. Abdelmoty, Philip D. Smart, Baher A. El-Geresy, and
Christopher B. Jones

Short Papers

Efficient Construction of Safe Regions for Moving kNN Queries over
Dynamic Datasets . 373

Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, and
Ying Zhang

Robust Adaptable Video Copy Detection . 380
Ira Assent and Hardy Kremer

Efficient Evaluation of Static and Dynamic Optimal Route Queries 386
Edward P.F. Chan and Jie Zhang

Trajectory Compression under Network Constraints 392
Georgios Kellaris, Nikos Pelekis, and Yannis Theodoridis

Exploring Spatio-Temporal Features for Traffic Estimation on Road
Networks . 399

Ling-Yin Wei, Wen-Chih Peng, Chun-Shuo Lin, and Chen-Hen Jung

A Location Privacy Aware Friend Locator . 405
Laurynas Šikšnys, Jeppe R. Thomsen, Simonas Šaltenis,
Man Lung Yiu, and Ove Andersen

Semantic Trajectory Compression . 411
Falko Schmid, Kai-Florian Richter, and Patrick Laube

Demonstrations

Pretty Easy Pervasive Positioning . 417
René Hansen, Rico Wind, Christian S. Jensen, and Bent Thomsen

Spatiotemporal Pattern Queries in Secondo . 422
Mahmoud Attia Sakr and Ralf Hartmut Güting

XII Table of Contents

Nearest Neighbor Search on Moving Object Trajectories in Secondo . . . 427
Ralf Hartmut Güting, Angelika Braese, Thomas Behr, and
Jianqiu Xu

A Visual Analytics Toolkit for Cluster-Based Classification of Mobility
Data . 432

Gennady Andrienko, Natalia Andrienko, Salvatore Rinzivillo,
Mirco Nanni, and Dino Pedreschi

ELKI in Time: ELKI 0.2 for the Performance Evaluation of Distance
Measures for Time Series . 436

Elke Achtert, Thomas Bernecker, Hans-Peter Kriegel,
Erich Schubert, and Arthur Zimek

Hide&Crypt : Protecting Privacy in Proximity-Based Services 441
Dario Freni, Sergio Mascetti, and Claudio Bettini

ROOTS, The ROving Objects Trip Simulator . 445
Wegdan Abdelsalam, Siu-Cheung Chau, David Chiu,
Maher Ahmed, and Yasser Ebrahim

The TOQL System . 450
Evdoxios Baratis, Nikolaos Maris, Euripides G.M. Petrakis,
Sotiris Batsakis, and Nikolaos Papadakis

PDA: A Flexible and Efficient Personal Decision Assistant 455
Jing Yang, Xiyao Kong, Cuiping Li, Hong Chen, Guoming He, and
Jinghua Tian

A Refined Mobile Map Format and Its Application 460
Yingwei Luo, Xiaolin Wang, and Xiao Pang

Author Index . 465

Spatio-Tempo-Social: Learning from and about
Humans with Social Media

Mor Naaman

School of Communication and Information
Rutgers University, New Brunswick NJ 08901, USA

mor@scils.rutgers.edu

http://scils.rutgers.edu/~mor

Social media – online services that encourage content sharing through individ-
ual participation – have encouraged and enabled people to share various types of
information in social and public settings. Flickr, Twitter, Facebook, YouTube,
Blogger, MySpace and their likes have become platforms where millions of par-
ticipants share nuggets of their life, their knowledge, their creations and their
opinions in various manners: from blog posts, to status updates, to multimedia
content such as photos and videos.

These social media artifacts often serve as explicit and implicit indicators of
attention. Individual participants, driven by their unique set of motivations [1],
are uploading, sharing and annotating content on these sites. These resources
are often markers of the person’s interests and activities. Taken together, the
cummulative effect of all these activities is a dynamically created, constantly
updated reflection of people and their attention.

Adding spatio-temporal metadata to this content, we may get an idea of what
people are paying attention to in space and time. Many of the social media ser-
vices (first and foremost, Flickr) allow the users to annotate any piece of content
with location (and time) metadata. In other services, location can be derived
from known entities mentioned in the text. Indeed, Flickr alone features over
100,000,000 “geotagged” photos and videos, specifying the location in which
media were captured in various level of specificity. On the personal level, these
spatio-temporal collections might inform us about the user’s spatial breakdown
of interests and habits. Taken in aggregate, we can get a spatio-temporal repre-
sentation of the world’s interests, and even attitudes and intentions. In my talk,
I will show how these spatio-tempo-social media resources can:

1. Improve the organization and enable new services for a user’s media collec-
tion [2,3].

2. Allow extraction of place and event semantics and other information that is
not easily attainable otherwise [4].

3. Help us understand and explore the world [5,6].

Indeed, using millions of geotagged photos from Flickr, we created an fundamen-
tally new way to view the world. Our system, World Explorer [5], employs simple
heuristics and spatial data structures to select and visualize representative tags
for every area in the world, in any zoom level (where enough raw information is
available), providing new opportunities for map-based exploration. We extended

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 M. Naaman

the system using image analysis to automatically detect and select representative
images for landmarks worldwide [6].

Beyond learning about the world, this type of spatio-tempo-social data may
provide opportunities to learn about humans – and humanity. This “social in-
formation” can suggest both information created in social settings, as well as
information about social actions, relationships and patterns that exist in mass
scale. On one hand, social information may mean information that is biased by
the properties and identities of the people who contribute. On the other hand,
social information is what we can learn from the published information about
the very nature of humans, for example, by asking questions using social science
methodoligies on the dataset of spatio-temporal social media.

What kind of social information can we derive from spatio-tempo-social data?
Firstly, systems can be devised to generate ad-hoc results, for example on-line
analysis of social media to detect space-time anomalies from a traffic jam to
“mass depression” to a natural disaster, or any other activity that is not expected
in that time and place or from a given set of users. Second, we can continue
to mine this data for spatial and spatio-temporal trends, providing an ever-
improving representation and understanding of our public spaces as reflected
in the public eye, or perhaps by different communities. Finally, as mentioned
above, the spatio-tempo-social data shared on these online services can arguably
be used to extract deep insights about human social behavior in various settings.

To summarize, the increasing amount of user-contributed information on the
Web, coupled with the increasing availability of location-aware devices and ser-
vices, will be making an astonishing amount of spatio-tempo-social data available
on the Web. This essentially new type of information may capture and reflect
people’s relationships with space and time in a way that allows us to construct
systems that have a better understanding of space, time, and people.

References

1. Ames, M., Naaman, M.: Why we tag: Motivations for annotation in mobile and on-
line media. In: CHI 2007: Proceedings of the SIGCHI conference on Human Factors
in computing systems. ACM Press, New York (2007)

2. Naaman, M., Song, Y.J., Paepcke, A., Garcia-Molina, H.: Automatic organization
for digital photographs with geographic coordinates. In: JCDL 2004: Proceedings of
the Fourth ACM/IEEE-CS Joint Conference on Digital Libraries (2004)

3. Naaman, M., Nair, R.: ZoneTag’s collaborative tag suggestions: What is this person
doing in my phone? IEEE Multimedia 15(3), 34–40 (2008)

4. Rattenbury, T., Naaman, M.: Methods for extracting place semantics from flickr
tags. ACM Trans. Web 3(1), 1–30 (2009)

5. Ahern, S., Naaman, M., Nair, R., Yang, J.H.I.: World explorer: visualizing aggregate
data from unstructured text in geo-referenced collections. In: JCDL 2007: Proceed-
ings of the Seventh ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 1–10.
ACM, New York (2007)

6. Kennedy, L.S., Naaman, M.: Generating diverse and representative image search re-
sults for landmarks. In: WWW 2008: Proceeding of the 17th international conference
on World Wide Web, pp. 297–306. ACM, New York (2008)

Recent Advances in Worst-Case Efficient
Range Search Indexing

(Invited Talk)

Lars Arge�

MADALGO��, Dept. of Computer Science
Aarhus University, Aarhus, Denmark

large@madalgo.au.dk

Abstract. Range search indexing is the problem of storing a set of data
points on disk such that the points in a axis-parallel (hyper-) query
rectangle can be found efficiently (with as few disk accesses - or I/Os
- as possible). The problem is arguably one of the most fundamental
problems in spatial databases. Many indexes have been proposed for the
problem and its variants.1 The R-tree for example can be used to solve
the more general version of the problem where the data is rectangles.

We describe some of the recent advances in the development of worst-
case efficient range search indexing structures, that is, structures where a
query is guaranteed to be answered within a certain (asymptotic) number
of I/Os. We first discuss the well-known and optimal structure for the
one-dimensional version of the problem, the B-tree [8,10], along with
its variants weight-balanced B-trees [7], multi-version (or persistent) B-
trees [4,9,17] and buffer-trees [3]. Then we discuss structures for the
two-dimensional version of the problem, as well as its variants, most
notably the external priority search tree [6], the external range tree [6,16],
the kdB-tree [14,15] and the O-tree [13]. We also discuss lower bounds
techniques that can be used to prove that both the range tree and kdB-
tree/O-tree are optimal among query efficient and linear space structures,
respectively [1,6,12,13]. We end by discussing the recent worst-case query
optimal R-tree variant called the PR-tree [5].

� Supported in part by the Danish National Research Foundation, the Danish Strategic
Research Council, and by the US Army Research office.

�� Center for Massive Data Algorithmics—a center of the Danish National Research
Foundation.

1 Comprehensive surveys of efficient index structures can e.g. be found in [2,11,18].

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 3–4, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

4 L. Arge

References

1. Agarwal, P.K., de Berg, M., Gudmundsson, J., Hammer, M., Haverkort, H.J.: Box-
trees and R-trees with near-optimal query time. In: Proc. ACM Symposium on
Computational Geometry, pp. 124–133 (2001)

2. Arge, L.: External memory data structures. In: Abello, J., Pardalos, P.M., Resende,
M.G.C. (eds.) Handbook of Massive Data Sets, pp. 313–358. Kluwer Academic
Publishers, Dordrecht (2002)

3. Arge, L.: The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica 37(1), 1–24 (2003)

4. Arge, L., Danner, A., Teh, S.-H.: I/O-efficient point location using persistent B-
trees. In: Proc. Workshop on Algorithm Engineering and Experimentation (2003)

5. Arge, L., de Berg, M., Haverkort, H.J., Yi, K.: The priority R-tree: A practically ef-
ficient and worst-case optimal R-tree. In: Proc. SIGMOD International Conference
on Management of Data, pp. 347–358 (2004)

6. Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and opti-
mal range search indexing. In: Proc. ACM Symposium on Principles of Database
Systems, pp. 346–357 (1999)

7. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM Jour-
nal on Computing 32(6), 1488–1508 (2003)

8. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes.
Acta Informatica 1, 173–189 (1972)

9. Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically
optimal multiversion B-tree. VLDB Journal 5(4), 264–275 (1996)

10. Comer, D.: The ubiquitous B-tree. ACM Computing Surveys 11(2), 121–137 (1979)
11. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Sur-

veys 30(2), 170–231 (1998)
12. Hellerstein, J., Koutsoupias, E., Miranker, D., Papadimitriou, C., Samoladas, V.:

On a model of indexability and its bounds for range queries. Journal of ACM 49(1)
(2002)

13. Kanth, K.V.R., Singh, A.K.: Optimal dynamic range searching in non-replicating
index structures. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540,
pp. 257–276. Springer, Heidelberg (1998)

14. Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S.: Bkd-tree: A dynamic scalable
kd-tree. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.)
SSTD 2003. LNCS, vol. 2750. Springer, Heidelberg (2003)

15. Robinson, J.: The K-D-B tree: A search structure for large multidimensional dy-
namic indexes. In: Proc. SIGMOD International Conference on Management of
Data, pp. 10–18 (1981)

16. Subramanian, S., Ramaswamy, S.: The P-range tree: A new data structure for range
searching in secondary memory. In: Proc. ACM-SIAM Symposium on Discrete
Algorithms, pp. 378–387 (1995)

17. Varman, P.J., Verma, R.M.: An efficient multiversion access structure. IEEE Trans-
actions on Knowledge and Data Engineering 9(3), 391–409 (1997)

18. Vitter, J.S.: External memory algorithms and data structures: Dealing with MAS-
SIVE data. ACM Computing Surveys 33(2), 209–271 (2001)

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, p. 5, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Design and Architecture of GIS Servers for Web Based
Information Systems – The ArcGIS Server System

Sudhakar Menon

ESRI
Redlands, CA, USA
smenon@esri.com

This talk provides an overview of the design and architecture of GIS Servers for web
based information systems, using ESRI’s ArcGIS Server system as a concrete exam-
ple. A GIS Server allows customers to compile, manage and disseminate geographic
information. Information is compiled into and stored within object relational spatial
databases using a geodatabase information model that supports the key types needed
by applications including features, relationships, networks, imagery, terrains, maps
and layers. Information is managed using both short and long transaction models that
include support for versioning, archiving and replication. The GIS Server allows
administrators to selectively publish this information to clients using stateless web
services based on REST and SOAP as well as via OGC interfaces. These geospatial
web services support visualization, analysis, data access and replication. Key GIS
services include Mapping, Query, Location, Network Analysis, Editing, Geoprocess-
ing and Imaging. These services run on clusters, can access data from local caches,
and can be scaled out by growing the cluster. These web services allow information to
be exchanged using optimized representations based on JSON and XML as well as
client specific optimized protocols. The GIS Server supports a role based authoriza-
tion model that allows access to services to be controlled, leverages standard web
based authentication mechanisms, and allows information to be securely exchanged
by leveraging standard transport level security. The GIS Server supports a variety of
client architectures including Rich Internet clients based on Flex, Silverlight and
Javacript, occasionally connected Mobile Devices that are used for field work, as well
as Desktop clients built using .Net and Java. The key to success is simple and elegant
Web APIs and online SDKs that allow customers to easily exploit the value of the
information managed by their servers. This talk will highlight specific areas of inter-
est to researchers working on spatial and temporal databases as it spans the above
aspects of GIS server technology.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 6–24, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Versioning of Network Models in a Multiuser
Environment

Petko Bakalov1, Erik Hoel1, Sudhakar Menon1, and Vassilis J. Tsotras2

1 Environmental Systems Research Institute, Redlands, CA 92373, USA
{pbakalov,ehoel,menon}@esri.com

2 University of California, Riverside, CA 92507, USA
tsotras@cs.ucr.edu

Abstract. The standard database mechanisms for concurrency control, which
include transactions and locking protocols, do not provide the support needed
for updating complex geographic data in a multiuser environment. The
preferred method to resolve conflicts in GIS systems is to encapsulate the modi-
fications generated by the end users through the use of multiple versions. Mul-
tiuser (or versioned) geographic databases allow users to operate as though they
have full access to the entire dataset. Instead of relying upon row locking, ver-
sioned databases allow multiple users to simultaneously edit the same row.
They implement a model for conflict detection and resolution where the first to
commit the change wins by default (though clients can manually intervene and
select the latter change as the winner).

Network models are frequently used as a mechanism to describe the connec-
tivity information between spatial features in many emerging GIS applications.
Supporting networks within the context of a versioned database imposes addi-
tional requirements – the complex network model must retain integrity irrespec-
tive of the sequence of simultaneous edits by various clients. In this paper, we
review our network model and discuss the enhancements necessary to maintain-
ing topological network integrity in this complex environment. Our solution is
based on the notion of dirty areas and dirty objects (i.e., regions or elements that
contain edits that have not been reflected in the network connectivity index).
The dirty areas and objects are identified and marked during editing of the net-
work feature data. They are then subsequently cleaned as a byproduct of the in-
cremental update of the connectivity network.

Keywords: Versioning, Network Models, Transportation Networks.

1 Introduction

Network data models have a long history as an efficient way to describe the topological
connectivity information among spatial features in geographic information systems [11],
[14], [17], [18]. At an abstract level, the network model can be viewed as a graph whose
elements explicitly represent the connectivity information about the features in the data-
base. The presence of an edge in the graph depicts the information that the two features
represented by the junctions are connected and vice versa. Different versions of the

 Versioning of Network Models in a Multiuser Environment 7

network model have been implemented in existing operational systems such as
ARC/INFO [21] and TransCAD [5]. Because of the large volume of data frequently
found in these networks, the model is typically persisted inside a centralized database
server. Using connectivity information, those systems can then be utilized to solve a
wide range of problems, typical for the transportation or utility network domains
(e.g., finding the shortest path between points of interest, finding optimal resource
allocation, determining the maximal flow of a resource, and other graph theoretic
operations).

A typical requirement for the network models (or to the GIS in general), is that
they must provide support for many users simultaneously creating and updating large
amounts of geographic information. In scenarios where those users are required to
edit the same data at the same time, the system must provide an editing environment
that supports multiuser concurrent modifications without creating multiple instances
of the data. In contrast to traditional DBMSs, this editing environment must also sup-
port edit sessions that typically span a number of days or weeks (e.g., large engineer-
ing projects requiring significant interactive editing and revision), the facility to undo
or redo changes made to the data, and the ability to develop models and alternative
application designs without affecting the published database.

Concurrency control in traditional database management systems is addressed
through the use of transactions and the two-phase locking protocol. This is efficient
for short-lived edit operations that are typically completed in few seconds. It is not
well suited however for the type of editing tasks required when updating geographic
data. For a GIS multiuser environment, the row-locking mechanisms adopted by
many DBMSs would be prohibitively restrictive for many common workflows.

To deal with long-lasting transactions, a solution based on the use of multiple ver-
sions has been proposed [16], [26]. A version can be logically viewed as an alterna-
tive, independent, persistent view of the database that does not involve creating a
copy of the actual data. Since there is an independent view for every user, a versioned
database can support multiple concurrent editors.

In addition, versioning is useful in many other GIS scenarios such as:

• Modeling "what if" scenarios. The versioning mechanism allows end users
to exploit different alternatives (versions) during a design phase.

• Workflow management. Typically the design process goes through multiple
steps organized in a workflow process where the output of one step is an in-
put for another. The versioning scheme allows users to save intermediate re-
sults during the design process.

• Historical queries. The versioning scheme allows the preservation of different
states of the data which later can be re-visited and re-examined if necessary.

Existing database versioning approaches cannot easily manage the specifics of the
geographical data like topological network relations, the presence of connectivity
among the stored elements, and traversability. Such information among spatial fea-
tures is represented in a GIS by a network model.

Recently, we have proposed an incremental connectivity rebuilding algorithm for
network models [1]. In this algorithm, the users are allowed to rebuild portions of the
network model using the notions of dirty areas and dirty objects. Changes over por-
tions of the network data are effectively captured and the incremental algorithm is

8 P. Bakalov et al.

utilized to clean such dirty areas/objects and re-establish the associated portions of the
network connectivity index. The connectivity rebuilding algorithm has been imple-
mented in ArcGIS and provides an effective solution to maintain dynamic network
models in an incremental manner.

In this paper, we propose a new versioning scheme for network models that utilizes
the dirty areas/objects of the connectivity rebuild algorithm (a similar mechanism
has also been applied to our topological data model [13]). Versioning of network mod-
els is different from version control over simple spatial data (“simple” meaning data that
is geometrically unrelated to other data – i.e., no topological structuring). While the
same basic principles are still in operation, resolving conflicts between features that
are related to other features, as with network models, is different. This is because of
the specific internal behavior of the network and the requirement that the connectivity
information (or index) in the model should be kept consistent all the time.

The rest of the paper is organized as follows: Section 2 provides a brief description
of the network model including logical structure and physical design and provides
description of the algorithms used for connectivity establishment. Section 3 provides
in depth discussion of versioning spatial databases. Section 4 addresses our proposed
extensions of these techniques to the support of versioned network models. Section 5
discusses our implementation experiences, and Section 6 concludes the paper.

2 The Network Model

A network model is described as a graph (named connectivity graph) that maintains the
connectivity information about spatial features with line or point geometry. The basic
elements of a network model are (edges, junctions and turns). Features with point
geometry are represented with junction elements inside the graph, while lines are repre-
sented as one or more edge elements between pairs of junction elements. Figure 1 de-
picts the network model that we employ [14]. It is composed of spatial features and
network elements. Similar designs have been used in many research or commercial
implementations [7], [12], [15], [22]. In the network models we are considering, net-
work elements are used only to describe the connectivity information for the spatial
features they are representing; they do not carry any geometrical properties.

Fig. 1. Network model – features and network elements (which represent connectivity)

 Versioning of Network Models in a Multiuser Environment 9

Most of the systems that utilize network models have client-server architectures.
Because of their very large data size (e.g., many tens of millions of features for some
nationwide or continent-wide transportation networks), the network models are usu-
ally located in a centralized server, persisted either in a RDBMS tables or in a file
system. Typically the process of analysis is done within a GIS server (that acts as a
client to the database) or within a thick client [4], [23], [27].

2.1 Traversability

While the connectivity elements (edges and junctions) allow the user to express con-
nections, they are not sufficient for expressing specific restrictions from the real world
(for example, no left turn, or, no u-turn allowed at an intersection) [3], [29]. Turn
restrictions are used for this purpose. Turn restrictions present a problem to most
network models. The presence of turns can greatly impact the movement (or traver-
sability) through a network [20]. A common way to model turns within a network is
with a turn table [30]. A turn table represents each explicitly specified turn restriction
(or penalty) as a row with references to the associated two edges. Turn tables may be
augmented with an impedance attribute if the turns may also represent delays or im-
pedances. When traversing the network, the turn table is queried as necessary. An
alternative approach is to employ a transition matrix that represents possible transi-
tions at an intersection [10].

A maneuver is a turn that spans three or more edges. Maneuvers are used to model
turning movements at complex street intersections within transportation networks.
Consider the following intersection formed by a dual carriageway (i.e., a street
where each travel direction is represented as a separate line feature) and a two-way
street in Fig. 2.

Fig. 2. Example of a three part maneuver e1-e2-e3 at an intersection with a dual carriageway

To restrict the u-turn from edge e1 to edge e3, we need a maneuver composed of the
edges e1, e2 and e3 in sequence. The maneuver cannot be synthesized from the two
overlapping turns e1-e2 and e2-e3, since restricting the e1-e2 turn also incorrectly re-
stricts the left turn specified by the sequence e1-e2-e4.

To introduce the turn restriction in addition to the edge and junction elements, a
network model can also have a special network elements called turns (see Figure 1).
Similar to the edges which are defined as a relation between junctions turns are de-
fined as a relation between edges. A turn element is anchored to a specific junction
(the junction where the turn starts) and controls the movement between sequence
edges expressed as pairs (firstEdgeId, lastEdgeId).

10 P. Bakalov et al.

2.2 Physical Implementation

In our network implementation the connectivity information is maintained as a set of
adjacency pairs of the form <edgeId, junctionId>, stored inside the "junction table"
(see Figure 3). This approach is designed to answer the most common type of adja-
cency queries during the network analysis process. The junction table uses fixed-
length records for direct access purposes; this implies a fixed number (four in our
implementation) of adjacency pairs per record (see Figure 3). If the junction has more
than four connected edges an overflow mechanism is applied.

Fig. 3. Network tables example

In a similar way, in the traversal process, it is required that at each junction we
know all the turns anchored at this junction. This has influenced the way we imple-
ment the turn storage scheme. Information about turns is stored in the "turn table", in
the form of turn triplets <turnId, firstEdgeId, lastEdgeId>. If there are any turns
anchored at a junction ji, the turn table will have a record with primary key ji which
also contains all the turns anchored on ji. This storage scheme can be easily optimized
for the most commonly used client access patterns [28].

2.3 Maintaining Network Connectivity

Maintaining network connectivity can be viewed as a two phase process [1]:

• Initial establishment of connectivity when the network model is first defined,
with the connectivity information being derived from the features participat-
ing in the network.

 Versioning of Network Models in a Multiuser Environment 11

• Incremental rebuilding the connectivity index on a periodic basis after edits
occur on the spatial features in the network.

Having an incremental solution is of significant practical value - the amortized cost of
maintaining an incrementally rebuildable network is far less than an ordinary network
that must be periodically rebuilt in its entirety (e.g., editing a subdivision and only
rebuilding that portion of the nationwide network versus rebuilding the whole nation-
wide network). In order to keep track of the modifications to the features that occur
since the last full or partial rebuilding of the connectivity index, the network model
employs the concept of dirty areas. Similarly, to track changes to elements without
geometrical properties (e.g., turns), we use the concept of dirty objects.

Definition 1. A dirty area corresponds to the regions within the feature space where
features participating in the network have been modified (added, deleted, or updated)
but whose connectivity has not been re-established.

To simplify its computation and storage, a dirty area in our implementation is defined
as a union of envelopes (e.g., bounding boxes) around the features that have been
modified. It is possible however to use other shapes - the convex hull of the feature
for example. In order to ensure that the network is correct, only the portion of the
network encompassed in the dirty areas will need to be rebuilt.

Both the initial establishment of connectivity and the incremental rebuild algo-
rithms follow the same four steps:

• Geometrical extraction. Extract the geometry information for all features in
the area of interest (the whole area in the case of initial establishment or
the dirty area in the case of subsequent rebuild) and analyze the vertices in
those geometries. The extracted vertex coordinates and their corresponding
feature identifiers are stored in a temporary table, called the "vertex table".

• Connectivity analysis. The content of the vertex table is sorted by coordi-
nate values. As a result the coincident vertices from different features are
grouped together. The algorithm scans the vertex table sequentially and picks
groups of coincident vertices. Every single group is examined to determine if
the vertices satisfy the connectivity model specified for the network.

• Junction creation. For each group which satisfies the connectivity model a
new junction element is created in the network model. The junction id of this
newly created junction element is added to all the vertices participating in
this connectivity group.

• Edge creation. The content of the vertex table is then resorted using the fea-
ture identifier as the sorting key. As a result, the vertices for each line feature
are again grouped together. The vertex table is scanned sequentially
once more and for each pair of adjacent vertices which belong to the same
line feature a new edge is created.

The difference between the incremental rebuild and the full (re)build algorithms, is
that the incremental rebuild process adds to the vertex table those vertices that are
outside of the rebuild region but belong to features which intersect the rebuild region.

12 P. Bakalov et al.

These vertices are saved and later reused as connection points through which the
rebuild portion of the network is "stitched" together with the rest of the model.

Rebuilding turn features in the network requires additional processing. The com-
plexity comes from the fact that the turn features are defined as a relation between
two or more line features and typically do not have geometrical properties. As de-
picted in Figures 1 and 3, a record in the turn table consists of a turn identifier and a
list of the line feature identifiers that participate in the turn. In order to cover network
elements without geometrical properties, we extend our dirty area concept with the
notion of dirty objects.

Definition 2. A dirty object is an object without geometrical properties (like turn
features) whose modifications have not yet resulted in the incremental rebuilding of
the network connectivity index.

During the rebuild process, we restore all dirty objects to their clean state. An object
is kept as dirty until it is successfully cleaned. Turn features are marked as dirty
objects when:

• The turn feature is directly modified (Insert, Update, Delete), or
• The associated line features are modified (Update, Delete), or
• The associated network turn element is deleted (this may happen during the

rebuild process).

Using the dirty areas and dirty objects, we can capture the dynamic behavior of net-
work maintenance. It is this dynamic behavior that complicates and thus requires
extra attention during the versioning process.

3 Versioned Spatial Databases

Spatial databases have dramatically evolved in their capability to handle multiple
simultaneous editors. Some solutions have required organizations to alter their work-
flow so as to ensure that no two editors are editing the same geographic region within
the spatial dataset. Supporting such a constrained workflow can become problematic
once the need for supporting long transactions (e.g., design alternatives) is considered.
In order to address this problem where design alternatives on the same geographic
area are necessary (as well as very long transactions spanning weeks or months are
required), versioned geographic data management technologies were developed [6],
[8], [9], [19], [30]. Versioning does not prevent editing conflicts from occurring,
rather, it provides an infrastructure for the detection and resolution of such conflicts.

Definition 3. A version is a logical entity that represents a unique, seamless view of
the database that is distinguished from other versions by the particular set of edits
made to the version since it was created.

Definition 4. A state represents a discrete snapshot of the database whenever a
change is made. Every edit operation creates a new database state.

 Versioning of Network Models in a Multiuser Environment 13

In versioned databases, there are two fundamental abstractions – versions and states.
Versions are organized into a tree that is used to model the hierarchical relationships
between versions (e.g., projects or design alternatives). A version is associated with a
current state. A state is used to represent an instance of the database that is associated
with a particular version. When a child state is created, it will initially have the same
set of rows in each table as its parent state. However, as the state is edited, rows will
either be added, deleted, or updated. Changes made in a child state are not visible in
the parent state. Updated rows in the child will take precedence over the correspond-
ing row in the parent when materializing the version associated with the child state.

Version State
0..n 1

Child1 Child2

Parent

Version treeVersion model

Fig. 4. Model depicting the relationship between versions and states is on the left, while a
simple example version tree is shown on the right

Similar to versions, states are also organized into trees. A version will commonly
be associated with numerous states over its lifetime; however, it will only be associ-
ated with a single state at any given moment in time. A given state may or may not be
associated with one or more versions (as shown on the left side of Figure 4).

Fig. 5. Example version tree and state tree

In Figure 5, we highlight a simple example where there are two versions, labeled
parent and child, and an associated state tree. In the example, the parent version ini-
tially is associated with state 0. When a child version is created (as a child of the par-
ent), it will also point to state 0. Following an edit to the child version, the child will
then point to state 1. Assuming that the next edit is to the parent version, the parent
will then point to state 2. The child is then edited one more time (causing the child
version to point to state 3) prior to reconciling (making the changes made in the
parent visible to the child – see Section 4.1 for additional details) with the parent

14 P. Bakalov et al.

version. The reconcile will cause the changes that have been made in the parent
version (i.e., the differences between states 0 and 2) to be visible in the new state that
the child will point to following the reconcile (i.e., state 4). This sequence of edits and
a reconcile leaves the parent version pointing to state 2, while the child version points
to state 4.

Versioned databases are useful in supporting a number of database usage patterns
and workflows [16]; this includes:

• Direct multiuser editing of the main database,
• Two-level project organizations – work-order processing systems,
• Multi-level project organizations – hierarchical design parts and alternatives,
• Cyclical workflows (multiple stages of approval), and
• Historical states (temporal snapshots).

Some organizations will require the versioned database to support several of these
workflows simultaneously; for example, a utility company may organize itself into a
two-level project organization for maintaining its ‘as built’ status, while additionally
requiring the maintenance of historical states (temporal snapshots). The key point is
that a versioned database must be able to support each of these usage patterns (often-
times simultaneously).

3.1 Operations on Versioned Databases

There are two fundamental operations that can be performed on versioned databases
that are required in order to support versioning. These two operations (note – in the
following discussion, we will employ the general terms ‘child’ version and ‘parent’
version; child version will refer to a version of interest, while parent version will
generically refer to any ancestor version of the child within the version tree). Recon-
ciling is logically the process of taking a child version and merging all the changes
that have been made in its parent version (effectively making changes made to the
parent version visible in the child). These changes may be either inserted, updated, or
deleted features. This results in the creation of a new state that is then associated with
the child version (e.g., state 4 in Figure 5). Note that it is possible that conflicts may
be detected during reconciliation if a given feature has been modified in both the child
version as well as the parent version. Additionally, if a feature is updated in one ver-
sion and deleted in another, this is also a conflict (an update-delete conflict). When
conflicts occur, the changes that are made in the parent version will take precedence
by default (note that it is equally reasonable to implement a reconcile process where
the child version takes precedence by default). Thus, human intervention is oftentimes
necessary in order to resolve the difference if any of the changes made in the child
version (that are in conflict with the parent) are to take precedence. In sum, reconcil-
ing is the process of making all the changes that were made to a parent version visible
in a child version.

Posting is conceptually the converse operation to a reconcile. Posting involves taking
a child version that has been reconciled with its parent version, and making all the
changes made in the child visible to the parent version. Conceptually, changes in the
child are pushed up into the parent. Once two versions have been reconciled and posted
(with one version assuming the role of descendent, and the other as the ancestor in both

 Versioning of Network Models in a Multiuser Environment 15

operations), the parent and child versions will represent the same instance of data within
the versioned database (at least until another edit is made to either version).

Version reconciliation (and conflict detection) may be implemented using
queries against the underlying relational database that allow all inserts, updates, and
deletes that occur between two states in the state tree to be detected. We term these
queries ‘difference queries’ (detect the differences between two states). Note that for a
conflict to occur between a feature in a child and parent version, the difference que-
ries between the two states associated with the child and parent version relative to
their common ancestor state (e.g., state 0 in Figure 5) must show that either the fea-
ture was either updated in both, or updated in one and deleted in the other state.

child state (after Reconcile)
parent state (after Post)

child
branch

1

2

3 6

4

5

7

8

9

common
ancestor state

child state
(before Reconcile)

child
version

child version
(after Reconcile)

Reconcile

parent
version

1

2
3

4

5

1
2

3
4

parent version
(after Post)

Fig. 6. Example state tree showing the interaction between child and parent versions

Figure 6 depicts a simple example highlighting the interaction between states, ver-
sions, and a reconcile. In the example assume that the parent version corresponds to
state 2 (as indicated by the dashed arrow labeled “1” between the parent version and
the circle labeled “2” (note that states correspond to labeled circles in the diagram). If
a child version is now created, it will also reference state 2 (also depicted by a dashed
arrow labeled “1” between the child version and state 2). State 2 also becomes what is
termed the common ancestor state between the parent and child version. Assume that
the child version is then edited three times. Each edit operation (an atomic set of ed-
its) results in a new state; in this instance, states 3 through 5. At the end of the three
edit operations, the child version will be referencing state 5. Following the edits to
the child, assume that the parent version also has three edits made to it. This results in
the creation of states 6, 7, and 8, with the parent version referencing state 8 following
the edits. Now assume that the child version is reconciled with the parent version. The
reconcile will require that the edits made in the parent version (essentially, the edits
represented by states 6 – 8 in what is termed the parent branch) are made visible to the
child version. This is accomplished by creating a new state (state 9) off of state 8, and
pushing all the changes that have occurred in the child branch (states 3 – 5) into state

16 P. Bakalov et al.

Fig. 7. Simple edit scenario highlighting the ADDs, DELETEs, and the base table

9, and making the child version reference state 9. Finally, the application of the Post
operation following the reconcile results in the parent version also referencing state 9,
making the changes made to the child visible in the parent.

3.2 Implementation Details

Versions are associated with a state identifier that corresponds to each update that
occurs in the view. The state identifiers are unique and map to a set of updates corre-
sponding to a single logical edit. For each state, the database keeps information about
the modification type (either an insert, update, or delete). The ADDs table contains
information related to inserts and updates, while the DELETEs table maintains the
deletes (Figure 7). These two tables are collectively referred to as delta tables. One
set of delta tables is associated with each base table in the versioned database. Thus, if
a data model contained two tables, one representing parcels, and the second represent-
ing owners, there would be four additional tables necessary to represent the two sets
of delta tables. A versioned dataset, therefore, consists of the original table (referred
to as the base table, which corresponds to State 0), plus the two delta tables. The
versioned database keeps track of which version the user is connected to. In addition,
when modifications are made to the data, the versioning system populates the delta
tables as appropriate. When a user queries a dataset in a versioned environment, the
system assembles the relevant rows from the base table and the delta tables to present
the correct view of the data for that particular version.

4 Versioned Network Models

Network models, with their associated network connectivity indexes, dirty areas, and
dirty objects, introduce complexities into the standard reconcile and post processes
within a versioned database (as described in Section 3). The primary cause of this
complexity is the fact that inconsistent network indexes may occur when an edited
child and parent version are reconciled. This is irrespective of whether or not each
version has its full extent rebuilt (i.e., no dirty areas or objects).

 Versioning of Network Models in a Multiuser Environment 17

Fig. 8. Example highlighting a reconcile that results in an inconsistent network index (the
inconsistent index is depicted by the shaded region at the bottom of the figure)

Consider the situation shown in Figure 8 (an annotated state tree is depicted – the
common ancestor state refers to the state that the parent version was pointing to when
the child version was originally created). In this example, assume that the network is
clean; no dirty areas or objects exist with the features and the network index being in
a consistent state. Edits are then made to both the parent and child versions. In the
child version, the network is augmented in the southeast direction, while in the parent
version the network is augmented toward the southwest. Assume that the network has
been incrementally rebuilt following all edits in each version (i.e., no dirty areas or
objects exist). In the figure, connectivity between line features is represented by the
small black circles. As can be observed, both the parent and child versions have pla-
nar connectivity.

If the child version is then reconciled against the parent version, new edits made in
the parent version are made visible in the child version. This is depicted in the south-
east corner of Figure 8. Making these new features visible in the child version results
in an inconsistency between the features and the network connectivity index as de-
picted in the area enclosed by the gray area. Thus, we observe a simple situation
where two versions that are completely rebuilt can have a network connectivity index
inconsistency following reconciliation. For this reason, the version reconcile process
must be augmented to handle networks correctly.

4.1 Dirty Area and Object Management during Reconciliation

As has been discussed, versioning of network models requires additional functionality
on top of the versioning scheme for simple feature classes. This is due to the fact that
the model includes both: (i) a feature space with features modeling real world objects,
and (ii) a logical network where connectivity information about these features is
stored. The connectivity information has to be kept consistent with the state of the
feature space during the process of reconciliation when new features have been intro-
duced or existing ones have been updated or deleted in the child version as a result of
the reconciliation. All these modifications introduce changes in the connectivity in-
side the feature space of the network model, which have to be reflected in the logical
network.

18 P. Bakalov et al.

There are two general approaches to solve this problem. The first one employs the
concept of reactive behavior which is applied to the network and has been used in the
ArcGIS geometric network model [2]. The reactive behavior refers to the logical con-
nectivity network reacting automatically to the changes in the feature space. Thus, the
process of reconciliation will require the maintenance of the connectivity information.
This entails both logical networks (in the child and parent versions) being analyzed
concurrently during the reconciliation process and merged together in the resultant child
version. The main disadvantage to this approach is the complexity of the problem (ana-
lyzing and merging graphs) which itself can deteriorate the performance of reconcile.

To avoid this disadvantage when reconciling a Network model, we choose to em-
ploy another strategy which we call the lazy approach (it is termed lazy because we
are deferring the actual rebuilding of the network connectivity to a later, more con-
venient time). Instead of analyzing and restitching the connectivity information during
reconcile, we instead utilize the incremental network rebuild algorithm discussed in
[1]. We relax the requirement that the connectivity network must always reflect the
state of the feature space. From a connectivity perspective, the logical network is
allowed to be in an incorrect state; the regions of inconsistency are marked as dirty
areas (or dirty objects in the case of turn features).

Dirty area (and object) management becomes a key concept in the versioned net-
work model. In order to ensure that the incremental rebuilding of the network index is
properly handled, we rely upon a strategy where dirty areas or objects are generated
for the areas where spatial features or turn features are modified (created, updated, or
deleted). The user may then choose to rebuild the network over the portions of the
network where these dirty areas are introduced as a byproduct of reconcile at a time of
their choosing. More specifically, we may summarize a complete set of rules related
to the handling of dirty areas and objects as follows:

• Rule 1: All dirty areas and objects that are present in the child or parent that
do not exist in the common ancestor state (i.e., before the child and parent
were edited) remain in the result state of the reconcile (corresponding to the
child version after reconcile). This is depicted in the left side of Figure 9.

Fig. 9. Example of dirty area management Rules 1 and 2. In this figure (and Figures 10 and
11), dirty areas are represented by shaded areas; dirty objects are not depicted as they have
no spatial representation. The arrows represent the sequence of events; the dirty areas are
labeled in the left side of Figure 9.

 Versioning of Network Models in a Multiuser Environment 19

• Rule 2: All dirty areas and objects that exist in the common ancestor state
but do not in the child (i.e., an incremental network rebuild in the child) will
still exist in the child following the reconcile (depicted in the right side of
Figure 9).

• Rule 3: All dirty areas and objects that exist in the common ancestor state
but do not in the parent version (they were validated) will not exist in the
child version following the reconcile.

• Rule 4: All dirty areas and objects created in the child version, irrespective
of whether or not they exist at the time of reconciliation, will exist following
the reconcile.

• Rule 5: All dirty areas and objects created in the parent version will only ex-
ist in the child version following the reconciliation if they exist at the time of
reconcile. This situation is shown in Figure 11.

Fig. 10. Example of dirty area management Rules 3 and 4

Fig. 11. Example of dirty area management Rule 5. The left side depicts how a dirty area that
no longer exists in the parent at the time of reconcile will not exist in the child following the
reconcile. The right side of the figure depicts the opposite situation where the dirty area on the
parent version exists at the time of reconcile.

20 P. Bakalov et al.

4.2 Detailed Example

We illustrate the behavior of versioning networks using the example shown in Figures
12 and 13. In the common ancestor state (see Figure 12a), two new line features l2 and
l6 have been added to the previously built feature space. Within the common ancestor
state, the reactive behavior of the network creates two new dirty areas around the new
line features in order to keep track of the modifications in the feature space. Since the
area has not been rebuild with the incremental rebuild algorithm, the two new line
features l2 and l6 have not been reflected in the network connectivity index.

Fig. 12. Version example – common ancestor and parent versions. The line features are repre-
sented on the top half, and the corresponding connectivity network on the bottom half. Dirty
areas are represented by shaded rectangles.

In the next step, a child version is created. In the parent version, additional edits are
made. Within the parent, the incremental build is run over the area encompassing the
dirty area surrounding feature l2.This results in new a new edge e2 and junction j2
being created in the connectivity index. Finally, an additional line feature is created in
the parent version. The result of all edits to the parent version is shown in Figure 12b.

In the child version, a different set of edits are made. In the child, two new line fea-
tures are created, l7 and l8 (this will result in new dirty areas being created). Finally,
an incremental build is run over the areas encompassing the dirty areas surrounding
line features l6 and l8.This results in an update of the connectivity index where edges
e6 and e8 and junctions j6 and j8 are created. Figure 13a represents the results of these
modifications.

The next operation performed on the child version (Figure 13a) is to reconcile it
with the parent version (Figure 12b). Recall that the reconcile makes the edits made
in the parent version visible in the child version. Applying the rules for reconciling
networks as described in Section 4.1, the child version will be modified (with the
result shown in Figure 13b). The following modifications are of note; first, the appli-
cation of Rule 1 results in line l7 being associated with a dirty area (i.e., new dirty

 Versioning of Network Models in a Multiuser Environment 21

areas present in the child or parent remain after reconcile). The application of Rule 2
causes line l6 to also be associated with a dirty area (a dirty area in the common an-
cestor state and the parent version, but not the child version prior to reconcile). Rule
3 results in line l2 being clean and reflected in the connectivity network following
reconcile (a dirty area in the common ancestor state and child version, but clean in
the parent version). Rule 4 results in line l8 becoming dirty following the reconcile.
Finally, the application of Rule 5 causes line l5 that was created but not rebuilt in the
parent being marked as dirty following the reconcile. Following the reconcile, if the
incremental rebuild is applied to all dirty areas in the child version, the result will be
a clean and up to date connectivity index as depicted in Figure 13c.

Fig. 13. Version example – the child and reconcile versions

5 Implementation Experiences

The proposed versioning scheme for network models is currently being implemented
in the ESRI ArcGIS system and will be made available to customers in the next re-
lease. It has been tested in a multiuser editing environment for large continental wide
network models, including a model derived from the set of features representing
the full street network within the entire continental United States (35.9 million line

Table 1. Reconcile times for different network datasets and number of child version edits

Dataset Size (M of features) Edited features Ave. reconcile time
Southern California 1.3 100 ≈ 2 sec.
Southern California 1.3 500 ≈ 3 sec.
Southern California 1.3 1,000 ≈ 5 sec.
SW United States 10.6 1,000 ≈ 6 sec.
SW United States 10.6 5,000 ≈ 7 sec.
SW United States 10.6 10,000 ≈ 10 sec.

22 P. Bakalov et al.

features). Similarly sized networks were constructed for all of Europe. Table 1 pro-
vides examples of the reconcile times (wall clock) for different real world transporta-
tion network datasets and differing numbers of edits to the child version.

6 Conclusion

In this paper, we explored the difficulties of managing large network models in a
multiuser environment and presented solutions to address these problems using a
flexible versioning scheme. Taking into account the dynamic nature of the source data
associated with a network model (i.e., the data is regularly edited), we presented in-
novative versioning schemes that facilitate the notions of dirty areas and dirty objects
(used already for maintaining the dynamic network model). The following summa-
rizes key features of the versioning scheme:

• The flexible reconciling rules allow the definition of a resolving mechanism
between conflicting edits according to user needs.

• In addition, the utilization of dirty areas/objects minimizes the overhead of
tracking editing history.

We have implemented the versioning scheme presented in this paper within the well-
established ArcGIS development framework. The proposed ideas have proven to be
efficient methods in handling concurrency control of large network datasets.

References

1. Bakalov, P., Hoel, E., Heng, W.L., Tsotras, V.: Maintaining Connectivity in Dynamic
Multimodal Network Models. In: Proceedings of the International Conference on Data En-
gineering (ICDE 2008), Cancun, Mexico, April 2008, pp. 1267–1276 (2008)

2. Borchert, R.: Geometric Network: What Is It and How to Make It? In: Proceedings of the
23rd Annual ESRI User Conference, San Diego (July 2003)

3. Caldwell, T.: On Finding Minimum Routes in a Network with Turn Penalties. Communi-
cations of the ACM 4(2), 107–108 (1961)

4. Cho, H.-J., Chung, C.-W.: An Efficient and Scalable Approach to CNN Queries in a Road
Network. In: Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB 2005), Trondheim, Norway, August 2005, pp. 865–876 (2005)

5. Caliper Corporation: TransCAD Transportation GIS Software Reference Manual. Caliper
Corporation (1996)

6. Dittrich, K., Lorie, R.: Version Support for Engineering Database Systems. IEEE Transac-
tions on Software Engineering 14(4) (April 1988)

7. Dueker, K., Butler, A.: GIS-T Enterprise Data Model with Suggested Implementation
Choices. Journal of the Urban and Regional Information Systems 10(1), 12–36 (1998)

8. Easterfield, M., Newell, R., Theriault, G.: Version management in GIS - applications and
techniques. In: Proc. of the European Conference on Geographical Information Systems
(EGIS 1990), Amsterdam, April 1990, pp. 1–8 (1990)

9. ESRI: Building a Geodatabase. Prepared by Environmental Systems Research Institute.
ESRI Press, Redlands (2002)

 Versioning of Network Models in a Multiuser Environment 23

10. Evans, J., Minieka, E.: Optimization Algorithms for Networks and Graphs. Dekker, Marcel
Incorporated (1992)

11. Goodchild, M.: Geographic Information Systems and Disaggregate Transportation Model-
ing. Geographical Systems 5(1-2), 19–44 (1998)

12. Hage, C., Jensen, C., Pedersen, T., Speicys, L., Timko, I.: Integrated Data Management for
Mobile Services in the Real World. In: Proceedings of the 29th Intl. Conf. on Very Large
Data Bases (VLDB 2003), Berlin, September 2003, pp. 1019–1030 (2003)

13. Hoel, E., Menon, S., Morehouse, S.: Building a Robust Relational Implementation of To-
pology. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD
2003. LNCS, vol. 2750, pp. 508–524. Springer, Heidelberg (2003)

14. Hoel, E., Heng, W.L., Honeycutt, D.: High Performance Multimodal Networks. In: Bauzer
Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 308–327.
Springer, Heidelberg (2005)

15. Jensen, C., Pedersen, T., Speicys, L., Timko, I.: Data Modeling for Mobile Services in the
Real World. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.)
SSTD 2003. LNCS, vol. 2750, pp. 1–9. Springer, Heidelberg (2003)

16. Katz, R.: Toward a Unified Framework for Version Modeling in Engineering Databases.
ACM Computing Surveys 22(4) (1990)

17. Longley, P., Goodchild, M., Maguire, D., Rhind, D.: Geographical Information Systems,
Principles, Techniques, Applications and Management. Wiley, Chichester (1999)

18. Mainguenaud, M.: Modeling of the Geographical Information System Network Compo-
nent. International Journal of Geographical Information Systems 9(6), 575–593 (1995)

19. Menon, S., Aronson, P., Brown, T., Muller, M., Ryden, K., Morehouse, S.: Requirements
and Design Considerations for Versioned Geographic Data Management. Unpublished
manuscript, ESRI, Redlands (July 2000)

20. Miller, H., Shaw, S.-L.: Geographic Information Systems for Transportation. Oxford Uni-
versity Press, Oxford (2001)

21. Morehouse, S.: ARC/INFO: A Geo-relational Model for Spatial Information. In: Proceed-
ings of AUTOCARTO 7, Washington, DC, March 1985, pp. 388–397 (1985)

22. Oracle Corp: Oracle Database 10g: Oracle Spatial Network Data Model: technical white
paper (May 2005)

23. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network Da-
tabases. In: Proceedings of the 29th International Conference on Very Large Data Bases
(VLDB 2003), Berlin, September 2003, pp. 802–813 (2003)

24. Peuquet, D., Duan, N.: An Event-based Spatiotemporal Data Model (ESTDM) for Tempo-
ral Analysis of Geographic Data. International Journal of Geographical Information Sci-
ence 9(1) (1995)

25. Ralston, B.: GIS and its Traffic Assignment: Issues in Dynamic User-optimal Assign-
ments. Geoinformatica 4(2), 231–243 (2000)

26. Sciore, E.: Versioning and Configuration Management in an Object-oriented Data Model.
International Journal on Very Large Data Bases 3(1) (1994)

27. Shahabi, C., Kolahdouzan, M., Sharifzadeh, M.: A Road Network Embedding Technique
for k-nearest Neighbor Search in Moving Object Databases. In: Proceedings of the 10th
ACM International Symposium on Advances in Geographic Information Systems
(ACMGIS 2002), McLean Virginia, November 2002, pp. 94–100 (2002)

28. Shekhar, S., Liu, D.-R.: Ccam: A Connectivity-clustered Access Method for Networks and
Network Computations. IEEE Transactions on Knowledge and Data Engineering 9(1),
102–119 (1997)

24 P. Bakalov et al.

29. Speicys, L., Jensen, C., Kligys, A.: Computational Data Modeling for Network-constrained
Moving Objects. In: Proceedings of the 11th ACM Intl. Symp. on Advances in Geographic
Information Systems (ACMGIS 2003), New Orleans, November 2003, pp. 118–125
(2003)

30. Stokes, A., Balasubramanian, S., Harrison, S.: Building Versioning Applications with the
Oracle Internet File System. Oracle Technical Brief, Oracle Corporation (2000)

31. Winter, S.: Modeling Costs of Turns in Route Planning. GeoInformatica 6(4), 345–361
(2002)

32. Worboys, M., Hearnshaw, H., Maguire, D.: Object-oriented Data Modeling for Spatial Da-
tabases. International Journal of Geographical Information Systems 4(4), 369–383 (1990)

Efficient Continuous Nearest Neighbor Query in
Spatial Networks Using Euclidean Restriction�

Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi

University of Southern California
Department of Computer Science

Los Angeles, CA 90089-0781
{demiryur,banaeika,shahabi}@usc.edu

Abstract. In this paper, we propose an efficient method to answer con-
tinuous k nearest neighbor (CkNN) queries in spatial networks. Assuming
a moving query object and a set of data objects that make frequent and
arbitrary moves on a spatial network with dynamically changing edge
weights, CkNN continuously monitors the nearest (in network distance)
neighboring objects to the query. Previous CkNN methods are inefficient
and, hence, fail to scale in large networks with numerous data objects
because: 1) they heavily rely on Dijkstra-based blind expansion for net-
work distance computation that incurs excessively redundant cost par-
ticularly in large networks, and 2) they blindly map all object location
updates to the network disregarding whether the updates are relevant
to the CkNN query result. With our method, termed ER-CkNN (short
for Euclidian Restriction based CkNN), we utilize ER to address both
of these shortcomings. Specifically, with ER we enable 1) guided search
(rather than blind expansion) for efficient network distance calculation,
and 2) localized mapping (rather than blind mapping) to avoid the in-
tolerable cost of redundant object location mapping. We demonstrate
the efficiency of ER-CkNN via extensive experimental evaluations with
real world datasets consisting of a variety of large spatial networks with
numerous moving objects.

1 Introduction

The latest developments in wireless technologies as well as the widespread use of
GPS-enabled mobile devices have led to the recent prevalence of location-based
services. Many of the location-based services rely on a family of spatial queries,
termed nearest neighbor (NN) queries. In particular, a Continuous k-NN query
(CkNN for short) continuously monitors the k data objects that are nearest (in

� This research has been funded in part by NSF grants IIS-0238560 (PECASE), IIS-
0534761,IIS-0742811 and CNS-0831505 (CyberTrust), and in part from CENS and
METRANS Transportation Center, under grants from USDOT and Caltrans.Any
opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 25–43, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

26 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

network distance) to a given query object, while the data objects and/or the
query object arbitrarily move on a spatial network. With CkNN, for example, a
driver can use the automotive navigation system of her vehicle to continuously
locate the three nearest restaurants as the vehicle is moving along a path, or
a pedestrian can use her GPS-enabled mobile device (cell phone, PDA, etc.) to
locate the nearest transportation vehicles (e.g., taxis, buses, trams).

Currently, incremental monitoring (IMA) and its extension group monitoring
algorithm (GMA) [8] is the only known method for answering CkNN queries
with arbitrarily moving data and query objects. GMA extends IMA with shared
execution paradigm by grouping the queries in the same sequence and monitor-
ing them as a group (rather than individually). We refer to these algorithms as
IMA/GMA in the rest of the paper. IMA/GMA is based on the incremental net-
work expansion (INE) method [9] to support CkNN queries on dynamic/moving
objects. However, the performance of IMA/GMA degrades in real-world sce-
narios where the spatial network is large and the data objects moving on the
network are numerous. IMA/GMA is inefficient due to two main reasons. Firstly,
in order to identify the k nearest neighbors, IMA/GMA uses the computation-
ally complex Dijkstra based algorithm that relies on blind network expansion.
With network expansion, starting from q all network nodes reachable from q in
every direction are visited in order of their proximity to q until all k nearest data
objects are located (see Figure 1). The overhead of executing network expansion
is prohibitively high particularly in large networks with a sparse (but perhaps
large) set of moving data objects, because such a blind search approach has to
redundantly visit many network nodes which are away from the shortest paths
to the nearest data objects. For example, Figure 1 depicts a real spatial network
(namely, the road network of San Joaquin, CA) and illustrates the set of nodes
that network expansion would have to visit (marked by the shaded area) to lo-
cate the first nearest data object (1-NN) for the query object q. In this case,
47.2% of the entire set of network nodes (8620 nodes out of total 18262) must
be visited to find 1-NN.

Secondly, with IMA/GMA the cost of mapping the object location updates
(e.g., current coordinates such as longitude-latitude) to the network is also pro-
hibitively high. While the location updates are continuously received, they must

Fig. 1. Blind network expansion

Efficient Continuous Nearest Neighbor Query in Spatial Networks 27

be mapped to the network to locate the current edge of the moving object. How-
ever, with IMA/GMA all location updates are blindly and redundantly mapped
to the network when they are received regardless whether they can possibly
affect the CkNN query result, whereas most of the updates are irrelevant and
can be ignored. Considering the cost of mapping each object location update
(i.e., O(logN)) as well as high frequency of location updates in large spatial net-
works with numerous objects, the overhead incurred due to blind object location
mapping with IMA/GMA becomes intolerable with real-world applications.

In this paper, we propose ER-CkNN, a Euclidean Restriction (ER) based
method for efficient CkNN query answering. ER-CkNN addresses the two short-
comings of IMA/GMA by leveraging ER to enable guided search and localized
mapping, respectively. Firstly, to identify the nearest neighbors of the query
point q, ER-CkNN uses a filtering mechanism to rapidly find a set of candidate
data objects based on their Euclidean distance from q (i.e., filtering by ER),
which is then refined by computing their network distance from q to identify the
exact nearest neighbors. The benefit of this filter-and-refine approach versus the
blind network expansion is that once the candidate data objects are identified
at the filter step, at the refine step ER-CkNN can use a one-to-one guided search
algorithm such as A* [10] to perform the costly network distance computation
with minimum redundant network traversal. With ER-CkNN, we use an EBE
(Edge Bitmap Encoding)-based A*, with a search complexity proportional to
the size of the shortest path. Secondly, to avoid the high cost of blind object
location mapping, ER-CkNN only maps a location update to the network if it
is relevant to the result of the CkNN query; otherwise, the location update is
ignored. To determine whether a location update is relevant, ER-CkNN uses
ER to rapidly (in O(1)) identify whether the location update is within certain
Euclidean locality that can potentially change the result of the CkNN query. If
the update is within the q locality, ER-CkNN maps the update to the network
(i.e., localized mapping) which subsequently initiates the query update.

While ER is previously used for kNN query answering [9] assuming static
objects, to the best of our knowledge ER-CkNN is the first ER-based method
proposed to answer CkNN queries on dynamic/moving objects. ER-CkNN is
fundamentally different from previous ER-based approaches as they unanimously
index the objects to apply ER, whereas with moving objects maintenance of such
an index is unaffordable. Instead, ER-CkNN indexes the spatial network which
is static, and uses a grid file (with O(1) update cost) for efficient access to
the objects in order to apply ER (see Section 4). Our experiments with real-
world datasets show that ER-CkNN outperforms GMA with at least three times
improved response time (see Section 6).

The remainder of this paper is organized as follows. In Section 2, we review
the related work about kNN queries on moving objects. In Section 3, we for-
mally define the CkNN query in spatial networks. We mention the theoretical
foundation of our algorithms as well as our data structure and indexing schemes
in Section 4. In Section 5, we discuss the factors that affect the performance of

28 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

ER-CkNN. In Section 6, we present the results of our experiments with a variety
of parameters. Finally, in Section 7 we conclude and discuss our future work.

2 Related Work

The research on kNN query processing can be grouped into two main areas,
namely, query processing in Euclidean space and query processing in spatial
networks.

2.1 kNN Queries in Euclidean Space

In the past, numerous algorithms [19,18,12,14,13] have been proposed to solve
kNN problem in Euclidean space. Most of these algorithms, assuming the data
objects are static, used tree-based (e.g., R-Tree) structures (or their extensions)
to enable efficient query processing. Although the tree-based data structures
are efficient in handling stationary spatial data, they suffer from the node re-
construction overhead due to frequent location updates with moving objects.
Therefore, some researchers have exclusively used the simple but efficient space-
based (i.e., grid) structures to index and query the moving objects [3,17,7]. All
of these approaches are applicable to the spaces where the distance between ob-
jects is only a function of their spatial attributes (e.g., Euclidean distance). In
real-world scenarios, however, the queries move in spatial networks, where the
distance between a pair of data objects is defined as the length of the shortest
path connecting them. We proceed to mention early proposals for kNN process-
ing in spatial networks below.

2.2 kNN Queries in Spatial Networks

In [9], Papadias et al. introduced INE (discussed in Section 1) and IER. IER
exploits the Euclidean restriction principle in spatial networks for achieving bet-
ter performance. The data and query objects are assumed to be static in this
work. Kolahdouzan and Shahabi utilized the first degree network Voronoi dia-
grams [4,5] to partition the spatial network to network Voronoi polygons (NV P),
one for each data object. They indexed the NV P s with a spatial access method
to reduce the problem to a point location problem in Euclidean space and min-
imize the on-line network distance computation by precomputing the NVPs.
Cho et al. [1] presented a system UNICONS where the main idea is to integrate
the precomputed k nearest neighbors into the Dijkstra algorithm. Huang et al.
addressed the same problem using Island approach [16] where each vertex is
associated (and network distance precomputed) to all the data points that are
centers of given radius r (so called islands) covering the vertex. With their ap-
proach, they utilized a restricted network expansion from the query point while
using the precomputed islands. Aside from their specific drawbacks, these algo-
rithms rely on data object dependent precomputations (i.e., the distance to the
data objects are precomputed) and subdivide the spatial network based on the

Efficient Continuous Nearest Neighbor Query in Spatial Networks 29

location of the data objects. Therefore, they assume that data objects are static
and/or trajectory of query objects is known. This assumption is undesirable in
applications where the query and data objects change their positions frequently.

Recently, Huang et al. [15] and Samet et al. [11] proposed two different al-
gorithms that address the drawbacks of data object dependent precomputation.
Huang et al. introduced S-GRID where they partition (using grid) the spatial
network to disjoint sub-networks and precompute the shortest path for each pair
of connected border points. To find the k nearest neighbors, they first perform a
network expansion within the sub-networks and then proceed to outer expansion
between the border points by utilizing the precomputed information. Samet et
al. proposed a method where they associate a label to each edge that represents
all nodes to which a shortest path starts with this particular edge. They use these
labels to traverse shortest path quadtrees that enables geometric pruning to find
the network distance between the objects. With these studies, the network edge
weights are assumed to be static therefore the precomputations are invalidated
with dynamically changing edge weights. This dependence is unrealistic for most
of the real-world applications.

Therefore, unlike the previous approaches, we make the fundamental assump-
tion that both the query and the data objects make frequent and arbitrary moves
on a spatial network with dynamically changing edge weights. Our assumption
yields a much more realistic scenario and versatile approach. To the best of our
knowledge, the only comprehensive study proposed to this problem is IMA/GMA
[8]. We discussed the shortcomings of IMA/GMA in Section 1.

3 Problem Definition

In this section, we formally define CkNN queries in spatial networks. Consider a
spatial network (e.g., the Los Angeles road network) with a set of data objects
and a query object. We assume the query object and the data objects either
reside or move on the network edges. The position of a moving object p at time t
is defined as loct(p) = (xp, yp), where xp and yp are the cartesian coordinates of p
in the space at time t. We assume all the relevant information about the moving
objects and the spatial network is maintained at a central server. Whenever an
object moves to a new location and/or the cost of an edge changes, the central
server is updated with the new location and weight information, respectively.
We formally define the spatial network and CkNN queries as follows:

Definition 1. A spatial network is a directional weighted graph G(N, E), where
N is a set of nodes representing intersections and terminal points, and E (E ⊆
N × N) is a set of edges representing the network edges each connecting two
nodes. Each edge e is denoted as e(ni, nj) where ni and nj are starting and ending
nodes, respectively. The network distance dN between a given source s ∈ N and
a destination t ∈ N is the length of the shortest path connecting s and t in G.

Definition 2. A Continuous k nearest neighbor (CkNN) query in spatial networks
continuously monitors the k data objects that are nearest (in network distance) to a

30 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

given query object, while the data objects and/or the query object arbitrarily move
on network edges. Considering a set of n objects S = {p1, p2, ...pn}, the k nearest
neighbors of a query object q constitute a set S

′ ⊆ S of k objects such that for any
data object p

′ ∈ S
′
and p ∈ S − S

′
, dN (p

′
, q) ≤ dN (p, q).

4 ER-CkNN

Arguably, the main challenges with answering CkNN queries in spatial networks
are 1) efficient network distance computation, and 2) effective maintenance of the
query results given frequent changes of the moving object locations. With ER-
CkNN, we employ a network partitioning approach that allows us to address the
above challenges by enabling 1) guided shortest path algorithm that minimizes
redundant network traversal, and 2) localized mapping that allows for effective
maintenance of the query results.

ER-CkNN involves two phases: an off-line grid partitioning phase and an on-
line query processing phase. During the off-line phase, the spatial network is
partitioned into grid cells and each edge in the network is encoded whether it is
a part of a shortest path to any node in a given grid cell (edge-bitmap-encoding).
In addition, an edge-cell-mapping is computed between the edges of the spatial
network and the cells of an overlaid grid. These precomputations are used to
expedite the on-line query processing. During the on-line phase, a Euclidean Re-
striction (ER) based filter-and-refine method is adopted to identify the k nearest
neighbors at the time of query arrival. At the filter step, ER-CkNN performs a
grid expansion to rapidly identify a set of candidate nearest neighbors in the Eu-
clidean proximity. At the refine step, the candidate set is refined (if necessary) by
fast guided network distance computation exploiting the edge-bitmap-encoding
information. However, considering the often large number of moving objects and
their frequent location updates, effective monitoring of this query result remains
the main challenge. To address this challenge, we leverage the edge-cell-mapping
information to rapidly identify the relevant location updates (without traversing
the spatial network index) and ignore the updates that will not affect the query
result. Below, we explain the two-phase ER-CkNN algorithm.

4.1 Off-Line Grid Partitioning

With the off-line phase, we partition the spatial span of the network with regular
grid as illustrated in Figure 2(a). Each grid cell is a square of size α × α (in
Section 5.1 we explain how we choose the optimal size) denoted by its row and
column indices c(i, j), where the reference cell c(0, 0) is the bottom-left cell of
the grid. The resulting grid partitioning, yields following two main advantages.

Firstly, such network partitioning enables ER-CkNN to expedite on-line net-
work distance computations using precomputed information. Specifically, ER-
CkNN, for each edge, maintains a vector −→v EBE (proposed by Lauther in [6])
that contains encoded values indicating whether the edge is a part of a shortest
path to a given grid cell. ER-CkNN utilizes −→v EBE to avoid exploring unnec-
essary paths (hence pruning the search space) during an on-line shortest path

Efficient Continuous Nearest Neighbor Query in Spatial Networks 31

(a) Example grid partitioning (b) EBE based A*

Fig. 2. EBE based shortest path computation

computation. For example, Figure 2(a) illustrates a simple road network (par-
titioned to nine regions) where the −→v EBE of edge e(n2, n3) only contains three
1 entries which correspond to c(0, 0), c(1, 0), and c(1, 1) cells (marked by the
shaded area). This means that edge e(n2, n3) can be a part of a shortest path to
any node in those regions. Considering a shortest path search from n1 with tar-
get nodes (e.g., n10) in unmarked cells, the search ignores edge e(n2, n3) during
the on-line computation.

In order to determine the encoded values (i.e., 1 or 0) contained in −→v EBE

of an edge e(ns, nt), we compute a one-to-all shortest path from the head node
ns to all other nodes in the network. If any node nu is reached in a grid cell
c(i, j), we set the encoding information to 1 (i.e., true) for the region containing
node nu. We refer to this operation edge-bitmap-encoding (EBE) and repeat
it for each edge. The integration of −→v EBE to any shortest path algorithm is
very easy. Specifically, any shortest path algorithm can be modified to check
the encoded value of the corresponding grid cell (that contains the target node)
ever time before traversing an edge (If true, the edge is traversed). With ER-
CkNN, we integrate −→v EBE to A* algorithm (referred as EBE-based A*). This
integration further improves the performance of A* algorithm thus minimizing
the redundant network traversal. Recall that A* is already much faster than
Dijkstra for point-to-point shortest path computations. We refer readers to [10]
for the details of A* algorithm and the comparison of it to Dijkstra. Continuing
with our example presented in Figure 1, Figure 2(b) shows the set of edges
(highlighted around the actual shortest path) that ER-CkNN would traverse to
locate the first nearest data object using EBE-based A*. As shown, EBE-based
A* algorithm visits significantly less number of network nodes.

The storage requirement of−→v EBE is extremely low as its size is bounded by the
number of grid cells. The space complexity is O(RE) for a network with R regions
and E edges. To imagine, the space required to maintain the EBE information of
Los Angeles spatial network (with 304,162 edges) divided to 128X128 grid cells is
around 20 mega bytes. Note that only one bit value is stored for each region. In
addition, the EBE precomputation is not affected from the dynamic edge weights

32 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

as it is based on the topology of the network. If the network topology changes (less
likely), the −→v EBE of the edges should be updated.

Secondly, grid partitioning enables ER-CkNN to efficiently manage the object
location updates (hence continuous monitoring of the query results). In particu-
lar, ER-CkNN maintains an in-memory grid index in which each cell contains a
list of the objects currently residing in the cell. Given a moving object location
loct(p) = (xp, yp), c(�xp

α �, � yp

α �) is the grid cell containing the p. In order to
relate the grid index with the network edges (indexed by memory based PMR
QuadTree [2]) thus enabling spatial network query processing, ER-CkNN as-
sociates each network edge with the overlapping grid cells (edge-cell-mapping).
This information is stored in an hash table. For example, the edge e(n8, n10) (in
Figure 2(a)) is mapped to the cells {c(0, 1), c(0, 2)}. We will describe the use of
edge-cell-mapping more in Section 4.4.

4.2 On-Line Query Processing

In this section, we first explain how ER-CkNN leveragesER on the grid-partitioned
network and employs a filter-and-refine process to generate the initial query re-
sults. Next, we discuss how ER-CkNN continuously maintains the query results
as new location updates and/or network edge weight changes are received.

4.3 Generating Initial Query Result

ER-CkNN computes the initial result of a query using a filter-and-refine ap-
proach. With the filter step, first ER-CkNN performs a grid search to quickly
find a set of candidate nearest neighbors based on their Euclidean distance from
q. Next, by exploiting the fact that Euclidean distance is a lower-bound for net-
work distance, ER-CkNN uses ER to extend the original candidate to a super-
set which contains actual nearest neighbors of q. Toward that end, ER-CkNN
1) computes the maximum network distance NDT (short for Network Distance
Threshold) from q to any of the objects in the original candidate set, and 2)
performs a range query with radius NDT to identify all objects (and corre-
sponding edges) that comprise the super set. The super-set contains actual k
nearest neighbors for q on the spatial network; hence, no false misses. At the
refine step, the super set is further refined by removing possible false hits, and
ER-CkNN returns the top k objects with minimum network distance from q.

4.3.1 Filter Step
When a query object initiates a kNN search, the first step is to perform a grid ex-
pansion to identify the k nearest neighbors in the Euclidean proximity. Figure 3
illustrates an example where the goal is to find k = 2 nearest neighbor for the
query object q. Referring to q.cell, we first check the grid cell in which the q resides.
Since there is not any potential neighbors in this cell (see Figure 3(a)), the search
moves to the next level as illustrated in Figure 3(b). Here we find the two nearest
neighbors, namely p1 and p2 and, hence, the grid search is stopped. Note that with
the grid search we only retrieve the object list from each grid cell without travers-
ing the underlying spatial network. Having found the candidate set, next we move

Efficient Continuous Nearest Neighbor Query in Spatial Networks 33

(a) Level 1 (b) Level 2

Fig. 3. Grid search for 2NN query

on to compute the super set that contains actual nearest neighbors. Toward that
end, we first compute the respective network distances (using EBE- based A*) of
the objects in the candidate set d(q, p1) = 10, d(q, p2) = 6, and correspondingly
update NDT=10 (Algorithm 1 Line 3). Next, ER-CkNN performs a range query
on the spatial network (using PMR quadtree) with q as the center and NDT as
the radius (Line 4-5). With this operation, ER-CkNN retrieves the active-edges
q.activeEdges (the edges that are within the shaded area in Figure 4(a)) as well
as m ({p1,p2,p3,p4}) objects that comprise the super set. The crucial observation
in this step that If m = k (i.e., there are no false hits), the exact set of k nearest
neighbors for q are found (Line 7). Our experiments show that in 68% of the cases
m = k. This implies that ER-CkNN finds kNN with only a simple grid search and
the least number of network distance computations thus incurring fast response
time and low computation costs.

At this point, it is important to clarify that ER-CkNN, even with the large
values of k where the shortest path executed k times and some edges may be
traversed more than once, visits less nodes than the network expansion meth-
ods (see Section 6.2.3 for experimental results). This is due to the following
reasons. First, ER-CkNN performs EBE-based A* algorithm that enables ex-
tensive pruning (to almost the linear function of the shortest path) hence min-
imizing the invocation of the costly network data access. Second, ER-CkNN
computes the shortest path for only feasible data objects. If the correspond-
ing value of a grid cell that contains one or more data objects is false in the
−→v EBE of the query object’s edge, ER-CkNN does not attempt to compute the
network distance to those objects at all. Finally, it is possible to reuse some
network distance computations as the shortest path from multiple queries to
some target data objects might overlap. Consider a query point q looking for
data object p which was previously found by q′. If an on-line shortest path
computation, from q to p, reaches q′ during the scan, then there is no need to
continue the computation as ER-CkNN already knows the shortest path from q′

to p.

34 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

(a) First Step (b) Final ER

Fig. 4. Using ER (Euclidean Restriction) with ER-CkNN

Algorithm 1. ER-CkNN Algorithm
1: /* k:number of NNs, q:moving query object, pn: network distance */
2: [pk]=searchGrid[q.cell, k] /* returns k objects from the grid search*/
3: q.NDT = max(pnd1, ..pndk)
4: edgeList= euclideanRangeQuery(q.loc, q.NDT)
5: candidateNNs = retreiveObjects(edgeList)
6: m = candidateNNs.length
7: if (m = k) then q.resultSet = [pk]; break;
8: else
9: j = 1

10: repeat
11: pj = nextEuclideanNN(q) /* find closest data object to q */
12: if dN(q, pj) < NDT then
13: updateResultSet(pj) /*insert pi and remove kth NN from q.resultSet*/
14: NDT = dN (q, pj)
15: edgeList= euclideanRangeQuery(q.loc, q.NDT)
16: candidateNNs = retreiveObjects(edgeList)
17: m = candidateNNs.length
18: end if
19: j + +
20: until m=k
21: updateActiveEdges(edgeList)
22: end if

4.3.2 Refine Step
Once at the refine step, we have m > k. We denote the set of m− k objects that
were added to the candidate set as P ′ (in Figure 4(a), P ′ = {p3, p4}). To find
the actual nearest neighbors, ER-CkNN applies ER until m = k. Specifically,
ER-CkNN performs consecutive range queries with NDT = dN (pj , q), where
pj is the nearest Euclidean neighbor of q among P ′ objects, until m = k (Line
11-20). To illustrate, we continue with our running example from Section 4.3.1.
Since the active-edges obtained at this step contain m = 4 (m > k) data objects,

Efficient Continuous Nearest Neighbor Query in Spatial Networks 35

ER-CkNN proceeds to refine step, where it computes the network distance to
p4 in P ′ and compares dN (p4, q) = 8 with NDT . As dN (p4, q) < NDT , the new
object p4 becomes the current k-th nearest neighbor and NDT is updated to
dN (p4) = 8. Later, ER-CkNN performs the second range query (with the new
NDT) which excludes p1 and p3 (see Figure 4(b)). At this point, since there are
only two remaining objects in the candidate set (i.e., p2 and p4), the refine step
terminates by returning p2 and p4 as the final result and updating e.activeEdges
with the final set of active-edges which are within the shaded area in Figure 4(b)
(i.e., {e(n1, n2), e(n1, n3), e(n1, n4), e(n4, n7), e(n1, n5), e(n5, n6)}). As shown, p3
is automatically excluded after the second ER. Note that finding objects on
the active-edges is in linear time. After finding the active- edges, ER-CkNN
first determines the corresponding set of overlapping grid cells using edge-cell-
mapping hash table, and then retrieves the objects (in O(1)) from the grid file.

4.4 Continuous Maintenance of Query Result

In this section, we explain how ER-CkNN continuously maintains the query re-
sult while data and query objects move and the weights of the network edges
change. As noted before, ER-CkNN benefits from the grid partitioning to de-
termine the relevancy of the incoming location updates. Specifically, ER-CkNN
identifies the active-cells (that overlaps with the active-edges found in the refine
step) around the q. If a location update is mapped to one of these active-cells,
it is considered as relevant update and processed; otherwise it is ignored. Below,
we first classify the location updates and explain each of the classes in isolation;
thereafter, we discuss how ER-CkNN implements all cases simultaneously.

4.4.1 Data and Query Object Location Updates
With ER-CkNN, we classify each object location update into following three cate-
gories based on the type of the movement: resident updates, inbound updates, and
outbound updates. The resident updates are those which indicate an object has
been resident among the active-edges of the query since last update, either stay-
ing still or moving from one active-edge to another. The inbound updates report
movement of the objects that used to reside on an inactive edge but have moved
to an active-edge since then. Finally, the outbound updates report movement of
the objects that have moved from an active-edge to an inactive edge.

When a data object p sends an update containing its old and new location to the
central server, ER-CkNN first updates the grid index with the new location of p by
identifying the new grid cell. Next, ER-CkNN checks if the location update falls
in to grid cells (active-cells) that overlap with the active-edges of a query object.
Recall that the active-edges (thus active-cells) of the query objects are already
found in the refinement step. The crucial observation here is that only the relevant
location updates that are mapped to the active-cells can affect the result set of the
queries (localized mapping); hence the irrelevant updates are efficiently identified
and ignored. The cost to identify whether the location update is relevant or not is
in O(1) as ER-CkNN only checks the flag (indicating active or not) of the grid cell
that the new location update falls in. For example, assume that p3 sends a location

36 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

(a) Location mapping (b) Object location update (c) Query location update

Fig. 5. Data and query object location update

update which falls into cell c(6, 5) in Figure 5(a). Since neither the new nor the
old location of p3 are mapped to the active-cells (marked cells in the Figure 5(a))
which overlap with the active-edges, the movement of p3 is ignored.

If relevant updates are received, ER-CkNN updates the results of the queries
by considering the update categories. Specifically, ER-CkNN considers two cases.
The first case is when the number of outbound updates is less than or equal to
the number of inbound updates. In this case there still exist at least k objects
on the active-edges. Therefore, ER-CkNN first removes the outbound nearest
neighbors from the result set and then merges the objects that are in resident
and inbound update categories by returning the k nearest objects among them.
Note that if the NDT is decreased after this operation, ER-CkNN updates the
NDT and q.activeEdges accordingly. For instance, assume that p1, p2, and p3
send location updates, and p4 stays still as shown in Figure 5(b). In this example,
the location updates of p1, p2, and p4 are categorized as inbound, outbound, and
resident, respectively (the movement of p3 is ignored as described before). Since
the number of outbound updates is equal to the number of inbound updates,
ER-CkNN removes p2 from the result set and adds p1 to it. Finally, ER-CkNN
returns p1 and p4 as the final result set. The second case is the number of
outbound updates is more than the number of inbound updates. In this case
ER-CkNN needs to expand the search space to retrieve the new results since
there are less than k objects on the active-edges. To avoid recomputation, the
grid expansion, instead of starting from the cell where q resides, starts from the
level of the k th data object that is furthest to q in Euclidean distance.

Similar to data objects the query objects move on or out of the active-edges.
If q moves on any of the active-edges, we save some computation. To illustrate,
consider Figure 5(c) where q moves to a new location q′. Since the shortest path
from p4 to q was originally computed, we can easily compute network distance
from q′ to p4. To retrieve the new results of the q, ER-CkNN continues from the
Line 11 of the Algorithm 1. In the case q moves to an in-active edge, ER-CkNN
computes the new k nearest neighbors and the active-edges from the beginning.

When an edge weight change is received, ER-CkNN first checks if the edge up-
date corresponds to an active-edge. In case the new edge weight has increased,
implying that the network distance between q and the data object pi is increased,

Efficient Continuous Nearest Neighbor Query in Spatial Networks 37

there may exist shorter alternative paths to reach pi in the network. Therefore,
ER-CkNN employs the filter step and continues from the Line 12 of the Algorithm
1. If the new edge weight has decreased and the weight change affects the current
NDT , ER-CkNN updates the NDT and the q.activeEdges accordingly.

When ER-CkNN receives object location and edge weight updates simultane-
ously, it first checks if the q moves to an inactive edge. If so, ER-CkNN recomputes
the kNN from the beginning by ignoring the data object and edge updates. Other-
wise, ER-CkNN first processes the edge updates since handling the query update
before considering the edge update may result in retrieving wrong active-edges.
After finishing the edge updates, ER-CkNN processes the query movement. Fi-
nally, it handles data object updates based on the finalized active-edges from the
previous two updates.

5 Discussion

In this section we discuss the two main factors that affect the performance of
ER-CkNN, namely the grid granularity and the network topology. We describe
the details of these two factors and explain how we optimize the grid granularity.

5.1 Grid Granularity

As grid size grows (having less cells), the total number of cell retrievals decreases.
However, large cells result in retrieving more excessive (unneeded) objects. On
the other hand, with small grid cells, the cost of grid cell retrieval, and the
memory requirements of EBE increases. We derive the optimal value of the grid
size with the following theorem. Similar analysis have been given in [17].

Lemma 1. Let the moving objects be represented as points distributed on the
unit square [0, 1] × [0, 1] partitioned by the cell (which contains P objects) size
α × α. The number of cells in a region (L × L) (L is the edge length of the
square after grid expansion) is given by �(L+α)�2

α2 and the number of objects in
this region is approximately (�(L + α)�2)P under uniform distribution.

Theorem 1. For a gird of size α × α which contains P objects, α ≈ 1√
P

is the
optimal grid size to minimize the query time under uniform distribution.

Proof. The overall query processing time T is dominated by the grid expan-
sion (i.e., time required to query several grid cells which contain k objects) and
processing the objects located in the grid cells (i.e., time required to compute
network distance). Therefore T = tgng+tono where ng and no represents number
of grid cells and number of objects, respectively (tg and to are constants). Com-
puting the region for a kNN query involves finding the circle C(o; r) (r = dNDT

of kth object in the worst case) which includes the kth nearest object to the query
point. Therefore, using the lemma from above, the number of objects (i.e., k) in

this region is k ≈ πr2 ∗ P so r ≈
√

k
πP and the number of grid cells contained

38 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

in the area bounding this circle ng = (2r+α)2

α2 and no ≈ (2r + α)2P . Replacing
ng and no in T = tgng + tono with the above values and setting ∂T

∂α = 0 gives

α3 = tgr
toP or α = 3

√
tg

to

√
k
π

1√
P

. For k
 n, the α can be simplified to α ≈ 1√
P

.

5.2 Network Topology

In general, the topology of a network may affect the performance of spatial
network query processing methods. One topology concern when processing ER
based queries in spatial networks is network and Euclidean distance correlation
(referred as NEC). Because, ER based methods rely on lower bound restriction
that yields better results when NEC is high (i.e., the network distance is close to
the Euclidean distance between two points). The experimental evaluations show
that the response time of ER-CkNN is not severely affected from NEC. The
average response time loss of ER-CkNN is approximately %12 when the NEC
between the query and data objects is low. We used two different datasets (i.e.,
Los Angeles and San Joaquin networks) to show that the behavior of ER-CkNN
does not change significantly with the different network topologies. The NEC
is high with Los Angeles network where as it is low with San Joaquin network.

On the other hand, ER-CkNN provides a very effective way to handle direc-
tional queries. For example, if a query asks for the nearest gas stations towards
North (i.e., the driving direction), ER-CkNN only expands the grid search to-
wards that direction thus pruning the search space to half. Directional queries
are commonly used in car navigational systems.

6 Experimental Evaluation

6.1 Experimental Setup

We conducted experiments with different spatial networks and various param-
eters (see Table 1) to evaluate the performance of ER-CkNN and compare it
with GMA [8] (as GMA yields better performance results than IMA). With
our experiments, we measured the impact of the data object and query cardi-
nality, data object and query distribution, network size, gird size, k and data

Table 1. Experimental parameters

Parameters Default Range
Number of objects 15 (K) 1,5,10,15,20,25 (K)
Number of queries 3 (K) 1,2,3,4,5 (K)
Number of k 20 1,10,20,30,40,50
Object Distribution Uniform Uniform, Gaussian
Query Distribution Uniform Uniform, Gaussian
Object Agility a 10 % 0, 5, 10, 15, 20,25 (%)
Object Speed v 60 kmph 20, 40, 60, 80, 100 (kmph)

Efficient Continuous Nearest Neighbor Query in Spatial Networks 39

object agility and speed. As our dataset, we used Los Angeles (LA) and San
Joaquin County (SJ) road network data with 304,162 and 24,123 road seg-
ments, respectively. Both of these datasets fit in the memory of a typical ma-
chine with 4GB of memory space. We obtained these datasets from TIGER/Line
(http://www.census.gov/geo/www/). Since the experimental results with these
two networks differ insignificantly (approximately %12) as noted in Section 5.2
and due to space limitations, we only present the results from the LA dataset.

We generated the parameters represented in Table 1 using a simple simulator
prototype developed in Java. We conducted our experiments on a workstation
with 2.7 GHz Pentium Core Duo processor and 8GB RAM memory. We contin-
uously monitored each query for 50 timestamps. For each set of experiments, we
only vary one parameter and fix the remaining to the default values in Table 1.

6.2 Results

6.2.1 Impact of Object and Query Cardinality
First, we compare the performance of two algorithms by varying the cardinality
of the data objects (P) from 1K to 25K while using default settings in Table
1 for all other parameters. Figure 6(a) illustrates the impact of data object
cardinality on response time. The results indicate that the response time linearly
increases with the number of data objects in both methods where ER-CkNN
outperforms GMA with all numbers of data objects. From P=1K to 5K, the
performance gap is more significant where ER-CkNN outperforms GMA by
factor of four. Because, when P is less, the data objects are distributed sparsely
on the network which causes GMA to incrementally expand the search area by
visiting unnecessary edges and nodes. When P is large, GMA, with each location
update, traverses the spatial index to identify the edge of the moving objects.
However, ER-CkNN needs to identify the edge of the moving object only if the
location update of it falls in to localized grid cells. Figure 6(b) shows the impact
of the query objects (Q) ranging from 1K to 5K on response time. As shown, ER-
CkNN scales better with large number of Q and the performance gap between
the approaches increases as Q grows. Because, in addition to factors mentioned
above, GMA maintains an expansion tree (for monitoring) which is invalidated
frequently with the continuous location updates of the q thus yielding very high
maintenance costs.

6.2.2 Impact of Object/Query Distribution and Network Size
With this experiment set, we study the impact of object, query distribution
and network size on ER-CkNN. Figure 7(a) shows the response time of both
algorithms where the objects and queries follow either uniform or Gaussian dis-
tributions. As illustrated, ER-CkNN outperforms GMA significantly in all cases.
ER-CkNN yields better performance for queries with Gaussian distribution. Be-
cause, as queries are clustered in the spatial network with Gaussian distribution,
their active-cells would overlap hence allowing ER-CkNN to monitor relatively
less active-cells. Furthermore, since the shortest paths from clustered queries
to some data objects would overlap, ER-CkNN benefits from reusing numerous

40 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

(a) Impact of P (b) Impact of Q

Fig. 6. Response time versus P and Q

(a) Impact of object distribution (b) Impact of network size

Fig. 7. Response time versus N and Q

network distance computations. In addition, with these experiments, we also
measured our success rate with finding k nearest neighbors by only performing
filter step. In average 68% of the cases ER-CkNN was able to find the k nearest
neighbors without executing the refinement step as described in Section 4.3.1.

In order to evaluate the impact of network size, we conducted experiments with
the sub-networks of LA dataset ranging from 50K to 250K segments. Figure 7(b)
illustrates the response time of both algorithms with different network sizes. In
general, with the default parameters in the Table 1, the response time increases
for both algorithms as the network size increases.

6.2.3 Impact of k
With another experiment, we compare the performance of the two algorithms
with regard to k. Figure 8(a) plots the average query efficiency versus k ranging
from 1 to 50. The results indicate that ER-CkNN outperforms GMA with all
values of k and scales better with both small and the large values of k. Because,
when k is small ER-CkNN benefits from the directional search. As k increases
the search space of GMA incrementally expands in all directions hence incurring
redundant node traversal and the expansion tree (see [8] for the expansion tree)
grows exponentially by holding more unnecessary network data hence yielding
extensive maintenance and access cost. As illustrated, ER-CkNN outperforms
GMA by at least a factor of three for k≥10. In addition, we compared the

Efficient Continuous Nearest Neighbor Query in Spatial Networks 41

(a) Impact of k on response time (b) Impact of k on node access

Fig. 8. Response time and node access versus k

average number of node access with both algorithms. As shown in Figure 8(b),
the number of nodes accessed by ER-CkNN is less than GMA with all k values.
This is because ER-CkNN, rather than expanding the search blindly, utilizes the
point-to-point EBE-based A* that minimizes the node access.

6.2.4 Impact of Object Agility and Speed
With this set of experiments, we evaluate the performance of both algorithms with
respect to object movements. We use two parameters to measure the affect of ob-
ject movements namely object agility a and object speed v. Object agility indi-
cates the percentage of objects that move per timestamp (0% represents static
data) while the object speed indicates object’s speed measured by kilometer per
hour. Figure 9(a) illustrate the impact of object agility ranging from 0% to 25%. As
the object agility grows, both algorithms query processing time increases slightly
due to the frequent updates in the number of inbound and outbound objects. The
superior performance of ER-CkNN approach is due to the usage of localized map-
ping that avoids extensive invalidations with the expansion tree of GMA and un-
necessary node and edge access. As Figure 9(b) indicates, both algorithms are un-
affected by the object speed because the focus of both algorithms only concern if
there are object updates that may invalidate the existing results in the monitoring
areas rather than how fast the objects move in or out of the monitoring areas.

(a) Impact of object agility (b) Impact of object speed (c) Impact of grid size

Fig. 9. Response time versus object agility, speed and grid size

42 U. Demiryurek, F. Banaei-Kashani, and C. Shahabi

6.2.5 Impact of Grid Size
In order to compare the theocratical results from the analysis in Section 5.1 and
evaluate the the impact of the grid size on ER-CkNN, we run several experi-
ments with different grid sizes and the default values in Table 1. Figure 9(c)
illustrates the response time needed with grid sizes ranging from 8√

P
to 1

8
√

P
. As

illustrated, decreasing the cell size has the effect of reducing the response time.
There is a substantial increase in performance as we move from 8√

P
to 1√

P
, but

later the response time starts increasing at finer granularity. This validates the
analytical results. Note that memory requirements of ER-CkNN is slightly more
than IMA/GMA due to additional grid indexing.

7 Conclusion

With this paper, we proposed an Euclidean restriction based algorithm which
avoids the blind network expansion and blind object location mapping short-
comings of the network expansion methods. The key benefit of ER-CkNN is
that it enables guided shortest path search that minimizes the redundant node
access and localizes the network that facilitates the continuous kNN monitoring.
ER-CkNN does not make any simplifying assumption (e.g., static data objects,
known trajectories) about the moving objects and edge weights. Therefore, it
can easily be applied to real-world road network kNN applications. In the fu-
ture, we intend to extend this study to handle different monitoring queries such
as range and reverse kNN in spatial networks.

References

1. Cho, H.-J., Chung, C.-W.: An efficient and scalable approach to cnn queries in a
road network. In: VLDB (2005)

2. Hoel, E.G., Samet, H.: Efficient processing of spatial queries in line segment
databases. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525. Springer,
Heidelberg (1991)

3. Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main memory evaluation of
monitoring queries over moving objects. In: DPDB (2004)

4. Kolahdouzan, M., Shahabi, C.: Voronoi-based k-nearest neighbor search for spatial
network databases. In: VLDB (2004)

5. Kolahdouzan, M.R., Shahabi, C.: Continuous k-nearest neighbor queries in spatial
network databases. In: STDBM (2004)

6. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Geoinformation and Mobilitat (2004)

7. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: scalable incremental processing of
continuous queries in spatio-temporal databases. In: SIGMOD (2004)

8. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neigh-
bor monitoring in road networks. In: VLDB (2006)

9. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: VLDB (2003)

10. Russell, S.J., Norvig, P.: Artificial intelligence: A modern approach. Prentice-Hall,
Inc., Englewood Cliffs (1995)

Efficient Continuous Nearest Neighbor Query in Spatial Networks 43

11. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: SIGMOD (2008)

12. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In:
Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, p. 79. Springer, Heidelberg (2001)

13. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases.
In: SIGMOD (2002)

14. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB
(2002)

15. Huang, X., Jensen, C.S., Hua, L., Saltenis, S.: S-GRID: A versatile approach to
efficient query processing in spatial networks. In: Papadias, D., Zhang, D., Kollios,
G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 93–111. Springer, Heidelberg (2007)

16. Huang, X., Jensen, C.S., Šaltenis, S.: The island approach to nearest neighbor
querying in spatial networks. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino,
E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)

17. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving
objects. In: ICDE (2005)

18. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial
queries. In: SIGMOD (2003)

19. Zheng, B., Lee, D.L.: Semantic caching in location-dependent query processing. In:
Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, p. 97. Springer, Heidelberg (2001)

Discovering Teleconnected Flow Anomalies:
A Relationship Analysis of Dynamic Neighborhoods

(RAD) Approach

James M. Kang1, Shashi Shekhar1,
Michael Henjum2, Paige J. Novak2, and William A. Arnold2

1 Department of Computer Science, University of Minnesota, MN, USA
{jkang,shekhar}@cs.umn.edu

2 Department of Civil Engineering, University of Minnesota, MN, USA
{henj0016,novak010,arnol032}@umn.edu

Abstract. Given a collection of sensors monitoring a flow network, the problem
of discovering teleconnected flow anomalies aims to identify strongly connected
pairs of events (e.g., introduction of a contaminant and its removal from a river).
The ability to mine teleconnected flow anomalies is important for applications
related to environmental science, video surveillance, and transportation systems.
However, this problem is computationally hard because of the large number of
time instants of measurement, sensors, and locations. This paper characterizes
the computational structure in terms of three critical tasks, (1) detection of flow
anomaly events, (2) identification of candidate pairs of events, and (3) evalua-
tion of candidate pairs for possible teleconnection. The first task was addressed
in our recent work. In this paper, we propose a RAD (Relationship Analysis of
spatio-temporal Dynamic neighborhoods) approach for steps 2 and 3 to discover
teleconnected flow anomalies. Computational overhead is brought down signifi-
cantly by utilizing our proposed spatio-temporal dynamic neighborhood model as
an index and a pruning strategy. We prove correctness and completeness for the
proposed approaches. We also experimentally show the efficacy of our proposed
methods using both synthetic and real datasets.

1 Introduction

This section first presents the application domain, followed by the problem statement,
challenges, related work, contributions, and the scope and outline of this paper.

Application Domain. A teleconnection represents a strong interaction between paired
events that are spatially distant from each other. A well-known example of telecon-
nected event pair involves the warming of the eastern pacific region (i.e. El Niño) and
unusual weather patterns throughout the world [1]. In the United States, teleconnec-
tions often occur in air travel when a local weather disruption of a single airport (e.g.,
Chicago) causes other major airports (e.g., New York City, Atlanta, etc.) to delay or
cancel flights. Indeed, many events in everyday life display patterns related to other
events occurring a distance away. One type of teleconnected event of special interest
to scientists occur in environmental systems when a contaminant enters a river (e.g.,

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 44–61, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Discovering Teleconnected Flow Anomalies 45

Fig. 1. Dead Zone, Gulf of Mexico [5] (Best Viewed in Color)

an oil spill) and then vanishes (e.g., the removal of the oil via natural or man-made)
downstream. Identifying these teleconnections in environmental systems is important
to maintain high water quality, one of the major global challenges facing humanity ac-
cording the the United Nations [2]. When contaminants enter river networks, they create
problems for drinking water sources and point to the need to identify when and where
the contaminant entered and exited the river network [3,4].

For the past several years, environmental engineers and scientists have been actively
studying contaminants in water by placing advanced sensors along streams or rivers [6].
One of the greatest challenges in this field, however, is to understand how contaminants
emerge (i.e., when and where a contaminant may enter) and how they vanish (i.e., when
and where a contaminant is removed). Pairs of emerging and vanishing events may be
teleconnected. A single contaminant may emerge as a result of rain fall and then vanish
downstream in natural catchments (e.g., Dead Zone in the Gulf of Mexico in Figure 1).
For example, nitrate (a component of fertilizer) may emerge from storm water runoff
(i.e., process of nitrification) and vanish downstream as a result of biological transfor-
mation (i.e., process of denitrification). Although there exist several known locations
for vanishing events, studies using mass-balance methods show that only a fraction of
the entering contaminants are “caught” [7]. Determining when and where all of these
contaminants vanish in the river is an open area of study in environmental science with
many potential benefits. For example, such research is possible to reduce economic
costs and the environmental impact of contamination by limiting the location of man-
made remedies [7] to areas where natural processes are shown to be inadequate for
removing contamination. Thus several environmental scientists (e.g. our collaborators
Novak and Arnold) have expressed the need for an efficient and robust method to dis-
cover teleconnections between these emerging and vanishing events.

There are other important and interesting applications for the discovery of telecon-
nected events outside the realm of environmental science as well. In transportation sys-
tems, identifying the time and the location o teleconnected congestion may be important
for commuters when choosing the best route to take. In video surveillance, authori-
ties want to be able to determine the time and source of unusual events such as unat-
tended bags being left (i.e, emerge) or picked up (i.e., vanishing) at an airport terminal.
Monitoring thousands of surveillance video streams may result in expensive manual

46 J.M. Kang et al.

investigations to identify these events. Thus, there is a need to efficiently detect these
teleconnected relationships.

Problem Statement. Given a collection of sensors where each sensor has a time series
of measured variables, the teleconnected flow anomaly discovery problem identifies
strongly connected pairs of events. We are mostly interested in flow anomaly events
and pairs of emerging and vanishing events. We define this notion informally here and
formally in Section 2. Flow anomalies represent time-periods with a (user-defined) high
fraction of time-instants having significantly different readings across pairs of adjacent
sensors. For example, if no pollution events exist within a river, then all the observations
seen at each sensor along the river will be similar. If a pollution event occurs between a
pair of sensors at a single time instant, then a transient flow anomaly has been found. A
persistent flow anomaly may consist of several transient flow anomalies and several ob-
servations that appears to be normal. A persistent flow anomaly found between sensors
is considered dominant if it is not a subset of any other flow anomaly event occurring at
this location. An emerging flow anomaly may be found upstream (e.g., at an industrial
outfall) whereas a vanishing flow anomaly event may be found downstream (e.g., as a
result of degradation).

Mining teleconnected flow anomaly events is computationally challenging for many
reasons. First, a single flow anomaly event may consist of subsets that may not be
anomalous, but are important for the event itself. This makes it difficult to use the dy-
namic programming principle for designing an algorithm. Second, the temporal length
of each flow anomaly may vary. This makes fixed window-based paradigms unnatural.
Third, there may be a large number of possible locations for emerging and vanishing
flow anomaly events across all node paths and time paths in the network and all paths
and time-instant paths must be searched to identify teleconnected relationships. In addi-
tion, teleconnected flow anomalies may consist of one-to-one, one-to-many, or many-to-
many relationships between emerging and vanishing flow anomaly events. Identifying
the relationships between flow anomaly events creates a large number of combinations
across the entire network. Finally, the length of time series may be very large due to the
potentially infinite nature of time.

Related Work. To the best of the authors’ knowledge, no techniques have been reported
in the literature to find flow anomalies across an entire network and then identify the re-
lationship between these events. The most related technique, called SWEET, is our pre-
liminary work [8] that introduced the problem of discovering flow anomalies for a pair of
adjacent sensors addressing the first critical task identified in the abstract for the overall
problem of discovering teleconnected flow anomalies. Computation time for SWEET
was reduced significantly by introducing the concepts of a smart counter and a prun-
ing strategy. Briefly, the smart counter allowed SWEET to scan the time series once to
identify the transient flow anomalies and the pruning strategy reduced the number of can-
didates (i.e., time periods) to be analyzed. These algorithmic innovations reduced com-
putation time costs by orders of magnitude. For example, for a long time series, SWEET
reduced the execution time from hours to seconds. However, SWEET is limited to finding
flow anomalies between only two sensors and cannot identify the teleconnected relation-
ship between multiple flow anomalies occurring at different locations and time periods.

Discovering Teleconnected Flow Anomalies 47

In order to make this paper complete, the related work on flow anomalies presented
in our previous work [8] is also presented here. Related literature to flow anomalies
may appear to occur in string matching, time series analysis, data stream correlations,
clustering, and outlier detection. In string matching, Amir et al. uses an inverse string
matching method that maximizes and minimizes the number of mismatches [9], and
Lee et al. proposes a similar method using wild cards [10]. However, these techniques
use an exact matching technique whereas flow anomalies are found using a statistical
measure because an exact match may not occur in our problem domain. In time series
analysis, several methods assume that the basic property of dynamic programming of
sub-optimal substructure exists in their problem domain (e.g. [11]). However, a per-
sistent flow anomaly may have subsets that may not be anomalous which violates this
basic principle of dynamic programming. In data stream correlations, relationships be-
tween streams are identified using a correlation measure and a fixed sliding window.
Chan et al. found local correlations between multiple data streams using a sliding win-
dow [12]. Global relationships between data streams were also found using a sliding
window to summarize the entire data stream [13]. Multiple pre-defined sliding win-
dows were used to find correlations based on a query [14]. Rarity and similarity of data
streams were found using a fixed sliding window [15]. However, use of a fixed win-
dow presupposes that the domain specialist knows the duration of the unexpected event
(e.g. Rain Events). Also, there may be multiple events occurring between multiple data
streams having anomalous events of variable sizes. In clustering, methods that focus
on moving clusters (e.g. [16]) or cluster transitions (e.g. [17]) often require the need of
spatially dense datasets to identify each cluster. However, flow anomalies may exist in
spatially sparse datasets, limiting the ability of these clustering techniques to discover
each event. Basic outlier detection techniques (e.g. t-test [18]) may detect transient flow
anomalies and persistent flow anomalies (at 100% missmatched time instants) if flow is
considered (e.g. [19,20]). However, these techniques are limited in finding all persistant
flow anomalies since they may miss several patterns when the mismatched time instants
is less than 100%.

Identifying relationships across multiple sensors presents several challenges such
as identifying whether a pair of flow anomaly events that may be spatially distant are
in fact related based on their spatio-temporal neighborhood. Existing approaches have
modeled these relationships as a spatial neighborhood using concepts such as modeling
vector fields (e.g. [21]). However, teleconnected relationships cannot be found using
these models to find pairs of emerging and vanishing flow anomaly events because
neighborhoods are only defined by their spatial proximity. Spatio-temporal relation-
ships have been discovered while assuming that the temporal dimension is fixed [22].
Whereas in the teleconnected flow anomaly problem, there may exist spatio-temporal
relationships having variable temporal lengths.

Contributions. In this paper, we propose a Relationship Analysis of spatio-temporal
Dynamic neighborhoods (RAD) approach for steps 2 and 3 (identified in abstract) of the
overall problem of that utilizes several inherent properties of the problem to efficiently
identify teleconnected flow anomaly events across an entire network. In summary, this
paper makes the following contributions:

48 J.M. Kang et al.

1. We define new key concepts that utilize our proposed spatio-temporal dynamic
neighborhood model.

2. We propose a new interest measure to discover teleconnected flow anomalies
3. We propose a novel RAD method to discover teleconnected flow anomalies.
4. We propose several design alternatives: “On the Fly”, spatio-temporal Dynamic

Neighborhood, and a pruning strategy.
5. We prove the correctness and completeness of all proposed approaches.
6. We experimentally evaluate our proposed methods using synthetic and real datasets.

Scope and Organization. The following issues are beyond the scope of this paper:
(i) inferring the travel time from the dataset, that is, the travel time is given as part
of the input for the teleconnected flow anomaly problem, (ii) sensor placement within
the network (e.g. [23]), (iii) non-point source flow anomalies (1:M and M:N) are not
discovered, that is, flow anomalies only occur between adjacent sensors, (iv) complex
networks, that is, only a tree network is examined in this paper, (v) only singleton neigh-
borhoods are explored, (vi) anomalies occurring beyond the set of known sensors in the
network, and (vii) arbitrary event relationships, that is, only emerging and vanishing
event types are explored.

The rest of the paper is organized as follows. Section 2 presents the basic concepts and
the problem statement of discovering teleconnected flow anomalies. Section 3 presents
our proposed RAD method, its design decisions, and theoretical analysis. Section 4 gives
the experimental evaluation and Section 5concludes the paper and discusses future work.

2 Key Concepts and Problem Statement

In this section, we first introduce key concepts for modeling the spatio-temporal
dynamic neighborhood relationship and then, introduce definitions to characterize tele-
connected flow anomalies. Finally, we give a formal description of the problem state-
ment. Figure 2 illustrates the spatio-temporal dynamic neighborhood model with six
spatio-temporal locations where the distance between each spatial neighbor is one unit
length. Figure 3 depicts the discovery of Emerging and Vanishing Flow Anomalies re-
spectively. In this example, the input and output is simplified for illustration by using
a unit length of 1 between each sensor and assuming the travel time at each instant is
given.

2.1 Key Concepts

A spatio-temporal set ST is denoted as ST = {st1, st2, . . . , stm}, where sti = {si, ti}
and si represents a spatial location and ti represents a time instant. Figure 2 gives an
example of six locations, {s1, s2, . . . , s6}. A sensor observation, f(sti), may be asso-
ciated with (si, ti).

A vector (e.g. velocity) field, V (st) or V (s, t), is also associated with ST where s
is the spatial location of the sensor and t is a time instant that maps each {si, ti} to a
velocity vector.

Discovering Teleconnected Flow Anomalies 49

1

1

11

1

s1 s2 s3 s4 s5 s6 s1 s2 s3 s4 s5 s6

s1

s2

s3

s4

s5

s6

s1

s2

s3

s4

s5

s6

tj = ti + 1 tj = ti + 2

ti = 1 1

1

11

s1

s2

s3

s4

s5

s6

(a) Spatial Graph (b) Spatio-Temporal Dynamic Neighborhood Example

Fig. 2. Spatio-Temporal Dynamic Neighborhood Example

Definition 1. A spatio-temporal dynamic neighborhood relationship is the association
between two ST locations.

Definition 1 can be formally expressed by the directed NB(sti, stj , tk) where sti =
(si, ti) is a neighbor of stj = (sj , tj) if and only if a particle at si in time instant ti will
be propelled by the velocity field V (s, t) to reach location sj on time instant tj .

Figure 2 illustrates an example of a spatio-temporal dynamic neighborhood. For il-
lustrative purposes only, suppose the velocity field in this example is a constant function
valued 1, i.e., it is a uniformly flowing field with a unit speed downstream of 1 and the
unit length between each spatially adjacent neighbor of 1. At ti = 1, suppose we drop a
particle at each spatial location and wait one second (i.e., tj = 2). Based on the veloc-
ity field, the particle at each spatial location will travel one unit in length downstream
and reach its adjacent neighbor. For example, at time instant ti = 1 and tj = 2, the
neighbor for s1 is s2, i.e., NB((s1, 1), (s2, 2)). Likewise, the neighbor for s2 is s3 and
the neighbor of s6, s3 is s4, and the neighbor of s4 is s5. Suppose we wait an additional
second (tj = 3) after we initially drop the particle at ti = 1 at each sensor. Then,
the spatio-temporal neighborhood changes and the particle will travel an additional unit
length. Thus, as shown in Figure 2b, the neighbor when ti = 1 and tj = 3 for s1 is s3
and s6, s2 is s4, and s3 is s5 where the total distance traveled is 2 units in length. This
simple example illustrates that a spatio-temporal neighborhood can change over time
due to the flow within the network.

Neighbors N(sti, tk) of a ST location based on a spatio-temporal dynamic neighbor-
hood relationship can be formally characterized as {stj|stj ∈ ST, NB(sti, stj, tk) =
True}, where tk represents the travel time from si to sj . Figure 2 gives an example of
where the neighbor of s1 is s2 when the velocity starting at ti = 1 (i.e., V (s, t) = 1) and
we wait one second (tj = 2). N(sti, tk) is considered a singleton neighborhood if it has
only one element. Identifying neighborhoods for all paths and time-instant paths may
be very challenging because a directed acyclic graph may merge and disperse, creating
an exponential number of paths and time-instant paths due to flow.

A spatial neighborhood gives the relationship of adjacent locations si and sj , whereas
a spatio-temporal dynamic neighborhood gives the relationship of a pair of locations si

and sj at different travel times. For example, the spatial neighbors of s1 in Figure 3a is

50 J.M. Kang et al.

s1 1 1 2 1 1

1 2 3 4 5t =

TT(s1,tk) =

0 0 0 0 0f(s1,t) =

s2 1 1 1 1 1

0 90 0 0 90f(s2,t) =

s3 1 1 1 1 1

0 0 90 0 0f(s3,t) =

s4 1 1 1 1 1

0 0 0 0 0f(s4,t) =

1 1 1 1 1

90 0 90 0 0

1 1 1 1 1

90 0 0 0 0

1 1 1 1 1

0 0 0 0 0

6 7 8 9 10

1 1 1 1 1

0 90 0 90 0

TT(s2,tk) =

TT(s3,tk) =

TT(s4,tk) =

(a) Example Input

s1 1 1 2 1 1

1 2 3 4 5t =

TT(s1,tk) =

0 0 0 0 0f(s1,t) =

s2 1 1 1 1 1

0 90 0 0 90f(s2,t) =

s3 1 1 1 1 1

0 0 90 0 0f(s3,t) =

s4 1 1 1 1 1

0 0 0 0 0f(s4,t) =

1 1 1 1 1

90 0 90 0 0

1 1 1 1 1

90 0 0 0 0

1 1 1 1 1

0 0 0 0 0

6 7 8 9 10

1 1 1 1 1

0 90 0 90 0

eFA: 1-3

vFA: 7-9

vFA: 3-6

TT(s2,tk) =

TT(s3,tk) =

TT(s4,tk) =

(b) Example Output

Fig. 3. Discovering Emerging and Vanishing Flow Anomalies Example (Best Viewed in Color),
TT (si, tj) represents 1/|V (si, tj)|, i.e. travel time to downstream sensor at unit distance

s2, whereas the spatio-temporal neighbor of s1 having a travel time of 2 (i.e., tj − ti)
are s3 and s6.

Definition 2. A transient Flow Anomaly (tFA) is a triple (sti, tk, Θe) where the differ-
ence between corresponding observations (i.e., accounting for the velocity field) from a
sensor and its neighboring sensors is larger than the given error threshold, Θe.

Definition 2 can be formally expressed in Equation 1.

tFA(sti, tk, Θe) ⇐⇒ {f(sti) − AV G(f(stj)|stj ∈ N(sti, tk)) > Θe} (1)

There are two types of transient flow anomalies, namely, emerging and vanishing. An
emerging tFA (etFA) is defined by tFA(sti, tk) < −Θe whereas a vanishing tFA (vtFA)
is defined by tFA(sti, tk) > Θe. For simplicity, Figure 3b gives examples of an emerg-
ing and vanishing tFAs for singleton neighborhoods. As can be seen, an emerging tFA
occurs at time instant 1 between s1 and s3 having a value of -90 when the error threshold
is 10 and a vanishing tFA occurs at time instant 3 between s3 and s4.

Definition 3. A persistent Flow Anomaly (pFA) is a 6-tuple (si, tk, ts, te, Θe, Θp) if
and only if (si, ts, Θe) and (si, te, Θe) are transient flow anomalies, and at Θp fraction
of time instants t in time-interval [ts, te] are associated with transient flow anomalies
(< si, t >, tk, Θe).

Definition 3 can be formally expressed in Equation 2.

pFA[si, tk, ts, te, Θe, Θp] ⇐⇒ (tFA((si, ts), tk)) & (tFA((si, ts), tk)) &

(

te∑
t=ts

tFA((si, t), tk)

time interval length(te − ts)
≥ Θp) (2)

Persistent flow anomalies are classified as either emerging when its tFAs are all etFAs,
vanishing when its tFAs are all vtFAs; otherwise, they are neither. Figure 3b gives an
example of an epFA for the time interval from 1 to 3 between s1 and s2 having three
etFAs and no vtFAs when the Θp = 0.5.

Discovering Teleconnected Flow Anomalies 51

Definition 4. A dominant persistent Flow Anomaly (dpFA) is a pFA that is not a subset
of any other dpFA.

A dpFA may be characterized as either an emerging dpFA (denoted as eFA) or a van-
ishing dpFA (denoted as vFA) based on the type of its pFA. Figure 3 gives an example
of an emerging dpFA during time instants 1 to 3 between ST locations s1 and s2. Ac-
cording to the persistent flow anomaly definition, time instants 1 and 3 each satisfy the
persistent threshold and its definition. However, time instants 1 and 3 are not a dpFA
because they are a subset of a larger dpFA for period 1 to 3.

Definition 5. A teleconnected Flow Anomaly (telFA) is an eFA and a vFA pair that are
related via a velocity field.

Intuitively, a telFA may represent a contmination (an eFA) cleaned up later (vFA) by a
natural or man-made process. Definition 5 can be formally expressed in Equation 3.

telFA(eFA(s1
i , t

1
k, t1s, t

1
e, Θ

1
e , Θ1

p), vFA(s2
i , t

2
k, t2s, t

2
e, Θ

2
e , Θ2

p))∀(s1
i , t

1
i), ⇐⇒

∃(s2
i , t

2
i) s.t. {t1i ∈ [t1s, t

1
e]} AND {t2i ∈ [t2s, t

2
e]}

AND {NB(< s1
i , t

1
i >, < s2

i , t
2
i >)} (3)

where s1
i and s2

i is the starting location in the eFA and the vFA respectively for the time
period of ts to te.

Figure 3b gives an example of one telFA consisting of one eFA (period 1-3, between
s1 and s2) and one vFA (period 3-6, between s3 and s4). For simplicity, suppose that
in this example, the unit length between each immediate neighbor is 1 and the velocity
field is 1. When t1 = 1 and the travel time t2 = 2, the neighbor of s1 is s3. Likewise, at
t1 = 2 and t1 = 3, the neighbor of st1 is again st3. A teleconnected flow anomaly may
be statistically interpreted to identify emerging and vanishing events. Those events that
do not satisfy the criteria for a emerging or a vanishing anomaly are not considered to
be a telFA.

2.2 Problem Statement

The teleconnected flow anomaly discovery problem can be defined as follows:

Given. (1) A directed acyclic network consisting of ST locations; (2) A set of observa-
tions at each ST location for t = 1 . . .n, where n is the length of the time series; (3) The
relevant aspects of the velocity field are represented by the travel time information from
each sensor to its neighboring sensor at different start time instants; (4) An error thresh-
old Θe; (5) A persistent threshold Θp; and (6) A spatial neighborhood (W-Matrix [24])
which maps the spatial locations to a boolean value.
Find. All Teleconnected Flow Anomaly relationships.

Objective. Minimize the computational costs.

Constraints. The directed acyclic network has a tree structure.

Example. Figure 3a gives an example of an input time series for four sensors where
the travel time is the temporal length when one observation is expected to be made

52 J.M. Kang et al.

between each spatially neighborhood sensor. Figure 3b gives an example output of a
teleconnected flow anomaly consisting of one eFA and one vFA when the error thresh-
old is zero and the persistent threshold is 0.5. The eFA between ST locations s1 and
s2 occurs for time period 1 to 3 and satisfies the persistent threshold, is dominant, and
emerging. There are two vanishing flow anomalies. The first vFA occurs between s2
and s3 for the time period 7 to 9 and the second occurs between s3 and s4 for the time
period of 3-6. These events are vanishing because the degree of change is negative.
Also, they both satisfy the persistent threshold and are dominant. Based on the spatio-
temporal dynamic neighborhood model, when t1 = 1 and the travel time t2 = 2, the
neighbor of s1 is s3. Likewise, at t1 = 2 and t1 = 3, the neighbor of s1 is again s3. The
vFA observed in period 7-9 between s2 and s3 is not linked to the eFA found between
s1 and s2 because the travel time (t2) between s1 and s2 is not part of the neighborhood
at 7-9 when the travel time t1 is between period 1-3.

3 Mining Teleconnected Flow Anomaly Events

In this section, we first introduce our proposed RAD (Relationship Analysis of spatio-
temporal Dynamic neighborhoods) approach. We then explain key design decisions in
the approach and provide its theoretical analysis.

3.1 RAD Approach

This section presents the RAD (Relationship Analysis of spatio-temporal Dynamic
Neighborhoods) approach to discover teleconnected flow anomalies among emerging
and vanishing flow anomalies. The RAD method has three phases, namely, identify flow
anomalies, identify candidate pairs of flow anomaly events, and identify teleconnected
flow anomalies (Figure 4).

Phase I: Identify Flow Anomalies. This phase is concerned with identifying all the
flow anomaly patterns across the entire network that satisfy the dpFA definition (Def-
inition 4). Each pair of ST locations is analyzed based on its spatial neighborhood as
defined by the W-matrix. For each pair of neighboring sensors, flow anomalies are re-
trieved using the SWEET1 method.

Phase II: Identify Candidate Pairs of Flow Anomaly Events. This phase is con-
cerned with identifying pairs of emerging and vanishing flow anomalies that can be
validated in the third phase. Candidate pairs are formed by the cross product of eFAs
and vFAs. A pruning strategy is introduced to reduce the number of candidates.

Phase III: Identify Teleconnected Flow Anomalies. This phase is concerned with
identifying all the teleconnected flow anomalies (Definition 5) based on the dpFAs
found in the first phase. For a pair of emerging and vanishing flow anomalies respec-
tively, their expected and actual travel times are found. The expected travel time is
found based on the pair of time instants ti and tj at the time periods for the emerging

1 To keep this paper self-contained, key ideas of SWEET are discussed in the Related Work
(Section 1). Due to space limitations, readers interested are encouraged to see [8] for details.

Discovering Teleconnected Flow Anomalies 53

Phase I:
Identify Flow
Anomalies

Phase III:
Identify

Teleconnected
Flow Anomalies (NB)

Phase II:
Identify Candidate

Pairs of Flow Anomaly
Events (Pruning)

Fig. 4. RAD Approach

and vanishing flow anomalies respectively. The actual travel time can be found “On the
Fly” or using our proposed spatio-temporal Dynamic Neighborhood. If the expected
travel time is the same as the actual travel time for all time instants in the emerging flow
anomaly, then a teleconnection is found.

The composition of the phases may be executed sequentially or in a pipeline manner.
A sequential approach executes Phase I until completion, followed by the second phase
and then the third phase. By contrast, in the pipelined approach, Phase II is executed
after a few eFAs and vFAs are determined in Phase I.

The rest of the section describes the design decisions applied in Phase II and Phase
III (Due to space limitations, we omit significant design decisions made for Phase I;
these are detailed in our previous work [8]). We begin with Phase III because it is easier
to describe our pruning strategy for Phase II after defining our “On the Fly” and spatio-
temporal Dynamic Neighborhood methods.

On The Fly. The “On the Fly” design decision identifies the travel time between the
spatio-temporal locations between an emerging FA and a vanishing FA by traversing the
path between the two locations. For example, Figure 3b gives three examples of dpFAs
found between ST locations: (1) Between s1 and s2 for period 1 to 3, (2) Between s2
and s3 for period 7-9, and (3) Between s3 and s4 for period 3-6. After all the dpFAs
have been found, the teleconnected flow anomalies are discovered.

In this example, there is one emerging flow anomaly (eFA) between s1 and s2 and the
other two are vanishing flow anomalies (vFAs). There are two possible pairs of dpFAs
that may be teleconnected and will need to be analyzed. First, the eFA found between
s1 and s2 and the vFA found between s2 and s3 are analyzed by checking their pairs
of time instants. In the eFA, the expected travel time from time instant 1 (t=1) and time
instant 7 (t=7) in vFA is found by taking its difference, which is 6. The actual travel time
is found by traversing the path from s1 to s2, shown in the spatial graph in Figure 3,
which is a subset of the spatial graph in Figure 2a, starting at (t=1) which is one. This
on-the-fly computation may be based on a general path computation algorithm such as
Dijkstra’s [25] or A∗ [26], or a custom algorithm for trees. We used a custom algorithm
for trees which has a linear (i.e., number of nodes and edges) complexity. For this eFA
and a vFA pair, not every time instant in the eFA is a neighbor of the vFA and there is no
teleconnected relationship. Then, the next eFA (between s1 and s2) and vFA (between
s3 and s4) pair is evaluated. Here, a check of every time instant in the eFA with the vFA
reveals a teleconnection relationship. For example, the expected travel time between the
eFA and the vFA at their respective first time instant is 3 − 1 = 2. Also, the travel time
from s1 to s3 starting at 1 is also 2. Thus, each neighbor in eFA is a neighbor of at least
one time instant of the vFA resulting in a teleconnection.

54 J.M. Kang et al.

Algorithm 1. Generation of the Spatio-Temporal Dynamic Neighborhood (DN)
Inputs:

– The travel time at each ST location, TT [M][N]

Outputs:
– Spatio-Temporal Dynamic Neighborhood (DN)

Algorithm
1: DN[N][N][M] ← 0
2: for each pair of ST locations, si and sj where i, j=1 to M and a directed path exists do
3: for each time instant, tk = 1 to N do
4: actualTT = 0
5: for each ST location sk from si to sj at tk do
6: actualTT += TT[sk][tk+actualTT]
7: end for
8: DN[si][sk][tk] = actualTT
9: end for

10: end for
11: return DN

Dynamic Neighborhood. The Dynamic Neighborhood based design decision uses
a pre-computed spatio-temporal Dynamic Neighborhood to identify the actual travel
times between the emerging and vanishing flow anomalies (denoted as RAD-index).
Unlike the RAD-fly approach, the actual travel time can be determined using the Dy-
namic Neighborhood index for the RAD-index approach. If the expected and actual
travel times are equal for all time instants in the emerging flow anomaly, then a telecon-
nection has been found.

Algorithm 1. gives the pseudocode for the construction of the spatio-temporal dy-
namic neighborhood (stDN). The stDN approach has one input consisting of the travel
time (TT) required between each spatial neighbor of each node at every time instant.
The travel time is generated based on the velocity field within the network. The output
for Algorithm 1. is the spatio-temporal dynamic neighborhood itself.

The spatio-temporal dynamic neighborhood (DN) consists of three dimensions: (1) the
starting ST location, (2) the ending ST locations that a particle may arrive at, and (3) the
starting time instant. Initially, each element in the DN matrix is set to zero (Line 1 of
Algorithm 1.). Each pair of ST locations (si and sj) is analyzed where a directed path
exists between these two locations (Line 2 of Algorithm 1.). At each time instant tk for
the entire time series, the path between si and sj is traversed to calculate the total travel
time (Line 3-6 of Algorithm 1.). The total travel time between si and sj at time instant
tk can then be stored in the DN matrix (Line 8 of Algorithm 1.). The process continues
until all time instants are examined for each pair of ST locations and the DN is returned
(Line 11 of Algorithm 1.).

Table 1 gives the execution trace of the construction of the spatio-temporal Dynamic
Neighborhood from the example in Figure 3. The first three rows in the table give the
input travel times for each edge, s1 to s2, s2 to s3, and s3 to s4. First, the pair s1 and s3
is analyzed to get the total travel times starting at st1 and arriving at s3. The travel times
are obtained at each edge from the start to its destination. For example, time instant 1,

Discovering Teleconnected Flow Anomalies 55

Table 1. Execution Trace for the Construction of the spatio-temporal Dynamic Neighborhood

Time Instants
Edge 1 2 3 4 5 6 7 8 9 10

s1 → s2 1 1 2 1 1 1 1 1 1 1
s2 → s3 1 1 1 1 1 1 1 1 1 1
s3 → s4 1 1 1 1 1 1 1 1 1 1
s1 → s3 2 2 3 2 2 2 2 2 2 -
s1 → s4 3 3 4 3 3 3 3 3 - -
s2 → s4 2 2 2 2 2 2 2 2 2 -

starting at s1 has a travel time of 1 to s2. Then, at time instant 2 of s2, the travel time is
again 1. Thus, the total travel time starting at time instant 1 from s1 to s3 is 2. The travel
times may vary across the times series and at multiple edges. For example, the travel
time from s1 to s2 at time instant 3 is 2. The travel time from s2 to s3 at time instant 5
is 1. Thus, the travel time from s1 to s3 starting at time instant 3 has a total travel time
of 3. The dashes in this table represent unknown information because the travel time is
not available during part of the path. This process is continued for all node pairs and all
time instant pairs until all the travel times are found as shown in Table 1.

We acknowledge that the storage cost may be an issue when the number of time
instants grows, there is no periodicity, and travel time fluctuates greatly over time. We
plan to address this in more detail in future work. Our current source of real data, a
sensor setup at Shingle Creek, MN, does not require modeling of a large number of
possibilities for travel time between adjacent sensor pair s due to periodicity, low vari-
ation in elevation, rainfall amount, and snow melt-rates.

Pruning. A key pruning design decision can be applied to the second phase when the
candidate pairs are identified. In this phase, we can prune any vanishing flow anomalies
(vFA) where each vFA is not a neighbor of the first time instant (sTime) of an emerging
flow anomaly. The pair of ST locations are analyzed for a single path in a tree network
starting at the root node. As dpFAs are found, for any two emerging and vanishing flow
anomalies, the expected travel time can be determined based on their time periods and
the actual travel time can be found “On the Fly” or using the spatio-temporal dynamic
neighborhood. If there exists at least one emerging flow anomaly whose first time instant
is a neighbor to a vanishing, then this vFA is added to the dpFAs. All other emerging
flow anomalies are also placed in the dpFAs. In future, we plan to explore other pruning
methods such as those found on spatial relationships (e.g., ancestor-descendant) among
sensors.

For example, Figure 3 gives the input and output used in this example and Table 1
contains the travel times at all node and time instant pairs. In phase 1, the first pair of
ST locations (s1 and s2) is analyzed for dpFAs. The SWEET technique discovers one
emerging dpFA during the period of 1 to 3. The second pair of ST locations (s2 and
s3) is analyzed and a vanishing dpFA is discovered. In the second phase, this vFA is
checked for a teleconnection with the first time instant of any eFA. Examining the eFA
found previously within this vFA reveals that the total travel time from s1 to s2 starting
at time instant 1 is 1 as also shown in Table 1. This vFA cannot be a valid telFA with

56 J.M. Kang et al.

any eFAs found so far and nor can any other eFA found in the dataset be linked to this
vFA. Thus, this vFA is not added as a dpFA. Finally, the last vanishing dpFA found
from period 3-6 is analyzed. If we examine this vFA with the original eFA discovered
earlier we find that the total travel time from s1 to s3 at time instant 1 is 3 and that the
expected travel time between the eFA and vFA pair is also 3 at the first time instant.
Thus, this vFA is a possible telFA and is considered for evaluation.

Lemma 1. The pruning based on the first time instants is a true filter, i.e., it does not
eliminate any teleconnected flow anomalies.

Proof. In the second phase of RAD, all dpFAs are initially found using SWEET [27]
and then the vanishing flow anomalies are pruned if the first time instant of an emerging
flow anomaly is not its neighbor and violates the telFA definition (Definition 5). Thus,
no telFA patterns will be missed in the second phase for both approaches. In the third
phase of RAD, only the pairs of emerging and vanishing flow anomalies that satisfy the
telFA definition will be found. Thus, no telFA patterns will be missed in the third phase.

3.2 Theoretical Analysis

In this section, we present the theoretical analysis of the RAD-fly and RAD-index meth-
ods and prove that: (1) both are correct, i.e., each pattern found is teleconnected and
satisfies the telFA definition, and (2) both are complete, i.e., all patterns satisfying the
telFA definition are found.

Theorem 1. The design decisions “On the Fly” and DN-based are correct, i.e. each
pattern < p, q > found by RAD satisfies the telFA definition.

Proof. The pair p and q is a teleconnected flow anomaly if both satisfy the following
conditions: each satisfies the dpFA definition (Definition 4) and the relationship be-
tween p and q satisfies the telFA definition (Definition 5). The dpFA patterns p and q
are found in the first phase using SWEET, a method previously proved correct in [27].
The pattern is then identified as either emerging or vanishing (Phase II). Both p and q
are neighbors if every time instant in p is a neighbor of at least one time instant in q. For
each pair of time instants, the actual travel time is found either “On the Fly” (by travers-
ing the path between p and q) or by using the spatio-temporal DN model to identify all
the travel times for all paths in the network. A teleconected flow anomaly is identified
in the final phase when each time instant in p is found to be a neighbor of q.

Theorem 2. The design decisions “On the Fly” and DN-based are complete, i.e. all
teleconnected FA patterns are found by RAD.

Proof. In the first phase of both methods, all dpFAs are found using the SWEET ap-
proach [27]. In the second phase, all emerging and vanishing flow anomalies are found.
In the third phase for both methods, only the pair of emerging and vanishing flow
anomalies that satisfy the telFA definition will be found. Thus, no telFA patterns will
be missed in the second phase for both approaches.

Discovering Teleconnected Flow Anomalies 57

4 Experimental Evaluation

In this section, we present our experimental evaluations of our proposed approaches
and the workload parameters for our proposed design decisions. We performed our
experiments based on the number of nodes in the network and time instants in the
series.

Experimental Setup. We evaluated the RAD approach using the “On-the-Fly” de-
sign decision with no pruning (RAD-fly), the DN-based design decision with no prun-
ing (RAD-index), and the DN-based design decision with pruning (RAD-index(p)).
Figure 5 shows the experimental setup. The synthetic generator takes five inputs: (1)
the number of ST locations, (2) the length of the time series, (3) the travel time at each
node, (4) the percent of tFAs in each time series, and (5) the error threshold to create the
synthetic datasets (see Section 4.1). RAD-fly, RAD-index and RAD-index with pruning
were analyzed using a generated dataset and a real dataset (measurement of Turbidity).
All approaches were compared in terms of execution time and the number of dpFAs
found. Execution time was measured based on the system time call in Java before the
first phase was executed till the after the third phase was completed. Number of dpFAs
was based on the number of flow anomaly patterns found after the second phase of the
RAD method. All experiments were performed on an Intel P4 2 GHz 1.2 GB RAM.

4.1 Experiments Using Synthetic Data

The synthetic dataset was generated based on the following parameters: (1) the number
of ST locations in the network, (2) the size of the time series for each ST location, (3)
the percent number of transient flow anomalies across the entire network, (4) the travel
time for each ST location, and (5) the error threshold, Θe. Based on these parameters,
the generator created a single time series of equal length that was randomly generated
and used for each station. The observations in a downstream ST location location was
shifted by its specified travel time based on their upstream neighbor. The location of
each tFA was chosen randomly and ensured that there will be exactly the percent num-
ber of anomalies specified in the input. For experiments to measure the effect on the
number of ST locations, the parameters were set as follows: (1) the size of ST locations
from 20 to 100, (2) a length of 1000 time instants, (3) TT=10, (4) 30% tFAs, and Θe =
10. For the experiments to measuure the effect on the size of the time series, the param-
eters were set as follows: (1) 5 ST locations, (2) a length of 6000 to 30000 time instants,

Synthetic
Generator

Stream
Size

Travel
Time

% Number
tFAs Θe

Synthetic
Dataset

Real
Dataset

RAD-fly RAD-index
Θe

Θp
Analysis

Number
of ST

locations

Fig. 5. Experimental Setup

58 J.M. Kang et al.

(3) TT=10, (4) 10% tFAs, and Θe = 10. The parameters used in this experiment were
intended to overlap with those of the real dataset experiments.

Comparison of Phase II and III design decisions over the ST locations. Figure 6
gives the results for all three methods; RAD-fly, RAD-index, and RAD-index(p) in
terms of the execution time and the number of dpFAs generated after Phase I as the num-
ber of ST locations increases. Figure 6a gives the execution time of all three methods.
RAD-fly performs more poorly than RAD-index due to the need to compute the travel
time between each time instant in the eFAs and vFAs. By contrast, RAD-index uses the
spatio-temporal Dynamic Neighborhood (stDN) model to identify the neighborhoods
efficiently. The RAD-index(p) method results in further reduction in execution time by
removing the vanishing flow anomalies that do not have an emerging pattern, resulting
in fewer dpFAs to analyze in the second phase.

Figure 6b gives the number of dpFAs found after the second phase of each method.
RAD-fly and RAD-index give the highest number of dpFAs because there are no filters
in the first phase, causing an increase in the number of dpFAs as the number of ST loca-
tions increase. RAD-index(p) show a significant reduction in the number of dpFAs after
the first phase. This is due to the removal of invalid vanishing flow anomalies whose
time instants are not neighbors of the first time instant of emerging flow anomalies
found previously.

 0

 200

 400

 600

 800

 1000

10080604020

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
)

Number of ST locations

RAD-fly
RAD-index

RAD-index(p)

(a) Effect of Design Decisions, Phase II and III

 0

 2000

 4000

 6000

 8000

 10000

10080604020

N
u
m
b
e
r

o
f

d
p
F
A
s

Number of ST locations

RAD-fly, RAD-index
RAD-index(p)

(b) Effect of Pruning (Phase II choice)

Fig. 6. Phase II and III design decisions over the number of ST locations using synthetic data

Comparison of Phase II and III design decisions over the time instants. Figure 7
gives the results for RAD-fly, RAD-index, and RAD-index(p) in terms of the execution
time and the number of dpFAs generated after Phase II as the number of time instants
increases for each ST location. Figure 7a shows that RAD-fly and RAD-index perform
very similarly because there are fewer ST locations in the dataset. However, RAD-
index(p) outperforms both methods because the pruned vanishing flow anomalies result
in fewer combinations to compare against in the second phase. Figure 7b gives the
number of dpFAs found after Phase I as the number of time instants increases. RAD-
index(p) shows fewer dpFAs than the approaches without pruning.

Discovering Teleconnected Flow Anomalies 59

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

300002400018000120006000

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
)

Number of Time Instants

RAD-fly
RAD-index

RAD-index(p)

(a) Effect of Design Decisions, Phase II and III

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

300002400018000120006000

N
u
m
b
e
r

o
f

d
p
F
A
s

Number of Time Instants

RAD-fly, RAD-index
RAD-index(p)

(b) Effect of Pruning (Phase II choice)

Fig. 7. Phase II and III design decisions over the number of time instants using synthetic data

4.2 Experiments Using Real Data

The real datasets were obtained from a study site in Shingle Creek, MN where three
sensors were placed along a river. The measurement used was turbidity (approximately
30,000 time instants at each sensor). All errors due to sensing problems were removed
from the data and the travel time was given. Since the real dataset has only 3 sensors,
experiments were performed based on the number of time instants.

Comparison of Phase II and III design decisions the time instants. Figure 8 gives
the execution time and the number of dpFAs for the real dataset using turbidity for
RAD-fly, RAD-index, and RAD-index(p) as the number of time instants increase. Fig-
ure 8a gives the execution time for all three proposed methods. As shown in Figure 7a,
RAD-index with pruning again performs the fastest. RAD-fly and RAD-index exhibit
little difference in execution time, presumably because there were only three ST loca-
tions. Figure 7b shows that RAD-index with pruning produces far fewer dpFAs than
the methods without pruning. For both sets of results, RAD-index(p) is more efficient
because of the pruning property to eliminate the vanishing flow anomalies that do not

 0

 20

 40

 60

 80

 100

300002400018000120006000

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
)

Number of Time Instants

RAD-fly
RAD-index

RAD-index(p)

(a) Effect of Design Decisions, Phase II and III

 0

 50

 100

 150

 200

 250

 300

 350

300002400018000120006000

N
u
m
b
e
r

o
f

d
p
F
A
s

Number of Time Instants

RAD-fly, RAD-index
RAD-index(p)

(b) Effect of Pruning (Phase II choice)

Fig. 8. Phase II and III design decisions over the number of time instants using real data

60 J.M. Kang et al.

have an emerging neighbor based on the spatio-temporal dynamic neighborhood. It is
important to note that the up and down pattern exhibited by RAD-index(p) in Figure 8b
is the result of the small flow anomalies collapsing into larger flow anomalies as the
time series increase, resulting in various numbers of flow anomalies being pruned.

5 Conclusion and Future Work

Conclusion. We introduced a novel problem of discovering teleconnected flow anoma-
lies. This problem a number of important applications for environmental monitoring,
video surveillance, and transportation systems. Several new concepts and interest mea-
sures were introduced. A RAD approach was proposed that uses novel design decisions
of “On the Fly”, spatio-temporal Dynamic neighborhoods based, and a pruning strat-
egy. The proof of correctness and completeness for each proposed method was shown.
Experimental evaluation was performed on both synthetic and real datasets.

Future Work. The teleconnected flow anomaly problem faces further challenges when
the network allows for multiple islands. For example, simply adding one island to a tree
network may create two additional paths, two islands may create different paths between
nodes, and so, leading a possible exponential number of time paths between nodes. Thus,
future work will investigate the discovery of teleconnected flow anomalies within more
complex networks. Further investigation will also be needed to explore alternatives for
managing the storage of the spatio-temporal dynamic neighborhoods. Finally, a gener-
alized model will be explored to handle relationships between arbitrary events.

Acknowledgments. This work supported by NSF IGERT, USDOD, NSF (EAR
0607138) and USGS/ National Institutes for Water Resources. We would like to thank
Kim Koffolt for her comments.

References

1. Pastor, R.: El niño climate pattern forms in pacific ocean (2006),
http://www.usatoday.com/weather/climate/
2006-09-13-el-nino x.htm

2. WFUNA: Millenium project: Global challenges facing humanity (2007)
3. Mason, M.: World’s highest drug levels entering india stream, USA today (2009),

http://www.usatoday.com/tech/science/environment/
2009-01-26-drug-india-stream n.htm

4. Saulny, S.: Fish-killing virus spreading in the great lakes, New York Times (2007)
5. Bruckner, M.: The gulf of mexico dead zone, montana state university (2008),

http://serc.carleton.edu/microbelife/topics/deadzone/
6. Matthews, D.A., Effler, S.W., Driscoll, C.T., O’Donnell, S.M., Matthews, C.M.: Elec-

tron budgets for the hypolimnion of a recovering urban lake, 1989-2004. Limnology and
Oceanography, American Society of Limnology and Oceanography 53(2), 743–759 (2008)

7. Hyer, K.E., Hornberger, G.M., Herman, J.S.: Processes controlling the episodic streamwa-
ter transport of atrazine and other agrichemicals in the agricultural watershed. Journal of
Hydrology 254, 47–66 (2001)

8. Kang, J.M., Shekhar, S., Wennen, C., Novak, P.: Discovering Flow Anomalies: A SWEET
Approach. In: IEEE International Conference on Data Mining, pp. 851–856 (2008)

http://www.usatoday.com/weather/climate/2006-09-13-el-nino_x.htm
http://www.usatoday.com/weather/climate/2006-09-13-el-nino_x.htm
http://www.usatoday.com/tech/science/environment/2009-01-26-drug-india-stream_n.htm
http://www.usatoday.com/tech/science/environment/2009-01-26-drug-india-stream_n.htm
http://serc.carleton.edu/microbelife/topics/deadzone/

Discovering Teleconnected Flow Anomalies 61

9. Amir, A., Apostolico, A., Lewenstein, M.: Inverse pattern matching. Journal of Algo-
rithms 24(2), 325–339 (1997)

10. Lee, H., Ng, R.T., Shim, K.: Estimating Rarity and Similarity over Data Stream Windows.
In: VLDB, pp. 195–206 (2007)

11. Berndt, D.J., Clifford, J.: Using Dynamic Time Warping to Find Patterns in Time Series. In:
KDD 1994: AAAI Workshop on Knowledge Discovery in Databases, pp. 359–370 (1994)

12. Chen, A., Tang, C., Yuan, C.-a., Peng, J., Hu, J.: Mining Correlations Between Multi-streams
Based on Haar Wavelet. In: Grumbach, S., Sui, L., Vianu, V. (eds.) ASIAN 2005, vol. 3818,
pp. 270–271. Springer, Heidelberg (2005)

13. Sayal, M.: Detecting time correlations in time-series data streams. Technical Report HPL-
2004-103, Hewlett-Packard Company (2004)

14. Bulut, A., Singh, A.K.: A unified framework for monitoring data streams in real time. In:
IEEE ICDE, pp. 44–75 (2005)

15. Datar, M., Muthukrishnan, S.: Estimating Rarity and Similarity over Data Stream Windows.
In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 323–334. Springer,
Heidelberg (2002)

16. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal
data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005, vol. 3633, pp.
364–381. Springer, Heidelberg (2005)

17. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC - Modeling and Monitor-
ing Cluster Transitions. In: ACM SIGKDD (2006)

18. DeGroot, M., Scheverish, M.J.: Probability and Statistics, 3rd edn. Addison Wesley, Reading
(2002)

19. Knorr, E., Ng, R.: A Unified Notion of Outliers. In: ACM KDD (1997)
20. Shekhar, S., Lu, C.T., Zhang, P.: A unified approach to spatial outliers detection. GeoInfor-

matica 7(2), 139–166 (2003)
21. Li, X., Hodgson, M.E.: Vector field data model and operations. GIScience and Remote Sens-

ing 41(1), 1–24 (2004)
22. Zhang, P., Huang, Y., Shekhar, S., Kumar, V.: Exploiting Spatial Autocorrelation to Effi-

ciently Process Correlation-Based Similarity Queries. In: Hadzilacos, T., Manolopoulos, Y.,
Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, pp. 25–27. Springer, Hei-
delberg (2003)

23. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-
effective Outbreak Detection in Networks. In: ACM SIGKDD (2007)

24. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall, Englewood Cliffs (2002)
25. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-

matik 41 (1959),
www2.informatik.hu--berlin.de/alkox/lehre/lvws0809/verkehr/
dijkstra.pdf

26. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of min-
imum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2) (1968)

27. Kang, J.M., Shekhar, S., Wennen, C., Novak, P.: Discovering Flow Anomalies: A SWEET
Approach. University of Minnesota, MN, Technical Report, 09-006 (2009)

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 62–79, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Continuous Spatial Authentication

Stavros Papadopoulos1, Yin Yang1, Spiridon Bakiras2, and Dimitris Papadias1

1 Dept. of Computer Science and Engineering,
Hong Kong University of Science and Technology
{stavros,yini,dimitris}@cse.ust.hk

2 Dept. of Mathematics and Computer Science,
John Jay College, City University of New York

sbakiras@jjay.cuny.edu

Abstract. Recent advances in wireless communications and positioning devices
have generated a tremendous amount of interest in the continuous monitoring of
spatial queries. However, such applications can incur a heavy burden on the
data owner (DO), due to very frequent location updates. Database outsourcing
is a viable solution, whereby the DO delegates its database functionality to a
service provider (SP) that has the infrastructure and resources to handle the
high workload. In this framework, authenticated query processing enables the
clients to verify the correctness of the query results that are returned by the SP.
In addition to correctness, the dynamic nature of the monitored data requires the
provision for temporal completeness, i.e., the clients must be able to verify that
there are no missing results in between data updates. This paper constitutes the
first work that deals with the authentication of continuous spatial queries, focus-
ing on ranges. We first introduce a baseline solution (BSL) that achieves cor-
rectness and temporal completeness, but incurs false transmissions; that is, the
SP has to notify clients whenever there is a data update, even if it does not af-
fect their results. Then, we propose CSA, a mechanism that minimizes the proc-
essing and transmission overhead through an elaborate indexing scheme and a
virtual caching mechanism. Finally, we derive analytical models to optimize the
performance of our methods, and evaluate their effectiveness through extensive
experiments.

1 Introduction

In database outsourcing [9], a data owner (DO) delegates its DBMS tasks to a service
provider (SP) that has the necessary resources to perform advanced query processing.
The SP is then responsible for processing client queries on behalf of the DO. Authen-
ticated query processing allows the SP to prove to the client that (i) the results are
authentic (i.e., originated from the DO), (ii) sound (i.e., no result object is fictitious or
modified), and (iii) complete (i.e., all objects satisfying the query are present). We
refer to these three terms collectively as correctness. Figure 1 illustrates the general
framework, commonly used in the outsourcing literature. Initially, the DO obtains,
through a trusted key distribution center, a private and a public key [20]. The private
key is known only to the DO, while the public key is accessible by all the clients. The
DO signs the data with its private key, generating one (or more) signatures. Then, it

 Continuous Spatial Authentication 63

sends the signature(s) and the data to the SP, which constructs an authenticated data
structure (ADS) for efficient query processing. The ADS is essentially an index that
contains additional authentication information (typically, hash digests and signatures).
When the SP receives a query from a client, it generates a verification object (VO) by
accessing the ADS. The VO contains the result set along with the necessary authenti-
cation information. The SP sends the VO to the client, which can verify the results by
matching the VO against the public key of the DO.

DO (ADS + private key)

data + DO’s signature

SP (ADS)

query

Client (DO’s public key)
VO+ DO’s signature

Fig. 1. Database outsourcing framework

While there is extensive literature on authenticated processing in conventional da-
tabases, there is very limited work on outsourced data in the presence of frequent
updates, especially for spatio-temporal databases. In this paper, we focus on authenti-
cated processing of continuous spatial ranges, motivated by advances in wireless
communications and GPS-enabled devices (e.g., RFID chips, sensor networks, navi-
gation systems, etc.). Consider, for instance, a SP that receives locations of shipments
around the globe (using RFID technology). A company (i.e., a client) that wishes to
track its products through the SP registers long-running queries that monitor certain
locations of interest. Whenever an update (arrival or departure) influences a query, the
corresponding client is immediately informed. In addition to the timely delivery of
query results, it is crucial for the subscribers of such a system to be able to verify their
correctness.

The dynamic nature of the data in the above scenario, and the potentially large
number of long-running queries, pose several technical challenges. First, a system for
continuous authentication on dynamic data must accommodate very fast updates and
also support efficient query processing. Second, it must provide effective mechanisms
for minimizing the communication cost with the clients, and their verification effort.
Third, in addition to correctness, the clients must be able to verify the temporal com-
pleteness of their results, i.e., confirm that they receive all the updates that affect their
queries.

This paper constitutes the first work on continuous authentication of dynamic spa-
tial data. We first introduce a baseline solution, called BSL, that achieves correctness
and temporal completeness, but incurs false transmissions; that is, the SP has to notify
clients whenever there is a data update, even if it does not affect their results. Then,
we propose CSA (for continuous spatial authentication), a mechanism that minimizes
the processing and transmission overhead through an intricate indexing scheme and a
virtual caching mechanism. Third, we derive accurate models for estimating the size
of the VO, which is the most important factor that determines the performance of an
outsourcing system. We apply these models to optimize CSA. Finally, we empirically
show that CSA outperforms BSL significantly in all aspects and is, therefore, applicable
in highly dynamic environments. The remainder of the paper is organized as follows.

64 S. Papadopoulos et al.

Section 2 reviews existing ADSs for database outsourcing. Section 3 describes BSL,
while Section 4 proposes the CSA technique. Section 5 presents our experimental
results and Section 6 concludes the paper.

2 Related Work

The Merkle Hash Tree (MH-Tree) [12] is a main-memory binary tree that provides
efficient authentication of equality queries on single-dimensional data. It assumes that
the database is sorted on the query attribute and, at the leaf level, every node stores
the digest of the binary representation of the record. The digests are computed with a
one-way, collision-resistant hash function (e.g., SHA1 [15]). The tree is built bottom-
up and internal nodes store the digest of the concatenation of the digests of their chil-
dren. After the tree is constructed, the DO signs the digest stored in the root of the tree
and sends it, along with the data, to the SP. During query processing, the SP traverses
the tree and, apart from the requested record, it inserts into the VO the digest stored in
the sibling of every visited node. Having the VO, the DO’s signature and the DO’s
public key, the client can verify the authenticity of the result by re-constructing the
digest of the root. Devanbu et al. [5] modify the query processing mechanism of the
MH-Tree for answering one-dimensional range queries, while satisfying soundness
and completeness. They also extend their methods to multiple dimensions, combining
the MH-Tree with the Range Search Tree [2].

The Verifiable B-Tree (VB-Tree) [18] is the first signature-based approach that
augments a standard B+-Tree with signed digests. However, this method only guaran-
tees the correctness of the results, but not the completeness. To address this problem,
Pang et al. [17] and Narasimha and Tsudik [16] introduce a technique called signature
chaining. They assume that the dataset is sorted on one attribute, and every record is
associated with one signature. This signature combines hashed information about the
record, and both its immediate successor and predecessor in the sorted order. In addi-
tion, the DO inserts two special (boundary) records at the two ends of the sorted or-
der. To assure integrity for a range query, the constructed VO contains (i) the result
set, (ii) the signature for each record in the result set, and (iii) the boundary records.

The Merkle B-Tree (MB-Tree) [10] extends the MH-Tree to external memory (the
node fanout depends on the disk page size). Every node has a digest, which is com-
puted by applying the hash function to the concatenation of all its children's digests.
The DO then signs the hash of the concatenation of the digests of the entries con-
tained in the root node of the tree. Range query processing is performed by two top-
down traversals (one for each boundary record). At each visited node, the digests of
the nodes that do not overlap the query range are inserted into the VO (along with the
result set and the signed root).

In the context of multi-dimensional databases, which is closely related to this work,
there have been very few ADSs proposed in the literature. First, Cheng et al. [3] in-
troduce two authenticated structures, namely the Verifiable KD-Tree (VKD-Tree) and
the Verifiable R-Tree (VR-Tree). Both structures are modified versions of the stan-
dard KD-Tree and R-Tree, respectively. Specifically, in every node of the tree, the
points and/or MBRs (Minimum Bounding Rectangles) contained therein are sorted
according to their x-coordinate, and a signature chain is generated. Range queries are

 Continuous Spatial Authentication 65

processed by following the signature chain at every node that overlaps the query
range. However, these structures incur large space and query processing overhead for
the SP, high initial construction cost for the DO, and considerable verification burden
for the clients. Furthermore, they lack algorithms for insertions and deletions (updates
are not discussed in [3]), which render them inapplicable to dynamic environments.

Currently, the most efficient ADS for multi-dimensional databases is the Merkle
 R-Tree (MR-Tree) [21], which combines the idea of the MB-Tree with the structure
of the R*-tree. In particular, every leaf node is associated with a digest that is com-
puted on the concatenation of the binary representation of all objects in the node.
Internal nodes are assigned a digest that summarizes the child nodes' MBRs and di-
gests. Each node digest is stored at the corresponding parent entry. The root digest is
signed by the DO. Range queries are handled by a depth-first traversal of the tree. The
resulting VO contains (i) all the points in every leaf node visited, (ii) the MBRs and
digests of all the pruned nodes, and (iii) the DO’s signature. Nevertheless, the MR-
Tree cannot support very fast updates and is, thus, not suitable for our problem.

Also related to our work are two recent solutions that authenticate continuous
range queries on one-dimensional data streams. First, Li et al. [11] deal with authenti-
cation in sliding window streams, i.e., a tuple expires w time units after its arrival.
Their method segments the time into slots, and builds a separate MH-Tree on the
tuples that arrived in each slot. Its goal is to reduce the communication cost at the
expense of delayed result updates. Papadopoulos et al. [19] introduce CADS, which
also deals with streaming environments, but focuses on real-time reporting. CADS
combines space (i.e., domain) partitioning with MH-Trees for effective indexing.

Our work extends the general methodology of [19] for continuous spatial ranges.
Specifically, we integrate space partitioning, MH-Trees and Hilbert curves for indexing
highly dynamic spatial data. In addition to data structures, we develop a comprehensive
set of algorithms for the initial computation and the continuous monitoring of the re-
sults. Finally, we propose accurate models for determining the best space partitioning
granularity, a factor that significantly affects the scheme effectiveness in our setting.

3 Baseline Solution

Since there is no spatial ADS that can handle frequent location updates, in this section
we devise a baseline solution (BSL). Each point1 p is represented by a tuple of the
form <p.id, p.x, p.y>, where p.id is a unique identifier and (p.x, p.y) are p’s co-
ordinates. BSL maps all the 2D points into the 1D domain utilizing a space-filling
curve. We employ the Hilbert curve because it preserves spatial locality and leads to
low query processing cost [13]. Let D:[Lx, Ly, Ux, Uy] be a square dataspace, where
(Lx, Ly) and (Ux, Uy) are the lower left and upper right corners. D is partitioned in 22·o
regular cells, where o is an integer called the order (or resolution). Figure 2a depicts a
Hilbert curve with o=3. The cell at the lower left corner has Hilbert value 0, and the
values of the remaining cells follow the Hilbert curve (for simplicity, we only include
the values of selected cells). Each point p is associated with the Hilbert value p.hv of
the cell that covers it, e.g., p1.hv=2, p2.hv=7, p3.hv=8, etc.

1 We use terms point and object interchangeably.

66 S. Papadopoulos et al.

The DO indexes the points with a 2-3 MB-Tree using their Hilbert values as
search keys. The 2-3 MB-Tree is similar to a main memory MB-Tree, where each
node may have either 2 or 3 entries. An insertion in a full node causes it to split in two
nodes, each containing 2 entries. On the other hand, a deletion from a node with 2
entries leads to an underflow. Similarly to B+-Trees, the node first tries to borrow an
entry from a full sibling node. If this is not possible, the node is merged with a sib-
ling. To support multiple updates at the same timestamp, we do not alter any digest,
but temporarily mark the visited paths. Then, the marked paths are revisited and the
digests are computed bottom-up. In this way, the (expensive) hash computations are
performed only once.

42

q

p14
p13

p11
p12

p4

A F

ED

Bp1

p7 p6

p5

p9 p10

p8

p15p2

p3
C

0

1 2

3 4 5

6

9

10 5253

54

5657

58 59

7

8

27

2829

40

41

4851

63

55

2 7 8 9 27 28 29 40

41 42 48 51 55 57 63

2 8 28

41 51 57

2 41

AB : [2,7] CD : [8,27]

EF : [51,63]

e1 e2

e3 e4 e5

e6 e7

p6

e8

p1 p2 p3 p4 p7 p8

p9 p10 p11 p12 p13 p14 p15

Included in the VO

L.head = AB

L.head = CD

L.head = EF'
p5

2-3 MB-Tree

L.head = ∅

'

' '

'

'
(a) Hilbert curve (o=3) (b) 2-3 MB-Tree in BSL

Fig. 2. Indexing and query processing in BSL

Each leaf entry p in the 2-3 MB-Tree has the form <p.id, p.x, p.y, p.hv>. An inter-
mediate entry e is a triplet (e.h, e.k, e.ptr), where e.k is the Hilbert value of the first
point in the subtree of e, e.ptr is a pointer to the corresponding child node and e.h is a
digest computed on the concatenation of the digests of the entries in e.ptr. Figure 2b
contains the tree for the points of Figure 2a, showing only the Hilbert value of each
entry. The DO computes a signature on Hroot, D and o, i.e., it performs sign(h(Hroot | Lx
| Ux | Ly | Uy | o)), where h is the hash function (in our work we employ SHA1 [15])
and ‘|’ denotes concatenation. As shown later, D and o are necessary during the veri-
fication process. Then, it sends the tree, D, o and the signature to the SP. Upon receiv-
ing a 2D window query q, the SP finds the parts of the Hilbert curve corresponding to
cells that intersect with q. Given the shaded query in Figure 2, (i) poly-line AB corre-
sponds to cells 5 and 6, (ii) CD to 9 and 10, and (iii) EF to cells 52-59. The union of
points in these cells constitutes the result of q; i.e., the result is {}∪{p4}∪{p13, p14}
for points in AB, CD, EF, respectively. Note that the result may contain some false
positives, e.g., p13, that fall out of the query window but reside in an intersecting cell.
Such points are filtered out by the client.

Each poly-line corresponds to a 1D range in the 2-3 MB-Tree. One solution would
be for the SP to process these ranges one by one. This involves an expansion of each
range to include boundary records. For instance, AB is extended to AB':[2,7] so that it
covers p1 and p2. Similarly, CD and EF are extended to CD':[8,27] and EF':[51,63] to
include boundary tuples p3, p5 and p12, p15, respectively. Finally, the SP should con-
struct a separate VO for each of the expanded ranges. However, executing the 1D
ranges individually and generating separate VOs would be inefficient, because (i) tree

 Continuous Spatial Authentication 67

nodes may be visited multiple times, and (ii) VO components (i.e., digests and/or
boundary points) may either appear in several VOs, or they may not be necessary as
they can be reconstructed from information contained in other VOs. To avoid these
problems, we integrate the execution of all sub-queries in one traversal that produces
a single VO. The generated VO has no redundancy and can be verified efficiently by a
linear scan. The detailed algorithm, called MultiRangeMB, is shown in Figure 3. Note
that the algorithm utilizes special tokens [and] that indicate the scope of a node.

MultiRangeMB (MBNode n, List L)
1. Append [to the VO
2. For each entry e in n
3. If n is an intermediate node
4. if e intersects L.head // e may contain results
5. MultiRangeMB(e.ptr, L) // e.ptr points to a child node
6. Else append e.h to the VO
7. Else // n is a leaf node and e is a point
8. Append <e.id, e.x, e.y> to the VO
9. If e is the last entry of n AND e.hv is ≥ the upper bound of L.head
10. Evict L.head from L
11. Append] to the VO

Fig. 3. Algorithm MultiRangeMB of BSL

MultiRangeMB takes as arguments the root of the 2-3 MB-Tree, and a list L that
stores the 1D (Hilbert) sub-ranges of query q sorted in ascending order. The algorithm
traverses the tree in a depth-first fashion, and checks all the entries contained in each
visited node. For an intermediate node, if an entry e overlaps with the head of L
(L.head), the traversal continues in e’s subtree (lines 4-5). Otherwise, the digest of e is
inserted into the VO (line 6). Line 6 also captures the case where L is empty, so that
the digests of all unexamined entries along the path from the last leaf visited up to the
root are appended to the VO. When the algorithm reaches a leaf node, it first appends
all point entries to the VO (line 8). If the Hilbert value of the last point contained in
the leaf is greater than or equal to the upper bound of L.head (i.e., the boundary point
entry for L.head is already inserted in the VO), the latter is evicted from L.

We illustrate this multi-range traversal using the example of Figure 2. The SP sorts
the expanded ranges AB', CD' and EF' in ascending order of their lower boundary
value and inserts them in the ordered list L. Then, it starts by processing range
AB':[2,7] at the head of L. Every point (p1, p2) satisfying AB is appended to the VO
(such entries are shown in grey). After the leaf accommodating the last point (p2) is
visited, AB' is evicted from L. Subsequently, the algorithm continues at entry e4,
where it starts processing CD':[8,27] and includes p3, p4, p5 in the VO. CD' is evicted
from L, EF':[51,63] commences at e5 and e5.h, e6.h, p12, p13, p14, p15 are appended to
the VO. Note that it is not necessary to include p.hv in the VO because, along with the
VO and the signature, the SP sends D and o. Having this information available, the
client can compute the Hilbert values of the points locally.

In general, the VO contains a sequence of point entries for each processed 1D in-
terval, and (possibly) digests interleaved between pairs of point sequences. Upon
receiving the VO, the client first decomposes q into the same set of 1D intervals as the

68 S. Papadopoulos et al.

SP (before their expansion) using D and o, sorts them on their lower boundary value
and inserts them in a list L. Then, it utilizes an algorithm to reconstruct the digest of
the root (Hroot). This algorithm is similar to the evaluation of parenthesized arithmetic
expressions, where the tokens play the role of the parentheses. When the algorithm
encounters a token], it has all the information (digests or records) to compute the
digest of the node that started at the corresponding [. The digests and records are
appended to a buffer B, which after termination is used to derive Hroot=h(B). Further-
more, for each encountered point sequence, the algorithm computes the Hilbert values
of the points, checks whether the boundary points for L.head exist, and evicts the
latter from L. Also it reports the points that satisfy q during this process. At the end of
the algorithm, L must be empty and the reconstructed Hroot combined with D and o
must verify the signature.

The proof of soundness is straightforward, since if the SP modifies any VO com-
ponent, the signature will not be verified (due to the collision-resistance of the hash
function). Furthermore, recall that the client receives D and o intact (otherwise the
signature verification fails) and, therefore, it can determine the exact 1D queries proc-
essed by the SP. It can then ensure completeness by simply checking the existence of
the boundary objects for each sub-query.

The above discussion captures the initial result computation in BSL; next we de-
scribe the continuous monitoring component. Whenever there is a data modification,
the DO alters its tree and forwards the update(s) to the SP, according to the positive-
negative model. An object insertion is denoted as (+<p.id, p.x, p.y, p.hv>), and a dele-
tion as (-<p.id, p.hv>). An object movement is handled by a deletion followed by an
insertion. In addition to the actual data, each transmission contains a DO signature
and two timestamps: LT is the current time and ST is the time of the previous trans-
mission. The signature incorporates the new Hroot, LT and ST. The two timestamps are
necessary so that the clients can detect temporal attacks, i.e., situations where the SP
avoids reporting some result updates. Specifically, an authentication scheme satisfies
temporal completeness, if it is impossible for the SP to omit sending a result change
to the client, without the latter detecting it [19]. The DO periodically sends updates to
the SP, along with the new signature, LT and ST. The SP updates the tree structure,
the timestamps and the signature accordingly, and generates a new VO for every
monitored query. It then sends the new VO, LT, ST and the signature to the corre-
sponding clients (D and o do not need to be re-sent).

Proof of temporal completeness (sketch): Suppose that at time t the SP avoids sending
the VO for an update that affects the client’s result. At a later time t' the SP transmits a
new VO to the client. Note that multiple omissions may have occurred between t and
t'. The client will detect the attack by noticing that the time of the previous update
(included in the new VO) is ST ≥ t, at which it did not receive any VO. Note, however,
that temporal completeness cannot be guaranteed if the client does not receive any VO
for a long time, in which case it cannot be sure whether the last results are still up-to-
date. This problem can be solved using the concept of query freshness [10], according
to which the DO revokes old signatures at periodic time intervals. �

The efficient query processing and update operations of the 2-3 MB-Tree render
BSL suitable for dynamic environments. However, BSL incurs false transmissions of
VOs for queries whose result is not affected by the latest data updates. This imposes

 Continuous Spatial Authentication 69

significant CPU cost to the SP (for computing the VOs) and to the clients (for verify-
ing them). Furthermore, it leads to excessive network overhead. The next method
aleviates these problems by integrating sophisticated indexing schemes and query
processing algorithms.

4 Continuous Spatial Authentication – CSA

Section 4.1 describes the indexing scheme of CSA and Section 4.2 explains the query
processing algorithms. Section 4.3 presents the analytical models used to optimize the
performance of CSA.

4.1 Indexing Scheme

CSA subdivides the dataspace into partitions, in order to reduce the area affected by
an update and limit the number of false transmissions. Let D:[Lx, Ly, Ux, Uy] be a
square dataspace. We build an m⋅m regular grid over D, by decomposing each axis
into m equal segments. Let lP be the extent of each partition along the two axes. A
point p with co-ordinates (p.x, p.y) can be located in constant time in partition Pij,
where i=⎣p.x / lP⎦ and j=⎣p.y / lP⎦. In order to capture skewed point distributions, we
embed a Temporal Merkle Hash-Tree (TMH-Tree) in each partition P. The TMH-
Tree is a modified 2-3 MB-Tree that incorporates temporal information used by a
virtual caching mechanism. Specifically, every entry e in an intermediate node con-
tains a timestamp e.t that signifies the latest (i) record insertion/deletion/update that
occurred in the subtree of e, or (ii) movement of e to another node due to a
split/merge operation. Figure 4 summarizes the index structures in CSA.

……

P11 P12

P21 P22

Pm-1m-1 Pm-1m

Pmm-1 Pmm

…

…

…

… …

TMH11

...

...

...

DPM-Tree

R11, LT11,
ST11, H11, o11

Rmm, LTmm,
STmm, Hmm, omm

...

TMHmm

...

…

…

Fig. 4. Indexing structures in CSA

For each partition, we construct a Hilbert curve of order P.o in P and compute the
Hilbert values of the residing points. The TMH-Tree then indexes the points using
their Hilbert values as search keys. Each leaf entry p has the form <p.id, p.x, p.y,
p.hv> and an intermediate entry e is a quadruplet (e.h, e.k, e.ptr, e.t), where the se-
mantics are the same as in BSL, except that p.hv is computed locally within each

70 S. Papadopoulos et al.

partition (instead of the entire dataspace). To avoid confusion, the term cell is used
only for the Hilbert grid. The term partition is used for the grid constructed over D.
Note that the value of o may be different for each partition. Similar to m, the choice of
o may have a significant effect on performance. Section 4.3 contains models for
choosing appropriate values of m and o.

All partitions are indexed by a Domain Partition Merkle-Tree (DPM-Tree). The
DPM-Tree is a binary tree that organizes digests in a way similar to the MH-Tree. A
leaf node of the DPM-Tree corresponding to partition P contains a pointer P.R to the
root of the TMH-Tree embedded in P, timestamps P.LT and P.ST, order P.o, and a
digest P.H. P.LT (P.ST) is the timestamp of the last (second last) update that occurred
in P (P.LT ≥ P.ST). P.H is computed on the concatenation of the digests contained in
the root of the TMH-Tree along with P.ST and P.o. The information in intermediate
nodes is inserted bottom-up. An intermediate node N contains value N.H, which is the
digest of the concatenation of the digests of its children, and timestamp N.T which is
the maximum between the timestamps of its children. In order to establish a
neighborhood relationship among the nodes of the DPM-Tree, we consider that the
root corresponds to the entire dataspace. Its two children are generated by splitting the
space vertically into two equal subspaces. Subsequently, each child generates two
new children by dividing its subspace horizontally into two new equal subspaces. This
process is repeated recursively (selecting the splitting axis in a round-robin fashion)
until the final subspaces are single partitions (leaf level 0).

Let HDPM (TDPM) be the digest (timestamp) in the root of the DPM-Tree. The DO
computes h(HDPM | TDPM | Lx | Ly | Ux | Uy), signs it and sends it to the SP along with
the dataset. CSA supports multiple updates at the same timestamp as follows. The
TMH-Trees are first modified, as discussed in Section 3, without altering any hash or
timestamp value, and the visited paths are marked. When an entry is deleted from a
full intermediate node (i.e., there is no underflow), it is replaced with a dummy value,
so that the order of the remaining entries in the node remains the same. Then, the
marked paths are revisited and the digests and timestamps are computed bottom-up,
only once. Finally, a single depth-first traversal of the DPM-Tree locates the leaf
nodes that correspond to the affected partitions and computes the appropriate digests
and timestamps bottom-up. However, if at some instant the number of points in a
partition P changes significantly, the DO may decide to change P.o in order to im-
prove performance. In this case, it notifies the SP that computes the new Hilbert val-
ues for the residing points and re-builds the embedded TMH-Tree.

Finally, the SP maintains some book-keeping structures for query monitoring. Spe-
cifically, each partition P is associated with an influence list P.IL that stores the iden-
tifiers of the queries that overlap with P. A hash table QT on q.id maintains a tuple
<q.id, q.rg, q.t> for every running query q, where q.id is a unique identifier, q.t is the
timestamp of q’s last VO update., and q.rg is the spatial range [qLx, qLy, qUx, qUy] of q.

4.2 Query Processing

First we discuss snapshot query processing and verification. Upon receiving a spatial
range q, the SP starts its execution by traversing the DPM-Tree. At every visited
node, the SP obtains the subspace covered by its subtree. This is performed by recur-
sively breaking D into two equal spatial subspaces, either horizontally or vertically, in
a round-robin fashion. If q overlaps with the corresponding subspace of a node, the

 Continuous Spatial Authentication 71

algorithm continues traversing its subtree. Otherwise the node’s digest is appended to
the VO. Upon reaching the leaf level of the DPM-Tree, if q does not overlap with a
partition P, P.H is inserted into the VO. Otherwise, the algorithm appends P.ST and
P.o into the VO, and decomposes q into a set of 1D intervals, by determining its inter-
sections with the embedded Hilbert curve. Then, it expands the intervals to include
boundary records, sorts them on their lower boundary and stores them in a list L.
The expanded sub-queries are issued to the embedded TMH-Tree, using the multi-
range algorithm of BSL (Figure 3).

Given the VO and D, the client can verify its correctness, by computing the digest
HDPM at the root of the DPM-Tree. The process is similar to the one described in
Section 3, except that intervals are used to determine the extents of each partition on-
the-fly. After the client computes HDPM, it hashes it with TDPM and D, and matches it
against the signature of the DO. The actual results are extracted during the verifica-
tion process.

Proof of soundness (sketch): Soundness is ensured by the hierarchical organization of
the hashes in the two trees and the collision-resistance of the hash function. If an
adversary alters or deletes a point from the dataset, or inserts a bogus one, the change
will propagate until HDPM. Thus, the client will reconstruct an HDPM that does not
match the DO’s signature. �

Proof of completeness (sketch): Completeness is satisfied for two reasons. (i) The
client has D and, therefore, while reconstructing HDPM, it can verify that the SP returns
a partial VO for every partition overlapping the query. (ii) For each such partition it
also has P.o and, therefore, it can establish completeness in the way that we discussed
in Section 3. Finally, note that, for every P, P.o is incorporated in P.H and D is in the
signature. Consequently, the SP must send them intact in order for the signature to be
certified. �

When the SP receives updates from the DO, it alters the indices and determines the
affected queries whose range overlaps with partitions where at least one update has
occurred. Finally, it generates a new VO for each such query. Motivated by the obser-
vation that an updated VO shares common components with the previous one, we
propose a virtual caching mechanism (VCM) to further reduce the communication
cost. The term virtual is due to the fact that the SP does not store the VO for any
query. Instead, each client keeps in its own cache the VO that was received last.
VCM works as follows: whenever a node N of the DPM-Tree (or node entry e of the
TMH-Tree) is visited during processing query q, its corresponding timestamp is
checked against q.t. If q.t is equal or larger, then token Hit is inserted into the VO and
the traversal for the N’s (e’s) subtree stops. This token instructs the client to retrieve
the partial VO corresponding to N’s (e’s) subtree from the cached VO. Upon receiving
a new VO, the client merges the components contained in the updated VO with the
ones in the cache. Eventually, it reconstructs HDPM (as described above) and matches
it against the signature.

Proof of temporal completeness (sketch). Suppose that the initial computation of a
query q occurs at a time t and the VO is sent to the client. The client successfully
verifies its correctness and stores it as cachedVO. Now assume that at later time t' (>t)

72 S. Papadopoulos et al.

one (or more) update(s) takes place in some partition P that overlaps with q, but the
SP does not send a new VO to the client. Subsequently, another update occurs that
affects q. This time the SP generates newVO and sends it to the client (along with new
signature and TDPM). We distinguish two cases: (i) the newVO contains a partial VO
corresponding to P, thus also P.ST. The client compares P.ST with the cached TDPM
(=t). Since P.ST > t, at least a potential result update (at P.ST) was omitted and the
client is alarmed. (ii) newVO contains a Hit token that corresponds to P. Since the
actual P.ST is different than the one included in cachedVO, the client reconstructs a
false P.H value and soundness is violated. �

4.3 Computing the Grid Granularity

The granularity m of the dataspace partitioning greatly affects the efficiency of CSA.
If m is too coarse (i.e., there are very few partitions), the ability of CSA to reduce
false transmissions is subdued. On the other hand, a large number of partitions leads
to a tall DPM-Tree and numerous TMH-Trees, which also adversely affects perform-
ance. Moreover, for skewed distributions, many of the partitions may contain few or
no records at all. Since manually tuning m at the DO is both costly and error-prone, in
the sequel we first establish cost models and then clarify the selection of m based on
these models.

Our analysis focuses on the expected VO (EVO) size, for two reasons. First, the VO
must be transmitted from the SP to the client through the network, which is usually
the bottleneck of the entire system. This is especially true for mobile clients
(e.g., PDAs), where battery consumption is a major concern (wireless transmissions
consume significantly more power than offline computations [6]). The second reason
is that other performance goals, such as minimizing the computation at the SP and the
client, are strongly correlated with EVO. Intuitively, the larger the EVO, the more
nodes are visited during query processing, and subsequently processed by the client to
reconstruct the root digest.

Without loss of generality, we normalize the values along each axis of the datas-
pace to [0, 1]. In order to keep the analysis tractable, we make the following simplify-
ing assumptions: (i) all partitions have the same length. (ii) The updates follow the
distribution of the initial dataset, i.e., the cardinality of each partition does not change
significantly over time. When this assumption does not hold, the DO and SP can peri-
odically re-compute m and rebuild the structures of CSA accordingly. (iii) Each query
q has expected length lq ∈ (0, 1] along each axis. Furthermore, its lower boundary
(along each axis) is uniformly distributed in [0, 1− lq]. (iv) The virtual caching
mechanism is disabled as its effects are not significantly influenced by the partition-
ing granularity m.

We use symbol Pi,j (1≤ i, j ≤m) to denote the partition covering the region [(i−1)/m,
i/m] ⋅ [(j−1)/m, j/m], which contains a known number |Pi,j| of points. Query q takes the
shape of a square with length lq along each axis. CSA involves an initial VO computa-
tion for a query q, as well as the construction of a new VO whenever q is affected by
updates. Let EVOinit(q) be the expected size of the initial VO of q, and EVOupd(q) the
expected size of the VO generated due to an update. For a given random query sample
QS (e.g., drawn from a past query log) with cardinality |QS|, and a number of time-
stamps NU that updates occur, EVO is computed by

 Continuous Spatial Authentication 73

() ()

| | (1)

init upd
q QS

EVO q NU EVO q

EVO
QS NU

∈

+ ⋅
=

⋅ +

∑
 (1)

Regarding EVOinit, CSA includes in the VO five different types of information: (i)
the result set of q, (ii) two boundary records for proving completeness, (iii) time-
stamps of each partition overlapping q, which collectively prove temporal complete-
ness, (iv) the digests inserted during the traversal of the DPM- and the TMH-Trees
that is used by the client to verify correctness and, finally, (v) the signature of the DO.
We do not consider the tokens since their sizes are negligible. Let Sr be the length of a
record and |q| be the average number of tuples in the query result set. Types (i) and
(ii) consume Sr⋅(|q|+2). Given the query extent lq, |q| can be calculated using standard
selectivity estimation techniques (e.g., sampling [1], histograms [7], probabilistic
models [8]). If qp is the number of partitions intersecting q, and St is the size (in
bytes) of a timestamp representation, the size of (iii) is qp⋅St. Since each partition has
extent 1/m on each axis, the expected value for qp is ⎣2⋅m⋅lq ⎦+1. Regarding (iv), we
use symbols EVOD and EVOT to denote the total size of the digests appended to the
VO when traversing the DPM-Tree and all the TMH-Trees, respectively. Finally, (v)
equals the size of one signature (let Ss). Summarizing, EVOinit is given by:

()() | | 2 ()init r t D T sEVO q q S qp S EVO EVO q S= + ⋅ + ⋅ + + + (2)

We next focus on EVOD. Note that EVOD consists of the digests of all pruned
nodes of the DPM-Tree. A node is pruned, if and only if (i) it does not overlap the
query, and (ii) none of its ancestors is pruned (otherwise it is not visited at all). Let
OVN(i) be the number of nodes at depth i (the root being at depth 0) that overlap with
q. The number of nodes at depth i satisfying condition (i) is 2i−OVN(i). Among these
nodes, some are descendents of pruned nodes at higher levels and, thus, violate condi-
tion (ii). Given that the DPM-Tree is binary, a node at depth j (j < i) has 2i-j descen-
dents at depth i. Therefore, assuming that PN(i) is the number of pruned nodes at
depth i, Equation 3 gives both PN(i) and EVOD (Sh is the size of a digest). Note that
since m is the partitioning granularity for each of the two axes, the height of the DPM-
Tree is ⎣lgm2⎦ = 2⋅⎣lgm⎦.

2 lg

0

1

0

()

where () 2 () () 2

m

D h
i

i
i i j

j

EVO PN i S

PN i OVN i PN j

⋅⎢ ⎥⎣ ⎦

=

−
−

=

= ⋅

= − − ⋅

∑

∑
 (3)

We next determine OVN. Figure 5 depicts the spaces covered by the subtrees of the
DPM nodes at an odd and even depth (the root being at depth 0). Specifically,
Figure 5a (5b) shows the 5th (6th) depth. In general, each node at depth i covers 1 /
2⎣

i/2⎦ extent on the x-axis and 1 / 2⎡i/2⎤ on the y-axis. The number of cells overlapping q
is thus calculated by:

() ()/ 2 / 2() 2 1 2 1i i
q qOVN i l l⎢ ⎥ ⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ + ⋅ ⋅ +⎣ ⎦ ⎣ ⎦ (4)

74 S. Papadopoulos et al.

q

q

 (a) Odd depth (b) Even depth

Fig. 5. DPM-Tree nodes and query q

The derivation of EVOT depends on the order of the Hilbert curve used in each par-
tition. Let P.o be the order in partition P. An overly coarse (fine) P.o leads to limited
indexing effectiveness (many empty cells) and consequently sub-optimal perform-
ance. We determine P.o based on the following observation: when records are uni-
formly distributed in partition P, ideally each Hilbert cell should contain exactly one
record. Note that according to our experiments, the optimal m is usually large enough
for this local uniform distribution assumption to hold. Therefore, an appropriate value
for P.o is lg|P|/2.

For partitions completely contained in q, all data records (and no digests) are inserted
into the VO. For partitions that partially overlap with q (i.e., those on the boundary of q
as shown in Figure 5), the digests of the pruned sibling nodes during the TMH-Tree
multi-range traversal are added to the VO (in addition to the records satisfying q). How-
ever, the exact analysis of this traversal is very complicated because (i) it involves cal-
culating the number of ranges q is broken into, which itself is a difficult task [14], and
(ii) the ranges have different sizes, meaning that the common ancestors are at different
levels. Instead, we employ the following approximation for the multi-range traversal:
for each TMH-Tree in a partition that partially overlaps q, we count two complete root-
to-leaf paths, adding to EVO the digest of the siblings of all visited nodes. This method
overestimates the traversal path by counting the root-to-split-node part twice, but on the
other hand also underestimates it by not taking into account the small up-and-down
paths inside the envelop of the two root-to-leaf paths. These two contradicting factors
are expected to partially cancel each other out. Moreover, with reasonably fine partition-
ing granularity m, (i) the number of partitions on the boundary of q is much smaller than
those within q, and (ii) each TMH-Tree is expected to have a small height, both of
which render the approximation error insignificant. Summarizing, the formula for EVOT
is (f is the expected fanout of the TMH-Tree):

()() 2 1 log 1

where { | partially overlaps }

T h f
P PP

EVO q S f P

PP P P q
∈

⎢ ⎥= ⋅ ⋅ − ⋅ +⎣ ⎦

=

∑
 (5)

Combining Equations 2, 3 and 5 yields the complete model for EVOinit. We next
derive EVOupd. Recall that in CSA, the SP sends a new VO only when at least one
update happens in a partition intersecting with q. According to the assumption that the
updates follow the same distribution as the initial dataset, the probability that an up-
date falls in any one of QP1, QP2, …, QPqp is Σi|QPi|/(ΣjΣk|Pj,k|, 1≤i≤qp, 1≤j,k≤m.

 Continuous Spatial Authentication 75

Therefore, for a batch of |U| independent update operations (i.e., insertions or dele-
tions) occurring at a timestamp, the probability ProbVO(q) that the SP transmits a new
VO (i.e., q is affected by any one of these updates) is:

() ,
1 1 1

1 1

U
qp m m

VO i j k
i j k

Prob q QP P
= = =

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑∑ (6)

Similar to the case of EVOT(q), ProbVO(q) is a function of the values of |QPi|
(1≤i≤qp), which, in turn, depends on the position of q. Let EVOinit(q) be the expected
VO size for a particular query q, which is obtained by combining Equations 2, 3
and 5. Then EVOupd(q) = EVOinit(q) ⋅ ProbVO(q).

Equipped with the above models, we present a simple and effective algorithm
Bestm to compute an appropriate value for the partitioning granularity m. Initially,
Bestm sets m to a maximum value mmax. A good choice for mmax is half of the first
power of 2 that is larger than the data set cardinality. It then scans the dataset once to
compute the cardinality for each partition, and utilizes this information to compute
EVO using the cost models. After that, it decreases m to mmax/2, and computes the
corresponding EVO. Observe that at this stage it is unnecessary to scan the dataset
again to compute the cardinality of the partitions, since these can be obtained by ag-
gregating the corresponding partitions in the previous step. At subsequent steps, m is
reduced by half each time, and EVO is estimated, until m = 1. Among all considered
values for m, the one achieving the minimum EVO is chosen as the partitioning granu-
larity for CSA.

5 Experimental Evaluation

We implemented our methods using the Crypto++ library [4], and deployed them on a
Core 2 Duo 2.2GHz CPU with 2GBytes of RAM. Each record r consumes 100 bytes
and contains two search keys r.x and r.y. The values of r.x and r.y are obtained from
the real dataset CAR (California Roads, available at www.rtreeportal.org), and are
normalized to [0, 1]. At every timestamp, updates arrive at a rate of AR. An update
involves a deletion of a random tuple and an insertion of a new one with the same id
but different keys. Consequently, the number of update operations |U| = 2⋅AR, and
dataset cardinality DC is constant at all times. The new key values follow their initial
distribution. We monitor QC running queries, which are uniformly distributed in the
dataspace and cover approximately 0.1% of the data domain.

First, we determine the optimal partitioning granularity m for CSA, using the
models of Section 4.3. We set DC = 100K, QC = 1K and AR = 100, and we disable
the VCM. Figure 6a depicts the estimated total VO size generated for all 1K queries
with respect to m, as well as its actual size computed in our experiments. Figure 6b
zooms into the part of Figure 6a, where 23 ≤ m ≤ 27. The error of our estimation is
5-17%. Our cost models successfully determine the best granularity, which in this
case is m=25. In the sequel, we set m to the best granularity as estimated by our
models.

76 S. Papadopoulos et al.

Estimated SizeVO Actual SizeVO

20 26 21123 29

Total VO Size(MBytes)

m
21 22 24 25 27 28 2100

2

4

6

8

10

12

14

6

6.5

7

7.5

8

8.5

9

23 24 25 26 27
m

Total VO Size(MBytes)

(a) Effect of partitioning granularity (b) Optimal partitioning granularity

Fig. 6. Total VO size vs. partitioning granularity m

Figure 7 assesses the effect of the dataset cardinality (DC), when QC = 1K, AR =
100 and the VCM is switched on. Figure 7a shows the total query processing time per
timestamp at the SP. BSL incurs a considerable computational overhead since it re-
processes all queries at each timestamp. On the other hand, CSA executes only the
queries affected by the updates, as well as a small number of queries that correspond
to false transmissions. Figure 7b depicts the total VO size generated for all queries per
timestamp versus DC. CSA outperforms BSL, because (i) it executes only the queries
affected by the updates, and (ii) the VCM enables the SP to omit sending VO
components corresponding to DPM/TMH subtrees that are not altered by the updates.
Figure 7c illustrates the verification cost per timestamp at each client. In BSL the

CSA BSL

1

10

102

103

10K 50K 100K 200K 500K

Query Processing Time
(msec)

DC

10

10 5

10 2

10 3

104

10K 50K 100K 200K 500K

DC

Total VO Size
(KBytes)

(a) Query processing time (b) Total VO size

1

10

10-1

10-2

10K 50K 100K 200K 500K

DC

Verification Time
(msec)

(c) Verification time

Fig. 7. Performance vs. dataset cardinality DC

 Continuous Spatial Authentication 77

client has to verify its query at every timestamp, whereas in CSA it establishes cor-
rectness only when its query is affected by an update.

We next investigate the impact of the query cardinality (QC), after setting DC =
100K and AR = 100. Figures 8a and 8b plot the query processing cost at the SP and
the communication cost at every timestamp, respectively. Both costs grow linearly
with QC. In BSL, each query is evaluated at every timestamp. Therefore, the compu-
tational effort at the SP as well as the information communicated between the SP and
the client increases with the number of running queries. In CSA, more queries are
likely to be affected by the updates (in which case a new VO is generated and trans-
mitted to the client) in the presence of a large number of running queries.

CSA BSL

1

10

102

103

10-1

100 500 1000 2000 5000
QC

Query Processing Time
(msec)

10

105

102

103

104

100 500 1000 2000 5000
QC

Total VO Size
(KBytes)

(a) Query processing time (b) Total VO size

Fig. 8. Performance vs. number of queries QC

CSA BSL

1

10

102

103

10 50 100 200 500

Query Processing Time(msec)

AR

103

104

102

10

105

10 50 100 200 500
AR

Total VO Size
(KBytes)

(a) Query processing time (b) Total VO size

10 50 100 200 500
AR

10

10-2

10-1

1

10-3

Verification Time (msec)

(c) Verification time

Fig. 9. Performance vs. arrival rate AR

78 S. Papadopoulos et al.

Figures 9a and 9b demonstrate the query processing and the communication cost,
respectively, versus the arrival rate AR (DC = 100K, QC = 1K). BSL is not influenced
by AR. The overhead of CSA converges to that of BSL for large values of AR be-
cause, as more updates occur, more queries are affected and re-evaluated. For these
queries, a new VO must be produced and transmitted. Furthermore, a high AR reduces
the effectiveness of VCM because the updates alter a large part of the DPM- and
TMH-Trees and, consequently, invalidate many VO components in the clients' cache.

Finally, Figure 9c shows the verification time at the client at every timestamp ver-
sus AR. As expected, the verification burden at the client increases for high arrival
rates, because its query is affected by an update with higher probability. An interest-
ing observation is that the curve of CSA converges faster to that of BSL, in compari-
son to the corresponding curves of Figures 9a and 9b because the VCM alleviates the
processing and communication costs, but not the verification effort; to establish cor-
rectness, the client first has to combine the newly received VO with the one in its
cache. Therefore, the client eventually verifies a VO with size equivalent to the one
generated when the VCM is disabled.

6 Conclusions

In this paper we address continuous range processing and authentication on highly
dynamic spatial databases. We assume a database outsourcing environment, where a
service provider (SP) returns to the clients the query results, as well as authentication
information necessary to establish their correctness. Due to the dynamic environment,
clients must also be able to prove temporal completeness, i.e., that they did not miss
any results in-between successive updates. We first propose BSL, a method that
achieves these goals at the expense of false transmissions. Next, we introduce CSA, a
scheme that utilizes a space partitioning scheme and an efficient caching mechanism
to reduce the cost (processing and communication) for both the SP and the client. We
optimize the performance of CSA through a detailed analytical study. Finally, we
conduct an exhaustive experimental evaluation and show that CSA significantly out-
performs BSL for all performance metrics.

Acknowledgments. This work was supported by grant HKUST 6181/08 from
Hong Kong RGC.

References

1. Babcock, B., Chaudhuri, S., Das, G.: Dynamic Sample Selection for Approximate Query
Processing. In: SIGMOD (2003)

2. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications. Springer, Heidelberg (1997)

3. Cheng, W., Pang, H., Tan, K.-L.: Authenticating Multi-dimensional Query Results in Data
Publishing. DBSec (2006)

4. Crypto++ Library, www.eskimo.com~weidai/benchmark.html
5. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.: Authentic Data Publication Over the

Internet. Journal of Computer Security 11(3), 291–314 (2003)

 Continuous Spatial Authentication 79

6. Datta, V., Vandermeer, D., Celik, A., Kumar, V.: Broadcast Protocols to Support Efficient
Retrieval from Databases by Mobile Users. ACM TODS 24(1), 1–79 (1999)

7. Guha, S., Shim, K., Woo, J.: Rehist: Relative Error Histogram Construction Algorithms.
In: VLDB (2004)

8. Getoor, L., Taskar, B., Koller, D.: Selectivity Estimation using Probability Models. In:
SIGMOD (2001)

9. Hacıgümüş, H., Iyer, B., Mehrotra, S.: Providing Databases as a Service. In: ICDE (2002)
10. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic Authenticated Index Struc-

tures for Outsourced Databases. In: SIGMOD (2006)
11. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-Infused Streams: Enabling Authen-

tication of Sliding Window Queries on Streams. In: VLDB (2007)
12. Merkle, R.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS,

vol. 435, pp. 218–238. Springer, Heidelberg (1990)
13. Mokbel, M., Aref, W., Kamel, I.: Analysis of Multi-Dimensional Space-Filling Curves.

GeoInformatica 7(3), 179–209 (2003)
14. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering Properties

of the Hilbert Space-Filling Curve. TKDE 13(1), 124–141 (2001)
15. National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash Standard.

National Institute of Standards and Technology (1995)
16. Narasimha, M., Tsudik, G.: Authentication of Outsourced Databases Using Signature Ag-

gregation and Chaining. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006.
LNCS, vol. 3882, pp. 420–436. Springer, Heidelberg (2006)

17. Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.: Verifying Completeness of Relational
Query Results in Data Publishing. In: SIGMOD (2005)

18. Pang, H., Tan, K.-L.: Authenticating Query Results in Edge Computing. In: ICDE (2004)
19. Papadopoulos, S., Yang, Y., Papadias, D.: CADS: Continuous Authentication on Data

Streams. In: VLDB (2007)
20. Rivest, R.L., Shamir, A., Adleman, L.: A method for Obtaining Digital Signatures and

Public-key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)
21. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Spatial Outsourcing for Location-

based Services. In: ICDE (2008)

Query Integrity Assurance of Location-Based
Services Accessing Outsourced Spatial Databases

Wei-Shinn Ku1, Ling Hu2, Cyrus Shahabi2, and Haixun Wang3

1 Dept. of Computer Science and Software Engineering, Auburn University, USA
2 Computer Science Department, University of Southern California, USA

3 IBM Thomas J. Watson Research Center, USA
weishinn@auburn.edu, {lingh,shahabi}@usc.edu, haixun@us.ibm.com

Abstract. Outsourcing data to third party data providers is becoming
a common practice for data owners to avoid the cost of managing and
maintaining databases. Meanwhile, due to the popularity of location-
based-services (LBS), the need for spatial data (e.g., gazetteers, vec-
tor data) is increasing exponentially. Consequently, we are witnessing a
new trend of outsourcing spatial datasets by data collectors. Two main
challenges with outsourcing datasets is to keep the data private (from
the data provider) and ensure the integrity of the query result (for the
clients). Unfortunately, most of the techniques proposed for privacy and
integrity do not extend to spatial data in a straightforward manner.
Hence, recent studies proposed various techniques to support either pri-
vacy or integrity (but not both) on spatial datasets. In this paper, for
the first time, we propose a technique that can ensure both privacy and
integrity for outsourced spatial data. In particular, we first use a one-way
spatial transformation method based on Hilbert curves, which encrypts
the spatial data before outsourcing and hence ensures its privacy. Next,
by probabilistically replicating a portion of the data and encrypting it
with a different encryption key, we devise a technique for the client to au-
dit the trustworthiness of the query results. We show the applicability of
our approach for both k-nearest-neighbor and spatial range queries, the
building blocks of any LBS application. Finally, we evaluate the validity
and performance of our algorithms with real-world datasets.

1 Introduction

Due to the rapid advancements in network technology, the cost of transmitting
a terabyte of data over long distances has decreased significantly in the past five
years. In addition, the total cost of data management is five to ten times higher
than the initial acquisition costs and it is likely that computing solution costs will
be dominated by people costs in the future [22]. Consequently, there is a growing
interest in outsourcing database management tasks to third parties that can pro-
vide these tasks for a much lower cost due to the economy of scale. This new out-
sourcing model has the apparent benefits of reducing the costs for running DBMSs
independently and enabling enterprises to concentrate on their main businesses.
On the other hand, there are two new concerns with this model. First, the data

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 80–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 81

owner may not want to reveal the data to the data provider due to either the sensi-
tivity of the data (e.g., medical records) or the value of the data (e.g., Navteq road
vector data). Second, data users need to be confident of the integrity of the data
they receive. To illustrate, consider the scenario that Zagat (a data owner) gives
its restaurants data to Google (a data provider) to make it available to its cus-
tomers. First, Zagat does not want to reveal the data to Google as this is its main
business and value-add. Second, a user asking for all restaurants with a certain
rating wants to be confident that he is indeed receiving every and all the Zagat’s
restaurants and not some extra ones injected by Google (e.g., paid advertisers) or
some missing ones deleted by Google. Several previous studies [1,5] proposed so-
lutions for supporting encrypted queries over encrypted databases to protect data
owners’ privacy. Another set of studies [14,21,17,15,3] focus on the problem of in-
tegrity in outsourced databases by guaranteeing that the results returned by the
service provider for a client query are both correct and complete.

Meanwhile, due to the recent advances in wireless technology, mobile devices
(e.g., cell phones, PDAs, laptops) with wireless communication capabilities are
increasingly becoming popular. Hence, we are witnessing the emergence of many
location-based services (LBS) that allow users to issue spatial queries from their
mobile devices in a ubiquitous manner. Obviously, these applications are in des-
perate need of quality spatial data, resulting in an exponential increase in the
customers of spatial data acquirers. Recent mergers between data providers (e.g.,
TomTom) and data owners (Tele Atlas) are the immediate consequences of this
phenomenon. Therefore, the outsourcing of spatial data is becoming an appeal-
ing business model for both data owners and data providers. Unfortunately,
while the exact same concerns of privacy and integrity exist for outsourcing the
spatial data, there has not been much work in addressing these issues for spatial
data except for [24,25,18]. To the best of our knowledge none of these studies
consider both privacy and integrity at the same time. It is not clear whether the
proposed approaches for one problem can easily extend to the other problem or
even worse if they conflict with the solutions proposed to the other problem.

In this paper we propose an innovative approach that simultaneously ensures
both the privacy and the integrity of outsourced spatial data. This is achieved
by using space encryption as the basis of our approach and then devising tech-
niques that enable the data users to audit the integrity of the query result for the
most important spatial query types: range queries and k-nearest-neighbor queries
(kNN). In particular, we first use a one-way spatial transformation method based
on Hilbert curves, which encrypts the spatial data before outsourcing and hence
ensures its privacy. Next, by probabilistically replicating a portion of the data
and encrypting it with a different encryption key, we devise a technique for the
client to audit the trustworthiness of the query results. We evaluated our ap-
proaches with both synthetic and real-world datasets. The process of computing
Hilbert curves is efficient at client side when the space encryption key is known.
Experiment results show that with more than 20% duplication of the original
dataset on the server, clients can detect query result deletion attacks with very
high confidence.

82 W.-S. Ku et al.

The remainder of this paper is organized as follows. Section 2 surveys the
related work. The system architecture and an overview of our approach is in-
troduced in Section 3. The design of our space encryption based data privacy
protection approach is presented in Section 4. In Section 5, we address our spatial
query integrity auditing solutions for both range query and k-nearest-neighbor
query. The experimental validation of our design is presented in Section 6. Fi-
nally, Section 7 concludes the paper with a discussion of future work.

2 Related Work

The outsourcing of databases to a third-party service provider was first intro-
duced by Hacigümüs et al. [6]. Generally, there are two security concerns in
database outsourcing: data privacy and query integrity. We summarize the re-
lated researches as follows.

2.1 Data Privacy Protection

Hacigümüs et al. [5] proposed a method to execute SQL queries over encrypted
databases. Their strategy is to process as much of a query as possible by the ser-
vice providers, without having to decrypt the data. Decryption and the remainder
of the query processing are performed at the client side. Agrawal et al. [1] proposed
an order-preserving encryption scheme for numeric values that allows any compar-
ison operation to be directly applied on encrypted data. Their technique is able
to handle updates and new values can be added without requiring changes in the
encryption of other values. Generally, existing methods enable direct execution
of encrypted queries on encrypted datasets and allow users to ask identity queries
over data of different encryptions. The ultimate goal of this research direction is to
make queries in encrypted databases as efficient as possible while preventing ad-
versaries from learning any useful knowledge about the data. However, researches
in this field did not consider the problem of query integrity.

2.2 Query Integrity Assurance

In addition to data privacy, an important security concern in the database out-
sourcing paradigm is query integrity. Query integrity examines the trustwor-
thiness of the hosting environment. When a client receives a query result from
the service provider, it wants to be assured that the result is both correct and
complete. Correct denotes that the query must be evaluated honestly with the
outsourced database to retrieve the result and complete means that the result in-
cludes all the records satisfying the query. Devanbu et al. [3] proposed to employ
the Merkle hash tree [12] to authenticate data records. The technique computes
a signature based on the Merkle hash tree structure and distributes it to clients
as a proof of correctness. Mykletun et al. [15] studied and compared several
signature methods which can be applied in data authentication. The authors
identified the problem of completeness, however they did not propose correspon-
dent solutions. Pang et al. [17] utilized an aggregated signature to sign each

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 83

record with the information from neighboring records by assuming that all the
records are sorted with a certain order. The method assures the completeness
of a selection query by checking the aggregated signature. The challenge token
idea was introduced in [21] for a server with outsourced databases to provide
a proof of actual query execution which is then checked at the client side for
integrity verification. Compared with [17], the mechanism supports more query
types without assuming all the records are sorted. However, all the aforemen-
tioned solutions cannot support spatial queries directly.

For auditing spatial queries, Yang et al. [24] proposed the MR-tree which is an
authenticated data structure suitable for verifying queries executed on outsourced
spatial databases. The authors also designed a caching technique to reduce the in-
formation sent to the client for verification purposes. Four spatial transformation
mechanisms are presented in [25] for protecting the privacy of outsourced private
spatial data. The data owner selects transformation keys which are shared with
trusted clients and it is infeasible to reconstruct the exact original data points from
the transformed points without the key. Mouratidis et al. [14] proposed the Par-
tially Materialized Digest scheme which avoids unnecessary query processing costs
and outperforms existing solutions by employing separate indexes for the data and
for their associated verification information. However, these researches [24,25,14]
did not consider data privacy protection and query integrity auditing jointly in
their design. The related work closest to ours is presented by Wang et al. [23] which
focuses on numerical data integrity authentication. Nevertheless, the solution can-
not be applied in auditing spatial queries because spatial locality information of
records is destroyed after encryption.

3 System Overview

In this section, we introduce the architecture of our system and provide an
overview of our approach.

3.1 System Architecture

Figure 1 illustrates the architecture of a spatial database outsourcing environ-
ment with three main components: mobile user, location-based service provider,
and database owner. We consider mobile clients such as cell phones, personal
digital assistants, and laptops, which are instrumented with Global Position-
ing System (GPS) receivers for continuous position information. Moreover, we
assume that there are access points distributed in the system environment for
mobile devices to communicate with LBS providers. Generally, mobile devices
cannot store any significant amount of the outsourced data in local memory for
integrity checking. Therefore, a feasible way of obtaining integrity assurance of
query results for mobile devices is through asking queries and analyzing results.
On the other hand, a LBS provider is able to store and access all the outsourced
data for answering spatial queries from clients. However, LBS providers could
be malicious (e.g., returning incomplete query results) and they are not trusted

84 W.-S. Ku et al.

Fig. 1. The system architecture of spatial database outsourcing

by the clients. The third element – the database owner (e.g., possessing point
of interest datasets) outsources its data management tasks to service providers
(e.g., providing location-based services).

3.2 Overview of Our Approach

We assume that the database owner can embed additional information in the
outsourced spatial dataset for query integrity verification. Let D denote the
spatial database to be outsourced. The database owner first replicates a portion
of D with randomly selected objects. Then, D and the replicated portion are
encrypted with different Hilbert curve based encryption keys. Afterward, the two
encrypted datasets are combined and stored at the LBS provider. We employ
dataPreprocess() to denote the replication and encryption process and DE =
dataPreprocess(D) to denote the spatial data stored at the service provider.
For requesting LBS based on encrypted spatial databases, a mobile user rewrites
spatial queries against D to spatial queries against DE by making use of a query
rewriting method queryRewrite(). In addition, the user also launches auditing
queries for verifying a group of previously executed spatial queries. By exploiting
the replicated data, the client is able to determine that the results are correct

Table 1. Symbolic notations

Symbol Meaning
s Spatial object

sE Encrypted spatial object
r Data replication percentage
D Spatial database
R Query result set
|A| The number of elements in set A

VH Hilbert value
O Order of a Hilbert curve
T One-way function for space encryption
Id Dual information
Ψ Cryptographic signature

SK Symmetric key
SEKP Primary spatial encryption key
SEKS Secondary spatial encryption key

Dist(p, q) The Euclidean distance between two objects p and q

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 85

and complete and the confidence is beyond a user-specified level according to the
replication ratio. The mechanism to discriminate a replicated data object from
an original data object is only shared between the database owner and the users.
LBS providers cannot tell the duplicated dataset from other encrypted data in
the outsourced spatial database. Table 1 summarizes the set of notations of this
paper.

4 Space Encryption Based Privacy Protection

In this section, we first introduce the one-way function based space encryption
solution. Next, space-filling curves are introduced and applied as one-way func-
tions in our system for protecting the privacy of outsourced spatial data.

4.1 Space Encryption

In order to protect the privacy of outsourced spatial databases, we exploit the
power of one-way functions to preserve privacy by encoding the locations of all
spatial objects. A one-way function is easy to compute but difficult to invert,
meaning that some algorithms can compute the function in polynomial time
while no probabilistic polynomial-time algorithm can compute an inverse image
of the function with better than negligible probability. Our space transformation
method is capable to map each point from the original space to a point in the en-
crypted space to prevent the service provider from obtaining the original spatial
object locations. Because we focus on managing spatial data, an ideal one-way
transformation should respect the spatial proximity of the original space. If the
encrypted space is able to maintain the distance properties of the original space,
it will enable efficient evaluation of spatial queries. Transforming spatial object
locations with such a locality-preserving one-way mapping can be viewed as en-
crypting the elements of the two-dimensional (2-D) space for securing privacy
and facilitating spatial query processing. In this research, we apply the parame-
ters of our space encryption function as the trapdoor [4] which is only provided
to users to encode queries and decode the encrypted query results for retrieving
the original spatial object positions.

4.2 Space Filling Curves

A space-filling curve is a continuous curve, which passes through every point of
a closed space. The formal definition of a space-filling curve is as follows. If a
mapping f : I → En (n ≥ 2) is continuous, and f(I), the image of I under f ,
has positive Jordan content (area for n = 2 and volume for n = 3), then f(I)
is called a space-filling curve. En denotes an n-dimensional Euclidean space. An
important property of space-filling curves is that they retain the proximity and
neighboring aspects of the indexed data. Because space-filling curves can preserve
the locality between objects in the multidimensional space in the transformed
linear space, we investigate the applicability of space-filling curves as ciphers for

86 W.-S. Ku et al.

preserving privacy of outsourced spatial databases. Since the main goal of this
research is to provide both privacy protection and integrity assurance of location-
based services with outsourced spatia databases, we focus on the transformation
of a 2-D space which covers the locations of POIs. However, our solution can be
easily extended to high dimensional space.

The Hilbert curve [7,2] is a continuous fractal space-filling curve which is
broadly used in multidimensional data management. The superior distance pre-
serving properties [11] makes the Hilbert curve an ideal choice as a space cipher.
In addition, the Hilbert curve achieves better clustering than the Z curve [16]
and the Gray-coded curve [8]. Therefore, we apply the Hilbert curve in our sys-
tem for encrypting the original space. As Ref [13], we define HD

O for O ≥ 1
and D ≥ 2, as the Oth order Hilbert curve for a D-dimensional space. Conse-
quently, HD

O maps an integer set [0, 2OD − 1] into a D-dimensional integer space
[0, 2O − 1]D. The mapping determines the Hilbert value VH of each point in the
original space based on their coordinates where VH ∈ [0, 2OD − 1]. Accordingly,
we can formulate the relationship in a two-dimensional space as VH = T (x, y)
where x and y are the coordinate of a point in the original space and T is the
one-way transformation function. Note that it is possible for two or more points
to have the same Hilbert value in a given curve. Figure 2 illustrates an example
of mapping 2-D space POIs into their Hilbert values. In the illustration, we can
retrieve the Hilbert values of the points of interest A, B, C, and D as 0, 2, 8,
and 12 respectively with an order two Hilbert curve. Depending on the desired
resolution, more fine-grained curves can be recursively generated based on the
Hilbert curve production rules.

Based on the aforementioned properties of the Hilbert curve, it can be em-
ployed as a one-way function to support space encryption. The curve parameters
including the curve’s starting point (x0, y0), curve order O, and curve orienta-
tion θ make up the Space Encryption Key (SEK) of the Hilbert curve based
one-way function [9]. Consequently, adversaries who do not have the decryption
key have to exhaustively check for all possible combinations of curve parameters
to decipher the physical locations of interested objects. However, with reason-
able curve parameters it is computationally impossible to reverse the transfor-
mation and retrieve the physical locations of interested points in polynomial
time.

Fig. 2. The Hilbert curve transforms a 2-D space into corresponding Hilbert values

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 87

5 Spatial Query Integrity Auditing with Dual Space
Encryption Keys

5.1 Dual Space Encryption

In order to audit the integrity of query results retrieved from outsourced spatial
databases, we encrypt the original spatial database D with dual space encryption
keys. We first encrypt D with a primary space encryption key SEKP . Then,
we replicate r percent of D and encode the duplicate with a secondary space
encryption key SEKS which possesses different curve parameters. Afterward, we
combine the two encrypted datasets as DE and store DE at the service provider.
After space encryption, a service provider can only see the Hilbert value of each
spatial data object in DE instead of their original coordinates. Since T is a
one-way function, for any spatial object s in DE , a service provider cannot tell
whether s was encoded by SEKP or SEKS . In addition, the Hilbert values
generated by the two space encryption keys may overlap which makes it even
more difficult to distinguish if an object is the original or the duplicate.

On the other hand, we need corresponding techniques to enforce query in-
tegrity on the client side. For any spatial object s in the query result set, a client
should be able to verify whether s is a valid record of D and if s has a counter-
part which is encrypted with another SEK. For supporting object verification,
we encrypt the coordinate, non-spatial attributes, and dual information Id with
a symmetric key SK which is shared by the database owner and all the clients.
In addition, we apply cryptographic hash functions [20] to generate a signature
Ψ for each spatial object with the coordinate and non-spatial attributes as the
input message. The purpose of the dual information field is for clients to tell if
a spatial object has a duplicate in the outsourced database. Id has three values
which stand for (i) primary encryption without duplication, (ii) primary encryp-
tion with duplication, and (iii) secondary encryption respectively. The structure
of an encrypted spatial object stored in DE is as follows:

sE = {VH, {x, y,non-spatial attributes, Id}SK , Ψ}

For each server returned spatial object sE , a client first decrypts sE with the sym-
metric key and executes the cryptographic hash function for verifying the object
with its attached signature. Since it is computationally infeasible to forge a crypto-
graphic hash function generated signature, any tampering with the object will be
detected. If the spatial object is valid, the client will check its Id field for determin-
ing whether the object is an original or a duplicate. Replicated objects are utilized
to audit query result integrity as described in the following two subsections.

5.2 Range Query

With a given range query QR, a client first identifies the Hilbert values covered by
the range query based on the parameters of SEKP . Afterward, the client queries
the service provider for retrieving the objects covered by the query range. In order
to hide the SEK parameters from malicious service providers, the client may

88 W.-S. Ku et al.

Algorithm 1. Query Integrity Assured Range Query (QR)
1: Compute Hilbert curve segments covered by QR on the curve defined by SEKP

and store the segments in S

2: for each segment e ∈ S do
3: Retrieve the spatial objects covered by e and store them in R

4: end for
5: Filter out the spatial objects encrypted with SEKS in R

6: for each spatial object s ∈ R do
7: Verify s with its signature
8: if s is a valid object and s has a duplicate then
9: Store s in C

10: else
11: Report the anomaly to the client and exit
12: end if
13: end for
14: Create an auditing query QA based on QR and SEKS

15: Compute Hilbert curve segments covered by QA on the curve defined by SEKS

and store the segments in S

16: for each segment e ∈ S do
17: Retrieve the spatial objects covered by e and store them in R

′

18: end for
19: Filter out the spatial objects encrypted with SEKP in R

′

20: if C �= R
′ then

21: Report the anomaly to the client and exit
22: end if
23: Return R

interleave the Hilbert value segments covered by a group of range queries. After
receiving the query result set R, the client first filters out objects encrypted with
SEKS and verifies the validity of all the remaining objects with their attached
signatures. If all the objects in R are valid, the client generates an auditing range
query QA with the same query range size as QR and the parameters of SEKS .
If the service provider carries out queries honestly, the query result set of the
auditing query must contain counterparts of all the objects with duplicates in R.
In practice, the client can launch a single auditing query for verifying a number
of regular queries by combining their query ranges for saving resources.

Figure 3 demonstrates an example of range query integrity auditing. The query
window of a range query QR covers three Hilbert curve segments, [17− 18], [23−
24], and [27−31], based on the primary encryption key as shown in Figure 3(a). Af-
ter receiving the three curve segments, the service provider retrieves all the spatial
objects whose Hilbert values are embraced by the three curve sections and returns
the retrieved spatial object set R as the query result. Then, the client removes
records encrypted with SEKS in R, verifies the remaining records, and identifies
the records which have duplicates by checking the Id filed. Subsequently, the client
creates an auditing query QA with equal query range as QR on the Hilbert curve
defined by SEKS. In this example, QA encompasses two Hilbert curve segments,

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 89

R A

Fig. 3(a) Original range query QR Fig. 3(b) Auditing range query QA

Fig. 3. A range query QR covers three Hilbert curve segments based on SEKP as
illustrated in (a). The auditing query QA encloses two Hilbert curve segments based
on SEKS as demonstrated in (b).

[50 − 57] and [61], based on the secondary encryption key. With the Id field, the
client is able to filter out the objects which are encrypted with SEKP in the re-
sult of QA. Finally, the client checks if all the duplicates retrieved by QA have
counterparts in R. If there is any mismatch, the discrepancy proves that the ser-
vice provider is malicious. The complete procedure of a Query Integrity Assured
Range Query (QIARQ) is formalized in Algorithm 1.

5.3 k Nearest Neighbor Query

We design a Query Integrity Assured k Nearest Neighbor (QIAKNN) search
algorithm by extending our range query solution in Section 5.2. For a given
kNN query point Q located at position (xQ, yQ), a client first employs SEKP

to compute VH = T (xQ, yQ) as the query point in the encrypted space. Because
there is r percent duplicate data in DE which should be filter out from query
results, we multiply k by (1 + r) to get k′ and apply k′ as the query parameter.
Thereafter, the client transmits the values of VH and k′ to the service provider for
retrieving k′ nearest neighbors of Q. The service provider searches DE with both
directions (ascending and descending) of VH until k′ closest spatial objects are
found and then returns the query result set R to the client. After being receipt
of R, the client first removes objects encrypted with SEKS and checks if there
are k objects leftover in R. If R contains fewer than k objects, the client repeats
the aforementioned steps with a multiple of r until obtaining k valid objects.
Subsequently, the client retrieves the object s∗ which has the longest distance
to Q in R. Because of loss of a dimension in the encrypted space, the objects in
R may not precisely match the actual k nearest neighbors of Q. Consequently,
the client utilizes the distance between Q and s∗ (Dist(Q, s∗)) as a search upper
bound and launches a range query QR with Dist(Q, s∗) to decide the query
window size. Following acquiring R

′ as the result of QR, the client audits the
range query result as described in Section 5.2. Because Dist(Q, s∗) is the search

90 W.-S. Ku et al.

Algorithm 2. Query Integrity Assured k Nearest Neighbor Query(Q, k)
1: Compute VH = T (xQ, yQ) based on SEKP

2: Set δ = true, λ = 1, and γ = 0
3: while δ do
4: Set R = ∅
5: k′ = k(1 + λ ∗ r)
6: R ∪ Retrieve k′ objects closest to Hilbert value VH from the server
7: Filter out the spatial objects encrypted with SEKS in R

8: if |R| ≥ k then
9: δ = false

10: else
11: λ = λ + 1
12: end if
13: end while
14: for i = 0; i < |R|; i++ do
15: if Dist(Q, si) > γ then
16: γ = Dist(Q, si)

/* si ∈ R */
17: s∗ = si

18: end if
19: end for
20: Compute the edge length of QR by Dist(Q, s∗)
21: R

′ = QIARQ(QR)
22: Set γ = ∞, λ = 0, and R = ∅
23: for j = 0; j < |R′|; j++ do
24: if λ < k then
25: λ = λ + 1
26: R = R ∪ sj

27: else
28: sort R in ascending order of distance to Q and retrieve the last element as sk

29: if Dist(Q, sk) > Dist(Q, sj) then
30: Replace sk with sj

31: end if
32: end if
33: end for

upper bound, the client has to identify the top k objects in R
′ based on their

distance to Q to acquire the final query result.
We illustrate k-nearest-neighbor query integrity auditing with an example in

Figure 4. The client first encodes the location of the query point with SEKP

and computes its VH = 30. Afterward, the client launches a kNN query with the
numbers of VH and k′. The service provider searches DE for objects with Hilbert
values ≥ 30 and < 30 in parallel until k′ objects are found as demonstrated in
Figure 4(a). Next, the client interacts with the server until k objects encrypted
in SEKP are retrieved. Among the k valid objects, assume the one which has
the longest distance to Q has Hilbert value 32 and then we can obtain the
search window edge length as five units. Subsequently, the client launches a

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 91

Fig. 4(a) Finding the search upper
bound

Fig. 4(b) Auditing range query QA

Fig. 4. A query integrity assured k-nearest-neighbor query

query integrity assured range query for searching k nearest objects of Q as the
exact query result as showed in Figure 4(b).

5.4 Attack-Aware Auditing Query Composition

The purpose of our dual space encryption design is to allow for sophisticated
cross examination. Mobile users carry out cross examination against a single
spatial database that has two different encryptions. However, negligent auditing
queries launched by clients may reveal critical information to allow malicious
LBS providers to detect the correspondence among the data with different en-
cryption keys. For example, assume a client launches an auditing query after
every regular query. Then, a malicious service provider can easily learn the re-
lationship between the two queries and remove the query results of both queries
to jeopardize future queries without being detected by clients.

In order to defend against the aforementioned attack, we need more advanced
solutions for composing auditing queries. Generally, we want to create a checking
query QA, which will not leak any correspondence information among the data
objects in DE . In addition, QA should be hard to differentiate from other regular
queries. Consequently, the main principle is to apply a single query to evaluate
the integrity of multiple queries. Because spatial queries launched by the same
mobile client usually exhibit locality [10], the query range overlap between suc-
cessive queries from identical user is significant. By evaluating the integrity of
multiple queries at a time, we can improve security and decrease integrity audit-
ing overhead to save energy of mobile devices. Based on the memory capacity,
a client can decide the threshold to generate a checking query for a group of
executed regular queries Q = {q1, . . . , qn} by merging their query regions. Only
queries whose results contain replicas should be included in Q.

6 Experimental Validation

We use Hilbert curves as a space encoding approach to encrypt spatial informa-
tion in outsourced databases. It has been proved in [9] that without knowing

92 W.-S. Ku et al.

Table 2. The simulation datasets

Name Number of POIs Source
Uniform 10, 163 Synthetic
Skewed 10, 163 Synthetic
Los Angeles (LA) 10, 163 NAVTEQ
California (CA) 62, 556 US Census Bureau
North America (NA) 569, 120 US Census Bureau

the space encryption key, a brute force attack will need to exhaustively search
all possible key combinations and the complexity of the attack is O(24b) where
b is the number of bits for each parameter. Hence, the Hilbert curve based
encryption method is employed as a one way function in our design. Table 2
illustrates two synthetic datasets and three real-world datasets utilized in our
experiments. The two synthetic datasets of 10K data points each represent uni-
form and skew distributions, respectively. Los Angeles is a dataset containing
around 10K restaurants inside a geographic area measuring 26 miles by 26 miles
in the City of Los Angeles, California. The last two datasets consist of points of
interest (POI) across California (61K) and North America (556K). Our query
integrity assurance algorithms were implemented in Java and the experiments
were conducted on a Windows Vista PC with Intel Core 2 Duo 3.16GHz pro-
cessor and 4GB memory. All simulation results were recorded after the system
model reached a steady state.

6.1 Encoded POI Density

We first show the relationship between Hilbert curve orders and the number of
POIs encoded by one Hilbert value (POI density). A higher Hilbert curve order
increases the security level of the corresponding space encryption key while on the
other hand, a higher curve order will incur higher computational complexity. As
Figure 5 shows with both synthetic and real-world datasets the number of POIs
per Hilbert value decreases rapidly as the curve order increases. The average num-

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10 11 12 13

Curve Order

P
O

I
n

u
m

b
e
r

p
e
r

H
-v

a
lu

e

Los Angeles
California
North America

1

10

100

1000

2 3 4 5 6 7 8 9 10 11 12 13

Curve Order

P
O

I
n

u
m

b
e
r

p
e
r

H
-v

a
lu

e

Los Angeles
Uniform
Skewed

Fig. 5(a) POI density on different
size of datasets

Fig. 5(b) POI density on different
data distributions

Fig. 5. The relationship between curve order and POI density

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 93

ber of POIs per non-empty Hilbert value reaches 1 when the curve order is greater
than 12. An empty Hilbert value means that there is no POI associated with it and
we discard these empty values during the initialization process. Hence, we use the
default curve order of 12 for space encryption unless specified explicitly.

6.2 Spatial Database Outsourcing Initialization

There are three major operations in the initialization process for our spatial
database outsourcing approach: (1) computing Hilbert values for all data objects
based on their locations; (2) encrypting each data object with the symmetric key;
and (3) calculating the cryptographic signature for each object. There are various
algorithms for (2) and (3) and the cost of each may vary. We used the Blowfish
encryption algorithm [19] and MD5 (Message-Digest algorithm 5) for signature
computation. We perform the data initialization process on all the three real-
world datasets with 40% duplication rate and curve order of 12. The cost of each
operation in Figure 6 shows that computing the Hilbert values is efficient and
less expensive than the other two operations.

0

500

1000

1500

2000

2500

3000

LA CA NA
Datasets

C
PU

 c
os

t (
m

s) H-value
Encryption
Signature

Fig. 6. Initialization cost of the proposed spatial database outsourcing approach

6.3 Query Processing on the Client Side

For range queries, the client performs a transformation from range query window
to Hilbert curve segments and sends these segments to the service provider. A
kNN query, as described in Algorithm 2, is split into two parts: retrieve k nearest
POIs simply based on the Hilbert value of the query point and launch a range
query using the distance of the kth point in the previous operation as the search
upper bound.

The transformation cost on the client side is analyzed in this experiment. We
extended the size of range query windows from 0.01 to 0.05 on the normalized
dataset and varied curve orders from 10 to 15. Figure 7 demonstrates the average
cost of 50 range queries on the Los Angeles dataset with the aforementioned set-
tings. Based on the results, we can see that it is efficient to compute Hilbert curve
segments with a given SEK and the client does not need to store any information
other than the SEK. Hilbert curve segments are represented by the start and the
end values and are transmitted to the service provider to retrieve spatial objects.

94 W.-S. Ku et al.

0

200

400

600

800

0.01 0.02 0.03 0.04 0.05

Query window extent

C
P

U
 c

o
s

t
(m

s
)

10
11
12
13
14

Fig. 7. Query processing cost on the client side

6.4 Integrity Auditing

Clients employ QIARQ and QIAKNN to verify if the spatial query results are
both correct and complete when receiving query results. There are three oper-
ations in the query result authentication process: (1) decrypt each data object;
(2) verify the signature of every retrieved object; and (3) check the counterpart
existence of each object with a duplicate. The cost of (1) and (2) are constant
per object given the same encryption method. Therefore, we only show the cost
of (3) in Figure 8 for range queries at different range extents and data repli-
cation percentage. Verifying query results is efficient when the size of the data
returned is small, which is the case in general for common kNN queries and range
queries with small extents. To better illustrate the authentication cost, we use
the California dataset here with query window extent varying from 0.02 to 0.1
and replication percentage changing from 10% to 50% on the normalized data.
The returned POI number and CPU cost increase linearly when we enlarge the
query window and replication ratio as shown in Figure 8.

6.5 Communication Cost

We study the communication cost by considering the size of data transferred
between the client and the service provider. Network delays and packet retrans-
mission due to unstable connections are not the focus of this research and hence
they are not considered in this experiment. A round trip of a query-and-answer
process between a client and a server can be split into two parts and each of them

0

300

600

900

1200

0.02 0.04 0.06 0.08 0.1

Query window extent

C
P

U
 c

o
s
t

(m
s
)

0

100

200

300

400

500

600

700

800

900

N
u

m
b

e
r

o
f

P
O

Is

POIs
10%
20%
30%
40%
50%

Fig. 8. Cost of authenticating query results

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 95

dual info

0

10

20

30

40

50

0.01 0.02 0.03 0.04 0.05
Query window extent

C
om

m
un

ic
at

io
n

co
st

 (K
B

)

10
11
12
13
14

0

10

20

30

40

50

0.01 0.02 0.03 0.04 0.05
Query window extent

C
om

m
un

ic
at

io
n

co
st

 (K
B

)

10%
20%
30%
40%
50%

Fig. 9(a) Client-to-server communi-
cation cost

Fig. 9(b) Server-to-client communi-
cation cost

Fig. 9. The cost of communication between a client and a service provider

are affected by different factors. The query transfer from a client to a server is
composed of multiple Hilbert curve segments and the size of which is related to
the Hilbert curve order in the applied SEK. The result returning back from the
service provider contains all the POIs with respect to the query and the size is
determined by the distribution of POIs, the extent of the query range (or the
number k for a kNN query), and the replication percentage of the outsourced
database. We assume the size of every data object is 1KB. In Figure 9(a), the
communication cost is measured by the number of segments transmitted and
in Figure 9(b), it is measured by the number of objects in the transmission.
The experiments were performed on the Los Angeles dataset and the trend was
similar for other datasets. As it can be observed from the figures, the communi-
cation cost increases linearly when we expand the curve order or the replication
percentage with the same query window extent.

6.6 Against Malicious Attacks

Modifying and adding data objects in an outsourced spatial database can be
easily detected by our integrity auditing algorithms, which results in one of the
two cases: unable to perform decryption on the tampered data or inconsistent
cryptographic signatures. Consequently, the attack model studied in this exper-
iment primarily focuses on data object deletion by malicious service providers.
We conducted the simulation on the Los Angeles dataset using randomly gen-
erated queries with the extent of 0.04 on the normalized coordinates. With dif-
ferent data replication ratio, the server launches random deletion attacks on
query results. Figure 10 shows the probability that the attacker can escape from
client auditing process versus the total number of data objects deleted from a
query result. As we can see from the figure, with more than 20% replication, the
probability of not detecting a deletion declines rapidly as the service provider
deletes more data objects.

96 W.-S. Ku et al.

0%

20%

40%

60%

80%

1 2 3 4 5 6 7

of Deleteions

P
ro

b
a

b
il
it

y
 o

f
e

s
c

a
p

in
g

 d
e

te
c

ti
o

n

10%
20%
30%
40%
50%

Fig. 10. Probability of escaping detection of deletion attacks

7 Conclusions

Outsourcing of spatial databases for supporting location-based services has be-
come a trend in recent years due to the economy of scale. Existing solutions are
designed for data privacy protection or query integrity auditing, respectively,
instead of considering both data privacy and query integrity as a whole. We
have introduced query integrity assured algorithms for both range query and k-
nearest-neighbor query with space encryption techniques to secure data privacy.
We have demonstrated through simulation results that our mechanisms have
remarkable performance. For future work, we plan to extend our algorithms to
support more spatial query types such as spatial join, spatial path queries, etc.

Acknowledgements

This research has been funded in part by the US National Science Foundation
(NSF) grants IIS-0238560 (PECASE), IIS-0534761, IIS-0742811, CNS-0831502
(CT), and CNS-0831505 (CT), and in part from the METRANS Transporta-
tion Center, under grants from USDOT and Caltrans. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-Preserving Encryption for
Numeric Data. In: SIGMOD Conference, pp. 563–574 (2004)

2. Butz, A.R.: Alternative Algorithm for Hilbert’s Space-Filling Curve. IEEE Trans.
Comput. 20(4) (1971)

3. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.: Authentic Third-party
Data Publication. In: DBSec, pp. 101–112 (2000)

4. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

Query Integrity Assurance of LBS Accessing Outsourced Spatial Databases 97

5. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over En-
crypted Data in the Database-service-provider Model. In: SIGMOD Conference,
pp. 216–227 (2002)

6. Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing Database as a Service. In:
ICDE, p. 29 (2002)

7. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathe-
matische Annalen (38), 459–460 (1891)

8. Jagadish, H.V.: Linear Clustering of Objects with Multiple Atributes. In: SIGMOD
Conference, pp. 332–342 (1990)

9. Khoshgozaran, A., Shahabi, C.: Blind Evaluation of Nearest Neighbor Queries Us-
ing Space Transformation to Preserve Location Privacy. In: Papadias, D., Zhang,
D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidel-
berg (2007)

10. Ku, W.-S., Zimmermann, R., Wang, H.: Location-Based Spatial Query Processing
in Wireless Broadcast Environments. IEEE Trans. Mob. Comput. 7(6), 778–791
(2008)

11. Lawder, J.K., King, P.J.H.: Querying multi-dimensional data indexed using the
hilbert space-filling curve. SIGMOD Record 30(1), 19–24 (2001)

12. Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

13. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Cluster-
ing Properties of the Hilbert Space-Filling Curve. IEEE Trans. Knowl. Data
Eng. 13(1), 124–141 (2001)

14. Mouratidis, K., Sacharidis, D., Pang, H.: Partially Materialized Digest Scheme: An
Efficient Verification Method for Outsourced Databases. VLDB J. 18(1), 363–381
(2009)

15. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and Integrity in Out-
sourced Databases. In: NDSS (2004)

16. Orenstein, J.A.: Spatial Query Processing in an Object-Oriented Database System.
In: SIGMOD Conference, pp. 326–336 (1986)

17. Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.: Verifying Completeness of Re-
lational Query Results in Data Publishing. In: SIGMOD Conference, pp. 407–418
(2005)

18. Papadopoulos, S., Papadias, D., Cheng, W., Tan, K.-L.: Separating Authentication
from Query Execution in Outsourced Databases. In: ICDE (2009)

19. Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blow-
fish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer,
Heidelberg (1994)

20. Schneier, B.: Applied Cryptography (2nd ed.): Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., New York (1996)

21. Sion, R.: Query Execution Assurance for Outsourced Databases. In: VLDB,
pp. 601–612 (2005)

22. Sommerville, I.: Software Engineering, 8th edn. Addison-Wesley, Reading (2006)
23. Wang, H., Yin, J., Perng, C.-S., Yu, P.S.: Dual Encryption for Query Integrity

Assurance. In: CIKM, pp. 863–872 (2008)
24. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Spatial Outsourcing for

Location-based Services. In: ICDE, pp. 1082–1091 (2008)
25. Yiu, M.L., Ghinita, G., Jensen, C.S., Kalnis, P.: Outsourcing of Private Spatial

Data for Search Services. In: ICDE (2009)

A Hybrid Technique for Private Location-Based Queries
with Database Protection�

Gabriel Ghinita1, Panos Kalnis2, Murat Kantarcioglu3, and Elisa Bertino1

1 Purdue University, West Lafayette, IN 47907, USA
{gghinita,bertino}@cs.purdue.edu

2 King Abdullah University of Science and Technology, Jeddah, Saudi Arabia
panos.kalnis@kaust.edu.sa

3 University of Texas at Dallas, Richardson, TX 75080, USA
muratk@utdallas.edu

Abstract. Mobile devices with global positioning capabilities allow users to re-
trieve points of interest (POI) in their proximity. To protect user privacy, it is
important not to disclose exact user coordinates to un-trusted entities that pro-
vide location-based services. Currently, there are two main approaches to protect
the location privacy of users: (i) hiding locations inside cloaking regions (CRs)
and (ii) encrypting location data using private information retrieval (PIR) pro-
tocols. Previous work focused on finding good trade-offs between privacy and
performance of user protection techniques, but disregarded the important issue of
protecting the POI dataset D. For instance, location cloaking requires large-sized
CRs, leading to excessive disclosure of POIs (O(|D|) in the worst case). PIR,
on the other hand, reduces this bound to O(

√
|D|), but at the expense of high

processing and communication overhead.
We propose a hybrid, two-step approach to private location-based queries,

which provides protection for both the users and the database. In the first step,
user locations are generalized to coarse-grained CRs which provide strong pri-
vacy. Next, a PIR protocol is applied with respect to the obtained query CR. To
protect excessive disclosure of POI locations, we devise a cryptographic proto-
col that privately evaluates whether a point is enclosed inside a rectangular re-
gion. We also introduce an algorithm to efficiently support PIR on dynamic POI
sub-sets. Our method discloses O(1) POI, orders of magnitude fewer than CR-
or PIR-based techniques. Experimental results show that the hybrid approach is
scalable in practice, and clearly outperforms the pure-PIR approach in terms of
computational and communication overhead.

1 Introduction

Mobile devices with positioning capabilities (e.g., GPS) facilitate access to location-
based services that provide information relevant to the users’ geo-spatial context.
Typically, users are interested in finding nearby points of interest (POI), and send

� The work reported in this paper has been partially supported by NSF grant 0712846 “IPS:
Security Services for Healthcare Applications”, and MURI award FA9550-08-1-0265 from
the Air Force Office of Scientific Research.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 98–116, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Hybrid Technique for Private Location-Based Queries 99

nearest-neighbor (NN) queries to location servers (LS) that own databases of POI. How-
ever, users are reluctant to disclose their exact locations to the un-trusted LS, since sen-
sitive details about lifestyle, political or religious affiliation, etc., can be revealed by a
person’s whereabouts.

To address this threat, user locations are perturbed before being reported to the LS.
On the other hand, replacing exact locations with coarse regions requires the disclosure
of a large number of POIs to the user, such that result correctness is preserved. However,
the LS wishes to protect its data against excessive disclosure, since the POI dataset rep-
resents a valuable asset to the service provider. For instance, consider that Bob asks the
query “find the nearest restaurant to my current location”. The LS may reward Bob with
certain discounts, in the form of electronic coupons (e.g., digital gift card codes) that
are associated with each POI. If the user is billed on a “per-retrieved-POI” basis, then
a large number of results will increase the cost of using the service. On the other hand,
if the LS offers the service with no charge to the user (e.g., advertisement-generated
income), then users could abuse the system by redeeming a large number of coupons.
This causes the LS to lose its competitive edge, and to cease providing the service.

Existing solutions for private location queries focus on user protection only, and can
be broadly classified into two categories:

1. Location Cloaking techniques replace the exact location of a user with a cloaking
region (CR), typically of rectangular shape. To ensure result correctness, the CR
must enclose the actual user location. Furthermore, CRs must satisfy certain con-
straints dictated by a privacy paradigm, which expresses the privacy requirements
of the user (e.g., spatial k-anonymity (SKA) [1,2,3,4] requires each CR to contain
at least k distinct users). Regardless of the method used to generate the CR, query
processing at the LS side is performed with respect to a rectangular region, as op-
posed to an exact user location. In consequence, the result returned by the LS is a
super-set of the actual query result.

2. Private Information Retrieval (PIR) techniques rely on a cryptographic protocol
to achieve query privacy [5]. In a pre-processing phase, the LS organizes the POI
database into a data structure relevant to the supported type of query1, and maps it
to an ordered array D[1 . . .n]. At runtime, a query is transformed from a context-
based (i.e., spatial) query to a query-by-index (i.e., return the ith item), according to
the pre-defined data organization which is known by the users. When a user wishes
to retrieve D[i], s/he creates an encrypted query object q(i). Using a mathematical
transformation, the LS computes privately (i.e., without learning the value of i)
the result r(D, q(i)) and sends it back to the user. PIR protocols ensure that it is
computationally hard for the LS to recover the value i from q(i), but at the same
time the user can easily re-construct D[i] from r.

Previous work [3,4,5] evaluates location privacy techniques based on two criteria: pri-
vacy and performance. With respect to privacy, PIR offers strong guarantees for both
one-time, as well as repetitive (i.e., continuous) queries. Furthermore, PIR does not re-
quire trusted components, such as anonymizer services or other trusted users. On the
other hand, CR methods operate under a more restrictive set of trust assumptions, but

1 For instance, to answer NN queries, [5] uses a Voronoi diagram mapped to a regular grid.

100 G. Ghinita et al.

Fig. 1. Benefit of the Hybrid Approach

are considerably more efficient in terms of computational and communication over-
head. The cryptographic elements incorporated in PIR require powerful computational
resources (e.g., parallel machines), and high-bandwidth communication channels.

However, there is a third, equally-important dimension in evaluating techniques for
private location queries: the amount of protection provided to the database. To the best
of our knowledge, this aspect has not been addressed before2. Nevertheless, as illus-
trated by the earlier customer-reward example, it is important to control tightly the
amount of POI disclosure.

To illustrate the limitations of existing approaches, consider the example of Figure 1,
where the location server stores a database D of 15 POI (marked as full dots). User u
asks a query for the nearest POI. If location cloaking is used (Figure 1(a)), the user will
retrieve all the 7 POI enclosed3 by query CR Q. As CRs grow large, location cloaking
methods may disclose a large fraction of the database (possibly linear to |D|). On the
other hand, the NN protocol from [5] does not use CRs (a detailed protocol description
is given in Section 2). Instead, the dataset is partitioned into rectangular tiles A . . . D,
containing at most �

√
15� = 4 POI each (Figure 1(b)). The boundaries of the tiles

are sent in plain text to u, who determines that his/her location is enclosed by tile C.
Only the POIs in tile C are revealed to u through a PIR request. This method discloses
O(

√
|D|) exact POI locations. However, revealing the tile boundaries may result in

additional disclosure of POI locations, especially if the tiles have small spatial extent.
We propose a hybrid approach, outlined in (Figure 1(c)). The CR Q is sent to the

LS, which determines a set of fine-grained tiles {a, b, c} that cover the query area. We
impose a constraint that each tile encloses at most a constant number F of POI (a system
parameter). The boundaries of the tiles are not sent to the user. Instead, the user and the
LS engage in a novel cryptographic protocol that privately determines which one of the
tiles encloses the location of u. At the end of the protocol, the LS learns nothing about
the user location (except that u is inside Q), whereas the user only learns the identifier
of the tile that encloses u (but not the boundaries of any of the tiles). Finally, the user

2 Previous work considered result set size only in the context of communication cost. However,
this indirect approach is not effective due to other factors that influence bandwidth consump-
tion (e.g., POI size may be negligible in comparison with other traffic components).

3 The example considers an approximate query, where candidate NNs outside Q are ignored.

A Hybrid Technique for Private Location-Based Queries 101

requests through PIR the contents of the enclosing tile4 (in this case, b). The hybrid
approach has two benefits: first, it controls strictly the amount of POI disclosed, which
is bounded by a constant. This improvement is clearly superior to location cloaking and
pure-PIR approaches, which disclose O(|D|) and O(

√
|D|) POI, respectively. Second,

the hybrid approach incurs considerably less overhead than the pure PIR method, since
the cryptographic protocol is applied only on a partition of the database.

The contribution of this work is two-fold:

(i) We propose a cryptographic protocol which allows private evaluation of point-
rectangle enclosure. We use this protocol as a building block in determining the
nearest POI to a given user location. This protocol can be easily adapted to other
types of spatial queries (e.g., private spatial joins), and represents an interesting
finding in itself.

(ii) We develop a hybrid approach that efficiently supports PIR processing with re-
spect to a user-generated cloaked region Q. The proposed method can handle CRs
with large extents, and controls tightly the amount of disclosed POI. Furthermore,
we show experimentally that it is considerably more efficient than its PIR-only
counterpart.

The rest of the paper is organized as follows: Section 2 surveys related work. Section 3
outlines the system architecture and the privacy assumptions. Section 4 introduces the
proposed protocol for private evaluation of point-rectangle enclosure, whereas Section 5
presents the hybrid technique for processing PIR requests based on dynamic cloaking
regions. We present the results of our experimental evaluation in Section 6, and con-
clude with directions for future research in Section 7.

2 Related Work

Several approaches to private location queries have been proposed. In [6], the querying
user sends to the server k − 1 fake locations to reduce the likelihood of identifying
the actual user position. SpaceTwist [7] performs a multiple-round incremental range
query protocol, based on a fake anchor location that hides the user coordinates. In [8],
a random cloaking region that encloses the user is generated. However, neither of these
techniques is suitable if an adversary possesses background knowledge about user lo-
cations. Most CR-based solutions [2,1,4,3] implement the spatial k-anonymity (SKA)
paradigm, and rely on a three-tier architecture: a trusted anonymizer service interme-
diates all interaction between users and LS, and generates CRs that contain at least k
real user locations. If the resulting CRs are reciprocal [4], SKA guarantees privacy for
snapshots of user locations. However, supporting continuous queries [9] requires gen-
erating large-sized CRs. In [10,11], the objective is to prevent the association between
users and sensitive locations. Users define privacy profiles [11] that specify their sen-
sitivity with respect to certain feature types (e.g., hospitals, bars, etc.), and every CRs
must cover a diverse set of sensitive and non-sensitive features. A common limitation
of CR-based techniques is that they disclose an excessive number of POIs.

4 The indexing scheme we employ (Section 5) guarantees that the retrieved tile is not empty.

102 G. Ghinita et al.

Fig. 2. Approximate NN PIR Protocol from [5]

In [12], the set of POI is first encoded according to a secret transformation by a
trusted entity. A Hilbert-curve mapping (with secret parameters) transforms 2-D points
to 1-D. Users (who know the transformation key) map their queries to 1D, and the
processing is performed in the 1-D space. However, the mapping can decrease the result
accuracy, and the transformation may be vulnerable to reverse-engineering.

Private Information Retrieval (PIR) protocols allow users to retrieve an object Xi

from a set X = {X1 . . . Xn} stored by a server, without the server learning the value of
i. The PIR concept was first formulated in [13], where it is shown that in the information
theoretic setting, any single-server solution requires Θ(n) communication cost. In prac-
tice, this bound can be reduced by employing Computational PIR (cPIR), which offers
protection against an attacker with polynomially-bounded computational capabilities.
The PIR protocol in [14] relies on the Quadratic Residuosity Assumption (QRA), which
states that it is computationally hard to find the quadratic residues (in modulo arithmetic)
of a large composite number N = q1 · q2 (q1, q2 are large primes). Specifically, given a
number y ∈ Z

+1
N (Z+1

N is the sub-set of ZN for which the Jacobi symbol [15] is +1) it
is computationally hard (without knowing the factorisation of N) to determine whether
y is a quadratic residue (QR) (i.e., ∃x ∈ ZN |y = x2 mod N) or a non-residue (QNR).
Assume that all objects in X are bits. The client sends the server an ordered array of n
numbers Y = [y1 · · · yn], such that yi is QNR, whereas all the others are QR. The server
performs a masked multiplication of values in Y , i.e., it multiples together only the yj

values for which Xj = 1. The client, who knows the factorisation of N , can determine
that if the result of the multiplication is QNR, then Xi = 1, otherwise Xi = 0. The
protocol can be applied bit-by-bit to support more complex objects.

The work in [5] extends the above-mentioned protocol for binary data to the LBS
domain, and proposes approximate (ApproxNN) and exact (ExactNN) protocols for
nearest-neighbor queries. However, ExactNN is very expensive. Furthermore, Ap-
proxNN achieves very good accuracy in practice. The idea behind [5] is to organize
the POI set such that spatial queries (e.g., NN) can be translated to queries “by-index”,
which are then answered using the QRA-based protocol. Our work proposes a hybrid
alternative to answer approximative queries, and since ApproxNN is used as a baseline
in our experimental evaluation, we provide an overview of its functionality. In an off-
line phase, the server performs a partitioning of the POI set D using an R∗-tree index,
which is constrained to have exactly two levels. Therefore, each leaf node holds at most√
|D| POI, and the root node contains at most

√
|D| minimum bounding rectangles

(MBR). Figure 2 shows the obtained index for the partitioned dataset in Figure 1(b). At
query time, the user u first retrieves the root node in plaintext, and determines which
leaf node encloses, or is nearest to, u’s location. Next, u retrieves privately the contents

A Hybrid Technique for Private Location-Based Queries 103

of the selected leaf node. There are three limitations of this approach: (i) a large num-
ber (O(

√
|D|)) of POI are directly disclosed, (ii) sending MBRs of leaf nodes to the

user can indirectly disclose additional POI locations and (iii) the computational com-
plexity of the PIR phase is O(|D|), as all data elements are considered, and bandwidth
consumption is high.

Several protocols that support secure multy-party computational geometry have been
proposed. For instance, in [16] it is shown how to compute privately point-rectangle in-
clusion using secure scalar products, whereas [17] introduces a protocol for private
point-circle inclusion evaluation. However, these protocols rely on SMC [18] prim-
itives, and as a result they are very expensive and require multiple communication
rounds. In contrast, our proposed point-rectangle evaluation protocol uses homomorh-
pic encryption, and only requires a single communication round.

3 System Architecture and Assumptions

3.1 Privacy Model

Many privacy models that rely on location cloaking have been proposed in literature
[1,2,3,4,10,11]. The proposed hybrid approach can be used in conjunction with any of
these methods. For instance, CRs can be built according to the spatial k-anonymity
paradigm [1,2,3,4], which requires that at least k distinct user locations must be en-
closed by the CR. Alternatively, CRs can be determined based on user-specified sensi-
tivity thresholds with respect to a set of sensitive feature types [10,11]. The particular
choice of privacy paradigm and CR generation technique is outside the scope of this
work. We consider the CR as an input to our method, and we focus on two aspects:
(i) how to efficiently perform PIR with respect to dynamically-generated CRs, and (ii)
how to control tightly the amount of disclosed POIs. We do, however, factor in our
system design provisions for CRs with large spatial extents, suitable to accommodate
highly-demanding privacy requirements.

Note that, it has been discussed previously [5] that location cloaking may not be
suitable for highly-mobile users issuing continuous queries. However, as shown in [9],
cloaked regions can be generated in a manner that accommodates continuous queries.
Furthermore, if the CR is large enough to cover an entire user trajectory, private contin-
uous queries can be supported with strong privacy guarantees. To illustrate this claim,
consider the example of user Jin, who often visits karaoke lounges. Jin wishes to keep
her passion for karaoke secret, so she does not want a malicious attacker to learn that
she was in the proximity of such an establishment. On the other hand, Jin may be com-
fortable with disclosing the fact that she is currently in Koreatown, which is a large area.
In addition, while Jin remains within the perimeter of Koreatown, her privacy is pro-
tected even if she issues continuous queries. In Section 6, we experimentally evaluate
our proposed method using CRs that cover large portions of the dataspace.

3.2 System Overview

The proposed system architecture is shown in Figure 3. The system model is flexible,
and can accommodate several distinct solutions for creating input CRs. For instance,

104 G. Ghinita et al.

Fig. 3. System Architecture

users can cloak their locations by themselves, as considered in [10,11]. Alternatively,
users can send their queries to a trusted anonymizer service which creates the CRs
[1,2,3,4]. Or, users can build CRs in a collaborative fashion [19,20,21].

Given the query CR Q, the LS returns the approximate NN POI of the user by exe-
cuting a two-round protocol, as shown in Figure 3. In the first round (arrows labeled 1),
the user5 generates an encryption (E)/decryption (D) key pair, which are part of a ho-
momorphic encryption family, such as Paillier [22]. The user sends to the LS the query
CR Q, together with the encryption (i.e., public) key E and the encrypted user coor-
dinates E(xu) and E(yu). The LS processes the query Q, and partitions the result set
into disjoint rectangular regions, or tiles. Each tile contains a number of POI bounded
by constant F , which is a system parameter. In this case, the set of tiles {R1, R2, R3} is
obtained. The LS evaluates privately, using the properties of homomorphic encryption6,
the enclosure condition between point (xu, yu) and the resulting tiles. The encrypted
evaluation outcome is returned to the user, who will decrypt and find which of the given
rectangles encloses its location, in this case R2. The private point-rectangle enclosure
evaluation is necessary because the resulting query result tiles can be arbitrarily small.
Sending these tiles in plain text to the user (as it is done in [5], with the root of the
two-level index) would give away excessive information about the distribution of POI.
Finally, in the second round of the protocol, the user issues a private request for the
contents of R2, and determines which of the retrieved POI is closest to his/her location.

4 Private Evaluation of Point-Rectangle Enclosure

In this section, we introduce a two-party protocol between parties A and B, which
determines privately whether a given point p owned by A is enclosed in a rectangle R
owned by B. The protocol protects the privacy of both parties involved. Specifically, A
learns only if the point p is enclosed by R, but does not find any additional information
about R. In addition, B does not learn any information about the point p of A.

Our protocol relies on the Paillier public-key homomorphic encryption scheme intro-
duced in [22]. Paillier encryption operates in the message space of integers ZN , where

5 Alternatively, the trusted anonymizer or a trusted peer can perform the described protocol on
behalf of the user.

6 Details about the private evaluation of point-rectangle enclosure are given in Section 4.

A Hybrid Technique for Private Location-Based Queries 105

N is a large composite modulus. Similar to the PIR protocol in [14] (described in Sec-
tion 2), the security of Paillier encryption relies on the QRA assumption with respect to
modulus N . Denote by D and E the decryption and encryption functions, respectively.
Given the ciphertexts E(m1) and E(m2) of plaintexts m1 and m2, the ciphertext of the
sum m1 + m2 can be obtained by multiplying individual ciphertexts:

D(E(m1) · E(m2)) = (m1 + m2) mod N (1)

In addition, given ciphertext E(m) and plaintext r ∈ ZN , we can obtain the ciphertext
of the product r · m by exponentiation with r, as follows:

D(E(m)r) = r · m mod N (2)

Furthermore, Paillier encryption provides semantic security, meaning that encrypting
the same plaintext with the same public key E twice will result in distinct ciphertexts.
Therefore, the scheme is secure against chosen plaintext attacks.

In our setting, the querying user wishes to find whether his/her location is enclosed
inside some rectangular region R stored by the server. This can be achieved by privately
evaluating the difference between the user coordinates and the boundary coordinates of
rectangle R. Furthermore, to prevent leakage of POI locations, only the sign of the
difference should be revealed to the user, and not the absolute value.

We introduce the protocol for private evaluation of point-rectangle enclosure in an
incremental fashion. Assume that parties A and B hold two numbers a and b, respec-
tively. In Section 4.1 we show how to privately evaluate sign(b−a). Next, in Section 4.2
we give the complete protocol for point-rectangle inclusion.

4.1 Private Evaluation of sign(b − a)

We show how to evaluate privately sign(b − a) in two steps: first, we give an auxiliary
protocol that privately evaluates the difference (b − a). Then, we extend the auxiliary
protocol to disclose only the sign of the difference, but not its absolute value. Note that,
the difference protocol has no practical value by itself, since disclosing the value of
(b − a) to one of the parties (say A) automatically discloses the value held by the other
party (since A can determine the value of b based on b− a and a). However, the private
difference protocol introduces a construction that is later used in the private evaluation
of sign(b − a).

Paillier encryption allows the computation of the ciphertext of sums based on the
ciphertexts of individual terms. However, only the addition operation is supported, and
not subtraction. Furthermore, the message space ZN consists of positive integers only,
hence the trivial solution of setting m1 = (−a), m2 = b and computing E(m1) ·
E(m2) = E(b−a) is not suitable. We overcome this limitation imposed on the message
space by simulating complement arithmetic for N -bit integers.

Assume that a, b ∈ ZN ′ , where N ′ < N . Party A computes m1 = N − a and sends
E(m1) to B, who in turn sets m2 = b, and determines

E(m3) = E(m1) · E(m2) = E(m1 + m2) = E(N + (b − a)) (3)

106 G. Ghinita et al.

Fig. 4. Determining the value of b − a

Party B returns E(m3) to A who decrypts the message and learns the value of m3 =
N + (b − a). The difference b − a can be computed from m3 as shown in Figure 4.

Let I1 = {0, 1, . . . , N ′} and I2 = {N − N ′, . . . , N − 1}. If (b − a) ≥ 0, then
m3 ∈ I1, otherwise m3 ∈ I2. To correctly interpret the result, it is necessary that
I1 ∩ I2 = ∅. A sufficient condition to ensure that the two intervals are disjoint is

[(N ′ − 0 + 1)] + [(N − 1) − (N − N ′) + 1] ≤ N ⇔ N ′ ≤
⌊

N − 1
2

⌋
(4)

Party A determines that

b − a =
{

m3, 0 ≤ m3 ≤ N ′

−(N − m3), N − N ′ ≤ m3 ≤ N − 1 (5)

The pseudocode in Figure 5 details the protocol for private computation of (b − a).
The protocol requires only one round of communication. Note that, A can immediately
learn from (b − a) the value of b. Next, we show how to protect against this inference.

Private Evaluation (b-a)
Input: value a held by party A, b held by party B
Output: A learns (b − a), B learns nothing
1. A(Client): m1 = N − a
2. Send E, E(m1) to B
3. B(Server): m2 = b
4. E(m3) = E(m1) · E(m2)
5. Send E(m3) to A
6. A(Client): m3 = D(E(m3))
7. if (0 ≤ m3 ≤ N ′)
8. b − a = m3

9. else
10. b − a = −(N − m3)

Fig. 5. Private Evaluation of (b − a)

We modify the protocol for evaluating (b − a) to only disclose sign(b− a), without
revealing any additional information about b. The main idea is to multiply m3 in the
previous protocol by a random blinding factor7, such that the absolute value of (b − a)

7 Random blinding is a frequently-used operation in cryptographic protocols [23].

A Hybrid Technique for Private Location-Based Queries 107

can no longer be reconstructed by A. Consider random integer ρ uniformly distributed
in the set {1, 2, · · · , M}, such that

M ≤
⌊

N − 1
2N ′

⌋
(6)

(we will give the rationale for this condition shortly). Steps 1 − 4 of the protocol in
Figure 5 remain unchanged. However, in step 5, instead of sending E(m3) back to A,
B sends E(m4) obtained through exponentiation with plaintext ρ:

E(m4) = E(m3)ρ = E(ρ · m3) = E(ρ · (N + b − a)) (7)

The value of sign(b− a) can be computed from m4 as shown in Figure 6. In a similar

Fig. 6. Private Evaluation of sign(b − a)

manner to the protocol for difference, let I ′1 = {0, 1, . . . , M · N ′} and I ′2 = {N − M ·
N ′, . . . , N − 1}. If (b − a) ≥ 0, then m4 ∈ I ′1, otherwise m4 ∈ I ′2. This time, the
condition I ′1 ∩ I ′2 = ∅ is equivalent to

[(M · N ′ − 0 + 1)] + [(N − 1) − (N − M · N ′) + 1] ≤ N ⇔ N ′ ≤
⌊

N − 1
2M

⌋
(8)

hence the requirement in Eq. (6). Party A determines that

sign(b − a) =
{

+1, 0 ≤ m4 ≤ M · N ′

−1, N − M · N ′ ≤ m4 ≤ N − 1 (9)

The proof of Eq. (9) is immediate: if (a ≤ b), then 0 ≤ m3 ≤ N ′, and therefore
0 ≤ ρ · m3 ≤ M · N ′. On the other hand, if (a > b) we have N − N ′ ≤ m3 < N ,
therefore

M(N − N ′) mod N ≤ M · m3 < N ⇔ (N − M · N ′) mod N ≤ M · m3 < N

Note that, in practice, the additional constraint imposed on the domain size N ′ by
Eq. (8) does not represent a limitation. For security considerations, the magnitude of
modulus N must be at least 768 bits large. Consider values of a and b that can be repre-
sented on 64 bits, for instance. Such values are sufficiently large for many applications.
In this case, the random blinding factor domain will be bounded by M = 2768

2 · 1
264 ,

which is in the order of 2700, sufficiently large to obtain a strong degree of protection
through random blinding.

Security Discussion. The proposed private sign evaluation protocol (and consequently
the point-rectangle enclosure evaluation protocol) inherits the security strength pro-
vided by the random blinding. Note that, this level of security is weaker than the

108 G. Ghinita et al.

information-theoretic security features offered by other security primitives, such as se-
cure multi-party computation (SMC) [18], for instance. However, SMC protocols are
prohibitively expensive. On the other hand, random blinding offers good security fea-
tures given that the blinding factors are large.

4.2 Private Evaluation of Point-Rectangle Enclosure

The protocol for private evaluation of point-rectangle enclosure builds upon the sign
evaluation protocol of Section 4.1. Denote the user location by coordinates (xu, yu), and
let the server-stored rectangle R be specified by its lowest-left (LLx, LLy) and upper-
right (URx, URy) coordinates. We maintain the notations from the previous sections,
i.e., all coordinates x, y ∈ {0, 1, . . . , N ′} and the random blinding factors in the set
{0, 1, . . . , M}, such that Eq. (8) is satisfied. Consider the example in Figure 7(a): the
user location is situated inside the rectangle if and only if the four inequalities hold
simultaneously. Conversely, if any of the inequalities does not hold (Figure 7(b)), the
user is outside the rectangle (or on the boundary of R).

The enclosure condition can be privately evaluated by running the sign(b − a) pro-
tocol for each of the four inequalities, as shown in the pseudocode of Figure 8. The user
sends the server (lines 1-2) its public key E, as well as the encryption of messages mx

and my that encode the coordinates xu and yu as described in Section 4.1. The server
will compute the ciphertext of the four subtraction operations (two for each of the x
and y axes of coordinates), and blind them with random factors (lines 4-5). Note that,
the protocol incurs only one round of communication. Furthermore, if the user wishes
to evaluate enclosure with respect to more than one rectangle, the server can repeat the
steps 4-5 for all rectangles, but the number of communication rounds does not increase
(although the communication cost from the server to the user increases linearly to the
number of rectangles).

In practice, spatial coordinates are represented as floating point numbers, either in
single (32-bit) or double (64-bit) precision. On the other hand, Paillier encryption re-
quires the use of positive integers alone. Nevertheless, the message space ZN is large
enough to accommodate even the most demanding application requirements with re-
spect to coordinate precision. During the protocol execution, floating point values
are converted to fixed precision. For instance, assume that the spatial data domain is
[0, 106]2 and 6 decimal points are required. Then, 2 · �log(106)� = 34 bits are sufficient

Fig. 7. Arithmetic Conditions to Determine Point-Rectangle Enclosure

A Hybrid Technique for Private Location-Based Queries 109

Private Point-Rectangle Enclosure
Input: user location p = (xu, yu), server rectangle R = (LLx, LLy , URx, URy)
Output: true if p ∈ R, false otherwise
1. Client: mx = N − xu, my = N − yu

2. Send E, E(mx), E(my) to the server
3. Server: Generate random numbers r′x, r′y, r′′x , r′′y
4. E(m′

x) = (E(mx) · E(LLx))r′
x , E(m′′

x) = (E(mx) · E(URx))r′′
x

5. E(m′
y) = (E(my) · E(LLy))r′

y , E(m′′
y) = (E(my) · E(URy))r′′

y

6. Send E(m′
x), E(m′

y), E(m′′
x), E(m′′

y) to the client
7. Client: if ((0 ≤ m′′

x ≤ M · N ′) and (N − M · N ′ ≤ m′
x ≤ N − 1) and

8. (0 ≤ m′′
y ≤ M · N ′) and (N − M · N ′ ≤ m′

y ≤ N − 1))
9. return true
10. else
11. return false

Fig. 8. Protocol for Private Evaluation of Point-Rectangle Enclosure

for this representation, much lower than the magnitude of N . This leaves a very large
domain for the values of the random blinding factors.

5 Hybrid Protocol for Nearest-Neighbor Query Processing

We introduce a technique for processing PIR requests with respect to dynamically-
generated query CRs. This method overcomes the drawbacks of [5] (discussed in Sec-
tion 2), which performs PIR with respect to the entire POI dataset D. In the hybrid
approach, the server knows that the user is located inside query CR Q, and therefore it
can return a query result which discloses fewer POI and incurs less overhead.

A naive approach to restrict the set of POI included in the PIR protocol would work
as follows: first, the server determines the set PQ of POI that are located inside Q. Next,
the points in PQ are bulk-loaded into a two-level spatial index. Finally, the PIR retrieval
is performed as in [5] with respect to the obtained index. There are several drawbacks of
this approach: first, the index must be built on-line, which is time consuming. Second,
although the number of disclosed POI is reduced from

√
|D| to

√
|PQ|, the resulting

POI count can still be quite large, and it depends on the query Q (hence, it is not con-
stant). Third, the root node of the index is sent in plain-text to the user. This discloses
excessive information about the distribution of POI, since the minimum bounding rect-
angles (MBRs) of the leaf nodes may be small in size (especially if Q is not very large).
The proposed hybrid technique addresses all these limitations.

The requirement of a two-level index restricts the flexibility in determining cus-
tomized results for dynamic query CRs. We employ a multi-level index structure (com-
puted off-line) that can efficiently find at run-time the leaf nodes that intersect query
Q. Furthermore, we choose an index structure that strictly bounds the leaf node cardi-
nality below a threshold F . Another important factor in developing the index structure
is the fact that the cryptographic protocol of Section 4 allows private evaluation of
point-rectangle inclusion, but not distance evaluation. This is a direct consequence of

110 G. Ghinita et al.

Fig. 9. Hybrid Technique Overview

protecting the location of the POI. In order to ensure query correctness (i.e., that at
least one of the leaf nodes includes the user location) we employ a space-partitioning
index, rather than a data-partitioning one. We provide more details about the indexing
structure used in Section 5.1.

Figure 9 gives an overview of the entire query processing protocol. In step (a), the
user sends to the server the CR Q, as well as the encrypted user coordinates E(xu) and
E(yu). The server processes a range query with parameter Q (step (b)) and identifies all
leaf nodes (in this case, R1 and R2) that intersect Q. The server also executes the private
point-rectangle evaluation protocol (Section 4) and sends back to the user (step (c))
tuples (id(Ri); E((xu, yu) ∈ Ri)), i.e., a rectangle identifier and the encrypted result
of enclosure evaluation8. Next, in step (d), the user decrypts the enclosure evaluation
results and determines the identifier of the leaf node9 that encloses (xu, yu), in this case
R2. Finally, the user and the server engage in a PIR round to retrieve the contents of
R2 (step (e)). For clarity of presentation, we have highlighted each step individually.
However, there are only two communication rounds, as in the case of [5].

5.1 Indexing Structure

The choice of POI indexing structure is very important to the objectives of minimizing
the POI disclosure and reducing query processing overhead. We consider a structure
reminiscent of k-d-trees [24], which recursively cuts the space based on the number
of data points in each partition. However, as opposed to k-d-trees, we do not require
partition cuts to intersect data points. Furthermore, we do not restrict the axis of the cut

8 Note that, if disclosing the number of leaf nodes that intersect Q represents a privacy concern
for the database, the server can include randomly generated rectangles (that do not intersect
Q) in the enclosure evaluation phase, without affecting correctness.

9 Due to the non-overlapping indexing of POI, exactly one rectangle will enclose the user.

A Hybrid Technique for Private Location-Based Queries 111

Fig. 10. Split Heuristic

at each step, and we use a more advanced split heuristic that factors criteria such as the
perimeter of resulting partitions.

Consider the example of Figure 10(a), where the data is split according to median
cut C1, resulting in two sub-sets of equal cardinality (four points each). Assume that the
node capacity is F = 3. Two additional splits are performed according to cuts C2 and
C3, resulting in four leaf nodes of two points each. The median split has two drawbacks:
first, the number of POI retrieved by the user is less than the allowed value 3, which
may decrease the result accuracy (recall from Section 2 that we support approximate
NN queries). Second, there are a total of four leaf nodes, although the original 8 points
could be split into �8/3� = 3 nodes. A larger number of leaf nodes increases the cost
of the point-rectangle enclosure evaluation.

We employ a variation of the median split that controls tightly the cardinal-
ity of leaf nodes. Given the cardinality c of the current partition, we ensure
that at least one of the resulting partitions is a multiple of F . If this require-
ment is met at each cut, the amount of fragmentation (which is the reason why
the median split under-performed) is considerably reduced. Consider Figure 10(b):
there are two candidate splits across the x axis, Left and Right. Left places
�c/2/F � · F points to the left of the cut axis and c − �c/2/F � · F to the right,
whereas Right places (�c/2/F � + 1) · F points to the left and c − (�c/2/F � +
1) · F to the right. For each of these candidates, a benefit metric is evaluated,
which measures the sum of perimeters10 for the minimum bounding rectangles of
points in each partition. The candidate that minimizes the sum of perimeters (in
the example the Left split) is chosen11. A similar evaluation of candidate splits
is performed for the y axis. Figure 11 shows the pseudocode of the proposed
NodeSplit technique for data partitioning. NodeSplit considers both the x and y
axes, and chooses the split with the largest benefit (i.e., minimum sum of perime-
ters). Data points in the initial node U are sorted with respect to the selected axis
(line 1). Next, the costs of the candidate splits Costleft and Costright are eval-
uated as the sum of perimeters for the points in each region (lines 2 − 5). The
split position that yields the lowest cost is chosen (lines 6 − 9). The computa-
tional complexity of the index creation is O(|D| log |D|), where |D| is the dataset
cardinality.

10 A similar benefit metric has been used for R-trees [24].
11 Although the MBRs are used in the benefit evaluation, the resulting partition is not pruned to

the MBR, due to the requirement that the index must cover the entire data space.

112 G. Ghinita et al.

NodeSplit
Input: Initial Node U , Leaf Cardinality Threshold F
Output: Two children nodes U1 and U2

/* x − axis */
1. sort points in U increasingly according to x coordinate

/* We use array notation to refer to the ponts in U */
/* “Left” split* /

2. Countleft = �|U |/2/F · F
3. Costleft = perimeter(MBR({U [1], . . . , U [Countleft]})+

perimeter(MBR({U [Countleft + 1], . . . , U [|U |]})
/* “Right” split* /

4. Countright = (�|U |/2/F + 1) · F
5. Costright = perimeter(MBR({U [1], . . . , U [Countright]})+

perimeter(MBR({U [Countright + 1], . . . , U [|U |]})
6. if (Costleft < Costright)
7. U1 = U [1 . . . Countleft], U2 = U [Countleft + 1 . . . |U |]
8. else
9. U1 = U [1 . . . Countright], U2 = U [Countright + 1 . . . |U |]
/* Repeat steps 1 − 9 for y − axis and choose the lowest cost*/

Fig. 11. Heuristic for Index Partitioning

6 Experiments

We evaluate experimentally the proposed hybrid method with respect to the effective-
ness in controlling the disclosed POI and the incurred computational and communica-
tion overhead. We use a real database with points of interest: the Seqouia set12 with
62, 556 data points (Figure 12). We consider values of F , the threshold for disclosed
POI, in the range 20−80, and we randomly generate square-shaped cloaking regions Q
with side between 1% and 10% of the dataspace side. Recall that, a larger CR provides
stronger privacy for the user. For each experimental run, we randomly generate 1000
user queries. The size of the modulus N used in the cryptographic protocols for PIR
retrieval and private enclosure evaluation is 768 bits. The experiments were run on an
Intel P4 3.0 GHz machine with 1GB of RAM.

First, we evaluate the amount of protection offered to the database by the hybrid
method, in comparison with location cloaking (label CR-only) and the pure-PIR tech-
nique (label PIR-only), for varying CR size. We consider approximate NN queries.
For fairness of comparison, only candidate POI inside Q are returned by the CR-only
method (this decreases the number of disclosed POI compared to the exact methods in
[3,4]). Figure 13 shows that the CR-only technique discloses an excessive amount of
POI, especially as the CR size grows larger. Therefore, the privacy of the database is
sacrificed for the sake of user privacy. The PIR-only method does not use CRs, and al-
ways discloses approximately 250 POI (square root of database cardinality). Note that,
the hybrid method controls strictly the number of disclosed POI in the narrow band

12 http://www.rtreeportal.org

A Hybrid Technique for Private Location-Based Queries 113

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

Sequoia

Fig. 12. Sequoia Dataset

 0

 500

 1000

 1500

 2000

 2500

 1 2 5 10

D
is

cl
os

ed
 P

O
I

Query Rectangle Side (% of Dataspace Side)

Hybrid

CR-only
PIR-only

Fig. 13. Number of Disclosed POI

20 − 80, up to one order of magnitude superior to PIR-only, and up to two orders of
magnitude better than the CR-only method. This improvement is obtained for the same
level of privacy offered to the user by the CR-only method (i.e., same CR sizes).

For the rest of the experiments, we compare the performance between the hybrid
and the PIR-only methods with respect to computational and communication overhead
incurred by query processing. We do not include the CR-only method any further in
the head-to-head comparison, since it offers virtually no amount of protection for the
database. It is, however, well-understood [5] that CR-only techniques are more efficient
in terms of overhead, because they do not make use of cryptographic elements. In gen-
eral, the processing time is expected to take on average around one second [4]. Based
on the number of POI returned obtained in the previous experiment (which is the only
communication factor in CR-only methods), the communication overhead is expected
to be around 20 kilobytes.

Similar to previous work [4,5], we consider that the set of POIs fits in memory, and
that the processing time is dominated by CPU time. This is a reasonable assumption, es-
pecially since the compared methods use heavily cryptographic transformations, which
are not I/O bound. Note that, in [5] optimizations based on parallel processing are pro-
posed to improve execution time. Such optimizations are directly applicable for the
hybrid methods as well. In our tests, we run both methods on a single-CPU machine,

 0

 10

 20

 30

 40

 50

 20 40 60 80

T
im

e
(%

 o
f P

IR
-o

nl
y

T
im

e)

F

Q=1%
Q=2%
Q=5%

Q=10%

(a) Varying F

 0

 10

 20

 30

 40

 50

 1 2 5 10

T
im

e
(%

 o
f P

IR
-o

nl
y

T
im

e)

Query Rectangle Side (% of Dataspace Side)

F=20
F=40
F=60
F=80

(b) Varying CR Size

Fig. 14. Execution Time

114 G. Ghinita et al.

and we report the hybrid method execution time as the percentage of the time incurred
by the PIR-only method.

Figure 14(a) shows the execution time when varying the POI disclosure bound F .
In the worst case, the hybrid method is twice as fast as the PIR-only method. On the
other hand, for all CR sizes with less than 10% of the dataspace side, the hybrid method
is at least 5 times faster. The decreasing trend with F can be explained as follows:
since the size of query Q is fixed, the number of POI included in the PIR step does not
vary with F . On the other hand, a smaller F results into more rectangles for which the
private point-rectangle enclosure evaluation protocol must be performed, leading to an
increase in processing time. In absolute values, the execution time of the hybrid method
on a single CPU requires roughly 0.5 sec for queries spanning 2% of the dataspace, and
between 1.2 and 1.9 sec for queries spanning 5% of the dataspace. Figure 14(b) shows
the variation of execution time with query CR size. A larger query window translates
into more leaf nodes being included in the enclosure evaluation protocol. Furthermore,
a larger number of data points are considered in the PIR retrieval phase. Hence the
increase in processing time.

Figure 15 presents the result of communication overhead, also expressed as a per-
centage of the overhead incurred by the PIR-only method. In the worst case, the band-
width consumption of the hybrid method is 30% that of PIR-only, whereas the overall
improvement can be as high as 20 times. The cost increases with F (Figure 15(a)) since
more POI are retrieved from the server. For varying size of CR Q (Figure 15(b)), the
number of retrieved POIs remains unchanged as Q grows, but the number of leaf nodes
considered in the point-rectangle enclosure protocol increases, hence the higher com-
munication overhead. In absolute values, the communication cost of the hybrid method
is in the range 40−140KB for queries spanning 2% of the dataspace, and 100−280KB
for queries spanning 5% of the dataspace.

Finally, Table 1 shows the accuracy of NN results. Since both compared methods are
approximative, the closest POI reported to the user may differ from the actual NN POI.
Accuracy is measured as the average difference between the user-to-reported-NN dis-
tance and the user-to-actual-NN distance. The value is then normalized, and expressed
as a percentage of dataspace side. Since the data points that are returned to the user
depend only on the leaf node that encloses the user location, the accuracy of the hybrid

 0

 5

 10

 15

 20

 25

 30

 20 40 60 80

C
om

m
un

ic
at

io
n

C
os

t (
%

 o
f P

IR
-o

nl
y)

F

Q=1%
Q=2%
Q=5%

Q=10%

(a) Varying F

 0

 5

 10

 15

 20

 25

 30

 1 2 5 10

C
om

m
un

ic
at

io
n

C
os

t (
%

 o
f P

IR
-o

nl
y)

Query Rectangle Side (% of Dataspace Side)

F=20
F=40
F=60
F=80

(b) Varying CR Size

Fig. 15. Communication Cost

A Hybrid Technique for Private Location-Based Queries 115

Table 1. Query Result Accuracy

Threshold F Hybrid Accuracy PIR-only Accuracy
20 0.014%

0.003%
40 0.011%
60 0.007%
80 0.005%

method is independent of the query size. The only factor that influences accuracy is the
POI disclosure threshold F . The accuracy of the PIR-only method is better, since it re-
turns an excessive amount of POI to the user. On the other hand, in absolute values, the
hybrid method achieves good precision. For instance, assume a city area of 50×50 kilo-
meters. An approximation error of 0.014% corresponds to a distance of 28 meters. This
is a reasonable error, considering that in practice, positioning devices report locations
with accuracy of 10 − 20 meters.

7 Conclusions

This paper proposed a hybrid technique for private location-based queries which pro-
vides protection for both the users and the service provider. To our knowledge, this is
the first work to consider the protection of the POI database. Furthermore, the proposed
technique is efficient in practice. In future work, we plan to study efficient methods
for exact nearest-neighbor queries. We also plan to extend our work to support more
complex types of queries, e.g., skyline.

References

1. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services Through Spatial
and Temporal Cloaking. In: Proc. of USENIX MobiSys. (2003)

2. Gedik, B., Liu, L.: Location Privacy in Mobile Systems: A Personalized Anonymization
Model. In: Proc. of ICDCS, pp. 620–629 (2005)

3. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The New Casper: Query Processing for Location
Services without Compromising Privacy. In: Proc. of VLDB (2006)

4. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preserving Location-based Identity In-
ference in Anonymous Spatial Queries. IEEE TKDE 19(12) (2007)

5. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private Queries in Location
Based Services: Anonymizers are not Necessary. In: SIGMOD (2008)

6. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dum-
mies for location-based services. In: International Conference on Pervasive Services (ICPS),
pp. 88–97 (2005)

7. Yiu, M.L., Jensen, C., Huang, X., Lu, H.: SpaceTwist: Managing the Trade-Offs Among
Location Privacy, Query Performance, and Query Accuracy in Mobile Services. In: Interna-
tional Conference on Data Engineering (ICDE), pp. 366–375 (2008)

8. Cheng, R., Zhang, Y., Bertino, E., Prahbakar, S.: Preserving User Location Privacy in Mo-
bile Data Management Infrastructures. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS,
vol. 4258, pp. 393–412. Springer, Heidelberg (2006)

116 G. Ghinita et al.

9. Chow, C.Y., Mokbel, M.F.: Enabling Private Continuous Queries for Revealed User Loca-
tions. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp.
258–275. Springer, Heidelberg (2007)

10. Gruteser, M., Liu, X.: Protecting Privacy in Continuous Location-Tracking Applications.
IEEE Security and Privacy 2, 28–34 (2004)

11. Damiani, M., Bertino, E., Silvestri, C.: PROBE: an Obfuscation System for the Protection of
Sensitive Location Information in LBS. Technical Report 2001-145, CERIAS (2008)

12. Khoshgozaran, A., Shahabi, C.: Blind Evaluation of Nearest Neighbor Queries Using Space
Transformation to Preserve Location Privacy. In: Papadias, D., Zhang, D., Kollios, G. (eds.)
SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidelberg (2007)

13. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: IEEE
Symposium on Foundations of Computer Science (1995)

14. Kushilevitz, E., Ostrovsky, R.: Replication is NOT Needed: SINGLE Database,
Computationally-Private Information Retrieval. In: FOCS (1997)

15. Flath, D.E.: Introduction to Number Theory. John Wiley & Sons, Chichester (1988)
16. Atallah, M.J., Du, W.: Secure multi-party computational geometry. In: Dehne, F., Sack, J.-

R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 165–179. Springer, Heidelberg
(2001)

17. Luo, Y., Huang, L., Zhong, H.: Secure two-party point-circle inclusion problem. J. of Com-
puter Science and Technology 22(1), 88–91 (2007)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of
ACM Symposium on Theory of Computing (STOC), pp. 218–229 (1987)

19. Chow, C.Y., Mokbel, M.F., Liu, X.: A Peer-to-peer Spatial Cloaking Algorithm for Anony-
mous Location-based Service. In: GIS, pp. 171–178 (2006)

20. Ghinita, G., Kalnis, P., Skiadopoulos, S.: PRIVE: Anonymous Location-based Queries in
Distributed Mobile Systems. In: WWW (2007)

21. Ghinita, G., Kalnis, P., Skiadopoulos, S.: MobiHide: A Mobile Peer-to-peer System for
Anonymous Location-based Queries. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD
2007. LNCS, vol. 4605, pp. 221–238. Springer, Heidelberg (2007)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

23. Atallah, M.J.: Algorithms and Theory of Computation Handbook. CRC Press, Boca Raton
(1998)

24. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

Spatial Cloaking Revisited: Distinguishing
Information Leakage from Anonymity

Kar Way Tan, Yimin Lin, and Kyriakos Mouratidis

Singapore Management University
School of Information Systems

80 Stamford Road, Singapore 178902
{karway.tan.2007,yimin.lin.2007,kyriakos}@smu.edu.sg

Abstract. Location-based services (LBS) are receiving increasing pop-
ularity as they provide convenience to mobile users with on-demand in-
formation. The use of these services, however, poses privacy issues as the
user locations and queries are exposed to untrusted LBSs. Spatial cloak-
ing techniques provide privacy in the form of k-anonymity; i.e., they
guarantee that the (location of the) querying user u is indistinguishable
from at least k-1 others, where k is a parameter specified by u at query
time. To achieve this, they form a group of k users, including u, and
forward their minimum bounding rectangle (termed anonymizing spatial
region, ASR) to the LBS. The rationale behind sending an ASR instead
of the distinct k locations is that exact user positions (querying or not)
should not be disclosed to the LBS. This results in large ASRs with
considerable dead-space, and leads to unnecessary performance degra-
dation. Additionally, there is no guarantee regarding the amount of lo-
cation information that is actually revealed to the LBS. In this paper,
we introduce the concept of information leakage in spatial cloaking. We
provide measures of this leakage, and show how we can trade it for better
performance in a tunable manner. The proposed methodology directly
applies to centralized and decentralized cloaking models, and is readily
deployable on existing systems.

1 Introduction

The increasing trend of location-aware mobile devices, such as GPS-enabled
mobile phones and palm-tops, has lead to a growing market of location-based
services (LBS). Users of these services query the LBS to retrieve information
about data (points of interest, POI) in their vicinity. The main issue arising in
this environment is that the users reveal their locations to the untrusted LBS. In
turn, this information may lead to the identity of the users (a process generally
termed re-identification) through publicly available information, physical obser-
vation, mobile device tracking, etc [1]. The nature of the POIs (e.g., HIV clinics)
may disclose sensitive personal information to the LBS, or lead to receipt of
unsolicited targeted advertisements (e.g., if the POIs are providers of particular
services or products).

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 117–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

118 K.W. Tan, Y. Lin, and K. Mouratidis

(a) Single ASR (k=10) (b) Multiple ASRs (k=10)

Fig. 1. Anonymity versus information leakage

To solve the above problem, spatial cloaking methods replace the user location
with an anonymizing spatial region (ASR) prior to sending his/her query to the
LBS. The ASR is typically an axis-parallel rectangle1 that encloses the querying
user u and at least k − 1 additional users; the set of these k users is called
the anonymizing set (AS) of u. Parameter k is specified by u at query time
and reflects the degree of anonymity required. Figure 1(a) shows a cloaking
example where the query originator u, shown as a hollow point, requests for 10-
anonymity (i.e., k = 10). The figure shows the computed ASR, assuming that
the anonymizing set of u additionally contains u1, ..., u9.

Depending on the assumed architecture, there exist centralized and decentral-
ized ASR computation methods. In the first case, the ASR is created by a trusted
server (the anonymizer) who maintains all user locations [2,3]. In the second case,
the ASR is computed in a collaborative way by the users themselves (assuming
that they are mutually trusted and communicate wirelessly) [4,5]. In either case,
the ASR is subsequently sent to the LBS. The latter computes the candidate query
answers (i.e., POIs that satisfy the user query) for any possible query position in-
side the ASR. The set of returned POIs is called candidate set CS, and is filtered
by the anonymizer or the querying user (in the centralized and the decentralized
model, respectively) in order to retrieve the actual query result.

A principle underlying the general approach described above is that user lo-
cations should not be disclosed to the LBS. However, if the LBS already knew
the locations of all users, there would be no need for an ASR. Anonymity would
still be preserved by directly sending the exact user locations in the anonymizing
set, e.g., forwarding to the LBS all 10 user locations in Figure 1(a) instead of the
ASR. This approach not only would honor anonymity, but it would also lead to
a smaller CS and thus a better performance; as we explain later, the main factor
affecting the overall performance of the system is the size of the CS (i.e., the
number of POIs inside the CS). Furthermore, the cost in dollars may be lower,
since in commercial LBSs, the amount paid by the user is proportional to the
number of POIs provided by the LBS.

1 Circular ASRs have also been studied, without however resulting in performance
benefits over rectangular ASRs [2].

Distinguishing Information Leakage from Anonymity 119

Following the above reasoning, one could argue that even if the LBS did not
know the user locations, we could break the ASR into smaller sub-ASRs in order
to avoid CS results that correspond to dead-space (i.e., regions of the ASR that
contain no user). This technique is exemplified in Figure 1(b), where three sub-
ASRs (R1, R2, and R3) are used instead of one, to deal with the same querying
user u and the same anonymity requirement k = 10. According to the principles
and objectives of existing spatial cloaking approaches, this multiple sub-ASR
method both (i) preserves the anonymity of the querying user, and (ii) does not
disclose any user locations. Furthermore, it leads to a smaller CS and hence to
a better performance. However, this approach somehow reveals more location
information than a single ASR, because the LBS would acquire more precise
knowledge about where users are located. Specifically, in Figure 1(a) the LBS
would infer that there are some users inside the ASR.2 On the other hand, the
multiple sub-ASRs in Figure 1(b) would disclose additional and more precise
information, because now the LBS infers that each of the three rectangles R1,
R2, and R3 contains some users.

In this paper, we define the concept of information leakage to capture the lo-
cation information revealed by spatial cloaking, and provide measures to quan-
tify it. We propose the Information Leakage-aware Cloaking (ILC) methodology
that incorporates this notion into existing techniques and enables control over the
trade-offbetween performance/cost and information leakage. In particular, we for-
ward multiple sub-ASRs to the LBS, constructed in a way which guarantees that
anonymity is preserved and that information leakage does not exceed the amount
tolerable by the users/system. Note that this contrasts with existing methods,
where there is no control over the amount of location information revealed to the
LBS. Our method is readily applicable to existing spatial cloaking systems, and
works transparently in both the centralized and the decentralized model.

The rest of the paper is structured as follows. Section 2 surveys related work.
Section 3 states out assumptions and objectives, and presents definitions central
to our work. Section 4 presents our methodology and shows how it can be incorpo-
rated into available spatial cloaking systems. Section 5 experimentally evaluates
our approach, studying the trade-offs between performance and information leak-
age. Finally, Section 6 concludes the paper with directions for future work.

2 Background and Related Work

k-anonymity [6,7] has been used for publishing sensitive data (e.g., medical
records) in a way that each record is indistinguishable from at least k-1 oth-
ers. In the context of location-based services, spatial k-anonymity is achieved by
obfuscating the locations of querying users so that they cannot be identified with
a probability higher than 1/k. Location obfuscation is performed by a cloaking
algorithm. Most systems adopt the centralized architecture [2,3]. In this setting,
the cloaking algorithm is executed by a trusted third party (anonymizer), which
is regularly being updated with the most current user locations. On the other
2 Note that the LBS does not know the value of k, but only sees the query ASR.

120 K.W. Tan, Y. Lin, and K. Mouratidis

hand, in a decentralized architecture [4,5], no anonymizer is required. Instead,
the users collaboratively construct ASRs communicating via an overlay network
(e.g., a peer-to-peer system). Our proposed methodology affects primarily the
cloaking process and as such it can be applied to both the centralized and the
decentralized architectures. Section 2.1 reviews existing cloaking techniques, and
Section 2.2 discusses processing techniques for cloaked queries. Section 2.3 de-
scribes alternative location privacy models.

2.1 Cloaking Techniques

Interval Cloak [1] is one of the first cloaking techniques. The anonymizer in-
dexes the users with a Quad-tree [8]. To form an ASR for user u, Interval Cloak
descends the Quad-tree up to the topmost node that contains at least k users
(including u). The extent of this node is returned as the ASR. In Figure 2,
if user u1 issues a query with k = 2, Interval Cloak will search till quadrant
[(0, 0), (1, 1)] which contains less than 2 users. Then, it will backtrack for one
level, and return the parent quadrant [(0, 0), (2, 2)] as the ASR. The returned
quadrant may contain much more than k users, burdening query processing at
the LBS.

Casper Cloak [3] is similar to Interval Cloak, with two major differences. First,
Casper Cloak identifies and accesses the leaf level of the Quad-tree directly
through the use of a hash table. Second, instead of immediately backtracking to
the parent quadrant, it first checks the two neighboring quadrants to see if their
combination with the user quadrant contains k (or more) users. In Figure 2, if
u1 issues a query with k = 2, Casper Cloak first checks the neighboring quad-
rants [(0, 1), (1, 2)] and [(1, 0), (2, 1)]. If combination with one of them results in
k users, then this composite rectangle is returned as the ASR. In this example,
rectangle [(0, 0), (1, 2)] is returned.

(0,0) (2,0) (4,0)

(0,2)
(2,2)

(4,2)

(4,4)(2,4)(0,4)

u uuuuuuuuu

u

u

u

u

u

u

u

u

u

u

uu

u u

Bucket 1 Bucket 2 Bucket 3 Bucket 4

Users sorted by Hilbert value

Hilbert

curve

Fig. 2. Cloaking example

Distinguishing Information Leakage from Anonymity 121

[2] shows that there are situations where anonymity is breached with the above
methods, and proves that absolute anonymity can be guaranteed if reciprocity
is honored. Reciprocity is defined as follows:

Definition 1. Let ASk(u) be the anonymizing set of u for anonymity degree k.
A cloaking algorithm satisfies reciprocity iff (i) ASk(u) contains at least k users,
and (ii) for every user u′ in ASk(u) it holds that ASk(u′) ≡ ASk(u) (i.e. all
users in ASk(u) have the same AS).

[2] proposes Hilbert Cloak, an algorithm that satisfies this property. The users
are sorted according to the Hilbert space-filling curve [9]. The sorted sequence is
equally divided into buckets of k consecutive users. AS is formed by the bucket
that contains the querying user u. The reported ASR is computed as the mini-
mum bounding rectangle of the AS. In Figure 2, if u1 issues a query with k = 3,
then 4 Hilbert buckets are created as shown at the bottom of the figure. User u1
belongs to the first bucket, and its AS includes u1, u2, u3. The derived ASR is
the shaded bounding box. Due to its simplicity, Hilbert Cloak has been applied
to decentralized systems too [4].

2.2 Query Processing at the LBS

The two most common spatial queries are the Range Query and the Nearest-
Neighbor (NN) Query. Given only an ASR and the query type/parameters, the
LBS needs to search for the POIs that satisfy the query for any possible user lo-
cation within the ASR. Typically, the LBS stores the POIs in secondary storage,
indexed by an R-tree [10,11]. If an R-range query is given, the LBS computes CS
as the union of all POIs that fall inside the ASR or are within distance R from
its boundary. In the example of Figure 3(a), the LBS expands the ASR (shown
with a dashed contour) by R, and performs an ordinary range query. The CS
contains P1, P2, and P3.

ASR

(a) Range Query

ASR

(b) Nearest Neighbor Query

Fig. 3. Types of Query Processing at LBS

122 K.W. Tan, Y. Lin, and K. Mouratidis

If a K-NN query is given, the CS contains the union of K nearest POIs3 to
any point within the ASR. To derive the CS for a NN query (i.e., K = 1) in
Figure 3(b), the LBS needs to retrieve (i) all objects located inside the ASR
(i.e., P1) and (ii) the NN of any location along the boundary of the ASR (i.e.,
P2, P3, P5). The latter component is processed using the linear NN method of
[12] for each of the 4 edges of the ASR; the input to this method is one or more
line segments, for which NNs are found in a single R-tree traversal.

2.3 Alternative Location Obfuscation Approaches

There exist alternative location privacy approaches. [13] ignores non-querying
users, and instead groups only querying users among themselves. [14] proposes
a location privacy method specifically for approximate NN processing. In [15,16]
the user u forwards to the LBS a set of dummy locations in addition to his/her
own. In [17], the user sends only a fake location to the LBS and incrementally re-
trieves its nearest neighbors. [18] applies private information retrieval to process
NN queries. The above methods cannot ensure k-anonymity, are limited in the
type of queries supported, and/or incur prohibitively high query processing cost.

3 Preliminaries

In this section we state the assumptions underlying our approach (in Section 3.1),
our central observation and our design objectives (in Section 3.2). In Table 1 we
list frequently used acronyms/symbols, and their interpretation.

Table 1. Description of acronyms and symbols

Term Description

LBS Location-Based Service
POI Point Of Interest
ASR Anonymizing Spatial Region
AS Anonymizing Set
CS Candidate Set
U The set of users in the system
k Anonymity parameter
m Strictness on information leakage parameter
IL Degree of information leakage

3.1 Assumptions

The Information Leakage-aware Cloaking (ILC) methodology applies to (and is
orthogonal to the choice between) the centralized and the decentralized cloaking
models. However, to avoid confusion and for the sake of tangibility, we assume the
3 Note that parameter K used here is different from the k-anonymity requirement

used in the anonymity context.

Distinguishing Information Leakage from Anonymity 123

centralized model in our examples unless otherwise stated. We focus on spatial
(i.e., 2-dimensional) user and POI locations. Similar to existing spatial cloaking
systems, we consider that the users (forming set U) are mobile, and constantly
update the anonymizer with their most recent locations. The set of POIs is
static, and it is indexed by a disk-resident R-tree. Note that ILC deals mostly
with the cloaking part and, as such, indexing at the LBS side or the mobility
of the POIs has little impact on it; alternative contexts can be dealt with in a
straightforward manner. We focus on the most common spatial queries, that is,
snapshot4 range and nearest neighbor (NN) queries. However, our technique can
be directly incorporated into the model of [19] to capture continuous queries too;
this extension is discussed in Section 4.4. Regarding the communication channel
we assume that:

1. The connection between the querying user u and the anonymizer (in the
centralized model) or among users (in decentralized systems) is encrypted
and secure.

2. The communication channel between the anonymizer (or the users, in a
decentralized system) and the LBS needs not be secure.

Point 1 above implies that eavesdropping is not possible for the LBS, and that k
is unknown to it. Point 2 practically implies that the LBS is not the only possible
adversary, but our method should ensure anonymity and controlled information
leakage versus any malicious entity that may intercept the cloaked queries (on
their way to the LBS). For simplicity, we consider the LBS as the adversary, but
ILC is safe against any of the aforementioned types of entities. Note that ensuring
the authenticity of the POIs reported to the users is outside the scope of this
paper; result verification methods (e.g., [20,21,22]) could be used in conjunction
with ILC to detect any man-in-the-middle tampering with the results.

3.2 Main Observation and Design Objectives

Our motivating observation is that information leakage requirements have always
existed in spatial anonymity approaches, but they have never been identified
and treated with independently. Specifically, the methods described in Section
2.1 assume two kinds of adversaries:

– User-aware adversaries: Adversaries of this type know the user locations.
To achieve anonymity against such adversaries, it suffices to send to the LBS
the exact positions of all users in the AS. If the AS is formed in a reciprocal
way, anonymity is guaranteed. By definition, this would incur the smallest
possible CS for the specific AS.

– User-unaware adversaries: Adversaries of this type do not know the user
locations. Concealing the position of the querying user u from such adver-
saries is easy and can be done arbitrarily (e.g., by sending to the LBS a

4 Term snapshot refers to queries that are evaluated once and then terminate. It is
used to distinguish from continuous evaluation where the queries are standing and
request constant updating of their results.

124 K.W. Tan, Y. Lin, and K. Mouratidis

rectangle that encloses u). What is important here is that user-unaware ad-
versaries stay unaware of exact user locations (be them querying or not).

What has been implicitly assumed by previous systems is that there exist both
kinds of the above adversaries at the same time (plus possibly adversaries with
partial user location knowledge), and that they must be dealt with collectively;
the AS was “masked” with a minimum bounding rectangle, so that exact user
locations are not revealed to user-unaware adversaries, while anonymity is en-
sured even against user-aware ones. The sacrifice made in this approach is that
the CS contains more POIs (than sending the AS locations directly).

Our observations here is that two different concepts underlie this design prin-
ciple (i.e., anonymity and information leakage), and that the anonymity-centric
approach taken so far ensures anonymity, but fails to control or even to quan-
tify the degree of location information disclosed to user-unaware adversaries.
Thus, our first contribution is to provide a meaningful measure of information
leakage, and then suggest a methodology (i.e., ILC) to control it; the twofold
objective of ILC is to ensure user anonymity and guarantee no more than the
permissible degree of information leakage. In terms of anonymity, we adopt its
strict, reciprocity-based definition (described in Section 2.1); recall that reci-
procity is a sufficient (though not necessary) condition to achieve strongly k-
anonymous services [2]. We elaborate on the information leakage requirements in
Section 4.

Subject to the degree of information leakage tolerable, our second objective
is to reduce the CS size; this is the primary factor that (i) determines the dollar
cost paid by the user to the LBS, and (ii) determines the end-to-end query
response time. Regarding (i), commercial LBSs often charge by the amount
of information provided, i.e., the number of POIs returned. In terms of end-
to-end response time, in the centralized model, the experiments of [2] and [3]
indicate that the major performance factor is the I/O time spent at the LBS
and secondarily the communication cost. Both these costs are proportional to
the size of the CS.5 In the decentralized model, the CS (on its way from the
LBS to the querying user u) must pass through the overlay user network, and
it must subsequently be filtered by u to retrieve the actual query result. The
communication and processing costs incurred prolong the end-to-end time, but
also consume the (typically scarce) power resources of the user devices. Thus,
our aim is to exploit any leeway in terms of information leakage to reduce the
CS size.

4 Information Leakage-Aware Cloaking

In this section we define a measure of information leakage and describe the ILC
framework.

5 The page accesses performed at the higher levels of the POI R-tree are minimal
compared to the POI (leaf) level. That is, the I/O cost is roughly proportional to
the CS size.

Distinguishing Information Leakage from Anonymity 125

4.1 Measuring Information Leakage

Our approach is to control information leakage via a parameter m. This param-
eter is specified by the system (e.g., the anonymizer) as a requirement from the
cloaking mechanism. We establish that:

Definition 2. The strictness on information leakage of a cloaking algorithm is
m iff any ASR (or sub-ASR) forwarded to the LBS contains at least m users.

Intuitively, information leakage is inversely proportional to m, hence we quantify
IL, the degree of information leakage as 1

m . It holds that 1
|U| ≤ IL ≤ 1, where |U |

is the total number of users in the system. Case IL = 1 (maximum information
leakage) corresponds to m = 1, where exact user locations may be revealed to the
LBS. Case IL = 1

|U| (minimum information leakage) corresponds to m = |U |,
where a single ASR enclosing all users is sent to the LBS. In the situation
illustrated in Figure 1(b), m = 3 and IL = 1

3 , because the smallest number of
users contained in any sub-ASR is 3 (regardless of the fact that R1 contains 4).

Regarding the rationale behind the IL measure, one may wonder why we do not
express it in an absolute way as the maximum accuracy that the LBS would get
about individual user locations. In other words, this alternative would require that
each constructed ASR (or sub-ASR) would not be narrower than some threshold
δx on the x axis and another threshold δy on the y axis. The reason for disqualifying
this method is that it fails to capture the user distribution; the distribution can
be easily estimated using publicly available information. For example, Figure 4
plots a real dataset of 25,000 locations in North America that could model our
users. Illustrated rectangles ASR1 and ASR2 have the same extents (say δx and
δy), but the first lies in a very sparse area, while the second includes numerous
users (covering, for instance, the highly populated New York city). Clearly, ASR1
reveals much more information to the LBS than ASR2 regarding where users lie.
Thus, we select a relative IL measure using parameter m.

Fig. 4. Shortcomings of an absolute definition based on spatial precision

Another approach is to define IL according to the area of the ASR (or the min-
imum area of any sub-ASR constructed). Figure 5 demonstrates the weaknesses

126 K.W. Tan, Y. Lin, and K. Mouratidis

Fig. 5. Shortcomings of an area-based definition

of this approach with a counter-example. Here, after computing the AS of u (say,
using Hilbert Cloak), we construct an ASR in the form of a poly-line, i.e., a set of
connected line segments. The poly-line passes from all users in AS, and its turn-
ing points are selected in a randomized way so that they do not coincide with any
user location. This ASR has zero area; under an area-based definition, this plain
method would incur no information leakage6. However, it is obvious that this is
not the case, as the location information revealed now is much more precise. Ac-
tually, the situation can be even worse if, for instance, the users move on a road
network; the LBS could compute the user positions by retrieving the intersections
between the ASR poly-line and the edges of the road network. We thus avoid an
area-based definition, and adopt the one described in the beginning of the section.

Before presenting the ILC cloaking methodology, we need to clarify a few
issues regarding the distinction between anonymity (defined by parameter k)
and IL (defined by m):

– k and m implement different requirements and control different cloaking
functions. However, a higher k implies higher privacy, just like a higher m
implies lower information leakage. In this sense, increasing these parameters
leads to “safer” cloaking in a general point of view.

– k is specified by each querying user individually, while m is a system-wide
parameter (e.g., defined by the anonymizer); m is a global parameter, be-
cause it does no longer reflect individual user preferences, but the release of
information from the system (as a whole) to the LBS. Note, however, that
ILC can be easily adapted to contexts where it makes sense for m to be
user-specific.

– Controlling information leakage does not violate anonymity (or reciprocity).
In Figure 1(b), for example, if the AS is derived by a reciprocal anonymiza-
tion algorithm, the LBS still cannot identify the querying user with a prob-
ability greater than 1

k = 1
10 .

– Typically, m is considerably smaller than k, because the information that
user u is at some location and asks a particular query (relating to anonymity)

6 Furthermore, this approach would significantly reduce the CS size. Imagine an R-
range query. The LBS would only return POIs within distance R from the ASR poly-
line, leading to a much smaller CS than a traditional rectangular ASR.

Distinguishing Information Leakage from Anonymity 127

is more sensitive than simply knowing that there is a user at location u
(relating to information leakage). In the following, we focus on situations
where m < k, but we also consider the rare scenario where m ≥ k.

4.2 The Multiple ASR Approach

The main idea in ILC is to cloak the AS using multiple (sub-)ASRs, none of
which contains less than m users. In addition to providing the desired degree of
information hiding (i.e., keeping IL lower than its maximum permissible value),
we attempt to reduce the CS size by limiting the dead-space within the ASRs.
The general idea in this approach is similar to Figure 1(b). Note that ILC does
not violate (or interfere with) anonymity, because it does not affect the AS itself.

Although ILC can be applied in conjunction with other cloaking methods,
here we choose to incorporate it into Hilbert Cloak since it is the current state-
of-the-art. The AS for a user u (as output by Hilbert Cloak) has the form of a
Hilbert-sorted list. ILC splits the AS (Hilbert-sorted) list into m-buckets. Each
bucket has exactly m users, except for the last one which contains from m
up to 2m − 1 users. ILC returns a sub-ASR for each m-bucket, by computing
its minimum bounding rectangle. The pseudo-code for sub-ASR generation is
illustrated in Figure 6. Figure 7 shows an example where k = 10 and m = 3.
The user order on the Hilbert curve is shown at the bottom of the figure. The AS
output by Hilbert Cloak contains users u1, u2, ..., u10; Hilbert Cloak would return
their bounding box as the ASR. Instead, ILC breaks the AS into m-buckets
(where m = 3), and creates one sub-ASR for each of them. This leads to sub-
ASRs SA1, SA2, SA3 shown striped. Observe that the last m-bucket/sub-ASR
contains 4 users (i.e., more than m = 3).

Algorithm. Creating IL-aware sub-ASRs

1. Given a Hilbert-sorted AS

2. Split the AS into m-buckets

3. For each m-bucket do

4. Create a sub-ASR as the minimum bounding rectangle of users inside

5. Return the list of all sub-ASRs computed in Step 4

Fig. 6. Algorithm for deriving sub-ASRs in ILC

Note that, given the AS, the construction of sub-ASRs is not concerned with
which of the users was the querying one, and thus no reciprocity requirement
underlies the IL-related handling. Therefore, ILC could work with any other sub-
ASR creation method, subject to the IL constraint. Our objective is not to pro-
pose the best such algorithm, as similar bucketization problems are well-studied
in the spatial database and computational geometry literatures. We use the afore-
mentioned Hilbert-based technique merely to provide an example where ILC is
readily deployable on an existing system that uses the Hilbert Cloak method

128 K.W. Tan, Y. Lin, and K. Mouratidis

Fig. 7. ILC example

(the system may be centralized or decentralized, with sub-ASR computation
performed by the anonymizer or the users, respectively). It is worth mentioning
that we did experiment with alternative partitioning techniques, such as STR
[23] and the R+-tree splitting algorithm [24], which however performed similar
to the Hilbert-based method.

In the above discussion we assumed that m < k. However, in the rare case
where m ≥ k, a single ASR is returned. Moreover, in situations where m > k,
if the ASR contains fewer than m users7, we enlarge it in a greedy way so that
it encloses m users with the minimum area increase. Greedy enlargement is
permissible, because as explained above, reciprocity is not a requirement when
information leakage is considered.

4.3 Query Processing at the LBS

At the LBS side, processing multiple ASRs is based on the same primitive func-
tions that handle a single ASR. In both the range and nearest neighbor cases,
processing is possible in a single traversal of the POI R-tree, so that multiple
reads of the same disk pages are avoided. Specifically, for an R-range query, the
LBS descends the R-tree visiting any node with minimum distance smaller than
R from any of the sub-ASRs. In the case of K-NN processing, the CS contains
the K-NN of any possible query point inside any sub-ASR. Handling is similar
to single ASR processing, the difference being that instead of 4 line segments
(i.e., single ASR edges), there are 4 segments for each sub-ASR input to the
algorithm of [12] (note that this work describes how batch processing is possible
in a single R-tree traversal, and that this feature is already being exploited in
the standard Hilbert Cloak technique).
7 Here containment refers to the spatial domain, and not to the Hilbert range of the

AS.

Distinguishing Information Leakage from Anonymity 129

4.4 Different Query Types

So far we considered simple snapshot queries, but ILC can be easily applied to
continuous processing too, extending the method of [19]. In particular, sub-ASR
computation can be performed in the first evaluation of the query, with users in
each m-block forming a group. In subsequent timestamps, the sub-ASRs can be
found as the minimum enclosing rectangles of each group, subject to the updated
positions of its users. An alternative to that, is to perform sub-ASR computation
in every timestamp. This latter approach is expected to lead to smaller ASRs,
and thus to smaller CS.

5 Experimental Evaluation

In this section, we empirically evaluate the performance of the ILC approach.
Section 5.1 describes our experimental setting, while Section 5.2 presents the
results and their interpretation.

5.1 Experimental Setting

We executed the experiments using prototypes written in C++ on an Intel Pen-
tium IV 3GHz machine. We use a real dataset as the POIs available at the
LBS; the dataset (denoted as NA) contains 569,120 endpoints of main road seg-
ments in North America, and is acquired from www.maproom.psu.edu/dcw. It
is normalized into a 10,000 by 10,000 data-space. The set of users U is formed by
randomly picking a percentage (1%, 5%, 10%, 15%, or 20%) of the POIs to serve
as the users; this choice represents a realistic scenario where the users follow the
distribution of the queried facilities (POIs). However, we explore different user
and POI distributions towards the end of the section, where the POIs correspond
to 1,314,620 locations in Los Angeles (dataset denoted as LA, and acquired from
www.rtreeportal.org).

We use a centralized architecture due to its proliferation, and assume that the
anonymizer stores the users in main memory, while the LBS indexes the POIs
with a disk-resident R∗-tree. We use the Hilbert Cloak as a basis, and denote its
traditional (single ASR) version as HC, and our adaptation as ILC. We quantify
the performance benefits of ILC in terms of the size of the candidate set retrieved
(|CS|); as we demonstrate, the communication cost and the I/O cost (and, as a

Table 2. Experiment parameters and their respective default values

Parameter Default Range

Anonymity parameter k 50 5,10,50,100,150
Strictness on Information leakage parameter m 5 2, 3, 5, 7, 10, 15

Number of NNs K 4 1, 2, 4, 8, 16
Range R 10 1, 5, 10,15,20

User-to-POI percentage ρ 10% 1, 5, 10, 15, 20 (%)

130 K.W. Tan, Y. Lin, and K. Mouratidis

result, the total end-to-end response time too) are proportional to |CS|. In each
experiment, we vary one parameter, while setting the remaining to their default
values. The parameter ranges and default values are shown in Table 2.

5.2 Experimental Results

The first set of experiments (in Figure 8) explores the effect of query selectivity,
by varying K (in the case of K-NN queries) and R (in the case of R-Range
queries). Additionally, it verifies our claim that the I/O time, the communication
cost and the end-to-end time are proportional to |CS|. Figure 8(a) plots the CS
size. HC and ILC exhibit the same pattern of increase as K and R increase.
However, ILC has approximately 34%-44% (28%-46%) improvement in |CS| over
HC on the average for NN (range) queries. Note that the two lower curves
correspond to ILC and the upper ones to HC. This is expected as HC returns
numerous candidate POIs corresponding to ASR regions that contain no users.
The gap between ILC and HC shrinks for large K or R (to around 34% and
28%, respectively) as for high selectivity, the union of the search regions of the
sub-ASRs converges to the search region of a single ASR.

Figure 8(b) plots the total communication cost between the anonymizer and
the LBS in terms of Kbytes transferred towards either direction. We assume
that each coordinate is 4 bytes, that an ASR (or sub-ASR) is represented by 4
coordinates, and that each POI has an additional 64 byte non-spatial information
attached to it. Figure 8(c) shows the I/O cost (of query processing at the LBS) in
terms of the number of R-tree node accesses; note that NN queries require more
I/Os than ranges because the linear NN algorithm of [12] accesses a considerable
amount of POIs that do not belong to the CS. Figure 8(d) sums up all costs,
and plots the end-to-end query response time assuming a 10 Mbps connection
between the anonymizer and the LBS. From the aforementioned three figures
it becomes clear that the individual communication and I/O costs, as well as
the overall result delay are proportional to |CS|. As such, and in order to avoid
cluttering the paper with correlated figures, we use |CS| as the key measurement
for ILC’s performance in the subsequent experiments.

Figure 9(a) explores the effect of k on |CS|, while setting m to 5. In HC, |CS|
grows almost linearly to k, because most candidate POIs returned fall inside the
(growing) ASR. However, in ILC, we can see that performance degradation with
k is slighter. This is because the sub-ASRs prune relatively more dead-space from
a large ASR. Thus, ILC scales better than HC with k. To support our previous
claim regarding the dead-space pruned, in Figure 9(b) we show the effect of k
on the ASR area and the cumulative sub-ASR area per query, for HC and ILC,
respectively. In the case of ILC, the gradient of the curve decreases significantly
for k > 100.

Figures 10(a) and 10(b) illustrate the effect of m on |CS| and on the total
ASR/sub-ASR area, respectively. Parameter m does not affect HC since it is
only introduced in ILC. As such, all the HC related curves are horizontal lines.
Figure 10(a) shows the trade-off between information leakage and performance.
As m increases (i.e., IL decreases), the performance improvement of ILC over

Distinguishing Information Leakage from Anonymity 131

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

K=1,R=1 K=2,R=5 K=4,R=10 K=8,R=15 K=16,R=20

N
um

be
r

of
 c

an
di

da
te

s
pe

r
qu

er
y

K / R

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(a) |CS| vs K/R

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

K=1,R=1 K=2,R=5 K=4,R=10 K=8,R=15 K=16,R=20

C
om

m
un

ic
at

io
n

co
st

 p
er

 q
ue

ry
 (

in
 K

by
te

s)

K / R

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(b) Communication Cost vs K/R

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

K=1,R=1 K=2,R=5 K=4,R=10 K=8,R=15 K=16,R=20

I/
O

 c
os

t p
er

 q
ue

ry
 (

in
 n

o.
 o

f
pa

ge
 a

cc
es

se
s)

K / R

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(c) I/O Cost vs K/R

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

K=1,R=1 K=2,R=5 K=4,R=10 K=8,R=15 K=16,R=20

T
ot

al
 ti

m
e

ta
ke

n
pe

r
qu

er
y

(i
n

se
co

nd
s)

K / R

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(d) End-to-end Cost vs K/R

Fig. 8. Effect of query selectivity (K for NN, and R for range queries)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 c

an
di

da
te

s
pe

r
qu

er
y

k

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(a) |CS| vs k

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 20 40 60 80 100 120 140 160

T
ot

al
 a

re
a

pe
r

qu
er

y

k

HC
ILC

(b) Total ASR area per query vs k

Fig. 9. Effect of varying degree of anonymity, k

HC decreases because there are fewer sub-ASRs and, thus, weaker dead-space
pruning. Intuitively, the more information hidden from the LBS, the higher the
cost. Figure 10(b) supports our previous claim regarding the dead-space pruned;
it shows clearly that the total sub-ASR area per query increases with m.

Figure 11(a) shows the effect of user density (denoted by ρ), e.g., ρ = 10%
implies that there are 56,912 users, which is one tenth of the POI cardinality.
ILC has 55% to 63% the CS size of HC. The gains of ILC drop slightly for large
ρ, because a dense user set implies an already small amount of dead-space in

132 K.W. Tan, Y. Lin, and K. Mouratidis

 300

 400

 500

 600

 700

 800

 900

 1000

 2 4 6 8 10 12 14 16

N
um

be
r

of
 c

an
di

da
te

s
pe

r
qu

er
y

m

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(a) |CS| vs m

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 2 4 6 8 10 12 14 16

T
ot

al
 a

re
a

pe
r

qu
er

y

m

HC
ILC

(b) Total ASR area per query vs m

Fig. 10. Effect of varying strictness on information leakage, m

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 c

an
di

da
te

s
pe

r
qu

er
y

ρ

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(a) |CS| vs user density ρ

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2 4 6 8 10 12 14 16 18 20

T
ot

al
 a

re
a

pe
r

qu
er

y

ρ

HC
ILC

(b) Total ASR area per query vs ρ

Fig. 11. Effect of user density, ρ

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

K=1,R=1 K=2,R=5 K=4,R=10 K=8,R=15 K=16,R=20

N
um

be
r

of
 c

an
di

da
te

s
pe

r
qu

er
y

K / R

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(a) Using LA as POI set: |CS| vs K/R

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500 600 700 800 900 1000 1100

N
um

be
r

of
 c

an
di

da
te

s
pe

r
qu

er
y

POI cardinality (in thousands)

HC and K-NN Query
ILC and K-NN Query

HC and R-Range Query
ILC and R-Range Query

(b) Zipf POIs: |CS| vs POI cardinality

Fig. 12. Effect of different POI datasets

the (single) ASR. Therefore, the benefits of using multiple sub-ASRs become
smaller, but ILC still performs significantly better than HC. This trend is also
obvious in Figure 11(b), which plots the total ASR/sub-ASR area in the same
experiment.

Distinguishing Information Leakage from Anonymity 133

In Figure 12(a), we use LA as the POI dataset, and keep the same users as in
previous experiments (i.e., following the NA distribution). The observed trends
are similar to the results in Figure 8(a), even though the relative cost of range
queries is higher than NN. In Figure 12(b) we generated synthetic POI sets, using
a Zipfian distribution (with parameter 0.8) and varying their cardinality from
128K up to 1M POIs. The user set is the same as before. ILC scales better than
HC; note that the two lower curves correspond to ILC. The results in Figure 12
show the generality of ILC, and its superiority over the traditional (single ASR)
approach, regardless of data skewness and user/POI distribution.

6 Conclusion

In this paper, we define the concept of information leakage in anonymous location-
based queries. We describe meaningful leakage measures and propose a method-
ology to control it. Compared to previous systems, our technique can guarantee
that information leakage does not exceed its maximum permissible degree and,
moreover, it leads to significant performance benefits. Our method can be eas-
ily incorporated into existing cloaking systems and it is applicable to both the
centralized and the decentralized cloaking models. A promising direction for fu-
ture work is to design incremental versions of our methodology suited for continu-
ous query evaluation, in order to improve upon the straightforward extensions of
Section 4.4.

References

1. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: MobiSys. (2003)

2. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based
identity inference in anonymous spatial queries. IEEE Transactions on Knowledge
and Data Engineering 19(12), 1719–1733 (2007)

3. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: Query processing for
location services without compromising privacy. In: VLDB, pp. 763–774 (2006)

4. Ghinita, G., Kalnis, P., Skiadopoulos, S.: Prive: anonymous location-based queries
in distributed mobile systems. In: WWW 2007: Proceedings of the 16th interna-
tional conference on World Wide Web, pp. 371–380. ACM, New York (2007)

5. Chow, C.Y., Mokbel, M.F., Liu, X.: A peer-to-peer spatial cloaking algorithm for
anonymous location-based service. In: GIS, pp. 171–178 (2006)

6. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data Eng. 13(6), 1010–1027 (2001)

7. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

8. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

9. Butz, A.R.: Alternative Algorithm for Hilbert’s Space-Filling Curve. IEEE Trans.
Comput. 20(4), 424–426 (1971)

10. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIG-
MOD Conference, pp. 47–57 (1984)

134 K.W. Tan, Y. Lin, and K. Mouratidis

11. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: An efficient
and robust access method for points and rectangles. In: SIGMOD Conference,
pp. 322–331 (1990)

12. Tao, Y., Papadias, D.: Spatial queries in dynamic environments. ACM Trans.
Database Syst. 28(2) (2003)

13. Gedik, B., Liu, L.: Location privacy in mobile systems: A personalized anonymiza-
tion model. In: ICDCS, pp. 620–629 (2005)

14. Khoshgozaran, A., Shahabi, C.: Blind Evaluation of Nearest Neighbor Queries Us-
ing Space Transformation to Preserve Location Privacy. In: Papadias, D., Zhang,
D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidel-
berg (2007)

15. Duckham, M., Kulik, L.: A Formal Model of Obfuscation and Negotiation for
Location Privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE
2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

16. Kido, H., Yanagisawa, Y., Satoh, T.: An Anonymous Communication Technique
using Dummies for Location-based Services. In: ICPS (2005)

17. Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: SpaceTwist: Managing the Trade-
Offs Among Location Privacy, Query Performance, and Query Accuracy in Mobile
Services. In: ICDE (2008)

18. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private Queries
in Location Based Services: Anonymizers are not Necessary. In: SIGMOD Confer-
ence (2008)

19. Chow, C.Y., Mokbel, M.F.: Enabling private continuous queries for revealed user lo-
cations. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605,
pp. 258–275. Springer, Heidelberg (2007)

20. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.: Authentic third-party
data publication. In: DBSec., pp. 101–112 (2000)

21. Pang, H., Jain, A., Ramamritham, K., Tan, K.L.: Verifying completeness of re-
lational query results in data publishing. In: SIGMOD Conference, pp. 407–418
(2005)

22. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: SIGMOD Conference, pp. 121–132 (2006)

23. Kanth, K.V.R., Ravada, S., Sharma, J., Banerjee, J.: Indexing medium-
dimensionality data in oracle. In: SIGMOD Conference, pp. 521–522 (1999)

24. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The r+-tree: A dynamic index for
multi-dimensional objects. In: VLDB, pp. 507–518 (1987)

Analyzing Trajectories Using Uncertainty
and Background Information

Bart Kuijpers, Bart Moelans, Walied Othman, and Alejandro Vaisman

Hasselt University & Transnational University of Limburg, Belgium
{bart.kuijpers,bart.moelans,walied.othman,alejandro.vaisman}@uhasselt.be

Abstract. A key issue in clustering data, regardless the algorithm used,
is the definition of a distance function. In the case of trajectory data, dif-
ferent distance functions have been proposed, with different degrees of
complexity. All these measures assume that trajectories are error-free,
which is essentially not true. Uncertainty is present in trajectory data,
which is usually obtained through a series of GPS of GSM observations.
Trajectories are then reconstructed, typically using linear interpolation.
A well-known model to deal with uncertainty in a trajectory sample, uses
the notion of space-time prisms (also called beads), to estimate the posi-
tions where the object could have been, given a maximum speed. Thus,
we can replace a (reconstructed) trajectory by a necklace (intuitively, a a
chain of prisms), connecting consecutive trajectory sample points. When
it comes to clustering, the notion of uncertainty requires appropriate dis-
tance functions. The main contribution of this paper is the definition of a
distance function that accounts for uncertainty, together with the proof
that this function is also a metric, and therefore it can be used in cluster-
ing. We also present an algorithm that computes the distance between
the chains of prisms corresponding to two trajectory samples. Finally, we
discuss some preliminary results, obtained clustering a set of trajectories
of cars in the center of the city of Milan, using the distance function
introduced in this paper.

1 Introduction

The study of Moving Object Databases (MODs) [7,21] has been increasingly at-
tracting the attention of the GIS (Geographic Information Systems) community.
Most of the time, in this field, a moving object’s trajectory is obtained from tra-
jectory samples, i.e., finite sequences of time-space points. A trajectory sample
database contains a finite number of labeled trajectory samples. There are vari-
ous ways of reconstructing trajectories from trajectory samples, of which linear
interpolation is the most popular one [7]. An important issue in these databases
is the problem of uncertainty, arising from various sources (e.g., errors in mea-
surements, interpolation). The uncertainty of the moving object’s position in
between sample points has been studied using space-time prisms or beads, where
it is assumed that besides the time-stamped locations of the object also some
background knowledge is known, like, for instance, a speed limit vmax at a lo-
cation (xi, yi). Informally, the space-time prism between two consecutive sample

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 135–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

136 B. Kuijpers et al.

points is defined as the collection of space-time points where the moving objects
may have passed, given the speed limitation.

One of the most common data mining techniques is Clustering [9]. This tech-
nique partitions the dataset into collections of data objects, such that within
each partition the objects are ‘similar’ to each other and ‘different’ from the
objects contained in other partitions. In the context of moving object data, the
clustering technique is aimed at identifying groups of objects that followed sim-
ilar trajectories. These kinds of data present particular problems for clustering.
Clustering moving object trajectories requires, for example, finding out a proper
spatial granularity level, and it is not obvious to identify the best clustering
algorithm among the wide corpus of work on the subject. In the presence of
uncertainty, the problem of representing a trajectory of moving objects and for-
malizing the notion of trajectory similarity is even more involved. This issue
takes us to the problem we address in this paper: studying a distance function
that accounts properly for the notion of uncertainty.

1.1 Problem Statement and Contributions

There exist two classic approaches to trajectory clustering: one based on the
notion of similarity, typically operationalized through a so-called distance func-
tion between trajectories. A second approach is denoted trajectory-specific [16],
and exploits the characteristics of the data type in the clustering algorithm. In
this paper we position ourselves in the first group: we study the impact over
clustering of the uncertainty of trajectory samples, by means of the definition
of a distance function that accounts for the uncertainty involved in a trajectory.
In short, a distance function measures the similarity of two trajectories. Many
different distance functions can be defined (we give a formal definition, and a re-
view, later in the paper), ranging from the most simple ones (like, for instance,
clustering trajectories with the same origin and/or destination), to very com-
plex mathematical functions. The former are obviously more computationally
efficient, probably at the expense of returning less reliable clusters.

A well-known model to deal with uncertainty in a trajectory sample, uses the
notion of space-time prisms (also called beads), to estimate the positions where
the object could have been, given a maximum speed. We therefore introduce a
distance function that accounts for uncertainty, and prove that this function is a
metric which can be used to cluster trajectory (and hence, uncertain) data. Given
two trajectory samples T 1 and T 2, their uncertainty is represented by two chains
of space-time prisms (also called lifeline necklaces), N1 and N2, respectively,
that connect consecutive sample points of each trajectory. Intuitively, in our
proposal, the largest the intersection of the necklaces with respect to their union,
the smallest the distance between both trajectories. In other words, the more
uncertainty shared by T 1 and T 2, the closer they are. On the other hand, if N1
and N2 do not intersect, this indicates that these trajectories could not have met,
given the speed limit. Then, a clustering algorithm will not group together these
two trajectories. We also present an algorithm that, given the chains of space-
time prisms of two trajectories, computes the distance between them. Finally,

Analyzing Trajectories Using Uncertainty and Background Information 137

we present preliminary experiments, clustering a set of data corresponding to
movement of cars in the center of the city of Milan, using the distance function
we introduce in this paper.

In Section 2 we review related work on clustering and space-time prisms.
Section 3 introduces the concepts of space-time prisms and their relation with
uncertainty and background information. In Section 4 we introduce the new
distance function, denoted du, and we show it is a metric apt for trajectory
clustering. Section 5 presents an algorithm to compute du. Section 6 presents
preliminary experimental results. We conclude in Section 7.

2 Related Work

Space-time prims and uncertainty. In this paper we work with trajectory samples,
which are well-known in MODs, namely finite sequences of time-space points. A
trajectory sample database contains a finite number of labeled trajectory sam-
ples. There are various ways of reconstructing trajectories from samples, of which
linear interpolation is the most popular in the literature [7]. However, linear in-
terpolation relies on the (rather unrealistic) assumption that between sample
points, an object moves at constant minimal speed. It is more realistic to as-
sume that moving objects have some physically determined speed bounds. Given
such upper bounds, an uncertainty model has been proposed which constructs
space-time prisms between two consecutive space-time points in a trajectory
sample. Basic properties of this model were discussed a few years ago by Egen-
hofer et al. [3] and Pfoser et al. [17], but space-time prisms were already known
in the time-geography of Hägerstrand in the 1970s [8]. In short, a space-time
prism is the intersection of two cones in the space-time space such that all pos-
sible trajectories of the moving object between the two consecutive space-time
points, given the speed bound, are located within them. Space-time prisms man-
age uncertainty more efficiently than other approaches based on cylinders [21].
A chain of space-time prisms connecting consecutive trajectory sample points is
called a lifeline necklace [3].

Trajectory clustering. In one of the first works on trajectory clustering, Ketterlin
[10] presents an structured methodology for discovering patterns in sequences of
composite objects. These objects, basically time-series data, can be considered an
abstract representation of a trajectory (i.e., a composite object may be described
as a sequence of simpler data). The author studies the generalization of sequences
of complex objects, and integrate this in a general-purpose clustering algorithm.
This generalization-based approach, together with the limitation to time-series,
could be considered as shortcomings of this first approach.

Another proposal applies to trajectories some multidimensional scaling tech-
nique for non-vectorial data. This is performed in Fastmap [5], where a data
space is mapped to an Euclidean space approximately preserving the distances
between objects. Then, any standard clustering algorithm for vectorial data can
be applied.

138 B. Kuijpers et al.

Gaffney and Smyth [6] use a different approach, denoted model-based clus-
tering. They work with continuous trajectories, grouping together objects which
likely to be generated from a common core trajectory, by adding Gaussian noise.
In this way, a cluster contains all objects which can be obtained by a regres-
sion function. The problem of this approach is the lack of flexibility for different
application contexts.

Typically, the distance between two trajectories is computed by fixing two
time instants and considering points within this interval. Clustering trajectory
data usually produces clusters containing geographically close trajectories. A
classical approach for clustering trajectories, is to adapt traditional algorithms
like k-means or hierarchical clustering, to the trajectory setting, leading to the
notion of distance-based clustering.

Nanni [14] defines a distance measure that describes the similarity of trajecto-
ries of objects across time, computed by analyzing the way the distance between
the objects varies. He considers only pairs of contemporary instantiations of ob-
jects, i.e., for each time instant compares the positions of the objects at that
moment, aggregating the set of distance values obtained this way. The distance
between trajectories is computed as the average distance between objects:

D(τ1; τ2) | T =

∫
T d(τ1(t); τ2(t))dt

| T |
where d() is the Euclidean distance over R2, T is the temporal interval over
which trajectories τ1 and τ2 exist, and τi(t) is the position of object τi at time
t. This is the more general expression. However, the author showed that due to
the piece-wise linearity of the trajectories, the distance can be computed as a
finite sum by means of O(n1 + n2) Euclidean distances, where n1 and n2 are
the number of observations for τ1 and τ2.

Other proposals compute the longest common subsequence of two series [19],
and the least common sub-sequence of two series, and take these measures as
the distance between trajectories [1].

A different line of work is Density-based clustering, which can be considered
as a combination of the two approaches mentioned above. Initially proposed
by Ester et al. [4], clusters are populated by objects which can reach each other
through densely populated regions, instead of objects close to each other. In other
words, these algorithms agglomerate objects in clusters based on the population
within a given region. This form of clustering is used in the OPTICS algorithm,
proposed by Ankerst et al. [2]. It is particularly well-suited to trajectory clus-
tering, given that trajectories of cars in urban traffic tend to agglomerate in
non-convex clusters, and that many outlier trajectories should be considered as
noise. Nanni and Pedreschi [15] generalize the spatial notion of distance between
objects to a spatio-temporal notion of distance between trajectories, leading to a
natural extension of the density-based clustering technique to trajectories. More
recently, the concept of progressive clustering has been introduced, as a pro-
cess that, using a visual analytics approach, starts from the simpler functions
to complex ones, in an incremental way [18], using an iterative approach that
filters clusters using simpler but efficient distance functions in the firsts steps.

Analyzing Trajectories Using Uncertainty and Background Information 139

3 A Model for Moving Object Data with Uncertainty

A well-known model for the management of the uncertainty of the moving ob-
ject’s position in between sample points is the space-time prism model, where
it is assumed that besides the time-stamped locations of the object, also some
background knowledge, in particular a (e.g., physically or law imposed) speed
limitation vi at location (xi, yi) is known. The space-time prism between two
consecutive sample points is defined as the set of time-space points where the
moving objects may have passed, respecting the speed limitation. The chain of
space-time prisms connecting consecutive trajectory sample points is called a
lifeline necklace [3].

In this paper we focus on space-time prisms on road networks. Early adaptations
of the space-time prism model to road networks were done by Miller [12,13]. We
view road networks as a graph embedding in R2 where all edges are embedded as
straight lines between vertices. All edges have a (strictly positive) speed limit as
well an associated weight, called their time span, which is equal to the time needed
to get from one end of the edge to the other when traveling at the speed limit.
Also Kuijpers and Othman [11] studied the problem of space-time prisms on road
networks, and introduced an algorithm for computing and visualizing space-time
prisms. In Section 5 we use this algorithm to compute the surface of a space-time
prism.

In the remainder of the paper we work with the speed limits of the road
network, simply setting a uniform speed limit, namely vi, on the network to
construct the space-time prism between two sample times ti and ti+1. We first
review basic concepts about trajectories and road networks, that we use through-
out the paper.

3.1 Preliminaries: Trajectories and Trajectory Samples

Let R denote the set of the real numbers and R2 the 2-dimensional real plane.
We consider objects moving in a subset of the two-dimensional (x, y)-space R2

and describe this movement in the (t, x, y)-space R×R2, where t represents time.
Moving objects, which we assume to be points, produce a special kind of curves,
denoted trajectories. The definitions we present next, necessary to understand
the remainder of the paper, are based on [11].

Definition 1. [Trajectory] Let I ⊆ R be an interval. A trajectory T is the graph
of a mapping α : I → R2 : t �→ α(t) = (αx(t), αy(t)), i.e., T = {(t, αx(t), αy(t))
∈ R × R2 | t ∈ I}. We call I the time domain of T . ��

In practice, trajectories are only known at discrete moments in time. This partial
knowledge of trajectories is formalized by the notion of sample.

Definition 2. [Trajectory sample] A trajectory sample is a finite set S = {(t0,
x0, y0), (t1, x1, y1), ..., (tN , xN , yN)} of time-space points. The order on time, t0 <
t1 < · · · < tN , induces a natural order on the sample. ��

140 B. Kuijpers et al.

A trajectory T , which contains a trajectory sample S = {(t0, x0, y0), (t1, x1,
y1), ..., (tN , xN , yN)}, i.e., (ti, αx(ti), αy(ti)) = (ti, xi, yi) for i = 0, ..., N , is called
a geospatial lifeline for S [3].

In this paper, we consider movement in R2 that is constrained to a road
network. Thus, we need to formalize the notion of a road network.

Definition 3. [Road network] A road network RN is a graph embedding in R2 of
a labeled graph given by a finite set of vertices V = {(xi, yi) ∈ R2 | i = 1, . . . , N},
and a set of edges E ⊆ V×V that are labeled by a speed limit and an associated
time span. This graph embedding satisfies the following conditions. Edges are
embedded as straight line segments between vertices1. If an edge between (xi, yi)
and (xj , yj) is labeled by the speed limit vij > 0, then its time span wij is√

(xi−xj)2+(yi−yj)2

vij
, i.e., it is the time needed to get from one side of an edge to

another when traveling at the speed limit. ��

A trajectory (sample) on a road network RN is then a trajectory (sample) whose
spatial projection is in RN. More formally, if T is a trajectory given by the
functions αx and αy, then it must satisfy (αx(t), αy(t)) ∈ RN for all t in the
time domain of T, and for a trajectory sample S = {(t0, x0, y0), (t1, x1, y1), ...,
(tN , xN , yN)} we must have (xi, yi) ∈ RN for all i = 0, . . . , N .

3.2 Space-Time Prisms in Road Networks

Given a point in a trajectory sample, if we assume that a speed limit is valid
until the next point, we can use this limit to define space-time prisms which
model the uncertainty of the object’s location in between sample points. In this
paper, we consider movement and space-time prisms in road networks in R2.

In general, suppose p and q are points in some space, and an object is traveling
from p to q, leaving p at time tp and arriving in q at tq; also assume a speed
limit vmax is given. We know that at a time t, tp ≤ t ≤ tq, the object’s distance
to p is at most vmax(t − tp) and its distance to q is at most vmax(tq − t). The
object is therefore somewhere in the intersection of the sphere with center p and
radius vmax(t− tp) and the sphere with center q and radius vmax(tq − t). This is
illustrated in Figure 1. The geometric location of these points, for tp ≤ t ≤ tq,
is referred to as a space-time prism.

Although we are interested in space-time prisms on a road network, the prob-
lem does not simply amount to taking the intersection of a space-time prism rep-
resenting unconstrained movement and the road network. To see this, consider
the projection of the unconstrained space-time prism along the time axis onto the
xy-plane. This projection is an ellipse such that its foci are the points of depar-
ture and arrival, i.e., p and q. We recall that at a time t, tp ≤ t ≤ tq, the object’s
distance to p is at most vmax(t− tp) and its distance to q is at most vmax(tq − t).
Adding those distances gives vmax(t − tp) + vmax(tq − t) = vmax(tq − tp), which

1 These edge embeddings may intersect in non-vertex points. So, we can model bridges
and tunnels in our model.

Analyzing Trajectories Using Uncertainty and Background Information 141

Fig. 1. A moving object’s location at time t

is constant. Therefore, all possible points a moving object with speed limit vmax
could have visited must lie within this ellipse with foci p and q. Moreover, the
sum of their distances to p and q is less or equal to vmax(tq − tp). Any trajectory
that touches the border of the ellipse and has more than two straight line seg-
ments, is longer than vmax(tq − tp). This particular trajectory lies in the ellipse
and hence in the intersection of the unconstrained space-time prism and the
road network, but it does not lie in the road network space-time prism entirely
because there are points on it which can be reached in time, but from which the
destination can not be reached in time and vice versa. Figure 2 depicts such a
situation. There is no path on the road network from p that reaches q in the given
time interval. The intersection of the space-time prism with the road network
is nonempty, whereas the road network space-time prism clearly is. Figure 3
depicts a space-time prism on a road network, and its spatial projection.

To define space-time prisms on a road network, we need to define an ap-
propriate distance function on the network. This distance measure is derived
from the shortest path-distance used in graph theory [20]. Consider a road
network RN, given by a set of vertices V and a set of labeled edges E. Let
p = (xp, yp) and q = (xq, yq) be two points on RN, not necessarily vertices.

Fig. 2. Road network space-time prisms can not be easily derived from space-time
prisms in R2

142 B. Kuijpers et al.

Fig. 3. Space-time prism (red) on road networks (green and black) and its spatial
projection (green)

Also suppose that p lies on (the embedding of) the edge ((xp,0, yp,0), (xp,1, yp,1))
and q lies on the edge ((xq,0, yq,0), (xq,1, yq,1)). We construct a new road net-
work RNpq from RN. Its set of vertices is Vpq = V ∪ {p, q} and its set of edges
is Epq = E ∪ {((xp,0, yp,0), (xp, yp)), ((xp, yp), (xp,1, yp,1)), ((xq,0, yq,0), (xq , yq)),
((xq , yq), (xq,1, yq,1))}. So, we have split the edges on which p and q are located.
The speed limits are the ones of the original edges, and the time spans of the new
edges are computed according to Definition 3. It is precisely this construction
we need to define the distance along the road network RN and the space-time
prism on RN. To do this we need a metric on RN.

Definition 4. [Road network time] Let RN be a road network and let p, q ∈ RN.
The road network time between p and q, denoted by dRN(p, q), is the shortest-
path distance (i.e., the shortest-path distance as usual in graph theory and that
can be computed by the Dijkstra’s algorithm [20]) between p and q in the graph
(Vpq, Epq), with respect to the time-span labeling of the edges. ��

Note that the road network time between p and q in the above definition has
minimal total weight and returns the earliest possible time you can reach p from
q and vice versa. The metric that we describe takes two points from a road
network and returns the shortest time needed to get from one to the other when
traveling at the allowed maximal speed at each segment. We remark that if all
edges in road network have the same speed limit vmax, then the metric defined
in Definition 4 is the shortest-path metric (up to a scaling factor vmax) on the
graph embedding RN. If, on the other hand, there are different speed limits per
edge, then the metric of Definition 4 is the shortest time-span metric on the
temporal projection of the spatio-temporal data. It follows that in the latter
case, the shortest paths are not always the fastest paths. Figure 4 depicts a
situation where neither one of the two shortest paths in the network is also the

Analyzing Trajectories Using Uncertainty and Background Information 143

Fig. 4. Road Network space-time prism where the fastest path does not coincide with
the shortest

fastest path. Indeed, looking at the evolution of the prism over time, it is clear
that the fastest path starts at the leftmost node, goes to the upper, then the
lower node, and ends at the rightmost node.

A space-time prism on a road network is the geometric location in R×RN ⊂
R×R2 of all points a moving object could have visited when traveling, restricted
to RN, from an origin p to a destination q with in a time-frame ranging from tp
to tq, respecting the speed limits on the edges of RN.

4 An Uncertainty-Aware Distance Function

The goal of clustering algorithms is, basically, grouping together the objects
which are similar to each other and keep them separated from the objects which
are different. A key issue of this technique is the definition of a distance measure.
To be useful for clustering, the function must be a metric, which means that it
has to verify four well-known conditions stated in the next definition.

Definition 5. A function d(·, ·) is a metric if:

1. ∀ i : d(i, j) = 0 if and only if i = j;
2. ∀ i, j such that i �= j : d(i, j) > 0 (positive definite)
3. ∀ i, j : d(i, j) = d(j, i) (symmetry)
4. ∀ i, j, k : d(i, j) + d(j, k) ≥ d(i, k) (triangle inequality). ��

There are many (mainly Euclidean-based) distance functions used for cluster-
ing. In particular, for trajectory clustering, a definition of distance is aimed at
considering similar two objects that followed approximately the same spatio-
temporal trajectory. The main problem in this scenario is to find out which
are the objects that moved together. However, depending on the application at

144 B. Kuijpers et al.

hand, or the analysis a user needs to perform, other forms of distances could be
useful. For instance, we may want to cluster together trajectories starting and
ending at the same locations [18]. Nevertheless, as far as we are aware of, no
distance function has been proposed to account for an intrinsic problem trajec-
tory data have, that is, the uncertainty involved in GPS or GSM observations
that originate the trajectory samples. The intuition behind this function is that
the temporal projection of the intersection of the space-time prisms of two tra-
jectories, represents the instants when the two trajectories could have met. Our
claim is that the longer this period, the more similar the trajectories are. This
notion is captured by the distance we introduce in Definition 6 below.

Definition 6 (Uncertainty-aware distance). Let us denote A and B two
necklaces corresponding to two trajectory samples τ1 and τ2, respectively. Let us
define the volume of a 3-dimensional figure C by VC . Then, the expression

du(A, B) = 1 − VA∩B

VA∪B
(1)

is named the Uncertainty-based distance between τ1 and τ2. ��

Theorem 1 (Metric). The function du(·, ·) of Definition 6 is a metric.

Proof. Let us prove first the identity property. If we replace B by A in (1), we
obtain:

du(A, A) = 1 − VA∩A

VA∪A

= 1 − VA

VA

= 0

The second property is straightforward. Symmetry is proved in a way analogous
to the simple proof for the first property:

du(B, A) = 1 − VB∩A

VB∪A

= d(A, B)

Now, we prove the triangle inequality in Definition 5. For that, let us consider
the diagram of Figure 5, where we have three sets, let us call them A, B, and C,
representing three space-time prisms with these names. We replace the terms in
Equation 1 with the elements in the partition of Figure 5.

du(A, B) = 1 − a2 + a5

a1 + a2 + a3 + a4 + a5 + a6
=

a1 + a3 + a4 + a6

a1 + a2 + a3 + a4 + a5 + a6

du(B, C) =
a2 + a3 + a4 + a7

a2 + a3 + a4 + a5 + a6 + a7

du(A, C) =
a1 + a2 + a6 + a7

a1 + a2 + a4 + a5 + a6 + a7

Analyzing Trajectories Using Uncertainty and Background Information 145

Then,

du(A, B) + du(B, C) =
a1 + a3 + a4 + a6

a1 + a2 + a3 + a4 + a5 + a6 + a7
+

a2 + a3 + a4 + a7

a1 + a2 + a3 + a4 + a5 + a6 + a7

And, since a1, a7 ≥ 0, we have:

du(A, B) + du(B, C) ≥ a1 + a3 + a4 + a6

a1 + a2 + a3 + a4 + a5 + a6 + a7
+

a2 + a3 + a4 + a7

a1 + a2 + a3 + a4 + a5 + a6 + a7

=
a1 + a3 + a4 + a6 + a2 + a3 + a4 + a7

a1 + a2 + a3 + a4 + a5 + a6 + a7

≥ a1 + a2 + a6 + a7 + a3

a1 + a2 + a3 + a4 + a5 + a6 + a7

And, since “If 0 ≤ a ≤ b �= 0 and c ≥ 0, then a
b ≤ a+c

b+c ”, then we get:

≥ a1 + a2 + a6 + a7

a1 + a2 + a4 + a5 + a6 + a7
= d(A, C). ��

Fig. 5. A schematic description of the sets

5 An Algorithm to Compute du

We now describe the algorithm that computes the intersection between two
chains of space-time prisms computed for two trajectories whose distance we need
to calculate. In order to speed-up the computation, we pre-process information
related to the road network. This pre-processed structures are presented next.

146 B. Kuijpers et al.

Data structure. The basic structure for storing the road network is a graph G,
such that for each two nodes ni, nj , we store the weight of the edge connecting
them, given by d(ni,nj)

vmax
, where vmax is the speed limit in the road segment. There

are also two lists. The first one is denoted rowNonZeroes, defined as:

rowNonZeroes = {. . . , {.., nj, ...}i, . . .}

We can see that rowNonZeroes is a list of lists, such that the list in position i con-
tains the nodes nj such that ni, nj ∈ G. (i.e., the nodes reachable through just
one edge from ni). Analogously, there is another list, denoted columnNonZeroes:

columnNonZeroes= {. . . , {.., nj, ...}i, . . .}

Thus, columnNonZeroes is a list of lists, such that the list in position i contains
the nodes nj such that nj , ni ∈ G. (i.e., the nodes that can reach ni traversing
just one edge).

Computing the distance between two chains of space-time prisms. First, we in-
troduce an adaptation to our problem of the Dijstra’s algorithm [20]. We want
to find the shortest path to all nodes in the network, from a given node p, (a
point in a trajectory, matched to a vertex in the network), provided that the
traveling time is less than a given threshold. For each p, we apply Algorithm 1.

Algorithm 1. DijkstraSource(p, maxT ime, nbrV ertices)

Output: outputP = { a list of nodes Nm = N ∪ N1, where N = (n1,nk)
is the set of nodes reachable from p in at most maxT ime, and N1 = {n|n �∈
N and ∃ ni ∈ N, (ni, n) ∈ G, and d(p, n) > maxT ime}; distlist =
{d1, d2, 0, dn}, a list containing the distances from p to the nodes in Nm; a list
Oe of the form n, 〈e1, ...ef 〉 representing the edges outgoing from the nodes in
Nm}
1: ToProcess = {(p, 0)};
2: distlist = {∞,∞, 0,∞, }, a list of length —V—, with a zero in the position

of the input node p.
3: Processed = {};
4: Nm = {};
5: while ToProcess.notEmpty() && ToProcess[1].[2] < maxT ime do
6: current := ToProcess[1];
7: append current.[1].[1] to Nm;
8: append (current[1].[1], 〈rowNonZeroes[current]〉 to Oe;
9: delete ToProcess[1];

10: for each node nj in rowNonZeroes[current] do
11: build a pair (nj , distlist[current.[1]] + dcurrent.[1],j);
12: distlist[j] := min(distlist[j], distlist[current.[1]] + dcurrent.[1],j);
13: if nj �∈ Processed then
14: append (nj , dj) to ToProcess;

Analyzing Trajectories Using Uncertainty and Background Information 147

15: end if
16: end for
17: sort ToProcess by time;
18: append current.[1] to Processed;
19: end while

An analogous algorithm, denoted DijkstraDestination, computes the shortest
path from all nodes in the network, to a given node q, such that q is a point in a
trajectory, matched to a vertex in the network, and provided that the traveling
time is less than a given threshold. The main difference with Algorithm 1 is that
rowNonZeroes[current] is replaced by columnNonZeroes[current], and that
Nm contains the nodes that can reach q (i.e., instead of outgoing edges we work
with incoming edges).

Algorithm 2. DijkstraDestination(q, maxT ime, nbrV ertices)

Output: outputQ = { a list of nodes Nm = N ∪ N1, where N = (n1,nk)
is the set of nodes that can reach q in at most maxT ime, and N1 = {n|n �∈
N and ∃ ni ∈ N, (n, ni) ∈ G, and d(n, q) > maxT ime}; distlist =
{d1, d2, 0, dn}, a list containing the distances to q from the nodes in Nm; a
list Ie of the form n, 〈e1, ...ef 〉 representing the edges incoming to the nodes
in Nm}
1: ToProcess = {(q, 0)};
2: distlist = {∞,∞, 0,∞, }, a list of length —V—, with a zero in the position

of the input node q;
3: Processed = {};
4: Nm = {};
5: while ToProcess.notEmpty() && ToProcess[1].[2] < maxT ime do
6: current := ToProcess[1];
7: append current.[1].[1] to Nm;
8: append (current[1].[1], 〈columnNonZeroes[current]〉 to Oe;
9: delete ToProcess[1];

10: for each node nj in columnNonZeroes[current] do
11: build a pair (nj , distlist[current.[1]] + dcurrent.[1],j);
12: distlist[j] := min(distlist[j], distlist[current.[1]] + dcurrent.[1],j);
13: if nj �∈ Processed then
14: append (nj , dj) to ToProcess;
15: end if
16: end for
17: sort ToProcess by time;
18: append current.[1] to Processed;
19: end while

Now, given two points p and q in a trajectory, we compute their space-time prisms
prism1 and prism2, using the output of Algorithms 2 and 3. From them, we

148 B. Kuijpers et al.

compute their union and intersection, from which the distance follows straight-
forwardly.

Algorithm 3. prism(p1, tp1 , q1, tq1 , p2, tp2 , q2, tq2)

Output: The polygons and their surface, in the two prisms and their intersec-
tion (for the prisms defined by the two pairs of points in the input).

1: DijkstraSource(p1, maxT ime, nbrV ertices);
2: DijkstraDestination(q1, maxT ime, nbrV ertices);
3: DijkstraSource(p2, maxT ime, nbrV ertices);
4: DijkstraDestination(q2, maxT ime, nbrV ertices);
5: if p1 ∈ outputQ1 [1] and q1 ∈ outputP1 [1] then
6: prism1 = {Nmp1

∩ Nmq1
, distlistp1, distlistq1, Oep1

∩ Ieq1
};

7: end if
8: if p1 ∈ outputQ2 [1] and q1 ∈ outputP2 [1] then
9: prism2 = {{Nmp2

∩ Nmq2
, distlistp2, distlistq2 , Oep2

∩ Ieq2
};

10: end if
11: if prism[1] ∩ prism2[1] == ∅ then
12: Compute only the surface of the polygons;
13: else
14: compute polys = {distlistp1, distlistq1, distlistp2 , distlistq2, prism1[1] ∪

prism2[1], prism1[4] ∪ prism2[4]};
15: for every edge in polys do
16: Compute the polygons of prism1, prism2, and prism1 ∩ prism2, using

the algorithm in [11];
17: end for
18: end if

The final step of the algorithm computes the intersection and union of two
chains of prisms. We explain this through an example, for the sake of clarity.
Let us consider two trajectories:

T1 = {(p1, t1)(p2, t2)(p3, t3)...(pn, tn)}
T2 = {(p′1, t′1)(p′2, t′2)(p′3, t′3)...(p′m, t′m)}

We now compute the interval where the trajectories overlap, and compute the
surface with Algorithm 3. For example, if the time instants are such that
t3 < t′1 < t4 < t′2 < t′3 < t5...., we first use the points (p3, t3), (p4, t4) and
(p′1, t′1), (p′2, t′2), and compute the intersection and union of the two prisms.

The algorithm is based on a sliding window approach. Thus, we next
compute the intersection of the prisms corresponding to (p4, t4), (p5, t5) and
(p′1, t′1), (p′2, t′2) (note that there is a non-empty intersection here too); and, anal-
ogously, (p4, t4), (p5, t5) and (p′2, t

′
2), (p′3, t

′
3).

A first optimization in the computation of the distance function is that if
the intersection is empty, we do not compute the surface of the polygons in the

Analyzing Trajectories Using Uncertainty and Background Information 149

Fig. 6. Space-time prism components

extremes (for computing the union). A second optimization we implemented in
our algorithm (besides the pre-computation step already mentioned), is that we
keep the results of the previous iteration when computing the intersection of the
chains of prisms (for example, we keep the prism for (p′1, t

′
1), (p

′
2, t

′
2) above).

Intersection of space-time prisms. The distance defined in Section 4 requires
the computation of the intersection between two space-time prisms. For this
computation, in short, the algorithm described in [11] iterates over every edge
that has at least one polygon in both space-time prisms, and compute the in-
tersection as an intersection between polygons. However, since we use this in-
tersection to compute the distance between two chains of space-time prisms,
a subtle problem appears here. A prism on a road network is basically com-
posed by the three geometries depicted in Figure 6 (a) through (c). This yields
a geometry like the one in Figure 6 (d). A naive computation of the inter-
section would imply intersecting each component of one prism, with all the
components of the other one. It is clear that this may result in an intersection
larger than the union. Thus, we only intersect each component in one prism,
with its analogous in the other prism. In this way, if we have two prisms B1
and B2, such that B1 = B2, then B1 ∩ B2 = B1 ∪ B2. Note that, in ad-
dition of allowing to use our distance function, this way of computing the
intersection provides an appropriate and natural semantics to the space-time
prisms. In two-way roads, and given the points r and s of Figure 6, the tri-
angle corresponding to r represents the trajectories going from r to r. Analo-
gously, the triangle corresponding to s represents the trajectories going from s
to s. The parallelogram (Figure 6 (b)) represents the trajectories going from
r to s. In one-way roads (like in the case we are studying), only the latter is
considered.

150 B. Kuijpers et al.

6 Preliminary Experimental Results

We performed (very) preliminary experiments using a set of 52 trajectories ob-
tained from cars moving in the city center of Milan, in one day, from 1PM to
2PM, that is, all in the same short period, increasing the possibility of moving
together. We used k-mediods with k=2..6 as clustering algorithm. We only con-
sider trajectories with at least 5 different points. Also, we split a trajectory if
there is a gap of more then 6 minutes between two consecutive points.

Results for k=6 are shown in Figure1 7. The blue cluster represents all trajec-
tories that, according to principle of alibi query [11], could not have met. Thus,
the distance between any two trajectories in the blue cluster is 1. The cluster
composition is shown in the next table.

Cluster Color # of trajectories
0 blue 26
1 red 13
2 green 4
3 black 2
4 cyan 1
5 orange 6

Figure 8 shows the clusters for k=4, overlayed with the road network of Mi-
lan, to provide a more realistic way of displaying the results. We see that the
blue clusters are similar to the ones obtained using k=6. More precisely, for all
clustering runs (with k=2..6), the blue cluster contained 26 trajectories, i.e., the
trajectories that could have never met each other are always together in one
cluster, no matter the parameter k used.

Prism-based clustering allows to draw some additional conclusions, useful for
traffic analysis. Note that the closer to the speed limits the objects move (i.e.,
fluent traffic), the less likely their trajectories are to get clustered together. In
our case, our results suggest that cars in the sample move at speeds higher than

Fig. 7. Result of clustering with k=6 (left); Projection over x-y coordinates (right)

Analyzing Trajectories Using Uncertainty and Background Information 151

Fig. 8. Result of clustering Milan data with k=4 overlayed with the road network

the speed limit. This follows from observing that, initially, using the city’s max-
imum speed limit in downtown, many empty prisms are obtained. Adjusting
these limits, increasing the speed by 20%, the number of empty prisms dropped
considerably, but prisms were narrow, mainly yielding empty intersections. How-
ever, we remark that this assertion always needs further insight into the dataset,
since also the results are influenced by the map matching process. In our case,
we use a geometric approach, which maps a point to the closest street segment,
which sometimes could yield imprecise results.

7 Conclusion

We have presented a new distance function for clustering trajectory samples,
that accounts for the inherent uncertainty contained in GPS observations. In-
stead of computing the distance between the trajectories themselves, we measure
the relation between the union and the intersection of the space-time prisms as-
sociated to each trajectory (using the speed limit of the road segment), in a way
such that if the intersection is empty, the two trajectories could not have met,
and the distance equals ‘1’. To the best of our knowledge, this is the first pro-
posal in this sense. We proved that this distance is actually a metric, sketched
the algorithm to compute it, and presented preliminary experimental results,
using real data obtained from cars moving in the city of Milan.

Acknowledgments. This research has been partially funded by the Research
Foundation Flanders (FWO- Vlaanderen), Research Project G.0344.05, the Eu-
ropean Union under the FP6-IST-FET programme, Project n. FP6-14915, GeoP-
KDD: Geographic Privacy-Aware Knowledge Discovery and Delivery, and the
Argentina Scientific Agency, project PICT 2004 11-21.350.

152 B. Kuijpers et al.

References

1. Agrawal, R., Lin, K., Sawhney, H.S., Shim, K.: Fast similarity search in the presence
of noise, scaling, and translation in time-series databases. In: VLDB, pp. 490–501
(1995)

2. Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J.: Optics: Ordering points to
identify the clustering structure. In: SIGMOD Conference, pp. 49–60 (1999)

3. Egenhofer, M.: Approximation of geopatial lifelines. In: SpadaGIS, Workshop on
Spatial Data and Geographic Information Systems (2003)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

5. Faloutsos, C., Lin, K.L.: Fastmap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In: SIGMOD Conference, pp.
163–174 (1995)

6. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models.
In: KDD, pp. 63–72 (1999)

7. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San
Francisco (2005)

8. Hägerstrand, T.: What about people in regional science? Papers of the Regional
Science Association 24, 7–21 (1970)

9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2000)

10. Ketterlin, A.: Clustering sequences of complex objects. In: KDD, pp. 215–218
(1997)

11. Kuijpers, B., Othman, W.: Modelling uncertainty of moving objects on road net-
works via space-time prisms. International Journal of Geographical Information
Science (to appear, 2009)

12. Miller, H.: Modeling accessibility using space-time prism concepts within geograph-
ical information systems. International Journal of Geographical Information Sys-
tems 5, 287–301 (1991)

13. Miller, H., Wu, Y.: GIS software for measuring space-time accessibility in trans-
portation planning and analysis. GeoInformatica 4, 141–159 (2000)

14. Nanni, M.: Clustering Methods for Spatio-Temporal Data. PhD thesis, Computer
Science Departrment, University of Pisa (2002)

15. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects.
Journal of Intelligent Information Systems 27(3), 267–289 (2006)

16. Nanni, M., Kuijpers, B., Körner, C., May, M., Pedreschi, D.: Spatiotemporal data
mining. In: Mobility, Data Mining and Privacy, pp. 267–296 (2008)

17. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representa-
tions. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS,
vol. 1651, pp. 111–132. Springer, Heidelberg (1999)

18. Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., Andrienko,
G.: Visually driven analysis of movement data by progressive clustering. Informa-
tion Visualization 7, 225–239 (2008)

19. Vlachos, M.G.D., George Kollios, G.: Discovering similar multidimensional trajec-
tories. In: ICDE, pp. 673–684 (2002)

20. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

21. Wolfson, O.: Moving objects information management: The database challenge. In:
Halevy, A.Y., Gal, A. (eds.) NGITS 2002. LNCS, vol. 2382, pp. 75–89. Springer,
Heidelberg (2002)

Route Search over Probabilistic Geospatial Data

Yaron Kanza1,�, Eliyahu Safra2, and Yehoshua Sagiv3,��

1 Technion—Israel Institute of Technology
kanza@cs.technion.ac.il

2 Environmental Systems Research Institute
esafra@esri.com

3 The Hebrew University of Jerusalem
sagiv@cs.huji.ac.il

Abstract. In a route search over geospatial data, a user provides terms
for specifying types of geographical entities that she wishes to visit. The
goal is to find a route that (1) starts at a given location, (2) ends at a
given location, and (3) travels via geospatial entities that are relevant to
the provided search terms. Earlier work studied the problem of finding
a route that is effective in the sense that its length does not exceed a
given limit, the relevancy of the objects is as high as possible, and the
route visits a single object from each specified type. This paper investi-
gates route search over probabilistic geospatial data. It is shown that the
notion of an effective route requires a new definition and, specifically,
two alternative semantics are proposed. Computing an effective route is
more complicated, compared to the non-probabilistic case, and hence ne-
cessitates new algorithms. Heuristic methods for computing an effective
route, under either one of the two semantics, are developed. (Note that
the problem is NP-hard.) These methods are compared analytically and
experimentally. In particular, experiments on both synthetic and real-
world data illustrate the efficiency and effectiveness of these methods in
computing a route under the two semantics.

1 Introduction

The recent growth of the world-wide web has made geographical applications
prevalent and accessible to many different users. This has raised the need for
geographical applications that are adapted to the environment of the web in
the following three aspects. First, applications on the web should be simple, in
order to be suitable for novice users. Secondly, in many cases, the applications
should be able to deal with heterogeneous data, and in particular with data that
is inaccurate and incomplete. Thirdly, applications should be highly efficient in
order to be provided as web services. Efficiency is essential also when considering
� The work of this author was supported by the German-Israeli Foundation for Sci-

entific Research & Development (Grant 2165-1738.9/07) and by a grant from the
Goldstein UAV and Satellite Center at the Technion.

�� The work of this author was supported by the German-Israeli Foundation for Scien-
tific Research & Development (Grant 973-150.6/2007).

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 153–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 Y. Kanza, E. Safra, and Y. Sagiv

geographical applications that should run on devices with a limited computation
power, such as cellular phones or car navigation systems.

One of the geographic applications that is recently being adapted to the web
is a route search. In a route search, the goal is to find a route that starts at a
given location, ends at a given location and travels via geographical entities that
satisfy the search terms. The search terms define which geographical entities
the route should visit in order to satisfy the needs of the user—i.e., they define
the types of these entities and additional constraints about them. For example,
suppose that Alice has to go from her office to a meeting at a certain place, and
on her way she wants to stop by at an ATM, a restaurant that serves a specific
kind of food and a pharmacy. A route-search application should receive these
requirements as a query and then return a route that starts at the office of Alice,
ends at the location of the meeting, and travels via an ATM, a restaurant and
a pharmacy, not necessarily in this specific order.

Data on the web might be inaccurate and incomplete. This can be caused
by changes in the real world that have not yet been updated in the database.
For instance, a restaurant has been closed, but still appears in the database.
It can also be the result of errors caused by incorrect integration of data that
arrive from different sources on the web. An integration allows utilizing different
sources of information; however, an incorrect join leads to an inaccurate result.
For instance, if one restaurant is erroneously joined with the menu of another
restaurant, query results over such data may not be correct.

Uncertainty is affected not just by the data, but also by the accuracy of the
query. Commonly, queries on the web are simple and imprecise, which leads
to uncertainty regarding whether a given geographical entity satisfies the user
requirements. For example, when Alice arrives at the restaurant, she might find
that it does not serve food that complies with her diet. Similarly, the pharmacy
may be closed or may not include the medicine she needs.

For coping with inaccuracy and incompleteness, we use a probabilistic model.
In a probabilistic model, each geographic object is assigned a probability-of-
success. The probability-of-success indicates how likely it is that the geographical
entity represented by the object will satisfy the user specifications. For exam-
ple, when a user asks for a route that travels via a place that sells pizza, a
place called “Pizza Hut” will receive a very high probability of success. Simi-
larly, a place called “Italian Restaurant” will also receive a high probability of
success. However, for a place called “Japanese Restaurant,” the assigned proba-
bility should be much lower. This assigned probability can be based on collected
statistics, on information-retrieval techniques and on user profiling, e.g., for a
user whose profile indicates he has a low income, the probability-of-success of ex-
pensive restaurants should be reduced in comparison to the probability assigned
to economy restaurants. How exactly to assign these statistics is, however, be-
yond the scope of this paper.

When computing a route over probabilistic data, two approaches are possible.
In the first approach, the route should travel via exactly one object of each re-
quired type, while attempting to go via the objects whose probability-of-success

Route Search over Probabilistic Geospatial Data 155

is as high as possible; e.g., in the above example, the generated route will go
via exactly one restaurant, one ATM and one pharmacy. This approach is prob-
lematic in the following sense. In this approach, the probability-of-success for a
route is the probability that all the objects on this route will satisfy the user.
Yet, if for one particular type of entities, all the objects of that type have low
probabilities, then the probability of the entire route will also be low. For in-
stance, if in the route search of Alice, all the restaurant objects in the database
have a low probability, the system will not be able to create a route that has a
high probability of success.

In the second approach, the route can go via several objects of each type and
the probability-of-success is the probability that for each type, the route has at
least one object of that type that meets the user requirements. For instance, a
route for Alice may travel via several ATMs to increase the probability that Alice
will visit a functioning ATM. In this paper, we investigate only this approach.
Note that in order for the route to be effective, it should not be too long. Thus,
the set of objects that the route travels through should be chosen carefully.

In this paper, we propose two semantics for route-search queries over proba-
bilistic data. Under the bounded-length semantics, a distance limit
 is provided
and the goal is to find the route with the highest probability of success among
the routes that satisfy the query and whose length does not exceed
. Under
the bounded-probability semantics, a probability value p is given, and the goal is
to find the shortest route among the routes that satisfy the query and provide
probability of success not smaller than p.

The bounded-length semantics is appropriate when the length of the route
must not exceed a given value. For example, a customer of a rental-car agency
would like not to exceed the traveling distance that is included in the base price.
The bounded-probability semantics is suitable when the user can be flexible with
the length, yet would like to guarantee a certain probability of success.

As a web application, a route-search algorithm should be highly efficient. How-
ever, computing a route under either the bounded-length semantics or
the bounded-probability semantics is an NP-hard problem—simple reductions
from the traveling-salesman problem (TSP) show that. Hence, in this paper, we
present heuristics for the problems.

The paper is organized as follows. In Section 2, we present the formal frame-
work and define the two semantics of route search over probabilistic data. In
Section 3, we survey recent papers on route search, and we compare the compu-
tation of a route under the two semantics to similar problems that exist in the
literature. Heuristic algorithms for computing a route under the two semantics
are presented in Section 4. In Section 5, we present the results of experiments
that illustrate the effectiveness and efficiency of our algorithms. Finally, we con-
clude in Section 6.

2 Probabilistic Route Search

In this section, we present our formal framework and define the concept of a
probabilistic route search.

156 Y. Kanza, E. Safra, and Y. Sagiv

2.1 Geographical Datasets

A geo-spatial dataset is a collection of geo-spatial objects. Each object represents
a real-world geographical entity and has a location—the location of an object is
the location of the entity it represents. An object may have additional spatial
and non-spatial attributes. Height and shape are examples of spatial attributes.
Address and name are examples of non-spatial attributes. We assume that lo-
cations are points and are unique, i.e., different objects have different locations.
For objects that are represented by a polygonal shape and do not have a speci-
fied point location, we consider the center of mass of the polygonal shape to be
the point location.

For simplicity, we measure the distance between two objects in terms of the
Euclidean distance between their point locations. However, our algorithms do not
assume that distances are Euclidean and, hence, they are applicable also when
movement is constrained to a road network. We denote the distance between
two objects o1 and o2 by distance(o1, o2). Similarly, if o is an object and l is a
location, then distance(o, l) is the distance from o to l.

2.2 Search Queries

Users specify what entities they would like to visit by search queries. Formally,
a query is a pair Q = (W, C), where (1) W is a set of keywords, and (2) C is a
set of constraints having the form A v, such that A is an attribute name, v is
a value and is a comparison symbol among =, <, >, �=,≤ and ≥. For instance,
Hotel, Wireless Internet Access, rank ≥ 3, price ≤ 100 specify that the
user would like to go via a hotel that provides an Internet wireless connection,
has a ranking of at least three stars and a rate that does not exceed $100.

In a non-probabilistic setting, there is a clear-cut notion of when an object o
satisfies a given query. In our framework, each object has some degree of rele-
vancy to a given search query Q. That degree is stated as a probability-of-success
(or probability, for short), which is a value between 0 and 1. This probability indi-
cates how high are the chances that o satisfies the user requirements. We denote
the probability of an object o by Pr(o).

Methods for determining the probability of an object are beyond the scope
of this paper. In a nutshell, initial probabilities are determined when objects
are created or updated in the database. Those probabilities may be derived by
estimating the reliability of the information sources, as well as other factors. In
addition, rules could be applied in order to adjust the probability of an object
according to the query at hand. For example, if an attribute of a restaurant object
contains the string “Italian food,” then a rule may determine that the restaurant
serves pizza with probability 0.9. Finally, the underlying model determines how
to compute the probability of joint events. For example, the probability that a
restaurant object serves pizza and charges moderate prices could be computed
by assuming that these two events are independent. In summary, we assume that
the probability of each object is given and incorporates all the relevant factors.

Route Search over Probabilistic Geospatial Data 157

2.3 Route-Search Queries

In a route-search query, the user specifies a source location, a target location and
the entities that the route should visit. We represent a route-search query as a
triplet R = (s, t,Q), where s is a source location, t is a target location and Q is
a set of search queries.

Example 1. Consider again the route-search task of Alice presented in Section 1.
A suitable route-search query for this task should include (1) the location s of
the office of Alice, (2) the location t where the meeting should be held, and
(3) the following three search queries: Q1 = {restaurant esoteric food},
where “esoteric food” refers to the type of diet Alice needs; Q2 = {ATM}; and
Q3 = {pharmacy}.
Consider a route-search query R = (s, t,Q), and let Q1, . . . , Qm be the search
queries of Q. The result of Qi, denoted by Ai, comprises the objects of the
database that are relevant to Qi. We assume that the Aj are pairwise disjoint.
In other words, distinct search queries of Q refer to different types of objects.
For example, one search query is about hotels, another is concerning restaurants,
etc. A pre-answer to R is a route that starts at s, ends at t and goes via objects
of the results A1, . . . , Am. That is, a route is a sequence s, o1, . . . , ok, t, such that
each oi belongs to some Aj . The length of the route is the sum of the distances
between consecutive objects, that is,

distance(s, o1) + Σk−1
i=1 distance(oi, oi+1) + distance(ok, t).

As mentioned earlier, each object oi on the route has a probability Pr(oi) that
indicates its relevancy to the corresponding search query. Let ρ denote the above
route, namely, s, o1, . . . , ok, t. The probability-of-success of ρ (or probability, for
short), denoted by Pr(ρ), is given by the following equation.

Pr(ρ) = Πm
j=1(1 − Πoi∈Aj (1 − Pr(oi))).

This equation is derived as follows. First, 1−Pr(oi) is the probability that object
oi ∈ Aj does not satisfy the requirements implied by the search query Qj . So,
for a given Aj , the product Πoi∈Aj (1−Pr (oi)) is the probability that Aj has no
relevant object on the route ρ. Hence, 1 −Πoi∈Aj (1 −Pr(oi)) is the probability
of the complement event, namely, Aj has at least one relevant object oi on the
route ρ. The final product over all the Aj is the probability of the route ρ.

The answer to a route-search query is a pre-answer chosen according to a spe-
cific semantics. In this paper, we present two semantics for route-search queries
over probabilistic data.

Bounded-Length Semantics. Let
 be a given distance limit. Under the
bounded-length semantics , the answer is the pre-answer that has the highest
probability of success among the pre-answers whose length does not exceed
.

Bounded-Probability Semantics. Let p be a given probability threshold.
Under the bounded-probability semantics , the answer is the pre-answer that has
the shortest length among the pre-answers whose probability of success is not
smaller than p.

158 Y. Kanza, E. Safra, and Y. Sagiv

3 Related Work

Some variations of route search have been investigated in earlier works. Safra et
al. [13] studied the case of a route search over uncertain data where all the ob-
jects belong to the same set. This is similar, but not identical, to a special case
of the route search presented in this paper, where there is a single search query
in R and the bounded length semantics is used. This special case also has some
similarity to the orienteering problem. In the orienteering problem, the input con-
sists of a distance limit, a start location and a set of objects where each object
has a score. The problem is to compute a route that (1) starts at the given start-
ing location, (2) have a length that does not exceed the given distance limit and
(3) goes via objects whose total score is maximal. The orienteering problem has
been studied extensively [2,5] and several heuristics [1,4,8,9,16] and approxima-
tion algorithms [12] were proposed for it.

There are two main differences between orienteering and the problem of com-
puting a route under the bounded-length semantics. First, in a route search,
the objects are divided into sets (the sets are the answers to the search queries)
and an object from each set must be visited in order to have a probability-of-
success greater than zero. In the orienteering problem, objects differ only in their
location and score.

Secondly, in the orienteering problem, when an object is added to a route, its
effect on the total score is always equal to its score, while in a probabilistic route
search, the effect of an object on the probability depends on both the probability
of the object and the probabilities of objects in the route. For instance, an object
with score 0.5 will always add 0.5 to the score of an orienteering sequence.
However, in a probabilistic route search, an object of set A with probability 0.5
will have a different effect in each of the following three cases: a route that does
not contain any object of A, a route that contains an object of A with probability
0.4, and a route that contains an object of A with probability 1.

Because of these differences, there is no simple way of using heuristic or ap-
proximation algorithms of the orienteering problem to solve a route search, even
when the route search comprises a single search query.

A route search over objects that are partitioned into sets has been studied
by Kanza et al. [7]. However, they considered a semantic of route search that is
different from the semantics suggested in this paper. First, under their semantics,
the route must visit exactly one object of each set while in the probabilistic case,
a route can visit several objects of each set. Secondly, as explained above, in the
non-probabilistic case, the effect of an object on a route depends on the object,
whereas in the probabilistic case, it depends on both the object and the route.
Therefore, algorithms and heuristics for the non-probabilistic case do not solve a
route search over probabilistic data. For instance, consider a search for a phone
booth and the following two routes, having the same length. A route that goes
via a single place which has a phone booth with probability 0.6, and a route that
goes via 10 places where a phone booth can exist with probability 0.5. A non-
probabilistic search will prefer the first route while the probability-of-success is
much greater in the second route.

Route Search over Probabilistic Geospatial Data 159

Several papers [3,10,11,14] study route-search queries over datasets in which
objects have neither scores nor probabilities. The work of [15] investigates two
variants of the shortest-route problem. In one, there should be exactly k inter-
mediate points. In the second, the distance between any two consecutive points
should not exceed a given bound. In the framework of [15], there are no scores,
probabilities, or different types of points. In [6], they consider a user who travels
a predetermined route in a road network. Their goal is to modify the route so
that a new point is visited in a manner that optimizes some spatial preferences.

4 Algorithms

Under the bounded-length semantics, even a restricted version of the problem is
NP-hard. To prove it, consider an instance of the following decision problem: does
the traveling-salesman route has a length of at most
. We construct a database
D and a route-search query R = (s, t,Q) as follows. The objects of D are those
of the traveling-salesman problem. An arbitrary object o of D is chosen as both s
and t. Q has a single search query Q, such that every object of D\{o} is relevant
to Q with probability 0.5. The distance bound is
. Clearly, the length of the
traveling-salesman route is at most
 if and only if the answer to the route-search
query (under the bounded-length semantics) has probability 1−0.5n−1, where n
is the number of objects in D. Under the bounded-probability semantics, we can
use the same reduction in order to compute the length of the traveling-salesman
route. For that, we have to choose 1 − 0.5n−1 as the probability threshold.

4.1 Heuristics for the Bounded-Length Semantics

Since route search is a hard problem, we present heuristics instead of algorithms
that provide exact answers. In this section, we give four heuristics for route
search under the bounded-length semantics. These heuristics were devised to be
efficient, which is a necessary requirement when developing web applications.

Throughout this section, R = (s, t,Q) is the given route-search query, where
s is the start location, t is the target location, and Q = {Q1, . . . , Qm} are the
search queries. D is the dataset over which R is posed and A1, . . . , Am are the
results of the search queries, i.e., Ai = Qi(D) for all 1 ≤ i ≤ m. The probability-
of-success of each object o ∈ D is denoted by Pr(o). Finally,
 is the length limit.

Ratio-Greedy Heuristic. The Ratio-Greedy Heuristic (RGreedy, for short)
is our baseline for comparison with the other, more advanced heuristics. It is
presented in Fig. 1. Initially, it generates a route ρ that (1) goes from s to t,
(2) visits exactly one object of each set Ai, and (3) is as short as possible.
The task of computing this initial route is by itself a hard problem, and thus,
it is solved heuristically. In our implementation, we used the Infrequent-First
Heuristic of [7] for this task.

After the initial step of Line 3, the RGreedy algorithm iteratively increases the
probability-of-success of the route, using a greedy approach. While the length of ρ
does not exceed the length limit
, the algorithm repeatedly extends ρ by adding

160 Y. Kanza, E. Safra, and Y. Sagiv

Ratio Greedy ((s, t, Q1, . . . , Qm), �, D,Pr())

Input: Source location s, target location t, search queries Q1, . . . , Qm, limit dis-
tance �, a dataset D, a probability function Pr()
Output: A route starting at s, ending at t, not exceeding a length of � and at-
tempting to provide the highest probability-of-success
1: for i = 1 to m do
2: Ai ← Qi(D)
3: ρ ← ShortestRouteHeuristic((s, t, Q1, . . . , Qm), D) // the initial short route

4: Candidates ← {o | there exists an i such that length(Add i(ρ, o)) ≤ �}
5: while Candidates �= ∅ do
6: let i be an index and om be an object of Candidates such that for all o ∈

Candidates and index j, it holds that Ratioi(ρ, om) ≥ Ratioj(ρ, o)
7: ρ ← Add i(ρ, om)
8: Candidates ← {o | there exists an i such that length(Add i(ρ, o)) ≤ �}
9: return ρ

Fig. 1. The Ratio-Greedy Heuristic for answering route-search queries under the
bounded-length semantics

a new object in each iteration of Line 5. We use Add i(ρ, o) to denote the route
that is obtained by adding the object o between the i-th and the (i+1)-st objects
of ρ. That is, if ρ = s, o1, . . . , ok, t then Add i(ρ, o) = s, . . . , oi, o, oi+1, . . . , t.
When i = 0, we add o between s and o1, and similarly, when i = k, we add o
between ok and t. An object o is a candidate for extension if after adding o to
ρ, the length of the new route does not exceed
, that is, there is an i such that
length(Add i(ρ, o)) ≤
.

The candidate that is actually added to the current route is the one that gives
the largest ratio of the increase in the probability-of-success to the increase in
the length of the route. That is, let

Ratioi(ρ, o) =
Pr (Add i(ρ, o)) − Pr(ρ)

length(Add i(ρ, o)) − length(ρ)

be this ratio when inserting o at position i of the current route ρ. Each iteration
of Line 5 chooses the maximal Ratioi(ρ, o) and adds o at position i of ρ. Note
that o is added at the position where it causes the smallest increase in the length
of the route, because the probability does not depend on the length. Hence, the
length limit is not exceeded.

We also experimented with two other criteria for adding objects. One is choos-
ing the object that maximizes the increase in the probability-of-success. The
second is picking the object that minimizes the increase in the length. How-
ever, in the experiments, these two criteria were found to be inferior to choosing
according to the largest ratio.

Route Search over Probabilistic Geospatial Data 161

Increase-Decrease ((s, t, Q1, . . . , Qm), �, D, Pr())

Input: Source location s, target location t, search queries Q1, . . . , Qm, limit dis-
tance �, a dataset D, a probability function Pr()
Output: A route starting at s, ending at t, not exceeding a length of � and at-
tempting to provide the highest probability-of-success
1: for i = 1 to m do
2: Ai ← Qi(D)
3: ρ ← RGreedy((s, t,Q1, . . . , Qm), �, D, Pr()) // ρ is the initial route
4: let k be the number of objects in the current route, i.e., ρ = s, o1, . . . , ok, t
5: r ← �k

2
�

6: while r > 0 do
7: for i = 0 to k − r do
8: let ρ−

i be the result of removing from ρ the objects oi+1, . . . , oi+r, i.e.,

ρ−
i =

⎧⎨
⎩

s, or+1, . . . , ok, t : i = 0
s, o1, . . . , oi, oi+r+1, . . . , t : 0 < i < k − r
s, o1, . . . , ok−r, t : i = k − r

9: let ρ−
m be a route in

{
ρ−
0 , . . . , ρ−

k−r

}
whose length is minimal, i.e., for every

0 ≤ i ≤ k − r it holds that length(ρ−
m) ≤ length(ρ−

i)
10: let (ρ−

m)+ be the result of adding objects to ρ−
m by applying the increase

stage of the Ratio-Greedy Heuristic (Lines 4-9 of Fig. 1)
11: if Pr((ρ−)+) > Pr(ρ) then
12: ρ ← (ρ−)+

13: else
14: r ← r − 1
15: return ρ

Fig. 2. The Increase-Decrease Heuristic for answering route-search queries under the
bounded-length semantics

Increase-Decrease Heuristic. The Ratio-Greedy Heuristics only adds ob-
jects. An object o that is inserted into the route, either in the initial step or
during the iterative stage, remains in the route even if its utility is eventu-
ally diminished (this may happen when subsequent iterations add many objects
that are far away from o). The Increase-Decrease Heuristic (Inc-Dec, for short)
changes that by considering the option of removing objects from the current
route and replacing them with some other objects.

Increase-Decrease is presented in Fig. 2. Initially, Line 3 generates a route us-
ing the Ratio-Greedy Heuristic. Then, each iteration of Line 6 picks r adjacent
objects as candidates for removal. In particular, Line 9 chooses the r contiguous
objects that yield the largest decrease in the length of the current route. These r
objects are actually removed if the Ratio-Greedy Heuristic can add some other
objects, such that the new route has a higher probability-of-success and does
not exceed the length limit (Lines 10–12). If the objects are indeed removed, r is

162 Y. Kanza, E. Safra, and Y. Sagiv

not changed; otherwise, it is decreased by one. In either case, the next iteration
of Line 6 tries again to replace r objects. The algorithm terminates when r = 0.

Extra-Length Heuristic. The former heuristics are unlikely to add objects
that are not close to the initial route, because of the length limit. Yet, in some
cases, it may be beneficial to add objects that are far away from the initial route
if those objects have high probabilities and are clustered together in a small area.
The approach of the Extra-Length Heuristic (Ext-Len, for short), presented in
Fig. 3, is to start by applying the Ratio-Greedy Heuristic with a pseudo length
limit that is larger than the actual one (e.g., multiply the given
 by five). This
makes it possible to generate intermediate routes that visit far-away objects.
Clearly, the route obtained in Line 4 is too long. Hence, objects are repeatedly
removed in the loop of Line 5. In each iteration, the removed object is the one
that gives the largest ratio of the decrease in the length to the decrease in the
probability-of-success. For an object o, this ratio is

RemRatio(ρ, o) =
length(ρ) − length(Remove(ρ, o))

Pr (ρ) − Pr(Remove(ρ, o))

where Remove(ρ, o) is the route obtained by removing o from ρ. Since this may
lead to removing “too much,” a final stage of adding objects using the Ratio-
Greedy approach is applied (Line 8).

When using a large length limit, the probability-of-success of the current
route can become close to one. Consequently, all the candidates for addition to

Extra Length ((s, t,Q1, . . . , Qm), �, D, Pr())

Input: Source location s, target location t, search queries Q1, . . . , Qm, limit dis-
tance �, a dataset D, a probability function Pr()
Output: A route starting at s, ending at t, not exceeding a length of � and at-
tempting to provide the highest probability-of-success
1: for i = 1 to m do
2: Ai ← Qi(D)
3: �extra ← 5�
4: ρ ← RGreedyε((s, t, Q1, . . . , Qm), �extra, D,Pr()) /* ρ is the initial route

generated by using the Ratio-Greedy Heuristic while guaranteeing that the
probability-of-success does not exceed 1 − ε */

5: while length(ρ) > � do
6: let or be an object in ρ such that RemRatio(ρ, or) ≥ RemRatio(ρ, o) for

every object o in ρ
7: ρ ← Remove(ρ, or)
8: add objects to ρ by applying the increase stage of the Ratio Greedy Heuristic

(Lines 4-9 of Fig. 1)
9: return ρ

Fig. 3. The Extra-Length Heuristic for answering route-search queries under the
bounded-length semantics

Route Search over Probabilistic Geospatial Data 163

Universal Start ((s, t, Q1, . . . , Qm), �,D, Pr())

Input: Source location s, target location t, search queries Q1, . . . , Qm, limit dis-
tance �, a dataset D, a probability function Pr()
Output: A route starting at s, ending at t, not exceeding a length of � and at-
tempting to provide the highest probability-of-success
1: for i = 1 to m do
2: Ai ← Qi(D)
3: ρm ← s, t
4: for each o in D do
5: generate an initial route ρ = s, d1, . . . , dm, o, t where o is an object of D

and d1, . . . , dm are dummy objects all located at s, satisfying di ∈ Ai, for
1 ≤ i ≤ m and with probability-of-success that is a small ε (i.e., the dummy
objects do not affect the length of the route and just guarantee that the
probability-of-success of ρ is not zero, even before adding an object of each
group among A1, . . . , Am)

6: add objects to ρ by applying the increase stage of the Ratio Greedy Heuristic
(Lines 4-9 of Fig. 1)

7: if Pr(ρ) > Pr(ρm) then
8: ρm ← ρ
9: return ρm

Fig. 4. The Universal-Start Heuristic for answering route-search queries under the
bounded-length semantics

the current route yield similar ratios, and the Ratio-Greedy Heuristic may add
objects that have very low probabilities. In order to avoid that, we use a variation
RGreedyε of the Ratio-Greedy Heuristic that prevents the current route from
reaching a probability-of-success that is too close to one. This variant stops when
either the given length limit is reached or the probability-of-success exceeds 1−ε.

Universal-Start Heuristic. All of the former heuristics may fail to consider
some of the objects that are needed for generating a route that is (close to)
the best. The Universal-Start Heuristic (UStart, for short), shown in Fig. 4,
surmounts this problem by applying the Ratio-Greedy Heuristic multiple times.
In particular, in the loop of Line 4, UStart considers all the objects o that are
within the length limit. For a given o, Line 5 creates an initial route consisting
of the start location, the target location and o itself. Line 6 applies the Ratio-
Greedy Heuristic to this initial route. The output is the route with the highest
probability-of-success. In order for the initial route to have a nonzero probability-
of-success, Line 5 adds dummy objects that do not change the length and have an
ε effect on the probability, where ε is a very small constant. These placeholders
are removed after adding the relevant objects, i.e., the dummy object of Ai is
deleted from the current route when an object of Ai is added to the route.

164 Y. Kanza, E. Safra, and Y. Sagiv

4.2 Heuristics for the Bounded-Probability Semantics

With some minor modifications, the above heuristics for the bounded-length se-
mantics can also be used for the bounded-probability semantics. We now describe
these modifications.

In the case of the the Ratio-Greedy Heuristic, we only need to change the
termination condition. In other words, this heuristic repeatedly extends the cur-
rent route, as described earlier, until the probability-of-success of the current
route exceeds the threshold p. Clearly, this modification applies to the original
Ratio-Greedy Heuristic (Fig. 1) as well as to the application of this heuristic by
the other three algorithms.

The Extra-Length Heuristic is changed into an Extra-Probability Heuristic
as follows. We first generate an initial route that has a much higher probability
than the given threshold p. We do it by multiplying p by some constant and
then applying the modified Ratio-Greedy Heuristic. In addition, we change the
termination condition in the phase of removing objects. This phase continues
while the probability-of-success is greater than the probability bound p.

No changes are needed in the Increase-Decrease and the Universal-StartHeuris-
tics, except for the obvious fact that they apply the Ratio-Greedy Heuristics with
the modification described above.

4.3 Complexity Analysis

We now discuss the complexity of the four heuristics. For simplicity, we consider
the heuristics only under the bounded-length semantics.

First, we note that some of the objects of the underlying dataset may not
be relevant to the computation of a given route-search query. Specifically, given
a query R = (s, t,Q) and a length limit
, only the objects in the elliptic area
{u | distance(s, u) + distance(u, t) ≤
} are relevant to the computations. Ob-
jects outside this area cannot be in the result. When a spatial data structure
exists for the dataset over which R is computed, it can be used for retrieving the
relevant objects before the computation. Otherwise, the algorithms can start by
reading the entire dataset and filtering out irrelevant objects. Hence, in the rest
of this section, we will consider D to be a dataset of merely n relevant objects.

In the Ratio-Greedy Heuristic, the complexity of constructing the initial route
depends on the algorithm being used. The iterative stage has O(n3) time com-
plexity. To see that, first note that there are at most n iterations of adding
an object to the route. In each iteration, at most n objects are considered as
candidates for addition. The computation where to add an object and the com-
putation of the probability are proportional to the length of the sequence, which
is at most n. Note that if we consider k to be the maximal number of objects in
a route, then the time complexity is actually O(nk2).

For the Increase-Decrease Heuristic, again our analysis considers only the
phase after the initial route has been computed. In this algorithm, the main
iteration is performed at most 2n times. To see why, observe that in each iter-
ation, we replace a subset of the route by a new subset. Since the probability

Route Search over Probabilistic Geospatial Data 165

of the route constantly increases, no two routes can have exactly the same set
of objects. Hence, there are at most 2n possible replacements. Now, in each it-
eration, the iterative stage of the Ratio-Greedy Heuristic is executed (and as
shown above, it has O(nk2) time complexity). Thus, the time complexity of this
heuristic is O(n2nk2).

The time complexity of the Extra-Length Heuristic is similar to that of the
Ratio-Greedy Heuristic, i.e., O(nk2). However, the former does more iterations
than the latter, because it uses a larger length limit and, moreover, it has an ad-
ditional phase of removing objects. Finally, the Universal-Start Heuristic applies
the Ratio-Greedy Heuristic n times and, thus, has O(n2k2) time complexity.

5 Experiments

We have tested our algorithms over both synthetically-generated datasets and
real-world datasets. The goal of our experiments was to compare our methods in
terms of efficiency and the quality of the results. The experiments were conducted
on a PC equipped with a Core 2 Duo processor 2.13 GHz (E6400), 2 GB of main
memory and Windows XP Professional operating system.

5.1 Tests on Real-World Data

We extracted real-world data from a digital map of the City of Tel-Aviv. A
fragment of that data is shown in Fig. 5. Specifically, we used objects of the
“Point Of Interest” (POI) layer of the map. This layer represents many different
types of geographical entities. The extracted dataset comprises 103 objects of
three different types (20 cinemas, 29 hotels, 54 post offices). As a query, we
used a particular choice of source and target locations, and assumed that all the
objects are in the answer to the query. The objects received probabilities that
are normally distributed, with mean of 0.5. We ran additional experiments on
more queries as well as another dataset with five types of objects, and the results
were similar.

Evaluation under the Bounded-Length Semantics. Fig. 7 and Fig. 8
present the test results for the four heuristics over the real-world dataset, under
the bounded-length semantics. Fig. 7 shows the quality of the answer of each
algorithm as a function of the length limit
. In this graph, the x-axis shows the
factor by which the length limit
 is larger than the length of the initial route
created by RGeedy. Recall that this initial route has exactly one object from
each Ai and is constructed by the Infrequent-First Heuristic of [7]. For instance,
when x is 1.8, it means that
 = 1.8×a, where a is the length of the initial route.
The y-axis is the probability-of-success of the answer. It can be seen that UStart
provides the best answers. Ext-Len provides answers that are almost as good.
The quality of the answers of RGreedy are the worst among the four heuristics.

Fig. 8 presents the running times of the methods as a function of the length
limit
. The x-axis is similar to the x-axis in Fig. 7. The y-axis shows the running
time of the computation, in milliseconds. RGreedy is the most efficient. Ext-Len

166 Y. Kanza, E. Safra, and Y. Sagiv

Fig. 5. A fragment of the real-world dataset Fig. 6. A fragment of the
synthetic dataset

is almost as efficient as RGreedy. Note that its running time does not change
as
 grows, because even when
 is small, the computation is with respect to a
larger length (i.e., 5
). The Inc-Dec heuristic is efficient for small values of
, but
its running time climbs sharply as
 grows, and then it drops again. The reason
for that is that the size of the replaced subsets, as well as their number, grows
when the route becomes longer. However, the probability of the generated route
also grows when the length limit increases. In the implementation, Inc-Dec stops
when it finds a route with a probability that is very close to one. This happens
early when the length limit is large and, therefore, the running time drops.

The running times of UStart are not shown in Fig. 8, because they are much
greater than those of the other methods. In order to compare them to the run-
ning times of the other three methods, they are presented in Table 1. For large
values of the length limit, the running time of UStart drops, because UStart
quickly finds a route with a probability that is very close to one (and in the
implementation, UStart stops when that happens).

Table 1. The running times (milliseconds) under the bounded-length semantics

Length RGreedy Inc-Dec Ext-Len UStart
1.01 2 7 81 34
1.4 7 43 90 551
1.8 10 61 82 2193
2.2 24 331 100 209
2.6 45 179 80 178

Evaluation under the Bounded-Probability Semantics. Fig. 9 and Fig. 10
present the test results of the algorithms over the real-world dataset, under the
bounded-probability semantics. Fig. 9 shows the length of the answer as a func-
tion of the probability threshold. Not surprisingly, these results are analogous

Route Search over Probabilistic Geospatial Data 167

Fig. 7. Probability versus length limit Fig. 8. Running times (millisecond)
versus length limit

Fig. 9. Length versus probability
bound

Fig. 10. Running times (millisecond)
versus probability bound

to the results under the bounded-length semantics. UStart provides the best an-
swers, Ext-Len is almost as good as UStart, while RGreedy provides the longest
route among the four methods. The test results of Inc-Dec are similar to those
of RGreedy for low probabilities, and similar to those of UStart for high prob-
abilities. The reason for that is that when the probability threshold increases,
the generated route becomes longer. Hence, the size and number of the replaced
subsets is greater, thereby creating more opportunities for improving the route.

Fig. 10 shows the running time of each methods as a function of the probability
threshold. Here, as well, the results are similar to the results under the bounded-
length semantics. RGreedy is the most efficient. Ext-Len is almost as efficient
as RGreedy and its running time does not change much as a function of the
probability threshold. Inc-Dec is very efficient for small and medium probability
thresholds, but is very inefficient in the case of high thresholds, because it makes
many iterations of replacement in this case.

5.2 Tests on Synthetic Data

In order to have control over our experiments, and for testing our methods over
datasets with specific properties, we used synthetically generated datasets. In a
synthetic dataset, we have control over the distribution of the locations of objects

168 Y. Kanza, E. Safra, and Y. Sagiv

Fig. 11. Probability versus length
bound

Fig. 12. Running times (milliseconds)
versus length bound

Fig. 13. Length versus probability
bound

Fig. 14. Running times (milliseconds)
versus probability bound

in the area of the map, the way that the objects are partitioned into sets, etc. For
generating synthetic datasets, we implemented a random-dataset generator. Our
generator is a two-step process. First, the objects are generated. The locations
of the objects are randomly chosen according to a given distribution, in a square
area. In the second step, we partition the objects into sets and a probability
value is attached to each object. The partitioning of objects into sets can be
uniform or according to a distribution specified by the user.

The user provides the following parameters to the dataset generator. The
number of objects, the size of the square area in which the objects are located
and the minimal distance between objects; for simulating search results, the user
provides the distribution of object probabilities, and the distribution of the size
of the sets in the partition. These parameters allow a user to generate tests with
different sizes of datasets and different partitions of the datasets into sets.

We conducted experiments over several synthetically generated datasets and
multiple choices of queries. We present a few, typical results. Figures 11, 12, 13
and 14 are for a particular query and a dataset of 150 objects distributed over
an area of 1300 × 1300 square meters (a fragment of this dataset is shown in
Fig. 6). The objects in this dataset are partitioned into three types having 25,
50 and 75 objects. All the objects are in the answer to the query.

Route Search over Probabilistic Geospatial Data 169

Fig. 15. Running times (millisecond)
versus length bound over large dataset

Length RGreedy Inc-Dec Ext-Len UStart
1.01 14 75 191 216
1.4 118 898 227 11333
1.8 159 1546 407 47521
2.2 216 2045 602 8965
2.6 282 3392 579 1858

Fig. 16. The time for computing a route
over dataset with 389 features

Fig. 11 shows the probability-of-success of the answer as a function of the
length limit, under the bounded-length semantics. Fig. 12 depicts the running
time as a function of the length limit, under the bounded-length semantics. The
differences between the methods are not as significant as in the case of real-world
data. The reason for that is the uniform distribution of the objects in the area
that is queried. Also note that the Ext-Len method usually provides answers
that are almost the best, and it does so in time that is almost the shortest.
However, it may fail, as can be seen in Fig. 11 when the length limit is very
small. In this case, Ext-Len returns zero as the probability of success, because
during the removal stage, it removes all the objects of one of the sets.

The results over the synthetic data under the bounded-probability semantics
are depicted in Fig. 13 and in Fig. 14. In general, the results over the synthetic
data show that Inc-Dec efficiently computes good answers when the bound (of
either the length or the probability) is small. For medium or large bounds, Ext-
Len is efficient and provides good answers, in comparison to the other methods.

We also tested the scalability of the four heuristics. For that, we used a larger
dataset with 389 objects and groups of sizes 31, 169 and 189. The results, which
are summarized in Fig. 15 and Fig. 16, show that RGreedy and Ext-Len are
scalable. Inc-Dec remains efficient only when the length limit is not high.

6 Conclusion

In this paper, we investigated the problem of route search over probabilistic
datasets. We explained why algorithms and heuristics for non-probabilistic route
search are inapplicable to probabilistic data, and then, we gave four heuristics
for the problem. We showed how these heuristics can be applied under the two
proposed semantics. In these heuristics, there is a tradeoff between the effi-
ciency and the quality of the answers. Our experiments over both real-world and
synthetically-generated data illustrated this tradeoff and showed that the UStart
heuristic provides the best answers at the cost of a relatively long computation
time. RGreedy is the most efficient method; however, usually its answers are
inferior to those of the other methods. Inc-Dec provides a good tradeoff between

170 Y. Kanza, E. Safra, and Y. Sagiv

the computation time and the quality of the answers when the bounds (i.e., the
length limit and the probability threshold) are small. Finally, Ext-Len provides
a good tradeoff between the computation time and the quality of the answers in
all cases, except when the bounds are small. For future work, we plan to inves-
tigate how to use these algorithms in an adaptive way in cases where the user
can send or receive information while traveling.

References

1. Chao, I., Golden, B., Wasil, E.: A fast and effective heuristic for the orienteering
problem. European Journal of Operational Research 88(3), 475–489 (1996)

2. Chao, I., Golden, B., Wasil, E.: The team orienteering problem. European Journal
of Operational Research 88, 464–474 (1996)

3. Chen, H., Ku, W.S., Sun, M.T., Zimmermann, R.: The multi-rule partial sequenced
route query. In: GIS, pp. 1–10 (2008)

4. Golden, B., Wang, Q., Liu, L.: A multifaceted heuristic for the orienteering prob-
lem. Naval Research Logistics 35, 359–366 (1988)

5. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Research Lo-
gistics 34, 307–318 (1987)

6. Huang, X., Jensen, C.S.: In-route skyline querying for location-based services. In:
Kwon, Y.-J., Bouju, A., Claramunt, C. (eds.) W2GIS 2004. LNCS, vol. 3428, pp.
120–135. Springer, Heidelberg (2005)

7. Kanza, Y., Safra, E., Sagiv, Y., Doytsher, Y.: Heuristic algorithms for route-search
queries over geographical data. In: GIS, pp. 1–10 (2008)

8. Keller, P.C.: Algorithms to solve the orienteering problem: A comparison. European
Journal of Operational Research 41, 224–231 (1989)

9. Leifer, A.C., Rosenwein, M.S.: Strong linear programming relaxations for the ori-
enteering problem. European J. of Operational Research 73, 517–523 (1994)

10. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.H.: On trip planning
queries in spatial databases. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E.
(eds.) SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

11. Ma, X., Shekhar, S., Xiong, H., Zhang, P.: Exploiting a page-level upper bound for
multi-type nearest neighbor queries. In: GIS, pp. 179–186 (2006)

12. Ramesh, R., Yoon, Y., Karwan, M.: An optimal algorithm for the orienteering tour
problem. ORSA Journal on Computing 4(2), 155–165 (1992)

13. Safra, E., Kanza, Y., Dolev, N., Sagiv, Y., Doytsher, Y.: Computing a k-route over
uncertain geographical data. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD
2007. LNCS, vol. 4605, pp. 276–293. Springer, Heidelberg (2007)

14. Sharifzadeh, M., Kolahdouzan, M.R., Shahabi, C.: Optimal sequenced route query.
The VLDB Journal 17(8), 765–787 (2008)

15. Terrovitis, M., Bakiras, S., Papadias, D., Mouratidis, K.: Constrained shortest path
computation. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, pp. 181–199. Springer, Heidelberg (2005)

16. Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the Opera-
tional Research Society 35(9), 797–809 (1984)

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 171–188, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Utilizing Wireless Positioning as a Tracking Data Source

Spiros Athanasiou1, Panos Georgantas2, George Gerakakis2, and Dieter Pfoser1

1 Institute for the Management of Information Systems
"Athena" Research Center

G. Mpakou 17, 11524Athens, Greece
{spathan,pfoser}@imis.athena-innovation.gr

2 School of Electrical and Computer Engineering
National Technical University of Athens

Greece, 15780
{pgeor,ggera}@dblab.ece.ntua.gr

Abstract. Tracking data has become a valuable resource for establishing speed
profiles for road networks, i.e., travel-time maps. While methods to derive travel
time maps from GPS tracking data sources, such as floating car data (FCD), are
available, the critical aspect in this process is to obtain amounts of data that fully
cover all geographic areas of interest. In this work, we introduce Wireless
Positioning Systems (WPS) based on 802.11 networks (WiFi), as an additional
technology to extend the number of available tracking data sources. Featuring in-
creased ubiquity but lower accuracy than GPS, this technology has the potential to
produce travel time maps comparable to GPS data sources. Specifically, we adapt
and apply readily available algorithms for (a) WPS (centroid and fingerprinting)
to derive position estimates, and (b) map matching to derive travel times. Further,
we introduce map matching as a means to improve WPS accuracy. We present an
extensive experimental evaluation on real data comparing our approach to GPS-
based techniques. We demonstrate that the exploitation of WPS tracking data
sources is feasible with existing tools and techniques.

Keywords: wireless positioning, map matching, tracking, FCD.

1 Introduction

Incorporating travel times into road network information, i.e., travel time maps, is an
important prerequisite for a large number of spatiotemporal tasks. Examples include
shortest path computation, traffic avoidance, emergency response, etc. Solutions typi-
cally rely on collected floating car data (FCD) that sample the overall traffic condi-
tions [16, 5] in a given region. FCD capture temporal variations in achievable vehicle
speeds throughout the road network. For example, speeds during the rush-hour are
considerably lower than during night traffic. Then, in a post-processing step termed
map-matching [4, 19], tracking data is accurately related to the road network and
travel times are extracted. It is critical that large amounts of FCD are available for
long periods of time and geography, so that the extracted speed profiles are accurate.
Currently, all methods use GPS for tracking the position of vehicles.

172 S. Athanasiou et al.

1.1 The Case for GPS vs. WPS

While GPS is the most popular positioning technique, it has several drawbacks. First,
it requires the use of specific hardware limiting the number of vehicles or users that
can collect and provide tracking data. Second, there are occasions where GPS is in-
adequate (e.g., limited coverage, interference of high frequency electronic equip-
ment). This is especially true for “urban canyons”, i.e., areas in urban environments
where line-of-sight with the GPS satellites is obscured, leading to inaccurate readings
or no coverage at all. As demonstrated by LaMarca et al. [11], the average availability
of GPS in an urban environment is only 4.5% during a user’s daily schedule. In con-
trast, wireless networks, such as WiFi and GSM, are available on average 94.5% and
99.6% respectively. Third, the addition of extra integrated or autonomous GPS mod-
ules lead to increased power consumption, and thus limit the user’s mobility or appli-
cation of GPS.

These drawbacks of GPS have led to the rise of Wireless Positioning Systems
(WPS), where the user location is estimated with the help of other, readily available
wireless networks. As a technology, WPS delivers less accurate results (e.g., ~40m
for WiFi/outdoors), but provides greater coverage characteristics (e.g., above 90% of
a user’s time). Further, WPS can be integrated in practically any computing device
that incorporates a wireless network interface, and with a negligible burden on the
interface’s power consumption. So while WPS is less accurate than GPS, for typical
everyday applications it can efficiently augment or even replace GPS.

Lately, WPS capable devices and applications are becoming a common place for
end users, with examples like the iPhone, Android, Google Gears, Mozilla Firefox
3.1, etc. In addition, the integration of WPS in GPS and WiFi chipsets (e.g., SiRF,
Broadcom, Texas Instruments) will result in a state where practically all mobile de-
vices will have WPS capabilities. This argument is a fact, rather than a prediction,
with great implications on spatiotemporal data management in general. In combina-
tion with the emerging usage of geolocation Web APIs (e.g., W3C Geolocation) we
anticipate that in the near future there will be an abundance of readily available WPS
positioning data.

Consequently, the technical advance of WPS is leading to new challenges and po-
tential gains for numerous applications, where the scale and amount of positioning
data will require corresponding advances in algorithmic solutions. Further, repurpos-
ing this sort of data by accommodating their particularities (e.g., varying levels of
accuracy, ubiquitous coverage, etc.) in order to extract hidden knowledge, will be
another area of great interest.

Our work is therefore extremely relevant in this newly established context, and ap-
plied to the specific issue of creating travel time maps. Currently, the creation of
travel time maps from actual travel data is based solely on FCD. While this guaran-
tees the use of position readings of high accuracy, it also limits the availability of such
data for extended periods of time and geography. However, by successfully exploiting
WPS, we would have access to data (a) whose size is several orders of magnitude
greater, (b) temporally span bigger periods, and (c) extend to larger geographic areas.
One could argue that WPS is only feasible in urban areas. While this observation is
true, it actually strengthens our argument; urban areas are exactly where travel time
maps are valuable resources for routing solutions.

 Utilizing Wireless Positioning as a Tracking Data Source 173

1.2 Contributions

In this work, we advocate the use of WPS to complement and/or replace GPS tracking
data sources to produce travel time maps. This increases the potential number of data
providers and ultimately the quality of the resulting travel times. To the best of our
knowledge, this is the first attempt of repurposing WPS tracking data to produce
travel time maps. Our contributions are:

• We adapt and extend the two most important classes of WPS algorithms (centroid
and fingerprinting) for our setting (WiFi network, outdoors operation).

• We experimentally evaluate the optimal parameters of the various classes of WPS
algorithms and identify an optimal solution in terms of accuracy and coverage un-
der realistic settings.

• We adapt an online map-matching algorithm to WPS tracking data as a post-
processing step to improve WPS accuracy.

• We adapt a global map-matching algorithm to extract travel time maps from his-
toric WPS tracking data and compare the results to GPS derived travel time maps.

• We demonstrate that for high sampling frequencies, WPS derived travel times are
comparable to GPS in absolute terms. Further, even for low sampling frequencies,
the results in terms of speed profiles (categories) are useful as well.

The remainder of this paper is structured as follows. Section 2 introduces techniques
for wireless positioning. Section 3 briefly introduces the map-matching algorithm
used for deriving travel times from tracking data. Section 4 gives an experimental
evaluation of WPS techniques and travel times derived from WPS data. Finally,
Section 5 presents our conclusions and directions for future research.

2 Wireless Positioning

Wireless Positioning Systems (WPS) provide a position estimate based on the radio
signals received at a given location (measurement), and a known radio map of the
environment. In the case for 802.11 (WiFi) wireless networks, the measurement con-
sists of a set of the visible access point ids (BSSID), and their corresponding received
signal strength (RSS1). The measurement is then compared to the radio map through a
distance metric, and a position estimate is calculated.

Different wireless positioning algorithms exist, which imply different forms and
means to create the radio maps, as well as distance metrics to provide an estimate. In all
cases, the radio maps for a given region are produced by training data, typically col-
lected through wardriving. Wardriving is the process of massively collecting geocoded
RSS measurements when driving through a certain geographic area. For a given meas-
urement period (e.g., 5sec), we perform a scan of the available WiFi networks in the
environment (BSSID, RSS) and obtain the position of this scan through GPS.

In this section, we present the outline of two classes of WPS algorithms we
adapted and implemented for our experiments, i.e., centroid and fingerprinting. For
both classes, numerous approaches and variations exist, depending on the wireless

1 Note that we always refer to the absolute value of RSS.

174 S. Athanasiou et al.

network (e.g., [13, 12, 17, 7, 18]) and environment (e.g., indoors/outdoors [10, 2, 3,
8]). We have either adopted these variations as is, or properly adapted and extended
them to suit our case.

2.1 Centroid

Centroid is the simplest and the fastest method for wireless positioning. In centroid,
the radio map consists of a set of the available APs and their positions, i.e., <BSSID,
X, Y>. Consequently, centroid depends on having the true locations of the AP posi-
tions. Since this information is practically not available, nor feasible to produce, we
must create the radio map from the training data, essentially estimating the position of
the APs. Therefore, for each AP in the training data, we find all the positions it was
visible, and estimate the AP’s position as the arithmetic mean of these coordinates.
Having established the radio map, a position estimate is provided in a similar manner.
Given a measurement from the environment where certain APs are visible, we calcu-
late the arithmetic mean of their coordinates, as provided by the radio map.

In order to improve accuracy when creating the radio map and/or calculating an es-
timate, we adopted weighted centroid from [6] and proposed two new heuristics: k-
max and thresholds. Specifically:

• Weighted. The simple arithmetic mean is substituted by a weighted arithmetic
mean, where the weight is based on the RSS.

• K-max. We apply the arithmetic mean on only the k APs with the lowest RSS (low
RSS values correspond to strong received signal).

• Thresholds. We define three thresholds t1≤t2≤t3 which split the RSS space in four
regions. If there are APs which fall in the first threshold (RSS≤t1), then we use only
them in the arithmetic mean and ignore the rest. If there no APs in the first thresh-
old, we use the ones in the second (t1≤RSS≤t2), and so forth. In case there are APs
only in the last threshold (t3≤RSS), then the algorithm does not provide an estimate
since we consider the measurement to provide highly inaccurate readings.

Consequently, for centroid, there are a total of 16 different combinations of tech-
niques to create the radio map and to provide an estimate: 4 to create the radio map,
and 4 to provide an estimate. A specific centroid technique will be denoted as cen-
troid <radio map, estimation>, where radio map and estimation can be one of the
following: arithmetic mean (am), weighted (w), k-max (k=n), and thresholds (t1-t2-t3).
For example, centroid <k=2, 60-70-80>, means that the radio map was built with the
k-max technique with k=2, and the estimation is provided with the thresholds tech-
nique with t1=60, t2=70, and t3=80.

2.2 Fingerprinting

Fingerprinting assumes that the APs and associated RSS observed at a particular loca-
tion are stable over time. Consequently, a measurement at a given location, i.e., the
list of visible APs and RSS, can be considered as the unique fingerprint of that loca-
tion. Thus, in fingerprinting, the training data themselves comprise the radio map.

To estimate the position, the algorithm calculates the Euclidean distance in the sig-
nal strength space between the current fingerprint and all available fingerprints in the

 Utilizing Wireless Positioning as a Tracking Data Source 175

radio map that contain the same APs. It then selects the k-nearest fingerprints in terms
of distance, and returns as an estimate the arithmetic mean of their coordinates. This
comparison is possible only if the current fingerprint and the fingerprints in the radio
map contain exactly the same APs. Otherwise, calculating their distance in the
Euclidean space is not possible.

However, in realistic conditions the current fingerprint may not contain exactly the
same APs with the ones in the radio map. For example, some of the APs may have
been turned off or removed, new APs may have been deployed, or the network inter-
face may not provide APs with an RSS below a given threshold (typical behavior of
Windows 802.11 hardware drivers).

To account for this situation, we calculate the distance between the current finger-
print and the ones in the radio map based on a subset of common APs. In particular,
we extended the algorithm in [6] so that the subset is defined by two parameters:

• l: We compare the current fingerprint with fingerprints that contain at most l less
APs. For example, suppose the WiFi scan <(AP1, RSS1), (AP2, RSS2), (AP3,
RSS3)>. For l=1, a fingerprint <xa, ya, (AP1, RSS1), (AP2, RSS2)> would be in-
cluded in the position estimation, in contrast with <xb, yb, (AP2, RSS2)> which
would be ignored since there are two missing APs.

• m: We compare the current fingerprint with fingerprints that contain at most m
more APs. For example, suppose the WiFi scan <AP1, RSS1>. For m=1, the finger-
print <xa, ya, (AP1, RSS1), (AP2, RSS2), (AP3, RSS3)> would be excluded from the
estimation due to the two extra APs.

Consequently, fingerprinting is modified as follows. The algorithm calculates the
Euclidean distance in the signal strength space between the current fingerprint and all
fingerprints in the radio map that contain at most l less and m more APs. It then se-
lects the k-nearest fingerprints in terms of distance in the signal space, and returns as
an estimate the arithmetic mean of their coordinates. As a result, there are many in-
stances of the fingerprinting algorithm based on different parameters of k, l, and m.
During the rest of the paper, we will use the notation fingerprinting <k, l, m> to de-
note a specific instance of the fingerprinting algorithm.

3 Map Matching

Deriving travel times from tracking data implies the alignment of the tracking data
with a respective trajectory in the road network, i.e., finding the actual roads the vehi-
cle has traversed. Now, provided that the tracking data is precise, this task would be
simple. However, tracking data is obtained by sampling a vehicle’s movement, typi-
cally with GPS and in our case with WPS. Unfortunately, both GPS and WPS are not
precise due to the measurement error caused by the limited positioning accuracy, and
the sampling error caused by the sampling rate, i.e., not knowing where the moving
object was in between position samples [14]. Therefore, a processing step is needed
that matches tracking data to the road network. This technique is commonly referred
to as map matching.

176 S. Athanasiou et al.

Fig. 1. Map-Matching example

Fig. 2. Sampling error and measurement error

To illustrate these errors and the map-matching problem in general, Fig.1 gives two
examples of measured positions and the possible trajectory the vehicle could have
taken. Fig. 1a shows the interpolated path in between position samples A and B and
the actual path with respect to the road segment. Further, as evident in Fig.1b, the
positioning error becomes significant when facing several parallel roads close by.
Specifically, in the case of WPS (Fig.2), the measurement error might grow quite
large. This significantly increases the challenge for proper map-matching, since with a
large measurement error, one is presented many alternative paths in the road network
to map the sampled movement to. Thus, we expect that at least minimizing the sam-
pling error by using high sampling rates will prove to be important.

3.1 Theoretical Considerations

Most map-matching algorithms are tailored towards mapping current positions onto a
vector representation of a road network. Onboard systems for vehicle navigation util-
ize, besides continuous positioning, dead reckoning to minimize the positioning error
and to produce accurate positions that can be easily matched to a road map. However,
for the purpose of processing tracking data collected over a period of time, the entire
trajectory, given as a sequence of historic position samples, needs to be mapped.

 Utilizing Wireless Positioning as a Tracking Data Source 177

The algorithm we utilize in this work is the global map-matching algorithm of
[4, 19], which employs the Fréchet distance measure for curves [1]. A popular illus-
tration of the Fréchet distance is the following. Suppose a person is walking his dog,
the person is walking on the one curve and the dog on the other. Both are allowed to
control their speed but they are not allowed to go backwards. The Fréchet distance of
the curves is the minimal length of a leash that is necessary for both to walk the
curves from beginning to end. Using this distance measure, our global map-matching
algorithm tries to match the tracking data geometry to a respective path in the road
network by comparing it to the shapes of all possible paths in the road network. Al-
though conceptually quite an elaborate task, this can be accomplished in O(mnlogmn)
time, with m being total number of nodes and edges of the road network and n the size
of the tracking data to be matched [4].

The global map-matching algorithm is therefore a shape-matching algorithm that
matches one curve, the tracking data trajectory, to another curve, the road network
path that most closely resembles the tracking trajectory. As such, the algorithm is
predestined for matching historic data.

Consider now the online map matching case, in which tracking data is matched as
it is collected, i.e., in real time. Here, we apply the same global map matching algo-
rithm, but instead of exploiting the complete trajectory (which is not known), we take
advantage of the available historic data, i.e., the tracking data available so far. Ex-
perimentation showed that typically a trajectory consisting of 10 position samples
collected with a sampling rate of 30s can be matched with the same accuracy as
longer trajectories, i.e., 10 position samples represent a reasonably large enough curve
for the global map-matching algorithm to produce a good quality match when applied
to the online case. Hence, to perform online map matching, we apply the global map
matching algorithm on the trajectory formed by the current position estimate and the 9
last position estimates.

3.2 Deriving Travel Times

Having mapped the tracking data to the road network, travel times are derived by
mapping the travel times contained in the tracking data to the respective portions of
the road network. The map-matching algorithm performs essentially shape matching
and tries to find a path in the road network that most closely resembles the trajectory,
i.e., the tracking data (cf. dotted line in Fig. 4). In the process, it maps all position
samples (circles in Fig. 4) to the road network and all nodes along the corresponding
path to the tracking data trajectory. Since the original tracking data contained the
timestamp they were received, this information is transferred to the map-matched
tracking data along the road network. The former can be seen as an effort to redis-
cover where on the road network the position samples would have been originally
recorded. As such, these mappings are the ideal means for assigning travel times to
the respective road network edges. Overall, the approach we employ is to uniformly
map the time recorded between two consecutive position samples (e.g., ti+1 - ti) in
Figure 4, to the respective portions of the road network.

178 S. Athanasiou et al.

Fig. 3. Distance and travel time assignment

4 Experimental Evaluation

The primary scope of our experimental evaluation is to establish the suitability of
WPS data as a source to provide travel times. First, to provide a complete examina-
tion of the relevant technologies and potential uses, we provide an evaluation of WPS
accuracy and coverage and also introduce map matching as a means to improve WPS
accuracy.

4.1 Experimental Setup

The experimentation was carried out in the Zografou neighborhood of Athens,
Greece. The area was selected (i) due its to geographical characteristics (mix of flat
areas and hills), (ii) varying levels of WiFi AP density (0-15 APs/m2), (iii) typical
urban structure with a mix of shops and residential areas, and (iv) fluctuating traffic.

4.1.1 Data Collection
Data was collected through wardriving over a period of two months in an area cover-
ing approximately 100,000m2. For data collection typical road speeds and driving
habits were maintained. Driving speeds varied from 0kph (stationary for more than
5mins) to 70kph. Fig. 5 shows a respective map of the Zografou area and the sampled
locations on the road network where at least one WiFi AP was visible.

Our data set consists of records of the form <tid, x, y, t, AP>, where tid is the
unique id of a trajectory, x and y are the GPS coordinates, t is the timestamp of the
measurement, and AP is a list of the APs (BSSID) and their respective received signal
strength (RSS). The sampling rate during data collection (i.e., every when a meas-
urement is taken from the environment) was 5sec. In total, we collected roughly
200MBs of data, and we divided them (70%-30%) into two separate sets: (a) the
training data, which were used to create the maps for the WPS techniques, and (b) the
testing data, which were used to assess the WPS accuracy and to calculate travel
times.

Concerning the chosen wardriving approach, instead of multiple passes from each
road segment (which may reveal more APs, produce more samples for an AP, etc.),
we performed at most one pass. This implies that the collected data set may be less
complete than it could be, but resembles a realistic large scale mapping effort to cre-
ate the radio map of any given region.

The equipment that was used comprised an Intel Core Duo laptop with a single
802.11a/b/g NIC and two Bluetooth GPS devices, all situated in the passenger com-
partment. We used Kismet [9] with a set of custom add-ons to extract geocoded WiFi

 Utilizing Wireless Positioning as a Tracking Data Source 179

measurements. All wardriving logs were later offloaded to a PostGIS database. Our
WPS algorithms (centroid, fingerprinting) were developed in C/C++ and the map-
matching algorithm was implemented in Java. Certain auxiliary process-
ing/visualization tools were developed in PHP, Python, and Java. Accurate map data
for the road network of Zografou were provided by Eratosthenis S.A. The experi-
ments were executed by three Windows 2000 servers over a period of two weeks.
Visualization of the results was performed with QGIS [15].

Fig. 4. Zografou map and WiFi AP locations

4.1.2 WPS Feasibility
The following interesting observations can be made with respect to the data. First, the
total number of unique APs discovered was 2,184, and on average we observed 5 APs
for each sampled location. Considering the covered geographic area, this yields 2.1
APs per 100m2. Second, in most cases when WiFi was not available, then GPS was
not available as well (e.g., under a bridge, near a large building). Third, almost all
APs were available 24/7. Overall, these facts confirm the increased penetration of
WiFi networks in urban environments and constitute a foundation for the proliferation
of WiFi-based WPS as a ubiquitous and dependable alternative to GPS.

4.2 WPS Positioning Accuracy

4.2.1 WPS Accuracy and Coverage
The following experimentation evaluates WPS techniques in terms of accuracy and
coverage. In particular, we used our training data to create the radio maps and the
testing data to calculate the position estimates based on these maps. We experimented
with all permutations of means described in Section 2. For each point in the testing
data, the position estimate provided by each WPS algorithm for specific parameter
settings is compared to the respective GPS measurement taken (ground truth).

Table 1 shows the results concerning accuracy using a ranking based on the aver-
age error of the WPS estimates. In addition, for each result its respective coverage
(i.e., the percent of times the technique can provide an answer) is stated. For each

180 S. Athanasiou et al.

class of WPS algorithms (centroid, fingerprinting) the best three accuracy achieving
parameter settings are presented. What can be observed is that given the right parame-
ters, fingerprinting achieves the best positioning accuracy (25.24m). However, the
results overall only differ slightly. What is of interest is the respective coverage that
can be achieved with each method. For example, the best performing fingerprinting
method has a coverage of 56%, i.e., the technique cannot provide a position estimate
44% of the time. This behavior is caused by the WPS algorithms themselves and by
our wardriving approach to collect training data. For example, centroid<k=1, 60-80-
90> provides an estimate based only on APs with RSS below 60. The estimate will be
more accurate because the required RSS threshold is low, but since this is also highly
selective, there are many instances where RSS below 60 is not available.

Table 1. WPS accuracy compared to GPS

 Average Error (m) Coverage (%)
Centroid <k=1, 60-70-80> 26.61 74
Centroid <k=1, 65-80-80> 26.65 82
Centroid <k=1, 75-85-90> 26.82 64
Fingerprinting <6-1-5> 25.24 56
Fingerprinting <6-1-4> 26.40 54
Fingerprinting <6-1-6> 26.57 56

Table 2 ranks WPS techniques based on their coverage values. As expected, the

techniques producing the best coverage underperform in terms of average error. To
design an actual wireless positioning system one needs to consider this trade-off be-
tween accuracy and coverage, i.e., is providing a more accurate estimate better than
always providing a crude estimate?

Table 2. WPS coverage

 Average Error (m) Coverage (%)
Centroid <k=1, weighted> 35.52 94
Centroid <k=1, 70-80-85> 47.11 93
Centroid <k=1, 65-75-80> 47.15 92
Fingerprinting <6-2-6> 36.45 82
Fingerprinting <2-4-6> 51.53 81
Fingerprinting <6-6-1> 48.93 78

One conclusion to the above question is to provide a hybrid WPS technique for
centroid and fingerprinting. In particular, we obtain an estimate from the best per-
forming technique in terms of accuracy, but should the said technique not be available
(coverage), we obtain an estimate from the technique with the best coverage. These
hybrid WPS techniques have high coverage (> 96%) with an acceptable increase in
average error (cf. Table 3).

 Utilizing Wireless Positioning as a Tracking Data Source 181

Table 3. Average error and coverage of the hybrid WPS techniques

 Average Error (m) Coverage (%)

Hybrid Centroid 32.77 99

Hybrid Fingerprinting 28.40 96

Unless stated otherwise, hybrid WPS techniques will be used through the rest of
our experiments, denoted as WPS-C and WPS-F for hybrid centroid and hybrid fin-
gerprinting respectively.

4.2.2 Map Matching to Improve WPS Accuracy
Map-matching is known as a technique to relate tracking data to a map dataset. One
can also see it as a method for imposing geometric constraints (shapes of paths in the
road network) to tracking data. As such, this technique might be a viable means to
“correct” WPS data and improve its accuracy. In this experiment, we utilize two map-
matching algorithms, a simple one (called naive) that maps position samples to the
closest point on the road network and the online algorithm presented in Section 4.2,
which exploits shape information. To compare the various approaches in terms of
accuracy, we calculated the average error and standard deviation for the complete
WPS dataset with respect to the GPS measurements.

The results are given in Table 4 and confirm the findings in the relevant literature,
with fingerprinting providing more accurate results than centroid. However, note that
in both cases the average error is roughly 30m. Further, while the naïve map-matching
algorithm only marginally reduces the average error (~1m), the shape-based map-
matching algorithm reduces the average error by 37% (WPS-C) and 25% (WPS-F).
This happens, because in contrast to a naïve map-matching approach, the shape-based
algorithm exploits past WPS estimates to produce a trajectory that best fits the road
network. Hence, an extremely important side-effect of proper map-matching, stem-
ming from its inherent robustness towards inaccurate data, is the improvement of the
accuracy provided by WPS. Combining WPS with map-matching reduces the average
error of WPS (~20m) very close to the average error of GPS in urban environments
(5-15m). This observation clearly opens the room for more research and experimenta-
tion, since in the WPS literature GPS is always considered as the ground truth for
calculating the average error. Obviously, this is something needed to be questioned
given our findings. Our future work and current experimentation is focused on ex-
ploiting GNSS available in Greece of greater accuracy (<1m), such as Galileo CS [20]
and HEPOS [21].

Table 4. WPS average error and standard deviation

Avg.
Error
(m)

Stdev.
(m)

Avg.
Error with
naïve mm

(m)

Stdev.
with naïve

mm
(m)

Avg.
Error with

mm
(m)

Stdev. with
mm
(m)

WPS-C 32.77 49.80 31.74 48.34 20.47 19.74
WPS-F 28.40 42.48 28.36 41.68 21.15 22.16

182 S. Athanasiou et al.

Moreover, we performed a set of experiments to assess the impact of the data col-
lection speed, and AP density, towards WPS accuracy. In particular, to assess the
impact of the data collection speed (i.e. frequency of collecting measurements from
the environment), we removed records from the collected data to simulate frequencies
ranging from 2Hz to 0,2Hz (Fig.5a). Further, we sampled our entire data set to ran-
domly remove APs in order to simulate densities up to only 25% of the original one
(Fig.5b). Our results illustrate that centroid is the most robust technique, maintaining
an acceptable average error at all times.

20

25

30

35

40

45

50

5 10 15 20 25 30

Measurement Period (s)

A
vg

. E
rr

o
r

(m
)

Centroid

Fingerprinting

20

30

40

50

60

70

80

100% 75% 50% 25%

AP Density

A
vg

.
E

rr
or

 (
m

)

Centroid

Fingerprinting

(a) (b)

Fig. 5. Average error dependence from (a) measurement period and (b) AP density

4.3 Extracting Travel-Time Maps

To establish the feasibility of using WPS data to derive travel times, we compared the
travel times produced from GPS data to the ones produced from WPS data for the
same trajectories. The format of the collected testing data was <tid, x, y, t, AP>,
where tid the trajectory id, x and y the GPS coordinates, t the timestamp of the meas-
urement, and AP the WiFi-related measurements, i.e., AP BSSIDs and RSS. For the
testing data, WPS-C and WPS-F were used to produce WPS estimates, resulting in
trajectory data of the form of <tid, x, y, t, xc, yc, xf, yf>, where xc, yc, xf, and yf are
the coordinates produced by the centroid and fingerprinting algorithms respectively.
For the three types of trajectory data, GPS, WPS-C, and WPS-F, global map-
matching was applied, and using the approach detailed in Section 3, the respective
travel times were derived for each case. Consequently, for each road segment in our
network, we established three different travel time estimates, (i) GPS, (ii) WPS-C and
(iii) WPS-F. Versions of the travel time dataset were produced for sampling rates of
5, 10, 20, and 30secs.

4.3.1 Qualitative Evaluation
In order to compare the trajectories produced by GPS and WPS position data, we will
define the measures of recall and precision. Let }{gGi = , be the set of vertices pro-

duced by the map-matching algorithm on GPS data, for trajectory i. Also, let
}{wWi = be the set of vertices produced by the map matching algorithm on WPS data

for the same trajectory. The intersection ii WG ∩ contains the vertices the two sets

have in common. Recall R and precision P can be defined as follows:

 Utilizing Wireless Positioning as a Tracking Data Source 183

i

ii
i G

WG
R

∩
=

i

ii

W

WG
P

∩
= (1)

R indicates the fraction of road segments covered by GPS trajectories that is also
covered by WPS. Ideally, R should be equal to 1, i.e., WPS returns all the road seg-
ments GPS does (but possibly more). Further, P indicates the fraction of road seg-
ments covered by WPS trajectories that is also covered by GPS. Again, we want P to
be equal to 1, i.e., WPS does not produce road segments not produced by GPS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 10 20 30

Measurement Period (s)

R
ec

al
l

Centroid

Fingerprinting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 10 20 30

Measurement Period (s)

P
re

ci
si

o
n

Centroid

Fingerprinting

Fig. 6. Recall and precision for the WPS derived trajectories in our entire data set

In Fig.6, the values of recall and precision for our entire data set using varying
sampling rates are shown. Common to all cases, recall is high, close to 100%. Notice
that recall is optimal for a sampling rate of 10s while precision is best for a sampling
rate of 30s. This was expected, as for low sampling rates, the sampling error domi-
nates the measurement error in the map matching process. Thus, both WPS and GPS
produce practically the same trajectories.

Fig.7 illustrates the above by giving a sample trajectory that accurately represents
our findings for the entire data set. Fig.7(a) shows raw GPS tracking data while
Fig.7(b) shows the WPS estimates derived by the WPS-C technique. Notice that al-
though the ‘noise’ in WPS estimates is apparent (with several outliers as well), the
trajectory can easily be distinguished. Fig.7(c),(d) show the produced trajectories after
applying our map matching algorithm using a sampling rate of 30s. Fig. 7(e),(f) show
details of the trajectory, highlighting specific map-matching cases.

4.3.2 Quantitative Evaluation
Having established how trajectories produced by WPS fare in comparison to GPS, in
the following, we compare the respective travel times derived from these approaches.
Given the set of links for which WPS and GPS derived travel times are available, we
calculated the average error of WPS compared to GPS derived travel times, as shown
in Fig.8. What can be readily observed is that the optimal sampling period is 10s, with
no real difference between the two WPS techniques. For a period of 30s, the errors are
80.3% (WPS-C) and 125.4% (WPS-F). This could be interpreted as a serious problem
for map matching based on WPS data for lower sampling frequencies, since most
travel time databases are calculated from fleet management logs with sampling peri-
ods of 20-30s.

184 S. Athanasiou et al.

(a) GPS data (b) Centroid WPS data

(c) map-matching GPS data (d) map-matching WPS data

(e) detail view of (c) (f) detail view of (d)

Fig. 7. Sample trajectory

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

5s 10s 20s 30s

Measurement Period (s)

A
vg

. E
rr

or

Centroid

Fingerprinting

Fig. 8. Average error of WPS derived travel times compared to GPS derived travel times

 Utilizing Wireless Positioning as a Tracking Data Source 185

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Exact matches One class more Two classes Three classes Four classes

Centroid

Fingerprinting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Exact matches One class more Two classes Three classes Four classes

Centroid

Fingerprinting

(a) (b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Exact matches One class more Two classes Three classes Four classes

Centroid

Fingerprinting

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Exact matches One class more Two classes Three classes Four classes

Centroid

Fingerprinting

(c) (d)

Fig. 9. Speed profile matches for GPS and WPS derived travel times, for various sampling
periods: (a) 5sec, (b) 10sec, (c) 20sec, and (d) 30sec

However, for the creation of dynamic road network profiles, travel times are used
to classify road network links. For example, suppose that a road category is defined as
including speeds ranging from 10-20kph. Here two road links with respective travel
times of 10.5 and 19.5kph will be subsumed under the same category. This quantiza-
tion is beneficial, because it results to lower storage requirements, faster route calcu-
lation, and routes of similar quality.

We experimented with such quantization in travel time speeds and introduced for
our experiments five road categories characterized by the following speeds (in kph):
[0-10), [0-20), [20-30), [40-50), [50,∞). We classified all road links based on GPS and
WPS data, and for various sampling frequencies. Further, for each road link in our
network, we compared the classification produced from GPS, WPS-C, and WPS-F.
Our results are shown in Fig. 9. For example, in Fig. 9(a), 75% of the road links are
classified under the same category for WPS-C, compared to GPS. For WPS-F, this
number is close to 90%. From Fig.9, we can also observe that for sampling rates of 5s
and 10s, at least one of the two WPS techniques derives the same road categories for
90% of the road links. As the sampling rate decreases, this percentage is reduced to
roughly 60%, with additional 25% of the road links classified to one category higher
or lower. Therefore, we can conclude that for higher sampling rates, WPS produces
very accurate travel times which are indeed comparable to GPS. For lower sampling
rates (30s) the results are encouraging, since at least 80% of the derived travel times
fall within the same or a directly neighboring category.

186 S. Athanasiou et al.

What follows in Fig.10 is the actual link classification based on GPS and WPS.
Fig.10 shows the percentage of road links that fall in one of our five categories for
GPS, WPS-C and WPS-F. It is evident that for small and high sampling rates alike, a
WPS derived classification is very similar to a GPS classification.

0%

10%

20%

30%

40%

50%

60%

A B C D E

Road profiles

M
at

c
he

s GPS

Centroid

Fingerprinting

0%

10%

20%

30%

40%

50%

60%

A B C D E

Road profiles

M
at

c
he

s GPS

Centroid

Fingerprinting

(a) (b)

Fig. 10. Road segment classification for (a) 5sec and (b) 30sec

5 Conclusions and Future Work

We have evaluated the use of WPS data as an alternative data source for extracting
travel times for road networks. We adapted and evaluated various classes of the cen-
troid and fingerprinting WPS algorithms. Further, we applied map matching as a post
processing filter to improve WPS accuracy and demonstrating significant gains. In
addition, we extracted travel times from GPS and WPS data with a map-matching
algorithm. Our evaluation demonstrated that for measurement periods up to 10sec, the
produced travel times are practically identical to the ones derived from GPS data.
Further, when applying a typical speed profile classification on travel times, even for
sampling rates of up to 30sec, the produced travel times are still of respectable qual-
ity. Finally, we showed that through our analysis of WPS data, the distribution of road
segments to speed profiles can be accurately discovered.

Our ongoing work evolves around further exploring and manifesting the benefit
and potential uses of huge amounts of crowd-sourced WPS data. In this respect, our
efforts are focused on three fronts. First, improve the accuracy of WPS techniques by
integrating map matching into the WPS algorithms. Second, explore different uses for
WPS data, such as routing (by fully replacing GPS), and automatic road network
construction. Third, we aim to model and accommodate the inherent inaccuracy of
wireless positioning data sources into spatiotemporal tasks and algorithms.

Acknowledgements

This work was partially supported by the project “TALOS: Task Aware Location
Based Services for Mobile Environments”, funded by the European Community,
Framework Programme 7, Research for the benefit of SMEs. We would like to thank
Dimitris Sacharidis, Kostas Patroumpas, Theodore Dalamagas, and Panagiotis Bouros
for their valuable comments.

 Utilizing Wireless Positioning as a Tracking Data Source 187

References

1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J.

Comput. Geom. Appl. 5, 75–91 (1995)
2. Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and

Tracking System. In: 9th IEEE Conference on Computer Communications, pp. 775–784.
IEEE Press, Los Alamitos (2000)

3. Bahl, P., Padmanabhan, V.N., Balachandran, A.: Enhancements to the Radar User Loca-
tion and Tracking System. Technical Report, Microsoft Research MSR-TR-00-12 (2000)

4. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data.
In: 31st Very Large Data Bases Conference, pp. 853–864. ACM, New York (2005)

5. Brockfeld, E., Wagner, P., Passfeld, B.: Validating travel times calculated on the basis of
Taxi Floating Car Data with test drives. In: 14th World Congress on Intelligent Transport
Systems (2007)

6. Cheng, Y., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy Characterization for Metro-
politan-scale Wi-Fi Localization. In: 3rd International Conference on Mobile Systems,
Applications, and Services, pp. 233–245. ACM, New York (2005)

7. Chen, M.Y., Sohn, T., Chmelev, D., Hightower, D.H.J., Hughes, J., LaMarca, A., Potter,
F., Smith, I., Varshavsky, A.: Practical metropolitan-scale positioning for GSM phones. In:
Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 225–242. Springer,
Heidelberg (2006)

8. Hightower, J., Consolvo, S., LaMarca, A., Smith, I., Hughes, J.: Learning and recognizing
the places we go. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp
2005. LNCS, vol. 3660, pp. 159–176. Springer, Heidelberg (2005)

9. KISMET, http://www.kismetwireless.net/
10. Krishnan, P., Krishnakumar, A.S., Ju, W., Mallows, C., Ganu, S.: A system for LEASE:

Location estimation assisted by stationary emitters for indoor RF wireless network. In:
23rd IEEE Conference on Computer Communications, pp. 1001–1011 (2004)

11. LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T.,
Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G., Schilit, B.: Place
lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R.,
Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidel-
berg (2005)

12. Laitinen, H., Lahteenmaki, J., Nordstrom, T.: Database correlation method for GSM loca-
tion. In: Proceedings of the 53rd IEEE Vehicular Technology Conference, pp. 2504–2508.
IEEE Press, Los Alamitos (2001)

13. Otsason, V., Varshavsky, A., LaMarca, A., Lara, E.D.: Accurate GSM Indoor Localiza-
tion. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS,
vol. 3660, pp. 141–158. Springer, Heidelberg (2005)

14. Pfoser, D., Jensen, C.S.: Capturing the Uncertainty of Moving-Object Representations. In:
Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 111–
132. Springer, Heidelberg (1999)

15. Quantum GIS Project, http://www.qgis.org/
16. Schaefer, R.P., Thiessenhusen, K.U., Wagner, P.: A Traffic Information System by Means

of Real-time Floating-car Data. In: 9th World Congress on Intelligent Transport Systems
(2002)

17. Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, I., Consolvo,
S., Hightower, J., Griswold, W.G., Lara, E.D.: Mobility Detection Using Everyday GSM
Traces. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 212–224.
Springer, Heidelberg (2006)

188 S. Athanasiou et al.

18. Varshavsky, A., Chen, M., Lara, E.D., Froehlich, J., Haehnel, D., Hightower, J., LaMarca,
A., Potter, F., Sohn, T., Tang, K., Smith, I.: Are GSM phones THE solution for localiza-
tion? In: 7th IEEE Workshop on Mobile Computing Systems and Applications, pp. 20–28.
IEEE Press, Los Alamitos (2006)

19. Wenk, C., Salas, R., Pfoser, D.: Addressing the Need for Map-Matching Speed: Localizing
Global Curve-Matching Algorithms. In: 19th Scientific and Statistical Database Manage-
ment Conference, pp. 379–388 (2006)

20. European Space Agency - Galileo, http://www.esa.int/esaNA/galileo.html
21. Hellenic Positioning System, http://www.hepos.gr/

Indexing Moving Objects Using Short-Lived
Throwaway Indexes

Jens Dittrich1, Lukas Blunschi2, and Marcos Antonio Vaz Salles3

1 Saarland University
jens.dittrich@cs.uni-saarland.de

2 ETH Zurich
lukas.blunschi@inf.ethz.ch

3 Cornell University
vmarcos@cs.cornell.edu

Abstract. With the exponential growth of moving objects data to the Gigabyte
range, it has become critical to develop effective techniques for indexing, updat-
ing, and querying these massive data sets. To meet the high update rate as well
as low query response time requirements of moving object applications, this pa-
per takes a novel approach in moving object indexing. In our approach we do
not require a sophisticated index structure that needs to be adjusted for each in-
coming update. Rather we construct conceptually simple short-lived throwaway
indexes which we only keep for a very short period of time (sub-seconds) in
main memory. As a consequence, the resulting technique MOVIES supports at
the same time high query rates and high update rates and trades this for query
result staleness. Moreover, MOVIES is the first main memory method supporting
time-parameterized predictive queries. To support this feature we present two al-
gorithms: non-predictive MOVIES and predictive MOVIES. We obtain the surpris-
ing result that a predictive indexing approach — considered state-of-the-art in an
external-memory scenario — does not scale well in a main memory environment.
In fact our results show that MOVIES outperforms state-of-the-art moving object
indexes like a main-memory adapted Bx-tree by orders of magnitude w.r.t. up-
date rates and query rates. Finally, our experimental evaluation uses a workload
unmatched by any previous work. We index the complete road network of Ger-
many consisting of 40,000,000 road segments and 38,000,000 nodes. We scale
our workload up to 100,000,000 moving objects, 58,000,000 updates per second
and 10,000 queries per second which is unmatched by any previous work.

1 Introduction

Indexing support for moving objects is a crucial requirement in domains such as car
tracking [18], airplane surveillance [45], mobile phone tracking [1], emergency ser-
vices [10], social networking [24], and gaming engines [49]. In these applications an
update may be a car/airplane/phone sending a message on its new position. A query
may be a range query, a nearest-neighbor query, or a time-parametrized range query
asking for predicted positions of moving objects at a future time tq. Queries are issued
either by car/air traffic control or by users themselves. All of the above applications face
a principal problem: how to support efficient query processing under high update rates.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 189–207, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

190 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

Traditionally, index creation has been considered an extremely costly process. For
that reason, research on moving object indexes has been centered around creating so-
phisticated index structures. These indexes are created once, kept, and then modified
according to incoming updates. This has led to a plethora of complex index structure
proposals in the past. However, with the rise of large main memories and fast multi-core
CPUs this “natural law” of keeping a moving object index can be questioned.

We present a novel main-memory method termed MOVIES (MOVing objects Indexing
using frEquent Snapshots) that supports time-parameterized (predictive) queries and
is at the same time space-, query-, update-, and multi-CPU-efficient. At its core our
method MOVIES resembles the approach taken by a cinematographer: as it is impossi-
ble to capture continuously moving data with any camera in one image, a cinematogra-
pher has to take a series of still images at a given frame rate. As long as the frame rate
exceeds the inertia of the human eye (i.e., at least 24 frames per second), an illusion of
continuous movement is created. We follow exactly the same approach: we try to pro-
vide as many still index images of the data as possible. For a very short period of time
we use that index to answer incoming queries. After that, we throw that index away.
As long as the index build rate is high, an illusion of a continuously up-to-date index
will be created. We will show that — surprisingly — index creation can be a matter of
subseconds even for datasets comprising hundreds of thousands of moving objects. For
instance, we will demonstrate that index creation for 1 million moving objects (a com-
mon data set size used in recent moving objects studies, see Section 6.4) takes as little
as 0.16 seconds on a single computing core allowing for six index rebuilds per second.
The price we have to pay for these features is slightly out-of-date (stale) query results,
i.e., even though queries are executed immediately in our approach, query results may
not consider the most recent updates. However, we will show that even for massive
data sets this query result staleness may be reduced to (sub-)seconds. This meets by far
the demands of real applications. For instance, state-of-the-art flight control in Europe
currently works with a staleness of 5 seconds [39].

1.1 Contributions

In summary, this paper makes the following contributions:

1. We provide a novel approach termed MOVIES (MOVing objects Indexing using
frEquent Snapshots) to effectively index moving objects. As described above
MOVIES resembles the approach taken by a cinematographer by creating a series
of different indexes each second. Like that we provide at all times a read-optimized
index not suffering from update handling.

2. MOVIES is the first main-memory moving object index to support time-
parameterized queries. This allows users to pose predictive queries asking for pre-
dictive results at a future time tq. Previous main memory approaches such as [51]
did not support this type of query. We will present two different MOVIES variants to
support these type of queries: Non-Predictive Indexing MOVIES (NPI) and Predic-
tive Indexing MOVIES (PI). We will show that MOVIES NPI performs better than
MOVIES PI for high update rates. This is a surprising result as predictive indexing
approaches are considered state-of-the-art for external memory methods.

Indexing Moving Objects Using Short-Lived Throwaway Indexes 191

3. We present techniques to make update handling efficient. As we collect incoming
updates in a buffer, the cost for collecting the updates is very small. We will show
that different buffer organizations have different impact on the overall performance
of MOVIES. Therefore, we will propose two more variants of our algorithm: Logged
MOVIES and Aggregated MOVIES.

4. We provide a thorough experimental study of MOVIES using standard hardware
and realistic data sets unmatched by any previous work. Our experiments show
that MOVIES scales well up to 25 million moving objects on a single machine.
We show that MOVIES provides excellent query response times while at the same
time being able to process huge amounts of updates. In addition, we show that
MOVIES outperforms state-of-the-art indexing methods like the Bx-tree by orders
of magnitude w.r.t. the number of queries and updates being handled — even though
the latter methods have been adapted to work effectively in main memory. Finally,
we evaluate a distributed implementation of MOVIES indexing 100 million moving
objects on a small cluster of shared-nothing machines. Note that the data sets used
in our experiments are 10 times larger than in the biggest study available [23] and
at least 100 times larger than in all other studies.

This paper is structured as follows. The following section presents preliminaries. Sec-
tions 3&4 present MOVIES. Section 5 presents our experimental evaluation. Section 6
discusses related work and its relationship to MOVIES.

2 Preliminaries

2.1 Problem Statement

We consider a data set of N moving objects in a two-dimensional space of data of a
domain |X |× |Y | where |X | (resp. |Y |) represents the number of different positions in
the horizontal (resp. vertical) dimension. Extending our technique to more dimensions
is straightforward. Similarly to [17], we assume a discrete space of 216 × 216 = 232

different positions. Each moving object is identified by a unique key termed an OID.
Each moving object emits updates on its current location (x,y) and its speed vector
−→sv by sending an (x,y,−→sv ,OID)-tuple to central indexing server(s). Like in [17], we
assume that objects travel at a maximum speed Smax and are guaranteed to send updates
at least every tΔmax seconds. We assume that indexes are queried with two-dimensional
predictive range queries Q(r,tq) specifying a range r = [xlow;xhigh]× [ylow;yhigh] and a
query time tq. Note that other query types such as predictive k-nearest-neighbor may
easily be derived from predictive range queries (see e.g. [17]).

2.2 Formal Argument

In this section we provide a formal argument to illustrate the core benefit of our ap-
proach. We do not strive to provide a full-blown cost model but rather focus on the
key aspects. For realistic moving objects scenarios the amount of updates will be in
the tens of millions per second. We will develop a method that does not trade query
performance for update performance as done in several existing methods. Consider a

192 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

 100000

 1e+06

 1e+07

 1e+08

 100000 1e+06 1e+07e
x
p
.
m

a
x
.
u
p
d
a
te

s
/s

e
c
o
n
d
 [
lo

g
 s

c
a
le

]

index size [# elements, log scale]

update-in-place
MOVIES

upper bound

(a) expected maximum update
rate (the gain)

 0.01

 0.1

 1

 10

 100

 100000 1e+06 1e+07

s
ta

le
n
e
s
s
 [
s
e
c
o
n
d
s
,
lo

g
 s

c
a
le

]

index size [# elements, log scale]

MOVIES

(b) expected staleness (the price)

Fig. 1. Expected performance of MOVIES versus update-in-place

simple index structure organizing a sorted mapping spatialposition �→ OID (binary
range search on a B+tree or any cache-optimized tree). We assume that the spatial po-
sition is linearized using a linearization function (see Section 3.3). The cost for both
querying and updating in-place are of the order O(log N) where N is the number of
entries. An update in a positional index consists of deleting the old entry and creat-
ing a new entry. Thus in the worst case we need two logarithmic traversals. We derive
a cost formula Cupdate-in-place = 2 · c1 · log2 N where c1 is a hardware-dependent con-
stant. Similarly, the initial cost for bulkloading for an index is of the order O(N log N),
which translates to a cost formula Cbulkloading = c2 ·N log2 N where c2 is a hardware-
dependent constant. Now let’s assume that instead of performing updates in-place we
collect W updates in a separate structure with O(1), i.e., Carray update = c3. We will peri-
dodically rebuild a new index from that structure. The cost for this is Ccollect and rebuild =
W ·Carray update +Cbulkloading. When will this be cheaper than update-in-place? We ob-
tain W · c3 + c2 ·N log2 N ≤ W · 2c1 · log2 N ⇒ c2 ·N log2 N ≤ W · (2c1 log2 N − c3) ⇒
W ≥ (c2 ·N log2 N)/(2c1 log2 N−c3). Now, we may estimate upper bounds for the con-
stants assuming a single core and the index to be limited to 16 million elements as
c1 = 73.6ns, c2 = 8.9ns, and c3 = 112.5ns. Thus we receive W ≥ (8.9 ·N log2 N)/(2 ·
73.6 · log2 N−112.5). For an index of N = 1,000,000, the collect and rebuild approach
will already be cheaper when the number of updates reaches W = 62,872. Also note
that the query processing costs in both approaches are exactly the same. We just ar-
gued on how to improve update cost without touching query cost. On the contrary,
the collect and rebuild approach could even be improved to build read-optimized in-
dexes. That would additionally improve the query response time over an update-in-
place approach. Now let’s examine the maximum number of updates supported by the
different methods. How many updates can we expect to support in a collect and re-
build approach? We may rebuild the index every Tframe time > Ccollect and rebuild seconds.
This can be rewritten to Ccollect and rebuild/Tframe time ≤ 1 ⇒W ·Carray update +Cbulkloading ≤
Tframe time ⇒W ≤ (Tframe time−Cbulkloading)/(Carray update). The maximum number of up-
dates processed per second can then be computed as Umax = W/Tframe time which is lim-
ited by the upper bound 1/Carray update. Assume we allow for a Tframe time of 3Cbulkloading,
then we obtain the function displayed in Figure 1(a). The figure shows that we may
expect to gain an order of magnitude over update-in-place. The price we pay for that is

Indexing Moving Objects Using Short-Lived Throwaway Indexes 193

query result staleness which is limited by 2Tframe time. Figure 1(b) shows that even for
an index of 1,000,000 elements staleness will remain below a second even when using
only a single computing core.

3 MOVIES

This section presents the MOVIES indexing algorithm (MOVing objects Indexing using
frEquent Snapshots). As stated in the Introduction, our method resembles the approach
taken by a cinematographer: we try to create as many still index images as possible.
This generates the illusion of a continuously up-to-date index.

3.1 Algorithmic Walkthrough

The MOVIES algorithm is based on index

F
4
5

F
4
6

I44 I45

U45

U46

updates

updates

queries

queries

U45

U44 optional input

I45I46

build index

build index

optional input

Fig. 2. Two index frames of MOVIES core
algorithm

frames. Each index frame is active during
a short time interval called the frame time
Ti = [ti;ti+1) where i denotes the ID of the
frame and ti denotes the moment in time
when frame i started. During each index
frame, e.g., time interval T45 for Frame 45
in Figure 2, we use a read-only index, I44, to
answer all incoming queries. We also keep
an update buffer U45 collecting all updates
arriving during T45. In addition, we build a
new read-only index I45 based on the up-
dates collected in update buffer U44 during T44 (see arrow). Depending on whether
the update buffers contain updates for all OIDs, this index build has to consider infor-
mation available in index I44 (see arrow). As soon as the new index I45 is built,
we start a new frame, e.g., Frame 46. In this frame we use the newly built read-only
index I45 from Frame 45 to answer all incoming queries. We keep an update buffer U46

to collect incoming updates. In addition, we build a new read-only index I46 based on
the updates collected in U45 during T45. Again, depending on whether the update buffers
contain updates for all OIDs this index build has to consider information available in
index I45. As soon as the index is built, we start a new frame, e.g., Frame 47 (not shown)
which is similar to Frame 45.

3.2 Comparison to Differential Files

The idea of collecting updates in a separate space and applying them in a batch was first
used in the context of relational databases more than 30 years ago [38]. The idea of that
paper was to collect changes in a separate differential file and merge that file regularly
with the existing external memory index. Since then differential files were extended
in multiple ways [29,16,28] and became state-of-the-art for read-mostly environments
like data warehouses (DWH) [46] as well as desktop [25], enterprise [46], and web
search [11] engines.

194 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

In contrast to all of these approaches MOVIES differs as follows:

1. For a moving objects application the query result staleness of a file-based method as
followed in other applications [46,25,11] would be unacceptable. For moving object
indexing we require query result staleness to be below a few seconds (e.g., for an
aircraft surveillance scenario it should be below 5 seconds [39]). Therefore we have
to optimize our algorithm for keeping staleness low. This can only be achieved by
keeping the data entirely in main-memory.

2. In our scenario moving objects are guaranteed to send an update at least every tΔmax

seconds. This was used in similar studies, e.g. [17]. Therefore for certain situations,
e.g. tΔmax < Ti we may completely ignore the information available in the old index: we
simply need to build an index image from the update buffer. Therefore, in contrast to
differential file-based approaches [29,16,28], in MOVIES there is no need to perform a
costly merge with the previous index. An index merge will only be used as a fallback.

3. Finally, in order to support time-parameterized queries we need to introduce
timestamp-consistent predictive indexes (MOVIES PI). Thus, instead of indexing
data as-is as in differential file-based approaches, we will predict data to a future
point in time into the index.

3.3 MOVIES Core Algorithm

MOVIES core algorithm is displayed in Figure 3.
It takes as input a stream of updates StreamU , a stream of queries StreamQ, and

a bootstrapTime interval. The algorithm starts by creating a new update buffer U0

(Line 1). Then the stream of updates StreamU is routed to that buffer (Line 2). An
empty index I0 is created in Line 3.

Then the algorithm waits for a Input: Stream of updates StreamU
Stream of queries StreamQ
TimeInterval bootstrapTime
U0.create()1
StreamU .setDestination(U0)2
I0.create()3
wait(bootstrapTime);4
for

(
Integer currentFrameID = 1; ¬should_terminate

)
do5

UcurrentFrameID.create()6
StreamU .setDestination(UcurrentFrameID)7
StreamQ.setDestination(IcurrentFrameID−1)8
if currentFrameID ≥ 2 then9

IcurrentFrameID−2.destroy()10
end11
if ("may ignore old index") then12

IcurrentFrameID ← buildIndex(UcurrentFrameID−1)13
else14

IcurrentFrameID ← buildIndex(UcurrentFrameID−1, IcurrentFrameID−1)15
end16
UcurrentFrameID−1.destroy()17
currentFrameID = currentFrameID+118

end19

Fig. 3. MOVIES Core Algorithm

certain amount of time specified by
a bootstrapTime. During that time,
however, incoming updates are col-
lected in update buffer U0. Lines 5–
15 show the indexing loop used to
create the sequence of index frames.
This loop will be repeated until a
global flag should_terminate is
set to true (Line 5). The loop keeps
a counter currentFrameID for the
current frame ID. Inside the loop
an index frame starts by creating
a new update buffer UcurrentFrameID

(Line 6). The stream of updates is
routed to the new update
buffer (Line 7). The stream of
queries is routed to the index created in the previous iteration (Line 8). For the first
loop iteration this index will be the empty index I0. In Line 9 we check whether the
currentFrameID is two or higher. If that is the case, we destroy the index built in index

Indexing Moving Objects Using Short-Lived Throwaway Indexes 195

Fig. 4. Kd-trie mapped to a pointer-free linearization

frame currentFrameID−2 (Line 10). After that we check whether we may ignore the
data available in the old index (Line 12), e.g., this may happen if all elements in the
old index became outdated by elements in the update buffer. If that check succeeds,
we simply call the buildIndex operation on the update buffer (Line 13) otherwise we
create a new index IcurrentFrameID also using information from the old index (Line 15).
After that we destroy the update buffer filled in the previous frame (Line 17). Finally,
we increase the currentFrameID counter by one and continue looping (Line 18).

Organization of Update Buffers. This section describes the organization of update
buffers. As we want to handle high update rates, we have to make sure that the update
buffers do not exceed the available main memory. We solve this as follows. For high
update rates the update buffers may contain several updates for the same OID, i.e., the
update buffer may be considerably larger than the original index. As the aggregate of
updates to an OID is sufficient for query processing (e.g., the most current position of a
moving object), it makes sense to implement update buffers Ui by aggregation buffers
Ûi, organized using OIDs as keys. For each OID, Ûi only keeps a MIN aggregate, i.e.,
the last update received for this moving object. In our approach updates are written
to aggregation buffers Ûi immediately when they arrive. We implemented aggregation
buffers using arrays of size N where the slot at position i stores the aggregate of object
i = OID. Note that other implementations are possible, e.g., any hash table. This ensures
constant insert time for updates. We refer to this variant as Aggregated MOVIES. The
algorithm based on FIFO update buffers is termed Logged MOVIES.

Organization of Read-Only Indexes. As read-only index we use a state-of-the-art
spatial indexing method. We focus on a technique that is at the same time simple and
efficient. Therefore we have chosen linearized kd-tries [47,32]1. This index was used in
many papers in different variants (e.g., [36,31,9,17]) and was shown to outperform com-
peting approaches. The core idea of a linearized kd-trie is to simulate a pointer-based
index structure. This is achieved by assigning each node of a virtual kd-trie a unique
identifier termed a locational code. Locational codes are based on a space-filling curve
like the z-curve [47,32] (see Figure 4(b)) or the Hilbert curve [14]. These recursive
space-filling curves enumerate a multi-dimensional space (i.e., the nodes of the kd-trie,
see Figure 4(a)) with a one-dimensional curve (see Figure 4(b)). For each object that
needs to be managed by an index, it then suffices to compute its locational code, i.e., the

1 Following the terminology of Donald Knuth [20] a trie partitions the data space whereas a tree
partitions the data.

196 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

virtual node it belongs to in the kd-trie. This calculation is independent of the locational
codes of other objects. Therefore, at no point in time it is required to actually create a
pointer-based kd-trie. As the locational codes are one-dimensional, they are ordered to
provide efficient query processing. The resulting codes plus the data are then stored in
a sorted index (see Figure 4(c) using w = 2 bits per dimension). Note that locational
codes may be inlined with the data to avoid extra storage cost. Both point and range
queries are efficiently supported. The latter are crucial for our scenario as several other
types of queries such as nearest neighbor queries may be based on range queries (see
e.g. [17]). Moreover, kd-tries are not limited to two dimensions but also work well for
high dimensional spaces. Also recall that in contrast to grid-based indexes (e.g., as used
in [51]) which would need to store an exponential number (1/grid_length)d of pointers
to inclusion lists, an approach based on locational codes will for all d only require N
indexing slots. Thus, our method can easily be extended to higher dimensional data.

4 MOVIES Query Processing

4.1 Time-Parameterized Query Processing

A time-parameterized query Q(tq) asks for object positions in the range ([xlow;xhigh]×
[ylow;yhigh]) at a time tq. In order to answer these queries, we must transport ob-
jects to their predicted positions at time tq. This can be done at indexing time, which
we term Predictive MOVIES (PI MOVIES) or at querying time, which we term Non-
Predictive MOVIES (NPI MOVIES). Both strategies work for both Logged and Aggre-
gated MOVIES resulting in a total of four different combinations.

Predictive MOVIES (PI) Indexing Strategy. For each index build we index all data
w.r.t. a single point in time tindex > tu. We term tindex the index time. Thus, for every
incoming update u we index the moving object at a predicted position (x,y)+−→sv(tindex−
tu). Here, we may avoid any extra storage space by translating objects immediately
when an update arrives. However, for each incoming update we have to compute the
predicted position — which may be costly. After that, the timestamp for the update
may be dropped. If during fallback an object is encountered that has not received an
update (Line 22 of the buildIndex algorithm), that object is simply translated to a new
position using the new index time.

Query Strategy. As tq may be either larger or smaller than tindex we have to consider
three cases:

1. tq < tindex: the objects have to be translated to an earlier time,
2. tq > tindex: objects have to be translated to a later time (see also [17]),
3. tq = tindex: objects do not have to be translated.

For cases (1)&(2) we rewrite Q(tq) to consider the maximum distance ε := Smax · |tq −
tindex| an object may have travelled relative to the index time. Every Q(tq) is rewritten
to Q(tq)′ := [xlow − ε;xhigh + ε]× [ylow − ε;yhigh + ε]. Q(tq)′ is then postfiltered w.r.t. tq
and their respective speed vectors −→sv as obtained from the index.

Choice of Index Time. Let Q̄ = {Q1(t1
q), ..,Qk(tk

q)} be the set of queries arriving during
a single indexing frame of MOVIES. To minimize query enlargements and therefore the

Indexing Moving Objects Using Short-Lived Throwaway Indexes 197

performance penalty for large range queries, we wish to minimize the sum of query
window areas added due to enlargement, or alternatively the term ∑k

i=1 |ti
q − tindex|2.

Assume, for simplicity, that all queries ask for a fixed time into the future, i.e., tq =
tnow +Δt. After being rebuilt, an index receives queries during one frame time Tf rametime .
To produce balanced query enlargements, the index time should be Δt + Tframe time/2
ahead of the time the index is ready for querying. In order to achieve that, we must
set the time of the update buffer that will be used to build a new index appropriately.
An update buffer is used to collect updates two frames before being used to build a
new index (see Figure 3). Therefore, the index time to be used for an update buffer
collecting updates in the next frame should be set to tindex = tnow + 2Tframe time +(Δt +
Tframe time/2) = tnow + 2.5Tframe time + Δt.

Non-Predictive MOVIES (NPI) Indexing Strategy. For each index build we index
each index entry w.r.t its timestamp tu. In order to do this, we need to keep for each
update its corresponding timestamp. Thus, we require slightly more storage space, but
do not have to compute predicted positions at indexing time.

Query Strategy. We use query enlargement like with Predictive MOVIES. However, as
objects are indexed with different last update times, we must perform query enlargement
with respect to the time of the oldest update considered in the index, i.e., ε := Smax ×
|tq − tmin|. As calculating tmin by scanning the timestamp array has prohibitive cost, we
provide a bound on tmin. When an update arrives, it takes at most two times the frame
time Tframe time for it to appear in the index used for querying (see Figure 3). As an
update for each object must arrive within tΔmax, then tmin ≥ tnow − (tΔmax +2Tframe time).

5 Experiments

This section presents a thorough experimental analysis of MOVIES. We explore various
aspects of our approach and compare it with state-of-the-art approaches. The goals of
our experiments are:

1. Determine the maximum supported update rate of MOVIES when scaling the index
size (Section 5.3).

2. Determine query throughput of MOVIES when scaling the update rate (Section 5.4).
3. Determine the performance of MOVIES when implemented on a cluster of shared-

nothing machines (Section 5.5).

5.1 Setup

All experiments were performed on servers having each two 2.4 GHz Dual Core AMD
Opteron 280 processors, i.e., four cores in total, and 6 GB of main memory. We used
two separate servers M1 and M2 to generate updates and queries. These updates and
queries were sent over the network and received by servers termed processing nodes
(PN1–PN4) that did the actual indexing. M1 and M2 were each connected to the switch
by one network cable and in addition with one network cable each directly to PN3 (PN4
respectively). All network links supported 1 Gbit/s.

198 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

For the single instance experiment we used
parameter setting

index size N 100,000 . . . 6,400,000 . . . 100,000,000
update rate V 0 /s . . . 58,000,000 /s

query rate 0 /s . . . 1,000 /s . . . 10,000 /s
query window size qw 1 km×1 km .. 10 km×10 km

road network segments 39,509,805
road network nodes 37,967,339

data region 640 km×863 km
index granularity 26.3 m×26.3 m

Smax 60 m/s
tΔmax ≤ N/V

Fig. 5. Settings

one processing node PN1. For the paralleliza-
tion experiment we used up to four process-
ing nodes PN1–PN4. All code used for the
experiments was implemented in Java 5. In
our implementation, we avoided complex ob-
ject types whenever possible and used primi-
tive Java types. To make maximal use of the
four cores provided by each machine, we im-
plemented a multi-threaded variant of MOVIES.
For the experiments in Sections 5.3 to 5.5 evaluating MOVIES, we waited until at least
8 re-indexing phases were completed. Then we measured at least 10 re-indexing phases
and report the average.

5.2 Data and Queries

Our experiments were inspired by the scenario ‘index all

Fig. 6. Road network of
Germany

cars in Germany’ which comprises 58M cars [22]. We
obtained a commercial data set containing the complete
road network of Germany [44]. This data set con-
sists of 38 million nodes and 40 million road seg-
ments. The geography of Germany covers 640 km
x 863 km. We assumed cars to travel at a maxi-
mum speed of Smax = 60m/s= 216km/h. As in sim-
ilar studies [26,27,34] we initially used the moving
object generator of [5]. However, it turned out that
that generator does not scale for the massive work-
loads considered in this paper. In particular, large num-
ber of nodes and road segments are not possible.
Therefore we developed our own generator based on the
ideas of [5]. This means that we used the same moving
object placement strategy network-based approach (NB). It places cars using the same
skewed distribution as the roads and nodes themselves. We then moved cars on the net-
work by assigning each car a constant random direction which it would try to follow
on the network. This avoids the overheads of doing Dijkstra-computations for each car.
This generates similar traces as in [5], but at much lower cost. Our trace generator is
open source and available from sourceforge at http://moto.sourceforge.net/. If not men-
tioned otherwise, a data set of 6.4 million moving objects was used on MOVIES experi-
ments with a single processing node. For scalability experiments on a single processing
node, we used up to 25 million moving objects (raw size = 200MB).

For the parallelization experiment we used up to 100 million moving objects (raw
size = 800MB). As outlined in the Introduction, we assumed all data and indexes for
all methods to fit into main memory. We evaluate time-parameterized predictive range
queries. Note again that other query types such as time-parameterized predictive k-
nearest-neighbors may be inferred from predictive range queries (see [17]). We used
a query window size corresponding to the size of a small town center like Oldenburg

http://moto.sourceforge.net/

Indexing Moving Objects Using Short-Lived Throwaway Indexes 199

which has an extension of roughly 1,000 m × 1,000 m. Bigger query windows did
not substantially change our results and therefore we do not show those results. Query
centers were chosen using the NB strategy [5] thus creating a skewed distribution on
queries. If not mentioned otherwise, we set a query rate of 1,000 queries per second and
a query time tq = tnow + 1.5tΔmax. Figure 5 summarizes the settings.

5.3 Scalability in Index Size

The goal of this experiment is to understand the maximum update rates supported by
MOVIES when scaling the size of the data set. We compare MOVIES to baseline in-
dex structures, including binary search trees and B+-trees. Furthermore, we compare
MOVIES against a state-of-the-art moving object index: the Bx-tree [17]. As all tree-
based methods are hard to parallelize without considerably sacrificing performance
(locking), we parallelized all tree-based methods to obtain lock-free methods as follows:
we partitioned the data by OID into four disjoint partitions, and used a separate tree and
thread to index each partition as suggested in [40]. Thus, the tree-based methods could
make maximal use of the four cores available on a server. All methods evaluated in this
and the following experiments could make use of the same amount of main memory
which was set to 5.5 GB. In particular, all tree-based methods resided completely in
main memory. Therefore, at no point any disk-I/O was performed. We tuned the node
size of the trees to obtain the best possible performance in a separate experiment. Only
the best tree-based methods are displayed.

Figure 7(a) shows the results of a scalability experiment where the index size is
varied up to 25.6 million moving objects. We kept a fixed query rate of 1,000 time-
parameterized queries/s and display the maximum update rate supported by each in-
dexing method. The results show that both variants of MOVIES outperform all other
methods. Figure 7(a) shows that all tree-based methods degrade sharply with growing
index sizes. The binary search tree was not able to scale beyond 3.2 M objects as then it
could not meet the query rate anymore. For the B+-tree, we experimented with several
values of k and k∗. However, the best B+-tree we could devise (k = k∗ = 16) was not
able to scale beyond 12.8M moving objects. For 12.8M the B+-tree could only handle
0.6M updates/s. Similarly, for the Bx-tree we performed a separate experiment varying

 100000

 1e+06

 1e+07

 100000 1e+06 1e+07

m
ax

 u
pd

at
e

ra
te

 [#
 u

p.
/s

ec
.,

lo
g

sc
al

e]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

(a) max update rate: comparison of MOVIES,
binary search tree, B+-tree, and Bx-tree

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 100000 1e+06 1e+07

m
ax

 u
pd

at
e

ra
te

 [#
 u

pd
at

es
 p

er
 s

ec
on

d]

index size [# elements, log scale]

transfer limit
MOVIES Aggregated PI

MOVIES Aggregated NPI
MOVIES Logged PI

MOVIES Logged NPI

(b) max update rate: comparison of four differ-
ent variants of MOVIES

Fig. 7. Scalability in index size for high update rates [query rate=1,000/s], single processing node

200 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

the number of phases n and display only the best version of the Bx-tree we could devise
(k = 16 and n = 2). Interestingly, the Bx-tree was also not able to scale beyond 12.8M
moving objects. The Bx-tree even performed slightly worse than the best B+-tree ex-
cept for N=12.8M. This is due to the fact that the Bx-tree incurs overhead compared to
the B+-tree as it has to compute predictions for each incoming update at indexing time.

In the experiment, in contrast to

 0.01

 0.1

 1

 10

 100

 100000 1e+06 1e+07
av

er
ag

e
st

al
en

es
s

[s
ec

, l
og

 s
ca

le
]

index size [# elements, log scale]

MOVIES Aggregated PI
MOVIES Aggregated NPI

MOVIES Logged PI
MOVIES Logged NPI

Fig. 8. Average staleness when scaling index size:
comparison of four different variants of MOVIES
[query rate=1,000/s]

all other methods, MOVIES Logged
with Non-Predictive Indexing (NPI)
shows update rates of around 14 mil-
lion updates/s for index sizes up to
25.6M objects. This value is close
to the network limit of 14.7 million
updates/s. MOVIES Aggregated NPI
shows in average a slighlty smaller
update rate ranging from 11M to
14M updates/s. However, MOVIES
Aggregated NPI performs still bet-
ter than all tree-based methods. For
an index of size of 12.8 M objects
the improvement of the best MOVIES
variant over the best B+-tree and Bx-
tree is factor 15. For an index size of 25.6 M only MOVIES was able to index the data
meeting the query rate. Interestingly, in this experiment the binary search tree performs
even better for small indexes than the Bx-tree. This is due to the high cost for comput-
ing predictions for each incoming update. This is also evidenced when we compare the
four different variants of MOVIES using different indexing methods. Figure 7(b) dis-
plays the update throughput for MOVIES when using different indexing schemes, i.e.,
either Aggregated or Logged MOVIES (Section 3.3), and either non-predictive (NPI)
or predictive indexing (PI) (Section 4.1). The figure shows that Logged MOVIES NPI
has the best performance. In contrast, Logged MOVIES PI achieves only half of the
throughput. This is due to the fact that for predictive indexing each update has to be
translated to a new position. This is CPU-intensive and also explains why the Bx-tree
performs worse than a standard B+-tree: at extreme update rates, the computational cost
of predictions offsets the gain obtained by smaller query window enlargements.

Figure 8 shows the average staleness observed in the scaling experiment. The results
show that the staleness grows for larger index sizes. That is expected as an important
component of frame time is the time to sort the data in a new index. For MOVIES Logged
NPI the staleness grows up to 19 sec, for MOVIES Aggregated NPI it increases up to 7
sec. If the staleness has to be reduced, this can be achieved by scaling out on multiple
processing nodes. This is explored in Section 5.5.

5.4 Scalability in Update Rate

The goal of this experiment is to understand the maximum query rate supported by
MOVIES when scaling the update rate. We keep the index size constant at 6.4M objects
and vary the update rate. Figure 9 shows the result. The figure shows that the binary

Indexing Moving Objects Using Short-Lived Throwaway Indexes 201

search tree is only able to sustain a very low query rate. For update rates above 2.1M
updates/s this method is not able to execute any more queries and thus fails to scale
beyond this point. Similarly, we observe that for update rates between 0.1M to 1M
the best B+-tree is able to execute between 3,000 and 2,000 queries/s, respectively. For
higher update rates, however, the B+-tree degrades sharply: for an update rate of 4M up-
dates/s, the best B+-tree is only able to execute a small amount of queries and thus fails
to scale beyond this point. The Bx-tree has better query performance than the B+-tree
for update rates up to about 3M updates/s, but also fails to scale beyond 4M updates/s.
The MOVIES variants show an interesting behavior: The predictive variants outperform
the non-predictive variants in terms of query performance up to an update rate of 4M
updates/s, exhibiting query rates around 3,000 queries/s. Above 4M updates/s, how-
ever, the query performance of the non-predictive variants sharply increases up to 9,200
queries/s. This behavior can be explained by analyzing the trade-off between index-
ing predictions and performing query window enlargements. For modest update rates,
non-predictive methods must perform bigger query enlargements to compensate for the
relatively large value of tΔmax. These enlarged queries impose significant computational
overhead. Predictive methods, on the other hand, aggressively reduce query window
enlargements by computing predictions for each update applied to the index. At high
update rates, however, we observe the opposite effect: predictive methods pay a high
computational cost for predicting every update applied to the index. The gain in query
window enlargements is not enough to off-

 0

 2000

 4000

 6000

 8000

 10000

 100000 1e+06 1e+07

qu
er

y
ra

te
 [#

 q
ue

rie
s

pe
r s

ec
on

d]

update rate [# updates per second, log scale]

binary tree
B+-tree
Bx-tree

MOVIES Aggregated PI
MOVIES Aggregated NPI

MOVIES Logged PI
MOVIES Logged NPI

Fig. 9. Scalability in update rate: Compari-
son of MOVIES with binary search tree, B+-
tree and Bx-tree for high update rates [index
size=6.4E6]

set these costs, because as tΔmax is rela-
tively low, the enlargements performed by
non-predictive methods are also relatively
small. In addition, non-predictive methods
have lower computational cost for collect-
ing updates. Another effect may be observed
for the non-predictive variants: at an update
rate of about 10M updates/s, the query rate
drops to around 6,000 queries/s. This slight
drop in the query rate may be explained by
the fact that at very high update rates, the
cost to collect updates starts to become sig-
nificant, draining CPU resources from both
query processing and index rebuilding.

The staleness for Logged MOVIES NPI
stayed constant around 3 sec up to 7M updates/s. For higher updates rates it increased
linearly up to 7.2 sec. For Aggregated MOVIES NPI the staleness was constant around
2.5 sec. The predictive variants could not be scaled beyond 8M updates/s and their av-
erage staleness stayed between 2 to 3 sec. The relatively high staleness for low update
rates can be explained as follows: If during one index rebuild MOVIES receives only
few updates, then MOVIES has to retrieve the old data for many objects from the old
index. This leads to many random accesses to the old index and therefore hurts rebuild
performance. The time needed to lookup old data goes down as the update rate increases
and reaches zero around 5M updates/s. Even though this effect would lead to decreasing

202 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

staleness, the staleness stays about constant, because processing the updates becomes
more expensive. In summary, this experiment shows that the MOVIES variants scale
well for high update rates. Of all methods, only MOVIES was able to scale up to 14M
updates/s. Note again that all methods completely resided in main memory.

5.5 Shared-Nothing Scale-Out

The goal of this experiment is to examine how MOVIES scales when increasing the num-
ber of processing nodes. In order to adapt the different methods to a shared-nothing
landscape, we horizontally hash-partitioned the data by OID. We keep the index size
constant at 25.8M and vary the number of processing nodes PN from one to four. As
our experiments with a single processing node have shown, the transfer limit imposed
by the network is a serious bottleneck. Therefore, we required a special network setup
as described in Section 5.1. With that setup we could transfer up to 58M updates/s to
four processing nodes while still being able to distribute queries. Figure 10(a) shows the
results. The NPI MOVIES variant Aggregated (resp. Logged) scales up to 47M (resp.
54M) updates/s. Figure 10(b) displays an experiment where we keep the index size con-
stant at 25.8M and keep the maximum update rate at 5M updates/s, which is supported
by the worst MOVIES method. We display the average staleness. The figure shows that
staleness goes down almost linearly if we increase the number of processing nodes. For
four processing nodes staleness goes below 3 seconds for all four variants of MOVIES.
In summary, this experiment shows that MOVIES scales linearly w.r.t. the maximum
number of updates and linearly w.r.t. to the average query result staleness.

In another experiment we used all four processing nodes for indexing. Figure 10(c)
shows the results. Similarly to the single instance experiment MOVIES outperforms
all other methods. All tree-based methods, including the Bx-tree degrade sharply for
growing index sizes. The tree-based methods fail to scale beyond an index of size 51M,
i.e., 12.8M moving objects per processing node. In contrast, MOVIES scales up to 102M
moving objects. Furthermore, for index sizes up to 51M, Logged MOVIES sustains an
update rate close to the network limit of 58M updates/s. For 51M moving objects the
improvement of MOVIES over the best B+-tree is factor 15; the improvement over the
best Bx-tree is factor 11. The average staleness of all the MOVIES variants is the same

0
5E6

10E6
15E6
20E6
25E6
30E6
35E6
40E6
45E6
50E6
55E6
60E6

1 2 3 4m
ax

 u
pd

at
e

ra
te

 [#
 u

pd
at

es
 p

er
 s

ec
on

d]

number of processing nodes

Transfer limit
MOVIES Aggregated PI

MOVIES Aggregated NPI
MOVIES Logged PI

MOVIES Logged NPI

(a) max update rate: effects
of scaling number of pro-
cessing nodes [index size =
25.8E6]

 0

 2

 4

 6

 8

 10

 12

1 2 3 4

av
er

ag
e

st
al

en
es

s
[s

ec
]

number of processing nodes

MOVIES Aggregated NPI
MOVIES Aggregated PI

MOVIES Logged NPI
MOVIES Logged PI

(b) average staleness: ef-
fects of scaling number
of processing nodes [index
size = 25.8E6]

 1e+06

 1e+07

 1e+08

 1e+06 1e+07 1e+08

up
da

te
 ra

te
 [#

 u
p.

pe
r s

ec
, l

og
 s

ca
le

]

index size [# elements, log scale]

transfer limit
binary search tree

B+-tree
Bx-tree

MOVIES Aggregated NPI
MOVIES Logged NPI

(c) Scalability in index
size on four shared-nothing
servers: Comparison of
MOVIES with binary search
tree, B+-tree, and Bx-tree

Fig. 10. Shared-nothing performance [query rate = 1,000/s]

Indexing Moving Objects Using Short-Lived Throwaway Indexes 203

as shown for the single instance experiment, but the index size is four times larger. See
Figure 8. For example, the staleness of MOVIES Logged NPI is 21 seconds for an index
with 102M elements.

6 Related Work

Considerable work has been done in the area of moving objects. The existing methods
can be classified into two groups: methods with or without time-parameterized (TP)
queries. General design issues for moving object indexes can be found in [30].

6.1 Methods with TP Queries

External Memory. Many approaches are centered around extending external memory
structures like the B+-tree, R-tree[13], or R∗-tree[3]. All of these methods assume that
data would not fit into main memory. Examples include the TR-tree and TB-tree [35],
the TPR-tree [48], the TPR*-tree [42], the STP-tree [41] and the RPPF-tree [34]. The
most relevant work to our work is the Bx-tree [17] as, conceptually, it has some simi-
larities to the MOVIES indexing strategy. The core idea of the Bx-tree is to map three-
dimensional data (two spatial and one temporal dimension) to a one-dimensional space.
This is done by using a recursive space-filling curve and mapping data to a B+-tree very
similarly to [32]. However, in contrast to the latter approach, the Bx-tree also partitions
data into phases corresponding to future time intervals. For each phase it uses a separate
subtree to index moving objects and predicted positions. As a consequence, prediction
queries are supported. As the Bx-tree is based on a B+-tree, it is very easy to integrate
it into existing DBMSs. The Bx-tree was shown to outperform competing methods such
as the TPR-tree [48]. However, in contrast to MOVIES the Bx-tree does not rebuild the
index based on updates buffers but rather follows an update strategy similar to update-
in-place. Also the partitioning into phases used by the Bx-tree leads to relatively high
query cost (as observed in our experiments) which is avoided by MOVIES. Other meth-
ods index moving objects by transforming them to a higher dimensional space. This in-
cludes STRIPES [33] and [21] which transform d-dimensional space to 2d-dimensional
Hough-X space [15]. The recently proposed Bdual-tree [50] uses the same idea; however
it maps the Hough-X space back to a one-dimensional space using a Hilbert curve. [43]
presents a study on dual methods concluding that if query efficiency is required (as re-
quired in this paper), dual methods are not competitive. Interestingly, in the concluding
remarks of [43] it is suggested that it could be beneficial to rather reconstruct a non-dual
method periodically. Exactly this approach is followed by MOVIES.

Main Memory. The approach of [7] partitions data into sets of active objects that stay
in a main memory buffer and inactive objects that reside on external memory. Therefore
that work is more of a buffering scheme for moving object indexing. It is orthogonal to
the techniques presented here and can be applied on top of any moving objects index.

6.2 Methods without TP Queries

Main Memory. Relevant to our work are methods that use main memory for moni-
toring queries. The method of [19] uses a fix-sized grid where the grid-size is chosen

204 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

w.r.t. the average query window sizes. Each grid cell maintains pointers to two lists with
query results. Query results are periodically reevaluated and query results are delivered
with a time delay Δt. [51] extends [19] to k-NN queries. [26] improves [51] to only
update grid-cells that are affected by an incoming update. However, none of the former
methods provides any support for time-parameterized queries. Also [19,51,26] do nei-
ther provide any means how to scale for cases when the main memory is exhausted nor
provide any parallelization scheme. In contrast MOVIES provides solutions for all of
these issues. [27] focusses on k-NN in road networks where the distance among objects
is not the euclidean distance but rather the length of the shortest path on the network.
Therefore the latter method will not work for objects not following roads, e.g., planes,
ships, people’s phones. In contrast, MOVIES supports all of these scenarios.

6.3 Extensions for Efficient Updates

External Memory. Frequent update handling in R-trees was treated in [23,4]. A general
survey on how to optimize B-trees for high update rates was recently presented by
Graefe [12]. Several of these optimizations may be traced back to Lars Arge’s buffer
tree [2]. Graefe also mentions differential files [38] as an effective means to trade query
performance for update performance. However, [12] does not mention that one could
trade query result staleness and keep both queries and updates efficient as in MOVIES.

Main Memory. Batching updates in a similar way to Lars Arge’s buffer tree [2] was
also considered for main memory optimized trees such as [52,8] however trading query
for update performance. In contrast, MOVIES does not trade query performance for
update performance. Other cache-efficient trees are the CSS-tree [37] and the FPB+-
tree [6]. An interesting challenge would be to extend both the Bx-tree and MOVIES
to include these optimizations. However, as pointed out in Section 2.2, the query pro-
cessing performance is not affected by MOVIES. Therefore, the general trade-off of
update-in-place versus collect and rebuild as used by MOVIES will remain unchanged.
Rather, as MOVIES may build read-only indexes at each index frame, MOVIES could
even improve overall query performance by building read-only cache-aware indexes.

6.4 Experimental Studies

Moving object scenarios comprise a large number of objects and a large number of
updates. As mentioned above, the number of cars in Germany is about 58,000,000 [22].
Assume every car sends an update on its position every 2 seconds, then this boils down
to 29,000,000 updates per second. If we were to index not only cars but also planes,
people’s cellular phones, etc., we would face even higher data and update volumes. In
this work we are interested in supporting these large scale scenarios. Therefore we are
considering data sets of up to 100,000,000 moving objects. This is 10 times larger than
in the biggest study available [23] and by at least two orders of magnitude larger than in
all other studies, e.g., [26,27,17,19,51,7]. We think it is important to scale to such large
data sets in order to understand the limits of the different methods.

Indexing Moving Objects Using Short-Lived Throwaway Indexes 205

7 Conclusions

This paper has proposed a novel approach to time-parameterized moving object in-
dexing of massive data sets under very high update rates. Our approach is based on
frequently building short-lived throwaway indexes. This keeps at the same time query
throughput high, query response time low, and update performance high. The price we
have to pay is slightly out-of-date (stale) query results, which is acceptable in several
applications including aircraft control [39]. We have shown that this price can be re-
duced to be as small as a few seconds even for very large data sets of up to 100,000,000
moving objects. Our experiments have demonstrated the feasibility of our approach
even for massive realistic data sets. We have presented results of an experimental study
using the entire road network of Germany: a network size unmatched by any previous
work. In our study we scale up to 100,000,000 moving objects and 58,000,000 updates
per second. MOVIES shows order of magnitude improvements over state-of-the-art ap-
proaches like the Bx-tree, as well as several baseline methods w.r.t. supported update
rates and query rates. One general conclusion is that the popular pattern of keeping and
modifying an index should be dropped for moving object scenarios. Another surprising
conclusion of our study is that the idea of indexing predictions for time-parameterized
queries as done by some external memory indexes does only work well in main memory
for low update rates. In terms of future work we plan to examine the trade-off of scala-
bility and stalenesss in more detail. Another research direction would be to extend our
approach to consider cache-aware B+-trees, e.g. [37]. However, as shown by our formal
analysis, the general trade-off of update-in-place versus collect-and-rebuild would even
be improved in favor of MOVIES.

References

1. Anderson, I., et al.: Shakra: Tracking and Sharing Daily Activity Levels with Unaugmented
Mobile Phones. Mobile Networks and Applications 12(2-3) (2007)

2. Arge, L.: The Buffer Tree: A New Technique for Optimal I/O-Algorithms (Extended Ab-
stract). In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955.
Springer, Heidelberg (1995)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectangles. In: SIGMOD (1990)

4. Biveinis, L., Šaltenis, S., Jensen, C.S.: Main-Memory Operation Buffering for Efficient R-
Tree Update. In: VLDB (2007)

5. Brinkhoff, T.: A Framework for Generating Networkbased Moving Objects. GeoInformat-
ica 6(2), 153–180 (2002)

6. Chen, S., Gibbons, P.B., Mowry, T.C., Valentin, G.: Fractal Prefetching B+trees: Optimizing
Both Cache and Disk Performance. In: SIGMOD (2002)

7. Cui, B., Lin, D., Tan, K.-L.: Towards Optimal Utilization of Main Memory for Moving Ob-
ject Indexing. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453,
pp. 600–611. Springer, Heidelberg (2005)

8. Dittrich, J.-P., Fischer, P.M., Kossmann, D.: AGILE: Adaptive Indexing for Context-Aware
Information Flters. In: SIGMOD (2005)

9. Dittrich, J.-P., Seeger, B.: GESS: a Scalable Similarity-Join Algorithm for Mining Large Data
Sets in High Dimensional Spaces. In: SIGKDD (2001)

206 J. Dittrich, L. Blunschi, and M.A. Vaz Salles

10. Enhanced 911, http://www.fcc.gov/pshs/911
11. Google Web Search, http://www.google.com
12. Graefe, G.: B-tree indexes for high update rates. SIGMOD Rec. 35(1) (2006)
13. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD

(1984)
14. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische

Annalen 38, 459–460 (1891)
15. Hough, P.: Method and means for recognizing complex patterns. United States Patent

No. 3069654 (1962)
16. Jagadish, H.V., et al.: Incremental Organization for Data Recording and Warehousing. In:

VLDB (1997)
17. Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of

Moving Objects. In: VLDB (2004)
18. Jensen, C.S., Pakalnis, S.: TRAX - Real-World Tracking of Moving Objects. In: VLDB

(2007)
19. Kalashnikov, D.V., Prabhakar, S., Hambrusch, S.E.: Main Memory Evaluation of Monitoring

Queries Over Moving Objects. Distributed and Parallel Databases 15(2), 117–135 (2004)
20. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. III. Addison-

Wesley, Reading (1973)
21. Kollios, G., Papadopoulos, D., Gunopulos, D., Tsotras, J.: Indexing mobile objects using

dual transformations. VLDB Journal 14(2), 238–256 (2005)
22. Kraftfahrt-Bundesamt. Number of Vehicles in Germany over time,

www.kba.de/Abt3_neu/FZ/Bestand/Themen_jaehrlich_pdf/bki1_2008.pdf
23. Lee, M.-L., Hsu, W., Jensen, C.S., et al.: Supporting Frequent Updates in R-Trees: A Bottom-

Up Approach. In: VLDB (2003)
24. Loopt, http://www.loopt.com
25. Apache Lucene, http://lucene.apache.org/java/docs
26. Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual Partitioning: An Efficient

Method for Continuous Nearest Neighbor Monitoring. In: SIGMOD (2005)
27. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous Nearest Neighbor Mon-

itoring in Road Networks. In: VLDB (2006)
28. Muth, P., O’Neil, P.E., Pick, A., Weikum, G.: The LHAM Log-Structured History Data Ac-

cess Method. VLDB J. 8(3-4), 199–221 (2000)
29. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The Log-Structured Merge-Tree (LSM-

Tree). Acta Inf. 33(4) (1996)
30. Ooi, B.C., Tan, K.L., Yu, C.: Frequent Update and Efficient Retrieval: an Oxymoron on

Moving Object Indexes? In: WISE Workshops 2002 (2002)
31. Orenstein, J.A.: An Algorithm for Computing the Overlay of k-Dimensional Spaces. In:

Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525. Springer, Heidelberg (1991)
32. Orenstein, J.A., Merrett, T.H.: A Class of Data Structures for Associative Searching. In:

PODS (1984)
33. Patel, J.M., Chen, Y., Chakka, V.P.: STRIPES: An Efficient Index for Predicted Trajectories.

In: SIGMOD (2004)
34. Pelanis, M., Šaltenis, S., Jensen, C.S.: Indexing the Past, Present, and Anticipated Future

Positions of Moving Objects. ACM TODS 31(1), 255–298 (2006)
35. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches to the Indexing of Moving Ob-

ject Trajectories. In: VLDB (2000)
36. Ramsak, F., Markl, V., et al.: Integrating the UB-Tree into a Database System Kernel. In:

VLDB (2000)
37. Rao, J., Ross, K.A.: Making B+-Trees Cache Conscious in Main Memory. SIGMOD 29(2)

(2000)

http://www.fcc.gov/pshs/911
http://www.google.com
www.kba.de/Abt3_neu/FZ/Bestand/Themen_jaehrlich_pdf/bki1_2008.pdf
http://www.loopt.com
http://lucene.apache.org/java/docs

Indexing Moving Objects Using Short-Lived Throwaway Indexes 207

38. Severance, D.G., Lohman, G.M.: Differential Files: Their Application to the Maintenance of
Large Databases. ACM TODS 1(3), 256–267 (1976)

39. Personal communication with Skyguide Flight Control
40. Stonebraker, M., Madden, S., et al.: The End of an Architectural Era (It’s Time for a Complete

Rewrite). In: VLDB (2007)
41. Tao, Y., Faloutsos, C., et al.: Prediction and Indexing of Moving Objects with Unknown

Motion Patterns. In: SIGMOD (2004)
42. Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio-Temporal Access

Method for Predictive Queries. In: VLDB (2003)
43. Tao, Y., Xiao, X.: Primal or dual: which promises faster spatiotemporal search? VLDB

J. 17(5) (2008)
44. Tele Atlas MultiNet Europe Q4/2006. Germany
45. Thirde, D., et al.: Evaluation of Object Tracking for Aircraft Activity Surveillance. In: 2nd

Joint IEEE International Workshop on VS-PETS (2005)
46. Thomas Legler, A.R., Lehner, W.: Data Mining with the SAP Netweaver BI Accelerator. In:

VLDB, pp. 1059–1068 (2006)
47. Tropf, H., Herzog, H.: Multimensional Range Search in Dynamically Balanced Trees.

Ang. Informatik 23(2), 71–77 (1981)
48. Šaltenis, S., Jensen, C.S., et al.: Indexing the Positions of Continuously Moving Objects. In:

SIGMOD (2000)
49. White, W.M., Demers, A.J., Koch, C., Gehrke, J., Rajagopalan, R.: Scaling Games to Epic

Proportion. In: SIGMOD (2007)
50. Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-Tree: indexing moving objects by space filling

curves in the dual space. VLDB J. 17(3) (2008)
51. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-Nearest Neighbor Queries over Moving Objects.

In: ICDE (2005)
52. Zhou, J., Ross, K.A.: Buffering Accesses to Memory-Resident Index Structures. In: VLDB

(2003)

Indexing the Trajectories of Moving Objects
in Symbolic Indoor Space

Christian S. Jensen1, Hua Lu1, and Bin Yang1,2

1 Department of Computer Science, Aalborg University, Denmark
2 School of Computer Science, Fudan University, China

{csj,luhua,yang}@cs.aau.dk

Abstract. Indoor spaces accommodate large populations of individuals. With
appropriate indoor positioning, e.g., Bluetooth and RFID, in place, large amounts
of trajectory data result that may serve as a foundation for a wide variety of appli-
cations, e.g., space planning, way finding, and security. This scenario calls for the
indexing of indoor trajectories. Based on an appropriate notion of indoor trajec-
tory and definitions of pertinent types of queries, the paper proposes two R-tree
based structures for indexing object trajectories in symbolic indoor space. The
RTR-tree represents a trajectory as a set of line segments in a space spanned by
positioning readers and time. The TP2R-tree applies a data transformation that
yields a representation of trajectories as points with extension along the time di-
mension. The paper details the structure, node organization strategies, and query
processing algorithms for each index. An empirical performance study suggests
that the two indexes are effective, efficient, and robust. The study also elicits the
circumstances under which our proposals perform the best.

1 Introduction

People spend large parts of their lives in indoor spaces such as office buildings, shopping
centers, conference facilities, airports, and other transport infrastructures. At the same
time, such spaces are becoming increasingly large and complex. For example, the New
York City Subway has 468 stations and a network of 842 miles. Each day, the subway
serves more than 6 million users, totalling 2+ billion annually.

With the deployment of indoor positioning based on technologies such as RFID [23],
Bluetooth [8], and Wi-Fi [3], large volumes of tracking data are becoming available that
enable a range services akin to those enabled by GPS-based positioning in outdoor set-
tings. Example services include indoor navigation, personal security, and those provid-
ing insight into how and how much the indoor space is being used, which is important
in planning applications and for the pricing of advertisement space and store rentals.
Motivated by these observations, this paper provides two techniques for the indexing of
the trajectories of objects moving in symbolic indoor space.

Over the past decade, much research has been devoted to outdoor applications involv-
ing moving objects [9,24], and substantial research concerns the indexing and querying of
the positions of moving objects [2,6,12,13,14,18,20,21,25] and their trajectories [5,17].
However, the outcomes of this body of research is not easily applicable in indoor scenar-
ios. First, indoor space is typically modeled differently from outdoor space, where either

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 208–227, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 209

Euclidean space or a spatial network is typically assumed. Indoor space is characterized
by entities such as doors, rooms, and hallways that enable and constrain movement. This
renders movement more constrained than outdoor Euclidean movement. Consequently,
geometric representations, e.g., the linear model that is widely adopted for describing
outdoor movement, are not suitable for describing indoor movement. Further, indoor
movement is less constrained than outdoor spatial-network movement, where the posi-
tion of an object is constrained to a position on a polyline. As a result, symbolic models,
rather than geometric models, of indoor space are often used [4], which renders indexes
for outdoor moving objects inapplicable.

Second, indoor positioning technologies differ fundamentally from those typically
assumed in outdoor settings. Unlike GPS and cellular technologies, which are capable
of continuously reporting the position and velocity of an object with varying accuracies,
we assume indoor positioning technologies that rely on proximity analysis [11] and are
able to report neither velocities nor exact locations. In particular, an indoor moving
object is detected only when it enters the sensing or activation range of a positioning
device, e.g., an RFID reader, or a Bluetooth base station.

We propose two R-tree based structures for indexing the trajectories of objects mov-
ing in symbolic indoor space, together with algorithms for the processing of pertinent
queries, including spatiotemporal range and topological queries. We assume a symbolic
representation of indoor space and use RFID for positioning. The trajectory of an ob-
ject is then represented as a series of records, each of which indicates that the object is
within the activation range of a specific RFID reader during a period of time.

The RTR-tree, similar to the R-tree, uses a specific node organization. It organizes
a trajectory as a set of line segments in the plane spanned by positioning readers and
time. For each type of query, a corresponding geometrical representation is derived and
used to search the RTR-tree similarly to how an R-tree is searched.

The TP2R-tree uses the same underlying space, but applies a data transformation
that turns a trajectory into a set of points in the plane, augmented with temporal extents.
The objective is to obtain a better node organization. When a node overflows during
insertion, splitting is handled by taking the time extents into consideration such that
fewer node accesses are expected by subsequent queries. Efficient query processing
algorithms for the TP2R-tree are also detailed.

A comprehensive performance study on synthetic and real data sets is conducted to
evaluate the two indexes, together with relevant query processing algorithms. A wide
range of parameter settings are applied. The results show that tree construction is scal-
able with respect to the trajectory data size and that query processing is quite efficient.

The paper s contributions may be summarized as follows. The paper formalizes a
moving-object trajectory model and trajectory-related queries in symbolic indoor space.
It presents two index structures with different node organization strategies that apply
specifically to indoor trajectories. It presents accompanying algorithms for the process-
ing of pertinent queries. Finally, it presents the results of a comprehensive and favorable
performance study of the paper’s proposals.

The rest of this paper is organized as follows. Section 2 describes existing indexes for
moving objects. Section 3 presents the assumed data model, the assumed representation
of indoor trajectories, and the queries considered. Sections 4 and 5 detail the RTR-tree

’

210 C.S. Jensen, H. Lu, and B. Yang

and and TP2R-tree, respectively. Section 6 reports on the relevant experimental study.
Section 7 concludes and offers research directions.

2 Existing Moving-Object Indexes

Most research on outdoor moving-object indexing assumes, explicitly or implicitly,
the availability of GPS-type positioning. A GPS receiver can continuously (typically
each second) report location (longitude and latitude) and velocity. Hence, the trajectory
of a GPS-equipped outdoor moving object is usually modeled as a polyline in three-
dimensional space-time space.

The TB-tree (Trajectory Bundle) [17] extends the R-tree to allow the indexing of
such trajectories by allowing a leaf node to contain line segments only from the same
trajectory, which facilitates retrieval of the trajectory of an individual object, but ad-
versely affects spatiotemporal range queries. SETI (Scalable and Efficient Trajectory
Index) [5] is based on a static partitioning of the spatial dimensions. The aim is that
trajectory line segments in the same index partition belong to the same trajectory. Then,
within each partition, all line segments are indexed by an R-tree. The performance of
SETI depends heavily on the partitioning function used. Because indoor positioning
technologies only determine the presence of moving objects at predefined locations, the
polyline representation used for outdoor trajectories is inapplicable for indoor trajecto-
ries. As a result, the TB-tree and SETI cannot be applied to indoor trajectories.

In addition to indexes directly targeting trajectories, proposals exist for the index-
ing of historical positions of outdoor moving objects in order to support spatiotemporal
range queries. The 3D R-tree [22] treats the time dimension as yet another spatial di-
mension. The HR-tree (historical R-tree) [16] adds a temporal dimension to the R-tree
by means of replication when updates occur, so that multiple R-trees result, each corre-
sponding to a time interval. A tree node belongs to multiple consecutive trees if the data
in it remains constant during the time interval associated with the trees. The MV3R-tree
(Multi-version 3D R-tree) [20] integrates the HR-tree and the 3D R-tree. The PPR-tree
(Partially-Persistent R-tree) [14] indexes both historical and current positions of ani-
mated objects by applying multi-versioning.

The idea behind the 3D R-tree, of treating time simply as an additional dimension,
can be used to index indoor trajectories. Our RTR-tree with its basic node organization
strategies (see Section 4.2) adopts this approach. However, our studies show that this
straightforward approach yields poor performance. The HR-tree is unsuitable for index-
ing indoor trajectories for three reasons. First, a mapping from each indoor positioning
device to its sensing range is needed for indoor positioning data to be indexed by an HR-
tree. Second, the limited device sensing ranges cause high data volatility, as few objects
remain for long within a range. This considerably reduces the overlapping among tree
nodes that the HR-tree exploits. Third, the HR-tree prefers time point queries over time
interval queries. Our proposals aim to support both query types efficiently.

Other indexes for the current and future positions of outdoor moving ob-
jects [2,6,12,13,18,25] are unsuitable for indoor trajectory indexing. Moreover, almost
all assume a linear movement model, which is unavailable for indoor objects. In par-
ticular, although the BBx-tree [15] and the RPPF-tree [19] index the historical, current,
and future positions of moving objects, they both assume a linear movement model.

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 211

3 Data Model, Trajectory Representation, and Queries

3.1 Data Model and Queries

As suggested earlier, the geometric polyline representation used for outdoor trajectories
is not ideal for indoor trajectories. For example, assume that an object moves from one
room to another so that two consecutive location reports are in different rooms. (Due
to the limitations of indoor positioning, locations between these two reports are not
obtained.) Using the polyline representation, the line segment between the two reported
locations is unlikely to intersect with the door, but will go through the wall between
the rooms. This means that the trajectory has the moving object going through the wall,
which contradicts reality and renders the trajectory of limited use.

Typical queries on indoor trajectories contain symbolic references such as room
numbers rather than simply geometric locations. For example, we may be interested
in determining which room a moving object was in at a specific time, or the sequence
of rooms a moving object visited during a given time interval. Such considerations
lead to an indoor trajectory model that is composed of trajectory records in the for-
mat (objectID , symbolicID , T). Here, objectID is the identifier of a moving object;
symbolicID is the identifier for a specific indoor space region (e.g., a room); and T

indicates the time, either a time instant or a time interval.
We consider two types of queries. Given an indoor spatial extent Es and a temporal

extent Et, an indoor range query Q(Es, Et) returns all trajectory records that intersect
the spatiotemporal region defined by Es and Et: Q(Es, Et)→ {trajectory records}.

Specifically, Es can be represented by either a subset of symbolic references (e.g.,
room numbers) or a subset of Euclidean space (e.g., a polygon or a circle in a floor
plan). Next, Et indicates a temporal extent, which is either a time instant or a time
interval. For example, query Q(room1, [1:00 p.m., 1:15 p.m.]) returns all trajectory
records indicating that the corresponding objects were in room1 at some time between
1:00 p.m. and 1:15 p.m. A Euclidean spatial constraint in a query can be transformed to
one or more symbolic references. This is covered in detail in Section 4.3.

Next, given an indoor space partition (e.g., a room), a temporal extent, and a topolog-
ical predicate, an indoor topological query returns all objects whose trajectories satisfy
the given predicate with respect to the space partition within the given temporal extent:
Q(Es, Et, P)→ {objectID}.

Here, Et is as before, and Es is an indoor space partition with the property that po-
sitioning devices are deployed such that the satisfaction of predicate P can be detected
or inferred from the positioning data. (Issues related to deployments are addressed in
Section 4.3.) Moreover, P denotes a topological predicate such as (a) enter, (b) leave,
or (c) cross [7,17]. We use the cross predicate to mean enter and then leave, or leave
and then enter. For example, query Q(room1, [1:00 p.m., 1:15 p.m.], enter) returns all
objects that entered room1 between 1:00 p.m. and 1:15 p.m.

The range and topological queries can work as building blocks for constructing more
complex queries. Such queries can be processed by combining the algorithms presented
in this paper.

212 C.S. Jensen, H. Lu, and B. Yang

3.2 RFID Based Indoor Positioning

Our focus is on positioning by means of RFID technology [23], and we assume a setting
where RFID readers are deployed at fixed locations, e.g., at building entrances, doors,
hallways, while RFID tags are attached to moving objects. An RFID reader employs
proximity analysis [11] to detect an RFID tag when the tag (with the object to which it is
attached) enters the reader’s activation range. Different readers support different sensing
ranges. The position of each reader is recorded in the database after deployment.

Each RFID reader continuously detects and reports tags with a frequency determined
by its sampling rate, a hardware specific parameter that usually varies from 1 to 3 times
per second [23]. We use TS to denote the RFID reader sampling period. The raw RFID
readings are of the format (readerID , tagID , t), meaning that a reader readerID detects
the moving object with tag tagID in its activation range at timestamp t. Our proposals
accommodate the possibility of a tag being detected simultaneously by multiple readers.

Unlike GPS that reports accurate geographic locations, RFID-based positioning only
reports the presences of objects in readers’ activation ranges. An object’s location dur-
ing the time in-between consecutive RFID readings cannot be inferred from the reading
sequence without additional information such as the floor plan. Also, different deploy-
ments of RFID readers in the same indoor space generally result in different positioning
accuracies. Positioning reader deployment is beyond the scope of this paper. Rather, our
focus is to enable indexing of whatever RFID positioning data is available.

Given a raw RFID reading sequence, a trajectory table can be constructed that
contains records of the following format: (recordID , tagID , readerID , ts, te). Here,
recordID is the identifier of each trajectory record, and ts (te) indicates the first
(last) time point when reader readerID detects tag tagID in its activation range.

Table 1. Indoor Trajectories

recordID tagID readerID ts te

rd1 tag1 reader1 t1 t3
rd2 tag3 reader2 t2 t4
rd3 tag2 reader3 t3 t5
rd4 tag3 reader2 t6 t8
rd5 tag2 reader2 t7 t9
rd6 tag1 reader4 t10 t11
rd7 tag3 reader3 t11 t12

This representation removes the “duplicate” readings
caused by the sampling. A table containing trajectories
is shown in Table 1.

We proceed to propose two indexes for indoor trajec-
tories. In Section 4 we detail the RTR-tree which, treat-
ing trajectories as sets of line segments, extends the R-
tree with specific node organization strategies. In Sec-
tion 5, we detail the TP2R-tree that is intended to im-
prove the tree organization by representing trajectories
as points with time extension parameters.

4 RTR-Tree: Reader-Time R-Tree

The Reader-Time R-tree (RTR-tree) that is essentially a two dimensional R-tree [10]
on the Reader-Time space. The vertical axis, which we call the reader axis, represents
reader identifiers. The horizontal axis, which we call the time axis, represents time.
Using this space, an indoor trajectory record becomes as a horizontal line segment.

4.1 RTR-Tree Index Structure

Leaf nodes in the RTR-tree contain index entries of the form (MBR, recordID), where
MBR is the minimum bounding rectangle of the record, identified by recordID . An

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 213

MBR in a leaf node is a line segment of the form MBR(readerID , ts, te), where
readerID indicates a reader on the Reader axis and ts and te (coming from the cor-
responding trajectory record) indicate the (closed) time interval [ts, te]. A leaf entry
implies that a specific tag is detected by readerID between timestamps ts and te.

Non-leaf nodes of the RTR-tree have entries of the form (MBR, cp), where cp is
a pointer to a child node in the RTR-tree and MBR is the minimum bounding rectan-
gle that contains all MBRs in the child node’s entries. Each MBR in a non-leaf node
is in the form MBR(readerIDmin , readerIDmax , t�, t�), where readerIDmin and
readerIDmax indicate the interval [readerIDmin , readerIDmax] on the Reader axis
and t�, t� indicates the time interval [t�, t�]. Therefore, a non-leaf entry implies that
between times t� and t�, some tags are detected by some readers whose identifiers fall
inclusively into the range [readerIDmin , readerIDmax].

Since the spatial information is represented by readers, it is beneficial to order the
reader identifiers on the Reader axis according to their spatial proximity. Space-filling
curves, e.g., the Hilbert curve, are often used to map objects in a higher dimensional
space to one-dimensional space in order to preserve their proximity as best as pos-
sible [6,12]. However, space-filling curves are less attractive for use in indoor space
because the obstacles prevalent in indoor settings and the constrained topology of in-
door space tend to result in locations being close in a Euclidean sense not actually being
close. For example, two close locations on either side of a wall may be relatively far
apart when taking into account the topology.

Instead, we propose to take into account the indoor topology when assigning identi-
fiers to readers. Our objective is to assign consecutive identifiers to readers in the same
partition, to readers in adjacent partitions, and to readers on the same floor. Given a
specific indoor space and reader deployment, a variety of different orderings can be
envisioned that target this objective.

4.2 Node Organization Strategies

Insertion of new index entries into an RTR-tree is carried out as in the R-tree: new index
entries are added into leaf nodes, nodes that overflow are split, and splits may propagate
up the tree. The R-tree’s strategies for identifying an appropriate leaf node and for node
splitting are applied here, using the area of each MBR to guide node organization.

We calculate the area of an MBR in the RTR-tree in two different ways: (1)
Area = (readerIDmax − readerIDmin) ∗ (t� − t�); (2) Area+ = (readerIDmax −
readerIDmin + 1) ∗ ((t� − t�)/TS + 1). The Area formula computes the geometric
area and is identical to the method used by the original R-tree. In this formula, the area
of any MBR of records with the same reader is 0 as the time dimension is neglected.
Consequently, records with the same reader are put into the same node (resulting from
leaf node choosing and node splitting), even if they are considerably apart in the time
dimension. We call this the basic strategy.

The Area+ formula takes into account the number of possible raw readings. Each
point in the Reader-Time coordinate system indicates a possible raw reading. By adding
1 (and not any other arbitrary positive number), the Area+ formula actually calculates
the number of possible raw readings in an MBR. This calculation renders each node to

214 C.S. Jensen, H. Lu, and B. Yang

R1 R2 R3

R4 rd1

R7 rd4

R8 rd5

R9 rd6

R10 rd7

R5 rd2 R6 rd3

Fig. 1. RTR-Tree, Basic

have as few raw readings as possible. This way, we avoid
too many zero-area MBRs that disable the use of area dif-
ferences for leaf node selection and node splitting. We call
this strategy RTR-tree Area+.

For example, let the capacity of each node be 3. After
all the trajectory records shown in Table 1 are inserted into
the RTR-tree using the basic strategy, the the RTR-tree and
MBRs are shown in Figures 1 and 2, respectively. Using

the Area+ strategy results in the MBRs shown in Figure 3. Note that each ri on the
Reader axis corresponds to a reader identifier readeri.

R4, rd1

R5, rd2

R6, rd3

R7, rd4

R8, rd5

R9, rd6

R10, rd7

Time

Reader

t5 t7t1 t3 t9 t11

 r1

 r2

 r3

R3

R2

r4

R1

Fig. 2. MBRs of the RTR-Tree, Basic

R4, rd1

R5, rd2

R6, rd3

R7, rd4

R8, rd5

R9, rd6

R10, rd7

Time

Reader

t5 t7t1 t3 t9 t11

 r1

 r2

 r3

R3

R2

 r4

R1

Fig. 3. MBRs of the RTR-Tree, Area+

4.3 Query Processing

Given a query as described in Section 3.1, it is first transformed according to its type
such that a corresponding geometric representation g is obtained that describes the
query in the Reader-Time coordinate system and is used to process the query. Partic-
ularly, a recursive depth-first tree search is used on the RTR-tree to process the query.
The search involves all nodes whose MBR overlaps with g. Due to space limitations,
we omit the details of the search algorithm. We proceed to detail how to obtain the
geometric representations of all query types.

Range Queries Transformation. Given a range query Q(Es, Et), two possibilities
exist regarding the representation of the spatial extent Es.

Symbolic Representation. If the spatial extent Es is represented in symbolic space,
i.e., by readerIDs, no matter which form the temporal extent Et takes, the query can
be transformed into basic geometric shapes, which is described in Table 2. Single Read-
erID indicates that Es is represented as a single readerID ; Continuous ReaderIDs in-
dicates that Es is represented as a set of readerIDs that are continuous on the vertical
Reader axis. A query with a single reader identifier (i.e., query types QT1 and QT2) and
continuous reader identifiers (i.e., query types QT3 and QT4) can be executed directly
on the RTR-tree. Example representations for queries with different combination of Es

and Et are shown in Table 2 and Figure 4.

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 215

Table 2. Symbolic Range Query Transformation for RTR-Tree

Time Single ReaderID Continuous ReaderIDs
Instant Query Format Query Type 1: Query Type 3:

QT1(readerID, t) QT3([readerIDm, readerIDn], t)
Geometry Representation Point Vertical line segment
Example Q1(reader2, t3) Q3([reader1, reader3], t6)

Interval Query Format Query Type 2: Query Type 4:
QT2(readerID, [ti, tj]) QT4([readerIDm, readerIDn], [ti, tj])

Geometry Representation Horizontal line segment Rectangle
Example Q2(reader3, [t2, t4]) Q4([reader1, reader3], [t7, t9])

Q1

Q3

R4, rd1

R5, rd2

R6, rd3

R7, rd4

R8, rd5

R9, rd6

R10, rd7

Time

Reader

t5 t7t1 t3 t9 t11

 r1

 r2

 r3

 r4

Q2 Q4

Fig. 4. Symbolic Range Queries in the RTR-Tree

r1 r2

r3

r4

r5Q7.Es

Fig. 5. Euclidean Range
Queries in the RTR-Tree

Room1

r1 r2

Fig. 6. Reader
Deployment

Euclidean Representation. If the spatial extent Es is represented in Euclidean space,
it must be mapped to symbolic space. For example, the spatial extent of query Q5
is represented as a dashed rectangle in Figure 5; the circle surrounding each reader
identifier indicates the reader’s activation range. If a reader’s activation range is covered
by Es then the reader-observed tags are definitely in Es, e.g., reader2 and reader3.
Next, if a reader’s activation range overlaps with Es then the reader-observed tags are
possibly in Es, e.g., reader1 and reader4. Finally, if a reader’s activation range is
disjoint from Es then the reader-observed tags are definitely not in Es, e.g., reader5.

Thus, we transform Es to two separate sets of reader identifiers: Sp contains all
readers partially overlapping Es, and Sd contains all readers fully covered by Es. In
Figure 5, Sp = {reader1, reader4}; Sd = {reader2, reader3}. If the temporal extent
of Q5 is a time interval, Q5 will be transformed into a type 4 query Q′

5([reader1,
reader4], Et). After Q′

5 is processed, a refinement can be applied to distinguish results
obtained from different reader sets.

The example implicitly assumes that the reader identifiers are ordered according to
their spatial proximity as discussed in Section 4.1, which results in a single type 4 query.
Generally, an Euclidean range query like Q5 can be transformed into several queries
of type 2 and/or type 4 depending on the reader identifiers involved. More transformed
queries are expected to incur higher processing costs. We investigate the effect of reader
identifer ordering on Euclidean range queries in Section 6.3.

Indoor Topological Queries Transformation. Similarly to how Euclidean range
queries are handled, indoor topological queries can be transformed to symbolic range

216 C.S. Jensen, H. Lu, and B. Yang

queries. However, the transformations are usually more complex than for Euclidean
range queries because knowledge of the specific RFID reader deployment is needed in
order to do such transformations for indoor topological queries.

To be specific, a pair of readers are required to be deployed on a door to detect
the movement direction of an object. Based on this, entering or leaving a room can be
determined from the RFID readings. A possible deployment is shown in Figure 6. If
an object enters room1, it will be observed by reader2 and then reader1; if the object
leaves room1, it will be observed first by reader1.

With this type of reader deployment, we are able to process indoor topological
queries. An indoor topological query Q(Es, Et, P) can be transformed and processed
by the procedure described in Algorithm 1. Here, the given topological query is trans-
formed into two type 2 range queries (lines 2–3) on two readers. If an object appears in
the results of both queries and the corresponding time intervals overlap, it is added to
the result of the given topological query (lines 4–8).

For different types of topological queries, as indicated by the predicate P , we need
to input the two readers in the correct order when calling EnterLeaveQuery. We let the
reader inside the room (door) be rin and let the one outside be rout. If P is enter, rout
should be used as readerfirst followed by rin as readersecond . If P is leave, the two
readers should be switched.

Algorithm 1. EnterLeaveQuery(ReaderID readerfirst , ReaderID readersecond ,
Timestamp ti, Timestamp tj)

1: TagIDSet result; RecordSet R1 ← ∅; RecordSet R2 ← ∅;
2: Execute query Q2(readerfirst , [ti, tj]), get result into R1;
3: Execute query Q2(readersecond , [ti+TS , tj]), get result into R2;
4: for each record ri ∈ R1 do
5: for each record rj ∈ R2 do
6: if ri.tagID = rj .tagID and rj .ts ≤ ri.te + TS ≤ rj .te then
7: Add tagID to result
8: return result;

Refer to the example shown in Figure 6. An indoor topological query Q(room1, [ti,
tj], enter), which is intended to find those objects that enter room1 during time period
[ti, tj], can be executed as EnterLeaveQuery(reader2, reader1, ti, tj). Similarly, a
leave query Q(room1, [ti, tj], leave) can be executed as EnterLeaveQuery(reader1,
reader2, ti, tj). A cross query Q(room1, [ti, tj], cross) can be executed as an intersec-
tion of two queries: EnterLeaveQuery(reader1, reader2, ti, tj) ∩ EnterLeaveQuery
(reader2, reader1, ti, tj), which returns those objects that entered and then left the
room within the given time period.

5 TP2R-Tree: Time Parameter Point R-Tree

An indoor trajectory record is a horizontal line segment in Reader-Time space. The
efficiency of processing a query in an R-tree based index depends on the areas of the

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 217

MBRs in the index. It is thus generally beneficial to minimize the MBRs. To achieve
this, we represent the horizontal line segments as more compact points with a time
parameter indicating their lengths along the time axis. Then we index the resulting
points using an R-tree that is modified to take the time parameters into account.

5.1 TP2R-Tree Index Structure

A leaf node in the TP2R-tree contains index entries of the form (MBR, Δt, recordID),
where MBR indicates the minimum bounding rectangle of the corresponding record
identified by recordID , and Δt is a time parameter that indicates the duration of the
continuous reading by the same reader. For each trajectory record, Δt thus equals te−ts.
Since each record is represented as a point, a leaf-node MBR in is a point of the form
MBR(readerID , ts), where readerID is a reader on the Reader axis and ts is a time
point on time axis.

The non-leaf nodes contain index entries of the form (MBR, Δt, cp), where MBR
covers all rectangles in the child node’s entries, formatted as in the RTR-tree; cp is a
child pointer; and Δt is a time parameter. If cp points to a leaf node Nl, Δt is repre-
sented as follows:

max
∀ei∈Nl

(ei.MBR.ts + ei.Δt)− max
∀ej∈Nl

(ej .MBR.ts)

If cp points to a non-leaf node Nn, Δt is represented as follows:

max
∀ei∈Nn

(ei.MBR.t� + ei.Δt)− max
∀ej∈Nn

(ej .MBR.t�)

This way, Δt indicates the tightest bound that covers all subnodes on the time axis.

5.2 Node Organization Strategies

Insertion is done using the same framework as for the RTR-tree. We consider three node
organization strategies. The first two are based on the least area enlargement. The area
calculation of the first strategy is based on theArea formula; we call this the basic strategy.

R1, 2Tc R2, 2Tc R3, Tc

R4 2Tc R5 2Tc

R6 2Tc

rd1 rd2

rd3 R7 2Tc

R8 2Tc

rd4

rd5

R9 Tc

R10 Tc

rd6

rd7

Fig. 7. TP2R-Tree, Basic

Given a node capacity of 3, the tree and MBRs
for the basic strategy are exemplified in Figures 7
and 8. For simplicity, Tc denotes ti+1− ti for any
two consecutive timestamps.

The second strategy, TP2R-tree Area+, calcu-
lates areas using the Area+ formula. Figure 9 il-
lustrates the MBRs resulting from the TP2R-tree
Area+ strategy.

The third strategy, TP2R-tree Split2, uses spe-
cific ChooseLeaf and SplitNode algorithms. We

first need to define the virtual minimum bounding rectangle (VMBR) of an entry e in
non-leaf node of the TP2R-tree: VMBR(readerIDmin, readerIDmax, t�, t�). Here,
readerIDmin and readerIDmax are the same as the MBR of the entry, VMBR.t�

equals MBR.t�, and VMBR.t� equals MBR.t� +e.Δt. The VMBR of MBR R1 in
Figure 8 is shown in Figure 10.

218 C.S. Jensen, H. Lu, and B. Yang

R4, 2Tc, rd1

R5, 2Tc, rd2

R6, 2Tc, rd3

R7, 2Tc, rd4

R8, 2Tc, rd5

R9, Tc, rd6

Time

Reader

t5 t7t1 t3 t9 t11

 r1

 r2

 r3 R1, 2Tc

R3, Tc

R2, 2Tc

 r4

R10, Tc, rd7

Fig. 8. MBRs of the TP2R-Tree, Basic

R4, 2Tc, rd1

R5, 2Tc, rd2

R6, 2Tc, rd3

R7, 2Tc, rd4

R8, 2Tc, rd5

R9, Tc, rd6

Time

Reader

t5 t7t1 t3 t9 t11

 r1

 r2

 r3

R1, 2Tc

R3, Tc

R2, 2Tc

 r4

R10, Tc, rd7

Fig. 9. MBRs of the TP2R-Tree, Area+

Referring to the analysis of the query types in Section 4.3, the basic queries are query
type 1 and query type 2. These queries involve merely one specific reader. Thus, we try
to place entries with same or near-same readerID in the same node. The TP2R-tree
Split2 strategy chooses the leaf node whose MBR needs the least Reader dimension
enlargement to include the new index entry, and it resolves ties by choosing the entry
whose VMBR areas need the least area enlargement (using Area+ formula) to include
the new index entry. Due to space limitations we omit the ChooseLeaf Algorithm.

The basic criterion for node splitting is the same as for the R-tree, minimizing the
probability that both new nodes will be examined in subsequent queries. The pseudo
code of SplitNode is shown in Algorithm 2. It discriminates on the Reader dimension

VMBR
R4, 2Tc, rd1

R6, 2Tc, rd3

R1, 2Tc

4Tc

Fig. 10. VMBR,
TP2R-Tree

first, selects two entries containing the biggest (smallest) readerID,
and assigns them to two groups as seeds (lines 2–3). The assign-
ment of the remaining entries gives priority to satisfying the re-
quirement of having a minimum number of objects in each group
(lines 5–6). Next, if there is an entry with a readerID range in that of
one of the groups, the entry is assigned to that group (lines 9–12).
If such an entry is chosen, a new iteration of the while loop will be
invoked, ensuring no groups with underflow.

If no such entries exist, both Reader and time dimensions are
considered using the Area+ definition. For each remaining entry,
the VMBR Area+ increment of either group needed to include the
entry is calculated (lines 15–16). From all remaining entries, we

choose the one with the maximum difference of two VMBR Area+ increments, and
we assign it to the group that needs least VMBR Area+ enlargement (lines 17–18). The
resulting MBRs of the TP2R-tree example are shown in Figure 11.

Similarly to the query transformation used in the RTR-tree, queries here can also be
transformed into the Reader-Time coordinate representation. However, the TP2R-tree
differs from the RTR-tree in that its entries have both an MBR and a VMBR. A query
not overlapping with an entry’s MBR may overlap with the entry’s VMBR, qualifying
some records in that entry for the query. We thus need to modify the RTR-tree’s search
algorithm to accommodate the time parameter and the VMBRs in the TP2R-tree.

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 219

Algorithm 2. SplitNode (EntrySet SetE)

1: EntrySet GroupB ← ∅, GroupS ← ∅;
2: Move the entry eb with the biggest readerID from SetE into GroupB;
3: Move the entry es with the smallest readerID from SetE into GroupS;
4: while SetE �= ∅ do
5: if One group has so few entries that all the rest must be assigned to it in order for it to have

the minimum number then
6: Move all entries from SetE to that group; break;
7: Boolean flag ← FALSE;
8: for each entry e in SetE do
9: if The reader range of e.MBR is in the reader range of GroupB.MBR then

10: Move e from SetE into GroupB; flag ← TRUE; break;
11: else if The reader range of e.MBR is in the reader range of GroupS.MBR then
12: Move e from SetE into GroupS; flag ← TRUE; break;
13: if ¬flag then
14: for each entry e in SetE do
15: Calculate d1, the VMBR Area+ increment of GroupB to include the entry e.MBR
16: Calculate d2, the VMBR Area+ increment of GroupS to include the entry e.MBR
17: Choose the entry em with the maximum |d1 − d2|.
18: Move em from SetE to the group whose VMBR Area+ needs the least enlargement.

R4, 2Tc, rd1

R5, 2Tc, rd2

R6, 2Tc, rd3

R7, 2Tc, rd4

R8, 2Tc, rd5

R9, Tc, rd6

Time

Reader

t5 t7t1 t3 t9 t11

 r1

 r2

 r3

R1, 2Tc

R3, Tc

R2, 2Tc

 r4

R10, Tc, rd7

Fig. 11. MBRs of the TP2R-Tree, Split2

R1, 2Tc

R3, Tc

R2, 2Tc

Q1Q1'

Q2Q2'
Q3Q3'

Q4Q4'

Time

Reader

t5 t7t1 t3 t9 t11

 r1

 r2

 r3

 r4

Fig. 12. Query Expansion for TP2R-Tree

5.3 Expansion-Based Query Processing

The idea is to expand the query geometry in the temporal dimension while still using
depth-first search. In particular, when checking whether a TP2R-tree entry e overlaps
with the given query geometry g, we use an expanded version of g. Table 3 shows in
detail how a query geometry g is expanded with respect to an encountered entry e.
For each query type, the query geometry representation in the Reader-Time coordinate
system is expanded to the left horizontally by the Δt value in a given entry. The ex-
amples in the table are also illustrated in Figure 12, with the top-level MBRs from the
TP2R-tree with the basic strategy (shown in Figure 8).

220 C.S. Jensen, H. Lu, and B. Yang

Table 3. Query Geometry Expansion for TP2R-Tree

Original Query Expanded Query
Type 1: QT1(readerID, t) Type 2: QT2(readerID, [t − e.Δt, t])
E.g., Q1(reader3, t4) E.g., Q1’(reader3, [t2 , t4])
Type 2: QT2(readerID, [ti, tj]) Type 2: QT2(readerID, [ti − e.Δt, tj])
E.g., Q2(reader2, [t9 , t10]) E.g., Q2’(reader2, [t7 , t10])
Type 3: QT3([readerIDm , readerIDn], t) Type 4: QT4([readerIDm , readerIDn], [t − e.Δt, t])
E.g., Q3([reader1 , reader2], t4) E.g., Q3’([reader1, reader2], [t2 , t4])
Type 4: QT4([readerIDm , readerIDn], [ti, tj]) Type 4: QT4([readerIDm , readerIDn], [ti − e.Δt, tj])
E.g., Q4([reader3 , reader4], [t12 , t13]) E.g., Q4’([reader3, reader4], [t11 , t13])

6 Experimental Study

6.1 Experimental Settings

Both indexes, together with all the node organization strategies presented, and the query
processing algorithms are implemented in Java. The index implementations are based
on the Spatial Index Library [1]. A computer with Windows XP professional, a 2.66GHz
Core2 Duo CPU, and 3.25GB main memory is used to run all experiments.

We set the the page size (i.e., the tree node size) to 4096 bytes. This yields 204 (170)
entries per non-leaf node and 256 (256) entries per leaf node in the RTR-tree (the TP2R-
tree). We investigate both tree construction costs and query processing costs. For the
former, the total running time is measured; for the latter, the total number of tree node
accesses are measured, as this is proportional to the dominant cost in query processing.

We generate moving objects using a 3-floor building plan with 30 rooms and 3 stair-
cases on each floor. All rooms and staircases are connected by doors to a hallway in a
star-like way. An RFID reader is deployed by the door of each room. In addition, read-
ers are also deployed along the hallway and in the staircases. The reader identifiers are
assigned as follows. First, multiple readers within a partition (e.g., a room or a hallway)
are assigned consecutive identifiers whose ordering represent their physical proximity.
Second, on each side of a hallway, adjacent partitions (e.g., rooms) are assigned consec-
utive identifiers and/or identifier ranges. Third, adjacent floors are assigned consecutive
identifier ranges. All objects move according to two rules: 1) an object in a room or a
staircase can go to the hallway through a door, or move inside the same room or stair-
case; 2) an object in the hallway can move in the hallway, move to a staircase, or move
into a room through a door.

Table 4. Data Parameter Settings

Parameters Settings
Object number 1K, 5K, 10K, 20K, . . . , 50K
Minimum object lifespan 50, 100, 150, 200, 250 (sec)
Reader activation range 100, 150, 200, 250 (cm)

Three data-related parameters are varied.
Table 4 lists the settings of these parameters,
with default values given in bold. With the de-
fault minimum object lifespan and reader ac-
tivation range, the number of moving objects
varies from 1,000 to 50,000, resulting in in-
door trajectory tables consisting of between

25K and 1,973K records. When the minimum object lifespan varies between 50 and
250 seconds and with the other parameters set default, the trajectory tables consist
of between 253K and 973K records. Accordingly, the simulation period for all ex-
periments varies from 10,650 to 12,586 seconds. In addition, the variation of reader

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 221

0

250

500

750

1000

1K 10K 20K 30K 40K 50K

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Number of Moving Objects

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

150

250

350

450

50 100 150 200 250

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Lifespan (seconds)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

50

100

150

200

100 150 200 250

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

Activation Range (centimeters)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

(a) Effect of Object Number (b) Effect of Object Lifespan (c) Effect of Activation Range

Fig. 13. Tree Construction Costs

activation range between 100 and 250 centimeters results in trajectory tables consisting
of between 292K and 322K records.

6.2 Tree Construction

Tree construction costs are reported in Figure 13. The first two strategies of the TP2R-
tree yield the longest running time for tree construction, as they both involve large
numbers of area calculations and ΔT calculations. However, the hybrid strategy, TP2R-
tree Split2, incurs the least cost for almost all settings. This indicates that the Split2
strategy is effective at simplifying the node splitting during TP2R-tree construction.

As the number of moving objects increases, the trajectory data size increases accord-
ingly. Therefore, the tree construction cost also increases, as reported in Figure 13(a).
Referring to Figure 13(b), a longer object lifespan causes a higher tree construction
cost, because a longer lifespan also causes the trajectory data size to increase.

As the reader activation range increases, two different effects occur. On one hand, the
time that an object is within a reader’s range increases. This may decrease the trajectory
data size in the trajectory table, although the numbers of raw RFID readings increases.
On the other hand, readers with larger activation ranges tend to detect more objects,
thus producing more raw readings and probably more trajectory records. Consequently,
the tree construction cost remains steady or decreases slightly as the activation range
varies from 100 cm to 200 cm, while the cost increases as the activation range reaches
250 cm, as reported in Figure 13(c).

6.3 Query Processing

Next, we study the query processing costs, and we consider the effects of the ordering
of reader identifiers along the Reader dimension.

Results on Range Queries. In each batch of experiments in this section, we generate
100 random queries. Unless explicitly stated otherwise, each query is issued with ran-
dom query parameters. In particular, the time in a type 1 or type 3 query is a random
value between 0 and the largest timestamp in the involved set of trajectories. The read-
erID in a type 1 or type 2 query is chosen randomly among all readerID values. The
time interval in a type 2 or type 4 query is a random sub-interval between 0 and the

222 C.S. Jensen, H. Lu, and B. Yang

largest timestamp in the data set. The readerID range in a type 3 or type 4 query is a
random subrange within the range of readerIDs.

Effect of Object Number. We first fix the minimum object lifespan to 100 s and the
RFID reader activation range to 100 cm; we then vary the object number from 1,000 to
50,000 to see the effect on the query performance.

For query type 1 and type 2, the TP2R-tree using the Split2 strategy outperforms
all the other trees, as reported in Figure 14(a) and Figure 15(a). The Split2 strategy
separates entries with different readerID (ranges) into different nodes after splitting;
therefore, the node overlap along the Reader axis is reduced. As a result, the point
selections on the Reader axis in query type 1 and type 2 involve fewer tree nodes.

For query type 3 and type 4, the selection on the Reader axis is a range selection,
and hence the Split2 strategy loses its clear advantage. As reported in Figure 16(a) and
Figure 17(a), both Area+ strategies are always the best (or among the best) as they min-
imize the number of raw RFID readings in each MBR, which benefits range selections.

Effect of Minimum Object Lifespan. We also vary the minimum object lifespan from
50 to 250 s; the results are reported in Figures 14(b) to 17(b). As a whole, increasing the
object lifespan increases the query processing cost for each query type. This is attributed
to the increased trajectory data size and the corresponding index sizes that result from
the longer object lifespans. Note that the TP2R-tree constructed using the Split2 strat-
egy still outperforms the others for query types 1 and 2, as reported in Figures 14(b)
and 15(b). While trees constructed using Area+ strategy prefer query types 3 and 4, as
reported in Figures 16(b) and 17(b).

Effect of Reader Activation Range. We then vary the RFID reader activation range
from 100 to 250 cm. Referring to Figure 15(c) and Figure 17(c), varied reader activation
ranges cause the query processing cost to fluctuate for query type 2 and type 4. This is
attributed to two reasons. First, larger reader activation ranges make objects stay longer
within a reader’s range, thus increasing the time length of each trajectory record and
the chance of a record to be in the query result. Second, the range selection on the time
axis in query types 2 and 4 then tends to find the answer in fewer nodes as each node
becomes “wider” along the time axis.

For query types 1 and 3, as reported in Figures 14(c) and 16(c), the results are rel-
atively more steady as the queries use a point selection on the time axis. For all query
types, the Split2 and Area+ strategies outperform the basic ones in almost all settings.

Effect of Query Parameters. As the final experiment with range queries, we use
data collected in Copenhagen Airport. Although we have assumed RFID technology,
this data is obtained using Bluetooth technology (for which the paper’s proposals are
also applicable). The data set contains more than 500,000 tracking records from 25
Bluetooth hotspots per day. We extract the tracking data on the most active day from
April 2008 to October 2008. We vary the query parameters for query types 2, 3 and 4.

For both query types 2 and 4, we vary the time interval from 1% to 20% of the
total time span of the set of trajectories. Each query time interval starts at a random
time point and is fully within the total time span. According to the results reported in

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 223

200

400

600

800

1K 10K 20K 30K 40K 50K

N
um

be
r

of
 N

od
e

A
cc

es
s

Number of Moving Objects

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

200

400

600

800

1000

1200

50 100 150 200 250

N
um

be
r

of
 N

od
e

A
cc

es
s

Lifespan (seconds)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

300

500

700

900

100 150 200 250

N
um

be
r

of
 N

od
e

A
cc

es
s

Activation Range (centimeters)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

(a) Effect of Object Number (b) Effect of Object Lifespan (c) Effect of Activation Range

Fig. 14. Performance of Query Type 1

1K

2K

3K

4K

5K

6K

1K 10K 20K 30K 40K 50K

N
um

be
r

of
 N

od
e

A
cc

es
s

Number of Moving Objects

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

0

1K

2K

3K

4K

5K

6K

50 100 150 200 250

N
um

be
r

of
 N

od
e

A
cc

es
s

Lifespan (seconds)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

1K

2K

3K

100 150 200 250

N
um

be
r

of
 N

od
e

A
cc

es
s

Activation Range (centimeters)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

(a) Effect of Object Number (b) Effect of Object Lifespan (c) Effect of Activation Range

Fig. 15. Performance of Query Type 2

2K

4K

6K

8K

10K

12K

1K 10K 20K 30K 40K 50K

N
um

be
r

of
 N

od
e

A
cc

es
s

Number of Moving Objects

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

0

5K

10K

15K

20K

25K

50 100 150 200 250

N
um

be
r

of
 N

od
e

A
cc

es
s

Lifespan (seconds)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

0

5K

10K

15K

20K

100 150 200 250

N
um

be
r

of
 N

od
e

A
cc

es
s

Activation Range (centimeters)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

(a) Effect of Object Number (b) Effect of Object Lifespan (c) Effect of Activation Range

Fig. 16. Performance of Query Type 3

40K

80K

120K

160K

200K

1K 10K 20K 30K 40K 50K

N
um

be
r

of
 N

od
e

A
cc

es
s

Number of Moving Objects

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

20K

40K

60K

80K

100K

50 100 150 200 250

N
um

be
r

of
 N

od
e

A
cc

es
s

Lifespan (seconds)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

15K

20K

25K

30K

35K

100 150 200 250

N
um

be
r

of
 N

od
e

A
cc

es
s

Activation Range (centimeters)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

(a) Effect of Object Number (b) Effect of Object Lifespan (c) Effect of Activation Range

Fig. 17. Performance of Query Type 4

224 C.S. Jensen, H. Lu, and B. Yang

Figure 18(a) and (b), the larger time interval range causes more node access. This is
because the large time interval results in a larger query geometry: longer horizontal line
segments for type 2 and larger rectangles for type 4. We see that the RTR-Tree Area+

and and TP2R-tree Split2 strategies perform better and degrade more slowly than do the
other strategies.

0

2K

4K

6K

1 5 10 15 20

N
um

be
r

of
 N

od
e

A
cc

es
s

Time Interval (%)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

0

2K

4K

6K

1 5 10 15 20

N
um

be
r

of
 N

od
e

A
cc

es
s

Time Interval (%)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

(a) Query Type 2 (b) Query Type 4

Fig. 18. Query Performance vs. Time Interval

We also vary the read-
erID range for query
types 3 and 4, with a ran-
dom length of 1% to 5%
of the difference between
the maximum and mini-
mum readerIDs. The re-
sults are reported in Fig-
ures 19(a) and (b). Larger
readerID ranges involve
more readers and there-
fore cause more node ac-

cesses. However, the cost increase is moderate for the trees using the Area+ and Split2
strategies.

0

1K

2K

3K

1 2 3 4 5

N
um

be
r

of
 N

od
e

A
cc

es
s

Reader Range (%)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

0

1K

2K

3K

1 2 3 4 5

N
um

be
r

of
 N

od
e

A
cc

es
s

Reader Range (%)

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

(a) Query Type 3 (b) Query Type 4

Fig. 19. Query Performance vs. Reader Range

As a whole, the
RTR-trees constructed
with the Area+ strategy
and the TP2R-trees
with the Area+ and
Split2 strategies perform
steadily compared to
their alternatives. When
using them, the query
processing does not
degrade markedly as
query parameters scale

up. This indicates that these node organization strategies result in index trees that are
robust to changing query work loads.

Summary. Three important observations follow from the experiments with symbolic
range queries. First, compared to the basic node organization strategies, our Area+ and
Split2 strategies result in more efficient and robust indexes. Second, the Area+ strategy
performs the best for query types 3 and 4, while the Split2 strategy performs the best
for query types 1 and 2. Third, the TP2R-tree with Split2 strategy is a quite balanced
choice for efficient query processing for all query types.

Topological Queries. We also investigate different predicates in topological
queries. We pick 35 doors on the first floor as those that are deployed with paired
readers. We use a data set with 10,000 objects, 100 cm RFID reader activation
ranges, and 100 s minimum object lifespans. For each predicate enter, leave, and cross,

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 225

0

1000

2000

3000

4000

Enter Leave Cross

N
um

be
r

of
 N

od
e

A
cc

es
s

Indoor Topological Predication

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

Fig. 20. Effects of Predicates

we generate 3 queries against each room. In each
query, the time interval starts at a random time point,
and the interval is set to the lifespan of each object.
The resulting node accesses in query processing are
reported in Figure 20. The TP2R-tree Split2 strategy
outperforms all others because topological queries are
transformed to type 2 range queries favored by the
Split2 strategy. The savings are especially apparent
for cross, as it involves more range queries after the
transformation.

Effects of Reader Identifier Ordering. We finally consider the effects of varying the
reader identifier ordering used in the tree proposals. We generate two data sets using the
default settings: 10,000 moving objects, a 100 cm RFID reader activation range, and a
100 s minimum object lifespan. In one set, all RFID reader identifiers are ordered as
described in Section 4.1. In the other set, the RFID readers are ordered randomly.

0

100

200

300

400

Ordered Random

N
um

be
r

of
 N

od
e

A
cc

es
s

RFID Reader Identifier

RTRTree
RTRTree Area+

TP2RTree
TP2RTree Area+

TP2RTree Split2

Fig. 21. Effects of ReaderID
Ordering on Interval Queries

We then generate 10 random Euclidean range
queries. The spatial extent Es in each query is a ran-
dom rectangle within the floor plan, with an area be-
tween 5% and 20% of the floor area. The temporal
extent Et in each query starts at a random time point
and lasts 100 s. The results are reported in Figure 21.

It is seen that a careful ordering of the RFID reader
identifiers improves the query performance consider-
ably. Remember that each Euclidean range query is
transformed into a symbolic range query as described
in Section 4.3. After the transformation, each set of
consecutive reader identifiers will involve only one type 4 query, while any other indi-
vidual identifier will involve a separate query of type 2. If all reader identifiers are or-
dered according to spatial proximity, more identifiers are likely to be included in type 4
queries. This results in fewer symbolic queries being executed. For random reader iden-
tifiers, the number of symbolic queries after the transformation tends to be large, which
yields higher query costs.

7 Conclusion and Future Work

Because of the uniqueness of indoor space and indoor positioning technologies, indoor
moving object trajectories are represented differently than traditional outdoor trajecto-
ries. Efficient queries against such indoor trajectories require novel indexes. The pa-
per proposes two R-tree based indexes for trajectories of moving objects in symbolic
indoor spaces, supporting both spatiotemporal range queries and topological queries.
Range queries are processed directly using the indexes; while topological queries are
efficiently transformed into range queries. A comprehensive experimental study on both
synthetic and real data sets discloses the following findings. First, the two trees are ef-
fective indexes for moving object trajectories in symbolic indoor space. Their specific

226 C.S. Jensen, H. Lu, and B. Yang

node strategies make them efficient and robust for a wide range of settings. Second,
our transformation from topological queries to range queries is effective and efficient.
Third, the spatial proximity based ordering of reader identifiers in our trees improves
query performance.

Several relevant research directions exist. First, it is possible to extend the TP2R-tree
to accommodate on-line trajectories and the current locations of indoor moving objects,
as the time extensions in the TP2R-tree can be used to maintain on-line information.
Second, it is of interest to apply data mining techniques to indoor trajectories in order
to find useful movement patterns for different purposes. The indexes proposed in this
paper can be used to facilitate the mining. Third, it is also of interest to adapt the paper’s
proposals to other indoor positioning technologies like Wi-Fi, and it is of interest to
employ multiple positioning technologies in the same indoor space, such that queries
can return more accurate answers.

Acknowledgments. This research was partially supported by the Indoor Spatial Aware-
ness project of the Korean Land Spatialization Group and BK21 program. C. S. Jensen
is currently a Visiting Scientist at Google Inc.

References

1. Spatial Index Library, http://research.att.com/˜marioh/spatialindex/
2. Agarwal, P.K., Arge, L., Erickson, J.: Indexing Moving Points. In: Proc. PODS, pp. 175–186

(2000)
3. Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and Track-

ing System. In: Proc. INFOCOM, pp. 775–784 (2000)
4. Becker, C., Dürr, F.: On Location Models for Ubiquitous Computing. Personal Ubiquitous

Computing 9(1), 20–31 (2005)
5. Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing Large Trajectory Data Sets With SETI.

In: Proc. CIDR (2003)

6. Chen, S., Ooi, B.C., Tan, K.-L., Nascimento, M.A.: ST2B-Tree: A Self-Tunable Spatio-
Temporal B+-Tree Index for Moving Objects. In: Proc. SIGMOD, pp. 29–42 (2008)

7. Erwig, M., Schneider, M.: Developments in Spatio-Temporal Query Languages. In: Proc.
DEXA Workshop STDML, pp. 441–449 (1999)

8. Feldmann, S., Kyamakya, K., Zapater, A., Lue, Z.: An Indoor Bluetooth-Based Positioning
System: Concept, Implementation and Experimental Evaluation. In: Proc. ICWN, pp. 109–
113 (2003)

9. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazir-
giannis, M.: A Foundation for Representing and Quering Moving Objects. ACM Trans.
Database Syst. 25(1), 1–42 (2000)

10. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: Proc. SIGMOD,
pp. 47–57 (1984)

11. Hightower, J., Borriello, G.: Location Systems for Ubiquitous Computing. IEEE Com-
puter 34(8), 57–66 (2001)

12. Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of
Moving Objects. In: Proc. VLDB, pp. 768–779 (2004)

13. Kollios, G., Gunopulos, D., Tsotras, V.J.: On Indexing Mobile Objects. In: Proc. PODS, pp.
261–272 (1999)

Indexing the Trajectories of Moving Objects in Symbolic Indoor Space 227

14. Kollios, G., Tsotras, V.J., Gunopulos, D., Delis, A., Hadjieleftheriou, M.: Indexing Animated
Objects Using Spatiotemporal Access Methods. IEEE Trans. Knowl. Data Eng. 13(5), 758–
777 (2001)

15. Lin, D., Jensen, C.S., Ooi, B.C., Šaltenis, S.: Efficient Indexing of the Historical, Present,
and Future Positions of Moving Objects. In: Proc. MDM, pp. 59–66 (2005)

16. Nascimento, M.A., Silva, J.R.O.: Towards Historical R-Trees. In: Proc. SAC, pp. 235–240
(1998)

17. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches in Query Processing for Moving
Object Trajectories. In: Proc. VLDB, pp. 395–406 (2000)

18. Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of Contin-
uously Moving Objects. In: Proc. SIGMOD, pp. 331–342 (2000)

19. Pelanis, M., Šaltenis, S., Jensen, C.S.: Indexing the Past, Present, and Anticipated Future
Positions of Moving Objects. ACM TODS 31(1), 255–298 (2006)

20. Tao, Y., Papadias, D.: MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and
Interval Queries. In: Proc. VLDB, pp. 431–440 (2001)

21. Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio-Temporal Access
Method for Predictive Queries. In: Proc. VLDB, pp. 790–801 (2003)

22. Theodoridis, Y., Vazirgiannis, M., Sellis, T.K.: Spatio-Temporal Indexing for Large Multi-
media Applications. In: Proc. ICMCS, pp. 441–448 (1996)

23. Want, R.: RFID Explained: A Primer on Radio Frequency Identification Technologies. Syn-
thesis Lectures on Mobile and Pervasive Computing 1(1), 1–94 (2006)

24. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving Objects Databases: Issues and So-
lutions. In: Proc. SSDBM, pp. 111–122 (1998)

25. Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-Tree: Indexing Moving Objects by Space Fill-
ing Curves in the Dual Space. VLDBJ 17(3), 379–400 (2008)

Monitoring Orientation of Moving Objects
around Focal Points

Kostas Patroumpas and Timos Sellis

School of Electrical and Computer Engineering
National Technical University of Athens, Hellas

{kpatro,timos}@dbnet.ece.ntua.gr

Abstract. We consider a setting with numerous location-aware mov-
ing objects that communicate with a central server. Assuming a set of
focal points of interest, we aim at continuously monitoring object orien-
tations and hence detect situations where many objects get closer to or
move away from any such site. Towards this goal, we propose a streaming
approach that delegates part of the processing to objects, which relay po-
sitional updates upon significant deviations at their course. The central
processor maintains the changing distribution of current object headings
around each focal point and may issue alerts once it observes many ob-
jects moving along a direction (e.g., increased northbound traffic near
the stadium). To efficiently answer such navigational queries, we intro-
duce a novel access method that indexes object headings influencing a
specific site. Furthermore, we extent this scheme to examine trajectory
movements around sites over the recent past. Experimental results verify
that this framework is able to cope with scalable numbers of objects at
reduced communication cost, while offering instant notification of impor-
tant trends along diverse directions for multiple focal points.

1 Introduction

Proliferation of location-based applications has led into efficient algorithms for
processing typical continuous queries, such as range or k-nearest neighbor search
[2,5,11], dealing with current coordinates of monitored objects (e.g., humans, ve-
hicles, devices etc.). Still, less attention is given to observing evolving trajectories
or mutable motion patterns, such as abrupt velocity variations or unexpectedly
increasing concentration of objects in particular regions across time.

In this work, we turn our focus on studying movement from a navigational
perspective, by examining significant changes in object headings. In navigation,
the heading (a.k.a. bearing) of a moving object is its orientation, expressed as an
angle from a known direction, usually north. By collecting heading information
from streaming positional updates of numerous objects, it could be feasible to
observe their mode of progression. But objects usually move at diverse directions
amenable to sudden changes (e.g., turns), so perhaps no safe conclusion on move-
ment patterns can be drawn from such a volatile variety of orientations. Even
a fact like ”40% of objects currently move eastbound” scarcely offers a valuable
knowledge, as relevant objects may be located anywhere in the monitored area.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 228–246, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Monitoring Orientation of Moving Objects around Focal Points 229

In our view, it seems much more useful to maintain the distribution of object
orientations with respect to selected focal points or sites of interest, like terminal
stations, sporting venues, traffic junctions etc. For each such site (say, a stadium),
we would like to detect orientation trends online and also distinguish influencing
objects that converge to or diverge from that site; e.g., whether a large number
of vehicles are currently moving westbound and may be approaching the stadium
soon. Typically for vehicles, ships, aircrafts etc., we implicitly assume that each
object follows a consistent movement, hence is not arbitrarily displaced, but is
moving towards –more or less– the same direction over a time interval.

In effect, we suggest a framework that acts like a constellation of radars (one
per site), offering better insight along frequently-followed directions at progres-
sively finer resolution. This mechanism can answer continuous orientation-based
queries like ”identify trucks bound for the port from the west at a distance less
than 2km” or ”issue an alert once a squadron of aircrafts are heading towards
Athens from southeast over the past 10 minutes”. To assist efficient evaluation
of such requests, we propose a novel index structure that organizes the detection
range of a specific site as a hierarchical tree. Influencing objects are assigned to
tree nodes that represent sectors at gradually refined angles and extents. This in-
dex supports multiple orientation-based queries associated with a common focal
point, each inspecting a diverse range and direction around it.

Since the entire mechanism must work in a streaming fashion to keep in pace
with the bulk of incoming geospatial data, we adopt a collaborative scheme,
where objects are capable of communicating with a central server and also have
minimal processing capabilities to retain their recent positions and update their
heading. A set of fixed focal points are allocated in the monitoring area; for each
observation site, the server maintains the current distribution of headings based
on the most recent status of objects detected within its area of interest. Reduc-
ing communication overhead is a major concern, so frequent positional updates
referring to slight changes in objects’ movement should better be avoided.

To the best of our knowledge, this is the first work on monitoring streaming
orientations of moving objects. Our contribution can be summarized as follows:

– We introduce a novel spatiotemporal access method, namely PolarTree, which
can effectively maintain object headings of interest to a given focal point.

– We propose a stream-based processing scheme that can provide real-time re-
sponse to an important –yet largely neglected– class of navigational queries.

– We further extent this mechanism by employing sliding windows, practically
examining the general heading for evolving portions of objects’ trajectories.

– We evaluate empirically the robustness and efficiency of the framework with
scalable numbers of moving objects and various settings for focal sites.

The remainder of this paper is organized as follows: Section 2 discusses funda-
mental concepts concerning focal points and object headings. Section 3 intro-
duces the structure of PolarTree and presents its properties and operations. The
processing framework for monitoring object headings is described in Section 4.
Experimental results are reported in Section 5. Section 6 briefly reviews related
work. Finally, Section 7 offers conclusions and future research directions.

230 K. Patroumpas and T. Sellis

2 Preliminaries

2.1 Scope of Focal Points

We assume a finite set F = {f1, f2, . . . , fn} of stationary focal points (sites),
which can monitor a large number of location-aware objects continuously moving
on the 2-d Euclidean space E. Each site fi ∈ F has a focal scope that represents
its maximum range for detecting objects moving in its vicinity. In this setting,
we assume that the scope of each focal point fi practically translates into a circle
O(fi, Ri) of a given radius Ri centered at the fixed location of fi. In fact, every
focal point specifies an advanced range search, aiming not just to observe objects
inside its circular scope, but also to distinguish their orientations.

We do not assume any particular allocation of sites on plane E, so they can
be distributed randomly, evenly, but typically depending on the application.
For instance, a traffic monitoring system may configure focal sites at major
junctions along arterial roads and highways, while an environmental application
may opt for observation points near wildlife habitats. Hence, the scopes of any
two focal points fi, fj ∈ F may intersect, signifying a common interest on area
O(fi, Ri)∩O(fj , Rj) �= ∅. Each focal point may also designate a different radius,
as depicted in Fig. 1. It may occur that E is not covered in its entirety, i.e.,
E �=

⋃n
i=1 O(fi, Ri), meaning that some areas of E may not be monitored at all.

Finally, we make no assumption on the total count n of sites, although we expect
that a few hundred focal points of adequate scopes are more than sufficient to
monitor a large geographical area (e.g., a city or a national park).

2.2 Object Headings and Focal Distances

Each moving object o is aware of its current timestamped location 〈x, y, t〉, where
x, y are the coordinates (on plane E) of a point position measured at time instant
t. An object also knows its heading with reference to a previously recorded posi-
tion 〈x0, y0, t0〉. That previous position of object o can be either its last recorded
location or an anchor point representing its origin, a designated position or even
a shifting location somewhere along its route (Section 4.3). Anyway, the heading
signifies the direction of movement and can be represented as an angle θ with
respect to a fixed direction; if this angle is measured from north it is commonly
known as azimuth. For facilitating geometric calculations, in our model we mea-
sure headings counterclockwise with respect to the positive x-axis. This reflects
the slope of the line segment that connects these two locations, expressed as an
angle θ ∈ [0, 2π) on the trigonometric circle (as indicated for object i in Fig. 1).
Formally:

θ =
{

atan2(y − y0, x− x0), if y ≥ y0
atan2(y − y0, x− x0) + 2π, if y < y0

In fact, we use the variant function atan2 instead of arctan(y−y0
x−x0

), such that
the calculated slope θ is also mapped to the correct quadrant of the trigonometric
circle, thus signifying the direction of the vector from previous position to the
current one. Since function atan2 takes values strictly in (−π, π], we add the term

Monitoring Orientation of Moving Objects around Focal Points 231

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

��
�

�

�

�

�

�

� �

�

�

�

�

�
�

�
�

�

�
�

	

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

��

�

��

�

��

��

��

����

��

Fig. 1. Focal sites & scopes

�

�

�

�

�

� �

�

�

�

� �

�

�

�
�

�

� �

�

�

�
�

�

�

�

�
�

	

 �

�
� �
�

�
�

�

���

��

��

��

�

�
�

� ��

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

��

���

����

��

�

Fig. 2. Polar mapping

���
�

�
�

�
����	
��

�
�
�

Fig. 3. Polar sector

2π for negative slopes, hence always θ ∈ [0, 2π). Figure 1 illustrates the current
locations and headings of several objects moving in the vicinity of three focal
points. Note that the heading of an object depends solely on its own movement
from a previously recorded position and has nothing to do either with the focal
point or the movement pattern of its neighboring objects.

Objects are moving freely, but we assume that their heading does not change
abruptly at each positional update. Otherwise, had they been allowed to move
towards random directions at each timestamp, there would be no reason in mon-
itoring their incoherent orientations. Hence, objects are expected to follow a con-
sistent course for a while, before heading towards another direction (e.g., making
a turn). This motion pattern is frequently observed in several occasions of inter-
est to location-aware applications, including vehicles, aircrafts, ships, migratory
birds, etc.; so by no means is it limited to objects moving in fixed networks.

For an object o within the scope of a site f , its focal distance d is its Euclidean
distance from f . Obviously, an object that influences multiple focal points, has
different focal distances with respect to each one of them. For instance, object
y in Fig. 1 is within the scope of both f1 and f2, but is currently closer to f2.

2.3 Polar Mapping of Objects

To get better insight on the distribution of object headings around a given site f ,
we perform a mapping based on focal distance d and heading θ for every object
o within the scope of f . As illustrated in Fig. 2 for the case of site f ≡ f1, every
qualifying object is mapped into a polar circle with center f (pole) and radius R
(scope). Each object o is abstracted into a point at distance d from f and at an
angle equal to its heading θ with respect to the positive x-axis. Locations beyond
scope of f are ignored, as it happens for objects i, l, j, r in Fig. 1. Thus, each
site f gets a clearer view of influencing objects and their distribution around f
in terms of their focal distance and heading. We stress that this is not the usual
mapping from Cartesian into polar coordinates, as our main concern is not just
object positioning in relation to a specific point f , but their orientations around
f instead. For example, the mapping of object t in Fig. 2 does not convey that
t is at the northwest of nearby site f , but that t moves towards northwest.

232 K. Patroumpas and T. Sellis

Consequently, orientation-based queries related to focal sites can be expressed
more easily. Formally, a query q related to a focal site f will search for objects:

{o | o.heading ∈ [θ1, θ2) ∧ distance(o, f) ∈ (d1, d2]}
i.e., all objects within the specified ranges for headings (0 ≤ θ1 ≤ θ2 < 2π) and
focal distances (0 < d1 < d2 ≤ R) from f . Intuitively, such a navigational query
is transformed into a slice of a ring around site f (the shaded area in Fig. 2).

3 The PolarTree Index

In this section, we introduce a main-memory access method that can be used
to index frequently updated object orientations observed around a single site f .
A PolarTree partitions the focal scope of f into non-overlapping polar sectors,
each denoting a specific range of object headings, since these are measured as
angles. Then, movement directions (towards east, north, northwest, etc.) can
be identified using suitable angular ranges. Recursive subdivision of the circular
scope into smaller convex sectors, serves as the guiding principle for assigning
objects at the nodes of this hierarchical tree, as exemplified in Fig. 4.

3.1 Index Structure

More specifically, the PolarTree is a binary tree with the following properties:

– The root node represents the entire scope R of focal site f and has no entries.
– Every node corresponds to a polar sector of a circle centered at f . Each polar

sector is uniquely characterized by a radius r and its bisector, expressed as
an angle φ on the trigonometric circle (Fig. 3). For instance, G is the only
sector in Fig. 4a with radius r = R

2 and bisector at φ = π
8 .

– An internal node (i.e., not a leaf) with radius r has exactly two children,
denoted as leftChild and rightChild, each with radius r√

2
. The root (at level

l = 0) has always two children, each with a radius equal to focal scope R.
– At an internal node, the central angle ω of its sector is bisected into two

equal parts that characterize its children (Fig. 3). The size of angle ω is
determined by the level of that node in the tree. For instance, nodes at level
l = 1 are the children of the root and have ω = π, nodes at level l = 2 have
ω = π

2 and so on. Therefore, the angular range [θmin, θmax) of each sector is
unique, where θmin = φ − ω

2 and θmax = φ + ω
2 . Consequently, the angular

range1 of its left child is [φ− ω
2 , φ) and that of its right child is [φ, φ + ω

2).
– Every node (excluding the root) maintains a catalogue of entries. Each entry

denotes an object o with heading θ falling within the angular range of the
respective sector and whose distance d from f is less than sector radius r.
Object o is uniquely assigned to a single sector s, such that θ ∈ [s.θmin, s.θmax)
∧ d ≤ s.radius and � ∃ s′ �= s, θ ∈ [s′.θmin, s′.θmax) ∧ d ≤ s′.radius < s.radius.

1 The angular range is not actually an attribute of a node, as it can be easily calculated
from its bisector φ and its level l in the tree (i.e., the size of angle ω). However, this
notion is used in the sequel for better exposition of the algorithms.

Monitoring Orientation of Moving Objects around Focal Points 233

�

�

�

�

�

� �

�

�

�

� �

�

�

�
�

�

� �

�

��

�

�

�

�

� �
�

�

	

 �

�

� �
�

�
�

�

��
��

�

�

��

� �

�

�

� �
!

"#
$%

�

�

�

�
�

�

�

�

�
�

�
�

�

��

� ��

�

�

&
�
�

�
�
�

� '�

�'(

()

(

('�

(�� ' '� �(

'� �(

(�� '

� �

�

� �

�

��

	

�

�

�� �

����

�

��

��

� �

� � �

� �
�
! "

$
% &

'

' ('

')' *'

(' +'

, ,

- - -

. .

�

,
�

�
,

,
�

,

�"��/0
10�!22

Fig. 4. (a) Headings assigned to polar sectors (b) Polar tree with M = 3

– Let M be the maximum number of entries allowed in a leaf node. A bisection
occurs when a leaf has more than M entries (overflow), so it becomes an
internal node itself with two new children. Entries of the original node may
be assigned to its children, if their headings and distances from f qualify to
the specifications of the new leaf nodes, as explained later on.

– Collapsing is applicable to leaf nodes only. If both descendants of an internal
node are leaves and the total count of entries in these three nodes is less than
a limit m (underflow), then the leaves are eliminated and their entries get
merged with the entries of their parent, which now becomes a leaf itself.

Figure 4a illustrates the partition of the scope of focal point f for the example
given in Fig. 2, assuming that at most M = 3 objects may be assigned at a leaf
node. The shape of the corresponding PolarTree is shown in Fig. 4b, with the
angles below each node signifying their distinctive bisectors φ.

Data is associated with both internal nodes and leaves (terminal nodes) of
the PolarTree. Leaves stand for sectors originating from the focal point, while
internal nodes practically represent truncated sectors. Indeed, an internal node
with radius r represents a portion bounded by two ”rings” at radii r and r√

2
around the focal point (shaded area in Fig. 3); in short, the area covered by its
subtrees is cut off. Therefore, the focal scope is subdivided into non-overlapping
portions, which are either truncated sectors assigned to internal nodes (e.g.,
sector F in Fig. 4) or circular sectors assigned to leaf nodes (e.g., sectors M, N).

By design, an internal node is responsible to monitor orientations occurring
in the outer (truncated) part, while its descendants inspect the inner subsectors
in more detail. Indeed, under a uniform distribution of headings, an object has
equal probability to be monitored from a parent node or one of its descendants.
So, a node and the unified set of its subdivisions purposely have equal shares of
the focal scope, as illustrated in Fig. 3. Trivially, we can verify that:

Lemma 1. For an internal node e in PolarTree, the circular area covered by
both subtrees of e has size equal to the truncated sector assigned to node e.

234 K. Patroumpas and T. Sellis

Leaf nodes may appear at any level l ≥ 1, so the tree never collapses into a single
leaf. In case that no object headings are currently found within the scope of f , its
respective tree degenerates into a root node with two empty leaves corresponding
to the two semicircles. A circular sector having no entries, remains as an empty
leaf in the tree if its sibling is an internal node. For example, in Fig. 4, sector D
exists as an empty leaf, since its sibling C is not a leaf.

Each entry is a tuple 〈oid, addrH, fDistance, sign〉, essentially pointing to the
memory address addrH where both the heading and location of object oid are
actually maintained. Attribute fDistance keeps track of the current focal dis-
tance of that object from site f , while sign denotes whether the object converges
to (+) or diverges (–) from f with respect to its previously known location. We
stress that object headings and locations are maintained as items in a separate
structure (e.g., an array H in our implementation), whereas entries of tree nodes
just point to them. An object may possibly be found within the scope of multiple
focal points, but its current location and heading are the same for each one of
them. Hence, apart from simplifying the tree structure and reducing its space
requirements, such a design decision makes a clear distinction between data con-
cerning each individual object (all stored in array H) and information referring
to its influence on several focal points (maintained in separate PolarTrees).

3.2 Index Operations

The PolarTree index is inherently dynamic. Insertions and deletions may occur
arbitrarily, while the tree always remains adjusted to assist searching for ranges
of headings. Specifically, a PolarTree supports the following operations:

SearchSector. This search operation descends the PolarTree T of a focal point
f in order to identify a sector s that corresponds to the given heading θ and focal
distance d. Obviously, this sector s is unique among the contents of T and it is the
strictest one that satisfies both θ ∈ [s.θmin, s.θmax) and d ≤ s.radius. Searching
starts from the root and follows a single path, checking with the bisector and
radius of each node to determine whether it should continue at one of its subtrees
(Algorithm 1). Note that search may end up at an internal node, in case the
specified heading and focal distance fall inside a truncated sector.

Insert. Insertions index object headings at suitable internal nodes or leaves of
the PolarTree T built for a focal point f . First, SearchSector is invoked to identify
sector s corresponding to the specified heading θ and focal distance d. Provided
that such a sector exists (i.e. object o is not beyond the focal scope of f), a new
entry for o is inserted into the catalogue of s. In case that s refers to a leaf and
the new entry causes an overflow, procedure Bisect is invoked to split that leaf.

Delete. A deletion removes a given object o from the tree of site f . Again,
SearchSector is called with the known heading θ and focal distance d of o to find
its corresponding sector s. If s is a leaf, after removing o from its entries, a check
for underflows is made by invoking operation Merge for the parent of s.

Monitoring Orientation of Moving Objects around Focal Points 235

Algorithm 1. PolarTree Operations
1: Function SearchSector (focal site f , angle θ, distance d)
2: Input: PolarTree T maintained for focal site f ;
3: Output: the strictest sector s of T, s.t. θ ∈ [s.θmin, s.θmax) and d ≤ s.radius;
4: s ← T.root ; //Initialize sector and start descending T following a single path
5: if s.radius < d then
6: return nil; //Beyond the scope of site f
7: end if
8: while s ! = nil do
9: if s is leaf then

10: return s ;
11: else if θ < s.bisector and d ≤ s.radius/

√
2 then

12: s ← s.leftChild ; //Search left subtree
13: else if θ ≥ s.bisector and d ≤ s.radius/

√
2 then

14: s ← s.rightChild ; //Search right subtree
15: else
16: return s; //Search may end up at an internal node
17: end if
18: end while
19: End Function

Bisect. Overflows are checked for leaves only, so a bisection does not affect upper
tree levels. As already mentioned, it effectively partitions an existing sector s
into three parts: a truncated sector that becomes an internal node and two new
circular sectors as its children (leaves). Original entries of s are also partitioned,
checking their focal distance and heading against the bounds of the three nodes.

Merge. This operation collapses two sibling leaves and appends their entries
to their parent node, which becomes a leaf itself. As a precondition, the parent
should not be the root, while the total count of entries at the three original nodes
must be less than threshold m. In our setting, we have chosen m = 3

4M so as
to avoid a possible bisection soon after a few subsequent insertions, but other
values m < M are also acceptable. Collapsing of leaves may propagate further
up in the tree, as long as an underflow is discovered with respect to the new leaf
node, its sibling (if also a leaf) and their parent node.

Update. To update the PolarTree T of site f with the current heading θ and
focal distance d of an object o, we must first identify the sector s where o has
been assigned before. As shown in Algorithm 2, an invocation to SearchSector is
made with the previous heading θ′ and distance d′ of o (retrieved from array H).
In case that current values of θ and d fall beyond the bounds of sector s, then
o must be removed from the catalogue of that node and should be inserted into
a suitable node of T by invoking an Insert operation (Lines 10-12). Note that if
this insertion fails, object o is surely beyond the scope of f . But if o remains in
the same sector, then only its focal distance should be updated in the catalogue
of s. During an update, it is also determined whether o gets closer or farther
from f (attribute sign), by comparing its focal distances d′ and d (Lines 5-9).

236 K. Patroumpas and T. Sellis

Algorithm 2. PolarTree Operations (continued)
1: Function Update (focal site f , object o, angle θ, distance d, angle θ′, distance d′)
2: Input: PolarTree T maintained for focal site f ;
3: Output: sector s of T where object o is assigned to;
4: s ← SearchSector(f , θ′, d′); //Sector where o resides due to previous assignment
5: if d′ ≤ d then
6: o.sign ← − ; //o is moving away from f
7: else
8: o.sign ← + ; //o is approaching f
9: end if

10: if θ �∈ [s.θmin, s.θmax) and d �∈ (s.radius√
2

, s.radius] then

11: Remove o from the catalogue maintained at s; //o has moved into another sector

12: s ← Insert(f, o, θ, d); //Insert o into a suitable sector
13: else
14: o.fDistance ← d; //o remains in the same sector, but update its focal distance
15: end if
16: return s;
17: End Function

18: Procedure RangeSearch (sector s, angle θ1, angle θ2, distance d1, distance d2)
19: if s! = nil then
20: if θ1 < s.bisector and d1 ≤ s.radius/

√
2 then

21: RangeSearch (s.leftChild, θ1, θ2, d1, d2); //Search left subtree of s
22: end if
23: for each object entry o in the catalogue of s do
24: if θ1 ≤ o.heading < θ2 and d1 < o.fDistance ≤ d2 then
25: Report o; //o is a qualifying object at sector s
26: end if
27: end for
28: if θ1 ≥ s.bisector and d1 ≤ s.radius/

√
2 then

29: RangeSearch (s.rightChild, θ1, θ2, d1, d2); //Search right subtree of s
30: end if
31: end if
32: End Procedure

RangeSearch. This method offers response to orientation-based queries asso-
ciated to site f that specify a range [θ1, θ2) for headings and another (d1, d2] on
focal distances, as mentioned in Section 2.3. Since many paths of the tree may
be probably visited, this procedure (pseudo-code given in Algorithm 2) is called
for the root node and recursively performs a depth-first search. When visiting
an internal node that represents a sector s, the algorithm must decide whether
to further descend to a subtree by comparing the bisector of s with the given
angle range and also checking if d1 is less than the radius of its children (Lines
20-22 and 28-30). When backtracking, any qualifying entries of a visited node
s with headings and focal distances falling within the given ranges are reported
as results (Lines 23-27). For the query specified with the shaded area in Fig. 4,

Monitoring Orientation of Moving Objects around Focal Points 237

nodes A, D, B, E, K, L will be visited (in that order). With a small variation,
this method can also distinguish between objects approaching site f and those
moving away from it, by simply checking their respective sign values.

3.3 Discussion

A PolarTree arranges all headings of interest to a focal point f into compact
sectors, which can get recursively refined for better monitoring of movements
closer to f . The initial subdivision of focal scope may not necessarily be car-
ried out with the x-axis as prime bisector (at the root), but across any arbi-
trary direction. For instance, if headings were measured as azimuths or a focal
point was mainly concerned with east- or west-bound orientations, then the y-
axis should be used as prime bisector. We opted for a scheme with its prime
bisector at angle φ = π, because all derived subsectors are mapped to well-
known portions of the trigonometric circle with obvious advantages on geometric
calculations.

Bisection adheres to a repetitive pattern applied to all tree levels. This strat-
egy decomposes the initial scope into finer partitions for progressively obtain-
ing higher resolution of movements that occur closer to the focal point. The
less the radius of a sector, the more segmented the scope across that direc-
tion, thus offering more detailed tracking of orientation trends. Besides, overflow
threshold M represents the maximum capacity of leaves and reflects the level
of detail prescribed for orientations close to the focal point. In effect, M spec-
ifies the resolution at which a focal point wishes to observe movements in its
vicinity.

The tree is usually unbalanced, since a uniform distribution of headings and
focal distances could be observed only rarely. For a skewed distribution, where
most objects head towards certain directions, the respective sectors would be
gradually subdivided at very tiny angles. Nodes may be unevenly filled, and even
internal ones may occasionally be left empty. Even under a uniform distribution,
larger-area sectors expectedly contain many more entries (far from site f) than
a tiny sector monitoring a small range of headings in the close vicinity of f .

The height of the tree for a focal point f depends on threshold M , the number
N of objects currently within scope, but also on their distribution around f . But:

Lemma 2. A PolarTree has height at least 1
2 (1 + log2�N

M �).

Proof. Apparently, the more uniform the distribution of headings around f , the
lower the tree height. According to Lemma 1 and assuming a uniform distribu-
tion, the count of entries assigned to a subtree at level l is 1/4 of those assigned
to a subtree at l − 1, i.e., proportional to their respective area. So, it turns out
that a leaf at level l > 0 has N

22l−1 entries. Due to uniformity, all leaves are at
the same level, since branching factor is 2 and applies to all nodes. In order for a
leaf not to be split, it suffices that N

22l−1 ≤M , which yields the lower bound. ��

238 K. Patroumpas and T. Sellis

4 Processing Streaming Orientations of Moving Objects

4.1 System Model

System infrastructure for processing orientations consists of a central server that
communicates with numerous moving objects via a cellular network. A number
of base stations are merely used for relaying messages between the server and
objects located in their cell, so we shall ignore their role on data processing.

Each object o is identified by its oid and has enough resources to retain its
current position 〈x, y, t〉 and to calculate its velocity, i.e., its speed v and heading
θ. Normally, each object notifies the server about its status by sending a tuple
〈oid, x, y, t, v, θ〉 at a specified frequency, i.e., every τ0 time units. Duplicate,
delayed or out-of-order status updates are not considered, so all messages stream
synchronously into the server at a sequential pattern for each object.

But a status update should be sent instantly, once the heading or speed deviate
significantly (e.g., a sudden slow down or a turn) from the values conveyed to
the server with the latest message. We employ a simple detection method that
utilizes two system-wide parameters λ and dθ specifying thresholds for acceptable
deviations in speed and heading, respectively. In particular, if an object o changes
its speed from v to v′, an update should be sent if |v−v′| > λv, denoting that the
object accelerated or decelerated more than λ% compared to its previous speed.
Similarly, the server must be notified if the heading of o changes from θ to θ′

and it occurs that |θ− θ′| > dθ. Such lightweight calculations can be performed
by every object with negligible overhead, although a more sophisticated dead-
reckoning [12] or threshold-guided strategy [7] could also be applied.

The server registers a set F of focal points and at each time instant t in-
spects movements in their scope according to streaming object statuses. Status
information is retained in an array H for all objects, but not all statuses get up-
dated concurrently, since some objects may report more frequently than others,
depending on their motion pattern. At any rate, no object status can be more
than τ0 time units older compared to timestamp t of a newly received message.

A focal point fi with scope at fixed radius Ri may be dynamically registered
with the server and remains active for a duration of δi time units, until it gets
eventually suspended and possibly resumed after some time. For instance, ob-
servation points at highways may be turned on at rush hours or switched off
at night. A server-resident PolarTree is dedicated to retain the distribution of
object orientations related strictly with a single fi, so the server keeps track of
|F | separate trees. In effect, each pole fi maintains at its own PolarTree a ”polar
chart” (Fig. 4a) that always reflects objects’ movement as observed from the
perspective of that particular fi. At any given timestamp, the shape of this tree
is independent of the order that headings were inserted or deleted.

Several continuous orientation-based queries may be specified at each focal
point (Section 2.3). Without loss of generality, we assume that queries get ac-
tivated when their corresponding pole f is registered. At any instant t, query
evaluation (with RangeSearch) is based on current entries at the PolarTree of f .

Monitoring Orientation of Moving Objects around Focal Points 239

4.2 Continuous Monitoring of Object Headings

In order to successfully maintain current object orientations around focal sites,
the server operates at each execution cycle (i.e., distinct timestamp t) in two
phases: (i) processing all status updates currently received from objects, and (ii)
refreshing status for the remaining objects that did not send updates.

i) Update phase. Incoming statuses get processed one by one, in strict arrival
order. Once the server receives such a message, it attempts to identify affected
focal points and update their PolarTree (Algorithm 3). But a single status update
may influence multiple focal points, if that object is currently located within their
intersecting scopes (e.g., object g in Fig. 1). To quickly identify affected sites,
focal scopes are indexed with a regular grid partitioning of the entire area E into
c× c square cells (Fig. 5). Each grid cell ci maintains a list of pointers to every
site with a circular scope intersecting cell ci. As soon as an update arrives from
object o, its location is hashed against the grid to identify the corresponding cell
ci, thus determining that only the subset S ⊂ F of candidate focal points indexed
at ci need be probed. In Fig. 5, when object k sends update, sites S = {f1, f3}
should be examined, since their scopes overlap its (dark-shaded) cell.

However, a status update may also signify that object o has just fallen beyond
the scope of a site f , so any reference to o in its respective PolarTree must be
eliminated. Thus, any focal sites influenced by the previous status of o should be
probed as well. By identifying the grid cell c′ corresponding to the last known
location of o, we get an additional set S′ of candidate sites indexed at c′ that also
need examination. Figure 5 reveals that object k has just become of no interest
to f2, by only checking focal points S′ = {f1, f2} indexed at the light-shaded
cell of the old location of k. Note that a site may appear in both S and S′, in
case that its scope overlaps with cells c and c′ (which may be a single cell).

So it suffices that the status of object o is only checked against each candidate
f ∈ S∪S′ to detect changes in affected sites (Lines 8-25). There are four possible
situations: (i) if o has just entered the scope of f , it must be inserted into its
respective PolarTree, (ii) in case that o remains within scope of f , the PolarTree
might need updating when o changes sector or its focal distance is modified, (iii)
if o has just passed out of scope for f , then it must be removed from its tree,
and (iv) if o stays beyond the scope of f , no further action is needed.

Besides, upon message receipt from an object at time t, the server also esti-
mates the next time instant t + τe this object should relay its status again, so
as to maintain a consistent distribution in relevant PolarTrees. We distinguish
two cases that an object status should be renewed (Fig. 6), depending either on
focal site(s) currently influenced or those that might soon be affected:

Departure Forecast. Let an object q be within the focal scope R of site f , and
the server has just been informed for its current speed v and heading θ. Assuming
that q continues the same course until further notice, the server is able to forecast
when this object will fall out of scope R. Figure 6 depicts the expected course α of
object q until it crosses the scope of f at location E1. With simple trigonometric
manipulations, it can be easily verified that R2 = α2 + β2 + 2αβ cos(θ − φ),

240 K. Patroumpas and T. Sellis

Algorithm 3. Server Operations
1: Function UpdateStatus (object o)
2: Input: Server-resident array H of most recent status for all monitored objects;
3: Output: the next time instant τe that o should send a status update;
4: τe ← τ0; //Initialize refresh time to default value
5: q ← H[o].location; p ← o.location; //Previous and current location of o
6: c′ ← gridHash(q); c ← gridHash(p); //Grid cells of last and current location
7: candSites ← focal points with scopes overlapping cells c and c′;
8: for each focal point f ∈ candSites do
9: R ← f .radius; //Focal scope of site f

10: h ← distance(f .location, q); d ← distance(f .location, p); //Focal distances for o

11: if d ≤ R then
12: if h ≤ R then
13: Update(f , o, o.heading, d, H[o].heading, h); //o already monitored by f
14: else
15: Insert(f , o, o.heading, d); //Object o has just become of interest to site f
16: end if
17: τ ← Estimate time that o will fall beyond the scope of f ; τe ← min(τ, τe);
18: else
19: if h ≤ R then
20: Delete(f , o, o.heading, d); //Object o just gone outside the scope of f
21: else if d < h then
22: τ ← Estimate time that o could reach the scope of f ; τe ← min(τ, τe);
23: end if
24: end if
25: end for
26: Update H[o] with current heading and location of o;
27: if τe < τ0 then
28: return τe; //Earliest time for renewal, as estimated from all sites affected by o
29: else
30: return nil; //No need to change default object settings
31: end if
32: End Function

where β is the focal distance of q and φ is the slope of segment β. This equation
is always valid for all possible configurations of the heading and location of q
at any quadrant inside the scope of f . It can be proven that the positive root
α+ corresponds to the distance from q to E1, while the negative root α− to E′

1

(i.e., towards the opposite direction). Hence, after at most τ = �α+

v � time units,
object q is expected to be found beyond the scope of f (Line 17).

Arrival Forecast. As shown in Fig. 6 for l, an object may not currently affect
a site f , but it seems approaching; if l continues moving along ξ, it might soon
fall within scope at E2. Yet, to safely predict the earliest time τe that l could
cross the scope of any focal site, is not an easy task. Indeed, it could also involve
inspection of sites f �∈ S∪S′, with scopes perhaps closer to object l, but indexed
in cells neighboring to that of its current location. Sooner or later, l should send

Monitoring Orientation of Moving Objects around Focal Points 241

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

�
�

	

�

�

�

�

�

�

�

�
�

�
�

�

�
��

��

��

�

�

��

�

�

�

�

�

��

�

�

�

�

�

�
��

�

�

�

�

�

�

�

��

�

�

Fig. 5. Grid partitioning

�

�

�

�

��

�
�

�

�

�

�

�

� �
	
�	

��

��
��

��

��
��

��
���

�

��

Fig. 6. Forecasting

�
�

�

��

��

��

��

��

�

��
� ��

��

��

��

��
���

�� �

��

��

��

��

��

�	
�
 ��

���

��

Fig. 7. Trajectory headings

a status update (at most after τ0 time units), so we opt for a simplified strategy
that only examines candidate sites f ∈ S ∪ S′ with negligible overhead. Given
current focal distance γ and speed v of an object l, this approximation makes an
eager forecast τ = �γ−R

v � of the time it takes to reach the scope of site f at E′
2,

by ignoring actual heading as if l were directed straight towards f (Line 22).
Similar forecasts τ are made for all sites influenced by the currently examined

object o. Among them, the smallest τe anticipates the earliest time that o may
cause a change to current orientations (at time t) of any focal site. In case the
interval τe is less than the prescribed renewal period τ0, a message is sent to that
object, specifying the time t + τe of its expected next update (Lines 27-31).

ii) Refresh phase. To maintain reliable object distributions around each site,
the server approximately adjusts entries in PolarTrees for objects that have not
currently relayed their status. Although velocity v of each such object o is deemed
unchanged until further notice, its location p is not; hence, its focal distance
from influenced sites changes. Assuming the known status of o is Δt units old,
its expected position is p + Δt · v; accordingly, the server rearranges entries in
respective tree(s), in a fashion similar to the update phase. But, at this stage, no
forecasting of status renewal times is made, so no messages are sent to objects.

4.3 Examining Trajectory Headings

Up to this point, processing only examines current object headings. However,
it would be more insightful to monitor orientations referring to the most recent
portion of every trajectory. With a sliding window of w time units that considers
locations recorded during this evolving period, we can repetitively calculate for
each object o its trajectory heading from the two extreme positions of o within
that window, as indicated in Fig. 7 for w = 5 units and location updates every
time unit. Such a setting does not actually change server-side processing, but it
only modifies computation of headings separately at each object, provided they
have enough memory to retain a finite portion of their own recent positions.

But for a realistic application, it seems more suitable to consider that sliding
windows are specified along with focal points and their orientation-based queries.

242 K. Patroumpas and T. Sellis

Hence, we assume that a sliding window wi refers to a site fi and is applied to
all queries associated to fi, thus affecting objects found within the scope of fi

with their headings computed from readings received during the past wi time
units (e.g., 10 min). Queries may specify various ranges for headings and focal
distances, whereas an object may become of interest to multiple sites with diverse
window extents. Thus, computation of trajectory headings has to be performed
at the server, which should now retain a series of recent statuses for each object;
still, objects send their status regularly, but also when a deviation is detected or
in due time upon server request (displayed as black spots in Fig. 7).

A single status update from object o may cause changes to multiple trajectory
headings maintained for o at diverse sites, because each fi can specify a different
window wi, thus potentially returning a different anchor point. Each trajectory
heading shall be derived from available object statuses received over the past wi

time units. Although not completely accurate, such an orientation still conveys
the movement trend of every object, provided that wi > τ0 to guarantee frequent
renewal of all indexed headings. In Fig. 7, the trajectory heading at p10 will be
correct due to availability of p6, while the heading at p7 will be slightly tilted by
using p4 as anchor point instead of non-relayed p3. Obsolete statuses are purged
from the server, when they cease to fall inside the window extent of any site.

5 Experimental Evaluation

Next, we report indicative results from an empirical validation of our framework
for monitoring orientations. Due to space constraints, we refrain from discussing
index performance and threshold calibration, and focus on server-side operations.

Experimental Setup. We generated synthetic datasets for varying numbers P
of objects moving at diverse speeds along the road network of Athens (area ∼250
km2). After calculating shortest paths between randomly chosen network nodes
(i.e., origin and destination of objects), we took point samples at 200 concurrent
timestamps along each such route. We also randomly selected diverse sets of n
focal points at various radii R, which remain active all the time (δ = 200 units).

All processing takes place in main memory. Algorithms were implemented in
C++ and experiments with diverse parameter settings were simulated on an Intel
Core 2 Duo 3GHz CPU running GNU/Linux with 2GB of main memory. Results
are averages of actual measurements over 200 timestamps. Table 1 summarizes
experimentation parameters and their ranges; default values are in bold.

Table 1. Experiment parameters

Parameter Values Parameter Values

Number P of objects 10k, 20k, 50k, 100k Grid granularity (c) 50, 100, 500, 1000
Number n of sites 100, 200, 500, 1000 Heading deviation (dθ) 10o, 20o, 30o

Focal radius (R) 0.5, 1, 2, 3, 4 km Speed deviation (λ) 0.05, 0.1, 0.2

Leaf capacity (M) 100, 200, 500 Window extent (w) 40, 50, 100 units

Monitoring Orientation of Moving Objects around Focal Points 243

50 100 500 1000

50

100

150

Grid granularity (c)

E
xe

cu
tio

n
tim

e
(s

ec
)

0.5 1 2 3 4Radius:

0

n = 500

Fig. 8.

100 200 500

10

20

30

Focal sites (n)

E
xe

cu
tio

n
tim

e
(s

ec
)

10k
20k
50k
100k

0

Objects R = 2 km

Fig. 9.

0.5 1 2 3 4

10

20

30

40

Focal Radius (km)

E
xe

cu
tio

n
tim

e
(s

ec
)

10k
20k
50k
100k

0

Objects n = 200

Fig. 10.

0.5 1 2 3 4
0

5

10

15

20

25

Focal radius (km)

P
ro

ce
ss

in
g

tim
e

(s
ec

)

update
refresh

n = 200

Fig. 11.

System Configuration. For specifying granularity c of grid index for focal
scopes, we measured the per cycle execution cost (sum of update and refresh
times) for the most demanding case with 100k objects and diverse scope sizes
for n = 500 sites (Fig. 8). As expected, grid partitioning proves more useful for
larger scopes with higher degree of overlaps. We fix c = 100 in the sequel, as
such a reasonably fine grid seems to offer better performance at all scope sizes.

Object-side parameters only control frequency of status updates. Next, we
stipulate that objects should relay new status at most every τ0 = 30 timestamps,
while we set thresholds λ = 0.2 and dθ = 30o, typically for moving vehicles.

Experimental Results.The main part of experiments refer to the efficiency and
scalability of our approach. As shown in Fig. 9, the per cycle cost at the server de-
pends on object count and is linear in the number of sites (their scopes fixed at
2km), since each PolarTree is maintained separately. But execution time escalates
for larger scopes, as depicted in Fig. 10 for n = 200 sites, because the probability
that an object influences multiple sites with intersecting scopes increases as well.
This incurs additional overhead on forecasting and causes transmission of extra
status updates from relevant objects, due to frequent crossing of scope boundaries.
This is also verified from Fig. 11 that plots a breakdown of execution times per
phase: handling incoming updates and forecasting arrivals and departures from
focal scopes is often more costly than refreshing existing object statuses, espe-
cially for wider areas of interest. As it turns out, performance is sensitive to the
size of scopes, but chiefly depends on their mutual overlaps. Nonetheless, for real-
istic radii (less than 3km) this scheme can always provide quick notification about
observed orientations in less than 30 seconds.

Regarding communication cost, Fig. 12 illustrates the percentage of message
savings for several scope sizes, i.e., the fraction of positional readings that did not
cause any status change and hence were not relayed to the server. For small radii,
the reduction in message transmission is considerable and may exceed 70%. But
for larger scopes, the advantage of threshold-guided detection of motion changes
is gradually annihilated, as an object becomes of interest to many sites and must
report its status over and over due to their alternating demands.

In practice, focal scopes should be leveraged with appropriate choice of leaf
capacity M . After all, it is improbable that a long-range site wishes to monitor
movement trends at the finest resolution. As suggested in Lemma 2 and verified
in Fig. 13, by increasing M the tree becomes shorter with wider sectors; a tree
with 6 levels corresponds to central angles of 5.625o at its bottommost leaves.

244 K. Patroumpas and T. Sellis

0.5 1 2 3 4

20

40

60

80

100

Focal radius (km)

C
om

m
un

ic
at

io
n

ga
in

 (
%

)

100
200
500

0

Sites

Fig. 12.

100 200 500

5

10

15

Leaf capacity (M)

le

ve
ls

0.5 1 2 3 4

0

Radius :

Fig. 13.

40 50 100

1

2

Window extent (w)

M
ai

nt
en

an
ce

 ti
m

e
(s

ec
)

0.5 1 2 3 4

0

Radius:

Fig. 14.

0.5 1 2 3 4
0

20

40

60

80

100

Focal radius (km)

%
 o

bj
ec

ts
 in

 s
co

pe

correct misplaced non−assigned

Fig. 15.

Concerning trajectory headings, they are handled exactly like current object
orientations, but in addition require maintenance of sliding windows (Section
4.3). Figure 14 reveals that this maintenance overhead is proportional to scope
size, but almost independent of the window extent. Anyway, such cost is negli-
gible and can be compensated with valuable knowledge of recent orientations.

Finally, our processing scheme was designed to provide an approximate, yet
consistent view of movements close to focal points. To assess the quality of such
monitoring, we issued orientation queries based on polar sector boundaries (i.e.,
one query per polar sector). We then compared their approximate answers with
those returned from an exhaustive evaluation where all objects relay their status
at each timestamp, and thus always get mapped to correct sectors. In Fig. 15 the
accuracy of answers is displayed for a single PolarTree (similar results obtained
at multiple sites). At any time instant, less than 5% of qualifying objects are not
reported within scope, but the majority of them (more than 70% at the worst
case) are correctly assigned. Although monitored, another 15% of objects are
misallocated to a neighboring sector due to small variations (that rarely exceed
8o) in their assumed heading. Indeed, smaller circles are subdivided in very tiny
sectors, so it is more likely that an object be misplaced; yet, the wider the focal
scope, the greater the accuracy of answers. Overall, polar charts prove able to
offer a reliable insight into the actual distribution of object orientations.

6 Related Work

A taxonomy of spatiotemporal queries has been proposed in [8], distinguishing
between coordinate-based queries, such as range or k-nearest neighbor search, and
trajectory-based queries. This latter class includes navigational queries involving
derived information of trajectories, like speed, heading, traveled distance etc. In-
dex structures introduced in [8] aim at trajectory preservation, but no technique
is suggested for maintaining object headings. Another type of spatial requests
inspects object-based directional relationships [4,10], e.g., identifying objects to
the north of a given landmark. But such directional queries deal with relative
positions of static features, and not with their movement and orientation.

In spatiotemporal databases, dead-reckoning policy suggests that an object
should send a positional update when it deviates from its known motion vec-
tor, thus reducing communication cost. Two such schemes were introduced in [12]

Monitoring Orientation of Moving Objects around Focal Points 245

and adjust the uncertainty threshold at each update according to the current mo-
tion pattern. From a streaming perspective, in [7] we employed threshold-guided
policies for online detection of movement changes in order to maintain concise
trajectory synopses. All these approaches are orthogonal and can be easily inte-
grated into our framework, as they only control object update frequency. Velocity
vectors were also used in [3] to construct motion-sensitive bounding boxes for
indexing moving objects. Although such structures can make predictions about
future object positions, they are tailored for coordinate-based queries only.

Centralized or distributed techniques for managing streaming locations offer
scalable techniques mostly for range [2,6] or k-NN search [5,11], by examining
only current object positions. We are not aware of other research work on pro-
cessing object orientations in a streaming fashion. The proposed PolarTree is a
hierarchical structure reminiscent of space-driven access methods for indexing
multidimensional features [1]. Similarly to a quadtree [9], which is based on suc-
cessive subdivision of areas into four equal-sized quadrants, a PolarTree utilizes
angle bisection as its underlying design principle. Of course, our objective is not
indexing locations of spatial features, but their changing orientations instead.

7 Concluding Remarks

In this paper, we have introduced a novel, simple, yet versatile, access method
that can greatly assist continuous monitoring of movement orientations in suit-
ably divided sectors around selected focal points of interest. We have also empir-
ically evaluated the robustness and scalability of a processing scheme that offers
real-time response to multiple requests with reduced communication cost.

In the future, we plan to study a variant tree structure with dynamic divi-
sion in dissimilar sectors according to the observed density of object headings.
Besides, distributed processing of orientations at designated base stations may
further exhibit the powerfulness of the proposed spatiotemporal index.

References

1. Gaede, V., Günther, O.: Multidimensional Access Methods. ACM Computing Sur-
veys 30(2), 170–231 (1998)

2. Gedik, B., Liu, L.: Mobieyes: A Distributed Location Monitoring Service using
Moving Location Queries. Transactions on Mobile Computing 5(10), 1384–1402
(2006)

3. Gedik, B., Wu, K.-L., Yu, P., Liu, L.: Processing Moving Queries over Moving
Objects Using Motion-Adaptive Indexes. IEEE TKDE 18(5), 651–668 (2006)

4. Liu, X., Shekhar, S., Chawla, S.: Object-Based Directional Query Processing in
Spatial Databases. IEEE TKDE 15(2), 295–304 (2003)

5. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual Partitioning: An
Efficient Method for Continuous Nearest Neighbor Monitoring. ACM SIGMOD,
634–645 (June 2005)

6. Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S.: Query Indexing
and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on
Moving Objects. IEEE Transactions on Computers 51(10), 1124–1140 (2002)

246 K. Patroumpas and T. Sellis

7. Potamias, M., Patroumpas, K., Sellis, T.: Sampling Trajectory Streams with Spa-
tiotemporal Criteria. In: SSDBM, July 2006, pp. 275–284 (2006)

8. Pfoser, D., Jensen, C., Theodoridis, Y.: Novel Approaches in Query Processing for
Moving Objects. In: VLDB, September 2000, pp. 395–406 (2000)

9. Samet, H.: The Quadtree and Related Hierarchical Data Structures. ACM Com-
puting Surveys 16(2), 187–260 (1984)

10. Skiadopoulos, S., Sarkas, N., Sellis, T., Koubarakis, M.: A Family of Directional
Relation Models for Extended Objects. IEEE TKDE 19(8), 1116–1130 (2007)

11. Wu, W., Guo, W., Tan, K.-L.: Distributed Processing of Moving k-Nearest-
Neighbor Query on Moving Objects. In: ICDE, April 2007, pp. 1116–1125 (2007)

12. Wolfson, O., Sistla, P., Chamberlain, S., Yesha, Y.: Updating and Querying
Databases that Track Mobile Units. Distributed and Parallel Databases 7(3), 257–
287 (1999)

Spatial Skyline Queries:
An Efficient Geometric Algorithm

Wanbin Son, Mu-Woong Lee, Hee-Kap Ahn, and Seung-won Hwang

Pohang University of Science and Technology, Korea
{mnbiny,sigliel,heekap,swhwang}@postech.ac.kr

Abstract. As more data-intensive applications emerge, advanced retrieval se-
mantics, such as ranking and skylines, have attracted attention. Geographic infor-
mation systems are such an application with massive spatial data. Our goal is to
efficiently support skyline queries over massive spatial data. To achieve this goal,
we first observe that the best known algorithm VS2, despite its claim, may fail
to deliver correct results. In contrast, we present a simple and efficient algorithm
that computes the correct results. To validate the effectiveness and efficiency of
our algorithm, we provide an extensive empirical comparison of our algorithm
and VS2 in several aspects.

1 Introduction

With the advent of data-intensive applications, advanced query semantics, which en-
able efficient and intelligent access to large scale data, have been actively studied. Ge-
ographic information systems (GISs) are such an application, which aim to support
efficient access to massive spatial data, as Example 1 illustrates.

Example 1. Consider a hotel search scenario for a business trip to Aalborg, where the
user marks two locations of interest, e.g., the conference venue and an airport, as Fig. 1a
illustrates. Given these two query locations, one option is to identify hotels that are
close to both locations. To better illustrate this problem, Fig. 1b rearranges the hotels
with respect to the distance to each query point. From this figure, we can claim that
hotel H3 is more desirable than H10, because H3 is closer to both query points than
H10 is. Such advanced retrieval, by ranking the hotels using the aggregate distance to
the given query points, or by finding skyline hotels, will enable intelligent access to the
underlying hotel datasets.

In particular, this paper focuses on supporting skyline queries [1,2,3,4,5] to identify the
objects that are “not dominated” by any other objects, i.e., no other object is closer to all
the given query points simultaneously. For instance, in Fig. 1b, H3 is a skyline object,
while H10 is dominated by H3 and does not qualify as a skyline object.

Skyline queries have gained attention lately, as formulating such queries is highly in-
tuitive, compared to ranking where users are required to identify ideal distance functions
to minimize. However, most of the existing skyline algorithms have not been devised
for spatial data and thus do not consider spatial relationships between objects.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 247–264, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

248 W. Son et al.

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

x

y
H1

H2

H3

H4

H5

H6

H7

H8

H9

H10 Airport

Venue

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Distance to the airport

D
is

ta
n

ce
 t

o
 t

h
e

co
n

fe
re

n
ce

 v
en

u
e

H1
H2

H3

H4

H5

H6

H7

H8

H9

H10

(a) Location (b) Distance

Fig. 1. Hotel search scenario

Our goal is to efficiently support skyline queries over spatial data. This problem has
already been studied by Sharifzadeh and Shahabi [6] and they presented two algorithms
for the problem, one of which, VS2, is known to be the most efficient solution thus far.
We claim, however, that VS2 may fail to identify the correct results. In a clear con-
trast, we propose an algorithm for the problem that can identify the exact results in
O(|P |(|S| log |CH(Q)|+log |P |)) time, for the given set P of data points, set Q of query
points, set S of spatial skyline points, and the convex hull of Q, denoted by CH(Q).

Our contributions can be summarized as follows:

– We study the spatial skyline query processing problem, which enables intelligent
and efficient access to massive spatial data.

– We show that the best known algorithm is incomplete in the sense that it may not
return all the skyline points.

– We propose a novel and correct spatial skyline query processing algorithm and
analyze its complexity.

– We extensively evaluate our framework using synthetic data and validate its effec-
tiveness.

The remainder of this paper is organized as follows. In Section 2, we provide a brief
survey of related work. In Section 3, we observe the drawbacks in the best known
algorithm, and propose a new algorithm in Section 4. Section 5 discusses the details of
our implementation of the proposed algorithm. In Section 6, we report our evaluation
results, and Section 7 concludes this paper.

2 Related Work

This section provides a brief survey on work related to (1) skyline query processing,
and (2) spatial query processing.

Spatial Skyline Queries: An Efficient Geometric Algorithm 249

2.1 Skyline Computation

Skyline queries were first studied as maximal vectors [1]. Later, Börzsönyi et al.[2] in-
troduced skyline queries in database applications. A number of different algorithms for
skyline computation have been proposed, for example, progressive skyline computation
using auxiliary structures [3], nearest neighbor algorithm for skyline query processing
[7], branch and bound skyline (BBS) algorithm [4], sort-filter-skyline (SFS) algorithm
leveraging pre-sorted lists [5], and linear elimination-sort for skyline (LESS) algorithm
with attractive average-case asymptotic complexity [8].

Recently, there have been active research efforts to address the “curse of dimension-
ality” problem of skyline queries [9,10,11] using inherent properties of skyline points
such as skyline frequency, k-dominant skylines, and k-representative skylines. All these
efforts, however, do not consider spatial relationships between data points.

2.2 Spatial Query Processing

The most extensively studied spatial query mechanism is ranking neighboring objects
by the distance to a single query point [12,13,14]. For multiple query points, Papadias et
al. [15] studied ranking by the “aggregate” distance, for a class of monotone functions
aggregating the distances to multiple query points. As these nearest neighbor queries re-
quire a distance function, which is often cumbersome to define, another line of research
studied skyline query semantics which do not require such functions.

For a spatial skyline query with a single query point, Huang and Jensen [16] stud-
ied the problem of finding spatial locations that are not dominated with respect to the
network distance to the query point. For such a query with multiple query points, Shar-
ifzadeh and Shahabi [6] proposed two algorithms that identify the skyline locations
to the given query points such that no other location is closer to all query points.
While the proposed problem enables intelligent access to spatial data, we later show
that a solution proposed in [6] is incorrect. In contrast, we present a correct and exact
algorithm.

3 Preliminaries

In this section, we introduce some geometric concepts, and define our problem. Then
we discuss how the best known algorithm fails to identify exact answers.

3.1 Convex Hull

A subset S of the plane is convex if and only if for every two points p, q ∈ S the whole
line segment pq is contained in S. The convex hull CH(S) of a set S is the intersection
of all convex sets that contain S [17]. The upper chain of CH(S) is the part of the
boundary of CH(S) from the leftmost point to the rightmost point in clockwise order.
The lower chain is the part of the boundary of CH(S) from the rightmost point to the
leftmost point in counterclockwise order.

250 W. Son et al.

3.2 Voronoi Diagram and Delaunay Graph

For a set P of n distinct points in the plane, the Voronoi diagram of P , denoted by
Vor(P), is the subdivision of the plane into n cells [17]. Each cell contains only one
point of P , which is called the site of the cell. Any point q in a cell is closer to the site
of the cell than any other site. The Delaunay graph of a point set P is the dual graph of
the Voronoi diagram of P [17]. Two points of P have an edge in the Delaunay graph if
and only if the Voronoi cells of these points share an edge in Vor(P).

3.3 Problem Definition

In the spatial skyline query problem, we are given two point sets: one is a set P of
data points, and the other is a set Q of query points. The points in P and Q have
d-dimensional coordinate attributes in R

d space. Distance function d(p, q) returns the
Euclidean distance between a pair of points p and q, which obeys the triangle inequality.
Before we set the goal of the problem, we need the following definitions.

Definition 1. We say that p1 spatially dominates p2 if and only if d(p1, q) ≤ d(p2, q)
for every q ∈ Q, and d(p1, q

′) < d(p2, q
′) for some q′ ∈ Q.

Definition 2. A point p ∈ P is a spatial skyline point with respect to Q if and only if p
is not spatially dominated by any other point of P .

The goal of the problem is to retrieve all the spatial skyline points from P with respect
to Q. We denote S as the set of spatial skyline points of P .

3.4 Existing Approaches

Though there is a lot of work on skyline queries in the literature, little is known about sky-
line queries for spatial data. Recently, Sharifzadeh and Shahabi [6] studied the
spatial skyline query problem and proposed two algorithms that compute S: Branch-and-
Bound Spatial Skyline Algorithm (B2S2) and Voronoi-based Spatial Skyline Algorithm
(VS2).

In VS2, they employed two well-known geometric structures, the Voronoi diagram
of P and the convex hull of Q, and claimed that these structures reflect the spatial
dominance to some extent, and therefore the algorithm efficiently computes S. In fact,
their experiments show that VS2 runs 2 ∼ 3 times faster than B2S2, and VS2 is known
to be the most efficient solution thus far.

VS2, however, may fail to find all the spatial skyline points: In Lemma 4 of [6], to
verify VS2 they claimed that, for some p ∈ P , if all its Voronoi neighbors and all their
Voronoi neighbors are spatially dominated by other points, p is not a spatial skyline.
Therefore VS2 simply marks p as dominated and does not consider it afterwards. But
this is not necessarily true.

Fig. 2 shows a counter example to their claim. There are 3 query points (q0, q1, q2)
and 9 data points. Note that all the data points, except three (p0, p1 and p2), are spatially
dominated by p0 or p1. That is, all the Voronoi neighbors of p2 are spatially dominated,
and VS2 thus simply marks p2 as “dominated” and does not consider it again. However,

Spatial Skyline Queries: An Efficient Geometric Algorithm 251

�⊥(p1, p2)

�⊥(p0, p2)

p2

p1

p0

q1

q2

q0

Fig. 2. VS2 fails to find p2 even though p2 is a spatial skyline point

p

Fig. 3. A point can have many Voronoi neighbors

in fact, p2 is a spatial skyline point, as the bisector
⊥(p1, p2) of p1 and p2, i.e., a
perpendicular line to the line segment pq, intersects CH(Q). This implies that there is
a query point (q2) closer to p2 and therefore p2 is not spatially dominated by p1, as we
will discuss more formally later in Lemma 4. Similarly, p2 is not spatially dominated
by p0, because
⊥(p0, p2) intersects CH(Q). Since every bisecting line of p2 and other
points intersects CH(Q), we conclude that p2 is a spatial skyline point.

Moreover, the asymptotic time complexity analysis of VS2 in [6] is incorrect. The
authors assumed implicitly that VS2 tests only O(|S|) points and claimed that it finds S
in time O(|S|2|CH(Q)|+

√
|P |). However, a skyline point p can have at most O(|P |)

Voronoi neighbors that are all spatially dominated by p, as Fig. 3 illustrates. Since it also
calls |P | heap operations during the iteration, each of which takes log |P |, the correct
worst-case time complexity of VS2 must be O(|P |(|S||CH(Q)|+ log |P |)).

252 W. Son et al.

4 Computing Spatial Skylines

We first propose a progressive algorithm for the spatial skyline problem, which retrieves
all the spatial skyline points of P with respect to Q, then we improve this algorithm by
using the Voronoi diagram of the dataset. We assume the dimensionality d of data and
query points is d = 2 for now, which can be extended for arbitrary dimension (as we
will discuss in Section 7). Before we explain our algorithms, we show some properties
of spatial skyline that will be used later on. The following lemma is the contraposition
of Definition 1.

Lemma 1. p1 does not spatially dominate p2 if and only if either d(p1, q) > d(p2, q)
for some q ∈ Q, or d(p1, q) = d(p2, q) for every q ∈ Q.

Lemma 2. Let p1, p2 and p3 be three data points such that p2 spatially dominates p3.
If p1 does not spatially dominate p3, it does not spatially dominate p2 ∈ P .

Proof. Since p1 does not spatially dominate p3, either (1) d(p3, q
′) < d(p1, q

′) for some
q′ ∈ Q, or (2) d(p3, q) ≤ d(p1, q) for every q ∈ Q by Lemma 1.

Case (1). By Definition 1, d(p2, q) ≤ d(p3, q) for every q ∈ Q. This implies that
d(p2, q

′) ≤ d(p3, q
′) < d(p1, q

′). Therefore, p1 does not spatially dominate p2 by
Lemma 1.

Case (2). Since p2 spatially dominates p3, there exists a point q ∈ Q satisfying
d(p2, q) < d(p3, q), which implies that d(p3, q) ≤ d(p1, q). Therefore, p1 does not
spatially dominate p2 by Lemma 1.

Lemma 3. If some data point p1 is not a spatial skyline point, there always exists a
spatial skyline point p2 that spatially dominates p1.

Proof. Since p1 is not a spatial skyline point, there exists some data point that spatially
dominates p1. Let P ′ be the set of data points that spatially dominate p1, and let p2 be
the point which has the minimum sum of distances to all q ∈ Q among points in P ′.
Then it is not difficult to see that for every point p′ ∈ P ′, there always exists some
query point q such that d(p2, q) < d(p′, q). Therefore, p2 is not spatially dominated by
any point in P ′. By Lemma 2, p2 is not spatially dominated by any data point which
does not spatially dominate p1. This means that p2 is not spatially dominated by any
other data points, so p2 is a spatial skyline point.

We now move on to discuss how to use these properties to reduce (1) time required for
each dominance test, and (2) number of dominance tests.

4.1 Efficient Spatial Dominance Test

Sharifzadeh and Shahabi [6] showed that we can determine spatial dominance by using
just the convex hull of Q instead of all query points in Q: If p ∈ P is not dominated by
any other point in P with respect to the vertices of CH(Q), then p is a spatial skyline
point. In fact, we can interpret this property in a geometric setting as follows.

Spatial Skyline Queries: An Efficient Geometric Algorithm 253

q1

p1

p2
�⊥(p1, p2)

Fig. 4. CH(Q) intersect the bisector of two data points

Lemma 4. The bisector of two data points intersects the interior of CH(Q) if and only
if they do not spatially dominate each other.

Proof. If the bisector of two data points intersects the interior of CH(Q), then for each
of the data points, there exists a vertex of CH(Q) closer to it than the other. For exam-
ple, in Fig. 4, the bisector of p1 and p2 intersects CH(Q), so at least one query point
is closer to one of each data point than the other. Therefore they do not dominate each
other. If the bisector does not intersect the interior of CH(Q), all the vertices of CH(Q)
(therefore all the query points) are closer to one data point than the other. It means one
data point spatially dominates the other point.

As we can determine whether a line intersects the convex hull or not in O(log |CH(Q)|)
time by using a binary search technique, the dominance test can be done in the same time.

Lemma 5. When CH(Q) is given, the dominance test for a pair of data points can be
done in O(log |CH(Q)|) time.

4.2 Bounding the Number of Dominance Test

To make the algorithm faster, we reduce the number of dominance tests. For some vertex
q of CH(Q), we keep the sorted list A of all the data points in the ascending order of
distance from q. With this list, we can determine that, if a data point p1 is located before
p2 in A, then p2 does not spatially dominate p1 using Lemma 1. Therefore, together
with Lemma 3, it is sufficient to perform the dominance test on p only with the spatial
skyline points that are located before p in A, as we formally state below.

Lemma 6. For a data point p, if we have the set of all the spatial skyline points lo-
cated before p in A, we can determine whether p is a spatial skyline or not by O(|S|)
dominance tests.

If there are two data points with the same distance from q, we can break the tie by
computing the distances from another vertex of CH(Q). Since no two points have the

254 W. Son et al.

same distance from three vertices of CH(Q), we only need to do this at most three
times. Our algorithm for retrieving all the spatial skyline points is given below:

Algorithm. SpatialSkyline
Input: P, Q
Output: S
1. initialize the array A and the list S
2. compute the CH(Q)
3. A←the distances from q1 ∈ Q to every data point
4. sort A in ascending order
5. for i← 0 to |P | − 1
6. do if A[i] is not spatially dominated by S
7. then insert A[i] to S
8. return S

In Line 2, the convex hull can be constructed in O(|Q| log |Q|) time [17]. Line 4 takes
O(|P |) time and sorting in Line 5 can be done in O(|P | log |P |) time. In Line 8, we
perform the dominance test O(|S|) times, each of which takes O(log |CH(Q)|) time. As
the for loop in Lines 6-9 repeats |P | times, the entire loop takes O(|P ||S|| log |CH(Q)|)
time. Since |Q| < |P | in most realistic skyline models, the total time complexity is
O(|P |(|S| log |CH(Q)|+ log |P |)).

4.3 Bypassing Dominance Tests Using the Voronoi Diagram

In this section, we discuss how we can further reduce dominance tests by identifying a
subset of skyline results, which we call seed skyline points, that can be identified as skyline
points with no dominant test. That is, before we perform the algorithm SpatialSkyline,
we can quickly retrieve the seed skyline points to improve the performance of the algo-
rithm dramatically, by bypassing dominance tests on these skyline points.

To achieve this goal, we first discuss a relationship of the Voronoi diagram Vor(P)
of a dataset P and CH(Q). Theorem 1 describes this relationship between Vor(P) and
CH(Q).

Theorem 1 (Seed Skyline). For given a set P of data points and a set Q of query
points, if the Voronoi cell V(p) of p ∈ P intersects with the boundary of CH(Q) or
CH(Q) contains V(p), then p is a skyline point [6].

Proof. See the proofs of Theorem 1 and 3 in [6].

We now present an efficient algorithm to identify the seed skyline points, as the starting
point to perform the algorithm SpatialSkyline to identify the rest of the skyline points.
To retrieve seed skyline points efficiently, we first find a Voronoi cell that contains
a vertex of CH(Q) by using typical point location query [17] on Vor(P). From this
Voronoi cell, we follow the edges of CH(Q) and find the Voronoi cells that intersect
the edges. Then we find Voronoi cells that lie inside CH(Q) by traversing the Delaunay
graph [17]. Our enhanced algorithm works as follow. Let ei = (qi, qi+1) denote the i-th
edge along the boundary of CH(Q).

Spatial Skyline Queries: An Efficient Geometric Algorithm 255

Algorithm. SeedSkyline
Input: P , Q
Output: Sseed

1. initialize Sseed

2. compute CH(Q) and Vor(P)
3. find a Voronoi cell V(p) containing q0
4. for i← 0 to |CH(Q)| − 1
5. find all the Voronoi cells V(p) intersecting ei and insert p to Sseed

6. find all the Voronoi cells V(p) lying in CH(Q) by traversing Delaunay graph and
insert p to Sseed

7. return Sseed

Note that, we can compute CH(Q) and Vor(P) in O(|Q| log |Q|) time and in
O(|P | log |P |) time (Line 2), respectively, and locate the Voronoi cell V(p) contain-
ing the query point q0 in O(log |P |) time by point location query on Vor(P) (Line 3).

To find all the Voronoi cells intersecting an edge e0 = (q0, q1) in Line 5, we follow
the procedure below (also illustrated in Fig. 5). We first compute the intersection r of e0
with the boundary of V(p), which can be done in time O(log |P |) using binary search
because V(p) is a convex polygon and since we store its edges sorted along the bound-
ary, as we will discuss later in Section 5.1. Because r lies on a boundary edge shared by
two neighboring Voronoi cells, we can get the pointer to the neighboring Voronoi cell
V(p′) in constant time from the Delaunay graph. We repeat this until we reach the other
endpoint q1. Then we proceed to the next convex hull edge e1 = (q1, q2) and repeat the
above process until we find all the Voronoi cells intersecting the boundary of CH(Q).

Note that a Voronoi cell may contain an edge of CH(Q) in its interior or intersect sev-
eral edges of CH(Q) – the number of the intersection tests is thus bounded by the larger
of O(|S|) and O(|CH(Q)|), i.e., at most O(|S| + |CH(Q)|). Combining the number
and cost of intersection tests, the overall worst-case time complexity becomes O((|S|+
|CH(Q)|) log |P |). Traversing Delaunay graph can be done in O(|S|) time (Line 6).
Therefore the total time complexity of SeedSkyline is O((|S| + |CH(Q)|) log |P |) if
CH(Q) and Vor(P) are given.

By combining the algorithms SpatialSkyline and SeedSkyline, we can retrieve all
spatial skyline points more efficiently than by SpatialSkyline alone. Instead of testing

p

r

p′

e0

Fig. 5. Two Voronoi cells share the intersection

256 W. Son et al.

dominance for all data points we can find seed skyline points using SeedSkyline, and
then find the other skyline points using SpatialSkyline. We present the combined algo-
rithm EnhancedSpatialSkyline from this idea as follows:

Algorithm. EnhancedSpatialSkyline
Input: P, Q
Output: S
1. initialize the array A and the list S
2. compute the CH(Q)
3. S ←SeedSkyline(P, Q)
4. A←the distances from q1 ∈ Q to every data point
5. sort A in ascending order
6. for i← 0 to |P | − 1
7. do if A[i] is not in S
8. then if A[i] is not spatially dominated by S
9. then insert A[i] to S
10. return S

The asymptotic time complexity of EnhancedSpatialSkyline is the same as that of
SpatialSkyline. In practice, however, by bypassing the dominance tests for seed sky-
line points, it shows better performance than SpatialSkyline.

5 Implementation

In this section, we discuss the details of the implementation of the algorithms, including
how to compute and store the Voronoi diagram (Section 5.1) and the query convex hull
(Section 5.2) to optimize the implementation of our proposed algorithm.

5.1 Voronoi Diagrams

First, we discuss how we construct the Voronoi diagram and the Delaunay graph of the
data points. As both are extensively studied structures, many algorithms and codes are
available, including ‘Qhull [18]’ which we adopt for our implementation.

However, it is challenging to store the resulting diagram and graph in such a way
that the spatial skyline query computation can be optimized. Toward the goal, we store
the Voronoi cells and Delaunay graph edges as follows:

– cells: As each Voronoi cell is a convex region, we take advantage of this convexity
and store the vertices of each cell in increasing angular order from one point, which
preserves the adjacency of vertex pairs in the cell.

– edges: Every edge of a Voronoi cell is shared by a neighboring Voronoi cell. To
represent the Delaunay graph, for each edge vivi+1, from a vertex vi of a Voronoi
cell, we need to store the pointer to the neighboring cell sharing the edge.

Using this structure, we can exploit the convexity of a Voronoi region and the Delaunay
graph discussed above, by reading only one Voronoi cell block from the file. To find a
specific Voronoi cell block, we maintain a file pointer for each Voronoi cell block.

Spatial Skyline Queries: An Efficient Geometric Algorithm 257

5.2 Convex Hull

To compute the convex hull CH(Q), we use the Graham’s scan algorithm [17]. By
using a binary search technique, the dominance test can be done in O(log |CH(Q)|)
time, as discussed in Lemma 5. We implement the test as follows.

Remember that we denote the bisector of two data points, p1 and p2, by
⊥(p1, p2). As
discussed in Section 4.1, we can determine the dominance of two data points by testing
whether
⊥(p1, p2) intersects CH(Q) or not. If
⊥(p1, p2) intersects CH(Q), at least one
vertex of the upper chain of CH(Q) lies above
⊥(p1, p2), and at least one vertex of the
lower chain of CH(Q) lies below
⊥(p1, p2) (Fig. 4). Let ei and ei+1 be two edges of the
upper chain sharing a vertex qi such that
⊥(p1, p2) has a slope in between the maximum
and the minimum of the slopes of ei and ei+1. If
⊥(p1, p2) intersects CH(Q), then qi

lies strictly above
⊥(p1, p2) by convexity of CH(Q). We can use a similar argument for
the lower chain of CH(Q). Because the upper and the lower chain of CH(Q) is sorted in
the increasing order of the slopes of edges, we can find these two vertices by using binary
search on the slopes of edges. After finding these two vertices in O(log |CH(Q)|), we
can determine the dominance in constant time. When CH(Q) is small, a linear search
may outperform binary search, and we use a linear search in this case.

5.3 VS2

As a baseline to compare with our proposed algorithm, we use VS2 proposed in [6].
As the authors could not provide the code, we implement the algorithm using the same
implementation of R∗-tree [19] and the Voronoi diagram we used to implement our
proposed algorithm, to ensure the fairness in empirical comparison.

For constructing the convex hull, we share the same implementation used for our
proposed algorithm, except that, to accommodate the dominance test of complexity
O(|CH(Q)|) discussed in [6], we use linear scan.

In our implementation, R∗-tree is used to find the closest point to one query point.
The leaves of a R∗-tree index contain Voronoi cells which are packed by MBRs for
each, such that we can easily obtain candidate Voronoi cells containing a query point.

However, as shown in Section 3.4, VS2 may fail to find all the spatial skyline points
in some cases. Our implementation of VS2 is revamped to eliminate these cases. Specif-
ically, we remove one condition. For some p ∈ P , if all its Voronoi neighbors and all
their Voronoi neighbors are spatially dominated by other points, then the original VS2

does not test p, but we implement VS2 to test this point for finding all skyline points.

5.4 Enhanced Spatial Skyline (ES)

Our enhanced algorithm ES works as follows. We compute the Voronoi diagram and
the Delaunay graph of the data points, and store them in the form of the file mentioned
in Section 5.1. To find the point closest to one query point, R∗-tree is used. Then ES
computes the Voronoi cells intersecting the boundary of the query convex hull and finds
all the Voronoi cells lying in the convex hull by traversing the Delaunay graph. As we
only need to see each Voronoi cell at most once during traversing the Delaunay graph
of the data points, we read it from the file when it is required and deallocate it from
memory after passing it by.

258 W. Son et al.

q1

q2

q3

p

Fig. 6. p dominates all the points in the shaded region, with respect to the query Q = {q1, q2, q3}

In this process, we restrict the region to search for the rest of the skyline points to the
bounding box containing |Q| circles for |Q| query points (Fig. 6). More precisely, we set
the bounding box as the intersection of all bounding boxes defined by the skyline subset
found so far. After that, we get a list of the candidates in this bounding box by using
R∗-tree. We sort the list in ascending order of the candidates’ distances to a query point
and process them one by one in this order. When we find a new skyline point, we reduce
the size of the bounding box by taking the intersection of the current bounding box with
the bounding box of this new skyline point. During the process, if some candidate point
is not contained in the bounding box, then we can simply skip the dominance test.

6 Experimental Evaluation

In this section, we report our experimental settings (Section 6.1) and evaluation results
to validate the efficiency of our framework (Section 6.2). We compared our algorithm
for spatial skylining with VS2 in several aspects. As datasets, we used both synthetic
datasets and a real dataset of points of interest (POI) in California.1

6.1 Experimental Settings

Synthetic dataset. A synthetic dataset contains up to one million uniformly distributed
random locations in a 2D space. The space of datasets is limited to a unit space, i.e.,
the upper and lower bound of all points are 0 and 1 for each dimension respectively.
More precisely, we used five synthetic datasets with 50K, 100K, 200K, 500K, and 1M
uniformly distributed points.

1 Available at http://www.cs.fsu.edu/˜lifeifei/SpatialDataset.htm

Spatial Skyline Queries: An Efficient Geometric Algorithm 259

Using synthetic datasets, we investigated the effect of the number of points in a
query |Q|, distribution of the points in a query σ, and cardinalities of the datasets |P |.
Parameters used in the experiments are summarized in Table 1.

Table 1. Parameters used for synthetic datasets

Parameter Setting Default
Dimensionality 2
Distribution of data points Independent
Dataset cardinality 50K, 100K, 200K, 500K, 1M 500K
The number of points in a query 5, 10, 15, 20, 40 15
Standard deviation of points in a query 0.01, 0.02, 0.04, 0.06, 0.08 0.06

Queries were generated through the following steps: (1) we randomly generate a
center point, then (2) generate the query points, normally distributed around the center.
In particular, for each dimension, we generate points that are normally distributed, with
mean as the center point and deviation as user-specified parameter σ, which varies be-
tween 0.01, 0.02, 0.04, 0.06, and 0.08 as listed in Table 1. We generated one hundred
queries (each consisting of up to 40 query points) for each setting and measured average
response times of all algorithms.

POI dataset. We also validate our proposed framework using a real-life dataset. In
particular, we use a POI dataset, which consists of 104,770 locations of 63 different
categories in California. Fig. 7 shows the characteristics of this POI dataset.

For this POI dataset, we investigated the effect of |Q| and σ. We similarly generated
the queries, by randomly picking one data point as a center point and generating query
points to be normally distributed around the center point, in the same way we generated
synthetic points. The reason why we pick the center point among data points, instead of
generating a random point, is to avoid generating queries to regions with no data points
(such as blank regions in Fig. 7). We generate one hundred queries for each setting,

0 1

1

x

y

Fig. 7. 10,000 sampled points from the California’s POI dataset

260 W. Son et al.

varying the number of query points in the range from 5 to 40 and the standard deviation
from 0.01 to 0.08, just as in our synthetic data generation.

We carry out our experiments on a Pentium IV PC running on Linux with Pentium
IV 3.2GHz CPU and 1GB memory, and all the algorithms were coded in C++.

6.2 Efficiency

We validate the efficiency of our framework, over varying |P |, |Q|, and σ.
Fig. 8 shows the effect of the dataset cardinality to response time (Fig. 8a), I/O

cost measured as the number of accessing (reading) Voronoi cells and R∗-tree nodes
(Fig. 8b), and the number of dominance tests (Fig. 8c). From Fig. 8a, our proposed algo-
rithm ES outperforms VS2 by an order of magnitude. Similarly in Fig. 8c, ES performs
a remarkably smaller number of dominance tests than VS2, by bypassing the dominance
tests for the skyline points whose Voronoi cells intersect the boundary of CH(Q). Such
saving is more significant between skyline points, as the number of dominance tests for
skyline points is significantly higher.

Fig. 8b shows the I/O costs of the two algorithms, the two algorithms perform the
same number of I/Os on the index of Voronoi cells, because each algorithm only uses the
index to find a Voronoi cell containing a query point. To find non-seed skyline points,
ES uses the index of data points, which incurs less I/Os (random accesses) than VS2.
ES, though the size of each I/O (R∗-tree node) is larger than that of VS2 (a Voronoi cell),
outperforms VS2 by reducing the “number” of I/Os, each of which incurs a random ac-
cess, the cost of which dominates the overall access cost, in our scenario of performing
many random accesses of smaller size.

Fig. 9 shows the effect of |Q| to response time, I/O cost, and the number of domi-
nance tests. We observe similar trends as in Fig. 8, except that the response time and
I/Os scale more gracefully over increasing |Q|. This can be explained by the fact that
all two algorithms use CH(Q), instead of using Q itself, the size of which grows much
slower than that of Q. For instance, even when |Q| is doubled, the size of convex hull
may not change much, if the deviation σ stays the same.

Fig. 10 shows the effect of σ. Similarly to prior results, ES significantly outperforms
VS2 in terms of response time, dominance tests, and I/Os while VS2 outperforms our
algorithm when query points are crowded in a very small area. This phenomenon can
be explained as ES performs more I/Os than VS2 when the size of CH(Q) is very small
(Fig. 10b). However, ES starts to outperform VS2 as the size of CH(Q) grows.

100K 200K 500K 1M

10
−1

10
0

10
1

of data

R
es

p
o

n
se

 t
im

e
(s

)

VS2
ES

0

20K

40K

60K

80K

100K

120K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

of data

I/O

50K 100K 200K 500K 1M

Voronoi cells
Index of Voronoi cells
Index of data points

50K 100K 200K 500K 1M
100K

 1M

 10M

 100M

200M

of data

D
o

m
in

an
ce

 t
es

ts

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 8. Effect of the dataset cardinality for synthetic datasets

Spatial Skyline Queries: An Efficient Geometric Algorithm 261

5 10 15 20 40

10
0

10
1

of points in a query

R
es

p
o

n
se

 t
im

e
(s

)

VS2
ES

0

20K

40K

60K

80K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

of points in a query

I/O

5 10 15 20 40

Voronoi cells
Index of Voronoi cells
Index of data points

5 10 15 20 40
2M

4M

10M

40M

100M

200M

of points in a query

D
o

m
in

an
ce

 t
es

ts

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 9. Effect of the number of query points for synthetic datasets

0.01 0.02 0.04 0.06 0.08
10

−1

10
0

10
1

Standard deviation of points in a query

R
es

p
o

n
se

 t
im

e
(s

)

VS2
ES

0

20K

40K

60K

80K

100K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

Standard deviation of points in a query

I/O

0.01 0.02 0.04 0.06 0.08

Voronoi cells
Index of Voronoi cells
Index of data points

0.01 0.02 0.04 0.06 0.08
10K

 100K

 1M

 10M

 100M

200M

Standard deviation of query points

D
o

m
in

an
ce

 t
es

ts

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 10. Effect of σ of a query for synthetic datasets

5 10 15 20 40
10

−1

10
0

10
1

of points in a query

R
es

p
o

n
se

 t
im

e
(s

)

VS2
ES

0

10K

20K

30K

40K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

of points in a query

I/O

5 10 15 20 40

Voronoi cells
Index of Voronoi cells
Index of data points

5 10 15 20 40
1M

2M

4M

 10M

20M

40M

of points in a query

D
o

m
in

an
ce

 t
es

ts

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 11. Effect of the number of query points for the POI dataset

The other slight difference to note is that the response time of the algorithms increase
relatively faster as σ increases, as the size of CH(Q) may increase quadratically as
σ increases. For example, when σ changes from 0.04 to 0.08 (two-fold), the circle
area containing the points within the 95% confidence interval increases four-fold (i.e.,
quadratic), and also the area of CH(Q) may increase quadratically. As such points are
guaranteed to be skyline points, this observation suggests why the number of skyline
points increases quadratically as σ increases.

We perform the same sets of experiments on the POI dataset, varying the size of
query and σ, reported in Fig. 11 and 12, respectively. Our observations of these evalu-
ations are roughly consistent with the corresponding evaluation for synthetic datasets.
However, in these experiments, I/Os on Voronoi cells are dominant parts of the I/O

262 W. Son et al.

0.01 0.02 0.04 0.06 0.08
10

−2

10
−1

10
0

10
1

Standard deviation of points in a query

R
es

p
o

n
se

 t
im

e
(s

)

VS2
ES

0

10K

20K

30K

40K

45K

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

V
S

2

E
S

Standard deviation of points in a query

I/O

0.01 0.02 0.04 0.06 0.08

Voronoi cells
Index of Voronoi cells
Index of data points

0.01 0.02 0.04 0.06 0.08
20K

 100K

 1M

 10M

50M

Standard deviation of query points

D
o

m
in

an
ce

 t
es

ts

VS2
ES

(a) Response time (b) I/O (c) Dominance tests

Fig. 12. Effect of σ of a query for the POI dataset

cost. The reason is that, as the cardinality of the dataset is relatively smaller, the depth
of the R∗-tree is also small, thus incurring less index I/Os. A similar phenomenon can
be observed in Fig. 8b, when the dataset cardinality is small (50K).

7 Conclusion

We have studied spatial skyline query processing and presented an efficient and cor-
rect exact algorithm. We showed that our algorithm can identify the correct result in
O(|P |(|S| log |CH(Q)| + log |P |)) time, while the best known algorithm may fail to
compute the correct result. Lastly, we empirically validated our proposed algorithm.

So far we have assumed that the points lie in 2-dimensional space, and shown how
to efficiently retrieve spatial skyline points using some geometric structures such as the
convex hull and the Voronoi diagram of points in the plane. We now turn our atten-
tion to higher dimensional skyline queries. All the definitions, lemmas, and algorithms
described in this paper generalize to higher dimensions: For the set of n points in d-
dimensional space, the Voronoi diagram of them has Θ(n�d/2�) combinatorial com-
plexity [20] and can be computed in O(n log n + n�d/2�) time [21,22,23]. The convex
hull of those points has Θ(n�d/2�) combinatorial complexity (by the so-called Upper
Bound Theorem) and can be computed in Θ(n�d/2�) expected time [17]. Dominance
test, the intersection query of a line with a convex polygon used in Section 4.1, can
be generalized for higher dimensions, as an intersection query of a hyperplane with a
convex polyhedron in higher dimensions. Similarly, the intersection of an edge with the
Voronoi diagram can also be generalized as the intersection of a (d − 1)-face with the
Voronoi diagram in d-dimensional space.

For future work, we will study how our algorithms can be extended to support queries
over urban road networks with additional constraints.

Acknowledgement

The second and last authors were supported by Engineering Research Center of Ex-
cellence Program of Korea Ministry of Education, Science and Technology (MEST)
/ Korea Science and Engineering Foundation (KOSEF), grant number R11-2008-007-
03003-0.

Spatial Skyline Queries: An Efficient Geometric Algorithm 263

References

1. Kung, H.T., Luccio, F., Preparata, F.: On finding the maxima of a set of vectors. Journal of
the Association for Computing Machinery 22(4), 469–476 (1975)

2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001: Proc. of the
17th International Conference on Data Engineering, p. 421 (2001)

3. Tan, K., Eng, P., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB 2001: Proc.
of the 27th International Conference on Very Large Data Bases, pp. 301–310 (2001)

4. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: SIGMOD 2003: Proc. of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 467–478 (2003)

5. Chomicki, J., Godfery, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE 2007: Proc.
of the 23rd International Conference on Data Engineering (2007)

6. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB 2006: Proc. of the 32nd
International Conference on Very Large Data Bases, pp. 751–762 (2006)

7. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for sky-
line queries. In: VLDB 2002: Proc. of the 28th International Conference on Very Large Data
Bases, pp. 275–286 (2002)

8. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB
2005: Proc. of the 31st International Conference on Very Large Data Bases, pp. 229–240
(2005)

9. Chan, C.Y., Jagadish, H., Tan, K., Tung, A.K., Zhang, Z.: On high dimensional skylines. In:
Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kem-
per, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer,
Heidelberg (2006)

10. Chan, C.Y., Jagadish, H., Tan, K.L., Tung, A.K., Zhang, Z.: Finding k-dominant skylines in
high dimensional space. In: SIGMOD 2006: Proc. of the 2006 ACM SIGMOD International
Conference on Management of Data (2006)

11. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline
operator. In: ICDE 2007: Proc. of the 23rd International Conference on Data Engineering,
pp. 86–95 (2007)

12. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD 1995: Proc.
of the 1995 ACM SIGMOD international conference on Management of data, pp. 71–79
(1995)

13. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A cost model for nearest neighbor search
in high-dimensional data space. In: PODS 1997: Proc. of the 16th ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pp. 78–86 (1997)

14. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” mean-
ingful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235.
Springer, Heidelberg (1998)

15. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spa-
tial databases. ACM Transactions on Database Systems 30(2), 529–576 (2005)

16. Huang, X., Jensen, C.S.: In-route skyline querying for location-based services. In: Kwon, Y.-
J., Bouju, A., Claramunt, C. (eds.) W2GIS 2004. LNCS, vol. 3428, pp. 120–135. Springer,
Heidelberg (2005)

17. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algo-
rithms and Applications, 3rd edn. Springer, Heidelberg (2008)

18. Qhull code for convex hull, delaunay triangulation, voronoi diagram, and halfspace intersec-
tion about a point. World Wide Web electronic publication (May 1995),
http://www.qhull.org/

http://www.qhull.org/

264 W. Son et al.

19. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R∗-tree: An efficient and ro-
bust access method for points and rectangles. In: SIGMOD 1990: Proc. of the 1990 ACM
SIGMOD international conference on Management of data, pp. 322–331 (1990)

20. Klee, V.: On the complexity of d-dimensional Voronoi diagrams. Archiv der Mathematik 34,
75–80 (1980)

21. Chazelle, B.: An optimal convex hull algorithm and new results on cuttings. In: Proc. 32nd
Annu. IEEE Sympos. Found. Comput. Sci., pp. 29–38 (1991)

22. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. II.
Discrete Comput. Geom. 4, 387–421 (1989)

23. Seidel, R.: Small-dimensional linear programming and convex hulls made easy. Discrete
Comput. Geom. 6, 423–434 (1991)

Incremental Reverse Nearest Neighbor Ranking in
Vector Spaces

Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz, and Andreas Züfle

Institute for Informatics, Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

{emrich,kriegel,kroegerp,renz,zuefle}@dbs.ifi.lmu.de
http://www.dbs.ifi.lmu.de

Abstract. In this paper, we formalize the novel concept of incremental reverse
nearest neighbor ranking and suggest an original solution for this problem. We
propose an efficient approach for reporting the results incrementally without the
need to restart the search from scratch. Our approach can be applied to a multi-
dimensional feature database which is hierarchically organized by any R-tree like
index structure. Our solution does not assume any preprocessing steps which
makes it applicable for dynamic environments where updates of the database fre-
quently occur. Experiments show that our approach reports the ranking results
with much less page accesses than existing approaches designed for traditional
reverse nearest neighbor search applied to the ranking problem.

1 Introduction

While the reverse nearest neighbor (RNN) search problem, i.e. finding all objects in a
database that have a given query q among their corresponding k-nearest neighbors, has
been studied extensively in the past years, considerably less work has been done so far
to support an RNN ranking of objects of a database. An RNN ranking sorts the objects
o of the database according to the number of other objects in the database that are more
similar to o than q. Thus, if an object o has a ranking score of i w.r.t. a query q, object o
would also be a reverse k-nearest neighbor of q for all k ≥ i but not a reverse k-nearest
neighbor of q for all k < i.

Initially, the RNN ranking query reports those objects having the smallest ranking
scores in a non-deterministic way since several objects may have the same minimal
ranking score. Thereby, the results are reported on demand whenever a function called
getNext() is invoked. In other words, each consecutive call of getNext() reports one
object with minimal ranking score until all objects have been reported.

The major challenge for algorithms that support rankings in general and RNN rank-
ings in particular is that the result of each getNext()-call should be computed incre-
mentally rather than from scratch, i.e. the current state after each getNext()-call needs
to be stored and serves as a starting point to compute the results of the next call. The
advantage of an incremental ranking method in general is that no parameter k has to
be specified for the query in advance and the first (most relevant) results are reported
immediately without the overhead of simultaneously computing less relevant results. In

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 265–282, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

266 T. Emrich et al.

addition, if the initial results are not sufficient due to any application specific reasons,
further results can be requested on demand by calling the getNext() function.

The reminder of this paper is organized as follows. In Section 2 we formally define
the RNN ranking problem we want to solve here and discuss related work. Section 3
explores our novel solution to this problem. In Section 4 we present an experimental
evaluation. Last but not least, Section 5 concludes the paper.

2 Survey

2.1 Problem Formalization

In the following, we assume thatD is a database of n feature vectors and dist is the Eu-
clidean distance1 on the points in D. In addition, we assume that the points are indexed
by any traditional aggregate point access method like the aR-Tree family [1,2]. The set
of k-nearest neighbors of a point q is the smallest set NN k(q) ⊆ D that contains at
least k points such that ∀o ∈ NN k(q), ∀ô ∈ D − NN k(q) : dist(q, o) < dist(q, ô).
The point p ∈ NN k(q) with the highest distance to q is called the k-nearest neighbor
(kNN) of q. The distance dist(q, p) is called kNN distance of q.

The set of reverse k-nearest neighbors (RkNN) of a point q is then defined as

RNN k(q) = {p ∈ D | q ∈ NN k(p)}.
Here, we will be interested in computing a ranking of reverse nearest neighbors (RNNs)
w.r.t. a query object q rather than in computing the RkNN of q for a fixed value of k.
Let the function R : D → N return for an object o ∈ D the number of objects which
are closer to o than the query q, i.e. formally,

R(o) = |{p ∈ D : dist(p, o) < dist(q, o)}|.

Obviously, it holds that o ∈ RNN k(q) iff R(o) ≤ k.
The problem of a reverse nearest neighbor ranking is to return incrementally all ob-

jects o ∈ D in increasing order of the values of R(o) by calling the method getNext().
In case of ties, getNext() may report any qualifying object, i.e. we will allow for non-
determinism. Let us note that the i-th call of getNext() not necessarily returns an object
that is an RiNN of q, because for a fixed value of k the set RNN k(q) − RNN k−1(q)
generally may contain an (even empty) set of points. In other words, the i-th call of
getNext() may report an object o with R(o) �= i. As a consequence, as additional infor-
mation, the result of each of the ranking steps should include not only the actual object
o but also its ranking count (ranking score) R(o).

2.2 Related Work

The problem of supporting reverse k-nearest neighbor (RkNN) queries efficiently, i.e.
computing for a given query q and a number k the RkNNs of q, has been studied ex-
tensively in the past years. Existing approaches for Euclidean RkNN search can be

1 The concepts described here can also be extended to any Lp-norm.

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 267

e
q

o

(q,o)

Fig. 1. TPL pruning (k = 1)

classified as self-pruning approaches or mutual-pruning approaches. Self-pruning ap-
proaches like the RNN-Tree [3] and the RdNN-Tree [4] are usually designed on top of
a hierarchically organized tree-like index structure. They try to estimate the kNN dis-
tance of each index entry e. If the kNN distance of e is smaller than the distance of e
to the query q, then e can be pruned. Thereby, self-pruning approaches do not usually
consider other entries (database points or index nodes) in order to estimate the kNN
distance of an entry e, but simply precompute kNN distances of database points and
propagate these distances to higher level index nodes. Since the kNN distances need to
be materialized, both approaches are limited to a fixed value of k and cannot be general-
ized to answer RkNN-queries with arbitrary values of k. In addition, approaches based
on precomputed distances can generally not be used when the database is updated fre-
quently. Mutual-pruning approaches such as [5,6,7] use other points to prune a given
index entry e. The most general and efficient approach called TPL is presented in [7]. It
uses any hierarchical tree-based index structure such as an R-Tree to compute a nearest
neighbor ranking of the query point q. The key idea is to iteratively construct Voronoi
hyper-planes around q w.r.t. to the points from the ranking. Points and index entries that
are beyond k Voronoi hyper-planes w.r.t. q can be pruned and need not to be considered
for Voronoi construction anymore. The idea of this pruning is illustrated in Figure 1 for
k = 1. Entry e can be pruned, because it is beyond the Voronoi hyper-plane between q
and candidate o, denoted by⊥(q, o). For the general case, e can be pruned if e is beyond
k hyper-planes w.r.t. all current candidates. If e cannot be pruned, it is refined, or, if e
is already a database object, e is a new candidate and the hyperplane ⊥(q, e) will be
considered for pruning in the following. If the ranking queue is empty, the remaining
candidate points must be refined, i.e. for each of these candidates, a kNN query must
be launched.

Recently, a method for ranked RkNN search has been proposed in [8]. In fact, the
authors provide a method for computing the results of an RkNN query with fixed k
that are ranked according to k, i.e. the RiNNs are ranked higher than the RjNNs if i <
j ≤ k. This problem is obviously different to the problem of computing an incremental
RNN ranking which will be adressed here.

Beside solutions for Euclidean data, solutions for general metric spaces (e.g.
[9,10,11]) usually implement a self-pruning approach. Typically, metric approaches are
less efficient than the approaches tailored for Euclidean data because they cannot make
use of the Euclidean geometry.

268 T. Emrich et al.

3 Incremental RNN Ranking

Our approach is based on an index structure I for point data which is based on the
concept of minimal-bounding-rectangles, e.g. the R-tree family like [12,13,14]. In par-
ticular, we use multi-resolution aggregate versions of these indexes as described in [1,2]
that e.g. aggregate for each index entry e the number of objects that are stored in the
subtree with root e. The set of objects managed in the subtree of an index entry e ∈ I
is denoted by subtree(e). Note that the entry e can be an intermediate node in I or a
point, i.e. an object in D. In the latter case, subtree(e) = {e}.

The general idea of our solution is based on the TPL-like [7] pruning of entries
that are beyond a given number of Voronoi hyperplanes. However, instead of prun-
ing an index entry e, we need to estimate the ranking count value R(o) for all points
o ∈ subtree(e). The key observation is that if an index entry e is beyond a Voronoi
hyperplane w.r.t. q, then we know that for all o ∈ subtree(e), the value of R(o) can be
increased by one. For example, in Figure 1, entry e is beyond the Voronoi hyperplane
between q and x, denoted by⊥(q, x). Thus, x will have a smaller distance to all objects
o ∈ subtree(e) than q, i.e. all objects o ∈ subtree(e) will have a ranking count R(o)
of at least 1. Simply speaking, the ranking count R(o) of any object o ∈ D equals the
number of Voronoi hyperplanes (including⊥(q, o)) that divide the data space such that
o and q are in different half spaces.

In the following, we will extend this idea in several important aspects:

– First, we will extend the concept of Voronoi hyperplanes presented in [7] to higher
levels of the index. Originally, the TPL approach considers only Voronoi hyper-
planes between the query q and another database object, i.e. at least one leaf entry
of the index needs to be fully refined before any Voronoi hyperplane is constructed
for pruning. Analogously, this would mean that we can only estimate the ranking
count values of objects by means of other objects. This will obviously result in
a large overhead of unnecessary page accesses. Rather, we will extend the idea of
Voronoi-based pruning/ranking to intermediate entries of the index, i.e. we will also
consider Voronoi hyperplanes between the query and intermediate index entries.

– Second, we will also integrate the idea of self-pruning in order to estimate the
ranking count of objects within a given subtree.

– Third, we further improve the ranking count estimation by taking also partial hy-
perplane - entry coverings into account. Hyperplanes where an intermediate index
entry e is partially beyond them w.r.t. q can also be used to estimate the ranking
count of e.

The above estimation strategies give us better estimations of the ranking counts which
will be important for the ranking algorithm. Last but not least, we will present a ranking
algorithm based on the two previously mentioned ideas to estimate the ranking count
that incrementally computes the next object of an RNN ranking on demand without
recomputing the entire ranking from scratch.

3.1 Ranking Count Estimation

Now we explore strategies for estimating the ranking count based on the hyperplane
concept. The basic idea of our approach is to apply the ranking count strategy mentioned

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 269

e‘
e

e‘

q

(a) Mutual pruning.

e

q

(b) Self pruning.

q
e‘

q

(c) Partial pruning.

Fig. 2. Ranking count estimation based on different pruning strategies

e‘

q

e

(q,e)

o1

o2

o3

o4

o5

(q,o
2)

(q,o
5)

(q,o
1)

(q
,o

4)
(q,o

3)

Fig. 3. Conservative approximation ⊥(q, e) of the hyperplanes associated with all objects of an
index entry e

above during the traversal of the index, i.e. to identify candidates with high ranking
counts as early as possible in order to reduce the I/O costs by saving unnecessary page
accesses for the computation of the first results. The ability to push candidates to higher
ranking positions already at the directory level of the index implies that a directory entry
is used to push itself or other entries.

Estimation based on mutual pruning. First, we want to consider the case that a direc-
tory entry is used to push other entries back to higher ranking positions by increasing
its ranking count. This is similar to the mutual-pruning idea used for RkNN query pro-
cessing. Generally, the ranking count of an index entry e ∈ I can be increased by k
according to another entry e′ ∈ I if there are at least k objects in subtree(e′) such
that e is behind the Voronoi hyperplane between q and e′, denoted by ⊥(q, e′). In the
following a hyperplane associated with an entry/object e is denoted by ⊥(q, e).

The key idea of the directory-level-wise ranking count estimation is to identify a
hyperplane⊥(q, e) which can be associated with an index entry e and which conserva-
tively approximates the hyperplanes associated with all objects oi in the subtree of e, i.e.
oi ∈ subtree(e). Figure 3 illustrates the idea of this concept. We say that the hyperplane
associated with an index entry e is related to the set of objects in the subtree of e. Since

270 T. Emrich et al.

we assume that the number of objects stored in the subtree of an index entry e is known,
if we exploit the indexing concept as proposed in [1], we also know for the hyperplane
associated with that index entry e, ⊥(q, e), how many objects this hyperplane relates
to. This means that if an entry/object e′ is behind a hyperplane⊥(q, e) associated with
an index entry e, the entry e′ is also behind all hyperplanes⊥(q, o) associated with the
objects o ∈ subtree(e). We can use this information in order to increase the ranking
count of entries according to e without accessing the child entries of e. Consequently,
the ranking count of an entry/object e′ which is behind a hyperplane ⊥ (q, e) can be
increased by |subtree(e)|. In Figure 3, the ranking count of entry e′ can be increased by
5 because subtree(e) contains five points, i.e. |subtree(e)| = 5.

Estimation based on self pruning. In addition, we can use these considerations also
for increasing the ranking count of an intermediate index entry e by itself. This is similar
to the self-pruning idea used for RkNN query processing. If an entry e ∈ I is behind
its own hyperplane, then the ranking count of e can be increased by |subtree(e)| − 1,
because each object o ∈ subtree(e) would be behind the hyperplanes associated with
all other objects in subtree(e).

Estimation based on partial pruning. The ranking count estimation of an interme-
diate index entry e can also be based on hyperplanes that do not fully cover e. For
example, if one part of e is beyond one hyperplane and the other part of e is beyond
another hyperplane. In this case, each point in e is at least behind one hyperplane such
that the complete entry can be safely moved to a higher ranking position. In general
terms, assume that an entry e ∈ I is intersected, but not fully covered by n hyperplanes
⊥(q, e0), . . . ,⊥(q, en−1) associated with index entries e0 . . . , en−1. Now, the points
in e are covered by different numbers of hyperplanes. The ranking count of e can be
increased by the minimal number of hyperplanes a point of e is covered by.

Note that the partial pruning based estimation can become very expensive in higher-
dimensional spaces. The reason is that the determination of the minimal coverage of an
index entry w.r.t. all hyperplanes requires complex spatial segmentation operations in
order to find the subregions having the same amount of hyperplanes they are behind.
This can be very costly in higher-dimensional spaces. In this paper, we propose an
efficient approach for the partial pruning based ranking count estimation for the two-
dimensional space.

In the following, we present solutions for the ranking count estimation according to the
above three strategies. First, we show in Section 3.2 how the ranking count estimations
can be efficiently computed based on the mutual and self pruning strategies. Next, in
Section 3.3, we propose an efficient 2D solution for the partial pruning based estimation.

3.2 Ranking Count Updates w.r.t. Intermediate Index Entry Hyperplanes

We first need to determine an entry e′ ∈ I is completely or partially behind a hyperplane
⊥(q, e) associated with an entry e ∈ I. An important observation is that a hyperplane
associated with an object o represents all points p which have the same distance to the
query point q and to o, formally:

⊥(q, o) = {p ∈ R
d : dist(p, q) = dist(p, o)}.

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 271

In addition, we know that all objects stored in the subtree of an index entry e are located
inside the minimum bounding hyper-rectangle e.mbr that defines the page region of e.
Thus, we can determine a conservative hyperplane representation of all points stored
in the subtree of entry e if we replace the distances between the hyperplane points
p ∈⊥(q, e) and o ∈ subtree(e) by the maximum distance between p and the mbr-region
of e. Consequently, the hyperplanes of all objects o ∈ subtree(e) are conservatively
approximated by a hyperplane representation consisting of all points in the vector space
that fulfill the following condition:

⊥(q, e) = {p ∈ R
d : dist(p, q) = MaxDist(p, e.mbr)}.

In general, a hyperplane representation H is called conservative approximation of a
set of hyperplanes H ′, if all objects behind H are definitely behind each hyperplane
h′ ∈ H ′, formally:

(o behind H)⇒ (∀h′ ∈ H ′ : o behind h′)

We can assign such a hyperplane representation to each intermediate entry of our index.
In consideration of the above equations, an index entry e′ ∈ I is defined to be behind

a hyperplane⊥(q, e) if the following condition holds:

∀p ∈ e.mbr : dist(p, q) > MaxDist(p, e.mbr).

Figure 3 illustrates the conservative approximation ⊥(q, e) of all hyperplanes ⊥(q, o)
for all objects o ∈ subtree(e).

In the following we briefly discuss how this conservative approximation⊥(q, e) can
be associated with an index entry e. An important observation is that a hyperplane asso-
ciated with an object o represents all points p which have the same distance to the query
point q and to o. In addition, we know that all objects stored in the subtree of an index
entry e are located inside the minimum bounding hyper-rectangle (mbr) that defines the
page region of e. Thus, we can determine a conservative hyperplane representation of
all points stored in subtree(e) if we replace the distances between the hyperplane points
p ∈⊥(q, e) and o ∈ subtree(e) by the maximum distance between p and the mbr-region

q

e

(q,e)

o2

o3

o1

(q,o1)

(q,o2)

(q,o3) NE

SE

NW

SW

Fig. 4. Computation of conservative hyperplane approximations

272 T. Emrich et al.

e
qp

q

i

q

Fig. 5. Example to Lemma 2

of e. Figure 4 illustrates the computation of such a conservative approximation for a
given index entry e in a 2D feature space. First, we have to specify the maximum dis-
tance between the mbr-region of the index entry e and any point in the vector space.
It suffices to find for each point p in the vector space the point o ∈ subtree(e) which
is within the mbr-region of e having the maximum distance to p. This can be done by
considering partitions of the vector space which are generated as follows: in each di-
mension the space is split paraxially at the center of the mbr-region. As illustrated for
the 2D example in Figure 4, we obtain partitions denoted by NW , NE, SE and SW .
In each of these partitions P , the vertex point of the mbr-region which lies within the
diagonal-opposite partition is the mbr-region point which has the maximum distance to
all points in P . In our example, for any point p in SW the maximum distance of p to e
is the distance between p and point o1 in partition NE. Consequently, the hyperplane
⊥(q, o1) is a conservative approximation of all hyperplanes between points within the
mbr-region of e and the points within the partition SW . In our example, the hyperplane
associated with e is composed by the three hyperplanes⊥(q, o2),⊥(q, o1) and⊥(q, o3).

3.3 Efficient Spatial Partial Pruning

The basic idea of the partial pruning as introduced in 3.1 is to find for an intermediate
index entry e the point in e with the lowest ranking count w.r.t. the hyperplanes that
intersect e. An example of this situation is given in Figure 6 where e is intersected by
three hyperplanes ⊥(q, e1),⊥(q, en2) and ⊥(q, e3) and e1 corresponds to an interme-
diate index entry containing five points, whereas e2 and e3 correspond to data points.
⊥(q, e1),⊥(q, en2) and⊥(q, e3) partition e into segments. For any segment s, the rank-
ing count of all points p ∈ s is equal. Thus, the minimum number of hyperplanes any
point in e is covered by, is the minimal ranking count of all segments of e. Therefore, the
minimal ranking count of e is 1 in our example. Thus, the ranking key of e is increased
by one.

However, this computation requires to examine O(2m) segments, where m is the
number of hyperplanes intersecting e. In [7], a similar approach is used, that requires to
examine an exponential number of pruning intersection areas.

Next, we propose an efficient approach for partial pruning that is based on the fol-
lowing observations:

Lemma 1. If an intermediate index entry e contains the query point q, then the ranking
count of e is always 0.

The above lemma is obvious, because if e contains q, then e may contain points that
can be arbitrarily close to q, and thus, can have q as their nearest neighbour regardless
of the distance of q to other points in the database.

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 273

e15

e 23
6

(q,e2) 11

0
4 1

11 2

76 (q,e1)

(q,e3)

5

1
e

0 41 2 3
diameter of e

e2

diameter of e

plane sweep
e3q

Fig. 6. Partial pruning based ranking count estimation strategy

Lemma 2. If an intermediate index entry e does not contain the query point q, then the
minimal ranking key of all points of e is equal to the minimal ranking key of all points
on the edges (i.e. the boundary) of e.

Proof. Assume an intermediate index entry e and a query point q outside of e. Let
p be an arbitrary point inside of e and let i denote the intersection of segment [p, q]
with the boundary of e. Assume that the ranking count of i is k. Thus, by definition, at
least k points p0, . . . , pk−1 are closer to i than to q, i.e. dist(i, q) > dist(i, pi)∀pi ∈
{p0, . . . , pk−1}. For each pi ∈ {p0, . . . , pk−1}, the following inequation holds:

dist(p, q) = dist(p, i) + dist(i, q) > dist(p, i) + dist(i, pi)

and the triangle inequality yields:

dist(p, i) + dist(i, pi) > dist(p, pi)

Therefore, any point that is closer to i than to q, is also closer to p than to q. Thus
the ranking count of p is at least the ranking count of i. And since i is located on the
boundary of e, its ranking count is at least the ranking count of the minimum of the
ranking counts of all points on the boundary of e.

For two dimensional data, we can use the above lemma to efficiently compute the partial
pruning count of an index entry e using a plane sweep algorithm if q is outside of the
page region of e.

Since only the boundary of an intermediate index entry e is required to determine
its partial ranking count, we linearize e to the interval [0, 4]. Points on the lower
edge of e are represented by their relative position on that edge, points on the right
edge of e are presented by the relative position on that edge plus one, and so on
(c.f. Figure 6). For each hyperplane approximation ⊥(q, ei) of an index entry ei that
intersects e, we determine all intersections of ei with e2 and the respective regions of

2 Note that a hyperplane approximation can have at most four intersection with an mbr, due to
its convex shape.

274 T. Emrich et al.

the boundary of e that is pruned by ei. In Figure 6 the boundary of e is pruned by e2 in
the interval [2.3,3.4] and by e1 in the interval [1.2,0.5], which is split into two intervals
[1.2,4.0] and [0.0,0.5]. Now, the task is to find the minimum ranking count of all points
on the boundary of e. The ranking count of a point p on the boundary can be obtained
by summing up all the ranking counts of all hyperplanes for which the corresponding
interval covers p. Now the minimum ranking count of all points on the boundary can be
computed using a plane sweep technique as depicted in Figure 6. During the sweep the
global minimum of the ranking count is computed.

3.4 Best-First Search Based Incremental RNN Ranking Algorithm

In this section, we show how we explore the index such that the first results can be
reported early without causing unnecessary page accesses. We start with an informal
description of our solution before we present implementation details and pseudo code.

Similar to the TPL approach for RkNN queries our approach is based on a best-first
search method exploiting a priority queue organizing the index entries to be explored.
In contrast to the TPL approach, we propose to give the priorities to the index entries
according to the estimated ranking count, i.e. entries with low ranking counts are ranked
higher than entries with high ranking count. This means that entries containing objects
with a low expected ranking position are explored before entries containing objects with
a high expected ranking position. The rational for this strategy is that in this way we
try to explore those entries first which contain potential candidates to be reported next
from the ranking query.

For the organization of the index entries during the traversal of the index we maintain
a priority queueQ storing entries with the corresponding estimated ranking count which
are sorted in ascending order according to their estimated ranking count. Thereby we
assume that the ranking count of each entry in this queue was generated by taking
all current entries in the queue into account using the aforementioned strategies for
increasing the ranking count.

The top element of the queue is the entry which has to be explored next. Whenever
an entry e is explored, i.e. e is loaded from disk and is refined, we have to perform
the following two steps: first, we have to update the ranking counts of all elements in
the queue according to the children of e and, second, the ranking counts of e’s child
elements have to be computed before we insert them into Q.

For the first step, we have to determine those entries in Q which could be affected by
the refinement of e, i.e. for which the ranking count might be increased after refining
e. Obviously, those entries which are completely behind the hyperplane representation
of e, ⊥ (q, e), must also be behind the hyperplane representations of each child of e
and, thus, their ranking count is not affected by the refinement of e. In the example
shown in Figure 7, entry e3 is not affected by the refinement of entry e due to the above
considerations. Furthermore, we can ignore those entries e′ which cannot be behind a
hyperplane of any object within subtree(e), e.g. entry e1 in the example in Figure 7, i.e.
those entries e′ for which the following statement holds:

∃p ∈ e′.mbr : dist(p, q) < MinDist(p, e.mbr)

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 275

e3

e1

e2

q

e

(q,e)

o1

o2

o3

o4

o5

“progressive approximation” of

(q,ec) for all child nodes ec of e

Fig. 7. Illustration of entries that are/are not affected by the refinement of an entry e

Intuitively, those entries are not behind the “progressive approximation” of all hyper-
planes ⊥(q, ec) of child entries ec of entry e (cf. Figure 7).

Entries which are affected by the refinement of e are the remaining entries, i.e. those
entries e′ that fulfill both of the following two conditions:

∃p ∈ e′.mbr : dist(p, q) ≤ MaxDist(p, e.mbr)

and
∀p ∈ e′.mbr : dist(p, q) ≥ MinDist(p, e).

Each entry e′ fulfilling the above two conditions, e.g. entry e2 in our example in
Figure 7, has to be checked against the hyperplane representation of each child of e.
If the entry e′ is behind the hyperplane representation of a child ec of e, its ranking
counter will be increased by |subtree(ec)|.

For the second step, we have to determine the ranking counts of the children of e. For
that purpose, we simply have to check all existing entries in Q and all other children of
e whether the current child ec of e is behind the corresponding hyperplanes. If yes, the
ranking count of ec is increased by the number of objects included in the subtree of the
corresponding entry.

Finally, if the top entry e in the queue Q is a point, i.e. e ∈ D, the point can be
output as a result only if e is not beyond any progressive approximation of hyperplanes
of child nodes of all e′ that are currently in the queue, i.e. formally

∀e′ ∈ Q : dist(e, q) < MinDist(e, e′.mbr).

Otherwise, we need to refine any of those entries e′ ∈ Q, for which this condition does
not hold. As a consequence, e might get a higher ranking count and might be shifted
towards the end ofQ or it may also maintain the top spot ofQ.

The pseudocode of the algorithm for the incremental RNN ranking is illustrated in
Figure 8 providing the implementation details of the previously discussed steps. First,
we initialize an empty result list “result” and the priority queue Q which stores index
entries sorted in ascending order of their ranking count. Ties occuring in the priority

276 T. Emrich et al.

ALGORITHM initializeRanking(root, q)

input: root = root of index storing D
input: q = query object

Q = empty priority queue sorted by RankingCount
result = ∅
insert root into Q

METHOD getNext()

WHILE Q is not empty DO
e = dequeued entry from Q
IF e is a directory entry THEN

refine(e)
END-IF
ELSE // e is a LeafEntry

e’ = refinementRound(e)
IF e’ = NULL THEN RETURN e
ELSE refine(e’)

END-ELSE
END-WHILE

Fig. 8. Pseudocode of the incremental RNN ranking algorithm

queue are resolved by, first, prefering leaf index entries to directory index entries and,
second, by sorting the entries in increasing distance to q.

The priority queue is initialized with the root of the index. For each call of the get-
Next method, we dequeue the first entry e of Q. If e is a directory node, then it will be
refined calling the refine routine depicted in Figure 9. During refinement, we first have
to find all entries inQ that are candidates for having their ranking count increased due to
the refinement of e (see first step above). An entry e′ is such a candidate, if there exists
a point in the mbr of e′ that is closer to q than any point in e (see the predicate in line 3
of the refinement procedure in Figure 9) and if e′ has not already been re-ranked by e
(see the predicate in line 4 of the refinement procedure in Figure 9). These candidates
are stored in a list updateI.

Additionally, we need all entries that are candidates for increasing the ranking count
of one of the child entries of e (see the second step above). An entry e′′ is such a
candidate, if it has not re-ranked e already (first comparison in line 6 of the refinement
procedure in Figure 9) and its mbr contains a point that is closer to q than a point in e
(second comparison in line 6 of the refinement procedure in Figure 9). These candidates
are stored in a list updateII.

Lines 8-12 check for each child node ec of e and element e′ ∈updateI, if e re-ranks
e′ and increases the ranking count of e′ if necessary. Analogously, lines 13-17 increase
the ranking count of ec, if an element e′′ ∈updateII re-ranks ec.

Then, we increase the ranking count for each child entry e′c of e that is able to re-rank
ec. Note that ec and e′c may be identical, i.e. ec re-ranks itself. Finally ec is inserted into
the queueQ.

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 277

METHOD refine(e)

input: e = current directory entry
updateI= {e′ ∈ Q|

∀p ∈ e′ : MinDist(p, e) ≤ MinDist(p, q)∧
∃p ∈ e′ : MinDist(p, q) < MaxDist(p, e)}

updateII= {e′′ ∈ (queue ∪ result)|∃p ∈ e :
MinDist(p, e′′) ≤ MinDist(p, q) < MaxDist(p, e′′)}

FOR EACH ec ∈ e DO
FOR EACH e′ ∈ updateI DO

IF (∀p ∈ e′ : MinDist(p, q) ≥ MaxDist(p, ec))DO
increaseRankingCount(e′, ec.weight);

END-IF
END-FOR
FOR EACH e′′ ∈ updateII DO

IF (∀p ∈ ec : MinDist(p, q) ≥ MaxDist(p, e′′))DO
increaseRankingCount(ec, e′′.weight);

END-IF
END-FOR
FOR EACH e′c ∈ e DO

IF (∀p ∈ ec : MinDist(p, q) ≥ MaxDist(p, e′c))DO
increaseRankingCount(ec, ec’.weight);

END-IF
END-FOR
queue.insert(ec)

END-FOR

Fig. 9. Pseudocode of our refine algorithm

METHOD refinementRound(e)

input: e = current leaf entry
FOR EACH entry e′ ∈ Q DO

IF(MinDist(e, e′) ≤ Dist(e, q) < MaxDist(e, e′)) THEN
RETURN e’

END-IF
END-FOR
RETURN NULL

Fig. 10. Pseudocode of the refinement round

If the entry e is a leaf entry, i.e. e is an object, then e obviously cannot be refined.
However, we may not yet return e as a result without further checking, because it may
be re-ranked due to an entry that has not yet been refined. In that case, we need to scan
the queueQ for an object that is a candidate for re-ranking e by calling the refinemen-
tRound algorithm which is depicted in Figure 10 and refining (c.f. Figure 9) this object.
If no such object exists, e can be returned as the result of the current getNext()-call.

278 T. Emrich et al.

4 Experimental Evaluation

In this section, we present the results of our experiments. We start by explaining in
detail the settings of our experiments and those of the competitors. Then, we show the
results of our performance evaluation on multi-dimensional data. Finally, we evaluate
the effect of the partial spatial pruning on 2D-datasets.

4.1 Test Bed

We compared our novel approach for computing an RkNN ranking, with two adap-
tions of the TPL [7] approach which is the current state-of-the-art algorithm for RkNN
query processing. In fact, we applied two versions of the TPL approach for computing
a ranking. The problem of the TPL approach is that we cannot predict the number of
getNext()-calls beforehand. Thus, we do not know a suitable value of k to answer all
getNext()-calls.

The first variant, called TPL-Lazy, implements a lazy strategy assuming that we have
a low number of getNext()-calls. It manages a result list which is initially empty and
a counter kc which stores the current value of k and is initialized with kc = 1. The
entries in the result list are ordered by increasing ranking scores. For each call of the
getNext() method, this variant checks the result list. If the result list is empty, TPL-Lazy
computes a RkNN query with k = kc using the original TPL approach, adds the result
of this query to the result list with a ranking score of kc, and increments kc. These three
steps are processed iteratively until the result list is no longer empty. Last but not least,
the TPL-Lazy method returns the next entry in the result list. Obviously, this variant
only issues a new RkNN query if necessary beginning with k = 1 and successively
incrementing the value of k. The costs for answering l getNext()-calls are the sum of
the costs of all queries for k = 1, . . . necessary to answer the l calls.

The second variant, called TPL-Eager, implements an eager policy assuming a higher
but possible fixed maximum number of getNext()-calls. It simply assumes that the max-
imum number of getNext()-calls will be less than the number of result objects of a
RkNN query with a special value of kmax, e.g. kmax = 100. Then, we only need to
issue one RkmaxNN query using the original TPL approach beforehand and sort the
results according to their ranking score. Whenever a getNext()-call is issued (and as
long as the assumptions stated above regarding the size of the result and the number of
getNext()-calls hold), we can simply return the next object from the result list. The costs
for answering l getNext()-calls equal to the costs of answering the RkmaxNN query
(again, as long as the result contains at least l points). Let us note that there is no direct
relationship between the number of getNext()-calls l and the value kmax. This makes it
even harder for the TPL-Eager approach to guess a proper kmax value. In fact, to obtain
a fair comparison, we computed the most optimistic scenario for the TPL-Eager variant:
we first issued l getNext()-calls with our new ranking method and obtained the ranking
count of the resulting point of the last call. This count is the optimal kmax value for the
TPL-Eager approach and we used this value in all our experiments. Thus, in realistic
scenarios, the results of a TPL-Eager approach would be worse than presented here.
All experiments are based on an aR*-Tree (aggregate version of R*-Tree) with a page
size of 1K. Since all approaches are I/O bound we compared the number of disc pages
accessed during the execution of 500 sample RkNN queries and averaged the results.

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 279

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40
number of getNext() calls

nu
m

be
r o

f p
ag

e
ac

ce
ss

es Ranking

TPL-Eager

(a) Comparison to TPL-Eager.

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40

number of getNext() calls

nu
m

be
r o

f p
ag

e
ac

ce
ss

es

Ranking

TPL-Lazy

(b) Comparison to TPL-Lazy.

Fig. 11. Comparison of our RkNN ranking with the competitors on uniformly distributed data

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

number of getNext() calls

nu
m

be
r o

f p
ag

e
ac

ce
ss

es Ranking

TPL-Eager

(a) Comparison to TPL-Eager.

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40

number of getNext() calls

nu
m

be
r o

f p
ag

e
ac

ce
ss

es

Ranking
TPL-Lazy

(b) Comparison to TPL-Lazy.

Fig. 12. Comparison of our RkNN ranking with the competitors on clustered data

4.2 Performance Evaluation

Synthetic Data. We used two synthetic datasets to compare the performance of our
ranking algorithm with the two variants of TPL. The first dataset contains 10,000 uni-
formly distributed 2D points. Figure 11 displays the performance of the competitors
w.r.t. the number of getNext()-calls. As expected, the performance of the TPL-Eager ap-
proach (c.f. Figure 11(a))is constant as long as the number of getNext()-calls is smaller
than the number of results of the RkmaxNN query issued beforehand (which is the case
in our scenario – see above). Nevertheless, our ranking algorithm clearly outperforms
this TPL variant in terms of query execution times. In fact, the costs of our approach in-
crease only slightly with successive getNext()-calls. In addition, it should be noted that
TPL-Eager would need to issue a new RkNN query with a considerably higher value
of k if we have more than 35 getNext()-calls because TPL-Eager was optimized for 35
results. Thus, in that case, we would have a jump for the TPL-Eager approach at the
36th getNext()-call while the costs of our ranking algorithm will most likely evolve like
in the range of the first 35 getNext()-calls. On the other hand, the costs for the TPL-
Lazy variant (cf. Figure 11(b)) increase much faster than the costs of our new ranking
algorithm. Again our approach clearly outperforms the competitor in terms of query
execution times. Note that the performance of our ranking algorithm is of course the
same in both Figures 11(a) and 11(b).

A similar observation can be obtained from Figure 12 which displays the per-
formance of the competitors on a 2D synthetic dataset that contains 10,000 points
clustered into four different clusters. The only obvious difference is that here, the TPL-
Eager approach performs much better than on the uniform dataset. As illustrated in
Figure 14(a), our ranking algorithm outperforms the TPL-Eager variant only for the

280 T. Emrich et al.

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16

number of getNext() calls

nu
m

be
r o

f p
ag

e
ac

ce
ss

es

Ranking

TPL-Eager

(a) Comparison to TPL-Eager.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16

number of getNext() calls

nu
m

be
r o

f p
ag

e
ac

ce
ss

es

Ranking

TPL-Lazy

(b) Comparison to TPL-Lazy.

Fig. 13. Comparison of our RkNN ranking and the competitors on 5D gene expression data

first 27 getNext()-calls. In this setting, the TPL-Eager slightly outperforms our ranking
algorithm for 30 to 35 getNext()-calls. However, please note that, first, the TPL-Eager
approach was implemented with the most optimistic assumptions and can be expected
to perform considerably worse in a more realistic scenario where the perfect kmax value
can usually not be determined beforehand. Second, as explained above, TPL-Eager was
optimized for 35 results. If we had more than 35 getNext()-calls, then TPL-Eager would
be required again to compute a new RkNN query with a considerably higher value of k
which would cause significantly higher costs from the 36th getNext()-call on until the
next jump limit is reached.

On the other hand, in comparison to the TPL-Lazy variant (cf. Figure 14(b)) our rank-
ing algorithm again performs much better and significantly outperforms the competitor
in terms of query execution times. Again, the performance of our ranking algorithm is
of course the same in both Figures 14(a) and 14(b).

Real-world Data. We also tested our novel ranking algorithm on real-world data.
In Figure 13 the performance of our ranking algorithm is compared with the perfor-
mances of the TPL-Eager variant (cf. 13(a)) and the TPL-Lazy variant (cf. 13(b)) on
a dataset that features the expression level of approx. 6,000 genes under 5 conditions.
The result on this 5D dataset is similar to the results on the synthetic datasets reported
above. Again, our ranking algorithm clearly outperforms the TPL-Lazy approach. Anal-
ogously, the difference to the TPL-Eager approach is less significant but still consider-
able. It should again be noted that the TPL-Eager variant assumes the most optimistic
scenario for its application which is most likely not a realistic setting, and, thus, it can
be expected that TPL-Eager performs less accurate in most applications.

4.3 Effect of the Spatial Partial Pruning

We evaluated our spatial partial pruning technique using a uniformly and a clustered
2D-dataset each containing 10,000 datapoints. The results are depicted in Figure 14.
Notice that the number of page accesses is reduced by using partial pruning in both
experiments. The effect however, is much more significant on the uniformly distributed
dataset. Finally, we performed the same experiment on a real world dataset extracted
from the Forest Cover Type dataset, retrieved from the UCI KDD repository [15] con-
sisting of 10,000 2D-points. The result in Figure 14(c) shows that the spatial partial
pruning technique reduces the number of page accesses by about 25%.

Incremental Reverse Nearest Neighbor Ranking in Vector Spaces 281

25

30

35

40

without partial pruning

with partial pruning

pa
ge

ac
ce

ss
es

0

5

10

15

20

0 5 10 15 20 25 30 35

number of getNext() calls

nu
m

be
r

of
p

(a) Uniformly data.

40

50

60

70

without partial pruning

with partial pruning

fp
ag

e
ac

ce
ss

es

0

10

20

30

0 5 10 15 20 25 30 35

number of getNext() calls

nu
m

be
r

of

(b) Clustered data.

15

20

25

30

without partial pruning

with partial pruning

fp
ag

e
ac

ce
ss

es

0

5

10

15

0 5 10 15 20 25 30 35

number of getNext() calls

nu
m

be
r

of

(c) Real data.

Fig. 14. Effect of the spatial partial pruning

4.4 Summary

To summarize the results of our experimental evaluation, our novel ranking algorithm
outperforms both adaptions of the existing TPL algorithm to the ranking problem, TPL-
Eager and TPL-Lazy, significantly in terms of query execution times. While TPL-Eager
seems to be competitive (if at all) only for a higher number of getNext()-calls, TPL-Lazy
seems to be competitive (if at all) only for a very low number of getNext()-calls. This
result is quite intuitive because TPL-Eager tries to estimate the worst-case by precom-
puting the maximum number of required results for a maximum number of getNext()-
calls by computing one RkmaxNN query. Thus, the more the number of getNext()-calls
reaches the number of resulting objects of the RkmaxNN query, the more the costs for
the RkmaxNN query pay off. Otherwise, TPL-Eager caused a large portion of unneces-
sary costs to compute a large number of results that are not needed. On the other hand,
TPL-Lazy assumes the best case of very few getNext()-calls and, thus, computes results
only if necessary by consecutively issuing a RkNN query with increasing k. Obviously,
as long as the number of consecutive RkNN queries, with increasing k necessary to re-
port results, is small, i.e. the number of getNext()-calls is low, this strategy pays off.
Otherwise, TPL-Lazy constantly recomputes RkNN queries with the next higher value
for k which produces a lot of redundant results w.r.t. the previously computed queries.

Our ranking algorithm obviously performs best because it does not assume worst- or
best-cases but focuses on computing the ranking incrementally. Since in a ranking query
scenario, it is not known beforehand, how often the method getNext() is called, this is
the most efficient solution in the general case but also – as our experiments illustrate –
in the borderline cases where either TPL-Eager or TPL-Lazy perform best.

5 Conclusions

In this paper, we formalize a novel ranking problem, the reverse nearest neighbor (RNN)
ranking and propose an original solution for it. Our solution extends existing methods
for RNN query processing in the following important aspects. First, the mutual-pruning
strategy of existing approaches is generalized and adapted so that it can be applied al-
ready on higher levels of the index and it can be applied to estimate the ranks of an index
entry, rather than just for pruning. Second, we incorporated the idea of self-pruning and
explored how this concept can be applied to estimate the ranking of index entries. Third,

282 T. Emrich et al.

we explored the concept of partial pruning and derived an efficient solution to integrate
the estimation of ranking counts based on this concept for 2D spatial data. Last but not
least, we proposed an incremental algorithm for the RNN ranking problem that is based
on both introduced ranking estimations. Our experimental evaluation confirms that our
new solution outperforms existing methods adapted for the new problem significantly
in terms of query execution times.

References

1. Lazaridis, I., Mehrotra, S.: Progressive approximate aggregate queries with a multi-
resolution tree structure. In: Proc. SIGMOD (2001)

2. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data ware-
houses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, p. 443. Springer, Heidelberg (2001)

3. Korn, F., Muthukrishnan, S.: Influenced sets based on reverse nearest neighbor queries. In:
Proc. SIGMOD (2000)

4. Yang, C., Lin, K.I.: An index structure for efficient reverse nearest neighbor queries. In:
Proc. ICDE (2001)

5. Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic
databases. In: Proc. DMKD (2000)

6. Singh, A., Ferhatosmanoglu, H., Tosun, A.S.: High dimensional reverse nearest neighbor
queries. In: Proc. CIKM (2003)

7. Tao, Y., Papadias, D., Lian, X.: Reverse kNN search in arbitrary dimensionality. In: Proc.
VLDB (2004)

8. Lee, K.C.K., Zheng, B., Lee, W.C.: Ranked reverse nearest neighbor search. IEEE
TKDE 20(7), 894–910 (2008)

9. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient reverse k-
nearest neighbor search in arbitrary metric spaces. In: Proc. SIGMOD (2006)

10. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Approximate reverse
k-nearest neighbor search in general metric spaces. In: Proc. CIKM (2006)

11. Tao, Y., Yiu, M.L., Mamoulis, N.: Reverse nearest neighbor search in metric spaces. IEEE
TKDE 18(9), 1239–1252 (2006)

12. Guttman, A.: R-Trees: A dynamic index structure for spatial searching. In: Proc. SIGMOD,
pp. 47–57 (1984)

13. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-Tree: An efficient and robust
access method for points and rectangles. In: Proc. SIGMOD, pp. 322–331 (1990)

14. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-Tree: An index structure for high-
dimensional data. In: Proc. VLDB (1996)

15. Hettich, S., Bay, S.D.: The uci kdd archive (1999)

Approximate Evaluation of Range Nearest
Neighbor Queries with Quality Guarantee�

Chi-Yin Chow1, Mohamed F. Mokbel1, Joe Naps1, and Suman Nath2

1 Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, MN 55455, USA

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{cchow,mokbel,naps}@cs.umn.edu, sumann@microsoft.com

Abstract. The range nearest-neighbor (NN) query is an important
query type in location-based services, as it can be applied to the case
that an NN query has a spatial region, instead of a location point, as
the query location. Examples of the applications of range NN queries
include uncertain locations and privacy-preserving queries. Given a set
of objects, the range NN answer is a set of objects that includes the
nearest object(s) to every point in a given spatial region. The answer
set size would significantly increase as the spatial region gets larger.
Unfortunately, mobile users in wireless environments suffer from scarce
bandwidth and low-quality communication, transmitting a large answer
set from a database server to the user would pose very high response
time. To this end, we propose an approximate range NN query process-
ing algorithm to balance a performance tradeoff between query response
time and the quality of answers. The distinct features of our algorithm
are that (1) it allows the user to specify an approximation tolerance level
k, so that we guarantee to provide an answer set A such that each object
in A is one of the k nearest objects to every point in a given query region;
and (2) it minimizes the number of objects returned in an answer set, in
order to minimize the transmission time of sending the answer set to the
user. Extensive experimental results show that our proposed algorithm
is scalable and effectively reduces query response time while providing
approximate query answers that satisfy the user specified approximation
tolerance level.

1 Introduction

Nearest-neighbor (NN) queries have been widely used in location-based services
(e.g., see [1, 2, 3, 4, 5]). The problem of traditional NN queries can be defined as
follows: “given a set of objects and a query location point p, find the nearest ob-
ject(s) to p”; and thus, they are referred to as point NN queries. Point NN queries
have been extended to find all NNs for line segments [6] and spatial regions [7, 8, 9]
that are referred to as linear and range NN queries, respectively. A linear NN query
� This work is supported in part by the National Science Foundation under Grants

IIS-0811998, IIS-0811935, and CNS-0708604.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 283–301, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

284 C.-Y. Chow et al.

returns an answer set that includes the nearest object(s) to every point in a given
line segment. On the other hand, a range NN query returns an answer set that
includes the nearest object(s) to every point in a given spatial region, where the
spatial region can be either a rectangular region [7, 9] or a circular region [8].

Recent research efforts have shown the importance of range NN queries in
location-based services, as it can be applied to the following realistic scenarios:

– Uncertain locations. We have two kinds of location uncertainty, measure-
ment imprecision and sampling imprecision. The measurement imprecision
is due to the limitation of the underlying positioning techniques of network
environments, e.g., 2G/3G and Wi-Fi. On the other hand, the sampling im-
precision is due to continuous motion, network delays, and location update
frequency even with highly accurate positioning devices, e.g., GPS. Thus, we
have to use a spatial region where the user is guaranteed to be therein to rep-
resent the user location information in order to capture location uncertainty
(e.g., see [10, 11, 12, 13, 14]).

– Privacy-preserving queries. Mobile users are not willing to reveal their
exact location information to location-based service providers, as they
want to preserve their location privacy. The most commonly used privacy-
enhancing technique is to blur the user’s exact location into a spatial region,
i.e., spatial cloaking, that satisfies the user’s specified privacy requirements
(e.g., see [8, 9, 15, 16, 17, 18, 19]).

In these two scenarios, the mobile user sends her NN query along with a spatial
region as the query location, i.e., a range NN query. Then, a database server
returns an answer set that includes the nearest object(s) to every point within
the spatial region. The answer set size would substantially increase as the query
region gets larger. Unfortunately, the communication bandwidth between the
user and the database server is very limited in a mobile environment, i.e., the
downlink bandwidth ranges from 128 kbps at vehicular speeds to 2 Mbps at
stationary or very slow speeds for 3G mobile subscribers. Transmitting large
answer sets to the user would pose very high query response time. Furthermore,
as mobile users receive their answer handheld devices with a small screen, it is
convenient to return to the users very few answers with high quality.

In this paper, we propose a new approximate range NN query processing
algorithm that enables the user to tune a trade off between query response time
and the quality of query answers. Our proposed algorithm allows the user to
specify an approximation tolerance level k, where we return an answer set A
such that each object in A is one of the k nearest objects of every point in the
query region. The larger the value of k, the smaller the answer set returned by a
database server. Thus, the approximation tolerance level is a tuning parameter
that trades off between query response time and the quality of answers. In the
case that k = 1, we return the exact range NN answer of maximal size to the
user. On the other hand, if k > 1, we return an approximate answer set, which
is smaller than the exact answer, to the user; and thus, the transmission time
of sending the answer set to the user is reduced. Since query response time is

Approximate Evaluation of Range Nearest Neighbor Queries 285

A

B

C

DE

(a) 1-NN of each region

AD
BC

CD

BD

AB

CE

DE

(b) 2-NN of each region

ABD

ABC
ACD

BCD
CDE

(c) 3-NN of each region

Fig. 1. A motivating example

dominated by the communication overhead between the user and the database
server, a larger value of k incurs lower query response time.

Figure 1 depicts a motivating example for our problem where we decompose
the query region Q.R of a range NN query Q into disjoint regions and label each
region with its k-NN(s). Figure 1a shows the NN of each region. If a user wants
to find the nearest object(s) to Q.R, i.e., the exact range NN query answer, the
required answer set contains the nearest object(s) to every point in Q.R, i.e.,A1 =
{A, B, C, D, E}. Figure 1b shows the 2-NN of each region. If the user is satisfied
with the 2-nd nearest object(s) to Q.R, the answer set A2 should contain at least
one object among the 2 nearest objects to every point in Q.R. For example, if
A2 = {A, B, C, D}, regardless of the actual user location within Q.R, the user is
guaranteed to receive an object among her 2 nearest objects. However, we can still
do better. For example, ifA′

2 = {A, C, D}, the user is still guaranteed to receive an
object among her 2 nearest objects, regardless of her actual location within Q.R.
Thus, the answer set of minimal size is a minimal set of objects such that there is
at least one object among the 2 nearest objects of each region. Furthermore, if the
user is satisfied with the 3-rd nearest object(s) to Q.R, i.e., the required answer set
A3 should contain at least one object among the 3 nearest objects of each region,
as depicted in Figure 1c, where the minimal answer set isA3 = {A, C}. Therefore,
if a user accepts a higher approximation tolerance in a range NN query answer,
the user will receive a smaller answer set and more user convenience.

The main idea of our proposed range NN query processing algorithm is to have
an off-line process to pre-compute a set of k-order Voronoi diagrams, from order
one to a predefined maximum order kmax, for a set of stationary data objects,
e.g., restaurants, gas stations and hotels. For a k-order Voronoi diagram, each
Voronoi cell is associated with a distinct set of k objects that are the k nearest
objects to every point in the cell. To efficiently search in a Voronoi diagram,
we propose an incomplete pyramid structure as an access method to index the
Voronoi cells. Given a range NN query Q and an approximation tolerance level
k, our proposed on-line range NN query processing algorithm first determines a
set of Voronoi cells V that intersects the query region by accessing the incomplete
pyramid structure of the relevant k-order Voronoi diagram. Then, the remaining
query processing is reduced to a well-known set-covering problem where we use
a greedy approach to select the minimal set of objects, i.e., the answer set A,
from the objects associated with the Voronoi cells in V such that at least one

286 C.-Y. Chow et al.

object from each Voronoi cell in V is selected. As a result, each object in A is
one of the k nearest objects to every Voronoi cell in V , i.e., each object in A is
one of the k nearest objects to every point in the query region. With a larger
value of k, there are more common objects associated among the Voronoi cells in
V ; and hence, we would get smaller answer sets that incur lower query response
time. In general, the contributions of this paper can be summarized as follows:

– We introduce a new location-based query type, approximate range nearest
neighbor (NN) query, that returns an answer set A such that each object in
A is one of the k nearest object(s) to every point in a given query region. k
is a user specified approximation tolerance level that can be used to tune a
performance tradeoff between query response time and answer quality.

– We design an incomplete pyramid structure as an access method for efficiently
retrieving a set of Voronoi cells that intersects a given query region from a
Voronoi diagram for our proposed query processing algorithm.

– We propose an approximate range NN query processing algorithm that aims
to minimize the number of objects returned in an answer set to improve query
response time and user convenience while guaranteeing that the answer set
satisfies the user specified approximation tolerance level.

– We provide experimental evidence through a comparison between the state-
of-the-art techniques that our proposed query processing algorithm is scal-
able in terms of query processing time, and it significantly reduces query
response time while the returned approximate answer is guaranteed to be
satisfied with the user desired approximation tolerance level.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 describes our system model. Our proposed approximate range NN
query processing algorithm is presented in Section 4. The extensive experimental
results are analyzed in Section 5. Finally, Section 6 concludes the paper.

2 Related Works

In location-based services, point nearest-neighbor (NN) queries have been exten-
sively studied, e.g., [1, 2, 3, 4, 5]. Existing point NN query processing algorithms
mainly focus on the scalability and efficiency of finding the nearest object(s) to
a given query point. By considering user mobility, the concept of NN searches is
extended to line segments [6] (referred to as linear NN query). The basic idea of
linear NN query processing algorithm is to split a line segment into subsegments
such that each subsegment has the same nearest object(s). All such nearest ob-
jects constitute the answer set of a linear NN query. Recently, the concept of NN
searches is further extended to rectangular regions [7, 9] (referred to as range NN
query). A minimal answer set for a range NN query includes all objects located
in query region and the nearest objects to each edge of the query region [7]. By
relaxing the minimality requirement, another existing range NN query process-
ing algorithm, Casper, computes a candidate answer set that includes the exact
answer [9]. The Casper algorithm first finds the nearest object to each vertex of

Approximate Evaluation of Range Nearest Neighbor Queries 287

V1

V3

V4

V5

V2

s1

s2

s3

s4

s5

(a) 1-order Voronoi diagram

s1

s2

s3

s4

s5

V1 V4

V6

V7

V3

V5
V2

(b) 2-order Voronoi diagram

Fig. 2. The 1-order and 2-order Voronoi diagrams for five sites s1 to s5

the query region as filters, and then extends each edge of the query region to
a minimal distance that is computed based on the filters to form an extended
query region. The candidate answer set is a set of objects that is included in the
extended query region. Also, a range NN query processing algorithm is proposed
for finding the minimal answer set for a circular query region [8].

Our proposed approximate range NN query processing algorithm distinguishes
itself from all previous techniques, as (1) it allows the user to specify an approx-
imation tolerance level k for a range NN query, so that each object in the answer
set is one of the k nearest objects to every point in a given query region; and
(2) it aims to minimize the number of objects returned in the answer set to
improve query response time, as the response time is dominated by the trans-
mission time of sending the answer set to the user. In Section 5, we will compare
the performance of our proposed algorithm with the state-of-the-art range NN
query processing algorithms (i.e., [7, 9]).

3 System Model

In this section, we first formally define our problem, and then present the basic
concept of Voronoi diagrams and the underlying system architecture.

Problem definition. Our problem is defined as follows: given a set of objects, a
range nearest-neighbor query Q with a query region Q.R, and an approximation
tolerance level k, find the minimal set of objects A such that each object in A is
one of the k nearest objects to every point in Q.R.

Voronoi diagrams. Given a set of points S on the plane, which are the Voronoi
sites, the Voronoi diagram of S, denoted as V (S), is a decomposition of the space
into disjoint regions, cells, such that each site si is associated with a cell Vj ,
denoted as Vj = {si}, containing all the points in the plane that are closer to si

288 C.-Y. Chow et al.

than any other site in S. In other words, si is the nearest site to every point in Vj .
Figure 2a depicts a Voronoi diagram of a set of five sites S = {s1, s2, s3, s4, s5},
V (S). V (S) decomposes the space into five cells V1, V2, V3, V4, and V5 that are
associated with the sites s1, s2, s3, s4, and s5, respectively. For example, given
a point p in cell V1, s1 is the nearest site to p.

Higher-order Voronoi diagrams. The k-order Voronoi diagram extends the
concept of the Voronoi diagram by defining cells based on the k nearest neigh-
bors. The k-order Voronoi diagram of S, where 1 < k ≤ |S| − 1, denoted as
Vk(S), is a decomposition of the space into disjoint cells, such that a distinct
set of k sites Si = {si1 , si2 , . . . , sik

} is associated with a cell Vj , Vj = {Si},
containing all the points in the plane that have the sites in Si as their k nearest
sites. In other words, Si contains k nearest sites to every point in Vj . Figure 2b
depicts the 2-order Voronoi diagram of S, V2(S), that decomposes the space
into seven cells, i.e., V1 = {s1, s3}, V2 = {s1, s2}, V3 = {s2, s3}, V4 = {s1, s4},
V5 = {s3, s4}, V6 = {s4, s5}, and V7 = {s3, s5}. For example, given a point p in
cell V3, the sites s2 and s3 are the two nearest sites to p.

System architecture. We consider a mobile environment where mobile users
communicate with a location-based database server through a (2G/3G) cellular
network. The data/control flow of our system is as follows: The mobile user sends
range NN queries to the database server. Our proposed approximate range NN
query processing algorithm that is implemented in the database server computes
an answer set, and then the server sends the answer set to the user. We use the
Euclidean distance as our distance metric.

4 Approximate Range NN Query Processing

In this section, we first describe an off-line process to compute Voronoi diagrams,
from order one to order kmax, where kmax is the maximum allowable user speci-
fied approximation tolerance level, and present our proposed incomplete pyramid
structure that is used as an access method for each Voronoi diagram. Then, we
present an on-line query processing algorithm for approximate range NN queries.

4.1 Building Voronoi Diagrams

We use an off-line process to build k Voronoi diagrams for a set of objects, e.g.,
restaurants, hotels and gas stations, from order one to order kmax, where kmax

is the maximum user specified approximation tolerance level. Thus, the user can
specify her desired approximation tolerance level k from one to kmax. Notice that if
k = 1, our algorithm provides an exact answer set of the minimal size for range NN
queries. Given a set of objects S, building a set of Voronoi diagrams, from order
one to order kmax, i.e., V1(S), V2(S), . . . , and Vkmax(S), takes O(k2

maxN log N)
time and O(

∑kmax

k=1 k2(N − k)) space, where N is the number of objects in S [20].
After we build the k Voronoi diagrams, they are stored for later use in our proposed
range NN query processing algorithm. For each Voronoi diagram, we maintain a
table to store each Voronoi cell with its associated objects.

Approximate Evaluation of Range Nearest Neighbor Queries 289

Cell ID Voronoi
Cells

C(1,1) V2
C(2,1) V2

V2
C(4,1) V2,V3
C(5,1) V2,V3,V5
C(6,1) V5
C(7,1) V5
C(8,1) V5

…
C(8,8) V4

C(3,1)

Mapping Table

…

V1

V3

V4

V5

V2

s1

s2

s3

s4

s5

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Fig. 3. The base level of an incomplete pyramid structure

4.2 Access Method for Voronoi Diagrams

We will construct an incomplete pyramid structure for each Voronoi diagram to
support efficient range search among Voronoi cells. The idea of our proposed
incomplete pyramid structure is that we need to find a set of Voronoi cells V
that intersects a given range query region in order to retrieve their associated
objects. Without any index structure, we have to scan every cell in a Voronoi
diagram to find V . When the number of objects and/or k is large, scanning all
cells in a Voronoi diagram would pose a scalability issue. To this end, we propose
an incomplete pyramid structure to overcome this issue. The construction of an
incomplete pyramid structure for each Voronoi diagram includes two main steps.

STEP 1: Base level step. This step decomposes the space into grid cells
where each grid cell C(c, r) is uniquely identified by its column number c and
row number r. Also, we use a hash table, mapping table, that associates each
grid cell identity with a list of Voronoi cells that intersects the grid cell. Figure 3
depicts an 8 × 8 grid structure for the Voronoi diagram given in Figure 2a and
the corresponding mapping table. For example, given a grid cell identity C(5, 1),
we can retrieve a set of Voronoi cells that intersects C(5, 1), i.e., V2, V3, and V5.

STEP 2: Merge step. This step merges quadtree-like neighbor cells to their
parent if they intersect the same set of Voronoi cells. The idea of this step
is to adaptively determine the height of an incomplete pyramid structure for
a Voronoi diagram to minimize search time. This is due to the fact that the
k Voronoi diagrams we maintain have different structures, e.g., the number of
Voronoi cells and Voronoi cell size distribution, with respect to the number of
objects, the object distribution and the degree of order (k). Thus, the shape of
an incomplete pyramid structure would be different for each computed Voronoi
diagram. Other than the base level, each cell C(l, c, r) at upper levels is identified
by the level of the incomplete pyramid structure l, column number c and row
number r. This step uses a bottom-up approach to construct the upper levels
of an incomplete pyramid structure. Starting from the base level, if all quadtree-
like sibling cells (i.e., the cells have the same parent) intersect the same set of

290 C.-Y. Chow et al.

V3V2 V5

V4
Base Level

Level 3

Level 1

Level 2

V1

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Cell ID Voronoi
Cells

Mapping Table

C(2,1,2) V1

C(1,1,1) V2

V5C(1,4,1)
......
V2C(3,1)
......

Fig. 4. Incomplete pyramid structure

Voronoi cells, they are merged to their parent. The merge process includes three
tasks, (i) adding an entry that associates the parent cell identity with the set of
intersected Voronoi cells of its children to the mapping table, (2) removing the
entries of the merged child cells from the mapping table, and (3) annihilating the
merged child cells by removing their pointers at their parent.

Figure 4 depicts an incomplete pyramid structure with a mapping table for
the base level given in Figure 3, where the underlying Voronoi diagram is shown
at the base level for the sake of illustration. Starting from the base level, we
merge the quadtree-like sibling cells to their parent if they intersect the same set
of Voronoi cells. For example, the four cells at the left bottom corner (C(1, 1),
C(2, 1), C(1, 2), and C(2, 2)) intersect the same Voronoi cell V2, these cells are
merged to their parent. To complete the merge process, we add an entry with
the parent identity C(1, 1, 1) with the intersected Voronoi cell V2 to the mapping
table, remove the entries of the merged child cells from the mapping table, and
annihilate the merged child cells. We illustrate merged child cells by removing
the grid cells. Similarly, we merge the cells at the other corners. At level one,
the sibling cells at the left top corner (i.e., C(1, 1, 3), C(1, 2, 3), C(1, 1, 4), and
C(1, 2, 4)) intersect the same Voronoi cell V1, so they are merged to their parent
at level two, i.e., C(2, 1, 2). At level two, since all cells intersect different sets
of Voronoi cells, we cannot merge any cells and this step terminates. In this
example, the shaded cells depict the lowest maintained cells of the incomplete
pyramid structure, and there is an entry for each shaded cell in the mapping
table. The height of the incomplete pyramid structure is two.

4.3 Online Query Processing Algorithm

The distinct feature of our proposed approximate range NN query processing
algorithm is to enable the user to specify an approximation tolerance k for a
range NN query, so that we provide a minimal answer set A where each object is
guaranteed to be one of the k nearest objects to every point in the query region.

Approximate Evaluation of Range Nearest Neighbor Queries 291

V1

V3

V4

V5

V2

s1

s2

s3

s4

s5

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Q

(a) Voronoi diagram

s1

s2

s3

s4

s5

V1 V4

V6

V7

V3

V5
V2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Q

(b) 2-order Voronoi diagram

Fig. 5. Range NN query processing using Voronoi diagrams

If k = 1, we return an exact answer set with the maximal size to the user. In the
case that k > 1, we return an approximate answer set with a smaller size than
the exact one to the user; and thus, the transmission time of the answer set is
reduced. The input of our proposed algorithm is a range NN query Q, a user
specified approximation tolerance level k, and a k-order Voronoi diagram that
is pre-computed by an off-line process (as described in Section 4.1). Figure 5
depicts a running example for our proposed algorithm where the query region of
the input range NN query Q is represented as a bold rectangle and the maximum
approximation tolerance level kmax is two. The algorithm consists of two key
steps, range search step (Section 4.3.1) and query-covering step (Section 4.3.2).

4.3.1 Range Search Step
In this step, we retrieve a set of Voronoi cells Vk = {V1, V2, . . . , Vn} that intersects
the query region Q.R and each Voronoi cell in Vk associates with k objects, i.e.,
Vi = {si1 , . . . , sik

} (1 ≤ i ≤ n). We use a top-down approach to traverse an
incomplete pyramid structure. Initially, at the highest maintained level of the
incomplete pyramid structure of the k-order Voronoi diagram, we find a set of
grid cells that intersects Q.R, and then recursively search each of these grid cells.
During a recursive search, if an encountered grid cell C that intersects Q.R is at
the lowest maintained level or base level of the incomplete pyramid structure, we
retrieve the set of Voronoi cells that intersects C from the mapping table, and
then return it. Otherwise, we recursively search the four child cells of C.

Figure 6 illustrates the range search step for the running example depicted in
Figure 5a where k = 1. For the sake of illustration, we only show the grid cells
intersecting the query region Q.R, and the grid cells at the lowest maintained
level or base level of the incomplete pyramid structure (as depicted in Figure 4)
are represented shaded nodes. As shown in Figure 4, the highest maintained
level of the incomplete pyramid structure is level two where we start the range
search step. Since all grid cells at level two, i.e., C(2, 1, 1), C(2, 1, 2), C(2, 2, 1)

292 C.-Y. Chow et al.

(1,2,2)………

(2,1,1)

(3,1,1)

(3,3) (3,4) (4,3) (4,4)

(2,1,2)

(1,3,2)…

(2,2,1)

(5,3) (5,4) (6,3) (6,4)

…

(5,5)

(1,3,3)

(2,2,2)

(5,6) (6,5) (6,6)

(1,4,3)…… (1,4,2)

(7,3) (7,4) (8,3) (8,4)
Base Level

Level 3

Level 2

Level 1

Fig. 6. Example of a range search in the incomplete pyramid structure (Figure 4)

Algorithm 1. Query-Covering Step
1: function QueryCovering (RNNQuery Q, ToleranceLevel k, VoronoiCellSet Vk)
2: AnswerSet A ← {∅}
3: Construct an inverted list of Vk, i.e., L(Vk) = {L(s1), L(s2), . . . , L(sm)}, where L(si) =

{Vi1 , Vi2 , . . . , Vi|L(si)|
} and 1 ≤ i ≤ m

4: while L(Vk) �= {∅} do
5: Select the object si ∈ L(Vk) with the largest |L(si)|
6: for each object sj ∈ L(Vk) (i �= j) do
7: L(sj) ← L(sj) − L(si)
8: if L(sj) = {∅} then
9: L(Vk) ← L(Vk) − {L(sj)}

10: end if
11: end for
12: A ← A ∪ {si}
13: L(Vk) ← L(Vk) − {L(si)}
14: end while
15: return A

and C(2, 2, 2), intersect Q.R, we will recursively search these grid cells. For
C(2, 1, 1), only one child cell C(1, 2, 2) intersects Q.R, so we search their child
cells C(3, 3), C(3, 4), C(4, 3), and C(4, 4) at the base level. Since all these child
cells intersect Q.R, we retrieve the Voronoi cells that intersect them from the
mapping table and return the set of retrieved Voronoi cells. As C(2, 1, 2) is at the
lowest maintained level, we retrieve the Voronoi cells that intersects C(2, 1, 2)
from the mapping table without further search. Then, we search the grid cell
C(2, 2, 1) where it has two child cells C(1, 3, 2) and C(1, 4, 2) intersecting Q.R.
Since all child cells of C(1, 3, 2) and C(1, 4, 2) at the base level intersect Q.R,
we retrieve the Voronoi cells that intersect them from the mapping table and
return the retrieved Voronoi cells. Similarly, we search the grid cell C(2, 2, 2). As
a result, the set of Voronoi cells that intersects Q.R is V1 = {V1, V2, V3, V4, V5}.
For the other running example where k = 2, the range search step searches
the incomplete pyramid structure of the 2-order Voronoi diagram and the set of
Voronoi cells that intersects Q.R is V2 = {V1, V3, V4, V5, V6, V7}.

4.3.2 Query-Covering Step
Algorithm 1 gives the pseudo code of this step where we aim to compute the
minimal set of objects in which each object is one of the k nearest objects to every
point in the query region Q.R. First, we construct an inverted list of the set of

Approximate Evaluation of Range Nearest Neighbor Queries 293

V1 = {s1}
V2 = {s2}
V3 = {s3}
V4 = {s4}
V5 = {s5}

s1 = {V1}
s2 = {V2}
s3 = {V3}
s4 = {V4}
s5 = {V5}

Inverted List
1-Order

Voronoi Cells

(a) Voronoi cell set V1

V1 = {s1,s3}
V3 = {s2,s3}
V4 = {s1,s4}
V5 = {s3,s4}
V6 = {s4,s5}

s1 = {V1,V4}
s2 = {V3}
s3 = {V1,V3,V5,V7}
s4 = {V4,V5,V6}
s5 = {V6,V7}

V7 = {s3,s5}

2-Order
Voronoi Cells Inverted List

(b) Voronoi cell set V2

Fig. 7. Inverted lists

Voronoi cells Vk retrieved from the previous step, L(Vk) (Line 3). In the inverted
list L(Vk), each object si has a list of Voronoi cells L(si) = {Vi1 , . . . , Vim} (m ≤
n), where si is associated with Vij (1 ≤ j ≤ m).

Figure 7a depicts the inverted list of our running example for k = 1, as given
in Figure 5a, where the Voronoi cells in V1 with their associated objects retrieved
from the range search step are V1 = {s1}, V2 = {s2}, V3 = {s3}, V4 = {s4},
and V5 = {s5}. The inverted list of V1 is L(V1) = {L(s1) = {V1}, L(s2) =
{V2}, L(s3) = {V3}, L(s4) = {V4}, L(s5) = {V5}}. On the other hand, Figure 7b
depicts the inverted list of our running example for k = 2, as shown in Figure 5b
where the Voronoi cells in V2 with their associated objects retrieved from the range
search step are V1 = {s1, s3}, V3 = {s2, s3}, V4 = {s1, s4}, V5 = {s3, s4}, V6 =
{s4, s5}, and V7 = {s3, s5}. The inverted list of V2 is L(V2) = {L(s1) = {V1, V4},
L(s2) = {V3}, L(s3) = {V1, V3, V5, V7}, L(s4) = {V4, V5, V6}, L(s5) = {V6, V7}}.

After constructing the inverted list of Vk, L(Vk), our objective is to select the
minimal set of objects from L(Vk) such that every Voronoi cell in Vk has at least
one associated object selected in the answer set. In other words, we consider the
items in the inverted list as sets and the Voronoi cells in Vk as elements, and then
select a minimum number of sets so that the selected sets contain all the elements
that are contained in any of the sets in the inverted list. Thus, our problem can
be reduced to a well-known set-covering problem. Since computing the optimal
solution for the set-covering problem is NP-hard [21], we use a greedy approach
to compute an answer set. Basically, the greedy approach selects an object with
the largest set of Voronoi cells, and then remove the Voronoi cells associated
with the selected object from other objects’ lists. Then, the selected object and
the objects with an empty list are removed from the inverted list. We repeat this
procedure until the inverted list is empty (Lines 4 to 14 in Algorithm 1). The
set of selected objects is returned as the answer set to the user.

In our running example for k = 1, i.e., the user wants to have an exact query
answer, the query-covering step simply add all objects in the inverted list L(V1)
(Figure 7a) to the answer set, i.e., A1 = {s1, s2, s3, s4, s5}. On the other hand,
Figure 8 depicts the query-covering step for our running example for k = 2, based
on the inverted list of V2, L(V2), as given in Figure 7b. Since L(s3) has the largest

294 C.-Y. Chow et al.

 ∅

s1 = {V1,V4}
s2 = {V3}
s3 = {V1,V3,V5,V7}
s4 = {V4,V5,V6}
s5 = {V6,V7}

Initial Inverted List

A2 = { }

∅
s1 = {V4}
s2 = { }

s4 = {V4,V6}
s5 = {V6}

Updated Inverted List

A2 = {s3}

 ∅
Updated Inverted List

 ∅

s1 = { }

s5 = { }

A2 = {s3,s4}

Fig. 8. Example of the query-covering step, based on Figure 7b

size, we select s3 and remove the Voronoi cells in L(s3), i.e., V1, V3, V5, and V7,
from other objects’ lists, i.e., L(s1), L(s2), L(s4), and L(s5). Then, we add s3
to an answer set A2 and remove L(s3) from L(V2). The updated inverted list is
L(V2) = {L(s1) = {V4}, L(s2) = {∅}, L(s4) = {V4, V6}, L(s5) = {V6}}. After
we remove the empty list L(s2) from L(V2), L(s4) has the largest size. Thus,
we select s4 and remove the Voronoi cells in L(s4), i.e., V4 and V6, from other
objects’ lists, i.e., L(s1) and L(s5). Then, we add s4 to A2 and remove L(s4) from
L(V2). The updated inverted list is L(V2) = {L(s1) = {∅} and L(s5) = {∅}}.
Since all lists are empty, they are removed from the inverted list, and the query-
covering step terminates and returns the answer set A2 = {s3, s4} to the user.
From this example, we can see that our proposed approximate range NN query
processing algorithm reduces the answer set size by 60%, i.e., from five objects
in the exact answer set to two objects in the approximate answer set.

5 Experimental Results

In this section, we evaluate our Approximate Range nearest-neighbor (NN) query
processing algorithm (denoted as ARNN) with respect to user specified approx-
imation tolerance levels (k), query region size, the number of objects, downlink
bandwidth, and object size. We compare our ARNN algorithm with two state-of-
the-art range NN query processing algorithms as baseline algorithms. The first
baseline algorithm computes an exact answer set of the minimal size for range
NN queries (denoted as Exact) [7], while the other baseline algorithm computes
a candidate answer set that contains the exact answer for range NN queries
(denoted as Casper) [9].

We have two performance measures: (1) total processing time that includes
the query processing time at the database server and the transmission time of
sending the answer set to the user, and (2) answer set size that is the average
number of objects returned in the answer sets. The answer set size is important
as it indicates communication overhead and the power consumed by the user
device to receive the answer set and user convenience.

In all experiments, we assume that the user communicates with a database
server through a 3G cellular network. The downlink (i.e., from the database
server to the user) bandwidth varies with respect to the user mobility speed,

Approximate Evaluation of Range Nearest Neighbor Queries 295

Table 1. Parameter settings

Parameter Default Value Range

Approximation tolerance (k) 4 1 to 10
Number of objects 200 100 to 300
Query region size (0.05l)2 (0.008l)2 to (0.256l)2 (where l = 1000)

Downlink bandwidth 384 kbps 128 kbps to 2 Mbps
Object size 10 Kbytes 0.5 Kbytes to 20 Kbytes

i.e., 128 kbps (i.e., kbits per second) at vehicular speeds, 384 kbps at pedestrian
speeds, 2 Mbps at stationary or very slow movement speeds. Unless mentioned
otherwise, the experiments consider 200 objects in a square space of a length l =
1000. The mobile user moving at pedestrian speeds (i.e., the downlink bandwidth
is 384 kbps) issues 1,000 range NN queries, and the object size is 10 Kbytes. The
default user specified approximation tolerance level (k) is four and the query
region size is 0.05l× 0.05l. Table 1 summarizes the parameter settings.

5.1 Effect of Approximation Tolerance Levels

Figure 9 depicts the performance of our proposed algorithm (ARNN) with respect
to varying the approximation tolerance level (k) from 1 to 10. The performance

0

1

2

3

4

5

1 2 4 6 8 10

A
ns

w
er

 S
et

 S
iz

e

Tolerance Levels

ARNN Casper Exact

(a) Answer set size

0

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Tolerance Levels

ARNN Casper Exact

(b) Total Processing time

0

0.5

1

1.5

2

2.5

3

128 384 2000

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Downlink Bandwidth (kbps)

ARNN Casper Exact

(c) Tolerance level: k = 2

0

0.5

1

1.5

2

2.5

3

128 384 2000

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Downlink Bandwidth (kbps)

ARNN Casper Exact

(d) Tolerance level: k = 10

Fig. 9. Approximation tolerance levels (k)

296 C.-Y. Chow et al.

of the baseline algorithms (Casper and Exact) is not affected by varying the value
of k. Figure 9a gives the number of objects returned in the answer set, while
Figure 9b indicates the total processing time that includes the query processing
time at the database server and the transmission time of sending the answer set
to the user. Figure 9a shows that ARNN effectively reduces the answer set size
as k gets larger. When k = 2 (k = 10), ARNN reduces the size of the answer sets
given by Casper and Exact by 34.3% and 66% (79.3% and 89.3%), respectively.
Since the transmission time is much higher than the total processing time, the
total processing time of ARNN decreases as k gets larger (Figure 9b). Figures 9c
and 9d show that ARNN performs better than the baseline algorithms for all
mobility speeds. Since ARNN effectively reduces the answer set size, when the
downlink bandwidth is more limited, ARNN performs much better than Casper
and Exact.

5.2 Effect of Query Region Size

Figure 10 depicts the performance of our proposed algorithm (ARNN) with
respect to increasing the query region size from (0.008l)2 to (0.256l)2, where
l = 1000. Figure 10a shows that the answer set of all algorithms gets larger
as the query region size increases. With small query regions, i.e., (0.008l)2, the
answer set size of ARNN is 94.7% and 59.8% smaller than Casper and Exact,
respectively. For large query regions, i.e., (0.256l)2, the answer set size of ARNN

0
5

10
15
20
25
30
35
40
45
50

0.008 0.016 0.032 0.064 0.128 0.256

A
ns

w
er

 S
et

 S
iz

e

Query Region Size

ARNN
Casper
Exact

(a) Answer set size

0

2

4

6

8

10

12

0.008 0.016 0.032 0.064 0.128 0.256

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Query Region Size

ARNN
Casper
Exact

(b) Total processing time

0

0.2

0.4

0.6

0.8

1

1.2

128 384 2000

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Downlink Bandwidth (kbps)

ARNN
Casper
Exact

(c) Query region size: (0.008l)2

0

5

10

15

20

25

30

35

128 384 2000

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Downlink Bandwidth (kbps)

ARNN
Casper
Exact

(d) Query region size: (0.256l)2

Fig. 10. Query region size

Approximate Evaluation of Range Nearest Neighbor Queries 297

0

1

2

3

4

5

6

100 150 200 250 300

A
ns

w
er

 S
et

 S
iz

e

Number of Objects

ARNN Casper Exact

(a) Answer set size

0

0.2

0.4

0.6

0.8

1

1.2

100 150 200 250 300

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Number of Objects

ARNN Casper Exact

(b) Total processing time

0

0.5

1

1.5

2

2.5

128 384 2000

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Downlink Bandwidth (kbps)

ARNN Casper Exact

(c) 100 objects

0

0.5

1

1.5

2

2.5

3

3.5

128 384 2000

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Downlink Bandwidth (kbps)

ARNN Casper Exact

(d) 300 objects

Fig. 11. Number of objects

is 442.1% and 145.3% smaller than Casper and Exact, respectively. Thus, ARNN
performs much better than the baseline algorithms for larger query regions. Since
the transmission time is much higher than the total processing time, ARNN out-
performs the baseline algorithms in terms of query response time (Figure 10b).
Figures 10c and 10d depict that ARNN effectively reduces the total processing
time of the baseline algorithms regardless of user mobility speeds.

5.3 Effect of Number of Objects

Figure 11 gives the performance of our proposed algorithm (ARNN) with re-
spect to varying the number of objects from 100 to 300. When the number
of objects increases, there are more nearest objects to the query region; and
thus, the answer set size of all algorithms gets larger (Figures 11a). Simi-
lar to the previous experiments, the transmission time is much higher than
the total processing time. Since the answer set size of ARNN is smaller than
the baseline algorithms Casper and Exact, ARNN incurs the lowest total pro-
cessing time for any number of objects (Figures 11b). Likewise, ARNN effec-
tively reduces the answer set size, the total processing time of ARNN is better
than Casper and Exact for all user mobility speeds, as depicted in Figures 11c
and 11d.

298 C.-Y. Chow et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

128 384 2000

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Downlink Bandwidth (kbps)

ARNN
Casper
Exact

(a) 0.5 KB

0

1

2

3

4

5

6

128 384 2000

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Downlink Bandwidth (kbps)

ARNN
Casper
Exact

(b) 20 KB

Fig. 12. Object size

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8 10

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Tolerance Levels

ARNN Casper Exact

(a) Approximation tolerance

0

5

10

15

20

25

30

35

0.008 0.016 0.032 0.064 0.128 0.256

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Query Region Size

ARNN
Casper
Exact

(b) Query region size

0

0.5

1

1.5

2

2.5

3

3.5

100 150 200 250 300

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Number of Objects

ARNN Casper Exact

(c) Number of objects

0

1

2

3

4

5

6

1 2 4 6 8 10

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Object Size (Kbytes)

ARNN
Casper
Exact

(d) Object size

Fig. 13. Downlink bandwidth at vehicular speeds (128 kbps)

5.4 Effect of Object Size

Figure 12 depicts the performance of our proposed algorithm (ARNN) with re-
spect to the object size of 0.5 and 20 Kbytes. Since varying the object size does
not affect the answer set size, the answer set size of all algorithms is the same
as the case that k = 4 in Figure 9a. It is interesting to see that the transmission
time is much higher than the total processing time even if the object size is small

Approximate Evaluation of Range Nearest Neighbor Queries 299

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

1 2 4 6 8 10

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Tolerance Levels

ARNN Casper Exact

(a) Approximation tolerance

0

0.5

1

1.5

2

2.5

0.008 0.016 0.032 0.064 0.128 0.256

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Query Region Size

ARNN
Casper
Exact

(b) Query region size

0

0.05

0.1

0.15

0.2

0.25

100 150 200 250 300

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Number of Objects

ARNN Casper Exact

(c) Number of objects

0

0.1

0.2

0.3

0.4

1 2 4 6 8 10

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
)

Object Size (Kbytes)

ARNN
Casper
Exact

(d) Object size

Fig. 14. Downlink bandwidth at stationary or very slow speeds (2 Mbps)

and the answer set is sent to the user through the downlink with the largest pos-
sible bandwidth, i.e., 2 Mbps. Therefore, the results indicate that reducing the
answer set size is an effective way to improve query response time. This is the
motivation of our proposed algorithm ARNN that aims to minimize the answer
set size while guaranteeing that the answer set is satisfied with the user specified
approximation tolerance level k.

5.5 Effect of Communication Bandwidth

Figures 13 and 14 give the comprehensive evaluation of our proposed algorithm
(ARNN) with respect to all parameters for users moving at vehicular speeds and
very slow speeds, respectively. Although Casper gives the best query processing
time, it suffers from very high transmission time. This is because the candidate
answer set provided by Casper is much larger than the answer set of ARNN and
Exact. Thus, the total processing time of Casper is always worse than ARNN and
Exact. Since ARNN provides approximate answers that satisfy the user specified
approximation tolerance level, the answer set size of ARNN is smaller than the
exact answer set provided by Exact. As a result, ARNN performs better than
Casper and Exact in terms of the total processing time for all parameter settings.

300 C.-Y. Chow et al.

6 Conclusion

In this paper, we propose a new query type, approximate range nearest-neighbor
(NN) query, for location-based services. The distinct features of this new query
type are that (1) It aims to minimize the number of objects returned to the
user so as to reduce the transmission time of sending the answer to the user;
and (2) It provides quality guarantee for the query answer, i.e., each object in
an answer set is one of the k nearest objects to every point in a given query
region, where k is a user specified tuning parameter for a tradeoff between query
response time (that is dominated by transmission time as shown in all exper-
imental results) and the quality of answers. To achieve these two features, we
propose an approximate range NN query processing algorithm. The main idea
is to have an off-line process to compute Voronoi diagrams, from order one to
order kmax, where kmax is the maximum allowable user specified approximation
tolerance level, and then build our proposed incomplete pyramid structure as
an access method for each Voronoi diagram. Given a range NN query and an
approximation tolerance level k, our on-line query processing algorithm accesses
the incomplete pyramid structure of the k-order Voronoi diagram to retrieve a
set of Voronoi cells that intersects the query region and the k nearest objects
to each Voronoi cell. Then, the remaining query processing is reduced to a set-
covering problem where we use a greedy approach to find a minimal answer set.
Extensive experimental results show that our proposed algorithm is scalable in
terms of query processing time, and effective to reduce query response time com-
pared with the state-of-the-art techniques while guaranteeing that the answer
set satisfies the user desired approximation tolerance level.

References

[1] Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest and reverse nearest
neighbor queries for moving objects. VLDB Journal 15(3), 229–249 (2006)

[2] Hu, H., Xu, J., Lee, D.L.: A generic framework for monitoring continuous spatial
queries over moving objects. In: SIGMOD (2005)

[3] Mouratidis, K., Papadias, D., Hadjieleftheriou, M.: Conceptual partitioning: An
efficient method for continuous nearest neighbor monitoring. In: SIGMOD (2005)

[4] Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of
continuous queries in spatio-temporal databases. In: SIGMOD (2004)

[5] Zheng, B., Xu, J., Lee, W.C., Lee, D.L.: Grid-partition index: A hybrid method for
nearest-neighbor queries in wireless location-based services. VLDB Journal 15(1),
21–39 (2006)

[6] Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB
(2002)

[7] Hu, H., Lee, D.L.: Range nearest-neighbor query. IEEE TKDE 18(1), 78–91 (2006)
[8] Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based

identity inference in anonymous spatial queries. IEEE TKDE 19(12), 1719–1733
(2007)

[9] Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: Query processing for
location services without compromising privacy. In: VLDB (2006)

Approximate Evaluation of Range Nearest Neighbor Queries 301

[10] de Almeida, V.T., Güting, R.H.: Supporting uncertainty in moving objects in
network databases. In: ACM GIS (2005)

[11] Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving
object environments. IEEE TKDE 16(9), 1112–1127 (2004)

[12] Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representa-
tions. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS,
vol. 1651, p. 111. Springer, Heidelberg (1999)

[13] Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty
in moving objects databases. ACM TODS 29(3), 463–507 (2004)

[14] Yiu, M.L., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient evaluation
of probabilistic advanced spatial queries on existentially uncertain data. IEEE
TKDE 21(1), 108–122 (2009)

[15] Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries
in mobile environments with privacygrid. In: WWW (2008)

[16] Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving user location privacy
in mobile data management infrastructures. In: Danezis, G., Golle, P. (eds.) PET
2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006)

[17] Ghinita, G., Kalnis, P., Skiadopoulos, S.: Mobihide: A mobile peer-to-peer system
for anonymous location-based queries. In: Papadias, D., Zhang, D., Kollios, G.
(eds.) SSTD 2007. LNCS, vol. 4605, pp. 221–238. Springer, Heidelberg (2007)

[18] Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity:
Architecture and algorithms. IEEE Trans. on Mobile Computing 7(1), 1–18 (2008)

[19] Hu, H., Xu, J.: Non-exposure location anonymity. In: ICDE (2009)
[20] Lee, D.T.: On k-nearest neighbor voronoi diagrams in the plane. IEEE Trans. on

Computers 31(6), 478–487 (1982)
[21] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

2nd edn. MIT Press, Cambridge (2001)

Time-Aware Similarity Search:
A Metric-Temporal Representation

for Complex Data

Renato Bueno1, Daniel S. Kaster2,�, Agma Juci Machado Traina1,
and Caetano Traina Jr.1

1 Department of Computer Science, University of São Paulo at São Carlos, SP, Brazil
{rbueno,agma,caetano}@icmc.usp.br

2 Department of Computer Science, University of Londrina, Londrina, PR, Brazil
dskaster@uel.br

Abstract. Recent advances in information technology demand handling
complex data types, such as images, video, audio, time series and ge-
netic sequences. Distinctly from traditional data (such as numbers, short
strings and dates), complex data do not possess the total ordering prop-
erty, yielding relational comparison operators useless. Even equality com-
parisons are of little help, as it is very unlikely to have two complex
elements exactly equal. Therefore, the similarity among elements has
emerged as the most important property for comparisons in such do-
mains, leading to the growing relevance of metric spaces to data search.
Regardless of the data domain properties, the systems need to track
evolution of data over time. When handling multidimensional data, tem-
poral information is commonly treated as just one or more dimensions.
However, metric data do not have the concept of dimensions, thus adding
a plain “temporal dimension” does not make sense. In this paper we pro-
pose a novel metric-temporal data representation and exploit its proper-
ties to compare elements by similarity taking into account time-related
evolution. We also present experimental evaluation, which confirms that
our technique effectively takes into account the contributions of both
the metric and temporal data components. Moreover, the experiments
showed that the temporal information always improves the precision of
the answer.

1 Introduction

Recent advances in information technology demand handling complex data
types, such as images, video, audio, time series and genetic sequences. Differ-
ently from traditional data (such as numbers, short strings and dates), complex
data do not possess the total ordering property, yielding relational comparison
operators (‘<’, ‘≥’, ‘≤’ and ‘>’) useless. Even equality comparisons (= and �=)

� On leave at Department of Computer Science, University of São Paulo at São Carlos,
SP, Brazil.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 302–319, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Time-Aware Similarity Search: A Metric-Temporal Representation 303

are of little help, as it is very unlikely to have two complex elements exactly
equal. Therefore, new query operators are required to compare complex data,
and the similarity among elements has been come forth as the most important
property of such domains. Similarity relies on a measurement, often given by a
distance function called a metric, which quantifies how much two elements are
dissimilar. Thus, metric spaces are adequate to represent complex data, as they
only require the elements and their pairwise distances [1].

Regardless of the data domain properties, the systems need to track the evo-
lution of data over time. In the literature there are many space models developed
to represent time information associated with the data stored in a DBMS. Exist-
ing time-aware models are focused either on simple/atomic data (e.g. numbers,
dates and small texts) or on dimensional data (e.g. spatial and multidimen-
sional data). However, metric data do not comply to the requirements of either
of those spaces, so a new approach is required to represent time together with
complex data.

As an example, suppose a health care application aimed at checking patients’
treatment evolution based on the results of image-based exams. The temporal
information associated with each exam is very important, whether this time
data is absolute or relative to an aspect of interest (e.g. the treatment time).
Comparing images usually requires extracting a set of features from the images,
thereafter comparing the features through a metric. Often, the set of features
extracted from each image has different cardinality for each image, as when the
features represent shapes of objects in the images. Thus, multidimensional spaces
are not adequate to represent such data. Since images and temporal information
require integrated treatment, a metric-temporal solution is required to support
this application.

Other examples which demand such integration include:

Large buildings monitoring – keeping track of bridges, buildings and towers
by monitoring sensors dynamically placed on the structures;

Equipment sensing – supervising sensor data from industrial/scientific appa-
ratus, such as machinery, metallurgical furnaces and ducts in oil refineries;

Temporal series analysis – studying weather, stock exchange and market be-
havior and tendencies over different periods.

When handling multidimensional data, temporal information is commonly
treated as just one or more dimensions. However, metric data do not possess the
concept of dimensions, thus including a “temporal dimension” does not make
sense. In this paper we propose a novel metric-temporal space representation
and exploit its properties to compare elements by similarity taking into account
time-related evolution.

The remainder of the paper is structured as follows. Section 2 introduces some
basic concepts and surveys related work. The proposed metric-temporal space
is described in Section 3. Section 4 shows results of experiments performed to
evaluate the properties of the proposed space. Finally, Section 5 presents the
conclusions and suggests further work.

304 R. Bueno et al.

2 Background and Survey

In this section we present the main concepts involved in the paper, and review
the main related techniques presented in the literature.

2.1 Similarity Search and Metric Spaces

Similarity depends on a function that compares a pair of elements in the data
domain and returns a real value quantifying how much they differ. The similarity
can be measured as a distance, so smaller values denote more similar elements.
There are many kinds of metrics usually employed when indexing complex data
in metric access methods, such as the Minkowski family of metrics for multidi-
mensional data, the Metric Histogram Distance (MHD) for images [2] and the
Levenshtein distance for character strings.

A similarity query returns the stored elements that satisfy a given similarity
criterion. The criterion is usually expressed relatively to one or more reference
elements, called the query center(s). The most common similarity operators are
the Range query (Rq) and the k-Nearest Neighbors query (k-NNq) [3].

Although many complex data can be understood as points in a vector or
multidimensional space, there are “adimensional” domains, such as words and
genetic sequences, for whom no dimensionality can be assigned. If a function
that compute distances among the elements is defined, both adimensional and
dimensional data can be represented in a metric space. Formally, a metric space
is defined as a pair M = 〈S, d〉, where S is the universe of valid elements and
d is a metric, i.e. a distance function d : S× S → R

+ that satisfies the fol-
lowing properties, ∀s1, s2, s3 ∈ S: (1) symmetry: d(s1, s2) = d(s2, s1); (2) non-
negativity: 0 < d(s1, s2) < ∞ if s1 �= s2 and d(s1, s1) = 0; and (3) triangular
inequality: d(s1, s3) ≤ d(s1, s2) + d(s2, s3).

Metric spaces can be aggregated, composing their respective metrics into a new
function, provided it also preserves the properties of a metric. Formally, metric
aggregations correspond to products of metric spaces, so the resulting metric is
usually called the product metric [4]. This property allows performing multivariate
analysis on metric data composed of several attributes, with varying domains and
measurement units.

Several indexing structures that exploit the metric space properties to speed
up similarity query answering have been developed, known as Metric Access
Methods (MAM). Existing MAM can be classified as: (i) Static, which are con-
structed in a single operation using the whole dataset and need to be rebuilt
upon modifications, such as the BK-Tree [5] and the VP-Tree [6]; and (ii) Dy-
namic, which allow incremental construction, such as the M-tree [7], the Slim-tree
[8] and the BM+-tree [9]. However, none of them handle temporal information
associated with metric data.

2.2 Time-Aware Databases

The need to handle temporal information is common for many database appli-
cations. The data, notwithstanding the domain, can evolve over time and this

Time-Aware Similarity Search: A Metric-Temporal Representation 305

fact is crucial to several systems. There are many space models described in the
literature aimed at representing temporal information in databases. Temporal
spaces usually consider one or more additional temporal dimensions over the
data, in particular the transaction time (the time when the data item is stored,
changed or removed) and valid time (the period when the data item is valid) [10].

The association of time to complex data has received special attention in
geographic applications, leading to the spatio-temporal databases. A spatio-
temporal database embodies spatial, temporal, and spatio-temporal concepts,
and captures either aspects of data [11]. With the advances in positioning sys-
tems and mobile communications, the spatio-temporal research on moving ob-
jects has become prominent. This area has been impelled by applications that
must keep track of geometry changes or movements of the monitored objects
over time. These applications demand novel types of queries and database up-
date solutions, since it is usually a problem to maintain the current objects’
shape and/or location up to date, especially if the number of objects is large. In
this sense, several researchers created spatio-temporal access methods [12,13,14].
Also, new query variations have been suggested, such as joins for moving ob-
jects [15,16,17], continuous queries [18,19,20] and clustering [21,22].

The temporal information is commonly treated adding one or more dimen-
sions to the data space. As long as the atemporal data embody the concept
of dimensions, the temporal dimensions integrate seamlessly to them. However,
this is not the case with metric data, thus the temporal data handling must
be kept apart from the treatment of the metric information. To the best of our
knowledge, there is no previous work addressing the association of temporal
information to metric data, which we propose in this paper.

To do so, we employed the support given by the Fractal theory, which will be
briefly explained in the next subsection.

2.3 Fractal Theory Applied to Databases

A fractal is defined as the property of objects being self-similar, independently of
scale or size, i.e. parts of a fractal object are directly or statistically similar to the
whole object [23]. Some experimental evidence has shown that the distribution
of distances between pairs of elements, in the majority of real datasets, present
self-similarity, thus they can be considered as fractal datasets [24], at least for
some distance ranges.

An interesting result of the Fractal theory is that any fractal has intrinsic
dimensions, independent from the space where the object is immersed, and they
can be measured by its so-called fractal dimensions. One of the most useful fractal
dimensions for databases is the correlation fractal dimension D2. Knowing D2 of
a dataset allows predicting its properties as being similar to that of a dimensional
dataset with approximately the same embedded dimension [25].

There are two common numerical methods to calculate the intrinsic dimension
of a dataset. The box-counting method [23] described following, is commonly ap-
plied for multidimensional data. Given a dataset immersed in an E-dimensional
space, recursively divide the hypercube involving the dataset into cells of side

306 R. Bueno et al.

Fig. 1. Crossroads’ geographical coordinates of Montgomery county of Maryland, MD,
USA.(a) Plot of the dataset. (b) Distance plot graph.

size r, and count the number of elements lying inside each cell until r tends to
zero. The plot, in log-log scale of the summation of the squared counts against
the side size is called the box-counting plot. The plot of datasets that are per-
fectly fractals are a straight line, and most of the real datasets results into a
curve that can be fitted by a line too. The line slope is a close approximation of
the intrinsic dimension of the dataset.

For metric data, the intrinsic dimension can be calculated in the way follow-
ing [26]. Given a set of elements in a dataset with a metric d, the average number
k of neighbors within a given distance r is proportional to r raised to a value D.
Therefore, the pair-count PC(r) of elements within distance r follows the power
law:

PC(r) = Kp · rD (1)

where Kp is a proportionality constant. The graph obtained calculating Equa-
tion 1 is called the distance plot. When plotted in log-log scales, the graph can
be fitted by a line too, and its slope is the exponent D in Equation 1, called the
distance exponent. The fundamental property of the distance exponent is that
it closely approximates D2. Figure 1 shows the spatial distribution and the dis-
tance plot of a US Bureau of Census dataset whose elements are the crossroads’
geographical coordinates of Montgomery county of Maryland, MD, USA, which
has intrinsic dimension D2 = 1.82.

The Fractal theory has been successfully applied to many tasks in data man-
agement. Particularly, the correlation fractal dimension has a number of useful
properties. For example, if the data distribution is kept, it is insensitive to the
dataset cardinality, so updates in the dataset do not require its recalculation.
Thus, when the dataset is large, it can be calculated based on a small sample.
Moreover, the value of the intrinsic dimension reflects the existence of correla-
tions among the attributes of a dataset. Therefore, the fractal dimension provides
an estimate of a lower bound for the number of features needed in a similarity

Time-Aware Similarity Search: A Metric-Temporal Representation 307

search to keep the essential data characteristics and this bound is a function of
the intrinsic dimension of the dataset [27].

Following the good results achieved by previous work, in this paper we use
the Fractal theory in the definition of a space model to associate temporal in-
formation to metric data, as described in the next section.

3 A Metric-temporal Space

In this section we present the main concepts of the proposed metric-temporal
space. We also introduce two distance functions to compare time, so both time
and metric information can be seamlessly handled, and provide a procedure to
assign proper weights for the metric and temporal components of the metric-
temporal space that is able to exploit the best contribution of both. Table 1
summarizes the symbols used in this paper.

Table 1. Summary of symbols and definitions

Symbol Definition
D2 correlation fractal dimension

S and T domains of complex and temporal data
ds(s1, s2) and dt(t1, t2) metrics over complex (s1, s2) and temporal (t1, t2) elements

V metric-temporal domain
dv(v1, v2) metric-temporal distance function

πs(vi) and πt(vi) metric and temporal projections of the metric-temporal element vi

ws and wt weights of the metric and temporal components in dv

ps and pt metric and temporal intrinsic dimensionality
�s and �t metric and temporal component side sizes

δs max and δt max largest distances between any two metric projections and any
two temporal projections

3.1 Metric-temporal Spaces

Let 〈S, ds〉 be a metric space, where S is a complex data domain, not necessarily
dimensional, and ds : S× S → R

+ is the metric employed to compute the similar-
ity between elements of the domain. Let 〈T, dt〉 be another metric space, where T

is a temporal domain that includes every time value that can be associated with
an element stored in a database, and dt : T× T → R

+ is a metric that calculates
the similarity between two time values. Then we define a metric-temporal space
as follows.

Definition 1 (Metric-temporal space). A metric-temporal space is a
pair 〈V, dv〉, where V = S× T and dv : V× V → R

+ is a metric between elements
of a metric space with time information associated, called the metric-temporal
distance function, which aggregates the functions ds and dt in a particular
way.

According to Definition 1, an element of a metric-temporal space is basically the
association of time information to an element of a metric space. For instance, we
can represent a real world object by a set of pairs {〈s1, t1〉, . . . , 〈sn, tn〉}, si ∈ S

and ti ∈ T, that are the states of the objects in the given time instants.

308 R. Bueno et al.

Definition 2 (Metric and temporal projections). Given an element vi ∈
V, such that vi = 〈si, ti〉|si ∈ S, ti ∈ T, we call si as the metric projection of
vi, denoted as si = πs(vi), and ti as the temporal projection of vi, denoted as
ti = πt(vi).

In order to state the identity of elements in a metric-temporal space, we make
the definition following.

Definition 3 (Metric-temporal identity). Two elements v1, v2 ∈ V are the
same iff πs(v1) = πs(v2) and πt(v1) = πt(v2).

3.2 Metric-temporal Similarity Functions

A metric-temporal distance function aggregates the metrics of both the metric
and temporal components of a metric-temporal space. Here we consider each
metric as a “black box” defined by the domain specialist. Existing temporal data
models do not treat time information as data in a metric space as we propose
in this work. Therefore, we suggest two basic temporal metrics to measure the
similarity of the temporal component.

Definition 4 (A metric for instants). Given a temporal domain Ti repre-
senting instants, such that Ti ⊆ R

+, the distance between two instants t1, t2 ∈ Ti

is given by dti(t1, t2) = |t1 − t2|.

Metric dti is well suited to compare time instants, stated as the absolute differ-
ence between them. This function is essentially an unidimensional Manhattan
distance (L1), so it is a metric.

Definition 5 (A metric for periods). Let Tp be a temporal domain repre-
senting periods, such that ∀ti ∈ Tp, ti = [li, ui]|li, ui ∈ R

+ and li ≤ ui, where li
and ui are respectively the lower and upper instants of the period. The metric to
compare two intervals t1, t2 ∈ Tp is given by:

dtp(t1, t2) = |M(t1)−M(t2)|+ |I(t1)− I(t2)| (2)

where M(ti) = li + (ui−li)
2 is the middle instant and I(ti) = ui − li is the size of

period ti.

The function dtp clearly satisfies the symmetry and non-negativity properties
because it is a summation of absolute values. The triangular inequality property
also holds, as shown following, assuming ∀t1, t2, t3 ∈ Tp:

dtp(t1, t2) = |M(t1)−M(t2)|+ |I(t1)− I(t2)|
= |M(t1)−M(t2) + M(t3)−M(t3)|+ |I(t1)− I(t2) + I(t3)− I(t3)|
≤ |M(t1)−M(t3)|+|M(t3)−M(t2)|+ |I(t1)− I(t3)|+ |I(t3)−I(t2)|
= dtp(t1, t3) + dtp(t3, t2)

thus, dtp is metric.

Time-Aware Similarity Search: A Metric-Temporal Representation 309

In order to develop a similarity measure for a metric-temporal space, it is
necessary to adequately compose the two metrics ds and dt. As both are metric
by definition, the natural way to compose them is defining a metric aggregation
as a product metric. We propose here to employ the function following.

Definition 6 (A product metric for metric-temporal spaces). Given a
metric ds for the metric component and a metric dt for the temporal component
of a metric-temporal space V, the following product metric generates a metric-
temporal space, vi, vj ∈ V and ws, wt ∈ R

+:

dv

(
vi, vj

)
= ws · ds

(
πs(vi), πs(vj)

)
+ wt · dt

(
πt(vi), πt(vj)

)
(3)

where ws is the weight of the metric component and wt is the weight of the
temporal component of the metric-temporal space.

Analyzing the properties of a metric, we see that the non-negativity and symme-
try properties follow directly for dv, because both ds and dt are metrics. Further-
more, dv also satisfies the triangular inequality property for any vi, vj , vk ∈ V,
as follows.

dv

(
vi, vj

)
= ws · ds

(
πs(vi), πs(vj)

)
+ wt · dt

(
πt(vi), πt(vj)

)
≤ ws ·

(
ds

(
πs(vi), πs(vk)

)
+ ds

(
πs(vk), πs(vj)

))
+

wt ·
(
dt

(
πt(vi), πt(vk)

)
+ dt

(
πt(vk), πt(vj)

))
= ws · ds

(
πs(vi), πs(vk)

)
+ wt · dt

(
πt(vi), πt(vk)

)
+

ws · ds

(
πs(vk), πs(vj)

)
+ wt · dt

(
πt(vk), πt(vj)

)
= dv(vi, vk) + dv(vk, vj)

Thus, the composition function dv is metric. Notice that temporal metric either
for instances or for intervals can be employed as dt. If more than one time
measure exist, for example transaction and valid time, such as multidimensional
spaces, all the time-related metrics can be aggregated into a single product
metric.

Considering a metric-temporal distance function which follows Definition 6,
the challenge now is how to set weights ws and wt for the metric and temporal
components, in order to achieve good similarity assessment. In other words, we
need to answer the following question: “For each similarity unit obtained by the
metric ds

(
πs(vi), πs(vj)

)
, what should be the equivalent time unit given by the

metric dt

(
πt(vi), πt(vj)

)
to compare vi and vj?” In the next section we propose

a solution for this problem.

3.3 A Scale Factor for a Metric-temporal Similarity Function

The main idea to define the weights ws and wt is to identify the relative contri-
bution of the metric and temporal components of a metric-temporal space for
the final similarity calculation.

310 R. Bueno et al.

A well-known property of the metric spaces theory states that a metric sub-
space S with cardinality |S| = s always can be mapped into a vector space R

s−1

in such a way that the distances in the original space calculated by the original
metric are exactly preserved in the mapped space calculated by a Minkowski
function of order q. Exact mappings cannot be guaranteed in mapped spaces
with less than s− 1 dimensions. However, depending on the particular data dis-
tribution of the dataset, the errors on the mapped distances can be very small
until the number of dimensions drops below a limit related to the intrinsic di-
mension of the dataset. Here we assume that the correlation fractal dimension
provides a close estimate for the intrinsic dimension.

Our approach is to make the weights ws and wt proportional to the side sizes
of the hypercubes covering the subspaces mapped from the metric and temporal
components into corresponding vector spaces. Although we do not need to perform
the real mappings, we use these concepts to measure some properties in the dataset
to estimate the weights. Therefore, the following definitions are useful.

Definition 7 (Intrinsic component dimensionality). Let V ⊂ V be a
dataset such that S ⊂ S contains the metric projections of all the elements of V
and T ⊂ T contains the temporal projections of all the elements of V . Let also
the similarity function dv over V be a metric-temporal distance function given
by Definition 6. Then, we define ps and pt respectively as the intrinsic metric
dimensionality and the intrinsic temporal dimensionality of dataset V ,
calculated as the ceiling of the correlation fractal dimension �D2� of the metric
and temporal components.

The intrinsic metric dimensionality ps can be approximated using the distance
plot technique to calculate D2 over S. In the same way, the intrinsic temporal
dimensionality pt can be approximated using either the box-counting or the
distance plot techniques to calculate D2 over T , depending on the temporal
component being multidimensional or not.

Definition 8 (Component side size). Given a metric-temporal dataset V
with the corresponding metric and temporal projections S and T , the metric
side size
s of V and temporal side size
t of V are respectively the side sizes
of the hypercubes of dimensions ps and pt covering the mappings of S and T .

Although the real side sizes of both hypercubes can only be evaluated performing
the mapping of both subspaces, for the sake of this work a close approximation
can be evaluated as follows.

The diameter of a hypercube of dimension ps and side size
s in a vector space
ruled by a Minkowski distance function of order q covering the mapping of the
dataset S is diam(S) = q

√
ps ·
s. Let δs max be the largest distance between any

two metric projections in S. The value of δs max can be measured directly over
the original dataset, and it is commonly referred to as the dataset diameter. As-
suming that the diameter δs max of the dataset S is nearly equal to the diameter
diam(S) of the hypercube covering the mapping of S, we have that the side size of
the hypercube can be approximated by
s = 1

q
√

ps
· δs max. Figure 2 shows the in-

tuition of this calculation, where the dataset S ⊂ S immersed in the metric space

Time-Aware Similarity Search: A Metric-Temporal Representation 311

Fig. 2. A metric space mapped to a vector space R
3 ruled by the L2 distance function.

The side size of the cube covering the mapping of the dataset is �s = 1√
3
· δs max.

〈S, ds〉 is mapped to a vector space of order ps = 3 ruled by the Euclidean dis-
tance function L2. Thus, the side size of the hypercube covering the mapping of S
is
s = 1√

3
· δs max. The metric space distribution in the figure is merely illustra-

tive, since metric spaces do not need to have a shape in any dimensional space.
Although the value of δs max can be measured by computing the distances

between every element pair si, sj ∈ S, this operation is quadratic on the number
of elements in S. However, cheaper existing techniques can be employed to get
close approximations. For example, if a MAM is indexing the data, it is feasible
to get a good approximation stating δs max as the diameter of the region covered
by the MAM’s root node.

The value
t is calculated using in the same procedure as
s.
We define each component weight as just the inverse of the corresponding

component hypercube side size. Therefore, we state one last definition, as follows.

Definition 9 (Component weights). The weights ws and wt of the metric
and temporal components of metric-temporal distance function following Defini-
tion 6 are given respectively by ws =

q
√

ps

δs max
and wt =

q
√

pt

δt max
, where ps, δs max,

pt and δt max can be measured directly from V .

In the commonest case where the temporal information in T are single-valued
time instants, �D2(T)� = 1. Thus q

√
pt = 1 for any q, so wt = 1

δt max
.

The experimental evaluation of our technique, shown in the next section, con-
firms that the proposed way to calculate the weights ws and wt gives a suitable
representation of the contributions of the metric and temporal components for
the metric-temporal similarity function.

4 Experiments

This section presents results of some experiments performed to evaluate the
proposed metric-temporal space. The experiments were implemented in C++

312 R. Bueno et al.

using the Slim-tree metric access method available in the Arboretum library1

to index data. The tests were executed in a computer equipped with an AMD
Athlon 2.6 GHz processor and 4Gb of RAM. The next subsections describe the
dataset setup and discuss the experiments.

4.1 Datasets and Experimental Setup

The experiments explored the scenery where a set of images from evolving
subjects need to be analyzed. The images are compared through feature sets
extracted by image processing algorithms. We associate to each set the time
when the image was obtained, relatively to the time when the subject started to
evolve. The image dataset employed is the Amsterdam Library of Object Images
(ALOI)2 [28]. It is a collection of color images from one thousand small objects.
Figure 3 shows a small sample of those images. Each object was photographed
systematically varying an image parameter. For the experiments, we selected a
dataset where each object was photographed from 72 different viewing angle,
each 5 degree apart from the previous. We assumed that each angle correspond
to its relative time stamp. That is, an object rotated by t degrees corresponds
to a photography taken after t units of time.

Fig. 3. A sample of the images from the ALOI dataset

Each of the 72,000 images was processed by the three feature extractors sum-
marized in Table 2. The features obtained by each extractor create a dataset. The
first dataset is called Zernike, and the features are the first 256 Zernike moments
describing the shapes of the images’ contents. The second dataset is called Met-
ric Histogram. It is an adimensional dataset containing the metric histograms of
1 An open-source software library available at http://gbdi.icmc.usp.br/arboretum,

which implements several MAMs.
2 Available at http://staff.science.uva.nl/∼aloi/

Time-Aware Similarity Search: A Metric-Temporal Representation 313

Table 2. Datasets used in the experiments

Name Size Dim. Metric Description
Zernike 72,000 256 L1 The first 256 Zernike moments of the ALOI images

Metric Histogram 72,000 – MHD The metric histograms of the ALOI images
Histogram 36,000 256 L1 The gray-scale histograms of the ALOI images

with rotations from 0 to 175 degrees

the images. The last one is called Histogram, built selecting 36 images of each
object (those with rotation angle varying from 0 to 175 degrees) and calculating
their gray-scale histograms. The metric to compare the time information, for
each dataset, is the absolute time difference. The metrics used to compute the
similarity of the metric part were L1, Metric Histogram Distance (MHD) and
L1, respectively for the datasets Zernike, Metric Histogram and Histogram.

To evaluate the query results quality we employed precision versus recall
graphs. The recall of the result of a given query is the fraction of the relevant
elements which has been retrieved. Thus, recall = |Ra|

|R| , where |Ra| is the number
of relevant elements retrieved and |R| is the number of relevant elements that
should be retrieved. The precision of a query is the fraction of the retrieved
elements which are relevant. Thus, precision = |Ra|

|A| , where |Ra| is the number
of relevant elements retrieved and |A| is the size of the answer set. Precision ×
recall curves can be summarized by a single numeric value to allow an overall
evaluation of different queries at once. There are some strategies to perform
this summarization. In this work we employed the average precision, which is
given by the average of the precision values at all recall levels, as defined in [29].
Intuitively, the average precision is the area below a precision × recall curve.

Fig. 4. Elements relevant to the query center shown. Results for a 5-NNq (a) and for
a 7-NNq (b).

314 R. Bueno et al.

We assumed the following criterion to define which are the relevant elements
for a query: “The most relevant elements for a query are the images of the query
element with the smallest difference between their time stamps.” The support of
this decision is the observation that the aspect of an object with similar rotation
degrees varies smoothly and the objects recorded are significantly different, which
leads to a reasonable assumption that these elements are semantically similar.
Figure 4 presents examples that illustrate this idea.

4.2 Inspecting the Ideal Contribution for the Metric and Temporal
Components

The goal on the first set of experiments was to identify a near-optimal bal-
ance between the components of a metric space in the similarity evaluation. In
the experiments we used the Minkowski distance function with q = 1 for the
mapped space, because it is cheaper to evaluate and we found experimentally
that it produces results as good as the others. Thus, we have ws = ps/δs max

and wt = pt/δt max. We calculated the values of ps and pt using the distance
plot technique for all datasets. The values δs max and δt max were also obtained
by the distance plot, because this method computes every pairwise distance.

Regarding the three datasets used in the experiments, the temporal compo-
nent is the same for the three datasets evaluated. The corresponding distance
plot can be seen in Figure 5. Thus, the value of the correlation fractal dimension
for the metric space 〈T, dt〉 was 0.98, so wt = �D2(T)� = 1.

The distance plots for the metric component of all datasets are shown in
Figure 6. As it can be seen, it is straightforward to fit a line for the Metric
Histogram distance plot, but not for the others. The fitting strategy must be
suited to the goal for which the value of the fractal dimension will be used. Our
interest is on answering queries over a metric-temporal space. In this context,
the k-NN queries typically employ small values for k, and range queries aims
at returning a number of elements that is not too big either. Thus, we assumed
that values of k between 5 and 100 are adequate for most applications. Following
this reasoning, we are interested in fitting the line in the part of the distance
plot that refers to the interval between 5 and 100 elements. Equation 1 uses the
number of pairs PC(r) within a distance r, and we are interested in the number
k of elements involved. Therefore we must convert “numbers of elements” into

Fig. 5. Distance plot for the temporal component T of the three datasets

Time-Aware Similarity Search: A Metric-Temporal Representation 315

Fig. 6. Distance plot of the metric component S for the datasets: (a) Histogram (b)
Zernike (c) Metric Histogram

“numbers of pairs” within a distance. The number of pairs in a subset of k
elements (counting each pair once) is Pairs(k) = k(k−1)/2. Therefore we fitted
the line based on the points that have the ordinate values log(Pairs(5)) = 2.302
and log(Pairs(100)) = 8.507, as indicated in Figure 6. This procedure resulted
in correlation fractal dimensions of 8.9, 15.1 and 3.2 respectively for the metric
component of the datasets Histogram, Zernike and Metric Histogram, which
leads to the metric part power ps respectively of 9, 16 and 4.

To evaluate if those weights are adequate, we executed a set of queries over
each dataset varying the value of ps. For each query, the query center was ran-
domly selected from the respective dataset and 5 ≤ k < 10. Figure 7 shows
the average precisions obtained for a range of ps values for the three datasets,
where each point in the average precision plot is the average of evaluating 500
k-NN queries. In this figure, we highlighted the value of ps = 9, 16 and 4 for the
respective dataset. As it can be seen, those values of ps are always the one that
lead to the best, or very close to the best precision to answer queries.

Another point to be evaluated is whether using the temporal component helps
improving the query answering precision. Therefore, in the next experiment we
executed the same set of queries using only the metric component over each
dataset. The results are also shown in Figure 7, as the dashed lines (remember
that those queries are insensitive to ps). As it can be seen, using the temporal
component is almost always better than not using it, even for bad values of ps.

As the average precision offers only a rough idea of the precision × recall plots,
we show in Figure 8 the plots for 10-NN queries adjusting the weights to the best
values, that is, using ps = 9, 16 and 4 respectively for the Histogram, Zernike
and Metric Histogram datasets. This figure also shows the precision× recall plots
obtained executing the same queries using only the metric part of each dataset.
The plots show that the metric-temporal space achieved better results at all recall
levels in all datasets. In fact, it allows improving the average precision of k-NN
queries from 0.88 to 0.92 in the Histogram dataset, from 0.67 to 0.74 in the Zernike
dataset, and from 0.82 to 0.92 in the Metric Histogram dataset.

It is worth mentioning that the time required to answer queries using the
metric-temporal space was practically identical to answer the same queries using

316 R. Bueno et al.

Fig. 7. Average precisions of k-NN queries for varying values of ps for three datasets.
The points show the average precisions regarding the metric-temporal space, and the
dashed lines show the average precision considering only the metric components, fol-
lowing Definition 6.

Fig. 8. Precision × recall of 10-NN queries using the proposed metric-temporal strate-
gies endowed with the best weights for the metric and the temporal components, com-
pared with using only the metric components

Table 3. Time measurements to obtain parameters ps and pt

Name Time
Zernike (ps) 18s
Metric Histogram (ps) 14s
Histogram (ps) 5s
Time (pt) 0.7s

only the metric components, because the additional cost of the temporal com-
ponent computation was irrelevant when compared to the costs of the original
metric. The only significant cost added by the metric-temporal space refers to the
calculation of the correlation fractal dimensions, used to define the values of ps and
pt. However, it can be calculated based on a small sample of the original datasets,
since the fractal dimension is invariant to unbiased sampling. We evaluated sev-
eral sampling ratios, and for those datasets the values of ps and pt calculated using
samples of up to 1% of the datasets were the same as those calculated using the
whole datasets. Table 3 shows the time to determine the values of ps and pt us-
ing a sampling of 2.5% of the datasets, which were employed in all experiments

Time-Aware Similarity Search: A Metric-Temporal Representation 317

reported. It is important to emphasize that these values are calculated only once,
before starting to answer queries.

5 Conclusions and Future Work

The main contribution of this paper is the introduction of the Metric-Temporal
space as an adequate representation for metric data that evolves over time.
Distinctly from the multidimensional spaces, where the concepts of dimensions
are native, our proposed space does not rely on representing time as dimensions,
but as a time-related component associated with the metric data, regardless of
the number of distinct time measurements that can be assigned to each metric
data element.

Besides the introduction of the metric-temporal space, other related contri-
butions are as follows.

– We proposed a metric approach to compare time measurements using either
punctual time events or time periods, leading to a natural way to treat time
in metric domains.

– We developed a procedure to assign proper weights for both the metric and
the temporal components, which always provided the best answer, and does
not rely on any user-provided parameter.

Finally, we performed several experiments showing that our technique effectively
takes into account the temporal information associated with the metric data,
always helping to improve the precision of similarity queries. The experiments
also show that the proposed method to evaluate the contribution of the metric
and the temporal components leads to the best weight to be assigned to each
component.

As a follow-up of this work, we are now investigating how to perform similar-
ity queries over metric-temporal datasets with missing data, helping to answer
questions such as: “What are the images closest to the image of this particular
subject when it was at a given time t, even if there is no image of this subject at
that particular time?”

Acknowledgments

This work has been supported by the Brazilian funding agencies FAPESP, CNPq
and CAPES.

References

1. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)

2. Traina, A.J.M., Traina Jr., C., Bueno, J.M., Marques, P.M.d.A.: The metric his-
togram: A new and efficient approach for content-based image retrieval. In: VDB,
Brisbane, Australia. IFIP Conference Proceedings, vol. 216, pp. 297–311. Kluwer
Academic Publishers, Dordrecht (2002)

318 R. Bueno et al.

3. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces - index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (2001)

4. Searcóid, M.Ó.: Metric Spaces. Springer Undergraduate Mathematics Series.
Springer, Heidelberg (2006)

5. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
mun. ACM 16(4), 230–236 (1973)

6. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: SODA, Austin, TX, USA, pp. 311–321. ACM, New York
(1993)

7. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for simi-
larity search in metric spaces. In: VLDB, Athens, Greece, pp. 426–435. Morgan
Kaufmann, San Francisco (1997)

8. Traina Jr., C., Traina, A.J.M., Faloutsos, C., Seeger, B.: Fast indexing and visu-
alization of metric datasets using Slim-trees. IEEE Trans. on Knowl. and Data
Eng. 14(2), 244–260 (2002)

9. Zhou, X., Wang, G., Zhou, X., Yu, G.: BM+-tree: A hyperplane-based index
method for high-dimensional metric spaces. In: Zhou, L.-z., Ooi, B.-C., Meng, X.
(eds.) DASFAA 2005. LNCS, vol. 3453, pp. 398–409. Springer, Heidelberg (2005)

10. Snodgrass, R.T.: The TSQL2 Temporal Query Language. Kluwer Academic Pub-
lishers, Dordrecht (1995)

11. Sellis, T.K.: Research issues in spatio-temporal database systems. In: Güting,
R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 5–
11. Springer, Heidelberg (1999)

12. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: An optimized spatio-temporal
access method for predictive queries. In: VLDB, Berlin, Germany, pp. 790–801.
Morgan Kaufmann, San Francisco (2003)

13. Kollios, G., Papadopoulos, D., Gunopulos, D., Tsotras, V.J.: Indexing mobile ob-
jects using dual transformations. VLDB J. 14(2), 238–256 (2005)

14. Chen, S., Ooi, B.C., Tan, K.L., Nascimento, M.A.: St2B-tree: a self-tunable spatio-
temporal B+-tree index for moving objects. In: SIGMOD, Vancouver, BC, Canada,
pp. 29–42. ACM, New York (2008)

15. Zhang, R., Lin, D., Ramamohanarao, K., Bertino, E.: Continuous intersection joins
over moving objects. In: ICDE, Cancun, Mexico, pp. 863–872. IEEE, Los Alamitos
(2008)

16. Leong Hou, U., Mamoulis, N., Yiu, M.L.: Continuous monitoring of exclusive
closest pairs. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS,
vol. 4605, pp. 1–19. Springer, Heidelberg (2007)

17. Corral, A., Torres, M., Vassilakopoulos, M., Manolopoulos, Y.: Predictive join
processing between regions and moving objects. In: Atzeni, P., Caplinskas, A.,
Jaakkola, H. (eds.) ADBIS 2008. LNCS, vol. 5207, pp. 46–61. Springer, Heidelberg
(2008)

18. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: scalable incremental processing of
continuous queries in spatio-temporal databases. In: SIGMOD, Paris, France, pp.
623–634. ACM, New York (2004)

19. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An
efficient method for continuous nearest neighbor monitoring. In: SIGMOD, Balti-
more, Maryland, USA, pp. 634–645. ACM, New York (2005)

20. Papadopoulos, S., Sacharidis, D., Mouratidis, K.: Continuous medoid queries over
moving objects. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS,
vol. 4605, pp. 38–56. Springer, Heidelberg (2007)

Time-Aware Similarity Search: A Metric-Temporal Representation 319

21. Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE
Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007)

22. Zhang, Z., Yang, Y., Tung, A.K.H., Papadias, D.: Continuous k-means monitoring
over moving objects. IEEE Trans. on Knowl. and Data Eng. 20(9), 1205–1216
(2008)

23. Schroeder, M.: Fractals, Chaos, Power Laws, 6th edn. W.H. Freeman, New York
(1991)

24. Faloutsos, C., Kamel, I.: Beyond uniformity and independence: Analysis of R-trees
using the concept of fractal dimension. In: PODS, Minneapolis, MN, USA, pp.
4–13. ACM, New York (1994)

25. Belussi, A., Faloutsos, C.: Self-spacial join selectivity estimation using fractal con-
cepts. ACM Trans. on Inf. Systems 16(2), 161–201 (1998)

26. Traina Jr., C., Traina, A.J.M., Faloutsos, C.: Distance exponent: a new concept
for selectivity estimation in metric trees. In: ICDE, San Diego, CA, USA, p. 195.
IEEE, Los Alamitos (2000)

27. Malcok, M., Aslandogan, Y.A., Yesildirek, A.: Fractal dimension and similarity
search in high-dimensional spatial databases. In: IRI, Waikoloa, Hawaii, USA, pp.
380–384. IEEE, Los Alamitos (2006)

28. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library
of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)

29. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. Addison-
Wesley, Wokingham (1999)

Adaptive Management of Multigranular
Spatio-Temporal Object Attributes�

Elena Camossi1, Elisa Bertino2, Giovanna Guerrini3, and Michela Bertolotto1

1 School of Computer Science and Informatics - University College Dublin,
Belfield, Dublin 4, Ireland

Ph.: +353 (0)1 7162-944/913, Fax: +353 (0)1 2697-262
{elena.camossi,michela.bertolotto}@ucd.ie

2 CERIAS - Purdue University, 250 N. University Street West Lafayette,
Indiana, USA 47907-2066

Ph.: +1 765 496-2399, Fax: +1 765 494-0739
bertino@cs.purdue.edu

3 DISI - Università degli Studi di Genova, Via Dodecaneso 35, 16146 Genova, Italy
Ph.: +39 010 353-6701, Fax:+39 010 353-6699

guerrini@disi.unige.it

Abstract. In applications involving spatio-temporal modelling, granu-
larities of data may have to adapt according to the evolving semantics and
significance of data. In this paper we define ST2 ODMGe, a multigranular
spatio-temporal model supporting evolutions, which encompass the dy-
namic adaptation of attribute granularities, and the deletion of attribute
values. Evolutions are specified as Event - Condition - Action rules and are
executed at run-time. The event, the condition, and the action may refer
to a period of time and a geographical area. The evolution may also be
constrained by the attribute values. The ability of dynamically evolving
the object attributes results in a more flexible management of multigran-
ular spatio-temporal data but it requires revisiting the notion of object
consistency with respect to class definitions and access to multigranular
object values. Both issues are formally investigated in the paper.

1 Introduction

The ability of representing datasets with respect to both their spatial layout
and their historical evolution is crucial when performing analysis and monitoring
changes in the spatial configuration of geographical areas. Moreover, approaches
able to present data at different granularities [3] represent an effective solution
to facilitate information analysis [1].

The granularity according to which information is represented depends on
the the data domain and semantics as well as on the application tasks to be
� Research presented in this paper was funded by a Strategic Research Cluster grant

(07/SRC/I1168) by Science Foundation Ireland under the National Development
Plan. The authors gratefully acknowledge this support. The work of Elena Camossi
is supported by the Irish Research Council for Science, Engineering and Technology.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 320–337, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 321

performed on them. The selection of the appropriate granularity is based on
modelling requirements and on a trade-off between application efficiency and
data accuracy. A greater detail (i.e., a finer granularity) reduces data indeter-
minacy and allows to obtain information as accurate as possible. Conversely,
storing data at an unnecessary level of detail, causes waste of space and addi-
tional costs in aggregating detailed data to the required abstraction level. Thus,
the choice of a less detailed representation (i.e., a coarser granularity) makes
it possible to store the minimal amount of data, thus reducing storage costs,
and could improve application efficiency. Therefore, the selection of attribute
granularities is a crucial task, that in existing multigranular systems is done
once for all, at schema definition time. To enhance data flexibility, the model at
hand must support the ability of dynamically setting and changing the spatio-
temporal granularity. A static definition of attribute granularities in the database
schema, as supported by current multigranular models, may not be adequate for
many important spatio-temporal applications. For instance, in a spatio-temporal
database for environmental monitoring, the collection of meteorological param-
eters such as the amount of rainfall, the strength and direction of the wind, the
value of atmospheric pressure must be collected more frequently in the presence
of exceptional events like hurricanes and storms. Moreover, such a granularity
modification may involve only specific geographical areas (e.g., those affected
by the phenomenon), and is required for limited periods of time (e.g., the time
when the phenomenon occurs).

In our effort to address these issues we have defined ST2 ODMGe (Spatio-
(Bi)Temporal ODMG supporting Evolutions), a spatio-temporal data model that
enables the evolution of attributes values, that is, the modification of the gran-
ularities used in attribute definitions, and the deletion of attribute values at
run-time. ST2 ODMGe evolutions reflect modifications about data significance
that arise for several reasons, including: 1) periodic phenomena (e.g., rain and
snowfall usually increase during predetermined seasons); 2) modification to the
value of an attribute, or its occurrence (e.g., in monitoring systems); 3) the ex-
ecution of an operation (e.g., in diagnostic systems); 4) data aging (e.g., older
data may be aggregated and then maintained at coarser granularities); 5) privacy
restrictions (e.g., individual information on user locations, which are collected in
traffic analysis, must be aggregated to coarser granularities in order to be made
publicly available). Hence, evolutions enhance the flexibility in the management
of multigranular spatio-temporal data. They allow one to dynamically adapt the
granularities to dynamic events and situations resulting from spatio-temporal
attribute value updates and operation executions.

The types of evolutions supported by ST2 ODMGe include: granularity evo-
lution, granularity acquisition, and value deletion. Granularity evolution aggre-
gates existing detailed data at a coarser granularity (e.g., older data that may
be stored for future reference), or refines information at a finer granularity (e.g.,
in data analysis)1. By contrast, granularity acquisition changes at run-time the

1 The latter operation increases indeterminacy on converted data, as discussed in the
paper and in further detail in [8].

322 E. Camossi et al.

granularity used when inserting new values in the database, whenever the do-
main conditions change (e.g., sales recording during Christmas). Finally, value
deletion removes attribute values that are no longer useful at a given granu-
larity (e.g., detailed data already aggregated at coarser granularities) from the
database.

The ST2 ODMGe model design extends our previous models ST ODMG [7], a
multigranular spatio-temporal object model that does not support evolutions,
and T ODMGe [6], a multigranular temporal model supporting dynamic objects.
It expands on their data definition languages, type systems, and multigranular
conversions to support the evolution of spatio-temporal values and the bitem-
poral domain. Granularity evolutions and value deletions, originally defined for
historical data only in T ODMGe [6], are herein extended to the spatio-temporal
domain: the spatio-temporal type system defined in ST ODMG [7], further ex-
tended to include bitemporal support, has been embedded in the new model
ST2 ODMGe. A fundamental difference with our previous evolution model [6],
where granularity evolutions only allow one to summarize older data at coarser
granularities, is that in ST2 ODMGe they may be specified also to refine data at
finer granularities. Other important differences with T ODMGe [6] are: 1) evolu-
tions may be specified and executed at run-time, based on the execution model
of active databases, instead of being defined statically in the database schema;
2) evolutions of an attribute value may be triggered according to database con-
ditions involving also other attributes, as well as relying on the execution of
methods, thus making our evolution approach highly flexible; 3) the introduc-
tion of granularity acquisition removes one of the major limiting assumptions
of T ODMGe, where the granularity used for acquiring new data is immutable.
The main novelty with respect to ST ODMG, besides bitemporal support, are
the evolution facilities. ST2 ODMGe enhances the expressive power of ST ODMG
providing a flexible and comprehensive support for run-time modifications of
attribute granularities.

Evolutions introduce additional issues that are addressed in the formal de-
sign of the model. As a result of the execution of granularity evolutions and
acquisitions, the run-time type of an object attribute is a Cartesian product of
multigranular types at different granularities. The semantic consistency of the
evolved attributes values must therefore be guaranteed and the strategies to
access attribute values must be redefined to take advantage of these composed
types. Moreover, even if a value is deleted, the access to attribute values may be
preserved by considering evolved values at different granularities. In particular,
in the paper we formally revise the notion of object consistency, and redefine
the strategies to access evolved multigranular attribute values.

The rest of the paper is organized as follows. We first discuss related work (Sec-
tion 2). In Section 3 we introduce the ST2 ODMGe type system, objects and classes.
Then, in Section 4 we address the definition of evolutions for spatio-temporal data,
by means of illustrative examples. In Section 5 we investigate how object consis-
tency is affected by evolutions. We define in Section 6 the access strategies to
take advantage of attribute run-time values at multiple granularities, and we

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 323

show that, under certain assumptions, object access is invariant with respect
to the execution of evolutions. Finally, in Section 7 we conclude the paper by
outlining future research directions.

2 Related Work

ST2 ODMGe assumes and extends previous work on efficiently computing his-
torical aggregates for on-line analytical processing (OLAP) of spatio-temporal
data streams [16,13,11]. Zhang et al. [16], defined a spatio-temporal extension of
the SB-Tree [15] structure, that, like our previous work [6], proposes an aggre-
gated indexing approach whereby older data are stored using coarse granularities.
Tao and Papadias [13] proposed over the years several indexing structures for
the efficient historical aggregation of spatio-temporal data. Recent work focuses
on aggregates for trajectories of moving objects [11]. Unlike those approaches,
ST2 ODMGe supports different time granularities and multiple levels of aggrega-
tion and refinement, that is, different indexing forms. Moreover the appropriate
granularity level can be selected on a per-attribute basis, thus supporting dif-
ferent semantics (i.e., different queries). Furthermore, our notion of evolution
refers to the bounds of granules at a given granularity, instead of referring to a
given amount of time. Finally, ST2 ODMGe relies on an widely adopted notion of
temporal granularity [5] that considers granularities as data integrity constraints
and formalises how different granularities are related to each other.

The approach to deletion we adopt has been inherited from research in the
area of temporal databases. In this area data deletion is a crucial issue because
answers against historical queries must be preserved [9,14,12]. Garcia-Molina
et al. [9] have addressed data deletion in historical databases by proposing an
approach whereby data may be removed (i.e., data expire) without affecting
related views. A similar approach has been proposed by Toman [14] for historical
data warehouses, whereby automatic data deletion is supported by preserving
answers to a known and fixed set of first-order queries. This approach assumes
that conditions for data evolution are inferred from a given set of queries. This
approach may complement our work, since conditions for data evolution may be
inferred for those attributes for which they are not known at schema definition
time. A different approach is proposed by Skyt et al. [12], who address the faithful
encoding of data history in temporal databases in the presence of vacuumed
data. Such an approach relies on query modification, that is, on accompanying
query results with additional information about how the required data may be
affected by vacuuming. Unlike that approach, we allow queries be performed on
vacuumed data whenever a result at different granularities exists.

3 Preliminaries

In this section we illustrate the main characteristics of ST2 ODMGe, namely, the
spatio-temporal dimensions, the granularities formalization, the multigranular
type system, and describe granularity conversions and their properties. We then
present ST2 ODMGe classes and objects.

324 E. Camossi et al.

3.1 Time, Space, and Granularities

The ST2 ODMGe model is a 4-dimensional multigranular spatio-temporal model
that supports two-dimensional space and two temporal dimensions: valid time
and transaction time. In the following, valid time dimension in ST2 ODMGe (de-
noted by VT) refers to the time a fact is true in the reality [10]. Transaction
time dimension (denoted by T T) represents the time at which database transac-
tions are executed [10]. Moreover, ST2 ODMGe supports two-dimensional space.
denoted by S, that refers to the space in which the modelled objects are ac-
tually located. Spatio-temporal attributes values refer to valid time and to the
space dimensions. By contrast, modification actions, including those triggering
the evolutions of attributes, refer to transaction time. Unlike the valid time di-
mension, transaction time includes references to the current time denoted by
variable NOW .

In each ST2 ODMGe database a set of temporal granularities [5] GT and a
set of spatial granularities GS are defined. We further distinguish between valid
time granularities GVT and transaction time granularities GT T . Temporal and
spatial granularities are mappings from an index set IS to the power sets of the
temporal [5] and the spatial domains, respectively. For instance, days and weeks

are temporal granularities; meters, yards and provinces are spatial granularities.
The temporal dimensions are totally ordered. Temporal and spatial granularities
are used to represent ST2 ODMGe objects attributes and modification actions at
different levels of detail.

A granule is a subset of a domain corresponding to a single granularity map-
ping, i.e., given a granularity G and an index i ∈ IS, G(i) is a granule of G that
identifies a subset of the corresponding domain. Granules of the same granular-
ity have disjoint interiors. Moreover, non-empty temporal granules preserve the
order of the temporal domains.

Valid time granules bound attribute values, while transaction time granules
refers to modification actions. Similarly, spatial granules specify the geographical
areas where spatio-temporal attribute values are defined. For instance, consider
the value of the daily temperature in Rome the first and the second day of Jan-
uary. To model this value, one can use the labels “01/01”, “02/01”, and “Rome”
to denote two temporal granules at granularity days and one spatial granule at
granularity municipalities, respectively.

Granularities differ according to how their granules partition a domain. In this
respect, granularities are related by the finer-than transitive relationship and its
inverse coarser-than [5]. For example, granularity days is finer-than months, which
in turn is finer-than years (symmetrically, years is coarser-than months, which is
coarser-than days). Likewise, municipalities is finer-than countries. The finer-than
relationship is denoted by , while ≺ denotes the anti reflexive finer-than.

Given two multigranular values, one at granularity G and one at granularity
H such that G and H are not directly related by finer-than, these values may be
compared if they are converted, i.e., represented, at the same granularity K, that
is finer-than G and H. K is chosen as the granularity that minimizes the number
of conversion steps. If K is the coarsest, among the granularities finer-than G

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 325

and H, K is referred to as the greatest lower bound (GLB) of G and H (denoted
as GLB(G,H)) [5].

3.2 Multigranular Types and Conversions

Besides conventional database values, a multigranular spatio-temporal database
schema includes multigranular spatial, temporal, and spatio-temporal values.
Multigranular values are defined as partial functions from the set of granules of
the corresponding granularity(ies) to the set of values of a given inner type. Fig. 1
illustrates examples of ST2 ODMGe multigranular attribute values: taxpayer id

is an alphanumeric spatial attribute with type Spatialcountries(string); address

is an alphanumeric temporal attribute with type Temporalyears(string); finally,
taxes is a numeric spatio-temporal attribute. The ST2 ODMGe type of the first
value taxes in Fig. 1 is Temporalyears(Spatialcountries(int)).

In a multigranular database data may be converted at different granulari-
ties to increase or reduce their level of detail. In ST2 ODMGe, the conversion
of multigranular geometrical features is obtained through the composition of
model-oriented and cartographic map generalisation operators that guarantee
topological consistency (e.g., merge, abstraction), and refinement operators that
perform the inverse functions (e.g., split, add feature) [7]. On the other hand,
to retrieve, for instance, the annual trend of a phenomenon having a daily rep-
resentation (e.g., the values of sales in shops located in several countries), also
conversion for non geometric attribute values are provided. For example, average
and sum aggregate numeric values; selection and its specializations (e.g., first,
main) coerce alpha-numeric values; restriction and split refine values.

An interesting property that will be used in the paper to evaluate the correct-
ness of attribute access refers to the invertibility of conversions [4]. Indeed, even if
when converting a temporal value to a different granularity, and then performing
the inverse conversion, we would expect the original value to be returned. How-
ever, unfortunately, when converting from a finer to a coarser granularity, we loose
some details that we cannot usually recover by applying the inverse conversion to
the finer granularity. By contrast, when converting from a coarser to a finer gran-
ularity, we introduce some details that we should be able to forget; thus we can
recover the original value. Given a pair of conversion functions, we denote them as
quasi-inverse or inverse [4], according to whether the conversions refer to the first

taxpayer id IT MDL089 CH P059OS D A09586

address 1999 Florence 2000 Rome 2002 Milan

taxes 1999 IT 14840 D 17300 2000 IT 14805 CH 28090

2001 D 18650 IT 19490 2002 D 17904 CH 23490

1995-1999 IT 14840 D 17300 2000-2005 IT 17148

1998 EU 30054 1999 EU 32140 2000 EU 14805 . . .

Fig. 1. Example of object state

326 E. Camossi et al.

or the second situation, respectively. In the first case, a measurable indeterminacy
is introduced. For example, the pair (average,split) is quasi-inverse, while the
pair (split,sum) is inverse.

Granularity conversions may be enriched with user defined functions to suite
specific domain requirements (e.g., the RGB spectrum, user credentials). In this
case, the user must provide both the conversions to finer and coarser granular-
ities, and he/she has to take care of the invertibiltiy aspect, according to the
domain semantics.

3.3 ST2 ODMGe Classes and Objects

In the following example we illustrate an ST2 ODMGe class specification.

Example 1. Given an object type for describing taxpayers, reporting the value
of taxes paid by a person over time in different countries, its definition includes:
a spatial attribute taxpayer id at granularity countries to store the fiscal iden-
tifiers that a taxpayer holds in different countries; a temporal attribute address
at granularity years to store the history of his/her fiscal domiciles; and a spatio-
temporal attribute taxes, defined at temporal granularity years and at spatial
granularity countries, which stores the amount of taxes the taxpayer pays every
year in each country where he/she works (for simplicity we suppose the values
are stored according to the same currency in �). �

Given an ST2 ODMGe class, an ST2 ODMGe object is defined as follows.

Definition 1. (ST2 ODMGe Object). Given a class c, an ST2 ODMGe object o

of c is defined as a 6-tuple (id, N, v, c, Υ GIT
VT × Υ GIS

S , Υ GIT
T T) where: id is the object

identifier, unique in the database; N is the set of object names; v is the object
state, given as a tuple of attribute values: (a1:v1, . . ., an:vn), where ai is an
attribute name, and vi is an attribute value, with 1 ≤ i ≤ n; c is the class to which
the object belongs; Υ GIT

VT ×Υ GIS
S is the spatio-temporal object lifespan, represented

as set of granules at the temporal chronon and the spatial quantum granularities2,
with respect to valid dimensions; Υ GIT

T T is the transactional temporal lifespan of
o at the temporal chronon granularity. �

Example 2. Let o be an object of class taxpayer as described in Example 1.
According to Definition 1, the values of attributes taxpayer id, address and
the first value of taxes at granularities years and countries in Fig. 1 define a
legal object state v for o. For instance, according to Fig. 1, the contributor in
1999 paid � 14, 840 in Italy and � 17,300 in Germany. An example of spatio-
temporal lifespan for o is {1 Jan 1999 00:00:1, . . . , 31 Dec 2030 23:59:59}seconds

VT ×
{IT, D, CH}countries

S , {1 Jan 1999 00:00:1, . . . , NOW }seconds
T T , where IT is for Italy,

D is for Germany, and CH is for Switzerland, assuming seconds and countries
as chronon and spatial quantum granularities. �

2 These are the finest granularities on the spatio-temporal domain.

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 327

4 Evolutions

Evolutions are defined and executed at run time on ST2 ODMGe objects. Our
model supports three different types of evolutions: granularity evolution, granu-
larity acquisition, and value deletion.

Granularity evolutions and acquisitions modify the granularity of an attribute.
The granularity evolution operation, previously introduced by us [6] in a more
limited form and restricted to the valid temporal domain, allows one to define a
new portion of an attribute value, specified at a different granularity. The new
value, referred to as target, is obtained by converting values, referred to as source,
already stored in the database at a different granularity through the application
of granularity conversions. By contrast, granularity acquisitions do not change
the database state, but re-define the granularity(ies) that can then be used to
insert new attribute values. They have the same effect of a modification of the
database schema, as if an SQL ALTER statement were executed. Finally, a value
deletion eliminates portions of an attribute value at a given granularity.

Evolutions are performed according to the general execution model of ac-
tive databases, and have the form: ON Event [IF Condition] DO Action. Given an
instance of an ST2 ODMGe database and a set of evolutions specified for it,
the database is continuously monitored. The execution of database transactions
modifies the database state and triggers the evolutions whose events refer to such
transactions. Then, the corresponding conditions, if present, are evaluated. For
the triggered evolutions whose conditions evaluate to TRUE, the corresponding
actions are executed. An evolution action is a sequence of operations that may
modify attribute granularities and delete attribute values. As a consequence, the
database state (or schema, in case of granularity acquisition) may be modified.

The temporal behaviour of ST2 ODMGe evolutions differs according to their
occurrence: ST2 ODMGe supports periodic and non-periodic evolutions. These
different behaviours may be further characterized with the support of spatio-
temporal bounds, that may apply to each of the elements of an evolution, thus
restricting the occurrence of the evolution event, the evaluation of the condition,
and the effects of the action to given temporal periods and geographical areas.

As a consequence of the execution of evolutions, the type of an object state
in the ST2 ODMGe model, that is, of the values of their attributes, changes
dynamically. Let a be a multigranular attribute defined in class c. In the general
case, the run-time type of a is a Cartesian product of multigranular types, as
illustrated by the following example.

Example 3. Let o be the identifier of an object of class taxpayer we described
in Example 1. A legal state for o is shown in Fig. 1. The value of attribute
taxes in Fig. 1 is a set of spatio-temporal values at different granularities. The
first value is the value corresponding to the attribute definition, and is given
at temporal granularity years and at spatial granularity countries. The other
two values are obtained from this value through granularity evolutions. They
are specified at granularities 5years and countries, and years and ecAlliances

(i.e., economic alliances), respectively. According to the different granularities,

328 E. Camossi et al.

they temporally and spatially aggregate the first value (at granularities years and
countries). The domain of attribute taxes is: Temporalyears(Spatialcountries(int))
× Temporal5years(Spatialcountries(int)) × Temporalyears(SpatialecAlliances(int)). �

An evolution defined on an attribute a is specified on one of the granular values
that compose the value of a. Each value is referred to as a granularity level,
and is identified by its granularity. More precisely, given an object o of class
c, the value of attribute a at a given (either temporal or spatial) granularity
G (at temporal granularity Gt and at spatial granularity Gs, respectively) is
referred to as the granularity level < G > of a (< Gt, Gs > if the attribute is
spatio-temporal). Given for instance attribute taxes of Example 3, with the
object state depicted in Fig. 1, we have three different granularity levels: <

years, countries >, < 5years, countries >, < years, ecAlliances >. In the following
example we illustrate the syntax to define evolutions.

Example 4. Given class taxpayer of Example 1, the following evolution sum-
marises the older annual record of taxes at a coarser temporal granularity 5years.

ON update taxpayer.taxes< years, countries > during {1999,. . . ,2014}years
VT

IF every 5
years
VT

DO evolve < years, countries > to < 5years, countries > in {IT}countries

using averageyears→5years, restriction5years→years .

The evolution is defined for attribute taxes, which evolves from granularity level
< years, countries > to granularity level < 5years, countries >. It is triggered by
the updates of the evolution source granularity level, and involves at each exe-
cution 5 years of data, as specified by the periodic condition every 5

years
VT . The

evolution involves only the taxes paid between year 1999 and 2014 in Italy,
according to the event temporal bound {1999, . . . , 2014} years

VT , and by the ac-
tion spatial bound in {IT}countries. Granularity conversion averageyears→5years

is applied for creating the target level, while conversion restriction5years→years

may be used to recover the original values whenever these are deleted from the
database.

Now suppose that the following evolution is specified from granularity level
< years, countries > to < years, ecAlliance >, where ecAlliance represents (non-
overlapping) economical alliances among different countries:

ON update taxpayer.taxes< years, countries >

IF after 1
years
VT

DO evolve < years, countries > to < years, ecAlleance > in countries({EC}ecAlliance)

using sumcountries→ecAlliance, splitecAlliance→countries .

The notation G(ΥG′
) denotes the conversion of the set of G′−granules ΥG′

to granularity G. Note that the spatial bound in countries({EC}ecAlliance) con-
straints the action execution, and accordingly the evolution aggregates only the
tax logs that refer to European Countries. The evolution is executed period-
ically, according to the condition after 1

years
VT . Fig. 1 is an example of object

state, after the execution of the evolutions. �

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 329

5 Object Consistency

ST2 ODMGe evolutions affect the conventional notion of object consistency, be-
cause at run-time the object state may no longer match their class definitions,
as illustrated by Example 4. However, evolved multigranular attribute values are
created starting from source granularity levels, which rely in turn on the original
granularity level defined for the attribute. The evolved values are semantically
consistent with the original ones, to which they are related by a chain of (quasi)
inverse granularity conversions. Therefore, the original value may be recomputed
from an evolved one when needed (for example when the original data are deleted
from the database), with a bounded imprecision. For the same reason, the intro-
duction of granularity acquisition does not pose problems, i.e., the original and
the refined granularity levels are related by a pair of (quasi) inverse granularity
conversions.

In the following, ST2 ODMGe object consistency is formalized, taking into ac-
count how evolutions modify the object state and relying on the relationships
among the granularity levels of object attributes. Such relationships are formal-
ized by the notion of Granularity Levels Graph (GLG) of an attribute, which is
preliminary to the consistency formalization.

5.1 Attribute Granularity Level Graph

Let a be a multigranular attribute defined in class c. The granularity levels that
compose the value of a are pairwise linked by pairs of quasi-inverse granularity
conversions, to form a graph that we refer to as the Granularity Levels Graph
(GLG) of the attribute, which is formalised by the following definition. This
structure, that must not be confused with the database granularity lattices we
may define for GVT , GT T and GS relying on finer-than [5], is specific for each
multigranular attribute, and relates its granularity levels enabling to navigate
among them when accessing the attribute value. In this definition, and in the rest
of the paper, for simplicity we consider a multigranular attribute that refers to
either the spatial or the temporal domain, whenever the case of spatio-temporal
values may be inferred straightforwardly. Whenever needed, we point out the
differences of the spatio-temporal case.

Definition 2. (Granularity level graph - GLG) Given a set of temporal or spa-
tial granularity levels < Gi > defined for attribute a, where ∀i = 1 . . . n, Gi ∈ G
is either a temporal or a spatial granularity, the granularity level graph of a,
denoted by aGLG, is a graph (V, E) such that V ={< G1 >, . . ., < Gn >}, and
E= {< Gj >�< Gk >}, if Gj and Gk are related by the finer-than relationship,
and two (quasi)inverse granularity conversions fGj→Gk and gGk→Gj have been
defined; 1 ≤ j ≤ n, 1 ≤ k ≤ n. �

Similarly, given a spatio-temporal attribute a and the set of its spatio-temporal
granularity levels < Gti , Gsi >, and given the granularity conversions defined
among these granularity levels through evolution specifications, a GLG is de-
fined for a. Given an attribute a, let aGLG denote its GLG. Moreover, given a

330 E. Camossi et al.

GLG aGLG the set of its nodes and edges are denoted by aGLG.V and aGLG.E,
respectively.

Example 5. Given attribute taxes of class taxpayer of Example 1, suppose the
evolutions of Example 4 have been specified. Hence, taxesGLG = (V, E) is specified
as follows:
taxesGLG.V ={< years, countries >,< 5years, countries >,< years, ecAlliance >};
taxesGLG.E={< years, countries > � < 5years, countries >,

< years, countries > � < years, ecAlliance >}. �

The following property ensures that, given two granularity levels in an attribute
GLG, it is always possible to compare them even if the granularity levels are not
directly linked through granularity conversions in the GLG. Therefore, to solve
an attribute access we may navigate among the values defined in the attribute
GLG by using the defined granularity conversions, as we will see in the following
section.

Property 1. Let < Gi > and < Gj > be two granularity levels in aGLG. Then, one
of the following conditions holds:

– Gi ≺ Gj ;
– Gj ≺ Gi;
– GLB(Gi,Gj) ∈ aGLG.V . �

With the following definition we introduce also the concepts of bottom and top
granularities for a multigranular attribute.

Definition 3. (Bottom and top granularities in an attribute GLG). Given an
object o and a multigranular attribute a defined for o, G⊥ is the set of the (tempo-
ral or spatial) bottom granularities of a, that is the finest granularities in aGLG,
i.e., no granularity G, with < G > ∈ aGLG.V exists such that, ∀ G′ ∈ G⊥, G ≺ G′.
Symmetrically, G� is the set of the (temporal or spatial) top granularities of
a, that is, the coarsest granularities in aGLG for which no granularity H, with
< H > ∈ aGLG.V exists such that, ∀ H ′ ∈ G�, H ′ ≺ H. �

Example 6. Given attribute taxes of Example 1 with the GLG of Example 5,
G⊥

VT ={years} and G�
VT ={5years}; G⊥

S ={countries}, while G�
S ={ecAlliance}. �

5.2 Consistency Conditions for ST2 ODMGe Objects

Relying on attribute GLGs we now revisit the consistency of ST2 ODMGe ob-
jects. We define the constraints that are useful to define the access strategies and
must therefore be preserved when manipulating object states. Such constraints
are expressed with respect to all the dimensions supported by the model.

To guarantee object consistency, every ST2 ODMGe attribute value must sat-
isfy the following conditions: 1) each attribute value belongs to the set of legal
values of the corresponding type; 2) whenever the attribute value is an object

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 331

identifier, the referred object exists in the database sometimes during the tempo-
ral transactional lifespan of the object; 3) the value of a multigranular attribute
is a tuple of multigranular values, whose spatial and the temporal domains do
not exceed the spatial and temporal lifespan of the object; thus for each defined
value, the corresponding granule intersects the object lifespan3; 4) for a multi-
granular attribute a GLG is defined according to Definition 2, and its edges
preserve the relationships holding among granularities of the granularity levels.
The previous constraints are formalised by Definition 4, which expresses the
notion of run-time consistency for objects in an ST2 ODMGe database.

Definition 4. (ST2 ODMGe Consistent Instance). Let c be a class and attr its
attribute specification {(b1, τ1), . . . , (bm, τm)}, where ∀j, 1 ≤ j ≤ m, bj an attribute
name and τj an attribute type. Let LT and OT be the sets of literal and object
types, respectively, and let Tgeom be the set of geometric vector types (e.g., point,
line, polygon). Let [[τ]] be the set of legal values for type τ , and [[τ ′]] GIT

i be the
set of legal values defined for τ ′ in granule GIT (i). Let o be a ST2 ODMGe object
defined as (id, N, (a1 : v1, . . . , ap : vp) , c, Υ GIT

VT × Υ GIS
S , Υ GIT

T T). Then, object o is a
consistent instance of c if all the following conditions hold:

1. ∀i, 1 ≤ i ≤ p,∃(b, τ) ∈ attr such that b = ai;
2. ∀(b, τ) ∈ attr,∃k, 1 ≤ k ≤ p, such that b = ak and the following conditions

hold:
(a) if τ ∈ LT , vk ∈ [[τ]] (Cf. condition 1);
(b) if τ ∈ OT ∪ Tgeom, vk ∈

⋃
Υ

GIT
T T

{ [[τ]] GIT
h | h ∈ IS} (Cf. condition 2);

(c) if τ is a multigranular type at granularity G, all the following conditions
hold (Cf. conditions 3 and 4):
i. vk = (vk1 , vk2 , . . . , vkn), with n ≥ 1;
ii. ∀j, 1 ≤ j ≤ n, such that vkj is defined,

A. ∃τj, where τj is a multigranular type at granularity Gj, such that
vkj ∈ [[τj]] ;

B. ∀i ∈ IS such that vkj (i) is defined, Gj(i)∩ (
⋃

Υ
GIT
VT ×Υ

GIS
S

{GIS(h) |
h ∈ IS}) �= ∅;

iii. a granularity (level) graph (Vk, Ek) is defined, such that:
A. Vk = {< G1 >, . . . , < Gn > | vkj ∈ [[τj]] is defined, with 1 ≤ j ≤

n};
B. Ek = {< Gq >�< Gr >, with Gq ≺ Gr or Gr ≺ Gq, 1 ≤ q ≤ n, 1 ≤

r ≤ n} and two (quasi)inverse granularity conversions fGq→Gr

and gGr→Gq have been defined. �

Example 7. Given object o of Example 3, we assume the evolutions of Ex-
ample 4 have been executed on o.taxes, with taxesGLG as defined in Exam-
ple 5. Given {1 January 1999 00:00:1, . . . , 31 December 2030 23:59:59}seconds

VT ×
{IT, D, CH}countries

S , {1 January 1999 00:00:1, . . . , NOW }seconds
T T , the lifespan of

o, assuming seconds and countries as chronon and spatial quantum granularities,
3 Border granules may not be completely included in the object lifespan, but their

intersection with it must be non-empty.

332 E. Camossi et al.

and assuming updates on o have been executed after 1998, then object o, with
the object state of Fig. 1, is a consistent instance of class taxpayer accord-
ing to Definition 4. By contrast, it would be inconsistent if its lifespan were
{1 January 2000 00:00:1, . . . , 31 December 2002 23:59:59}seconds

VT × {IT}countries
S ,

{1 January 1999 00:00:1, . . . , NOW }seconds
T T , because it would intersect neither the

values defined before year 2000, nor the countries different from Italy. �

6 Object Access

In this section we discuss the access to ST2 ODMGe multigranular attribute val-
ues. To simplify the presentation, we introduce a basic access that requires the
attribute value defined in a single granule. Access to multiple granular values
follows straightforwardly. We further distinguish between two forms of access,
qualified and unqualified, depending on a granularity conversion being specified
or not, respectively The strategies to solve them are discussed separately. There-
fore, we discuss the invariance of object accesses with respect to evolutions, and
characterize unsolvable object accesses.

6.1 Qualified and Unqualified Access

The concept of object access we consider is formalised by the following definition.

Definition 5. (ST2 ODMGe object access). Let o be an object identifier, and
let a be the name of an attribute defined for o. If a is a multigranular temporal
attribute, let G be a temporal granularity. If a is a multigranular spatial attribute,
let G be a spatial granularity. Given a granule label lG, an object access is an
expression of the form o.a ↓[f] lG, requiring the value of attribute a of object o in
granule lG. If a granularity conversion f is specified, f is applied to compute the
access result. In the latter case, the access is referred to as qualified. Otherwise
it is unqualified. �

The access to a multigranular spatio-temporal attribute a is expressed as o.a ↓[f]

lGt ↓[f ′] lGs , where Gt and Gs are a temporal and a spatial granularity, respectively;
lGt , lGs are two granule labels for Gt and Gs; f and f ′ are granularity conversions.

Example 8. Given class taxpayer of Example 1 and object owith the state in Fig. 1,
o.taxes ↓ {1998}years

VT ↓ {IT}countries
S is the unqualified access to the payments made

by the contributor during 1998 to the Italian Revenue service. By contrast, object
access o.taxes ↓ {1999}years

VT ↓split[p(x)] {IT}countries
S ,where p(x) is theprobabilitydis-

tribution: p(x) = {(IT, 0.5), (D, 0.5)}, is the qualified access to the same payments,
requiring the application of the refinement function split[p(x)]. �

6.2 Solving Unqualified Object Access o.a ↓ lG

To solve the unqualified object access o.a ↓ lG we check whether the requested
value is available, i.e., if < G > is a granularity level defined for a and if the value

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 333

of o.a for granule lG is defined. If so, such value, that we denote as o.aG(lG),
where o.aG is the granularity level < G > defined for a, is returned.

Otherwise, the requested value must be computed starting from the values,
stored in other granularity levels, that intersect lG. In this case, two different
strategies may be applied for solving the access, depending on whether the user
wants to maximize the accuracy of the result or the access efficiency. The ef-
ficiency maximization strategy minimizes the number of intermediate accesses
needed to solve o.a ↓ lG. According to this strategy, the application of conversion
functions from coarser to finer granularities is preferred, because just one value is
accessed for each of the granularity levels involved. By contrast, when maximiz-
ing accuracy, the highest precision is required in computing the result. Therefore
the application of granularity conversions from finer to coarser granularities takes
precedence, because they minimize the indeterminacy in the returned values (cf.
Section. 3).

Fig. 2 reports the algorithm to solve o.a ↓ lG. The spatio-temporal access
o.a ↓ lGt ↓ lGs follows straightforwardly. We assume that the granularity levels
in aGLG are ordered according to the finer-than relationship. Spatio-temporal
granularity levels are ordered first according to temporal granularities, and then
with respect to spatial granularities. ACCURATE denotes that an accurate answer
is preferred, whilst efficiency is the default.

The computational complexity of the algorithm in Fig. 2 is O(n). Indeed,
assuming that the set of granularity levels defined for each attribute value is
finite, and the time required for the application of granularity conversions is
linear, the complexity of the algorithm is mainly given by the sequential access
to a given value in a granularity level. If we assume that indexing is applied
on granularity levels (e.g., BTree+ for temporal values and R-Tree for spatial
values), the complexity may decrease to O(log(n)) if the internal nodes of the
R-Tree do not overlap. An optimal worst-case complexity is guaranteed also if
the indices for spatial data are, for example, PR-Trees [2].

An important result of our work is thus that the introduction of evolutions
does not increase the complexity of the access with respect to the conventional
multigranular case. Furthermore, complexity may improve whenever the access
involves values at granularities among those defined for the attribute, because

if ∃o.aG(lG) �=⊥ then return o.aG(lG)
else if ACCURATE then

while ∃o.aK s.t. K � G and ∀lKk ∈ K(lG)
s.t. o.aK(lKk) �=⊥
return fK→G(o.aK)(lG)

return null
else while ∃o.aH s.t. G � H

return gH→G(o.aH)(lG)
while ∃o.aK s.t. K � G

return fK→G(o.aK)(lG)
return null

Fig. 2. Algorithm for object access o.a ↓ liG

334 E. Camossi et al.

the access result may be already pre-computed in the database. Indeed, in both
execution strategies, the access follows an iterative approach, and to solve it we
may need to move across several granularity levels. Once a value is found (or a
set of values, in the accuracy maximization strategy) that satisfies the access, a
sequence of conversions must be performed. If some precomputed value is already
available at an intermediate granularity, these values need not be recomputed,
thus improving performance.

Example 9. Given access o.taxes ↓ {1998}years
VT ↓ {IT}countries

S introduced in Ex-
ample 8, and object o of class taxpayer whose state is shown in Fig. 1, the
access results in � 14, 840. �

6.3 Solving Qualified Object Access o.a ↓f lG

If the access is qualified by a granularity conversion f , this function will be
used to compute the access result, taking precedence over the functions already
specified in granularity evolutions and acquisitions. Differently from unqualified
access, if the accuracy maximization strategy is adopted, an existing value for the
specified granule is discarded, if it was constructed with a different function. The
value would be used instead by the efficiency maximization strategy. If this value
is not defined, we distinguish whether f is a conversion to a coarser granularity
(CF), or to a finer granularity.

Fig. 3 reports the algorithm for solving a qualified access o.a ↓f lG. The
spatio-temporal object access o.a ↓f lGt ↓f ′

lGs follows straightforwardly. As above,
ACCURATE denotes that an accurate answer is preferred.

As in the case of unqualified access, the algorithm for qualified access shown
in Fig. 3 has computational complexity O(n), which may reach the optimum if
indexing is used on the granularity level values as in the previous case.

Example 10. Given the access o.taxes ↓ {1998}years
VT ↓split[p(x)] {IT}countries

S , with
p(x) = {(IT , 0.5), (D, 0.5)}, and object o of class taxpayer with the object state

if ∃o.aG(lG) �=⊥ then
if ACCURATE then

if ∃o.aK s.t. K � G
and fK→G is defined between o.aK and o.aG

then return o.aG(lG)
else return o.aG(lG)

if f is a CF then
while ∃o.aK s.t. K � G

if ACCURATE then
if ∀lKk ∈ K(lG) s.t. o.aK(lKk) �=⊥ then

return fK→G(o.aK)(lG)
else return null

else return fK→G(o.aK)(lG)
return null

else while ∃aH s.t. G � H

return fH→G(o.aH)(lG)

Fig. 3. Algorithm to solve the qualified object access o.a ↓f liG

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 335

depicted in Figure 1. When accuracy is required, the access results in � 15, 027.
This value is computed starting from the aggregate value at granularities < years,
ecAlliances >. �

6.4 Evolution Invariant Object Access

In order to preserve the consistency of query answers, evolution execution must
not affect access results. In what follows, after a preliminary definition intro-
ducing the notion of evolution invariant access, we show that unqualified object
access is invariant with respect to the three forms of evolution discussed in this
paper, given a bounded approximation introduced by granularity conversions.

Suppose that < G > is one of the granularity levels defined for attribute a, and
suppose that from < G > an evolution has been executed involving granule lG.
In the case of acquisitions we consider the insertion of new values in the target
granularity level. Suppose the evolution has not been performed yet. Assuming
that no updates occurred, if the access o.a ↓ lG results in the same value when
executed just before and just after the evolution execution, the access is referred
to as evolution invariant. Considering how we build granularity levels, and the
specification of granularity conversions, the following result holds.

Proposition 1. Given a granularity level < G > defined for a, and provided
that a granularity level < G′ > exists such that o.aG′(G′(lG)) is defined, every
object access o.a ↓ liG is evolution invariant. �

Evaluating the access just before and just after the execution of an evolution
defined from < G′ > to < G >, the access results in the same value. By con-
trast, for granularity acquisitions and deletions the access is evolution invariant
but with a bounded imprecision, which is due to the application of granularity
conversions. Indeed, if the value defined for granule lG is deleted, we can re-
cover it if the value has been involved in a granularity evolution to granularity
level < G′ >. In the case of granularity acquisition, the old and the new ac-
quisition levels are related by a pair of (quasi)inverse granularity conversions,
which guarantees the value consistency among the two levels, modulo a bounded
error.

6.5 Unsolvable Object Access

We may characterize ST2 ODMGe object accesses that can be statically detected
as unsolvable. As usual, null is returned whenever not enough information is
available to solve the access. However, we can distinguish between accesses that
are statically known to be unsolvable, that is, for which no database state ex-
ists such that these accesses will produce a value different from null, and ac-
cesses that can produce or not an answer depending on the actual content of the
database. Detecting object accesses that are statically unsolvable reduces query
execution times, because the system does not need to execute them, but it may

336 E. Camossi et al.

return immediately null. Given an object access o.a ↓ lG (the case of o.a ↓ lGt ↓ lGs
follows straightforwardly), the following result holds.

Proposition 2. Given attribute a defined for an object o, and given value v for
a, such that aGLG includes the granularity levels < G1 >, . . ., < Gn >, the object
access o.a ↓ lG is unsolvable if one of the following conditions holds:
– G is not related by to any of G1, . . . , Gn;
– G ≺ K, K ∈ G⊥;
– H ≺ G, H ∈ G�. �

7 Concluding Remarks

In this paper we have investigated issues related to the evolution of multigranular
spatio-temporal objects. The main contribution of this paper is the definition
of ST2 ODMGe, a multigranular spatio-temporal model supporting the adap-
tive management of multigranular spatio-temporal attributes. Our approach to
evolutions allows one to model a large variety of situations. Consistency con-
straints on attribute values have been relaxed, because the run-time value of a
multigranular attribute is a Cartesian product of multigranular values, linked in
a connected acyclic graph through the specification of granularity conversions.
Relying on such a structure, object accesses may be solved according to different
strategies and error tolerances.

The ST2 ODMGe model may be considered as a basis for future investigations
on issues concerning evolutions of multigranular spatio-temporal objects. In par-
ticular, the development of a prototype of the model will allow us to investigate
the trade off between the flexibility, provided by the model, and the consistency
that is guaranteed by the statical specification of evolutions.

Efficient and comprehensive implementations are crucial. Several alternatives
can be investigated including 1) implementation of the required features as class
libraries on top of an existing DBMS, and 2) extensions to a DBMS engine. Both
approaches have shortcomings. The former approach may not be able to support
all required features; it may also have performance problems, as it may be impossi-
ble to allow the inclusion of specialized indexing techniques or query optimization
techniques. The latter approach may require extensive implementation efforts and
may also not support all required features, especially the ones depending on the
application domain, like specialized spatial conversion operators.

Moreover, since evolution specifications are formulated according to the active
database paradigm, it is important that tools for the analysis of evolution triggers
be supported to detect non-terminating as well as non-deterministic executions.
Note that such issues have been extensively investigated in the area of active
DBMS and no general solutions exist. However, for specialized domains, such
as, in our case, the evolution of granularities, effective solutions to these issues
could be found.

Adaptive Management of Multigranular Spatio-Temporal Object Attributes 337

References

1. Andrienko, G., Malerba, D., May, M., Teisseire, M.: Mining spatio-temporal data.
J. of Intelligent Information Systems 27(3), 187–190 (2006)

2. Arge, L., de Berg, M., Haverkort, H.J., Yi, K.: The Priority R-Tree: A Practically
Efficient and Worst-Case Optimal R-Tree. In: Proc. of SIGMOD Int’l Conf. on
Management of Data, pp. 347–358. ACM, New York (2004)

3. Belussi, A., Combi, C., Pozzani, G.: Towards a Formal Framework for Spatio-
Temporal Granularities. In: Proc. of 15th Int’l Symp. on Temporal Representation
and Reasoning, pp. 49–53. IEEE Computer Society, Los Alamitos (2008)

4. Bertino, E., Camossi, E., Guerrini, G.: Access to Multigranular Temporal Objects.
In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004.
LNCS, vol. 3055, pp. 320–333. Springer, Heidelberg (2004)

5. Bettini, C., Jajodia, S., Wang, X.: Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer, Heidelberg (2000)

6. Camossi, E., Bertino, E., Guerrini, G., Mesiti, M.: Handling Expiration of Multi-
granular Temporal Objects. J. of Logic and Computation 14(1), 23–50 (2004)

7. Camossi, E., Bertolotto, M., Bertino, E.: A multigranular Object-oriented Frame-
work Supporting Spatio-temporal Granularity Conversions. Int’l J. of Geographical
Information Science 20(5), 511–534 (2006)

8. Camossi, E., Bertolotto, M., Bertino, E.: Multigranular spatio-temporal models:
Implementation challenges. In: Proc. of 16th SIGSPATIAL Int’l Conf. on Advances
in Geographic Information Systems. ACM, New York (2008)

9. Garcia-Molina, H., Labio, W.J., Yang, J.: Expiring Data in a Warehouse. In: Proc.
of 24th Int’l Conf. on Very Large Data Bases, pp. 500–511. ACM, New York (1998)

10. Jensen, C.S., Dyreson, C.E., Bohlen, M., Clifford, J., et al.: A Consensus Glossary
of Temporal Database Concepts. In: Etzion, O., Jajodia, S., Sripada, S. (eds.)
Dagstuhl Seminar 1997. LNCS, vol. 1399, pp. 367–405. Springer, Heidelberg (1998)

11. Orlando, S., Orsini, R., Raffaeta, A., Roncato, A., Silvestri, C.: Spatio-temporal
Aggregations in Trajectory Data Warehouses. In: Song, I.-Y., Eder, J., Nguyen,
T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 66–77. Springer, Heidelberg (2007)

12. Skyt, J., Jensen, C.S., Mark, L.: A Foundation for Vacuuming Temporal Databases.
Data & Knowledge Engineering 44(1), 1–29 (2003)

13. Tao, Y., Papadias, D.: Historical spatio-temporal aggregation. ACM Transactions
on Information Systems 23(1), 61–102 (2003)

14. Toman, D.: Expiration of Historical Databases. In: Proc. of 8th Int’l Symp. on
Temporal Representation and Reasoning. IEEE Computer Society, Los Alamitos
(2001)

15. Yang, J., Widom, J.: Incremental computation and maintenance of temporal ag-
gregates. The Int’l J. on Very Large Databases 12(3), 262–283 (2003)

16. Zhang, D., Gunopulos, D., Tsotras, V.J., Seeger, B.: Temporal and spatio-temporal
aggregation over data streams using multiple time granularities. Information Sys-
tems 28(1-2), 61–84 (2003)

TOQL: Temporal Ontology Querying Language

Evdoxios Baratis, Euripides G.M. Petrakis, Sotiris Batsakis, Nikolaos Maris,
and Nikolaos Papadakis

Department of Electronic and Computer Engineering
Technical University of Crete (TUC)

Chania, Greece
{dakis,petrakis,batsakis}@intelligence.tuc.gr,

nickmeet@gmail.com, npapadak@intelligence.tuc.gr

Abstract. We introduce TOQL, a query language for querying time
information in ontologies. TOQL is a high level query language that
handles ontologies almost like relational databases. Queries are issued
as SQL-like statements involving time (i.e., time points or intervals)
or high-level ontology concepts that vary in time. Although indepen-
dent from TOQL, this work suggests a mechanism for representing time
evolving concepts in ontologies based on the four-dimensional perduran-
tist mechanism. However, TOQL prevents users from being familiar with
the representation of time in ontologies. To show proof of concept, an ap-
plication has been developed that supports translation and execution of
TOQL queries on temporal ontologies combined with a reasoning mech-
anism based on event calculus. A real world temporal ontology is also
implemented on which several TOQL example queries are processed and
discussed.

1 Introduction

Dealing with information that changes in time over the semantic web is a difficult
problem to deal with. Recent advances in semantic web technology suggest that
this can be achieved by adding the concepts of time and change in a rich seman-
tics ontology representation, allowing time to affect the status of the described
concepts [13,6].

Ontologies offer the means for representing high level concepts, their prop-
erties and their interrelationships. Dynamic or temporal ontologies will in ad-
dition enable representation of time evolving information in ontologies through
e.g., versioning [8] or the four-dimensional perdurantist approach [15]. According
to this approach, all entities are perdurants: each entity is considered to be an
event and has a start and an end point. An entity can be seen as a “space-time
worm”, with the slices of the worm being temporal parts (time slices) of the
entity. A temporal ontology query language is then needed to support searching
for temporal concepts and time related information.

The current state of the art of ontology languages requires submitting a tex-
tual, description logic (DL) query or SQL-like query [17]. However the logic and
syntax of such languages necessitates a tedious effort from users before being

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 338–354, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

TOQL: Temporal Ontology Querying Language 339

able to write queries effectively. State-of-the-art ontology query languages such
as SeRQL [1] or SPARQL [11] have limited (if not at all) expressive power for
handling time in queries (their syntax does not support temporal operators).
The present work addresses all these issues.

We introduce TOQL (Temporal Ontology Querying Language), a high-level
query language for querying (time) information in ontologies. TOQL handles
ontologies almost like relational databases. Queries in TOQL are issued as SQL
statements involving time and high-level ontology concepts that (may) vary in
time. TOQL maintains the basic structure of an SQL language (SELECT -
FROM - WHERE) and treats the classes and the properties of an ontology
almost like tables and columns of a database. TOQL supports queries not only
on static information in the static part of the ontology (as conventional ontology
query languages do) but also supports queries on time evolving information
instantiated to the ontology (dynamic part). TOQL supports Allen operators
that allow comparisons between time intervals, and the operator AT that allows
comparisons between time points or time intervals.

Besides TOQL syntax, this work demonstrates, full query functionality on
ontologies in OWL. This includes query translation and execution of temporal
queries along with a mechanism for representing time evolving concepts in on-
tologies inspired by the four-dimensional perdurantist (4D fluent) approach [16].
However, TOQL syntax is independent of any temporal representation and can
work with any other mechanism (e.g., versioning). As such, the 4D fluent (per-
durantist) mechanism is not part of the language and it is not visible to the user
(so the user need not be familiar with peculiarities of the underlying mechanism
for time information representation).

In the accompanying implementation, TOQL queries are first translated into
equivalent statements in SeRQL which are then executed on the underlying OWL
temporal ontology. The query interpreter addresses information in the ontology to
generate a projection (in time) of the evolution of the acquired ontology concepts.
To show proof of concept, a real world temporal ontology (for enterprise informa-
tion) is also implemented on which several TOQL example queries are discussed.

Related work in the field of knowledge representation is discussed in Section 2.
This includes, discussion on temporal and ontology query languages along with
issues related to representing time evolving information in ontologies. The TOQL
language is presented in Section 3 (a formal description of the language’s syntax
in BNF is given in [3]). The implementation of TOQL is discussed in Section 4,
followed by conclusions and issues for future work in Section 5. Several query
examples are also given and discussed throughout the work.

2 Background and Related Work

Several representation languages are defined for the Semantic Web, the most
important of them are referred to as the OWL-family [10] of ontology languages
(OWL-Full, OWL-DL and OWL-Lite) for ontology building and knowledge rep-
resentation. OWL-S [5] is an ontology for describing properties and capabilities

340 E. Baratis et al.

of web services. Within OWL-S, a sub-ontology, OWL-Time [6] has been devel-
oped that is much simpler and provides a vocabulary for expressing the most
needed time-related facts.

Dealing with information that changes over time is a critical problem in
Knowledge Representation (KR). Representation languages such as OWL, RDF
(which are based on description logics),the same as frame-based and object-
oriented languages (F-logic) are all based on binary relations. Binary relations
simply connect two instances (e.g., the employee with the company) without any
temporal information. Nevertheless, time representation using OWL is feasible,
although complicated [16].

2.1 Representation of Time

The OWL-Time temporal ontology describes the temporal content of Web pages
and the temporal properties of Web services. Apart from language constructs for
the representation of time in ontologies, there is still a need for mechanisms for the
representation of the evolution of concepts (events) in time.This is related to the
problem of the representation of time in temporal (relational and object oriented)
databases [18]. Existing methods are relying mostly on temporal Entity Relation
(ER) models [19] taking into account valid time (i.e., time interval during which a
relation holds), transaction time (i.e., time at which a database entry is updated)
or both. Also time is represented by time points, intervals or finite sets of intervals.
However, time representation in OWL differs because (a) OWL semantics are not
equivalent to ER model semantics (e.g., OWL adopts the Open World Assump-
tion while ER model adopts the Closed World Assumption) and (b) relations in
OWL are restricted to binary ones. Time representation in Semantic Web can be
achieved using Temporal Description logics, Reification, Versioning or 4D-fluents.

Temporal Description Logics (TDL) extend Description Logics (DL) with ad-
ditional time representation operators and semantics such as “until” and“always
in the past”. Many TDLs have been proposed [20,21] with the most expresive
of them being undecidable. Contrary to other approaches, temporal description
logics offer additional semantics and reasoning mechanisms and they don’t suf-
fer from data redundancy. All other approaches except TDLs require temporal
semantics to be defined using an additional set of rules combined with a reason-
ing mechanism, as we did in this work. TDLs disadvantage is that they require
extending OWL to represent time (by introducing additional operators and se-
mantics), while the other approaches can be implemented directly using OWL.

Reification is a general puprose technique for perpesenting n-ary relations
using a language such as OWL that permits only binary relations. Specifically,
an n-ary relation is represented as a new object that has all the arguments of
the n-ary relation as attributes. For example if the relation R holds between
objects A and B at time t, expressed as R(A,B,t), this is represented in OWL
using reification as an object R with attributes A, B and t. Reification suffers
from two disadvantages: (a) data redundancy, because a new object is created
whenever a temporal relation has to be represented (this is a problem common

TOQL: Temporal Ontology Querying Language 341

Fig. 1. Schematic representation of the concept of time determined ontology

to all approaches based on non temporal Description Logics such as OWL-DL)
and (b) offers limited OWL reasoning capabilities [16].

Versioning [8] suggests that the ontology has different versions (one per in-
stance of time). When a change takes place, a new version is created. Versioning
suffers from several disadvantages: (a) changes even on single attributes require
that a new version of the ontology be created leading to information redundancy
(b) searching for events occurred at time instances or during time intervals re-
quires exhaustive searches in multiple versions of the ontology,(c) it is not clear
how the relation between evolving classes is represented. Furthermore, ontology
languages such as OWL [10] are based on binary relations (relations connecting
two instances) with no time dimension.

The 4D-fluent (perdurantist) approach [15] shows how temporal information
can be represented effectively in OWL. Notice though that it still sufferers from
data redundancy. Concepts in time are represented as 4-dimensional objects
with the 4th dimension being the time. Time instances and time intervals are
represented as instances of a time interval class which in turn is related with
time concepts varying in time. Changes occur on the properties of the temporal
part of the ontology keeping the entities of the static part unchanged.

As illustrated in Figure 11 a development in time can only be described by a
series of snapshot ontologies each superimposing itself on the previous version of
the described reality (left). The 4D-fluent (perdurantist) ontology (on the right)
allows the concepts of time and change to become integral parts of the ontology.
In TOQL we opt for the later type of representation based on 4D fluents.

Following the approach by Welty and Fikes [15], to add the time dimension
to an ontology, classes TimeSlice and TimeInterval with properties tsTimeS-
liceOf and tsTimeInterval respectively are introduced. Class TimeSlice is the
domain class for entities representing temporal parts (i.e., “time slices”) and
class TimeInterval is the domain class of time intervals. A time interval holds

1 The figure is from “Annex1: Description of Work” document of project TOWL
http://www.towl.org

342 E. Baratis et al.

Product

employeeName

hasEmployee produces productName

ts
T

im
eS

lic
eO

f

ts
T

im
eS

lic
eO

f

ts
T

im
eS

lic
eO

f

tsTimeInterval tsTimeInterval

tsTimeInterval

Employee

String

Company

String

TimeSlice

CompanyTimeSliceEmployeeTimeSlice

TimeInterval

ProductTimeSlice
Int

String

companyName

Price

IS−A IS−AIS−A

Fig. 2. Dynamic Enterprise Ontology

the temporal information of a time slice. Property tsTimeSliceOf connects an
instance of class TimeSlice with an entity, and property tsTimeInterval connects
an instance of class TimeSlice with an instance of class TimeInterval. Properties
having a time dimension are called fluent properties and connect instances of
class TimeSlice.

Figure 2 illustrates the so called “Dynamic Enterprise Ontology” (“DEn On-
tology”) defined in this work: a temporal ontology with classes Employee with
datatype property employeeName, Company with datatype property company-
Name and Product with datatype properties price and productName. In this
example, CompanyName and EmployeeName are static properties (their val-
ues do not change in time), while properties produces, hasEmployee, product-
Name and price are dynamic (fluent) properties whose values may change in
time. Because they are fluent properties, their domain (and range) is of class
TimeSlice. EmployeeTimeSlice, CompanyTimeSlice and ProductTimeSlice are
instances of class TimeSlice and are provided to denote that the domain of
properties hasEmployee, produces, productName and price are time slices re-
stricted to be slices of a specific class. For example, the domain of property
productName is not class TimeSlice but it is restricted to instances that are
time slices of class Product. A knowledge base with the instances of the DEn
ontology used in the work can be found in [3] or can be downloaded from
http://www.intelligence.tuc.gr/∼petrakis/downloads/TOQL.zip

TOQL: Temporal Ontology Querying Language 343

2.2 Temporal Query Languages

The main goal of temporal query languages is to maintain simplicity of ex-
pression while the time dimension is added. Other desirable features include,
temporal upward compatibility (i.e., conventional queries and modifications on
temporal relations act on the current state), temporal aggregation (i.e., possibil-
ity to request the history of something), point and interval-based views of data,
expressive power and ease of implementation.

Examples of temporal query languages for temporal databases include TQuel
[14], TSQL2 [9] and ATSQL [4]. Query languages for handling time informa-
tion in ontologies (e.g., time evolving entities) besides TOQL, are not known
to exist. Nevertheless, query languages for RDF and OWL ontological repre-
sentations are of particular interest as they form the basis for developing the
new type of temporal ontology query languages. SeRQL [1] and SPARQL [11]
are good representatives of this category of query languages. SPARQL [11] is
a W3C recommendation query language. SeRQL is a RDF/RDFS query lan-
guage combining features of other (query) languages (e.g., RQL [7], RDQL [12],
N-Triples, N3). Important features of SeRQL are: Graph transformation, RDF
and XML Schema data type support, expressive path expression syntax and
optional path matching. SeRQL supports comparison between date times and
more query types than SPARQL, which has limitations in the “where” clause,
since it doesn’t support nested queries.

3 TOQL: Syntax and Semantics

TOQL (Temporal Ontology Query Language) is an SQL-like language for OWL,
supporting the basic structure of SQL (SELECT - FROM - WHERE) and
treats classes and properties of an ontology almost like tables and columns of a
database. The new language takes into account differences in the type of rela-
tions in the two representations and also supports time operators: Allen opera-
tors (BEFORE, AFTER, EQUALS, MEETS, OVERLAPS, DURING, STARTS,
ENDS) and operators AT(time point) and AT(time point, time point). Allen op-
erators [2] compare datatype properties e.g., A.B like “x” before C.D like “y”.
The language also supports additional functionalities such as LIMIT, OFFSET
that limit the number of answers to be returned, and nested queries. A formal
description of the language’s syntax in BNF can be found in [3] (all keywords are
case insensitive). TOQL supports most of an SQL language syntax and clauses
(see cite[3] for a complete list), the most important of them being:

– SELECT: specifies the object property values to be returned.
– FROM: declares the class or classes to query from. Always follows SELECT.
– WHERE: includes logic operations and comparisons between object prop-

erty values that restrict the number of answers returned by the query. Always
follows FROM.

344 E. Baratis et al.

TOQL supports the following operators:

– AS: renames a class (in a FROM clause) or a property (in a SELECT
clause). Renaming of a class allows using more than one instances of a class
in a query (e.g., FROM Company AS C1, Company AS C2). Renaming of
a property allows changing its name in the results (e.g., SELECT Com-
pany.companyName AS Name).

– AND: connects two expressions involving properties (datatype or object
properties) in WHERE, returns objects satisfying both expresssions.

– OR: connects two expressions involving properties (datatype or object prop-
erties) in WHERE and returns objects satisfying at least one.

– LIKE: checks whether a datatype property value matches a specified string
in WHERE. Comparison is case sensitive.

– LIKE “string” IGNORE CASE: checks whether a datatype property
value matches a specified string ignoring case.

Table 1 summarizes TOQL syntax:

Table 1. Generic TOQL syntax

Syntax

SELECT ... AS ...
FROM ... AS ...
WHERE ... LIKE ... AND ... LIKE “string” IGNORE CASE

There are operation clauses connecting two (or more) queries in a nested
query:

– MINUS: returns query results retrieved by the first operand, excluding
results retrieved by the second operand.

– UNION: returns the union of results returned by both operands. Duplicate
answers are filtered out.

– UNION ALL: returns the union of results returned by both operands.
Duplicate answers are not filtered out.

– INTERSECT:returns the intersection of results retrieved by both operands.
– EXISTS: this is a unary operator that has a nested SELECT-query as its

operand. The operator is an existential quantifier that succeeds when the
nested query has at least one result.

– ALL: this is an operator that has a nested SELECT-query as one of its
operands. It always follows a comparison operator (i.e., “=”, “!=”, “<”,
“>”, “<=”, “>=”). It indicates that for every value of the nested query the
comparison must hold.

– ANY: has a nested SELECT-query as one of its operands. It always follows
a comparison operator (i.e., “=”, “!=”, “<”, “>”, “<=”, “>=”). It indicates
for at least one value of the nested query the comparison must hold.

– IN: has a nested SELECT-query as one of its operands. Allows set member-
ship checking. The set is defined by the nested SELECT-query.

TOQL: Temporal Ontology Querying Language 345

Table 2 summarizes TOQL syntax with operator clauses:

Table 2. TOQL syntax with operator clauses

Case 1 Case 2 Case 3 Case 4

Query Query Query Query
MINUS UNION UNION ALL INTERSECT
Query Query Query Query

Case 5 Case 6 Case 7 Case 8

SELECT ... SELECT ... SELECT ... SELECT ...
FROM ... FROM ... FROM ... FROM ...
WHERE EXISTS WHERE ... CO2 WHERE ... CO2 WHERE ...
(QUERY) ALL (Query) ANY (Query) IN (Query)

3.1 Dealing with Classes and Properties

In ontologies the basic terms are classes (also named concepts) and properties (ob-
ject or datatype). Classes represent concepts of the world. Properties represent
relations between two concepts or between a concept and a value. Properties re-
lating two classes (concepts) are referred to as object properties, while properties
relating a class with a value are referred to as datatype properties. As an example
of object property consider the relation between the Company and the Employee.
These two classes are connected with the object property hasEmployee. As an ex-
ample of datatype property consider the name of an Employee. Class Employee is
connected with a name (string value) with datatype property employeeName.

TOQL not only uses SQL-like clauses and a similar syntax, but also treats
ontologies almost like relational databases. Tables representing concepts corre-
spond to classes and tables representing relations correspond to object prop-
erties. Attributes correspond to datatype properties. In addition, 1:1 and 1:N
relations correspond to object properties. Table 3 summarizes the mapping be-
tween database relations and ontology concepts used by TOQL.

Table 3. Mapping between database relations and ontology concepts

Relational Database Ontology

Table representing concept Class
Table representing N:N relation Object Property

1:N or 1:1 relation Object Property
Attribute Datatype Property

In TOQL, classes are declared in FROM clauses just like SQL handles tables. To
access a datatype property of a class, the name of the class is followed by a dot (“.”)
and the name of the datatype property, just like SQL handles tables and attributes:
2 CO: comparison operator can be any of “=”, “!=”, “<”, “>”, “<=”, “>=”.

346 E. Baratis et al.

ClassName.DatatypePropertyName

To access object properties (properties connecting two classes), the name of the
domain class is followed by a dot (“.”), the name of the object property, double
dot (“:”) and finally the name of range class:

DomainClassName.objectPropertyName:RangeClassName

The following query can be used to access the names of companies producing
products called “x” in the ontology of Figure 2:

SELECT Company.companyName
FROM Company, Product
WHERE Company.produces:Product
AND Product.productName LIKE “x”

3.2 Dealing with Time

TOQL is a high level language, hiding from the users the implementation of
time at the ontology level. A temporal ontology consists of (a) the static part
where application classes, properties and their instances are defined and (b)
the dynamic part where the additional temporal classes (i.e., classes TimeS-
lice, TimeInterval), properties and instances of the above temporal classes and
fluent properties are defined (i.e., tsTimeSliceOf, tsTimeInterval). TOQL auto-
matically determines references to time related information.

To do this, TOQL:

– Retrieves the time slices associated with a class of the static ontology.
– Determines whether a property (object or datatype) in the query is a fluent

property (i.e., a property that connects time slices or a time slice with a
datatype) or not (i.e., a property that connects “static” classes or a “static”
class with a datatype).

– Uses the ontology’s dynamic part to answer the query, if a property specified
by the query is a fluent one. In case the fluent property is a functional one
(i.e. can have only one value at each instance of time) then the reasoner
described in Sec. 3.7 is used to answer the query. The rationale behind this
choice is that functional properties have unique values, which may change at
a later time as the result of events affecting them. For example, if the price
of product changes, then the new value substitutes any previously known
value, while non functional properties retain both older and newer values.

– Uses the ontology’s static part to answer the query, if a property specified
by the query is not a fluent one.

TOQL prevents users from being familiar with the representation of time in
ontologies. As an example consider the DEn Ontology of Figure 2. Typically
to retrieve companies that hired employees, one should be familiar with the 4D
fluent mechanism and ask for all time slices (instances) of class Company and all
time slices of class Employee and then query on the object property hasEmployee
that connects those instances. In TOQL (without implementing the high level
functionality described above), this is expressed as:

TOQL: Temporal Ontology Querying Language 347

SELECT Company.companyName
FROM Company, Employee, TimeSlice AS T1 ,
TimeSlice AS T2
WHERE T1.tsTimeSliceOf:Company AND
T2.tsTimeSliceOf:Employee AND T1.hasEmployee:T2 AND
Employee.employeeName LIKE “x”

This is a rather complicated expression and requires the user to be familiar
with the implementation of time at the level of the ontology (the 4D fluent
method in this work). However, this is not necessary in TOQL and the same
query can be expressed as:

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee
AND Employee.employeeName LIKE “x”

The second query is much more easy to write than the first one. Notice that the
object property hasEmployee is treated like its domain class Company and its
range class Employee.

3.3 Abstract Ontology View

TOQL is a high level language independent from the actual representation of
time in an ontology. A user need only be aware of the so called “abstract ontology
view”. Classes and properties specific to the 4D fluent mechanism are excluded
from the abstract view. The fluent properties that connect time slices are con-
sidered to connect directly the static classes. Figure 3 illustrates the abstract
ontology view corresponding to the DEn ontology of Figure 2. Fluent properties
are shown in blue color.

hasEmployee produces

companyNameemployeeName

ProductCompanyEmployee

productName

String String int String

price

Fig. 3. Abstract ontology view corresponding to the DEn ontology of Figure 2

3.4 Allen Operators

In TOQL, the implementation of ALLEN operators correspond to comparisons
between fluent properties. Fluent properties connect time slices and time slices
are associated with time intervals. Consequently, the implementation of Allen

348 E. Baratis et al.

operators correspond to comparisons between time intervals. The following op-
erators are supported in TOQL: BEFORE, AFTER, MEETS, METBY, OVER-
LAPS, OVERLAPPEDBY, DURING, CONTAINS, STARTS, STARTEDBY,
ENDS, ENDEDBY and EQUALS, representing the corresponding relations hold-
ing between two time intervals.

The following TOQL query retrieves the name of the company that hired
employee “x” and then employee “y”:

SELECT Company.companyName
FROM Company, Employee AS E1, Employee AS E2
WHERE Company.hasEmployee:E1 BEFORE Company.hasEmployee:E2
AND E1.employeeName like “x” AND E1.employeeName LIKE “y”

3.5 AT, TIME Operators

TOQL also introduces clause “AT” which compares a fluent property (i.e., the
time interval in which the property is true) with a time period (time interval)
or time point. Notice that the AT clause retrieves data explicitly defined in the
knowledge base. As an example, assume the DEn Ontology and consider that
at time point 5 the price of Product1 is 10 and that there is no information
about its price after time point 5. If a query asks for the price of Product1 at
time point 6 a reasonable answer would be 10 (the last known price in the KB).
Answering such queries effectively is achieved by combining TOQL with the
reasoner described in Sec. 3.7. In the current implementation:

– AT(time point) operation returns true if the time interval holds true at
the time specified.

– AT(start time point, end time point) operation returns true if the time
interval holds true for all the time interval.

The following TOQL query retrieves the name of the company employee “x”
was working for, from time=3 to time=5:

SELECT Company.companyName
FROM Company, Employee
WHERE Company.hasEmployee:Employee AT(3,5)
AND Employee.employeeName LIKE “x”

Because TOQL is independent of the mechanism implementing time, there is no
way to directly access class TimeInterval (i.e., the class holding values of time).
In order for TOQL to return values of time, the keyword TIME is introduced.
It follows datatype or object properties and can be used only in SELECT. It
returns the start and end time point (if any) in which the property holds true
(the time interval in which the property is true). If no end point exists, it returns
only its start point. As an example, the following TOQL query retrieves the time
for which a company had employee “x”

TOQL: Temporal Ontology Querying Language 349

SELECT Company.hasEmployee.TIME
FROM Company, Employee
WHERE Company.hasEmployee:Employee AND
Employee.employeeName LIKE “x”

3.6 Special Cases

This section describes TOQL special features. These are related to the way
TOQL deals with Class keys, wildcards (*) and Scope.

Dealing with keys. In relational databases each tuple is uniquely characterized
by a key. A key can refer to more than one attributes (compound key). Consider
a relational database that has the table Company and that this table uses the
attribute ID as key. To access this key, in SQL, a user should write:

SELECT Company.ID

In OWL, each class instance and each property have a unique name. This unique
name is considered to be equivalent to the unique key of relational databases.
The difference is that this unique name is not an ordinary datatype property,
and so it can not be accessed by writing the name of the class followed by a dot
“.” and the datatype property. In TOQL, the (unique) name of a class instance
is accessed using the name of the class itself (without reference to a property).
For example, to access the unique name of a company we write:

SELECT Company

Dealing with wildcards (*). In TOQL, wildcards can be used only in SELECT.
In SQL the presence of wildcard in SELECT implies that all the columns of
all the tables declared in clause FROM will be returned. If the wildcard follows
a table (tableName.*), all the columns of the specific table will be returned.
In TOQL the presence of wildcard in SELECT implies that all the datatype
properties of all the classes declared in FROM will be returned. If the wildcard
follows a class, the datatype properties of the specific class will be returned.
Notice that the class unique name is not returned (only its datatype properties
are returned). The following query retrieves companies producing product with
unique name “x”, as well as the product’s name.

SELECT *
FROM Company, Product
WHERE Company.hasProduct:Product
AND Product LIKE “x”

Dealing with scope. TOQL supports set combination operations in queries as well
as nested queries. Both set operations and nested queries imply that a TOQL
query may be composed of more than one subqueries. Each subquery has its own
class declarations, class and property usage and this introduces the need for the
handling of scopes.

350 E. Baratis et al.

Queries combined by set operators have different scopes. Classes declared in
any of them are local to this query and are not visible to the others. The following
query retrieves names of “Company 1” and also names of “Company 2” from
the DEn Ontology:

SELECT C1.companyName
FROM Company As C1
WHERE C1 like “Company 1”
UNION
SELECT C1.companyName
FROM Company As C1
WHERE C1 like “Company 2”

This TOQL expression specifies two separate queries combined by the set oper-
ator UNION. Each subquery has a different scope: classes declared in the first
subquery are not visible to the second one. Even if the same class is used by the
second subquery, it must be redeclared.

In TOQL, a nested query inherits all the classes declared in the query it is
nested into. A nested query can use these classes, but cannot (re)declare any of
them. The following nested TOQL query (a second query follows clause ANY)
retrieves products whose price is at least 10 and not smaller than than the price
of any other product. Both subqueries use class Product but with different names
(P1 and P2 respectively) otherwise a semantic error will be reported.

SELECT P1
FROM Product As P1
WHERE P1.price >= 10 AND NOT
P1.price < ANY
(SELECT P2.value FROM Product As P2)

3.7 Reasoning in TOQL

TOQL can be used to access temporal information that is explicitly represented
in a temporal ontology, but cannot provide answers on information that can
be inferred from existing information. For example if the price of a product
at time t is p, TOQL should be able to infer that the price of the product
remains the same since the last time it was changed. This is exactly the prob-
lem the TOQL reasoner is dealing with. The reasoner implements an action
theory based on Event Calculus [22]. Event calculus records the events that
have taken place. It comprises of events (or actions), fluents and time points.
Table 4 illustrates the predicates of Simple Event Calculus. Time points are
natural numbers which means that time is ordered, discrete and unbounded. A
fluent is a predicate of the form “fluentName1(objectID1)” and the same is an
action “actionName1(objectID1,objectID2)”.

The definition of the HoldsAt and HoldsBetween predicates for an arbitrary
fluent f is presented below along with rules that state that a fluent retains the
same value since the last time it was changed:

TOQL: Temporal Ontology Querying Language 351

Table 4. Predicates of Simple Event Calculus

Predicate Meaning

Initiates(A, f, x, t) if action A is executed at time t,
then f will have value x at time point t

Terminates(A, f, x, t) if action A is executed at time t,
then f will not have value x after the time point t

HoldsAt(f, x, t) fluent f has value x at time point t
Initially(f, x) fluent f has value x in the beginning
HappensAt(A, t) action A is executed at time point t
t1<t2 time point t1 is before time point t2

Started(t1, f, x, t2) � ∃a : HappensAt(a, t1) ∧ Initiates(a, f, x, t1) ∧ (t1 < t2)

Releases(a, f, x, t) � ∃a′ : HappensAt(a′, t) ∧ Initiates(a′, f, y, t) ∧ (y �= x)

Clipped(t1, f, x, t2)�∃a, t :HappensAt(a, t)∧(t1<t <t2)∧Terminates(a, f, x, t)

HoldsAt(f, x, t) � (Initially(f, x) ∧ (0 < t) ∧ ¬Clipped(0, f, x, t))

∨(∃t1 : Started(t1, f, x, t) ∧ ¬Clipped(t1, f, x, t))

HoldsBetween(f, x, t1, t2) � (∃t : Started(t, f, x, t1) ∧ ¬Clipped(t, f, x, t2))

∨(Initially(f, x) ∧ (0 < t1) ∧ ¬Clipped(0, f, x, t2))

The reasoner applies when an object property is defined as temporal and func-
tional (e.g. the price of a product, which can have only one value at a time
point). For example if the price of the product “Product4” is set at 50 euro at
time point 2 and 60 euro at time point 4 then the following query:

SELECT Product
FROM Product
WHERE Product.price LIKE “50” AT(9)

will return an empty list as a result, because the reasoner infers that setting the
price at 60 euros at time point 4 implies that the price is not 50 euros after that
time point. If the reasoner is not used then the query will return “Product4” as
a result, which is not correct. Thus the AT operator is handled by the reasoner
in case of functional fluent properties.

4 TOQL Implementation

To show proof of concept, a TOQL system has been implemented in Java2. The
system supports query translation and execution of TOQL queries on temporal
ontologies in OWL. The input is a query written in TOQL and an ontology in
OWL (in RDF/XML or RDF/XML-ABBREV syntax).
2 Available at http://www.intelligence.tuc.gr/∼petrakis/downloads/TOQL.zip

352 E. Baratis et al.

Fig. 4. TOQL system architecture

Figure 4 illustrates the architecture of the proposed system. The TOQL
system consists of several modules whose purpose is to translate the TOQL
query into an equivalent SeRQL one (which is then executed on the knowledge
base).Notice that SeRQL is independent from TOQL. Any other language sup-
porting SQL syntax and comparison between date times (such as SPARQL)
would do for this translation. Notice also that executing TOQL statements di-
rectly on the ontology is also feasible but the implementation would be more
involved. TOQL and SeRQL have different syntax, however, queries are much
easier to express in TOQL. SeRQL supports comparison between date times but
not the full range of TOQL’s time features. Therefore, even simple TOQL queries
are translated to complicated SeRQL ones. The complete discussion of the TOQL
implementation can be found in [3]. The application loads the ontology schema
in memory. TOQL queries are translated into equivalent SeRQL queries which
are applied to the knowledge base using SESAME3. The TOQL query is parsed
and if fluent properties are detected then the query is converted to an equiv-
alent query addressing the underlying 4-D fluent representation, which in turn
is translated into a SeRQL query. For example the following TOQL query is
translated to the SeRQL query of page 353:

SELECT C1.companyName.TIME as T,
C1.companyName
FROM Company As C1
WHERE C1 like “Company1”

In case of queries over functional fluent properties fluents are represented as pred-
icates of event calculus and the Prolog reasoner is applied, which transforms the
query into an equivalent one that conforms to the event calculus axioms, before
the translation to SeRQL occurs. Specifically, at the “java objects generation”
phase, if the query uses the AT operator, it is replaced with an equivalent one
where every expression that uses the AT operator is replaced with the reasoners
answer.
3 http://www.openrdf.org/

TOQL: Temporal Ontology Querying Language 353

The Pellet4 reasoner applies to the initial ontology schema, thus the schema
loaded in memory containes all infered facts using OWL semantics. For example
if the class ComputerCompany is defined as a subclass of class Company, then
a query regarding instances of class Company will also apply to instances of the
class ComputerCompany.

SELECT startValue interval C1Slice 1,
endValue interval C1Slice 1, companyName C1Slice 1
FROM {interval C1Slice 1} ex1:startValue {startValue interval C1Slice 1},
{interval C1Slice 1} ex1:endValue {endValue interval C1Slice 1},
{C1Slice 1} ex1:companyName {companyName C1Slice 1},
{C1} rdf:type {ex1:Company},
{C1Slice 1} rdf:type {ex1:TimeSlice},
{interval C1Slice 1} rdf:type {ex1:TimeInterval},
{C1Slice 1} ex1:tsTimeSliceOf {C1},
{C1Slice 1} ex1:tsTimeInterval {interval C1Slice 1}
WHERE localName(C1) Like “Company 1”
USING NAMESPACE
ex1= <http://www.owl-ontologies.com/Ontology1197730146.owl#>

5 Conclusions and Future Work

We introduce TOQL (Temporal Ontology Query Language), an ontology query
language capable of querying ontologies and temporal information in ontologies.
Temporal concepts are assumed to be represented in OWL (or RDF) using the
4D perdurantist approach [15], implementing events occurring at specific time
points or time intervals and evolving in time. The language supports a powerful
set of operations including Allen operators. An application supporting execution
of TOQL queries on OWL temporal (or static) ontologies has been developed
and is available on the Web. TOQL is combined with a reasoner based on event
calculus to better support queries on temporal ontologies. Query optimization
as well as adding new features in TOQL (such as INSERT, UPDATE, DELETE,
ORDER BY, GROYP BY operations) are important issues for further research.
Extending TOQL’s syntax to handle queries on spatial data as well as queries
on ontology structure (i.e., sub-classes and super-classes) and improving query
performance by applying indexing on ontology information are also directions
for further research.

Acknowledgement

This work was supported by project TOWL: “Time-determined ontology based
information system for real time stock market analysis” (FP6-STREP, contract
number 26896) of the European Union.

4 http://clarkparsia.com/pellet

354 E. Baratis et al.

References

1. Aduna, B.V.: The SeRQL query language. User Guide for Sesame 2.1, Chapter 9,
2002–2008, http://www.openrdf.org/doc/sesame2/2.1.2/users/ch09.html

2. Allen, J.F., Ferguson, G.: Actions and Events in Interval Temporal Logic. Journal
of Logic and Computation 4(5), 531–579 (1994)

3. Baratis, E.: TOQL: Querying Temporal Information in Ontologies. Master’s thesis,
Techn. Univ. of Crete (TUC), Dept. of Electronic and Comp. Engineering (July
2008)

4. Bohlen, M.H., Jensen, C.S.: Seamless Integration of Time into SQL. Technical
Report R-96-49, Dept. of Comp. Science, Aalborg University (1996)

5. Martin, D., et al.: OWL-S: Semantic Markup for Web Services. W3C Recommen-
dation (November 2004), http://www.w3.org/Submission/OWL-S

6. Hobbs, J.R., Fang, P.: Time Ontology in OWL. W3C Recommendation (September
2006), http://www.w3.org/TR/owl-time/

7. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: Intern. Conf. on World Wide
Web (WWW 2002), Honolulu, Hawaii, USA (May 2002)

8. Klein, M., Fensel, D.: Ontology Versioning for the Semantic Web. In: International
Semantic Web Working Symposium (SWWS 2001), California, USA, July-August
2001, pp. 75–92 (2001)

9. Kline, N., Snodgrass, R.T., Cliff Leung, T.Y.: Aggregates. In: The TSQL2 Tempo-
ral Query Language, pp. 393–424. Kluwer, Dordrecht (1995)

10. McGuinness, D.L., VanHarmelen, F.: OWL Web Ontology Language Overview.
W3C Recommendation (February 2004), http://www.w3.org/TR/owl-features

11. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (January 2008), http://www.w3.org/TR/rdf-sparql-query

12. Seaborne, A.: RDQL - A Query Language for RDF. W3C Recommendation (Jan-
uary 2004), http://www.w3.org/Submission/2004/SUBM-RDQL-20040109

13. Sider, T.: Four-Dimensionalism: An Ontology of Persistence and Time. Oxford
University Press, USA (2002)

14. Snodgrass, R.T.: The temporal query language TQuel. ACM Transactions on
Database Systems (TODS) 12(2), 247–298 (1987)

15. Welty, C., Fikes, R.: A Reusable Ontology for Fluents in OWL. Fontiers in Artificial
Intelligence and Applications 150, 226–236 (2006)

16. Welty, C., Fikes, R., Makarios, S.: A Reusable Ontology for Fluents in OWL. Tech-
nical Report RC23755 (Wo510-142), IBM Research Division, T. Watson Research
Center, Yorktown Heights, NY (October 2005)

17. Zhang, Z.: Ontology Query Languages: A Performance Evaluation. Master’s thesis,
The University of Georgia, Comp. Science Dept. (August 2005)

18. Ozsoyglu, G., Snodgrass, R.T.: Temporal and Real-Time Databases: A Survey.
Knowledge and Data Engineering 4, 513–532 (1995)

19. Gregersen, H., Jensen, C.S.: Temporal Entity Relationship Models – A Survey.
IEEE Transactions on Knowledge and Data Engineering 3, 464–497 (1999)

20. Artale, A., Franconi, E.: A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence 30(1-4) (2001)

21. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey.
In: Proc. TIME 2008. IEEE Press, Los Alamitos (2008)

22. Shanahan, M.: The event calculus explained. In: Wooldridge, M., Veloso, M. (eds.)
Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Hei-
delberg (1999)

http://www.openrdf.org/doc/sesame2/2.1.2/users/ch09.html
http://www.w3.org/Submission/OWL-S
http://www.w3.org/TR/owl-time/
http://www.w3.org/TR/owl-features
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109

Supporting Frameworks for the Geospatial
Semantic Web

Alia I. Abdelmoty1, Philip D. Smart1, Baher A. El-Geresy2,
and Christopher B. Jones1

1 Cardiff School of Computer Science, Cardiff University, Wales, UK
2 School of Computing, University of Glamorgan, Wales, UK

Abstract. A lot of information on the web is geographically referenced.
Discovering and linking this information poses eminent research chal-
lenges to the geospatial semantic web, with regards to the representation
and manipulation of geographic data. Towards addressing these chal-
lenges, this work explores the potential of the current semantic web lan-
guages and tools. In particular, an integrated logical framework of rules
and ontologies, using current W3C standards, is assessed for modeling
geospatial ontologies of place encoding both symbolic and geometric ref-
erences to place locations. Spatial reasoning is incorporated in the frame-
work to facilitate the deduction of implicit semantics and for expressing
spatial integrity constraints. The logical framework is then extended with
geo-computation engines that offer more effective manipulations of ge-
ometric information. Example data sets mined from web resources are
used to demonstrate and evaluate both frameworks, offering insights to
their potentials and limitations.

1 Introduction

Over the past few years, geo-referencing of resources on the web has evolved to
become a natural method for organising and linking information with the aim
of facilitating its discovery and use. A significant portion of search queries in-
clude references to geographic places and spatial relationships [24,9]. In response,
geographic information retrieval has emerged as a research domain to address
many challenges facing the development of geographically-aware search engines
[19] including, geospatial query interpretation, geo-tagging of resources, spatial
search and analysis and ranking and presentation of information.

On one hand, many of these challenges are problems that are addressed within
the domain of GIS and spatial databases and could benefit from established
approaches to their solution. On the other hand, these challenges are also being
addressed, at a general level, within the evolving Semantic Web whose aim is
to provide common frameworks that allow the sharing and reuse of data and
services across applications, enterprise and community boundaries.

This paper studies the following question; Can the current semantic web tech-
nologies be ”spatially-enabled” to allow the realisation of the geospatial semantic
web? Towards answering this question, two frameworks are proposed. The first is

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 355–372, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

356 A.I. Abdelmoty et al.

based entirely on semantic web tools and technologies and is a logical integration
of rules and ontologies to provide a platform for expressing and reasoning over
symbolic geographic knowledge. The second framework is a hybrid extension of
the basic framework with geospatial information processors that are more suited
to manipulating the geometrical (location) component of the information. The
potential and limitations of the frameworks are explored. Both are implemented
using available tools and standards and are tested with some realistic data sets
collected from web resources.

The nature of geospatial referencing as used on the web is discussed in sec-
tion 2, followed by a proposal of a simple place model that encapsulates the
dimensions of this data. Section 3 is an evaluation of OWL, as a standard web
ontology language, for representing the proposed place model. A discussion of
OWL’s limitation motivates the use of a rule layer over the ontology. A homoge-
nous approach to the integration of such a rule layer is used in section 4 to form
a basic framework for encoding a geospatial ontology and reasoning engine. The
framework is evaluated with data sets extracted from Wikipedia. An extension
to the framework that incorporates a spatial database system is proposed and
evaluated in section 5 and the paper concludes in section 6.

2 Geospatial Referencing on the Web

Place names provide what is probably the most fundamental method of specify-
ing location in natural language and hence also is the the most common form of
geo-referencing used in web documents. A name may be a standardised widely
recognised name, or informal being locally familiar in certain communities [17].
Further nominal clues are also used to distinguish location, for example, using
some address information. If the information described is not exactly associated
with the named place, then spatial relationships are used to describe location
relative to that place, e.g. ”near” and ”north of”. In addition, the web now offers
accessible mapping applications to allow for precise association of resources with
a location on a map (e.g. linking photos on Flickr with Google maps). Unless,
the resource is geo-located, such as with a GPS, a marker on a map is normally
intended as an approximate pointer to the location of the resource.

The same is true when people query geo-referenced information. Typical struc-
ture of queries take the form < subject >< relation >< somewhere > in which
the subject specifies the thematic aspect of the web resource, somewhere is the
name of a place and the relation stipulates a spatial relationship to the named
place [18]. For example, the query ”Camp sites in South Wales adjacent to a
beach”, is a spatial query involving a combination of spatial joins and requires
an estimation of the boundary of the region ”South Wales”. Gazetteers typically
only provide a single point (centroid) to approximate the location of geographic
regions. In addition, some regions, such as ”South Wales” are vernacular and do
not have an official recorded boundary. To answer this query, additional knowl-
edge is therefore required.

The web itself acts as a valuable source from which place information can be
harvested to complement traditional gazetteers. Research methods (geo-parsing,

Supporting Frameworks for the Geospatial Semantic Web 357

[1..1]
[3..*] [2..2]

[0..*] [0..*]

Geometry

[1] xCoord : double
[1] yCoord : double

Coord

Spatial Relationship

[1] Name : String
Toponym

Polygon LinePoint

[1] Date : date
[1] SpatialReferenceSystemID:
String

Footprint

[1] PlaceID: String
[1] Description : String

Place[0..*] [1..1][1..1]

[1..1]

StandardToponym

AlternateToponym

[1..1] [1..1][1] DateSource : String
[1] DateSourced : date
[1] Accuracy

SourceInformation

S
o
u
rc

e S
o
u
rc

e

[0..*]

GeometryCollection

Directional

TopologicalProximity

RelativeSize

TouchingDisjointInside ...

Region ...

Fig. 1. A Typical Place Ontology Model

coding and tagging) to find and extract this place information are being sought
within the field of GIR [25,3]. The task is challenging, involving problems not only
with the extraction of information from natural language, but also with reasoning
over the extracted data which may be incomplete, fuzzy and in cases contradictory.

Two types of geographic place data can be collected from web resources,
qualitative data, in the form of place names and qualitative spatial relationships
as well as some geometric information, in the form of mostly point data for the
location of some of these places. Similar to processes normally undertaken in GIS
and spatial databases, new methods for ”cleaning” this geographic information
are needed before they can be used as a base for spatial search and analysis.
Collecting place information through Crowdsourcing (or user collaboration) is
emerging and some web databases are already accumulating and serving these
geographic data as RDF triples, to facilitate their sharing and integrated use.

In this paper, we use a simple place ontology that captures both types of data
above as shown in figure 1. The model captures both qualitative and qualitative
spatial description of location through the association of a place concept to
a geometric footprint and the recording of different possible types of spatial
relationships between places.

To demonstrate and evaluate the frameworks proposed, data sets are mined
from the web to populate the place ontology. The following is an example, as
RDF(S) triples, of the information mined from Wikipedia articles and stored in
the model, where NS is the namespace prefix of: http://cf.ac.uk/Place/).

358 A.I. Abdelmoty et al.

The triples encodes relationships between a set of regions (administrative wards
in the city of Cardiff).

(<NS:Llanishen> <NS:Inside> <NS:Cyncoed>)
(<NS:Llanishen> <NS:Contains> <NS:Thornhill>)
(<NS:Penylan> <NS:Inside> <NS:Roath>)
(<NS:Penylan> <NS:Inside> <NS:Cathays>)
(<NS:Roath> <NS:Touches> <NS:Penylan>)
(<NS:Llanishen> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <NS:Region>)
(<NS:Cyncoed> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <NS:Region>)
(<NS:Thornhill> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <NS:Region>)
(<NS:Penylan> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <NS:Region>)
(<NS:Roath> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <NS:Region>)
(<NS:Region> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#Class>)
(<NS:Inside> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#Property>)

Databases such as Geonames and DBPedia store point coordinates for the places
they hold in the form of a latitude-longitude pair. The following is an RDF
triple extract from both resources1. Interestingly, articles in DBPedia are linked
to entries in Geonames using the owl:sameAs construct, allowing for possible
integration of knowledge from both sources.

Geonames - Cardiff University

(<gns:Feature> <http://www.w3.org/1999/02/22-rdf-syntax-ns#about>
<http://sws.geonames.org/6697669/>)

(<http://sws.geonames.org/6697669/> <gns:Name> <Cardiff University Queens Buildings>)
(<http://sws.geonames.org/6697669/> <gns:FeatureClass> <http://www.geonames.org/ontology#P.PPL>)
(<http://sws.geonames.org/6697669/> <wgs84_pos:lat> <51.483^^XMLSchema:float>)
(<http://sws.geonames.org/6697669/> <wgs84_pos:long> <-3.16^^XMLSchema:float>)

DPPedia - Cardiff

<http://dbpedia.org/resource/Cardiff> <wgs84_pos:lat>
<"51.4852777778"^^http://www.w3.org/2001/XMLSchema#float>

<http://dbpedia.org/resource/Cardiff> <wgs84_pos:long>
<"-3.18666666667"^^http://www.w3.org/2001/XMLSchema#float>

Integrating these data resources poses many interesting research problems. The
rest of this work focusses primarily on the following two basic problems.

– Are the available web languages and tools able to model this data effectively?
– Can these tools be used to reason effectively with the data to ascertain its

consistency?

3 Evaluation of Current Semantic Web Tools

Ontologies are key to the development of the semantic web. They provide plat-
forms for expressing and reasoning over common structures and vocabularies
to facilitate sharing as well as machine understanding and reasoning of knowl-
edge [14,13]. Layers of technologies and languages are proposed by the W3C on
the semantic web stack to allow for the representation of ontologies, including
1 where gns = http : //www.geonames.org/ontology#, dbns = http : //dbpedia.org/

resource/#andwgs84 pos = http : //www.w3.org/2003/01/geo/wgs84 pos#

Supporting Frameworks for the Geospatial Semantic Web 359

the resource description framework (RDF), a basic schema definition language
RDF(S), and a more expressive web ontology language OWL.

RDF provides a simple knowledge representation model using binary predi-
cates or triples < subject; predicate; object > asserting knowledge described by
the predicate about the subject and object. RDF Schema (RDFS)2 is an ex-
tension to RDF that provides base ontological constructs for defining custom
vocabularies. RDFS can be considered a simple object-orientated language al-
lowing user defined classes and properties. OWL extends RDFS and provides a
richer set of modeling constructs and hence semantics and is considered to be
the most complete and expressive web ontology language currently being devel-
oped. OWL is based on Description Logics (DL) and allow for the representation
of concepts, concept hierarchies, roles and individuals. With its formal logical
semantics, description logics support the following key inference tasks:

1. Subsumption reasoning - given concept C and D, determine if C is a subset
of D. Checking if the concept D is more general than C.

2. Membership checking - check whether an individual i is a member of the
concept C, or find all individuals that are an instance of C (a query).

3. Satisfiability checking - given concept C determine if C is consistent with
respect to the knowledge base; checking whether a concept expression does
not denote the empty set.

3.1 Using OWL for Representing Geographic Knowledge

The place ontology in figure 1 can be represented using OWL-DL (the description
logic subset of full OWL). A sample using XML/RDF syntax is shown below
and a range of OWL-DL constructs used in the representation are given in
table 3.1.

<owl:Class rdf:about="#Place">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty>

<owl:DatatypeProperty
rdf:ID="Description"/>

</owl:onProperty>
<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int"
>1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>

<owl:ObjectProperty rdf:ID="Inside">
<rdfs:domain rdf:resource="#Place"/>
<rdfs:range rdf:resource="#Place"/>

</owl:ObjectProperty>

The expressiveness of OWL makes it a suitable modeling platform for different
domains. However, it also has some limitations, as detailed below.
2 http://www.w3.org/TR/rdf-schema/

360 A.I. Abdelmoty et al.

Table 1. Sample OWL-DL constructs for the Place model

OWL-DL Construct Description
Place A Place is a concept

City � Place A City is a sub-concept of Place
Ward � Place A Ward is a sub-concept of Place

Place = ≥1.Name ∩ ∀ partOf.Place A Place has one or more names, and can be partOf
another place

SpatialRelationship A spatial relationship is a property
Topological � SpatialRelationship A topological property is a sub-property of a spa-

tial relationship
Overlap � Topological An Overlap property is a sub-property of a spatial

relationship
PartOf � Topological A PartOf property is a sub-property of a spatial

relationship
Equal � PartOf An Equal property is a sub-property of a spatial

relationship
PartOf+ � PartOf PartOf is a transitive property

PartOf ≡ Contains− PartOf is equivalent to the inverse of the Contains
property

City ≡ Stadt A City concept is equivalent to the concept Stadt
(City in German)

1. OWL’s first order, open world semantics in combination with the non-unique
name assumption makes it unsuitable for constraint checking tasks [5]. For
example, qualified cardinality constraints can’t be used to constrain and
check the possible instantiations of a class.

Consider the following OWL definition of a Polygon,

Polygon > 3.XY Coords

If an individual of type Polygon had two XY Coords, the open world as-
sumption would concede that information may exist external to the ontology
which can later be added to satisfy the restriction. If an individual had more
than three XY Coords then, as OWL does not support the unique name
assumption, it will infer that all redundant coordinates are equal.

2. ‘Triangular knowledge’ is not representable in OWL-DL [15]. In particular,
complex property compositions which are inference patterns of the form,

∀x, y, c : R1(x, y) ∧R2(y, c) → R3(x, c)

where R1,R2 and R3 are different relations, can not be handled. OWL v1.1.
adds a restricted complex property inclusion axiom that can capture a lim-
ited form of an inference rule as follows.

R(x, y) ∧ S(y, c)→ S(x, c)

or

R(x, y) ∧ S(y, c)→ R(x, c)

Supporting Frameworks for the Geospatial Semantic Web 361

Such axioms only permit the conclusion of a property used in the body of
the composition, guaranteeing decidability, but will still not handle the more
general form of complex property compositions.

3. Tableaux based reasoners (as used in most DL reasoners) are poor for query
answering over individuals [5] and hence will pose a scalability problem for
typically large spatial knowledge bases.

4. A further issue, particular to geospatial domains, is related to the repre-
sentation and manipulation of the geometry. Logic-based paradigms are not
suitable for the expression of procedural implementation of spatial opera-
tions, nor could they offer efficient storage structures or spatial indexes.

The limitations of OWL has led to proposals for enhancing its expressiveness in
particular by exploring approaches for the representation of rules over ontologies.
Different methods have been proposed and a rule layer is now part the semantic
web stack.

Approaches to the integration can broadly be classified as either hybrid or
homogeneous [1], reflecting the degree of interaction between the rule and on-
tology components. A hybrid approach is a modular approach where both the
rule and ontology components are kept distinct. Reasoning is performed sepa-
rately in both components and entailments from one component are treated as
constraints to the other.

A homogenous approach is characterised by the complete translation of one
language into the other. Approaches exist based on the expressive union of
the two languages, as for example in the standard web ontology rule language
(SWRL [16]) . However, the union introduces undecidability in the resultant
language [2]. More commonly approaches are built around the common inter-
section of the language, as for example in the web rule language (WRL)3 and
description logic programs (DLP) [11]. Homogenous approaches offer a better
reasoning synergy between ontology and rule components, as they form in ef-
fect one language. Furthermore, integrations based on the intersection of rule
and ontology component can be used within existing, mature and scalable logic
programming engines.

Description Logic Programs (DLP) is an example of a homogenous approach
to integration and offers the following useful features.

– A significant number of commonly used constructs of OWL-DL can be cap-
tured within DLP[26].

– DLP is considered a sound, practical and extensible paradigm [20] and is the
base for the core web rule language WRL.

– DLP can be run by existing forward chaining production systems such as
RETE or backward chaining classical logic programs without modification.

– Logic programming engines are better at reasoning with large stores of indi-
viduals (as in the case of geospatial knowledge bases) than tableaux-based
DL reasoners [21,20].

3 http://www.w3.org/Submission/WRL/

362 A.I. Abdelmoty et al.

– DLP assumes a more intuitive closed world and unique name assumption
and is consequently a suitable language for expressing and implementing
integrity constraints, in addition to deductive rules.

In the rest of this paper DLPs are used as a base framework for managing
geospatial ontology bases.

4 Description Logic Programs Framework

A Description Logic Program (DLP) framework is proposed here as a base for
representing and reasoning over geospatial knowledge base. First, we show how
the modeling constructs in OWL can be transformed and expressed in DLP and
then how it can be used to represent spatial rule bases for deduction and integrity
checking.

Fig. 2. DLP Place ontology Framework

4.1 Mapping Geospatial Ontologies from OWL to a DLP

A transformation function T , as defined in [12], is used here to map the OWL-DL
representation of the place ontology into a DLP as shown in table 2. In practice this
transformation can be performed using the KAON2 DLP convert program [21].

Note, that the following constructs of the OWL-DL place ontology could not
be represented in a DLP (see [12] for a more in-depth description of features not
supported in a DLP):

– Functional properties, for example that each place has a unique ID.
– Cardinality restrictions, for example that each place has only 1 standard

name.

In addition to representing the base axioms of the place ontology, a DLP allows
for the definition of arbitrary (Horn) rules. Two principle types of rules can be
expressed, namely, deduction and integrity, as shown below.

Supporting Frameworks for the Geospatial Semantic Web 363

Table 2. Sample DLP Place Ontology using the transformation function T

.

OWL-DL Syntax DLP Horn Syntax
Place � Thing Place(x) → Thing(x)
Region � Place Region(x) → Place(x)
� � ∀ PlaceID.xsd:string PlaceID(x,y) →

xsd:String(y)
� � ∀ PlaceID−1.Place PlaceID(x,y) → Place(x)
Topological � Spa-
tial Relationship

Topological(x,y) → Spa-
tial Relationship(x,y)

Touches � Topological Touches (x,y) → Topologi-
cal(x,y)

... ...

4.2 Deduction Rules

DLP can represent arbitrary deduction rules that can capture certain spatial
compositional inferences that result in a definite conclusion (one head predicate)
i.e. rules of the form:

Inside(A,B) ∧ Disjoint(B, C) → Disjoint(A, C)

Although not strictly part of a DLP, procedural attachments can be easily added
within all logic programming reasoning engines [20]. These are described later
in the paper.

4.3 Integrity Rules

The logic programming equivalent of Horn logic used by a DLP assumes a more
intuitive closed world and unique name assumption and is consequently a suitable
language for expressing and implementing integrity constraints. The bodies of
integrity and deduction rules are identical in both specification and functionality.
An integrity rule differs from a deduction rule in the use of its head atom. An
integrity rule does not assert new information into the ontology4, instead it
asserts errors into an error ontology.

For example, consider the following rule with (where A, B and C are vari-
ables).

Inside(A, B) ∧ Inside(B, C) ∧Equal(A, C)→ error(t1 , ..., tn) (1)

Here the head predicate is an error predicate that is inferred if the body predi-
cates (relations) exist in the DLP knowledge base. In this rule, if a place bound
to the variable A is inside one bound to B, and B is inside a third place bound
to C. An invalid state is reached and an error inferred, if a contradictory fact is
explicit in the DLP that states that A is Equal to C. A set of integrity rules to
4 As is common in logic programming literature, a rule without head is referred to as

an integrity rule.

364 A.I. Abdelmoty et al.

capture possible invalid states for different types of spatial relations need to rep-
resented in the DLP. The resulting inferred error predicates are recorded and can
be examined at the end of the inference process to identify the inconsistencies
and trace their sources.

5 Framework Implementation

A system has been developed that implements the DLP proposed framework
above within the Jena2 Semantic Web toolkit5. Jena2’s rule engine is based
on the Rete pattern matching production system [10] and an XSB [23] logic
programming engine.

The system has been tested on real world place information mined from both
Wikipedia pages and general web pages. The mined information is stored using
the place ontology in OWL and then converted to a DLP program using the
KAON2 DLP convert tool, and loaded into Jena2 as a set of logical rules in
RDF triple format. A spatial rule base representing the composition of spatial
relations has been developed using topological composition table [6,4,22,7,8].
The design and implementation of the spatial reasoning methods are assumed
here and are outside the scope of the current paper.

Example. The instantiated place ontology contains 40 regions or neighborhoods
within Cardiff, UK and roughly 200 explicit topological spatial relationships
between these regions. The following are example of facts.

(NS:Penylan rdf:type NS:Ward)

(NS:Penylan NS:Inside NS:Roath)

(NS:Penylan NS:Inside NS:Cathays)

The engine checks the consistency of the ontology and reports the detected
problem facts. A visual interface has been designed to allow for the visualisation
and editing of the ontologies and rules, as shown in figure 3. The result of the
reasoning process is shown on the interface where problem relations (edges) are
highlighted. In addition, a trace of the reasoning process can be produced to
localise the source of the inconsistency in the data set.

An example of the error detected in this sample data set are the three re-
lationships between the districts Cathays, Roath and Penylan, shown in figure
4(a). In reality, Penylan and Roath are neighbours, as shown in the Google maps
view in figure 4(b). To find this inconsistency, the following integrity rules were
triggered.

[Inside_Meet : (?x rdf:type NS:Region) (?y rdf:type NS:Region)

Region(?z rdf:type NS:Region) (?x NS:Inside ?y) (?y NS:Meet ?z)

(?x NS:Inside ?z) -> error(?x ?z)]

Where Penylan is inside Cathays and Roath meets Cathays implies that Penylan
can not be inside Cathays, and hence the rule implies an error.
5 http://dsonline.computer.org/0211/f/wp6jena.htm

Supporting Frameworks for the Geospatial Semantic Web 365

Fig. 3. Place Ontology Visual interface with a sample of the individuals in the ontology

(a) (b)

Fig. 4. a) Inconsistencies found between the regions Cathays, Roath and Penylan, b)
Google Maps View of the three regions

[Contains_Inside: (?x rdf:type NS:Region) (?y rdf:type NS:Region)

Region(?z rdf:type NS:Region) (?x NS:Contains ?y) (?y NS:Inside ?z)

(?x NS:Meet ?z) -> error(?x ?z)]

Where Roath contains Penylan and Roath meets Cathays means that Cathays
can not contain Penylan and hence the rule implies an error.

The DLP framework reasons with explicitly stored spatial facts in the ontol-
ogy base but will not compute the facts if they are stored. Hence, its effectiveness
is related to the number and types of spatial relations defined. Figure 5 demon-
strates how the number of definite as well as indefinite spatial relations between
regions in the ontology varies depending on the number of pre-defined explicit

366 A.I. Abdelmoty et al.

Fig. 5. Percentage of explicit (raw) relations vs. percentage of inferred relations in the
sample ontology data set

relations. The figures is based on the experiment with the ontology built from
web resources used in the example. The total coverage refers to how many spa-
tial relation in the ontology that are not the universal relation (a disjunction
of all possible eight base topological relations). For instance, if the coverage is
100% then every region is connected to every other region by either a definite or
indefinite topological relation. The number of definite relations is the percentage
of region to region relations that are definite (only one topological relation).

6 The Extended Framework

Information on the object’s location, shape and size can be used to directly com-
pute its relationships to other object. A system for managing geo-referenced data
need therefore to be able to make effective use of available geometric represen-
tations. Logic programming does not naturally support the representation and
manipulation of these facts, but it can link up with processors that are more
suited to these tasks. In addition, coordinate data representing boundaries of
geofeatures can increase the storage (and memory) overhead significantly for an
ontology base and stretches the capabilities of current technologies for reasoning
with them. A sample geographic ontology base with 10 classes and around 10,000
individuals was created for a data set of European administrative boundaries.
Classes were associated with 2 properties and 3 datatype properties. The detailed
representation of the boundary data resulted in an OWL ontology that occupied
100MB of persistent storage space and approximately 800MB of memory.

A hybrid extension to the framework is therefore proposed here to integrate an
external geometric computation engine, to which the storage and manipulation

Supporting Frameworks for the Geospatial Semantic Web 367

Fig. 6. Extended DLP Framework

of the geometric component of the geospatial ontology bases can be delegated.
The extended framework is shown in figure 6. The Location Storage System
(LSS) can in practice be a spatial database system (Oracle spatial is used in
our case). All geometries are mapped directly in the LSS. An example of the
mapping is shown in table 3.

Table 3. Example Geometry Mapping

Place Geometry (Oracle) Table
District(Roath)→
Geomtry→
polygon→
Coord(3,13)
Coord(11,13)
Coord(11,21)
Coord(3,21)
Coord(3,13)

INSERT INTO locationBase
VALUES(’http://cf.ac.uk/Roath’,
MDSYS.SDO GEOMETRY
(2003,8307,null,
MDSYS.SDO ELEM INFO ARRAY
(1,1003,1), MDSYS.SDO ORDINATE ARRAY
(3,13,11,13,11,21,3,21,3,13)))

The unique URI reference to a place instance in the DLP ontology is main-
tained in the LSS. This allows place instances in the DLP to be linked to their
associated geometries in the LSS. In practice, all calls to the LSS take place
through procedural attachments from the core DLP.

368 A.I. Abdelmoty et al.

6.1 Procedural Attachments for Spatial Operators

Many logic engine implementations provide a set of static predefined procedural
attachments, denoted builtins. Builtins commonly revolve around simple arith-
metic procedures or comparison procedures. Extending a DLP with procedural
attachments can lead to a more complicated semantic treatment if the attach-
ments are allowed to effect the logic program in any way, by for example removing
facts from the knoweldge base. Semantically clean builtins are those that only
test or compute facts and will not change or remove facts in the DLP.

In addition to standard builtins, a set of spatial builtins (or spatial operators)
needs to be defined to link between the DLP component and the external geo-
computation engine. Examples of these procedural attachments are given in
table 4.

Table 4. DLP Spatial Procedural Attachments

Procedural Attachment Arguments Oracle
exAdjacent (Ind1, Ind2) SELECT c b.rdfID, c d.rdfID,

SDO GEOM.RELATE (c b.shape,
’TOUCH’, c d.shape, 0.005) FROM
<tableName> c b, <tableName>
c d WHERE c b.rdfID = <ind1>
AND c d.rdfID = <ind2>

Area (Ind1, R) SELECT SDO GEOM.SDO AREA
(loce.shape, 0.005,’unit= <unit>)
FROM <tableName> loce WHERE
loce.rdfID = <ind1>

exDisjoint (Ind1, Ind2) · · ·
Distance (Ind1, Ind2, R) · · ·

6.2 Interleaved Reasoning

Typically, all rule body antecedents are matched from existing stored facts (facts
derived by rules or explicitly represented). Interleaving forward and backward
reasoning modes in a logic program allow for the derivation of facts on the fly if
they are not explicitly stored. Consider the following rule:

[Region(?x)∧Region(?y)∧Region(?z)∧Inside(?x?z)∧Inside(?z?y) → Inside(?x?y)]

The conclusion of Inside(?x ?y) would only be inferred if both the atoms
Inside(?x ?z) and Inside(?z ?y) can be satisfied. These atoms are either
satisfied by facts directly stored in the ontology (explicit), or inferred using
reasoning rules, or as a last resort satisfied by a rule that calls the external
geo-computation engine.

Supporting Frameworks for the Geospatial Semantic Web 369

For example, the following is a subset of rules used to derive the inside relation-
ship between two regions. The fifth rule is a call to the external
(exInside predicate). Hence, Inside(?x ?y) will return either true or false,
based on whether the relationship exists in the ontology, can be inferred, or
whether it can be determined from the geometry.
Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ Inside(?x ?c) ∧ Equal(?c ?y)

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ Inside(?x ?c) ∧ Inside(?c ?y)

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ Inside(?x ?c) ∧ CoveredBy(?c ?y)

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ CoveredBy(?x ?c) ∧ Inside(?c ?y)

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ exInside(?c ?y)

Example. The following qualitative relations were mined from Wikipedia re-
lated to the region ”South Glamorgan”; an administrative subdivision of Wales.

contains(Wales,Vale-of-Glamorgan)

inside(Vale-of-Glamorgan, South-Glamorgan)

The spatial deduction rules suggest that South Glamorgan must be connected
to Wales through a number of possible relations using the following rule.

inside−1(A,B) ∧ inside(B, C) → Overlap(A,C) ∨ Contains(A, C) ∨ Inside(A,C)

∨ Equal(A,C) ∨ Covers(A,C) ∨ CoveredBy(A,C)

Consequently, South-Glamorgan can’t be disjoint from Wales, as identified by
the following integrity rule.

inside−1(A,B) ∧ inside(B, C) ∧ disjoint(A, C) → error(A,C) (2)

Fig. 7. Geonames South Glamorgan Geometric Error

370 A.I. Abdelmoty et al.

Data are also recorded for the boundary points of Wales as well as point locations
for the all the regions concerned (retrieved from Geonames). Firing integrity
rule (2) results in interleaved reasoning where each of the predicates (spatial
relations) in the rule are determined using the set of spatial composition rules
in the system. The relation disjoint however, is not stored explicitly. To check
this relation, an external call to the geo-computation engine is fired using the
builtin exDisjoint(A,B). The call returns ”True” indicating the fact that the
geometry point location of South-Glamorgan is in fact outside the boundary
of Wales. This contradicts with the facts already stored and hence an error is
implied. Figure 7 shows the point location for South-Glamorgan, falling in the
sea, as recorded in Geonames.

The example demonstrates how the two types of reasoning; qualitative and
quantitative, supported by this framework can be complementary to one another.
Spatial relations are computed on the fly, when needed, within a logical reasoning
framework.

7 Conclusion

In this paper we explore the idea of ”spatially-enabling” the semantic web. As
geo-referencing of resources on the web becomes more popular, methods to sup-
port the search, sharing and linking of these resources are needed. The semantic
web offers standard languages and tools to enable the representation and rea-
soning with the data. This paper demonstrates how these tools can be used for
geospatial domains.

In particular, OWL-DL is used to store a basic model of place and spatial
relationships. A homogeneous approach to integrating rules with OWL, namely,
description logic programs DLPs, was shown to allow the expression of spatial
deduction and integrity rules. A framework based on DLPs is proposed and is
shown to support, terminological as well as spatial reasoning over geographical
ontology bases.

The logical framework will however, not cope well with the demands of the
geometric representations of geo-features. An extended framework is proposed
to link the DLP with external geometric computation processors. It is shown
how this link can be established using procedural attachments. The resultant
framework supports both logical and geometric manipulation of geospatial facts
and data, thus combining the strengths of both paradigms. Some realistic data
sets mined from web sources are used for demonstration and for evaluating the
proposed frameworks.

The contribution of the work is in demonstrating possible approaches to
geospatial data management on the web and in highlighting the needs of geospa-
tial domains that stretches the current semantic web tools and languages. Future
work will consider the issue of scalability and other challenges related to prob-
lems of integrating and linking of geospatial data from different sources.

Supporting Frameworks for the Geospatial Semantic Web 371

References

1. Antoniou, G., Damásio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszyński, J.,
Patel-Schneider, P.F.: Combining Rules and Ontologies. A survey (2005)

2. Brachman, R.J., Borgida, A., Mcguinness, D.L., Patel-schneider, P.F., Resnick,
L.A.: The classic knowledge representation system, or, kl-one: The next generation.
In: The Workshop on Formal Aspects of Semantic Networks, Two Harbors, pp.
1036–1043. Morgan Kaufman, San Francisco (1989)

3. Buyukokkten, O., Cho, J., Garcia-Molina, H., Gravano, L., Shivakumar, N.: Ex-
ploiting geographical location information of web pages. In: Proceedings of Work-
shop on Web Databases (WebDB 1999) (June 1999); Held in conjunction with
ACM SIGMOD 1999 (1999)

4. Cohn, A., Hazarika, S.: Qualitative spatial representation and reasoning: an
overview. Fundamenta Informaticae 45, 1–29 (2001)

5. de Bruijn, J., Lara, R., Polleres, A., Fensel, D.: Owl dl vs. owl flight: conceptual
modeling and reasoning for the semantic web. In: WWW 2005: Proceedings of the
14th international conference on World Wide Web, pp. 623–632. ACM Press, New
York (2005)

6. Egenhofer, M.: Deriving the composition of Binary Topological Relations. Journal
of Visual Languages and Computing 5, 133–149 (1994)

7. El-Geresy, B., Abdelmoty, A.: Towards a general theory for modelling qualitative
space. International Journal on Artificial Intelligence Tools, IJAIT 11(3), 347–367
(2002)

8. El-Geresy, B., Abdelmoty, A.: Sparqs: A qualitative spatial reasoning engine. Jour-
nal of knowledge-based Systems 17(2-4), 89–102 (2004)

9. Fonseca, F.T., Davis, C.A., Câmara, G.: Bridging ontologies and conceptual
schemas in geographic information integration. GeoInformatica 7(4), 355–378
(2003)

10. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match prob-
lem. Artificial Intelligence 19(1), 17–37 (1982)

11. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: WWW, pp. 48–57 (2003)

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Proceedings of the twelfth inter-
national conference on World Wide Web, pp. 48–57. ACM Press, New York (2003)

13. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisi-
tion 5(2), 199–220 (1993)

14. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation.
International Journal of Human-Computer Studies 43(5/6), 625–640 (1995)

15. Horrocks, I.: Owl rules, ok? In: Rule Languages for Interoperability (2005)
16. Horrocks, I., Patel-Schneider, P.F., Tabet, H.B.S., Grosof, B., Dean, M.: Swrl: A

semantic web rule language combining owl and ruleml. Internet Report (May 2004),
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

17. Jones, C.: Geographical Information Systems and Computer Cartography. Long-
man (1997)

18. Jones, C.B., Abdelmoty, A.I., Fu, G.: Maintaining ontologies for geographical in-
formation retrieval on the web. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.)
CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 934–951.
Springer, Heidelberg (2003)

http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

372 A.I. Abdelmoty et al.

19. Jones, C.B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M.,
Weibel, R.: Spatial information retrieval and geographical ontologies an overview
of the spirit project. In: SIGIR 2002: Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval, pp.
387–388. ACM, New York (2002)

20. Krötzsch, M., Hitzler, P., Vrandecic, D., Sintek, M.: How to reason with OWL in
a logic programming system. In: Eiter, T., Franconi, E., Hodgson, R., Stephens, S.
(eds.) RuleML, pp. 17–28. IEEE Computer Society, Los Alamitos (2006)

21. Motik, B., Vrandecic, D., Hitzler, P., Sure, Y., Studer, R.: dlpconvert – converting
owl dlp statements to logic programs. In: European Semantic Web Conference 2005
Demos and Posters (2005)

22. Nebel, B., Renz, J.: Efficient methods for qualitative spatial reasoning. Journal of
Artificial Intelligence Research, 562–566 (June 19, 1998)

23. Sagonas, K., Swift, T., Warren, D.S.: Xsb: An overview of its use and implemen-
tation. Tech. rep., November 2 (1993)

24. Sanderson, M., Kohler, J.: Analyzing geographic queries. In: Workshop on Geo-
graphic Information Retrieval SIGIR (August 9, 2004)

25. Silva, M.J., Martins, B., Chaves, M.S., Afonso, A.P., Cardoso, N.: Adding ge-
ographic scopes to web resources. Computers, Environment and Urban Sys-
tems 30(4), 378–399 (2006)

26. Volz, R.: Web Ontology Reasoning with Logic Databases. PhD thesis, Universität
Karlsruhe (TH), Universität Karlsruhe (TH), Institut AIFB, D-76128 Karlsruhe
(2004)

Efficient Construction of Safe Regions for
Moving kNN Queries over Dynamic Datasets

Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, and Ying Zhang

The University of New South Wales, Australia
{mahadyh,macheema,lxue,yingz}@cse.unsw.edu.au

Abstract. The concept of safe region has been used to reduce the com-
putation and communication cost for the continuous monitoring of k
nearest neighbor (kNN) queries. A safe region is an area such that as
long as a query remains in it, the set of its kNNs does not change. In this
paper, we present an efficient technique to construct the safe region by
using cheap RangeNN queries. We also extend our approach for dynamic
datasets (the objects may appear or disappear from the dataset). Our
proposed algorithm outperforms existing algorithms and scales better
with the increase in k.

1 Introduction

With the availability of inexpensive mobile devices, position locators and cheap
wireless networks, location based services are gaining increasing popularity. The
continuous monitoring of k nearest neighbor (kNN) queries [1,2,3,4] has been
widely studied in recent past.

In this paper, we study the problem of moving kNN queries where the query
is constantly moving and the objects do not move. Consider the example of a car
driver who is interested in five nearest available car parking spaces while driving
in a city. Another example is a person looking for the nearest restaurants while
walking in a street.

A classical example of the safe region is Voronoi Diagram (VD) [5]. In a VD,
each object of the dataset lies within a cell called its voronoi cell. The voronoi
cell of an object has a property that any point that lies in it is always closer to
that object than any other object in the dataset. For a kNN query, a k order
VD can be constructed and k order voronoi cells can be treated as safe regions.
The VD based solution has the following major limitations: 1) The VD cannot
be precomputed and indexed if the value of k is not known in advance. 2) The
VD cannot deal efficiently with update of objects in the underlying dataset.

Our contributions in this paper include: 1) we devise an efficient safe region
construction approach that requires cheap RangeNN 1 queries; 2) our proposed
approach is extended to efficiently update the safe regions of queries for dynamic
datasets where the objects may appear or disappear and 3) extensive experiment
results show more than an order of magnitude improvement.
1 RangeNN query is to find the nearest object of q from the objects that lie within a

given distance from a point p.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 373–379, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

374 M. Hasan et al.

2 Background Information

Continuous k Nearest Neighbor Query. Given a set of objects, a mov-
ing query point q , and a positive integer k , the continuous kNN query is to
continuously report k closest objects to q at each time stamp.

Definitions and Notations. A perpendicular bisector Bn:o between two points
n and o divides the space into two half-spaces. Let Hn:o be the half-space con-
taining n and Ho:n be the half-space containing o. Every point q in Hn:o is always
closer to n than it is to o (i.e; dist(q, n) < dist(q, o)). Figure 1 shows a bisector
Bn:o2 between two points n and o2 and the two half-spaces are also shown.

Safe Region S is a region such that as long as a kNN query q remains in it,
the set of its kNNs does not change. If a client (that issued query q) is aware of
its safe region, it does not need to contact the server to update its set of kNNs
as long as q resides in the safe region. This saves the communication cost as well
as computation cost. Now, we formally define the safe region.

Let N = {n1, · · · , nk} be the set of kNNs of a query q. The intersection of all
half-spaces Hni:oj for every ni ∈ N and every oj ∈ O −N defines a region such
that as long as the query resides in it, the set of its kNNs N is unchanged.

Proof. We prove this by contradiction. Assume that q resides in its safe region
and oj ∈ O −N is an object such that dist(q, oj) < dist(q, ni) for any ni ∈ N .
Since safe region is the intersection of all half-spaces Hni:oj , a query q that resides
in it satisfies dist(q, ni) < dist(q, oj) which contradicts the assumption. ��
Figure 1 shows an example of the safe region for a NN query. The bisectors
between the nearest neighbor n and the objects o1 to o4 are drawn and the
shaded area is the safe region. Figure 2 shows an example of the safe region for
a 2NN query where the two NNs are n1 and n2. The bisectors between the NNs
and the objects o1 to o3 are drawn. For clarity, the bisectors between n1 and the
objects are shown in solid lines and the bisectors between n2 and the objects are
shown in broken lines. The shaded area is the safe region.

Note that not all the bisectors contribute in defining the safe region. A bi-
sector Bni:oj that forms an edge of the safe region is called a representative
bisector (the bisector Bn:o2 in Fig. 1). The object oj that is associated with the
representative bisector is called an influence object (o2 in Fig. 1).

A vertex is the intersection of two bisectors Bni:oj and Bnx:oy . A confirmed
vertex is the vertex of the safe region (i.e., it is an intersection of two represen-
tative bisectors). Vertex v in Fig. 1 is a confirmed vertex whereas the vertex v′ is

Table 1. Notations

Notation Definition

Bx:q a perpendicular bisector between point x and q

Hx:q a half-space defined by Bx:q containing the point x

Hq:x a half-space defined by Bx:q containing the point q

dist(x, y) the distance between two points x and y

v ≺ Bni:oj ∩ Bnx:oy � a vertex v formed by the intersection of the two bisectors

Efficient Construction of Safe Regions for Moving kNN Queries 375

o1

o3

o2n
q

Hn:o2
Ho :n2

v
v'

Bn:o2

Bn:o
4

o4

Fig. 1. Safe region for a
NN query

o1

o3

o2n1
q

n2

Fig. 2. Safe region for a 2-
NN query

o1

o3

o2n1
q

n2

o4

v

Fig. 3. Illustration of Ob-
servation 2

not a confirmed vertex. Please note that a confirmed vertex lies at the boundary
of the safe region. Table 1 defines the notations used throughout this paper.

The most related work to our technique is proposed in [6]. The authors propose
construction of the safe region by using time parameterized kNN queries [7]. Due
to space limitations, we omit the details.

3 Technique

Before we present our algorithm, we present observations that can be used to
confirm a vertex. First, we present the observation for k = 1 and then we extend
it for arbitrary value of k.

Observation 1 : Let n be the NN of a query q and v be a vertex. The vertex
v can be confirmed if no object lies in the circle of radius R centered at v where
R = dist(v, n).

Proof. Assume that the circle does not contain any object and o4 (as shown in
Fig. 1) is any object that lies outside the circle. If the vertex v does not lie in
the safe region then there must be a half-space Ho4:n that contains v. Any point
p that lies in the half-space Ho4:n satisfies dist(p, o4) < dist(p, n). However, for
vertex v, dist(v, o4) > dist(v, n). Hence there is no such half-space Ho4:n that
contains v. So the vertex v lies in the safe region. ��

Observation 2 : Let N = {n1, · · · , nk} be the set of kNNs of query q and v
be any vertex. The vertex v can be confirmed if no object o ∈ O − N lies in
the circle centered at v with radius R = maxdist(v, N) where maxdist(v, N) is
max(dist(v, ni)) for every ni ∈ N .

Proof. Assume that the circle does not contain any object and o4 is any object
that lies outside the circle (as shown in Fig. 3). The vertex v satisfies dist(v, ni) <
dist(v, o4) for every ni ∈ N , hence v lies in every Hni:o4 . For this reason, the
vertex v lies in the safe region. ��

376 M. Hasan et al.

Algorithm 1 presents the construction of the safe region for a kNN query. The
algorithm maintains a set of vertices V (initialized to four vertices of the universal
data space). First, the set N containing kNNs of the query q is computed by
using BFS [8]. Then, the algorithm randomly selects an unconfirmed vertex v
from V and checks whether it can be confirmed or not by using Observation 2.
More specifically, the algorithm checks whether there is any object in the circle
of range R = maxdist(v, N) centered at v. If there is no object in the circle, the
algorithm marks the vertex as confirmed (line 8).

Algorithm 1. Construct Safe Region (q)
1: V = {Vertices of the data space}
2: compute kNNs of q and store in N
3: while there is an unconfirmed vertex in V do
4: select any unconfirmed vertex v
5: R = maxdist(v,N)
6: o = RangeNN(q, v, R)/* Algorithm 2 */
7: if o = NULL then
8: confirm v
9: else

10: update V using bisectors between o and each ni ∈ N

If there are more than one objects in the circle, the algorithm selects the near-
est object o to the query q (line 6). The safe region is updated by considering
the bisectors between kNNs of q and the object o (line 10). For a given bisector
Bni:o, the safe region is updated by removing the vertices from V that lie in
Ho:ni and adding the intersection points of Bni:o and the safe region. The algo-
rithm stops when all the vertices are confirmed. To show the correctness of the
algorithm, we need to show that the algorithm finds all the vertices of the safe
region and does not include any unconfirmed vertex. The proof of correctness is
similar to Lemma 3.1 in [6] and is omitted.

Algorithm 2. RangeNN(q, v, R)
Output: Returns the nearest neighbor of q from the objects that lie within distance

R from v
1: Initialize a min-heap H with root entry of the tree
2: while H is not empty do
3: deheap an entry e
4: if e is an intermediate or leaf node then
5: for each of its children c do
6: if mindist(c, v) < R then
7: insert c into H with key mindist(c, q)
8: else if e is an object and e is not one of the kNNs of q then
9: return e

10: return φ

Efficient Construction of Safe Regions for Moving kNN Queries 377

o1

o3

o2n1
q

n2

v1 v2

v3v4

o4

Fig. 4. RangeNN query
from v1

o1

o3

o2n1

q

n2

v1 v2

v3v4 v8

v6

v7

v5

v9

o4

Fig. 5. The safe region af-
ter visiting o3

o1

o3

o2n1
q

n2
v

Fig. 6. Safe Region and
impact Region

Algorithm 2 presents the implementation of RangeNN query. This operation
can be regarded as finding the nearest object o of q from the objects lying within
the range R of a vertex v. Hence, we call it RangeNN query.

Example 1. Figure 4 illustrates our algorithm for a 2NN query where n1 and
n2 are the NNs of q. Initial safe region is the data space bounded by four
vertices v1 to v4. First, a RangeNN2 query is issued on vertex v1 with range
R = dist(v1, n1) which returns the object o3. Then, the bisectors between o3
and the NNs are drawn. In Fig. 5, the bisector between o3 and n1 is shown in
solid line and the bisector between o3 and n2 is shown in broken line. These
bisectors update the set of vertices V and the new safe region (the shaded
area) now contains vertices v3, v5, v9 and v8. Then, a RangeNN query is is-
sued on vertex v9 with range dist(v9, n1) and it is marked confirmed because
no object is found within the range. The algorithm continues in this way until
all the vertices are confirmed. The final safe region is shown in Fig. 6 (light
shaded area).

Extension for Dynamic Datasets. First, we define impact region. The impact
region is an area such that as long as a query remains in its safe region and no
object appears or disappears from the impact region, the safe region of the query
is unchanged. It is easy to prove that the impact region consists of circles around
vertices with radius set to their corresponding nearest neighbors. In Fig. 6, the
impact region is shown shaded (both dark and light). Below, we formally define
the impact region.

Let V be a set of vertices of a safe region. Let Circv be a circle centered at a
vertex v ≺ Bni:oj ∩Bnx:oy # with radius Rv = dist(v, ni). The impact region is
the area covered by all circles Circvi for each vi ∈ V .

We use a grid-based structure and mark all the cells that overlap with the
impact region. The results of a query are affected only if an object appears in

2 Note that RangeNN query does not access all the objects within the range. It uses
BFS and stops when the NN is found. So the object o4 is not accessed in the example.

378 M. Hasan et al.

(or disappears from) these marked cells. For such queries, we compute the safe
regions again.

4 Experimental Study and Remarks

We compare our algorithm with LBSQ [6]. Other algorithms for moving
kNN queries either assume known query trajectory path [7,4] or assume that
clients have sufficient computation resources to maintain kNNs from given
(k + x) or more NNs [9,10,11]. We use real dataset (http://www.census.gov/
geo/www/tiger/) that contains 128,700 unique data points in a data space of
350km×350km. We continuously monitor 500 moving queries created by the
spatio-temporal data generator [12].

 0

30K

60K

90K

120K

150K

 1 3 10 30 100

of

 R
an

ge
N

N
/T

P
kN

N
 q

ue
rie

s

k values

RSR
LBSQ

Fig. 7. Total RangeNN /
TPkNN queries

 0

 2

 4

 6

 8

 10

 12

 1 3 10 30 100

T
im

e
in

 m
s

k values

LBSQ=0.3 RSR=0.07

LBSQ
RSR

Fig. 8. Average cost of
RangeNN / TPkNN query

 1

 10

 100

 1000

 10000

1 3 10 30 100
T

im
e

in
 s

ec

k values

2.1

5.9

2.6

9.9
4.9

38.5

11

178

37

1474
LBSQ

RSR

Fig. 9. The computation
time for different k

Figure 7 shows that the number of RangeNN queries is slightly higher than
the number of TPkNN queries, but the average cost of a RangeNN query is
significantly lower than that of a TPkNN query (Fig. 8).

Figures 9 studies the effect of k on the computation times of both algorithms
(shown in log scale). Our algorithm not only outperforms LBSQ but also scales
better. We also observed that the number of nodes accessed by our algorithm is
lower than that of LBSQ but we do not include the figure due to page limitation.

Previous algorithm uses TPkNN queries to compute the safe region of a kNN
query. In this paper, we present an efficient algorithm to construct the safe region
by using much cheaper RangeNN queries. Experiment results show an order of
magnitude improvement.

References

1. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An
efficient method for continuous nearest neighbor monitoring. In: SIGMOD Confer-
ence, pp. 634–645 (2005)

2. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving
objects. In: ICDE, pp. 631–642 (2005)

3. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654
(2005)

Efficient Construction of Safe Regions for Moving kNN Queries 379

4. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB,
pp. 287–298 (2002)

5. Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations: concepts and applications
of Voronoi diagrams. John Wiley and Sons Inc., Chichester (1992)

6. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial
queries. In: SIGMOD Conference, pp. 443–454 (2003)

7. Tao, Y., Papadias, D.: Time-parameterized queries in spatio-temporal databases.
In: SIGMOD Conference, pp. 334–345 (2002)

8. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: SSD, pp. 83–95 (1995)
9. Kulik, L., Tanin, E.: Incremental rank updates for moving query points. In: Raubal,

M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS,
vol. 4197, pp. 251–268. Springer, Heidelberg (2006)

10. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In:
Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS,
vol. 2121, pp. 79–96. Springer, Heidelberg (2001)

11. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*-diagram: a query-dependent
approach to moving knn queries. PVLDB 1(1), 1095–1106 (2008)

12. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6(2), 153–180 (2002)

Robust Adaptable Video Copy Detection

Ira Assent1 and Hardy Kremer2

1 Department of Computer Science, Aalborg University, Denmark
ira@cs.aau.dk

2 Data management and exploration group, RWTH Aachen University, Germany
kremer@cs.rwth-aachen.de

Abstract. Video copy detection should be capable of identifying video
copies subject to alterations e.g. in video contrast or frame rates. We
propose a video copy detection scheme that allows for adaptable detec-
tion of videos that are altered temporally (e.g. frame rate change) and/or
visually (e.g. change in contrast). Our query processing combines filter-
ing and indexing structures for efficient multistep computation of video
copies under this model. We show that our model successfully identifies
altered video copies and does so more reliably than existing models.

1 Introduction

Video copy detection algorithms aim at automatic identification of video content
that is identical to the query or represents an altered version of the original
video [6,19,9]. As opposed to content-based similarity search in video databases
[7,10,12], the aim is not searching for similar topics or otherwise related content
in video material, but to discover videos that have undergone technical or manual
changes, such as change in contrast or editing of the order of scenes in the video
[9]. Other examples of typical alterations include changes in frame rate due to
different video standards or black bars due to varying tv screen aspect ratios.

The changes undergone by video content can be roughly categorized in two
groups: first, the video may be altered visually in the image domain, as e.g. in
the contrast change example. And, second, the video may have been reordered
in the temporal domain, as e.g. in the frame rate change example. The challenge
for effective video copy detection therefore lies in both of these domains. Suitable
copy detection schemes should be capable of correctly identifying videos altered
in one of these domains or in both [9].

In this work, we propose a robust adaptable video copy detection scheme
(RAV C) that allows effective detection of changes in time and image content or
both. Our technique integrates powerful adaptable distance functions for both vi-
sual and temporal alterations. Our copy detection scheme does not require prior
key frame extraction, but instead works directly on the video frame sequence.

As video features are typically high dimensional, we propose VA-file based
indexing. We extend our model to the quantization of features required in VA-
file indexing.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 380–385, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Robust Adaptable Video Copy Detection 381

2 Video Copy Detection

Each video is composed of a sequence of frames, i.e. chronologically ordered
images. These images are either the result of recording or the result of artifical
creation, e.g. in animated movies. Videos can thus be represented as time series of
image features. For images, histograms are a popular and simple way of capturing
the distribution of properties such as color in the image [14,1,11,2]. An image
histogram of resolution d is h(f) = (h1, . . . , hd), and a video histogram of length
n is defined as a vector of image histograms: V = (v1, . . . , vn).

Our first goal in video copy detection is to identify videos with visual changes
e.g. in contrast. The Earth Mover’s Distance (EMD) was introduced in computer
vision to mimic the perceived similarity of images [14].

Definition 1. Earth Mover’s Distance (EMD)
The Earth Mover’s Distance between two normalized frame histograms u =
(u1, . . . , ud) and v = (v1, . . . , vd) with respect to a ground distance given by a
cost matrix C = [cij] is defined as follows:

EMDC(u, v) = min
F

⎧⎨
⎩

d∑
i=1

d∑
j=1

cijfij | ConEMD

⎫⎬
⎭

with ConEMD = P ∧ S ∧ T : P : ∀1 ≤ i, j ≤ d : fij ≥ 0

S : ∀1 ≤ i ≤ d :
d∑

j=1

fij = ui T : ∀1 ≤ j ≤ d :
d∑

i=1

fij = vj

where F denotes the set of possible flow matrices.

Thus, the best possible matching between the two histograms is defined as a
minimization over all possible flow matrices fij ∈ F from histogram dimension i
in u to histogram dimension j in v. The constraints ensure that only non-negative
flows are allowed (P), that not more is taken from any histogram dimension i in
the source histogram u than its value (S), and that all histogram entries j in the
target histogram are matched (T). In this transportation problem formulation,
the EMD can be computed using e.g. the streamlined simplex method from
operations research [4,8]. The EMD is robust to small changes in the feature
distribution due to its ground distance, i.e. the cost cij associated with any
change between feature dimension i and j [14,13].

Our second goal is detecting changes along the time axis of the videos. In
speech recognition, Dynamic Time Warping (DTW) was developed to handle
nonlinear fluctuations in speech rates [16]. DTW computes the best matching
between the time series in an interdimensional fashion. Formally,

Definition 2. Dynamic Time Warping (DTW)
The DTW distance between two one-dimensional time series x = (x1, . . . , xn)

382 I. Assent and H. Kremer

and y = (y1, . . . , yn) with respect to a band constraint k is defined as:

DTW 2(x, y, k) = DTW ′(x, y, k) + min

⎧⎨
⎩

DTW (start(x), start(y), k)
DTW (x, start(y), k)
DTW (start(x), y, k)

(1)

DTW (∅, ∅, k) = 0, DTW (x, ∅, k) = DTW (∅, y, k) = ∞ (2)

with

DTW ′ ((x1, . . . , xu), (y1, . . . , yv), k) =

{
(xu − yv)2 |u− v| ≤ k

∞ else
(3)

where start(x1, . . . , xn−1, xn) = (x1, . . . , xn−1).

This recursive definition of the best alignment subject to a warping band con-
straint k is the best distance within the path constraint (3) and the minimum
of the respectively shorter subproblems (1). (2) ensures that all elements of the
time series are compared, starting at the beginning of both time series x1 and
y1, and ending in xn and yn. Note that the band constraint, called Sakoe-Chiba-
Band, simply ensures that the warping does not degenerate; e.g. matching all
elements of one time series to a single element in the second one.

2.1 RAVC

For videos, we use the extension of DTW to multidimensional time series, i.e.
each time point is a frame histogram. Frames are compared via Earth Mover’s
Distance, and entire videos via Dynamic Time Warping on the frame distances.

Definition 3. Robust Adaptable Video Copy Detection (RAVC)
The Robust Adaptable Video Copy Detection distance between video histograms
X = (x1, . . . , xn) and Y = (y1, . . . , yn) with respect to a ground distance given
by a cost matrix C = [cij] and with respect to band constraint k is defined as

RAV C (X, Y, k) = DTWEMD(X, Y, k) + min

⎧⎨
⎩

RAV C(start(X), start(Y), k)
RAV C(X, start(Y), k)
RAV C(start(X), Y, k)

RAV C (∅, ∅, k) = 0, RAV C(X, ∅, k) = RAV C(∅, Y, k) =∞

with

DTWEMD ((x1, . . . , xu), (y1, . . . , yv), k) ={
EMD((x1, . . . , xu), (y1, . . . , yv)) |u− v| ≤ k

∞ else

Thus, RAV C is recursively defined just as the DTW distance for univariate
time series. The difference in this definition is that EMD is used to find the
best matching between the frames in the multivariate video time series.

Robust Adaptable Video Copy Detection 383

db

query

filter refinement results

feedback

candidates

VA-File

priority queue

envelopes

Fig. 1. General multistep indexing scheme

As straightforward calculation of RAV C would be computationally costly (dy-
namic programming algorithms for DTW are of quadratic complexity, EMD is
of worst case exponential complexity, yet in practice quadratic or cubic runtimes
are observed [14]), we propose an efficient query processing algorithm in a mul-
tistep filter-and-refine architecture [17]. The filter efficiently computes a small
set of candidates to reduce the number of videos for which the exact RAV C
model has to be calculated. As the filter is lower bounding, filter-and-refine is
lossless [5,17]. We use the VA-file, an index structure for high-dimensional data
[18], used for music time series in [15]. It quantizes the data space and assigns
compact bit codes for quick sequential reading of the compressed data. Details
are deferred to an extended version of this paper.

3 Experiments

We evaluate RAV C under different alteration scenarios in the image and time
domain that are typically encountered in video copies. Video copies are generated
using benchmark scenarios described in [9]: changes in contrast, black bars as
a result of screen ratio changes, gauss filters, and, additionally, changes in the
temporal order. We used tv news recorded for 33 hours at 30 fps (frames per
second) as a real world video data set. The videos have an aspect ratio of 320x200.
We measured the accuracy as the recall of the closest match found in the database
averaged over 100 queries. The color histograms were computed in extended HLS
space [1] and are 20-dimensional.

We first study the effect of temporal changes on the copy detection accuracy.
Temporal distortions simulate effects like frame rate change and are achieved
through random replication and omission of frames. We vary the maximal tem-
poral distortion, i.e. the maximal number of replicated or omitted frames, to
study robustness to frame rate change. We additionally vary the band constraint
that determines the degree of temporal change in DTW .

The first setup studies the effect of changes in the temporal domain alone. As
we can see in Figure 2, where the change is in the time domain alone, and the
images in the original and the potential copies are left unaltered the recall of
our method is high for all variations in the band constraint and the Euclidean
distance. However, smaller constraints and the Euclidean distance cannot handle
larger numbers of frame reorderings and experience a decrease in recall values

384 I. Assent and H. Kremer

maximal temporal distortion [frames]

av
er

ag
e

re
ca

ll
70

80
90

10
0

0 20 40 60 80 100

RAVC_k=40
RAVC_k=20
Euclid
RAVC_k=0
VideoIndex

Fig. 2. Temporal change, but no visual change

as the temporal change increases. The V ideoIndex [3] approach, which ignores
temporal change altogether, shows far worse performance.

The next experiment adds the difficulty of changes in the image domain to the
previous experiment. The copies under study here have not only been altered in
the time domain as before, but additionally three changes that the images were
subjected to are applied here as well, i.e. blur by a gaussian filter of radius 2, 25%
contrast increase, and an aspect ratio change by black borders of an overall pixel
height 16. Figure 3 demonstrates that our approach is clearly better than the Eu-
clidean distance which drops down to only 50% recall for this more complex copy
detection problem. We additionally used an even larger band constraint with a
value of 80, yet the difference to the previously used value of 40 is negligible.

maximal temporal distortion [frames]

av
er

ag
e

re
ca

ll
30

50
70

90

0 20 40 60 80 100

RAVC_k=80
RAVC_k=40
RAVC_k=0
Euclid

Fig. 3. Temporal change and visual change

4 Conclusion

In this paper, we present a novel technique for video copy detection. Based on
the observation that alterations in both the image and time domain matter for

Robust Adaptable Video Copy Detection 385

reliable identification of copies, we introduce RAV C (robust adaptable video
copy detection) scheme. Our experiments on real world data validate that our
RAV C successfully detects copies under typical alterations.

References

1. Assent, I., Wenning, A., Seidl, T.: Approximation techniques for indexing the Earth
Mover’s Distance in multimedia databases. In: Proc. ICDE (2006)

2. Assent, I., Wichterich, M., Meisen, T., Seidl, T.: Efficient similarity search using
the earth mover’s distance for large multimedia databases. In: Proc. ICDE, pp.
307–316 (2008)

3. Böhm, C., Kunath, P., Pryakhin, A., Schubert, M.: Effective and efficient indexing
for large video databases. In: Proc. BTW, pp. 132–151 (2007)

4. Dantzig, G.: Linear Programming and Extensions. Princeton Univ. Press, Prince-
ton (1998)

5. Faloutsos, C.: Searching Multimedia Databases by Content. Kluwer, Dordrecht
(1996)

6. Hampapur, A., Hyun, K., Bolle, R.: Comparison of sequence matching techniques
for video copy detection. In: Proc. SPIE, pp. 194–201 (2002)

7. Hanjalic, A.: Content-based Analysis of Digital Video. Kluwer, Dordrecht (2004)
8. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill,

New York (2001)
9. Law-To, J., Chen, L., Joly, A., Laptev, I., Buisson, O., Gouet-Brunet, V., Bou-

jemaa, N., Stentiford, F.: Video copy detection: a comparative study. In: Proc.
CIVR, pp. 371–378 (2007)

10. Lee, J., Oh, J., Hwang, S.: STRG-Index: spatio-temporal region graph indexing for
large video databases. In: Proc. SIGMOD, pp. 718–729 (2005)

11. Ljosa, V., Bhattacharya, A., Singh, A.K.: Indexing spatially sensitive distance mea-
sures using multi-resolution lower bounds. In: Ioannidis, Y., Scholl, M.H., Schmidt,
J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C.
(eds.) EDBT 2006. LNCS, vol. 3896, pp. 865–883. Springer, Heidelberg (2006)

12. Lu, H., Xue, X., Tan, Y.: Content-Based Image and Video Indexing and Retrieval.
In: Lu, R., Siekmann, J.H., Ullrich, C. (eds.) Joint Chinese German Workshops.
LNCS, vol. 4429, pp. 118–129. Springer, Heidelberg (2007)

13. Rubner, Y., Puzicha, J., Tomasi, C., Buhmann, J.M.: Empirical evaluation of dis-
similarity measures for color and texture. CVIU J. 84(1), 25–43 (2001)

14. Rubner, Y., Tomasi, C.: Perceptual Metrics for Image Database Navigation.
Kluwer, Dordrecht (2001)

15. Ruxanda, M.M., Jensen, C.S.: Efficient similarity retrieval in music databases. In:
Proc. COMAD, pp. 56–67 (2006)

16. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE TAP 26(1), 43–49 (1978)

17. Seidl, T., Kriegel, H.-P.: Optimal multi-step k-nearest neighbor search. In: Proc.
SIGMOD, pp. 154–165 (1998)

18. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Proc. VLDB, pp.
194–205 (1998)

19. Yang, X., Sun, Q., Tian, Q.: Content-based video identification: a survey. In: Proc.
ITRE, pp. 50–54 (2003)

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 386–391, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Efficient Evaluation of Static and Dynamic Optimal
Route Queries

Edward P.F. Chan and Jie Zhang

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario
Canada, N2L 3G1

epfchan@uwaterloo.ca, janezhangj@hotmail.com

Abstract. We investigate the problem of how to evaluate efficiently, with a
general algorithm, static or dynamic optimal route queries on a massive graph.
A graph is said to be dynamic if its edge weights are changed (increased or de-
creased) over time. Otherwise, it is static. A route query is static (dynamic) if
the underlying graph is static (dynamic, respectively). The answer to an optimal
route query is a shortest path that satisfies certain constraints imposed on paths
in a graph. Under such a setting, a general and efficient algorithm called
DiskOPHBR is proposed to evaluate classes of static or dynamic optimal route
queries. The classes of queries that can be evaluated by the algorithm are ex-
actly those the constraints of which can be expressed as a set of edge weight
changes. Experiments are conducted on this algorithm to show its desirability.

1 Introduction

In a route information system, like Yahoo!Map or Google!Map, or a moving object
database [2] in which a user may issue queries to find optimal routes from sources to
destinations. It is imperative that the queries allowed are not restrictive, and the an-
swers can be generated fast. In such a system, a network is represented as a labeled
graph G. The answer to an optimal route query, which involves a source s, a destina-
tion d, and a constraint or predicate θ on paths in G [1], is an optimal s-d path in G.

Recently, a general and efficient disk-based algorithm named DiskCP is derived to
evaluate classes of (static) optimal route queries. The classes of optimal route queries
are called constraint preserving (CP) [1]. CP query classes are static and encompass,
among others, SP, forbidden nodes and edges and α-autonomy [1]. Instead of finding
an efficient evaluating algorithm for individual query class, the approach taken in [1]
is to find a unified algorithm to evaluate as many different query classes as possible.
However, in order to have a fast evaluation, a pre-processing is required on the net-
work to generate some materialized data for the specific query class before queries
can be posted to the system.

We observe that in some applications, the optimal route query classes may not be
known in advance, or the network on which a route query is posted is dynamic. In
these situations, due to the size of a graph, it is impractical to re-compute all material-
ized data, as is required by DiskCP, for fast query evaluation. On the other hand,

 Efficient Evaluation of Static and Dynamic Optimal Route Queries 387

without some pre-computed information on paths in a graph, it is impossible to speed
up the search process. In this paper, we focus on the problem of fast evaluation, with a
general algorithm, of an optimal route query, in both the static and dynamic environ-
ments, and without knowing the query or query classes in advance.

In Section 2, we define some basic notation. In Section 3, we briefly discuss the
optimal route query evaluation algorithm. In Section 4, experimental results are pre-
sented. Finally, a summary is given in Section 5.

2 Definition and Notation

2.1 Optimal Route Queries

An optimal route query returns an SP in a graph G that satisfies certain constraint [1].
Let θ be a constraint imposed on paths in a graph G. If θ is null (Λ), then any path in
G is satisfying wrt θ. An optimal route query, denoted as Q(G,θ,s,d), where s and d
are two distinct nodes in G. The answer to Q(G,θ,s,d) is a satisfying s-d path in G,
wrt θ, and no other satisfying s-d path in G with a shorter length. A graph is said to be
dynamic if its edge weights are changed (increased or decreased) over time. If a graph
is dynamic, then the answer to a query is wrt the graph at a time t. An optimal route
query class Q(G,θ) is the set of optimal route queries {Q(G,θ,s,d) | s and d are distinct
nodes in G}.

It has been shown empirically that certain static optimal route queries (named con-
straint preserving (CP)) can be evaluated very fast with distance materialization [1].
CP query classes include, among others, SP, forbidden nodes/edges, α-autonomous,
2-consecutive nodes and CP hypothetical weight changes. The following is an impor-
tant property about CP queries.

Corollary 1. Let Q(G,θ) be a CP optimal query class, and p be a path in G. The path
p is satisfying wrt θ iff every edge in p is satisfying wrt θ.

Given a CP query Q(G,θ,s,d), the answer to Q can be computed by finding an SP in
graph G’, which is obtained from G by eliminating all edges not satisfying θ [1]. In
this work, we are interested in both static and dynamic optimal route queries. We
define a more general optimal route query, for both static and dynamic settings, as
follow.

Let Σ be a set of edge weight changes on a graph G = (V,E,w), where Σ={<ei,τi> | ei
∈E and τi≥0 or τi=+∞}. Σ is a modified edge set. Semantically, each element in Σ
assigns a new weight τi to an edge ei. Syntactically, an optimal route query is denoted
as Q(G,Σ,s,d), where G is a graph, s and d are two distinct nodes in G, and Σ is a
modified edge set defined on edges in G. The answer to Q(G,Σ,s,d) is a shortest s-d
path in G’ = (V,E,w’), where ∀e∈E, w’(e) is τ if <e, τ>∈Σ, and is w(e) otherwise. The
graph G’ is said to be obtained from (G, Σ), or equivalently G’=(G, Σ). Suppose
G’=(G, Σ). Then computing a path in G wrt Σ is the same as computing a path in G’.
In other words, in the remainder of this work, an optimal route query is modeled as a
set of edge weight changes on a graph G, which is called a based graph.

388 E.P.F. Chan and J. Zhang

It is worth noting that in this work, when computing the answer to a query, G is
hypothetically changed, according to Σ, to generate a graph G’ from which the answer
is computed. We call G’ a modified graph. Given a CP route query, it can be ex-
pressed as an optimal query Q(G,Σ,s,d). If the graph G is dynamic, the edge weight
changes can be incorporated easily into Σ. Consequently, all static and dynamic CP
queries can be expressed as Q(G,Σ,s,d). Thus, the optimal route queries investigated
in this work are quite general and including many real-life route queries.

The answer to an optimal route query is called an optimal path (OP). If Σ is the
empty set Λ, then Q(G,Σ,s,d) is an SP from s to d in G. Unless confusion arises,
Q(G,Σ,s,d) denotes an optimal route query as well as its answer. The distance of an
optimal u-v path in G, denoted as SD(G,Σ,u,v), is defined as its length, if it exists, and
+∞ otherwise.

2.2 Graph Partitioning and Fragments

A fragment is a connected sub-graph such that an edge connects two nodes in a frag-
ment precisely when the two nodes are connected by the same edge in the original
graph G. A node is a boundary node if it belongs to more than one fragments, other-
wise it is an interior node. A partition P(G) of G = (V, E, w) is a collection of frag-
ments {F1 = (V1, E1, w1),…, Fn = (Vn, En, wn)} such that Ui Vi = V, Ui Ei = E, and ∀f
∀e∈Ef, wf(e) = w(e). The resulting partition called fragment database is stored in a
disk-based structure. Conceptually, once a graph is partitioned, one can apply a route
query evaluation algorithm to it, by reading in fragments and their auxiliary data
structures from the disk whenever they are needed, and swapping them out when their
usefulness expires. However, this brute-force method may not be effective [1], espe-
cially if the search space is huge. For some classes of route queries, query evaluation
can be sped up by pre-computing some optimal distances. For each fragment F in a
partition P(G), a distance matrix is created to record the distance of an OP from one
boundary node to the other. That is, for each pair of boundary nodes u and v, the dis-
tance SD(F, Λ, v, u) is recorded in a distance matrix. The edge <u, v> is called a super
edge. All these matrices collectively are called a distance (matrix) database (DMDB)
and are stored on some secondary storage device.

3 Algorithm DiskOPHBR

DiskOPHBR assumes the existence of DMDB for a based graph G. A super edge is said
to be affected if it is embedded in an affected fragment. A fragment F is said to be
affected if there is some modified edge in Σ that belongs to F. Otherwise it is unaf-
fected. In Dijkstra's, when a vertex is closed, its adjacent edges are relaxed. However,
for boundary vertices in DiskOPHBR, the relaxation performed may be different, de-
pending on whether the fragment involved is affected or not.

In DiskOPHBR, instead of relaxing affected super edges, its adjacent edges in the
modified fragment (F,Σ) are relaxed. That is, when a boundary node of a fragment F
is closed, if F is unaffected, we relax its adjacent super edges using the DMDB, oth-
erwise, we relax its adjacent edges in the modified fragment (F,Σ). Since the relaxa-
tion of adjacent edges of a closed boundary node could be either its super edges or its

 Efficient Evaluation of Static and Dynamic Optimal Route Queries 389

modified graph edges, DiskOPHBR is an algorithm based on the novel concept of hy-
brid relaxation.

4 Experiments

This section focuses on the experiment conducted on a road network. Since there is no
similar algorithm, DiskOPHBR is compared with a brute-force disk-based algorithm
without any data materialization, named DiskOPBF. To our best knowledge, the most
general route query evaluation algorithm comparable to DiskOPHBR is the algorithm
DiskCP [1]. We shall also compare it with DiskOPHBR in this work.

4.1 Experimental Setup

4.1.1 Factors Evaluated
The road systems of Connecticut, Massachusetts, New Jersey, New York, and Penn-
sylvania extracted from Tiger/Line file, are chosen as our test case. This data set is
called East5 in the rest of the discussion. Since different applications may have dis-
tinct characteristics, they could have different influences on the algorithms evaluated.
In order to draw a meaningful conclusion, we extract some factors from the general
situations, and examine how they affect these algorithms. Table 1 lists these factors
with sample values used in the experiment.

Table 1. Samples of Evaluated Factors

Factor Samples for East5
paf (all cases) % 1, 5, 10, 30, 50, 70, 90

pce (all cases) % 0.005, 0.1, 1, 2, 5
pcw (increase cases only) %
 (decrease cases only) %

101, 200, 10000
10, 50, 90

pie (mixed cases only) % 10, 50, 90

Percentage of Affected Fragments (paf). It is the percentage of affected fragments.

Percentage of Changed Edges (pce). It is the percentage of edges with modified
weights. The changed edges are evenly distributed among all the affected fragments.

Percentage of Changed Weight (pcw). It is the new edge's weight expressed as the
percentage of its original weight. There are two groups of samples: weight increases
and weight decreases. Note that these weight changes do not apply to the mixed cases.

Percentage of Increased Edges (pie). The mixed cases correspond to the situation in
which some edge weights are increased while others are decreased. After selecting a
group of modified edges, we vary the ratio between the number of the increased edges
and the number of the decreased edges in this group. The new edge weight is y×wt,
where wt is the original edge weight, and y is randomly chosen, with 1<y≤100 and
0≤y<1 for increase and decrease cases, respectively.

390 E.P.F. Chan and J. Zhang

4.2 Algorithms Evaluation

In this section, we show that DiskOPHBR outperforms, in terms of execution time,
DiskOPBF. To evaluate these algorithms, we measure the execution time (seconds)
and the amount of I/O (MBs) accessed. Twelve queries of various lengths are used in
these tests.

 Fig. 1. Fig. 2.

4.2.1 DiskOPHBR vs. DiskOPBF
In Section 4.1.1, we identify several factors that may be important in determining the
applicability or desirability of an algorithm. We investigate if and how these factors
influence the performance of algorithms studied. For the rest of this section, HBR and
BF in a plot denote the algorithms DiskOPHBR and DiskOPBF, respectively.

Effects of Weight Changes
It turns out that the factor pce has little or no effect on the performance of these
algorithms.

Effects of Percentage of Affected Fragments
Figures 1 and 2 show the results, for the increase case and decrease case, of the ef-
fects of affected fragments on the performance of the two algorithms. These graphs
record the average query evaluation time and I/O accesses. The corresponding plot for
the mixed case is almost identical, and thus not included here.

This result suggests that paf has a significant effect on the performance of
DiskOPHBR, while it has little or no influence on DiskOPBF. The performance of
DiskOPBF does not vary much over all values of paf; the evaluation time, I/O accesses
and the number of queue operations remain relatively flat, since the processing done
by DiskOPBF is not influenced by the number of affected fragments. On the other
hand, DiskOPHBR makes use of the DMDB of the based graph as much as possible in
finding a skeleton path. Thus, the amount of processing and I/O accesses increases
with the increase of paf. This results in staircase-like plots for DiskOPHBR. Thus, the
evaluation time increases with the increase of paf.

 Efficient Evaluation of Static and Dynamic Optimal Route Queries 391

4.2.2 DiskOPHBR vs. DiskCP
There are three classes of optimal route query (SP, cluster, and forbidden edge) used
in the experiment in [1]. We use them in this section for comparison. For the SP and
cluster query classes, the two algorithms have a very comparable performance, except
DiskOPHBR requires a little more I/O accesses. The reason for this phenomenon is that
the percentage of affected fragments in these two cases either is zero or is very small.
This shows that DiskOPHBR is very effective when there is little or no affected frag-
ment. However, for forbidden edge query class, DiskCP outperforms DiskOPHBR, over
all query types, and by a wide margin. It is not surprising since with 89% affected
fragments, the performance of DiskOPHBR deteriorates rapidly.

5 Conclusion

We have studied the problem of how to evaluate efficiently, with a general algorithm,
classes of static and dynamic optimal route queries on a massive graph. We observe
that, many static and dynamic queries can be expressed as queries with a set of modi-
fied edge weights. Under such a setting, we found an efficient algorithm DiskOPHBR
to evaluate classes of static and dynamic optimal route queries. The main idea behind
DiskOPHBR is to make use of the pre-computed distance database as much as possible
during a query evaluation. To achieve this objective, it employs the novel idea of
hybrid relaxation. Experiments are conducted on this algorithm to demonstrate its
desirability.

Acknowledgement

The authors wish to thank the financial support of Natural Sciences and Engineering
Research Council of Canada.

References

1. Chan, E.P.F., Zhang, J.: A Fast Unified Optimal Route Query Evaluation Algorithm. In:
Proceedings of ACM 16th Conference on Information and Knowledge Management (CIKM
2007), Lisboa, Portugal, November 2007, pp. 371–380 (2007)

2. Vazirgiannis, M., Wolfson, O.: A Spatial temporal Model and Language for Moving Ob-
jects on Road Networks. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, pp. 20–35. Springer, Heidelberg (2001)

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 392–398, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Trajectory Compression under Network Constraints

Georgios Kellaris, Nikos Pelekis, and Yannis Theodoridis

Department of Informatics, University of Piraeus, Greece
{gkellar,npelekis,ytheod}@unipi.gr

http://infolab.cs.unipi.gr

Abstract. The wide usage of location aware devices, such as GPS-enabled cell-
phones or PDAs, generates vast volumes of spatiotemporal streams modeling
objects movements, raising management challenges, such as efficient storage
and querying. Therefore, compression techniques are inevitable also in the field
of moving object databases. Moreover, due to erroneous measurements from
GPS devices, the problem of matching the location recordings with the underly-
ing traffic network has recently gained the attention of the research community.
So far, the proposed compression techniques are not designed for network con-
strained moving objects, while map matching algorithms do not consider com-
pression issues. In this paper, we propose solutions tackling the combined, map
matched trajectory compression problem, the efficiency of which is demon-
strated through an experimental evaluation using a real trajectory dataset.

Keywords: Trajectory Compression, Road Network, Map-Matching.

1 Introduction

A Moving Object Database (MOD) is a collection of objects whose location changes
over time. The preservation of vast volumes of moving objects’ trajectories for future
reference raises compression aspects, i.e., the trajectory compression problem (he-
reafter, called TC). Locations are often recorded by GPS receivers which embed an
error of some meters. Thus, there arises the problem of matching these data points
onto a network, also known as the map-matching problem (hereafter, called MM).

In this work, we study the combined problem of the compression of a moving ob-
ject’s trajectory keeping it at the same time matched on the underlying road network
(hereafter, called map matched trajectory compression problem - MMTC).

To the best of our knowledge, there is no related work directly addressing the
MMTC problem. Regarding its two components, TC and MM, the state-of-the-art is
[6] and [1], respectively. In particular, Meratnia and de By [6] propose a compression
technique that uses the Douglas-Peucker method and, moreover, takes the parameter
of time into account. In particular, it replaces the Euclidean distance used in Douglas-
Peucker by a time-aware one, called Synchronous Euclidean Distance (SED) [6]. The
time complexity of the algorithm proposed in [6] is O(n2), where n is the number of
points composing the trajectory. Regarding MM, Brakatsoulas et al. [1] propose the
following methodology: for every point Pi, given that point Pi-1 has already been

 Trajectory Compression under Network Constraints 393

matched, the adjacent edges to this edge are the candidate edges to be matched to Pi
and they are evaluated. In order to choose among the candidate edges two measures
are used that take into consideration the distance and the orientation of the edges. The
higher the sum of these measures is, the better the match to this edge is. The quality of
the result is improved by using a “look ahead” policy. That is, the total score of each
candidate edge is calculated by adding the scores of a fixed number of edges, which
are ahead of the current position, to the initial one. The time complexity of the algo-
rithm proposed in [1] is O(n).

Also related to ours is the work by Tiakas et al. [7], where a method for trajectory
similarity search under network constraints is proposed. In particular, the cost to travel
from one node to another (which could be travel distance, average travel time, etc.) is
used to calculate the network distance between two trajectories as the average of the
equivalent node distances, and, on top of that, the total similarity Dtotal between two tra-
jectories is expressed as a weighted average of their network and time distances.

The most related to our work is the one by Cao and Wolfson [2], which explored
the combination of the map-matching with the storage-space problem by proposing a
solution that uses the a priori knowledge of the road network. However, our approach
is different as our goal is to reduce the size of the MOD keeping the trajectory data
without altering its infrastructure, but only by removing and/or altering certain
records. Of course, the proposed solution is not a lossless compression technique, but
it preserves the structure of the original data providing at the same time data ready to
be used without any preprocessing.

The contribution of the paper is three-fold:

1. Taking into consideration off-the-shelf TC and MM algorithms, we propose
two working solutions for the combined MMTC problem.

2. Formulating MMTC as a cost-optimization problem, we present a theoretical
analysis for finding the optimal solution accompanied, due to its high compu-
tational cost, by an approximate algorithm, called MMTC-App.

3. Performing an experimental study conducted over a real trajectory dataset, we
demonstrate the effectiveness and the efficiency of the proposed solution.

The paper outline is as follows. In Section 2 we formalize the MMTC problem.
Section 3 presents two solutions based on existing TC and MM algorithms as well as
our novel approximate solution (MMTC-App) followed by their experimental evalua-
tion in Section 4. Section 5 concludes the paper.

2 MMTC Problem Formalization

Before we present our solutions for the MMTC problem, we formalize the MMTC
problem. Due to space limitations, the definitions of the key concepts of our work
(Network, Trajectory, Map-matched trajectory, Map-matched counterpart of a trajec-
tory, and Compressed version of a trajectory) are presented in detail in [5]. On top of
those definitions, the MMTC problem is formalized as follows:

394 G. Kellaris, N. Pelekis, and Y. Theodoridis

Definition 1 (MMTC Problem). Given a road network G(V, E) consisting of graph
vertices V and edges E and a trajectory T consisting of time-stamped point locations
<x, y, t>, the map-matched trajectory compression (MMTC) problem asks to find a
network-constrained trajectory, TMMTC, which is (a) a compressed version of the map-
matched counterpart of T, called T’, and (b) as similar to T’ as possible.

The degree of compression Comp(TMMTC, T’) between TMMTC and T’ is measured as
follows:

, ′ 1 | || ′| , | | | ′|0, (1)

while the degree of similarity Sim(TMMTC, T’) between TMMTC and T’ is measured as
follows: , ′ 1 , ′ (2)

where Dtotal(TMMTC,T’) is calculated as in [0] using the network distance defined in [5].
Since it is expected that optimizing both Comp() and Sim() is contradicting, an

overall quality measure 0 ≤ Q(TMMTC, T’) ≤ 1 is defined as an aggregate of Comp()
and Sim(). The trajectory TMMTC that maximizes Q among all possible network-
constrained trajectories is the solution to the MMTC problem.

In the rest of the paper, we adopt , ′ , ′ · , ′ (3)

which requires the values of both components to be as high as possible in order for its
value to be high. Of course, other quality functions could be equally taken into con-
sideration.

In the following section, we investigate the MMTC problem and propose solutions
either exploiting off-the-shelf TC and MM techniques or designing from scratch.

3 Solutions to the MMTC Problem

By combining the algorithms of data compression and map-matching we devise two
naïve solutions:

• 1st approach (called, TC+MM): the original trajectory T is compressed to TTC
using TC, which afterwards is map-matched to TMMTC using MM.

• 2nd approach (called, MM+TC+MM): the original trajectory T is map-matched
to TMM using MM, which afterwards is compressed to T’MMTC using TC, which
afterwards is map-matched to TMMTC using MM (since applying a general TC
algorithm on a map-matched trajectory destroys its map-matched properties).

 Trajectory Compression under Network Constraints 395

If we adopt the algorithms [6] and [1], with O(n2) and O(n) time complexity,
respectively, it turns out that the complexity of both TC+MM and MM+TC+MM
is O(n2).

Alternatively, in this paper we propose a novel compression method. The motivat-
ing idea is that the compressed trajectory is built by replacing some paths of a given
map-matched trajectory with shorter ones. This could be done by executing a shortest
path algorithm (hereafter, called SP) on appropriately selected points of the trajectory
without considering the weights of the edges. We ignore the weights in order to get
the result with the minimum number of nodes and, hence, achieve a high compres-
sion. Moreover, we need to choose among all the possible shorter paths, the one that
maximize the value of the quality measure Q defined in Eq. (3).

In particular, we adopt the Minimum Description Length (MDL) principle. There
are two components that comprise MDL, namely L(H) and L(D|H), where H denotes
the hypothesis and D denotes the data, as presented in [3]. The best hypothesis H to
explain D is the one that minimizes the sum of L(H) and L(D|H). Mapping the above
discussion to our problem, L(H) represents the compression achieved by a com-
pressed trajectory and L(D|H) represents the difference between the compressed tra-
jectory and the original one as explained in [5].

Recalling Definition 1, the solution we envisage for the MMTC problem is the path
that minimizes the sum L(H) + L(D|H) adopting the MDL principle. Unfortunately,
the cost of finding this path is prohibitive since we need to consider every combina-
tion of shortest paths between the points of the original trajectory. Actually, it is simi-
lar to the problem of finding all possible acyclic paths between two graph nodes.
Since we cannot expect to find the optimal trajectory in reasonable time, we propose
an algorithm that would approximate it.

Fig. 1. Example of the MMTC-App algorithm: shortest paths and their MDLs (a) from the first
node and (b) from the fourth node

The main idea of our approach is illustrated in Fig. 1 whereas the pseudocode of
the proposed approximate algorithm, called MMTC-App, is listed in [5] (due to
space limitations). First, we calculate a map-matched counterpart TMM of the origi-
nal trajectory T simply by matching every point of the trajectory to a network edge.

(a) (b)

P1

P2

P3

P4

P5

P7

a4

a5

MDL=3

MDL=5

P1

P4

MDL=4
P2

P3

P5

P7

a1

a3

MDL=5

a2 P6 P6MDL=6

396 G. Kellaris, N. Pelekis, and Y. Theodoridis

In particular, we choose the edge that is closest to the examined point and it is adja-
cent to the previous selected. Following the example illustrated in Fig. 1, given TMM
{P1, P2, P3, P4, P5, P6, P7}, the algorithm calculates the MDL of every SP as
illustrated in Fig. 1(a), and chooses the one with the minimum MDL value. Let us
suppose that this value is given by the SP from P1 to P4 via node a1. Then we can
replace the sub-path {P1, P2, P3, P4} of the temporary result by {P1, a1, P4}. We
also need to calculate the time the object is located at node a1. This can be esti-
mated by using the temporal information on nodes P1 and P4 and considering the
object is moving at constant speed. The algorithm stores this result and continues by
considering as first point the last node of the already found SP and by checking the
SPs from this node to its next ones. In our running example, P4 is checked against
its next points. Finally, the SP with the best score is the one from P4 to P7 via a4, as
illustrated in Fig. 1(b). Since P7 is the end point of the trajectory, the algorithm ter-
minates by returning the compressed trajectory {P1, a1, P4, a4, P7}. In case no SP is
found in a sub-path which is under evaluation, the algorithm adds the remaining
points to the output and, then, terminates.

The MMTC-App algorithm requires the SPs from the original nodes to all others to
be pre-calculated. This is an offline procedure of general purpose. Theoretically, the
time complexity for running an all-pair shortest path algorithm on a network G(V, E)
is O(|V|2log|V|) [4]. The complexity of MMTC-App algorithm is O(n2logn) on aver-
age, where n is the number of points composing the trajectory, excluding the cost of
shortest path calculations, with the proof found in [5].

4 Experimental Study

We evaluated the proposed techniques over a real dataset consisting of trajectories of
vehicle movements in the city of Milano (described in [5]). For each trajectory, a
compressed and map-matched version of it was constructed, following one of the
above techniques. The resulting trajectories were compared against their map-
matched counterparts with respect to (a) a quality criterion (Eq.(3)) (b) the compres-
sion achieved (Eq.(1)) and (c) the execution time.

In our experiments, we included MMTC-App together with TC+MM(low),
TC+MM(high), MM+TC+MM(low), MM+TC+MM(high), where low and high indi-
cate different threshold values of TC, thus, the rate of compression. The details of the
experimentation are discussed in [5].

The first set of experiments concentrates on the effectiveness of the proposed me-
thods, i.e., as high compression (according to Eq.(1)) and overall quality (according to
Eq.(3)) as possible. Fig. 2 illustrates the compression achieved (labeled ‘Comp’ in the
chart) together with the resulting quality (‘Q’). It is clear that MMTC-App
significantly compresses the original trajectory keeping about 60% of its size while, at
the same time, the overall quality is at least twice the quality of any of the naïve ap-
proaches. It is also worth to be mentioned that high speed and agility has offered
slightly higher compression for methods MM+TC+MM and TC+MM with respect to
their behavior in low speed and agility.

Fig. 2. Compression and
achieved

The second set of experi
niques. Fig. 3 illustrates th
over the Milano dataset. T
half second while the naïve
(depending on the compress

5 Conclusion

MOD literature offers solu
matching succinctly, but no
sion under network constrai

In this paper, apart from
lem, we have proposed
constraints. According to o
efficient and effective, offe
ing the quality of the output

References

1. Brakatsoulas, S., Pfoser, D
In: Proc. 31st International

2. Cao, H., Wolfson, O.: Non
ter, T., Libkin, L. (eds.) IC
(2004)

3. Grünwald, P., Myung, I.J.,
Applications. MIT Press, C

4. Johnson, D.B.: Efficient a
ACM 24(1), 1–13 (1977)

Trajectory Compression under Network Constraints

overall quality Fig. 3. Execution time

iments concentrates on the efficiency of the proposed te
he execution time required to run the proposed techniq
he proposed MMTC-App algorithm completes running
e approaches required a few seconds to perform their t
sion threshold set for the TC component).

utions to the problems of trajectory compression and m
one satisfies the combined problem of trajectory compr
ins.

m straightforward solutions to the so-called MMTC pr
a method for trajectory compression under netw

our results, our approximate solution turns out to be b
ering successful compression while at the same time reta
t.

D., Salas, R., Wenk, C.: On Map-Matching Vehicle Tracking D
 Conference on Very Large Data Bases (VLDB) (2005)
nmaterialized Motion Information in Transport Networks. In:
CDT 2005. LNCS, vol. 3363, pp. 173–188. Springer, Heidelb

 Pitt, M.: Advances in Minimum Description Length: Theory
Cambridge (2005)
algorithms for shortest paths in sparse networks. Journal of

397

ech-
ques
g in
task

map-
res-

rob-
work
both
ain-

Data.

: Ei-
berg

and

f the

398 G. Kellaris, N. Pelekis, and Y. Theodoridis

5. Kellaris, G., Pelekis, N., Theodoridis, Y.: Trajectory Compression under Network Con-
straints, UNIPI-INFOLAB-TR-2009-01, Technical Report Series, InfoLab, Univ. Piraeus
(April 2009), http://infolab.cs.unipi.gr

6. Meratnia, N., de By, R.A.: Spatiotemporal Compression Techniques for Moving Point Ob-
jects. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis,
M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 765–782. Springer, Hei-
delberg (2004)

7. Tiakas, E., Papadopoulos, A.N., Nanopoulos, A., Manolopoulos, Y.: Trajectory Similarity
Search in Spatial Networks. In: Proc. 10th International Database Engineering and Applica-
tions Symposium (IDEAS) (2006)

Exploring Spatio-Temporal Features
for Traffic Estimation on Road Networks

Ling-Yin Wei, Wen-Chih Peng, Chun-Shuo Lin, and Chen-Hen Jung

Institute of Computer Science and Engineering
National Chiao Tung University

Hsinchu, Taiwan, ROC
{lywei.cs95g,wcpeng,zvn.cs97g,clare.csie94}@nctu.edu.tw

Abstract. In this paper, given a query that indicates a query road seg-
ment and a query time, we intend to accurately estimate the traffic status
(i.e., the driving speed) on the query road segment at the query time from
traffic databases. Note that a traffic behavior in the same time usually
reflects similar patterns (referring to the temporal feature), and nearby
road segments have the similar traffic behaviors (referring to the spa-
tial feature). By exploring the temporal and spatial features, more GPS
data points are retrieved. In light of these GPS data retrieved, we exploit
the weighted moving average approach to estimate traffic status on road
networks. Experimental results show the effectiveness of our proposed
algorithm.

Keywords: Traffic Patterns, Data Mining, Trajectory Data.

1 Introduction

In recent years, the global position system (GPS) is widely used in sensor net-
works and technical products, such as navigation devices, GPS loggers, PDAs
and mobile phones. At the same time, with the explosion of map services and
local search devices, many GPS-related Web services are built. Many research
efforts have implemented GPS data collection platforms, which are based on
client-server architectures [5,2,3]. Recent studies in [5,2,1,4] utilized GPS data
to estimate the traffic status. However, the challenge issue is that the GPS data
reported along with a road segment required may contain less amount of GPS
data for traffic estimation. As a result, the estimated driving speed cannot closely
reflect the real traffic status.

In this paper, we explore spatio-temporal features to obtain more GPS data
points from historical data. We can consider historical data (referring to tem-
poral features) since traffic on road segments usually follows a certain pattern.
Furthermore, we also consider traffic information on nearby road segments (refer-
ring to spatial features) for predicting traffic information on a given road segment
at a given time slot. Consequently, in this paper, by exploring the temporal fea-
tures of road networks, we are able to collect more GPS data for traffic estimation.
Note that GPS data points spread over different day times. Thus, we exploit the

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 399–404, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

400 L.-Y. Wei et al.

weighted moving average approach to estimate traffic information on road net-
works. Experimental results show the effectiveness of our proposed algorithm.

The rest of the paper is organized as follows. In Section 2, some assumptions
and the problem statement are described. In Section 3, we propose a traffic esti-
mation algorithm. Performance study is presented in Section 4. Finally, Section
5 concludes with this paper.

2 Preliminary

Same as other research in road networks, a road network is represented as a
directed graph G = (V, E). In this paper, a road segment is sensitive to its own
driving direction. Furthermore, each road segment belongs to one road type, such
as freeway, urban roads, and street, to name a few. To facilitate the presentation
of this paper, a set of road types is denoted as CG =< c1, c2, . . . , cm >, where
each road type ci = i ∈ N and the number of road types is m. Therefore, each
road segment in a road network G has its corresponding road type. Without
loss of generality, each road type (e.g., ci) has its own speed limit (represented
as |ci|). In our paper, the road type in CG are sorted in strictly decreasing
order according to speed limit of road types. Based on the road network and the
traffic database TDB, the goal of our paper is to estimate the traffic information
on road segments. In this paper, the traffic information on a road segment is
represented as a speed value aggregated from a set of GPS data points [3].

3 Traffic Estimation Algorithm

3.1 Retrieving GPS Data Points by Temporal Feature

The traffic is usually heavy in rush hours. Furthermore, the traffic on a given
road segment (e.g., rq) has correlations with prior traffic on rq (i.e., the traffic
on rq at previous time slots). Above observations are referred to the temporal
feature of road networks. Thus, based on the temporal feature, we are able to
extract more GPS data points from traffic databases. Explicitly, we not only
extract GPS data points of the same road segment whose time is close to the
query time on the same day but also collect GPS data points at the same query
time from previous days. To facilitate the presentation of our paper, we define
Neighboring Time Slot (abbreviated as NTS).

Definition 1. (Neighboring time slot) Given a query Q = (rq, tq), a time inter-
val [tq −Δ, tq + Δ], where Δ is a window size, is called a neighboring time slot
(NTS).

According to the above definition, we should retrieve those GPS data points
whose time is within time interval NTS. For NTS, we should further specify
their date time. As such, LDk denotes a set of k days considered for retrieving
GPS data points.

Exploring Spatio-Temporal Features 401

3.2 Aggregating GPS Data Points by Temporal Feature

Given a query time tq, one road segment re, a parameter Δ, and LDk, we
can extract GPS data points of road segment re. Specifically, we extract GPS
data points within NTS on each day in LDk, and the set of these extracted GPS
data points is expressed by Pre . Furthermore, according to the date information,
Pre|Dj

is a subest of Pre and Pre|Dj
contains those GPS data points whose date

time is Dj . For GPS data points in the same day, we assign different weights in
accordance with the GPS time with respect to the query time tq.

In general, if the time of GPS data points are near or close to the query
time, larger weights are assigned. We assign the weight of a GPS data point
by considering both the relative days and the relative time with respect to the
query time (i.e., the time associated with date information).

Definition 2. (d-weight function) Given a GPS data point (denoted as p) of
some road segment re with its date time as Dj ∈ LDk (i.e., p ∈ Pre|Dj

), the
d-weight function is formulated as

wd(p) = k−(j−i+1)+1∑
k
l=1(l+1)

.

Definition 3. (t-weight function) Given a GPS data point (denoted as p) of
some road segment re with its date time as Dj and the time slot as p.t, the
t-weight function is defined by

wt(p) =
1

|p.t−tq |+1

∑ |Pre|Dj
|

l=1
1

|pl.t−tq |+1

.

Clearly, we have
∑

p∈Pre|Dj
wt(p) = 1 for each Pre|Dj

⊆ Pre . Then, we utilize
these two weight functions to formally derive the time weighted function as below.

Definition 4. (Time weighted function)Given a set of extracted GPS data points
(i.e., Pre) for a road segment re, let T : Pre → (0, 1] ⊂ R be the time weighted
function with its formula as follows:

T (p) = wd(p) · wt(p).

Therefore, given a query time Q = (rq , tq) on Di and a road segment re, we can
derive a set of extracted GPS data points (i.e., Pre). For the road segment re,
an aggregated speed Vre is formulated as follows:

Vre =
∑

p∈Pre
(T (p) · p.v), where p.v is the speed of a GPS data point p.

3.3 Retrieving GPS Data Points by Spatial Feature

Given a road network G, its corresponding road category CG, and two road seg-
ments ri and rj in G, the road type distance between ri and rj is formulated
as TD(ri, rj) = |ci − cj |, where the types of ri and rj are ci and cj, respec-
tively. In addition, the spatial distance between ri and rj , denoted as SD(ri, rj),
is the minimal number of nodes appearing in connected paths between ri and rj .

402 L.-Y. Wei et al.

Accordingly, we could further define the set of kth-connected spatial relations
among road segments as follows:

Definition 5. (kth-connected spatial relation between two road segments) Given
a road network G and two road segments ri and rj in G, rj is a kth-connected road
segment of ri if SD(ri, rj) = k and ri and rj have the same driving direction.
The set of kth-connected road segments of ri is denoted as Rk(ri).

The set of extracted road segments is regarded as the spatial feature of road
networks. The set is called the restricted set, denoted as rSet.

Definition 6. (rSet) Given a road network G, a query Q = (rq , tq), and two
thresholds dt and ds, each road segment re in rSet satisfies the both conditions:
(1) 0 ≤ TD(re, rq) ≤ dt, and (2) 1 ≤ SD(re, rq) ≤ ds.

With the above definition of rSet, we could formulate rSet as follows:

rSet = ∪1≤i≤ds ∪cl∈CG Ecl
i .

The size of rSet, denoted as |rSet|, is the number of subsets in rSet. Without
loss of generality, we suppose that |rSet| = ds, and Ecl

i �= φ for each Ecl

i . Note
that Ecl

i is a set of edges satisfying road type cl and ith-connected.
To determine the traffic statuses of neighboring road segments, we could utilize

the temporal feature mentioned above.

3.4 Aggregating GPS Data Points from Spatial Feature

For each road segment in rSet, we can derive an aggregated speed by the time
weighted function. In light of aggregated speed of nearby road segments, we could
derive the aggregated speed of a given road segment via the weighted moving
average approach. Similar to the weight functions in Section 3.2, we will derive
two weight functions for the nearby road segments.

Given a query Q = (rq, rt) and its corresponding rSet with some thresh-
olds, we adopt the spatial weighted function to integrate speeds of nearby road
segments, and then derive an estimated speed of a query road segment rq.

Aggregated speeds of road segments should be set to different weights in
accordance with the spatial distance (referring to the s-weight function) and the
type distance (referring to the c-weight function) of road segments. Assume that
the query road segment is rq and the nearby road segment is re. Then, we define
s-weight function as follows:

Definition 7. (s-weight function) let ws : E → (0, 1] ⊂ R be the s-weight func-
tion formulated as follows:

ws(re) = ds−SD(re,rq)+1∑
1≤l≤ds

l .

Definition 8. (c-weight function) let wc : E → (0, 1] ⊂ R be the c-weight func-
tion formulated as follows:

wc(re) = 1
|Ecl

SD(re,rq)|

where cl is the road type of the road segment re.

Exploring Spatio-Temporal Features 403

Definition 9. (Spatial weighted function) Given a query Q = (rq, tq) and a road
segment re, let S : E → (0, 1] ⊂ R be the spatial weighted function defined by

S(re) = ws(re) · wc(re).

3.5 Velocity Estimation

Especially, to adaptively adjust the influence of the spatial feature of road net-
works, we set a parameter α and 0 ≤ α ≤ 1. If α is set to 1, we only consider
the temporal feature of the query road segment. Thus, the aggregated speed of
a query road segment rq, denoted as STV(rq), is formulated as below:

STV (rq) = α · Vrq + (1 − α) · (
∑

re∈rSet S(re) · Vre).

4 Experimental Evaluation

In this section, we evaluate our proposed algorithm STW by using the real dataset
from CarWeb [3]. The query road segments include the four major road segments.
The parameters setting are Δ = 1.5 hours, a spatial distance threshold ds = 4,
and a road type distance dt is the total number of types in the road category. For
each road segment, we query different time about eight times, and then average the
error between the real speed of the query road segment and the estimated speed
of the query road segment to derive the average accuracy.

First, we examine the effect of α on the temporal and spatial features. In Figure
1(a), in most cases, the error decreases and then increases while α gradually in-
creases. Figure 1(a) also illustrates that the average accuracy is somewhat better
as the value of α is between 0.6 and 0.8. Moreover, with a smaller value of k (e.g.,
k = 1), the average error is smaller by setting a smaller value of α, showing the
advantage of the spatial feature. However, in Figure 1(a), as α ≥ 0.8, the average
error slightly increases while k increases. Since more GPS data points extracted
for traffic estimation, some GPS data points are noise data, which may increase
the average error. Also, GPS data points with their date time close to the query

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

Av
er

ag
e

Er
ro

r(i
n

km
/h

r)

α

k1
k2
k3
k4

(a) α vs. LDk

 0

 2

 4

 6

 8

 10

 0.5 1 1.5 2 2.5 3

Av
er

ag
e

Er
ro

r(i
n

km
/h

r)

Δ(in hours)

α1k2
α1k6
α0k2
α0k6

(b) Δ vs. LDk

Fig. 1. Accuracy of the spatio-temporal weighted algorithm

404 L.-Y. Wei et al.

date time are more important for the traffic estimation even though the amount of
GPS data points increases. Therefore, we do not need to extract GPS data points
on many dates if we can extract GPS data points on the query date.

In Figure 1(b), if α = 1, the average error gradually decreases while Δ in-
creases. However, if α = 0, the average error gradually decreases and then in-
creases while Δ increases. In addition, the average error of Δ = 1.5 is smaller
than that of other values of Δ while α = 0. The reason is that when α is set to
0, we do not utilize the GPS data points on the query road segment, and only
retrieve GPS data points on the other road segments. Even though we extract
more GPS data points from a lager NTS on the other road segments, those lower
relevant GPS data points would increase the average error.

5 Conclusion

In this paper, we fully utilized the spatio-temporal feature to obtain the historical
GPS data and neighboring traffic information. In light of the GPS data that
includes the real-time GPS data and the historical GPS data, we are able to
derive an aggregated speed of the query road segment at the query time specified
by users. Experimental results showed the effectiveness of our proposed algorithm
and by exploiting the spatio-temporal feature, the traffic estimation is very close
to the true real-time traffic status.

References

1. de Fabritiis, C., Ragona, R., Valenti, G.: Traffic estimation and prediction based on
real time floating car data. In: Proc. of the 11th International IEEE Conference on
Intelligent Transportation Systems, pp. 197–203 (2008)

2. Kriegel, H.-P., Renz, M., Schubert, M., Zuefle, A.: Statistical density prediction in
traffic networks. In: Proc. of the 8th SIAM Conference on Data Mining, pp. 692–703
(2008)

3. Lo, C.-H., Peng, W.-C., Chen, C.-W., Lin, T.-Y., Lin, C.-S.: Carweb: A traffic data
collection platform. In: Proc. of the 9th International Conference on Mobile Data
Management, pp. 221–222 (2008)

4. Sananmongkhonchai, S., Tangamchit, P., Pongpaibool, P.: Road traffic estimation
from multiple gps data using incremental weighted update. In: Proc. of the 8th
International Conference on ITS Telecommunications, pp. 62–66 (2008)

5. Yoon, J., Noble, B., Liu, M.: Surface street traffic estimation. In: Proc. of the 5th
International Conference on Mobile Systems, Applications and Services, pp. 220–232
(2007)

A Location Privacy Aware Friend Locator

Laurynas Šikšnys, Jeppe R. Thomsen, Simonas Šaltenis, Man Lung Yiu,
and Ove Andersen

Department of Computer Science, Aalborg University
DK-9220 Aalborg, Denmark

Abstract. A location-based service called friend-locator notifies a user if the
user is geographically close to any of the user’s friends. Services of this kind
are getting increasingly popular due to the penetration of GPS in mobile phones,
but existing commercial friend-locator services require users to trade their lo-
cation privacy for quality of service, limiting the attractiveness of the services.
The challenge is to develop a communication-efficient solution such that (i) it
detects proximity between a user and the user’s friends, (ii) any other party is
not allowed to infer the location of the user, and (iii) users have flexible choices
of their proximity detection distances. To address this challenge, we develop a
client-server solution for proximity detection based on an encrypted, grid-based
mapping of locations. Experimental results show that our solution is indeed effi-
cient and scalable to a large number of users.

1 Introduction

Mobile devices with geo-positioning capabilities are becoming cheaper and more popu-
lar. Consequently users start using friend-locator services (e.g., Google Latitude, FireEa-
gle) for seeing their friends’ locations on a map and identifying nearby friends.

In existing services, the detection of nearby friends is performed manually by the
user, e.g., by periodically examining a map on the mobile device. This works only if the
user’s friends agree to share either exact or obfuscated location. However, LBS users
usually demand certain level of privacy and may even feel insecure if it is not provided
[5]. Due to the poor support for location privacy in existing friend-locator products, it
is sometimes not possible to detect nearby friends if location privacy is desired. The
challenge is to design a communication-efficient friend-locator LBS that preserves the
user’s location privacy and yet enables automatic detection of nearby friends.

To address the challenge, we develop a client-server, location-privacy aware friend-
locator LBS, called the FriendLocator. It first employs a grid structure for cloaking
the user’s location into a grid cell and then converts it into an encrypted tuple before
it is sent to the server. Having received the encrypted tuples from the users, the server
can only detect proximity among them, but it is unable to deduce their actual locations.
In addition, users are prevented from knowing the exact locations of their friends. To
optimize the communication cost, the FriendLocator employs a flexible region-
based location-update policy where regions shrink or expand depending on the distance
of a user from his or her closest friend.

The rest of the paper is organized as follows. We briefly review related work in
Section 2 and then define our problem setting in Section 3. The FriendLocator

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 405–410, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

406 L. Šikšnys et al.

is presented in Section 4. Section 5 presents experimental results of our proposal and
Section 6 concludes the paper.

2 Related Work

In this section, we review relevant work on location privacy and proximity detection.

Location privacy. Most of the existing location privacy solutions employ the spatial
cloaking technique, which generalizes the user’s exact location q into a region Q′ used
for querying the server [4]. Alternative approaches [6,11,3] have also been studied re-
cently. However, all these solutions focus on range/kNN queries and assume that the
dataset is public (e.g., shops, cinemas). In contrast, in the proximity detection problem,
the users’ locations are both queries and data points that must be kept secret.

Proximity detection. Given a set of mobile users and a distance threshold ε, the prob-
lem of proximity detection is to continuously report all events of mobile users being
within the distance ε of each other. Most existing solutions (e.g., [1]) focus on optimiz-
ing the communication and computation costs, rather than location privacy.

Recent solutions were proposed [10,8] to address location privacy in proximity detec-
tion. Ruppel et al. [10] develop a centralized solution that applies a distance-preserving
mapping (i.e., a rotation followed by a translation) to convert the user’s location q into a
transformed location q′. Unfortunately, Liu et al. [7] point out that distance-preserving
mapping can be easily attacked. Mascetti et al. [8] employ a server and apply the filter-
and-refine paradigm in their secure two-party computation solution. However, it lacks
distance guarantees for the proximity events detected by the server, and leads to low
accuracy when strong privacy is required. Unlike our approach, the central server in
their proposal knows that a user is always located within his or her cloaked region.

Our solution is fundamentally different from the previous solutions [10,8] because
we employ encrypted coordinates to achieve strong privacy and yet the server can
blindly detect proximity among the encrypted coordinates.

3 Problem Definition

In this section we introduce relevant notations and formally define the problems of
proximity detection and its privacy-aware version.

In our setting, a large number of mobile-device users form a social network. These
mobile devices (MD) have positioning capabilities and they can communicate with a
central location server (LS). We use the terms mobile devices and users interchangeably
and denote the set of all MDs (and their users) in the system by M ⊂ N.

The friend-locator LBS notifies two users u, v ∈M|u �= v if u and v are friends and
the proximity between u and v is detected. Given the distance thresholds ε and λ, the
proximity and separation of two users u and v are defined as follows [1]:

1. If dist(u, v) ≤ ε, then the users u and v are in proximity;
2. If dist(u, v) ≥ ε + λ, then the users u and v are in separation;
3. If ε < dist(u, v) < ε+λ, then the service can freely choose to classify users u and

v as being either in proximity or in separation.

A Location Privacy Aware Friend Locator 407

Here, dist(u, v) denotes the Euclidean distance between the users u and v. The parameter
ε is called the proximity distance, and it is agreed/selected by u and v. The parameter
λ ≥ 0 is a service precision parameter and it introduces a degree of freedom in the service.
As different pairs of friends may want to choose different proximity distances, we use
ε(u, v) to denote the proximity distance for the pair of users u, v ∈ M. For simplicity
we assume mutual friendships, i.e., if v is a friend of u, then u is a friend of v, and we let
the proximity distance to be symmetric, i.e., ε(u, v) = ε(v, u) for all friends u, v ∈M.

A proximity notification must be delivered to MDs when proximity is detected. Any
subsequent proximity notification is only sent after separation have been detected.

The friend-locator LBS must be efficient in terms of mobile client communication
and provide the following privacy guarantees for each user u ∈ M: (i) The exact loca-
tion of u is never disclosed to other users or the central server. (ii) User u only permits
friends to detect proximity with him.

4 Proposed Solution

In this section we propose a novel, incremental proximity detection solution based on
encrypted grids. It is designed for the client-server architecture, it is efficient in terms
of communication, and it satisfies user location-privacy requirements (see Sec. 3).

Grid-based encryption. Let us consider three parties: two friends, u1 and u2 ∈ M,
and the location server (LS). Both users can send and receive messages to and from LS.
User u1 is interested in being informed by LS when user u2 is within proximity and
vice versa.

Assume that users u1 and u2 share a list of grids, where a grid index within the list
is termed level. Grids at all levels are coordinate-axis aligned and their cell sizes, i.e.,
width and height, at levels l = 0, 1, 2, ... are fixed and equal to L(l). We let L(l) =
g · 2−l, where g is some level zero cell size. Then sizes of cells gradually decrease
going from lower to higher levels, level zero cells being the largest.

Each column (row) of each of these grids is assigned a unique encryption number. A
grid within the list, together with encryption numbers, constitutes a Location Mapping
Grid (LMG). Each user generates such a list of LMGs utilizing two shared private
functions L and ψ, where Ψ : N $→ N is a one-to-one encryption function (e.g., AES)
mapping a column/row number to an encryption number.

Incremental proximity detection. Assume that users u1 and u2 use an LMG of some
level l. Whenever a user moves into a new cell of LMG, the following steps are taken:

(i) The user maps the current location (x, y) into an LMG cell (k,m)=(�x/L(l)�,
�y/L(l)�).
(ii)The user computes an encrypted tuple e = (l,α−,α+,β−,β+) by applying
EΨ (l, k, m) = (l, Ψ(k), Ψ(k + 1), Ψ(m), Ψ(m + 1)), where (α−,α+) and (β−,β+) are
encrypted values of adjacent columns k and k + 1 and adjacent rows m and m + 1
respectively.
(iii) The user sends the encrypted tuple e to LS.

408 L. Šikšnys et al.

Since u1 and u2 use the same list of LMG, with the same encryption-number assign-
ments for each column and row, the LS can detect proximity between them by checking
if the following function is true:

Γ (e1, e2)=(e1.l= e2.l)∧((e1.α
−= e2.α

−) ∨ (e1.α
− = e2.α

+) ∨ (e1.α
+ = e2.α

−))
∧ ((e1.β

− = e2.β
−) ∨ (e1.β

− = e2.β
+) ∨ (e1.β

+ = e2.β
−)).

Parameters e1 and e2 are encrypted tuples delivered from users u1 and u2 respectively.
Note that since Ψ is a one-to-one mapping, Γ is evaluated to true if and only if ku1 or
ku1 + 1 matches ku2 or ku2 + 1 and mu1 or mu1 + 1 matches mu2 or mu2 + 1, where
(ku1 , mu1) and (ku2 , mu2) are LMG cells of users u1 and u2 respectively.

In the extended version of this paper we prove that an LMG at level l can be used
to detect proximity with the following settings ε = L(l), λ = L(l) · (2

√
2 − 1), i.e.,

Γ is always true when dist(u1, u2) ≤ L(l) and always false when dist(u1, u2) ≥
L(l) · 2

√
2. Every two friends u1, u2 ∈ M choose an LMG level, called proximity

level Lε(u1, u2) that corresponds best to their proximity detection settings. Then our
approach forces every user to stay at the lowest-possible level such that few grid-cell
updates are necessary. Only when proximity between friends u1, u2 ∈M is detected at
a low level, are they asked to switch to a higher level. This repeats until required level
Lε(u1, u2) is reached or it is determined that users are not in proximity.

Figure 1 illustrates the approach. It shows the geographical locations of two friends
u1 and u2, and their mappings into LMGs at 4 snapshots in time. Note that lower level
grids are on top in the figure. Assume that u1 and u2 have agreed on Lε(u1, u2) =
2 and have already sent their encrypted tuples, for levels 0 and 1 to LS. Figure 1a
visualizes when LS detects a proximity at level 0, but not at level 1. As Lε(u1, u2) > 0,
nothing happens until a location change. In Figure 1b both users have changed their
geographical location. User u2 did not go from one cell to another at his current level
1, thus he did not report a new encrypted tuple. User u1 however, changed cells at
both level 1 and level 0, he therefore sends a new encrypted tuple for level 0. The LS
detects a proximity between u1 and u2 at level 0 and asks u1 to switch to level 1,
because Lε(u1, u2) > 0. Figure 1c shows user LMG mapping when u1 has delivered
new encrypted tuple for level 1. Again, LS detects proximity at level 1 and commands
both users u1 and u2 to switch to level 2. When both encrypted tuples for level 2 are
delivered to LS, it detects the proximity at this level (see Figure 1d) and, because 2 =
Lε, proximity notifications are sent to u1 and u2.

L e v e l 0

L e v e l 1

L e v e l 2

(a) (b) (c) (d)

u 1

u 1

u 2 u 2
u 1

u 1 u 2 u 2

Fig. 1. Two-user proximity detection in the FriendLocator

A Location Privacy Aware Friend Locator 409

Note that the presented algorithms implement an adaptive region-based update pol-
icy. If a user is far away from his friends, then he stays at a low-level grid with large
cells, resulting in few updates for the user’s future movement. Only when the user ap-
proaches one of his friends, he is asked to switch to higher levels with smaller grid cells.
Thus, at a given time moment, the user’s current communication cost is not affected by
the total number of his friends, but by the distance to his closest friend.

5 Experimental Study

The proposed FriendLocator and a competitor solution, called Baseline, were
implemented in C#. In this section, we study their communication cost in terms of
messages received by the clients and the server. The network-based generator [2] is
used to generate a workload of users moving on the road network of the German city
Oldenburg. A location record is generated for each user at each timestamp.

Competitor Solution. The Baseline employs the filter-and-refine paradigm for
proximity detection among friend pairs. Each user cloaks its location by using a uniform
grid, and sends its cell to the server. Filtering is performed at the LS, which calculates
the min and max distances [9] between the cells ci and cj of the users ui and uj . The
LS then checks the following conditions:

1. If maxdist(ci, cj) ≤ ε, then LS detects a proximity.
2. If mindist(ci, cj) > ε, then LS detects no proximity.
3. If mindist(ci, cj) ≤ ε < maxdist(ci, cj), then users ui and uj invoke the peer-

to-peer Strips algorithm [1] for the refinement step.

The resulting communication cost is lower than Strips due to the use of a centralized
(untrusted) server. Observe that, the Baseline does not use encrypted tuples as in our
FriendLocator solution, so it offers a weaker notion of privacy.

Experiments. We first study the impact of the proximity detection distance ε on the cost
per user per timestamp (Fig. 2a). Both Baseline and FriendLocator have similar

 0

 5

 10

 15

 20

100 101 102 103 104

M
es

sa
ge

s

Proximity detection distance

Messages for one user and one timestamp

FriendLocator
Baseline

 0

 3000

 6000

 9000

FL BL FL BL FL BL FL BL

M
es

sa
ge

s

Number of Users

Server
Destributed

100000750005000025000

(a) Client message cost vs. ε (b) System message cost for each timestamp

Fig. 2. Effect of various parameters on the communication cost

410 L. Šikšnys et al.

performance at small ε (below 10). As ε increases, Baseline invokes the refinement
step frequently so its cost rises rapidly. At extreme ε values (above 10000), most of the
pairs are within proximity so the frequency and cost of executing the refinement step
in Baseline are reduced. Observe that the cost of FriendLocator is robust to
different values of ε, and its cost rises slowly when ε increases. Figure 2b shows the
total number of messages during 40 timestamps as a function of the total number of
users in the system. Clearly, FriendLocator incurs substantially lower total cost
than Baseline. In Fig. 2b the distributed messages represent peer-to-peer messages.

6 Conclusion

In this paper we develop the FriendLocator, a client-server solution for detecting
proximity among friend pairs while offering them location privacy. The client maps a
user’s location into a grid cell, converts it into an encrypted tuple, and sends it to the
server. Based on the encrypted tuples received from the users, the server determines the
proximity between them blindly, without knowing their actual locations. Experimental
results suggest that FriendLocator incurs low communication cost and it is scalable
to a large number of users.

In the future, we plan to extend the proposed solution for privacy-aware proximity
detection among moving users on a road network, in which the distance between two
users is constrained by the shortest path distance between them.

References

1. Amir, A., Efrat, A., Myllymaki, J., Palaniappan, L., Wampler, K.: Buddy Tracking - Efficient
Proximity Detection Among Mobile Friends. In: INFOCOM (2004)

2. Brinkhoff, T.: A Framework for Generating Network-Based Moving Objects. GeoInformat-
ica 6(2), 153–180 (2002)

3. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.-L.: Private Queries in Loca-
tion Based Services: Anonymizers are not Necessary. In: SIGMOD (2008)

4. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services Through Spatial
and Temporal Cloaking. In: USENIX MobiSys. (2003)

5. Heining, A.: Stalk your friends with google (February 2009)
6. Khoshgozaran, A., Shahabi, C.: Blind Evaluation of Nearest Neighbor Queries Using Space

Transformation to Preserve Location Privacy. In: Papadias, D., Zhang, D., Kollios, G. (eds.)
SSTD 2007. LNCS, vol. 4605, pp. 239–257. Springer, Heidelberg (2007)

7. Liu, K., Giannella, C., Kargupta, H.: An Attacker’s View of Distance Preserving Maps for
Privacy Preserving Data Mining. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.)
PKDD 2006. LNCS, vol. 4213, pp. 297–308. Springer, Heidelberg (2006)

8. Mascetti, S., Bettini, C., Freni, D., Wang, X., Jajodia, S.: Privacy-Aware Proximity Based
Services. In: MDM (to appear, 2009)

9. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIGMOD (1995)
10. Ruppel, P., Treu, G., Küpper, A., Linnhoff-Popien, C.: Anonymous User Tracking for

Location-Based Community Services. In: Hazas, M., Krumm, J., Strang, T. (eds.) LoCA
2006. LNCS, vol. 3987, pp. 116–133. Springer, Heidelberg (2006)

11. Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: SpaceTwist: Managing the Trade-offs Among
Location Privacy, Query Performance, and Query Accuracy in Mobile Services. In: ICDE
(2008)

Semantic Trajectory Compression

Falko Schmid1, Kai-Florian Richter1, and Patrick Laube2

1 Transregional Collaborative Research Center SFB/TR 8 Spatial Cognition,
University of Bremen, P.O. Box 330 440, 28334 Bremen, Germany

{schmid,richter}@sfbtr8.uni-bremen.de
2 Department of Geomatics, The University of Melbourne, VIC 3010, Australia

plaube@unimelb.edu.au

Abstract. In the light of rapidly growing repositories capturing the
movement trajectories of people in spacetime, the need for trajectory
compression becomes obvious. This paper argues for semantic trajectory
compression (STC) as a means of substantially compressing the move-
ment trajectories in an urban environment with acceptable information
loss. STC exploits that human urban movement and its large–scale use
(LBS, navigation) is embedded in some geographic context, typically de-
fined by transportation networks. STC achieves its compression rate by
replacing raw, highly redundant position information from, for example,
GPS sensors with a semantic representation of the trajectory consisting
of a sequence of events. The paper explains the underlying principles of
STC and presents an example use case.

Keywords: Trajectories, Moving Objects, Semantic Description, Data
Compression.

1 Motivation

Trajectories, the representation of movement by means of positioning fixes, usu-
ally contain data which can be considered as highly redundant information.
Movement often happens along network infrastructure, such as streets or rail-
way tracks, and the significant behavior patterns, such as stops, are performed
along it as well. Especially in dense urban environments there are not many al-
ternatives for reaching a certain destination other than to move along available
network links. The representation and storage of trajectories by means of lists
of fixes also pose questions about knowledge gain and further processing; tra-
jectories are only meaningful when their spatial context is considered. Relating
trajectories to their spatial context at an early stage will lead to improved means
of analyzing them with standardized methods in a later stage.

Figure 1b is a visualization of a stream of raw positional data (Figure 1a)
produced by a tracking system (e.g. GPS). Figure 1c depicts the same movement
embedded in its geographical context. An object moved through a system of
streets to reach its destination. The actual information contained in trajectories
is the sequence of implicitly encoded spatio-temporal events, i.e., a single datum
is usually not of interest, but rather the significant information with respect to

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 411–416, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

412 F. Schmid, K.-F. Richter, and P. Laube

3
5

3
6

g

B

straight

(a)

ori

(d)(b)

ori

dest

A

a

a

g
gg

e

e

A

F

B

B

B

B

C

F
K

D
H

G
K

AA

(c)

h
h f

f

dest

ori

dest

(2.4 0.7 00:00)
(1.7 1.0 03:43)
(1.7 1.2 08:32)
(1.7 1.4 15:45)
(1.6 1.9 16:43)
(1.7 2.1 17:45)
(1.7 2.3 19:02)
(1.7 2.5 20:48)
(1.7 2.8 21:12)
(1.6 3.1 22:53)
(1.6 3.3 23:29)
(1.7 3.5 24:32)
(1.6 3.8 25:12)
(1.7 4.1 36:07)
(1.8 4.3 37:32)
(1.9 4.5 38:43)
(2.0 4.6 39:26)
(2.1 4.9 41:16)
(2.2 5.1 42:00)
(2.5 5.3 43:11)
(2.7 5.6 45:28)
(2.4 5.9 47:19)
(2.7 6.1 49:36)
(3.0 6.3 52:52)
(2.4 6.5 53:58)
(1.3 6.7 55:21)
(1.1 7.1 57:33)
(0.8 7.3 58:51)
(0.4 7.6 59:40)

Fig. 1. Problem overview: (a) Raw positional data; (b) trajectory in two-dimensional
space, moving from origin to destination; (c) trajectory embedded in geographic con-
text, the semantically annotated map features a train line #6 with two stations; tram
lines #3 and #5 with several stops; major streets (Upper case) and minor streets (lower
case); (d) minimalist representation of the same trajectory, used for the semantic com-
pression: origin, street g, street B, tram line #3, straight, destination

the movement. Significance depends on the application context, but is always
based on the spatial course and the determination of events (usually stops).

Having a look at the trajectory, it becomes obvious that its course can be
described by referring to elements of the network without loosing relevant in-
formation. The course can be expressed by the streets and tram tracks it moves
along (street g, street B, tram line #3, and straight along the streets D, G, H).
This is a minimalist representation of the movement (Figure 1d). Instead of using
a large number of point coordinates, the movement can be described with ele-
ments of the transportation network, annotated with the behaviorally significant
elements (in this case origin, stops, and destination).

Networks as a constraining basis for movement reduce the dimensionality
of space and, thus, allow efficient indexing structures for moving objects [1].
Most work focused on the geometry of the underlying networks. However, the
database community has acknowledged semantics—the meaningful annotation
of moves with labels from the embedding environment —as being paramount for
the interpretation and analysis of raw trajectory data [2, 3]. Whereas exploit-
ing semantics is a young branch in spatial database research, in spatial cognition
the semantics of movement has long been exploited for designing better wayfind-
ing instructions [4, 5]. Going a step beyond utilizing spatial infrastructure as a
suitable representation, a semantic representation of the trajectory can be imple-
mented that focuses on qualitative change in course and events without loosing
the conceptual information of the movement data.

Semantic Trajectory Compression 413

2 Semantics in Trajectories

The majority of systems tracking the movement of individuals produce lists of
time-stamped position samples, so-called fixes in the form of tuples (x, y, t).
Even though this is a discrete approximation of the movement behavior, it is
widely accepted to model the respective movement as a sequence of fixes, con-
nected with straight line segments. In its most simple form a trajectory is a
2-dimensional polygonal line connecting the fixes of a moving individual. For
example, in Figure1, an individual has moved from location origin ori to destina-
tion dest, starting at 00:00 arriving at 59:40. Figure 1a illustrates a trajectory’s
raw data, Figure 1b the respective trajectory in two-dimensional space. Note the
raw data column only illustrates a subset of the plotted fixes.

A map is a semantically annotated network of edges and nodes. A map rep-
resents the transport network of an urban environment, featuring streets, bus,
tram and train lines (see Figure 1c). In a map vertices are unambiguously de-
fined, either by IDs or by (x, y) coordinate tuples. Further, edges may have a
label (street name, or bus, tram, train line). This is a n : 1-relation as several
edges can have the same label. Vertices of bus, tram, and train lines are stops
and stations; these may be labeled with the stops’ names. The labeling of edges
and vertices can extend several levels. An edge may at the same time have a lo-
cal street name (e.g., “Ostertorsteinweg”), be part of a national highway system
(e.g., “A7”), and be part of a bus or tram line (e.g., “Tram #3”).

3 Semantic Trajectory Compression

If movement happens in a transport network, as is usually the case in urban en-
vironments, trajectories can be mapped to a map representing this environment.
The mapping of fixes to vertices and edges of the transport network then allows
for exploiting this structure to restricting a trajectory’s representation to the
significant events. A network reduces the dimensionality of a two-dimensional
movement space. It allows for concise positioning of a moving object through
time-stamping along edges and at vertices, which both have unique identifiers. In
a semantically annotated map, edges and vertices can be aggregated according
to shared labels, for example their street names or the train lines. Often, sev-
eral consecutive edges represent the same street and, thus, share the same label.
Tram and bus lines may extend over large sections of an urban transport net-
work. Thus, the semantic annotation of the network offers a high-level reference
system for urban spaces, which is exploited in STC.

Taking this perspective, streets and tram, bus or train lines are viewed as mo-
bility channels that moving objects hop on, ride for a while, and hop off again
to catch another channel that brings them closer to their destination. In terms
of trajectory compression, this perspective has the advantage that only little
information needs to be retained for describing the movement of an individual
in terms of riding such channels. For most kinds of movement storing a sequence
of the identifiers of the specific channels and hop-on and hop-off times results

414 F. Schmid, K.-F. Richter, and P. Laube

in a sufficient approximation of the individual’s movement through the network.
At the same time, this drops a large amount of fixes, which are highly correlated
and, hence, redundant. Semantic compression of trajectories makes use of prin-
ciples and methods that have been previously implemented for the generation of
cognitively motivated route descriptions (the Guard process, cf. [6]). Broadly,
it is based on three steps:

1. Identify the relevant events along the trajectory. Relevant events are origin
and destination, as well as street intersections and public transport stops
(see Figure 1c).

2. For each event, determine all possible descriptions of how movement contin-
ues from here. These descriptions are egocentric direction relations (straight,
left, right, etc.; in Figure 1c straight from edge D to edge G) or changes in
labels of network elements (in Figure 1c change from label street B to tram
line #3) for capturing the motion continuation of an event.

3. Based on the descriptions, combine consecutive events into sequences of
events. These sequences are termed (spatial) chunks [5]. The compressed
trajectory consists of sequences of such spatial chunks (Figure 1d).

In decompression, the aim is to reconstruct movement through an environment.
In the chosen semantic approach, decompression does not restore the original
trajectory, but rather the path through the network along with inferred time-
stamps. The path contains all information on changes of direction as well as
places along the way; each such event point is coupled with a time-stamp stating
when in the travel behavior it occurred. Note that for all reconstructed points
in the decompressed trajectory, i.e., those that are not original points retained
in the compressed trajectory, the time-stamp is calculated based on an assumed
linear movement behavior between start and end point of a chunk. While this
time estimation is a simplification resulting in information loss, it provides no
limitation for the targeted applications (see Section 5).

In a nutshell, the decompression algorithm iterates through the sequence of
chunks stored in the compressed trajectory. It returns a sequence of vertices
that are a geometric representation of the travelled path through the network.
In more detail, beginning with the start vertex of a chunk the algorithm adds
geometric edges to the reconstructed path until the end vertex is reached. To this
end, it uses different strategies to determine which edge is to be added; these
strategies depend on the description used for chunking. Each added vertex is
linked to a time-stamp, which is calculated assuming constant movement speed,
i.e., representing a fraction of time corresponding to the fraction of the distance
travelled between start and end vertex.

4 Example Use Case

Figure 2 shows an example use case of applying semantic trajectory compression.
The geometric representation of the path contains 115 points in space-time (115
tuples of (x, y, t)). It further comprises 52 events, i.e., 52 intersections and stops

Semantic Trajectory Compression 415

along the way. Performing compression yields the following 6 elements as result:

((3490254.00 5882064.00 00:00) (3490057.00 5882110.00 01:12) “Bei den Drei Pfählen”)
((3490057.00 5882110.00 01:12) (3489534.00 5882241.50 04:47) “Am Hulsberg”)
((3489534.00 5882241.50 04:47) (3488929.50 5882100.00 08:21) “Am Schwarzen Meer”)
((3488929.50 5882100.00 08:21) (3488222.50 5882314.50 13:09) “Vor dem Steintor”)
((3488222.50 5882314.50 13:09) (3487688.75 5882291.00 16:17) “Ostertorsteinweg”)
((3487688.75 5882291.00 16:17) (3487544.75 5882351.00 17:21) “Am Wall”)

As can be seen, STC achieves a high compression rate. Instead of the 115 orig-
inal points, it ends up with only 6 items, which corresponds to a compression
rate of 94.78%. Considering that each item in the compressed trajectory consists
of three elements, the ratio is still 18 to 115 elements or 84.35%. Decompressing
the compressed trajectory reconstructs the original path. It also keeps the time-
stamps explicitly stated in the compressed trajectory. There are some differences
in the geometric representation—in this case the reconstructed path contains 3
coordinates more than the original path. This can be explained with ambiguities
in the underlying geographic data set that for some streets has individual rep-
resentations of different lanes, resulting in different geometric representations.
However, there is no visual or semantic difference between the original and the
reconstructed path; all events of the original path are correctly reconstructed.
Regarding time, the original time-stamps stored in the compressed trajectory
are retained; all other reconstructed events are annotated with estimated time-
stamps assuming linear movement within a chunk.

a) b)

Fig. 2. The map shows part of the inner-city region of Bremen, Germany. a) The
displayed path (the bold line) runs from right to left. The dots on the path mark all
event points along the way. b) The events stored in the compressed trajectory.

5 Conclusions and Outlook

This paper presents a novel approach for compressing large volumes of trajec-
tory data by exploiting the semantic embedding of movement in a geographical
context. Inspired by network-constrained object indexing and techniques used
in spatial cognition and wayfinding, the paper presents semantic trajectory com-
pression (STC). STC matches the movement to the underlying map and aggre-
gates chunks based on identical semantic descriptions. Initial experiments with a
set of use case trajectories captured with volunteers in the city of Bremen serve

416 F. Schmid, K.-F. Richter, and P. Laube

as a proof of concept, deliver promising results for future experiments and help to
identify limitations and a road map for future work. After implementing an STC
prototype, future work will focus on evaluating the STC algorithm with large
and diverse trajectory data. Extensive experiments with real, recorded trajec-
tory data shall identify possible conceptual shortcomings and reveal the runtime
characteristics of the STC algorithm for various scenarios.

As a main contribution, the paper illustrates that the embedding of human
movement in the geographic context of an urban street network can success-
fully be exploited for compressing large volumes of raw trajectory data with
acceptable information loss. The reconstructed information is suited for a num-
ber of applications based on individual spatial profiles which are not built upon a
fine-grained analysis of movement dynamics (e.g., ascending and descending ve-
locity). Specifically, this holds for prior-knowledge based navigation support [7]
which relies on previously visited places and traveled paths. Also, most appli-
cations within the field of Location Based Services that rather rely on a clean
model of movement than its detailed dynamics will benefit from semantically
compressed trajectories.

Acknowledgments

Support by the German Science Foundation (DFG) and Group of Eight / DAAD
Australia Germany Joint Research Co-operation Scheme is acknowledged.

References

[1] Li, X., Lin, H.: Indexing network-constrained trajectories for connectivity-based
queries. Int. Journal of Geographical Information Science 20(3), 303–328 (2006)

[2] Alvares, L.O., Bogorny, V., Kuijpers, B., Fernandes de Macedo, J.A., Moelans,
B., Vaisman, A.: A model for enriching trajectories with semantic geographical
information. In: GIS 2007: Proc. of the 15th annual ACM international symposium
on Advances in GIS, pp. 1–8. ACM, New York (2007)

[3] Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Portoa, F., Vangenot,
C.: A conceptual view on trajectories. Data and Knowledge Engineering 65(1), 126–
146 (2008)

[4] Tversky, B., Lee, P.U.: How space structures language. In: Freksa, C., Habel, C.,
Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 157–175.
Springer, Heidelberg (1998)

[5] Klippel, A., Hansen, S., Richter, K.F., Winter, S.: Urban granularities – a data
structure for cognitively ergonomic route directions. GeoInformatica 13(2), 223–
247 (2009)

[6] Richter, K.F.: Context-Specific Route Directions - Generation of Cognitively Mo-
tivated Wayfinding Instructions. DisKI, vol. 314. IOS Press, Amsterdam (2008);
also appeared as SFB/TR 8 Monographs Volume 3

[7] Schmid, F.: Knowledge based wayfinding maps for small display cartography. Jour-
nal of Location Based Services 2(1), 57–83 (2008)

Pretty Easy Pervasive Positioning

René Hansen, Rico Wind, Christian S. Jensen, and Bent Thomsen

Center for Data-Intensive Systems, Department of Computer Science, Aalborg University
Selma Lagerlöfs Vej 300, DK-9220 Aalborg Ø, Denmark

{rhansen,rw,csj,bt}@cs.aau.dk

Abstract. With the increasing availability of positioning based on GPS, Wi-Fi,
and cellular technologies and the proliferation of mobile devices with GPS, Wi-
Fi and cellular connectivity, ubiquitous positioning is becoming a reality. While
offerings by companies such as Google, Skyhook, and Spotigo render position-
ing possible in outdoor settings, including urban environments with limited GPS
coverage, they remain unable to offer accurate indoor positioning.

We will demonstrate a software infrastructure that makes it easy for anybody
to build support for accurate Wi-Fi based positioning in buildings. All that is
needed is a building with Wi-Fi coverage, access to the building, a floor plan
of the building, and a Wi-Fi enabled device. Specifically, we will explain the
software infrastructure and the steps that must be completed to obtain support for
positioning. And we will demonstrate the positioning obtained, including how it
interoperates with outdoor GPS positioning.

1 Introduction

Positioning is a key requirement for a number of useful mobile services including per-
sonal navigation, personalized shopping assistance, tourist guidance, and friend finder
services. Unfortunately, many services are constrained to working exclusively in either
only outdoor or only indoor settings. By offering ubiquitous positioning, the utility of
many services can be improved greatly. For example, a ubiquitous navigation system
can guide a user from his home to the airport and also to the relevant check-in counter
and departure gate inside the airport. And it can inform the user about available shops,
restaurants, restrooms, etc. A personal shopping assistant application can display rele-
vant nearby stores. Once the user is inside a store, the application might provide infor-
mation about special offers or where to find a particular item of clothing. Similarly, a
ubiquitous tourist guide can offer a high-level overview of tourist attractions found in
an area, as well as provide background information on a piece of art in a museum that a
user visits. Finally, friend finder applications are of limited value if they can only locate
a person’s friends in areas with GPS coverage or in restricted indoor environments.

Companies such as Google [1], Skyhook [2], and Spotigo [3] have developed solu-
tions that offer GPS-less positioning. They use so-called lateration techniques to infer
locations based on knowledge of the placement of 802.11 (Wi-Fi) base stations and cell
towers. This knowledge is gathered through a process called war-driving where drivers
travel the streets, scanning for nearby base stations. Lateration-based techniques gener-
ally infer a user’s position at the granularity of a building or even a particular region of

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 417–421, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

418 R. Hansen et al.

a building. However, they are unable to position users at the granularity of individual
rooms. In fact, these systems have no notion of a room. Moreover, positions are de-
livered as two-dimensional latitude/longitude coordinates, which renders it difficult to
meaningfully position a user or point of interest inside a multi-floor building.

The Streamspin [4,5] system seeks to overcome these limitations by using accurate
location fingerprinting to position users indoor. Location fingerprinting works by build-
ing a database, called a radio map, of Wi-Fi base station signal strengths observed at
different locations; each pair of a location and a set of signal strengths is called a fin-
gerprint. Users are subsequently positioned by reversing the process, i.e., given a set
of measured signal strengths, a position is inferred by finding the best match between
the measured signal strengths and the fingerprints already stored in the radio map. The
accuracy of the technique is typically within a few meters, corresponding to the size of
many office building rooms [6,7,8,9,10].

The most limiting aspect of using location fingerprinting is that of constructing and
calibrating the needed radio maps. Signal strengths need to be collected with relatively
fine-grained spacing, i.e., typically every two to three meters, to ensure the high accu-
racy. Moreover, collection of signal strengths generally has to be repeated at regular
intervals to account for the environmental dynamics of the wireless channel [6]. This
naturally incurs a much larger overhead than for war driving. Streamspin enables the
distribution of this administrative burden by letting the users themselves contribute to
calibrating the radio maps. This is done by letting the users upload signal strength in-
formation to a central server. In addition, Streamspin lets users upload floor plans and
symbolic information for locations in the buildings for which positioning is being pro-
vided. Once a radio map for a building has been added to the Streamspin server, the
system is able to provide indoor positioning in the building, with the same ease as using
GPS, i.e., transparently to the user. We are not aware of any other system, commer-
cial or academic, that offers support for ubiquitous positioning by automatic sharing of
user-generated radio maps.

Section 2 describes the process of building indoor positioning for a given building.
Section 3 explains how Streamspin provides a seamless and transparent handover be-
tween outdoor and indoor positioning, by identifying automatically the radio map that
applies to a building when a user enters the building. Section 4 summarizes and identi-
fies promising research directions. Finally, Section 5 gives an overview of the content
of the proposed demonstration.

2 Enabling Indoor Positioning in Streamspin

Enabling positioning in a building entails the construction of a radio map that sup-
ports fine-grained positioning; but it also entails the provisioning of a floor plan and
symbolic indoor location information that provide users with understandable location
information. More specifically, the following steps are involved:

1. Upload a floor plan to the Streamspin server.
2. Geo-position the floor plan globally.
3. Calibrate a radio map using the Streamspin client.
4. Supply symbolic indoor location information via the Streamspin client.

Pretty Easy Pervasive Positioning 419

Steps 1 and 2. The system architecture assumed in the following is shown in Figure 1.
The users must upload a floor plan of the building, in JPEG format, to the Streamspin
server through the system’s web interface. In case of several floors, several JPEG images
are to be uploaded. When a floor plan is initially uploaded, the user is asked to position
the image on the surface of the Earth using Google Maps. This is done in order to
position the building globally. For a building with multiple floors, this is done only for
the first image; subsequent images are snapped to the region already defined for the first
image. When uploading images for multiple floors, the user must specify the floor level
of each image. A unique building identifier is generated at the server for later use.

Step 3. Using the mobile Streamspin client, a user can download the images that were
previously uploaded to the server. The downloaded images include decorations that
let the user see locations that have already been fingerprinted, i.e., locations that were
previously added to the building’s radio map. This allows the user to see the current
coverage of the indoor positioning system. The user can then contribute to the calibra-
tion of the radio map by choosing either an already fingerprinted location or by selecting
a new location that has not yet been fingerprinted. In either case, the user moves to the
chosen location, selects “Start measuring signal strengths,” and later (at the user’s dis-
cretion) selects “Stop measuring signal strengths.” For each Wi-Fi access point detected
during that period, a histogram of frequencies of the recorded signal strength values is
saved together with the user’s location, and this is uploaded to the radio map of the
building.

The Streamspin server maintains a list of the access points visible in each building
known to the system. Each time a signal strength measurement is contributed, any new
access points are added to the list. The access point list is later used to identify the build-
ing a user enters, so that the appropriate radio map can be downloaded automatically.

Step 4. Users can supply symbolic location information about places in a building by
simply selecting a coordinate or dragging a region and then entering textual informa-
tion, e.g., “Dr. X’s Office” or “The Gym.”

Fig. 1. Architecture of the Wi-Fi Radio Map Subsystem of Streamspin

420 R. Hansen et al.

3 Performing Indoor Positioning in Streamspin

Once a radio map for a building is in place, users can be positioned within the build-
ing. Specifically, users can be positioned at any fingerprinted location (these locations
represent the possible state space). The system handles the handover between outdoor
GPS positioning and indoor positioning completely without user intervention.

When a Streamspin client looses the GPS signals, it initiates Wi-Fi scanning to deter-
mine whether indoor positioning is available. Specifically, the client records any access
points that can be detected and sends their MAC addresses to the server. The server
then searches for an appropriate radio map by matching the MAC addresses against its
collection of access point lists. If a match is found, the server returns the identifier of the
appropriate building. The client uses the identifier to determine whether the correspond-
ing radio map is already stored in its local cache. If not, the client downloads the radio
map. As soon as a radio map is available, the client initiates Wi-Fi based positioning.
Eventually, when the client detects that the user has again left the building, the system
reverts back to GPS. The specific handover policies are covered elsewhere [11,12].

4 Summary and Research Directions

This paper presents an open, easy-to-use approach to enabling user-generated indoor
positioning. This approach, implemented as part of the Streamspin system, enables
users to build and deploy indoor Wi-Fi-based positioning, which in turn enables ubiqui-
tous indoor/outdoor location-based services. Users contribute by calibrating radio maps,
and they provide floor plans and symbolic indoor location information. Once built and
plugged into Streamspin, the radio maps offer the users automatic, fine-grained indoor
positioning. Specifically, the usage is transparent and the appropriate radio map is found
automatically when a user enters a building.

Several interesting directions for future work exist. It is worth studying whether the
trajectories that capture user movements can be used for radio map calibration without
explicit user involvement, thus serving as a beneficial supplement to active user calibra-
tion. The challenge lies in establishing ground-truth user positions that are sufficiently
accurate to be useful for calibration. Next, due to the infrastructure’s inherently open-
ness, an issue related to trust arises. Effective measures are needed to guard against
faulty signal strength information being uploaded by malicious users, as this may de-
grade the performance of the radio maps. Finally, the ability to report on the quality
of a reported indoor position is an important feature planned for implementation. This
will provide users with accuracy information, and it will enable the identification of
locations where the radio map needs updates.

5 Demonstration Content

This section describes the content envisioned for the demonstration.
The demonstration will contain a short introduction to the overall Streamspin system,

including how users can easily create, share, and use location-based services.

Pretty Easy Pervasive Positioning 421

Next, the indoor positioning technology is described and the general architecture for
creating, uploading, and distributing the radio maps is presented. We will adopt a multi-
step approach, introducing first the Streamspin web site from where the creation of the
radio map is initiated. Then the floor plan image in JPEG format is uploaded to the web
site and spherically positioned using a map, to allow positions inside the building to be
reported in latitude/longitude coordinates.

This is followed by a demonstration of the Streamspin client. This includes the func-
tionality for recording a radio map using the just uploaded JPEG image. The process
is quite simple. The user clicks on the current location on the displayed floor plan, and
the system will record the signal strengths until requested to stop by the user. By doing
this, we demonstrate the ease with which a radio map can be built.

Although recording a radio map is straightforward, it is a relatively time-consuming
process, and only a few position recordings are demonstrated. A pre-made radio map
is used for demonstrating the actual positioning, including moving outside to illustrate
the handover between Wi-Fi based and GPS positioning.

The positioning demonstration will include a service where the user actually receives
content based on the locations reported by the system. Possible services include a small
tour of the perimeter, involving both outdoor and indoor points of interest, or simply a
service showing the user’s track.

References

1. Google Latitude, http://www.google.com/latitude
2. Skyhook Wireless, http://www.skyhookwireless.com
3. Spotigo, http://www.spotigo.com
4. Jensen, C.S., Vicente, C.R., Wind, R.: User-Generated Content—The Case for Mobile Ser-

vices. IEEE Computer 41(12), 116–118 (2008)
5. Wind, R., Jensen, C.S., Pedersen, K.H., Torp, K.: A testbed for the exploration of novel

concepts in mobile service delivery. In: Proc. MDM, pp. 218–220 (2007)
6. Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and Track-

ing System. In: Proc. INFOCOM, pp. 775–784 (2000)
7. Krumm, J., Horvitz, E.: Locadio: Inferring motion and location from Wi-Fi signal strengths.

In: Proc. MobiQuitous, pp. 4–13 (2004)
8. Ladd, A.M., Bekris, K.E., Rudys, A., Marceau, G., Kavraki, L.E., Wallach, D.S.: Robotics-

based location sensing using wireless ethernet. In: Proc. MOBICOM, pp. 227–238 (2002)
9. Saha, S., Chaudhuri, K., Sanghi, D., Bhagwat, P.: Location determination of a mobile de-

vice using IEEE 802.11b access point signals. In: Proc. IEEE Wireless Communications and
Networking Conf., pp. 1987–1992 (2003)

10. Hansen, R., Thomsen, B.: Accurate and Efficient WLAN Positioning With Weighted Graphs.
In: Proc. Intl. Conf. on Mobile Lightweight Wireless Systems, 15 pages (to appear, 2009)

11. Hansen, R., Wind, R., Jensen, C.S., Thomsen, B.: Seamless Indoor/Outdoor Tracking Han-
dover for Location Based Services in Streamspin. In: Proc. MDM, 6 pages (to appear, 2009)

12. Hansen, R., Jensen, C.S., Thomsen, B., Wind, R.: Seamless Indoor/Outdoor Positioning with
Streamspin. In: Proc. MobiQuitous, 2 pages (2008)

http://www.google.com/latitude
http://www.skyhookwireless.com
http://www.spotigo.com

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 422–426, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Spatiotemporal Pattern Queries in SECONDO

Mahmoud Attia Sakr and Ralf Hartmut Güting

Databases for New Applications, Fernuniversität Hagen, Germany
{mahmoud.sakr,rhg}@fernuni-hagen.de

Abstract. We describe an initial implementation for spatiotemporal pattern
queries in SECONDO. That is, one can specify for example temporal order con-
straints on the fulfillment of predicates on moving objects. It is shown how the
query optimizer is extended to support spatiotemporal pattern queries by suit-
able indexes.

Keywords: Spatiotemporal pattern queries, SECONDO, Query optimizer.

1 Introduction

Moving objects are objects that change their position and/or extent with time. Having
the trajectories of these objects stored in a suitable database system allows for issuing
spatiotemporal queries. One can query for example for animals which crossed a cer-
tain lake during a certain time.

Spatiotemporal pattern queries (STPQ) provide a more complex query framework
for moving objects. They are used to query for trajectories which fulfill a certain
sequence of predicates during their movement. For example, suppose predicates P, Q
and R that can hold over a time interval or a single instant. We would like to be able
to express spatiotemporal pattern conditions like the following:

• P then (later) Q then R.
• P ending before 8:30 then Q for no more than 1 hour.
• (Q then R) during P.

The predicates P, Q, R, etc. might be of the form

• Vehicle X is inside the gas station S.
• Vehicle X passed close to the landmark L.
• The speed of air plane Z is between 400 and 500 km/h.

STPQs are the intuitive way to query the moving objects by their movement profile.
We demonstrate a novel approach for STPQs along with its implementation in
SECONDO. Some other approaches can be found in [3], [4], [5] and [6].

2 SECONDO Platform

SECONDO [1] is an extensible DBMS platform that doesn't presume a specific data-
base model. Rather it is open for new database model implementations. It consists of
three loosely coupled major components: the kernel, the GUI and the query optimizer.

 Spatiotemporal Pattern Queries in SECONDO 423

It supports two syntaxes: an SQL-like syntax and a special syntax called SECONDO
executable language.

All three SECONDO components can be extended. The kernel, for example, is ex-
tended by algebra modules. In an algebra module one can define new data types and/
or new operations. In this work, we added the spatiotemporal pattern algebra.

Due to its clean architecture, SECONDO is suitable for experimenting with new data
types, database models, query types, optimization techniques and database operations.
The source code and documentation for SECONDO are available for download [1].

3 Spatiotemporal Pattern Queries

A main idea underlying our approach to spatiotemporal pattern queries is to reuse the
concept of lifted predicates [2]. Basically by this concept we define time dependent
versions of static predicates. A static binary predicate has the signature

σ1 × σ2 → bool

where σ1 and σ2 are of static types (i.e: point, int or region). Lifted counterparts of this
predicate are obtained by replacing one or both parameters by their moving versions.
The signature of a lifted predicate is one of the following:

 moving(σ1) × σ2 → moving(bool)

 σ1 × moving(σ2) → moving(bool)

moving(σ1) × moving(σ2) → moving(bool)

Since the arguments are time dependent, the result is time dependent as well.
SECONDO uses the sliced representation for moving data types. For a moving(bool),

for example, the sliced representation could be thought of as an array of units with
every unit consisting of a time interval and a boolean value. Therefore, each unit is a
mapping between a time interval/ slice and a value that holds during this time. Units
are not allowed to overlap in time.

For many static predicates lifted counterparts are already implemented in
SECONDO. We use lifted predicates in formulating patterns. Hence we can easily lev-
erage a considerable part of the available infrastructure.

A simple STPQ may be

Find all cars that entered a gas station, parked close to the
bank, and then drove away fast (candidate bank robbers).

This can be expressed in SQL as follows:

SELECT * FROM car AS c, landmark As l WHERE l.type= “gas
station” and pattern(c.trip inside l.region then
distance(c.trip, bank)< 0.2 then speed(c.trip)> 100.0)

where c.trip is a moving(point) storing the trajectory of the car, the distance is meas-
ured in km and the speed in km/h. This pattern consists of three predicates connected
to each other by the then temporal connector. In our context, then is a binary temporal
connector with the meaning that the second parameter must start to be true any time
greater than or equal to the time when the first parameter starts to be true. In the fol-

424 M. Attia Sakr and R.H. Güting

lowing illustration we call the three predicates P, Q and R in order. They are lifted
predicates that return a moving(bool) since one of the parameters to these predicates is
of a moving type.

At the executable level of SECONDO we introduce a new predicate (operator) stpat-
tern. Its arguments are a tuple and a sequence of lifted predicates (i.e., functions map-
ping the tuple into a moving(bool)).

Fig. 1 shows how the stpattern operator works applied to the sequence <P, Q, R>.
The time is indicated on the horizontal axis and the results of evaluating the three
predicates are shown on the vertical axis. The top most result P, for example, is a
moving(bool) consisting of three units: false before t1, true between t1 and t2 and false
again after t2. Note that we draw only the true intervals.

P
Q

R

tt1 t2

Fig. 1. Evaluating the result of a STPQ for one tuple

The pattern is fulfilled if and only if all the results of the predicates in the sequence
have true units and the temporal order of these units meets the order in the sequence.
In this example, the order of the sequence is P then Q then R and it is fulfilled by the
three hatched intervals in Fig. 1.

The stpattern operator is a lazy operator. It evaluates the predicates in order. Once
it is sure that the sequence of lifted predicates is not fulfilled (e.g., one predicate is
always false) it returns false. This makes the operator more efficient by skipping the
evaluation of unnecessary predicates. For example, if P is always false then Q and R
are not evaluated.

More complex pattern descriptors may include temporal connectors like later,
meanwhile or immediately or temporal constraints in the form of P for 10 min then Q
for no more than an hour meanwhile R. We have ongoing research which considers
such ideas but these are not yet included in this first implementation.

4 Query Optimization for Spatiotemporal Pattern Queries

SECONDO is a complete system in which even the query optimizer is accessible and, in
fact, relatively easily extensible. Hence in contrast to previous work we are able to actu-
ally integrate pattern queries into the overall optimization framework. Obviously for an
efficient execution of pattern queries on large databases the use of indexes is mandatory.
We now consider how pattern predicates can be mapped to efficient index accesses.

The basic idea is to add each of the lifted predicates in a modified form as an extra
“standard predicate” to the query, that is, a predicate returning a boolean value. The
optimizer then should have for the rewritten predicate already some optimization rule
available (“translation rules” in SECONDO) to map it into efficient index access.

 Spatiotemporal Pattern Queries in SECONDO 425

For example, consider the lifted predicate “c.trip inside l.region” with mov-
ing(point) c.trip. We can rewrite it to a standard predicate “c.trip passes l.region”
returning a bool value. The optimizer then already has rules to find trajectories pass-
ing the given region if their units are appropriately indexed.

A general way to convert a lifted predicate into a standard predicate is to apply the
operation sometimes. It is a SECONDO predicate that takes a moving(bool) and returns
a bool. It returns true if its parameter ever assumes true during its lifetime, otherwise
false. So the strategy we implemented is to rewrite each lifted predicate P into a
predicate sometimes(P) and to add translation rules that were missing.

Here is a brief description of how the optimizer processes STPQs along with the
required extensions:

1. The parser parses the SQL-like query. For that we extended the parser to accept
the syntax of the pattern operator.

2. The query rewriting rules are invoked. We added rules that for every predicate
P in the pattern descriptor add a condition sometimes(P) to the where-clause of
the query. Clearly the rewritten query is equivalent to the original one. We keep
a list of these additional conditions for further processing.

3. We added translation rules for sometimes(Q) terms that were not yet available.
4. The optimizer continues its cost based optimization procedure trying to utilize

available indexes.
5. After the best plan is chosen, the optimizer invokes the rules for translating the

best plan into the SECONDO executable language and passes the query to the
kernel for execution. A rule is added here to remove the additional sometimes
predicates (with the help of the maintained list described in step 2) before pass-
ing the query to the kernel.

5 What Will Be Demonstrated

In this demo we will run several spatiotemporal pattern queries in SECONDO. The
database used in the demonstration is the berlintest database coming with the
SECONDO distribution containing geodata and objects of types moving(point) and
moving(region). We will also demonstrate the query optimizer and the process of
optimizing the STPQs. SECONDO will be invoked in its complete configuration where
the three modules (kernel, GUI, and optimizer) are running together.

In Fig. 2, the GUI displays the result of an STPQ. The query is first written in
SQL-like syntax. The GUI passes the SQL query to the optimizer. The optimizer
generates a query plan which is passed back to the GUI (note that the plan accesses an
index called Trains_Trip_sptuni). The GUI passes the executable query to the kernel,
the kernel executes the query, the kernel passes the results to the GUI. Finally, the
GUI tries to find the best viewer available and renders the results (in this case the
Hoese- Viewer is chosen).

In Fig. 2, the trains fulfilling the STPQ are displayed as white circles with black
outlines. The rest of the trains are black circles. “trip“ is a moving(point) and
“msnow“ is a moving(region). They change their locations with time (see the time
meter). The train with id 419 fulfills the pattern. It moves downwards and its path is
indicated by a dashed line.

426 M. Attia Sakr and R.H. Güting

Fig. 2. A sample spatiotemporal pattern query

References

1. SECONDO home page, http://dna.fernuni-hagen.de/Secondo.html/
index.html

2. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, S.J., Lorentzos, N.A., Schneider, M.,
Vazirgiannis, M.: A foundation for representing and quering moving objects. ACM Trans-
actions Database Systems 25(1), 1–42 (2000)

3. Du Mouza, C., Rigaux, P.: Mobility Patterns. In: 2nd Workshop on Spatio-Temporal Data-
base Management, STDBM 2004 (2004)

4. Erwig, M.: Toward Spatiotemporal Patterns. In: De Caluwe, et al. (eds.) Spatio-Temporal
Databases, pp. 29–54. Springer, Heidelberg (2004)

5. Schneider, M.: Evaluation of Spatio-Temporal Predicates on Moving Objects. In: 21st Int.
Conf. on Data Engineering, ICDE, pp. 516–517 (2005)

6. Hadjieleftheriou, M., Kollios, G., Bakalov, P., Tsotras, V.J.: Complex Spatio-Temporal Pat-
tern Queries. In: VLDB 2005, pp. 877–888 (2005)

Nearest Neighbor Search on Moving Object
Trajectories in Secondo

Ralf Hartmut Güting, Angelika Braese, Thomas Behr, and Jianqiu Xu

LG Datenbanksysteme für neue Anwendungen
Fakultät für Mathematik und Informatik, Fernuniversität in Hagen

D-58084 Hagen, Germany

Abstract. In the context of databases storing histories of movement
(also called trajectories), we present two query processing operators to
compute the k nearest neighbors of a moving query point within a set
of moving points. Data moving points are represented as collections of
point units (i.e., a time interval together with a linear movement func-
tion). The first operator, knearest, processes a stream of units arriving
ordered by start time and returns the set of units representing the k near-
est neighbors over time. It can be used to process a set of moving point
candidates selected by other conditions. The second operator, knearestfil-
ter, operates on a set of units indexed in an R-tree and uses some novel
pruning techniques. It returns a set of candidates that can be further
processed by knearest to obtain the final answer. These nearest neighbor
algorithms are presented within Secondo, a complete DBMS environ-
ment for handling moving object histories. For example, candidates and
final results can be visualized and animated at the user interface.

1 Introduction

Moving objects databases allow one to represent and query time dependent ge-
ometries, in particular continuously changing geometries. For moving point ob-
jects their behaviour over time is conceptually a function from time into 2D
space. This can be represented in a moving point data type (mpoint for short),
also called a trajectory. In this demo we address the problem of computing
within a large database of stored moving points the k nearest neighbors to an-
other moving point, the query point. Note that the solution is time dependent
as well, hence, a set of moving points. The problem can be stated precisely as
follows [1]. Let d(p, q) denote the Euclidean distance between points p and q. Let
mp(i) denote the position of moving point mp at instant i.

Definition 1 (k-NN Query). A spatiotemporal k-nearest neighbor query is
defined as follows: Given a query mpoint mq and a relation R with an attribute
mloc of type mpoint, return a subset R’ of R where each tuple has an additional
attribute mloc’ such that the three conditions hold:

1. For each tuple t ∈ R’, there exists an instant of time i such that d(t.mloc(i),
mq(i)) is among the k smallest distances from the set {d(u.mloc(i), mq(i)|u
∈ R}.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 427–431, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

428 R.H. Güting et al.

2. mloc’ is defined only at the times condition (1) holds.
3. mloc’(i) = mloc(i) whenever it is defined.

In other words, the query selects a subset of tuples whose moving point belongs
at some time to the k closest to the query point and it extends these by a
restriction of the moving point to the times when it was one of the k closest.

Whereas a lot of work exists for various kinds of nearest neighbor queries
including continuous online maintenance of nearest neighbors, NN queries on
historical trajectory databases have been addressed only more recently [2,3].
In this demo, we present a new, efficient solution for this problem within a full-
fledged historical MO database system, Secondo [6,7], which outperforms those
earlier approaches by a large margin.

2 Representing Moving Objects in Secondo

Within Secondo, a large part of the data model proposed in [5] has been im-
plemented which defines a set of data types for moving objects together with a
comprehensive set of operations.

A moving point object can be represented in Secondo in two ways: (i) In the
compact representation, it is represented by a single tuple of a relation with an
mpoint attribute. An mpoint value is represented as a sequence of so-called units
where each unit consists of a time interval and a linear movement function. Time
intervals of units are pairwise disjoint and ordered temporally within the mpoint
representation. One can think of the storage scheme for an mpoint as an array
of units. (ii) Units are also available as an independent data type upoint , and in
the unit representation, a moving object is represented by a set of tuples with
a upoint attribute, each tuple containing one of the units of the whole object.
Operations are available to freely convert in query processing between the two
representations.

For indexing moving points, standard R-trees are available. Indexes can be
built in many ways. For example, for the compact representation, one can index
the complete mpoint , or each of its units by its spatial or temporal projection
or its spatiotemporal value. In the same way one can index each unit in the unit
representation.

3 Small and Large Test Database

The demo will run on a small and a large test database. The Secondo dis-
tribution [7] is equipped with a database called berlintest . Besides many other
relations with spatial objects in the city of Berlin, there is a relation

Trains (Id : int , Line : int , Up : bool , Trip : mpoint)

containing trains of the underground network (called U-Bahn“) travelling ac-
cording to schedule on a particular day (Nov. 20, 2003) between about 6 am and
10 am. There are 562 trains with about 100 units each (51544 units in total).

Nearest Neighbor Search on Moving Object Trajectories in Secondo 429

After a startup phase, usually about 90 trains are present at any instant of time.
This is the small database. The large database at scale n2 is created from the
small one by making n2 copies of each train, translating the geometry n times
in x and n times in y-direction (see Figure 2 for a database at scale 25).

4 Operator knearest

A first query processing operator, knearest, has the following signature (with
syntax indicated to the right, # denoting the operator and an argument):

kneare s t : stream (Tuple) × a i × mpoint × i n t
→ stream (Tuple) #[, ,]

It receives (i) a stream of tuples where each tuple contains an attribute ai of
type upoint , (ii) the attribute name ai, (iii) a query moving point, and (iv) the
number k of nearest neighbors to be found. It returns a stream of tuples with
the same structure as the input stream. However, the output units in attribute
ai belong to the k closest moving points represented in the input stream and are
restricted to the times when they are among the k closest. It is required that
the first argument stream arrives ordered by unit start times.

This operator is implemented essentially by plane sweep over the distance curves
of all units (relative to the query mpoint), finding intersections of distance curves
and reporting always the units belonging to the k lowest curves. Distance
functions are in general quadratic polynomials. A query using knearest is:

query UnitTrainsOrdered feed f i l t e r [. Line = 7]
kneare s t [UTrip , t ra in5 , 5] consume

which finds the five continuous nearest neighbors among trains of line 7 of train5,
an mpoint value. Here UnitTrainsOrdered is a version of relation Trains that
has been converted into unit representation. Additionally units are ordered by
start time. This query can be posed as shown at the Secondo user interface.
Operator feed produces from a relation a stream of tuples, filter evaluates a
predicate on each tuple. The output stream from knearest is collected into a
relation by consume which is then displayed at the user interface.

5 Operator knearestfilter

Operator knearestfilter is designed to work on a 3D R-tree indexing the set
of units of a given set of moving objects. Hence the arguments are basically
the index, the query mpoint , and the number k. The exact signature is shown
below. The operator returns a stream of unit tuples ordered by start time that
are candidates to belong to the k nearest neighbors. This stream can be fed into
the knearest operator to obtain the final result.

This algorithm is more complex and uses some sophisticated data structures
and algorithms. Hence we cannot explain it in the limited space of this demo
paper; a detailed description will be presented elsewhere [4]. One of the central

430 R.H. Güting et al.

Fig. 1. Two instants during animation of k-nearest neighbor query

ideas is to compute for each node p of the index in preprocessing its coverage,
a time dependent integer, which represents the number of units represented in
the subtree and present at a given time during the node’s bounding temporal
interval. From the coverage curve, minimal coverages for temporal subintervals
are determined which in turn are used for pruning during the R-tree traversal.
The R-tree is carefully custom-built to obtain good coverage curves (using a
bulk-loading technique).

In principle one could store these coverage values within the nodes of the
R-tree. However, in a system context it does not make sense to modify the general
index structure for each specific query algorithm. Therefore instead a separate
relation is computed that is indexed by node identifiers of the R-tree. During
the tree traversal, minimal coverage numbers for a given node are retrieved from
this structure. Hence the signature of this operator is:

k n e a r e s t f i l t e r : r t r e e (Tuple) × r e l (Tuple) ×
bt ree (CoverTuple) × r e l (CoverTuple) × mpoint × i n t
→ stream (Tuple) #[,]

An example query on a large database at scale 100 is

query UnitTrains100 UTrip UnitTrains100
UnitTrains100Cover RecId UnitTrains100Cover
k n e a r e s t f i l t e r [t ra in742 , 6]
kneare s t [UTrip , t ra in742 , 6] consume

After knearestfilter, there appear 2241 candidate units out of the 5154400 units
in the relation. The result has 941 tuples. Note that in this database on the
average at any instant of time 9000 units are present.

An experimental comparison on a database at scale 25 and this query for
k = 5 yields CPU times of 7.3 seconds for this approach, 52 seconds for the
algorithm of [2], 33 seconds for the algorithm of [3], taking the average of 10
query trains. A systematic comparison will be provided in [4].

Nearest Neighbor Search on Moving Object Trajectories in Secondo 431

6 What Will Be Demonstrated

The demo will cover the following aspects:

Fig. 2. Secondo GUI

– Live demonstration of queries
on the small and large database
as illustrated in Figures 2 and
1. Figure 2 shows the Secondo

GUI with an overview of the
large database at scale 25. The
query mpoint is shown as a
large square, candidates from
knearestfilter as large circles,
solutions as small squares.

Figure 1 shows two snapshots
of the animation; here addition-
ally data mpoints from the area
are shown as small circles.

– On the small database we will
demonstrate commands for the
construction of the custom-built R-tree, visualizing also its node layout in
space.

– We show the computation of coverage curves for nodes of the R-tree and of
derived minimum coverages. Such curves can also be visualized.

References

1. Düntgen, C., Behr, T., Güting, R.H.: BerlinMOD: A benchmark for moving object
databases. The VLDB Journal (online first, 2009)

2. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Algorithms for nearest neigh-
bor search on moving object trajectories. GeoInformatica 11(2), 159–193 (2007)

3. Gao, Y., Li, C., Chen, G., Chen, L., Jiang, X., Chen, C.: Efficient k-nearest-neighbor
search algorithms for historical moving object trajectories. J. Comput. Sci. Tech-
nol. 22(2), 232–244 (2007)

4. Güting, R.H., Behr, T., Xu, J.: Efficient k-nearest neighbor search on moving object
trajectories (manuscript in preparation, 2009)

5. Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider,
M., Vazirgiannis, M.: A foundation for representing and quering moving objects.
ACM Trans. Database Syst. 25(1), 1–42 (2000)

6. Güting, R.H., de Almeida, V.T., Ansorge, D., Behr, T., Ding, Z., Höse, T., Hoff-
mann, F., Spiekermann, M., Telle, U.: SECONDO: An extensible DBMS platform
for research prototyping and teaching. In: ICDE, pp. 1115–1116. IEEE Computer
Society, Los Alamitos (2005)

7. Secondo Web Site (2009),
http://dna.fernuni-hagen.de/Secondo.html/index.html

http://dna.fernuni-hagen.de/Secondo.html/index.html

A Visual Analytics Toolkit for Cluster-Based
Classification of Mobility Data

Gennady Andrienko1, Natalia Andrienko1, Salvatore Rinzivillo2, Mirco Nanni2,
and Dino Pedreschi3

1 Fraunhofer IAIS, Sankt Augustin, Germany
2 ISTI - CNR, Pisa, Italy

3 Università di Pisa, Pisa, Italy

Abstract. In this paper we propose a demo of a Visual Analytics Toolkit
to cope with the complexity of analysing a large dataset of moving ob-
jects, in a step wise manner. We allow the user to sample a small subset of
objects, that can be handled in main memory, and to perform the analy-
sis on this small group by means of a density based clustering algorithm.
The GUI is designed in order to exploit and facilitate the human interac-
tion during this phase of the analysis, to select interesting clusters among
the candidates. The selected groups are used to build a classifier that can
be used to label other objects from the original dataset. The classifier
can then be used to efficiently associate all objects in the database to
clusters. The tool has been tested using a large set of GPS tracked cars.

1 Introduction

The technologies of mobile communications and ubiquitous computing pervade
our society, and wireless networks sense the movement of people and vehicles
through their location-aware devices, generating large volumes of mobility data
of unprecedented quantity, quality and timeliness at a very low cost. However,
raw mobility data, such as collections of GPS tracks, are very complex, as they
represent rough approximations of complex human activities, and at the same
time semantically poor. Therefore it is extremely challenging to develop analy-
sis techniques capable of mastering the complexity of the data and extracting
meaningful abstractions, in particular, by discovering and interpreting groups of
people or vehicles that exhibit similar mobility behavior. The mentioned problem
can be formulated as a trajectory clustering problem: find, for the spatial area
and the time interval under analysis, the natural clusters of similar trajectories,
together with an intuitive way of presenting the discovered clusters to a human
analyst for interpretation, i.e. attaching semantics. A few trajectory clustering
techniques have been proposed, but their direct application to realistic mobility
datasets, such as the object of study in this paper, is simply unfeasible. Real
mobility data are both computationally and analytically complex, and require
the involvement of a human analyst with her background knowledge and under-
standing of the properties of space and time. We present here a visual analytics
environment, which enables to progressively find and refine trajectory clusters

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 432–435, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Visual Analytics Toolkit for Cluster-Based Classification 433

and associated representative prototypes; our experiments demonstrate that nat-
ural clusters are found in the data, which characterize movement behaviors at a
suitable abstraction level, understandable by mobility managers.

2 Analysis Process Description

The tool we present here is designed to support a stepwise analysis process for a
large trajectory dataset. The analyst can consider a small portion of the dataset,
extracting all the interesting clusters from this sample, by means of a density
based clustering algorithm, i.e. OPTICS [1]. The visual environment allows the
user to validate, refine and revise the found clusters. For each cluster, the system
computes and proposes a set of specimens (i.e. representants) that serves as a
classifier of the whole cluster: any other new object belongs to that cluster (i.e.
has a similar behavior) if it is close to one of these specimens.

Given a trajectory dataset D, the analytic process can be formalized as follow:

– Extract a sample D′ of trajectories from the database D
– Apply OPTICS with a suitable distance function d [2] and get a set of

density-based clusters {C1, C2, . . . , Cm}
– For each cluster Ci

• Select s specimens in Ci, with 1 ≤ s < |Ci|, namely {cε1
i1 , cε2

i2 , . . . , cεs

is},
such that the cluster Ci may be described as the set of objects in D′

whose distance from one of the objects c
εj

ij is less than the threshold εj ,
i.e. Ci = {c ∈ D′|∃ j s.t. d(c, cεj

ij) < εj , j = 1, 2, . . . , s}
– Visually inspect and refine the selected specimens. The set of the specimens

for all clusters forms a classifier
– Apply the classifier to the remaining trajectories, attaching each new tra-

jectory to the closest specimens. The trajectories with no close specimen
remain unclassified

– Possibly, restart the whole process again for the unclassified trajectories.

3 Presentation of the Tool

The user interface of the tools consists of an operational window (Figure 1(b))
and a map window (Figure 1(a)). The two windows are linked, only the selection
of the operational window is showed in the map window. The application automat-
ically selects a set of specimens for each cluster and partitions the objects in each
group according to the closest specimen. After that, the analyst can manipulate
the specimens and, in parallel, her actions are reflected on the corresponding tra-
jectories. The refinement actions available for each cluster are: (1) merging two
or more sub-clusters, (2) removing a sub-cluster, (3) splitting a sub-cluster. To
show the functionalities of the tool, consider the cluster in Figure 1(a). On the
map the specimens and the trajectories are represented with different colors. The
analyst can select one subset of specimens as the most representative for the cluster

434 G. Andrienko et al.

(a) The map window (b) The operational window

Fig. 1. The user interface of the application

(a) The main represen-
tative specimen of the
Cluster 1

(b) Two specimens of
Cluster 1

(c) The specimens are
extracted to create a
new cluster (Cluster 10)

Fig. 2. Selection and merging of two specimens. Split of the cluster.

(Figure 2(a)). If other subclusters are visually inspected and valued as too dissimi-
lar, it is possible to split the cluster. For example, the two specimens in Figure 2(b)
are moved in a new cluster (Figure 2(c)) since they describe shorter paths. It is also
possible to discard a sub-cluster from the analysis by tagging it as noise.

When the analyst concludes the refinement phase, she can use the resulting
classifier to classify all the other trajectories of the original dataset. Figure 3(a)
shows 745 trajectories from the database that have been attached to Cluster
1. Figure 3(b) represents these trajectories in a summarized form. For compar-
ison, a summarized representation of Cluster 10 (133 trajectories) is shown in
Figure 3(c).

A Visual Analytics Toolkit for Cluster-Based Classification 435

(a) (b) (c)

Fig. 3. Here we show complete clusters based on select specimens: (a)745 trajectories of
the 1st cluster, (b) their summarized representation, (c) and summarized representation
of 133 trajectories in the 2nd cluster

4 Conclusions

We have presented a tool to tackle the problem of analyzing a large dataset of
trajectories, where the size and the complexity of the data prevent the effective
application of traditional data mining methods. The visual tool is based on a
step wise user-driven approach, based on the reduction of the problem complexity
through sampling and filtering. The proposed methodology is able to find natural
clusters in a complex and large dataset, hence it is able to underline meaningful
mobility behaviors. In addition to clusters, the method also produces a classifier
that can be used for many purposes such as movement prediction, detection
of abnormal behaviors etc. The scalability of the tool have been tested on a
real dataset of GPS tracked cars (around 200.000 trajectories from 17.000 cars
equipped with an on-board GPS receiver, collected during 7 days in the city of
Milan, Italy, resulting in more than 2,000,000 irregularly sampled positions).

5 Nature of the Demonstration

The demo will present the functionalities provided by the tool. Depending on the
availability of newtwork connection, it is possible to test the application both on
the online dataset and on a local dump of the data. We will show the steps followed
to analyze a real dataset ofGPS tracked cars using the visual analytic environment.

References

1. Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., Andrienko,
G.: Visually driven analysis of movement data by progressive clustering. Information
Visualization 7(3-4), 225–239 (2008)

2. Pelekis, N., Kopanakis, I., Marketos, G., Ntoutsi, I., Andrienko, G.L., Theodoridis,
Y.: Similarity search in trajectory databases. In: TIME, pp. 129–140 (2007)

ELKI in Time: ELKI 0.2 for the Performance
Evaluation of Distance Measures for Time Series

Elke Achtert, Thomas Bernecker, Hans-Peter Kriegel, Erich Schubert,
and Arthur Zimek

Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

{achtert,bernecker,kriegel,schube,zimek}@dbs.ifi.lmu.de
http://www.dbs.ifi.lmu.de

Abstract. ELKI is a unified software framework, designed as a tool
suitable for evaluation of different algorithms on high dimensional real-
valued feature-vectors. A special case of high dimensional real-valued
feature-vectors are time series data where traditional distance measures
like Lp-distances can be applied. However, also a broad range of spe-
cialized distance measures like, e.g., dynamic time-warping, or general-
ized distance measures like second order distances, e.g., shared-nearest-
neighbor distances, have been proposed. The new version ELKI 0.2 now
is extended to time series data and offers a selection of these distance
measures. It can serve as a visualization- and evaluation-tool for the
behavior of different distance measures on time series data.

1 Introduction

In high dimensional data, and especially in time series data, the choice of a dis-
tance measure suitable and meaningful w.r.t. the data in question is essential. In
many implementations of algorithms, either provided by authors or implemented
in general frameworks, the Euclidean distance is invariably used as a standard
distance measure.

In the software system described in this paper, we facilitate the use of a wide
range of different algorithms along with a wide choice of distance measures. The
framework provides the data management independently of the tested algorithms.
So all algorithms and distance measures are comparable on equal conditions. But
even more important is an intuitive and easy-to-understand programming style
to invite additional contributions. This way, the interested users can easily pro-
vide a new algorithm or a new customized distance measure and compare their
performance with existing solutions.

2 An Overview on the Software System

Focus and strength of Weka [1] and YALE [2] as popular environments for data
mining algorithms is mainly in the area of classification, while clustering ap-
proaches are somewhat under-represented. However, first steps towards incorpo-
rating subspace clustering into Weka have been presented recently [3]. Although

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 436–440, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.dbs.ifi.lmu.de

ELKI in Time: ELKI 0.2 for the Performance Evaluation 437

both, Weka and YALE, support the connection to external database sources,
they are based on a flat internal data representation. Thus, experiments as-
sessing the impact of an index structure on the performance of a data mining
application are not possible using these frameworks. Furthermore, in both frame-
works, the user often cannot select the distance measure to be used by a certain
algorithm but the distance computation is coded deeply in the implementation
of an algorithm. Especially, neither Weka nor YALE do support special require-
ments like specialized distance measures for time series data. On the other hand,
frameworks for index structures, such as GiST [4], do not provide any precast
connection to data mining applications. Finally, data mining tools specialized for
time series data, like T-Time [5], do support specialized distance measures for
time series but usually provide only a small selection of algorithms for clustering
or classification of time series data that can be used in combination with suitable
distance measures.

To combine these different aspects in one solution, we built the Java Software
Framework ELKI (Environment for DeveLoping KDD-Applications Supported
by Index Structures). ELKI version 0.1 [6] already comprised a profound and
easily extensible collection of algorithms for data mining applications, such as
item-set mining, clustering, classification, and outlier-detection. On the other
hand, ELKI incorporates and supports arbitrary index structures to support
even large, high dimensional data sets. But ELKI does also support the use of
arbitrary data types and respective distance functions. Thus, it is a framework
suitable to support the development and evaluation of new algorithms at the
cutting edge of data mining as well as to incorporate experimental index struc-
tures or to develop and evaluate new distance measures, e.g., to support complex
data types.

ELKI intends to ease the development of new algorithms and new distance
measures by providing a wealth of helper classes and methods for algebraic and
analytic computations, and simulated database support for arbitrary data types
using an index structure at will.

2.1 The Environment: A Flexible Framework

As a framework, our software system is flexible in a sense, that it allows to read
arbitrary data types (provided there is a suitable parser for your data file or
adapter for your database), and supports the use of any distance or similarity
measure appropriate for the given data type. Generally, an algorithm needs to be
provided with a distance function of some sort. Thus, distance functions connect
arbitrary data types to arbitrary algorithms.

The architecture of the software system separates data types, data type-
specific distance measures, data management, and data mining applications.
So, different tasks can be implemented independently. A new data type can be
implemented and used by many algorithms, given a suitable distance function is
defined. An algorithm will perform its routine irrespectively of the data handling
which is encapsulated in the database. A database may facilitate efficient data

438 E. Achtert et al.

management via incorporated index structures. Index structures are encapsu-
lated in database objects. These database objects facilitate range queries using
arbitrary distance functions. Algorithms operate on database objects irrespec-
tive of the underlying index structure. So the implementation of an algorithm, as
pointed out above, is not concerned with the details of handling the data which
can be supported by arbitrary efficient procedures.

2.2 Arbitrary Distance Measures

Often, the main difference between clustering algorithms is the way to assess the
distance or similarity between objects or clusters. So, while other data mining
systems usually predefine the Euclidean distance as the only possible distance be-
tween different objects, ELKI allows to flexibly define and use any distance mea-
sure. This way, for example, subspace clustering approaches that differ mainly
in the definition of distance between points (like e.g. COPAC [7] and ERiC [8])
can use the same algorithmic routine and become, thus, highly comparable in
their performance.

Distance functions are used to perform range queries on a database object.
Any implementation of an algorithm can rely on the database object to perform
range queries with an arbitrary distance function and needs only to ask for k
nearest neighbors not being concerned with the details of data handling.

A new data type is supposed to implement the interface DatabaseObject. A
new algorithm class suitable to certain data types O needs to implement the In-
terface Algorithm<O extends DatabaseObject>. The central routine to implement
the algorithmic behavior is Result run(Database<O> database). Here, the algo-
rithm is applied to an arbitrary database consisting of objects of a suitable data
type. The database supports operations like
<D extends Distance<D>> List<DistanceResu l tPai r<D>> kNNQueryForObject(

O queryObject , int k , DistanceFunction<O,D> distanceFunct ion)

performing a k-nearest neighbor query for a given object of a suitable data
type O using a distance function that is suitable for this data type O and pro-
vides a distance of a certain type D. Such a query method returns a list of
DistanceResultPair<D> objects encapsulating the database IDs of the collected
objects and their distance to the query object in terms of the specified distance
function. A Distance object (here of the type D) in most cases just encapsulates
a double value but could also be a more complex type, e.g. consisting of a pair of
values as often used in subspace or correlation clustering algorithms like DiSH
[9] or ERiC [8]. This list is sorted in ascending order w.r.t. the distance from the
query object. As such, this method or related methods for epsilon-range queries
are not only used in any clustering algorithm but also for comparing different
distance measures. In ELKI 0.2, the performance of different distance measures
can be directly assessed and visualized to enable the researcher to get a feeling
for the meaning, benefits and drawbacks of a specific distance measure.

For that purpose, in a data set of time series, a specific time series can be
picked and a k-NN query can be performed for this time series within the data

ELKI in Time: ELKI 0.2 for the Performance Evaluation 439

(a) Euclidean distance.

(b) LCSS distance.

Fig. 1. ELKI 0.2: Visualization of k-NN query results for different distance measures

set for any k and any distance function. The result of the query is e.g. visualized
by assigning colors of degrading similarity to the time series in the query result
according to the decreasing similarity w.r.t. the given distance measure. An
example is shown in Figure 1: the query time series (blue) and its 3 nearest
neighbors (color blending from blue to red with increasing distance). In this case,
the different behavior of Euclidean distance (Figure 1(a)) and LCSS distance
(Figure 1(b)) is demonstrated.

For time series data, in ELKI 0.2 especially the following exemplary distance
measures are incorporated: the Dynamic Time Warping (DTW) distance [10],
the Longest Common Subsequence (LCSS) distance [11], the Edit Distance on
Real sequence (EDR) [12] and the Edit distance with Real Penalty (ERP) [13].
Any clustering or classification algorithm may therefore use a specialized distance
function and implement a certain routine using this distance function on an
arbitrary database.

440 E. Achtert et al.

2.3 Availability and Documentation

Via http://www.dbs.ifi.lmu.de/research/KDD/ELKI/ the framework ELKI,
documentation of the implementation and usage as well as examples to illustrate
how to expand the framework by integrating new algorithms are available.

3 Conclusion

The software system ELKI presents a large collection of data mining algorithms
which can be supported by arbitrary index structures and work on arbitrary
data types given supporting data classes and distance functions. ELKI 0.2 is also
able to visualize the behavior and the possibly different partialities of different
distance measures for time series data. We therefore expect ELKI 0.2 to facilitate
broad experimental evaluations of algorithms and distance measures – existing
and newly developed ones alike.

References

1. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

2. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid pro-
totyping for complex data mining tasks. In: Proc. KDD (2006)

3. Müller, E., Assent, I., Günnemann, S., Jansen, T., Seidl, T.: OpenSubspace: an
open source framework for evaluation and exploration of subspace clustering algo-
rithms in WEKA. In: Proc. OSDM@PAKDD (2009)

4. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for database
systems. In: Proc. VLDB (1995)

5. Aßfalg, J., Kriegel, H.P., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: T-Time:
threshold-baed data mining on time series. In: Proc. ICDE (2008)

6. Achtert, E., Kriegel, H.P., Zimek, A.: ELKI: a software system for evaluation of
subspace clustering algorithms. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM
2008. LNCS, vol. 5069, pp. 580–585. Springer, Heidelberg (2008)

7. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: Robust, complete, and
efficient correlation clustering. In: Proc. SDM (2007)

8. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Zimek, A.: On exploring complex
relationships of correlation clusters. In: Proc. SSDBM (2007)

9. Achtert, E., Böhm, C., Kriegel, H.P., Kröger, P., Müller-Gorman, I., Zimek, A.:
Detection and visualization of subspace cluster hierarchies. In: Kotagiri, R., Radha
Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS,
vol. 4443, pp. 152–163. Springer, Heidelberg (2007)

10. Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in time series.
In: KDD Workshop (1994)

11. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional tra-
jectories. In: Proc. ICDE (2002)

12. Chen, L., Özsu, M., Oria, V.: Robust and fast similarity search for moving object
trajectories. In: Proc. SIGMOD (2005)

13. Chen, L., Ng, R.: On the marriage of Lp-norms and edit distance. In: Proc. VLDB
(2004)

http://www.dbs.ifi.lmu.de/research/KDD/ELKI/

Hide&Crypt : Protecting Privacy in
Proximity-Based Services

Dario Freni, Sergio Mascetti, and Claudio Bettini

DICo, Università di Milano

Abstract. A particular class of location based services, called friend
finder, is becoming very popular. Using this kind of service, a subscriber
obtains to know location information about other participants (called bud-
dies). Current commercial applications of this service imply the acquisition
by the service provider of the user location at the best possible precision.
This can discourage many users to use this service, since the precise loca-
tion is a private information. We present a privacy-aware friend finder sys-
tem called Hide&Crypt that notifies a user whether her buddies are within
a user-specified threshold distance. The user can specify her location pri-
vacy requirementsbothwith respect to the serviceprovider and to theother
buddies. The system includes a server application, and clients for mobile
devices and desktop computers.

1 Introduction

Friend finders are one of the most popular location based applications. Using a
friend finder, it is possible to obtain location information about the so-called bud-
dies, which are other users participating in the service. The buddies associated
to a user can be predetermined, like with a contact list, or chosen dynamically,
e.g. as a result of a query about users’ interests. Many applications available in
the market allow users to see the exact location of the buddies on the geograph-
ical map, others let users only know the exact distance between their position
and their buddies. Most of these services require the client applications to peri-
odically update their location to the service provider (SP) at the most precise
resolution. This may arise a privacy concern to those users that consider their
exact location as a sensitive information. For the same reason, some users would
prefer to use a friend finder service, while being able to tune the precision of the
location information revealed to the other buddies.

One of the functionalities of a friend finder application allows a user to discover
which of her buddies are in proximity, i.e., which buddies are located within
a distance threshold specified by that user. Technically, this is equivalent to
compute a range query over a database of moving entities (the buddies). In
this demo we show a fully functional friend finder system, which implements
privacy preserving techniques that allows a user to choose the minimum privacy
requirements with respect to the service provider and each of her buddies. The
system implements the protocol Hide&Crypt , designed to privately compute
range queries [2].

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 441–444, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

442 D. Freni, S. Mascetti, and C. Bettini

Several friend finder applications already exists. Among the others, two of the
most famous are Google Latitude [5], that allows the user to view the location
of her buddies on a map, and Loopt [6], which also has social network function-
alities. Unfortunately, none of the existing friend finders provides a sophisticate
privacy preserving technique. For example, Google Latitude let users choose
whether the location information sent to one buddy is provided at the maxi-
mum available precision or generalized to the city level. One could argue that
this solution lacks of flexibility. In addition, in any case, the protocol requires
the user to send her exact location to the SP. To the best of our knowledge, the
only friend finder application that has been specifically designed to guarantee
users’ privacy is NearbyFriend, which implements one of the solutions presented
in [3]. Technically, the main difference with our approach is that NearbyFriend
uses a peer-to-peer protocol. This approach prevents the release of any location
information to the SP. However, it requires a user to contact all of her buddies
each time a range query is issued. This can be prohibitively expensive in terms of
communication costs when the number of buddies is large. Vice versa, our solu-
tion takes advantage of a centralized SP that enhances the computation of range
queries. This improvement is achieved at the cost of revealing some location in-
formation to the SP. However, users can choose how much location information
they reveal to the SP: the more precise location information is provided, the
most efficient the service is.

2 The Hide&Crypt System

Location privacy can be expressed as the uncertainty that an external entity has
about the position of a user. Hence, a user can specify a minimal uncertainty
region from where an adversary cannot exclude any point as a possible position.
For example, Alice specifies that Bob should never be able to find out the specific
building where Alice is within the campus. To formally model the totality of these
uncertainty regions, the notion of spatial granularity can be used. Analogously
to time granularities [1], a spatial granularity is a subdivision of the spatial
domain into a discrete number of non-overlapping regions, called granules. In
our approach, users can specify their minimum privacy requirements through a
granularity1 GSP for the SP and a granularity GU for each of her buddies.

The Hide&Crypt protocol is composed by two steps. In the former, called
SP-Filtering, a user sends to the SP her generalized location. While the formula
to compute this generalization considers GSP as well as all the GU granularities,
the intuition is that the generalized location is a region including the granule of
GSP that contains the position of the user. When two users A and B sends their
generalized location, the SP computes the minimum and maximum distance
between the two regions. If the minimum distance is larger than the distance
threshold δA defined by A, the SP communicates to A that B is not in proximity.
Indeed, independently from the precise location of the two users, the distance
between A and B is larger than δA. Analogously, if the maximum distance is
1 In the following we use “granularity” to mean “spatial granularity”.

Hide&Crypt: Protecting Privacy in Proximity-Based Services 443

smaller than δA, the SP communicates to A that B is in proximity. Finally, if
δA is between the minimum and the maximum distance, the SP is not able to
compute the proximity of B with respect to A and communicates to A that the
second step of the protocol should be initiated. The same computations on the
SP are run considering the distance threshold defined by B.

In the second step of the protocol a user A initiates a two-parties secure
computation with a user B. First, A retrieves from the SP the granularity GU

defined by B as the minimum privacy requirement with respect to A2. Then, A
computes the set of granules of GU that intersects the circle C centered in the
exact location of A, having radius equal to the distance threshold of A. Running
a secure computation for the set-inclusion problem, A discovers whether B is
located in one of the granules in that set. If this is the case, A derives that B is
in proximity, otherwise she derives that B is not in proximity. During this step,
B does not acquire any new knowledge about the location of A.

The Hide&Crypt protocol has been proved to guarantee the minimum privacy
requirements defined by the users. In addition, it has also been shown that
it is able to achieve a level of privacy significantly larger than the minimum
required [2]. However, it should be observed that, due to the use of granularities,
a form of approximation is introduced. Indeed, it can happen that a user B is
located in a granule g that intersects with C, while the distance between the exact
locations of A and B is above the distance threshold. It has been experimentally
shown that false positives are very rare and with practically useful settings the
protocol has precision close to 1.

As required by the filtering step of the Hide&Crypt protocol, the architecture
is centralized. In principle, the two-parties communication would require a direct
connection between two buddies. However, in practice, it is not always possible
to establish a communication between two peers (e.g. due to the presence of
NAT or firewalls). Consequently, in our solution, the SP also acts as a gateway
for the (encrypted) communications between users.

As observed in the introduction, the set of buddies associated to a user can
be predetermined or chosen dynamically. Our application supports the compu-
tation of proximity in both cases. In the former, the computation of proximity
is performed among the buddies that are in the contact list of a user. In the
latter, the proximity query also includes as parameter some profile preferences.
The SP is then able to compute the proximity among the participants matching
that user’s preferences.

3 Implementation

For what concerns the implementation, the server component is developed using
Java and it is running on a Windows 2003 Server machine. Currently, the server
offers the functionalities to compute the proximity only. However, it is designed to
support extra functionalitieswe are planning to develop soon.These functionalities

2 We assume that the minimum privacy requirements are public knowledge.

444 D. Freni, S. Mascetti, and C. Bettini

includes: instantmessaging, microblogging and the possibility to show the location
of the buddies on a map if the proper authorization is provided.

We developed two client applications, one for desktop computers and one for
mobile devices. The desktop software is a web application using Google Gears
API [4] to obtain a user’s location. The application for the mobile devices is im-
plemented using Java and runs on the Android platform. This makes it possible
to use the platform’s API to acquire the location.

For testing purpose, we also developed some additional software that will be
shown during the demo. One software simulates the behavior of the participants in
the service, including their movements and their requests for proximity. Another
software graphically shows the impact of the privacy preferences on the privacy
that is provided to users, the system performance and the service precision.

4 Demonstration Outline

– We introduce the user to the privacy problem by showing the information
transmitted by existing friend finder applications.

– We show the main functionalities of the Hide&Crypt client application. In
particular we present the GUI that shows which buddies are in proximity.
We also illustrate how it is possible to set the privacy requirements with
respect to the SP and to the buddies.

– We run the application using both real buddies and simulated ones.
– We introduce our testing software. In particular we present the application

that shows on the map the location data acquired by the other buddies, that
measures the communication costs, and that detects false positives results
of the proximity computation. Using this tool we explain how the privacy
preferences affect the three main parameters characterizing the service: user’s
privacy, system costs and service precision.

Acknowledgments

This work was partially supported by National Science Foundation under grant
CT-0716567 and by Italian MIUR under grant PRIN-2007F9437X.

References

1. Bettini, C., Wang, X.S., Jajodia, S.: Time Granularities in Databases, Temporal
Reasoning, and Data Mining. Springer, Heidelberg (2000)

2. Mascetti, S., Bettini, C., Freni, D., Wang, X.S., Jajodia, S.: Privacy-aware Proxim-
ity Based Services. In: Proc. of the 10th International Conference on Mobile Data
Management. IEEE Computer Society, Los Alamitos (2009)

3. Zhong, G., Goldberg, I., Hengartner, U.: Louis, Lester and Pierre: Three protocols
for location privacy. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776,
pp. 62–76. Springer, Heidelberg (2007)

4. http://gears.google.com/
5. http://www.google.com/latitude/
6. http://www.loopt.com/

http://gears.google.com/
http://www.google.com/latitude/
http://www.loopt.com/

ROOTS, The ROving Objects Trip Simulator

Wegdan Abdelsalam1, Siu-Cheung Chau2, David Chiu1, Maher Ahmed2,
and Yasser Ebrahim3

1 University of Guelph, Canada
2 Wilfrid Laurier University, Canada

3 Prince Sultan University, Saudi Arabia

Abstract. This paper introduces a new trip simulator, ROOTS. ROOTS
creates moving objects with distinct characteristics in terms of driving
style and route preference. It also creates a road network and associates
each road with some characteristics. The route taken and the moving ob-
ject speeds during the trip are determined based on both the character-
istics of the moving object, those of the road being travelled, and other
contextual data such as weather conditions and time of day.

1 Introduction

In previous work we introduced the idea of using moving objects modelling as a
means of lowering uncertainty in location tracking applications [3]. Our focus is
on human moving object travelling over a network. We refer to this class of mov-
ing objects as Roving objects (ROs). The location of the RO at a certain point
in time is determined based on his/her reported location, estimated route, and
estimated speed(s). Causality relationships between contextual variables such
road speed limit, road type, day of week, time of day, and weather conditions;
and RO speed and route are used to build the RO model. The RO model is
what we use to estimate his/her speed, route, and other factors that may affect
his/her location (e.g., stopping pattern).

In this paper we present a new trip simulator, the ROving Objects Trip Simu-
lator (ROOTS) we developed to test our modelling-based approach. The primary
motivation behind developing ROOTS is the need for a trip simulator that cre-
ates ROs with distinct characteristics and preferences that are taken in account
when trips are generated. ROOTS focuses on the RO characteristics that affect
the speed and route. In ROOTS, ROs differ in the way they respond to a number
of contextual variables, such as the time of day, day of week, weather conditions,
and road type.

Although a number of network-based trip generators is available [2], none of
them take in account moving-object-specific information such as object’s prefer-
ences and habits in account. As a matter of fact, many such tools dispose of the
moving object at the end of the trip. Since context-aware and location-aware ap-
plications require objects to be persistent and information about RO behaviour
to be collected for modelling purposes, none of the currently available generators
can be used. ROOTS is the first trip simulator to fill this void.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 445–449, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

446 W. Abdelsalam et al.

2 ROOTS: ROving Object’s Trip Simulator

ROOTS simulates a city road network by creating a number of roads that form
a grid. Each road is divided into a number of road segments. These roads are
travelled by a number of ROs. Each RO goes on a number of trips each of which
is associated with a route between the trip’s source and destination. During the
trip, the RO generates a number of location reports.

ROOTS generates several ASCII files representing the entities shown in italics
in the previous paragraph. Two sets of files are generated, one is in a comma
delimited format, the other is in Spatial Data Loader (SDL) format. The SDL
format is used with AutoDesk’s MapGuide and other World Wide Web map
authoring tools.

2.1 Roving Objects

Each RO is associated with an ID , Aggressiveness level (AGGRESSIVE, AV-
ERAGE, SAFE), Route preference (FASTEST, SHORTEST), and Typical trips’
source/destination, time of day, and day of week. The aggressiveness level of the
RO is reflected in his/her speed. The aggressiveness level is assigned randomly to
each RO at creation time. Because each aggressiveness level is equally probable,
about one third of the ROs belong to each of the three aggressiveness level classes.

An initial RO speed is randomly generated based on the road segment’s speed
limit and the RO’s aggressiveness level. For each RO aggressiveness level, there is
a probability distribution that determines the probability of the RO being above,
within, or below the speed limit. Going above the speed limit, means going on a
speed anywhere from the speed limit up to x% above the speed limit. Going within
the speed limit, means deviating no more than y% of the speed limit either way.
Going below the speed limit, means going anywhere from the speed limit down to
z% below the speed limit. x, y, and z are determined by the user.

The initial RO speed can be negatively affected by the driving conditions and
the road level of service. The time-of-day, day-of-week, and the area information
is used to calculate a Level of Service (LoS) based on a formula determined by
the user. There are 6 levels of service ranging from A to F going from best to
worst. The LoS negatively affects the previously calculated speed according to
a user-defined percentage for each level of service.

The RO speed is also affected by driving conditions which is in turn affected
by the weather conditions and the road type. There are three driving conditions:
GOOD, FAIR, and BAD. The effect of weather conditions on speed differs based
on the RO’s aggressiveness level. Note that these reductions are applied to the
speed after being adjusted by the LoS. The amount of reduction in speed is
determined by the user. Fig. 1 depicts the relationships among the variables
affecting the RO speed.

The route preference can either be that of distance (i.e., the shortest route) or
speed (i.e., the fastest route). The route speed is determined based on the speed
limits on its constituent road segments. At the time of determining the route
of a trip, the RO’s route preference is used to choose between the two possible

ROOTS, The ROving Objects Trip Simulator 447

Weather
condition

Road
type

Driving
condition

Speed
Speed
Limit

Level of
Service

Day of
Week

Time of
Day

Area

Fig. 1. RO speed model

routes for the trip (i.e., the shortest and the fastest routes). Each RO has an
equal chance of having a distance or speed route preference.

Each RO has one or more typical trip(s) that he/she makes frequently around
the same time. Typical trips my be the trip to/from work, supermarket, gym,
...etc. The source, destination, day-of-week, and time-of-day of each typical trip
are all chosen randomly. The typical trip(s) info is stored to be used at the time
of creating trips for the RO. The typical trips percentage of all the trips made
by the RO is a user specified constant.

Each trip (typical or not) is associated with an ID , Source and destination
address (the coordinates of a road segment start/end point), Day of week, Time,
Weather condition (DRY, RAINY, or SNOWY), and RO. All these attributes
are determined randomly except for the trip ID wich is determined sequentially.
Each trip is also associated with a route. Based on the RO preference, either the
fastest or the shortest route between the source and destination is associated
with the trip.

2.2 Roads and Routes

Each road is associated with an ID, Direction (East-West or North-South), Type
(EXPRESSWAY, PRIMARY HIGHWAY, SECONDARY HIGHWAY, MAJOR
ROAD, LOCAL ROAD, or TRAIL), and a Road number which determines the
road’s location on the grid. Road numbers are multiples of 100 with the first
road having the number 0.

There are two sets of roads, those running North-South and those running
East-West. The roads are spaced equally to form a uniform grid. There are no
diagonal or winding roads. The road type is assigned randomly using a distribu-
tion that is determined by the user.

Each road is divided into a set of road segments. A road segment is the
road stretch between two consecutive intersections. All roads have the same
number of road segments and all road segments have the same length. The road
segment length and the number of road segments within each road are user
defined constants.

448 W. Abdelsalam et al.

Each road segment has an ID, Speed limit (a numeric value representing the
maximum allowable speed on the road segment in kilometres per hour K/h),
Area (a numeric value that represent the area of city the road segment is part
of such as downtown), Start and end coordinates (x,y coordinates of either ends
of the road segment), Length (length of the road segment in meters),and Road
(the road the segment is part of). The length attribute is added here to allow
future versions of the simulator to handle variable road segment lengths.

For road types EXPRESSWAY and PRIMARY-HIGHWAY, all segments of
the road have the same speed limit. For other road types, when the first road
segment is created, its speed limit is determined by its road type. For subsequent
segments of the road, the speed limit is set to that of the preceding road segment
k% of the time. In 100−k% of the time, the speed limit varies by m kph from the
preceding road segment. The direction of the change (up or down) is determined
randomly. As a result, the same road will have stretches that have different speed
limits in simulation of real roads. The speed limit change is allowed as long as
it does not result in a value that exceeds the speed limit of the road type, or
goes below a certain minimum speed. k, m, the road type speed limit, and the
minimum speed limit are all user defined constants.

The road segments are grouped into rectangular shaped areas. A set of at-
tributes are associated with each area, ID , Lower left coordinates, Upper right
coordinates. The number of areas, the coordinates for each area, and the effect
each area has on the level of service is determined by the user.

A route is a set of road segments between the source and destination of a trip.
Each route has an ID, a unique string that uniquely identifies the route. Routes
are optimized for either time or distance. The road network is represented as a
graph and Dijkstra’s shortest path algorithm is used to determine the shortest
distance and the shortest time routes between the source and destination points.
In only l% of the time the route selection will conform to the RO’s preference.
This is to reflect the possibility that the RO may choose a different route in
exceptional situations. l is determined by the user.

3 ROOTS Demonstration

The demonstration presents an overview of ROOTS’s design and approach to
produce synthetic datasets for moving object databases, including a demonstra-
tion of ROOTS current capabilities and a look into the ROOTS’s development
goals for its 1.0 release.

ROOTS version 1.0 was implemented in Java version 1.6.0. It consists of
three parts, ROOTS configure, ROOTS server, and ROOTS viewer (i.e., client).
ROOTS configure is used to customize the ROOTS variables and generate the
datasets. ROOTS server is a small scale database management system that loads
a specific dataset, opens a connection, and waits for the ROOTS client queries.
ROOTS viewer is a graphical user interface connected to the server to view the
dataset. ROOTS viewer allows the user to pan, zoom in and out, and use elastic
band zooming. Since ROOTS adopts a client/server architecture, many instants

ROOTS, The ROving Objects Trip Simulator 449

Fig. 2. Screenshot of ROOTS

of the ROOTS viewer may be loaded simultaniously. Fig. 2 shows a screenshot
of the ROOTS demo under Microsoft Windows environment.

4 Conclusions and Future Work

This paper presents ROOTS, a trip simulator that simulates moving objects’
characteristics and preferences. The data provided by ROOTS can be used to
build moving object models that can be used to better estimate the location of
roving objects.

ROOTS is an ongoing project. Currently we are working on turning it into
an extensible platform that allows the user to create new characteristics and
behaviours of the ROs. This highly customizable environment will allow ROOTS
to be tailored to the needs of specific applications and environments and to
generate trips on any arbitrary network (i.e., road map) given by the user.

References

1. Brakatsoulas, S., Pfoser, D., Tryfona, N.: Modeling, storing and mining moving
object databases. In: Proceedings of International Database Engineering and Appli-
cations Symposium, pp. 68–77. IEEE, Los Alamitos (2004)

2. Brinkhoff, T.: Generating traffic data. Bulletin of the Technical Committee on Data
Engineering 26, 19–25 (2003)

3. Abdelsalam, W., Siu-Cheung, C., Ahmed, M., Ebrahim, Y.: A roving user modeling
framework for location tracking applications. In: 9th International IEEE Conference
on Intelligent Transportation Systems, IEEE ITSC 2006, pp. 169–174 (2006)

The TOQL System

Evdoxios Baratis, Nikolaos Maris, Euripides G.M. Petrakis,
Sotiris Batsakis, and Nikolaos Papadakis

Department of Electronic and Computer Engineering
Technical University of Crete (TUC)

Chania, Greece
{dakis,petrakis}@intelligence.tuc.gr, nickmeet@gmail.com,

{batsakis,npapadak}@intelligence.tuc.gr

Abstract. TOQL, is a query language for querying time information in
ontologies. An application has been developed that supports translation
and execution of TOQL queries on temporal ontologies. A Graphical User
Interface (GUI) has been also developed to facilitate user interaction and
supports operations such as syntax highlighting, code autosuggestion,
loading of the ontology into the main memory, results and error display.

1 Introduction

TOQL (Temporal Ontology Querying Language), is a high-level query language
for querying (time) information in ontologies. TOQL handles ontologies almost
like relational databases. TOQL maintains the basic structure of an SQL lan-
guage (SELECT - FROM - WHERE) and treats the classes and the properties
of an ontology almost like tables and columns of a database. The following table
summarizes TOQL syntax:

Table 1. Generic TOQL syntax

Syntax

SELECT ... AS ...
FROM ... AS ...
WHERE ... LIKE ... AND ... LIKE “string” IGNORE CASE ... AT...

The TQQL system supports query translation and execution of temporal
queries (i.e. queries that contain the AT and Allen temporal operators) along
with a mechanism for representing time evolving concepts in ontologies inspired
by the four-dimensional perdurantist approach [4]. The 4D perdurantist mech-
anism is not part of the language and it is not visible to the user (so the user
need not be familiar with peculiarities of the underlying mechanism for time
information representation). A graphical user interface has also been developed
to facilate user interaction with both TOQL and with the knowledge base (the
termporal ontology).

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 450–454, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The TOQL System 451

2 System Architecture

The TOQL system has been implemented in Java. The system supports query
translation and execution of TOQL queries on OWL ontologies containing tem-
poral information.

Figure 1 illustrates the architecture of the TOQL system. The TOQL system
consists of several modules, the most important of them being the TOQL inter-
preter whose purpose is to translate the TOQL query into a SeRQL [1] query,
which is executed on the knowledge base. TOQL and SeRQL have different syn-
tax and SeRQL does not support the full range of TOQL’s time features. Part
of the interpreter is a reasoner implemented in Prolog. The reasoner handles
queries concerning properties that conform to the event calculus axioms [5]. The
complete discussion of the TOQL implementation can be found in [2].

TOQL

Query

Ontology
(OWL)

Error Messages

Ontology Parser

Interpreter Knowledge Base
Quering

Result

SeRQL

Query

Query Result

Knowledge Base

Fig. 1. TOQL system architecture

2.1 Ontology Parser

The input is a query written in TOQL and an ontology in OWL. The ontology
is parsed using JENA1 and SESAME2 and is loaded into the main memory.
The ontology is checked for consistency with the 4D fluent mechanism [2] (error
messages are reported to the output). The SeRQL query addresses both the
ontology structure (TBOX) and the knowledge base instances (ABOX). Inferred
facts are asserted in the KB using the Pellet3 OWL reasoner. A query language
alone can be used to access temporal information that is explicitly represented
in a temporal ontology, but cannot provide answers on information that can
be inferred from existing information (e.g., if the price of a product at time t
is p, TOQL should be able to infer that the price of the product is the same
since the last time it was changed). TOQL is combined with a reasoner based on
event calculus [5] to better support queries on temporal ontologies. The output
to a query is a table with the results. If errors have been encountered during
interpretation, the output is one or more error messages.
1 http://sourceforge.net/projects/jena
2 http://www.openrdf.org
3 http://clarkparsia.com/pellet

452 E. Baratis et al.

2.2 Interpreter

A TOQL query is initially lexically, syntactically and semantically analyzed.
Lexical analysis converts a sequence of characters to tokens (i.e., meaningful
labels). The lexical analysed is implemented using JFlex4. For example, the token
SELECT is given the meaning SELECT, while the token “Linux” is given the
meaning NAME. The next step is syntax analysis (parsing) whose purpose is to
analyze a sequence of tokens to determine grammatical structure (i.e., allowable
expressions) with respect to a given formal grammar [2]. The parser transforms
the query to a syntax tree, a form suitable for further processing. The parser is
implemented using Byacc/J5. Syntactical errors are reported in the output. If
the query is lexically and syntactically correct, query translation proceeds with
semantic analysis. Semantic analysis adds semantic information to the parse tree
and builds the symbol table. This phase performs two types of semantic checks.
The first type needs no external knowledge. Semantic errors reported in this
case include, use of a class in a SELECT or WHERE clause without having it
declared in the FROM clause, use of a property in a SELECT or WHERE clause
without a class preceding it,and use of more than one properties in the SELECT
clause of a nested query.

Detection of the second type of semantic errors needs external knowledge (i.e.,
the ontology). This requires that the ontology is first loaded into the main mem-
ory. The ontology is parsed using JENA and SESAME libraries. The semantic
analyzer checks if a class or property used in a query exists in the ontology, if
a property is a property of a specific class and finally, if a property is a fluent
property (so that keyword TIME can be applied to it). A complete list of error
messages that can be reported by the semantic checker can be found in [2].

Code generation: The last phase of query processing is the actual translation of a
TOQL into an equivalent SeRQL query. Code generation performs the following
steps:

– Intermediate code generation.
– Intermediate code parsing and instantiation to Java objects (representing

the TOQL query).
– Processing of Java objects and expansion with 4D fluent elements.
– Processing of Java objects and mapping to Java objects (representing the

SeRQL query).
– SeRQL query generation.

Finally the SeRQL query is applied to the Knowledge Base using SESAME and
the result is presented to the user.

3 Graphical User Interface

A Graphical User Interface (GUI) has been also developed to facilitate user in-
teraction with TOQL. It supports operations such as syntax highlighting and
4 http://jflex.de
5 http://byaccj.sourceforge.net

The TOQL System 453

loading of the ontology into the main memory. The toolbar panel provides but-
tons for query editing (undo, redo, copy, cut, paste), for displaying query results
as well as for displaying the SeRQL equivalent query. Syntactic and semantic
errors are also displayed. The interface, provides options for ontology loading
(the “Load Ontology” button loads a new ontology into the memory) and on-
tology viewing (i.e., “View Ontology” button displays the Abstract Ontology
View referred to [2], which hide the temporal mechanism representation from
the user). The query editing panel contains the query editor and a toolbar panel
that contains buttons useful for querying editing (save, save as, load query, run).

Query formulation is supported by TOQL syntax highlighting (recognizes
TOQL clauses keywords and classes-properties) and by Code autosuggestion
(each time the user writes a class name followed by “.”, a list with the class
properties is displayed to choose from).

The results panel has two tabs. The first one displays the results returned
by the query, while the second one displays the errors returned as the result
of query parsing. These errors can be either due to inconsistencies with the 4D
fluent representation or due to errors in TOQL syntax.

4 Conclusions

The TOQL system provides a high level user interface to TOQL, an SQL-like
language for querying temporal information in ontologies. TOQL is currently
being extended to handle queries on ontology structure (i.e., sub- classes and
super-classes) as well as open-schema query functionality by allowing variables
in the class position (e.g. using rdf:type as a property in a query triple).

References

1. Aduna, B.V.: The SeRQL query language. User Guide for Sesame 2.1, Chapter 9
(2002–2008), http://www.openrdf.org/doc/sesame2/2.1.2/users/ch09.html

2. Baratis, E.: TOQL: Querying Temporal Information in Ontologies. Master’s thesis,
Techn. Univ. of Crete (TUC), Dept. of Electronic and Comp. Engineering (July
2008)

3. McGuinness, D.L., VanHarmelen, F.: OWL Web Ontology Language Overview.
W3C Recommendation (February 2004), http://www.w3.org/TR/owl-features

4. Welty, C., Fikes, R., Makarios, S.: A Reusable Ontology for Fluents in OWL. Tech-
nical Report RC23755 (Wo510-142), IBM Research Division, T. Watson Research
Center, Yorktown Heights, NY (October 2005)

5. Shanahan, M.: The event calculus explained. In: Veloso, M.M., Wooldridge, M.J.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer,
Heidelberg (1999)

http://www.openrdf.org/doc/sesame2/2.1.2/users/ch09.html
http://www.w3.org/TR/owl-features

454 E. Baratis et al.

The TOQL System- Demonstration Outline

The TOQL sytem demonstration will include:

– Presentation of TOQL query examples.
– Presentation of the TOQL system interface and of its functionality

(Figure 2).

Fig. 2. Graphical user interface: TOQL query with answer

– Comparison between TOQL and SeRQL syntax demonstrating the rich ex-
pressive power and simpler syntax of TOQL.

PDA: A Flexible and Efficient Personal Decision
Assistant�

Jing Yang, Xiyao Kong, Cuiping Li, Hong Chen, Guoming He, and Jinghua Tian

School of Information, Renmin University of China, Beijing 100872, China
{jingyang,licuiping,chong,kongxiyao,hegm,jinghuatian}@ruc.edu.cn

Abstract. Despite a rich set of techniques designed to process specific types of
optimization queries such as top-k, skyline, NN/kNN and dominant relationship
analysis queries, a unified system for a general process of such kinds of queries
has not been addressed in the literature. In this paper, we propose PDA, a in-
teractive personal decision assistant system, for people to get the desired opti-
mal decision easily. In addition to supporting the basic queries mentioned above,
PDA can also support some sophisticated queries. Several novel technologies are
employed to improve the flexibility and efficiency of the system and a visual-
ization interface like google map is provided for people to view the query result
interactively.

1 Introduction

In many business applications such as customer decision support, market data analysis,
e-commerce, and personal recommend, users often need to optimize their selections
of entities. While databases have been applied predominately in business settings with
well-defined query logic, they are now frequently used in retrieving or analyzing data. In
these scenarios, the desired decisions are described with some qualifying constraints,
which specify what subsets of data should be considered valid, and some qualifying
functions, which measure their degrees of matching. Such queries are often referred as
constrained optimization query.

Many data exploration queries can be cast as constrained optimization queries, such
as top-k queries [3,5,6], skyline queries [2,4,10], NN queries and its variants [1,9],
dominant relationship analysis queries [8]. These queries can all be considered to be a
type of optimization query with different constrains and object functions.

Despite a rich set of techniques designed to process specific types of queries, a uni-
fied system for a general process of such kinds of constrained optimization queries has
not been addressed in the literature. In the real life, users often resort to different tools
for specific query types.

In this demonstration, we present a web-based personal decision assistant system
called PDA as a general processing platform for a variety of query types. It seamlessly
integrates efficient query evaluation and versatile processing model for large amounts

� Supported by the National Science Foundation of China (60673138, 60603046), Program for
New Century Excellent Talents in University.

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 455–459, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

456 J. Yang et al.

of data and provides powerful optimization decision functionality. In addition to sup-
porting basic queries mentioned above, PDA can support more sophisticated queries.
For example, it can process those queries whose constraint is a dynamic range and the
object function is an ad hoc aggregation function over the tuples within the range.The
presence of such kind of constraints and functions presents significant challenges for
optimization query processing since in this case it is hard to compute tight bounds and
determine an efficient early stopping condition.

To address the above challenges and to improve the query flexibility and efficiency,
PDA employs several practical techniques: a special index structure for sophisticated
query, progressive approximate result retrieving, and multi-threaded query processing.
In addition, PDA provides users with a web-based map exploration method to assist
them to browse the query result easily and interactively by clicking and dragging the
mouse.

2 System Architecture

The architecture of PDA is shown in Figure 1. The system is implemented in Java and
follows B/S architecture. There are four main components in this system: Data Load-
ing Module, User Interface, Query Execution Engine, and Results Displaying Mod-
ule. Data Loading Module loads external data and converts it into the fixed format for
PDA. User Interface provides a friendly interface which gives users the freedom to
input their requirements. Query Execution Engine is the core part of our system. It pro-
cesses certain kind of query according to the user’s action in the User Interface. After
analyzing the query constraints and object functions that the user imputed, it chooses
the optimal algorithm to deal with the data set and returns the desired result. At last,
Results Displaying Module shows the result set retrieved by the Query Execution En-
gine. Results Displaying Module is another key component of PDA. It provides a vi-
sual interface which is as intuitive and expressive as current web mapping services like
Google maps.

Fig. 1. System Overview

PDA: A Flexible and Efficient Personal Decision Assistant 457

3 Core Query Execution Engine

In order to process various kinds of query types mentioned in the above specifica-
tion, PDA adopts and substantially extends the versatile optimization query processing
model proposed by [5]. As discussed earlier, the presence of blocking operators (Group
by and order by) in the query plan makes the query evaluation wasteful. In order to use
the general query processing framework of [5], a possible remedy would be that we first
guess a value k’(k’ > k) and ask the dynamic source to compute its top-k’ results up-
front, with k’ being sufficiently large so that the global operator never needs any scores
of items that are not in the local top-k’. PDA treats such situations by employing the
following practical technologies.

Index Structures Organization. PDA uses a multi-resolution R-tree proposed in [7]
instead of a regular R-tree to process sophisticated queries. The multi-resolution R-tree
augments to each non-leaf entry of the R-tree an aggregate measure of all data points
in the subtree pointed by it. Thus, algorithms for searching using the aggregate R-tree
are identical to those of the corresponding plain tree because search does not affect the
aggregate values stored. Figure 2 shows an example of a multi-resolution R-tree whose
aggregate functions are min, max, count and sum respectively.

Progressive Approximate Result Retrieving. Since the user’s goal behind a query
usually is not to find exactly the best data objects with regard to some ranking model,
but rather to explore and identify one or a few relevant pieces of information, it is often
acceptable to provide approximate answers to users at a significantly lower computa-
tional cost by providing a good estimate without accessing large portions of the database
or index. PDA provides an approximate ranking range aggregation algorithm based on
the multi-resolution R-tree. It produces monotonically improving quality answers when
the algorithm iteratively searching the multi-resolution R-tree level by level.

Multi-threaded Query Processing. For queries that cover a large part of the data
space, the above progressive approximate query processing method works well since
it need not explore deep nodes of the aggregate R-tree to retrieve the high quality an-
swers. But if the query range is relatively small, and on the other hand, the number of
group by is relatively large, the performance of the progressive method will decrease
dramatically in this case since the algorithm will have to explore the very low nodes
of the multi-resolution R-tree. Considering the existence of the natural parallelism
among the multiple group-bys, we adopt a multi-threads query processing policies to do
the sequential data scan and aggregate computation simultaneously when the required

Fig. 2. An Example of Multi-Resolution R-tree

458 J. Yang et al.

aggregation range below a pre-defined threshold. One thread will be activated for each
group-by to scan the source and do the aggregation on the fly. After getting all the
aggregations, it selects an appropriate top-k algorithm to get the final result.

4 Visual Result Display

When the query is executed, users can get the results from the Result Display Module.
PDA’s Result Display Module shows two kinds of information: the final result computed
by the Query Execution Engine and the dynamic query execute procedure on how the
results are produced.

The final query results can be displayed in various ways such as report forms, graphs,
and so on. The report forms provide the basic information to users. The graphic interface
offers a visual and interactive way for people to explore the result information.

The screenshot in Figure 3 shows a typical scenario when a user wants to find top-10
most popular hotels between July and September in Beijing. After the query is executed
by the Query Execution Engine, our system not only provides a top-10 most popular
hotels list including their basic information such as the hotel name, price and occupancy
rate, but also locates the result hotels on the map in the right of the web page. This map
is a true Beijing map, and when users click on the hotel’s icon, the full information
about it will be further provided.

To develop this map, we embed Google maps in PDA’s web pages using Google
Maps API2.0. The Google Maps API is now integrated with the Google AJAX API
loader, which creates a common framework for loading and using multiple Google
AJAX APIs. By employing the functions that the Google Maps API provides, we can
easily develop a map and locate those result hotels on it.

Generalizing this idea, for any multi-dimensional data set, we can select its initial
layout on two typical dimensions as a starting point and then if users click on some
object, the full information of the object can be provided further. We implemented this
function by using JavaScript to create a coordinate plane whose axes are the two di-
mensions initially selected by users. And then we can locate those result objects on this

Fig. 3. Visual Result Display

PDA: A Flexible and Efficient Personal Decision Assistant 459

coordinate plane according to these two dimensions. For each object on the coordinate
plane, there is an Action Listener. And when users click on the object, full information
of the object can be provided in the pop window.

5 User Interface Overview

The current design of the user interface of PDA is shown in Figure 4. It consists of several
components. We discuss them below. Please note that this is a universal interface for all
types of queries, therefore only some components are valid for certain type of query.

Fig. 4. User Interface

References

1. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms for process-
ing k-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1), 67–104 (2004)

2. Fu, G., Papadias, D., Tao, Y., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: SIGMOD (2003)

3. Han, J., Xin, D., Chang, K.C.-C.: Progressive and selective merge: Computing top-k with
ad-hoc ranking functions. In: SIGMOD Conference, pp. 103–114 (2007)

4. Tan, K., et al.: Efficient progressive skyline computation. In: VLDB (2001)
5. Gibas, M., Zheng, N., Ferhatosmanoglu, H.: A general framework for modeling and process-

ing optimization queries. In: VLDB Conference (2007)
6. Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: A system for the efficient execution

of multi-parametric ranked queries. In: SIGMOD Conference (2001)
7. Lazaridis, I., Mehrotra, S.: Progressive approximate aggregate queries with a multi-resolution

tree structure. In: SIGMOD Conference (2001)
8. Li, C., Ooi, B.C., Tung, A.K.H., Wang, S.: Dada: a data cube for dominant relationship

analysis. In: SIGMOD Conference, pp. 659–670 (2006)
9. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD Confer-

ence, pp. 71–79 (1995)
10. Kossmann, D., Borzsonyi, S., Stocker, K.: The skyline operator. In: ICDE (2001)

N. Mamoulis et al. (Eds.): SSTD 2009, LNCS 5644, pp. 460–464, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Refined Mobile Map Format and Its Application

Yingwei Luo, Xiaolin Wang, and Xiao Pang

Dept. of Computer Science and Technology, Peking University, Beijing, China, 100871
lyw@pku.edu.cn

Abstract. Byte-Map is a kind of vector format with different blocks through
different levels. The basic cell of Byte-Map is a block, which is fixed in size of
255 units*255 units according to different coordinates systems and thus the co-
ordinates of all the features in a certain block can be encoded with only two
bytes. Based on Byte-Map, a LBS supporting platform LBS-p is built to illus-
trate mobile online map service.

Keywords: Mobile Online Map Service, Byte-Map, LBS-p.

1 Introduction

In order to achieve high quality of mobile online map services, an outstanding map
data format for mobile applications is required, which can reduce map data volume
and simplify map data processing complexity while keeping a reasonable display
result in mobile device, so as to satisfy the situation of limited bandwidth of wireless
network, low storage and CPU capability of mobile devices.

Mobile SVG [1] is now the most widely used data format in mobile map services
[2] [3]. cGML [4] is a compressed version for GML. By using small tags, server side
pre-projected and pre-scaled coordinates, cGML allows development and deployment
of map-based software for mobile facilities with strong constraints on connections,
CPU and memory. However, both Mobile SVG and cGML are based on XML, so it
still needs lots of tags to identify the attributes, and the parsing time is not ignorable.

This paper presents Byte-Map, which is a novel data format for representing vector
map. Also, LBS-p will use Byte-Map to provide mobile online map service.

2 Byte-Map Specification

2.1 The Design Metrics of Byte-Map

In order to minimize the data volume to satisfy the mobile applications, Byte-Map
data is organized in different blocks through different levels.

(1) Level. LOD (Level of Detail) is a common model to organize massive data for
visualization. Due to the limited screen size of mobile devices, mobile map data
should adopt a same organization mode. The content of map to display should
depend on the current scale. With a small scale, it’s sufficient to show only some
important features with their rough profiles. So different levels map data should be

 A Refined Mobile Map Format and Its Application 461

pre-generated from the original data. Different Levels have different contents in dif-
ferent details to meet the demand of displaying in different map scales.

Take 3 levels for example, as shown in Figure 1. The highest displaying level
“Level 0”, which is supposed to meet a smallest scale, contains the fewest features
going with the roughest profiles. The lowest displaying level “Level 2” contains map
data in details to meet a big scale. Accordingly, the map content in “Level 1” is be-
tween in “Level 0” and in “Level 2”.

Fig. 1. Different Levels of Map Data Fig. 2. Map Divided into Blocks

(2) Block. The area browsed by mobile users is only a small part of the whole map
due to the limited screen size of mobile devices. Hence, it’s reasonable to divide the
whole map area into blocks, and each block has the same size. Server can only pro-
vide the blocks covered by the user’s requested area, as shown in Figure 2.

Here, the choice of block size is a critical issue. To minimize the data volume, we
set the block size as 255 units * 255 units according to different coordinates systems.
Let the left-bottom point of a block be the base point, so in a certain block, the value
of coordinates x or y is ranged from 0 to 255 according to the base point, which
means that we can use only one byte to present x or y.

When showing map data of high level (e.g. Level 0), if the scope which one coor-
dinate unit presents is the same as that in low level, the performance will decrease due
to the large number of blocks. To avoid this, we can increase the coordinate unit of
block. Different coordinate units will be adopted for different levels. For example, as
shown in Figure 1, we can set “1cmeter” as the coordinate unit of blocks in Level 2,
“10 meters” in Level 1 and “100 meters” in Level 0.

2.2 The Basic Cell of Byte-Map: Block

2.2.1 Structure of Block
The geographic range of each block in Byte-Map is 255 units*255 units. The left-
bottom point is set to be the base point, which is the identifier of each block.

Figure 3 shows the structure of block. The data in block is stored as different fea-
tures. The features with different attributes belong to different layers and features in
the same layer are displayed in the same style. Besides geometric attribute, each fea-
ture only contains the most basic information, such as name, identifier and to which
layer it belongs. Any other attribute information can be added when needed.

462 Y. Luo, X. Wang, and X. Pang

 Fig. 3. Structure of Block Fig. 4. Large Feature’s Incision

2.2.2 Block Coordinates
For each block, the identifier is the base point (ox, oy), which is a real geographic
coordinates. The coordinates of all features in a certain block is relative coordinates.
Each coordinates (x, y) in a block is the real geographic coordinates minus that of the
base point. Hence the range of x or y is 0~255, and can be encoded by one byte.

2.2.3 Feature Incision
Each block only includes the data exactly within its range. Hence large features may
need to be incised because they may cross different blocks. The feature, as shown in
Figure 4, crosses 4 blocks and becomes 4 parts after incision. Each part of the feature
becomes an individual, but sharing the same name, identifier and the layer ID with
other parts. Mobile terminal retrieves the original large feature by recognizing the
incised parts with the same identifier.

2.3 Structure of Byte-Map

Map data is organized in blocks in Byte-Map. Figure 5 shows a slice of Byte-Map
data while answering a data request from mobile terminals.

3 A LBS Supporting Platform LBS-p Based on Byte-Map

Based on Byte-Map, we have developed LBS-p, a platform supporting location-based
services. Conformed to client-server architecture, LBS-p consists of two parts: LBS-p

Fig. 5. Structure of Byte-Map

 A Refined Mobile Map Format and Its Application 463

Mobile and LBS-p Server. LBS-p Mobile (as shown in Figure 6) can display
map by providing some basic map functions, such as moving, zooming, etc.
Besides, LBS-p Mobile can send request to LBS-p Server with specified range and
levels.

Once the LBS-p Server (as shown in Figure 7) receives the message, it generates a
spatial data set in the form of blocks covered by the requested range, encapsulates
them in a Byte-Map slice, and then transmits back to LBS-p Mobile.

Fig. 6. LBS-p Mobile

Fig. 7. LBS-p Server

4 Performance Evaluation

The critical issue of mobile online map service is to try to transmit much less map
data and display map with much less response time in mobile terminal. In this
section, we designed several experiments to compare the data volume in different
format: Byte-Map, Mobile SVG Tiny (SVGT) and PNG. Also, we compared the
handling complexity of Byte-Map data in mobile terminal with that of SVGT. The
original map data used in the following experiments is about Beijing in the format
of GML.

Figure 8 shows the amount of data encapsulated in different formats. Figure 9
shows the displaying time of SVGT (with Tinyline) and Byte-Map (Nokia N73, Sym-
bian OS v9.1, CPU: 220MHz, memory: 64MB).

464 Y. Luo, X. Wang, and X. Pang

 Fig. 8. Data Volume of Different Formats Fig. 9. Displaying Time of SVGT and Byte-Map

5 Conclusions

Byte-Map is a novel kind of vector format with different blocks through different
levels. The basic cell of Byte-Map is block, and the coordinates of all the features in a
certain block can be encoded with only two bytes.

Acknowledgments

This work was supported by the National Grand Fundamental Research 973 Program
of China under Grant No.2006CB701306; the National Science Foundation of China
under Grant No. 40730527.

References

[1] W3C, Mobile SVG Profiles: SVG Tiny and SVG Basic (2003),
http:// www.w3.org/TR/SVGMobile/

[2] Binzhuo, W., Bin, X.: Mobile Phone GIS Based on Mobile SVG. In: Proceedings of 2005
IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS
2005)(2005)

[3] Li, D., Zhang, Y., Yu, B., Gu, N., Peng, Y.: Research on Mobile SVG Map Service Based
on Java Mobile Phone. In: The 2nd IEEE Asia-Pacific Service Computing Conference
(2007)

[4] De Vita, E., Piras, A., Sanna, S.: Using compact GML to Deploy Interactive Maps on Mo-
bile Devices, WWW 2003 (2003), http://www2003.org/cdrom/papers/
poster/p051/p51-devita.html

Author Index

Abdelmoty, Alia I. 355
Abdelsalam, Wegdan 445
Achtert, Elke 436
Ahmed, Maher 445
Ahn, Hee-Kap 247
Andersen, Ove 405
Andrienko, Gennady 432
Andrienko, Natalia 432
Arge, Lars 3
Arnold, William A. 44
Assent, Ira 380
Athanasiou, Spiros 171
Attia Sakr, Mahmoud 422

Bakalov, Petko 6
Bakiras, Spiridon 62
Banaei-Kashani, Farnoush 25
Baratis, Evdoxios 338, 450
Batsakis, Sotiris 338, 450
Behr, Thomas 427
Bernecker, Thomas 436
Bertino, Elisa 98, 320
Bertolotto, Michela 320
Bettini, Claudio 441
Blunschi, Lukas 189
Braese, Angelika 427
Bueno, Renato 302

Camossi, Elena 320
Chan, Edward P.F. 386
Chau, Siu-Cheung 445
Cheema, Muhammad Aamir 373
Chen, Hong 455
Chiu, David 445
Chow, Chi-Yin 283

Demiryurek, Ugur 25
Dittrich, Jens 189

Ebrahim, Yasser 445
El-Geresy, Baher A. 355
Emrich, Tobias 265

Freni, Dario 441

Georgantas, Panos 171
Gerakakis, George 171
Ghinita, Gabriel 98
Guerrini, Giovanna 320
Güting, Ralf Hartmut 422, 427

Hansen, René 417
Hasan, Mahady 373
He, Guoming 455
Henjum, Michael 44
Hoel, Erik 6
Hu, Ling 80
Hwang, Seung-won 247

Jensen, Christian S. 208, 417
Jones, Christopher B. 355
Jung, Chen-Hen 399

Kalnis, Panos 98
Kang, James M. 44
Kantarcioglu, Murat 98
Kanza, Yaron 153
Kaster, Daniel S. 302
Kellaris, Georgios 392
Kong, Xiyao 455
Kremer, Hardy 380
Kriegel, Hans-Peter 265, 436
Kröger, Peer 265
Ku, Wei-Shinn 80
Kuijpers, Bart 135

Laube, Patrick 411
Lee, Mu-Woong 247
Li, Cuiping 455
Lin, Chun-Shuo 399
Lin, Xuemin 373
Lin, Yimin 117
Lu, Hua 208
Luo, Yingwei 460

Maris, Nikolaos 338, 450
Mascetti, Sergio 441
Menon, Sudhakar 5, 6
Moelans, Bart 135
Mokbel, Mohamed F. 283
Mouratidis, Kyriakos 117

466 Author Index

Naaman, Mor 1
Nanni, Mirco 432
Naps, Joe 283
Nath, Suman 283
Novak, Paige J. 44

Othman, Walied 135

Pang, Xiao 460
Papadakis, Nikolaos 338, 450
Papadias, Dimitris 62
Papadopoulos, Stavros 62
Patroumpas, Kostas 228
Pedreschi, Dino 432
Pelekis, Nikos 392
Peng, Wen-Chih 399
Petrakis, Euripides G.M. 338, 450
Pfoser, Dieter 171

Renz, Matthias 265
Richter, Kai-Florian 411
Rinzivillo, Salvatore 432

Safra, Eliyahu 153
Sagiv, Yehoshua 153
Šaltenis, Simonas 405
Schmid, Falko 411
Schubert, Erich 436
Sellis, Timos 228
Shahabi, Cyrus 25, 80
Shekhar, Shashi 44
Šikšnys, Laurynas 405

Smart, Philip D. 355
Son, Wanbin 247

Tan, Kar Way 117
Theodoridis, Yannis 392
Thomsen, Bent 417
Thomsen, Jeppe R. 405
Tian, Jinghua 455
Traina, Agma Juci Machado 302
Traina Jr., Caetano 302
Tsotras, Vassilis J. 6

Vaisman, Alejandro 135
Vaz Salles, Marcos Antonio 189

Wang, Haixun 80
Wang, Xiaolin 460
Wei, Ling-Yin 399
Wind, Rico 417

Xu, Jianqiu 427

Yang, Bin 208
Yang, Jing 455
Yang, Yin 62
Yiu, Man Lung 405

Zhang, Jie 386
Zhang, Ying 373
Zimek, Arthur 436
Züfle, Andreas 265

	Title Page
	Preface
	Organization
	Table of Contents
	Keynotes
	Spatio-Tempo-Social: Learning from and about Humans with Social Media
	References

	Recent Advances in Worst-Case Efficient Range Search Indexing
	References

	Design and Architecture of GIS Servers for Web Based Information Systems – The ArcGIS Server System

	Research Sessions
	1. Spatial and Flow Networks
	Versioning of Network Models in a Multiuser Environment
	Introduction
	The Network Model
	Traversability
	Physical Implementation
	Maintaining Network Connectivity

	Versioned Spatial Databases
	Operations on Versioned Databases
	Implementation Details

	Versioned Network Models
	Dirty Area and Object Management during Reconciliation
	Detailed Example

	Implementation Experiences
	Conclusion
	References

	Efficient Continuous Nearest Neighbor Query in Spatial Networks Using Euclidean Restriction
	Introduction
	Related Work
	kNN Queries in Euclidean Space
	kNN Queries in Spatial Networks

	Problem Definition
	ER-CkNN
	Off-Line Grid Partitioning
	On-Line Query Processing
	Generating Initial Query Result
	Continuous Maintenance of Query Result

	Discussion
	Grid Granularity
	Network Topology

	Experimental Evaluation
	Experimental Setup
	Results

	Conclusion
	References

	Discovering Teleconnected Flow Anomalies: A Relationship Analysis of Dynamic Neighborhoods (RAD) Approach
	Introduction
	Key Concepts and Problem Statement
	Key Concepts
	Problem Statement

	Mining Teleconnected Flow Anomaly Events
	RAD Approach
	Theoretical Analysis

	Experimental Evaluation
	Experiments Using Synthetic Data
	Experiments Using Real Data

	Conclusion and Future Work
	References

	2. Integrity and Security
	Continuous Spatial Authentication
	Introduction
	Related Work
	Baseline Solution
	Continuous Spatial Authentication – CSA
	Indexing Scheme
	Query Processing
	Computing the Grid Granularity

	Experimental Evaluation
	Conclusions
	References

	Query Integrity Assurance of Location-Based Services Accessing Outsourced Spatial Databases
	Introduction
	Related Work
	Data Privacy Protection
	Query Integrity Assurance

	SystemOverview
	System Architecture
	Overview of Our Approach

	Space Encryption Based Privacy Protection
	Space Encryption
	Space Filling Curves

	Spatial Query Integrity Auditing with Dual Space Encryption Keys
	Dual Space Encryption
	Range Query
	k Nearest Neighbor Query
	Attack-Aware Auditing Query Composition

	Experimental Validation
	Encoded POI Density
	Spatial Database Outsourcing Initialization
	Query Processing on the Client Side
	Integrity Auditing
	Communication Cost
	Against Malicious Attacks

	Conclusions
	References

	A Hybrid Technique for Private Location-Based Queries with Database Protection
	Introduction
	Related Work
	System Architecture and Assumptions
	PrivacyModel
	System Overview

	Private Evaluation of Point-Rectangle Enclosure
	Private Evaluation of $sign(b − a)$
	Private Evaluation of Point-Rectangle Enclosure

	Hybrid Protocol for Nearest-Neighbor Query Processing
	Indexing Structure

	Experiments
	Conclusions
	References

	Spatial Cloaking Revisited: Distinguishing Information Leakage from Anonymity
	Introduction
	Background and Related Work
	Cloaking Techniques
	Query Processing at the LBS
	Alternative Location Obfuscation Approaches

	Preliminaries
	Assumptions
	Main Observation and Design Objectives

	Information Leakage-Aware Cloaking
	Measuring Information Leakage
	The Multiple ASR Approach
	Query Processing at the LBS
	Different Query Types

	Experimental Evaluation
	Experimental Setting
	Experimental Results

	Conclusion
	References

	3. Uncertain Data and New Technologies
	Analyzing Trajectories Using Uncertainty and Background Information
	Introduction
	Problem Statement and Contributions

	Related Work
	A Model for Moving Object Data with Uncertainty
	Preliminaries: Trajectories and Trajectory Samples
	Space-Time Prisms in Road Networks

	An Uncertainty-Aware Distance Function
	An Algorithm to Compute d_{u}
	Preliminary Experimental Results
	Conclusion
	References

	Route Search over Probabilistic Geospatial Data
	Introduction
	Probabilistic Route Search
	Geographical Datasets
	Search Queries
	Route-Search Queries

	Related Work
	Algorithms
	Heuristics for the Bounded-Length Semantics
	Heuristics for the Bounded-Probability Semantics
	Complexity Analysis

	Experiments
	Tests on Real-World Data
	Tests on Synthetic Data

	Conclusion
	References

	Utilizing Wireless Positioning as a Tracking Data Source
	Introduction
	The Case for GPS vs. WPS
	Contributions

	Wireless Positioning
	Centroid
	Fingerprinting

	Map Matching
	Theoretical Considerations
	Deriving Travel Times

	Experimental Evaluation
	Experimental Setup
	WPS Positioning Accuracy
	Extracting Travel-Time Maps

	Conclusions and Future Work
	References

	4. Indexing and Monitoring Moving Objects
	Indexing Moving Objects Using Short-Lived Throwaway Indexes
	Introduction
	Contributions

	Preliminaries
	Problem Statement
	Formal Argument

	MOVIES
	AlgorithmicWalkthrough
	Comparison to Differential Files
	{\sf MOVIES} Core Algorithm

	MOVIES Query Processing
	Time-Parameterized Query Processing

	Experiments
	Setup
	Data and Queries
	Scalability in Index Size
	Scalability in Update Rate
	Shared-Nothing Scale-Out

	Related Work
	Methods with TP Queries
	Methods without TP Queries
	Extensions for Efficient Updates
	Experimental Studies

	Conclusions
	References

	Indexing the Trajectories of Moving Objects in Symbolic Indoor Space
	Introduction
	Existing Moving-Object Indexes
	Data Model, Trajectory Representation, and Queries
	Data Model and Queries
	RFID Based Indoor Positioning

	RTR-Tree: Reader-Time R-Tree
	RTR-Tree Index Structure
	Node Organization Strategies
	Query Processing

	TP^{2}R-Tree: Time Parameter Point R-Tree
	TP^{2}R-Tree Index Structure
	Node Organization Strategies
	Expansion-Based Query Processing

	Experimental Study
	Experimental Settings
	Tree Construction
	Query Processing

	Conclusion and Future Work
	References

	Monitoring Orientation of Moving Objects around Focal Points
	Introduction
	Preliminaries
	Scope of Focal Points
	Object Headings and Focal Distances
	Polar Mapping of Objects

	The {\sf PolarTree} Index
	Index Structure
	Index Operations
	Discussion

	Processing Streaming Orientations of Moving Objects
	System Model
	Continuous Monitoring of Object Headings
	Examining Trajectory Headings

	Experimental Evaluation
	Related Work
	Concluding Remarks
	References

	5. Advanced Queries
	Spatial Skyline Queries: An Efficient Geometric Algorithm
	Introduction
	Related Work
	Skyline Computation
	Spatial Query Processing

	Preliminaries
	Convex Hull
	Voronoi Diagram and Delaunay Graph
	Problem Definition
	Existing Approaches

	Computing Spatial Skylines
	Efficient Spatial Dominance Test
	Bounding the Number of Dominance Test
	Bypassing Dominance Tests Using the Voronoi Diagram

	Implementation
	Voronoi Diagrams
	Convex Hull
	VS^{2}
	Enhanced Spatial Skyline (ES)

	Experimental Evaluation
	Experimental Settings
	Efficiency

	Conclusion
	References

	Incremental Reverse Nearest Neighbor Ranking in Vector Spaces
	Introduction
	Survey
	Problem Formalization
	RelatedWork

	Incremental RNN Ranking
	Ranking Count Estimation
	Ranking Count Updates w.r.t. Intermediate Index Entry Hyperplanes
	Efficient Spatial Partial Pruning
	Best-First Search Based Incremental RNN Ranking Algorithm

	Experimental Evaluation
	Test Bed
	Performance Evaluation
	Effect of the Spatial Partial Pruning
	Summary

	Conclusions
	References

	Approximate Evaluation of Range Nearest Neighbor Queries with Quality Guarantee
	Introduction
	Related Works
	SystemModel
	Approximate Range NN Query Processing
	Building Voronoi Diagrams
	Access Method for Voronoi Diagrams
	Online Query Processing Algorithm

	Experimental Results
	Effect of Approximation Tolerance Levels
	Effect of Query Region Size
	Effect of Number of Objects
	Effect of Object Size
	Effect of Communication Bandwidth

	Conclusion
	References

	Time-Aware Similarity Search: A Metric-Temporal Representation for Complex Data
	Introduction
	Background and Survey
	Similarity Search and Metric Spaces
	Time-Aware Databases
	Fractal Theory Applied to Databases

	A Metric-temporal Space
	Metric-temporal Spaces
	Metric-temporal Similarity Functions
	A Scale Factor for a Metric-temporal Similarity Function

	Experiments
	Datasets and Experimental Setup
	Inspecting the Ideal Contribution for the Metric and Temporal Components

	Conclusions and Future Work
	References

	6. Models and Languages
	Adaptive Management of Multigranular Spatio-Temporal Object Attributes
	Introduction
	Related Work
	Preliminaries
	Time, Space, and Granularities
	Multigranular Types and Conversions
	ST^{2} ODMGe Classes and Objects

	Evolutions
	Object Consistency
	Attribute Granularity Level Graph
	Consistency Conditions for ST^{2} ODMGe Objects

	Object Access
	Qualified and Unqualified Access
	Solving Unqualified Object Access $o.a \downarrow l^G$
	Solving Qualified Object Access $o.a \downarrow^f l^G$
	Evolution Invariant Object Access
	Unsolvable Object Access

	Concluding Remarks
	References

	TOQL: Temporal Ontology Querying Language
	Introduction
	Background and Related Work
	Representation of Time
	Temporal Query Languages

	TOQL: Syntax and Semantics
	Dealing with Classes and Properties
	Dealing with Time
	Abstract Ontology View
	Allen Operators
	AT, TIME Operators
	Special Cases
	Reasoning in TOQL

	TOQL Implementation
	Conclusions and Future Work
	References

	Supporting Frameworks for the Geospatial Semantic Web
	Introduction
	Geospatial Referencing on the Web
	Evaluation of Current Semantic Web Tools
	Using OWL for Representing Geographic Knowledge

	Description Logic Programs Framework
	Mapping Geospatial Ontologies from OWL to a DLP
	Deduction Rules
	Integrity Rules

	Framework Implementation
	The Extended Framework
	Procedural Attachments for Spatial Operators
	Interleaved Reasoning

	Conclusion
	References

	Short Papers
	Efficient Construction of Safe Regions for Moving kNN Queries over Dynamic Datasets
	Introduction
	Background Information
	Technique
	Experimental Study and Remarks
	References

	Robust Adaptable Video Copy Detection
	Introduction
	Video Copy Detection
	RAVC

	Experiments
	Conclusion
	References

	Efficient Evaluation of Static and Dynamic Optimal Route Queries
	Introduction
	Definition and Notation
	Optimal Route Queries
	Graph Partitioning and Fragments

	Algorithm $DiskOP_{HBR}$
	Experiments
	Experimental Setup
	Algorithms Evaluation

	Conclusion
	References

	Trajectory Compression under Network Constraints
	Introduction
	MMTC Problem Formalization
	Solutions to the MMTC Problem
	Experimental Study
	Conclusion
	References

	Exploring Spatio-Temporal Features for Traffic Estimation on Road Networks
	Introduction
	Preliminary
	Traffic Estimation Algorithm
	Retrieving GPS Data Points by Temporal Feature
	Aggregating GPS Data Points by Temporal Feature
	Retrieving GPS Data Points by Spatial Feature
	Aggregating GPS Data Points from Spatial Feature
	Velocity Estimation

	Experimental Evaluation
	Conclusion
	References

	A Location Privacy Aware Friend Locator
	Introduction
	Related Work
	Problem Definition
	Proposed Solution
	Experimental Study
	Conclusion
	References

	Semantic Trajectory Compression
	Motivation
	Semantics in Trajectories
	Semantic Trajectory Compression
	ExampleUseCase
	Conclusions and Outlook
	References

	Demonstrations
	Pretty Easy Pervasive Positioning
	Introduction
	Enabling Indoor Positioning in Streamspin
	Performing Indoor Positioning in Streamspin
	Summary and Research Directions
	Demonstration Content
	References

	Spatiotemporal Pattern Queries in SECONDO
	Introduction
	SECONDO Platform
	Spatiotemporal Pattern Queries
	Query Optimization for Spatiotemporal Pattern Queries
	What Will Be Demonstrated
	References

	Nearest Neighbor Search on Moving Object Trajectories in {\sc Secondo}
	Introduction
	Representing Moving Objects in {\sc Secondo}
	Small and Large Test Database
	Operator $knearest$
	Operator $knearestfilter$
	What Will Be Demonstrated
	References

	A Visual Analytics Toolkit for Cluster-Based Classification of Mobility Data
	Introduction
	Analysis Process Description
	PresentationoftheTool
	Conclusions
	Nature of the Demonstration
	References

	ELKI in Time: ELKI 0.2 for the Performance Evaluation of Distance Measures for Time Series
	Introduction
	An Overview on the Software System
	The Environment: A Flexible Framework
	Arbitrary Distance Measures
	Availability and Documentation

	Conclusion
	References

	{\it Hide&Crypt}: Protecting Privacy in Proximity-Based Services
	Introduction
	The {\it Hide&Crypt} System
	Implementation
	Demonstration Outline
	References

	ROOTS, The ROving Objects Trip Simulator
	Introduction
	ROOTS: ROving Object’s Trip Simulator
	Roving Objects
	Roads and Routes

	ROOTS Demonstration
	Conclusions and Future Work
	References

	The TOQL System
	Introduction
	System Architecture
	Ontology Parser
	Interpreter

	Graphical User Interface
	Conclusions
	References

	PDA: A Flexible and Efficient Personal Decision Assistant
	Introduction
	System Architecture
	Core Query Execution Engine
	Visual Result Display
	User Interface Overview
	References

	A Refined Mobile Map Format and Its Application
	Introduction
	Byte-Map Specification
	The Design Metrics of Byte-Map
	The Basic Cell of Byte-Map: Block
	Structure of Byte-Map

	A LBS Supporting Platform LBS-p Based on Byte-Map
	Performance Evaluation
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

