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Preface

The 14th International Conference on Implementation and Application of Au-
tomata (CIAA 2009) was held in NICTA’s Neville Roach Laboratory at the
University of New South Wales, Sydney, Australia during July 14–17, 2009.

This volume of Lecture Notes in Computer Science contains the papers that
were presented at CIAA 2009, as well as abstracts of the posters and short
papers that were presented at the conference. The volume also includes papers
or extended abstracts of the three invited talks presented by Gonzalo Navarro on
Implementation and Application of Automata in String Processing, by Christoph
Koch on Applications of Automata in XML Processing, and by Helmut Seidl on
Program Analysis Through Finite Tree Automata.

The 23 regular papers were selected from 42 submissions covering various
fields in the application, implementation, and theory of automata and related
structures. This year, six additional papers were selected as “short papers”;
at the conference these were allocated the same presentation length as reg-
ular papers. Each paper was reviewed by at least three Program Committee
members, with the assistance of external referees. Papers were submitted by au-
thors from the following countries: Australia, Austria, Belgium, Brazil, Canada,
China, Czech Republic, Finland, France, Germany, India, Italy, Republic of Ko-
rea, Japan, Latvia, The Netherlands, Portugal, Russian Federation, Spain, South
Africa, Turkey, United Arab Emirates, and the USA.

I wish to thank all who made this conference possible: the authors for submit-
ting their papers, the Program Committee members and external referees (listed
on the next pages) for giving their valuable opinions and writing reports about
the submitted papers, and the three invited speakers for giving presentations
related to the implementation and application of automata. Finally, I would like
to express my gratitude to the sponsors (listed on the next pages), local orga-
nizers, and to the editors of Lecture Notes in Computer Science, in particular to
Alfred Hofmann, for their help in publishing this volume in a timely manner.

July 2009 Sebastian Maneth
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Nicholas Tran
Stavros Tripakis
Tomás Vojnar
Bruce Watson

Local Organization

Jane Gillis NICTA
Sebastian Maneth NICTA and University of New South Wales

Sponsors

National ICT Australia Limited (NICTA)
The University of New South Wales, Sydney, Australia
Yahoo! Research Latin America, Santiago, Chile



Table of Contents

Invited Lectures

Implementation and Application of Automata in String Processing . . . . . 1
Gonzalo Navarro

Applications of Automata in XML Processing . . . . . . . . . . . . . . . . . . . . . . . 2
Christoph Koch

Program Analysis through Finite Tree Automata . . . . . . . . . . . . . . . . . . . . 3
Helmut Seidl

Technical Contributions

An n log n Algorithm for Hyper-minimizing States in a (Minimized)
Deterministic Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Markus Holzer and Andreas Maletti

On Extremal Cases of Hopcroft’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 14
Giusi Castiglione, Antonio Restivo, and Marinella Sciortino

Compact Normal Form for Regular Languages as Xor Automata . . . . . . . 24
Jean Vuillemin and Nicolas Gama

Cellular Automata with Sparse Communication . . . . . . . . . . . . . . . . . . . . . . 34
Martin Kutrib and Andreas Malcher

A Cellular Automaton Model for Car Traffic with a Slow-to-Stop
Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Adam Clarridge and Kai Salomaa

On Parallel Implementations of Deterministic Finite Automata . . . . . . . . 54
Jan Holub and Stanislav Štekr
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Implementation and Application of Automata in
String Processing�

Gonzalo Navarro

Department of Computer Science
Univiversity of Chile

gnavarro@dcc.uchile.cl

Automata have been enormously successful in matching different types of com-
plex patterns on sequences, with applications in many areas, from text retrieval
to bioinformatics, from multimedia databases to signal processing. In general
terms, the process to match a complex pattern is (1) design a NFA that rec-
ognizes the pattern; (2) slightly modify it to recognize any string ending with
the pattern; (3) convert it into a DFA; (4) feed it with the sequence, signaling
the endpoints of a pattern occurrence each time the DFA reaches a final state.
Alternatively one can omit step (2) and backtrack with the DFA on the suffix
tree of the sequence, which leads to sublinear-time complex pattern matching in
many relevant cases. This process, as it is well-known, has a potential problem
in stage (3), because the DFA can be of exponential size. Rather than being a
theoretical reservation, the problem does arise in a number of real-life situations.

Bit-parallelism is a technique that helps circumvent this problem in many
practical cases. It allows carrying out several operations in parallel on the bits
of a computer word. By mapping NFA states to bits, bit-parallelism allows one
to simulate the NFA behavior efficiently without converting it to deterministic.
We show how bit-parallelism can be applied in many problems where the NFA
has a regular structure, which allows us simulating it using typical processor
instructions on machine words. Moreover, we show that even on general regular
expressions, without any particular structure, bit-parallelism allows one to re-
duce the space requirement of the DFA. In general, the bit-parallel algorithm on
the NFA is simpler to program and more space and time efficient than the one
based on the DFA.

We show the use of bit-parallelism for exact pattern matching, for allowing
optional and repeatable characters, classes of characters and bounded-length
gaps, and for general regular expressions. The paradigm is flexible enough to
permit combining any of those searches with approximate matching, where the
occurrence can be at a limited edit distance to a string of the language denoted
by the automaton. We then show applications of these ideas to natural language
processing, where the text is seen as a sequence of words, and bit-parallelism
allows flexibility in the matching at the word level, for example allowing missing
or spurious words.

� Partially funded by the Millennium Institute for Cell Dynamics and Biotechnology
(ICDB), Grant ICM P05-001-F, Mideplan, Chile.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, p. 1, 2009.
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Applications of Automata in XML Processing

Christoph Koch

Cornell University
Ithaca, NY, USA

koch@cs.cornell.edu

XML is at once a document format and a semistructed data model, and has
become a de-facto standard for exchanging data on the Internet. XML documents
can alternatively be viewed as labeled trees, and tree automata are natural
mechanisms for a wide range of processing tasks on XML documents. In this
talk, I survey applications of automata in XML processing with an emphasis on
those directions of work that so far have had the greatest practical impact. The
talk will consist of three parts. In the first, I will discuss XML validation. The
standard schema formalisms for XML, Document Type Definitions and XML
Schema, are regular tree grammars at their core. These official standards of the
World Wide Web Consortium are well-founded in automata theory and formal
language theory, and are designed to incorporate special restrictions to facilitate
the creation of automata for document validation. The second part will cover
XML stream processing techniques and XML publish-subscribe systems, an area
in which a number of exciting automata-based systems have been built. The third
and final part covers XML query processing using automata, and applications
in Web information extraction.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, p. 2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Program Analysis through Finite Tree Automata

Helmut Seidl

Lehrstuhl für Informatik II, Technische Universität München
Boltzmannstraße 3, D-85748 Garching b. München, Germany

seidl@in.tum.de

Dynamic Pushdown Networks (dpn’s) have recently been introduced as a conve-
nient abstraction of systems which provide recursive procedure calls and spawning
of concurrent tasks such as Java programs [1, 4–6]. We show how the executions
of dpn’s can naturally be represented through ranked trees. The configuration
reached by a program execution then can be read off from the sequence of leaves
of this execution tree. This observation allows us to reduce decision problems such
as reachability of configurations within a regular set for dpn’s to standard decision
problems for finite tree automata.

Our reduction does not only shed fresh light onto dpn’s but also provides
us with new efficient algorithms which can be implemented through standard
libraries for finite tree automata. Finite tree automata on the other hand, can
be nicely represented by specific Horn clauses. In the presentation, we therefore
indicate how these algorithms can be realized by means of generic solvers for a
particular decidable class of Horn clauses [2, 3].

Bibliography

[1] Bouajjani, A., Müller-Olm, M., Touili, T.: Regular Symbolic Analysis of Dynamic
Networks of Pushdown Systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005,
vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

[2] Nielson, F., Nielson, H.R., Seidl, H.: Normalizable Horn Clauses, Strongly Recog-
nizable Relations and Spi. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002,
vol. 2477, pp. 20–35. Springer, Heidelberg (2002)

[3] Goubault-Larrecq, J.: Deciding H1 by Resolution. Information Processing Let-
ters 95(3), 401–408 (2005)

[4] Lammich, P., Müller-Olm, M.: Precise Fixpoint-Based Analysis of Programs with
Thread-Creation and Procedures. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR
2007. LNCS, vol. 4703, pp. 287–302. Springer, Heidelberg (2007)

[5] Lammich, P., Müller-Olm, M.: Conflict Analysis of Programs with Procedures,
Dynamic Thread Creation, and Monitors. In: Alpuente, M., Vidal, G. (eds.) SAS
2008. P. Lammich, M. Müller-Olm, vol. 5079, pp. 205–220. Springer, Heidelberg
(2008)

[6] Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor Sets of Dynamic Push-
down Networks with Tree-Regular Constraints. In: Int. Conf. on Computer-Aided
Verification (CAV). LNCS. Springer, Heidelberg (to appear, 2009)
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An n log n Algorithm for Hyper-minimizing
States in a (Minimized) Deterministic Automaton

Markus Holzer1,� and Andreas Maletti2,��

1 Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

2 Departament de Filologies Romàniques, Universitat Rovira i Virgili
Av. Catalunya 35, 43002 Tarragona, Spain

andreas.maletti@urv.cat

Abstract. We improve a recent result [A. Badr: Hyper-Minimization
in O(n2). In Proc. CIAA, LNCS 5148, 2008] for hyper-minimized finite
automata. Namely, we present an O(n log n) algorithm that computes for
a given finite deterministic automaton (dfa) an almost equivalent dfa that
is as small as possible—such an automaton is called hyper-minimal. Here
two finite automata are almost equivalent if and only if the symmetric dif-
ference of their languages is finite. In other words, two almost-equivalent
automata disagree on acceptance on finitely many inputs. In this way,
we solve an open problem stated in [A. Badr, V. Geffert, I. Ship-

man: Hyper-minimizing minimized deterministic finite state automata.
RAIRO Theor. Inf. Appl. 43(1), 2009] and by Badr. Moreover, we show
that minimization linearly reduces to hyper-minimization, which shows
that the time-bound O(n log n) is optimal for hyper-minimization.

1 Introduction

Early studies in automata theory revealed that nondeterministic and determin-
istic finite automata are equivalent [1]. However, nondeterministic automata can
be exponentially more succinct w.r.t. the number of states [2,3]. In fact, finite au-
tomata are probably best known for being equivalent to right-linear context-free
grammars and, thus, for capturing the lowest level of the Chomsky-hierarchy,
which is the family of regular languages. Over the last 50 years, a vast litera-
ture documenting the importance of finite automata as an enormously valuable
concept has been developed. Although, there are a lot of similarities between
nondeterministic and deterministic finite automata, one important difference is
that of the minimization problem. The study of this problem also dates back
to the early beginnings of automata theory. It is of practical relevance because
regular languages are used in many applications, and one may like to represent
the languages succinctly. While for nondeterministic automata the computation
of an equivalent minimal automaton is PSPACE-complete [4] and thus highly
� Part of the work was done while the author was at Institut für Informatik, Technische

Universität München, Boltzmannstraße 3, D-85748 Garching bei München, Germany.
�� Supported by the Ministerio de Educación y Ciencia (MEC) grant JDCI-2007-760.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 4–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



An n log n Algorithm for Hyper-minimizing States 5

intractable, the corresponding problem for deterministic automata is known to
be effectively solvable in polynomial time [5]. An automaton is minimal if every
other automaton with fewer states disagrees on acceptance for at least one input.

Minimizing deterministic finite automata (dfa) is based on computing an
equivalence relation on the states of the machine and collapsing states that are
equivalent. Here two states p, q ∈ Q, where Q is the set of states of the automaton
under consideration, are equivalent, if the automaton starting its computation in
state p accepts the same language as the automaton if q is taken as a start state.
Minimization of two equivalent dfa leads to minimal dfa that are isomorphic up
to the renaming of states. Hence, minimal dfa are unique. This allows one to give
a nice characterization: A dfa M is minimal if and only if in M : (i) there are no
unreachable states and (ii) there is no pair of different but equivalent states.

The computation of this equivalence can be implemented in a straightfor-
ward fashion by repeatedly refining the relation starting with a partition that
groups accepting and rejecting states together yielding a polynomial time algo-
rithm of O(n2); compare with [5]. Hopcroft’s algorithm [6] for minimization
slightly improves the naive implementation to a running time of O(m log n) where
m = |Q × Σ| and n = |Q|, where Σ is alphabet of input symbols of the finite
automaton, and is up to now the best known minimization algorithm. Recent de-
velopments have shown that this bound is tight for Hopcroft’s algorithm [7,8].
Thus, minimization can be seen as a form of lossless compression that can be
done effectively while preserving the accepted language exactly.

Recently, a new form of minimization, namely hyper-minimization was stud-
ied in the literature [9,10]. There the minimization or compression is done while
giving up the preservation of the semantics of finite automata, i.e., the accepted
language. It is clear that the semantics cannot vary arbitrarily. A related mini-
mization method based on cover automata is presented in [11,12]. Hyperminimiza-
tion [9,10] allows the accepted language to differ in acceptance on a finite number
of inputs, which is called almost-equivalence. Thus, hyper-minimization aims to
find an almost-equivalent dfa that is as small as possible. Here an automaton is
hyper-minimal if every other automaton with fewer states disagrees on acceptance
for an infinite number of inputs. In [9] basic properties of hyper-minimization and
hyper-minimal dfa are investigated. Most importantly, a characterization of hyper-
minimal dfa is given, which is similar to the characterization of minimal dfa men-
tioned above. Namely, a dfa M is hyper-minimal if and only if in M : (i) there are
no unreachable states, (ii) there is no pair of different but equivalent states, and
(iii) there is no pair of different but almost-equivalent states, such that at least
one of them is a preamble state. Here a state is called a preamble state if it is reach-
able from the start state by a finite number of inputs, only; otherwise the state is
called a kernel state. These properties allow a structural characterization of hyper-
minimal dfa. Roughly speaking, the kernels (all states that are kernel states) of
two almost-equivalent hyper-minimized automata are isomorphic in the standard
sense, and their preambles are also isomorphic, except for acceptance values. Thus,
it turns out that hyper-minimal dfa are not necessarily unique. Nevertheless, it
was shown in [9] that hyper-minimization can be done in time O(m · n3), where
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m = |Σ| and n = |Q|; for constant alphabet size this gives an O(n3) algorithm.
Later, the bound was improved to O(n2) in [10]. In this paper we improve this
upper bound further to O(n log n), and argue that it is reasonably well because
any upper bound t(n) = Ω(n) for hyper-minimization implies that minimization
can be done within t(n). To this end, we linearly reduce minimization to hyper-
minimization.

2 Preliminaries

Let S and T be sets. Their symmetric difference S � T is (S \ T )∪ (T \ S). The
sets S and T are almost-equal if S � T is finite. A finite set Σ is an alphabet.
By Σ∗ we denote the set of all strings over Σ. The empty string is denoted
by ε. Concatenation of strings is denoted by juxtaposition and |w| denotes the
length of the word w ∈ Σ∗. A deterministic finite automaton (dfa) is a tu-
ple M = (Q, Σ, q0, δ, F ) where Q is a finite set of states, Σ is an alphabet of input
symbols, q0 ∈ Q is the initial state, δ : Q×Σ → Q is a transition function, and
F ⊆ Q is a set of final states. The transition function δ extends to δ : Q×Σ∗ → Q
as follows: δ(q, ε) = q and δ(q, σw) = δ(δ(q, σ), w) for every q ∈ Q, σ ∈ Σ, and
w ∈ Σ∗. The dfa M recognizes the language L(M) = {w ∈ Σ∗ | δ(q0, w) ∈ F }.

Two states p, q ∈ Q are equivalent, denoted by p ≡ q, if δ(p, w) ∈ F if and
only if δ(q, w) ∈ F for every w ∈ Σ∗. The dfa M is minimal if it does not have
equivalent states. The name ‘minimal’ stems from the fact that no dfa with less
states also recognizes L(M) if M is minimal. It is known that for M an equivalent
minimal dfa can efficiently be computed using Hopcroft’s algorithm [6], which
runs in time O(m log n) where m = |Q×Σ| and n = |Q|.

In the following, let M = (Q, Σ, q0, δ, F ) be a minimal dfa. Let us recall some
notions from [9]. A state q ∈ Q is a kernel state if q = δ(q0, w) for infinitely
many w ∈ Σ∗. Otherwise q is a preamble state. We denote the set of kernel
states by Ker(M) and the set of preamble states by Pre(M). For states p, q ∈ Q
we write p→ q if there exists w ∈ Σ+ such that δ(p, w) = q. The states p and q
are strongly connected, denoted by p ↔ q, if p → q and q → p. Note that
strongly connected states are also a kernel states since both are reachable by the
minimality of M . Finally, q ∈ Q is a center state if q ↔ q.

3 Hyper-minimization

As already remarked, minimization yields an equivalent dfa that is as small as
possible. It can thus be considered a form of lossless compression. Sometimes the
compression rate is more important than the preservation of the semantics. This
leads to the area of lossy compression where the goal is to compress even further
at the expense of errors (typically with respect to some error profile). Our error
profile is very simple: We allow a finite number of errors. Consequently, we call
two dfa M1 and M2 almost-equivalent if L(M1) and L(M2) are almost-equal. A
dfa that admits no smaller almost-equivalent dfa is called hyper-minimal. Hyper-
minimization [9,10] aims to find an almost-equivalent hyper-minimal dfa.
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Algorithm 1. Overall structure of the hyper-minimization algorithm
Require: a dfa M

M ← Minimize(M) // Hopcroft’s algorithm; O(m log n)
2: K ← ComputeKernel(M) // compute the kernel states; see Section 3.1

∼ ← AEquivalentStates(M) // compute almost-equivalence; see Section 3.2
4: M ← MergeStates(M, K,∼) // merge almost-equivalent states; O(m)

return M

The contributions [9,10] report hyper-minimization algorithms for M that run
in time O(n3) and O(n2), respectively. Note that |Σ| is assumed to be constant in
those contributions. Our aim here is to develop a hyper-minimization algorithm
that runs in time O(n log n) under the same assumptions.

Roughly speaking, minimization aims to identify equivalent states and hyper-
minimization aims to identify almost-equivalent states, which we define next.
Recall that M = (Q, Σ, q0, δ, F ) is a minimal dfa. Let m = |Q×Σ| and n = |Q|.

Definition 1 (cf. [9, Definition 2.2]). For all states p, q ∈ Q, we say that
p and q are almost-equivalent, denoted by p ∼ q, if there exists k ≥ 0 such that
δ(p, w) = δ(q, w) for every w ∈ Σ∗ with |w| ≥ k.

Let us present the overall structure of the hyper-minimization algorithm of [10] in
Algorithm 1. Note that compared to [10], we exchanged lines 2 and 3. Minimize
refers to classical minimization. Hopcroft’s algorithm implements it and runs
in time O(m log n) [6]. The procedure MergeStates is described in [9,10], where
it is also proved that it runs in time O(m). To make the paper self-contained, we
present their algorithm (see Algorithm 2) and the corresponding results next.
Note that merging a state p into another state q denotes the usual procedure of
redirecting (in M) all incoming transitions of p to q. If p was the initial state,
then q is the new initial state. Clearly, the state p can be deleted.

Theorem 1 ([9, Section 4]). If the requirements of Algorithm 2 are met, then
it returns in time O(m) a hyper-minimal dfa that is almost-equivalent to M .

Consequently, if we can implement: (i) ComputeKernel and (ii) AEquiv-
alentStates in time O(m log n), then we obtain a hyper-minimization algo-
rithm that runs in time O(m log n). The next two sections will show suitable
implementations for both procedures.

3.1 Identify Kernel States

As we have seen in Algorithm 2, kernel states play a special role because we
never merge two kernel states. It was already shown in [9,10], how to identify
the kernel states in time O(mn). It turns out that the kernel states can easily be
computed using a well-known algorithm due to Tarjan [13] (see Algorithm 3).

Theorem 2. Ker(M) can be computed in time O(m).
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Algorithm 2. Merging almost-equivalent states
Require: a minimal dfa M , its kernel states K, and its almost-equivalent states ∼

for all B ∈ (Q/∼) do
2: S ← B ∩ K // S contains the kernel states of the block B

if S �= ∅ then
4: select q ∈ S // select an arbitrary kernel state q from B

else
6: select q ∈ B // if no such kernel state exists, pick any state q of B

for all p ∈ B \ S do
8: merge p into q // merge all preamble states of the block into q

return M

Proof. Using Tarjan’s algorithm [13] (or the algorithms by Gabow [14,15]
or Kosaraju [16,17]) we can identify the strongly connected components in
time O(m + n). Algorithm 3 presents a simplified formulation because all states
of M are reachable from q0. The initial call is Tarjan(M, q0). Thus, we identified
states q such that q → q because such a state is part of a strongly connected com-
ponent of at least two states or has a self-loop (i.e., δ(q, σ) = q for some σ ∈ Σ).
Another depth-first search can then mark all states q such that p → p → q for
some state p in time O(m). Clearly, such a marked state is a kernel state and each
kernel state is marked because for each q ∈ Ker(M) there exists a state p ∈ Q
such that p→ p→ q by [9, Lemma 2.12]. ��

3.2 Identify Almost-Equivalent States

The identification of almost-equivalent states will be slightly more difficult. We
improve the strategy of [9], which runs in time O(mn2), by avoiding pairwise
comparisons, which yields a factor n, and by merging states with a specific strat-
egy, which reduces a factor n to log n. Since M is a minimal dfa, the relation ∼
coincides with the relation defined in [9, Definition 2.2]. Thus, we know that ∼
is a congruence relation by [9, Facts 2.5–2.7].

Let us attempt to explain the algorithm. The vector ( δ(q, σ) | σ ∈ Σ ) is
called the follow-vector of q. The algorithm keeps a set I of states that need to
be processed and a set P of states that are still useful. Both sets are initially Q
and the hash map h is initially empty. The algorithm then iteratively processes
states of I and computes their follow-vector. Since h is initially empty, the first
follow-vector will simply be stored in h. The algorithm proceeds in this fashion
until it finds a state, whose follow-vector is already stored in h. It then extracts
the state with the same vector from h and compares the sizes of the blocks in π
that the two states belong to. Suppose that p is the state that belongs to the
smaller block and q is the state that belongs to the larger block. Then we merge p
into q and remove p from P because it is now useless. In addition, we update
the block of q to include the block of p and add all states that have transitions
leading to p to I because their follow-vectors have changed due to the merge.
The algorithm repeats this process until the set I is empty.
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Algorithm 3. Tarjan’s algorithm Tarjan(M, q) computing the strongly con-
nected components of M

Require: a dfa M = (Q,Σ, q0, δ, F ) and a state q ∈ Q
Global: index, low: Q → IN initially undefined, i ∈ IN initially 0, S stack of states
initially empty

2: index(q) ← i // set index of q to i; q is thus explored
low(q) ← i // set lowest index (of a state) reachable from q to the index of q

4: i ← i + 1 // increase current index
Push(S, q) // push state q to the stack S

6: for all σ ∈ Σ do
if index(δ(q, σ)) is undefined then

8: Tarjan(M,δ(q, σ)) // if successor not yet explored, then explore it
low(q) ← min(low(q), low(δ(q, σ))) // update lowest reachable index for q

10: else
if δ(q, σ) ∈ S then

12: low(q) ← min(low(q), index(δ(q, σ))) // update lowest reachable index

if low(q) = index(q) then
14: repeat

p ← Pop(S) // found component; remove all states of it from stack S
16: . . . // store strongly connected components

until p = q

Example 1. Consider the minimal dfa of Figure 1(left) (see [9, Figure 2]). Let us
show the run of Algorithm 4 on it. We present a protocol (for line 10) in Table 1.
At then end of the algorithm the hash map contains the following entries:(

B
C

)
→ A

(
F
D

)
→ B

(
H
G

)
→ C

(
I
H

)
→ D

(
I
F

)
→ E(

J
E

)
→ F

(
L
H

)
→ G

(
M
I

)
→ H

(
L
J

)
→ I

(
M
J

)
→ J(

P
M

)
→ L

(
Q
M

)
→ M

(
P
R

)
→ P

(
R
R

)
→ R

(
L
I

)
→ I(

I
E

)
→ F

(
I
I

)
→ C

(
I
G

)
→ E

(
F
C

)
→ B .

From Table 1 we obtain the partition induced by ∼, which is

{{A}, {B}, {C, D}, {E}, {F}, {G, H, I, J}, {L, M}, {P, Q}, {R}} .

This coincides with the partition obtained in [9, Figure 2]. Since E, F , I, J , L, M ,
P , Q, and R are kernel states, we can only merge C into D and merge G and H
into I. The result of those merges is shown in Figure 1(right). The obtained dfa
coincides with the one of [9, Figure 3].

Next, let us look at the time complexity before we turn to correctness. In this
respect, line 14 is particularly interesting because it might add to the set I,
which controls the loop. Our strategy that determines which states to merge
will realize the reduction of a factor n to just log n. To simplify the argument,
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Algorithm 4. Algorithm computing ∼
Require: minimal dfa M = (Q, Σ, q0, δ, F )

for all q ∈ Q do
2: π(q) ← {q} // initial block of q contains just q itself

h ← ∅ // hash map of type h : Q|Σ| → Q
4: I ← Q // states that need to be considered

P ← Q // set of current states
6: while I �= ∅ do

q ← RemoveHead(I) // remove state from I
8: succ ← ( δ(q, σ) | σ ∈ Σ ) // compute vector of successors using current δ

if HasValue(h, succ) then
10: p ← Get(h, succ) // retrieve state in bucket succ of h

if |π(p)| ≥ |π(q)| then
12: Swap(p, q) // exchange roles of p and q

P ← P \ {p} // state p will be merged into q
14: I ← (I \ {p}) ∪ { r ∈ P | ∃σ : δ(r, σ) = p } // add predecessors of p in P to I

δ ← MergeState(δ, p, q) // merge states p and q in δ; q survives
16: π(q) ← π(q) ∪ π(p) // p and q are almost-equivalent

h ← Put(h, succ, q) // store q in h under key succ
18: return π

F J M Q

B E I L P R

A D H

C G

F J M Q

B E I L P R

A D

Fig. 1. An example automaton and the resulting hyper-minimal automaton with a-
transitions (straight lines) and b-transitions (dashed lines). The initial state is A.

we will call δ(q, σ) a transition and we consider it the same transition even if the
value of δ(q, σ) changes in the course of the algorithm.

Proposition 1. The following properties of Algorithm 4 hold whenever line 7
is executed: (i) I ⊆ P and (ii) { π(p) | p ∈ P } is a partition of Q.

Moreover, let us consider p and q after the execution of line 10. In essence, we
would like to show that p 
= q. We thus need to show that ( δ(q, σ) | σ ∈ Σ ) 
= α
for every α ∈ h−1(q) whenever line 8 is executed. Clearly, when line 8 is first
executed with our particular q, then h−1(q) = ∅ and thus the property trivially
holds. Moreover, q is then no longer in I. It can be added to I in line 14, but only



An n log n Algorithm for Hyper-minimizing States 11

if δ(q, σ) /∈ P for some σ ∈ Σ. Then it is changed in line 15 such that δ(q, σ) ∈ P
after its execution. Thus, all stored values h−1(q) have at least one component
that is not in P , whereas δ(q, σ) ∈ P for every σ ∈ Σ after execution of line 15.
Consequently, in line 10 the retrieved state p cannot be q itself.

Lemma 1. For every r ∈ Q and σ ∈ Σ, the transition δ(r, σ) is considered at
most (log n) times in lines 14 and 15 during the full execution of Algorithm 4.

Proof. Suppose that p = δ(r, σ) in line 14. Moreover, |π(p)| < |π(q)| by lines
11–12. Then line 15 redirects the transition δ(r, σ) to q; i.e., δ(r, σ) = q after
line 15. Moreover, |π(q)| > 2 · |π(p)| after the execution of line 16 because p 
= q
as already argued, and thus, π(p) ∩ π(q) = ∅ by Proposition 1. Moreover, by
the same proposition |π(q)| ≤ n for every q ∈ Q. Consequently, δ(r, σ) can be
considered at most (log n) times in lines 14 and 15. ��

Theorem 3. Algorithm 4 can be implemented to run in time O(m log n).

Proof. Clearly, we assume that all operations except for those in lines 14 and 15
to execute in constant time. Then lines 1–5 execute in time O(n). Next we will
prove that the loop in lines 6–17 executes at most O(m · log n) times. By Propo-
sition 1 we have I ⊆ P . Now let us consider a particular state q ∈ Q. Then q ∈ I
initially and it has |Σ| outgoing transitions. By Lemma 1, every such transition
is considered at most (log n) times in line 14, which yields that q is added to I.
Consequently, the state q can be chosen in line 10 at most (1+ |Σ| · logn) times.
Summing over all states of Q, we obtain that the loop in lines 6-17 can be ex-
ecuted at most (n + m · log n) times. Since all lines apart from lines 14 and 15
are assumed to execute in constant time, this proves the statement for all lines
apart from 14 and 15. By Lemma 1 every transition is considered at most (log n)
times in those two lines. Since there are m transitions in M and each consid-
eration of a transition can be assumed to run in constant time, we obtain that
lines 14 and 15 globally (i.e., including all executions of those lines) execute in
time O(m log n), which proves the statement. ��

Finally, we need to prove that Algorithm 4 is correct. By Proposition 1,
{ π(p) | p ∈ P } is a partition of Q whenever line 7 is executed. Let � be
the induced equivalence relation. Next we prove that � is a congruence.

Lemma 2. Whenever line 7 is executed, π induces a congruence.

This proves that we compute a congruence. Now we can use [9, Lemma 2.10] to
prove that all states in a block of the returned partition are almost-equivalent.

Theorem 4. The partition returned by Algorithm 4 induces ∼.

Proof. Let � be the congruence (see Lemma 2) returned by Algorithm 4. For
every σ ∈ Σ and p, q ∈ Q that are merged in line 15 we have δ(p, σ) ∼ δ(q, σ).
Thus, p ∼ q by [9, Lemma 2.10], which proves� ⊆ ∼. For the converse, let p ∼ q.
Clearly, δ is the transition function of M/� at the end of the algorithm. Denote
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Table 1. Run of Algorithm 4 (at line 10) on the automaton of Figure 1(left)

I Q \ P q p π (singleton blocks not shown)
{B, . . . , R} ∅ A

. . . ∅
{R} ∅ P Q
{M} {Q} R {P, Q}
∅ {Q} M L {P, Q}

{H} {M, Q} J I {L, M}, {P, Q}
{F, I} {J, M, Q} H {I, J}, {L, M}, {P, Q}
{I} {J, M, Q} F {I, J}, {L, M}, {P, Q}

{C, D, G} {J, M, Q} I H {I, J}, {L, M}, {P, Q}
{D, G} {H, J, M, Q} C {H, I, J}, {L, M}, {P, Q}
{G} {H, J, M, Q} D C {H, I, J}, {L, M}, {P, Q}
{B} {D, H,J, M, Q} G I {C, D}, {H, I, J}, {L, M}, {P, Q}
∅ {D, G, H, J, M, Q} B {C, D}, {G, H, I, J}, {L, M}, {P, Q}

the transition function of M/� by δ′ and the original transition function of M
by δ. Since p ∼ q, there exists k ≥ 0 such that δ(p, w) = δ(q, w) for every w ∈ Σ∗

with |w| ≥ k. Clearly, this yields that δ′([p], w) = δ′([q], w) for every such w. This
implies the existence of B, D ∈ (Q/�) such that δ′(B, σ) = δ′(D, σ) for every
σ ∈ Σ. However, an easy proof shows that the algorithm does not terminate as
long as there are distinct states B and D such that δ′(B, σ) = δ′(D, σ) for every
σ ∈ Σ. Consequently, p � q, which proves the statement. ��

Theorem 5. For every dfa we can obtain a almost-equivalent, hyper-minimal
dfa in time O(m log n).

4 Conclusions

We have designed an O(m log n) algorithm, where m = |Q×Σ| and n = |Q|, that
computes a hyper-minimized dfa from a given dfa, which may have fewer states
than the classical minimized dfa. Its accepted language is almost-equivalent to
the original one; i.e., differs in acceptance on a finite number of inputs only. Since
hyper-minimization is a very new field of research, most of the standard questions
related to descriptional complexity such as, e.g., nondeterministic automata to
dfa conversion w.r.t. hyper-minimality, are problems of further research.

Finally, let’s argue that minimization linearly reduces to hyper-minimization.
This is seen as follows: Let M = (Q, Σ, q0, δ, F ) be a dfa. If L(M) = ∅, which can
be verified in time linear in the number of states, then we are already done since
the single state hyper-minimal dfa accepting the emptyset is also minimal. Now
let L(M) 
= ∅ and assume # to be a new input symbol not contained in Σ. We
construct a dfa M ′ = (Q, Σ ∪ {#}, q0, δ

′, F ) by δ′(p, σ) = δ(p, σ) for p ∈ Q and
σ ∈ Σ and δ′(p, #) = q0 for p ∈ Q. Observe, that by construction M ′ consists of
kernel states only. Thus, hyper-minimizing M ′ leads to a dfa M ′′ that is unique
because for two almost-equivalent hyper-minimized automata the kernels are iso-
morphic to each other [9, Theorem 3.5]—compare this with the characterization
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of minimal and hyper-minimal dfa mentioned in the Introduction. Thus, M ′′ is a
minimal dfa accepting L(M ′). Then it is easy to see that taking M ′′ and deleting
the #-transitions yields a minimal dfa accepting L(M). Hence, minimization lin-
early reduces to hyper-minimization. Thus, our algorithm achieves the optimal
worst-case complexity in the light of the recent developments for Hopcroft’s
state minimization algorithm, which show that the O(n log n) bound is tight for
that algorithm [7] even under any possible implementation [8].
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Abstract. In this paper we consider the problem of minimization of
deterministic finite automata (DFA) with reference to Hopcroft’s algo-
rithm. Hopcroft’s algorithm has several degrees of freedom, so there can
exist different sequences of refinements of the set of the states that lead
to the final partition. We find an infinite family of binary automata for
which such a process is unique. Some recent papers (cf. [3,7,1]) have been
devoted to find families of automata for which Hopcroft’s algorithm has
its worst execution time. They are unary automata associated to circular
words. However, automata minimization can be achieved also in linear
time when the alphabet has only one letter (cf. [14]), so in this paper we
face the tightness of the algorithm when the alphabet contains more than
one letter. In particular we define an infinite family of binary automata
representing the worst case of Hopcroft’s algorithm. They are automata
associated to particular trees and we deepen the connection between the
refinement process of Hopcroft’s algorithm and the combinatorial prop-
erties of such trees.

1 Introduction

A deterministic finite automaton (DFA) is a recognizer of a regular language
and provides a compact representation of the language itself. Among the equiv-
alent deterministic finite automata (i.e. recognizing the same regular language),
there exists a unique one (up to isomorphism) with minimal number of states,
called minimal automaton of the language. Describing a regular language by its
minimal automaton is important in many applications, such as, for instance,
text searching, lexical analysis or coding systems, where space considerations
are prominent.

Finding the minimal automaton equivalent to a given DFA is a classical and
largely studied problem in Theory of Automata and Formal Languages, also
called automata minimization problem. Several methods have been developed to
minimize a deterministic finite automaton. Some of them operate by successive
refinements of a partition of the states. For instance, we recall the well known
algorithm proposed by Moore in 1956 (cf. [13]) with time complexity O(kn2),
where n is the number of states of the DFA and k is the cardinality of the
alphabet. More efficient is the algorithm provided by Hopcroft in 1971 (cf. [9])
where the refinements are computed in O(kn log n). Besides, such an algorithm
is the fastest known solution to the automata minimization problem.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 14–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A taxonomy of finite automata minimization algorithms is given in [15]. Very
recently, many papers on experimental comparison of minimization algorithms
has been published.

The general complexity of the automata minimization problem is still an open
question but there are families of automata for which Hopcroft’s algorithm runs
effectively in Θ(n log n) (cf. [3,7,6]). Such families are unary automata associated
to circular words. However, automata minimization can be achieved also in linear
time when the alphabet has only one letter (cf. [14]), but the solution does not
seem to extend to larger alphabet. In this paper we are focus on finding families of
automata defined on more that one letter alphabet representing the worst case of
Hopcroft’s algorithm. Actually, we provide an infinite family of binary automata
defined by binary labelled trees and relate the execution of Hopcroft’s algorithm
on such automata with some combinatorial properties of the associated binary
tree. Moreover, for such automata the refinement process leading from the initial
partition of set of the states to the final one is uniquely determined. Recall that,
in general, Hopcroft’s algorithm has several degrees of freedom since it leaves
several choices to the programmer.

The paper is organized as follows. The Section 2 contains the description of
Hopcroft’s algorithm by focusing on its degrees of freedom. The Section 3 in-
troduces the notion of standard binary tree and standard tree-like automaton.
The uniqueness of the execution of Hopcroft’s algorithm on standard tree-like
automata is studied in Section 4. In Section 5 we deepen the problem of tight-
ness of Hopcroft’s algorithm, by providing an infinite family of binary automata
representing the worst case of the algorithm. Section 6 describes some sided
research topics and future directions.

2 Hopcroft’s Algorithm

In 1971 Hopcroft proposed an algorithm for minimizing a deterministic finite
state automaton with n states, over an alphabet Σ, in O(|Σ|n log n) time (cf.
[9]). This algorithm has been widely studied and described by many authors (see
for example [10,12,15]) cause of the difficult to give its theoretical justification,
to prove correctness and to compute running time.

In Figure 1 we give a brief description of the algorithm’s running.
Given an automatonA = (Q, Σ, δ, q0, F ), it computes the coarsest congruence

that saturates F . Let us observe that the partition {F, Q\F}, trivially, saturates
F. Given a partition Π = {Q1, Q2, ..., Qm} of Q, we say that the pair (Qi, a),
with a ∈ Σ, splits the class Qj if δ−1

a (Qi) ∩ Qj 
= ∅ and Qj � δ−1
a (Qi). In this

case, the class Qj is split into Q′
j = δ−1

a (Qi) ∩ Qj and Q′′
j = Qj \ δ−1

a (Qi).
Furthermore, we have that a partition Π is a congruence if and only if for any
1 ≤ i, j ≤ m and any a ∈ Σ, the pair (Qi, a) does not splits Qj .

Hopcroft’s algorithm operates by a sequence Π1, Π2, . . . , Πl of successive re-
finements of a partition of the states and it is based on the so-called “smaller
half” strategy. Actually, it starts from the partition Π1 = {F, Q \ F} and re-
fines it by means of splitting operations until it obtains a congruence, i.e. until
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Hopcroft Minimization (A = (Q,Σ, δ, q0, F ))
1. Π ← {F, Q \ F}
2. for all a ∈ Σ do
3. W ← {(min(F, Q \ F ), a)}
4. while W �= ∅ do
5. choose and delete any (C, a) from W
6. for all B ∈ Π do
7. if B is split from (C,a) then
8. B′ ← δ−1

a (C) ∩ B
9. B′′ ← B \ δ−1

a (C)
10. Π ← Π \ {B} ∪ {B′, B′′}
11. for all b ∈ Σ do
12. if (B, b) ∈ W then
13. W ← W \ {(B, b)} ∪ {(B′, b), (B′′, b)}
14. else
15. W ← W ∪ {(min(B′, B′′), b)}

Fig. 1. Hopcroft’s algorithm

no split is possible. To do that it maintains the current partition Πi and a set
W ⊆ Πi×Σ, called waiting set, that contains the pairs for which it has to check
whether some classes of the current partition are split. The main loop of the
algorithm takes and deletes one pair (C, a) from W and, for each class B of Πi,
checks if it is split by (C, a). If it is the case, the class B in Πi is replaced by the
two sets B′ and B′′ obtained from the split. For each b ∈ Σ, if (B, b) ∈ W , it is
replaced by (B′, b) and (B′′, b), otherwise the pair (min(B′, B′′), b) is added to
W (with the notation min(B′, B′′) we mean the set with minimum cardinality
between B′ and B′′). Let us observe that a class is split by (B′, b) if and only if
it is split by (B′′, b), hence, the pair (min(B′, B′′), b) is chosen for convenience.

We point out that the algorithm has a degree of freedom because the pair
(C, a) to be processed at each step is freely chosen. Another free choice intervenes
when a set B is split into B′ and B′′ with the same size and it is not present in
W . In this case, the algorithm can, indifferently, add to W either B′ or B′′.

Such considerations imply that there can be several sequences of successive
refinements that starting from the initial partition Π1 = {F, Q \ F} lead to the
coarsest congruence of the input automaton A.

As regards the running time of the algorithm we can observe that the split-
ting of classes of the partition, with respect to the pair (C, a), takes a time
proportional to the cardinality of the set C. Hence, the running time of the
algorithm is proportional to the sum of the cardinality of all sets processed.
Hopcroft proved that the running time is bounded by O(|Σ||Q| log |Q|). In [3]
the authors proved that this bound is tight, in the sense that they provided a
family of unary automata for which there exist a sequence of refinements such
that the time complexity of the algorithm is Θ(|Σ||Q| log |Q|). However, for the
same automata there exist other sequences of refinements producing executions
that run in linear time. In [7] we presented a family of unary automata for which
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there is a unique sequence of refinements. Moreover we defined a subclass of
such automata for which the running time is Θ(|Σ||Q| log |Q|). Such a subclass
of unary automata was extended in [1]. Actually, unary automata represent a
very special case for the automata minimization problem. In fact, the minimiza-
tion can be achieved also in linear time when the alphabet has only one letter
(cf. [14]). So, we are interested in facing both the problem of the uniqueness of
the refinements and the tightness of the algorithm when the alphabet contains
more than one letter.

In next sections we consider a family of binary automata having a unique
sequence of refinements. Moreover we find a class of binary automata for which
the running time of Hopcroft’s algorithm is Θ(|Σ||Q| log |Q|).

3 Standard Trees and Tree-Like Automata

In this section we present a class of binary automata defined by using the notion
of binary labelled tree.

Let Σ = {0, 1} and A = {a, b} be two binary alphabets. A binary labelled
tree over A is a map τ : Σ∗ → A whose domain dom(τ) is a prefix-closed subset
of Σ∗. The elements of dom(τ) are called nodes, if dom(τ) has a finite (resp.
infinite) number of elements we say that τ is finite (resp. infinite). The height of
a finite tree τ , denoted by h(τ), is defined as max{|u|+ 1, u ∈ dom(τ)}. We say
that a tree τ̄ is a prefix of a tree τ if dom(τ̄ ) ⊆ dom(τ) and τ̄ is the restriction
of τ to dom(τ̄ ). A complete infinite tree is a tree whose domain is Σ∗. Besides, a
complete finite tree of height n is a tree whose domain is Σn−1. The empty tree
is the tree whose domain is the empty set.

a

b a

b b a

a a b a b

Fig. 2. Binary infinite labeled tree

If x, y ∈ dom(τ) are nodes of τ such that x = yi for some i ∈ Σ, we say
that y is the father of x and in particular, if i = 0 (resp. i = 1) x is the left
son (resp. right son) of y. A node without sons is called leaf and the node ε
is called the root of the tree. Given a tree τ , the outer frontier of τ is the set
Fr(τ) = {xi|x ∈ dom(τ), i ∈ Σ, xi /∈ dom(τ)}.

Example 1. In Fig.2 an example of an infinite tree τ is depicted. We have, for
instance, that 0111, 1011 ∈ dom(τ) and 0110, 1001, 1000 ∈ Fr(τ).
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Let τ and τ ′ be two binary labelled trees. We have that τ is a subtree of τ ′ if
there exist a node v ∈ dom(τ ′) such that:

i) v · dom(τ) = {vu|u ∈ dom(τ)} ⊆ dom(τ ′)
ii) τ(u) = τ ′(vu) for all u ∈ dom(τ).

In this case we say that τ is a subtree of τ ′ that occurs at node v.
In [11] operations among trees have been introduced. Here, we are interested

in the concatenation among trees. Roughly speaking, we can say that in order to
concatenate two trees τ1 and τ2 we attach the root of τ2 to one of the element of
the outer frontier of τ1. Obviously, since the outer frontier of τ1 can have more
than one element, by concatenating τ1 and τ2 we obtain a set of trees. In what
follows we use the notion of simultaneous concatenation of τ2 to all the nodes of
Fr(τ1) i.e. the tree τ1 ◦ τ2 defined as follows:

i) dom(τ1 ◦ τ2) = dom(τ1) ∪ Fr(τ1)dom(τ2);

ii) ∀x ∈ dom(τ1◦τ2), τ1◦τ2(x) =
{

τ1(x) if x ∈ dom(τ1)
τ2(y) if x = zy, z ∈ Fr(τ1), y ∈ dom(τ2).

Let τ be a tree, with τω we denote the infinite simultaneous concatenation
τ ◦τ ◦τ ◦ . . . . Notice that, by infinitely applying the simultaneous concatenation,
we obtain a complete infinite tree.

We define factor of a tree a finite complete subtree of the tree, and in the
following we are interested in particular factors we define by using some notations
given in [5].

Let τ be a tree, σ and σ̄ two factors of τ such that σ̄ is the complete prefix
of σ of height h(σ) − 1, then σ is called an extension of σ̄ in τ . A factor σ of a
tree τ is extendable in τ if there exists at least one extension of σ in τ .

A factor σ of τ is 2-special if there exist exactly two different extensions of σ
in τ .

We say that γ is a circular factor of τ if it is a factor of τω with h(γ) ≤ h(τ).
A circular factor γ of τ is a 2-special circular factor if there exist exactly two
different extensions of γ in τω (that we can call circular extensions). The concept
of circular factor can be easily understood by noting that in the case of unary
tree it coincides with the well-known notion of circular factor of a word.

With reference to a characterization of the notion of circular standard word
given in [4], we say that a finite tree τ is a standard tree if for each 0 ≤ h ≤ h(τ)−2
it has only a 2-special circular factor of height h.

Example 2. An example of standard tree, called finite uniform tree, is a complete
tree defined by labelling all the nodes at the same level with the same letter taken
in the same order it occurs in a given standard word. In Figure 3 we give the
uniform tree from the word abaab.

Let A = (Q, Σ, δ, q0, F ) be a deterministic finite automaton (DFA) over the
finite alphabet Σ, where Q is a finite state set, δ is a transition function, q0 ∈ Q
is the initial state and F ⊆ Q the set of final states. Let G = (V, E) be the
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a

b

a

a

b b

a

b b

a

a

b b

a

b b

b

a

a

b b

a

b b

a

a

b b

a

b b

Fig. 3. The finite uniform tree defined from the word abaab

transition directed graph associated to A. We say that A is a tree-like automaton
if G = (V, E) has a subgraph Gt = (V, Et), containing all nodes V , which is a
tree (called skeleton) with root q0, and such that all edges of E\Et are edges
from a node to an ancestor.

Given a finite binary labelled tree τ we can uniquely associate a tree-like au-
tomatonAτ having τ as skeleton and such that for each missing edge we add a tran-
sition to the root of the tree. Moreover, the root is the initial state and the states
corresponding to nodes labelled by a (resp. b) are non-final (resp. final) states.

Example 3. In Fig.4 a finite labelled tree and the corresponding tree-like automa-
ton are depicted. In the automaton, the initial state labelled by 1 corresponds
to the root of the tree.

a

b

a

a

b

a

b

a

1

2

3

4

5

6

7

8

0

1
0

0

1

0

1

1

0

0

1

1 0

0
1

Fig. 4. A tree τ and tree-like automaton Aτ

4 Hopcroft’s Algorithm on Standard Tree-Like Automata

In this section we deepen the connection between the refinements process of
Hopcroft’s algorithm when applied on a tree-like automaton associated to a
standard tree and the combinatorial properties of the tree itself. By using such
properties we prove that such a process is uniquely determined.
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We define standard tree-like automaton a tree-like automaton Aτ associated
to a standard tree τ . The main theorem of this section gives a characterization
of the partitions representing the refinement process of Hopcroft’s algorithm on
standard tree-like automata.

Let Aτ = (Q, Σ, δ, q0, F ) be a standard tree-like automaton. For any circular
factor σ of τ , we define the subset Qσ of states of Aτ as the set of occurrences of
σ in τ . Trivially, we have that Qε = Q, Qb = F and Qa = Q\F . More in general,
one can prove that the classes that appear during each execution of Hopcroft’s
algorithm on a standard tree-like automaton Aτ are all of the form Qσ for some
circular factor σ of τ .

The following proposition establishes a close relation between the split op-
eration during the execution of Hopcroft’s algorithm on a standard tree-like
automaton and the notion of circular special factor of a standard tree.

Proposition 1. Let Aτ be a standard tree-like automaton. Let Qσ and Qγ be
classes of a partition of Q. If (Qγ , x) splits Qσ, for some x ∈ Σ, with h(γ) =
h(σ), then σ is a 2-special circular factor of τ . The resulting classes are Qσ′ and
Qσ′′, where σ′ and σ′′ are the only two possible extensions of σ in τ .

The following theorem states that, in case of standard tree-like automata, the
sequence of partitions created during the refinement process of Hopcroft’s algo-
rithm is unique whatever element we choose and delete from the waiting set.
The statement of the theorem characterizes each current partition after each
split operation of Hopcroft’s algorithm on a standard tree-like automaton.

Theorem 1. Let Aτ be a standard tree-like automaton. The sequence of the
refinement process Π1, Π2, ...Πh(τ)−2 is uniquely determined and

Πk = {Qσ| σ is a circular factor of τ with h(σ) = k}

Note that the theorem states also that, the partition Πk of the set of the states
has exactly k + 1 classes. In fact, one can easily prove that a tree τ is standard
if and only if, for each k = 1, . . . , h(τ) − 1, τ has exactly k + 1 circular factors
of height k. For the sake of brevity, we don’t give the proof of the theorem but
the following two propositions play a fundamental role in proving the statement.
They provide the main reasons for which the sequence of the split operations
is uniquely determined during the execution of Hopcroft’s algorithm. Indeed, at
each step, the splitting classes (if exist) of the waiting set, cause the same unique
split in the current partition and with respect to the same letter.

Proposition 2. Let Aτ be a standard tree-like automaton and σ and γ be two
circular factors of τ having the same height. If (Qγ , 0) (resp. (Qγ , 1)) splits Qσ

then (Qγ , 1) (resp. (Qγ , 0)) either does not split Qσ or splits it in the same way.

Proposition 3. Let Aτ be a standard tree-like automaton. Each (Qγ , x) splits
at most one class Qσ, with h(γ) = h(σ), for some x ∈ Σ.
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5 Word Trees

Let Σ = {0, 1} and A = {a, b}. Given two words v = v1v2...vn−1 ∈ Σ∗ and w =
w1w2...wn ∈ A∗, by τv,w we denote the labelled tree τv,w such that dom(τv,w) is
the set of prefixes of v and the map is defined as follows:{

τv,w(ε) = w1
τv,w(v1v2...vi) = wi+1 ∀1 ≤ i ≤ n− 1

We call word tree the finite labelled tree τv,w. When v is obtained by taking the
prefix of length n − 1 of w and by substituting a’s with 0’s and b’s with 1’s,
we use the simpler notation τw. In Fig. 4 a word tree τw with w = abaababa is
depicted.

Our investigation is focused on word trees associated to standard words.
We recall the well known notion of standard word. Let d1, d2, . . . , dn, . . . be

a sequence of natural integers, with d1 ≥ 0 and di > 0, for i = 2, . . . , n, . . ..
Consider the following sequence of words {sn}n≥0 over the alphabet A: s0 = b,
s1 = a, sn+1 = sdn

n sn−1 for n ≥ 1. Each finite words sn in the sequence is
called standard word. It is uniquely determined by the (finite) directive sequence
(d0, d1, ..., dn−1). In the special case where the directive sequence is of the form
(1, 1, ..., 1, ...) we obtain the sequence of Fibonacci words.

In this section we consider the trees τw, when w is a standard word. One
can prove that such trees are standard, so the associated tree-like automata are
standard. Actually, they represent an instance of standard trees that is opposite
to the finite uniform tree described in Section 3. The difference consists in the
fact that the two extension of each 2-special circular factors differ only by a leaf,
while in case of uniform tree all the leaves are involved.

The aim of this section is to compute the running time of Hopcroft’s algorithm
on these automata by using propositions stated in previous section.

With c(A) we denote the running time of Hopcroft’s algorithm to minimize A.
Firstly, we recall that the running time is proportional to the cardinality of

the classes processed in the waiting set. So, in order to make the computation
we have to establish which classes each time go into the waiting set. In this
particular case, as we saw in previous section, the split that occurs at each step
involves the class Qσ with σ special factor of the tree. Then, at each step we
have a unique split of Qσ in Qσ′ and Qσ′′ . Furthermore, in order to prove the
main result of this section, the following proposition is needed.

Proposition 4. Let τw be a standard word tree. At each step of Hopcroft’s al-
gorithm on Aτw any class does not split itself.

Hence, we can conclude that each time only one class goes into the waiting set
(the minimum between Qσ′ and Qσ′′), with both the letters of the alphabet. By
Proposition 2 one can derive that such a class can cause a split with respect only
one letter. Such facts lead to the following proposition.
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Proposition 5. Let τw be a standard word tree. Then the time complexity of
Hopcroft’s algorithm on Aτw is

c(Aτw ) = 2
∑

σ∈sp(τw)

min(|Qσ′ |, |Qσ′′ |),

where with sp(τw) we denote the set of 2-special circular factor of τw.

In [6,1] the authors consider the unary cyclic automaton Aw associated to a
word w and give an exact computation of the running time the algorithm on
these automata, when w is a standard word, by using the fact that c(Aw) =∑

u∈sp(w) min(|Qu0|, |Qu1|), where sp(w) is the set of special factors of w. For
sake of brevity we refer to [3] for the definition of the notion of unary cyclic
automaton.

Remark that, in case of a standard word tree τw, there is a one-to-one corre-
spondence between the occurrences of the 2-special circular factors of τw and the
occurrences of the special factors of w. Consequently, we have the following result.

Proposition 6. Let τw be a standard word tree and w the corresponding stan-
dard word.

c(Aτw ) = 2c(Aw).

The previous proposition states that Hopcroft’algorithm on binary standard
tree-like automaton inherits all the worst cases obtained when it is applied on
unary cyclic automata associated to standard words. Such worst cases are de-
scribed in [6,1]. Such a consideration is formalized in the following theorem.

Theorem 2. Hopcroft’s algorithm on tree-like automata A = (Q, Σ, δ, q0, F )
associated to standard word trees has a uniquely determined refinement process
and runs in time Θ(|Σ||Q|log|Q|).
Hence, we proved that there exist automata on binary alphabet for which
Hopcroft’s algorithm is tight.

6 Conclusions and Related Works

In this paper we face the problem of minimization of deterministic finite au-
tomata with reference to Hopcroft’s algorithm. We consider the refinement pro-
cesses of the algorithm and we find an infinite family of binary automata for
which there is a unique process. It would be interesting to give a characteriza-
tion of the automata for which the sequence of successive refinements is uniquely
determined. Moreover we face the tightness of the algorithm when the alphabet
contains more than one letter. In particular we define an infinite family of binary
automata representing the worst case of Hopcroft’s algorithm.

Remark that the here defined standard trees can be arouse an independent
interest because they are closely related to a class of infinite trees, called Stur-
mian Trees (cf. [2]). Actually the standard trees allow to construct an infinite
family of Sturmian Trees having some interesting combinatorial properties as,
for instance, the balance. We investigate such a family in [8].
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Compact Normal Form for Regular Languages
as Xor Automata

Jean Vuillemin and Nicolas Gama

École normale supérieure and INRIA, France

Abstract. The only presently known normal form for a regular language
L ∈ Reg is its Minimal Deterministic Automaton MDA(L). We show
that a regular language is also characterized by a finite dimension dim(L),
which is always smaller than the number |MDA(L)| of states, and often
exponentially so. The dimension is also the minimal number of states of
all Nondeterministic Xor Automaton (NXA) which accept the language.
NXAs combine the advantages of deterministic automata (normal form,
negation, minimization, equivalence of states, accessibility) and of non-
deterministic ones (compactness, mirror language). We present an algo-
rithmic construction of the Minimal Non Deterministic Xor Automaton
MXA(L), in cubic time from any NXA for L ∈ Reg. The MXA provides
another normal form: L = L′ ⇔ MXA(L) = MXA(L′). Our algorithm
establishes a missing connection between Brzozowski’s mirror-based min-
imization method for deterministic automata, and algorithms based on
state-equivalence.

1 Introduction

Regular languages Reg are at the core of formal languages (sets of words), in
logic, computer science and linguistics. Finding minimal forms for regular lan-
guages has a long history [5,10,11]; yet, minimizing Non Deterministic Automata
NDA [12] or deciding their equivalence has remained computationally intractable
for well over half a century [6,7].

Our contribution is to show that, unlike NDAs, non-deterministic xor au-
tomata NXA [3,14] have a unique minimal form which can be effectively com-
puted through linear algebra. The result is novel for alphabet sizes 2 and more:
our minimization algorithm proceeds in two mirror passes, and has a cubic bit-
level complexity. The result was known for the unary alphabet: the minimization
of such NXA is achieved in [15] by reduction to linear feed-back shift registers
and use of the Berlekamp-Massey algorithm [8].

1.1 Background and Notations

Words and hierarchical order. The alphabet is denoted by Σ, and the set
of all words is Σ∗. The shortest word is ε of length 0 = |ε|. Words are ordered
by hierarchical order : u ≤ v ⇔ |u| < |v| or (|u| = |v| and u ≤lex v). This well-
founded order allows to enumerate every words in increasing order, so that words

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 24–33, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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can be used as indexes in infinite tables. For example, words over the alphabet
Σ = {a, b} are in order Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, · · · } .

Operations on words and languages. The concatenation of two words u
and v is u.v, and the mirror of u is ρ(u) with the letters of u in reversed order.
Note that ε.u = u.ε = u and ρ(ε) = ε. In any word w = u.v, u is a prefix of
w and v a suffix. The set operators of ∪,∩,\, complement (¬), and symmetric
difference (⊕) are used on sets of words, i.e. languages. Concatenation and mirror
are extended to languages: for U and V ∈ Σ∗, ρ(U) = {ρ(u), u ∈ U}, and U.V
stands for {u.v, u ∈ U, v ∈ V }. This operator can be iterated a fixed number of
times: U0 = {ε} and Un+1 = U.Un when n ≥ 1, or indefinitely of times with
Kleene’s star U∗ =

⋃
n∈N

Un operation [12].

Non-deterministic finite automata. A NDA is a structure A(Q, I,
(Tα)α∈Σ , F ), where Q is the finite set of states, I, F ⊆ Q are the initial and
final states, for each letter α ∈ Σ, Tα : Q → P(Q) is the transition function
of α. An accepting path in A along a word w = α1. . . . .αp ∈ Σp is a tuple
(q0, . . . , qp) ∈ Qp+1 such that q0 ∈ I, qi+1 ∈ Tαi(qi) and qp ∈ F .

Schutzenberger [13] introduces the multiplicity Mw
A of a word w in A as the

number of such accepting paths in A along w. A NDA is equivalently represented
by a graph or by matrices. In the matrix representation, Q is the integer interval
[1; n]. Sets of states, like I and F , are represented by their characteristic vector
I[i] = 1⇔ i ∈ I, and transition functions are represented by n×n row-matrices
(Tα)i,j∈[1,n] with Tα[i, j] = 1 ⇐⇒ j ∈ Tα(i). Note that with row matrices, an
expression like g(f(x)) is represented by the product X × Matrixf × Matrixg

in this order. Although the coefficients of the matrices above are all 0 or 1, the
integer matrix product ∗N =< ×, + > yields non-negative integers which count
the multiplicity of words between states of A. We note the key matrix expression:

M
w1...wp

A = I ∗N Tα1 . . .Tαp ∗N F.

Classical automata theory [12] effectively defines recognition in NDA by w ∈
LA ⇐⇒ Mw

A 
= 0. One can equivalently use w ∈ LA ⇐⇒ Bw
A = 1, with

B
w1,...,wp

A = I ∗B Tα1 . . . Tαp ∗B F,

where the matrix operations ∗B =< ∩,∪ > now take place in the boolean ring
rather than in integer algebra, and Bw

A = 1 ⇐⇒ Mw
A 
= 0. A third expression is

P
w1,...,wp

A = I ∗F2 Tα1 . . . Tαn ∗F2 F,

where matrices are now multiplied ∗F2 =< ∩,⊕ > over the 2-element field F2.
This defines the representation of Nondeterministic Xor Automaton (NXA) by
binary matrices. Acceptance of a word w of length p by a NXA with n states is
defined by w ∈ LA ⇐⇒ Pw

A 
= 0 in O(pn2) boolean operations. Note that Pw
A is

the parity of Mw
A and w is accepted by a NXA A ⇐⇒ the number of accepting

paths in A along w is odd. For all three above matrix products, we extend the
transition matrices to words by Tw = Tα1�· · ·�Tαn , and the acceptance condition
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becomes I � Tw � F 
= 0. Complete deterministic finite automata (DFA) are a
subclass of NDA with a single initial state |I| = 1, and ∀q ∈ Q, ∀α ∈ Σ a single
element in Tα(q). The transition functions are deterministic, the matrices are
stochastic (single 1 per row), and all three matrix products coincide:

A ∈ DFA ⇐⇒ ∀w : I ∗N Tw ∗N F = I ∗B Tw ∗B F = I ∗F2 Tw ∗F2 F.

So, a DFA can be equivalently interpreted as a NDA or a NXA.
Furthermore, each NDA and NXA can be transformed into a DFA which

accepts the same language. Determinization is achieved by the subset construc-
tion, in time proportional to that of the output. The difference between NXA
and NDA-determinizations is that a subset of states in the output is final if
and only if its intersection with F is odd, rather than not-empty. It follows that
NDA, DFA and NXA all recognize the very same class of regular languages.

1.2 Linear Representation of a Language and Dimension

Schutzenberger’s theory [13] of automata with multiplicity is extended over semi-
rings by Fliess [4] into what are now known as weighted automata [9] and formal
power series [1]. Here, we only consider the very special case of these theories
over the two element field F2. We also replace the Hankel matrix used in [1],
by the truth matrix, so as to establish connections between mirror and negation
operations on languages, and classical involutions in linear algebra, and link
minimization based on state-equivalence with algorithms in two mirror passes à
la Brzozowski.

1.3 Dimension of a Language

The set of all languages P(Σ∗) has a natural structure of vector space over F2:
the sum of two languages is their symmetric difference ⊕, the neutral element ∅
is the empty language, and the external product × by constants 0 or 1 is trivial.
Since regular languages are closed by ⊕, the class Reg of regular languages is
a sub-vector space of P(Σ∗). The linear span (over F2) containing a subset F
of a vector space E, is the set of all finite linear combinations of elements of F ,
denoted by span(F ).

Truth table. A language can be represented by the formal power series of its
multiplicities (χw

L)w∈Σ∗ ∈ FΣ∗
2 where χw

L = 1 ⇐⇒ w ∈ L, 0 else. In [1], this serie
is written as

∑
w∈Σ∗ χw

L ·w where words are monomials on the non-commutative
letters. Note that series of two languages L and L′ can be added pairwise, which
yields to the serie of L ⊕ L′. By carefully choosing an order on words, a serie
can be uniquely presented as an infinite vector, which we call truth table. This
particular order is the one of mirrors: the truth table of L contains χ

ρ(w)
L at

position w ∈ Σ∗ (recall that here, w represents its integer index in hierarchical
increasing order).

Suffix languages. Given a language L and a word w ∈ Σ∗, the suffix language
w−1.L is defined by {u ∈ Σ∗, w.u ∈ L}. Note that ε−1.L = L and for any words
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u and v, (u.v)−1.L = v−1.(u−1.L). The suffix linear application of L associates
any word w to the corresponding suffix of L. It is defined on the canonical basis
of span(Σ∗) by:

suffixL
span(Σ∗)→ P(Σ∗)
w ∈ Σ∗ → w−1.L

The index of a language L is the number of different suffixes of L, i.e. the
cardinality of

{
w−1.L, w ∈ Σ∗}. It corresponds to the size of the minimal de-

terministic automata of L (MDA(L)). The dimension of L is the dimension of
span

{
w−1.L, w ∈ Σ∗} or equivalently the rank of suffixL. Since the field F2 is fi-

nite, the dimension satisfies: log2(index(L)) ≤ dim(L) ≤ index(L). For example,
the following LFSR language L = {at, t ∈ {0, 1, 2, 4} mod 7} has index 8 and
dimension log2(8) = 3. Hence the following [11,13] characterization of regular
languages.

Theorem 1 (Myhill,Nerode,Schutzenberger). A languageL is regular ⇐⇒
it has finite index⇐⇒ it has finite dimension over F2.

Truth function and Truth matrix. The notion of truth matrix is a variant
of Hankel’s matrix [4]. Both are infinite matrix representations of suffixL. The
truth matrix T of the language L is defined by T[i, j] = 1 ⇐⇒ wi.ρ(wj) ∈ L. Its
i-th row is the truth table of w−1

i .L. Note that the formula of the truth matrix
contains a mirror, whereas Hankel’s matrix [4], defined by H [i, j] = 1 ⇐⇒
wi.wj ∈ L doesn’t. However both matrices have same rank, as they just differ
by a permutation of columns. As we can see in the following theorem, the mirror
in the truth table is important to make a connection between linear properties
of L and its mirror.

Theorem 2. Truth matrices of a language L and its mirror ρ(L) are respective
transpose. Let T be the truth matrix of L, then the w-th row of T is the truth
table of w−1.L, and the w-th column of T is the truth table of w−1.ρ(L). L is
regular ⇔ T has a finite number of different rows ⇔ T has finite rank ⇔T has a
finite number of different columns. The indexes of L and ρ(L) are respectively the
number of different rows and columns of T, and dim(L) = dim(ρ(L)) = rank(T).

Proof. We have TL[i, j] = 1 ⇔ wi.ρ(wj) ∈ L ⇔ ρ(wi.ρ(wj)) = wj .ρ(wi) ∈
ρL ⇔ TρL[j, i] = 1. In other words, the truth table of the mirror language is the
transpose of the truth table of L. Other properties are in common with Hankel
matrices [13,1,4] and are immediate consequences of their definitions, and of the
invariance of rank by transposition. ��

In the binary field F2, the truth matrix also reveals that the dimensions of L
and its negation ¬L satisfy |dim(L)− dim(¬L)| ≤ 1. Indeed, one negates any
truth table by adding the constant infinite vector [1, 1, . . . , 1, . . . ]. Therefore,
Im(suffix¬L) ⊆ Im(suffixL) ⊕ [1, 1, . . . , 1, . . . ]. This proves the inequality on the
dimension.

Note that the index of some languages like Σ∗1Σn1 is exponentially larger
than the index of its mirror. This clearly motivates the research of normal form
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for a language which is polynomial in its dimension, which is in turn lower than
min(index(L), index(ρL)), and therefore much smaller than the MDA.

1.4 Consequences on Xor Automata

Following Schutzenberger’s terminology [1], regular languages are particular case
of recognizable languages, and they admit a linear representation which corre-
sponds to a weighted automata. There exists a similarity equivalence relation,
modulo which the minimal linear representation of L is unique. When the weights
are taken from F2, this linear representation of L ∈ Reg corresponds to the class
of NXA which accepts L. The similarity between NXA can be defined with their
matrix representation by:

Definition 1. Two automata A = (n, I, (Tα), F ) and A′ = (n, I ′, (T ′
α), F ′) are

similar if and only if there exists an invertible matrix P ∈ GL(Fn
2 ) such that

I ′ = IP , T ′
α = P−1TαP and F ′ = P−1F .

As similarity preserves products of the form I × Tα1 × · · · × Tαn × F , it follows
that two similar automata recognize the same language. We now show why the
converse is true when the number of states is minimal. This is a major difference
with classical NDA, which lack such a relation. Just like the permutation of
states on deterministic automata, similarity between NXA is the key element to
perform reduction and minimization of these automata.

Given a Xor automata A(n, I, (Tα), F ) recognizing a language L, two linear
applications will be particularly useful. The configuration function, which asso-
ciates to a word the configuration of active states when reading this word:

configA :
span(Σ∗)→ Fn

2
w ∈ Σ∗ → I × Tw

and the language function, which associates to any configuration of states the
language accepted from this configuration.

LA :
Fn

2 → Reg
x → language of A(n, x, (Tα), F )

Note that by definition of the acceptance, a word w = u.v is accepted by A if
and only if (I × Tu)× Tv ×F = 1, that is v ∈ LA(configA(u)). Therefore, for all
u ∈ Σ∗, u−1.L = LA(configA(u)). In particular, we have

suffixL = LA ◦ configA. (1)

The matrix ramA of configA has dimensions ∞× n and its w-th row is I × Tw.
The matrix camA of LA is the juxtaposition of truth tables (like in Section 1.3)
of the languages LA(ei) of each state (ei)i∈[1,n]. It is a n×∞ matrix whose w-th
column is Tρw ×F . By Equation (1), the truth matrix TL of L is ramA× camA.
This leads to the fundamental theorem.
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Theorem 3. The dimension of a language L is smaller than the number of
states n of any NXA A recognizing L. There is equality n = dim(L) if and only
if configA is surjective and LAis injective. Furthermore, two minimal NXA (with
n = dimL) recognizing the same language are similar.

Proof. Both functions configA and LA have by definition rank ≤ n. Therefore
by (1), dim(L) = rank(suffixL) ≤ n. If n = dim(L), then rank(configA) =
n (configA is surjective), and rank(LA) = n (LA is injective). Reciprocally,
if configA is surjective and LA is injective, dim(L) = rank(LA ◦ configA) =
dim(LA(Fn

2 )) = n. For the last point, consider another minimal automata A′ rec-
ognizing L. Since ramA× camA = ramA′ × camA′(= TL) and both camA,camA′

are injective, there is an invertible n×n matrix P such that ramA′ = ramA×P .
One can show by induction that this specific P defines the similitude between
A and A′. For instance, let W be the n smallest words such that the ex-
tracted ramA′(W ) is invertible, then the transition T ′

α of A′ is ramA′(W )−1 ×
ramA′(W.α) = P−1 × ramA(W )−1 × ramA(W.α)× P = P−1TαP . ��

As suggested by dimension considerations in 1.3, recognizing the mirror lan-
guage is easy as for classical NDA: from the matrix representation of a NXA
A(n, I, (Tα)α∈Σ , F ) accepting a language L, its transpose A(n, F t, (T t

α)α∈Σ , It)
recognizes the mirror language ρL. It is also easy to make an NXA recognize the
negation of a language: just add a single isolated state which is always active
(that is, both initial and final, and looping back to itself by all letters). In the
classical NDA case, recognizing the negation would require determinization.

2 Reduction of Xor Automata

In [1], a formal algorithm was already described to obtain one minimal linear
representation of L up to similarity. Here, we focus on NXA minimization algo-
rithms and their complexity, and we provide unique normal form MXA(L) as
output. We show how to adjust DFA minimization algorithms to handle NXA
within cubic complexity.

In the deterministic case, minimization consist in ensuring accessibility (each
state must be reached by at least a word w ∈ Σ∗) and distinguishability (the
language recognized from each state must be different). Up to permutation of
states, the output is the minimal deterministic automata (MDA) of a regular lan-
guage L and corresponds to the intrinsic suffix automata A(Q, I, (Tα), F ) where
Q =

{
w−1.L, w ∈ Σ∗}, I = ε−1.L, Tα(q) =

{
α−1.q

}
, F = {q ∈ Q, ε ∈ q}. Var-

ious algorithms are known to construct the MDA of a language, and most [16]
iteratively construct a partition of states based on their language LA(q). Ac-
cording to Watson [16], the only exception is Brzozowski’s algorithm [2], which
applies successively mirror, determinization, mirror, determinization. Despite its
exponential worst-case complexity, Brzozowski’s is the only minimization algo-
rithm reported in [17] which can efficiently take NDAs and regular expressions
for inputs.
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2.1 Linear Accessibility

We still need to show that both conditions of Theorem 3 can be fulfilled at
the same time to prove the existence of a minimal xor-automata. We first show
how to make the config function surjective. This is analogue of the deterministic
accessibility.

Definition 2 (linear accessibility). An automata is linearly accessible if and
only if its configuration function configA : w → ITw is surjective.

Let’s begin with an example of non linearly-accessible NXA. The configuration
function always remains in span(e1, e2), and the state e3 is never active.

I = [0 1 0 ], T0 =

⎡⎣1 1 0
0 1 0
1 0 1

⎤⎦T1 =

⎡⎣0 1 0
1 0 0
1 0 1

⎤⎦ , F =

⎡⎣∗∗
∗

⎤⎦
In this case, we say that the automaton is block-triangular of size 2, which can
be formalized by the following definition.

Definition 3 (block triangular automata). An automata is block-triangular
of size d < n if It = 0 for t > d and Tα(i, j) = 0 for i ≤ d and j >
d (they are blockwise lower-triangular). Then the truncated automata A(d) =
(I(d), T

(d)
α , F (d)) recognizes the same language, where I(d) and F (d) are the first

d coefficients of I and F , and T
(d)
α is upper-left most d× d submatrix of Tα.

In fact, up to similarity, every case of non-accessibility can be transformed into
the previous example.

Theorem 4. Every automaton A(n, I, (Tα), F ) is similar to a block-triang. au-
tomata of size d = rank(configA). The truncated automata at level d is linearly
accessible and recognizes the same language. Algorithm 1 obtains linear accessi-
bility in place in time O(n2d).

We prove this theorem with Algorithm 1, which basically performs a breadth
first search in the subset automata, but unlike the determinization algorithm, it
stops the exploration whenever the current subset of states (the configuration)
is linearly dependent on previous ones (instead of equal). Tests of linear depen-
dencies are eased by incrementally applying elementary operations like in the
Gaussian elimination.

2.2 Linear Distinguishability

In order to minimize a xor-automata, we also need to ensure that its language
function LA becomes injective. This is the analogue of the distinguishability of
deterministic automata, which requires that the (suffix) language of each state
is different.

Definition 4. An xor-automata A = (n, I, (Tα)α∈Σ , F ) is linearly distinguish-
able if its acceptance function LA is injective.
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Algorithm 1. Linear Accessibility (LAcc)
Require: An automata A(n, I, (Tα), F ), and the elem. ops and similitudes:

def P (i, j, [λ1, . . . , λn]) : Do column Ck ← Ck + λkCj ,k �= j then swap (Ci, Cj).
def Simi(i, j, [λ1, . . . , λn]) : Apply P = P (i, j, [λ1, . . . , λn]) on cols, P−1 on rows.

Ensure: A similar automata split and truncated at level b = rank(configA)
1: if (I = 0) return ∅.
2: int a=1, b=1;
3: Let j be the position of the last non-zero coefficient of I
4: Apply Simi(b, j, I) to A; b + +
5: while a < b do
6: q ← a; a++
7: for each α ∈ Σ do
8: Let v = eq · Tα

9: Let j the position of the last non-zero coefficient of v
10: if j > b then
11: Apply Simi(b, j, v) à A; b++
12: end if
13: end for
14: end while
15: Truncate A at level b− 1 (remove rows and columns ≥ b), return A.

An analogue of the equivalence relation. The formal algorithm presented
in [1] corresponds to this method. It can also be viewed as a linear analogue
of Nerode’s algorithm [11], based on an equivalence of states. It focuses on
LA(e1)(p), . . . ,LA(en)(p) where LA(ei)(p) represents the restriction to words of
≤ p letters of the language LA(ei) of the state ei. Like in the deterministic case,
LA(ei)(p) ⊆ LA(ei)(p+1), and there is an induction relationship LA(ei)(p+1) =
LA(ei)(p) ∪

(
α.LA(ei × Tα)(p)

)
α∈Σ

. Let V (p) be the (finite) matrix of L(p)
A : for

each index i ≤ n and word w of ≤ p letters, the coefficient V (p)[i, w] = 1 ⇔
w ∈ L(p)

A (ei), 0 else. Note that the union of columns of V (p) and Tα.V (p), α ∈ Σ
contain precisely all columns of V (p+1). Therefore tools like the RCEF (reduced
column echelon form) as introduced by Gauss for the Gaussian elimination, can
be used to iteratively compute the kernel of V (p) (i.e. of L(p)

A ), and thus the ker-
nel of LA, which is the first fixed point of kernels of L(p)

A when p grows (reached
for a p ≤ dim(L)).

Effect of the mirror. In fact, linear accessibility and linear distinguishabil-
ity are equivalent problem. This was almost the case for classical automata,
although the proof was horribly unnatural and complicated [2] (mixing notions
of accessibility which belong to DFA and mirror which only applies to NDA).
In MXA, this is much simpler. Consider the ∞× n matrix of configA and the
n ×∞ matrix of LA of Section 1. Applying the mirror on A has the effect to
exchange and transpose both matrices. Therefore, a simple consideration on the
ranks of both matrices lead to the elementary theorem and algorithm:
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Theorem 5. An automata A is linearly distinguishable ⇔ its mirror is linearly
accessible, and A is linearly accessible ⇔ its mirror is linearly distinguishable.
Furthermore, the algorithm mirror◦lin.access◦mirror ensures linear distinguisha-
bility in place and in time O(n2 dim(L) · |Σ|).

2.3 Minimization in Two Passes and MXA Normal Form

Finally, we have shown that from any NXA, one constructs a NXA minimal in
number of states which is both lin. accessible and lin. distinguishable. We just
need to apply in turn linear distinguishability and accessibility algorithms until
the number of states stops decreasing. In fact, only one pass of each algorithm
is enough.

Theorem 6 (MXA). From an NXA A for L ∈ Reg, the output MXA(A) of
Algorithm 2 is a minimal NXA for L with dim(L) states, which only depends on
L. It can be denoted by MXA(L).

Proof. Applying Algorithm 1 on a linearly distinguishable automata first per-
forms similitudes (which preserve linear distinguishability), followed by a trun-
cation. If LA was injective over the whole Fn

2 , its restriction to a sub-span
remain injective in the end. By Theorem 3, all minimal NXA recognizing L
are similar. But after Algorithm 1, the matrix of configA is in RCEF normal
form, which makes the representative unique. The output is a normal form:
MXA(A) = MXA(A′)⇔ L(A) = L(A′). ��

Algorithm 2. Minimization algorithm (MXA)
Require: A NXA A recognizing L ∈ Reg
Ensure: Minimize A in place, compute MXA(L) in place.
1: Transform A into its mirror
2: Apply linear accessibility to A (Algorithm 1)
3: Transform A into its mirror
4: Apply linear accessibility to A (Algorithm 1)

We end this study with two important results summarizing the advantages of
NXA against classical NDA or DFA.

Testing equality of languages. Two NXA recognize the same language if
and only if their Xor is zero. The automaton which recognizes the xor of two
languages is simply the (disjoint) union of both graphs. Therefore we just need
to minimize this automaton and test whether the final dimension is 0. This test
is polynomial in the input. In the opposite, testing equality of languages from
two NDA would require an exponential determinization.

Polynomial Brzozowski. From a DFA, the classical Brzozowski minimiza-
tion algorithm [2] (mirror,determinize,mirror,determinize) computes the MDA
in exponential time and space, because of the determinization of the mirror lan-
guage. The Xor variants provide a better alternative: given as input a DFA,
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one can compute the same MDA with: mirror, linear accessibility, mirror, then
xor-determinization. This construction is now proved polynomial in the input.
Indeed, the first three (mirror, lin. acces, mirror) provide linear distinguishabil-
ity in polynomial time in the input. During the last determinization, the suffix-
languages coming from each subset of states are all different (linear combinations
of linearly independent LA(ei) are all different!). Therefore after determinization,
the automaton is deterministic, accessible and distinguishable: it is the MDA.
The last xor-determinization is polynomial in its output, which is smaller than
the DFA we started from.
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Abstract. We investigate cellular automata whose internal inter-cell
communication is bounded. The communication is quantitatively mea-
sured by the number of uses of the links between cells. It is shown that
even the weakest non-trivial device in question, that is, one-way cellular
automata where each two neighboring cells may communicate constantly
often only, accept rather complicated languages. We investigate the com-
putational capacity of the devices in question and prove an infinite strict
hierarchy depending on the bound on the total number of communica-
tions during a computation. Despite their sparse communication even
for the weakest devices, by reduction of Hilbert’s tenth problem unde-
cidability of several problems is derived. Finally, the question whether a
given real-time one-way cellular automaton belongs to the weakest class
is shown to be undecidable. This result can be adapted to answer an
open question posed in [16].

1 Introduction

We study the parallel computational model of cellular automata which are linear
arrays of identical copies of deterministic finite automata, where the single nodes,
which are called cells, are homogeneously connected to their both immediate
neighbors. They work synchronously at discrete time steps. In the general case,
in every time step the state of each cell is communicated to its neighbors. That
is, on one hand the state is sent regardless of whether it is really required, and on
the other hand, the number of bits sent is determined by the number of states.
The latter question has been dealt with in [4,5,11,12,13,17] where the bandwidth
of the inter-cell links is bounded by some constant being independent of the
number of states. The former question concerns the amount of communication
necessary for a computation. In [14,15] two-way cellular automata are considered
where the number of proper state changes is bounded. There are strong relations
to inter-cell communication. Roughly speaking, a cell can remember the states
received from its neighbors. As long as these do not change, no communication
is necessary. Here we investigate cellular automata where the communication is
quantitatively measured by the number of uses of the links between cells. Bounds
on the sum of all communications of a computation as well as bounds on the
maximal number of communications that may appear between each two cells are
considered.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 34–43, 2009.
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In the next section we present some basic notions and definitions, and in-
troduce the classes of communication bounded cellular automata. Examples of
constructions for important types of languages are presented. Then, in Section 3
some computational capacity aspects are investigated, where an infinite strict
hierarchy depending on the bound on the total number of communications dur-
ing an computation is shown. Since the proof methods used in connection with
the number of state changes in [14,15] apply also for the devices in question we
adapt and summarize some of the known results.

Section 4 is devoted to decidability problems. We consider the weakest non-
trivial device in question, that is, one-way cellular automata where each two
neighboring cells may communicate constantly often only, and show by reduction
of Hilbert’s tenth problem undecidability of several problems. It turns out that
also the question whether or not a given real-time one-way cellular automaton
belongs to the weakest class of cellular automata with sparse communication
is undecidable. This result can be adapted to answer an open question posed
in [16].

2 Definitions and Preliminaries

We denote the positive integers and zero {0, 1, 2, ...} by N. The empty word is
denoted by λ, the reversal of a word w by wR, and for the length of w we write |w|.
For the number of occurrences of a subword x in w we use the notation |w|x, and
for a set of words X , we define |w|X =

∑
x∈X |w|x. We use ⊆ for inclusions and ⊂

for strict inclusions. For a function f : N → N we denote its i-fold composition
by f [i], i ∈ N, where f [0] denotes the identity.

A cellular automaton is a linear array of identical deterministic finite state
machines, sometimes called cells. Except for the leftmost cell and rightmost cell
each one is connected to its both nearest neighbors. We identify the cells by
positive integers. The state transition depends on the current state of each cell
and on the information which is currently sent by its neighbors. The informa-
tion sent by a cell depends on its current state and is determined by so-called
communication functions. The two outermost cells receive a boundary symbol
on their free input lines once during the first time step from the outside world.
Subsequently, these input lines are never used again. A formal definition is:

Definition 1. A cellular automaton (CA) is a system 〈S, F, A, B, #, bl, br, δ〉,
where S is the finite, nonempty set of cell states, F ⊆ S is the set of accepting
states, A ⊆ S is the nonempty set of input symbols, B is the set of commu-
nication symbols, # /∈ B is the boundary symbol, bl, br : S → B ∪ {⊥} are
communication functions which determine the information to be sent to the left
and right neighbors, where ⊥ means nothing to send, and δ : (B ∪{#,⊥})×S×
(B ∪ {#,⊥})→ S is the local transition function.

A configuration of a cellular automaton 〈S, F, A, B, #, bl, br, δ〉 at time t ≥ 0 is a
description of its global state, which is actually a mapping ct : [1, . . . , n] → S,
for n ≥ 1. The operation starts at time 0 in a so-called initial configuration. For
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a given input w = a1 · · · an ∈ A+ we set c0,w(i) = ai, for 1 ≤ i ≤ n. During its
course of computation a CA steps through a sequence of configurations, whereby
successor configurations are computed according to the global transition func-
tion Δ: Let ct, t ≥ 0, be a configuration. Then its successor configuration ct+1 =
Δ(ct) is as follows. For 2 ≤ i ≤ n−1, ct+1(i) = δ(br(ct(i−1)), ct(i), bl(ct(i+1))),
and for the leftmost and rightmost cell we set c1(1) = δ(#, c0(1), bl(c0(2))),
ct+1(1) = δ(⊥, ct(1), bl(ct(2))), for t ≥ 1, and c1(n) = δ(br(c0(n − 1)), c0(n), #),
ct+1(n) = δ(br(ct(n − 1)), ct(n),⊥), for t ≥ 1. Thus, the global transition func-
tion Δ is induced by δ.

An input w is accepted by a CA M if at some time i during its course of
computation the leftmost cell enters an accepting state. The language accepted
by M is denoted by L(M). Let t : N → N, t(n) ≥ n, be a mapping. If all
w ∈ L(M) are accepted with at most t(|w|) time steps, then M is said to be of
time complexity t.

An important subclass of cellular automata are so-called one-way cellular
automata (OCA), where the flow of information is restricted to one way from
right to left. For a formal definition it suffices to require that br maps all states
to ⊥, and that the leftmost cell does not receive the boundary symbol during
the first time step.

In the following we study the impact of communication in cellular automata.
The communication is measured by the number of uses of the links between cells.
It is understood that whenever a communication symbol not equal to ⊥ is sent,
a communication takes place. Here we do not distinguish whether either or both
neighboring cells use the link. More precisely, the number of communications
between cell i and cell i + 1 up to time step t is defined by

com(i, t) = |{ j | 0 ≤ j < t and (br(cj(i)) 
= ⊥ or bl(cj(i + 1)) 
= ⊥) }| .

For computations we now distinguish the maximal number of communications
between two cells and the total number of communications. Let c0, c1, . . . , ct(|w|)
be the sequence of configurations computed on input w by some cellular au-
tomaton with time complexity t(n), that is, the computation on w. Then we
define mcom(w) = max{ com(i, t(|w|)) | 1 ≤ i ≤ |w| − 1 } and scom(w) =∑|w|−1

i=1 com(i, t(|w|)). Let f : N → N be a mapping. If all w ∈ L(M) are ac-
cepted with computations where mcom(w) ≤ f(|w|), then M is said to be max
communication bounded by f . Similarly, if all w ∈ L(M) are accepted with com-
putations where scom(w) ≤ f(|w|), then M is said to be sum communication
bounded by f . In general, it is not expected to have tight bounds on the exact
number of communications but tight bounds on their numbers in the order of
magnitude. For the sake of readability we denote the class of CAs that are max
communication bounded by some function g ∈ O(f) by MC(f)-CA, where it is
understood that f gives the order of magnitude. Corresponding notations are
used for OCAs and sum communication bounded CAs and OCAs. (SC(f)-CA
and SC(f)-OCA).

The family of all languages which are accepted by some device X with time
complexity t is denoted by Lt(X). In the sequel we are particularly interested
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in fast computations and call the time complexity t(n) = n real time and write
Lrt(X). To illustrate the definitions we start with an example.

Lemma 1. The language { anbn | n ≥ 1 } belongs to Lrt(MC(1)-OCA).

Proof. The acceptance of the language is governed by two signals. The rightmost
cell is sending a signal B with maximum speed to the left whereas the unique
cell which has an a in its input and has a right neighbor with a b in its input is
sending a signal A with speed 1/2 to the left. When both signals meet in a cell,
an accepting state is assumed. Obviously, { anbn | n ≥ 1 } is accepted and each
cell performs only a finite number of communications. ��

By an obvious generalization of the above construction with suitable signals hav-
ing a certain speed we obtain that the languages { anbncn | n ≥ 1 }, { anbmcndm |
n, m ≥ 1 }, and { an

1an
2 · · ·an

k | n ≥ 1 }, for k ≥ 1 and different symbols
a1, a2, . . . , ak, are accepted by real-time MC(1)-OCAs as well. The languages
are non context free.

For the language { anbn1cmbn2 | n, m ≥ 1 ∧ n1, n2 ≥ 0 ∧ n1 + n2 = n }
the above technique of suitable signals having an appropriate speed cannot be
applied, since the block of cs may be arbitrary large. Here, the first idea is to
use two different signals B and ◦. All b-cells send a signal B to the left which is
matched against the a-cells. All c-cells send a signal ◦ to the left which does not
affect the matching of a-cells and B-signals. This approach implies that some
cells may forward an arbitrary number of signals B or ◦ and leads to a real-
time OCA which is not an MC(1)-OCA. But, we can overcome this problem by
applying the following technique. Whenever some cell has sent a signal X to the
left, it sends ⊥ in the next time steps as long as no other signal Y 
= X has
to be sent to the left. The cells which obtain some signal X for the first time
store this in their state. The information ⊥ arriving in the next time steps can
then be interpreted as “nothing has changed,” that is, each ⊥ is interpreted as a
signal X and is suitably processed. It can be observed that in this way each cell
performs only a finite number of communications as long as only a finite number
of blocks of identical signals has to be sent to the left.

Lemma 2. The language { anbn1cmbn2 | n, m ≥ 1 ∧ n1, n2 ≥ 0 ∧ n1 + n2 = n }
belongs to Lrt(MC(1)-OCA).

Proof. All b-cells send a signal B which is forwarded by all b-cells and c-cells
and is matched against the a-cells. That is, when a signal B arrives in an a-cell
it is stopped and the cell is marked as a matched cell. When a signal B arrives
at a marked a-cell, the signal is forwarded to the left as long as it arrives at
an unmarked a-cell where it is stopped and marks the cell as matched. The
c-cells send a signal ◦ which is forwarded by b-cells to the left. All a-cells are
forwarding ◦-signals to the left as long as they are stopped by an a-cell which has
not yet sent a signal B to the left. These ◦-signals do not affect the matching
of a-cells with B-signals, but they carry the information that the first block
of b’s has been processed. Initially, in the rightmost cell a signal � is started
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which checks the correct formatting and forces a marked a-cell which has not
been used to forward a B-signal to enter an accepting state. Additionally, the
signal � is stopped. In this way, a real-time OCA acceptor has been constructed.
By applying the technique described above we obtain a real-time MC(1)-OCA,
since we have one block of signals B followed by one block of signals ◦, which is
followed by another block of signals B. Thus, the assertion follows. ��

A straightforward generalization yields the next lemma.

Lemma 3. Let k ≥ 0 be a constant. Then language Lk = { anw | n ≥ 1 ∧ w ∈
(b∗c∗)kb∗ ∧ |w|b = n } belongs to Lrt(MC(1)-OCA).

3 Computational Capacity

In [14,15] two-way cellular automata are considered where the number of proper
state changes is bounded. By applying the technique of saving communication
steps by storing the last signal received in the state and to interpret an arriving⊥
suitably, it is not hard to see, that such a device can be simulated by the corre-
sponding communication bounded device. Whether or not state change bounded
devices are strictly weaker than communication bounded ones is an open prob-
lem. However, the restrictions introduced in [14,15] have been investigated with
respect to communication in cellular automata, and the proof methods used
apply also for the devices in question.

Theorem 1 ([14,15]). 1. Lrt(MC(1)-CA) ⊂ Lrt(SC(n)-CA).
2. REG ⊂ Lrt(MC(1)-CA) ⊂ Lrt(MC(

√
n)-CA) ⊂ Lrt(MC(n)-CA).

Next we turn to show an infinite proper hierarchy of real-time SC(f)-CA families.
We start with the top of the hierarchy.

Theorem 2. Let f : N → N be a function. If f ∈ o(n2/log(n)), then language
L = {wcwR | w ∈ {a, b}+ } is not accepted by any real-time SC(f)-CA.

Proof. In contrast to the assertion, assume that L is accepted by some real-time
SC(f)-CA M. We consider accepting computations on wcwR.

We claim that for any constant k > 0, there must exist a length nk ≥ 2 such
that for all w ∈ {a, b}2nk there is a cell j(w), where nk + 1 ≤ j(w) ≤ 2nk, such
that the number of communications occurring between cells j(w) and j(w) + 1
is at most k4nk/ log(4nk).

If the claim would be wrong, then there would be a constant k > 0, such that
for all lengths nk there is a word w ∈ {a, b}2nk such that for all nk +1 ≤ j(w) ≤
2nk, the number of communications occurring between cells j(w) and j(w)+1 is
at least k4nk/ log(4nk). Therefore, the total number of communications during
an accepting computation on wcwR is at least k4nk(2nk − nk − 1)/ log(4nk)
which is of order Ω(n2

k/log(nk). Since for all lengths nk there is such a word w,
a contradiction to the assumption f ∈ o(n2/log(n)) follows, and the claim is
shown.
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Now we turn to derive an upper bound on the number of possibilities for some
r communications between two cells in real-time computations. To this end, we
have to consider the information to be communicated as well as the time steps
at which the communications take place. There are

(
n
r

)
possibilities to choose

time steps, and (|B| + 1)2 − 1 possibilities to use a link, where both cells must
not send ⊥ simultaneously in order to have a communication at all. So, there
are at most(

n

r

)
((|B|+ 1)2 − 1)r ≤ nr

(r/2)r/2 2log(|B|+1)2r ≤ nr2r/2

rr/2 2log(|B|+1)2r

≤ 2log(n)r+r/2+log(|B|+1)2r−log(r)r/2

≤ 2k0 log(n)r, for some constant k0 ≥ 1,

possibilities. Next we choose k < 1/(16k0) and apply the claim shown above.
So, there is an nk ≥ 2 such that for all w ∈ {a, b}2nk there is a cell j(w),
where nk + 1 ≤ j(w) ≤ 2nk, such that the number of communications oc-
curring between cells j(w) and j(w) + 1 is at most r = k4nk/ log(4nk). For

these communications there are at most 2k0 log(4nk+1)r ≤ 2k02 log(4nk)k 4nk
log(4nk) ≤

2k02 log(4nk) 1
16k0

4nk
log(4nk) ≤ 2

nk
2 possibilities. Since there are 2nk words of length

nk, there must exist two words

w1 = u1u2 · · ·unk
unk+1 · · ·uj(w1)uj(w1)+1 · · ·u2nk

and
w2 = v1v2 · · · vnk

vnk+1 · · · vj(w2)vj(w2)+1 · · · v2nk

with accepting computations on w1cw
R
1 and w2cw

R
2 that differ in their first nk

symbols, and that imply exactly the same communications between cells j(w1)
and j(w1) + 1 on one hand and between cells j(w2) and j(w2) + 1 on the other
hand. Therefore, also the input u1u2 · · ·unk

unk+1 · · ·uj(w1)vj(w2)+1 · · · v2nk
cwR

2
is accepted, which is a contradiction since it does not belong to L. ��

In order to define witness languages that separate the levels of the hierarchy, for
all i ≥ 1, the functions ϕi : N → N are defined by ϕ1(n) = 2n, and ϕi(n) =
2ϕi−1(n), for i ≥ 2, and we set Li = {w$ϕi(|w|)−2|w|wR | w ∈ {a, b}+ }.

Lemma 4. Let i ≥ 1 be an integer and f : N → N be a function. If f ∈
o((n log[i](n))/log[i+1](n)), then language Li is not accepted by any real-time
SC(f)-CA.

Lemma 5. Let i ≥ 1 be an integer. Then language Li is accepted by some real-
time SC(n log[i](n))-CA.

Theorem 3. Let i ≥ 0 be an integer. Then Lrt(SC(n log[i+1](n))-CA) is prop-
erly included in Lrt(SC(n log[i](n))-CA).

Proof. The inclusion is trivial. For i = 0, consider the linear context-free lan-
guage L = {wcwR | w ∈ {a, b}+ }. In [10] it is shown that any linear context-free
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language is accepted by some real-time CA. So, obviously it is accepted by a real-
time SC(n2)-CA. Since n log(n) ∈ o(n2/log(n)), language L does not belong to
Lrt(SC(n log(n))-CA) by Theorem 2. For i ≥ 1, a witness for the properness of
the inclusion is language Li. By Lemma 5 it belongs to Lrt(SC(n log[i](n))-CA).

Since n log[i+1](n) = n(log[i+1](n))2

log[i+1](n) and

lim
n→∞

n(log[i+1](n))2

log[i+1](n)
n log[i](n)
log[i+1](n)

= lim
n→∞

n(log[i+1](n))2

n log[i](n)
= lim

n→∞

(log[i+1](n))2

2log[i+1](n)
= 0

we have n log[i+1](n) ∈ o((n log[i](n))/log[i+1](n)). Therefore, by Lemma 4 lan-
guage Li does not belong to Lrt(SC(n log[i+1](n))-CA). ��

4 Decidability Questions

Two of the common techniques to show undecidability results are reductions
of Post’s Correspondence Problem or reductions of the emptiness and finite-
ness problem on Turing machines using the set of valid computations. Both
techniques have been used successfully to obtain results for variants of cellular
automata [6,7,8,9]. Here we first show that emptiness is undecidable for real-time
MC(1)-OCAs by reduction of Hilbert’s tenth problem which is known to be unde-
cidable. The problem is to decide whether a given polynomial p(x1, . . . , xn) with
integer coefficients has an integral root. That is, to decide whether there are inte-
gers α1, . . . , αn such that p(α1, . . . , αn) = 0. In [1] Hilbert’s tenth
problem has been used to show that emptiness is undecidable for certain multi-
counter machines. As is remarked in [1], it is sufficient to restrict the vari-
ables x1, . . . , xn to take non-negative integers only. If p(x1, . . . , xn) contains
a constant summand, then we may assume that it has a negative sign. Oth-
erwise, p(x1, . . . , xn) is multiplied with −1. Such a polynomial then has the
following form: p(x1, . . . , xn) = t1(x1, . . . , xn) + . . . + tr(x1, . . . , xn), where each
tj(x1, . . . , xn) (1 ≤ j ≤ r) is a term of the form tj(x1, . . . , xn) = sjx

ij,1
1 . . . x

ij,n
n

with sj ∈ {+1,−1} and ij,1, . . . , ij,n ≥ 0. Additionally, we may assume that the
summands are ordered according to their sign, i.e., there exists 1 ≤ q ≤ r such
that s1 = . . . = sq = 1 and sq+1 = . . . = sr = −1. Moreover, constant terms are
occurring only at the end of the sum. I.e., tr = . . . = tr−c+1 = −1, if p contains
c > 0 constant terms. Finally, let ij =

∑n
t=1 ij,t.

Now, we consider a polynomial p(x1, . . . , xn) with integer coefficients that
has the above form. We first look at the positive terms tj of p(x1, . . . , xn) with
1 ≤ j ≤ q and define languages L(tj) as follows.

L(tj) = {bα1
1 . . . bα1

ij,1
bα2
ij,1+1 . . . bα2

ij,1+ij,2
. . . bαn

ij,1+...+ij,n−1+1 . . . bαn

ij
·

fj(α1, . . . , α1︸ ︷︷ ︸
ij,1

, . . . , αn, . . . , αn︸ ︷︷ ︸
ij,n

)¢ | α1, . . . , αn ≥ 0}
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where fj : Nij → {$1, $2, . . . , $ij}∗ is inductively defined by the following rules
with 1 ≤ i ≤ ij − 1.

fj(α1, . . . , αij ) =
(
f

(ij−1)
j (α1, . . . , αij−1)$ij

)αij

f
(i)
j (α1, . . . , αi) =

(
f

(i−1)
j (α1, . . . , αi−1)$i

)αi−1
f

(i−1)
j (α1, . . . , αi−1)

f
(0)
j = λ

For the negative, non-constant terms tj with q+1 ≤ j ≤ r the definition of L(tj)
is identical except for the fact that each symbol $k is replaced by some symbol
dk. For each negative, constant term tj , we define L(tj) = {d1}.

Lemma 6. For 1 ≤ j ≤ r, |fj(α1, . . . , αij )| = α1 · α2 · . . . · αij .

Thus, if w ∈ L(tj) and w contains � symbols $ or d, respectively, then there
exist non-negative integers α1, . . . , αn such that tj(α1, . . . , αn) = sj · �. In other
words, the number of symbols $ or d occurring in L(tj) denote all evaluations
of tj on non-negative integers. Furthermore, symbols $ or d denote evaluations
with positive or negative sign, respectively.

Lemma 7. For 1 ≤ j ≤ r, let tj be a non-constant term. Then language L(tj)R

belongs to Lrt(MC(1)-OCA).

We next consider the following regular languages Rk depending on the sign of
tk. We set Rk = b∗1 . . . b∗ik,1

. . . b∗ik,1+...+ik,n−1+1 . . . b∗ik
{$1, . . . , $ik

}∗¢ if sk = 1,
Rk = b∗1 . . . b∗ik,1

. . . b∗ik,1+...+ik,n−1+1 . . . b∗ik
{d1, . . . ,dik

}∗¢ if sk = −1 and tk is
non-constant, and Rk = d∗

1¢ otherwise. Then, we define

L̃(tj) = {aα1
1 . . .aαn

n w1 . . .wj−1b
α1
1 . . . bα1

ij,1
. . . bαn

ij,1+...+ij,n−1+1 . . . bαn

ij
·

fj(α1, . . . , α1︸ ︷︷ ︸
ij,1

, . . . , αn, . . . , αn︸ ︷︷ ︸
ij,n

)¢wj+1 . . .wr | α1, . . . , αn ≥ 0 and wi ∈ Ri}

and consider L̃(p) =
⋂r

i=1 L̃(tj)R.

Lemma 8. The language L̃(p) belongs to Lrt(MC(1)-OCA).

Proof. Since Lrt(MC(1)-OCA) is closed under intersection, we have to show that
each L̃(tj)R belongs to Lrt(MC(1)-OCA). If tj is a constant term, then L̃(tj)R

is a regular language and therefore is in Lrt(MC(1)-OCA). Now, let tj be a non-
constant term. As in the proof of Lemma 7 we describe a real-time MC(1)-OCA
accepting L̃(tj) which has information flow from left to right and accepts in
the rightmost cell. Then, L̃(tj)R belongs to Lrt(MC(1)-OCA). Due to Lemma 7
we know that an MC(1)-OCA accepting L(tj) can be constructed. We general-
ize this construction by concatenating the regular languages a∗

1 . . . a∗
nR1 . . . Rj−1

and Rj+1 . . . Rr to L(tj) from right and left, respectively. It can be observed
that this can be done by an MC(1)-OCA. It remains to be shown that for
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1 ≤ k ≤ n the number of symbols ak is equal to each the number of symbols
bij,1+...+ij,k−1+1, . . . , bij,1+...+ij,k

. This can be achieved by an obvious general-
ization of the construction given in the proof of Lemma 2. All ak-cells send
signals ak to the right. Whenever the (j − 1)st ¢-cell has been passed, the
matching of bij,1+...+ij,k−1+m-cells (1 ≤ m ≤ ij,k) with the signal ak starts.
Due to Lemma 2, this task can be done by some MC(1)-OCA. This implies
L̃(tj)R ∈ Lrt(MC(1)-OCA) and shows the lemma. ��

Finally, let X be the set of all occurring symbols $k and Y be the set of all
occurring symbols dk. Then, we define L(p) = {w ∈ L̃(p) | |w|X = |w|Y }.

Lemma 9. The language L(p) belongs to Lrt(MC(1)-OCA).

Theorem 4. Given an arbitrary real-time MC(1)-OCA M, it is undecidable
whether L(M) is empty.

Proof. Due to Lemma 9 we can construct a real-time MC(1)-OCAM accepting
L(p). By the construction of L(p), it is not difficult to observe that M accepts
the empty set if and only if p(x1, . . . , xn) has no solution in the non-negative
integers. Since Hilbert’s tenth problem is undecidable, we obtain that the empti-
ness problem for real-time MC(1)-OCAs is undecidable. ��

Corollary 1. The problems finiteness, infiniteness, universality, equivalence,
inclusion, regularity, and context-freedom are undecidable for arbitrary real-time
MC(1)-OCAs.

Theorem 5. It is undecidable for an arbitrary real-time OCA M whether M
is a real-time MC(1)-OCA.

Proof. Let M′ be a real-time MC(1)-OCA and consider the language LM′ =
{ a|w|w | w ∈ L(M′) } where a is some new alphabet symbol. A real-time
OCA M accepting LM′ can be described as follows. The correct number of
a- and non-a-symbols can be checked in the same way as it is done for the
language { anbn | n ≥ 1 } (see Lemma 1). The cells initially carrying non-a sym-
bols are simulating the given real-time MC(1)-OCAM′. Whenever the leftmost
non-a-cell enters an accepting state of M′, which can be detected by its left
neighboring cell, some signal A is sent with maximum speed to the left. This
signal forces all a-cells to communicate in every time step. In the rightmost cell,
some signal is started which checks the correct input and enters an accepting
state in the leftmost cell whenever the format is correct, the number of a- and
non-a-symbols is correct, and the A-signal has reached the leftmost cell. It can be
observed that the number of communication steps in each cell in the first block
of a-cells depends on the length of w, if w ∈ LM′ . Thus, M is an MC(1)-OCA if
and only if LM′ is finite. Since finiteness is undecidable for MC(1)-OCAs due to
Corollary 1, we obtain that the question whether M is a real-time MC(1)-OCA
is undecidable as well. ��
In conclusion we state that the results can also be adapted to cellular automata
where the number of proper state changes is bounded [14,15], which answers an
open question posed in [16].
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A Cellular Automaton Model for Car Traffic
with a Slow-to-Stop Rule
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Abstract. We propose a modification of the widely known Benjamin-
Johnson-Hui (BJH) cellular automaton model for single-lane traffic
simulation. In particular, our model includes a ‘slow-to-stop’ rule that
exhibits more realistic microscopic driver behaviour than the BJH model.
We present some statistics related to fuel economy and pollution genera-
tion and show that our model differs greatly in these measures. We give
concise results based on extensive simulations using our system.

Keywords: cellular automata, car traffic, highway, single lane, model,
simulation.

1 Introduction

An almost universal daily annoyance in most North American cities is getting
slowed down or stuck in traffic. Many people spend hours each day in traffic,
slowly losing their money and sanity while generating unnecessary pollution. Un-
fortunately, in many cities the addition of more highways to reduce the growing
amount of congestion is far too expensive since the land is already developed.
Because of these limitations, if traffic management is to be improved, it is impor-
tant to understand the dynamics of car traffic flow extremely well to facilitate
the planning and prediction of high density traffic. The earliest traffic flow mod-
els were based on fluid dynamics, but more recently cellular automata (CA)
based models have been gaining popularity. This is partly because simulations
are easy to develop and run very quickly (especially on designated parallel hard-
ware), but also since cars in traffic operate under their own power and do not
emulate particle flow based on the laws of physics particularly well.

The first study using CA for car traffic simulation was conducted by Nagel
and Schreckenberg [1], who develop a simple stochastic CA model to simulate
single-lane highway traffic. Essentially, the model says that all cars follow the
same basic transition rules, and then move v sites at each time interval. They
increase their velocity v by 1 up to some limit as long as there are no cars v
spaces ahead of them, slow down to speed i− 1 if they see a car i spaces ahead
of them, and randomly slow down by one speed unit with some probability p.
The authors observe nontrivial, realistic simulation, particularly the transition
from laminar traffic flow to start-stop waves as density increases.
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In this paper, we focus on the microscopic behaviour of cars in the BJH
model (a modification of the Nagel-Schreckenberg model) - specifically the fact
that they decelerate in a very unrealistic way. Since cars only decelerate to avoid
collisions, it is a frequent occurrence that cars drive up to a jam at maximum
speed and slow down to a stop in a single time step. In order to more closely
simulate the behaviour of human drivers, we propose a modification to the BJH
model where cars begin slowing down earlier by an amount which is a function
of their speed, the speed of the car ahead, and the distance to the car ahead.

We give a short summary of selected papers relating to CA-based traffic mod-
elling in Section 2. We describe our model in detail in Section 3 and present
simulations that compare it with the BJH model. In Section 4 we present a
brief comparison of our model with other recent extensions of the NaSch model.
Finally, we summarize and conclude the paper in Section 5.

2 Summary of CA-Based Traffic Simulation Models

The Nagel-Schreckenberg (NaSch) model [1] has been studied quite extensively
in several papers [2,3,4,5,6].

Another model developed by Benjamin, Johnson, and Hui (BJH model) [7]
is quite similar to the NaSch model, but with the addition of a ’slow-to-start’
rule. That is, a vehicle which has come to a complete stop moves forward at its
first available opportunity with probability 1− pslow, and on the time step after
that with probability pslow. The authors used this model to study the effect of
junctions on highways, finding that setting a speed limit near junctions on single
lane roads can greatly decrease the queue length to enter the road.

Since almost all major highways have two lanes or more, several researchers
have constructed multi-lane models for highway traffic. The first work in this
area was done by Rickert et al. [8], who designed a working model based on the
NaSch model. They noticed that checking for extra space when switching lanes
(’look-back’) is an important feature of their model in order to get the realistic
behaviour of laminar to start-stop traffic flow. Wagner et al. [9] design a two-lane
simulation which accounts for a faster left lane which is to be used for passing.
Using simple rules, they are able to obtain the realistic behaviour that at higher
overall densities, the left lane has a higher density than the right one. They
remark that this correct macroscopic behaviour is fairly easy to obtain using
a CA model, and cite some failed attempts to simulate multi-lane traffic using
other types of models. Knospe et al. [10] study heterogeneous two-lane traffic
and find that even at low densities, a very small amount of slower cars effectively
cause both lanes to slow significantly. Also, they note that a system with mostly
slow cars and a small percentage of fast cars is almost identical to a system with
all slow cars. Finally, Nagel et al. [11] summarize the existing lane-changing CA
models and propose a general scheme according to which realistic lane-changing
rules can be developed.

Esser and Schreckenberg designed a complete simulation tool for urban traffic
in [12]. The model accounts for realistic traffic light intersections, priority rules,
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parking capacities, and public transport circulation. The simulation of large
traffic networks can be performed in multiple real-time. Several other researchers
have devised related schemes [13,14,15,16,17].

3 A Modified Version of the BJH Model

Here we investigate a modification of the well-known Benjamin-Johnson-Hui
(BJH) CA model [7] for single-lane highway traffic. This model is able to correctly
capture several of the macroscopic characteristics of real traffic using very simple
and computationally fast cellular automata, and as a result, has been studied
extensively and incorporated into several complex traffic simulators. The primary
reason we choose this slightly older model rather than one of the recent more
complex models is that it has extremely simple transition rules which are easy
to understand, so our extension will be clearer.

The BJH model is based on the NaSch model, which we will now describe in
detail. The NaSch model is defined on a one-dimensional cellular space of N cells,
usually with the toroidal (periodic) boundary condition. On a particular time step
each cell either contains a car or is empty, and each car has an integer velocity v
between 0 and vmax inclusive. Given some global configuration of cars at various
velocities, the NaSch model dictates that cars are advanced along the road on the
next time step according to the following rules, which are performed in order and
in parallel for all cars. The quantity d is the distance in cells to the next car ahead.

1. Acceleration: if v < vmax and d > v +1, then velocity increases (v ← v + 1).
2. Slowing down (collision avoidance): if d <= v, then velocity decreases ap-

propriately (v ← d− 1).
3. Randomization: if v > 0, with probability pfault, velocity decreases by one

(v ← v − 1).
4. Motion: the car advances v cells.

These velocity rules implicitly do not allow collisions or overtaking.
The BJH model is a fairly straightforward extension of the NaSch model -

the authors attempt to more accurately simulate the behaviour of drivers which
have come to a complete stop in traffic jams on the highway. Cars which have
velocity 0 either accelerate at their first available opportunity (as soon as there
is an empty space ahead of them) with probability 1 − pslow, or on the time
step immediately after that with probability pslow. Otherwise, they follow the
NaSch model. This scheme is intended to reflect the fact that drivers take longer
to accelerate from a complete stop, perhaps because they do not immediately
notice the car ahead of them moving, or because of the slow pick-up of their car’s
engine. So the BJH model is essentially the NaSch model with the addition of a
’slow-to-start’ rule. An example of cars following the BJH model on a small road
is given in Figure 1, and a more complete picture on a larger road for a longer
period of time is given in Figure 2. In these examples, the initial configuration
is a random placement of ρN cars (0 < ρ < 1) with velocity 1, where N is the
size of the road in cells.
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Fig. 1. A small example of cars following the BJH model. The dots refer to empty cells,
and the numbers represent the velocities of cars. Here the density ρ = 0.2, pfault = 0.1,
and pslow = 0.5. Cars drive from left to right.

Fig. 2. A ’zoomed-out’ view of a larger simulation of the BJH model. Black dots
refer to cars, while white space is empty road. Here the density ρ = 0.15, vmax = 5,
pfault = 0.1, and pslow = 0.5. The road is 1000 cells wide and the last 1000 evolutions
out of 2000 are shown (to reach a steady state). Cars drive from left to right, and time
0 is at the top.
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We noticed that cars following these models behave in an unrealistic fashion
when approaching a jam; if a car B ahead has velocity 0, then a car A may drive
up to B at velocity vmax only to brake down to 0 velocity in one time step in
the cell right behind B. This microscopically inaccurate behaviour may not be
a big issue since these models are only meant to be macroscopically realistic in
some ways, but we believe it could be interesting to explore the addition of a
’slow-to-stop’ rule. That is, we want to modify the BJH model so that cars look
farther ahead than v cells and slow down earlier in certain situations. People
typically pay attention to the velocity of the car directly ahead of them, so we
use this information to aid in the decision of how much and when to slow down.
A car’s change in velocity is then a function of its current velocity, the velocity
of the car ahead of it, and the distance between them.

In our model, the cars’ velocities are adjusted at each time step according to
the following rules. Recall that d is the distance to the next car, v is the velocity
of the current car, vnext is the velocity of the next car, pslow is the probability
that the slow-to-start rule is applied, and pfault is the probability that the car
slows down randomly. We fix vmax = 5.

1. Slow-to-Start: As in the BJH rule, if v = 0 and d > 1 then with probability
1− pslow the car accelerates normally (this step is ignored), and with prob-
ability pslow the car stays at velocity 0 on this time step (does not move)
and accelerates to v = 1 on the next time step.

2. Deceleration (when the next car is near): if d <= v and either v < vnext

or v <= 2, then the next car is either very close or going at a faster speed,
and we prevent a collision by setting v ← d− 1, but do not slow down more
than is necessary. Otherwise, if d <= v, v >= vnext, and v > 2 we set
v ← min(d− 1, v− 2) in order to possibly decelerate slightly more, since the
car ahead is slower or the same speed and the velocity of the current car is
substantial.

3. Deceleration (when the next car is farther): if v < d <= 2v, then if v >=
vnext+4, decelerate by 2 (v ← v−2). Otherwise, if vnext+2 <= v <= vnext+3
then decelerate by 1 (v ← v − 1).

4. Acceleration: if the speed has not been modified yet by one of rules 1-3 and
v < vmax and d > v + 1, then v ← v + 1.

5. Randomization: if v > 0, with probability pfault, velocity decreases by one
(v ← v − 1).

6. Motion: the car advances v cells.

These rules prevent collisions and overtaking. We now attempt to justify the
second and third of these rules, which differ from the BJH model.

Consider the following scenario: a car with velocity 5 has a car 5 spaces ahead
of it with velocity 0. The BJH model would change the car’s velocity to 4, and
assuming the car ahead still has not moved, the car would be forced to decelerate
to 0 on the next time step. Our model’s second rule decelerates the car to 3 in this
case so that it is two spaces away, then on the next time step to 1 so that it is one
space away, then finally to 0. We believe this is much more realistic behaviour,
since cars which see a stopped car ahead of them would certainly attempt to slow
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Fig. 3. A ’zoomed-out’ view of a larger simulation of our ’slow-to-stop’ model. Black
dots refer to cars, while white space is empty road. The simulation parameters used to
produce this output are the same as those used for Figure 2. Cars drive from left to
right, and time 0 is at the top.

down gradually. In less extreme situations, our model behaves the same way as
the BJH model in terms of collision avoidance. Note that we are assuming for
both models that the car ahead does not move and the randomization rule has
not been applied.

Now consider another situation: a car with velocity 5 has a car 6 spaces ahead
of it with velocity 0. The BJH model would not change the velocity of the car,
resulting in a very sharp deceleration on the next time step as it decelerates
from 5 to 0. Our model’s third rule decelerates the car to 3 so that it is 3 spaces
away on the next time step, then the second rule decelerates the car to 1 so that
it is two spaces away, then the car continues at 1 to the last space, then stops.
Again, we believe that this type of gradual deceleration is typical of real drivers,
and again we have assumed in this scenario that the car ahead does not move
and that the randomization rule has not been applied.

Although both examples involved cars ahead which were stopped, the deceler-
ation rules apply whenever a car is going significantly faster than the car ahead
of it. While the car ahead with velocity 0 is the most illustrative case, the above
examples could also be considered for different ’car ahead’ speeds of 1 or 2.

An example of cars following our ’slow-to-stop’ model is given in Figure 3. In
this example, the simulation parameters are exactly the same as in Figure 2.
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Fig. 4. The ‘fundamental diagram’ for our model. Each point represents the result
from the latter 1000 iterations out of 2000 iterations (to reach steady state) on a road
of length 1000 starting from a random configuration. Car density was set from 0 to 0.8,
in intervals of 0.02, and ten simulations were performed for each density. pfault was set
to 0.1, and pslow = 0.5.

One would think that on a real highway with a fairly low car density, where a
small jam is visible from a distance, drivers would slow down enough beforehand
to allow the stopped cars to continue. The ’slow-to-stop’ rule causes drivers to
go slower when approaching jams, and as we conjectured this added foresight
seems to help to slow down cars enough before the jam so as to let it dissipate
on its own over time. There are fewer long jams with many cars at a complete
stop, and instead there appear to be many slowdowns to avoid these situations,
which we think is fairly accurate behaviour at medium traffic densities.

In Figure 4 we give the so-called ‘fundamental diagram’ for our model.
We were interested to discover the impact on fuel economy that the ’slow-to-

stop’ rule would have on the BJH model, so the average number of acceleration
cycles and loops driven per car were recorded. The number of accelerations per car
was recorded by simply incrementing a counter at each time step by an amount
equal to the number of cars whose velocity increased by 1 on that time step. The
number of loops driven per car was counted by incrementing a counter each time
a car reached the end of the road and started back at the beginning of it. These
two quantities provide at least a rough idea of fuel economy. For the simulation pa-
rameters used in Figures 2 and 3 averaged over 10 iterations, it was found that the
average number of acceleration cycles per car for the BJH model and the slow-to-
stop model was 134.3 and 216.7 respectively, and average number of loops driven
per car was 3.7 and 3.4 respectively. It is very interesting that although the ’slow-
to-stop’ cars had several more acceleration cycles (about 61% more), cars travelled
a very similar distance in the same amount of time. Since ’slow-to-stop’ cars tend



A Cellular Automaton Model for Car Traffic with a Slow-to-Stop Rule 51

Fig. 5. A fuel economy diagram comparing our model with the BJH model. Each
point represents the result from the latter 1000 iterations out of 2000 iterations (to
reach steady state) on a road of length 1000 starting from a random configuration.
The same simulation parameters as in Figure 4 were used, but average car speed and
average number of acceleration cycles per car were recorded instead.

to slow down more often, the two models probably had similar distance results
because in the BJH model cars spend more time in complete jams, whereas in our
model cars tend to slow down rather than stop completely.

This type of fuel economy indicator (comparing average number of accelera-
tion cycles per car among simulations with a similar average car velocity) can be
seen more clearly in Figure 5. We can see that for very low or very high average
car velocities (resp. very high or very low ρ values), the two models have fairly
similar fuel consumption characteristics, but in the middle range our slow-to-
stop model causes cars to accelerate much more often. We think this is probably
more realistic, since in the BJH model cars are mostly either at a complete stop,
or are going at maximum speed (as in Figure 2).

4 Comparison with Recent Models

After most of the work for this paper had been completed, a slightly more exten-
sive search of the literature yielded a few strongly related papers. We feel that
it is important to address some of the differences in our work, since there are
several papers which present modifications to the NaSch model.

One of the first papers to propose a modification of the NaSch model was by
Emmerich and Rank [18]. They devise a scheme which describes the change in
velocity by a matrix M , whose indices correspond to the velocity of the current
car and the gap (distance to the next car) and whose entries correspond to the
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speed of the car on the next time step. This model indeed provides a very general
braking scheme, but does not depend on the velocity of the car ahead. A model
by Knospe et al. [19] suggested many modifications to the NaSch model, the most
relevant to our work being the braking according to an ‘effective gap’. This term
is defined to be a function of the ‘anticipated’ velocity of the car ahead, the ‘secu-
rity gap’ (a fixed quantity set at simulation time), and distance to the car ahead.
This is intuitive, however one possible criticism is that the ‘anticipated’ velocity
of the car ahead is a function of that car’s distance to the car ahead of it. Since
drivers cannot always see two cars ahead, this behaviour may lead to unrealistic
car decisions in some situations. Bham and Benekohal [20] developed a very de-
tailed model which they claim is validated at the microscopic and macroscopic
levels using two sets of empirical data. Chakroborty and Maurya [21] compared
this and other models against several macroscopic benchmarking criteria, and
gave their own model as well which passed all of their criteria.

Our model is perhaps simpler to implement than most of these models, since
we use only the speed of the current car, the speed of the car ahead, and the
distance between them in order to determine the velocity on the next time step.
Our modification to the BJH model, though perhaps minor, produces interesting
output and we provide at least some indication of the fuel economy or pollution
generation statistics, a characteristic that is lacking in most of the literature.

5 Conclusion and Future Work

We have presented a modification of the well-known BJH model for single lane
car traffic, designed to simulate the braking behaviour of cars more correctly.
We have provided the fundamental diagram for our model as well as some sup-
plemental simulation results, and have recorded a statistic proportional to fuel
economy and the amount of pollution generated. The simulator1 we have con-
structed is fairly simple to understand and modify, and could be a useful tool
for future researchers to incorporate into their work in this area. It performs an
iteration of cars moving on a road in O(L) time, where L is the length of the
road - of course, a parallel implementation could do this in constant time.

Comparison with empirical traffic data is needed in order to tell if our model
provides realistic figures for fuel economy and general driving and jamming char-
acteristics. We believe it may be interesting to compare traffic data from North
American traffic networks, since there currently appears to be a shortage of this
type of comparison in the literature.
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Abstract. We present implementations of parallel DFA run methods
and find whether and under what conditions is worthy to use the parallel
methods of simulation of run of finite automata.

First, we introduce the parallel DFA run methods for general DFA,
which are universal, but due to the dependency of simulation time on
the number of states |Q| of automaton being run, they are suitable only
for run of automata with the smaller number of states.

Then we show that if we apply some restrictions to properties of au-
tomata being run, we can reach the linear speedup compared to the
sequential simulation method. We designed methods benefiting from k-
locality that allows optimum parallel run of exact and approximate pat-
tern matching automata.

Finally, we show the results of experiments conducted on two types
of parallel computers (Cluster of workstations and Symmetric shared-
memory multiprocessors).

1 Introduction

Finite automata (also known as finite state machines) are the formal system for
solving many tasks in Computer Science. The finite automata run very fast and
there exists many efficient implementations (e.g., [Tho68, NKW05, NKW06]).

The increase of computation power of available computers is based not only on
the increase of CPU frequency but also on other modern technologies. The finite
automata implementations have to consider these technologies. A recent paper
[Hol07] provides a survey of various finite automata implementations considering
CPU (like [NKW05, NKW06]). One of the latest technologies used is a usage of
multiple CPU core. The speed of sequential run of the finite automata cannot
follow the increase of computation power of computers that is mostly based on
dual-core and quad-core processors. Therefore a demand on parallel run of the
finite automata strengthens.
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The parallel run of deterministic finite transducer was first described in [LF80].
We implement deterministic finite automata run on two parallel computer archi-
tectures: Cluster of Workstations (COW) and Symmetric Shared-Memory Multi-
processors (SMP). Since finite automata are very often used in the approximate
and exact pattern matching, we also describe methods of parallel simulation
on these automata exploiting their special properties—they are synchronizing
automata.

2 Finite Automata

Nondeterministic finite automaton (NFA) is a quintuple (Q, Σ, δ, q0, F ), where
Q is a finite set of states, Σ is a set of input symbols, δ is a mapping Q ×
(Σ ∪ {ε}) !→ P(Q), q0 ∈ Q is an initial state, and F ⊆ Q is a set of final
states. Deterministic finite automaton (DFA) is a special case of NFA, where
δ is a mapping Q × Σ !→ Q. We define δ̂ as an extended transition function:
δ̂(q, ε) = q, δ̂(q, ua) = p ⇐⇒ δ̂(q, u) = q′, δ(q′, a) = p, a ∈ Σ, u ∈ Σ∗.

A configuration of DFA is a pair (q, w) ∈ Q × Σ∗. The initial configuration
of DFA is a pair (q0, w) and a final (accepting) configuration of DFA is a pair
(qf , ε), where qf ∈ F . A move of DFA M = (Q, Σ, δ, q0, F ) is a relation "M⊆
(Q× (Σ∗ \ {ε}))× (Q×Σ∗) defined as (q1, aw) "M (q2, w), where δ(q1, a) = q2,
a ∈ Σ, w ∈ Σ∗, q1, q2 ∈ Q. The symbol "∗M denotes a transitive and reflexive
closure of relation "M .

3 DFA Run

3.1 Sequential DFA Run

The sequential run of DFA uses the fact that there is always just one state1

active during the computation. The run of accepting automaton consists of one
for loop over the length of the input text (with iterator j) which contains only
one statement: q ← δ[q, tj ]. Variable q holds the number of active state. When
the for loop finishes we check if we reached a final state (q ∈ F ) and thus DFA
accepts the text. On the other hand in the run of pattern matching automaton
[Mel95, Mel96, Hol96, HIMM01] we check if we reached a final state in each
position of the text to report all occurrences of the pattern. In both cases DFA
runs in time O(n) and space O(|Q||Σ|), where n is the length of the input text.

3.2 DFA Run on a COW

In this section we describe a method of parallel run of DFA on a COW. Let
us remind that on COW-based parallel computers message passing is used for
exchanging data among processors.

1 In this text, we suppose run of completely defined automaton. Any partially defined
automaton can be converted to the equivalent complete one by adding a sink state.
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DFA run method. When running DFA sequentially on input text T of size n,
we start in one initial state and after n steps we reach a state from set Q.

The basic idea of run of DFA on a COW is to divide the input text among all
processors, run the automaton on each of them, and then join all subresults.

Let us have a DFA M and a COW with |P | processors. The input text is
sliced into |P | parts T1, T2, . . .T|P | using block data decomposition. On every
part Ti of input text, M is run and after reading all symbols a state is reached.

A problem comes with joining of subresults. We need to connect the last active
state of processor Pi to the first active state of processor Pi+1 (so that the initial
state of processor Pi+1 is the last active state of Pi). The problem is that the
last active state of processor Pi is known after reading whole part Ti of input
text. If each Pi+1 would need to wait for the last active state Pi and then process
part Ti+1, we reach sequential complexity (or even worse because sending results
between processors is very expensive operation).

To solve this problem we have to consider all states (one after other) as initial
states and to find the corresponding last active state for each of them. After
doing so, we get mappings of one initial state to one last active state. This
mapping can be simply reduced by parallel binary reduction [LF80].

Algorithm 3.1 shows the basic DFA run on a COW. We suppose (for both
COW and SMP), that:

– each processor has built the transition table δ,
– each processor has the set of final states F ,
– processors are ranked by continuous linear sequence of IDs starting with zero

and each of them knows its own as a value of variable2 Pi,
– processor P0 knows which state is the initial state (q0),
– each processor has access to its part of the input text (see below),
– at least two processors execute this algorithm,
– the number |P | of processors executing the algorithm does not change during

algorithm execution and all processors know the value.

We implement a mapping of possible initial states to possible last active states
as vector LPi = [l0, l1, . . . , l|Q|−1], where lj , 0 ≤ j < |Q|, is the last active state
assuming that processor Pi starts in state j and processes part Ti of the input
text (i.e., δ̂(qj , Ti) = lj). The set F of final states is implemented as bit vector
F = [f0, f1, . . . , f|Q|−1], where bit fj = 1, if qj ∈ F , or fj = 0, otherwise.

We also need to implement a vector RPi = [r0, r1, . . . , r|Q|−1] in which we
store information about the automaton run. It depends on our requirements
what kind of information we want to store. We can store a complete sequence of
configurations (q0, w) "∗M (qf , ε), but for our purposes (without loss of general-
ity) we store only a count of final states reached. Each element ri of this vector
contains a number of reached final states assuming initial state being qi.

Finally, the transition function δ is implemented as a transition table T of size
(|Q| × |Σ|), where a ∈ Σ and qj ∈ Q such that qj = δ(qi, a): T [i, a] = qj , qj ∈ Q.

2 This variable is often named ‘my rank’ in MPI programs.
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Algorithm 3.1 (Basic run of DFA on a COW)
Input: T , F , L and R, input text T = t1t2 . . . tn and q0

Output: Output of run of DFA
Method: Set S of active states is used, each processor has its unique number Pi,
number of processors is |P |.

for all P0, P1 . . . P|P |−1 do in parallel
j ← 
Pi

n
|P |�

end position ← 
(Pi + 1) n
|P |� − 1

for k ← 0, 1 . . . |Q| − 1 do
LPi [k] ← k /∗ initialize vector LPi ∗/
RPi [k] ← 0 /∗ initialize vector RPi ∗/

endfor
while j ≤ end position do

for 
 ← 0 . . . |Q| − 1 do
LPi [
] ← T [LPi [
], tj ] /∗ evaluate transition ∗/
if LPi [
] ∈ F then

RPi [
] ← RPi [
] + 1
endif

endfor
j ← j + 1

endwhile
endfor
MPI Barrier() /∗ wait for the slowest processor ∗/
result ← perform parallel reduction()

Distributing and finishing partial results. After running DFA in parallel,
each processor Pi has built mapping LPi (possible initial state to possible last
active state) in local memory. In order to finish parallel DFA run, we need to
join these mappings (reduce results from processors).

The trivial reduction is based on fact, that only the processor P0 knows the
initial state of automaton M . Hence, only the processor P0 can send the last
active state l0 and the number of reached final states r0 to the next processor
P1. This processor uses incoming value l0 to determine which of possible last
active states is correct and sends it to the next processor as an active start
state. Incoming value r0 is added to a corresponding value and also sent to the
next processor.

LPiPj =

⎡⎢⎢⎢⎣
LPj [LPi [0]]
LPj [LPi [1]]

...
LPj [LPi [|Q| − 1]]

⎤⎥⎥⎥⎦ . (1)

In the binary reduction, many reductions are made in one parallel step and
complete vectors L and R are reduced. We define binary operator ⊕DFA, which
makes one mapping LPiPj from mappings LPi and LPj , where Pi and Pj are
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processors performing actual step of binary reduction. This newly created map-
ping LPiPj is built as shown in Formula 1.

This vector LPiPj is either the final result of the binary reduction or will be
used in the next reduction operation. At the end of the binary reduction we have
got mapping LPiPj , where i = 0 and j = |P | − 1, hence value of LPiPj [q0] is the
last active state of run of automaton M .

Vector R is reduced similarly:

RPiPj =

⎡⎢⎢⎢⎣
RPi [0] +RPj [LPi [0]]
RPi [1] +RPj [LPi [1]]

...
RPi [|Q| − 1] +RPj [LPi [|Q| − 1]

⎤⎥⎥⎥⎦ . (2)

Theorem 3.1
The time of the run of general DFA shown in Algorithm 3.1 using Parallel trivial
reduction is O( |Q|n

|P | +log |P |+|P |), where |Q| is the number of states of the DFA,
n is the length of input text and |P | is the number of processors in COW.

Theorem 3.2
The time of the run of general DFA shown in Algorithm 3.1 using Parallel binary
reduction is O( |Q|n

|P | + log |P |+ |Q| log |P |), where |Q| is number of states of the
DFA, n is the length of input text and |P | is the number of processors in COW.

Analysis of DFA run method. The sequential method of DFA run has time
complexity SU(n) = O(n). Theorems 3.1 and 3.2 show that parallel method of
DFA run depends in addition on |P | and on the number of states of M being
run.

If we suppose that the length of the input text is far greater than the number of
processors (|P | # n), we can ignore the barrier part O(log |P |) in the complexity
formula. This overhead is common in parallel algorithms and barrier is made only
once per run of the algorithm. Contrary to the sequential run of DFA, the parallel
run depends also on the number of states |Q|. This dependency is present because
of precomputing possible terminal states (there is a lot of subresults computed
by each processor, but only on of them is used).

If we use the trivial reduction, we need time T(n, |P |) = O( |Q|n
|P | +log |P |+|P |).

If we suppose |P | # n and |P | # |Q|, we can omit the barrier and reduction
parts of complexity formula, so we get T(n, |P |) = O( |Q|n

|P | ). Speedup is then

S(n, |P |) = O
(

SU(n)
T(n, |P |)

)
= O

⎛⎝ n
|Q|n
|P |

⎞⎠ = O
(
|P |
|Q|

)
(3)

We can see that parallel speedup depends on the number of processors |P | and
the number of states |Q|. If we increase |P |, we speed up the run of the algorithm.
If we run a DFA with more states than the number of processors, we do not reach
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the optimum time of computation. On the other hand the run of DFAs with less
states is faster than the sequential algorithm.

If we use the parallel binary reduction, we run DFA in time O( |Q|n
|P | +log |P |+

|Q| log |P |). At this formula, we can not simply omit the reduction part of formula
O(|Q| log |P |) because it depends not only on the number of processors |P |, but
also on the number of states |Q|. As mentioned above, this method of DFA run
is not suitable DFAs with more states than the number of processors, so if we
accept this, we can get rough approximation of speedup which is the same as in
Formula 3.

Summary of DFA run method on COW. The algorithm does not need any
communication operation during reading of input text, but the penalty for this is
necessity to precompute possible initial states, which has increased complexity
|Q| times. This method is not suitable for run of DFAs with large number of
states, but may fit for parallel run of small DFAs with a large input text.

3.3 Run of DFA on a SMP

In this section we describe a method of parallel run of DFA on SMP. Contrary
to processors of COW, SMP processors have shared address space, so that each
processor can access memory of another one.

Basic DFA run. We divide the input text among processors, run the automaton
on each of them, supposing each state of automaton as initial state, and join
partial results into the result of the run. Since we have a share memory at
disposal, we do not need to send messages in order to join subresults. At the
beginning of the DFA run we can allocate shared memory for all processors, let
each processor to work on its part of memory and compute final result of DFA
run using this memory at the end of the DFA run.

Remark 3.3
Here, we suppose usage of OpenMP library, its pragmas and functions, so all
variables, memory allocations, and memory writes in the algorithm, executed
before entering a parallel section (pragma #pragma omp parallel is used in
the source code) are made over the shared memory. It means that in the parallel
section these values can be accessed by processors and even if they are at the
beginning of parallel section marked as private, they will contain original values.

Algorithm 3.2 shows the basic run of DFA on a SMP. As in DFA run on a COW,
we need to implement vectors L and R. These vectors have similar purpose.
Since in SMP the memory is shared, vectors L and R for all processors compose
matrices (vectors of vectors). Vectors in the matrices are indexed by the processor
number. Vector F and matrix T remain the same. Since they are shared, they
are set up only at beginning of run of algorithm and then the are used by all
processors only for reading.
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L[p] =

⎡⎢⎢⎢⎣
l0
l1
...

l|Q|−1

⎤⎥⎥⎥⎦ , R[p] =

⎡⎢⎢⎢⎣
r0
r1
...

r|Q|−1

⎤⎥⎥⎥⎦ (4)

Mapping of possible initial states to possible last active states is implemented as
matrix L of size |Q| × |P | (L[i] = [l0, l1, . . . , l|Q|−1]), where i ∈ 0, . . . , |P | − 1 is a
number of processor, lj , 0 ≤ j < |Q|, is the last active state assuming that proces-
sor i starts in state j and processes part Ti of the input text (i.e., δ̂(qj , Ti) = lj).
The count of reached final states3 is stored in matrix R of size |Q| × |P | and
each processor Pi has its own column (vector R[i] = [r0, r1, . . . , r|Q|−1]). Each
item rj of this vector contains the number of reached final states assuming initial
state qj .

Algorithm 3.2 (Basic run of DFA on a SMP)
Input: A transition table T , set of final states F , mapping from possible initial state
to possible last visited state L and a set R of possibly reached final states of DFA,
input text T = t1t2 . . . tn and initial state q0

Output: Output of run of DFA
Method: Set S of active states is used, each processor has its unique number Pi,
number of processors is |P |.

for all P0, P1 . . . P|P |−1 do in parallel
j ← 
Pi

n
|P |�

end position ← 
(Pi + 1) n
|P |� − 1

for k ← 0 . . . |Q| − 1 do
L[Pi][k] ← k /∗ initialize vector L ∗/
R[Pi][k] ← 0 /∗ initialize vector R ∗/

endfor
while j ≤ end position do

for k ← 0 . . . |Q| − 1 do
L[Pi][k] ← T [L[Pi][k], tj ] /∗ evaluate transition ∗/
if L[Pi][k] ∈ F then

R[Pi][k] ← R[Pi][k] + 1
endif

endfor
j ← j + 1

endwhile
endfor
#pragma omp barrier /∗ wait for the slowest processor ∗/
result ← perform parallel reduction()

3 As we have mentioned in Section 3.2, we can store more complex information than
is the count of reached final states.
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The reduction of partial results is made either sequentially by one processor,
which accesses shared memory and computes the final result, or by all processors
using the binary reduction, where more processors access different memory cells
and join them into the final result.

Theorem 3.4
The time of the run of general DFA shown in Algorithm 3.2 using the sequential
reduction is O( |Q|n

|P | + log |P | + |P |), where |Q| is the number of states of the
DFA, n is the length of the input text and |P | is number of processors of SMP.

Theorem 3.5
The time of the run of general DFA shown in Algorithm 3.2 using the parallel
binary reduction is O( |Q|n

|P | +log |P |+ |Q|$log |P |%), where |Q| is number of states
of the DFA, n is the length of input text and |P | is number of processors of SMP.

Analysis of DFA run method. The complexity is the same as for COW
but we do not need to explicitly send messages. We benefit from the shared
memory.

4 Experiments

The algorithms were implemented in C programming language using MPI en-
vironment and OpenMP environment. We measured time of execution on SMP
and COW computers.

Star is a cluster of workstations with 16 nodes (Intel Pentium III 733 MHz,
256 MB RAM, HD 30 GB) interconnected by Myrinet and Ethernet network.
The program for this cluster was written using MPI.
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Fig. 1. Dependency of execution time of parallel run of DFA on |P |/|Q| (Altix, |P | =
31, n = 108)
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Altix is a symmetric shared-memory multiprocessor with 32 processors (16x
1,3 GHz 3MB L3 cache, 16x 1,5 GHz 6MB L3 cache) interconnected by NUMA-
link network. Each processor has its own local memory, which is fast and can
access to shared memory (but accessing of shared memory is much slower).

Figure 1 shows execution time of parallel run related to number of processors
to one state of automaton. We can see that for |P |/|Q| < 1 is performance low,
but if we increase the number of processors, we speedup the computation. For
|P |/|Q| > 10 performance descends due to collisions on bus and higher time
needed for reduction of results.

5 Parallel Run of Pattern Searching DFAs

In this section, we show parallel runs of pattern matching finite automata. They
can be run in parallel without necessity to precompute possible initial states, so
the complexity of the run does not depend on the number of states of automaton
being run. All these runs are based on synchronization of automaton. We suppose
running this run on a COW, because it can be simply executed also on SMP
with only few modifications.

5.1 Synchronization of Finite Automata

In the run of general DFA we do not know in which state the DFA run should
start4. If we restrict the DFA to a subset of k-local automata, we do not have
to precompute the possible initial states, because we can synchronize the DFA
of each processor and start the DFA run at the correct state.

We say that w = a0a1 . . .ak−1 is a synchronizing word for M if ∀p, q ∈
Q, δ̂(p, w) = δ̂(q, w). We say that M is k-local automaton if there exists an
integer k such that any word of length k is synchronizing. We say, that M is
synchronizing automaton, if there exists a word w = Σ∗ of length at least k,
which is synchronizing. The number k can be called the synchronization delay
of automaton M . Černý’s conjecture [Čer64, ČPR71] gives a relation between
the size of synchronizing automaton and the length of its synchronizing word.

5.2 Parallel Run of k-Local DFA

Method of the parallel run of k-local DFA. Let M be a k-local DFA.
We divide the input text among |P | processors using block data decomposition,
but here we give extra last k symbols of the preceding block of input text to
each processor. This overlapping by k symbols synchronizes the DFA into correct
initial state before it reads its part of the input text.

The method is shown in Algorithm 5.1. At the beginning the left boundary
is extended by k symbols to the left for all processors (except P0). Since we
should not count reached final states during synchronizing the automaton we
add condition j ≥ &Pi

n
|P |' to the last if statement.

4 Except of the first processor, which has this information—the initial state q0 of M .
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Algorithm 5.1 (Basic run of k-local DFA)
Input: A transition table T , set of final states F , input text T = t1t2 . . . tn, initial
state q0 and the length of the synchronizing word in variable k
Output: Number of reached final states
Method: Set S of active states is used, each processor has its unique number Pi,
number of processors is |P |.

for all P0, P1 . . . P|P |−1 do in parallel
j ← 
Pi

n
|P |�

found ← 0 /∗ number of reached final states ∗/
if Pi > 0 then /∗ The first proc. does not need to synchronize ∗/

j ← j − k /∗ Shift the left boundary. ∗/
endif
end position ← 
(Pi + 1) n

|P |� − 1
q ← q0

while j ≤ end position do
q ← T [q, tj ] /∗ evaluate transition ∗/
if L[i] ∈ F and j ≥ 
Pi

n
|P |� then

found ← found +1
endif
j ← j + 1

endwhile
MPI Reduce(data found using operator + store results on P0)

endfor
for all P0 do in parallel

return( found )
endfor

Theorem 5.1
The time of the run of k-local DFA shown in Algorithm 5.1 is O(k+ n

|P | +log |P |),
where |Q| is the number of states of automaton M , n is the length of the input
text and |P | is the number of processors.

Analysis of DFA run method. The complexity of run of k-local DFA depends
on the length of synchronizing word k. Contrary to the run of general DFA, the
complexity is not multiplied by |Q|. It means, that if we omit the time needed to
reduce results and expect k # n (which is usual assumption in pattern matching
automata), we get the speedup:

S(n, |P |) = O
(

n

k + n
|P | + log |P |

)
.= O

(
n
n
|P |

)
= O(|P |)

We can see, that we get the linear speedup for DFAs with n( |Q|, which is the
upper bound of speedup achievable by parallelization of sequential algorithm.

6 Conclusion and Future Work

We have designed and implemented DFA run on two different parallel computer
architectures. First we implement the parallel run of general DFA. On both
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architectures it runs in time O( |Q|n
|P | + log |P | + |P |) when using parallel trivial

reduction and in time O( |Q|n
|P | + log |P |+ |Q| log |P |) when using parallel binary

reduction. |Q| is the number of states of automaton M , n is the length of input
text and |P | is number of processors. We did some experiments that show it is
not so efficient in practice due to bus collisions.

We have shown that for a class of DFA called k-local automata widely used
in pattern matching the situation is much better. We designed and implemented
very efficient parallel algorithm. It runs in time O(k + n

|P | + log |P |).
Our next research will focus on parallel simulation of nondeterministic finite

automata.
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Abstract. FAdo is an ongoing project which aims to provide a set
of tools for symbolic manipulation of formal languages. To allow high-
level programming with complex data structures, easy prototyping of
algorithms, and portability (to use in computer grid systems for exam-
ple), are its main features. Our main motivation is the theoretical and
experimental research, but we have also in mind the construction of a
pedagogical tool for teaching automata theory and formal languages. For
the graphical visualization and interactive manipulation a new interface
application, GUItar, is being developed. In this paper, we describe the
main components of the FAdo system as well as the basics of the graphi-
cal interface and editor, the export/import filters and its generic interface
with external systems, such as FAdo.

1 Introduction

The FAdo [pro08] project aims to provide an open source extensible high-perfor-
mance software library for the symbolic manipulation of automata and other
models of computation. A first implementation currently includes most stan-
dard operations for the manipulation of regular languages [MR05], a Turing
machine simulator and parsing tools for context-free languages. An automata
random generator package was released, based on previous theoretical work
on enumeration and generation of initially connected deterministic finite au-
tomata (ICDFA) [AMR07]. Although there are several software packages for
the symbolic manipulation of formal languages they either are not open source,
have restricted purposes, or are no longer being maintained. Examples include:
Grail+ [RW94, Yu09], Automate [CH91], Amore [JPTW90], Fire Station [FW09]
and OpenFst [Ril09]. An exception to this is the Vaucanson package [LRGS04]
whose basic structures, due to its orientation to more algebraic applications
of automata, are too heavy for the combinatorial and algorithmic simulations
we think useful for complexity studies of formal languages. JFLAP [RF06] is
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a specialized pedagogical tool with an extensive coverage of formal language
topics taught in undergraduate computer science courses. The possibility of in-
teractively experimenting with the construction proofs is a major feature of this
system. The FAdo system was first developed for pedagogical purposes. How-
ever the necessity of easily prototyping new algorithms, testing algorithm per-
formance with large datasets, and the combinatorial nature of formal languages
representations led us to continue FAdo development. The use of Python, a high-
level object-oriented language with high-level data types and dynamic typing,
ensures a system which is modular, extensible, clearly and easily implemented,
and portable. Specialized and optimized data structures and performance critical
algorithms may be written in a low-level language like C, and easily interfaced
with Python, via the Cython language extension [BB09]. Here, we will describe
the main components of the FAdo system for regular languages manipulation.

GUItar is a visualization software tool for various types of automata (stan-
dard, weighted, pushdown, transducers, Turing machines, etc.). Its purposes in-
clude automatic and assisted diagram drawing, algorithm animation, interactive
editing and export/import filters. Automatic graph drawing has been a very ac-
tive research area and several commercial software packages are now available for
general and specific applications (database design, information systems, bioin-
formatics, social networks, etc.) [BERT99, Gra08, JM04]. In contrast, automata
diagrams (labelled multi-digraphs) require additional aesthetics and graphical
constraints: left-to-right reading, initial states on the left and final states on the
right, edge shapes and label placements, etc. We intend to design and imple-
ment tools for automatic drawing of automata diagrams according to common
accepted aesthetics principles. As a first step, in this paper, we describe the basic
GUItar framework that includes assisted diagram drawing, interactive editing,
and export/import filters.

2 FAdo: Tools for Regular Languages Manipulation

Regular languages can be represented by regular expressions (r.e.) or finite au-
tomata, among other formalisms. Finite automata may be deterministic (DFA)
or non-deterministic (NFA). In FAdo these representations are implemented
as Python classes, as presented in Figure 1. The class FA implements the ba-
sic structure of a finite automaton shared by DFAs and NFAs. This class also
provides methods for manipulating these structures. The class DFA and NFA
implements DFAs and NFAs, respectively. The class EFA implements gener-
alized NFAs that are used in the conversion between finite automata and r.e.
There are two representations for r.e.: the class RE implements, in a object-
oriented manner, the usual inductive definition (it is elegant, but not efficient)
and the class ACIRE implements irreducible regular expressions modulo ACIA,
i.e., associativity of the concatenation and disjunction, commutativity of the dis-
junction, and idempotence of both disjunction and Kleene star operations. Dis-
junctions are represented as sets, which are efficiently implemented in Python.
Concatenated r.e. are kept in an ordered list. The idempotence of the Kleene star
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Fig. 1. FAdo classes for regular languages

is assured by not allowing double stared r.e. Whether or not a r.e. accepts the
empty word is tabulated as a ACIRE attribute, to avoid unnecessary recursive
calls. Elementary regular languages operations as union, intersection, concate-
nation, complementation and reverse are implemented for each class. Several
conversions between these representations are implemented: NFA → DFA:
subset construction; NFA → RE: recursive method; EFA → RE: state elimi-
nation, with possible choice of state orderings; RE → NFA: Thompson method,
Glushkov method, follow, Brzozowski, and partial derivatives.

For DFAs several minimization algorithms are available (some with C imple-
mentations): Moore, Hopcroft, incremental algorithms of Watson and Daciuk. Br-
zozowski minimization is available for NFAs. Language equivalence of two DFAs
can be determined by reducing their correspondent minimal DFA to a canonical
form [AMR07], or by the Hopcroft and Karp algorithm. Language equivalence
of two r.e. is implemented in the ACIRE class using variants of a rewrite sys-
tem [AMR08a]. The class ACIRE has also several simplification methods for r.e.

2.1 Generators and Random Samples

We have designed and implemented several exact and random generators for
some classes of automata and regular expressions. An exact and a uniform ran-
dom generator are available for ICDFAs [AMR07]. Based on new canonical forms
we also developed exact generators for acyclic (trim) deterministic finite au-
tomata (ADFA)[AMR08b], and for minimal ADFA (MADFA) [AMR08c]. For
the uniform generation of random r.e. we implemented the method described
by Mairson [Mai94] for the generation of context-free languages. Random (non-
uniform) generators for NFAs that allow to generate initially connected NFAs
(with one initial state) and to control the transition density are also implemented.
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For a given number of states and symbols, the number of DFAs grows in
a way that experimental tests over the complete universe quickly become im-
practical [AMR07]. For statistical analysis (or experimental results), a subset
of manageable size from which we can make inferences or extrapolations to the
whole universe may be used.

As the probability of any individual member of the universe being selected is ex-
actly the same as any other individual member, a uniform random generator pro-
duces a true, unbiased, randomsample. In order to have a reasonable sized (enough
for statistically significant results), consistent, random sample readily available,
we designed and implemented an SQL database to store the uniformly generated
DFAs (and r.e.). We used the PostgreSQL open source relational database system
[DBM08] to store the random samples of both DFAs and r.e.

Database. The ICDFAs database keeps and makes available random samples
of automata with n ∈ {10, 20, . . . , 90, 100} states, each over an alphabet of
k ∈ {2, 3, 4, . . . , 18, 20, 25, 30, . . . , 45, 50} symbols. Besides the automaton struc-
ture, the database stores some properties such as minimality, being trimmed,
acyclic, etc. This allows to obtain, with a simple SQL query, some automata
datasets with specific properties. For efficiency reasons, besides its unique string
representation [AMR07], the database is used to store the pre-parsed internal
FAdo representation of each ICDFA. This avoids the need to parse an automa-
ton’s description every single time we need to manipulate it. By similar reasons,
each automaton’s final states set is stored in two different ways: as a comma
separated list of integers and as a bitmap.

REs Database. The r.e. database is similar to the ones pertaining to finite
automata. Pre-parsed representations of each object is kept in the database,
both in the ACIRE and RE representation, to avoid overhead parsing time in
any algorithm process.

3 GUItar: Interactive Visualization

The GUItar graphical interface allows the interactive visualization of generic
graph diagrams and the execution of external graph manipulation tools. It is
implemented with the wxPython [SRZD06] graphical toolkit. Figure 2 shows the
interactive diagram editor. The basic frame has a menu bar, a tool bar, and
a notebook that manipulates multiple pages. The menu bar and the tool bar
are dynamically built from XML [Con08a] configuration files and event handler
files, allowing an easy extensibility and modularity. Each notebook page con-
tains a canvas for diagram drawing and manipulation. The canvas is based on
the wxPython’s Floatcanvas component [Bar08] which allows to draw and to in-
teract with graphic objects. It provides zooming, panning and binding mouse
clicks on object to callbacks. It allows the addition of new objects and to alter
its interactive behavior. To draw graph transitions a new FloatCanvas object
called ArrowSpline was created. This object defines splines with or without ar-
row heads. It allows the access to the spline interpolation points, which was not
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Fig. 2. GUItar graphical interface

possible in the native implementation. The main classes of GUItar are presented
in Figure 3, and are summarized in the next subsections.

3.1 Drawing a Graph

A graph is defined by a set of nodes and a set of edges. The class DrawGraph
allows the display and the editing of a graph diagram, and its main components
are a canvas, a set of node objects, a set of edge objects and a grid. Nodes and
edges can be added, edited, moved or deleted. Node labels can be automatically
generated according to a given specification. The grid uses a general coordinate
system to manage node positions and prevent objects to overlap. Each object
can occupy several grid cells. To assist diagram editing a specialized graphical
user interface (GUI) mode, a draw assistant and an undo/redo manager were
implemented. Objects properties can be inspected and changed in the properties
panel.

Nodes. The Node class has an identifier (ID), a position, canvas objects and a
style. This class has methods to change node position and to determine borders
for docking edges.

Edges. The Edge class has an ID, an origin and an target nodes, a canvas Ar-
rowSpline object, and a label object (with side and position).This class has meth-
ods to edit ArrowSpline control points, change nodes dock points and change
label location.
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Fig. 3. A GUItar overview

Labels. A label can be simple (text string) or composed of several components.

Embeddings. The embedding is the layout of the nodes and edges in the plane.
Currently a integer coordinate embedding is provided.

Editing Mode. The GUIFAMode class implements an user interface that allows
several interactions with the graphical objects, essentially mouse based events,
such as addition, deletion, selection, or movement of objects, as well as activa-
tion of pop-up menus. It also provides movement in the canvas viewport. The
DrawAssistant class helps to place the edges and the loops. The edges can be
edited by dragging their control points freely or using stepwise movements. To
support undo and redo actions, the Undo/Redo manager assigns an ID to each
kind of action, a method that handles the undo event, and the ID of the reverse
action. The handler method receives as an argument the information needed to
undo/redo the action. For each performed action, its ID and the information
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that the Undo handler method needs are pushed into the Undo stack. The Undo
and the Redo methods pop an action from the stack and call the handler method
with the appropriated information.

Complex style managers. In general, automata diagrams provide several
graphical information on state or transition representations. For instance, an
initial state representation can have a side arrow, or a final state representation
can have a doubled line border. Instead of having a few special styles built-in,
GUItar provides a Node Style Manager that allows the construction of node
styles with complex graphical objects. A node style can have several graphic
objects, as components. Two of these are mandatory: the primary object and
the primary label. Primary objects must be ellipses or rectangles, and they
ensure that there is always a docking object for the edges. The primary label
must be text. For each object, its usual style properties such as line color, line
width, line style, fill color, fill style, sizes, fonts, etc. can be defined. A node style
can be previewed while it is being defined (or edited), and saved in the GUItar
internal database. A set of tags (key/value pairs) may also be associated with
each node style. The Edge Style Manager permits the definition of edge styles. An
edge style is characterized by the graphical properties of the edge’s ArrowSpline
canvas object. It is possible to specify the number of heads and their shapes,
line style properties, and loop properties.

Graph Classifier. The GraphClassifer class allows the definition of graph
classes by specifying graphic properties of each object. The GraphClassifica-
tionUI class provides an user interface to visualize and to create new classes.
Graph, digraph, or multidigraph are the default classes.

Automatic graph drawing. A simple layout algorithm for visualizing graphs
without any embedding information is implemented. An automatic placement
based on physical forces simulation is also available.

3.2 Foreign Function Calls

GUItar provides a generic foreign function calls (FFC) interface between the
diagram graphical editor and external manipulation tools, as the FAdo toolkit.
The FFCs have two components: a description on a XML configuration file and
a Python module. The description includes the module path and the methods
that will be imported by GUItar. Each method must have a name, a return
type, and, for each argument its type and a possible default value. Each module
may have a menu in the main GUItar’s frame, or be accessed from a general
FFC menu. At startup, GUItar loads the FFC configurations and builds the
FFC menus.

3.3 Export/Import

Diagram descriptions and embeddings are saved in a XML format that was
defined as a dialect of the GraphML language [Gro08]. GraphML is a simple
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language to describe the structural properties of a graph and has a flexible
extension mechanism to add application-specific data. Extensions are provided
by a key/data mechanism that can be added to each graph element. For efficiency
reasons, for the GUItar internal information our dialect encodes this mechanism
directly. A fragment of the GUItar Relax NG schema, is presented below, where
diag data represent the embedding information, and draw data correspond to
general drawing information.

include "styles.rnc"

guitar = element guitar {

attribute version {text},

graph*

}

graph = element graph {

attribute id {text},

element node {

attribute id {text},

label,

node_diag,

node_draw,

node_automata

}*,

element edge {

attribute id {text},

attribute source {text},

attribute target {text},

label,

edge_diag,

edge_draw

}*,

graph_diag,

graph_class,

style*

}

node_diag = element diag_data {

attribute x {text},

attribute y {text}}

node_draw = element draw_data {

attribute style {text},

attribute x {text},

attribute y {text} }

node_auto = element auto_data {

attribute initial {1 | 0},

attribute final {1 | 0} }

edge_draw = element draw_data {

attribute style {text},

element point{

attribute x {text},

attribute y {text}} * }

label = element label {

attribute type {"sim"|"com"},

(dict*|text),

label_draw }

GUItar exports its objects in three other formats: basic GraphML, dot and
Vaucanson-g [LS08]. GUItar can also import from GraphML and FAdo au-
tomata format. These export/import methods are implemented as XSLT trans-
formations [Con08b] from the GUItar format. We are developing XSLT
transformations for the fsmxml format [Gro09].

4 Conclusions

The development of a solid and reliable symbolic manipulation package for for-
mal languages is not a simple task. Being written in a high-level programming
language and kept in an free software license promotes its usability by the
scientific community. Visualization tools, and specially automatic drawing of
automata diagrams, are challenging and important for both research and peda-
gogical purposes.
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[JM04] Jünger, M., Mutzel, P. (eds.): Graph Drawing Software. Mathematics and
visualization. Springer, Heidelberg (2004)

[JPTW90] Jansen, V., Potthoff, A., Thomas, W., Wermuth, U.: A short guide to
the AMoRE system. Aachener informatik-berichte (90) 02, Lehrstuhl fur
Informatik II, Universitat Aachen (January 1990)

[LRGS04] Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing Vaucanson.
Theoret. Comput. Sci. 328, 77–96 (2004)

[LS08] Lombardy, S., Sakarovitch, J., Vaucanson, G.:
http://igm.univ-mlv.fr/~lombardy/ (access date: 1.12.2008)

[Mai94] Mairson, H.G.: Generating words in a context-free language uniformly at
random. Information Processing Letters 49, 95–99 (1994)

[MR05] Moreira, N., Reis, R.: Interactive manipulation of regular objects with
FAdo. In: ITiCSE 2005, pp. 335–339. ACM, New York (2005)

http://morticia.cs.dal.ca/FloatCanvas/
http://www.cython.org/
http://www.w3.org/TR/xml
http://www.w3.org/TR/xslt
http://www.postgressql.org
http://www.fastar.org/
http://www.graphviz.org/
http://graphml.graphdrawing.org/
http://www.lrde.epita.fr/cgi-bin/twiki/view/Vaucanson/XML
http://igm.univ-mlv.fr/~lombardy/


74 A. Almeida et al.

[pro08] FAdo project. FAdo: tools for formal languages manipulation,
http://www.ncc.up.pt/FAdo (access date: 1.12.2008)

[RF06] Rodger, S., Finlea, T.: JFLAP - An Interactive Formal Languages and
Automata Package. Jones and Bartlett (2006)

[Ril09] Riley, M.: OpenFst, http://www.openfst.org (access date: 1.4.2009)
[RW94] Raymond, D., Wood, D.: Grail: A C++ Library for automata and expres-

sions. J. Symb. Comp. 17(4), 341–350 (1994)
[SRZD06] Smart, J., Roebling, R., Zeitlin, V., Dunn, R.: wxWidgets 2.6.3: A portable

C++ and Python GUI toolkit (2006)
[Yu09] Yu, S.: Grail+, http://www.csd.uwo.ca/Research/grail/ (access date:

1.3.2009)

http://www.ncc.up.pt/FAdo
http://www.openfst.org
http://www.csd.uwo.ca/Research/grail/


A Testing Framework for Finite-State
Morphology

François Barthélemy

CNAM (Cédric), Paris, France
INRIA (Alpage), Rocquencourt, France

francois.barthelemy@cnam.fr

Abstract. This paper describes a unit testing framework for the lan-
guages which rely on rational relations to describe Natural Language
Morphology. A test is divided into two parts: firstly compute a finite-
state machine; secondly inspect this machine to compute its cardinality.
The first part involves the finite-state machines to be tested and finite-
state machines encoding the inputs of the test. A dependency relation is
used to relate tests and the components of the description.

1 Introduction

Morphology is the subarea of Linguistics which deals with the structure and
content of word forms. It describes the structure of these forms and their flexion
(conjugation, agreement, declension). Finite-State Morphology is an approach
of Natural Language Processing where the morphology is described using con-
textual rules which are compiled into finite-state transducers. Several languages
have been proposed since the mid-eighties. They have been used for a lot of lan-
guages with different kinds of morphologies, belonging to several families (Indo-
European, Semitic, Altaic, Finno-Ougrian, etc). Mechanisms such as affixation,
interdigitation and to some extend, reduplication, are handled.

The most popular instance of finite-state morphology is the Xerox Finite State
Tool (Xfst) described in [1]. This system proposes a powerful language, based on a
clean semantics, with an efficient implementation. Other systems have more or less
the same properties, and there are several finite-state toolkits which may be used
to develop new systems quite easily, such as for instance, Google’s openFST [2].

A weakness of these systems is their relatively poor development environ-
ments. For instance, the Xfst system comes with a top-level and a basic scripting
facility. This is relatively poor compared to the Integrated Development Environ-
ments (IDE) of programming languages. Such environments provide an editor,
a compiler, a notion of project, support for documentation, debugging and test.
Eclipse is an instance of popular, modern and versatile IDE.

An increasing effort has been done to improve software quality. An important
approach consists in the testing frameworks Xunit, which is instantiated for differ-
ent languages such as Java (Junit), C (CUnit), C++ (CppUnit) and so on. These
frameworks are based on unit black-box tests which perform runtime execution
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of pieces of code (typically, a method or a function) and compares the actual re-
sult which an expected result. The testing is automated, which is important for
non-regression testing, namely testing that modifications in the code do not alter-
ate its quality. Programming styles are promoted where tests are written at the
same time or even before the code to be tested. Tests are to be run on components
before a system is completed (cf. extreme programming [3]).

Some other approaches of software quality rely on static checks performed at
compile-time. Syntax and type checking are the first level of verification, fully
automated and usually integrated in the compilers. Some other techniques (ab-
stract interpretation, model-checking, binary decision diagram) allow the proof
of some properties. They are only partly automated and therefore expansive, but
they also are more powerful. They give positive proofs of properties which hold
for all the possible executions. Results of tests cannot achieve the same level of
certainty. The result of a test may only be a negative proof: if the test fails, one
knows that there is a bug in the program. The success does not prove that there
is no bug. It says nothing on other executions.

In this paper, we propose a test framework for the languages used to describe
Natural Language morphology using finite-state machines. Some ideas of the
XUnit frameworks are applied. For instance, the notion of unit testing and the
automation of the test activity. In the next section, the JUnit framework is
briefly presented. Afterwards, some specificities of finite-state machines and their
consequences on tests are discussed. A language for tests is then proposed and
a prototype implementation described.

2 The Example of JUnit

JUnit is the most popular instance of the XUnit test framework proposed for
software testing. Its precursor was the Smalltalk instance SUnit proposed by
Kent Beck. JUnit was created in 1997 by Kent Beck and Erich Gamma [4]. This
framework promotes automated tests of parts of a system. Concretely, a part of
a Java program is a method. Each method is tested separately using a black-box
approach where some parameters are given to the method and the actual result
is compared to an expected result.

The test is written in Java, as a method. In previous versions of JUnit, test
methods had to belong to test classes inheriting from a given class TestCase, but
it is no more the case. Now, tests are identified using an assertion, a construction
which appeared in the version 1.5 of the Java Language. The inheritance is no
more used, so a test method may appear in any java class. The test method has
no parameters and gives no result. It calls the method to be tested and then calls
one or several assert methods. There are 8 such methods to test some properties
of the computed result.

The 8 assert methods are the following: assertEquals to test the equality
of two values (objects compared using the equals method or primitive values),
assertSame and assertNotSame to test the identity and difference of two refer-
ences, assertNull and assertNotNull to test if a reference is null (the empty
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pointer) or not, and finally, assertTrue and assertFalse to test the value of a
boolean expression, and fail to enforce a failure of a test.

The test framework is completely embedded in the Java language. It is im-
plemented through a library which automates the running of tests. Ultimately,
a test is a Java boolean expression. There are constructions around this expres-
sion to print reports according to its value. If it is true, the test succeeds, if it
is false, the test fails. Reporting is the main contribution of the assert meth-
ods with respect to the equivalent genuine boolean expression (for instance,
assertNull(e) w.r.t. e==null). The test mechanism uses Java exceptions and
especially the predefined java.lang.AssertionError which is thrown when a
test fails. Running the tests consist in calling a program of the JUnit library and
giving it the classes containing the tests as parameters.

A test is a call of the tested method which may involve some parameters. JUnit
calls fixtures the objects which are build to be passed as parameters to the tested
methods. They may be instances of classes from the tested system, identical to
the objects used in this system, or instances of classes written to perform the
test. Fixtures are declared as ordinary variables and they are initialized either
in the test method or in a method called before the test, declared using the
@Before assertion.

3 Finite-State Morphology

Finite-State Morphology is a technique which represents the morphology of a
natural language using a rational relation defined using a combination of nu-
merous small parts. The relation relates a concrete level with the words as they
appear in actual texts to a more or less abstract level which explains the struc-
ture of the words. The two levels are called respectively the surface form and the
lexical form. The small parts are defined using regular expressions possibly ex-
tended with the Cartesian Product, and contextual rules. Instances of contextual
rules are the two-level rules by Koskenniemi, the rewrite rules by Kaplan and
Kay and the generalized restriction rules by Yli-Jyrä and Koskenniemi. These
rules express constraints which characterize the pairs in a rational relation that
they define. They are compiled into finite-state transducers [5], [6].

The combination of small parts uses rational operations, Cartesian product
and also some other operations defined on finite-state machines. There are two
approaches: one which rely mainly on intersection (two-level morphology, [7]);
another one which uses mainly composition (rewrite rules, [5]). For the first
approach, small part describe simultaneous constraints; for the second one, the
constraints are applied sequentially.

The complete morphology of a language is usually described by the combi-
nation of a few dozen constraint combined into a unique finite-state transducer,
which may be quite big (up to a few million transitions and states).

The notion of execution of a finite-state machine may be expressed as a graph
traversal trying to recognize or generate a string or a tuple. But a more general
and declarative view is to define it as a new machine definition. For instance,
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suppose that the morphology of a natural language is described by a binary
rational relation R and that one wants to analyze a surface form x. The analysis
consist in composing the regular language {x} with R and then project the result
on its second component. The composition and projection are standard finite-
state operations. The result is the rational language containing the different
analysis of the form.

So, unlike other kinds of software, there is no difference between static tests
and runtime tests: they are both tests of finite-state machines. The execution
involve some algorithms applied on finite-state machines (in our example, the
composition and projection algorithms), but the progress of these algorithms is
usually not informative for the developer. The algorithms run on the compiled
forms which are not easily understood. Algorithms work locally in the graph,
state by state, transition by transition. So a classical debugger following the
execution of the algorithms is not useful. There are a small number of algorithms
involved. Only their data structures with the relation. The interesting properties
of a machine are not local properties, which may be observed at the state level,
but global properties such as the existence of cycles and of final states.

Another great difference with a programming language is that a test is not
naturally an object of the language. A test is a boolean function which succeeds
or fails. It is natural to implement them using a method returning a boolean
in java. There is no native implementation of booleans in rational relations.
Tests are more easily described as a global observation of a machine than as
relations. Furthermore, it is not obvious whether all the interesting properties
are expressible as rational relations.

4 Tests of Finite-State Machines

In this section, we address the problem of adding new features to a morphological
description system in order to write and run easily and automatically unit tests.
We suppose that there exists a language to define rational relations, such as for
instance Pc-kimmo, Xfst or Mmorph. Any subpart of the description which is
compilable into a finite-state machine may be tested separately. For instance, a
contextual rule and a regular expression are such a unit.

We propose a framework where 5 assertions are available to test machines: two
of them are binary operators comparing two machines, the other ones are unary,
asserting some property of one machine. The binary assertions test respectively
the equivalence and the inclusion of two machines. The unary assertions test the
cardinality of its operand, either numerically or qualitatively. The cardinality
may be compared to an integer using equality, difference and order compara-
tors. The qualitative operators separate cyclic (infinite cardinality) from acyclic
machines (finite cardinality).

There are algorithms to implement all these tests. The equivalence and inclu-
sion may be tested by first computing the difference between two machines and
then testing that the result is empty. The difference is not always defined on
rational relations. This point is discussed in section 5. The numerical cardinality
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tests may be performed either by enumerating the members or by using an n-best
algorithm. An equality test consists in verifying that the machine is equivalent to
the machine computed by applying the n-best operation on it, with the asserted
cardinality as value for n. Inequality tests use inclusion instead of equivalence.
There are algorithms to search for cycles in a machine. All the algorithms are
tractable, although some of them have a high complexity.

The test framework involves also fixtures which are ordinary finite state ma-
chines written only to test a unit of the system. The language to write the fixtures
is the same as the one used to write the system itself. When fixtures are involved,
the assertion tests a property of a fixture and not directly of the tested unit.

Let us take an example. Suppose that a finite state transducer encodes the
conjugation of all the verbs of a language, the abstract representation containing
the verbal root and information about tense and relevant morphological features,
the concrete representation being actual conjugated forms. A meaningful test
consists in testing the machine for a given verb. This involves two fixtures:
the first one is the abstract representation defining the verb’s root. The second
fixture consist in computing the image of the first fixture by the transducer,
i.e. all the conjugated forms. Then an assertion may test the cardinality of this
second fixture. A more precise test defines the expected image as a third fixture,
and asserts the equivalence of the second and third fixtures.

In order to make the non-regression tests automatic, we propose to relate
each test to one or several machines using a dependency relation. A test (resp. a
machine) immediately depends on a machine m if m appears in its definition (for
instance, the definition is an expression where m appears as an operand). The
dependency relation is the transitive closure of the immediate dependency. A test
t is a test for a non-fixture machine m if i) t depends on m and ii) there exists
a path between t and m in the dependency graph such that all the machines in
the path are fixtures. In the following of the paper, we will call a machine m a
successor (resp. a predecessor) of another machine m′ if (m′, m) (resp. (m, m′))
belongs to the dependency relation.

The dependency relation is important in the compilation process: a machine
may be compiled only after all the machines it depends on. Whenever the defi-
nition of a machine changes (for instance to fix a bug), all the machines which
depend on it must be re-computed. Similarly, all the tests which depend on this
machine must be re-run.

5 Intersection, Difference and Tests

Tests of equivalence and inclusion are not always possible for finite-state trans-
ducers. The intersection and difference of rational relations are not necessarily
rational The two operations are closely related.

An example of intersection which is not rational is the following. (a : x)∗(b :
ε)∗ ∩ (a : ε)∗(b : x)∗ = (a, x)n(b : ε)n which is a variant of the language anbn, a
typical example of non rational language. The intersection algorithm applied on
such relations does not terminate, new states being computed continually.
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Regular languages are closed under intersection, difference and complementa-
tion. This allows for the typical test of the image of a given string (or language)
by a relation, since such an image is a regular language.

Some subclasses of relations are closed under intersection. It is the case of
length-preserving relations, also called same-length relations. Each pair in such
a relation is composed of two strings which have the same length. There is an
equivalence between such a pair (a1 . . . an, b1 . . . bn) and the string of symbol
pairs (a1 : b1) . . . (an : bn). A length preserving relation may be expressed as a
regular language where the alphabet is a finite set of symbol pairs. This subclass
is the one used to express the semantics of a Two-Level Grammar [7]. Two-Level
rules are expressed using symbol pairs and rational operators over these pairs.
Length-preserving relation are closed under intersection and difference, so there
is no limitation for testing equivalence and inclusion for Two-Level Grammars.

The problem is more tedious for contextual rewrite rules as used by Xfst, since
such rules describe rational relations which are not length-preserving. Another
subclass of relations is interesting and gives a way to perform some tests, namely
the bounded delay relations. These relations are such that the same-length con-
straint applies on cycles only. They have been defined in [8], also studied by [9]
and [10]. An interesting point is that the intersection is rational even if only
one of the two intersected relations is bounded delay. The upper bound of this
operand is used to break loops in the computations. The bounded delay prop-
erty is fulfilled by all the finite relations. Therefore, the test of inclusion of a
finite fixture and any rational relation, such as for instance the one defined by a
rewrite rule, is feasible.

6 Interactive Bug Tracking

When a test fails, it is the sign that there is a bug either in the tested machine
or in the test itself. It is sometimes possible to exhibit a counter-example of the
asserted property. For instance, if the test predicts that a machine is included in
another one, the computation consists in testing the emptiness of their difference.
If not empty, it is possible to exhibit one or several strings belonging to this
difference. A n-best algorithm is able to extract the n smallest strings to be
displayed in the failure report.

If a machine is defined by an expression involving some predecessors, it is
possible to search the bug in the predecessors. This may be done automatically
in some cases. For instance, if a tuple expected to belong to a relation is missing
and the relation is the result of an intersection, the tuple is also expected to
belong to all the predecessors. The membership test may be perform to all the
predecessors. Conversely, if an unexpected tuple appears in a relation which is
the result of an union, it is possible to search for the predecessor which introduced
this tuple.

In most cases, however, the debugging process needs some information from
the user in order to be efficient. If a relation is the result of a composition,
and a pair is missing in the relation, it is often necessary to know the expected
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intermediate form to determine which operand of the composition is faulty. The
introduction of this intermediate form by the user results in two new tests on the
two predecessors. The development interface should allow such an enrichment
and give the choice between performing these two tests only once or adding
them permanently to the description to be run every time a modification of the
description is done, as non-regression tests.

When a cardinality test fails, if the cardinality is not too high, the better help
is to enumerate the tuples in order to determine what is missing or what is in
surplus. Here again, this may result in new tests which may be added to the test
suite, or not.

7 Preliminary Experiments

The testing framework presented in this paper has been implemented in Karamel,
a prototype of Interface Development Environment for morphological descrip-
tions described in [11]. It implements a language to write, compile and test such
descriptions. It uses a subclass of n-ary rational relations which is closed under
intersection and difference [12], so there is no restriction on the equivalence and
inclusion assertions.

The language offers three ways for defining relations: regular expressions ex-
tended with a typed Cartesian product which allows the definition of relations
and not only languages; generalized restriction contextual rules [6]; and finally a
calculus over finite-state machines with various operations (rational operations,
projection, intersection, etc).

Fixtures are defined using the same language as the core of a description.
They are clearly identified in the syntax by the keyword test. A project in
the system consists in a declaration of the alphabet and the types of feature
structures and Cartesian products, followed by definition of machines, fixtures
and tests. The environment maintains the graph of dependencies and uses it to
ensure the consistency of the machines. For instance, when the definition of a
machine is changed, the machines which depend on it are marked as out-dated.
They cannot be used for computations before recompilation.

Karamel is implemented by python scripts, executed within a python HTTP
server which is used to offer simply a graphical interface through standard
html/css forms. It offers a poor support for editing but operations are available
through menus and buttons. The system uses the FSM toolkit by AT&T for im-
plementing finite-state machines. Karamel n-ary relations are compiled into FSM
finite-state automata. Some operations on relations are directly implemented by
the same operation applied on the automata (e.g.: concatenation, closure, inter-
sections). Some other operations are implemented by a python script (e.g.: the
projection).

Our experience of grammar developer is that cardinality tests are very effi-
cient: they are easy to write and give a significant information about the coverage
of a machine. For instance, the number of forms in a verbal paradigm is usually
known or easy to find out. The most difficult case is to track a failure where
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the tests derived on all the predecessors succeed. In this case, the problem is
not clearly in one predecessor but in the interaction of several machines. We
encountered such a problem with a system obtained by intersecting a dozen of
predecessors. A string missing in the intersection was present in all the predeces-
sors, the incompatibility being in other members of tuples. In such a situation,
one would like to identify the minimal subset of machines for which the inter-
section fails to the membership test. This minimal subset is possibly not unique
and this search implies the computation of many intersections. Some of them
may be very costly and even intractable.

8 Conclusion

Existing system usually provide commands to inspect finite-state machines. For
instance, Xfst provides nine commands which are boolean testing of machines,
including equivalence, inclusion, emptiness. The FSM toolkit used to implement
the Karamel system provides a command to test the equivalence of two machines
and another one called fsminfo to display various information about the machine
such as the existence of cycles. Both system also provide graphical display of
small machines.

The difference between these facilities and the assert construction proposed in
our language is that the expected result is given in the assert so that the assert is
a boolean test which may be done automatically every time something changes
in the definition of a machine. The dependency relation is used to know if a test
applies on a machine and if a modification of a machine impacts another one.
This relation allows to recompile only the successors of the modified machine.
The user may not only ask for executing a given test, but also for executing all
the tests of a given machine, the relevant test suite being automatically inferred.

The framework presented in this paper is interesting for all the finite-state
descriptions which are obtained by the combination of several parts (the units
considered) and are quite big, so that the graphical representation is not read-
able. This includes, but of course is not limited to, Finite-State Morphology.
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Abstract. The Aho-Corasick algorithm is a classic method for match-
ing a set of strings. However, the huge memory usage of Aho-Corasick au-
tomaton prevents it from being applied to large-scale pattern sets. Here we
present a simple but efficient table compression method to reduce the au-
tomaton’s space. The basic idea of our method is based on equivalent rows
elimination, which groups state rows into equivalent classes and eliminates
the duplicates. Experiments demonstrate that the proposed method sig-
nificantly reduces the memory usage and still runs at linear searching time
comparable to that of extended Aho-Corasick algorithm. Our method pro-
vides good trade-off between memory usage and searching time.

1 Introduction

Multiple string matching is a classic problem of computer science, and plays
a fundamental role in many fields. Aho-Corasick (abbr. as AC) algorithm[1] is
the most famous automaton-based method for matching a set of strings. AC
algorithm searches a text T in linear time O(|T |), and therefore is widely used
in many network security systems such as Snort and ClamAV which need a
strict guarantee on worst case performance. As the signature databases grow
larger and larger, however, network security systems are troubled with the huge
memory space used by string matching automaton. Take Anti-Virus system Cla-
mAV for example, the AC automaton built from 79560 ClamAV signatures uses
more than 7.5 Gigabytes memory. Furthermore, the growing disparity of speed
between CPU and memory, called ”memory wall”, remains a longstanding prob-
lem. Automaton-base string matching is a typical memory-bound application,
and suffers from large memory usage and poor cache locality. So it’s highly nec-
essary to devise table compression methods to reduce AC automaton’s space.

In this paper we propose an efficient table compression method for extended
AC automaton[2]. Our method is based on the observation that extended AC au-
tomaton’s transitions are not uniformly distributed but rather aggregated, that
is, most of the transitions lead to states in top levels of the automaton. This pro-
vides us the chance to employ equivalent rows elimination, which groups state
rows into equivalent classes and eliminates the duplicates. However, equivalent
rows elimination technique is not directly applicable because of the interference
between the forward transitions and the backward transitions in AC automaton.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 84–93, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In our method we firstly split the automaton into two sub-tables, one holding the
forward transitions and the other holding the backward transitions. And then we
employ equivalent rows elimination on the sub-tables with further optimization
techniques. Besides great reduction in memory space, our method also runs in
linear searching time comparable to that of extended AC algorithm. Experiments
are also carried out to justify the method’s efficiency.

The rest of this paper is organized as follows. We first summarize the classic
table compression methods in section 2. Next, in section 3 we present our table
compression method for extended AC automaton. And finally, we compare our
method with extended AC algorithm and report the experimental results in
section 4. Section 5 is the concluding remark.

2 Related Work

Research on table compression has a long history and many ingenious compres-
sion methods have been designed to store sparse arrays, matrices, DFA state
tables, tries, etc. Row displacement, which is mentioned in many articles includ-
ing [3,4], overlaps rows with displacement to store sparse matrices. Tarjan et
al. [4] analyzed this method theoretically and proposed double-displacement for
improvement. Aho et al.[5] proposed Triple Array to compress sparse DFA state
table. Aoe et al.[6] simplified Triple Array to Double Array for trie structure.
Kiraz[7] also proposed compression method for finite-state transducers. Perfect
hashing is another efficient method for storing tables. Fredman et al.[8] con-
structs perfect hash function like f(x) = (kx mod p) mod q to represent sparse
table. The method stores a sparse table with 6n memory space and O(1) worst
case access time. Galli et al.[9] combines perfect hashing and row displacement
for table compression. The method firstly randomizes a table into a sparse ma-
trix using hash function like f(x) = (kx mod p) mod n2 and then employs row
displacement method to compress the sparse matrix. It achieves 2n memory
space and O(1) worst case access time. Andersson et al.[10] proposed LC-trie to
compress binary tries. Most of the methods work well on sparse tables, but they
do not cater to the problem of compressing dense tables with high redundancy.

In addition to the general-purposed table compression techniques, some stud-
ies have also been conducted to optimize AC automaton’s size. For example, Aoe
et al. [11] invented Double Array trie structure to represent AC trie structure.
Norton [12] proposed banded row method to optimize AC’s space and speed,
which gains 17% performance improvement. In a hardware implementation of
string matching[13], bitmap compression and path compression techniques were
adopted to compress AC trie. Nieminen et al. [14] studied different implementa-
tions of AC automaton using Unicode. Its experiments show that Triple Array
and Double Array structure perform best. It also should be mentioned that the
general automaton minimization technique[15] might be useful for reducing AC
automaton’s states. Most of these methods are designed for the basic AC trie
structure, while compression methods for extended AC automaton still need to
be studied.
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As most of the above methods are designed either to compress sparse tables
or to represent trie structures, they are not directly applicable to full state tables
like extended AC automaton. Specially tailored compression method is devised
to compress the extended AC automaton in this paper.

3 A Table Compression Method for Extended
Aho-Corasick Automaton

In this section, we present our table compression method for extended AC au-
tomaton. Extended AC automaton[2] refers to the full AC automaton that has
eliminated failure transitions. State switching in extended AC automaton takes
exactly one memory access per text character, without tracing the failure transi-
tions. Extended AC automaton is widely adopted for practical implementation.

We first outline our compression method from an overall perspective in sub-
section 3.1. The method consists of splitting extended AC automaton into two
sub-tables and employing equivalent rows elimination technique to compress the
sub-tables. Then we describe the detail of equivalent rows elimination in sub-
section 3.2. Finally, the detailed compression techniques for each sub-table are
presented in subsection 3.3 and 3.4.

3.1 Overall Description of the Table Compression Method

Our table compression method employs equivalent rows elimination technique
to reduce redundancy in extended AC automaton. To use the technique effec-
tively, we split the automaton into two sub-tables, one table T1 holding the
forward transitions and the other table T2 holding the backward transitions.
This splitting eliminates the interference between forward transitions and back-
ward transitions. Then further optimization techniques are devised to compress
the sub-tables respectively.

The compression techniques for the sub-tables are slightly different:

– For the first sub-table T1, we firstly subtract a base value base[s] from each
row s and then apply equivalent rows elimination on the remaining table.
R1 is the reduced table after row elimination, and EQ1[s] points to the
equivalent row in R1 for row s. It also should be pointed out that the first
sub-table is essentially a trie structure and the technique presented here is
applicable to general trie and tree. The detail is described in section 3.3.

– For the second sub-table T2, we firstly extract the most frequent element from
each column c as the default state default[c], and then apply equivalent rows
elimination on the remaining table. Accordingly, R2 is the reduced table and
EQ2[s] points to the equivalent row in R2 for row s. We use a bitmap to
indicate whether the next state is a default state or in the remaining table
R2. The detail is described in section 3.4.

The compressing and lookup procedure of our method is described in algorithm 1.
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Algorithm 1. Table compression and lookup for extended AC automaton
1: procedure Compress(T, N)
2: rearrange extended AC automaton’s state label in breadth first traversing order
3: for i ← 0, N − 1 do
4: for each c ∈ Σ do
5: if the transition from i to T [i, c] is forward then
6: T1[i, c] ← T [i, c]
7: T2[i, c] ← −1
8: else
9: T1[i, c] ← −1

10: T2[i, c] ← T [i, c]
11: end if
12: end for
13: end for
14: (base, EQ1, R1) ←Compress1(T1, N)
15: (default, bitmap, EQ2, R2) ←Compress2(T2, N)
16: end procedure

1: procedure NextState(s, c)
2: next ← base[s] + R1[EQ1[s], c]
3: if next < 0 then
4: if bitmap[s, c] = 1 then
5: next ← default[c]
6: else
7: next ← R2[EQ2[s], c]
8: end if
9: end if

10: return next
11: end procedure

3.2 Equivalent Rows Elimination

The idea of equivalent rows elimination is very simple: if multiple rows are equiv-
alent, we can just store one copy and replace other rows by pointers.

In the first sub-table, rows that are exactly the same are considered equivalent.
It’s formally stated in definition 1:

Definition 1. Row r and row s in table T1 is equivalent iff T1[r, c] = T1[s, c] for
any c ∈ Σ.

In the second sub-table, the definition of row equivalence is slightly different.
Whenever we take a lookup operation in the second sub-table, we can definitely
find the next state. So two rows have the same nonempty cells are considered
equivalent. Here is the formal definition of row equivalence in the second sub-
table:

Definition 2. Row r and row s in table T2 is equivalent iff T2[r, c] = −1 or
T2[s, c] = −1 or T2[r, c] = T2[s, c] for any c ∈ Σ.

Algorithm for equivalent rows elimination is also straightforward. We use table
Ri (i = 1, 2) to hold all distinct rows and process the rows in table Ti one by
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one. If the current row Ti[j] is found equivalent to a row in Ri, then EQi[j]
points to that equivalent row, otherwise row Ti[j] is added into Ri. The time
complexity of this naive method is O(N |Σ| log N). Algorithmic description is
omitted due to limited pages.

3.3 Compress the First Sub-table

The key idea to compress the first sub-table is rearranging AC automaton’s
state label in breadth first traversing order, which is stated in algorithm 1 line 2,
then extracting the label of each state’s first child as the base value, and finally
applying equivalent rows elimination on the offset table.

Since the first sub-table is essentially a trie structure, for any state s, its
children are labeled in consecutive numbers. Let f denotes the first child’s label,
then the last child’s label will be less than f+256. Therefore, we extract base[s] =
f as the base value and only store the offsets in table. Note that the offsets are
less than 256, so a single byte is enough for each offset.

Now we analyze the efficiency of equivalent rows elimination on the offset
table. For trie nodes with out degree 1, there are at most |Σ| distinct equivalent
rows. And according to Theorem 1, the number of trie nodes with out degree
greater than 1 is less than |P | (P is the pattern set). In all, number of distinct
equivalent rows is less than |P | + |Σ|. Compared to the row number m|P | (m
is the average pattern length) in the offset table, our method achieves a high
compression ratio bounded by 1

m .

Theorem 1. Let Trie(P ) be the trie built from pattern set P , and ni be the
number of trie nodes with out degree i, then Σ

i≥2
ni < |P |.

Proof. The number of nodes in Trie(P ) is n = n0+n1+ · · ·+nk. The number of
edges in Trie(P ) is e = n1 +2n2 + · · ·+knk. According to the inherent property
n = e + 1, we have n0 + n1 + · · ·+ nk = n1 + 2n2 + · · ·+ knk + 1, which implies
Σ
i≥2

ni < n0. Because the terminal nodes number n0 is bounded by |P |, it follows

Σ
i≥2

ni < n0 ≤ |P |. �

The procedure for compressing the first sub-table is described in algorithm 2.

3.4 Compress the Second Sub-table

Space reduction is very limited when directly applying equivalent rows elimina-
tion on the second sub-table. Fortunately, we observed that there is always a
frequent element in each column of the second sub-table, so we extract the most
frequent element from each column as the default state. Again equivalent rows
elimination is applied on the remaining table.

The idea of extracting a default state from each column can be explained
informally. According to the construction of AC automaton, most states have
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Algorithm 2. Compress the first table T1

1: procedure Compress1(T1, N)
2: for i ← 0, N − 1 do
3: base[i] ← −1
4: for each c ∈ Σ do
5: if T1[i, c] ≥ 0 then
6: if base[i] = −1 then
7: base[i] ← T1[i, c]
8: end if
9: T1[i, c] ← T1[i, c] − base[i]

10: end if
11: end for
12: end for
13: apply equivalent rows elimination on T1: R1 is the reduced table and EQ1[s]

points to equivalent row in R1 for each row s.
14: return (base, EQ1, R1)
15: end procedure

Algorithm 3. Compress the second table T2

1: procedure Compress2(T2, N)
2: for each c ∈ Σ do
3: default[c] ← most frequent element in the c-th column {T2[i, c] | 0 ≤ i < N}
4: for i ← 0, N − 1 do
5: if T2[i, c] = default[c] then
6: T2[i, c] ← −1
7: bitmap[s, c] ← 1
8: else
9: bitmap[s, c] ← 0

10: end if
11: end for
12: end for
13: apply equivalent rows elimination on T2: R2 is the reduced table and EQ2[s]

points to equivalent row in R2 for each row s.
14: return (default, bitmap, EQ2, R2)
15: end procedure

failure links pointing to the initial state, so their transitions on a character c
lead to a same state. This state is extracted as the default state.

The step of extracting default states is important. A great portion of non-
empty elements in each column is removed by employing this technique, making
it possible to apply equivalent rows elimination for further space reduction. How-
ever, the percent of extracted elements decreases as the number of automaton
states grows larger.

The procedure for compressing the second sub-table is described in algorithm 3.
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4 Experimental Results

In this subsection, we compare our table compression method (extendedAC-
optimize) with the basic AC algorithm (AC), the extended AC algorithm
(extendedAC) and the extended AC algorithm with default states (extendedAC-
default) in terms of memory usage and searching time.

We did our experiments both on random and real pattern sets, including:

– Random strings and text: A set of 30000 random strings with each character
uniformly generated from 256-alphabet. All the strings are of the same length
8. The strings are searched against a 10MB random text generated in the
same way.

– Chinese words: A set of 75717 commonly used Chinese words. The words are
searched against a 25.3MB text from ”People’s Daily” (www.people.com.cn).

– English words: A set of 3599 English words randomly chosen from the Bible.
The words are searched against the Bible.

– Snort signatures: A set of 5029 signatures extracted from the open source
NIDS system Snort (www.snort.org). The signatures are searched against the
MIT intrusion detection dataset mit 1999 training week1 friday inside.dat
(www.ll.mit.edu/IST/ideval).

– ClamAV signatures: A set of 8000 signatures extracted from the open source
Anti-Virus system ClamAV (www.clamav.org). The signatures are searched
against the MIT intrusion detection dataset as above.

– DNA sequences: A set of 5000 DNA sequences. The DNA sequences are
searched against a 21.6MB DNA database. (www.bioinfo.org.cn)

We use compression ratio to evaluate the efficiency of equivalent rows elimi-
nation on the sub-tables. Compression ratio is defined as the ratio of number of
distinct rows after compression to number of rows in original table. Results in
Table 1 and Table 2 show that equivalent rows elimination works fine on both
sub-tables. Take random pattern set for example, the compression ratio is about
1.9% for the first sub-table and 5.1% for the second sub-table. We can see from
table 2 that extracting default states from each column contributes most to the

Table 1. Compression ratio of 1st sub-table on different pattern sets. The 3rd column
is number of rows eliminated and the 4th column is the number of distinct rows after
applying equivalent rows elimination on the sub-table. The last column presents the
percent of distinct state rows compared to the number of automaton states.

Test # of States Eliminated
Rows

Distinct Rows Compression Ratio

Random 204270 200358 3912 1.9%
Chinese 173801 161462 12339 7.1%
English 10448 9816 633 6.05%
Snort 59081 57631 1450 2.45%
ClamAV 307881 305582 2299 0.75%
DNA 122566 122550 16 0.01%
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Table 2. Compression ratio of 2nd sub-table on different pattern sets. The 3rd column
presents the percent of removed elements by extracting a default state from each column
of the state table. The last column is the percent of distinct state rows compared to
the number of automaton states.

Test # of States Percent of De-
fault (%)

Eliminated
Rows

Distinct Rows Compression
Ratio (%)

Random 204270 62.86% 193916 10354 5.1%
Chinese 173801 72.53% 155940 17861 10.2%
English 10448 95.97% 9569 879 8.4%
Snort 59081 91.74% 57117 1964 3.3%
ClamAV 307881 89.57% 302922 4959 1.6%
DNA 122566 0.29% 107605 14961 12.2%

Table 3. Memory usage (MB) comparison between the algorithms on different
pattern sets

Test AC extendedAC extendedAC-
default

extendedAC-
optimize

Random 1.753 199.482 94.157 13.524
Chinese 1.492 169.728 59.614 22.821
English 0.090 10.203 0.594 1.153
Snort 0.507 57.696 6.407 2.993
ClamAV 2.643 300.655 41.564 8.999
DNA 1.052 1.870 3.266 1.631

Table 4. Searching time (seconds) comparison between the algorithms on different
pattern sets

Test AC extendedAC extendedAC-
default

extendedAC-
optimize

Random 1.437 0.625 3.016 0.266
Chinese 3.829 1.797 4.734 1.359
English 1.859 1.564 1.563 1.544
Snort 8.156 0.999 1.969 1.610
ClamAV 9.593 0.984 1.953 1.124
DNA 2.578 0.985 1.968 1.641

space reduction. On the English, Snort and ClamAV datasets, the percentage
of elements extracted as default states is up to 90%. However, the percentage is
extremely low on the DNA dataset, because on small alphabet the distribution
of state transitions is rather random.

The comparison of total memory usage and searching time is presented in
Table 3. The memory used by our method is greatly less than that used by the
extended AC, but it is still larger than the memory usage of the basic AC algo-
rithm. On small alphabet, the overheads of our method offset the profit brought
by equivalent rows elimination. With regard to searching time, our method
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performs better than extended AC on random dataset, Chinese dataset and
English dataset, but slower on other datasets. Though the memory usage of the
basic AC algorithm is low, its searching phase is rather time-consuming. There-
fore, our method provides better trade-off between memory usage and searching
time than the extended AC algorithm and the basic AC algorithm.

5 Conclusion

We proposed an efficient table compression method for extended AC automaton.
Our method is based on equivalent rows elimination which groups state rows into
equivalent classes and then eliminates the duplicates. To employ the technique
efficiently, we split the extended AC automaton into two sub-tables. Further
more, special optimization techniques are devised to compress the sub-tables
using equivalent rows elimination. Besides great reduction in memory space,
our method also runs in linear searching time comparable to that of extended
AC algorithm. Experiments on both random and real pattern sets justified the
method’s efficiency.
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Abstract. An n-ary query over trees takes an input tree t and returns a set of n-
tuples of the nodes of t. In this paper, a compact data structure is introduced for
representing the answer sets of n-ary queries defined by tree automata. Despite
that the number of the elements of the answer set can be as large as |t|n, our
representation allows to store the set using only O(3n|t|) space. Several basic
operations on the sets are shown to be efficiently executable on the representation.

1 Introduction

Finite state automaton is a well-known model for representing properties for trees and
strings. The class of queries definable by finite state automata is called regular and is
widely used both in theory and in practice. A number of query formalisms are shown
to be equivalent or subsumed by regular queries. Examples of such formalisms include,
regular expression pattern [1], monadic second-order logic [2], μ-calculus [3], Core
XPath [4], monadic Datalog [5], boolean attribute grammar [6], etc.

In this paper, we are interested in the space complexity of the n-ary queries defined
by tree automata. An n-ary query over trees takes an input tree t and returns a set of
n-tuples of the nodes of t. The number of elements in the answer set of an n-ary query
may be as large as |t|n where |t| is the number of the nodes of t. And, usually, stor-
ing a set of |t|n elements requires at least c|t|n space where c is the space required
to store a single element (in this case, one n-tuple of nodes). The O(|t|n) space con-
sumption is unavoidable if the elements are chosen in a perfectly random manner; it
is a well-known consequence from the information theory. Note, however, we are in-
terested in more practical, less random queries. Queries defined by tree automata have
much more structure than random ones. By exploiting the structural characteristics of
regular queries, we can represent the answer sets in some compressed form.

v0

v1

v2 v3

v4

v5 v6

t =

2 3 5 6

Let us explain the idea by an example. Consider the regular
query “select all pair of nodes (x, y) such that x is in the left
subtree of the root node and y is in the right subtree of the root
node” with the input tree t as in the figure. Then the answer set
consists of nine elements: {(v1, v4), (v2, v4), (v3, v4), (v1, v5),
(v2, v5), (v3, v5), (v1, v6), (v2, v6), (v3, v6)}. Obviously, if an in-
put tree has n nodes both in the left and the right subtrees, the size of the answer set will
be n2, which is quadratic in the number 2n+1 of the nodes. Our approach for avoiding
the quadratic blow-up is to represent the answer set by a symbolic expression, instead
of computing the concrete list of elements. For this example, we represent the answer

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 94–104, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Compact Representation for Answer Sets of n-ary Regular Queries 95

set by the expression {v1, v2, v3} × {v4, v5, v6} where × denotes the product of two
sets. Counting the number of variables vi and the operator, the length of the expression
is 7 instead of 9. Analogously, for the general case with n nodes in both the left and the
right subtrees, the answer set can be represented by the expression of length 2n + 1,
which consumes only linear space with respect to the size of the input tree.

The contribution of our work is in establishing the expression-based compact repre-
sentation as illustrated above. In fact, only two operators– ·∪ (disjoint union) and ∗ (a
slight variant of product)–are necessary for achieving the linear-size representation of
the answer sets of regular queries. We show that for any fixed n-ary regular query and
an input tree t, the answer set can always be represented by an expression on ·∪ and ∗
with every leaf expression being a singleton set of an input node. By sharing common
sub-expressions, the expression can be represented by a dag of size O(3n|t|). That is,
regardless of the arity n of the query, the data complexity with respect to the size |t|
of the input is always linear! The factor 3n is sufficiently low for queries with small n
such as binary or ternary queries, which are the most cases occur in practice (after all,
it is quite rare to run, say, a 100-ary query).

Furthermore, the dag representation is extended to a data structure named SRED (Set
Representation by Expression Dags), which enjoys good time complexity as well as the
size-efficiency. The SRED representation of the answer set can always be computed
from the input tree t in time O(3n|t|), regardless how large the actual answer set is.
Also, evaluation (or we could say, decompression) of a SRED to yield the concrete
list of answer tuples can be done in time O(3na), where a is the number of the an-
swers. By combining these two steps, we obtain an algorithm for regular queries in the
optimal data complexity O(|t| + a). More than that, on SRED, we can carry out the
following two important operations without decompressing it: (1) SELECTION: for an
answer set s, the SRED representation of the set s[i:u] = {(v1, . . . , vi−1, vi+1, . . . , vn) |
(v1, . . . , vi−1, u, vi+1, . . . , vn) ∈ s} can be computed in time O(3nh) where h is the
height of the input tree for binary trees and is the height times log |t| for unranked trees,
and (2) PROJECTION: the set s@i = {vi | (v1, . . . , vn) ∈ s} can be computed in time
O(6nh|s@i|). The key idea of SRED is to remember for every sub-expression the least
common ancestor of the nodes contained in the set represented by the sub-expression.
The information allows to locate the leaf expressions containing each input node in time
proportional only to the height of the expression-dag.

Related Work. SRED has much similarity to the Complete Answer Aggregate (CAA)
introduced by Meuss, Schulz, and Bry [7] as a compact representation of answer sets
of queries. The size of a CAA is O(nh|t|) which is competitive to our O(3n|t|). CAA
is also suitable for applying several operations such as membership testing. The main
advantage of our work is that it supports arbitrary regular queries, which is strictly
more expressive than the query language used in [7]. Though an attempt to represent
the answer sets of regular queries with CAA is given by Filiot and Tison [8] through
a decomposition of queries, the space complexity is O(n|t|dφ) for some constant dφ

depending on the query, which grows to n in the worst case. Besides, precise complexity
of operations like selection or projection for CAA was not estimated.

An algorithm (FFG algorithm) for answering regular n-ary queries in the optimal
time complexity O(|t|+ a) is shown by Flum, Frick, and Grohe [9]. Since no compact
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data structure was used in their work, the FFG algorithm requires O(a) space to be
carried out. In fact, our algorithm can be regarded as a space-efficient variant of the
FFG algorithm. The expression dag generated in our algorithm precisely corresponds
to the set operations executed in the FFG algorithm. On the other hand, the class of
queries that the FFG algorithm can be applied is more general than our algorithm. The
FFG algorithm can also be used for querying n-tuples of sets of nodes of graphs that
have a tree decomposition, while our algorithm only supports queries for n-tuples of
nodes of trees. It is future work whether our compact representation of the answer sets
can be extended to more general class of queries.

2 Preliminaries

In this paper, we mainly consider binary trees, in which every node has either zero or
two children. Generalization to the trees with other arity is briefly mentioned in the end
of Section 4. Let Σ be a finite alphabet that is a disjoint union of two alphabets Σ(0) and
Σ(2). A binary tree (or simply, a tree) over Σ is a tuple t = (Vt, label t, lt t, rtt, root t)
where Vt is the disjoint union V

(0)
t ·∪ V

(2)
t of finite sets of nodes, label t : V

(0)
t →

Σ(0) ·∪ V
(2)
t → Σ(2) is the label function, lt t, rtt : V

(2)
t → Vt is the left- and right-

child function respectively, and root t ∈ Vt is the root node. We require a tree to satisfy
the following conditions: (1) rooted: there is no node v ∈ Vt such that lt t(v) = root t or
rtt(v) = root t, (2) acyclic: there is no node v ∈ Vt that is reachable from itself by finite
applications of ltt and rt t, and (3) tree-formed: for any non-root node v ∈ Vt \{roott},
there exists unique node u called the parent of v such that ltt(u) = v ∨ rt t(u) = v. A
structure only satisfying (1) and (2) is called a dag. For v1, v2 ∈ Vt, the binary order
relation v1 ≤t v2 is defined to hold if and only if v2 is reachable from v1 by zero or
finitely many applications of lt t and rt t. We usually omit the subscript t if clear from
the context. By |t|we denote the number |Vt| of the nodes. We use the notation a〈v1, v2〉
to denote a node v such that label t(v) = a, lt t(v) = v1, and rtt(v) = v2.

For a tree t, we assume that each node v ∈ Vt can be stored on memory in constant
space independent from |t|. In practice, this implies the assumption that the tree t fits in
the address space of the computer and each node can be represented by a single pointer.
We also assume that the operations label , lt , rt , and≤ can be executed in constant time.
In particular, we can test the relation≤ in constant time by, e.g., the preorder/postorder
numbering [10]. Again by the assumption that |t| fits in the address space, preorder and
postorder numbers can be stored in constant space.

A tree language over Σ is a set of trees over Σ. By TΣ , we denote the set of all
trees over Σ. An important class of tree languages are those defined in terms of tree
automata. A bottom-up deterministic tree automaton over Σ is a tuple A = (QA, δA,
FA) where QA is the set of states, δA : (Σ(0) ∪ Σ(2) × QA × QA) → QA is the
transition function, and FA ⊆ QA is the set of accepting states. The subscript A is
omitted if clear from the context. A run of a tree automatonA on the input tree t is the
unique function ρ : Vt → QA such that ρ(v) = δA(label t(v)) if label t(v) ∈ Σ(0) and
ρ(v) = δA

(
label t(v), ρ(lt t(v)), ρ(rt t(v))

)
if label t(v) ∈ Σ(2). The automaton accepts

t if and only if ρ(root t) ∈ FA. By L(A), we denote the set of trees accepted by A. A
tree language is said to be regular if it is equal to L(A) for some tree automatonA.
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3 N -ary Regular Tree Queries

As a basis of our algorithm for computing the compact representation of answer sets, we
first explain a basic bottom-up algorithm for regular queries with O(|t|n+1) time com-
plexity, which has already been known in the literature. Our new algorithm is obtained
by changing the data structure used in the algorithm, as explained later in Section 4.

An n-ary query for trees over Σ is a function ψ that maps each tree t ∈ TΣ to a set of
n-tuples of its nodes. Let B = {0, 1}, Σ(0)

n = Σ(0)×Bn, Σ(2)
n = Σ(2)×Bn, and Σn =

Σ
(0)
n ·∪ Σ

(2)
n . For a tree language L ⊆ Σn, an n-ary query defined by L is the function

ψL(t) = {(v1, . . . , vn) | mark(t, v1, . . . , vn) ∈ L}where mark(t, v1, . . . , vn) is a tree
m = (Vt, labelm, ltt, rt t, root t) with labelm(v) = (label t(v), b1 · · · bn) where bi = 1
if v = vi and 0 otherwise. Intuitively, a query defined by a language L selects a tuple
(v1, . . . , vn) if and only if L contains a tree obtained by marking each selected node vi

with 1. A query defined by a regular language L is called a regular query. In the rest
of the paper, we assume the regular language L to be given as a tree automatonA such
that L = L(A). Nevertheless, our algorithm can be applied, without changing the data
complexity, to many other query formalisms as long as they define regular languages
by first compiling them into tree automata and then running the algorithm.

The most naive algorithm for a regular n-ary query is, to try all possible markings.
Given an automaton A over Σn and a tree t, for all (v1, . . . , vn) ∈ V n

t we gener-
ate the marked tree mark(t, v1, . . . , vn) and test whether it is accepted by A. If it is,
(v1, . . . , vn) is an answer and hence we output it. This algorithm takes O(|t|n+1) time,
because computing each run ofA takes O(|t|) time and we try |t|n runs in total.

Another approach is to try all marking parallelly by a single bottom-up run. The
following recursive procedure QUERY-RUNA takes a node v of t and computes a table
containing the result of the parallel marking run.

QUERY-RUNA (v)
1: r ← new 2-dimensional array of size |QA| × 2n with each element initialized to ∅
2: if label(v) ∈ Σ(0) then
3: for each ((label(v), b0) �→ q0) ∈ δA do
4: r[q0, b0] ← singleton(v, b0)
5: else if label(v) ∈ Σ(2) then
6: r1 ← QUERY-RUNA (lt(v)); r2 ← QUERY-RUNA (rt(v))
7: for each ((label(v), b0), q1, q2 �→ q0) ∈ δA do
8: for each disjoint b0, b1, b2 in 00 . . . 00 to 11 . . . 11 do
9: r[q0, b0|b1|b2] ← r[q0, b0|b1|b2] ·∪ singleton(v, b0) ∗ r1[q1, b1] ∗ r2[q2, b2]

10: return r

By singleton(v, β1 · · ·βn) we denote the singleton set {(u1, . . . , un)} where ui = v if
βi = 1 and ui = ⊥ if βi = 0. Here, ⊥ is a special symbol not contained in Vt. In line
7, for each disjoint iterates over pairs of form (b1 = β11 · · ·β1n, b2 = β21 · · ·β2n) ∈
(Bn)2 such that for all 1 ≤ i ≤ n, at most one of {β0i, β1i, β2i} is 1, with β01 · · ·β0n =
b0. The operator | is for bitwise-or and ·∪ is disjoint union of sets (the operands are
indeed disjoint, as explained later). The operator ∗ is a kind of “product” operation that
combines two sets of tuples, defined as follows: S∗T = {(u1, · · · , un) | (s1, · · · , sn) ∈
S, (t1, . . . , tn) ∈ T, ∀i : (ui = si ∧ ⊥ = ti) ∨ (⊥ = si ∧ ui = ti)}. For example,
{(v1,⊥,⊥), (v2,⊥,⊥)} ∗ {(⊥,⊥, v3), (⊥,⊥, v4)} is equal to {(v1,⊥, v3), (v1,⊥, v4),
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(v2,⊥, v3), (v2,⊥, v4)}. Let us remark that we never take ∗-product of sets that have
tuples with non-⊥ nodes on the same position, as will be shown in Lemma 1.

Let us explain how the algorithm works. Let r = QUERY-RUNA(v) for a node
v ∈ Vt. For each q ∈ QA and b = β1 · · ·βn ∈ Bn, r[q, b] is a set of n-tuples over
the set Vt ∪ {⊥}. A tuple in (Vt ∪ {⊥})n is called a partial answer to the query. For
example, (v1,⊥) is a partial answer that selects the node v1 as the first coordinate and
leaves the second coordinate to be selected later. Intuitively, r[q, b] is the set of partial
answers α such that, if a tree is marked according to α, then at the node v, the run of
the automatonA reaches the state q. For example, if (v1,⊥) ∈ r[q, b], it means that “if
the node v1 is marked as the first component of the answer and no node in the subtree
under v is marked as the second component, A reaches the state q at node v”. As an
example, let us assume v to be a leaf node labeled σ ∈ Σ(0) and A to define a binary
query. Suppose δA has the following four rules: δA((σ, 00)) = q1, δA((σ, 01)) = q2,
δA((σ, 10))=q1, and δA((σ, 11))=q2. Then, the table r=QUERY-RUNA(v) is:

r[q1, 00] = {(⊥,⊥)} r[q1, 01] = ∅ r[q1, 10] = {(v,⊥)} r[q1, 11] = ∅
r[q2, 00] = ∅ r[q2, 01] = {(⊥, v)} r[q2, 10] = ∅ r[q2, 11] = {(v, v)}.

The set r[q1, 00] contains (⊥,⊥) because if we do not select any node below v, the
automaton reaches the state q1. On the other hand, the set r[q2, 00] is empty, because
we cannot reach the state q2 at node v if we do not select any node. Similarly, r[q1, 01]
is empty, because we cannot reach the state q1 if we select the second coordinate of the
answer. On the other hand, we have r[q2, 01] = {(⊥, v)}, because if we choose v as the
second coordinate, the automaton reaches the state q2.

The index b of r called flag denotes the already selected coordinates. Formally, the
following lemma can be shown by induction on the structure of the tree rooted at v.

Lemma 1. Let r = QUERY-RUNA(v) for some v and (u1, . . . , un) ∈ r[q, β1 · · ·βn].
For all 1 ≤ i ≤ n, we have (ui ∈ Vt and v ≤t ui) if βi = 1, and ui = ⊥ if βi = 0.

The lemma ensures the two disjointness in the procedure QUERY-RUNA. First, the ∗-
product is always taken between the sets with disjoint selected-coordinates. That is,
we need to compute S ∗ T only for the sets S, T such that (. . . , vi, . . .) ∈ S and
(. . . , ui, . . .) ∈ T implies either vi or ui is ⊥. For such a case, we have |S ∗ T | =
|S| · |T |. Second, ·∪ is always taken between disjoint sets, because the operands of ·∪ are
constructed by ∗-product over different flags.

The answer set of the query can be calculated from the result of QUERY-RUNA
applied to the root node, namely, r = QUERY-RUNA(root t). For each q ∈ FA, recall
that the set r[q, 1 · · · 1] is the set of tuples such that “if the tree is marked according to
the tuple, A reaches the state q at the root node”, which is by definition the answer set.

Theorem 2. ψL(A)(t) =
⋃

q∈FA QUERY-RUNA(root t)[q, 11 · · · 11].

Proof (sketch; for more detail, consult Claim 1 of [9]). Let v1, . . . , vn ∈ Vt to be fixed
and ρ be the unique run on the tree mark(t, v1, . . . , vn) by A. Let v ∈ Vt. For each
i, if v ≤t vi then let ui = vi and βi = 1. Otherwise let ui = ⊥ and βi = 0. We
can prove by induction on the structure of v the following claim: if ρ(v) 
= q the set
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QUERY-RUNA(v)[q, b] is empty for any b ∈ Bn, and if ρ(v) = q then (u1, . . . , un) ∈
QUERY-RUNA(v)[q, b] if and only if b = β1 · · ·βn. By applying the claim to the root
node v=root t, we have (v1, . . . , vn)∈QUERY-RUNA(root t)[q,11 · · · 11] if and only if
q=ρ(root t), which, together with the definition of ψL(A), proves the desired result. ��

What is the complexity of this algorithm? For each node v ∈ Vt, the procedure
QUERY-RUNA is applied exactly once. In other words, the procedure is called |t| times.
In the body of the procedure, the case for Σ(2) labels is computationally harder; the
outer loop requires |δA| iterations, the inner loop for b0, b1, b2 requires 3n iterations,
and inside the loop, one ·∪ operation and two ∗ operations are required. Note that the
result of those set operations can be as large as O(|t|n) in the worst case. As long as
we represent such sets as a concrete collection of tuples, the operation ∗ need to enu-
merate all its output elements. Hence it takes at least O(|t|n) time. Altogether, the total
time complexity is still high: O(3n|δA||t|n+1). In fact, the complexity can be reduced
by a 2-pass preprocessing proposed in [9]. Their preprocessing detects, for each node,
whether or not each entry r[q, b] really needs to be computed. By omitting the compu-
tations that turned out not to be need, the complexity is reduced to O(3n|δA|(|t|+ a))
where a is the size of the answer set.

In the next section, we take a completely different approach for reducing the com-
plexity. Rather than changing the structure of the algorithm (like adding preprocessing
passes), we introduce a novel data structure for representing sets of tuples. Just by using
the data structure to represent sets in the QUERY-RUNA procedure, we obtain linear
running time with respect to |t|, as well as a compact representation of the answer set.

4 SRED: Set Representation by Expression Dags

The idea of our compact representation is quite simple. To represent a set s, we use a
syntax tree r of an expression that evaluates to s. For example, let r1 and r2 be the root
nodes of the syntax-tree representations of sets s1 and s2 (we write s1 = �r1�). Then we
denote the set s1 ·∪s2 by the tree r = cup〈r1, r2〉. To denote the set �r1� ·∪ (�r2�∗ �r3�),
we use cup〈r1, star〈r2, r3〉〉. Note that, by allowing sharing of subtrees (i.e., using
syntax-dags instead of syntax-trees, which allows a node like cup〈r1, r1〉), each opera-
tion can be executed in constant time, because it is just a creation of one new node. Since
the algorithm QUERY-RUNA carries out set operations at most O(3n|δA||t|) times, un-
der this representation of sets, the running time of QUERY-RUNA is in O(3n|δA||t|),
and so is the size of the output dag representing the answer set.

Let us formally explain the syntax-dag-based representation, which we call SRED
(Set Representation by Expression Dags). An answer set of an n-ary query over a tree t
is represented by a dag of the following BNF, for β1 · · ·βn ∈ Bn:

STβ1···βn ::= emp〈〉 | unit〈〉 | ne〈NSTβ1···βn〉
NSTβ1···βn ::= cup〈v,NSTβ1···βn ,NSTβ1···βn〉 with v ∈ Vt

| star〈v,NSTα1···αn ,NST γ1···γn〉 with v ∈ Vt and αi ⊕ γi = βi

| sing〈v, β1 · · ·βn〉 with v ∈ Vt
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EVAL (r)
1: if r ≡ emp〈〉 then return ∅
2: else if r ≡ unit〈〉 then return {(⊥, · · · ,⊥)}
3: else if r ≡ ne〈r′〉 then return EVAL-NE(r′ )

UNION-AT (v, r1, r2)
1: if r1 ≡ emp〈〉 then
2: return r2
3: else if r2 ≡ emp〈〉 then
4: return r1
5: else if r1 ≡ ne〈r′

1〉 and r2 ≡ ne〈r′
2〉 then

6: return ne〈cup〈v, r′
1, r′

2〉〉
SINGLETON-AT (v, β1 · · · βn)
1: if β1 · · · βn = 0 · · · 0 then
2: return unit〈〉
3: else return ne〈sing〈v, β1 · · · βn〉〉

EVAL-NE (r)
1: if r ≡ cup〈v, r1, r2〉 then
2: return EVAL-NE(r1 ) ·∪ EVAL-NE(r2 )
3: else if r ≡ star〈v, r1, r2〉 then
4: return EVAL-NE(r1 ) ∗ EVAL-NE(r2 )
5: else if r ≡ sing〈v, b〉 then
6: return singleton(v, b)

PRODUCT-AT (v, r1, r2)
1: if r1 ≡ emp〈〉 or r2 ≡ emp〈〉 then
2: return emp〈〉
3: else if r1 ≡ unit〈〉 then
4: return r2
5: else if r2 ≡ unit〈〉 then
6: return r1
7: else if r1 ≡ ne〈r′

1〉 and r2 ≡ ne〈r′
2〉 then

8: return ne〈star〈v, r′
1, r′

2〉〉

Fig. 1. Basic Operations on SRED

where a⊕c = b if and only if a 
= c and b = 1 or a = b = c = 0. Note that, for enabling
fast navigation as will be explained later, we record the node v ∈ Vt at each operator.
Also for the efficiency, we specially treat the empty set (represented by emp〈〉) and
the unit set ({(⊥, . . . ,⊥)}, represented by unit〈〉), so that they do not occur at operand
positions. For example, cup〈v, emp〈〉, emp〈〉〉 is ill-formed because emp〈〉 occurs as
operands of cup. By avoiding emp〈〉 and unit〈〉 to occur at non-root position, we can
evaluate the syntax-dag by a simple recursion shown in Fig. 1, in the data complexity
proportional to the size of the answer set.

Lemma 3 (EVALUATION). Assume the disjoint union s1 ·∪ s2 can be computed in con-
stant time and the product s1 ∗s2 can be computed in time O(n|s1 ∗ s2|) for s1, s2 
= ∅.
Then EVAL(r) (EVAL-NE(r), respectively) runs in time O

(
3kn|EVAL(r)|

)
(O
(
3kn

|EVAL-NE(r)|
)
) where k is the maximum number of star nodes in every path from r to

any leaf.

Proof. The proof is by induction on the structure of r. For the case of emp, unit, sing,
and cup nodes, it is trivial and hence omitted here. For the case r ≡ star〈v, r1, r2〉, by
induction hypothesis, s1 = EVAL-NE(r1) and s2 = EVAL-NE(r1) can be computed
in 3k−1n(|s1|+ |s2|) steps. Since neither s1 nor s2 is empty, their sizes are less than or
equal to |s1 ∗ s2|. Thus, 3k−1n(|s1| + |s2|) is no more than 2 · 3k−1n|s1 ∗ s2|. By the
assumption, their *-product can be computed in time n|s1 ∗ s2|. Altogether, the total
time consumption for EVAL(r) in this case is 3kn|s1 ∗ s2| = 3kn|EVAL-NE(r)| as
desired. ��

The complexity assumption is satisfied by, for instance, representing the sets by a
doubly-linked list of elements. Disjoint union can be implemented by the list concate-
nation, and the ∗-product is implemented by a double-loop over two operand sets. Note
that, the number k of star node in a path is at most n, because the star operation strictly
increases the number of non-⊥ coordinates in the element tuples.

The basic three operations used in the algorithm QUERY-RUNA are defined on
SRED as in Figure 1. Note that, to avoid emp〈〉 and unit〈〉 to occur in operand positions,
we deal with the nodes specially. For example, since ∅∪s = s for any set s, when either
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PROJ (i, r)
1: if r ≡ emp〈〉 then
2: return ∅
3: else if r ≡ ne〈r′〉 then
4: return PROJ-NE(i, r′)

SELECT (i, u, r)
1: if r ≡ emp〈〉 then
2: return emp〈〉
3: else if r ≡ ne〈r′〉 then
4: return SEL-NE(i, u, r′)

PROJ-NE (i, r)
1: if r ≡ cup〈v, r1, r2〉 then
2: return PROJ-NE(i, r1) ∪ PROJ-NE(i, r2)
3: else if r ≡ star〈v, r1, r2〉 (with r1 ∈ NSTβ1···βn ) then
4: if βi = 1 then return PROJ-NE(i, r1) else return PROJ-NE(i, r2)
5: else if r ≡ sing〈v, β1 · · · βn〉 then
6: return {v}

SEL-NE (i, u, r)
1: if r ≡ cup〈v, r1, r2〉 and v ≤ u then
2: return UNION-AT(v, SEL-NE(i, u, r1), SEL-NE(i, u, r2))
3: else if r ≡ star〈v, r1, r2〉 (with r1 ∈ NSTβ1···βn ) and v ≤ u then
4: if βi = 1 then return PRODUCT-AT(v, SEL-NE(i, u, r1), r2)
5: else return PRODUCT-AT(v, r1, SEL-NE(i, u, r2))
6: else if r ≡ sing〈v, β1 · · · βn〉 and v = u then
7: return SINGLETON-AT(v, β1 · · · βi−10βi+1 · · · βn)
8: else return emp〈〉

Fig. 2. Projection and Selection on SRED

one of the operands of the UNION-AT operation is an emp〈〉 node, it returns the other
operand rather than constructing a new cup node. The correctness is easily verified by
induction on the structure of SRED, and we have the following results:

Lemma 4 (Correctness). EVAL(UNION-AT(v, r1, r2)) = EVAL(r1) ·∪ EVAL(r2),
EVAL(PRODUCT-AT(v, r1, r2)) = EVAL(r1)∗EVAL(r2), and EVAL(SINGLETON-
AT(v, b)) = singleton(v, b).

Theorem 5. Let S-QUERY-RUNA be a procedure obtained by replacing ∅ in the pro-
cedure QUERY-RUNA with emp〈〉, x ·∪y with UNION-AT(v, x, y), x∗y with PRODUCT-
AT(v, x, y), and singleton(v, b) with SINGLETON-AT(v, b). Then, S-QUERY-RUNA(t)
runs in time O(3n|δA||t|) and outputs a SRED r with at most 3n|δA||t| nodes, such that
EVAL(r) = QUERY-RUNA(t).

Rather than enumerating the all elements of the answer set, we sometimes want to ex-
tract a sub-part of the answer set. Here, we give an implementation of two important
operations on SRED, namely, PROJECTION and SELECTION. For a set s of n-tuples
and 1 ≤ i ≤ n, PROJECTION s@i = {vi | (v1, . . . , vn) ∈ s} is the set of i-th coor-
dinates of s. Given an element u, SELECTION s[i:u] = {(v1, . . . , vi−1, vi+1, . . . , vn) |
(v1, . . . , vi−1, u, vi+1, . . . , vn)} is the set of tuples in s such that the i-th coordinate is
u. As an example of a use-case of the two operations, consider the following scenario:
first we apply PROJECTION @1 to an answer set, sort the result in some preferable order,
and with each element u of the projected set, apply SELECTION [1:u] to get the remain-
ing coordinates. In this way, we can enumerate the answers of queries in a user-specified
order, rather than in the default order of EVALUATION procedure.

On SRED representation of the answer sets, those two operations can be carried
out in time proportional to the height of the input tree. That is, we do not need to
traverse the whole structure of SRED, nor to re-traverse the original input tree. Fig. 2
is the implementation, which is straightforwardly obtained from the distributivity of
projection and selection over disjoint union, etc.
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Theorem 6 (PROJECTION). By using memoization, the procedure PROJ(i, r) com-
putes the set EVAL(r)@i in time O(6nh|δA||EVAL(r)@i|) where h is the height of
the original input tree t.

Proof. Correctness is proved by induction on the structure of r, which is omitted here
due to the lack of the space. For the complexity, we assume the procedure PROJ-NE
to be memoized, i.e., if it is applied to the same arguments second time, it immediately
returns the previous result in constant time. We can implement such memoization by
using hash table. Then the body of the procedure PROJ-NE is executed at most once
per each node of r. In fact, it can be shown that PROJ-NE is applied only to the nodes
that are an ancestor of a sing〈v, · · ·〉 node with v ∈ EVAL(r)@i. By the definition of the
QUERY-RUNA procedure, the number of such sing nodes is at most 2n|EVAL(r)@i|,
and for each of them, the number of the ancestors is at most 3nh|δA|. By using list-
concatenation for representing set-union1, the body of PROJ-NE can be executed in
constant time. Hence, we obtain the desired complexity. ��

Theorem 7 (SELECTION). By using memoization, the procedure SEL(i, u, r) com-
putes the set EVAL(r)[i:u] in time O(3nh|δA|).

Proof. Correctness is proved by induction on the structure of r. For the complexity,
memoization ensures that the procedure SEL-NE is called at most once per each node
of r. By Lemma 1, the test v ≤ u succeeds only at the node constructed at an ancestor
(in the tree t) of u. Hence, SEL-NE is executed only on the nodes constructed at an
ancestor of u, or their direct child. Since the number of the ancestor nodes is at most h
and on each of such nodes at most 3n|δA| SRED-node is created, SEL-NE is executed
only O(3nh|δA|) times, which proves the desired complexity. ��

As a corollary, given a tuple (u1, . . . , un), we can test whether a SRED contains the
tuple in time O(3nnh|δA|) by applying SELECTION n times.

Generalizations to Unranked Trees. So far, we have considered only binary trees. In
many applications, however, we are interested in unranked trees with varying number
of child nodes. To deal with unranked trees, we encode such trees to binary trees. A
widely used encoding is fc-ns encoding. In a binary tree obtained as the fc-ns encoding
of an unranked tree, the first child of each node is mapped to the first child of the
corresponding node in the original unranked tree, and the second child of each node is
mapped to the next sibling in the unranked tree. It is a folklore result that the encoding
preserves the regularity of queries, i.e., any regular query for unranked trees can be
converted to a regular query on the encoded trees. Hence, by first encoding the unranked
input trees and the queries to the binary-tree form and then running S-QUERY-RUNA,
we can compute the linear-size representation of the answer sets of regular queries. One
problem of fc-ns encoding is the time complexity of operations on SRED that depends
on the factor h, the height of the tree. Suppose an original unranked tree has small
height h0 and nodes with large number w0(� |t|) of children (which is often the case
for most XML documents). The problem is that the height of the fc-ns encoded tree

1 Precisely speaking, since it is not a disjoint union this time, list-concatenation based implemen-
tation may cause duplication. It, however, can be remove by a linear time ‘uniq’ algorithm.
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is O(h0w0). To deal with such trees, we recommend to use another encoding, namely,
the bb encoding, to reduce the complexity to O(h0 log w0). In bb encoding, the list of
children of each node is encoded to a balanced binary tree whose left-to-right sequence
of leaf nodes corresponds to the child sequence in the original tree. Such an encoding
also preserves regularity, because the ‘first-child’ and the ‘next-sibling’ relations remain
regular. Moreover, since the height of a balanced binary tree is in the logarithmic order
of the number of the leaves, the height of the bb-encoded tree reduces to O(h0 log |t|).

Application. SRED is developed for the XML transformation language MTran [11].
Let us illustrate the benefits of SRED by the following pseudo code for XML translation:

{gather x | x:<person> do
<row><col>{gather y | (x//<name>/y) do y}</col>

{gather z | z:<person> & document-order(z,x) do <col>· · ·</col>}</row>}

The program takes a document containing a list of <person> elements and generates
some triangular matrix table. The first query “x:<person>” lists up all the <person>
elements, and for each of them, the second query “(x//<name>/y)” selects a descendant
y of x labeled <name> (for simplicity, we assume that such y uniquely exists). If we re-
ally run for each x the second query, which takes in general O(|t|) time where |t| is the
size of the tree, total running time of the query becomes quadratic, because there may
be linearly many <person> nodes. Rather, as pointed out in [12], it is better to regard the
second query as a binary query for selecting pairs (x, y). By using SRED, the answer
set of such a binary query can be computed in linear time. Furthermore, by the SELEC-
TION operation followed by the EVALUATION operation, for each x we can obtain the
corresponding y in time O(h0 log |t|). Total running time reduces to O(h0|t| log |t|). So
far, we could have used the FFG algorithm (or equivalently, query with SRED directly
followed by EVALUATION) for the same purpose, because its running time is linear un-
der the assumption that y uniquely exists for each x. Consider, then, the third query that
selects all <person> elements z preceding x in the document order (preorder). Simi-
larly, we run the query as a binary query for selecting pairs (x, z). In this case, the size
of the answer set is quadratic. If we use the FFG algorithm, we need O(|t|2) working
space for carrying out the binary-query based approach. While, with SRED, it requires
only O(|t|) working space. This makes feasible to run the transformation over larger
inputs, which could not be done without SRED due to memory shortage.

Thanks. This work was supported by the Japan Society for the Promotion of Science.
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Abstract. In this paper, we study tree automata for directed acyclic
graphs (DAGs). We define the movement of a tree automaton on a DAG
so that a DAG is accepted by a tree automaton if and only if a DAG has
a spanning tree accepted by a tree automaton. The NP-completeness of
the membership problem of DAGs for a tree automaton is shown, and
a linear-time recognition algorithm of series-parallel graphs for a tree
automaton is presented.

1 Introduction

This paper proposes the use of tree automata [3] for the recognition of directed
acyclic graphs (DAGs). Since DAGs are one of the most popular data structures
in computer science and have many important applications, it is natural to study
automata models for DAGs.

There are several ways to relate tree automata to DAGs. Many papers, e.g.,
[2,1,6] and Chap. 4 of [3], regarded DAGs as a compressed representation of trees
and defined that a DAG is accepted by a tree automaton if the unfolded tree of
a DAG is accepted by a tree automaton. For the sake of the motivation of this
study, this paper defines the movement of a tree automaton on a DAG so that a
DAG is accepted by a tree automaton if and only if a DAG has a spanning tree
accepted by a tree automaton.

The motivation of this study is to establish a powerful and efficient recogni-
tion method for a mathematical OCR system [5]. As shown in Fig. 1, an OCR
system constructs a DAG representing the adjacency relation of bounding boxes
of symbols in a mathematical formula from a scanned image. From the DAG,
we want to obtain a spanning tree representing connections of symbols, which
should be syntactically reasonable.

It is shown that the membership problem of DAGs for a tree automaton is
NP-complete. Thus, we need to think over restrictions on DAGs in order to
obtain a recognition algorithm for practical use.

We introduce a linear-time recognition algorithm of series-parallel graphs
(SPGs) for a tree automaton. SPGs are DAGs formed recursively by two simple
composition operations. SPGs are of interest in algorithmic graph theory be-
cause a number of standard problems on graphs are solvable in linear time for
SPGs including some NP-complete problems [7].

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 105–114, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. (a) A scanned image, and (b) the adjacency relation of bounding boxes

2 Preliminaries

In this section, we give some definitions.
A directed graph is an ordered pair G = (V, E), where V is a set, called vertices,

and E is a set of ordered pairs of vertices, called edges. When u, v ∈ V , e ∈ E,
and e = (u, v), e is called an outgoing edge of u and also called an incoming edge
of v, u is called a parent of v, and v is called a child of u. A directed graph is a
directed acyclic graph (DAG) if it has no directed cycles. For a DAG, a source
is a vertex with no incoming edges, while a sink is a vertex with no outgoing
edges. A DAG is single-source if it has exactly one source. Likewise, a DAG is
single-sink if it has exactly one sink. A single-source DAG is a tree if every vertex
except the source has exactly one incoming edge. The source of a tree is also
called the root, while sinks of a tree are also called leaves.

Let G = (V, E) be a directed graph. Let Σ be a finite set of vertex labels, and
let Γ be a finite set of edge labels. A vertex-labeling is a function σ : V → Σ.
Likewise, an edge-labeling is a function γ : E → Γ . When σ is defined over V ,
G is called vertex-labeled. When both σ and γ are defined over V and E, G
is called vertex-edge-labeled. In this paper, we assume that every graph to be
vertex-labeled. Consequently, we use the term “edge-labeled” to mean “vertex-
edge-labeled.”

In this paper, a tree means an unranked, unordered tree. However, an ordered
tree can be realized as a special case of an edge-labeled tree where the outgoing
edges of each vertex are uniquely labeled as 1, 2, 3, . . ..

Spanning trees are defined for both vertex-labeled case and vertex-edge-labeled
case as follows: (i) Let D = (V1, E1) be a DAG with a vertex-labeling σ1, and
let T = (V2, E2) be a tree with a vertex-labeling σ2. T is a spanning tree of D if
V1 = V2, σ1 = σ2, and E2 ⊆ E1. (ii) Let D = (V1, E1) be a edge-labeled DAG with
a vertex-labeling σ1 and edge-labeling γ1, and let T = (V2, E2) be a edge-labeled
tree with a vertex-labeling σ2 and edge-labeling γ2. T is a edge-labeled spanning
tree of D if V1 = V2, σ1 = σ2, E2 ⊆ E1, and γ1(e) = γ2(e) for all e ∈ E2. Since a
DAG must be single-source to have a spanning tree, we consider only single-source
DAGs in this paper.

Let X = {x1, x2, . . .} be a fixed countable set of variables.

Example 1. The following is an example of a DAG: D = (V, E), where V =
{v1, v2, v3, v4, v5}, E = {(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v2, v5), (v3, v5)},
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Fig. 2. (a) A DAG, and (b) one of the spanning trees of the DAG

Σ = {a, b, c}, and σ = {(v1, a), (v2, a), (v3, b), (v4, b), (v5, c)}. An example of a
spanning tree of D is T = (V, E′), where E′ = {(v1, v2), (v1, v3), (v2, v4), (v2, v5)}.
D and T are illustrated as (a) and (b) in Fig. 2.

3 Tree Automata Recognizing a Spanning Tree of DAGs

In this section, we introduce tree automata recognizing spanning trees of DAGs.
The definition of tree automata is the same as well-known top-down tree au-
tomata for ordered trees [3]. Though only a top-down type of tree automata is
introduced in this paper, it is easy to define a bottom-up sibling of tree automata
with equivalent recognition capability.

Definition 1. A nondeterministic top-down tree automaton (top-down TA) over
Σ is a four-tuple A = (Q, Σ, q0, R) where Q is a finite set of states, q0 ∈ Q is
the initial state, and R is a finite set of rules of the following form:

q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn)),

where n ≥ 0, f ∈ Σ, q, q1, . . . , qn ∈ Q, and x1, . . . , xn ∈ X .
Let D = (V, E) be a single-source DAG with a vertex-labeling σ, and let

A = (Q, Σ, q0, R) be a top-down TA. A state mapping is a function S : V →
Q ∪ {�,×}. The initial state mapping S0 is the state mapping such that, for
v ∈ V , S0(v) = q0 if v is the source of D, otherwise S0(v) = �. The final
state mapping Sf is the state mapping such that Sf (v) = × for all v ∈ V .
We define a relation ⇒ over state mappings as follows: For state mappings S
and S′, S ⇒ S′ if there exists v ∈ V such that S(v) = q, σ(v) = f , n ≥ 0,
q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)) is a rule in R, and v has at least n
children, S(v1) = �, . . . , S(vn) = � where v1, . . . , vn ∈ V are children of v such
that vi 
= vj for i 
= j, and S′ is obtained from S by modifying as S′(v) = × and
S′(v1) = q1, . . . , S

′(vn) = qn. Here, q is called the state assigned to v. Let ∗⇒ be
the reflective, transitive closure of ⇒. D is accepted by A if S0

∗⇒ Sf .
When D is accepted by A, a spanning tree of D, called a recognition tree, is

obtained as follows: Let S0, . . . , Sk be state mappings such that S0 is the initial
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Fig. 3. A successful sequence of state mappings on D

state mapping, Sk is the final state mapping, and Si ⇒ Si+1 for any 0 ≤ i ≤ k−1.
For 0 ≤ i ≤ k − 1, let vi and vi

1, . . . , v
i
ni

be the vertices that attracted attention
when Si+1 was obtained from Si. Let E′ = {(vi, vi

j) | 0 ≤ i ≤ k − 1 and 1 ≤ j ≤
ni}. Then, the tree T = (V, E′) is a spanning tree of D.

From the definitions, the following proposition clearly holds:

Proposition 1. A DAG D is accepted by A if and only if there exists a tree T
such that T is a spanning tree of D, and T is accepted by A.

Example 2. The following is an example of a tree automaton which accepts
the DAG D in Example 1: A = (Q, Σ, q0, R), where Q = {q0, q1}, and R =
{q0(a(x1, x2)) → a(q0(x1), q1(x2)), q1(b(x1)) → b(q0(x1)), q1(b) → b, q0(c) → c}.
A successful sequence of state mappings on D is illustrated in Fig. 3; the outputs
of the state mappings for vertices are denoted at the left shoulder of vertices.

Concerning S0, we can apply the rule q0(a(x1, x2))→ a(q0(x1), q1(x2)) to v1,
and S1 is obtained by applying the rule by choosing v2 for x1 and v3 for x2.
Regarding S1, the rule that can be applied to v2 is the same as for v1. We need
to choose v4 and v5 for the rule because S1(v3) 
= �. Thus S2 is obtained by
applying the rule by choosing v5 for x1 and v4 for x2. By applying the rule
q1(b) → b to v3 and v4, and applying q0(c) → c to v5, the final state mapping
Sf is successfully obtained.

The corresponding recognition tree is the same tree as T in Example 1.
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4 NP-Completeness of the Membership Problem of
DAGs for a Tree Automaton

In this section, we show the NP-completeness of the membership problem of
DAGs for a tree automaton.

Theorem 1. The membership problem of DAGs for a tree automaton is NP-
complete, and the problem is still NP-complete even if the set of vertex labels is
singleton.

Proof. We will show the NP-completeness of the membership problem of DAGs
for tree automata by reducing the Boolean satisfiability problem (SAT) to that
problem.

Let Σ = {f} be the set of vertex labels. Consider the top-down TA A =
(Q, Σ, q0, R) where:

Q = {q0, q1, q2}, and
R = {q0(f(x1, x2))→ f(q1(x1), q3(x2)),

q1(f(x1, x2))→ f(q0(x1), q2(x2)), q1(f(x1))→ f(q2(x1)),
q2(f(x1, x2))→ f(q2(x1), q2(x2)), q2(f(x1))→ f(q2(x1)), q2(f)→ f,

q3(f(x1))→ f(q3(x1)), q3(f)→ f}.

Let F be a given Boolean formula in conjunctive normal form (CNF), where
C = {c1, . . . , cm} is the set of clauses composing F , and V = {v1, . . . , vn} is the
set of Boolean variables appearing in F .

From F , we construct a single-source DAG D = (V, E) as follows:

V = {v1, . . . , vn} ∪ {v̄1, . . . , v̄n} ∪ {c1, . . . , cm}
∪ {sv1 , . . . , svn} ∪ {tv1 , . . . , tvn , tv̄1 , . . . , tv̄n} ∪ {uv1, . . . , uvn , uv̄1 , . . . , uv̄n}
∪ {w[vi,cj], w[v̄i,cj] | 1 ≤ i ≤ n and 1 ≤ j ≤ m}, and

E = {(svi , vi), (svi , v̄i) | 1 ≤ i ≤ n} ∪ {(vi, svi+1), (v̄i, svi+1) | 1 ≤ i ≤ n− 1}
∪ {(vi, uvi), (v̄i, uv̄i) | 1 ≤ i ≤ n}
∪ {(uvi , w[vi,c1]), (uv̄i , w[v̄i,c1]) | 1 ≤ i ≤ n}
∪ {(w[vi,cj], w[vi,cj+1]), (w[v̄i,cj ], w[v̄i,cj+1]) | 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1}
∪ {(w[vi,cm], tvi), (w[v̄i,cm], tv̄i) | 1 ≤ i ≤ n}
∪ {(w[vi,cj], cj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m, and vi appears in cj}
∪ {(w[v̄i,cj], cj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m, and v̄i appears in cj}.

The vertex labeling is defined as σ(v) = f for all v ∈ V .
Note that every vertex has at most two children. The source is sv1 , while the

sinks are c1, . . . , cm, tv1 , . . . , tvn , tv̄1 , . . . , tv̄n .
For example, we consider the Boolean formula (v1 ∨ v̄2 ∨ v3)∧ (v1 ∨ v3 ∨ v̄4)∧

(v̄2 ∨ v̄3 ∨ v4). The DAG corresponding to the formula is illustrated in Fig. 4.
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Fig. 4. The DAG corresponding to (v1 ∨ v̄2 ∨ v3) ∧ (v1 ∨ v3 ∨ v̄4) ∧ (v̄2 ∨ v̄3 ∨ v4)

Because the labels of vertices are all the same, labels are omitted. A recognition
tree with a successful assignment of states to vertices is illustrated in Fig.5.

When D is accepted by A, a recognition tree and a successful assignment of
states to vertices have the following features:

– The state assigned to each sv1 , . . . , svn is only q0, and q0 must not be assigned
to any other vertices.

– q1 is assigned only to one of each pair vi, v̄i for 1 ≤ i ≤ n.
– The state assigned to each c1, . . . , cm is only q2.
– The vertices assigned q3 have at most one child in a recognition tree, while

the vertices assigned q2 may have two children.
– The state assignment for v1, . . . , vn yields a truth assignment for the Boolean

variables of F . If we assign TRUE to the variables with q1 and assign FALSE
to the variables with q3, then a truth assignment is obtained.

It is clear that D is accepted by A if and only if there exists a truth assignment
for the Boolean variables of F . This means that the problem is NP-hard. On the
other hand, given a DAG D, we can nondeterministically obtain a recognition
tree T and check if T is accepted by A in polynomial time. This means that the
problem is in the class NP. Therefore, the problem is NP-complete. ��
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Fig. 5. A recognition tree with a successful assignment of states to vertices

5 Linear-Time Recognition Algorithm of Series-Parallel
Graphs for a Tree Automaton

In this section, we introduce a linear-time recognition algorithm of series-parallel
graphs (SPGs) for a tree automaton. SPGs are single-source, single-sink DAGs
formed recursively by two simple composition operations. It is known that a
number of standard problems on graphs are solvable in linear time for SPGs
though some of these problems are NP-complete for general graphs [7].

Let us write D(s, t) to mean that a single-source, single-sink DAG D has the
source s and the sink t.

5.1 Series-Parallel Graphs

Definition 2. A single-source, single-sink DAG is a series-parallel graph (SPG)
if (1) it is a single edge graph, or (2) it can be produced by a sequence of the
following two operations:

Series Composition: Given two series-parallel graphsD1(s1, t1) andD2(s2, t2),
form a new graph D(s, t) by identifying s = s1, t1 = s2, and t = t2.



112 A. Fujiyoshi 

(a) 

a

a

c

5v4v

3v

2v

1v

bb

c

6v

(b) 

∗

P

S S

),( 21 vv ),( 51 vv ),( 65 vv
P

S S

),( 32 vv ),( 42 vv ),( 64 vv),( 63 vv

1 1
2

2

2 21

∗

∗ ∗

1
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Parallel Composition: Given two series-parallel graphs D1(s1, t1) and
D2(s2, t2), form a new graph D(s, t) by identifying s = s1 = s2, and
t = t1 = t2.

Due to the recursive definition of SPGs, we can obtain an edge-labeled tree in
accordance with a decomposition of an SPG.

Definition 3. A series-parallel tree (SPT) T for an SPG D(s, t) = (V, E) is an
edge-labeled tree defined as follows: The set of vertex labels is {S, P} ∪ E, and
the set of edge labels is {∗, 1, 2}.
– If D(s, t) is a single edge graph, then T = ({(s, t)}, ∅), and σ((s, t)) = (s, t).
– If D(s, t) is obtained by a series composition of D1(s1, t1) and D2(s2, t2),

and T1 = (V1, E1) and T2 = (V2, E2) are SPTs of them, then T = ({r}∪V1∪
V2, {(r, r1), (r, r2)}∪E1 ∪E2) where r is a new vertex, and r1 and r2 are the
roots of T1 and T2, σ(r) = S, γ((r, r1)) = 1, and γ((r, r2)) = 2.

– If D(s, t) is obtained by a parallel composition of D1(s1, t1) and D2(s2, t2),
and T1 = (V1, E1) and T2 = (V2, E2) are SPTs of them, then T = ({r}∪V1∪
V2, {(r, r1), (r, r2)}∪E1 ∪E2) where r is a new vertex, and r1 and r2 are the
roots of T1 and T2, σ(r) = P , γ((r, r1)) = ∗, and γ((r, r2)) = ∗.

An example of an SPG and a corresponding SPT is illustrated in Figure 6.
Note that the children of a vertex labeled S are ordered, while the children of

a vertex labeled P are unordered. All edges of D appear exactly once as a label of
leaves. AnSPGmayhavemany correspondingSPTs since the abovedecomposition
is not unique in general.

It is known that an SPT is obtained from any SPG in linear time depending on
the number of edges of an SPG [7].

5.2 Recognition Algorithm of SPGs

Let A = (Q, Σ, q0, R) be a top-down TA, and let XA be the set of variables
appearing in R. For a rule r = q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)) in R,
let state(r) mean the state q, and let var(r) mean the set {x1, . . . , xn}.
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The algorithm takes as input an SPG D(s, t) = (V, E) and a corresponding
SPT T = (VT , ET ), where T is prepared to give an appropriate order to process
D. The main task of the algorithm is to calculate two sets A and B.

Main:
input: an SPG D(s, t) = (V, E) and a corresponding SPT T = (VT , ET );
output: accept or reject;

begin
1 Let u be the root vertex of T ;
2 (A, B) := Calculate(u);
3 if A includes an element (r,X ′, q) such that state(r) = q0, var(r) = X ′,

and q(σ(t))→ σ(t) is in R then return accept else return reject;
end.

Calculate:
input: a vertex u ∈ VT ;
output: A ⊆ R× 2XA ×Q and B ⊆ R× 2XA ;

begin
1 if σ(u) = (v1, v2) ∈ E then begin
2 A := ∅, and B := ∅;
3 for each r = q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn)) in R do
4 if n ≥ 1, and σ(v1) = f then A := A ∪ {(r, {xi}, qi) | 1 ≤ i ≤ n}
5 else if n = 0, and σ(v1) = f then B := B ∪ {(r, ∅)};

end
6 else if σ(u) = S then begin
7 Let u1 be the first child of u, and let u2 be the second child of u;
8 (A1, B1) := Calculate(u1), and (A2, B2) := Calculate(u2);
9 A := {(r1,X1, q2) | (r1,X1, q1) ∈ A1, (r2,X2, q2) ∈ A2, state(r2) = q1,

and X2 = var(r2)};
10 B := {(r1,X1) | (r1,X1, q1) ∈ A1, (r2,X2) ∈ B2, state(r2) = q1, and

X2 = var(r2)};
end

11 else if σ(u) = P then begin
12 Let u1 and u2 be the children of u;
13 (A1, B1) := Calculate(u1), and (A2, B2) := Calculate(u2);
14 A := {(r,X1 ∪ X2, q1) | (r,X1, q1) ∈ A1, (r,X2) ∈ B2, and X1 ∩ X2 = ∅}

∪ {(r,X1 ∪ X2, q2) | (r,X1) ∈ B1, (r,X2, q2) ∈ A2, and X1 ∩ X2 = ∅};
15 B := {(r,X1 ∪ X2) | (r,X1) ∈ B1, (r,X2) ∈ B2, and X1 ∩ X2 = ∅};

end;
16 return (A, B);
end.

Theorem 2. The recognition algorithm works correctly and terminates in linear
time depending on the number of edges of D.

Proof. Omitted.
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6 Tree Automata for the Edge-Labeled Case

Though ordered trees are mainly discussed in the theory of tree automata, DAGs
without edge labels are not a generalization of ordered trees. Therefore, we con-
sider tree automata dealing with edge-labeled DAGs.

For reasons of space, only the definition of edge-labeled tree automata is
introduced. A linear-time recognition algorithm of edge-labeled SPGs can be
obtained with small modifications to the recognition algorithm in Section 5.

Definition 4. An edge-labeled tree automaton (edge-labeled TA) over Σ and Γ
is a five-tuple A = (Q, Σ, Γ, q0, R) where Q is a finite set of states, q0 ∈ Q is the
initial state, and R is a finite set of rules of the following form:

q(f(c1(x1), . . . , cn(xn)))→ f(c1(q1(x1)), . . . , cn(qn(x1))),

where n ≥ 0, f ∈ Σ, c1, . . . , cn ∈ Γ , q, q1, . . . , qn ∈ Q, and x1, . . . , xn ∈ X .

7 Conclusion and Future Works

We have studied the recognition of a spanning tree of DAGs by tree automata.
The NP-completeness of the membership problem of DAGs for a tree automaton
was shown, and a linear-time recognition algorithm of series-parallel graphs for
a tree automaton was presented.

For future works, we want to extend the recognition algorithm in Section 5 so
that it recognizes more general graphs such as partial k-trees. It is also interesting
to think of the recognition of DAGs by linear pushdown tree automata [4].
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Abstract. Uniform random generators deliver a simple empirical means
to estimate the average complexity of an algorithm. We present a general
rejection algorithm that generates sequential letter-to-letter transduc-
ers up to isomorphism. We tailor this general scheme to randomly gen-
erate deterministic tree walking automata and deterministic top-down
tree automata. We apply our implementation of the generator to the
estimation of the average complexity of a deterministic tree walking au-
tomata to nondeterministic top-down tree automata construction we also
implemented.

1 Introduction

The widespread use of automata as primitive bricks in computer science moti-
vates an ever renewed search for efficient algorithms taking automata as input
(see for some recent examples [1,2,3]). Developing new algorithms and heuristics
raises crucial evaluation issues, as improved worst-case complexity upper-bounds
do not always transcribe into clear practical gains [4].

A suite for software performance evaluation can usually gather three types of
entries:1

1. benchmarks, i.e. large sets of typical samples, which can be prohibitively
difficult to collect, and thus only exist for a few general problems,

2. hard instances, that provide good estimations of the worst case behaviour,
but are not always relevant for average case evaluations,

3. random inputs, that deliver average complexity estimations, for which the
catch resides in obtaining a meaningful random distribution (for instance
a uniform random distribution). As the mathematical computation of the
average complexity of an algorithm is an intricate task that cannot be un-
dertaken in general, random inputs can prove themselves invaluable for its
empirical estimation.

� This work was supported in part by ANR GAMMA - project BLAN07-2 195422

and ANR RAVAJ - project SETIN-2006.
1 All of the three types are used in SAT-solver competitions like http://

www.satcompetition.org/
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This paper is dedicated to the random generation of deterministic top-down
tree automata and of deterministic tree-walking automata. Tree automata have
witnessed a recent surge of interest in connection with XML applications [5,6],
fostering a wealth of theoretical results (e.g. [7,8,9]). This paper makes the fol-
lowing contributions:

– Section 2 proposes a generic rejection algorithm for uniformly generating
sequential letter-to-letter transducers. Thanks to the structural properties
of these transducers, the algorithm can be used for the generation of various
kinds of finite automata.

– We apply this algorithm in Sect. 3 to the generation of deterministic tree wal-
king automata. The approach was implemented, and we provide in Sect. 3.3
an empirical estimation of the average size of the nondeterministic top-down
tree automaton equivalent to a given deterministic tree walking automaton.

– Section 4 presents a bijection between a class of letter-to-letter transduc-
ers and deterministic top-down tree automata, providing a uniform random
generator for this class of tree automata.

Our approach consists in reducing the problem to the uniform random generation
of deterministic word automata, as developed by Bassino et al. [10,11].

Related Work. In the case of deterministic accessible word automata, two main
approaches to the random generation with uniform distribution on complete au-
tomata stand out: one based on a recursive decomposition [12] and one using
Boltzmann samplers [10]. The latter algorithm has been extended to possibly in-
complete automata by Bassino et al. [11]. An implementation of these algorithms
is available in the C++ package REGAL [13].2

The random generation of non deterministic finite word automata is still
mostly open. Two recent papers propose such random generation algorithms:
Tabakov and Vardi [14] apply theirs to the evaluation of inclusion testing pro-
cedures, whereas Chen et al. [15] evaluate the performance of a learning algo-
rithm. Both algorithms are ad hoc and fail to provide statistically exploitable
distributions.

Notations. If i and j are positive integers, we denote by [i, j] the set of integers
k such that i ≤ k and k ≤ j. If K is a set, P(K) (resp. P∗(K)) denotes the set
of subsets (resp. the set of non empty subsets) of K. The domain of a function
ϕ is denoted Dom(ϕ).

A sequential letter-to-letter transducer (SLT) from input alphabet Σ1 to out-
put alphabet Σ2 is a tuple T = (Σ1, Σ2, Q, qinit, δ, γ, ρ, ainit) where Q is the finite
set of states, qinit ∈ Q is the initial state, δ is a partial transition function from
Q × Σ1 into Q, γ is a partial output function from Q × Σ1 into Σ2 such that
Dom(δ) = Dom(γ), ρ is a partial final function from Q into Σ2, and ainit ∈ Σ2
is the initial output. An SLT is complete if Dom(δ) = Q×Σ1. Accessible states
of an SLT are inductively defined by: qinit is accessible and if q is accessible,
for every a ∈ Σ1, δ(q, a) is accessible. An SLT is accessible if all its states are
accessible. An example of complete and accessible SLT is depicted in Fig. 1.
2 http://regal.univ-mlv.fr/

http://regal.univ-mlv.fr/
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Fig. 1. A sequential letter-to-letter transducer

Let T1 =(Σ1, Σ2, Q1, qinit1, δ1, γ1, ρ1, ainit1) and T2 =(Σ1, Σ2, Q2, qinit2, δ2, γ2,
ρ2, ainit2) be two SLTs. A function ϕ from Q1 to Q2 is an isomorphism from T1 to
T2 if it satisfies the following conditions: (1) ϕ is bijective, (2) ϕ(qinit1) = qinit2,
(3) δ1(q, a) = p iff δ2(ϕ(q), a) = ϕ(p), (4) γ1(q, a) = b iff γ2(ϕ(q), a) = b, (5)
ρ1(q) = ρ2(ϕ(q)) and (6) ainit1 = ainit2. If such an isomorphism exists, we say
that T1 and T2 are isomorphic. Informally, T1 and T2 are isomorphic if they
encode the same SLT, up to state names. The relation is isomorphic to is trivially
an equivalence relation.

In this paper, we are interested in the uniform random generation of SLTs
up to isomorphism, i.e. we want to equiprobably generate equivalence classes for
the isomorphic relation (and for a given number of states). Since the approach
is purely syntactic and will be applied to different classes of finite automata, we
do not need to define a semantic for SLTs.

2 Generating Sequential Transducers

We propose in this section a general method to generate randomly and uni-
formly deterministic and accessible automata-like structures with n states. For
this purpose, we develop an algorithm that generates sequential letter-to-letter
accessible transducers with n states, that can be further parametrized by giv-
ing some restrictions on the possible outputs for each input letter. The idea
thereafter, for each given problem, is to find an effective bijection ϕ between the
structures one wants to generate and such a family of transducers. The algo-
rithm is in fact more general, since by Proposition 1, one can build an effective
random generator even if ϕ is only an injection, provided that all the complete
transducers are in the image of ϕ. This method will be applied in Sect. 3 and
Sect. 4 to build random generators for deterministic tree walking automata and
deterministic top-down tree automata.

Note that we are only interested here in the combinatorial structures of trans-
ducers, not on what their models are. Indeed, our approach will be used in order
to generate several kinds of finite automata. Also note that we are interested in
the uniform random generation of isomorphic classes of SLTs. The algorithms pro-
posed in this section fulfill this criterion. However, in order to simplify the expo-
sition, we will write about random generation of SLTs rather than of equivalence
classes of SLT, but keep in mind that we randomly generate witnesses of equiva-
lence classes.
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2.1 Rejection Algorithms

Before we describe the generation algorithm, let us recall the definition of a
rejection algorithm: Suppose we want to generate elements of a set X , according
to a probability distribution pX . Furthermore, suppose that X is a subset of Y ,
and that we have a probability distribution pY on Y , whose restriction to X
is pX . If we have an algorithm to generate elements of Y according to pY , we
may use this algorithm to generate elements of X as follows: repeatedly draw
an element of Y , reject it if it is not in X , and stop if it is in X .

The average complexity of this rejection algorithm depends on the complexity
of the generation algorithm on Y , on the complexity of the test whether an
element of Y is in X , and on the average number of rejects. One can show that
if pY (X) is the probability for an element of Y to be in X , the average number
of iterations is 1/pY (X).

2.2 Families of Transducers

Let us consider the family Dn(Σ1, Σ2, r, ri, rF ) of accessible SLTs with n states,
where Σ1 is the input alphabet, Σ2 is the output alphabet, r : Σ1 → P∗(Σ2)
is the restriction on transitions, ri ∈ P∗(Σ2) is the restriction on initialization
and rF ∈ P∗(Σ2) is the restriction on finalizations. An n-states accessible SLT
(Σ1, Σ2, Q, i, δ, γ, ρ, ai) belongs to Dn(Σ1, Σ2, r, ri, rF ) if the following conditions
are met: (i) ai ∈ ri, (ii) ρ(Q) ⊆ rF , and (iii) for all a ∈ Σ1, γ(Q, a) ⊆ r(a).

We denote by Cn(Σ1, Σ2, r, ri, rF ) the subset of Dn(Σ1, Σ2, r, ri, rF ) that con-
tains all the complete transducers. In order to generate a random element of
Dn(Σ1, Σ2, r, ri, rF ) or Cn(Σ1, Σ2, r, ri, rF ), we split the problem into three parts:
the underlying graph with input symbols, the transitions outputs, and the set
of final states. For complete transducers, one can perform these parts indepen-
dently and still ensure equiprobability. A rejection algorithm is used to adapt
this method to possibly incomplete ones.

2.3 Generation Algorithm

The idea to generate deterministic and accessible word automata developed by
Bassino et al. [10,11] is to exhibit an effective injection ι from automata with n
states on a k-letter alphabet to partitions of [1, kn+1] in n parts in the complete
case and of [1, kn+2] in n+1 parts in the possibly incomplete case. The inverse
ι−1 can also be computed, and though all partitions are not the image of an
automaton, there are enough of them to guarantee that a rejection algorithm
is efficient. The algorithm therefore consists in randomly generating a partition,
using a Boltzmann sampler, until the partition is the image of an automaton,
and then compute its preimage. Its average complexity is O(n3/2).

The algorithm to generate a random element of Cn(Σ1, Σ2, r, ri, rF ) consists
in the following three steps:

1. Randomly generate a complete deterministic and accessible automaton with
n states on Σ1.
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2. For each q ∈ Q and each a ∈ Σ1, randomly and uniformly choose γ(q, a) in
r(a).

3. For each q ∈ Q, randomly and uniformly choose an element x of rF * {#},
where # is a new symbol indicating that the state is not final; then define
ρ(q) = x if x 
= # and leave ρ(q) otherwise undefined.

One can give the number of final states as a parameter f and change Step 3 into:
Choose a random subset F with f elements of Q, and for each q ∈ F , choose
ρ(q) in rF . The average complexity of the algorithm remains in O(n3/2).

To generate a random element of Dn(Σ1, Σ2, r, ri, rF ), we proceed as before,
except that we generate a possibly incomplete automaton at Step 1. The problem
here is that the distribution is not uniform anymore, since we consider multi-
ple choices of γ(q, a) when the transition does not exist, leading to the same
transducer. In order to obtain uniformity, we arbitrarily order Σ2 and only keep,
using a rejection algorithm, transducers such that γ(q, a) is set to the minimum in
r(a) for every undefined transition. Corollary 1 of [11] ensures that a proportion
greater than c, where c > 0 is a real number, of possibly incomplete automata
are complete. The average number of rejects of this method is therefore in O(1),
as complete structures are not rejected and are numerous enough. The average
complexity is in O(n3/2) as well. Observe that if we had generated the image of
γ(q, a) for defined transitions only, we would have lost the uniformity.

Using the same argument about the proportion of complete automata given
in Corollary 1 of [11], we can prove the following fairly general proposition:

Proposition 1. Let En be a subset of Dn(Σ1, Σ2, r, ri, rF ) such that En

contains Cn(Σ1, Σ2, r, ri, rF ). The rejection algorithm consisting in generating
uniformly an element of Dn(Σ1, Σ2, r, ri, rF ) until it is in En performs O(1)
iterations on average.

Therefore, we have a straightforward method to build a random generator for
such a class En, which is efficient if one can quickly test if a given transducer is
in En. In particular, if the membership test can be done in linear time, then the
average complexity of this method is in O(n3/2). Note that the constant factor
might grow quickly, e.g. when |Σ1| grows.

3 Application to Tree Walking Automata

3.1 Deterministic Tree Walking Automata

A deterministic tree walking automaton (DTWA) on binary trees is a tuple
A = (Q, Σ, Δ, qinit, F ) where Q is a finite set of states, qinit ∈ Q is the ini-
tial state, F ⊆ Q the set of final states and Δ is a partial transition function
from Q × TYPE × Σ to {ε, ↑,↙,↘} × Q, where TYPE = {root, left, right} ×
{internal, leaf}. A deterministic tree walking automaton is complete if Δ is a
complete function. Accessible states of a DTWA are defined inductively: qinit is
accessible, and if q is accessible and Δ(q, t, a) = (d, p) for some (t, a) ∈ TYPE×Σ,
then p is accessible. An example of a DTWA is shown in Fig. 2.
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Δ(q1, (root, internal), a) = (↘, q2)
Δ(q2, (right, leaf), b) = (↑, q1)

q1 q2

(root, internal), a,↘

(right, leaf), b, ↑

Fig. 2. A deterministic tree walking automaton

An isomorphism from a DTWA A1 = (Q1, Σ, Δ1, qinit1, F1) to a DTWA A2 =
(Q2, Σ, Δ2, qinit2, F2) is a bijective function from Q1 to Q2 satisfying the three
conditions (1) ϕ(qinit1) = qinit2, (2) ϕ(q) ∈ F2 iff q ∈ F1, and (3) Δ1(q, t, a) =
(d, p) iff Δ2(ϕ(q), t, a) = (d, ϕ(p)).

3.2 From SLTs to DTWAs

We define in this section a rather straightforward bijection τ between DTWAs
and a class of SLTs, called DTWA-coherent SLTs, that contains all the complete
SLTs. We obtain thereafter a random generation algorithm for DTWAs thanks
to the restriction mechanisms introduced in Sect. 2.

We first observe that a tree walking automaton can be viewed as a “classical”
finite automaton on the alphabet Σ1 × Σ2 defined by Σ1 = TYPE × Σ and
Σ2 = {ε, ↑,↙,↘}. Let A = (Q, Σ, Δ, qinit, F ) be a DTWA; we define τ(A) by

τ(A) = (Σ1, Σ2 * {$, 1}, Q, qinit, δ, γ, ρ, $) ,

with δ(q, (t, a)) = p and γ(q, (t, a)) = d iff Δ(q, t, a) = (d, p), and Dom(ρ) = F
with ρ(q) = 1 iff q ∈ F . For the example depicted in Fig. 2,

δ(q1, ((root, intern), a)) = q2 γ(q1, ((root, intern), a)) =↘
δ(q2, ((right, leaf), b) = q1 γ(q2, ((right, leaf), b) =↑ ρ(q1) = 1 .

An SLT on Σ1, Σ2 * {$, 1} is DTWA-coherent if its initial output symbol is $.
Let us now provide an algorithm for random generation up to isomorphism

of DTWAs. We reuse for this purpose the SLT generation algorithm, and need
the following two propositions.

Proposition 2. The function τ is a bijection from DTWAs to DTWA-coherent
SLTs. Moreover, for every DTWA A, τ(A) is complete (resp. accessible) if and
only if A is complete (resp. accessible).

Proposition 3. Two DTWAs A1 and A2 are isomorphic if and only if τ(A1)
and τ(A2) are isomorphic.

Proof. It suffices to note that the same isomorphism holds between A1 and A2
and τ(A1) and τ(A2).
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Moreover, the restrictions introduced in Sect. 2 are helpful in order to generate
nicer tree walking automata. Indeed, in a tree walking automaton, a transition
labeled by ((t, a), d), with (t, a) ∈ Σ1 and d ∈ Σ2 is useless (i.e. can never be
fired) in either of the following two cases:

1. t is in {root} × {internal, leaf} and d =↑, or
2. t is in {root, left, right} × {leaf} and d ∈ {↙,↘}.

Let us denote by rDTWA the subset of Σ1 × Σ2 of the pairs (a, b) that do not
match any of the above two cases. The class EDTWA

n of useful DTWA-coherent
SLTs with n states then contains Cn(Σ1, Σ2 * {$, 1}, rDTWA, {$}, {1}) and is
included in Dn(Σ1, Σ2 * {$, 1}, rDTWA, {$}, {1}). Thus, random generation of
DTWAs can be performed by first using Proposition 1 to obtain a SLT T and
then by computing τ−1(T ).

3.3 Experimentation: From DTWAs to Top-Down Tree Automata

Tree walking automata enjoy a tight connection with several logical formalisms
[7,9], including some XPath fragments. Formula satisfiability then reduces to the
emptiness of the language of a tree walking automaton. Nevertheless, the latter
problem is rather hard to decide: it is an ExpTime-complete problem, for which
the known algorithms consist essentially in constructing an exponentially larger
equivalent top-down tree automaton, and (on the fly) checking this automaton
for emptiness in linear time.

We have implemented a prototype tool for converting DTWAs into coacces-
sible nondeterministic top-down tree automata (under the form of Relax NG

grammars [6]). Given a DTWA with n states, the resulting top-down tree au-
tomaton can hold as many as O(2n2

) states, that encode which pairs (p, q) of
states allow a run of the DTWA to start from state p on a given tree node and
return to it in state q without ever visiting its parent node.

We ran the algorithm on 100 randomly generated incomplete DTWA for each
n and report the mean number of states in the computed equivalent top-down
tree automaton in Fig. 3. Due to very high standard deviation values, we exclude
the 10 smallest and 10 largest output automata from the mean computation, and
display their mean number of states on separate plots. All three plots display an
exponential behaviour. Overall, the translation results in a O(2n) size increase
on average, which is significantly better than the worst-case O(2n2

) bound.

4 Application to Top-Down Tree Automata

4.1 Deterministic Top-Down Tree Automata

In this section, F denotes a finite ranked alphabet, i.e. there is an arity function
ar from F into N. We denote by Fi the subset of elements C of F such that
ar(C) = i. We assume that $ /∈ F . Let F = {(f, i) | f ∈ F \F0, 1 ≤ i ≤ ar(f)}.

A deterministic top-down tree automata (DTDA) is a tuple (Q,F , θ, qinit)
where Q is a finite set of states satisfying 0 /∈ Q, qinit ∈ Q is the initial state,
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Fig. 3. Average number of states in the 10 smallest, the 10 largest, and the 80 median
top-down tree automata obtained from transforming 100 2-letter DTWAs with n states

and θ is a partial transition function mapping elements of Q×Fi to Qi (for all
i ≥ 1) and elements of Q×F0 to 0. One can inductively define accessible states
of a DTDA by: the initial state qinit is accessible and for every f /∈ F0, if q is
accessible and θ(q, f) = (q1, . . . , qar(f)) then the qi’s are accessible. A DTDA
is complete if Q× (F \ F0) ⊆ Dom(θ). For more information on top-down tree
automata, the reader is referred to [16].

Let A1 = (Q1,F , θ1, qinit1) and A2 = (Q2,F , θ2, qinit2) be two DTDAs. An
isomorphism ϕ is a bijective function ϕ from Q1 to Q2 such that (1) for ev-
ery state q, every f ∈ F \ F0, θ1(q, f) = (q1, . . . , qar(f)) iff θ2(ϕ(q), f) =
(ϕ(q1), . . . , ϕ(qar(f))), (2) ϕ(qinit1) = qinit2, and (3) for every state q, every
C ∈ F0, θ1(q, C) = 0 iff θ2(ϕ(q), C) = 0.

4.2 From SLTs to DTDAs

We define in this section a bijection ψ from DTDAs to a subclass of SLTs, called
DTDA-coherent SLTs, that contains all the complete SLTs. For every DTDA
A = (Q,F , θ, qinit), let ψ(A) be the SLT

ψ(A) = (F ,P(F0) * {$}, Q, qinit, δ, γ, ρ, $)

defined by: γ(q, (f, i)) = ∅ and δ(q, (f, i)) = pi iff θ(q) = (p1, . . . , pn), and
ρ(q) = {A ∈ F0 | θ(q, A) = 0} iff this set is not empty, and ρ(q) is unde-
fined otherwise. For example, let F0 = {A, B}, F1 = {h} and F2 = {f} in
Aexe = ({q1, q2},F , θexe, {q1}) with θexe(q1, f) = (q1, q2), θexe(q2, h) = q2, and
θexe(q1, A) = θexe(q1, B) = θexe(q2, A) = 0. This entails F = {(h, 1), (f, 1), (f, 2)}
in the SLT ψ(Aexe) depicted in Fig. 4.
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δexe(q1, (f, 1)) = q1

δexe(q1, (f, 2)) = q2

δexe(q2, (h, 1)) = q2

ρexe(q1) = {A, B}
ρexe(q2) = {A}

q1$

{A, B}

q2 {A}
(f, 2), ∅

(f, 1), ∅ (h, 1), ∅

Fig. 4. The SLT ψ(Aexe) = (F ,P∗({A, B}) � {$}, {q1, q2}, q1, δexe, γexe, ρexe, $)

A SLT (F ,P∗(F0) * {$}, Q, qinit, δ, γ, ρ, $) is DTDA-coherent if (1) for every
state q, every (f, i) ∈ F , δ(q, (f, i)) is defined iff δ(q, (f, j)) is defined for all
j ∈ [1, ar(f)], (2) γ(q, (f, i)) is either undefined or equal to ∅, and (3) its initial
output is $.

Proposition 4. The function ψ is a bijection from DTDA to DTDA-coherent
SLTs. Moreover, for every DTDA A, ψ(A) is complete (resp. accessible) if and
only if A is complete (resp. accessible).

Proof. If A is a DTDA, then it is clear that ψ(A) is DTDA-coherent. Now
let A1 = (Q1,F , θ1, qinit1) and A2 = (Q2,F , θ2, qinit2) be DTDAs such that
ψ(A1) = ψ(A2). By definition of ψ, Q1 = Q2 and qinit1 = qinit2. Set ψ(A1) =
ψ(A2) = (F ,P(F0)* {$}, Q1, qinit1, δ, γ, ρ, $). Reasoning on δ shows that θ1 and
θ2 are equal for letters in F \ F0. Reasoning on ρ shows that θ1 and θ2 are
equal for letters in F0. It follows that ψ is injective. The remaining points of the
proposition are straightforward verifications.

Proposition 5. Two DTDAs A1 and A2 are isomorphic if and only if ψ(A1)
and ψ(A2) are isomorphic.

Proof. It suffices to note that the same isomorphism holds between A1 and A2
and ψ(A1) and ψ(A2).

Let rDTDA= F × {∅}. The class EDTDA
n of DTDA-coherent SLTs with n states

contains Cn(F ,P(F0)*{$}, rDTDA, {$},P∗(F0)) and is included inDn(F ,P(F0)*
{$}, rDTDA, {$},P∗(F0)). Thus, random generation of DTDAs can be performed
using Proposition 1 to obtain a SLT T and by computing ψ−1(T ).

5 Conclusion

In this paper we define a rejection algorithm to randomly and uniformly generate
sequential letter-to-letter transducers with some restrictions. We also exhibit two
bijections from this class of transducers to the class of deterministic tree walking
automata and deterministic top-down tree automata respectively, and report on
an empirical evaluation of a O(2n) average complexity instead of a O(2n2

) worst-
case bound for turning a deterministic tree walking automaton into an equivalent
nondeterministic top-down tree automaton.
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The approach we propose in this paper can easily be extended to some other
classes of finite automata, like deterministic pebble tree walking automata. A
much less obvious variation would be needed in order to randomly generate
deterministic bottom-up tree automata or hedge automata.
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Abstract. We propose hedge pattern partial derivatives, an extension of
Antimirov’s partial derivatives, in order to give an operational semantics
of pattern matching of regular hedge expression patterns, which is crucial
in XML processing. We show that correct and small matching automata
can be constructed from hedge pattern partial derivatives.

1 Introduction

As the importance of XML has been increasing, the study of statically typed
XML processing languages has gained in popularity. The pioneer of such lan-
guages is XDuce[11] and there are several subsequent ones such as CDuce[2],
Xtatic[9] and XQuery[3]. One of the prominent features of these languages is
matching of hedges by regular hedge expression patterns. A regular hedge ex-
pression pattern is an adaptation of regular expressions to hedges, and also
it contains several positions marked by several variables. When a hedge h is
matched by a regular hedge expression pattern p, subhedges of h corresponding
to the marked positions in p are output as the result of matching.

We propose hedge pattern partial derivatives of a regular hedge expression
pattern, which gives an operational semantics of regular hedge expression pattern
matching. Hedge pattern partial derivative is an extension of partial derivative
of a regular (word) expression, proposed by Antimirov [1], to regular hedge
expression patterns. From hedge pattern partial derivatives of a regular hedge
expression pattern p, a matching automaton performing matching against p is
constructed such that the upper bound of the number of states is as many as
the number of labels and names involved in the pattern, though it is often much
smaller.

The paper is organized as follows. In Sect. 2 we present the formal defini-
tions of syntax and semantics (denotation) of regular hedge expression patterns
and a denotational semantics of pattern matching. Section 3 describes hedge
pattern partial derivatives and its property. Operational semantics of pattern
matching by hedge pattern partial derivatives and its correctness with respect
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to the denotational semantics of matching is also given. In Sect. 4 a construction
of matching automata from hedge pattern partial derivatives and operational
semantics of pattern matching by matching automata is presented. Finally, in
Sect. 5 we conclude this paper with some remarks.

2 Regular Hedge Expression Pattern

We denote the set of the subsets of a set X by 2X and the set of the finite subsets
of a set X by Fin(X). We denote sets of labels, of names and of variables by
Lab, Name and Var, respectively. We assume that Lab and Name are finite
and Var countably infinite and that they are pairwisely disjoint. The empty
sequence is denoted by ε.

A hedge h over Lab is a sequence of (possibly empty) unranked trees. An
unranked tree with label a ∈ Lab is of the form a[h], where h is a hedge. We
often use the following equivalent definition: h ::= ε | a[h] h, where a ∈ Lab.
The set of hedges over Lab is denoted by H. An unranked tree such as a[ε] is
simply written a[ ].

We follow [12] for the definition of regular hedge expression patterns. A regular
hedge expression pattern (pattern, for short) p over Lab, Name and Var is
defined as follows:

p ::= 0 | 1 | a[n] | p · p | p + p | p∗ | p@x .

Here n ∈ Name, a ∈ Lab and x ∈ Var. The pattern of the form a[n] and p@x
are called tree patterns with label a and variable binders, respectively. The set
of patterns over Lab, Name and Var is denoted by TPat. A pattern in TPat
is associated with the name definition, a function from Name to TPat. In this
paper we always use the symbol E to denote a name definition.

We say a pattern p′ is reachable from a pattern p if either p′ is a subpattern
of p, or p′ is reachable from a pattern E(n), where n is a name occurring in p.
Let Vr(p) be the union of sets of variables occurring in each reachable pattern
from p. We call Vr(p) a set of reachable variables from a pattern p. For instance,
Vr(((a[n1]@y) · c[n3])@x) = {x, y, z, w} if E(n1) = (b[n2] + 1)@z, E(n2) = 1@w
and E(n3) = 1.

A pattern p is linear if every reachable pattern p′ from p, i.e., a pattern
reachable via the associated name definition E from p, satisfies the following
conditions.

– Vr(p1) ∩ Vr(p2) = ∅ if p′ = p1 · p2,
– Vr(p1) = Vr(p2) if p′ = p1 + p2,
– Vr(p1) = ∅ if p′ = p∗1,
– x 
∈ Vr(p1) if p′ = p1@x.

The pattern ((a[n1]@y) · c[n3])@x in the previous example is linear. If we, how-
ever, replace the definition of n1 with E(n1) = (b[n1] + 1)@z then E(n1) is not
linear and hence the pattern is not linear either. In this paper we assume that
every pattern is linear;
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As Emir did in [7] for regular word expression patterns, we regard a pattern
p as a regular set of hedges over Fin(Vr(p))×Lab such that each element in the
regular set is regarded as an encoding of a pair of a hedge over Lab matched
by p and a binding environment, a function assigning a hedge to a variable as
its value, yielded by the matching. We define such hedges with labels annotated
with sets of variables as follows.

Definition 1 (Annotated Hedges). An annotated hedge μ over Lab and Var
is defined as follows: μ ::= ε | aX [μ] μ, where a ∈ Lab and X ∈ Fin(Var).
The set of annotated hedges over Lab and Var is denoted by AH.

The projection function proj : AH → H of a hedge from an annotated hedge
is defined as follows.

proj(ε) = ε proj(aX [μ1] μ2) = a[proj(μ1)] proj(μ2)

The extraction function env : AH×Var→ H of the value of a variable from an
annotated hedge is defined as follows.

env(ε, x) = ε
env(aX[μ1] μ2, x) = a[proj(μ1)] env(μ2, x) if x ∈ X
env(aX[μ1] μ2, x) = env(μ1, x) env(μ2, x) otherwise

For simplicity we usually omit the annotation ∅ of the labels. Thus a∅[b{x,y}[ ]]
is simply written a[b{x,y}[ ]].

Thus we regard a pattern p as a regular set of annotated hedges, called the
denotation of p.

Definition 2 (Denotation of Patterns). The denotation of a pattern p, de-
noted by [[ p ]], is a set of annotated hedges, which are regarded as hedges matched
by p together with their bindings. The denotation function [[ · ]] is the least solution
of the following system of equations.

[[ 0 ]] = ∅ [[ 1 ]] = {ε}
[[ a[n] ]] = {a∅[μ] | μ ∈ [[ E(n) ]]} [[ p1 ·p2 ]] = [[ p1 ]]·[[ p2 ]]

[[ p1 + p2 ]] = [[ p1 ]] ∪ [[ p2 ]] [[ p∗ ]] = [[ p ]]∗

[[ p@x ]] = {μ↑x | μ ∈ [[ p ]]}

The set operator · and ∗ are defined as usual. The function ↑: AH×Var→ AH
is inductively defined as follows: ε↑x = ε and aX [μ1]μ2 ↑x = aX∪{x}[μ1](μ2 ↑x).

The last case of the above definition, i.e., [[ p@x ]], is most crucial; it annotates
x to the labels occurring in the top level of the annotated hedges in [[ p ]], which
enables env to extract the values bound to x. Note that this annotation relies
on linearity; if a non-linear pattern like q = a[n]@x · b[n]@x with E(n) = 1 is
allowed, [[ q ]] contains μ = a{x}[ ] b{x}[ ] and hence ev(μ, x) = a[ ] b[ ], the concate-
nation of different values of x. The restriction to linear patterns prevents such
problems. The linearity condition is weaker than Emir’s restriction that only
the concatenations of variable binders are allowed [7], which is included in the
linearity condition.
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Example 1. Consider the pattern p = (a[n1] · b[n2]∗@y)@x · c[n2] with E(n1) =
a[n2]@z and E(n2) = 1. From Definition 2, μ = a{x}[a{z}[ ]] b{x,y}[ ] c[ ] ∈ [[ p ]].
Then env(μ, x) = a[a[ ]] b[ ], env(μ, y) = b[ ] and env(μ, z) = a[ ] stand for the
values of x, y and z, respectively, obtained from the matching of the hedge
proj(μ) = a[a[ ]] b[ ] c[ ] by p.

This implies a denotational semantics of matching of regular hedge expression
patterns against hedges.

Definition 3 (Denotational Semantics of Matching). A hedge h is matched
by a pattern p, yielding a binding environment V if and only if

∃μ.[proj(μ) = h ∧ μ ∈ [[ p ]] ∧ ∀x ∈ Vr(p). env(μ, x) = V (x)] .

Hence matching of h by p is reduced to finding an annotated hedge belonging
to [[ p ]] and projected to h.

3 Hedge Pattern Partial Derivatives

In [1] Antimirov proposed partial derivative, a generalization of Brzozowski’s
word derivative[5] in a nondeterministic way; while Brzozowski’s derivative leads
to the construction of deterministic finite automata, Antimirov’s partial deriva-
tive leads to the construction of nondeterministic finite automata. The most
notable property of partial derivatives is the following: given a (word) regular
expression e over an alphabet Σ, the cardinality of the set of partial derivatives
of e with respect to Σ∗ is at most the number of symbols in e plus 1. Further-
more, the cardinality is often much less than its upper bound. Because the set of
partial derivatives of e corresponds to the set of states of the non-deterministic
automaton constructed from partial derivatives, the obtained automaton is much
smaller than the corresponding position automaton[10,14,4].

In this section we extend Antimirov’s partial derivative. Our extension is
twofold: one is from words to hedges, and the other is to include the result of
matching of a pattern p against a hedge h, namely an annotated hedge, into
the result of partial derivatives of p with respect to h. We omit proofs of some
statements here; see [15] for more details.

Antimirov’s partial derivative is based on a so-called nondeterministic linear
factorization: for instance, the regular expression a∗(ab + 1) over an alphabet
{a, b} is semantically equivalent to 1 + a · a∗(ab + 1) + a · b. Note that there
are two summands starting with the same symbol a and no summand starting
with b. Considering a∗(ab + 1) and b as states of an automaton, the summands
correspond to nondeterministic transition from a∗(ab+1) by reading the symbol
a and hence this linear factorization is considered as nondeterministic.

Given regular expression r, there are several nondeterministic linear factor-
ization semantically equal to r. In order to determine the linear factorization to
r uniquely, Antimirov defined a linear form of r, which gives all the summands
other than 1 in the uniquely chosen nondeterministic linear factorization of r [1].
We first generalize linear forms by Antimirov to hedge pattern linear forms.
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Definition 4. A hedge pattern monomial is a quadruple 〈a, X, p, q〉, where a ∈
Lab, X ∈ Fin(Var), p, q ∈ TPat. A hedge pattern linear form is a finite set of
hedge pattern monomials. The set of hedge pattern linear forms is denoted by
PLin. The hedge pattern linear form of a pattern p, denoted by plf(p), is defined
as follows:

plf(0) = ∅ plf(1) = ∅
plf(a[n]) = {〈a, ∅, E(n), 1〉} plf(q1 · p2) = plf(q1)/ p2

plf(r1 · p2) = plf(r1)/ p2 ∪ plf(p2) plf(p1 + p2) = plf(p1) ∪ plf(p2)
plf(p∗) = plf(p)/ p∗ plf(p@x) = plf(p)↑x

where ε 
∈ [[ q1 ]] and ε ∈ [[ r1 ]]. The functions / : PLin × TPat → PLin and
↑: PLin×Var→ PLin are defined as follows:

∅ / p = ∅ L/ 1 = L
L/ 0 = ∅ {〈a, X, r, 1〉} / q = {〈a, X, r, q〉}

{〈a, X, r, 0〉} / q = ∅ {〈a, X, r, p〉 / q = {〈a, X, r, p·q〉}
(L1 ∪ L2)/ p = L1/ p ∪ L2/ p

and L ↑ x = {〈a, X ∪ {x}, p1, p2@x〉 | 〈a, X, p1, p2〉} for all p, q ∈ TPat\{0, 1},
r, p1, p2 ∈ TPat, L, L1, L2 ∈ PLin, a ∈ Lab, X ∈ Fin(Var), x ∈ Var.

The above definition refers to the denotation of patterns. But for any pattern p
the condition ε ∈ [[ p ]] is decidable by checking the syntactic structure of p. Hence
the hedge pattern linear form of a pattern is computable in a syntactic way.

We adapt the notion of partial derivatives to regular hedge expression patterns
using hedge pattern linear forms.

Definition 5 (Hedge Pattern Partial Derivative). Let p be a regular hedge
expression pattern and h a hedge. A hedge pattern partial derivative of p with
respect to h is a pair of a pattern and an annotated hedge that belongs to the set
∂h(p), where ∂h : TPat → Fin(TPat ×AH) is defined as follows:

∂ε(p) = {〈p, ε〉} ,

∂a[h1]h2(p) =

⎧⎨⎩〈q2, a
X [μ1]μ2〉

∣∣∣∣∣∣
〈a, X, p1, p2〉 ∈ plf(p),
∃q1[〈q1, μ1〉 ∈ ∂h1(p1) ∧ ε ∈ [[ q1 ]]],
〈q2, μ2〉 ∈ ∂h2(p2)

⎫⎬⎭ .

It is extended for all H ⊆ H, h ∈ H, p ∈ TPat and P ⊆ TPat as follows:

∂H(p) =
⋃

h∈H

∂h(p) , ∂h(P ) =
⋃
p∈P

∂h(p) .

From Definition 5, an easy induction reveals that for any p, q ∈ TPat, h ∈ H
and μ ∈ AH if 〈q, μ〉 ∈ ∂h(p) then proj(μ) = h. Intuitively, a hedge pattern
derivative 〈q, μ〉 in ∂h(p) represents a partial matching of h by p. The word
“partial” is derived from the fact {μ} · [[ q ]] ⊆ [[ p ]], which shall be guaranteed by
Proposition 1 later. Hence if ε ∈ [[ q ]] then μ, satisfying proj(μ) = h, belongs to
[[ p ]], which means that h is matched by p from Definition 3.
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Example 2. Consider the pattern p = a[n]∗ · a[n]@x · b[n]∗ with E(n) = b[n]∗.
Let q = b[n]∗. From Definition 4 we obtain plf(p) = {〈a, ∅, q, p〉, 〈a, {x}, q, q〉}
and plf(q) = {〈b, ∅, q, q〉}.

Because of the presence of Kleene star at the top level of q, we know that
ε ∈ [[ q ]] holds. Hence, from Definition 5 we obtain

∂ε(q) = {〈q, ε〉} ∂b[ ](q) = {〈q, b[ ]〉}
∂a[ ](p) = {〈p, a[ ]〉, 〈q, a{x}[ ]〉} ∂a[b[ ]](p) = {〈p, a[b[ ]]〉, 〈q, a{x}[b[ ]]〉}
∂a[ ] b[ ](p) = {〈q, a{x}[ ] b[ ]〉} ∂a[b[ ]] b[ ](p) = {〈q, a{x}[b[ ]] b[ ]〉}
∂a[ ] a[b[ ]](p) = {〈p, a[ ] a[b[ ]]〉, 〈q, a[ ]a{x}[b[ ]]〉}

Note that for some pattern p the set ∂H(p) may be infinite due to the second
elements of the hedge pattern partial derivatives; for instance, with E(n) = ε,
we have 〈a[n]∗, μ〉 ∈ ∂H(a[n]∗) where μ is a sequence of a[ ] of arbitrary length.
The following theorem, however, states that the set of the first elements of the
hedge pattern partial derivatives of a pattern are finite.

Theorem 1. Let ‖p‖ be the number of labels in p and pat : 2TPat×AH → 2TPat be
a function defined as pat(X) = {q | 〈q, μ〉 ∈ X}. For any p ∈ TPat the cardinality
of pat(∂H(p)) is at most ‖p‖+ 1.

The proof of this theorem is similar to that of Theorem 3.4 in [1]. We remark
that the presence of names in p hardly changes the structure of the proof of
Theorem 3.4 in [1].

Now we attempt to relate hedge pattern partial derivatives with the denota-
tional matching semantics. First we introduce left quotients of sets of annotated
hedges with respect to annotated hedges. Let A be a set of annotated hedges and
μ an annotated hedge. Then μ−1A is called the left quotient of A with respect
to μ defined as μ−1A = {μ′ | μμ′ ∈ A}.

The left quotients and hedge pattern partial derivatives have the following
relationship.

Proposition 1. For any p ∈ TPat and μ ∈ AH,⋃
〈q,μ〉∈∂proj(μ)(p)

[[ q ]] = μ−1[[ p ]]

An operational matching semantics by hedge pattern partial derivatives and its
correctness with respect to the denotational matching semantics are immediately
derived from the above proposition.

Theorem 2. For any p ∈ TPat and μ ∈ AH, ∃q.[ε ∈ [[ q ]] ∧ 〈q, μ〉 ∈ ∂proj(μ)(p)]
if and only if μ ∈ [[ p ]].

Proof. The desired property is derived from the following equivalences.

∃q.[ε ∈ [[ q ]] ∧ 〈q, μ〉 ∈ ∂h(p)]⇐⇒ ε ∈
⋃

〈q,μ〉∈∂h(p)

[[ q ]]⇐⇒ ε ∈ μ−1[[ p ]]⇐⇒ μ ∈ [[ p ]]

The second equivalence stems from Proposition 1. ��
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Corollary 1 (Matching Semantics by Hedge Pattern Partial Deriva-
tives). A hedge h is matched by a pattern p, yielding a binding environment V
if and only if

∃μ [∃q.[ε ∈ [[ q ]] ∧ 〈q, μ〉 ∈ ∂h(p)] ∧ ∀x ∈ Vr(p).env(μ, x) = V (x)] .

Example 3. Consider the pattern p and the name definition shown in Example 2.
Matching of p against the hedge a[ ] a[b[ ]] is performed by computing hedge
pattern partial derivatives in ∂a[ ] a[b[ ]](p); from Example 2 they are 〈p, a[ ] a[b[ ]]〉
and 〈q, a[ ] a{x}[b[ ]]〉. Since p contains a[n]@x, the condition ε ∈ [[ p ]] does not
hold. Hence a[ ] a[b[ ]] is not included in [[ p ]]. On the other hand, we have already
known that ε ∈ [[ q ]] holds and hence a[ ] a{x}[b[ ]] ∈ [[ p ]]. Therefore, a[ ]a[b[ ]]
matches by p and the value of x is a[b[ ]].

4 Construction of Matching Automata

As demonstrated in the previous section, we can perform pattern matching using
hedge pattern partial derivatives. If all the hedge pattern partial derivatives of a
pattern p with respect to H are computed in advance, we can directly construct
a pattern matching automaton and perform pattern matching using it. In this
section we present a construction of pattern matching automata from partial
derivatives of patterns.

Definition 6. A matching automaton is a 6-tuple 〈Q,Lab,Var, I, F, τ〉, where
Q is the set of states, I the set of the initial states, F the set of the final states
and τ the set of transition relations, a subset of Q×Fin(Var)× Lab×Q×Q.

If (q, X, a, q′, q′′) ∈ τ then it is denoted by q
X:a[q′]−→ q′′. The acceptance relation

on H×Q×AH for a matching automaton M, denoted by M " h ∈ q ⇒ μ, is
defined by the the following derivation rules:

(T-Fin)
q ∈ F

M " ε ∈ q ⇒ ε

(T-Lab)
q

X:a[q1]−→ q2 M " h1 ∈ q1 ⇒ μ1 M " h2 ∈ q2 ⇒ μ2

M " a[h1] h2 ∈ q ⇒ aX [μ1] μ2
.

The matching automaton defined above is the same as the one presented in
[12] except for the absence of ε-transitions. Note that if a pattern has no vari-
able binder then the obtained matching automaton is essentially regarded as an
NFHA(NFA), a nondeterministic finite hedge automaton with NFA for accepting
horizontal languages[6].

Definition 7. The matching automaton Mp constructed from p is a 6-tuple
〈Qp,Lab, Var, {p}, Fp, τp〉 such that

Qp = pat
(
∂H(p) ∪

⋃
n∈Name ∂H(E(n))

)
Fp = {q ∈ Q | ε ∈ [[ q ]]}
τp = {q X:a[q1]−→ q2 | 〈a, X, q1, q2〉 ∈ plf(q)} .
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(a) (b)

Fig. 1. Matching automata constructed by (a) hedge pattern partial derivative and (b)
Thompson’s method

Example 4. The automaton constructed from the pattern p in Example 2 by
hedge pattern partial derivatives is shown in Fig. 1(a). On the other hand,
Fig. 1(b) presents a matching automaton constructed by the method described in
[12], which is essentially an adaptation of Thompson’s method to regular hedge
expression patterns. The number of states in the former automaton is much less
than the latter.

Actually the automaton in Fig. 1(a) has much less states than its theoretical
upper bound stated in the following theorem.

Theorem 3. The size of Qp is at most ‖p‖+
∑

n∈Name‖E(n)‖+ |Name|+ 1.

Proof. An immediate consequence of Theorem 1. ��

From the above theorem the upper bound of the number of the states of the
matching automaton constructed from the pattern shown in Example 4 is ‖(a[n]∗·
(a[n]@x · b[n]∗)‖ + ‖b[n]∗‖ + |{n}|+ 1 = 4. The automaton shown in Fig. 1(a),
however, has 2 states, as many as the half of the upper bound.

The following theorem states the relationship between the acceptance relation
for a matching automaton constructed from p and the hedge pattern partial
derivatives of p.

Theorem 4. Mp " proj(μ) ∈ p ⇒ μ if and only if ∃q.[ε ∈ [[ q ]] ∧ 〈q, μ〉 ∈
∂proj(μ)(p)].

Proof. We only show the only if part of the theorem. The if part is proved
similarly. The proof is done by induction on the structure of μ. If μ = ε the
relation Mp " ε ∈ p ⇒ ε is equivalent to ε ∈ [[ p ]] from (T-Fin). Since ∂ε(p) =
〈p, ε〉, the property holds for the base case.
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Suppose μ = aX [μ1] μ2. If Mp " a[proj(μ1)] proj(μ2) ∈ p ⇒ aX [μ1] μ2 holds,

there exists a transition p
X:[p1]−→ p2 and Mp " proj(μi) ∈ pi ⇒ μi (i = 1, 2) hold.

From the induction hypothesis ∃qi[ε ∈ [[ qi ]] ∧ 〈qi, μi〉 ∈ ∂proj(μi)(pi)] (i = 1, 2)
hold. Furthermore, the transition implies 〈a, X, p1, p2〉 ∈ plf(p). Therefore from
the definition of partial derivatives ∃q[ε ∈ [[ q ]]∧〈q, aX [μ1]μ2〉 ∈ ∂proj(aX [μ1]μ2)(p)]
holds. ��

The following corollary gives an operational matching semantics by the matching
automata, which is correct with respect to the denotational matching semantics.
It is immediately obtained by combining Theorems 2 and 4.

Corollary 2 (Matching Semantics by Matching Automata). A hedge h
is matched by a pattern p, yielding a binding environment V if and only if

∃μ. [Mp " h ∈ p⇒ μ ∧ ∀x ∈ Vr(p).env(μ, x) = V (x)] .

5 Conclusion

In this paper we have defined hedge pattern partial derivatives of regular hedge ex-
pression patterns. We have shown two operational matching semantics by (1) the
hedge pattern partial derivatives and by (2) the matching automata constructed
from hedge pattern partial derivatives. We have shown correctness of these match-
ing semantics with respect to denotational semantics of pattern matching. As far
as we know it is the first work on the application of partial derivatives to pat-
tern matching in XML processing. Hence, our work is an answer to the question
posed by Kuske and Meinecke[13], who has wondered whether the concept of par-
tial derivatives can lead to fruitful results and algorithms in this area.

Our construction using hedge pattern partial derivatives gives much smaller
matching automata than the construction described in [12] based on Thomp-
son’s construction since the latter is proportional to the structure of patterns.
A method based on position automata construction may be applicable to ob-
tain matching automata for regular hedge expression pattern matching (Emir
has claimed that it would be possible[7]). However, it would always generate
the states as many as the upper bound of our construction; thus the number of
states generated is usually much greater than our construction.

One further research has to be done on disambiguation of pattern matching
[8,16]. Incorporation of disambiguation in our framework would provide a com-
pilation technique for the efficient execution of disambiguous pattern matching.
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Abstract. This paper investigates the use of tree automata with global
equalities and disequalities (TAGED for short) in reachability analysis
over term rewriting systems (TRSs). The reachability problem being in
general undecidable on non terminating TRSs, we provide TAGED-based
construction, and then design approximation-based semi-decision proce-
dures to model-check useful temporal patterns on infinite state rewriting
graphs. To show that the above TAGED-based construction can be ef-
fectively carried out, complexity analysis for rewriting TAGED-definable
languages is given.

1 Introduction

Model-checking techniques [24,23] are commonplace in computer aided verifica-
tion. Model checking refers to the following problem: given a desired property,
expressed as a temporal logic formula ϕ, and a structure M with initial state s,
decide if M, s |= ϕ. The use of model-checking techniques and tools is however
limited to systems whose state space can be finitely and concisely represented.

Recently, reachability analysis turned out to be a very efficient verification
technique for proving properties on infinite systems modeled by term rewriting
systems (TRSs for short). In the rewriting theory, the reachability problem is
the following: given a TRS R and two terms s and t, can we decide whether
s→∗

R t or not? This problem, which can easily be solved on strongly terminating
TRSs, is undecidable on non terminating TRSs. However, on the one hand,
there exist several syntactic classes of TRSs for which this problem becomes
decidable [15,19,31]. On the other hand, in addition to classical proof tools of
rewriting, given a set E ⊆ T (F) of initial terms, provided that s ∈ E , one can
prove s 
→∗

R t by using over-approximations of R∗(E) [20,15] and proving that t
does not belong to these approximations. Recently, the verification of temporal
� This work has been funded by the French ANR-06-SETI-014 RAVAJ project.
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c© Springer-Verlag Berlin Heidelberg 2009



136 R. Courbis, P.-C. Héam, and O. Kouchnarenko

properties of systems modeled by TRSs has been investigated [14,27,26]. To
apply these very interesting and promising theoretical results to applications
in practice, the authors look for finite abstractions to model-check temporal
properties, and use proof theory methods. Unlike these works, we develop an
approximation and tree automata based approach, which can provide a fully
automatic verification framework.

Motivations. Recently, some of the most successful experiments using reach-
ability analysis were done on cryptographic protocols, [17,7], and on Java byte
code programs [6]. Presently, Java MIDLet applications security properties are
verified through R∗(E) over-approximations1. To this end, following works on
CEGAR [8], we developed in [5] over-approximations refinement depending on
a security property to be verified. To go further, we are interested in verifying
temporal properties.

Contributions. The main question is: Is it possible to exploit rewriting ap-
proximations for verifying temporal properties on infinite state rewriting graphs?
This paper addresses this question and offers a solution for three useful pat-
terns of temporal properties. This solution automatically attempts to show that
M, s |= ϕ by exploiting TAGED approximations over M , without building M .

More precisely, the present paper makes the following contributions: Given an
LTL formula (of a certain pattern) to be evaluated over M , the first contribu-
tion is the feasibility of a systematic translation of this formula into a language
rewriting equality to be checked. Language equalities being undecidable in gen-
eral, the second contribution is approximation-based semi-decision procedures
to model-check temporal properties of three useful patterns coming from static
analysis domain and having practical applications. This contribution is obtained
using the recent TAGED model (Tree Automata with Global Equality and Dis-
equality Constraints) in [16]. For a lack of space, the proofs of this paper are
available at http://hal.inria.fr/inria-00380048/fr/.

Structure of the paper. Section 2 introduces preliminary notions on TRSs,
tree-automata, and rewriting-based linear temporal logic. Section 3 explains the
interest of the proposed approach via three temporal property patterns and
relates them to language rewriting equations. The main contribution in Section 4
concerns rewriting-based (semi-)decision procedures and complexity analysis for
rewriting related TAGED-definable languages. Then, semi-algorithms, including
approximation steps are given. Finally, Section 5 concludes and sums up related
works.

2 Preliminaries

2.1 Terms, TRSs and Tree Automata

Comprehensive surveys can be found in [12,2] for TRSs, in [10,18] for tree au-
tomata and tree language theory, and in [16] for TAGEDs.
1 In the framework of the French ANR Ravaj project.
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Terms and TRSs. Let F be a finite set of symbols, associated with an arity
function ar : F → N, and let X be a countable set of variables. T (F ,X ) denotes
the set of terms, and T (F) denotes the set of ground terms (terms without
variables). The set of variables of a term t is denoted by Var(t). A substitution
is a function σ from X into T (F ,X ), which can be extended uniquely to an
endomorphism of T (F ,X ). A position p for a term t is a word over N. The empty
sequence ε denotes the top-most position. The set Pos(t) of positions of a term
t is inductively defined by Pos(t) = {ε} if t ∈ X and by Pos(f(t1, . . . , tn)) =
{ε}∪{i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)} otherwise. If p ∈ Pos(t), then t|p denotes
the subterm of t at position p and t[s]p denotes the term obtained by replacement
of the subterm t|p at position p by the term s. We also denote by t(p) the symbol
occurring in t at position p. Given a term t ∈ T (F ,X ), we denote PosA(t) ⊆
Pos(t) the set of positions of t such that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.
Thus PosF(t) is the set of functional positions of t. A TRS R is a set of rewrite
rules l → r, where l, r ∈ T (F ,X ) and l 
∈ X . A rewrite rule l → r is left-linear
(resp. right-linear) if each variable of l (resp. r) occurs only once within l (resp.
r). A TRS R is left-linear (resp. right-linear) if every rewrite rule l → r of R
is left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear.
The TRS R induces a rewriting relation→R on terms whose reflexive transitive
closure is written →�

R. The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→�

R t}. Symmetrically, the set of R-ancestors
of a set of ground terms E is R−1�(E) = {s ∈ T (F) | ∃t ∈ E s.t. s→�

R t}.
Note that R∗(E) is possibly infinite: R may not terminate and/or E may be

infinite. In general, the set R∗(E) is not computable [18]. However, it is possible
to over-approximate it [15] using completion procedure over tree automata, i.e.
a finite representation of infinite (but regular) sets of terms.

Tree automata. Let Q be a finite set of symbols, of arity 0, called states such
that Q ∩ F = ∅. T (F ∪Q) is called the set of configurations. A transition is a
rewrite rule c→ q, where c ∈ T (F ∪Q) is of the form c = f(q1, . . . , qn), f ∈ F ,
ar(f) = n, and q1, . . . , qn ∈ Q.

A bottom-up non-deterministic finite tree automaton (tree automaton for
short) over F is a 3-tuple A = (Q,Qf , Δ), Qf ⊆ Q and Δ is a finite set of
transitions. The rewriting relation on T (F ∪Q) induced by Δ of A is denoted
→Δ or→A. The tree language {t ∈ T (F) | t→�

A q} is denoted L(A, q) and called
the tree language recognised by A in q. The language recognised by A, denoted
L(A), is the language

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it is
recognised by a tree automaton. A run of a tree automaton A = (Q,Qf , Δ) on a
term t ∈ T (F) is a function ρ : Pos(t)→ Q such that ρ(p) = q for all p ∈ Pos(t),
where q ∈ Q and t|p = f(t1, . . . , tn), ar(f) = n, f(ρ(p.1), . . . , ρ(p.n)) → q ∈ Δ.
A run is successful if ρ(ε) ∈ Qf .

Positive TAGEDs. A positive TAGED[16] is a 4-tuple A = (Q, E, F, Δ), where
(Q, F, Δ) is a tree automaton over F , and E ⊆ Q×Q is a binary reflexive sym-
metric relation on a subset of Q. The tree automaton (Q, F, Δ) is denoted ta(A).
A successful run of a positive TAGED A = (Q, E, F, Δ) on a term t ∈ T (F) is
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a successful run ρ of ta(A) on t satisfying: for all positions p1, p2 ∈ Pos(t), if
(ρ(p1), ρ(p2)) ∈ E then t|p1 = t|p2 . For positive TAGEDs, the emptiness prob-
lem is in EXPTIME [16, Theorem 1], and universality and inclusion problems
are both undecidable [16, Proposition 5]. Following the respective definitions of
runs, it is straightforward that for every positive TAGED A, L(A) ⊆ L(ta(A)).

2.2 Linear Temporal Logic and Term Rewriting

In this section, linear temporal properties are put in a rewriting context. The
approach is based on the well-known and widely used Linear Temporal Logic
(LTL for short) [29]. Our goal is to express and to verify temporal constraints
on the order of rewriting rules in →∗

R. The approach is very close to that in [25]
when reducing the equational theory to the identity.

LetR be a TRS and L0 be a set of terms. We denote by G(L0,R) theR-labelled
graph (T (F), L0, Δ) where Δ = {ti l→r→ tj | l → r ∈ R and tj ∈ {l → r}(ti)}.
A path π in G(L0,R) is a (finite or infinite) sequence (p1, a1, q1) . . . (pi, ai, qi) . . .
of elements of Δ such that p1 ∈ L0, for every i ≥ 1 if pi+1 exists, then qi = pi+1.
The (finite or infinite) word a1 . . . ai . . . over the alphabet R is called the label of
π. A path π is full if it is either infinite or if there exists an integer i such that
π = (p1, a1, q1), . . . , (pi, ai, qi) and {p | ∃a ∈ R, (qi, a, p) ∈ Δ} is empty.

LTL formulas over R are inductively defined by: R0 ⊆ R is an LTL formula,
and if ϕ and ψ are LTL formulas over R, then 1, ¬ϕ, (ϕ ∨ ψ), ◦ϕ and ϕUψ are
also LTL formulas. Following formulas are classically defined: �ϕ = ¬(1U¬ϕ),
(ϕ ∧ ψ) = ¬(¬ϕ ∨ ¬ψ) and ϕ⇒ ψ = (¬ϕ ∨ ψ).

Let w be a finite or infinite word over R (considered as an alphabet). The i-th
letter of w, if it exists, is denoted w(i). We inductively define the satisfaction of
an LTL formula ϕ by w at position i, denoted (w, i) |= ϕ by:

(w, i) |= 1 iff w(i) exists,
(w, i) |= R0, with R0 ⊆ R iff w(i) exists and w(i) ∈ R0,
(w, i) |= ¬ϕ iff (w, i) 
|= ϕ,
(w, i) |= (ϕ1 ∨ ϕ2) iff (w, i) |= ϕ1 or (w, i) |= ϕ2 ,
(w, i) |= ◦ϕ iff (w, i + 1) |= ϕ,
(w, i) |= (ϕ1Uϕ2) iff there exists j ≥ i such that (w, i) |= ϕ2

and for every i ≤ k < j, (w, k) |= ϕ1.

We say that w is a model of ϕ if (w, 1) |= ϕ. A graph G(L0,R) satisfies an LTL
formula ϕ, denoted G |= ϕ, if and only if the label of each full path in G(L0,R)
satisfies ϕ. Illustrated examples are given in Section 3.

3 Three LTL Patterns and Related Language Equalities

In this section, we study three LTL formula patterns which are useful to express
security requirements when performing Java MIDLet applications static analysis.

– Formula �(R1 ⇒ ◦R2) intuitively means that if an accessible term is rewrit-
ten using a rule in R1, then the obtained term can be rewritten using a rule
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in R2 and only by a rule in R2, as illustrated on an abstract graph in Fig. 1.
In our application domain, this temporal pattern is used to express that if
a method m1 is invoked, then a method m2 must be invoked just after. For
instance, if the method asks the user to authentify using his PINCODE, then
the next invoked method is either the authentication or the cancellation of
the authentication.

– Formula ¬R2 ∧ �(◦R2 ⇒ R1) is the dual of the above temporal pattern: if
an accessible term is rewritten using a rule in R2, then just before it was
rewritten using a rule in R1, as illustrated on an abstract graph in Fig. 2.
For instance, this temporal formula pattern expresses that if a SMS is sent,
then the user has just before provided his agreement.

– Formula �(R1 ⇒ �¬R2) encodes that if a rule in R1 is used in a rewriting
derivation, then no rule of R2 can be used in the future, as shown in Fig. 3.
Thanks to this temporal formula pattern, one can express that if a particular
application accesses to the user’s private data, like his address book, no
message can be sent by this application in the future. So, the user’s private
data cannot be exploited unbeknown to him. Notice that, according to [13],
this formula pattern appears to be commonly used for system specification.

3.1 Formula �(R1 ⇒ ◦R2)

We explore in this section how the model-checking of the formula �(R1 ⇒ ◦R2)
can be translated into language equations. A R-labelled graph satisfying this
formula is depicted in Fig. 1.

Proposition 1. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language. One
has G(L0,R) |= �(R1 ⇒ ◦R2) iff (R\R2)(R1(R∗(L0))) = ∅ and R1(R∗(L0))∩
R−1

2 (T (F)) = R1(R∗(L0)).

Example 1. Let F = {⊥, a, b, c, f, g} where ar(⊥) = 0, ar(a) = ar(b) = ar(c) =
1, and ar(f) = ar(g) = 2. Let consider the TRS R = {r1, . . . , r5} with r1 =
f(b(x), b(x))→ g(x, x), r2 = a(x)→ a(a(x)), r3 = a(⊥)→ b(⊥), r4 = a(b(x))→
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b(b(x)) and r5 = g(x, y) → c(g(x, y)). Finally, let L0 = {f(a(u(⊥)), v(a(⊥))) |
u ∈ {a, b}∗ and v ∈ a∗}. One has {r1}(R∗(L0)) ⊆ g(b∗(⊥), b∗(⊥)). Thus (R \
{r5})({r1}(R∗(L0))) = ∅. Moreover, {r5}−1(T (F)) is the set of terms where g oc-
curs once at least. Consequently, {r1}(R∗(L0))∩{r5}−1(T (F)) = {r1}(R∗(L0)).
It follows that G(L0,R) |= �({r1} ⇒ ◦{r5}).

3.2 Formula ¬R2 ∧ �(◦R2 ⇒ R1)

In this section the formula ¬R2 ∧�(◦R2 ⇒R1) is compiled to into a language
equation to be checked. A R-labelled graph satisfying this formula is depicted
in Fig. 2.

Proposition 2. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language.
One has G(L0,R) |= ¬R2 ∧ �(◦R2 ⇒ R1) iff R2((R \ R1)(R∗(L0))) = ∅ and
R2(L0) = ∅.

Example 2. In the setting of Example 1, one has {r5}(L0) = ∅. Moreover, one
can check that g does not occur in terms of R \ {r1, r5}(R∗(L0)), proving that
{r5}(R \ {r1, r5}(R∗(L0))) = ∅. Consequently, G(L0,R) |= ¬{r5} ∧�(◦{r5} ⇒
{r1, r5}).

3.3 Formula �(R1 ⇒ �¬R2)

This section shows how the model-checking of the formula �(R1 ⇒ �¬R2) can
be done thanks to language equations. AR-labelled graph satisfying this formula
is depicted in Fig. 3.

Proposition 3. Let R be a TRS, R1,R2 ⊆ R and L0 be a tree language. One
has G(L0,R) |= �(R1 ⇒ �¬R2) if and only if R2(R∗(R1(R∗(L0)))) = ∅.

Example 3. In Example 1 setting, one has {r1}(R∗(L0)) ⊆ g(b∗(⊥), b∗(⊥)).
It follows that a never occurs in terms of R∗({r1}(R∗(L0))). Consequently,
{r2}(R∗({r1}(R∗(L0)))) = ∅, proving that G(L0,R) |= �({r1} ⇒ �¬{r2}).
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4 Semi-decision Procedures

In Section 4.1, we first show that for the above properties, model-checking is un-
decidable; That is not surprising. To obtain semi-decision procedures for model-
checking these properties, we then provide TAGED-based construction presented
in this section. As explained in Sect. 1, given a set E ⊆ T (F) of initial terms,
over-approximations of the set of reachable termsR∗(E) can be computed [20,15].
In Sect. 4.2, we explain how to exploit these over-approximations and use con-
structions of Sect. 4.1 to verify three rewriting temporal properties introduced
in Sect. 3.

4.1 Language Equalities and Positive TAGEDs

First we claim that the model-checking of the three pointed out formulas is
undecidable.

Proposition 4. Given a TRS R, R1,R2 ⊆ R and a term t0, one cannot decide
whether G({t0},R)) |= �(R1 ⇒ ◦R2) (resp. whether G({t0},R) |= �(◦R2 ⇒
R1)) (resp. whether G({t0},R)) |= �(R1 ⇒ �¬R2)).

Now we provide several positive TAGED-based constructions in order to cope
with the language equalities involved in Sect. 3.

Proposition 5. Let R be a TRS. One can compute in polynomial time a positive
TAGED accepting R−1(T (F)).

Notice that if R is left-linear, the obtained TAGED is a tree automaton as for
any variable x, the state qx occurs at most once in runs; This is a well-known
result.

Proposition 6. Let A be a positive TAGED automaton and R be a TRS. De-
ciding whether R(L(A)) is empty is in EXPTIME.

Proposition 7. Let A be a tree automaton and R be a TRS. The language
R(L(A)) is accepted by a positive TAGED.
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4.2 Algorithms

In order to semi-decide whether the temporal properties are satisfied or not, we
introduce the following procedures.

– Approx(A,R), where A is a tree automaton and R is a TRS, returns a tree
automaton B such that R∗(L(A)) ⊆ L(B). This can be done using the
procedure defined in [7].

– ta(A), where A is a positive TAGED, returns the tree automaton ta(A).
– OneStep(A,R), where A is a tree automaton and R is a TRS, returns the

positive TAGED B accepting R(L(A)) built as in Proposition 7.
– Backward(R), where R is a TRS, returns the positive TAGED B accepting
R−1(T (F)) built as in Proposition 5.

– IsEmpty(A,R), where A is a positive TAGED and R is a TRS, returns true
if R(L(A)) is empty and false, otherwise.

The above procedures and the results in Section 3 allow to deduce the following
result.

Proposition 8. Let R be a TRS, R1,R2 ⊆ R and A be a tree automaton. The
following properties hold:

(1) If R2 is left-linear and if IsEmpty(OneStep(Approx(A,R),R1),R \R2)= true
and if OneStep(Approx(A,R),R1)⊆ Backward(R2), then G(L(A),R) |=
�(R1 ⇒ ◦R2).

(2) If IsEmpty(A,R2) and if IsEmpty(OneStep(Approx(A,R),R \R1),R2)= true,
then G(L(A),R) |= �(◦R2 ⇒R1).

(3) If IsEmpty(Approx(ta(OneStep(Approx(A,R),R1)),R),R2)= true, then
G(L(A),R) |= �(R1 ⇒ �¬R2).

Notice that in (1) R2 is required to be left-linear in order to make the inclusion
test decidable.

5 Conclusion and Related Work

We proposed to exploit abstraction-based rewriting approximations to model-
check some LTL temporal properties on infinite state systems, and to combat a
combinatorial state-space blow up faced by model-checking tools. Our approach
is based on the reachability analysis through rewriting approximations as well
as tree automata with global equality constraints. We address static analysis
problems. Approximation techniques were already implemented in [3]. In the
future we plan to integrate TAGED-based algorithms into this tool in order to
treat practical applications.

Related work
Temporal properties and rewriting. Hundreds of works exist using LTL [29] in
order to model and to verify systems properties. We refer the interested reader
to the Spin Model-Checker home page2.
2 http://spinroot.com/spin/whatispin.html

http://spinroot.com/spin/whatispin.html
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Rewriting logics [25] is a very general theoretical framework allowing one to
model various systems. In this context, rewriting graphs are considered: nodes
of these graphs are labeled by equivalence classes of an equational theory. There
is an edge between two nodes if an element of the first node can be rewritten
into an element of the second node, using a rule of TRS R. When the consid-
ered equational theory is the identity, these rewriting graphs are exactly the
graphs underlying our labeled transition systems. In this framework, the works
in [14,27,26] focus on LTL approaches. In [1] the authors propose a general model
for security protocols based on the set-rewriting formalism in a decidable context
(considered underlying graphs are finite).

Tree automata with constraints. Tree automata were intensively studied in the
literature, in particular for program verification, where tree automata provide
abstraction-based approximations of program configurations. In this direction,
several classes of extended automata were defined in order to provide finer ap-
proximations [4,11,9,16,30,22,28,21].
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Abstract. We address the verification problem of networks of commu-
nicating pushdown systems modeling communicating parallel programs
with procedure calls. Processes in such networks can read the control
state of the other processes according to a given communication struc-
ture (specifying the observability rights between processes). The reacha-
bility problem of such models is undecidable in general. First, we define
a class of networks that effectively preserves recognizability (hence, its
reachability problem is decidable). Then, we consider networks where the
communication structure can change dynamically during the execution
according to a phase graph. The reachability problem for these dynamic
networks being undecidable in general, we define a subclass for which it
becomes decidable. Then, we consider reachability when the switches in
the communication structures are bounded. We show that this problem
is undecidable even for one switch. Then, we define a natural class of
models for which this problem is decidable. This class can be used in the
definition of an efficient semi-decision procedure for the analysis of the
general model of dynamic networks. Our techniques allowed to find bugs
in two versions of a Windows NT Bluetooth driver.

1 Introduction

Verification of concurrent software is a difficult task in the model-checking com-
munity. Indeed, concurrent programs include various complex features such as
(1) the presence of recursive procedure calls, which can lead to an unbounded
number of calls, and (2) concurrency and synchronization between parallel pro-
cesses. It is well known that checking whether a given control point is reach-
able is undecidable for programs with recursive procedures and synchronisation
statements. During the last few years, several authors have addressed this issue.
Different models of these programs have been proposed and analysed.

Pushdown systems have been proposed as an adequate formalism to describe
pure sequential recursive programs [9,11,19]. This allows to represent the poten-
tially infinite configurations of recursive programs in a symbolic manner using
regular languages [2,12,11]. Thus, a natural approach that allows to reason about
multitheraded programs is to consider models based on parallel compositions of
pushdown systems [4,17,5,3,8]. Unfortunately, such models are undecidable (it
suffices to have two communicating pushdown systems to get undecidability).

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 145–154, 2009.
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Recently, we defined in [1] a new model for multithreaded programs based
on networks of pushdown systems. Our model consists of a finite number of
parallel processes, each of them corresponding to a pushdown system, and where
each process can read the control states of the other ones according to a given
communication structure specifying the observation rights between processes.
Such networks (called PDNs in this paper) are obviously Turing powerful when
cyclic communication structures are allowed. We restricted ourselves in [1] to
networks with acyclic communication structures. In order to represent infinite
sets of configurations, we considered symbolic representation structures based
on (multidimensional) finite-state automata defining recognizable and rational
sets of vectors of words. (Recognizable sets are sets definable as finite unions of
products of regular languages). We showed in [1] that reachability is decidable
for acyclic networks, that such networks do not preserve recognizability, and
we defined a subclass of such networks for which we were able to effectively
characterize the reachable configurations by a rational set.

In this work, we go further with this model. First, we define a natural subclass
called stable acyclic PDNs and prove that it effectively preserves recognizability.
Then, we consider networks with dynamic changes in the communication struc-
ture according to a phase graph, where each phase corresponds to an acyclic
PDN. The phase graph specifies the possible switches between a finite number
of phases, and the constraints on the configurations under which the system can
move from a phase to another. We call this new model MAPN (for Multiphase
Acyclic Pushdown Networks). MAPN is a natural model to represent programs
where the communication structure between processes can change dynamically.

We show that reachability in MAPN can be reduced to reachability in (possi-
bly cyclic) PDNs, and vice versa. Thus, MAPN has an undecidable reachability
problem (even if each communication structure in each phase is acyclic) if we
allow cyclic phase graphs. In fact, we prove that the reachability problem is
undecidable as soon as we allow one phase switch (and even if communication
structures are acyclic).

Then, we define two classes of MAPNs for which reachability becomes de-
cidable. We derive from this a bounded phase-switch analysis procedure for the
general MAPN model. For that, we show that it is possible to decompose each
given MAPN into an equivalent model where each phase corresponds to a sta-
ble acyclic PDN. Finally, we define a semi-algorithm to decide reachability for
general PDNs (even cyclic ones) based on the bounded phase-switch analysis for
MAPNs. This result generalizes the algorithms proposed in [17,3] for bounded
context-switch analysis. Indeed, our notion of phase is more general than the
notions of context used in these works in the sense that, if we encode our model
in those proposed in [17,3], one single phase according to our definition may
correspond to an unbounded number of context switches in their models. Thus,
our bounded phase analysis may allow an arbitrary number of context switches
(in the sense of [17,3]).

Our MAPN model is a natural model to represent programs where the commu-
nication structure between processes can change dynamically. Our PDN model
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can also be used to describe concurrent programs with synchronisation and pro-
cedure calls such as e.g. two versions of a Windows NT Bluetooth driver. Our
techniques can be applied to find the bugs of this driver reported in [18,8].

Related work. Recently, several models based on rewriting systems have been
considered to model multithreaded programs [15,10,20,16,6,7]. While these mod-
els allow to model dynamic thread creation, they do not allow communication
between processes.

In [5], we have introduced a model based on networks of pushdown systems
called CDPN. While this model allows dynamic creation of processes, it allows
only a restricted form of synchronisation where a process has the right to read
only the control states of its immediate sons (i.e., the processes it has created).

[21] considers bounded phase reachability in multi-stack systems, where in
each phase the system can pop from one stack, and push on some number of
stacks. In our model, we allow the manipulation of different stacks in a single
phase. However, since the communication relation in the different phases of a
MAPN is fixed, our model cannot simulate phase switches in the sense of [21].

Networks of pushdown systems communicating via message passing [4,8], or
locks [14,13] have been considered. Pushdown networks with these kinds of com-
munications can also be described in our PDN model.

2 Networks of Communicating Pushdown Systems

A PushDown Network (PDN for short) is given by a tuple N = (P1, . . . , Pn, R)
where R ⊆ {(i, j) | 1 ≤ i, j ≤ n, i 	= j} is a binary relation defining the com-
munication structure of the network (R defines a directed graph whose nodes
are 1, . . . , n), and for every i ∈ {1, . . . , n}, Pi = (Pi, Γi, Δi) is a communicating
pushdown system such that Pi is a finite set of control states, Γi is a finite stack
alphabet, and Δi is a set of transition rules of the form:

φ : (p, γ) ↪→ (p′, w)

where p, p′ ∈ Pi are two control states, γ ∈ Γi is the symbol popped from the
stack, w ∈ Γ ∗

i is the string pushed in the stack, and φ ⊆
⋃

(i,j)∈R

Pj is a set of

constraints over the current control states of the other observed processes.
A local configuration of a process in the network, say Pi, is a word piwi ∈ PiΓ

∗
i

where pi is a state and wi is a stack content. A configuration of the network N
is a vector (p1w1, . . . , pnwn) ∈

∏n
i=1 PiΓ

∗
i , where piwi is the local configuration

of Pi.
We define a transition relation =⇒N between configurations. We have

(p1w1, . . . , pnwn) =⇒N (p′1w′
1, . . . , p

′
nw′

n) if and only if there is an index i ∈
{1, . . . , n} such that:

– there is a rule φ : (p, γ) ↪→ (p′, w) ∈ Δi and there exists a word u ∈ Γ ∗
i

such that pi = p, p′i = p′, wi = γu, w′
i = wu, and for every j ∈ {1, . . . , n}, if

(i, j) ∈ R, then pj ∈ φ.
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– ∀j ∈ {1, . . . , n}. i 	= j. pj = p′j and wj = w′
j .

Let =⇒∗
N denote the reflexive transitive closure of =⇒N . Given a configuration c,

the set of immediate successors of c is postN (c) = {c′ ∈
∏n

i=1 PiΓ
∗
i : c=⇒Nc′}.

This notation can be generalized straightforwardly to sets of configurations. Let
post∗N denote the reflexive-transitive closure of postN .

Intuitively, a network N = (P1, . . . , Pn, R) can be seen as a collection of
“standard” pushdown systems that observe each other according to the structure
R: (i, j) ∈ R means that process Pi observes (reads) the states of process Pj . If
a rule φ : (p, γ) ↪→ (p′, w) is in Δi, then process Pi can apply the “standard”
pushdown rule (p, γ) ↪→ (p′, w) iff every pushdown system Pj for j s.t. (i, j) ∈ R
is in a state pj ∈ φ ∩ Pj . The network is in the configuration (p1w1, . . . , pnwn)
means that each pushdown system Pi is in configuration piwi.

A network N = (P1, . . . , Pn, R) is acyclic (resp. cyclic) if the graph of its
relation R is acyclic (resp. cyclic). A network consisting of a single process N =
(P , ∅) will simply be denoted by P and corresponds to the standard pushdown
system P .

3 Symbolic Representation of PDN Configurations

Let N = (P1, . . . , Pn, R) be a PDN where Pi = (Pi, Γi, Δi). Since a configuration
of N can be seen as a word of dimension n in P1Γ

∗
1 × · · · × PnΓ ∗

n , a natural
way to represent infinite sets of PDN configurations is to consider recognizable
languages. Let Σ1, . . . , Σn be n finite alphabets. A n-dim word over Σ1, . . . , Σn

is an element of Σ∗
1 × · · · × Σ∗

n. A n-dim language is a (possibly infinite) set
of n-dim words. A n-dim language L is recognizable if it is a finite union of
products of n regular languages (i.e. L =

⋃m
j=1 L(Aj

1) × · · · × L(Aj
n) for some

m ∈ N, where Aj
i is a finite state automaton over Σi). Notice that for n = 1,

recognizable languages correspond precisely to regular languages.
It is well known that for any dimension n ≥ 1, the class of recognizable

languages is closed under boolean operations and that the emptiness problem of
recognizable languages is decidable.

4 Reachability Analysis of PDNs

The reachability problem between sets of configurations C1 and C2 for a PDN
N is to determine whether there are two configurations c1 ∈ C1 and c2 ∈ C2
such that c1 =⇒∗

N c2. It is easy to see that a PDN with two processes and a
cyclic communication structure is Turing prowerful:

Proposition 1. The reachability problem of PDNs is undecidable.

Hence, we restrict ourselves to acyclic PDNs. We showed in [1] that acyclic
PDNs do not preserve recognizability. In this section, we go further and define
conditions under which acyclic PDNs preserve recognizability.
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Definition 1. Let N = (P1, . . . , Pn, R) be an acyclic PDN where for every i ∈
{1, . . . , n}, Pi = (Pi, Γi, Δi). For i ∈ {1, . . . , n}, let ρi be a binary relation in
Pi × Pi defined by (p, p′) ∈ ρi iff there exists in Δi a rule of the form φ :
(p, γ) ↪→ (p′, w). Let ρ∗i be the reflexive-transitive closure of ρi.

N is stable iff whenever (i, j) ∈ R, then for every p, p′ ∈ Pj, if (p, p′) ∈ ρ∗j
and (p′, p) ∈ ρ∗j , then for every rule φ : (q, γ) ↪→ (q′, w) in Δi, p ∈ φ iff p′ ∈ φ.

Intuitively, N is stable iff if Pj can go from a state p to a state p′ and then back
to p, for some index j ∈ {1, . . . , n}; then if (i, j) ∈ R, the rules of Δi do not
distinguish between the states p and p′.

We show the first main result of our paper: stable acyclic networks effectively
preserve recognizability.

Theorem 1. Let N = (P1, . . . , Pn, R) be a stable acyclic PDN and C be a recog-
nizable set of configurations. Then, post∗N (C) is an effectively recognizable set.

The construction underlying this theorem is based on the iterative applications
of the standard post∗ algorithm for standard pushdown systems [2,11] for each
pushdown component in the network. The stability of the network guarantees
the termination of the iterative procedure.

5 Multiphase Acyclic Pushdown Networks

In this work, we go further and extend the model of acyclic PDNs by allowing
dynamic changes in the definition of the network. This section is devoted to the
definition of this new model.

A Multiphase Acyclic Pushdown Network (MAPN) is given by a tuple M =
(N1, . . . , Nm, T ) where for every j ∈ {1, . . . , m}, Nj = (Pj

1 , . . . , Pj
n, Rj) is an

acyclic PDN where for i ∈ {1, . . . , n}, Pj
i = (Pi, Γi, Δ

j
i ). T is a set of transi-

tions of the form (Ni, Φ, Nj) where i, j ∈ {1, . . . , m} and Φ ⊆
∏

k≤n

PkΓ ∗
k is a

recognizable set of configurations.
We can think of the network Nj as an acyclic network over the processes

(P1, . . . , Pn), where each process Pi (i ∈ {1, . . . , n}) executes only the rules Δj
i ,

and where these processes observe each other according to the structure Rj . T
is a phase graph: a transition (Ni, Φ, Nj) ∈ T means that if the acyclic PDN Ni

is in a configuration (p1w1, . . . , pnwn) ∈ Φ, then the network can move from a
phase where the processes behave according to the network Ni to a phase where
they behave according to Nj, i.e., from Ni to Nj.

Let G be the underlying graph of T , i.e., (i, j) ∈ G iff there exists in T a
transition of the form (Ni, Φ, Nj). We say that T is cyclic (resp. acyclic) iff G is
cyclic (resp. acyclic). The network M is said to be cyclic (resp. acyclic) iff T is
cyclic (resp. acyclic).

An indexed configuration of the MAPN is a pair 〈(p1w1, . . . , pnwn), i〉 where
(p1w1, . . . , pnwn) ∈

∏n
k=1 PkΓ ∗

k , and i ∈ {1, . . . , m}. The index i records
the current phase of the network. A configuration of the MAPN is a tuple
(p1w1, . . . , pnwn) ∈

∏n
k=1 PkΓ ∗

k .
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We define a transition relation ⇒M between indexed configurations as follows:
〈(p1w1, . . . , pnwn), i〉 ⇒M 〈(p′1w′

1, . . . , p
′
nw′

n), j〉 if and only if:

– (p1w1, . . . , pnwn) = (p′1w
′
1, . . . , p

′
nw′

n), and there is (Ni, Φ, Nj) ∈ T such that
(p1w1, . . . , pnwn) ∈ Φ,

– (p1w1, . . . , pnwn) =⇒Nj (p′1w
′
1, . . . , p

′
nw′

n) and i = j.

We extend ⇒M to configurations in
∏n

k=1 PkΓ ∗
k as follows: (p1w1, . . . , pnwn) ⇒M

(p′1w
′
1, . . . , p

′
nw′

n) iff there exist two phase indices i and j in {1, . . . , m} such
that 〈(p1w1, . . . , pnwn), i〉 ⇒M 〈(p′1w′

1, . . . , p
′
nw′

n), j〉. Let ⇒ ∗
M denote the re-

flexive transitive closure of ⇒ M . Let C be a set of (indexed) configurations.
We define postM (C) and post∗M (C) in the usual manner. Let C be a set of
indexed configurations. C is said to be recognizable if and only if the set
Cj = {(p1w1, . . . , pnwn)|〈(p1w1, . . . , pnwn), j〉 ∈ C} is recognizable for every
j, 1 ≤ j ≤ m. As usual, the reachability problem between two sets of (indexed)
configurations C1 and C2, for a MAPN M , is to determine whether there are
two (indexed) configurations c1 ∈ C1 and c2 ∈ C2 such that c1 ⇒ ∗

Mc2.

6 The Reachability Problem for MAPNs

In this section, we study the reachability problem for the model MAPN. First,
we show that this problem is reducible to its corresponding problem for PDNs
and vice-versa. Thus, reachability is undecidable in general for MAPNs. Then,
we define two subclasses for which reachability becomes decidable.

Theorem 2. The reachability problem for PDNs is reducible to its correspond-
ing problem for MAPNs and vice-versa.

As an immediate consequence of Theorem 2 and Proposition 1 we have:

Proposition 2. The reachability problem is undecidable for MAPNs.

Unfortunately, we can show that this undecidability holds even for acyclic
MAPNs. We show that solving this problem would imply a decision procedure
for the Post’s Correspondence Problem (PCP).

Theorem 3. The reachability problem between two (indexed) configurations is
undecidable for acyclic MAPNs. This holds even if the phase graph has a single
transition.

6.1 Reachability for Finitely-Constrained MAPNs

Fortunately, we can show that reachability becomes decidable for MAPNs when
the constraints in the phase graph are finite sets of configurations.

Definition 2. A MAPN M = (N1, . . . , Nm, T ) is called finitely-constrained if
T is a set of transitions of the form (Ni, Φ, Nj) where i, j ∈ {1, . . . , m} and
Φ ⊆

∏
k≤n

PkΓ ∗
k is a finite set of configurations.
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In [1], we showed that the reachability problem between two recognizable sets of
configurations for acyclic PDNs is decidable. Thanks to this result, it is easy to
see that in finitely-constrained MAPNs, reachability can be reduced to reacha-
bility in a finite graph:

Proposition 3. The reachability problem between recognizable sets of (indexed)
configurations is decidable for finitely-constrained MAPNs.

6.2 Reachability for Stable Acyclic MAPNs

We give in this section the second main result of this paper: we define the class
of stable acyclic MAPNs and show that it effectively preserves recognizability.
Hence, its reachability problem is decidable.

Definition 3. An MAPN M = (N1, . . . , Nm, T ) is stable if for every j ∈
{1, . . . , m}, Nj = (Pj

1 , . . . , Pj
n, Rj) is a stable acyclic PDN.

We show that stable acyclic MAPNs effectively preserve recognizability. This is
due to the fact that (1) stable acyclic PDNs effectively preserve recognizability,
and (2) the phase graphs for acyclic MAPNs are acyclic. This allows to obtain the
reachability set for stable acyclic MAPNs by successively applying the algorithm
underlying Theorem 1 a finite number of times.

Theorem 4. Let M = (N1, . . . , Nm, T ) be a stable acyclic MAPN and let C be
a recognizable set of (indexed) configurations of M . Then post∗M (C) is effectively
recognizable.

Since recognizable sets are effectively closed under intersection, we get:

Corollary 1. The reachability problem between recognizable sets of (indexed)
configurations is decidable for stable acyclic MAPNs.

7 Bounded Phase Switch Reachability for MAPNs

We consider in this section the reachability problem for general MAPNs. Since this
problem is undecidable, we consider bounded switch reachability,where thenumber
of switches between the different phases (the different networks Ni’s) is bounded.

Definition 4. Let M = (N1, . . . , Nm, T ) be a MAPN where for every j ∈
{1, . . . , m}, Nj = (Pj

1 , . . . , Pj
n, Rj) is an acyclic PDN. We define the k-switch

transition relation between indexed configurations inductively as follows:

– 〈(p1w1, . . . , pnwn), i〉 0=⇒M 〈(p′1w′
1, . . . , p

′
nw′

n), j〉 if and only if i = j and
(p1w1, . . . , pnwn) =⇒∗

Ni
(p′1w

′
1, . . . , p

′
nw′

n).

– 〈(p1w1, . . . , pnwn), i〉 k+1=⇒M 〈(p′1w′
1, . . . , p

′
nw′

n), j〉 if and only if
there is an indexed configuration 〈(p′′1w′′

1 , . . . , p′′nw′′
n), l〉 such that:

〈(p1w1, . . . , pnwn), i〉 k=⇒M 〈(p′′1w′′
1 , . . . , p′′nw′′

n), l〉; 〈(p′′1w′′
1 , . . . , p′′nw′′

n), l〉 ⇒M

〈(p′′1w′′
1 , . . . , p′′nw′′

n), j〉; and (p′′1w′′
1 , . . . , p′′nw′′

n) =⇒∗
Nj

(p′1w
′
1, . . . , p

′
nw′

n).
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k=⇒M is extended to configurations as follows: (p1w1, . . . , pnwn) k=⇒M

(p′1w′
1, . . . , p

′
nw′

n) iff there exist two phase indices i and j such that
〈(p1w1, . . . , pnwn), i〉 k=⇒M 〈(p′1w′

1, . . . , p
′
nw′

n), j〉.
The k-bounded switch reachability problem for MAPNs between two sets of

(indexed) configurations C and C′ consists in determining whether there are
c ∈ C and c′ ∈ C′ such that c

k=⇒M c′. Intuitively, this means that c
k=⇒M c′ iff

the (indexed) configuration c′ can be reached from c after switching at most k
times the phase of the network according to the phase graph T . In this case, we
say that c′ is k-bounded reachable from c.

Unfortunately, even k-bounded switch reachability is undecidable for cyclic as
well as acyclic MAPNs. Indeed, it is easy to see that performing k-bounded reach-
ability in M amounts to performing “unrestricted” reachability in the acyclic
network defined by (N1, . . . , Nm, Tk), where Tk is obtained by considering all
the possible paths of T having at most k transitions. Therefore, it follows from
Theorem 3 that:

Corollary 2. The k-bounded reachability problem between recognizable sets of
(indexed) configurations is undecidable for MAPNs. This holds even for k = 1.

However, it follows from Corollary 1 and the observation above that:

Corollary 3. The k-bounded switch reachability problem between recognizable
sets of (indexed) configurations is decidable for stable MAPNs.

7.1 A Semi-algorithm for k-Bounded Reachability for MAPNs

The result above can be used to construct a semi-decision procedure for
the k-bounded switch reachability problem for general MAPNs. Let M =
(N1, . . . , Nm, T ) be a MAPN, the idea consists in taking advantage of the fact
that k-bounded switch reachability is decidable for stable networks. To do so,
we compute a stable network M ′ = (N ′

1, . . . , N
′
m′ , T ′) s.t. the processes in M ′

have the same behaviors as those in M but can perform more phase switches.
This ensures that given two configurations c and c′, c

k=⇒M ′ c′ infers that there

exists k′ such that c
k′

=⇒M c′. This gives the semi-decision procedure since we
can decide k-bounded reachability for M ′ thanks to its stability.

To compute the stable network M ′, the idea consists in decomposing every
acyclic PDN Nj (j ≤ m) into stable subnetworks N1

j , . . . , N
ij

j such that the
behavior of each subnetwork N l

j is also a behavior of Nj , and such that any
behavior of Nj can be obtained by performing a number of switches between the
different N l

j’s. The computed network satisfies the following:

Theorem 5. Let C and C′ be two recognizable sets of (indexed) configurations.
Then if C′ is k-bounded reachable from C by M, there exists k′ ≥ k such that C′

is k′-bounded reachable from C by M ′.
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7.2 A Semi-algorithm for the Reachability Problem for General
PDNs

We show in this section how we can use the previous results on bounded phase
switch reachability for MAPNs to derive a semi-algorithm to check reachability
for general PDNs (even cyclic ones). Let N = (P1, . . . , Pn, R) be a PDN, where
for i, 1 ≤ i ≤ n, Pi = (Pi, Γi, Δi) is a communicating pushdown system. The
construction underlying Theorem 2 produces a MAPN M such that reachability
in N can be reduced to reachability in M . Let C and C′ be two recognizable
sets of configurations of N . We can show that if C′ is reachable from C in N ,
then there exists an index k such that C′ is k-bounded reachable from C in
M . Thus, the semi-algorithm given in the previous section can be used to check
reachability in N , and thus in PDNs.

This technique generalizes the algorithms proposed in [17,3] for bounded
context-switch analysis. Indeed, our notion of phase is more general than the
notions of context used in these works in the sense that, if we encode our model
in those proposed in [17,3], one single phase according to our definition may cor-
respond to an unbounded number of context switches in their models. Thus, our
bounded phase analysis may allow an unbounded number of context switches
(in the sense of [17,3]).

8 Conclusion and Applications

In this paper, we consider networks of communicating pushdown systems where
the processes can read the control states of the other ones according to a given
communication structure. Reachability in such a model being undecidable, we
consider networkswith acyclic communication graphs. We define the class of stable
acyclic PDNs and show that it effectively preserves recognizability. Then, we con-
sider networks with dynamic changes of the communication structures (MAPNs).
This model being Turing powerful, we give conditions under which reachability
or bounded-phase reachability become decidable for MAPNs, and give a semi-
algorithm to decide bounded-phase reachability for general MAPNs and PDNs.
Our MAPN and PDN models can be used to describe concurrent programs. For
example, it can model two versions of a Windows NT Bluetooth driver. Our tech-
niques can be applied to find the bugs of these drivers reported in [18,8].
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Abstract. In this paper, we develop and evaluate two new algorithms for check-
ing emptiness of alternating automata. These algorithms build on previous works.
First, they rely on antichains to efficiently manipulate the state-spaces underlying
the analysis of alternating automata. Second, they are abstract algorithms with
built-in refinement operators based on techniques that exploit information com-
puted by abstract fixed points (and not counter-examples as it is usually the case).
The efficiency of our new algorithms is illustrated by experimental results.

1 Introduction

Alternating automata are a generalization of both nondeterministic and universal au-
tomata. In an alternating automaton, the transition relation is defined using positive
Boolean formulas: disjunctions allow for the expression of nondeterministic transitions
and conjunctions allow for the expression of universal transitions. The emptiness prob-
lem for alternating automata being PSPACE-COMPLETE [3], several computationally-
hard automata-theoretic and model-checking problems can be reduced in polynomial
time to the emptiness problem for those automata. It is thus very desirable to design ef-
ficient algorithms for checking emptiness of those automata. In this paper, we propose
new algorithms for efficiently checking the emptiness problem for alternating automata
over finite words. Those new algorithms combine two recent lines of research.

First, we use efficient techniques based on antichains, initially introduced in [6],
to symbolically manipulate the state-spaces underlying the analysis of alternating au-
tomata. Antichain-based techniques have been applied to several problems in automata
theory [6,8,9,1] and for solving games of imperfect information [12]. Those tech-
niques have also been applied with success to the satisfiability and model-checking
of LTL specifications [8]. Our team has implemented these algorithms in a tool called
ALASKA [7], which is available for download1.

Second, to apply this antichain technique to even larger instances of alternating au-
tomata, we instantiate a generic abstract-refinement method that we have proposed

� Work supported by the projects: (i) Quasimodo: “Quantitative System Properties in
Model-Driven-Design of Embedded”, http://www.quasimodo.aau.dk/, (ii)
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PAI program funded by the Federal Belgian Gouvernment, (iv) CFV (Federated Center in
Verification) funded by the FNRS http://www.ulb.ac.be/di/ssd/cfv/
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1 See http://www.antichains.be

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 155–164, 2009.
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in [5] and further developed in [10,11]. This abstract-refinement method does not use
counter-examples to refine inconclusive abstractions contrary to most of the methods
presented and implemented in the literature, see for example [4]. Instead, our algo-
rithm uses the entire information computed by the abstract analysis and combines it
with information obtained by one application of a concrete predicate transformer. The
algorithm presented in [5] is a generic solution that does not lead directly to efficient
implementations. In particular, as shown in [10], in order to obtain an efficient imple-
mentation of this algorithm, we need to define a family of abstract domains on which
abstract analysis can be effectively computed, as well as practical operators to refine the
elements of this family of abstract domains. In this paper, we use the set of partitions
of the locations of an alternating automaton to define the family of abstract domains.
Those abstract domains and their refinement operators can be used both in forward and
backward algorithms for checking emptiness of alternating automata.

To show the practical interest of these new algorithms, we have implemented them
into the ALASKA tool. We illustrate the efficiency of our new algorithms on examples of
alternating automata constructed from LTL specifications interpreted over finite words.
With the help of those examples, we show that our algorithms are able to concentrate
the analysis on important parts of the state-space and abstract away the less interesting
parts automatically. This allows us to treat much larger instances than with the concrete
forward or backward algorithms. We are confident that those new algorithms will allow
us to solve problems of practical relevance that are currently out of reach of automatic
methods.

2 Preliminaries

Alternating Automata. Let S be a set. We denote B+(S) the set of positive Boolean
formulas over S. Formally, B+(S) ::= s | φ1 ∨ φ2 | φ1 ∧ φ2, where s ∈ S. A valuation
for a set of proposition S is encoded as a subset of S. For each formula φ ∈ B+(S) we
write �φ� ⊆ 2S the set of valuations that satisfy φ; as usual, c ∈ �φ� is interpreted as
the valuation that assigns “true” only to the variables in c. Let Σ be a finite alphabet.
A finite word w is a finite sequence w = σ0σ1 . . . σn−1 of letters from Σ. We write
Σ∗ the set of finite words over Σ. We now recall the definition of alternating automata
over finite words (AFA for short).

Definition 1. An alternating finite automaton is a tuple 〈Loc, Σ, q0, δ, F 〉 where :
Loc = {l1, . . . , ln} is the set of locations; Σ = {σ1, . . . , σm} is the set of alphabet
symbols; q0 ∈ Loc is the initial location; δ : Loc × Σ → B+(Loc) is the transition
function; and F ⊆ Loc is the set of accepting locations.

As we will often manipulate sets of sets of locations in the sequel, we will refer to the
inner sets as cells. Let Cells(S) = 2S . A cell of an AFA with locations Loc is an element
of Cells(Loc). A set of cells X is ⊆-upward-closed (resp. ⊆-downward-closed) if for
all c ∈ X and for all c′ ∈ Cells(Loc) s.t. c ⊆ c′ (resp. c′ ⊆ c), we have c′ ∈ X .
Instead of defining the traditional notion of runs for AFA, we define their semantics as
a directed graph, the nodes of which are cells. Each edge in the cell graph is labeled by
an alphabet symbol.

Definition 2. Let A = 〈Loc, Σ, q0, δ, F 〉, �A� = 〈V, E〉 where: V = Cells(Loc) and
〈c, σ, c′〉 ∈ E iff c′ ∈ �

∧
l∈c δ(l, σ)�. A word w = σ1, . . . , σp is accepted by the automa-

ton A iff there exists a path c0, c1, . . . , cp of cells of V such that q0 ∈ c0, cp ∈ Cells(F )
(the set of accepting cells), and ∀i ∈ [1, . . . , p] : 〈ci−1, σi, ci〉 ∈ E.
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In the sequel, we will consider �A� simply as the set of edges E of the cell graph and
leave the set of vertices V implicit.

Predicate Transformers. We have defined the semantics of alternating automata as a
directed graph of cells. To explore this graph, we use predicate transformers.

Definition 3. We consider the following predicate transformers (A is an AFA):
postσ[A](X) = {c2 | ∃〈c1, σ, c2〉 ∈ �A� : c1 ∈ X} post [A](X) =

⋃
σ∈Σ postσ[A](X)

p̃ostσ[A](X) = {c2 | ∀〈c1, σ, c2〉 ∈ �A� : c1 ∈ X} p̃ost [A](X) =
⋂

σ∈Σ p̃ostσ[A](X)
preσ[A](X) = {c1 | ∃〈c1, σ, c2〉 ∈ �A� : c2 ∈ X} pre[A](X) =

⋃
σ∈Σ preσ[A](X)

p̃reσ[A](X) = {c1 | ∀〈c1, σ, c2〉 ∈ �A� : c2 ∈ X} p̃re[A](X) =
⋂

σ∈Σ p̃reσ[A](X)

Theorem 1. Let A = 〈Loc, Σ, q0, δ, F 〉 an AFA, X ≡ Cells(Loc) \ X , F = Cells(F ).
L(A) = ∅ iff (μ x · post [A](x) ∪ �q0�) ⊆ F iff (μ x · pre[A](x) ∪ F) ⊆ �q0�.

The lattice of partitions. The heart of our abstraction scheme is to partition the set
of locations Loc of an AFA, in order to build a smaller (hopefully more manage-
able) automaton. We recall the notion of partitions and some of their properties. Let
P be a partition of the set S = {l1, . . . , ln} into k classes (called blocks in the se-
quel) P = {b1, . . . , bk}. Partitions are classically ordered as follows: P1 � P2 iff
∀ b1 ∈ P1, ∃ b2 ∈ P2 : b1 ⊆ b2. It is well known, see [2], that the set of partitions
together with � form a complete lattice where {{l1}, . . . , {ln}} is the �-minimal el-
ement, {{l1, . . . , ln}} is the �-maximal element and the greatest lower bound of two
partitions P1 and P2, noted P1�P2, is the partition given by {b 	= ∅ | ∃ b1 ∈ P1, ∃ b2 ∈
P2 : b = b1 ∩ b2}. The least upper bound of two partitions P1 and P2, noted P1 � P2,
is the finest partition such that given b ∈ P1 ∪ P2, for all li 	= lj : li ∈ b and lj ∈ b we
have: ∃ b′ ∈ P1 � P2 : li ∈ b′ and lj ∈ b′. Also, we shall use P as a function such that
P(l) simply returns the block b to which l belongs in P .

3 Deciding AFA Emptiness Using Antichains

A fundamental problem regarding AFA is the emptiness problem; i.e., to decide if there
exists at least one word accepted by an AFA. Since nondeterministic automata (NFA,
for short) emptiness can be solved in linear-time, a natural solution is to first perform an
AFA → NFA translation and then check for emptiness. The translation is simple (albeit
computationally difficult), as it amounts to a subset construction, similar to that of NFA
determinization. Notice that the cell-graph semantics of AFA defined in the previous
section is essentially an NFA obtained by subset construction. In earlier works [6,8,9],
we have designed new efficient algorithms for AFA emptiness. Those algorithms are
based on efficient manipulations of ⊆-upward- or downward-closed sets of cells us-
ing antichains. In our context, an antichain is the unique set of ⊆-minimal (resp. ⊆-
maximal) cells of an upward-closed (resp. downward-closed) set of cells X , which we
denote by �X� (resp. �X�). The crucial properties of antichains are that (i) they are
canonical representations of ⊆-closed sets of cells, (ii) the predicate transformers on
AFA evaluate to ⊆-closed sets (they can thus be canonically represented with antichains)
and, (iii) evaluating a predicate transformer on any set of cells is equivalent to evaluat-
ing it on the ⊆-closure of that set (we can thus evaluate predicate transformers directly
on antichains, without losing any information). Due to lack of space, we do not recall
the framework of antichains in this work (it can be found in [6]). In the sequel, we will
assume that all the computations on sets of cells are performed using antichains.
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4 Abstraction of Alternating Automata

4.1 Abstract Domain

In this section, we present an original algorithmic framework for the analysis of AFA,
using antichains along with abstract interpretation. Given an AFA with locations Loc,
our algorithm will use a family of abstract domains defined by the set of partitions P
of Loc. The concrete domain is the complete lattice 2Cells(Loc), and each partition P
defines the abstract domain as 2Cells(P). We refer to elements of Cells(Loc) as concrete
cells and elements of Cells(P) as abstract cells. An abstract cell is thus a set of blocks
of the partition P and it represents all the concrete cells which can be constructed by
choosing at least one location from each block. To capture this representation role of
abstract cells, we define the following predicate.

Definition 4. The predicate Covers : Cells(P) × Cells(Loc) → {�, ⊥} is defined as
follows: Covers(cα, c) iff cα = {P(l) | l ∈ c}.

Example 1. Let Loc = {1, . . . , 5}, P = {a : {1}, b : {2, 3}, c : {4, 5}}. We have that
Covers({a, c}, {1, 3}) = ⊥, Covers({a, c}, {1, 4}) = �, and Covers({a, c}, {1}) = ⊥.

To make proper use of the theory of abstract interpretation, we define an abstraction
and a concretization functions, and show that they form a Galois connection between
the concrete domain and each of our abstract domains.

Definition 5. Let P be a partition of the set Loc, we define the functions
αP : 2Cells(Loc) → 2Cells(P) and γP : 2Cells(P) → 2Cells(Loc) as follows :
αP(X) = {cα | ∃ c ∈ X : Covers(cα, c)}, γP(X) = {c | ∃ cα ∈ X : Covers(cα, c)}.

Lemma 1. For any partition P of Loc : (2Cells(Loc), ⊆) −−→←−−
α

γ
(2Cells(P), ⊆).

In the sequel, we will omit the P subscript of α and γ when the partition is clear from
the context. Additionaly, we define μP = γP ◦ αP .

4.2 Efficient Abstract Analysis

In the sequel, we will need to evaluate fixpoint-expressions over the abstract domain. In
theory, we could simply surround every predicate transformer occuring in the fixpoint-
expressions by α◦·◦γ to obtain an abstract fixpoint. However, for obvious performance
concerns, we want to avoid as many concretization and abstraction steps as possible, and
ideally make all the computations directly over the abstract domain. Furthermore, we
would like that these abstract predicate transformers enjoy the same useful properties
w.r.t. antichains so that we can reuse the results of the previous section. To achieve this
goal, we proceed as follows. Given a partition P of the set of locations of an alternating
automaton, we use a syntactic transformation θ that builds an abstract AFA which over-
approximates the behavior of the original automaton. Later in this section we will show
that the pre and post predicate transformers can be directly evaluated on this abstract
automaton to obtain the same result (but much faster) than the α ◦ · ◦ γ computation
on the original automaton. To express this syntactic transformation, we define syntactic
variants of the abstraction and concretization functions.
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Definition 6. Let P be a partition of the set Loc. We define the following syntactic ab-
straction and concretization functions over positive Boolean formulas: α̂ : B+(Loc) →
B+(P) and γ̂ : B+(P) → B+(Loc), such that α̂(l) = P(l), α̂(φ1 ∨ φ2) =
α̂(φ1)∨α̂(φ2), and α̂(φ1∧φ2) = α̂(φ1)∧α̂(φ2). Likewise, γ̂(b) =

∨
l∈b l, γ̂(φ1∨φ2) =

γ̂(φ1) ∨ γ̂(φ2), and γ̂(φ1 ∧ φ2) = γ̂(φ1) ∧ γ̂(φ2).

Lemma 2. For every φ ∈ B+(Loc) we have that �α̂(φ)� = α(�φ�), and for every
φ ∈ B+(P) we have that �γ̂(φ)� = γ(�φ�).

Definition 7. Let A = 〈Loc, Σ, q0, δ, F 〉 and P a partition of Loc. θ(A, P) =
〈Locα, Σ, b0, δ

α, Fα〉 where: Locα = P , b0 = P(q0), δα(b, σ) = α̂(
∨

l∈b δ(l, σ)),
and Fα = {b ∈ P | b ∩ F 	= ∅}.

Theorem 2. Let A be an AFA, P a partition of its locations and Aα = θ(A, P), α ◦
post [A] ◦ γ = post [Aα] and α ◦ pre[A] ◦ γ = pre[Aα].

This theorem is crucial for the practical efficiency of our algorithms. In our framework,
the evaluation of an abstract fixpoint on a large automaton amounts to compute a con-
crete fixpoint on a smaller automaton that is easy to obtain (the θ transformation can be
done in linear time).

4.3 Precision of the Abstract Domain

We now present some results about precision and representability in our family of
abstract domains. In particular, for the automatic refinement of abstract domains, we
will need an effective way of computing the coarsest partition which can represent an
upward- or downward closed set of cells without loss of precision.

Definition 8. A set of cells X ⊆ Cells(Loc) is representable in the abstract domain
2Cells(P) iff μP(X) = X (recall that μP = γP ◦ αP ).

Lemma 3. Let X ⊆ Cells(Loc), let P1 and P2 be two partitions of Loc. If X is repre-
sentable with P1 and representable with P2, then X is representable with P1 � P2.

As the lattice of partition is a complete lattice, we have the following corollary.

Corollary 1. For all X ⊆ Cells(Loc), there exists a coarsest partition P = �{P ′ |
μP′(X) = X} such that μP(X) = X .

For upward- and downward-closed sets, we have an efficient way to compute this coars-
est partition which uses the notion of neighbour list. The neighbour list of a location l
w.r.t. an upward-closed set X , denoted NX(l), is defined as follows:

Definition 9. Let X ⊆ Cells(Loc) be an upward-closed set. The neighbour list of a
location l ∈ Loc w.r.t. X is the set NX(l) = {c \ {l} | c ∈ �X�, l ∈ c}.

The following lemma states that if two locations share the same neighbour lists w.r.t.
an upward-closed set X , then they can be put in the same partition block and preserve
the representability of X . Conversely, X cannot be exactly represented by any partition
which puts into the same block two locations that have different neighbour lists.

Lemma 4. For any partition P of Loc, for any upward-closed set X , the set X is
representable in 2Cells(P) iff ∀ l, l′ ∈ Loc · P(l) = P(l′) → NX(l) = NX(l′).
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Corollary 2. For all upward-closed sets X ⊆ Cells(Loc), the partition P induced by
the equivalence relation l ∼ l′ iff NX(l) = NX(l′) is the coarsest partition that is able
to represent X . Assuming that �X� has been computed, this partition is computable in
O(n log n) set comparisons, where n is the size of �X�.

The representability of downward-closed sets is immediate with the following lemma.
In practice, we compute the coarsest partition for the complement upward-closed set.

Lemma 5. Let X ⊆ Cells(Loc), P a partition of Loc. μP (X) = X iff μP (X) = X .

5 Abstraction Refinement Algorithm

This section presents two fixpoint-guided abstraction refinement algorithms for AFA.
These algorithms share several ideas with the generic algorithm presented in [5] but
they are formally different, so we provide arguments showing their correctness. We
concentrate here on explanations related to the abstract forward algorithm. The abstract
backward algorithm is the dual of this algorithm and its correctness can be established
in a very similar way. We first give an informal presentation of the ideas underlying the
algorithm and then we expose formal arguments for its soundness and completeness.

Description of the forward abstract algorithm. The most important information com-
puted in the algorithm is Zi, which is an over-approximation of the set of reachable
cells which cannot reach an accepting cell in i steps or less. In other words, all the
cells outside Zi are either unreachable, or can lead to an accepting cell in i steps or
less (or both). Our algorithm always uses the coarsest partition Pi that allows Zi to be
represented in the corresponding abstract domain. The algorithm begins by initializing
Z0 with the set of non-accepting cells and by initializing P0 accordingly (lines 1 and
2). The main loop proceeds as follows. First, we compute the abstract reachable cells
Ri which are within Zi, which is done by applying the θ transformation using Pi (line
4), and by computing a forward abstract fixpoint (line 7). If Ri does not contain a cell

Input: A = 〈Loc, Σ, q0, δ, F 〉
Output: True iff L(A) = ∅
P0 ← {F, Loc \ F}1

Z0 ← Cells(F )2
for i in 0, 1, 2, . . . do3

Aα
i ← θ(A,Pi)4

Aα
i = 〈Locα, Σ, b0, δ

α, F α〉5
Ii ← �b0�6
Ri ← μx ·(Ii∪post [Aα

i ](x))∩αPi(Zi)7
if post [Aα

i ](Ri) ⊆ αPi(Zi) then8

return True9

if �q0� �⊆ Zi then10
return False11

Zi+1 ← γPi(Ri) ∩ p̃re [A](γPi(Ri))12
Pi+1 ← �{P | μP(Zi+1) = Zi+1}13

Input: A = 〈Loc, Σ, q0, δ, F 〉
Output: True iff L(A) = ∅
P0 ← {{q0}, Loc \ {q0}}1

Z0 ← �q0�2
for i in 0, 1, 2, . . . do3

Aα
i ← θ(A,Pi)4

Aα
i = 〈Locα, Σ, b0, δ

α, F α〉5
Bi ← Cells(F α)6
Ri ← μx ·(Bi∪pre [Aα

i ](x))∩αPi(Zi)7
if pre [Aα

i ](Ri) ⊆ αPi(Zi) then8
return True9

if Cells(F ) �⊆ Zi then10
return False11

Zi+1 ← γPi(Ri) ∩ p̃ost [A](γPi(Ri))12
Pi+1 ← �{P | μP (Zi+1) = Zi+1}13

Fig. 1. The abstract-forward (left) and abstract-backward (right) FGAR algorithms
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which can leave Zi, we know (see Lemma 6) that the automaton is empty (line 8). If on
the other hand, an initial cell (i.e., a cell containing q0) is no longer in Zi then we know
that it can lead to an accepting cell in i steps or less (as it is obviously reachable) and we
conclude that the automaton is non-empty (line 11). In the case where both tests failed,
we refine the information contained in Zi by removing all the cells which can leave Ri

in one step, as we know that these cells are either surely unreachable or can lead to an
accepting cell in i+1 steps or less. Finally, the current abstract domain is changed to be
able to represent the new Zi (line 13), using the neighbour list algorithm of Corollary 2.
It is important to note that this refinement operation is not the traditional refinement
used in counter-example guided abstraction refinement. Note also that our algorithm
does not necessarily choose a new abstract domain that is strictly more precise than the
previous one as in [5]. Instead, the algorithm uses the most abstract domain possible at
all times.

Completeness and correctness of the forward abstract algorithm. Correctness and com-
pleteness relies on the properties formalized in the following lemma. The proofs are
omitted due to lack of space.

Lemma 6. Let Reach = μx · �q0�∪post [A](x) be the reachable cells of A, let Badk =
∪j=k

j=0pre
j [A](Cells(F )) be the cells that can reach an accepting cell in k steps or less,

and let us note Safek = Cells(Loc) \ Badk, i.e. the set of cells that cannot reach an
accepting cell in k steps or less. The following four properties hold:

1. ∀i ≥ 0: μPi(Zi) = Zi, i.e. Zi is representable in the successive abstract domains;
2. ∀i ≥ 0: Zi+1 ⊆ Zi, i.e. the sets Zi are decreasing;
3. ∀i ≥ 0: Reach ∩ Safei ⊆ Zi, i.e. Zi over-approximates the reachable cells that

cannot reach an accepting cell in i steps or less;
4. if Zi = Zi+1 then post [Aα

i ](Ri) ⊆ αPi(Zi).

Theorem 3. The forward abstract algorithm with refinement is sound and complete to
decide the emptiness of AFA.

6 Experimental Evaluation

In this section, we evaluate the practical performance of our techniques with three series
of benchmarks. Each benchmark is composed of a pair of LTL formulas 〈ψ, φ〉 inter-
preted on finite words, and for which we want to know if φ is a logical consequence
of ψ, i.e. if ψ |= φ holds. To solve this problem, we translate the formula ψ ∧ ¬φ into
an AFA and check that the language of the AFA is empty. This translation is linear in
the size of the formula (except for the alphabet which is of exponential size) and cre-
ates a location in the AFA for each subformula. As we will see, our ψ formulas are
constructed as large conjunctions of constraints and model the behavior of finite-state
systems, while the φ formulas model properties of those systems. We defined proper-
ties with varying degrees of locality. Intuitively, a property φ is local when only a small
number of subformulas of ψ are needed to establish ψ |= φ. This is not a formal notion
but it will be clear from the examples. We will show in this section that our abstract
algorithms are able to automatically identify subformulas which are not needed to es-
tablish the property. Due to lack of space, we only report results where ψ |= φ holds.
We now present each benchmark in turn.
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Benchmark 1. The first benchmark takes 2 parameters n > 0 and 0 < k ≤ n :
Bench1(n, k) = 〈

∧n−1
i=0 G(pi → (F (¬pi) ∧ F (pi+1))), Fp0 → Fpk〉. Clearly we

have that ψ |= φ holds for all values of k and also that the subformulas of ψ for i > k
are not needed to establish ψ |= φ.

Benchmark 2. This second benchmark is used to demonstrate how our algorithms can
automatically detect less obvious versions of locality than for Bench1. It uses 2 parame-
ters k and n with 0 < k ≤ n and is built using the following recursive nesting definition:
Sub(n, 1) = Fpn; for odd values of k > 1 Sub(n, k) = F (pn ∧ X(Sub(n, k − 1)));
and for even values of k > 1 Sub(n, k) = F (¬pn ∧ X(Sub(n, k − 1))). Our second
benchmark is : Bench2(n, k) = 〈

∧n−1
i=0 G(pi → Sub(i + 1, k)), Fp0 → Fpn〉. It is

relatively easy to see that ψ |= φ holds for any value of k, and that for odd values of k,
the nested subformulas beyond the first level are not needed to establish the property.

Benchmark 3. This third and final benchmark aims to demonstrate the usefulness
of our abstraction algorithms in a more realistic setting. We specified the behav-
ior of a lift with n floors with a parametric LTL formula.For n floors, Prop =
{f1, . . . , fn, b1, . . . , bn, open}. The fi propositions represent the current floor. Only
one of the fi’s can be true at any time, which is initially f1. The bi propositions repre-
sent the state (lit or unlit) of the call-buttons of each floor and there is only one button
per floor. The additional open proposition is true when the doors of the lift are open.
The constraints on the dynamics of this system are as follows : (i) initially the lift is at
the first floor and the doors are open, (ii) the lift must close its doors when changing
floors, (iii) the lift must go through floors in the correct order, (iv) when a button is
lit, the lift eventually reaches the corresponding floor and opens its doors, and finally
(v) when the lift reaches a floor, the corresponding button becomes unlit. Let n be the
number of floors. We apply our algorithms to check two properties which depend on a
parameter k with 1 < k ≤ n, namely Spec1(k) = G((f1 ∧ bk) → (¬fkUfk−1)), and
Spec2(k) = G((f1 ∧ bk ∧ bk−1) → (bkU¬bk−1)).

Experimental results. All the results of our experiments are found in Fig. 2, and were
performed on a quad-core 3,2 Ghz Intel CPU with 12 Gb of memory. Due to lack of
space, we only report results for the concrete forward and abstract backward algorithms
which were the fastest (by a large factor) in all our experiments. The columns of the
table are as follows. ATC is the size of the largest antichain encountered, iters is the
number of iterations of the fixpoint in the concrete case and the maximal number of
iterations of all the abstract fixpoints in the abstract case, ATC α and ATC γ are respec-
tively the sizes of the largest abstract and concrete antichains encountered, steps is the
number of execution of the refinement steps and |P| is the maximum number of blocks
in the partitions.

Benchmark 1. The partition sizes of the first benchmark illustrate how our algorithm
exploits the locality of the property to abstract away the irrelevant parts of the system.
For local properties, i.e. for small values of k, |P| is small compared to |Loc| mean-
ing that the algorithm automatically ignores many subformulas which are irrelevant to
the property. For larger values of k, the abstraction overhead becomes larger, but that
overhead becomes less important as the system grows.

Benchmark 2. On the second benchmark, our abstract algorithm largely outperforms the
concrete algorithm. Notice how for k ≥ 3 the partition sizes do not continue to grow (it
also holds for values of k beyond 5). This means that contrary to the concrete algorithm,
FGAR does not get trapped in the intricate nesting of the F modalities (which are not
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concrete forward abstract backward
n k |Loc| |Prop| time ATC iters time ATCα ATCγ iters steps |P|

B
en

ch
1

11 5 50 12 0,10 6 3 0,23 55 2 5 3 27
15 5 66 16 1,60 6 3 0,56 55 2 5 3 31
19 5 82 20 76,62 6 3 8,64 55 2 5 3 35
11 7 50 12 0,13 8 3 0,87 201 2 5 3 31
15 7 66 16 2,04 8 3 1,21 201 2 5 3 35
19 7 82 20 95,79 8 3 9,99 201 2 5 3 39
11 9 50 12 0,16 10 3 12,60 779 2 5 3 35
15 9 66 16 2,69 10 3 13,42 779 2 5 3 39
19 9 82 20 125,85 10 3 46,47 779 2 5 3 43

B
en

ch
2

7 1 19 8 0,06 8 2 0,10 11 2 4 3 14
10 1 25 11 0,06 10 2 0,10 14 2 4 3 17
13 1 31 14 0,08 14 2 0,12 17 2 4 3 20
7 3 33 8 0,78 201 14 0,13 11 2 4 3 26
10 3 45 11 802,17 4339 20 0,30 14 2 4 3 35
13 3 57 14 > 1000 - - 1,26 17 2 4 3 44
7 5 47 8 88,15 2122 26 0,14 11 2 4 3 26
10 5 65 11 > 1000 - - 0,37 14 2 4 3 35
13 5 83 14 > 1000 - - 1,47 17 2 4 3 44

L
if

t:
S
p
ec

1

8 3 84 17 0,30 10 17 0,51 23 40 7 4 21
12 3 116 25 17,45 10 25 1,63 23 40 7 4 21
16 3 148 33 498,65 10 33 26,65 23 40 7 4 21
8 4 84 17 0,26 10 17 1,29 37 72 10 6 24
12 4 116 25 17,81 10 25 5,02 37 72 10 6 24
16 4 148 33 555,44 10 33 78,75 37 72 10 6 24
8 5 84 17 0,32 10 17 3,70 42 141 12 8 27
12 5 116 25 20,24 10 25 47,45 42 141 12 8 27
16 5 148 33 543,27 10 33 > 1000 - - - - -

L
if

t:
S
p
ec

2

8 3 84 17 0,46 10 17 1,18 58 72 8 4 22
12 3 116 25 17,98 10 25 3,64 58 72 8 4 22
16 3 148 33 557,75 10 33 48,90 58 72 8 4 22
8 4 84 17 0,29 10 17 3,04 124 126 11 6 25
12 4 116 25 19,29 10 25 10,63 124 126 11 6 25
16 4 148 33 576,56 10 33 128,40 124 126 11 6 25
8 5 84 17 0,31 10 17 15,88 131 266 14 8 28
12 5 116 25 19,47 10 25 283,90 131 266 14 8 28
16 5 148 33 568,83 10 33 > 1000 - - - - -

Fig. 2. Experimental results. Times are in seconds.

necessary to prove the property) and abstracts it completely with a constant number of
partition blocks. The speed improvement is considerable.

Benchmark 3. On this final benchmark, the abstract algorithm outperforms the concrete
algorithm when the locality of the property spans less than 5 floors. Beyond that value,
the abstract algorithm starts to take longer than the concrete version. From the ATC col-
umn, the antichain sizes remain constant in the concrete algorithm, when the number of
floors increases. This indicates that the difficulty of this benchmark comes mainly from
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the exponential size of the alphabet rather than the state-space itself. As our algorithms
only abstracts the locations and not the alphabet, these results are not surprising.

7 Discussion

We have proposed in this paper two new abstract algorithms with refinement for decid-
ing language emptiness for AFA. Our algorithm is based on an abstraction-refinement
scheme inspired from [5], which is different from the usual refinement techniques based
on counter-example elimination [4]. Our algorithm also builds on the successful tech-
nique of antichains, that we have introduced in [6], to symbolically manipulate closed
sets of cells (sets of sets of locations). We have demonstrated with a set of benchmarks
that our algorithm is able to find coarse abstractions for complex automata constructed
from large LTL formulas. For a large number of instances of those benchmarks, the
abstract algorithms outperform by several order of magnitude the concrete algorithms.
We believe that this clearly shows the interest of our new algorithms and their potential
future developments.

Acknowledgments. The authors would like to thank Gilles Geeraerts for some fruitful
discussions on the abstraction scheme.
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H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 333–348. Springer, Heidelberg (2007)
6. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A new algorithm for

checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

7. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Alaska. In: Cha, S(S.), Choi, J.-Y., Kim,
M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 240–245. Springer,
Heidelberg (2008)

8. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: Alternative algorithms for
LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008)

9. Doyen, L., Raskin, J.-F.: Improved algorithms for the automata-based approach to model-
checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 451–465.
Springer, Heidelberg (2007)

10. Ganty, P.: The Fixpoint Checking Problem: An Abstraction Refinement Perspective. PhD
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Abstract. This paper proposes a framework for detecting termination of pro-
grams handling infinite and complex data domains, such as pointer structures. In
this framework, the user has to specify a finite number of well-founded relations
on the data domain manipulated by these programs. Our tool then builds an ini-
tial abstraction of the program, which is checked for existence of potential infinite
runs, by testing emptiness of its intersection with a predefined Büchi automaton.
If the intersection is non-empty, a lasso-shaped counterexample is found. This
counterexample is checked for spuriousness by a domain-specific procedure, and
in case it is found to be spurious, the abstraction is refined, again by intersection
with the complement of the Büchi automaton representing the lasso. We have in-
stantiated the framework for programs handling tree-like data structures, which
allowed us to prove termination of programs such as the depth-first tree traversal,
the Deutsch-Schorr-Waite tree traversal, or the linking leaves algorithm.

1 Introduction

Proving termination is an important challenge for the existing software verification
tools, requiring specific analysis techniques [18,6,21]. The basic principle underlying
these methods is proving that, in every infinite computation of the program, a certain
measure, pertaining to a well-founded domain, decreases infinitely often.

We propose here a new termination analysis, based on the following principles:

1. We consider programs working on infinite data domains 〈D,�1, . . . ,�n〉 equipped
with an arbitrary number of well-founded partial orders.

2. If ⇒ ⊆ D × D is any transformation induced by a program statement, and �i, 1 ≤
i ≤ n is any partial order on D, i.e. we assume that the problem ⇒ ∩ �i

?= /0 is
decidable algorithmically.

3. An abstraction of the program is built automatically and checked for the existence
of potential non-terminating execution paths. If such a path exists, then an infinite
path of the form σλω (called lasso) is exhibited.

4. Due to the over-approximation involved in the construction of the abstraction, the
lasso found may be spurious i.e. it may not correspond to a real execution of the
program. In this case we use domain-specific procedures to detect spuriousness,
and, if the lasso is found to be spurious, the abstraction is refined by eliminating it.

The framework described here needs to be instantiated for particular classes of pro-
grams, by providing the following ingredients:

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 165–177, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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– well-founded relations �1, . . . ,�n on the working domain D. (In principle, their
choice is naturally determined by the working domain.)

– a decision procedure for the problems ⇒ ∩ �i
?= /0, 1 ≤ i ≤ n, where ⇒ is any

transition relation induced by a program statement.
– a decision procedure for the spuriousness problem: given a lasso σλω, where σ and

λ are finite sequences of program statements, does there exists an infinite execution
of the program along the path σλω?

The main reason for which we currently ask the user to provide the relations is that our
technique is geared towards data domains which cannot be encoded by a finite number
of descriptors, such as tree-structured domains, and more complex pointer structures.
Well-founded relations for classical such domains (e.g. terms over a ranked alphabet)
are provided in the literature. Moreover, we are not aware of efficient techniques for
automatic discovery of well-founded relations on such domains, which is an interesting
topic for future research.

Providing suitable representations for the well-founded relations, as well as for the
program transitions enables the framework to compute an initial abstraction of the pro-
gram. The initial abstraction is an automaton which has the same control states as the
program, and each edge in the control flow graph of the program is covered by one or
more transitions labeled with relational symbols.

The abstraction is next checked for the existence of potentially non-terminating ex-
ecutions. This check uses the information provided by the well-founded relations, and
excludes all lassos for which there exists a strictly decreasing well-founded relation
�i, 1 ≤ i ≤ n that holds between the entry and exit of the loop body. This step amounts
to checking non-emptiness of the intersection between the abstraction and a predefined
Büchi automaton. If the intersection is empty, the original program terminates, other-
wise a lasso-shaped counterexample of the form σλω is exhibited.

Deciding spuriousness of lassos is also a domain-dependent problem. For integer do-
mains, techniques exist in cases where the transition relation of the loop is a difference
bound matrix (DBM) [5] or an affine transformation with the finite monoid property
[13]. For tree-structured data domains, we have shown decidability of spuriousness, in
cases where the loop does not modify the structure of trees [14].

If a lasso is found to be spurious, the program model is refined by excluding the
lasso from the abstraction automaton. In our framework based on Büchi Automata, this
amounts to intersecting the abstraction automaton with the complement of the Büchi
Automaton representing the lasso. Since a lasso is trivially a Weak Deterministic Büchi
Automaton (WDBA), complementation increases the size of the automaton by at most
one state, and is done in constant time. This refinement scheme can be extended to
exclude entire families of spurious lassos, also described by WDBA.

We have instantiated the framework to the verification of programs handling trees
and more complex data structures with a tree-like backbone, e.g. doubly-linked lists,
trees with parent pointers, or trees with linked leaves. We provide two families of well-
founded relations on trees, (i) a lexicographical ordering on positions of program vari-
ables and (ii) a subset relation on nodes labeled with a given data element (from a
finite domain). Program statements as well as the well-founded relations are encoded
using tree automata [8], which provide an effective method for checking emptiness of



Automata-Based Termination Proofs 167

intersections between relations. A prototype tool has been implemented on top of the
ARTMC [4] invariant generator for programs with dynamic linked data structures. Ex-
perimental results include push-button termination proofs for the Deutsch-Schorr-Waite
tree traversal, deleting nodes in red-black trees, as well as for the Linking Leaves pro-
cedures. Most of these programs could not be verified by existing approaches.

Related Work. Efficient techniques have been developed in the past for proving ter-
mination of programs with integer variables [18,6]. This remains probably the most
extensively explored class of programs, concerning termination.

Recently, techniques for programs with singly-linked lists have been developed in
[2,12,16]. These techniques rely on tracking numeric information related to the sizes
of the list segments. An extension of this method to tackle programs handling trees
has been given in our previous work [14]. Unlike the works on singly-linked lists from
[2,12], where refinement (of the counter model) is typically not needed, in [14] we
considered a basic form of counterexample-driven refinement.

Abstraction refinement for termination has been first considered in [9], where the
refinement consists in discovering and adding new well-founded relations to the set
of relations used by the analysis. Since techniques for the discovery of well-founded
relations (based on e.g., spurious program loops) are available only for integer domains,
it is not clear for the time being whether the algorithm proposed in [9] can be also
applied to programs handling pointer structures.

Several ideas in this paper can be also found elsewhere. Namely, (1) using Büchi
automata to encode the non-termination condition of the program was introduced by
[21], and (2) proving termination for programs handling tree-like data structures was
also considered in [14]. On one hand, the size-change termination approach from [21]
does not typically come with a refinement procedure. On the other hand, the method
presented here is more general and its refinement schema is more efficient then the one
presented in [14]. In particular, the Red-Black Delete example (presented in Section 4)
could not be shown to terminate using the refinement method from [14].

Automated checking of termination of programs manipulating trees has been also
considered in [17], where the Deutsch-Schorr-Waite tree traversal algorithm was proved
to terminate using a manually created progress monitor. In our approach, this example
could be verified using the common well-founded relations on trees.

2 The Termination Analysis Framework

We first explain the approach informally, with the aid of an example. Let us consider the
program in Fig. 1 (a), working on a binary tree data structure, in which each node has
two pointers to its left- and right-sons and one pointer up to its parent. We assume
that leaves have null left and right pointers, and the root has a null up pointer.

The first loop (lines 2,3) terminates because the variable x is bound to reach a node
with x.left = null (or x.left.right = null), since the tree is finite and no new
nodes are created. The second loop (lines 4,5) terminates because no matter where x
points to in the beginning, by going up, it will reach the root and then become null.

Let us suppose that the only well-founded ordering considered is the following: for
any two trees t1 and t2, we have t1 ≥x t2 if and only if the position of x in t2 is a prefix
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1 x := root;
2 while (x.left != null) &&

(x.left.right != null)
3 x := x.left.right;
4 while (x != null)
5 x := x.up;

(a)

4

5

21>

3

〈2,=x〉

〈1,��x〉

〈2,=x〉

〈1,>x〉

〈3,��x〉
〈5,>x〉

〈4,=x〉

(b)

4

5

21>

3

〈2,=x〉

〈1,��x〉

〈2,=x〉

〈1,>x〉

〈3,��x〉
〈5,>x〉

〈4,=x〉

(c)

Fig. 1.

of the position of x in t1. Then we build the abstraction of the program given in Fig. 1
(b), where =x holds if both ≤x and ≥x hold, and ��x stands for 	≥x.

The states in the abstract model correspond to line numbers in the original program,
and every state is considered to be accepting, initially. Checking non-termination of
the abstract model amounts to checking the existence of an infinite run that does not
have a suffix of the form (=∗

x>x)ω, for otherwise, the well-foundedness of ≥x would
prevent this execution from occurring in reality. Checking non-termination is done by
checking emptiness of the intersection between the abstraction and the complement
of the Büchi automaton recognizing the language (〈 ,=x〉∗〈 ,>x〉)ω (cf. Fig. 2). For
technical reasons that will become clear in the sequel we label the edges of the au-
tomaton with the identifier of the source states, which correspond to program lines. In
our case, the intersection is not empty, counterexamples being 〈1,>x〉(〈2,=x〉〈3,��x〉)ω

and 〈1,��x〉(〈2,=x〉〈3,��x〉)ω, which both correspond to the infinite execution of the
first loop, i.e. lines 1(23)ω.

This execution is found to be spurious by a specialized procedure that checks whether
a given program lasso can be fired infinitely often. For this purpose, the method given
in [14] could be used here. The refinement of the abstraction consists in eliminat-
ing the infinite path 1(23)ω from the model. This is done by intersecting the model
with the automaton that recognizes the complement of the language {〈1,≥x〉,〈1,��x〉}
(〈2,=x〉〈3,��x〉)ω, which corresponds to the program path 1(23)ω. The result of this
intersection is shown Fig. 1 (c). Notice that, in this case, the refinement does not in-
crease the size of the abstraction. Since now, only 4 and 5 are accepting states, another
intersection with the automaton in Fig. 2 will establish that the refined abstraction does
not have further non-terminating executions, proving thus termination of the original
program.

2.1 Büchi Automata

This section introduces the necessary notions related to the theory of Büchi automata.
Let Σ = {a,b, . . .} be a finite alphabet. We denote by Σ∗ the set of finite words over Σ,
and by Σω we denote the set of all infinite words over Σ. For an infinite word w ∈ Σω,
let inf(w) be the set of symbols occurring infinitely often on w. If u,v ∈ Σ∗ are finite
words, uvω denotes the infinite word uvvv . . ..

A Büchi automaton (BA) over Σ is a tuple A = 〈S, I,→,F〉, where: S is a finite set of
states, I ⊆ S is a set of initial states, → ⊆ S ×Σ×S is a transition relation – we denote
(s,a,s′) ∈ −→ by s

a−→ s′, and F ⊆ S is a set of final states.
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A run of A over an infinite word a0a1a2 . . . ∈ Σω is an infinite sequence of states
s0s1s2 . . . such that s0 ∈ I and for all i ≥ 0 we have si

ai−→ si+1. A run π of A is said to

be accepting iff inf(π) ∩ F 	= /0. An infinite word w is accepted by a Büchi automaton
A iff A has an accepting run on w. The language of A, denoted by L(A), is the set of all
words accepted by A.

It is well-known that Büchi-recognizable languages are closed under union, inter-
section and complement. For two Büchi automata A and B, let A ⊗ B be the automaton
recognizing the language L(A)∩ L(B). If ||A|| denotes the number of states (size) of A,
it can be shown that ||A ⊗ B|| ≤ 3 · ||A|| · ||B||.

A Büchi automaton A = 〈S, I,→,F〉 is said to be complete if for every s ∈ S and a ∈ Σ
there exists s′ ∈ S such that s

a−→ s′. A is said to be deterministic (DBA) if I is a singleton,

and for each s ∈ S and a ∈ Σ, there exists at most one state s′ ∈ S such that s
a−→ s′. A

is moreover said to be weak if, for each strongly connected component C ⊆ S, either
C ⊆ F or C ∩F = /0. It is well-known that complete weak deterministic Büchi automata
can be complemented by simply reverting accepting and non-accepting states. Then,
for any Weak Deterministic Büchi automaton (WDBA), we have that ||A|| ≤ ||A|| + 1,
where A is the automaton accepting the language Σω \ L(A)—i.e. the complement of A.

2.2 Programs and Abstractions

In this section we introduce a model for programs handling data from a possibly infinite
domain D, and define program abstractions as Büchi automata. Let I be a finite set of
instructions over a data domain 〈D,�1, . . . ,�n〉, where �i⊆ D × D is a partial order,
for 1 ≤ i ≤ n. An instruction i ∈ I is a pair 〈g,a〉 where g ⊆ D is called the guard and
a : D → D is called the action. An unspecified guard is assumed to be the entire domain.

A program over I is a graph P = 〈I,L, l0,⇒〉, where L is the set of control locations,

l0 ∈ L is the initial location, and ⇒ ⊆ L×I×L is the edge relation denoted as l
g:a

=⇒ l′.
We assume furthermore, that there is at most one instruction in between any two control
locations, i.e. if l

g1:a1=⇒ l′ and l
g2:a2=⇒ l′ then g1 = g2 and a1 = a2.

A program configuration is a pair 〈l,d〉 ∈ L × D, where l is a control location and d
is a data value. An execution is a (possibly infinite) sequence of program configurations
〈l0,d0〉,〈l1,d1〉, 〈l2,d2〉, . . . starting with the initial program location l0 and some con-

figuration d0 ∈ D such that, for all i ≥ 0 there exists an edge li
g:a

=⇒ li+1 in the program,
such that di ∈ g and di+1 = a(di).

Let D0 ⊆ D be a set of initial data values. Then a configuration 〈l,d〉 is said to be
reachable if there exists d0 ∈ D0, and the program has an execution from 〈l0,d0〉 to
〈l,d〉. An invariant of the program (with respect to the set D0) is a function ι : L → 2D

such that, for each l ∈ L, if 〈l,d〉 is reachable, then d ∈ ι(l).
Given a program P = 〈I,L, l0,⇒〉 working over a domain 〈D,�1, . . . ,�n〉 we define

the alphabet Σ(P,D) = L×{>,��,=}n. For a tuple ρ ∈ {>,��,=}n, we define [ρ] ∈ D×D
as : d [〈r1, . . . ,rn〉] d′ if and only if, for all 1 ≤ i ≤ n: (i) d �i d′ iff ri is >, (ii) d 	"i d′

iff ri is ��, and (iii) d ≈i d′ iff ri is =.

Definition 1. Let P = 〈I,L, l0,⇒〉 be a program, and 〈D,�1, . . . ,�n〉 be a domain.
A Büchi automaton A = 〈S, I,→,F〉 over Σ(P,D) is said to be an abstraction of P if and
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only if, for every infinite execution of P : 〈l0,d0〉〈l1,d1〉〈l2,d2〉 . . ., there exists an infinite
word 〈l0,ρ0〉〈l1,ρ1〉〈l2,ρ2〉 . . . ∈ L(A) such that di [ρi] di+1,for all i ≥ 0.

Consequently, if P has a non-terminating execution, then its abstraction A will be non-
empty. However, for reasons related to the complexity of the universal termination prob-
lem, one cannot in general build an abstraction of a program that will be empty if and
only if the program terminates.

2.3 Building Abstractions Automatically

A first question is how to build abstractions of programs effectively. We propose a
method that performs under the assumption that program instructions, as well as the
relations of the working domain can be symbolically represented by structures that are
closed under projection, intersection and complement, and which, moreover, have a
decidable emptiness problem.

Given a program P = 〈I,L, l0,⇒〉 working over the domain 〈D,�1, . . . ,�n〉, and an
invariant ι : L → 2D, with respect to a set of initial data values D0, the initial abstraction
is the Büchi automaton Aι

P = 〈L,{l0},−→,L〉, where, for all l, l′ ∈ L and ρ ∈ {>,��,=}n,

we have :

l
〈l,ρ〉−−→ l′ ⇐⇒ l

g:a
=⇒ l′ and pr1(R〈g,a〉 ∩ [ρ]) ∩ ι(l) 	= /0 (1)

where R〈g,a〉 = {(d,d′) ∈ D | d ∈ g, d′ = a(d)} and, for a relation R ⊆ D×D, we denote
by pr1(R) = {x | ∃y ∈ D . 〈x,y〉 ∈ R}.

Intuitively, a transition between l and l′ is labeled with a tuple of relational symbols
ρ if and only if there exists a program instruction between l and l′ and a pair of reach-
able configurations 〈l,d〉,〈l′,d′〉 ∈ L × D such that d[ρ]d′ and the program can move
from 〈l,d〉 to 〈l′,d′〉 by executing the instruction 〈g,a〉. The intuition is that every tran-
sition relation induced by the program is “covered” by all partial orderings that have a
non-empty intersection with it. For reasons related to abstraction refinement, that will
be made clear in the following, the transition in the Büchi automaton Aι

P is also labeled
with the source program location l. As an example, Fig. 1 (b) gives the initial abstraction
for the program in Fig. 1 (a).

The program invariant ι(l) from (1) is needed in order to limit the coverage only
to the relations involving configurations reachable at line l. In principle, we can com-
pute a very coarse initial abstraction by considering that ι(l) = D at each program line.
However, using stronger invariants enables us to compute more precise program ab-
stractions. The following lemma proves that the initial abstraction respects Def. 1. For
space reasons, all proofs have been deferred to technical report [22].

Lemma 1. Given a program P working over the domain 〈D,�1, . . . ,�n〉, D0 ⊆ D an
initial set, and ι : L → 2D an invariant with respect to the initial set D0, the Büchi
automaton Aι

P is an abstraction of P.

2.4 Checking Termination on Program Abstractions

In light of Def. 1, if a Büchi automaton A is an abstraction of a program P, then each
accepting run of A reveals a potentially infinite execution of P. However, the set of
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accepting runs of a Büchi automaton is, in general not enumerable, therefore an effective
termination analysis cannot attempt to check whether each run of A corresponds to a
real computation of P. We propose an effective technique, based on the following:

Hypothesis 1. The given domain is 〈D,�1, . . . ,�n〉 for a fixed n > 0, and the partial
orders �i are well-founded, for all i = 1, . . . ,n.

Consequently, any infinite word 〈l0,ρ0〉〈l1,ρ1〉〈l2,ρ2〉 . . . ∈ L(A) from which we can
extract a sequence (ρ0)i(ρ1)i(ρ2)i . . . ∈ (=∗>)ω, for some 1 ≤ i ≤ n, cannot correspond
to a real execution of the program, in the sense of Definition 1. Therefore, we must
consider only the words for which, for all 1 ≤ i ≤ n, either:

1. there exists K ∈ N such that, (ρk)i is =, for all k ≥ K, or
2. for infinitely many k ∈ N, (ρk)i is ��.

The condition above can be encoded by a Büchi automaton defined as follows. Consider
that Σ(P,D) = L × {>,��,=}n is fixed. Let Si = {〈l,(r1, . . . ,rn)〉 ∈ Σ(P,D) | ri is ��} and
Ei = {〈l,(r1, . . . ,rn)〉 ∈ Σ(P,D) | ri is =}, for 1 ≤ i ≤ n. With this notation, let Bi be the
Büchi automaton recognizing the ω-regular language Σ∗(SiΣ∗)ω ∪ Σ∗Eω

i . This automa-
ton is depicted in Fig. 2. Since the above condition holds for all 1 ≤ i ≤ n, we need to
compute B =

⊗n
i=1 Bi.

Si

Ei

Ei
Σ

Σ
s0

i

s2
is1

i

Fig. 2.

If A is an abstraction of P and L(A ⊗ B) = L(A) ∩
L(B) = /0, we can infer that P has no infinite runs.
Otherwise, it is possible to exhibit a lasso-shaped non-
termination witness of the form σλω ∈ L(A ⊗ B), where
σ,λ ∈ Σ∗ are finite words labeling finite paths in A ⊗ B.
The following lemma proves the existence of lasso-shaped
counterexamples.

Lemma 2. Given a well-founded domain 〈D,�1, . . . ,�n〉,
A and B =

⊗n
i=1 Bi Büchi automata over the alphabet

Σ(P,D), if L(A ⊗ B) 	= /0 then σλω ∈ L(A ⊗ B) for some
σ,λ ∈ Σ∗

(P,D), where |σ|, |λ| ≤ ||A|| · (n + 1) · 2n.

Despite the exponential bound on the size of the counterexamples, in practice it is pos-
sible to use efficient algorithms for finding lassos in Büchi automata on-the-fly, such as
for instance the Nested Depth First Search algorithm [11].

2.5 Counterexample-Based Abstraction Refinement

If a Büchi automaton A is an abstraction of a program P = 〈I,L, l0,⇒〉 (cf. Def. 1), D0 ∈
D is a set of initial values, and σλω ∈ L(A) is a lasso, where σ = 〈l0,ρ0〉 . . . 〈l|σ|−1,ρ|σ|−1〉
and λ = 〈l|σ|,ρ|σ|〉 . . . 〈l|σ|+|λ|−1,ρ|σ|+|λ|−1〉, the spuriousness problem asks whether P
has an execution along the infinite path (l0 . . . l|σ|−1)(l|σ| . . . l|σ|+|λ|−1)ω starting with
some value d0 ∈ D0. Notice that each pair of control locations corresponds to ex-
actly one program instruction, therefore the sequence of instructions corresponding to
the infinite unfolding of the lasso is uniquely identified by the sequences of locations
l0, . . . , l|σ|−1 and l|σ|, . . . , l|σ|+|λ|−1.
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Algorithms for solving the spuriousness problem exist, depending on the structure
of the domain D and on the semantics of the program instructions. Details regarding
spuriousness problems for integer and tree-manipulating lassos can be found in [14].

Given a lasso σλω ∈ L(A), the refinement builds another abstraction A′ of P such
that σλω 	∈ L(A′). Having established that the program path (l0 . . . l|σ|−1)(l|σ| . . .
l|σ|+|λ|−1)ω, corresponding to σλω, cannot be executed for any value from the initial
set, allows us to refine by excluding potentially more spurious witnesses, than just σλω.
Let C be the Büchi automaton recognizing the language LσLω

λ , where:

Lσ = {〈l0,ρ0〉 . . . 〈l|σ|−1,ρ|σ|−1〉 | ρi ∈ {>,��,=}n, 0 ≤ i < |σ|}
Lλ = {〈l|σ|,ρ0〉 . . . 〈l|σ|+|λ|−1,ρ|λ|−1〉 | ρi ∈ {>,��,=}n, 0 ≤ i < |λ|}

Then A′ = A ⊗C, where C is the complement of C, is the refinement of A that excludes
the lasso σλω, and all other lassos corresponding to the program path
(l0 . . . l|σ|−1)(l|σ| . . . l|σ|+|λ|−1)ω.

On the down side, complementation of Büchi automata is, in general, a costly op-
eration: the size of the complement is bounded by 2O(n logn), where n is the size of
the automaton, and this is also a lower bound [20]. However, the particular struc-
ture of the automata considered here comes to rescue. It can be seen that LσLω

λ can
be recognized by a WDBA, hence complementation is done in constant time, and
||A′|| ≤ 3 · (|σ|+ |λ|+ 1) · ||A||.

Lemma 3. Let A be a Büchi automaton that is an abstraction of a program P, and
σλω ∈ L(A) be a spurious counterexample. Then the Büchi automaton recognizing the
language L(A)\ Lσ · Lω

λ is an abstraction of P.

This refinement technique, based on the closure of ω-regular languages, can be gen-
eralized to exclude an entire family of counterexamples, described as an ω-regular
language, all at once. In the following we provide such a refinement heuristics. The
interested reader is pointed to [22] for another refinement heuristic.

Infeasible Elementary Loop Refinement. We suppose that there exists an upper
bound B > 0 on the number of times λ can be iterated, starting with any data value from
ι(l|σ|). The existence of such a bound can be discovered by e.g. a symbolic execution of
the loop. In case such a bound exists, the language Σ∗

(P,D) · LB
λ · Σω

(P,D) is easily shown to

be recognizable by a WDBA C, and the Büchi automaton A ⊗C is an abstraction of P,
which excludes the spurious trace σλω, as shown by the following Lemma:

Lemma 4. Given a program P = 〈I,L, l0,⇒〉, ι : L → 2D and invariant of P, A an
abstraction of P, and λ ∈ Σ∗

(P,D) a lasso starting and ending with � ∈ L. If there exists

B > 0 such that λB is infeasible, for any d ∈ ι(�), then the Büchi automaton recognizing
the language L(A)\ Σ∗

(P,D) · LB
λ · Σω

(P,D) is an abstraction of P.

This heuristic was used to prove termination of the Red-black delete algorithm, reported
in Section 4. Interestingly, this algorithm could not be proved to terminate using stan-
dard refinement (cf. Lemma 3).
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3 Proving Termination of Programs with Trees

In this section we instantiate our termination verification framework for programs ma-
nipulating tree-like data structures. We consider sequential, non-recursive C-like pro-
grams working over tree-shaped data structures with a finite set of pointer variables
PVar. Each node in a tree contains a data value field, ranging over a finite set Data and
three selector fields, denoted left, right, and up. For x,y ∈ PVar and d ∈ Data, we
consider the programs over the set of instructions IT composed of the following :

– guards : x == null, x == y, x.data== d, and boolean combinations of the above,
– actions : x = null, x = y, x = y.{left|right|up}, x.data= d, x.{left|right} =
new and x.{left|right} = null.

This set of instructions covers a large class of practical tree-manipulating procedures.
For instance, Fig. 3 shows a depth-first tree traversal procedure, commonly used in
real-life programs. In particular, here PVar = {x} and Data = {marked,unmarked}.

In order to use our framework for analyzing termination of programs with trees, we
need to provide (1) well-founded partial orderings on the tree domain, (2) symbolic
encodings for the partial orderings as well as for the program semantics and (3) a deci-
sion procedure for the spuriousness problem. The last point was tackled in our previous
work [14], for lassos without destructive updates (i.e. instructions x.left|right :=
new|null). Recently, we have developed a spuriousness detection method that works
also these destructive updates [15].

3.1 Trees and Tree Automata 0 x := root;
1 while (x!=null)
2 if (x.left!=null) and

(x.left.data!=mark)
3 x:=x.left;
4 else if (x.right!=null) and

(x.right.data!=mark)
5 x:=x.right;

else
6 x.data:=marked;
7 x:=x.up;

Fig. 3. Depth-first tree traversal

For a partial mapping f : A → B we denote f (x) =
⊥ the fact that f is undefined at some point x ∈
A. The domain of f is denoted dom( f ) = {x ∈
A | f (x) 	= ⊥}.

Given a finite set of colors C , we define the bi-
nary alphabet ΣC = C ∪{�}, where the arity func-
tion is #(c) = 2 and #(�) = 0. Π denotes the set of
tree positions {0,1}∗. Let ε ∈ Π denote the empty
sequence, and p.q denote the concatenation of se-
quences p,q ∈ Π. p ≤pre q denotes the fact that p is
a prefix of q and p ≤lex q is used to denote the fact
that p is less than q in the lexicographical order. We
denote by p %pre q the fact that either p ≤pre q, or p ≥pre q. A tree t over C is a partial
mapping t : Π → ΣC such that dom(t) is a finite prefix-closed subset of Π, and for each
p ∈ dom(t):

– if #(t(p)) = 0, then t(p.0) = t(p.1) = ⊥,
– otherwise, if #(t(p)) = 2, then p.0, p.1 ∈ dom(t).

When writing t(p) = ⊥, we mean that t is undefined at position p. We denote by T (C )
the set of all trees over the alphabet ΣC .
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A pair of trees (t1,t2) ∈ T (C1)× T (C2) can be encoded by a tree over the alphabet
(C1 ∪ {�,⊥})× (C2 ∪ {�,⊥}), where #(〈⊥,⊥〉) = 0, #(〈α,⊥〉) = #(〈⊥,α〉) = #(α) if
α 	= ⊥, and #(〈α1,α2〉) = max(#(α1),#(α2)). The projection functions are defined as
usual i.e., for all p ∈ dom(t) we have pr1(t)(p)= c1 if t(p)= 〈c1,c2〉 and pr2(t)(p)= c2

if t(p) = 〈c1,c2〉. Finally, let T (C1 × C2) = {t | pr1(t) ∈ T (C1) and pr2(t) ∈ T (C2)}.
A tree automaton [8] over an alphabet ΣC is a tuple A = (Q,F,Δ) where Q is a set of

states, F ⊆ Q is a set of final states, and Δ is a set of transition rules of the form:
(i) � → q or (ii) c(q1,q2) → q, c ∈ C .

A run of A over a tree t : Π → ΣC is a mapping π : dom(t) → Q such that for each
position p ∈ dom(t), where q = π(p), we have:

– if #(t(p)) = 0 (i.e., if t(p) = �), then � → q ∈ Δ,
– otherwise, if #(t(p)) = 2 and qi = π(p.i) for i ∈ {0,1}, then t(p)(q0,q1) → q ∈ Δ.

A run π is said to be accepting if and only if π(ε) ∈ F . The language of A, denoted as
L(A), is the set of all trees over which A has an accepting run. A set of trees T ⊆ T (C )
(a tree relation R ⊆ T (C1 × C2)) is said to be rational if there exists a tree automaton A
such that L(A) = T (respectively, L(A) = R).

For two relations R′ ⊆ T (C × C ′) and R′′ ⊆ T (C ′ × C ′′) we define the composition
R′ ◦R′′ = {〈pr1(t ′), pr2(t ′′)〉 | t ′ ∈ R′, t ′′ ∈ R′′, pr2(t ′) = pr1(t ′′)}. It is well-known that
rational tree languages are closed under union, intersection, complement and projection.

3.2 Abstracting Programs with Trees into Büchi Automata

A memory configuration is a binary tree with nodes labeled by elements of the set
C = Data × 2PVar ∪ {�} i.e., a node is either null (�) or it contains a data value and
a set of pointer variables pointing to it (〈d,V 〉 ∈ D × 2PVar). Each pointer variable can
point to at most one tree node (if it is null, it does not appear in the tree). For a tree
t ∈ T (C ) and a position p ∈ dom(t) such that t(p) = 〈d,V 〉, we denote δt(p) = d and
νt(p) = V . First we show that all program actions considered here can be encoded as
rational tree relations1.

Lemma 5. For any program instruction i = 〈g,a〉 ∈ IT , the tree relation Ri = {〈t, t ′〉 | t ∈
g, t ′ = a(t)} is rational.

In order to abstract programs with trees as Büchi automata (cf. Def. 1), we must in-
troduce the well-founded partial orders on the working domain. Let DT = 〈T (C ),
{�x,�r

x}x∈PVar,{�d,�r
d}d∈Data〉, where:

– t1 �x t2, for some x ∈ PVar iff there exists positions p1 ∈ dom(t1), p2 ∈ dom(t2)
such that x ∈ νt1(p1), x ∈ νt2(p2) and p1 ≤lex p2.

– t1 �r
x t2, for some x ∈ PVar iff (i) dom(t1) ⊆ dom(t2), and (ii) there exists positions

p1 ∈ dom(t1), p2 ∈ dom(t2) such that x ∈ νt1(p1), x ∈ νt2(p2) and p1 ≥lex p2.
– t1 �d t2, for some d ∈ Data iff for any position p ∈ dom(t1) such that δt1(p) = d

we have p ∈ dom(t2) and δt2(p) = d.
– t1 �r

d t2, for some d ∈ Data iff (i) dom(t1) ⊆ dom(t2), and (ii) for any position
p ∈ dom(t2) such that δt2(p) = d we have p ∈ dom(t1) and δt1(p) = d.

1 The semantics of the program instructions considered is given in technical report [22].
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Fig. 4. The Depth-first tree traversal procedure and its initial abstraction

It can easily be shown that all relations of the form �x, �r
x, �d and �r

d are well-
founded. Therefore the Hypothesis 1 is true for the working domain DT = 〈T (C ),{�x

,�r
x}x∈PVar,{�d ,�r

d}d∈Data〉, and hence the whole termination analysis framework pre-
sented in the section 2 can be employed.

Lemma 6. The relations �x, �r
x, x ∈ PVar and �d,�r

d, d ∈ Data are rational.

The Büchi automaton representing the initial abstraction of the depth-first tree traversal
procedure is depicted in Fig. 4. To simplify the figure, we use only the orders �r

x and
�r

mark. Thanks to these orders, there is no potential infinite run in the abstraction.

Extensions. In order to cover larger classes of programs, we extended our framework
in two ways. On one hand, we handle data structures more general than trees, using the
invariant generation method from [4]. Here we encode graphs as trees with extra edges.
The basic idea is that each structure has an underlying tree (called a backbone), which
stays unchanged during the whole computation. The set of extra edges is specified by
pointer descriptors, which are references to regular expressions to the set of directions
in the tree (left, right, left-up, right-up). We check termination using the existing rela-
tions �x, �r

x, x ∈ PVar and �d ,�r
d , d ∈ Data on the backbone, as well as two new ones

�i:s and �r
i:s. Intuitively, t1 �i:s t2 if the set of positions of t1 whose i-th descriptor is set

to s is a subset of the set of positions of t2 with the same property.
A second extension is allowing tree left- and right-rotations as program statements.

Since rotations cannot be described by rational tree relations, we cannot check whether
�x,�r

x,�d and �r
d hold, simply by intersection. However we know that rotations do not

change the number of nodes in the tree, therefore we can label them a-posteriori with
=d ,=r

d , d ∈ Data, and ��x, ��r
x, x ∈ PVar, since the relative positions of the variables

after the rotations are not known.

4 Implementation and Experimental Results

We have implemented a prototype tool that uses this framework to detect termination
of programs with trees and trees with extra edges. The tool was built as an extension of
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Table 1. Experimental results

Example Time Nre f s

DLL-insert 2s 0
DLL-delete 1s 0
DLL-reverse 2s 0
Depth-first search 17s 0
Linking leaves in trees 14s 0
Deutsch-Schorr-Waite 1m 24s 0
Linking Nodes 5m 47s 0
Red-black delete 4m 54s 2
Red-black insert 29s 0

the ARTMC [4] verifier for safety prop-
erties (null-pointer dereferences, memory
leaks, etc.). We applied our tool to several
programs that manipulate:

– doubly-linked lists: DLL-insert (DLL-
delete) which inserts (deletes) a node
in (from) a doubly-linked list, and
DLL-reverse which is the list reversal.

– trees: Depth-first search and Deutsch-
Schorr-Waite which are tree traversals,
Red-black delete (insert) which rebal-
ances a red-black tree after the deletion
(insertion) of a node.

– tree with extra edges: Linking leaves
(Linking nodes) which insert all leaves
(nodes) of a tree in a singly-linked list.

The results obtained on a Intel Core 2 PC with 2.4 GHz CPU and 2 GB RAM memory
are given in the table 1. The field time represents the time necessary to generate invari-
ants and build the initial abstraction. The field Nre f s represents number of refinements.
The only case in which refinement was needed is the Red-black delete example, which
was verified using the Infeasible Elementary Loop refinement heuristic (Section 2.5).

5 Conclusions

We proposed a new generic termination-analysis framework. In this framework, infinite
runs of a program are abstracted by Büchi automata. This abstraction is then inter-
sected with a predefined automaton representing potentially infinite runs. In case of
non-empty intersection, a counterexample is exhibited. We instantiated the framework
for programs manipulating tree-like data structures and we experimented with a pro-
totype implementation, on top of the ARTMC invariant generator. Test cases include a
number of classical algorithms that manipulate tree-like data structures.

Future work includes instantiation of the method for other classes of the programs.
Using the proposed method, we would like also to tackle the termination analysis for
concurrent programs. Moreover, we would like to investigate methods for automated
discovery of well-founded orderings on the complex data domains as trees and graphs.

Acknowledgement. This work was supported by the French project RNTL AVERILES,
the Czech Science Foundation (projects 102/07/0322, 201/09P531), and the Czech Min-
istry of Education by the project MSM 0021630528.
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20. Vardi, M.Y.: The büchi complementation saga. In: Thomas, W., Weil, P. (eds.) STACS 2007.

LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg (2007)
21. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The Size-Change Principle for Program Termi-

nation. In: Proc of POPL 2001. ACM Press, New York (2001)
22. Iosif, R., Rogalewicz, A.: Automata-based Termination Proofs. Technical Report TR- 2008-

17. Verimag (2008)

www.grappa.univ-lille3.fr/tata
http://www.mpi-inf.mpg.de/~rybal/armc/


Implementation of State Elimination Using
Heuristics

Jae-Hee Ahn1 and Yo-Sub Han2

1 NHN Corporation, Korea
jaehee.ahn@nhncorp.com

2 Department of Computer Science, Yonsei University, Korea
emmous@cs.yonsei.ac.kr

Abstract. State elimination is an intuitive and easy-to-implement al-
gorithm that computes a regular expression from a finite-state automa-
ton (FA). The size of a regular expression from state elimination depends
on the state removal sequence. Note that it is very hard to compute the
shortest regular expression for a given FA in general and we cannot
avoid the exponential blow-up from state elimination. Nevertheless, we
notice that we may have a shorter regular expression if we choose a good
removal sequence. This observation motivates us to examine heuristics
based on the structural properties of an FA and implement state elimi-
nation using the heuristics that run in polynomial time. We demonstrate
the effectiveness of our algorithm by experiments.

1 Introduction

It is well known that finite-state automata (FAs) have the same expressive power
as regular expressions [11]. This well-known statement is proved by showing
that we can construct FAs from regular expressions and that we can compute
regular expressions from FAs. There are many algorithms for constructing FAs
and obtaining regular expressions [5,12,16]. Note that we construct a linear-size
nondeterministic finite-state automaton (NFA) from a regular expression [16].
On the other hand, we often have an exponential-size regular expression from
an FA: For example, given an FA A with n states over k letter alphabet, the size
of a corresponding regular expression can be O(nk4n) in the worst-case [4,9].

Jiang and Ravikumar [10] proved that it is PSPACE-complete to compute a
minimal regular expression and NP-complete to find a minimal regular expres-
sion for an acyclic FA. Note that the regular expression minimization problem
in general is PSPACE-complete [13]. Ellul et al. [4] showed that if A is a planar
graph, then we can obtain a regular expression whose size is less than eO(

√
n).

Recently, based on this work, Gruber and Holzer [6] demonstrated that we can
compute a regular expression whose size is O(1.742n) for an n-state deterministic
FA. However, the running time for these algorithms are exponential and, there-
fore, are not suitable for implementation. We examine some known heuristics
that may lead to shorter regular expressions and design a new state elimination
algorithm using heuristics.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 178–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In Section 2, we define some basic notions. In Section 3, we briefly describe state
elimination and demonstrate the importance of state removal sequence. Then, we
revisit known heuristics and related issues in Section 4. Based on these heuristics,
we design a new state elimination algorithm, implement the algorithm in Grail+1

and show experimental results in Section 5.

+

c

∗ b

a

Fig. 1. The syntax tree representation for a regular expression E = a∗b + c. We define
the size |E| of E to be the number of nodes in the corresponding syntax tree. For
instance, |E| = 6.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. The size |Σ| of Σ is the number of characters in Σ. A language over Σ is
any subset of Σ∗. The symbol ∅ denotes the empty language and the symbol λ
denotes the null string.

An FA A is specified by a tuple (Q, Σ, δ, s, F ), where Q is a finite set of states,
Σ is an input alphabet, δ : Q × Σ → 2Q is a transition function, s ∈ Q is the
start state and F ⊆ Q is a set of final states. If F consists of a single state f ,
then we use f instead of {f} for simplicity. Let |Q| be the number of states in Q
and |δ| be the number of transitions in δ. Then, the size of A is |A| = |Q| + |δ|.
For a transition δ(p, a) = q in A, we say p has an out-transition and q has an
in-transition. Furthermore, we say that A is non-returning if the start state of
A does not have any in-transitions and A is non-exiting if all final states of A do
not have any out-transitions. If δ(q, a) has a single element q′, then we denote
δ(q, a) = q′ instead of δ(q, a) = {q′} for simplicity.

A string x over Σ is accepted by A if there is a labeled path from s to a final
state such that this path spells out x. We call this path an accepting path. Then,
the language L(A) of A is the set of all strings spelled out by accepting paths
in A. We say that a state of A is useful if it appears in an accepting path in A;
otherwise, it is useless . Unless otherwise mentioned, in the following we assume
that all states of an FA are useful.

1 Grail+ is a symbolic computation environment for finite-state FAs, regular expres-
sions and finite languages. Homepage: http://www.csd.uwo.ca/Research/grail/

h
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We define the size of a regular expression E to be the number of characters
of Σ and the number of operations2. Note that we often omit the catenation
symbol in a regular expression. For instance, we write ab instead of a · b and the
sizes of both regular expressions are 3. For the precise definition, we can think
of the size of E as the number of nodes in the corresponding syntax tree. Fig. 1
gives an example.

For complete background knowledge in automata theory, the reader may refer
to textbooks [9,17].

3 State Elimination

We define the state elimination of q ∈ Q \ {s, f} in A to be the bypassing
of state q, q’s in-transitions, q’s out-transitions and q’s self-looping transition
with equivalent expression transition sequences. For each in-transition (pi, αi, q),
1 ≤ i ≤ m, for some m ≥ 1, for each out-transition (q, γ, rj), 1 ≤ j ≤ n, for some
n ≥ 1, and for the self-looping transition (q, β, q) in δ, construct a new transition
(pi, αi · β∗ · γj , rj). If there exists transition (p, ν, r) in δ for some expression ν,
then we merge two transitions to give the bypass transition (p, (αi ·β∗ ·γj)+ν, r).
We then remove q and all transitions into and out of q in δ. For more details on
state elimination, refer to the literature [2,17].

One interesting property in state elimination is that the resulting regular
expression from state elimination depends on the removal sequence. Therefore,
depending on which removal sequence we choose, we may have a shorter regular
expression for the same FA. Fig. 2 illustrates this idea.

1 20
d

4

3

a

b

a

b

a e

Fig. 2. An example of different regular expressions by different removal sequences for
a given FA. E1 = ae(a + b) + (a + b)d(a + b) is the output of state elimination in
1 → 2 → 3 order and E2 = ((a + b)d + ae)(a + b) is the output of state elimination in
1 → 3 → 2 order, where L(E1) = L(E2).

For an n-state FA A, there are n! removal sequences. It is undesirable to try all
possible sequences for shorter regular expressions. Instead, we use the structural
properties of A and design a fast heuristic for state elimination that can give a
shorter regular expression.

2 Grail+ also defines the size of regular expression in this way.
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4 Heuristics for State Elimination

There are several heuristics for finding a removal sequence for state elimination.
For example, Gruber and Holzer [6] suggested graph separator techniques and
Delgado and Morais [3] relied on state weight. Recently, Moreira and Reis [14]
presented an O(n2 log n) time algorithm that obtains an O(n) size regular ex-
pressions from an n-state acyclic FA A. Gulan and Fernau [7] proposed a con-
struction of regular expression from a restricted NFA via extended automata.
Note that some heuristics for state elimination run in exponential time. Since
we intend to compute a shorter regular expression from an FA quickly, we only
consider polynomial running time heuristics for our implementation. We use the
decomposition heuristic by Han and Wood [8] and the state weight approach by
Delgado and Morais [3]. Both approaches run in polynomial time.

4.1 The Decomposition Heuristic

Han and Wood [8] suggested two decomposition approaches, one is a horizontal
decomposition and the other is a vertical decomposition, based on the structural
properties of a given FA.

First, we use the vertical decomposition since it always guarantees the shortest
regular expression by state elimination. For the vertical decomposition, we first
identify bridge states.

Definition 1. We define a state q in an FA A to be a bridge state if it satisfies
the following conditions:

1. State q is neither a start nor a final state.
2. For each string w ∈ L(A), its path in A must pass through q at least once.
3. State q is not in any cycle except for the self-loop.

Note that the bridge state condition is more restricted than the original condition
proposed by Han and Wood [8]3. This is because we find a counter example that
does not guarantee an optimal solution under the original conditions. In Fig. 3,
the removal sequence 1 → 2 gives E1 = cd(b + ad)∗a whereas the removal
sequence 2 → 1 gives E2 = c(db∗a)∗(db∗a). Note that |E1| < |E2|.

1 2
c

0

a

d

3
a

b

Fig. 3. State 1 satisfies the bridge conditions by Han and Wood [8]. However, it is not
a bridge state according to Definition 1.

Han and Wood [8] presented an algorithm that finds bridge states in linear
time in the size of a given FA based on the DFS algorithm. We can slightly
modify the algorithm and find all bridge states in Definition 1 in linear time as
well.
3 The original condition allows q to be in a cycle.
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Proposition 1. Given an FA A = (Q, Σ, δ, s, f) and a set B of bridge states
of A, the optimal removal sequence must eliminate all states in Q \ B ∪ {s, f}
before eliminating any bridge states.

Given an FA A, we find bridge states in liner time and apply the vertical de-
composition. Once we obtain several decomposed subautomata for A, we try
the horizontal decomposition before computing a regular expression for each
subautomaton.

Proposition 2 (Han and Wood [8]). Given a finite-state automaton A =
(Q, Σ, δ, s, f), we can discover all subautomata that are disjoint from each other
except s and f in O(|Q| + |δ|) time using DFS.

Fig. 4 gives an example of a horizontal decomposition. We notice that the hori-
zontal decomposition is a good heuristic for state elimination since the removal
sequence for each separated subautomaton does not influence any other removal
sequence for other subautomata. For example, in Fig. 4, the removal sequence
2 → 5 → 3 → 4 → 6 and the removal sequence 2 → 3 → 4 → 6 → 5 give
the same regular expressions. Namely, we only look at each subautomaton to
find a proper removal sequence and merge the resulting regular expressions us-
ing unions. Therefore, if possible, we always decompose a given FA into several
horizontally disjoint subautomata, and compute the corresponding regular ex-
pressions for subautomata and merge them.

Proposition 3. We can use the horizontal decomposition for finding a short
regular expression using state elimination. Note that the horizontal decomposition
does not affect the optimal removal sequence.

Moreover, as shown in Fig. 4, states 3, 4 and 5 become bridge states in Al

that are not bridge states in A. In other words, we can repeat the vertical
decomposition, if possible, and the horizontal decomposition again. Since there
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Fig. 4. An example of a horizontal decomposition for a given FA without bridge states
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are only finite number of states, this process runs in polynomial time. Overall,
the decomposition heuristic is a classical divide-and-conquer approach for state
elimination.

Proposition 4. Given an FA A, we can decompose A, if possible, into several
subautomata in which both horizontal and vertical decomposition are not feasible
in O(|A|2) worst-case time.

4.2 The State Weight Heuristic

Delgado and Morais [3] proposed the sate weight heuristic. They defined a state
weight be the the size of new transition labels that are created by eliminating
the state. We borrow their notion and define the weight of a state q in an
FA A = (Q, Σ, δ, s, f) as follows:

In∑
i=1

(Win(i) × Out) +
Out∑
i=1

(Wout(i) × In) + Wloop × (In × Out), (1)

where In is the number of in-transitions excluding self-loop, Out is the number
of out-transitions excluding self-loop, Win(i) is the size of the transition label
on the ith in-transition, Wout(i) is the size of the transition label on the ith
out-transition and Wloop is the self-loop label size for q. Note that our weight
definition is slightly different from Delgado and Morais [3]: We define the weight
be to the total size of transition labels after eliminating q. We can compute the
weight of all states in A in polynomial time.

Delgado and Morais [3] noticed that the state weight heuristic does not
guarantee the shortest regular expression. For instance, in Fig. 5, the state
weight heuristic suggests 1 → 3 → 2 removal sequence, which gives E1 =
abc(((a + b + c) + (b + bb)c))∗(b + bb)a whereas the removal sequence 1 → 2 → 3
gives E2 = ab(c(a + b + c)∗(b + bb))∗a. Note that we can select a least weight
state and remove it, and recompute the state weight and choose a new least
weight state in the resulting FA. This approach does not guarantee the shortest
regular expression either but it often gives shorter regular expressions compared

1:4 3:80:1
b

4:1

2:14

a a
b

c

a+b+c

Fig. 5. Each state has a state index and the state weight by Equation (1). In this FA,
the state weight heuristic suggests 1 → 3 → 2 removal sequence but it is not the best
removal sequence.
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with the one-time state weight heuristic. On the other hand, since we calculate
state weight every step, it may take more time than the one-time state weight
heuristic. We implement both approaches and analyze the experimental results
in Section 5.

5 Implementation and Experimental Results

Given an FA A = (Q, Σ, δ, s, F ), we first remove all unreachable states, merge
multiple transitions between two states into a single transition and make A to
have a single final state using λ-transitions. This preprocessing takes O(|A|)
time. We use combinations of heuristics in Section 4 for state removal sequences
as follows.

1. We eliminate states in state order without any heuristics. Let C-I denote
this case.

2. We use both the vertical decomposition and the horizontal decomposition
until both decompositions are not feasible. Once the decomposition step is
over, we eliminate states in order. Let C-II denote this case.

3. We compute the state weight of all states and eliminate a state with less
weight. Note that we compute the state weight only once. Let C-III denote
this case.

4. We first use the vertical and horizontal decompositions and decide the re-
moval sequence for each decomposed subautomaton using the state weight
heuristic as C-III. Let C-IV denote this case.

5. We select a least weight state and eliminate it. Then, we compute the state
weight again for the resulting FA and eliminate the new least weight state.
We repeat this until there is no more state to remove. Namely, we have to
compute the state weight roughly |Q| times, where |Q| is the number of
states in an input FA. Let C-V denote this case. Note that C-V is different
from C-III.

6. We use the vertical and horizontal decompositions. Then, for each decom-
posed subautomaton, we use the repeated state weight heuristics to decide
the removal order as C-V. Let C-VI denote this case.

Our implementation is based on Grail+. C-I is the current state elimination
algorithm implemented in Grail+ as well as JFLAP [15]. We implement the
other 5 heuristics in Grail+. We randomly generate FAs and run the 6 different
algorithms for each of FAs on a Pentium-5 PC. Table 1 shows some of the ex-
perimental results. (We omit most cases because of the space limit.) Notice that
if the number of transitions is large, then the straightforward state elimination
approach (C-I) cannot compute a regular expression because of the exponential
blow-up. (Our empirical experience is that if the number of transitions is more
than 200, then C-I often fails.)

Fig. 6 shows the relation graph between the number of states and the size of
regular expressions. This shows that C-VI is best followed by C-IV → C-V →
C-II → C-III → C-I.
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Table 1. Experimental results

C-I C-II C-III C-IV C-V C-VI
the size of resulting regular expression for each case|δ| |Q|

the real running time in second
1773 779 644 399 504 39943 10
0.079 0.031 0.015 0.016 0.016 0.015
2605 687 1119 468 427 42748 10
0.125 0.032 0.046 0.016 0.016 0.015
1654 1148 1186 899 722 59959 12
0.078 0.047 0.062 0.031 0.032 0.015
1072 300 969 300 311 30065 14
0.047 0.016 0.031 0.016 0.015 0.016
16048 9609 1572 711 699 69967 15
0.906 0.5 0.078 0.016 0.031 0.031
15268 717 964 469 475 46999 17
0.937 0.047 0.047 0.015 0.032 0.015

826669 5664 15867 3104 9425 2892157 24
70.141 0.25 1.141 0.14 0.609 0.109

2007485 28855 25472 21566 16430 13940175 23
169.984 1.609 2.125 1.203 1.078 0.625

- 2022 47007 1614 7614 1592265 35
- 0.078 4.781 0.062 0.532 0.047
- 1797 46803 1508 1853 1448296 40
- 0.063 4.875 0.063 0.219 0.062
- - - 38117 36090 27920673 56
- - - 2.078 4.563 1.25

Proposition 5. We propose the following suggestions for the state elimination
implementation based on our experimental results:

1. It is better to apply the decomposition heuristic first and the state weight
heuristic later for each decomposed subautomaton.

2. Heuristics for state elimination enable to obtain a regular expression faster
compared with state elimination without heuristics although they require ad-
ditional processing time. This is because heuristics help to have smaller tran-
sition labels while running state elimination.

3. The number of transitions is more closely related to the size of regular expres-
sions than the number of states. (The correlation between the size of regular
expressions by C-VI and the number of states is 0.66 whereas the correlation
between the size of regular expressions by C-VI and the number of transitions
is 0.79.)

Proposition 5 suggests to investigate the relation between the number of transi-
tions and the number of states. Thus, it is natural future work to examine a tight
bound for the size of a regular expression from an n-transition FA. Moreover,
we can use some other heuristics that run in polynomial time. For example, we
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Fig. 6. Experimental results for 6 cases: number of states and size of regular expressions

can use the orbit property established by Brüggemann-Klein and Wood [1] that
gives a certain removal order and the Kleene star operation.

Acknowledgment

We wish to thank the referees for the care they put into reading the previous
version of this manuscript.

References
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Abstract. We continue our work [H. Gruber, M. Holzer: Provably
shorter regular expressions from deterministic finite automata (extended
abstract). In Proc. DLT, LNCS 5257, 2008] on the problem of finding
good elimination orderings for the state elimination algorithm, one of
the most popular algorithms for the conversion of finite automata into
equivalent regular expressions. Here we tackle this problem both from
the theoretical and from the practical side. First we show that the prob-
lem of finding optimal elimination orderings can be used to estimate the
cycle rank of the underlying automata. This gives good evidence that
the problem under consideration is difficult, to a certain extent. More-
over, we conduct experiments on a large set of carefully chosen instances
for five different strategies to choose elimination orderings, which are
known from the literature. Perhaps the most surprising result is that
a simple greedy heuristic by [M. Delgado, J. Morais: Approximation to
the smallest regular expression for a given regular language. In Proc.
CIAA, LNCS 3317, 2004] almost always outperforms all other strategies,
including those with a provable performance guarantee.

1 Introduction

The classical theorem of Kleene [15] implies that every n-state finite automaton
over alphabet Σ admits an equivalent regular expression. This conversion prob-
lem has received quite some attention recently, see, e.g., [9,10,11,12,13]. One of
the most popular algorithms for this conversion is the so called state elimina-
tion algorithm. There, states from the automaton are successively eliminated
by re-routing the in- and out-going transitions, which leads to an automaton
with transitions labeled by regular expressions. The sequence of states elimi-
nated thereby is called an elimination ordering or elimination sequence. If state
elimination is applied to an n-state finite automaton, the resulting expression
is of size at most |Σ| · 4n. While this bound appears large, it is known that an
exponential blowup is necessary in the worst case [5,10].

These theoretical results pushed the on-going quest for heuristics finding good
elimination orderings leading to short regular expressions [2,11,13]. Recently

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 188–197, 2009.
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improved upper bounds on the size of the regular expressions resulting from
deterministic finite automata (DFA) over small alphabets were obtained [11].
The latter are based on algorithms with a combinatorial flavor, and the analysis
is facilitated by results from extremal graph theory. Although all of the heuristics
choose an ordering for state elimination, only the algorithms from [11] lend
themselves to a theoretical analysis at all. Thus a theoretical comparison of the
different approaches would appear rather difficult.

In the present paper we continue our research on good elimination orderings
for the state elimination algorithm from the theoretical as well as the practi-
cal side by doing experiments on a large dataset. On the theoretical side, we
investigated the possibility whether designing an efficient approximation algo-
rithm would be within reach, but our theoretical results are somewhat negative.
Already weak approximation algorithms for the elimination orderings would con-
stitute a major step towards a resolving the approximability of the undirected
cycle rank problem, which is not completely understood yet [7]. Therefore we
implemented some of the heuristics and compared their performance on a large
but carefully chosen set of test instances. In short, the main empirical observa-
tions are the following: (1) Even the easiest heuristics provide a huge advantage
over randomly chosen elimination orderings, thus substantiating an observation
made earlier in [2] on very few instances. (2) Larger alphabets, and hence more
transitions, in the given DFAs result in larger regular expressions. (3) For ε-
NFAs obtained from regular expressions using the standard construction [14],
the transformation back into regular expressions is much easier than for ran-
dom DFAs. (4) Simplifying intermediate regular expressions on-the-fly as they
appear during the conversion appears not to have a striking effect on the result
on the average. Perhaps most surprisingly, it turned out that the simple greedy
heuristic by Delgado and Morais [2] almost always outperforms the algorithms
with provable performance guarantee from [11].

2 Definitions

We assume the reader to be familiar with basic notions in formal language the-
ory, in particular with those of ε-NFAs, NFAs, DFAs, regular expressions, and
the languages they denote. Here we follow exactly the notational conventions
from [14], with the following additions: The size or alphabetic width of a regular
expression r over the alphabet Σ, denoted by alph(r), is defined as the total
number of occurrences of letters of Σ in r. For a regular language L, we define
its alphabetic width, alph(L), as the minimum alphabetic width among all reg-
ular expressions describing L. When working with ε-NFAs, we will often assume
that the given automaton A is normalized in the sense that A has the state set
Q∪ {s, t} where s is the start state and has no incoming transitions, and t is the
sole accepting state and has no outgoing transitions. This can be achieved by a
simple construction if needed. As usual, two finite automata are called equivalent
if they accept the same language.
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Now we present an algorithm scheme that became known as state elimination,
cf. [19]. Let Q be the state set of a finite automaton A. For a subset U of Q and
an input word w ∈ Σ∗, we say that A can go on input w from state j through U
to state k, if it has a computation on input w taking A from state j to k without
going through any state outside U . Here, by “going through a state,” we mean
both entering and leaving. Now let LU

jk be the set of words on which A can go
from state j to state k through U . Observe that in particular for a normalized
finite automaton A then holds LQ

st = L(A). The state elimination algorithm
scheme proceeds as follows: We maintain a working set U and a matrix the
entries of which are regular expressions rU

jk denoting the languages LU
jk. The

algorithm proceeds in rounds: Beginning with U = ∅, we enlarge the set U by
adding a new state i ∈ Q\U in each round. The round consists of computing the
new entries denoting the languages L

U∪{i}
jk , for each j, k satisfying j, k /∈ U ∪{i},

by letting rU·i
jk = rU

ji · (rU
ii )

∗ · rU
ik, where U · i denotes the ordering induced by U

followed by i (cf. [11]). Here it is understood that the resulting expression on the
left-hand side equals ∅ if rU

ji or rU
ik denotes the empty set. If the given automaton

was normalized, we finally end up with a regular expression describing LQ
st, a set

equal to L(A). Observe that the above algorithm requires an ordering in which
the states i are to be processed one after another; such an ordering on Q is called
an elimination ordering. It is well known that the choice of ordering can greatly
influence the size of the resulting regular expressions, cf. [2,19].

3 A Theoretical Result on Elimination Orderings

This section is devoted to the question whether we can find an optimum, or
at least an approximately optimum elimination ordering in polynomial time.
Sakarovitch stated that this is probably a hard combinatorial problem [19]. Al-
though we cannot provide proper evidence that this problem is algorithmically
intractable (such as NP-hardness), our result indicates that even designing an
approximation algorithm with a reasonable performance guarantee is a challeng-
ing research problem.

Definition 1. The cycle rank of a digraph G = (V, E), denoted by cr(G), is
inductively defined as follows: (1) If G is acyclic, then cr(G) = 0. (2) If G is
strongly connected and not acyclic, then cr(G) = 1+minv∈V {cr(G−v)}. (3) If G
is not strongly connected, then cr(G) equals the maximum cycle rank among all
strongly connected components of G. The undirected cycle rank of G is defined
as the cycle rank of its symmetric closure.

We will relate the undirected cycle rank to elimination orderings in the following.
To this end, recall the following lemma from [11]:

Lemma 2. Let A be a normalized ε-NFA with state set {s, t} ∪ Q, and let G
be the digraph underlying the transition structure of A. Assume U ⊆ Q can
be partitioned into two sets T1 and T2 such that the induced subdigraph G[U ]
falls apart into mutually disconnected components G[T1] and G[T2]. Then for
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the expression rT1·T2
jk obtained by elimination of the the vertices in T1 followed

by elimination of the vertices in T2 it holds rT1·T2
jk

∼= rT1
jk + rT2

jk , for all states
j, k ∈ Q \ U .

Using this lemma, we can prove that the undirected cycle rank of the under-
lying graph is a parameter that renders the problem of converting ε-NFAs into
regular expressions fixed-parameter tractable—not in the usual sense of compu-
tational, but rather of descriptional complexity. We omit the proof of the next
two statements due to space constraints.

Theorem 3. Let A be a normalized ε-NFA with state set {s, t} ∪ Q, let c be a
positive integer, and let G be its underlying (di)graph. If U ⊆ Q is such that G[U ]
has undirected cycle rank at most c, then there is an elimination ordering for U
which yields, for all states j, k in Q \ U , regular expressions rU

jk of size at most
|Σ| · 4c · |U |.

The problem in transforming the above result into an algorithm is that determin-
ing the undirected cycle rank of a graph or digraph is NP-complete and the best
known approximation algorithm has, for a given graph with n vertices and (un-
known) undirected cycle rank c, a performance ratio of O(

√
log c · log n), see [7].

It turns out that merely estimating the order of magnitude of the expression size
resulting from an optimum ordering is by no means easier:

Lemma 4. Given an undirected graph G on n vertices and of (unknown) cycle
rank c, we can construct in polynomial time a DFA A such that the optimum
elimination ordering for A yields an equivalent regular expression r with

1
3

· c − 2 ≤ log alph(r) ≤ 2 · c + log n.

This shows that the optimum ordering expression size can be used as a pretty
good estimate for the cycle rank, and already weak approximation algorithms for
the former problem would constitute a major step towards a more complete under-
standing of the approximability of the undirected cycle rank problem, compare [7].

4 Algorithms for Choosing Elimination Orderings

When eliminating a state with m entering and n exiting transitions, the resulting
digraph has up to (m − 1) · (n − 1) newly added edges. Intuitively, we want to
keep the intermediate digraphs produced by the elimination process as sparse as
possible. Thus it may be advisable to delay the elimination of heavily trafficked
states as long as possible, as noted already by different authors [2,13,19]. An
extremely simple strategy is to order the states by a measure that is defined as
the number of ingoing edges times the number of outgoing edges (Algorithm 0A).
An easy observation is that this measure can of course change as the elimination
proceeds, and a refined strategy recomputes these measures on the intermediate
digraphs after each elimination round (Algorithm 0B). A further refinement
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devised in [2] works with a measure function, which also takes the size of the
intermediate regular expressions into account (Algorithm DM)—we refer to [2]
for details.

Recently, two new ordering algorithms were discovered in [11], which were
also the first ones to come with a provably better performance guarantee on
the resulting regular expressions, at least in case the given automata are deter-
ministic and over not too large alphabets. Turán’s Theorem in extremal graph
theory states that sparse (di)graphs have independent sets of linear size, and
that these can be eliminated at low cost and can be found by a simple greedy
algorithm. This gives rise to the following algorithm (Algorithm IS): First, we
find a huge independent set S in the graph underlying the automaton. Then we
order the states in S arbitrarily, and eliminate them. For any remaining states
we again find a huge independent set in the resulting digraph, and so on. It is
shown in [11] that this algorithm is guaranteed to produce regular expressions
of size at most O(2.602n), when given a DFA over binary alphabet.

A recent generalization of Turán’s theorem by Edwards and Farr [3] concerns
induced subgraphs of (undirected) treewidth at most 2 instead of independent
sets. There the guaranteed size is three times larger, and again these can be
eliminated at low cost and can be found by a simple greedy algorithm. Large
induced subgraphs of low treewidth are useful, because it was proved in that
these admit orderings, similar to independent set, such that eliminating them in
the beginning can incur an increase in intermediate expression size bounded by
a polynomial factor. The proof of that fact does not rely directly on tree decom-
positions, but proceeds by finding small balanced separators, and then recurring
on the separated subgraphs. Following [11], this suggests the following algo-
rithm (Algorithm B3S): First, we find a huge induced subgraph S of treewidth
at most 2 in the graph underlying the automaton. Then we order the set S by
finding a balanced 3-way separator X for S. If C1, C2 and C3 are the parts
of S separated by X , the resulting ordering is of the form C1, C2, C3, X , where
the ordering for the component Ci is found recursively, by finding a balanced 3-
separator for Ci, and so on. Then we eliminate S. Finally, we eliminate Q \ S
with an “arbitrary” ordering; to optimize the latter, we used the heuristic DM on
Q \ S. For finding huge independent sets and induced subgraphs of treewidth 2,
we used a software library developed by Kerri Morgan [17]. It was shown in [11]
that this approach allows for a guaranteed performance of O(1.742n) on DFAs
over binary alphabet. We also note that all of the algorithms run in output poly-
nomial time. In particular, they run in polynomial time provided they produce
a regular expression of polynomial size.

5 Experiments

We have conducted experiments with the algorithms described in the previous
section plus an additional random elimination ordering (RA). We have imple-
mented the algorithms in C++, using the Automata Standard Template Library
(ASTL) [16] for representation and manipulation of automata. We have chosen
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the library ASTL to represent the NFAs and the intermediate results during
state-elimination mainly because of the cursor concept and because it allows
arbitrary input alphabets. This facilitates a direct implementation of the algo-
rithms by programming appropriate iterators (cursors) over the state set. To
gain performance, regular expressions are not stored as syntax trees, but as di-
rected acyclic graphs, allowing for sharing common subexpressions. Similar ideas
were used in [8]. Tests have shown that this allows us to compute regular ex-
pressions of very large alphabetic width—up to 1020—while still having small
memory footprint. The front end for reading the input NFAs or regular expres-
sions is a lex and yacc generated parser. This resulted in an overall size of
roughly 4000 lines of code. The tests are performed on a quad core Intel Xeon
CPU E5345 with 2.33 GHz equipped with 16 GB RAM running Linux as an
operating system. To limit the number of bugs in our program, unit-tests were
performed with the help of the Diagnostics framework.1

Moreover, simplification of the regular expressions constructed during state
elimination can be en- or disabled. Unless stated otherwise, all tests were run with
simplification turnedon.The simplificationprocess is describedbya termrewriting
system (TRS) which works modulo ACIZ-identities2 and some further identities,
namely r · ε = ε · r = r, a · ∅ = ∅ · r = ∅, plus identities that deal with the Kleene
star, which are ∅∗ = ε, ε∗ = ε, (r∗)∗ = r∗, (r + ε)∗ = r∗, (r + s∗)∗ = (r + s)∗, and
(r∗s∗)∗ = (r+s)∗.Theyare similar to thoseused in [8].Notice that the associativity
laws can be built into the data structure by using list data types. For implement-
ing commutativity we defined, apart from the above notion of equivalence, also an
appropriate order on the subsorts of expressions.

Our test instances are chosen as follows: We used randomly generated DFAs
for different numbers of states and alphabet sizes and regular expressions of
varying alphabetic width. Moreover, we have also performed tests on special
automata instances that appeared in the literature—we will discuss this issue
in more detail below. To randomly generate DFAs (more precisely initially con-
nected DFAs) we used the FAdo toolkit [1], while the random generation of
regular expressions was done by GenRGenS [18]. The latter software was orig-
inally designed to randomly generate genome sequences and supports several
classes of models, including context-free grammars. Observe that the generation
of DFAs is uniformly at random. A running time limit for all tests was not estab-
lished and all tests were finished after about 30 CPU days. All test instances and
the source code are available online at http://code.forsyte.de/automata for
download. The unambiguous grammar used for generating regular expressions
is included with the download.

1 Diagnostics, developed by the “Formal Methods in Systems Engineering” group at
Technische Universität Darmstadt, is a unified framework for code annotation, log-
ging, program monitoring, and unit-testing. Download and more information is avail-
able at http://code.forsyte.de/diagnostics

2 The set of equations r + (s + t) = (r + s) = t, r + s = s + r, r + r = r, and r + ∅ = r
are commonly called ACIZ-identities or -axioms, where letter A is an abbreviation for
associativity, C for commutativity, I for idempotency, and Z for zero absorption.

http://code.forsyte.de/diagnostics
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For the DFA samples we used automata with 5 ≤ n ≤ 50 states—in steps
of 5 states—and input alphabets with 1 ≤ k ≤ 10 symbols. We only show
the diagrams for k ∈ {2, 3, 5, 10}. For each parameter n and k, a sample of
1000 random instances was generated and tested. The results are summarized
in Figure 1 and can be interpreted as follows.

At first glance one observes that larger alphabet size, and hence more tran-
sitions, in the DFAs result in larger regular expressions. This is of course ex-
pected. Taking a closer look, one further observes that the Algorithm 0B with
the simple greedy strategy and the Algorithm DM with the more sophisticated
measure function of Delgado and Morais [2] almost always outperforms the Algo-
rithms IS and B3S with provable performance guarantees—indicated by fitted
appropriate exponential functions—from [11], on the average. This was a nice
surprise and not really expected. Apart from the random ordering RA, only
Algorithm 0A is significantly worse than the other tested algorithms, not only
on the average, but also on the worst-case behavior. Again, not a real surprise,
since this algorithm is too static, by not taking changes of the underlying graph
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Fig. 1. Alphabetic size (y-axis, logarithmically scaled) in relation to the number of
states (x-axis, linearly scaled) for DFAs with 5 ≤ n ≤ 50 states—in steps of 5 states—
and input alphabet size 2 (upper left), 3 (upper right), 5 (lower left), and 10 (lower
right) for the random ordering RA and Algorithms 0A, 0B, DM, IS, and B3S. Here
a vertical bar for an algorithm indicates the maximal occurring alphabetic width by
its height. Moreover it also shows the alphabetic width on average indicated by the
appropriate mark symbol.
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during the elimination process into account. Moreover, another effect, not de-
picted here, was encountered during our test: Simplifying of intermediate regular
expressions does not have any significant effect on the outcome of the conducted
experiments. Possible reasons for this may be that we have run our tests on
DFAs, not NFAs, and that we have excluded more powerful simplification rules
such as r · s + r · t = r · (s + t). We plan to conduct further experiments in this
direction.

Next we summarize our results on special instances, which were already dis-
cussed in the literature. First we have reproduced the experiments done in [2]
on automata with transformation monoids from POIn and POPIn of all in-
jective order preserving and orientation preserving, respectively, partial trans-
formations on a chain with n elements. Moreover, we have considered DFAs
whose transition structure is a n × n grid graph with a input alphabet of size 4,
one letter for each direction. Recently, these automata, referred to as Gridn,
were used to prove lower bounds on the alphabetic width for the conversion of
planar DFAs to regular expressions [10]. Finally, we also considered DFAs ac-
cepting the languages Ln = Σ∗ \ (Σ∗fnΣ∗), where Σ = {a, b} and fn is the
nth finite Fibonacci word defined by f0 = a, f1 = ab, and fn = fn−1 · fn−2,
for n ≥ 2. These automata denoted by Fibn were proposed in [6] as possi-
bly difficult candidates for converting DFAs into regular expressions. Some of
the obtained results are summarized in Table 1. Here a similar situation shows
up as for random instances. The Algorithm DM is superior to the other al-
gorithms. Furthermore, the automata Fibn don’t show the conjectured behav-
ior as difficult candidates for converting DFAs into regular expressions. Here
the grid automata Gridn are much more difficult as indicated by the enor-
mously large alphabetic width of at most 1.1 · 1017 produced by the Algo-
rithm IS.

We also studied the setup when starting with a regular expression instead of a
DFA. For the conversion from a regular expression to a finite automaton we have
implemented Thompson’s algorithm [14]. Again Algorithm DM outperforms all
the other algorithms; but note that the resulting expressions are much smaller

Table 1. Results on the alphabetic width for some specific DFAs instances that
appeared already in the literature [2,6,10]. In particular, (A), (B), (C), (D) de-
note the automata Min(POI4[1, 20]), Min(POI5[1, 125]), Min(POPI4[1, 60]) and
Min(POPI5[1, 70]) as they appear in [2].

Instance
Algorithm (A) (B) (C) (D) Grid3 Grid12 Fib3 Fib12

RA 1304 93688 7426 1404252 7516 ≤ 1.3 · 1019 7 2119
0A 1121 54625 2425 819934 1988 ≤ 4.5 · 1018 11 70877
0B 634 25816 882 13240 634 ≤ 1.1 · 1018 5 377
DM 491 8989 704 11528 622 ≤ 7.7 · 1017 5 377
IS 535 9750 929 14701 634 ≤ 1.1 · 1017 8 1584
B3S 768 11663 793 13062 958 ≤ 1.2 · 1019 9 1586
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Fig. 2. Blowup (y-axis, linearly scaled) in relation to the length n (x-axis, linearly
scaled) of the regular expression (RE) for 10 ≤ n ≤ 100 in steps of 10 caused by the
transformation RE → NFA → RE for input alphabet size 2 (upper left), 3 (upper
right), 5 (lower left), and 10 (lower right) for the random ordering RA and Algo-
rithms 0A, 0B, DM, IS, and B3S. The length of a regular expression is defined to
be the number of terminal symbols. Here a vertical bar for an algorithm indicates the
maximal occurring blowup. Moreover it also shows the average bloat factor indicated
by the corresponding mark symbol. Missing lines for RA indicate that even the average
blowup is greater than 40.

than for random DFAs. For regular expressions of length 10 ≤ n ≤ 100 in
steps of 10 and input alphabet size 1 ≤ k ≤ 10 the size blowup is depicted in
Figure 2—again only the diagrams for k ∈ {2, 3, 5, 10} are shown.

Whether using a different conversion algorithm than Thompson’s can affect
the obtained results is not clear and has to be verified by further experiments.
Finally, we mention that we believe that all of the algorithms under considera-
tion would equally benefit from the preprocessing techniques presented in [13];
in particular we do not expect that they have a noticeable effect on random DFA
input.
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previous research.
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Abstract. A regular expression with n occurrences of symbol can be
converted into an equivalent automaton with n + 1 states, the so-called
Glushkov automaton of the expression. Conversely, it is possible to de-
cide whether a given (n+1)-state automaton is a Glushkov one and, if so,
to convert it back to an equivalent regular expression of size n. Our goal
is to extend the class of automata for which such a linear retranslation
is possible. We define new regular operators, called multi-tilde-bars, al-
lowing us to simultaneously apply a multi-tilde operator and a multi-bar
one to a list of expressions. The main result is that any acyclic n-state
automaton can be turned into an extended expression of size O(n).

1 Introduction

This paper deals with the translation from a finite automaton to a regular ex-
pression and more particularly with the efficiency of this translation, as measured
by the size of the expression. Polynomial algorithms have been designed for this
translation and the inverse one; the first ones are due to McNaughton and Ya-
mada [15] for both constructions, to Glushkov [9] for constructing an automaton,
and to Brzozowski and McCluskey [1] for constructing an expression.

It turns out that many efforts have been developed to tackle the problem of
constructing a small automaton as efficiently as possible (see for example [5,14]).
On the opposite, given an n-state automaton, the size of the expression computed
by classical conversion algorithms is exponential with respect to n, and investi-
gations for constructing a small expression [6,12] are not so many. An alternative
approach, described in [7], is the study of the descriptional complexity of regular
expressions and more precisely the effect of regular operations on this complex-
ity. For example, the operation of removing the empty word has been proved to
incur at most a quasilinear increase in regular expressions [17]. Recently, new
bounds have been provided for intersection, shuffle and complementation [8,10].
In [11], it is shown that quadratic size expressions can be computed for language
quotient operations and cubic size expressions for circular shift operation.

Our project also addresses the problem of computing short expressions, and
it focuses on a specific kind of conversion based on Glushkov automata. It is
well-known that a regular expression with n occurrences of symbol can be con-
verted into an equivalent automaton with n + 1 states, the so-called Glushkov

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 198–207, 2009.
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automaton of the expression. Conversely, it is possible to decide whether a given
(n + 1)-state automaton is a Glushkov one [4] and, if so, to convert it back to
an equivalent regular expression of size n. Our goal is to find subclasses of the
finite automata for which an efficient translation to (extended) regular expres-
sions is possible. This is achieved by designing new regular operators, such as
multi-bar operators that delete empty words and multi-tilde operators that add
empty words. We have shown in a first step [3,2] that these operators fit with the
Glushkov construction and that they lead to extended expressions significantly
shorter than equivalent simple regular expressions.

In this paper, we first define new regular operators, called multi-tilde-bars,
that allow us to simultaneously apply a multi-tilde operator and a multi-bar op-
erator to a given list of expressions. We then show that any standard and homo-
geneous acyclic automaton with n+1 states can be turned into a multi-tilde-bar
expression of size n, which means that any standard and homogeneous acyclic
automaton is a Glushkov automaton (in the extended sense). As a corollary,
there exists a linear translation to multi-tilde-bar expressions for the subclass of
acyclic automata. Quadratic algorithms are provided for converting a standard
and homogeneous acyclic automaton (respectively an acyclic automaton) into a
multi-tilde-bar expression.

The following section gathers fundamental notions concerning finite automata
and regular expressions. We give the definition of the language of a multi-tilde-
bar expression in Section 3. Section 4 is devoted to the translation of acyclic
automata to multi-tilde-bar expressions.

2 Preliminaries

In this section we recall fundamental notions concerning finite automata and
regular expressions (see for example [13,16] for a comprehensive treatment) and
we introduce some notation concerning lists of couples of integers.

A finite automaton is a 5-tuple A = (Σ, Q, I, F, δ) such that Σ is a finite set of
symbols, called the alphabet, Q is a finite set of states, I ⊂ Q is the set of initial
states, F ⊂ Q is the set of final states and δ : Q × Σ → 2Q is the function of
transition. The domain of the function of transition can be extended to 2Q×Σ∗ as
follows: ∀a ∈ Σ, δ(∅, a) = ∅; ∀Q′ ⊂ Q | Q′ 	= ∅, ∀a ∈ Σ, δ(Q′, a) =

⋃
q∈Q′ δ(q, a);

∀Q′ ⊂ Q, δ(Q′, ε) = Q′; ∀Q′ ⊂ Q, ∀a ∈ Σ, ∀w ∈ Σ∗, δ(Q′, aw) = δ(δ(Q′, a), w).
A triplet (q, a, q′) in Q × Σ × Q is said to be a transition if q′ ∈ δ(q, a). The

function δ can also be viewed as the set of the transitions of the automaton. Let
A = (Σ, Q, I, F, δ) be an automaton and v = (q, a, q′) be a transition of A. The
state q (resp. q′) is called the head (resp. the tail) of v. A path of length l > 0
from p to q is a sequence of l transitions (v1, . . . , vl) such that the head of v1 is
p, the tail of vl is q and, for all k < l, the tail of vk is the head of vk+1. A path
from p to q is said to be hamiltonian if and only if every state of the automaton,
except for p and q, is the head of exactly one transition of the path and the tail
of exactly one transition of the path. The automaton A is said to be acyclic if
and only if for every couple (p, q) ∈ Q × Q such that there exists a path from p
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to q, then there exists no path from q to p. Let A = (Σ, Q, I, F, δ) be an acyclic
automaton. The automaton A is homogeneous if and only if for every couple of
transitions (p, a, q) and (p′, a′, q), it holds a = a′. The automaton A is standard
if and only if it has a unique initial state q0 and no transition with q0 as tail. A
topological sort of A is a bijection τ : Q → �0, #Q − 1� such that for each couple
(q, q′) of Q2, τ(q) < τ(q′) implies that there exists no path from q′ to q.

A regular expression E with only +, · and ∗ operators is said to be a simple
one. Two regular expressions are equivalent if they denote the same language.
The size of E, denoted by |E|, is the number of occurrences of symbol in E. A
regular expression E is said to be a minimal one if there exists no equivalent
expression E′ defined on the same set of operators and such that |E′| < |E|. Let
E be a regular expression over the alphabet Σ. The expression E is said to be
linear if every symbol in Σ occurs at most once in E. The linearized expression
E# of E is obtained by replacing each occurrence of symbol in E by its position.
For example, if E = a · b + b then E# = 1 · 2 + 3. Let Σ# be the set of positions
in E. The alphabetical morphism hE() from (Σ#)∗ to Σ∗ defined by: for all
k in Σ#, hE(k) is the symbol at the position k in E, is called linearization
morphism.

Let n be a positive integer. The list of expressions (E1, . . . , En) is denoted by
E1,n. The expression E1 ·E2 · · · En is denoted by E1···n. In the following, we will
consider finite lists of couples (i, f) of integers such that 1 ≤ i ≤ f ≤ n. Let S
be such a list. The size of S is denoted by #S. The set of integers {1, . . . , #S} is
denoted by �1, #S�. The set of couples (i, f) in �1, n�2 such that i ≤ f is denoted
by �1, n�2≤. Let IS = �1, #S� be the set of indices of the list S. Then a list S is
defined by S = ((ik, fk)k∈IS ), with ∀k ∈ �1, #S�, (ik, fk) ∈ �1, n�2≤. The set of
all such lists is denoted by Sn. A couple (i, f) ∈ S is overlapped if and only if
there exists a couple (i′, f ′) ∈ S such that i′ < i < f ′ < f (left overlapped) or
i < i′ < f < f ′ (right overlapped). A couple (i, f) ∈ S is included if and only if
there exists a couple (i′, f ′) ∈ S \ {(i, f)} such that i′ ≤ i ≤ f ≤ f ′. A couple is
overhanging if and only if it is not overlapped. A finite list S of couples is free
if and only if ∀(i, f), (i′, f ′) ∈ S | (i, f) 	= (i′, f ′), �i, f� ∩ �i′, f ′� = ∅.

Finally, we introduce the notion of ε-maximal factor. Let w = w1 · · · wn be a
word such that for all k ∈ �1, n�, wk ∈ L(Ek) ∪ {ε}. Let us suppose that there
exists a factor wi · · · wf = ε in w. This factor is said to have a left (resp. right)
ε-extension in w if there exists k = i − 1 (resp. k = f + 1) such that wk = ε. If
there exists no ε-extension, then the factor is said to be ε-maximal in w.

3 The Family of Multi-Tilde-Bar Operators

In this paper, we study a new family of operators, called multi-tilde-bar op-
erators. Multi-tilde-bar operators combine multi-tilde operators and multi-bar
operators (see [3,2] for a comprehensive treatment). Multi-tilde-bar operators
are defined by a list of tildes and a list of bars that can overlap and that
are simultaneously applied on a given list of expressions. Thus, a tilde repre-
sents a new degree of freedom, the addition of the empty word, while a bar
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i 1 2 3
a b c

b

c

E′ = (a(b + ε) + b)c + a + ε

E′′ = ( a )( b )c + a

E = a b c

=
(1,1),(2,2),(2,3);(1,2)

(
a, b, c

)
Fig. 1. An example of reduction with a multi-tilde-bar operator

is a constraint, preventing the nullability of a factor. Multi-tilde-bar operators
allow us to translate n-state automata that are not Glushkov ones into ex-
tended regular expressions with O(n) occurrences of symbol. For example, let
us consider the automaton of Figure 1. The simple regular expression E′, of
size 5, is a minimal one. The expression E′′, with multi-tilde and multi-bar
operators is of size 4. The expression E, with a multi-tilde-bar operator, is of
size 3 only.

More formally, multi-tilde-bar expressions are defined in the following way.

Definition 1. An Extended to Multi-tilde-bar Regular Expression (EMRE) is
inductively defined by:

E = ∅ E = F + G, with F and G two EMREs
E = ε E = F · G, with F and G two EMREs
E = a, with a ∈ Σ E = F∗, with F an EMRE
E = T;B

(
E1,n

)
, with T and B two disjoint lists of Sn

and E1,n a list of (different of ε) EMREs

Notice that due to the storage of tildes and bars, the length of a multi-tilde-bar
expression is quadratic w.r.t. n. However, there exist families of languages such
that the length of the minimal simple expression is exponential. In the follow-
ing two subsections, we give the definition of the language of a multi-tilde-bar
expression. We first consider the case of linear expressions.

3.1 The Language of a Linear Multi-Tilde-Bar EMRE

The language of a linear multi-tilde-bar expression is computed according to
formulas that correspond to four different cases, depending on the existence or
not of bars and on a possible overlapping of a bar with one or more tildes.

Case of a Unique Bar and No Overlapping with a Tilde. This is the
easiest case, where elementary operators (tildes or bars) are independent from
each other and can be directly applied to the corresponding factor. There are
three subcases, as illustrated by the Table 1: inclusion of one or more tildes
(expression E1), inclusion of a bar (expression E2) and no inclusion (expression
E3).
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Table 1. Examples of basic multi-tilde-bar expressions

E1 = a b c d L(E1) = L(a((b + ε)(c + ε) \ ε)d)
=

(2,2),(3,3);(2,3)

(
a, b, c, d

)
= L(a(b + ε)cd + ab(c + ε)d)

E2 = a(b + ε)(c + ε)d L(E2) = L(a((b + ε)(c + ε) \ ε)d + ε)
=

(1,4);(2,3)

(
a, b + ε, c + ε, d

)
= L(a(b + ε)cd + ab(c + ε)d + ε)

E3 = (a + ε)(b + ε) c d L(E3) = L(((a + ε)(b + ε) \ ε)(c + ε)(d + ε))
=

(3,3),(4,4);(1,2)

(
a + ε, b + ε, c, d

)
= L(a(b + ε)(c + ε)(d + ε))

∪ L((a + ε)b(c + ε)(d + ε))

Definition 2. Let E = T ;(i,f)
(
E1,n

)
be an EMRE such that E1···n is linear,

T is a free list and (i, f) is a couple of �1, n�2≤. We assume that (i, f) is not in
T and is not overlapped by an element of T . Let L′ be the language defined by:

The language of the expression E = T ;(i,f)
(
E1,n

)
is then defined as follows:

L(E) = L(E1···i1−1) · L( Ei1···f1 ) · L(Ef1+1···i2−1) · · ·
L′ · · ·

L(Ef#T−1+1···i#T −1) · L( Ei#T ···f#T
) · L(Ef#T +1···n)

Case of a Unique Bar Overlapping with Tildes of a Free List. In this
case, our choice is the following: applying a tilde to a list of expressions Ei,j

adds the empty word to the factor Ei···j while applying a bar eliminates every
occurrence of the empty word that appears on the interval of this bar. For

example, for the expression E = a (b + ε)(c + ε) d , the tildes make it possible
to substitute ε to the expression a(b + ε) or to the expression (c + ε)d; on the
opposite, the bar prevents to substitute ε to the expression (b + ε)(c + ε).

Definition 3. Let E = T ′;(i,f)
(
E1,n

)
be an EMRE such that E1···n is linear,

T ′ is a free list and (i, f) is a couple of �1, n�2≤ such that (i, f) /∈ T ′. Let T ′
+ (resp.

T ′
−) be the sublist of T ′ that overlaps (resp. does not overlap) with the bar (i, f).

We set L+ =
⋃

(i′,f ′)∈T ′
+

L( T ′\(i′,f ′)
(
E1, . . . , Ei′−1, ε, . . . , ε, Ef ′+1, . . . , En

)
)

and L− = L( T ′
−;(i,f)

(
E1,n

)
). The language of the expression E is defined by:

L( T ′;(i,f)
(
E1,n

)
) = L− ∪ L+

Case of a List of Bars and a Free List of Tildes. In this case, we have to
make sure that for all word w in L(E), all the bars are correctly applied. As for
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multi-tilde expressions, it amounts to check that for all ε-maximal factor of w,
there is no bar defined over this factor.

Definition 4. Let E = T ′;B
(
E1,n

)
be an EMRE such that E1···n is linear

and T ′ is a free sublist. The language of the expression E is defined as follows:

L( T ′;B
(
E1,n

)
) =

⎧⎨⎩
⋂

(ib,fb)∈B

L( T ′;(ib,fb)
(
E1,n

)
) if B 	= ∅

L( T ′
(
E1,n

)
) otherwise

Case of Disjoint Lists of Bars and Tildes. As for the language of a multi-
tilde expression, we consider the set T of the free sublists of the list of tildes.

Definition 5. Let E = T ;B
(
E1,n

)
be an EMRE such that E1···n is linear.

The language of the expression E is defined as follows:
L( T ;B

(
E1,n

)
) =

⋃
T ′∈T

L( T ′;B
(
E1,n

)
)

3.2 The Language of a Multi-Tilde-Bar EMRE

The language of a not necessarily linear EMRE is defined from the language of
its linearized expression.

Definition 6. Let E = T ;B
(
E1,n

)
be an EMRE and E# be its linearized ex-

pression. Let hE() be the alphabetical morphism associated with the linearization.
By definition, we set L(E) = hE(L(E#)).

Lemma 1. Let E = T ;B
(
E1,n

)
and E# its linearized expression. Let w be a

word of (L(E1)∪ {ε}) · · · (L(En)∪ {ε}). The following four conditions are equiv-
alent: (1)The word w is in L(E); (2)The word w is in hE(L(E#)); (3)There
exists a word w′ in L(E#) such that hE(w′) = w; (4)There exists a word
w′ = w′

1 · · · w′
n in L(E#) such that for all k ∈ �1, n�, hE(w′

k) = wk.

3.3 Properties of EMREs

EMREs have some semantic properties that are useful for conversion of finite
automata. For instance, since tildes make it possible for a factor to be substituted
by the empty word, EMREs have nice nullability properties. Given an expression
F = E1 · · · En and a word w ∈ L(F ), we say that w1 · · · wn is a decomposition
of w if and only if for all k ∈ �1, n�, wk 	= ε ⇒ wk ∈ L(Ek). If the expression
F is not linear, there may exist several decompositions for a given word. The
following lemma addresses the case where F is linear.

Lemma 2. Let F = E1···n be a linear expression and w ∈ L(F ). There exists a
unique decomposition w = w1 · · · wn such that ∀k ∈ �1, n�, wk ∈ L(Ek) ∪ {ε}.

Definition 7. An EMRE E = T ;B
(
E1,n

)
is said to be total if and only if:

T ( B = �1, n�2≤
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Lemma 3. Let E = T ;B
(
E1,n

)
be a linear total EMRE. Let w = w1 · · · wn

be a word of (L(E1)∪ {ε}) · · · (L(En)∪ {ε}). Then the word w is in L(E) if and
only if for all ε-maximal factor wi · · · wf of w, the couple (i, f) is in T .

Lemma 4. Let E = T ;B
(
E1,n

)
be a total EMRE. Let w be a word in (L(E1)∪

{ε}) · · · (L(En) ∪ {ε}). Then the word w is in L(E) if and only if there exists
a decomposition w1 · · · wn of w such that for all ε-maximal factor wi · · · wf , the
couple (i, f) is in T .

4 Conversion of Acyclic Automata into Multi-Tilde-Bar
Expressions

We show that there exists an efficient conversion into multi-tilde-bar expressions
for the class of acyclic automata. We first define the notion of inline automaton
and show that any standard and homogeneous inline (n + 1)-state automaton
can be converted into a multi-tilde-bar expression of size n. We then extend this
result to the class of standard and homogeneous acyclic automata.

4.1 Case of Inline Automata

Definition 8. An acyclic automaton A is inline if and only if for every couple
(q, q′) of states, there exists either a path from q to q′ or a path from q′ to q.

An acyclic automaton is inline if and only if it admits a unique hamiltonian
path. The transitions of this path induce a total order over the set of states and,
as a consequence, an inline automaton admits a unique topological sort.

We now consider the subclass of standard and homogeneous inline (n + 1)-
state automata. Let A = (Σ, Q, {q0}, F, δ) be such an automaton and τ be its
topological sort. Without loss of generality, we suppose that the automaton A
is sorted with respect to τ , i.e. the states are numbered according to their
position in the topological sort τ , the unique initial state having position 0;
hence we have Q = �0, n� and q0 = 0. Since A is standard and homogeneous, it
is possible to define a state-labeling via a mapping hA() from Q to Σ, such that
for all q ∈ Q \ {q0}, hA(q) is the symbol of any transition entering the state q.
Finally, we consider the twin automaton A′ = (Σ′, Q, {0}, F, δ′) of A, defined
over the alphabet Σ′ = �1, n� and such that δ′ is a mapping from Q × Σ′ to 2Q,
with (p, q, q) ∈ δ′ ⇔ (p, hA(q), q) ∈ δ. A twin automaton is obviously a standard,
homogeneous, sorted and inline one.

0 1 2 3
a

c

b c

Fig. 2. A standard, homogeneous
and sorted inline automaton ...

0 1 2 3
1

3

2 3

Fig. 3. ... and its twin automaton
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4.2 From a Standard Homogeneous Inline Automaton to an EMRE

We now show that any standard and homogeneous inline (n+1)-state automaton
can be converted into an EMRE of size n.

Definition 9. Let A = (Σ, Q, {0}, F, δ) be a standard, homogeneous and sorted
inline automaton and A′ = (Σ′, Q, {0}, F, δ′) be its twin automaton. Let n =
#Q−1. We set T = ({(i, f) | f+1 ∈ δ′(i−1, f+1)}∪{(i, n) | i−1 ∈ F})∩�1, n�2≤
and B = �1, n�2≤ \ T .
The expression E′ = T ;B

(
1, . . . , n

)
is the characteristic expression of A′.

The characteristic expression of a twin automaton is obviously total. The EMRE
E = T ;B

(
E1,n

)
is said to be flat if and only if for all k ∈ �1, n�, the expression

Ek is a symbol. The expression E′ is clearly a flat and linear one.
We now study the language of the characteristic expression of a twin automa-

ton. Notice that the mapping hA() can be viewed as an alphabetic morphism
from Σ′∗ to Σ∗. We will say that hA() is the morphism associated with A.

Lemma 5. Let A be an automaton and A′ be its twin automaton. Let hA() be
the associated morphism. Then it holds: hA(L(A′)) = L(A).

Theorem 1. Let A′ be a twin automaton. The characteristic expression E′ =
T ;B
(
1, . . . , n

)
of A′, of size n, can be computed in O(n2) time and is such

that L(A′) = L(E′).

Lemma 4 allows us to compute an EMRE E such that L(E) = L(A).

Theorem 2. Let A be a standard and homogeneous inline (n + 1)-state au-
tomaton. Let E′ = T ;B

(
1, . . . , n

)
be the characteristic expression of the twin

automaton of A. The EMRE E = T ;B
(
hA(1), . . . , hA(n)

)
of size n can be

computed in O(n) from E′ and is such that L(E) = L(A).

The expression E is called the canonical EMRE of the automaton A.

4.3 From an Acyclic Automaton to an EMRE

We now extend Theorem 2 to acyclic automata. In a first step, we consider
acyclic automata that are standard and homogeneous. Given such a (n+1)-state
automaton A, we construct an inline n′-state automaton A′, with n′ ≤ 2(n − 1).

Definition 10. Let A = (Σ, Q, {q0}, F, δ) be a standard and homogeneous acyclic
automaton. Let hA() be the mapping from Q to Σ such that for all q in Q, hA(q) is
the symbol that labels any transition entering in q. Let τ be a topological sort of A.
Let ⊥ be the set {⊥k | τ−1(k + 1) /∈ δ(τ−1(k), hA(τ−1(k + 1)))}. The automaton
A′ = (Σ′, Q′, I ′, F ′, δ′), called the plump automaton of A according to τ , is defined
by: Σ′ = Σ ∪ ⊥, I ′ = {q0}, Q′ = Q ∪ ⊥, F ′ = F and

∀(p, a) ∈ Q′ × Σ′, δ′(p, a) =

⎧⎪⎪⎨⎪⎪⎩
δ(p, a) if (p, a) ∈ Q × Σ
τ−1(k + 1) if p = ⊥k and a = hA(τ−1(k + 1))
⊥k if a = ⊥k and τ(p) = k
∅ otherwise.
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p q r s t
a

c

b d

d

Fig. 4. A standard and homoge-
neous acyclic automaton ...

p q ⊥1 r ⊥2 s t
a ⊥1 b

c

b d

⊥2 c d

Fig. 5. ... and one of its plump automata

Properties of plump automata are gathered in the following lemma.

Lemma 6. Let A = (Σ, Q, {q0}, F, δ) be a standard and homogeneous acyclic
(n+1)-state automaton and A′ = (Σ′, Q′, I ′, F ′, δ′) be one of its plump automata.
Then A′ is a standard and homogeneous inline automaton and it has no more
than 2(n − 1) states. Moreover, for all w in Σ∗, w ∈ L(A) ⇔ w ∈ L(A′).

Following Theorem 2, we compute an EMRE E′ of size n′ such that L(A′) =
L(E′) and show how to compute an EMRE E of size n such that L(E) = L(A).

Theorem 3. Let A be a standard and homogeneous acyclic (n+1)-state automa-
ton. Let A′ be a plump automaton of A and E′ = T ;B

(
E′

1,n′
)

be its canonical
EMRE. Let E = T ;B

(
E1,n′

)
be such that for every k ∈ �1, n′�, Ek = ∅ if

E′
k = ⊥k′ , Ek = E′

k otherwise. Then the EMRE E of size n can be computed in
O(n′) time from E′ and is such that L(E) = L(A).

We now consider the class of acyclic automata and we show that any n-state
acyclic automaton can be converted into an EMRE of size O(n). This result is
based on the following lemma.

Lemma 7. Let A = (Σ, Q, I, F, δ) be an acyclic automaton. Then an equivalent
acyclic automaton A′ = (Σ, Q′, I ′, F ′, δ′), standard, homogeneous and such that
#Q′ ≤ #Σ × #Q can be computed in O(#Σ2 × n2) time.

Theorem 4. Let A be an acyclic n-state automaton. Then it is possible to con-
struct an EMRE E of size O(n) such that L(E) = L(A) in O(n2) time.

5 Conclusion

The main result proved in this paper is that any standard and homogeneous
acyclic automaton is a Glushkov one, as far as conversion into an extended
to multi-tilde-bar expression is concerned. As a corollary, there exists an O(n)
conversion into such an expression for the class of acyclic n-state automata. The
EMRE that we compute from an acyclic n-state automaton is a total one. It
means that O(n2) couples are necessary to define the multi-tilde-bar operator.
We intend to study how to reduce the number of such couples. Finally, notice
that although not described in this paper, there exists an O(n2) time algorithm
for converting an EMRE of size n into an (n + 1)-state automaton.
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Abstract. This paper studies quantum query complexities for deciding
(exactly or with probability 1.0) the parity of permutations of n numbers,
0 through n−1. Our results show quantum mechanism is quite strong for
this non-Boolean problem as it is for several Boolean problems: (i) For
n = 3, we need a single query in the quantum case whereas we obviously
need two queries deterministically. (ii) For even n, n/2 quantum queries
are sufficient whereas we need n − 1 queries deterministically. (iii) Our
third result is for the problem deciding whether the given permutation
is the identical one. For this problem, we show that there is a nontrivial
promise such that if we impose that promise to the input of size n = 4m,
then we need only two quantum queries, while at least 2m+2 (= n/2+2)
deterministic queries are necessary.

1 Introduction

Many papers on query algorithms assume that they compute Boolean functions.
The input of the query algorithm is a black box oracle containing the values of
the variables x1 = a1, x2 = a2, · · · , xn = an for an explicitly known Boolean
function f(x1, · · · , xn). The result of the query algorithm is to be the value
f(a1, · · · , an). The query algorithm can ask for the values of the variables. The
queries are asked individually, and the result of any query influences the next
query to be asked or the result to be output.

The complexity of the query algorithm is defined as the number of the queries
asked to the black box oracle. Deterministic query algorithms prescribe the next
query uniquely depending only on the previously received answers from the black
box oracle. Probabilistic query algorithms allow randomization of the process of
computation.

Quantum query algorithms (see a formal definition in [5]) consists of a finite
number of states in each of which they make a query to the black box oracle
and determine how to change states. In fact they alternate query operations
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and unitary transformations. In the steps called query operations the states of
the algorithm are divided into subsets corresponding to the allowed quantum-
parallel queries. If each of states qi1 , · · · , qim asks a query ”xi =?” then for
every possible answer ”xi = j” a unitary operation over the states qi1 , · · · , qim

is pre-programmed. In the steps called unitary transformations the amplitudes
of all states are transformed according a unitary matrix. All the sequence of the
steps is ended in a special operation called measurement in which the amplitudes
(being complex numbers) for all the states are substituted by real numbers called
probabilities by the following rule. The complex number a + bi is substituted by
the real number a2 + b2. It follows from the unitarity of all the operations that
the total of the probabilities of all states equals 1. Some states are defined to
be accepting, and the other states are defined to be rejecting. This distinction is
not seen before the measurement. After the measurement the probabilities of the
accepting states are totalled and the result is called the accepting probability.
We say that the quantum query algorithm is exact if the accepting probability
is always either 1 or 0.

The notion of promise for quantum algorithm was introduced by Deutsch
and Jozsa [9], and Simon [10]. In quantum query algorithms for problems under
promise the domain of correctness of the algorithm is explicitly restricted. We are
not interested in behavior of the algorithm outside this restriction. For instance,
in this paper all the query algorithms are considered under a promise that the
target function describes a permutation (in a way precisely stated below).

Recently there have been many papers studying query algorithms computing
Boolean functions. A good reference is the survey by Buhrman and de Wolf [5].

We consider in this paper a more general class of functions f(x1, · · · , xn),
namely, functions {0, 1, 2, · · · , n − 1}n → {0, 1}. The domain {0, 1, 2, · · · , n}n

includes a particularly interesting case - permutations. For instance,

x1 = 4, x2 = 3, x3 = 2, x4 = 1, x5 = 0

can be considered as a permutation of 5 symbols {0,1,2,3,4} usually described as
43210. Under such a restriction the functions f : {0, 1, 2, · · · , n − 1}n → {0, 1}
can be considered as properties of permutations. For instance, the function

f(0, 1, 2) = 1, f(1, 2, 0) = 1, f(2, 0, 1) = 1, f(0, 2, 1) = 0, f(1, 0, 2) = 0, f(2, 1, 0) = 0

describes the property of 3-permutations to be even (as opposed to the property
to be odd).

The property of a permutation to be even or odd can be defined in many
equivalent ways. One of the most popular definitions used below is as follows.
A permutation x1 = a1, x2 = a2, · · · , xn = an is called even (odd) if it can be
obtained from the identical permutation x1 = 0, x2 = 1, · · · , xn = n − 1 by an
even (odd) number of transpositions, i.e. mutual changes of exactly two elements
of the permutation: substituting xi = ai and xj = aj by xi = aj and xj = ai. It
is a well-known fact that the property to be even or odd does not depend on the
particular sequence of transpositions. Deciding whether a given permutation is
even or odd is called deciding the parity of this permutation.
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Our Contribution. In this paper, we show that quantum mechanism is quite
strong for this non-Boolean problem as it is for several Boolean problems: (i)
We first show that for n = 3, only a single query is enough in the quantum
case whereas we obviously need two queries deterministically. As for n = 4, it
turns out due to the next result that two quantum queries are enough. Thus
it is an interesting open question whether the true complexity is one or two
for the case of n = 4. (ii) For an even n, n/2 quantum queries are sufficient
whereas we need n − 1 queries deterministically. Since we need n/2 queries for
determining the parity of n Boolean variables [6], we conjecture this result is
somewhat tight. (iii) Our third result is for the problem deciding whether the
given permutation is identical. For this problem, we show that there is a promise
such that if we impose that promise to the input of size n = 4m, then we need
only two quantum queries, while 2m + 2 (= n/2 + 2) deterministic queries are
necessary (and sufficient).

2 First Example

Theorem 1. There is an exact quantum query algorithm deciding the parity of
3-permutations with one query.

Proof. By the way of quantum parallelism, in the state q1 we ask the query x1
with an amplitude 1√

3
, in the state q2 we ask the query x2 with an amplitude

1√
3
, and in the state q3 we ask the query x3 with an amplitude 1√

3
.

If the answer from the black box to the query x1 is 0, we do not change the
amplitude of the state q1. If the answer is 1, we multiply the existing amplitude
to ei 2π

3 . If the answer is 2, we multiply the existing amplitude to ei 4π
3 .

If the answer from the black box to the query x2 is 0, we multiply the ampli-
tude of the state q2 to ei 4π

3 . If the answer is 1, we do not change the amplitude.
If the answer is 2, we multiply the existing amplitude to ei 2π

3 .
If the answer from the black box to the query x3 is 0, we multiply the ampli-

tude the state q3 to ei 2π
3 . If the answer is 1, we multiply the existing amplitude

to ei 4π
3 . If the answer is 2, we do not change the amplitude.

We process the obtained amplitudes of the states q1, q2, q3 by a unitary trans-
formation corresponding to the matrix⎛⎜⎝ ( 1√

3
) ( 1√

3
) ( 1√

3
)

( 1√
3
) ( 1√

3
)ei 2π

3 ( 1√
3
)ei 4π

3

( 1√
3
) ( 1√

3
)ei 4π

3 ( 1√
3
)ei 2π

3

⎞⎟⎠
This transformation is a particular case of Fourier transform. If we are computing
f(0, 1, 2), f(1, 2, 0) or f(2, 0, 1) (these are all even 3-permutations) the amplitude
of the state q1 becomes, correspondingly, 1, ei 2π

3 or ei 4π
3 . After measuring this

state we get the probability 1. If we are computing f(0, 2, 1) (which is an odd
permutation) the amplitude of the state q1 becomes 0 but the amplitude of the
state q2 becomes 1. If we are computing f(1, 0, 2) or f(2, 1, 0) (which are odd
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permutations) the amplitude of the state q1 becomes 0 but the amplitude of the
state q3 becomes ei 4π

3 or ei 2π
3 , correspondingly. ��

3 Further Results

In this section we first prove that there is an exact quantum query algorithm
deciding the parity of 2n-permutations with n queries. Obviously we need 2n−1
deterministic queries.

Theorem 2. For an arbitrary n, there is an exact quantum query algorithm
deciding the parity of 2n-permutations with n queries.

Proof. Let x1 = a1, x2 = a2, ..., xn = an,xn+1 = an+1, ..., x2n = a2n be a
permutation of 2n numbers, 0, 1, through 2n−1, namely ai ∈ {0, ..., 2n−1} and
ai �= aj if i �= j. Then the parity of this permutation, say X , can be calculated
as follows:

First we show an elementary (and well known) lemma for permutations. Let
a sequence of transpositions (exchanging xi = a and xj = b into xi = b and
xj = a) t1, t2, · · · , tm transforms X into the identical permutation. Then the
parity of X does not depend on the efficiency of this transposition sequence.
Namely,

Lemma 1. If there is such a sequence of transpositions, then the parity of X is
even if and only if m is even.

We say that xi is outside if for i ∈ {1, ..., n} (∈ {n + 1, · · · , 2n}, respectively)
ai ∈ {n, ..., 2n− 1}, (∈ {0, ..., n− 1}, respectively). Let xi1 , xi2 , ..., xik

be outside
variables in the first half (i.e., all il ∈ {1, ..., n}). Obviously we must have the
same number of outside variables, xj1 , xj2 , ..., xjk

in the second half.
Now we define the new permutation Y , x1 = b1, x2 = b2, ..., xn = bn,

xn+1 = bn+1, ..., x2n = b2n, as follows: (i) If xi is not an outside variable in X ,
then bi = ai. (ii) If xi is an outside variable and ai is the h-th smallest value in
{ai1 , ai2 , ..., aik

} (namely ai is the h-th smallest value in the missing values ≥ n
in {an+1, ..., a2n}, then bi is the h-th smallest value in {aj1 , aj2 , ..., ajk

}. Let’s
say that xi has the h-th smallest missing value. Here is a small example:

Let
(x1, x2, x3, x4, x5, x6, x7, x8) = (2, 1, 6, 7, 3, 0, 5, 4).

Then since x3 = 6 is the first smallest missing value (i.e., the smallest one in
the missing values that are 4 or larger in the second half (6 and 7 are missing)),
y3 = 0 (i.e., the first smallest missing value in the second half). Also, x4 = 7 and
x5 = 3 are the second smallest missing values. As a result, the new permutation
Y is

(x1, x2, x3, x4, x5, x6, x7, x8) = (2, 1, 0, 3, 7, 6, 5, 4).

We are ready to give our key lemma (recall that k is the number of outside
variables in the first half of X):
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Lemma 2. The parity of X is equal to (the parity of Y ) +k mod 2.

Before the formal poof, let’s look at the above example. Since k = 2, the parity
of X should be equal to the parity of Y . Observe that the first half of the string
Y , namely 2, 1, 0, 3 can be transformed into 0, 1, 2, 3 by one transposition (of
2 and 0). The second half of Y, i.e., 7, 6, 5, 4, is transformed into 4, 5, 6, 7
with two transpositions. Thus the parity of Y is 1 (odd). Note that the original
permutation, X , can be transformed into the identical permutation with five
transpositions (6 and 0 first, and 7 and 3 second, and the same as above after
that) and its parity is also odd.

Proof of Lemma 2. It is not hard to see that the following algorithm transforms
X into the identical permutation:

(1) Let xi and xj be the h-th missing values in the first half and in the second
half, respectively. Then exchange xi and xj . Do this for h = 1, ..., k.

(2) Now the resulting permutation is obviously Y . So, we now transform Y
into the identical permutation.

Note that we need k transpositions for (1) and therefore the lemma follows
by Lemma 1. ��
Now we are entering the final part of the proof of the theorem. The basic idea
is that we can construct the new permutation Y from the original X by looking
at the first half and the second half independently. Furthermore, we can get the
value k also from the first half only and calculate the parity of Y also by looking
at the two parts independently. This allows us to design the following quantum
algorithm:

The quantum query algorithm asks the first half of the input permutation with
amplitude 1√

2
in the state q1 and the second half of the input permutation with

amplitude 1√
2

in the state q2. In the case when the first half is asked the algorithm
computes the value k mod 2 and whether the first half of the permutation of Y
is even or odd. The state q1 does not change the amplitude if those two parities
are both even or both odd and it multiplies the amplitude to (-1) otherwise.
In the case when the second half is asked the algorithm computes whether the
second half of the permutation is even or odd. The state q2 does not change
the amplitude if that is even and it multiplies the amplitude to (-1) otherwise.
Hadamard operation (

( 1√
2
) ( 1√

2
)

( 1√
2
) −( 1√

2
)

)
is applied to the states q1 and q2 followed by measurements of the states q1 and
q2. Lemma 2 provides the correctness of this exact quantum query algorithm. ��

Corollary 1. For arbitrary n, there is an exact quantum query algorithm de-
ciding the parity of (2n + 1)-permutations with n + 1 queries.

Proof. 2n + 1-permutations can be regarded as (2n + 2)-permutations with a
fixed value x2n+2 = 2n + 2. ��
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Theorem 2 and Corollary 1 produce our best results on advantages of exact
quantum query algorithms over deterministic ones when deciding the parity
problem for permutations.

Open problem 1. Does there exist a better quantum query algorithm for parity
of permutations? The case for n = 4 might be particularly interesting; two
queries are enough by Theorem 2 and a single one is enough for n = 3. More
observation on this issue will be given in Section 4.

Note that a quantum lower bound of n/2 queries is known for determining the
parity of n Boolean variables [6]. Hence it might be hard to improve Theorem
2 substantially. However, if we consider other permutation problems and more
restrictive promises, it is possible to achieve much more advantages of exact
quantum query algorithms over deterministic ones.

Theorem 3. There is a 4m-permutation problem and a promise such that:

1. There is an exact quantum query algorithm deciding this problem with two
queries.

2. There is no deterministic query algorithm deciding this problem with less
than 2m + 2 queries.

Proof. Our problem is whether or not the given permutation is identical. How-
ever, we also impose the following promise which is always satisfied by the input:
Consider the following 6m pairs:

(x1, x2), (x5, x6), ..., (x4m−3, x4m−2),
(x1, x3), (x5, x7), ..., (x4m−3, x4m−1),
(x1, x4), (x5, x8), ..., (x4m−3, x4m),
(x2, x3), (x6, x7), ..., (x4m−2, x4m−1),
(x2, x4), (x6, x8), ..., (x4m−2, x4m),
(x3, x4), (x7, x8), ..., (x4m−1, x4m).

Then the promise asserts that the input is an identical permutation (answer
YES) or exactly half of the above-mentioned 6m pairs (xi, xj) are such that
xi �= i or xj �= j (answer NO). A closer look at the 6m pairs shows that these
pairs have a simple structure. There are m groups of the variables, namely,

(x1, x2, x3, x4)
(x5, x6, x7, x8)

· · · · · ·
(x4m−3, x4m−2, x4m−1, x4m)

such that all the variables of each group are pairwise related in some pair.
We first consider the deterministic query complexity. Let an instance be

x1, x2, ..., x4m. Namely, we have n = 4m variables and m groups including four
variables in each. Also let A be an arbitrary deterministic algorithm that solves
the problem. A query to position xi reveals whether that position is “identical,”
i.e., xi = i or “non-identical,” i.e., xi �= i. Note that the number of non-identical
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positions must be zero when the answer is YES, but many different cases exist
for NO, such as (i) x1 to x3, x5 to x7 and so on (3/4 positions in total) are
identical, (ii)) x1 to x2m (1/2 positions in total) are identical, and many others.

We now prove that A needs at least n/2+2 queries. Notice that in the course
of A’s execution, if we have an answer of non-identical for any position, then
we can output NO immediately. So the hard case is that all the answers are
identical where we are supposed to answer YES. The idea for the proof is to
consider ”efficiency” of the queries to each single group. One can see that if we
ask four queries to a group, then (if all the answers are identical) we can assure
that six pairs are identical, or 1.5 pairs per query on average. However, if we ask
three queries to a group, we can assure only three pairs are identical, or 1.0 pair
per query on average. If we can spend at most 2m + 1 queries, then since we
need to assure at least 3m + 1 pairs are identical to answer YES, we must use
the most efficient queries for almost all groups.

We consider two (even m and odd m) cases. Suppose that A needs at most
n/2 + 1(= 2m + 1) queries.

Case 1. We first consider the case that m is even.

Lemma 3. A asks four queries (i.e., asks the values of all the four variables)
against at least m/2 groups for at least one instance.

Proof. Suppose for contradiction that A (at most 2m+1 queries for any instance)
asks four queries against m/2 − 1 groups for any instance X . Then we already
spent 2m − 4 queries and so the number of remaining queries is five. There
are several possibilities for how to use those five queries; let’s consider, e.g., A
asks three queries to one new group and two queries to another new group.
Furthermore suppose also that all the answers are identical. Then it is assured
that 6(m/2 − 1) + 3 + 1 = 3m − 2 pairs are identical. However, this number
of identical pairs still leaves the possibility of answer NO (and of course answer
YES is also possible for exactly the same pattern of answers), a contradiction.
Other ways of spending the five queries, two queries against two new groups and
one query against another new group, for example, makes the situation even
worse, or the number of assured identical pairs decreases. If A asks four queries
against less than m/2−1 groups also makes the situation worse. Thus the lemma
is proved. ��
By Lemma 3, A already spent 2m (four queries against m/2 groups) queries and
it has only one remaining query. However, if we ask one query to a new group and
the answer is identical, we cannot assure even one additional identical pair. So, if
all the answers are identical against those 2m + 1 queries, we cannot distinguish
the two cases, one that there are 3m identical pairs (answer is NO) and the other
that all pairs are identical (answer is YES).

Case 2. We next consider the case that m is odd.

Lemma 4. A asks four queries against at least (m − 1)/2 groups for at least
one instance.
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Proof. Similar to the proof of Lemma 3. This time, if we ask four queries against
(m− 1)/2− 1 groups, then we already spent 2m− 6 queries and have remaining
seven queries. The most efficient way of using these seven queries is to use 3, 3 and
2 queries to new three groups. Even so, we can assure 6(m−1)/2−6+3+3+1 =
3m− 2 identical pairs, which is not sufficient for the same reason as before. ��

Let’s continue the proof for Case 2. After four queries against (m− 1)/2 groups,
we have three queries remaining. However, if all the answers are identical, then
we can assure 3m identical pairs, which is again not sufficient as in Case 1. Thus
the deterministic complexity has been proved.

The quantum query algorithm asks with an amplitude 1√
6m

of the state qi,j

the values of the variables xi and xj from any of the 6m pairs from the list
above. If xi = i and xj = j then the amplitude is not changed. Otherwise, the
amplitude is multiplied to (−1). After that we can use the standard Fourier
transform to see whether all the amplitudes are positive or exactly one half of
them negative. ��
Note that the deterministic algorithm given above is optimal, namely we can
obtain a correct answer (whether the input has all identical positions (YES) or
exactly one half of the pairs are identical (NO)) with at most n/2+2(= 2m+2)
queries. Our algorithm is simple: if m is even, just make four queries to each of
m/2 groups in an arbitrary order. If we get answer non-identical for any position,
then answer NO. Otherwise, i.e., if all the answers are identical, then we make
two queries to an arbitrary new group. If both answers are identical, then we
now know that the number of identical pairs are strictly more than one half and
therefore the answer must be YES by the promise. Otherwise, answer NO.

If m is odd, then we make four queries to each of (m− 1)/2 groups. If all the
answers are identical, then we ask two queries to a new group. If both answers
are identical, then we now know that if the answer is NO, then this group must
be three identical pairs and no identical pairs exist in any of the remaining group.
(Notice that it is impossible for exactly two pairs to be identical in a group.)
Thus we ask two queries to another new group and output NO if at least one
answer is non-identical. Output YES otherwise.

4 Conclusion

Obviously there is a lot of interesting future work. As mentioned in Section
3, obtaining lower bounds seems most important. Suppose that n is even and
our input X , given as x1, x2, ..., xn, is restricted as follows: For i = 1, 2, ..., n/2,
xi = i and x(n/2)+i = (n/2) + i (i.e., both are identical) or xi = (n/2) + i and
x(n/2)+i = i (i.e., two positions are exchanged). Then one can easily see that X
is even iff the identical positions in the first half is even. This means that we
can derive a lower bound of n/4 for our problem from the lower bound for the
Boolean parity function [6]. The real bound is probably more than that but we
do not have any specific bound in the moment and that is why there is still a
possibility that the case for n = 4 can be solved with a single quantum query,
as mentioned in Section 3.
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One can also notice that the pairs in Theorem 3 can be changed to triples and
in general to k-tuples (and we also need to change the size of groups accordingly).
Then the quantum query complexity is k as before, but we can probably prove
several different deterministic complexities due to the different settings.
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Abstract. We introduce a novel winning condition for infinite two-
player games on graphs which extends the request-response condition
and better matches concrete applications in scheduling or project plan-
ning. In a poset game, a request has to be responded by multiple events in
an ordering over time that is compatible with a given partial ordering of
the events. Poset games are zero-sum, but there are plays that are more
desirable than others, i.e., those in which the requests are served quickly.
We show that optimal strategies (with respect to long term average ac-
cumulated waiting times) exist. These strategies are implementable with
finite memory and are effectively computable.

1 Introduction

The use of two-player games of infinite duration has a long history in the syn-
thesis of controllers for reactive systems (see [3] for an overview). Classically, the
quality of a winning strategy is measured in the size of the memory needed to
implement it. But often there are other natural quality measures: in many games
(even if they are zero-sum) there are winning plays for Player 0 that are more
desirable than others, often given by notions of waiting that reflect periods of
waiting in the modeled system. In reachability games, this can be the number of
steps before the play reaches one of the designated vertices, in Büchi games the
number of steps between visits of the designated vertices, and in parity games
the number of steps between visits of the minimal even color seen infinitely often.

Another winning condition with a natural notion of waiting is the request-
response condition [6]. It is given by pairs (Qj , Pj) of subsets of the graph’s
vertices. Player 0 wins a play if every visit of Qj is eventually responded by a
visit of Pj . The waiting time is given by the number of steps between a request
and the next response. As there might be several request-response pairs, there
is a trade-off between the pairs: it can be favorable to delay the response of a
pair to answer another request more quickly. Wallmeier [5] defined the value of
a play to be the long-term average accumulated waiting time and the value of
a strategy to be the worst-case outcome. He then proved that optimal winning
strategies exist and are effectively computable (see also [4,7]).
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However, request-response winning conditions are often too weak to express
real-life requirements concisely, because a request is responded by a single event.
Imagine an intersection with a level crossing: if a train approaches the crossing
(a request), then all traffic lights have to be switched to red, then the boom
barriers are lowered, the train gets an all-clear signal and crosses the intersec-
tion. Afterwards, the barriers are raised and the lights are switched to green. It
would be rather cumbersome to model this requirement using request-response
conditions with a single event as response. Another example is motivated by
project planning: a project consists of several subtasks (and their durations)
and a partial ordering of the subtasks, e.g., specifying that the roof of a house
cannot be constructed before the walls are built. A plan is then a linearization
of this partial ordering.

These examples motivate to replace a response by a partially ordered set of
events and require Player 0 to answer every request by an embedding of these
events in time. This generalization of request-response games retains the natural
definition of waiting times. Hence, the framework for request-response games can
be adapted to the new type of games, called poset games.

We prove that optimal winning strategies for poset games exist, which are
again finite-state and effectively computable. To this end, we adapt the proof
presented in [4] for request-response games. However, the increased expressive-
ness of poset games requires substantial changes. As a request is no longer re-
sponded by a single event, there can be different requests that are answered to
a different degree at a given position, i.e., the embeddings can overlap. This re-
quires additional bookkeeping of the events that still have to be embedded and
changes to the definition of waiting times. Informally, in request-response games,
there is a single clock for every pair (Qj , Pj) that is started when Qj is visited
and stopped as soon as Pj is visited afterwards; requests that are encountered,
while the clock is already active, are ignored. This is no longer possible in poset
games: here, we need a clock for every request, due to the overlapping of em-
beddings. Hence, we do not only have to bound the waiting times to obtain our
result, but also the number of open requests, i.e., the number of active clocks.

This paper is structured as follows: Section 2 fixes our notation and introduces
poset games, which are solved by a reduction to Büchi games in Section 3. Finally,
in Section 4 the existence of optimal strategies is proven. All proofs omitted due
to space restrictions can be found in [8].

2 Definitions

Throughout this paper let P be a set of events. The power set of a set S is
denoted by 2S, N is the set of non-negative integers, and let [n] :={1, . . . , n}.
The prefix-ordering on words is denoted by �, its strict version by �. Given a
sequence (wn)n∈N of finite words such that wn � wn+1 for all n, limn→∞ wn

denotes the unique ω-word induced by the wn. Let (fn)n∈N be a sequence of
functions fn : A → B and f : A → B. We say that (fn)n∈N converges to f ,
limn→∞ fn = f , if ∀a ∈ A∃na ∈ N ∀n ≥ na : fn(a) = f(a).
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Infinite Games. An (initialized and labeled) arena G = (V, V0, V1, E, s0, lG)
consists of a finite directed graph (V, E), a partition {V0, V1} of V denoting the
positions of Player 0 and Player 1, an initial vertex s0 ∈ V , and a labeling
function lG : V → 2P . It is assumed that every vertex has at least one outgoing
edge. A play ρ = ρ0ρ1ρ2 . . . is an infinite path starting in s0. A strategy for
Player i is a (partial) mapping σ : V ∗Vi → V such that (s, σ(ws)) ∈ E for all
w ∈ V ∗ and all s ∈ Vi. A play ρ is consistent with σ if ρn+1 = σ(ρ0, . . . ρn) for
all ρn ∈ Vi. The unique play consistent with the strategies σ for Player 0 and τ
for Player 1 is denoted by ρ(σ, τ).

A game G = (G, ϕ) consists of an arena G and a winning condition ϕ speci-
fying the set of winning plays for Player 0. All other plays are won by Player 1.
A strategy σ is a winning strategy for Player i if every play consistent with σ is
won by Player i. Player i wins G (and Player 1 − i loses G) if she has a winning
strategy for G. A game is determined if one of the Players has a winning strategy.

Game Reductions. A memory structure M = (M, m0, update) for G consists
of a set M of memory states, an initial memory state m0 ∈ M , and an update
function update : M × V → M . The update function can be extended to a
function update∗ : V ∗ → M by defining update∗(s0) = m0 and update∗(ws) =
update(update∗(w), s). A next-move function for Player i next : Vi × M → S
has to satisfy (s, next(s, m)) ∈ E for all s ∈ Vi and all m ∈ M . It induces
a strategy σ with memory M via σ(ws) = next(s, update∗(ws)). A strategy is
called finite-state if it can be implemented with finite memory, and positional if
it can be implemented with a single memory state.

An arena G and a memory structure M for G induce the expanded arena
G×M = (V ×M, V0×M, V1×M, E′, (s0, m0), lG×M) where ((s, m), (s′, m′)) ∈ E′

iff (s, s′) ∈ E and update(m, s′) = m′, and lG×M(s, m) = lG(s). Every play ρ′ =
(ρ0, m0)(ρ1, m1)(ρ2, m2) . . . in G×M has a unique projected play ρ = ρ0ρ1ρ2 . . .
in G. Conversely, every play ρ = ρ0ρ1ρ2 . . . in G has a unique expanded play
ρ′ = (ρ0, m0)(ρ1, m1)(ρ2, m2) . . . in G×M defined by mn+1 = update(mn, ρn+1).
A game G = (G, ϕ) is reducible to G′ = (G′, ϕ′) via M, written G ≤M G′, if
G′ = G × M and every play in G′ is won by the player who wins the projected
play in G.

Remark 1. If G ≤M G′ and Player i has a positional winning strategy for G′,
then she also has a finite-state winning strategy with memory M for G.

Poset Games. A (labeled) partially ordered set (poset for short) P = (D,�, lP)
consists of a domain D, a reflexive, antisymmetric and transitive relation � over
D, and a labeling function lP : D → P . The set of non-empty upwards-closed
subsets of P is denoted by Up(P); its size can be bounded by |D| ≤ |Up(P)| ≤
2|D| − 1.

Let ρ be an infinite path in an arena G with labeling function lG. An embedding
in time, embedding for short, of P in ρ is a function f : D → N such that
lP(d) ∈ lG(ρf(d)) and d � d′ implies f(d) ≤ f(d′). An embedding of P in a finite
path w is defined analogously.
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A poset game G = (G, (qj ,Pj)j∈[k]) consists of an arena G as above and a
finite collection of (request-poset) conditions (qj ,Pj) where qj ∈ P is a request
(of condition j) and Pj = (Dj ,�j, lj) is a finite labeled poset. Player 0 wins a
play ρ iff qj ∈ lG(ρn) implies that Pj can be embedded in ρnρn+1ρn+2 . . . for all
j ∈ [k] and all n ∈ N.

To define the waiting times we need to keep track of the unanswered requests.
For j ∈ [k], D ⊆ Dj and s ∈ V let Newj(s) = Dj if qj ∈ lG(s) and Newj(s) = ∅
otherwise, and Embj(D, s) = {d ∈ D | ∃d′ ∈ D : d′ �j d and lj(d′) /∈ lG(s)}.
The set Embj(D, s) contains the elements of D that cannot be embedded into s
since a smaller element d′ ∈ D cannot be mapped to s. The set of open requests
of condition j after the finite play w is defined inductively by Openj(ε) = ∅ and

Openj(ws) = {(Embj(D, s), t+1) | (D, t) ∈ Openj(w)∪{(Newj(s), 0)}}\{∅}×N.

That is, Openj(ws) deletes all those elements from the open requests D in
Openj(w) that can be embedded into s, adds a tick to the clock t of every re-
quest that is not yet responded completely, checks for new requests, and deletes
responded requests. If (D, t + 1) ∈ Openj(ρ0 . . . ρn), then there was a request
of condition j at position n − t, the elements of Dj\D can be embedded into
ρn−t . . . ρn, and Player 0 has to embed all elements of D in the future to respond
to this request.

Note that Openj(w) contains only upwards-closed subsets of Pj. The number
of open requests D ∈ Up(Pj) of condition j after w is sj,D(w) = |{t | (D, t) ∈
Openj(w)}|. A set D ∈ Up(Pj) is open indefinitely in ρ0ρ1ρ2 . . ., if there exists
a position n such that (D, t) ∈ Openj(ρ0 . . . ρn+t) for all t > 1.

Lemma 1. Let ρ = ρ0ρ1ρ2 . . . be a play. For all j ∈ [k]:

(i) If Player 0 wins ρ, then (Openj(ρ0 . . . ρn))n∈N induces an embedding fm of
Pj in ρmρm+1ρm+2 . . . for every position m such that qj ∈ lG(ρm).

(ii) ρ is won by Player 0 iff there is no D ∈ Up(Pj) that is open indefinitely.

For the remainder of this paper, let (G, (qj ,Pj)j∈[k]) be a poset game, where
Pj = (Dj ,�j , lj). Furthermore, let cj := |Up(Pj)| and c :=

∑k
j=1 cj .

3 Solving Poset Games

In this section, poset games are reduced to Büchi games. The memory stores
the elements of the posets Pj that still have to be embedded. A cyclic counter
ensures that all requests are responded by an embedding eventually.

Theorem 1. Poset games are reducible to Büchi games and therefore deter-
mined with finite-state strategies.

Proof. Let h =
∑k

j=1 |Dj | and fix an enumeration e : [h] →
⋃k

j=1{j} × Dj . We
assume h > 1 (without loss of generality) to obtain a nontrivial counter. The
memory structure M = (M, m0, update) consists of M =

∏k
j=1 Up(Pj) × [h] ×

{0, 1}, m0 = (Emb1(New1(s0), s0), . . . , Embk(Newk(s0), s0), 1, 0), and we define
update((O1, . . . , Ok, m, f), s) = (O′

1, . . . , O
′
k, m′, f ′) with
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– O′
j =

{
Embj(Dj , s) if qj ∈ lG(s)
Embj(Oj , s) if qj /∈ lG(s)

,

– m′ =

{
(m mod h) + 1 if e(m) = (j, d) and d /∈ O′

j or lj(d) ∈ lG(s)
m if e(m) = (j, d) and d ∈ O′

j and lj(d) /∈ lG(s)
,

– f ′ =

{
1 if m �= m′

0 otherwise
.

Finally, let F = V ×
∏k

j=1 Up(Pj) × [h] × {1} and let G′ = (G × M, F ) be a
Büchi game in the expanded arena. Verifying G ≤M G′ is now straightforward.
Positional determinacy of Büchi games [3] and Remark 1 finish the proof.

If e is defined such that the elements of each domain Dj are enumerated con-
secutively and such that d �j d′ implies e−1(j, d) ≤ e−1(j, d′), then it takes at
most h + |Dj | visits to vertices in F after a request of condition j to complete
an embedding of Pj in the projected play.

The size of M can be bounded by |M | ≤ h · 2h+1, which is asymptotically
optimal. This can be shown by transforming the family of request-response games
presented in Theorem 2 of [6] into poset games.

4 Time-Optimal Strategies for Poset Games

Waiting times for poset games are defined employing the information given by
the open requests in Openj(w). Define the

– totalized waiting time for D ∈ Up(Pj) after w: tj,D(w) =
∑

(D,t)∈Openj(w) t,

– penalty after w: p(w) =
∑k

j=1
∑

D∈Up(Pj) tj,D(w),
– value of a play ρ: v(ρ) = lim supn→∞

1
n

∑n−1
i=0 p(ρ0 . . . ρi),

– value of a strategy σ: v(σ) = sup{v(ρ(σ, τ)) | τ strategy for Player 1}.
Hence, the influence of an open request on the value of a play grows quadrati-
cally in the waiting time, which penalizes longer waiting times more severely. A
strategy σ for Player 0 is optimal if v(σ) ≤ v(σ′) for all strategies σ′ for Player 0.
The following lemma is a simple consequence of Lemma 1.

Lemma 2. Let ρ be a play and σ a strategy for Player 0.

(i) If v(ρ) < ∞, then Player 0 wins ρ.
(ii) If v(σ) < ∞, then σ is a winning strategy for Player 0.

Note that the other directions of the statements are false: there are plays of
infinite value that are won by Player 0.

Theorem 1 implies an upper bound on the value of an optimal strategy.

Corollary 1. Let h =
∑k

j=1 |Dj |. If Player 0 wins G, then she also has a win-
ning strategy σ with

v(σ) ≤
k∑

j=1

(
cj ·

|G|(h + |Dj|)(|G|(h + |Dj |) + 1)
2

)
= : bG .
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Let σ be a strategy for Player 0 and D ∈ Up(Pj) for some condition j. We say that
σ uniformly bounds the waiting time for D to b, if for all finite plays w consistent
with σ it holds that t ≤ b for all (D, t) ∈ Openj(w). Analogously, σ uniformly
bounds the totalized waiting time for D to b, if tj,D(w) ≤ b for all finite plays w
consistent with σ. If the (totalized) waiting time for all D ∈ Up(Pj) is bounded,
then the length of the embeddings that respond to a request is also bounded.

Remark 2. Let σ be a strategy for Player 0. If σ uniformly bounds the waiting
time for D to b, then σ also uniformly bounds the totalized waiting time for D
to 1

2b(b + 1).

We are now able to state the main theorem of this paper, which will be proved
in the remainder of this section.

Theorem 2. If Player 0 wins a poset game G, then she also has an optimal
winning strategy which is finite-state and effectively computable. The value of an
optimal strategy is effectively computable as well.

4.1 Strategy Improvement for Poset Games

We begin by defining a strategy improvement operator Ij,D for every D ∈ Up(Pj).
It deletes loops of plays, consistent with the given strategy, that are spent waiting
for a position into which an element from D has been embedded. Hence, the
intervals in which D is an open request will be shorter if Player 0 plays according
to the improved strategy. Doing this repeatedly will uniformly bound the waiting
time tj,D. However, the improved strategy has to ensure that no other responses
get incomplete by deleting loops, i.e., the improved strategy is still winning for
Player 0. Also, we do not want the value of the improved strategy to be greater
than the value of the original strategy. We begin by defining the operator and
then prove that it has the desired properties. Afterwards we show how to obtain
uniform bounds on the waiting time by applying each Ij,D infinitely often.

Let σ be a winning strategy (not necessarily finite-state) for Player 0 such
that v(σ) ≤ bG . The strategy Ij,D(σ) is implemented with memory structure
M = (M, m0, update) where M is a subset of the finite plays consistent with σ
and defined implicitly. The initial memory state is m0 = s0 and update(w, s) is
defined by a case distinction:

Player 0 only skips loops if the totalized waiting time for D is guaranteed
to be higher than the value of the strategy, i.e., at least bG . Then, the value of
the play does not increase from taking a shortcut. Thus, if tj,D(ws) ≤ bG , let
update(w, s) = ws. Hence, if the totalized waiting time is small, then she copies
the original play according to σ.

Otherwise, if tj,D(ws) > bG consider the tree Tσ
ws containing all finite contin-

uations of ws that are consistent with σ restricted to those paths wsx such that
Openj(wsx′)∩ ({D} × N) �= ∅ for all x′ � x. This tree contains all continuations
of ws up to the point where the first element of the open request D can be
embedded into. This tree is finite since σ is a winning strategy. The set of finite
plays zs of Tσ

ws such that tj′,D′(zs) ≥ tj′,D′(ws) and sj′,D′(zs) ≥ sj′,D′(ws) for
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all j′ ∈ [k] and all D′ ∈ Up(Pj′ ) is non-empty as it contains ws. Let x be a play
of maximal length in that set. Then, update(ws) = x. So, if the totalized waiting
time for D is sufficiently high, then Player 0 looks ahead whether ws is the start
of a loop such that the totalized waiting times and the number of open requests
for all j′ ∈ [k] and all D′ ∈ Up(Pj′ ) are higher at the end of the loop than they
were at the beginning. Then, she jumps ahead (by updating the memory to x)
and continues to play as if she had finished the loop already.

The condition on tj′,D′ ensures that she does not miss a vertex that she has to
visit in order to embed an element of the posets. This ensures that the improved
strategy is still winning for Player 0. The condition on sj′,D′ guarantees that the
value of the play does not increase from taking a shortcut by jumping ahead to
a position where more requests will be open than before.

Finally, define next(s, ws) = σ(ws). Thus, Player 0’s choice of the next move
assumes that she has already finished the loops which were skipped by the mem-
ory update. The improved strategy Ij,D(σ) is now given by M and next.

Lemma 3. Let σ be a winning strategy for Player 0, j ∈ [k], and D ∈ Up(Pj).

(i) If σ bounds the totalized waiting time for some D′ ∈ Up(Pj′ ) to b, then so
does Ij,D(σ).

(ii) v(Ij,D(σ)) ≤ v(σ).
(iii) Ij,D(σ) is a winning strategy for Player 0.

In order to obtain small bounds on the waiting times, each improvement operator
Ij,D is now applied infinitely often to a given initial winning strategy. The limit
of the strategies improved with Ij,D uniformly bounds the totalized waiting time
for D. Furthermore, all properties stated in Lemma 3 can be lifted to the limit
strategy as well.

The order of improvement is given by enumerations ej : [cj ] → Up(Pj) such
that |D| > |D′| implies e−1

j (D) < e−1
j (D′). Thus, the subsets are enumerated

in order of decreasing size. Given a winning strategy σ0 for Player 0 such that
v(σ0) ≤ bG (whose existence is guaranteed by Corollary 1), define

– σj,l,0 =

{
σj−1 if l = 1
σj,l−1 otherwise

for j ∈ [k] and l ∈ [cj ],

– σj,l,n+1 = Ij,ej(l)(σj,l,n) for j ∈ [k], l ∈ [cj ], and n ∈ N,
– σj,l = limn→∞ σj,l,n for j ∈ [k] and l ∈ [cj ], and
– σj = σj,cj for j ∈ [k].

For notational convenience, let σj,0 = σj−1 for j ∈ [k]. Before we discuss the
properties of the strategies defined above, we need to introduce some additional
notation that is used to bound the waiting times.

The strategy improvement operator Ij,D skips a loop if the vertices at the
beginning and at the end coincide and the values sj′,D′ and tj′,D′ at the end
are greater than or equal to the values at the beginning. Hence, we say that
two finite plays y1 � y2 form a Dickson pair [1] if their last vertices coincide
and sj′,D′(y1) ≤ sj′,D′(y2) and tj′,D′(y1) ≤ tj′,D′(y2) for all j′ ∈ [k] and all
D′ ∈ Up(Pj′ ). Dickson pairs are candidates for deletion by Ij,D.
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The set D is in Openj throughout a loop skipped by Ij,D. Accordingly, an infix
ρm . . . ρm+n of a play ρ is called non-Dickson save D if tj,D increases strictly
monotonic throughout the infix and if there are no m ≤ g < h ≤ m + n such
that ρ0 . . . ρg and ρ0 . . . ρh are a Dickson pair. The length of such an infix can be
bounded inductively by a function b in the size n of G and in c =

∑k
j=1 |Up(Pj)|.

If c = 1, then the single set is D, whose values increase monotonically. Hence,
there is a vertex repetition after at most |G| steps. Therefore, b(n, 1) = n.

If c + 1 > 1, then tj′,D′ (and thereby also sj′,D′) has to be reset to 0 after
at most b(n, c) steps for every D′ �= D. If not, then the initial prefix of length
b(n, c) contains a Dickson pair by induction hypothesis. For the same reason,
for every c′ ∈ [c] there are c′ sets D′ such that tj′,D′ (and also sj′,D′) was
reset to 0 in the last b(n, c′) steps. If not, then this infix would again contain a
Dickson pair by induction hypothesis. Accounting for all possible combinations,
we obtain b(n, c + 1) = b(n, c) + nc!

∏c
j=1

1
2 (b(n, j))2(b(n, j) + 1), as we have

tj′,D′(xy) ≤ 1
2 |y|(|y| + 1) and sj′,D′(xy) ≤ |y| if tj′,D′(x) = 0.

Note that the same idea can be applied to request-response games, which
lowers the bounds given in [4,5].

Now, we are able to lift the properties of the strategy improvement operator
to the limit of the improved strategies and to bound the waiting times.

Lemma 4. Let j ∈ [k], l ∈ [cj ], and ej(l) = D. Then:

(i) limn→∞ σj,l,n exists.
(ii) If σj,l−1 uniformly bounds the totalized waiting time for some D′ ∈ Up(Pj′),

then so does σj,l.
(iii) v(σj,l) ≤ v(σj,l−1), and therefore v(σj) ≤ v(σj−1).
(iv) σj,l uniformly bounds the waiting time for D to

bj,D := bG + (|Dj\D| + 1) · b (|G|, c) .

These properties of the improved strategies can be combined to show that the
waiting times can be bounded without increasing the value of a strategy.

Lemma 5. For every winning strategy σ0 for Player 0 with v(σ0) ≤ bG, there
is a winning strategy σk for Player 0 that bounds sj,D to bj,D and tj,D to
tbj,D := 1

2 (bj,D(bj,D + 1)) for all j ∈ [k] and all D ∈ Up(Pj). Furthermore,
v(σk) ≤ v(σ0).

4.2 Reducing Poset Games to Mean-Payoff Games

In this subsection, we reduce the poset game to a mean-payoff game [2], which
we will introduce in the following.

A mean-payoff game G = (G, d, l) consists of an arena G = (V, V0, V1, E, s0),
d ∈ N and a labeling function l : E → {−d, . . . , d} (note that l labels the
edges in this case). Let ρ be a play in G. The gain v0(ρ) for Player 0 is de-
fined as v0(ρ) = lim infn→∞

1
n

∑n−1
i=0 l(ρi, ρi+1) and the loss v1(ρ) for Player 1

is v1(ρ) = lim supn→∞
1
n

∑n−1
i=0 l(ρi, ρi+1). Player 0’s goal is to maximize v0(ρ)
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whereas Player 1 aims to minimize v1(ρ). A strategy σ for Player 0 guarantees
a gain of v if v0(ρ) ≥ v for every play ρ consistent with σ. Analogously, τ for
Player 1 guarantees a loss of v if v1(ρ) ≤ v for every play ρ consistent with τ .

Theorem 3 ([2,9]). Let G be a mean-payoff game. There exists a value νG
and positional strategies σ and τ that guarantee νG for Player 0 and Player 1,
respectively. These strategies are optimal, i.e., there is no strategy for Player i
that guarantees a better value for her. Furthermore, σ, τ and νG are computable
in pseudo-polynomial time.

Now, we explain the reduction. The memory keeps track of the totalized wait-
ing time tj,D(w) for every j ∈ [k] and every D ∈ Up(Pj). To be able to com-
pute tj,D(ws) from tj,D(w) in every update of the memory state, sj,D(w) has to
be stored as well. Due to Lemma 5 we can bound tj,D(w) by tbj,D and sj,D(w) by
bj,D. If these bounds are exceeded, then the memory is updated to a sink state m↑.
Hence, we obtain a finite memory structure M. The formal definition is straight-
forward, but technical, and can be found in the long version of this paper [8].

The arena for the mean-payoff game G′ is G×M where an edge is labeled by
the sum of the totalized waiting times at the source of the edge. The value d is
defined appropriately and is also the weight of all edges originating from a vertex
with memory state m↑. As it is Player 1’s goal to minimize the limit superior of
the average edge labels, we have to exchange the positions of the players. This
finishes the definition of G′.

If the totalized waiting times in play ρ of the poset game G are bounded by
tbj,D, then the values v(ρ) and v1(ρ′) are equal, where ρ′ is the expanded play
of the mean-payoff game G′. Dually, if a play ρ′ of G′ avoids the vertices with
memory state m↑, then v1(ρ′) = v(ρ), where ρ is the projected play of ρ′.

Now, we are able to prove Theorem 2: let Player 0 win G. Corollary 1 and
Lemma 5 imply that there is a strategy for Player 1 in G′ that avoids the vertices
with memory state m↑. Hence, the value νG′ is smaller than d and an optimal
strategy for Player 1 for G′ avoids the vertices with memory state m↑, too. It is
now easy to show that an optimal positional strategy for Player 1 for G′ induces
an optimal finite-state strategy for Player 0 for G. Furthermore, the values of
both optimal strategies coincide.

5 Conclusion

We have introduced a novel winning condition for infinite two-player games that
extends the request-response condition while retaining a natural definition of
waiting times. These games are well-suited to add aspects of planning to the
synthesis of finite-state controllers for reactive systems. We proved that optimal
strategies (with respect to long-term average accumulated waiting times) exist
and are effectively computable. The memory size of the optimal strategy com-
puted here is super-exponential. However, this holds already for request-response
games. Thus, the increased expressiveness of the poset condition does not add
too much additional complexity.
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In future research, the memory size should be analyzed: determining the com-
putational complexity of finding optimal strategies and proving tight upper and
lower bounds on the memory size of an optimal strategy. The size of the mean-
payoff game (and thus the memory) can be reduced by finding better bounds
on the length of non-Dickson infixes. Also, one should investigate, whether the
(costly, in terms of time and space) reduction to mean-payoff games is necessary:
can an optimal strategy be computed without a reduction?

Another direction of further research is to consider discounted waiting times
and to establish a reduction to discounted payoff games [9]. Furthermore, the
reduction to Büchi games induces a uniform upper bound on the waiting times
in poset games, but the (efficient) computation of optimal bounds should be
addressed as well.
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Abstract. When D. Hilbert used nonconstructive methods in his fa-
mous paper on invariants (1888), P.Gordan tried to prevent the pub-
lication of this paper considering these methods as non-mathematical.
L. E. J. Brouwer in the early twentieth century initiated intuitionist
movement in mathematics. His slogan was ”nonconstructive arguments
have no value for mathematics”. However, P. Erdös got many exciting
results in discrete mathematics by nonconstructive methods. It is widely
believed that these results either cannot be proved by constructive meth-
ods or the proofs would have been prohibitively complicated. R.Freivalds
[7] showed that nonconstructive methods in coding theory are related to
the notion of Kolmogorov complexity.

We study the problem of the quantitative characterization of the
amount of nonconstructiveness in nonconstructive arguments. We limit
ourselves to computation by deterministic finite automata. The notion
of nonconstructive computation by finite automata is introduced. Upper
and lower bounds of nonconstructivity are proved.

1 Introduction

The use of nonconstructive methods of proof in mathematics has a long and
dramatic history. In 1888 a young German mathematician David Hilbert pre-
sented to his colleagues three short papers on invariant theory. Invariant theory
was the highly estimated achievement of Paul Gordan who had produced highly
complicated constructive proofs but left several important open problems. The
young David Hilbert had solved all these problems and had done much-much
more. Paul Gordan was furious. He was not ready to accept the new solutions
because they provided no explicit constructions. Hilbert merely proved that the
solutions cannot fail to exist. Gordan refused to accept this as mathematics. He
even used the term ”theology” and categorically objected to publication of these
papers. Nonetheless the papers were published first in Götingen Nachrichten and
later, in final form, in [10].

Later Hilbert had one more highly publicized controversy. This time L. E. J.
Brouwer was involved. Following H.Poincare ideas, Brouwer started a struggle
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against nonconstructive proofs. The intuitionist movement was started in math-
ematics. This was part of the attempts to overcome the crisis in foundations of
mathematics. Many possible ways out of the crisis were proposed in twenties of
the 20th century. Hilbert axiomatized geometry and wished to axiomatize all
mathematics. K.Gödel proved his famous incompleteness theorems and showed
that the crisis cannot be overcome so easily. Brouwer reasonably turned every-
body’s attention to the fact that considering infinite sets as objectively existing
objects is dangerous and it can bring us to unforeseen conclusions not related to
our experience. Brouwer challenged the belief that the rules of the classical logic,
which have come down to us essentially from Aristotle (384–322 B.C.) have an
absolute validity, independent of the subject matter to which they are applied.
Nonconstructive proofs were to be thrown out of mathematics.

In the forties the situation, however, changed. In spite of all philosophical
battles the nonconstructive methods found their way even to discrete mathe-
matics. This was particularly surprising because here all the objects were finite
and it seemed that no kind of distinction between actual infinity and potential
infinity could influence these proofs while most of the discussions between intu-
itionists and classicists were around these notions. Paul Erdös produced many
nice nonconstructive proofs, the first paper of this kind being [5].

We try in this paper to go another step. We propose a quantitative approach
to measure the amount of nonconstructivity in a proof. A notion of nonconstruc-
tive computation is introduced as a result of examination of three examples of
nonconstructive proofs. This notion can easily be used for many types of au-
tomata and machines. In this paper we prove several upper and lower bounds
for the amount of nonconstructivity in nonconstructive deterministic finite 2-way
automata. This type of automata is sufficiently simple but it allows nontrivial
constructions.

When this paper was submitted to the CIAA’2009 conference, an anonimous
referee pointed to the author that a notion similar to our amount of nonconstruc-
tivity has already been studied. Indeed, R. Karp and R. Lipton have introduced
in [11] a notion Turing machine that takes advice which is practically the same
notion for Turing machines as our nonconstructive computation by finite au-
tomata below. Later C. Damm and M. Holzer have adapted the notion of advice
for finite automata. Since there was no reference to intuitionism in [11], the
adaptation was performed in the most straightforward way (what is quite nat-
ural). However the notion of finite automata that take advice in [4] differs from
our notion very much. These notions are equivalent for large amounts of noncon-
structivity (or large amounts of advice) but, for the notion introduced in [4] and
later extensively used by T.Yamakami and his coauthors [18,14,17], languages
recognizable with polynomial advice are the same languages which are recogniz-
able with a constant advice. Our notion of the amount of nonconstructivity is
such that our most interesting results concern the smallest possible amounts of
nonconstructivity.

A similar situation was in sixties of the 20th century with space complexity of
Turing machines. At first space complexity was considered for one-tape off-line
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Turing machines and it turned out that space complexity is never less than lin-
ear. However, it is difficult to prove such lower bounds. Then the seminal paper
by R.E.Stearns, J.Hartmanis and P.M.Lewis [16] was published and many-tape
Turing machines became a standard tool to study sublinear space complexity.

2 Re-examining Nonconstructive Proofs

2.1 Codes and Kolmogorov Complexity

The textbook [9] contains

Theorem 1. [9] For any integer n ≥ 4 there is a [2n, n] binary code with a
minimum distance between the codewords at least n/10.

However the proof of this theorem in [9] has an unusual property. It is non-
constructive. It means that we cannot find these codes or describe them in a
useful manner. This is why P.Garrett calls them mirage codes.

The paper [7] was written to prove that the size (i.e. the number of the states)
of a deterministic finite automaton and the size of a probabilistic finite automa-
ton recognizing the same language can differ exponentially, thus concluding a
long sequence of papers describing the gap between the size of deterministic and
probabilistic finite automata recognizing the same language.

A counterpart of Theorem 1 for cyclic linear codes was needed, but an attempt
to prove it failed. Instead of cyclic generating matrices a sligthly different kind
of generating matrices was considered. Let p be an odd prime number, and x
be a binary word of length p. The generating matrix G(p, x) has p rows and 2p
columns. Let x = x1x2x3 . . . xp. The first p columns (and all p rows) make a unit
matrix with elements 1 on the main diagonal and 0 in all the other positions.
The last p columns (and all p rows) make a cyclic matrix with x = x1x2x3 . . . xp

as the first row, x = xpx1x2x3 . . . xp−1 as the second row, and so on. We will
refer below the generating matrices with this property as bi-cyclical.

The notion of Kolmogorov complexity was used to prove the counterpart of
Theorem 1 for the codes with a bi-cyclical generating matrix.

Definition 1. We say that the numbering Ψ = {Ψ0(x), Ψ1(x), Ψ2(x), . . .} of 1-
argument partial recursive functions is computable if the 2-argument function
U(n, x) = Ψn(x) is partial recursive.

Definition 2. We say that a numbering Ψ is reducible to the numbering η if
there exists a total recursive function f(n) such that, for all n and x, Ψn(x) =
ηf(n)(x).

Definition 3. We say that a computable numbering ϕ of all 1-argument partial
recursive functions is a Gödel numbering if every computable numbering (of
any class of 1-argument partial recursive functions) is reducible to ϕ.

Theorem 2. [6] There exists a Gödel numbering.
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Definition 4. We say that a Gödel numbering ϑ is a Kolmogorov numbering
if for arbitrary computable numbering Ψ (of any class of 1-argument partial
recursive functions) there exist constants c > 0, d > 0, and a total recursive
function f(n) such that:

1. for all n and x, Ψn(x) = ϑf(n)(x),
2. for all n, f(n) ≤ c · n + d.

Theorem 3. [12] There exists a Kolmogorov numbering.

Definition 5. We say that a binary word w has Kolmogorov complexity s with
respect to the Kolmogorov numbering ϑ if the least value of n such that ϑ(0) = ω
where ω is a natural number whose binary representation equals w.

Unfortunately (or fortunately) there are infinitely many distinct Kolmogorov
numberings. Nonetheless, the Kolmogorov complexities of the same word with
respect to distinct Kolmogorov numberings differ at most by an additive con-
stant. The Kolmogorov complexity is usually understood as the degree of the
extent how much the word can be compressed without loss of information. For
an individual word it may be difficult to implement this semantics but if we
consider infinite sequences of words then this semantics is applicable to all suf-
ficiently long words.

The crucial point in the proof of the main result of [7] was the following
lemma.

Lemma 1. [7] If p is a sufficiently large prime, and the word x = x1x2x3 . . . xp

in the definition of a bi-cyclical matrix has Kolmogorov complexity p− o(p) then
the Hamming distance between arbitrary two codewords is at least 4p

19 .

Kolmogorov complexity brings in an element of nonconstructivity. Indeed, no
algorithm can exist finding such a word x = x1x2x3 . . . xp for a given p. Such
words merely exist. Moreover, nearly all the words of the length p have this
property. However, every algorithm producing the needed words inevitably fails.
On the other hand, if somebody from outside could help us and provide us with
a word x = x1x2x3 . . . xp with the property ”Kolmogorov complexity of this word
is maximal possible for the words of this length”, we would be able to construct
the bi-cyclical generating matrix.

2.2 Kolmogorov Complexity of Recursively Enumerable Sets

J.Bārzdiņš in [2] studied Kolmogorov complexity of binary words of the length
n expressing whether a natural number x (where 0 ≤ x ≤ n − 1) belongs to a
recursively enumerable set. Recursively enumerable sets are those for which an
algorithm exists enumerating (not always in an increasing order) all the elements
of the set.

The result was surprising. It turned out that Kolmogorov complexity of such
words never exceed log n. The main technical lemma from Bārzdiņš’ paper can
be reformulated as follows.
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There is no algorithm uniform in n such that it would show which numbers
belong to the recursively enumerable set and which ones do not belong. However,
when we are trying to decide which natural numbers x (where 0 ≤ x ≤ n − 1)
belong to the recursively enumerable set, somebody from outside would come
and provide us with the number of the natural number y such that 0 ≤ y ≤ n−1
and the enumerating algorithm lists this y as the last among the numbers x from
the elements of the recursively enumerable set such that 0 ≤ x ≤ n− 1, then we
would be able to construct the needed decision algorithm for the initial fragment
0 ≤ x ≤ n − 1 ourselves.

2.3 Learning Programs for Total Functions

K. Podnieks studied learning in the limit programs of total recursive functions
by deterministic and probabilistic learning algorithms. Among other results he
produced two theorems on deterministic learning in the limit of indices of total
recursive functions in numberings defined by a total universal function of two
arguments U(n, x) = fn(x).

Theorem 4. [15] If the numbering U is such that the algorithmic problem of
equivalence of indices is decidable, then there is a learning algorithm which makes
on any function fi(x) (where 0 ≤ i ≤ n) no more that g(n) mindchanges where
g(n) is a total recursive function arbitrarily slowly monotonically growing to
infinity.

Theorem 5. [3] There is a numbering U such that arbitrary learning algorithm
for infinitely many values of n makes on some function fi(x) (where 0 ≤ i ≤ n)
no less than n

2 mindchanges.

We can re-interpret K.Podnieks’ results as follows. The learning of indices of
total recursive functions in numberings defined by a total universal function of
two arguments U(n, x) = fn(x) demands in general n

2 mindchanges for infinitely
many functions fn(x). However, if somebody from outside would come and pro-
vide us with the information which indices are equivalent and which ones are
not, then we would be able to construct the needed learning algorithm with
many less mindchanges.

3 Definitions

In all 3 considered examples of nonconstructive methods there is something com-
mon. An algorithm is presented in a situation where (seemingly) no algorithm is
possible. However, this algorithm has an additional input where a special help is
fed in. If this help is correct, the algorithm works correctly. On the other hand,
this help on the additional input does not just provide the answer. There still
remains much work for the algorithm.

Is this nonconstructivism merely a version of nondeterminism? Not at all. The
construction of bi-cyclical generating matrices for codes in subsection 2.1 had
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nothing to do with existence of certain inputs. If Kolmogorov complexity of the
word is high, the Hamming distance is large.

The additional information about the recursively enumerable sets in subsec-
tion 2.2 always exists. No problem of existence again. If this information is
provided correctly, the algorithm is correct. The answer YES or NO depends on
x and the additional information is much more compact than a list of all the
answers.

The additional information in the index learning problem in subsection 2.3
also does not provide the needed answers directly. Surely it is also not a version
of nondeterminism.

All these examples naturally lead to a following notion of nonconstructive
computation.

Definition 6. We say that an automaton A recognizes the language L noncon-
structively if the automaton A has an input tape where a word x is read and an
additional input tape for nonconstructive help y with the following property. For
arbitrary natural number n there is a word y such that for all words x whose
length does not exceed n the automaton A on the pair (x, y) produces the result
1 if x ∈ L, and A produces the result 0 if x /∈ L. Technically, the word y can be
a tuple of several words and may be placed on separate additional input tapes.

Definition 7. We say that an automaton A recognizes the language L noncon-
structively with nonconstructivity d(n) if the automaton A has an input tape
where a word x is read and an additional input tape for nonconstructive help y
with the following property. For arbitrary natural number n there is a word y
of the length not exceeding d(n) such that for all words x whose length does not
exceed n the automaton A on the pair (x.y) produces the result 1 if x ∈ L, and A
produces the result 0 if x /∈ L. Technically, the word y can be a tuple of several
words and may be placed on separate additional input tapes. In this case, d(n)
is the upper bound for the total of the lengths of these words.

The automaton A in these definitions can be a finite automaton, a Turing ma-
chine or any other type of automata or machines. In this paper we restrict
ourselves by considering only deterministic finite automata with 2-way behavior
on each of the tapes.

This way, we can characterize the amount of nonconstructivity in the non-
constructive algorithms considered in subsections 2.1, 2.2, 2.3. Freivalds’ non-
constructive algorithm for construction of bi-cyclical generating matrices of size
2n×n has nonconstructivity n. Bārzdiņš’ nonconstructive algorithm for construc-
tion of decision algorithm for initial fragments [0, n − 1] of characteristic func-
tions of recursively enumerable languages has nonconstructivity log n. Podnieks’
nonconstructive algorithm for learning in the limit of indices of total recursive
functions in numberings defined by a total universal function of two arguments
U(m, x) = fm(x) with at most g(n) mindchanges for all the functions in the set
f0(x), ..., fn−1(x) has nonconstructivity const.n2. Of course, these are only up-
per bounds. It is quite possible that for some of these problems nonconstructive
algorithms with a lesser nonconstructivity are possible. (This is not the case for
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recursively enumerable languages since J.Bārzdiņš has also proven a tight lower
bound for the Kolmogorov complexity of recursively enumerable languages.)

4 Results on Finite Automata

Theorem 6. There exists a nonregular (and even a nonrecursive) language L
such that it can be nonconstructively recognized with nonconstructivity n.

Proof. Let a1, a2, a3, · · · be an infinite sequence of zeros and ones. We define the
language L as follows. A word x is in L iff it coincides with some initial fragment
of the sequence a1, a2, a3, · · · .

If the sequence is not recursive then the language is also nonrecursive. On
the other hand, the nonconstructive automaton with the nonconstructive help
a1, a2, a3, · · · , an is able to provide the results whether the given word w is in L
for all binary words of the length not exceeding n. �

Theorem 7. For the language L from Theorem 6 , if h(n) is a total function
such that log2 n = o(h(n)) then no nonconstructive 2-way deterministic finite
automaton can recognize L with nonconstructivity (n − h(n)).

Proof. P.Martin-Löf in [13] proved that there exists an infinite sequence a1, a2,
a3, · · · such that infinitely many initial fragments of it have Kolmogorov com-
plexity n and all the initial fragments of it have Kolmogorov complexity no less
than n − O(log2 n). (He also proved that there are no infinite binary sequences
with a higher Kolmogorov complexity.) Take this sequence. Consider the cor-
responding language L. Assume from the contrary that there exists a noncon-
structive deterministic finite automaton such that for infinitely many values of
n the nonconstructivity is less than (n − h(n). From the given program of the
automaton and from the given nondeterministic help one can algorithmically
reconstruct the values a1, a2, a3, · · · , an. Hence Kolmogorov complexity of the
initial fragment a1, a2, a3, · · · , an exceeds the length of the nonconstructive help
no more than by a constant and the initial fragment has Kolmogorov complexity
no higher than (n − h(n). Contradiction. �

Theorem 8. For arbitrary natural number k there exists a nonregular language
L such that it can be nonconstructively recognized with nonconstructivity not
exceeding n

1
k .

Proof. At first we consider the language L consisting of all the words

0m10m10m1 · · · 10m

where the number of arrays of zeros is the same as the length of these arrays.
May be the help-word can be 0m? Indeed, this help-word helps for the word

0m10m10m1 · · · 10m. However, our definition of nonconstructive computation de-
mands that the help-word works for all the shorter input words as well. Unfor-
tunately, 0m does not help for shorter words. The help-word 011021031 · · · 10m
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works both for 0m10m10m1 · · · 10m and for all the shorter input words. Unfor-
tunately, the length of this help-word is O(n).

Now we consider the language consisting of all the words

0m10m10m1 · · · 10m20m10m10m1 · · · 10m2 · · · 20m10m10m1 · · · 10m.

This language can be helped by the same help-word 011021031 · · · 10m and this
help-word works for all input words the length of which does not exceed m3.
Hence the length of the help-word in terms of the length of the input word is
n

2
3 .
This idea can be extended even more, and the language can be considered

which consists of all the words w23w23 · · · 3w2 where

w2 = 0m10m10m1 · · · 10m20m10m10m1 · · · 10m2 · · · 20m10m10m1 · · · 10m

This language can be helped by the same help-word 011021031 · · · 10m. This
reduces the length of help-word to n

2
3 . Iterating this idea r times, we get the

length of the help-word n
2
r which can be made smaller than any n

1
k . �

Theorem 9. There exists a nonregular language L and a function g(n) such
that L can be nonconstructively recognized with nonconstructivity g(n) and
log n ≤ g(n) ≤ (log n)2.

Proof. The language L consists of all binary words in the form 0m20k such that
k is a multiple of the product of the first m primes (where p1 = 2, p2 = 3, p3 =
5, · · · ). The help-word is

0p110p210p31 · · · 10pm .

The nonconstructive automaton has 2-way heads on the two tapes. This al-
lows it to check whether the length k of the array 0k is a multiple of p1 being
the length of the first array of zeros on the help-tape, whether the length k of
the array 0k is a multiple of p2 being the length of the second array of zeros on
the help-tape, etc.

If the input word w has a prefix 0m1 and w ∈ L then the length of w is at
least the product of all first m primes. This product is called primorial of m
and it is known that Primorial(m) ≈ em ln m (see e.g. [1]) The length of the
help-word that helps for all the input words with such a prefix is

Σ(m) = Σm
s=1ps.

It is known that
Σ(n) ≈ 1

2
n2 ln n.

However, it is not true that all the input words of such a length have the con-
sidered prefix. It may happen that the prefix contains more zeros before the
first symbol 1. Nonetheless, the help-word described above works for such input
words as well. Indeed, if the input word w has a prefix 0r1 and r > m and
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the length of w is less than Primorial(m) then w /∈ L. On the other hand,
|w| < Primorial (m) implies that there exists a natural number u such that |w|
does not divide pu and the help-word described above provides the needed result
NO. �

Theorem 10. If a language L can be nonconstructively recognized with a non-
constructivity bounded by a function d(n) = o(log n), then L is regular.

Proof. Our proof is based on the following feature of the definition of noncon-
structiveness. We have demanded that for arbitrary natural number n there is a
word y such that for all words x whose length does not exceed n the automaton
A on the pair (x.y) produces a correct result. Let A be a deterministic finite
automaton nonconstructively recognizing L, and d(n) be the smallest possible
length of the help-word for the words x of the length n. Assume from the con-
trary that d(n) grows to infinity. It follows that there exists a word x such that
A on x produces a wrong result on x with the help y(n). By x0 we denote the
shortest word x with this property. Denote the length of x0 by m. Let y(m) be
the shortest possible help-word for all words x of the length not exceeding m.

The automaton A is two-way on each of the tapes. For arbitrary k we consider
the set of all possible configurations of the memory and the help-tape at moments
when the head on the work-tape in on the distance k from the beginning of the
input word. By B(k) we denote such a set of configurations for A on x0 with the
help y(n) and by C(k) we denote such a set of configurations for A on x0 with
the help y(m).

Since d(n) = o(log n), there exist two distinct k and l such that both B(k) =
B(l) and C(k) = C(l). Cutting out the fragment between k and l from x0 we
get a shorter word x1 with the same property. Contradiction.

We have proved that the nonconstructivity is bounded by a constant. Hence
there is a help-word which fits for infinitely many n. We can conclude that this a
help-word fits for all input words x. This universal help-word can be incorporated
into the automaton, and we get a deterministic finite 2-way automaton recog-
nizing the language without any help from outside. It follows that the language
is regular. �

Theorem 11. There exists a nonrecursive language L and a function g(n) such
that L can be nonconstructively recognized by a DFA with a nonconstructivity
g(n) ∈ polylog(n).

Proof. To define the language we need an infinite nonrecursive binary sequence
r1, r2, r3, · · · . We define

si =
{

p2i if r(i) = 0,
p2i+1 if r(i) = 1.

}
The language L consists of all binary words in the form 0m20k such that k is
a multiple of the product of the first m numbers in the sequence s1 = 2, s2 =
3, s3 = 5, · · · . The help-word is 0s110s210s31 · · · 10sm . �
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Multiflex: A Multilingual Finite-State Tool for
Multi-Word Units

Agata Savary�
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Abstract. Multi-word units are linguistic objects whose idiosyncrasy
calls for a lexicalized approach allowing to render their orthographic, in-
flectional and syntactic flexibility. Multiflex is a graph-based formalism
answering this need by conflation of different surface realizations of the
same underlying concept. Its implementation relies on a finite-state ma-
chinery with unification. It can be applied to the creation of linguistic
resources for a high-quality natural language processing tasks.

Keywords: multi-word units, finite-state morphology, Multiflex.

Describing the variability of multi-word units. Multi-word units (MWUs)
encompass a number of hard-to-define linguistic objects: compounds, complex
terms, named entities, etc. They are composed of two or more words, and show
an important degree of flexibility on different levels: orthographic (head word vs.
headword), inflectional (man servant vs. men servants), syntactic (birth date vs.
date of birth), and semantic (hereditary disease vs. genetic disease). This flexibil-
ity is hard to represent precisely and exhaustively within general grammar-based
models due to idiosyncrasy (e.g. chief justices vs. lords justice).

Multiflex is a formalism and a tool that copes with flexibility and idiosyncrasy
of MWUs by a fully lexicalized two-layer approach. Figure 1 shows the descrip-
tion of a German MWU whose inflection and variation paradigm is given in
examples (1) and (1). The sequence is segmented into tokens (here $1 through
$7) by the underlying module handling the morphology of single words. The
possibly inflected tokens are annotated by their lemmas, morphological features,
and any data needed to generate other inflected forms of the same unit.

Example 1. Organisation der Vereinten Nationen :neF:aeF:deF:geF
‘United Nations Organisation’ in singular (e) feminine (F ) nominative (n), accusative
(a), dative (d) and genitive (g)

Vereinte Nationen :nmF:amF; Vereinten Nationen :nmF:amF:dmF:gmF
’United Nations’ in plural (m) with a determined or undetermined adjective

A path in a graph starts with the leftmost edge and ends with the final en-
circled box. The morphological information contained in the boxes refers to
� The project is partially financed by the Polish Ministry of Science and Higher Edu-

cation, decision number 567/6. PR UE/2008/7.

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 237–240, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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<$5:Cas=$c;Det=$d>

<Cas=$c>

<$1:Cas=$c>

<Cas=$c>

<$2> <$3>

<$4>

<Gen=$1.Gen;Nb=$1.Nb>

<$5> <$6> <$7>

<$6>

<Gen=$7.Gen;Nb=$7.Nb>

<$7:Cas=$c>

Fig. 1. Lemma annotation and inflection graph of a German MWU

the constituents of the MWU while the one placed under a box refers to the
morphological description of the resulting MWU inflected form. Both types of
information usually take the form of possibly uninstantiated and partial feature
structures. Here, the upper path describes all forms in example (1). Constituents
$2 through $7 are recopied as such from the MWU lemma, while constituent $1
(Organisation) is inflected for any case due to the unification variable $c which
can take any value from the case domain in German. The lower path repre-
sents all elliptic variants in example (1). Constituents $1 through $4 are omitted
while constituent $7 (Nationen) shifts to the head position and becomes case-
inflected. The modifier $5 agrees with the new headword in case (same unifica-
tion variable $c) and inflects for determinedness. In the full form (upper path)
the morphological features of the whole MWU are inherited from the first con-
stituent. The number and the gender are those that $1 takes in the MWU lemma
(〈Gen = $1.Gen; Nb = $1.Nb〉), here eF, while the case is as in the particular
MWU inflected form (〈Cas = $c〉). In the elliptic form (lower path) the same
kind of inheritance occurs with respect to the seventh constituent.

The use of unification variables allows for a compact description of unification
paradigms. Here, the 10 forms would need 10 different paths if no unification
variables were available. In highly inflected languages, such as Slavic languages,
this facility is crucial: although many compounds may have several dozens of
forms, a unique path is often enough to render them all.

Finite-State Machinery. Multiflex is inspired by the Paris school of finite-
state morphology. It uses the graph editor of the Unitex system [9], and its
generic finite-state library for binary representation and exploration of graphs
(boxes and arrows in graphs correspond to transitions and states in finite-state
transducers). However the semantics introduced in Multiflex ’ graphs is novel,
although formally close to decorated RTNs in [3], regular expressions with feature
structures in [4], and flag diacritics [2]. It represents a meta-grammar: (i) each
compound with its tokenization and annotation is a rule, (ii) each inflectional
graph is a meta-rule, i.e. the transformations that can be applied to a rule in order
to produce new rules (compound inflected forms). This view is inspired from [5].
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However in Multiflex all transformations (except in embedding) are gathered
within the same metarule. Thus the dependencies between meta-rules are very
scarce, which avoids the problem of a “card tower” in traditional grammars (the
modification of a rule perishes the validity of other rules). This highly modular
aspect of Multiflex rules makes their management and debugging easier.

At present, Multiflex operates in the generation mode. When applied to an
annotated compound it performs the depth-first search exploration of the mini-
mal finite-state transducer behind the graph. A transition is followed if its input
and its output labels are sound. An input is sound in one of the two cases: (i) it
is a constant string, (ii) it refers to an existing component ($8 would be invalid
in Fig. 1) and all the category-value equations (if any) can be fulfilled. The last
condition means that: (i) categories are relevant to the component (unlike Det
for $7 in Fig. 1), (ii) values belong to the domains of their categories (Nb=masc
is incorrect), (iii) unification, if any, can be performed. If a unification variable
has already been instantiated in a previous transition on the same path then its
value must belong to the right category, and it must be accepted by the inflection
paradigm of the current constituent. If however a unification variable has not
yet been instantiated, it is instantiated to each value of its category’s domain for
each outgoing path. Thus, each path represents at least as many forms as there
are allowed combinations of all unification variables it contains. An output label
is sound if the category-value equations can be fulfilled: (i) the values belong to
their categories’ domains, (ii) if a value is fixed, its category has not yet been
associated with a different value, (iii) if the value is inherited it refers to an
existing component and a relevant category, (iv) unification can be performed.

While exploring a graph, Multiflex collaborates with an external morpholog-
ical module for single words. This module must share the same morphological
model (up to identifier replacement), must provide a clear-cut definition of a
token boundary, and must generate on demand particular inflected forms for
single tokens. Its implementation is not necessarily based on finite-state ma-
chines. Multiflex has been successfully interfaced with two underlying modules,
one FSM-based ([9]), and one using a relational database ([14]).

Applications and Evaluation. Our first motivation for an inflection tool for
MWUs came from the FSM-toolkit Intex [12], and led to a prototype which was
applied to the creation of two DELA-type electronic lexicons of (general and
terminological) English compounds (about 60,000 lemmas and 110,000 inflected
forms each). The first one is distributed with Intex and Unitex, the second one
was used in a translation aid software LexProCD Databank for term extraction.

Later our formalism was improved and re-implemented as Multiflex. It was
released with Unitex (under the LGPL license), where it is used for an auto-
matic generation of electronic lexicon of compound inflected forms (the so-called
DELACF) which are matched against a corpus during the process of morpho-
logical analysis. It was tested on a 2000-entry sample of a Serbian MWU lexicon
[8], and on examples of French, German, Polish, Portuguese and English. Mul-
tiflex is also a part of two encoding support tools: (i) WS2LR [7], which allows
an automated controlled encoding of morphological dictionaries, aligned corpora
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and wordnets in Serbian, (ii) Toposław [11], an outcome of the European LUNA
project (http://ist-luna.eu) supporting controlled description of Polish to-
ponyms in written and spoken corpora. Finally, Multiflex is incorporated into to
the linguistic interface of the multilingual ontology of proper names Prolex [13].

In [10] a large contrastive study of 11 lexical approaches to the inflection and
variation of MWUs in 7 languages was performed. It analyzes a dozen linguistic
properties of MWUs (exocentricity, irregular agreement, defective paradigms,
variability, etc.), and desirable descriptive and computational facilities (unifica-
tion, non-redundancy, encoding interface, etc.). In the light of this study Multiflex
belongs to the most expressive and effective tools along with lexc [6], FASTR [5],
and HABIL [1]. Its drawbacks include the lack of modeling of derivational and se-
mantic variants, abbreviations, and dependencies existing between a MWU and
neighboring external elements. In the long run Multiflex needs to be enlarged to
non-contiguous MWUs such as verbal expressions, admitting insertions of free
external tokens. We also wish to integrate machine learning tools allowing both
to acquire new data from the corpora and to predict inflection graphs for them.
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Abstract. We present here filtered-popping recursive transition net-
works (FPRTNs), a special breed of RTNs, and an efficient parsing algo-
rithm based on recursive transition network with string output (RTNSO)
which constructs the set of parses of a potentially ambiguous sentence as
a FPRTN in polynomial time. By constructing a FPRTN rather than a
parse enumeration, we avoid the exponential explosion due to cases where
the number of parses increases exponentially w.r.t. the input length. The
algorithm is compatible with the grammars that can be manually devel-
oped with the Intex and Unitex systems.

1 Introduction

This paper describes filtered-popping recursive transition networks (FPRTNs),
an extension of recursive transition networks [1] (RTNs) which serves as a com-
pressed representation of a potentially exponential set of sequences, and give the
modifications to perform on the Earley-like algorithm for RTNs with string output
(RTNSOs) given in [2] for building a FPRTN recognizing the language of transla-
tions of a given input sequence in polynomial time. If RTNSOs represent grammars
where transition output labels are tags bounding sentence compounds, then the
algorithm computes the set of parses of a given sentence. Extending Earley’s algo-
rithm [3] for output generation raises its asymptotic cost from polynomial to ex-
ponential due to cases where the number of outputs increases exponentially w.r.t.
the input length; for instance, sentenceswith unresolvedprepositionalphrase (PP)
attachments [4] produce an exponentially large number of parses w.r.t. the num-
ber of PPs (e.g.: the girl saw the monkey with the telescope under the tree). RTNs
with output are used by both Intex [5] and Unitex [6] systems in order to represent
natural language grammars.

2 Recursive Transition Networks

Given the definition of RTNSO in [2], we define a RTN R = (Q, Σ, δ, QI , F ) by
removing the output alphabet Γ and by removing the output labels of

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 241–244, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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– translating and inserting transitions, which become consuming transitions
δ(qs, σ) → qt, that is, just read input symbol σ, and

– deleting and ε2-transitions, which become explicit ε-transitions δ(qs, ε) → qt,
that is, do not read or write symbols.

Call, push and pop transition definitions are not modified since they define
no output. We obtain RTN execution states (ESs) x = (q, π) ∈ (Q × Q∗) by
suppresing outputs from RTNSO ESs, x representing the fact of reaching a state
q after generating a stack π of return states. Δ, the extension of transition
function δ for a set of execution states (SES) V and input symbol σ, becomes

Δ(V, σ) = {(qt, π) : qt ∈ δ(qs, σ) ∧ (qs, π) ∈ V } , (1)

and ε-moves adding elements to the ε-closure are redefined as follows:

– explicit ε-transitions: add (qt, π) for each (qs, π) in the ε-closure and for
each qt ∈ Q such that qt ∈ δ(qs, ε);

– push transitions: add (qc, πqt) for each (qs, π) in the ε-closure and for each
qc, qt ∈ Q such that qt ∈ δ(qs, qc);

– pop transitions: add (qr, π) for each (qf , πqr) in the ε-closure such that
qf ∈ F ;

The initial SES is redefined as XI = QI × {λ}, that is, recognition starts from
an initial state without having started any call, and the acceptance SES as
XF = F × {λ}, that is, recognition ends once an acceptance state is reached
without uncompleted calls. Δ∗, the extension of Δ for input sequences, is not
modified except for the use of the redefined Δ and ε-closure functions. We define
the language of a RTN A instead of the language of translations as

L(A) = {w ∈ Σ∗ : Δ∗(XI , w) ∩ XF �= ∅} . (2)

3 Filtered-Popping Recursive Transition Networks

A FPRTN (Q, K, Σ, δ, κ, QI, F ) is a RTN extended with a finite set of keys K
and a κ : Q → K function that maps states to keys in K. FPRTNs behave as
RTNs except for pop transitions: bringing the machine from an acceptance state
qs to a popped state qr is only possible if κ(qs) = κ(qr); we say pop transitions
are filtered.

4 Language of a RTN via Earley-Like Processing

We define the Earley-like computation of the acceptance/rejection of an input
sequence by a RTN by suppressing the outputs from the Earley-like processing
for RTNSOs given in [2]. ESs become 4-tuples (qs, qc, qh, j) ∈ Q × (Q ∪ {λ}) ×
Q × IN, the Δ function, analogous to Earley’s “scanner”, becomes

Δ(V, σ) = {(qt, λ, qh, j) : qt ∈ δ(qs, σ) ∧ (qs, λ, qh, j) ∈ V } (3)

and the ε-moves adding ESs to the ε-closure are redefined as follows:



Efficient Parsing Using Filtered-Popping Recursive Transition Networks 243

– explicit ε-transitions: add (qt, λ, qh, j) for each (qs, λ, qh, j) in the ε-
closure of Vk and for each qt such that qt ∈ δ(qs, ε);

– push transitions: analogously to Earley’s “predictor”, add (qt, qc, qh, j)
and (qc, λ, qc, k) for each (qs, λ, qh, j) in the ε-closure of Vk and for each
qc and qt such that qt ∈ δ(qs, qc); (qt, qc, qh, j) is the paused ES waiting for
qc’s call completion and (qc, λ, qc, k) is the active ES initiating the call;

– pop transitions: analogously to Earley’s “completer”, for each (qf , λ, qc,
j) such that qf ∈ F (the ESs completing call to qc) and for each (qr, qc, qh,
i) ∈ Vj (the paused ESs depending on call to qc), retroactively add (qr, λ,
qh, i) to the ε-closure of Vk (we resume these paused ESs).

Retroactive call completion is explained in [2], which is based on the management
of deletable non-terminals for CFGs explained in [7]. The initial SES is redefined
as XI = {(qs, λ, qs, 0) : qs ∈ QI}, that is, the ESs initiating a call to each initial
state, and the acceptance SES as XF = F × {λ} × QI × {0}, that is, the ESs
triggering a pop from an initial call. Δ∗ and L are not modified w.r.t. section 2
except for the use of the sets and functions redefined here.

5 Translating a String into a FPRTN

We give here the modifications to perform on the Earley-like algorithm in [2]
for the generation of a FPRTN A′ = (Q′, K, Σ′, δ′, κ, Q′

I , F
′) from a RTNSO

A = (Q, Σ, Γ, δ, QI , F ) and input σ1 . . . σl, where Σ′ = Γ , K = {0, . . . , l} and
given a path p within A′ having r and r′ as start and end states, p consumes a
possible translation of σκ(r)+1 . . . σκ(r′) (see Fig 1). First of all, we obtain a RTN
Earley-like algorithm from the one for RTNSOs in [2] by suppressing outputs,
as shown in the equations above. Then we insert the following instructions for
the construction of the FPRTN:

q0

q1

q2

q3 q4

q5

q6

q7

q8 q9

a : {

a : [

q6

q6

c : }

b : x

b : y
c : ]

r0

r1

r2

r3 r4

r5

r6

r7

r8 r9

0

1

1

2 3

3

1

2

2 3

{

[

r6

r6

}

r3

r5

x

y
]

a b c

Fig. 1. At the left, an ambiguous RTNSO, and at the right, an FPRTN recognizing the
language of translations of abc for this RTNSO. Boxes contain the key of the state they
are attached to. FPRTN push and pop transitions are explicitly represented as dotted
and thick arrows, respectively. Only pop transitions corresponding to connected input
segments are allowed: pop transitions from r7 to r5 and from r9 to r3 are forbidden
since the former skips the translation of c and the latter translates c twice.
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– create states rI ∈ Q′
I with κ(rI) = 0 and rF ∈ F ′ with κ(rF ) = l

– for each active ES xt to be added to a SES Vk, create non-initial state rt ∈ Q′

with κ(rt) = k, create map ζs(k, xt) → rt and add rt to F ′ iif xt represents
to have reached an acceptance RTNSO state,

– for each xt ∈ XI add transition δ′(rI , ζs(0, xt)) → rF ,
– for each paused ESs xp ∈ Vk derived from an active source ES xs ∈ Vk due

to a call transition with xc ∈ Vk as active ES initiating the call, create maps
ζs(k, xp) → ζs(k, xs) and ζc(k, xp) → ζs(k, xc),

– let xs ∈ Vj be the active ES xt ∈ Vk is derived from, if the derivation is due
to a non-call RTNSO transition generating g ∈ Γ ∪ {ε} then add transition
δ′(ζs(j, xs), g) → ζs(k, xt), otherwise

– if it is due to a call completion resuming paused ES xp ∈ Vi, then add
transition δ′(ζs(i, xp), ζc(i, xp)) → ζs(k, xt).

6 Empirical Tests

The algorithm has been tested for the same exponential RTNSO translator and
under the same conditions than the ones shown in [2], section 6. The meassured
times are just twice the ones of the acceptor-only Earley algorithm (see Fig. 2
of [2]), hence keeping a linear cost instead of exponential for this case.

7 Future Work

We are currently studying probabilistic prunning methods for weighted FPRTNs
in order to compute the highest-ranked outputs in polynomial time.
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Abstract. We report on a toolkit of tree automata and algorithms for
tree acceptance, pattern matching, and parsing. Despite many applica-
tions, no large toolkit of such algorithms existed, complicating choice
among them. Our toolkit’s design was guided by our taxonomies of such
algorithms, and this is clearly reflected in its structure. We outline one
taxonomy and discuss how its hierarchy determines the toolkit’s class and
interface hierarchies. The toolkit, available at http://www.fastar.org,
contains about 50 tree algorithms and automata constructions.

1 Introduction

We consider regular tree languages for ordered, ranked trees. These have a rich
theory, with many generalizations from regular string languages [1,2]. Parts of
the theory have broad applicability in areas ranging from logic to code generation
in compilers. We focus on algorithms for tree acceptance, tree pattern matching
and tree parsing (‘tree algorithms’). Many of these appear in the literature, but
deficiencies existed, including: inaccessibility of theory and algorithms; difficulty
of comparing algorithms due to variations in presentation style and formality
level; and lack of reference to theory in many publications. To effectively order
the field, we constructed taxonomies—systematic classifications in an algorith-
mic problem domain—for tree acceptance and tree pattern matching [1].

Practical deficiencies also existed: no large, coherent collection of implemen-
tations existed; and for practical applications it was difficult to choose between
algorithms. We therefore designed, implemented, and benchmarked a highly co-
herent toolkit of these algorithms. Taxonomies are a good starting point for the
construction of such toolkits. High-level design choices are guided by the struc-
ture of the taxonomies (indicating commonalities and differences between the
algorithms), while their presentation of algorithms simplifies implementation.
� The research reported on was performed while the first author was at TU/e. We

thank Roger Strolenberg for his work on the toolkit and GUI, and Mark van den
Brand, Vreda Pieterse, and Derrick Kourie for remarks on earlier paper versions.
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We report on Forest FIRE, our taxonomy-based toolkit of tree algorithms
and automata constructions, which is accompanied by the FIRE Wood GUI
[1,3,4]. Other ‘tree toolkits’ contain fewer algorithms and automata and focus on
their use in a specific application area. We refer to [1,3] for references. In subject
and style our work is close to Watson’s [5], in which he applied taxonomy-based
software construction to string pattern matching and finite automata construc-
tion and minimization.

Forest FIRE—a Java package—contains: representations of trees, regular
tree grammars, and pattern sets; algorithms for analysis and transformation of
grammars e.g. to detect and remove chain rules; various kinds of finite (tree)
automata and generators for them; and tree acceptance/parsing and pattern
matching algorithms using such automata. Our focus in this paper is on the
taxonomy-based design of the toolkit parts for the latter two categories.

2 Tree Automata for Acceptance and Pattern Matching

We refer to [1,2] for definitions of finite tree automata (tas) and regular tree
grammars (rtgs). The tree acceptance problem is to determine, given an rtg

and a subject tree, whether the tree is an element of the language defined by
the rtg. As in the string case, for every rtg G there is a ta M such that
L(G) = L(M). This justifies the use of tas for tree acceptance. Similarly, a ta

for tree pattern matching can be constructed from a pattern set.

3 Taxonomies

In our technical sense a taxonomy is a means of ordering algorithms. Each node
of a taxonomy graph corresponds to an algorithm (which can be generic, allowing
for different instantiations; the corresponding node then is a generic one repre-
senting multiple algorithms). The graph’s root represents a high-level algorithm
of which the correctness is easily shown. A branch corresponds to addition of a
detail, i.e. a correctness preserving algorithm refinement. Hence, the correctness
of each algorithm follows from the details on its root path and the correctness
of the root. Considering new detail combinations may lead to new algorithms.

Our taxonomies and the details used in them are treated in detail in [1].
Figure 1 depicts the tree acceptance taxonomy. Three main subgraphs can be
distinguished. The first part contains algorithms based on the rtg/ta correspon-
dence. By adding detail, viz. a direction (detail fr: frontier-to-root or detail rf:

t-acceptor

rf

det

fr

det

match-set

rec

tabulate filter

tabulate

s-path

sp-matcher

det

aca-spm drfta-spm

Fig. 1. Tree acceptance taxonomy
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root-to-frontier) or determinacy (detail det) more specific constructions are ob-
tained. (The nodes are generic, since the algorithms depend on particular choices
of ta state and transition set.) The middle part contains algorithms based on
suitable generalizations of S

∗⇒ t (for rtg start symbol S and subject tree t).
For each subtree of t, they compute a match set of items from which the subtree
is derivable. They differ in the kind of items used and in the way match sets
are computed. (Certain algorithms in this and the first part are related, indi-
cated by the dotted line in the figure.) The third part contains algorithms based
on decomposing items into stringpaths and subsequent use of string matching
techniques. Using matches found, item matches and hence match sets can be
computed for t’s subtrees.

4 Toolkit Design and Implementation

In the taxonomy graphs, nodes near leaves correspond to directly implementable
algorithms, whereas nodes higher up serve as abstract intermediate forms. The
toolkit reflects this structure: higher nodes result in abstract classes or interfaces,
while leaves result in concrete classes and method implementations.

In total, the implemented acceptance algorithms cover seven algorithm nodes
and about thirty different automata constructions. For tree pattern matching, a
slightly smaller number from similar taxonomy branches has been implemented.

The tree algorithms and ta constructions from the taxonomies use ta types
that differ in a number of aspects: their (non)determinism (indicated in their
acronym by n and d respectively); the presence of ε-transitions (indicated in
their acronym by ε); their direction (either frontier-to-root (fr) or root-to-
frontier (rf)); the item sets (and types) used to construct their states; their
use of a technique called filtering, in the case of dfrtas; and their intended use
for tree acceptance/parsing or tree pattern matching. For each of the two prob-
lems, the class inheritance hierarchy corresponding to the ta types is determined
by—in order—the differences in direction, determinism, and the use of filtering.

A ta state corresponds to an item or a set of items, depending on the
(non)determinism of the ta. The items are derived from patterns or grammars’
productions. While most tas use subtrees as items, dotted trees/productions—
trees or productions with a specific node being indicated, providing for context
information—may also be used. The toolkit uses a single class AutomatonState
containing a set of items (a singleton set for a dfrta state). A generic parameter
for a descendant of IItem accommodates item type variability. By varying the
items used to construct states and by adding details (e.g. direction, determi-
nacy), over 30 ta constructions are obtained.

Most acceptance and pattern matching algorithms in the taxonomies and
toolkit use tas. Such tree acceptance (pattern matching) algorithms are imple-
mented in Java classes implementing an interface, called IAcceptor (IMatcher).
It specifies a constructor to set the ta to be used, and a method accept (match)
running the acceptance (pattern matching) algorithm on a given tree. Tree ac-
ceptance algorithms using different ta types share this interface yet differ in
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algorithm, data structure and state. This lead to classes DFRAcceptor, NFRAc-
ceptor, and NRFAcceptor. Similar classes exist for tree pattern matching.

Generator classes implement the standard imperative ta constructions [1,
Ch. 5–6]. The construction of deterministic and nondeterministic automata is
quite different, so two generator classes exist: DFRTAGenerator and NTAGen-
erator. Both work for pattern matchers and for acceptors/parsers, using function
overloading to deal with different inputs and construction internals. Neverthe-
less the functions share a lot of code. The NTAGenerator can generate both fr

and rf directed tas, yet is not aware of the direction: its generateAutomaton
method uses a particular ta’s addTransition method to add transitions.

The abstract algorithms in the taxonomies form an excellent guideline for
methods’ implementation. The algorithm structure remains essentially the same
but is rephrased in OO-style, and types and variables of the abstract version are
systematically replaced by their Java counterparts.

5 Concluding Remarks

Our toolkit and GUI allow easy access to implementations. This was used for
benchmarking experiments reported in [3,4]. Such experiments gave insight in the
algorithms and constructions, and in their running times and memory use. Most
interestingly, the experiments showed that in practical cases newly developed
algorithms—using new so-called filters in dfrtas—outperform algorithms using
existing filters [3,4]. The toolkit and GUI can be extended with e.g. bitvector
implementations of tree algorithms, and with support for e.g. instruction selec-
tion and tree/term rewriting. Earlier extension work leads us to expect that such
extensions will not be highly time consuming to implement.
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Abstract. A formal method of synthesising a converter that translates
signals between two heterogeneous, off-the-shelf protocol IPs is presented
in the form of a case study. At the heart of the method is a model checker
that guarantees the converter satisfies correctness conditions, as well as
user-defined properties. In this approach, the issue of nondeterminism is
explicitly addressed, and is used to synthesise an optimal converter.

1 Introduction

The increasing demands by society on smaller, more complex, reliable and power-
ful embedded systems has increased the need for component reuse and synthesis
methods in chip design. We address this issue by presenting a formally-based
synthesis method that generates a converter for ‘reusable’ component IPs.

In the figure on the right we illustrate the basic
model of our converter. In this figure, protocols P1
and P2 interact via a converter. This interaction
involves control signals cs and cr, and data ds and
dr, being sent and received. Each data channel has
its own buffer. A protocol IP is a ‘black-box’: it is
a component that has well-defined behaviour, and can be controlled only by
(the converter) sending appropriate control signals to it. All control signals sent
between a protocol and the converter must be handled by the converter in such
a way that the data sent and received by the two components match. The con-
verter must prevent a component from sending so-called ‘invalid’ control signals.
Components may be nondeterministic, which means that different (determinis-
tic) behaviours are possible. The converter that is synthesised is optimal insofar
as the (deterministic) converter that has the best performance based on some
criteria is selected. The criteria used in this work is the data transfer rate. The
resulting optimal converter must also be guaranteed correct.

Nondeterminism is a fundamental issue and is directly addressed in our frame-
work. We differentiate between nondeterminism that is under converter control,
and nondeterminism that cannot be controlled by the converter. The former can
be eliminated by actions of the converter. If multiple behaviours are possible in
a protocol component, not all of which will satisfy the correctness conditions,
the converter is able to force correctness by sending appropriate control signals

S. Maneth (Ed.): CIAA 2009, LNCS 5642, pp. 249–252, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



250 J. Cao and A. Nymeyer

to the component. As well, if a protocol includes behaviour that is invalid for a
communicating protocol, the converter is able to control the communication in
such a way as to avoid this behaviour.

Using FSMs to model a converter is well-known, and dates back to work
by [1]. Recent work that provides the backdrop of our research includes [2] who
also formally model control and data separately, use buffers, have correctness
conditions and deal with data mismatch explicitly. But their formal model is
completely different to ours, there is no verification phase in their approach,
they do not handle nondeterminism, or treat invalid data in the same way.
Other related work is [3], who also use the tableau method to verify the converter.
However, our approach is more general and we (again) use a completely different
formal framework. As well, buffers are defined explicitly in our formal model,
and the issue of nondeterminism is formally addressed. Avoiding invalid states,
and forcing correctness, and optimising for performance as part of the formal
model are notions that are unique to our work.

Converter synthesis should not be confused with controller synthesis. In con-
troller synthesis, an environment and a reactive machine called the controller
are modelled as an interactive event system. The aim is to synthesise a con-
troller that guarantees global performance constraints, independent of how the
environment behaves [4]. Converter synthesis is a method of component reuse
where well-defined, off-the-shelf components are connected through a so-called
converter. The aim is to synthesise a converter (assuming one exists) that guar-
antees correct communication between the components. Converter synthesis is in
essence therefore a ‘language compatibility’ problem, and is aimed at component
reuse, in contrast to controller synthesis, where strategy is the focus.

2 The Formal Architecture

Our formal converter-synthesis architecture is shown in Fig. 1. The architecture
consists of a front-end and a back-end, much like a compiler generator. In essence,
the front-end analyses the input IPs, represented as FSMs, and synthesises (i.e.
generates) an intermediate representation called the raw converter (RC in the
figure), also represented as a FSM. The back-end refines the raw converter by
resolving nondeterminism, and generates the final converter.

There are four main phases in the front-end: the two input protocols are first
composed, buffers are then added to the states followed by the correctness con-
ditions. The correctness conditions are defined by the system (e.g. there are no
invalid states) and by the user as input (e.g. the converter cannot deadlock),
generally in the form of temporal formulae. The finite-state model extended

Fig. 1. A converter synthesis architecture
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to include buffers and properties is then model checked by using the tableau
method [5]. During tableau, states that violate correctness conditions may be
removed, but in some cases they may also be ‘forced’ to satisfy properties. Par-
ticular invalid states are also avoided.

The resulting raw converter may contain nondeterministic states. These states
are split, resulting in deterministic automata called sub raw converters. The sub
raw converter with the best data transfer rate (DTR) is selected (Other criteria
could also have been used). The final step is to reduce the number of states by
removing buffers from the transitions, which results in states being merged.

3 Case Study

We have applied our converter-synthesis framework to two industrial protocols
ASB and APB [6]. Here however, for the sake of brevity, we consider just sim-
plified versions of these protocols ASB’ and APB’, depicted in Fig. 2 on the left.
ASB’ is a (slave) protocol that can handle write transfers, and APB’ a proto-
col that only reads. Note that in state s2 of ASB’, 3 outgoing transitions have
no input, only output, and send signals bwait, blast and berror with different
values: 1, 0, 0 (means ‘wait’), 0, 0, 0 (‘done’), and 0, 1, 1 (‘retract’). Thus s2 is a
nondeterministic state and ASB’ a nondeterministic protocol.

ASB’ and APB’ are inputs to the front-end. After parallel composition, a
buffer is added. The correctness conditions that we impose are φ1: AG(s1,1,0 →
AXAF s1,1,0) and φ2: ∀s ∈ SR, k = 0, where s1,1,0 is the initial and final state,
and k is the buffer value in each state. The automaton is then model checked.
States violating the correctness conditions are removed, and this results in a raw
converter consisting of 6 states, shown in Fig. 2 on the very right.

In the raw converter, just state s1,1,0 (which is non-deterministic) is split in
the first phase of the back-end, resulting in 2 sub raw converters. In one of the
sub raw converters, SRC1, the self loop at s1,1,0 is removed, and in the other,
SRC2, the transition from s1,1,0 to s2,1,0 is removed. In the second phase, we
select SRC1 because it has the better DTR. The DTR of SRC1 is 1

2x1+3x2+4 ,
where x1 is the number of times that s5,1,0 is visited (remembering that this

Fig. 2. Left: ASB’ and APB’. Right: a raw converter that interfaces ASB’ and APB’.
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corresponds to a ‘wait’ in ASB’), before reaching s4,2,0. Similarly, x2 records
visits to s3,1,0. The DTR of SRC2 is 0, because there is no data transferred in
the self loop. No reduction will occur in the final phase in the back-end, since in
this case the buffer size is 0, so no merging is possible.

Note that property φ2 above restricts the buffer size to 0. If we increase the
buffer to size 2 (say), then φ2 will change to ∀s ∈ SR, 0 ≤ k ≤ 2, and the
resulting raw converter will have more states (in fact 28), which will reduce to
18 in the final converter. Note that the size of the buffer is a state variable.

We have not demonstrated above how the
tableau method removes invalid states that are
caused by non-determinism in the input protocol.
An example is state s2 in ASB’ that leads to states
s3 and s4. A fragment of the automaton that is in-
put to the tableau method can be seen in the figure
on the right. States s3,1,0 and s3,2,0 are generated
from the ASB’ state s3, and s4,1,0 and s4,2,0 from s4. State s4,1,0 is in fact invalid
because it leads to buffer underflow (the details are not shown). If the converter
removes s4,1,0, then we have a potential problem because the converter cannot
prevent ASB’ choosing s4. To avoid this, the raw converter generated by tableau
will not send the signal psel0 in that case. Tableau can also force states to satisfy
properties. E.g. if we have a third property: AG(s1,1,0 → ¬penable1 U dsel1), then
there is again a potential problem because in state s1,1,0 penable may be either
0 or 1. This could violate the property, so tableau forces the raw converter to
send penable0 to APB’ in that case.

Full details of our formal framework can be found in [7,8], including results of
experiments comparing our converter with those represented in the literature.
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Abstract. Restarting automata are a very strong theoretical model
which can recognize much more than context-free languages in its most
general variant. However, for its wider usage in real-world applications
it is necessary to fill two gaps: to add semantics – instead of accepting
we would like to get a meaning of the input – and to design a tool which
for a given restarting automaton in human-readable format generates a
program computing the meaning of an input text. The resulting tool is
actually a compiler compiler.

Keywords: restarting automata, semantics, compiler-compiler.

In this publication we want to outline a new tool for generating compilers –
CCRA. It uses the formal model called restarting automata. But it is necessary
to modify them in order to allow working with semantics.

1 Restarting Automata

Out of many variants of restarting automata [1] we use one of the most powerful
(accepting a superset of context-free languages) model called RRWW-automaton
(we use its definition based on meta-instructions [2]):

A shrinking restarting automaton is a system M = (Σ, Γ, w, I), where Σ
is an input alphabet, Γ is a working alphabet (Σ ⊆ Γ ), w : Γ → R+ is a
weight function and I is a finite set of meta-instructions of the following two
types:

1. A rewriting meta-instruction is of the form (El, x → y, Er), where x, y ∈ Γ ∗

such that
∑

i∈x w(i) >
∑

j∈y w(j), and El, Er ⊆ Γ ∗ are regular languages
called left and right constraints.

2. An accepting meta-instruction is of the form (E, Accept), where E ⊆ Γ ∗ is
a regular language.

� This work was partially supported by the program ‘Information Society’ under
project 1ET100300517.
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A word w can be reduced (rewritten) into a word w′ if there exists a rewriting
meta-instruction (El, x → y, Er) such that w can be written as uxv, where
u ∈ El, v ∈ Er and w′ = uyv – we write uxv � uyv. Let �∗ denote the reflexive
and transitive closure of �. An input word w is accepted by the automaton if
there exists a word z such that w �∗ z and z ∈ E for some accepting meta-
instruction (E, Accept).

Purpose of the weight function is only to ensure a finiteness of the computa-
tion. We even settle for its existence (we don’t require its realization, so we can
ignore it).

Example:

Let’s take a context-sensitive language L =
{
anbnc, anb2nd : n ∈ N

}
.

We can describe it by a restarting automaton this way:

Σ = {a, b, c, d}
Γ = {a, b, c, d}
I =

{
(a∗, aab → a, b+c), (a∗, aabb → a, b+d), (abc, Accept), (abbd, Accept)

}

2 Regular Expressions

Regular languages El, Er and E used in the above definition are usually written
as regular expressions. Usual implementations of regular expressions do not al-
low a complement operation though they contain many extensions which we do
not use. Hence we have implemented a small own library for regular expressions
(based on nondeterministic finite state automata) with traditional syntax but
including a prefix-tilde-operator which means complement of the following ex-
pression. But be careful with this operator. It needs the automaton (representing
the complemented expression) to be deterministic, therefore this operation can
be very time and space expensive. But typical usage is on nearly deterministic
expressions.

3 Restarting Automata with Semantics

Restarting automata are a linguistically motivated model which can be used
as a tool for analysis by reduction. Consider the following example: “Peter has
blue eyes.” is reduced to “Peter has eyes.” We expect from the semantics that it
makes a mark that the word “eyes” has the attribute “blue”. So for each word
(token) we have a set of flags which can be changed during each reduction.

Two modifications have been done because it is not easy to realize referring to
flags of symbols in regular expressions. When a sequence of tokens B is rewriting
a sequence A, then the flags of A can only be read and the flags of B can only be
set. The second modification is the replacement of accepting meta-instructions
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by another formalism of the same power. A new symbol can be added to Γ
and the computation is changed so that the input is accepted if there exists a
reduction to a sequence containing this symbol.

The possibility of collecting all meanings of the input has been realized like in
Prolog – at the end of the computation the user can artificially create a rejection
and this way collect the results from all branches of the computation leading to
acceptance.

4 Compiler Generator

The most universal (but but for the purposes of joining with sematics the most
comfortable) way allowing the user to make data analysis by restarting automata
has been chosen – creating of a compiler generator. Maybe the most known
application of this type is called bison [3]. There are many reasons to make the
new tool similar (e.g. interfaces or an automatic convertibility from the bison
inputfile format). The chosen language is C++.

The general form of a grammar file has been maintained:

%{
Prologue // user’s code for the header file
%}
Declarations // definitions of token sets (%DefSet),

// accepting tokens (%Accept), etc.
%%
Grammar rules // definitions of meta-instructions
%%
Epilogue // user’s code for the main file

Some examples of the grammar rules:

meta-instruction grammar rule
(El, x → y, Er ) El / x -> y / Er @{ sem };
(.*, x→y, .*) / x -> y / ;
(.*a+, x y→k l m, .*b) a+ / x y -> k l m / .*b$ @{ sem };
(ˆ[ˆabc]+.*, x →, (a|cd)*) ^[^abc]+.* / x -> / (a|cd)*$ @{ sem };

The positions marked sem are the places where the semantic parts of the
meta-instructions (if any) in C++ should be written. Refering to tokens is like
in bison. The old ones are referred to by $n the new ones by $$n, where n is the
index counted from left. If we, for example, want to set the val flag of token m
as the sum of these flags in tokens x and y in the second meta-instruction, we
can write $$3.val = $1.val + $2.val;.

Moreover if El does not begin with ˆ or Er does not end with $ it is concate-
nated with .* in the given order.
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The generated file is a C++ class. Its most important method is parse(). It
loads all tokens by lexical analyser and then finds the acceptance sequence of
applications of meta-instructions (the searching heuristic is selected or written
by user). If the input is accepted then the accepted sequence (with its semantics)
is returned.

Example:

Let’s take the automaton from the previous example. And let’s say that we’re
interrested in the value of n. The inputfile for CCRA can be written this way:

%{

struct param{ // semantics of tokens

int n;

};

#define CCRA_PARAMS_TYPE param // set type of tokens on param

%}

%Accept accept // definition of accepting symbol

%ClassName "Sample" // name of generated class

%MainGen // generate main function

%%

^a* / a a b -> a / b+ c $ @{ $$1.n = $2.n + 1; };

^a* / a a b b -> a / b+ d $ @{ $$1.n = $2.n + 1; };

^/ a b c -> accept / $ @{ $$1.n = $1.n + 1; };

^/ a b b d -> accept / $ @{ $$1.n = $1.n + 1; };

%%

5 Conclusion

We have implemented a tool that generates parsers based on restarting automata
with semantics (which we have formulated). It seems to be a great tool for
processing of seminatural languages. But it is a work in progress and we need
more tests. Although it is used nearly the bison inputfile syntax we have much
stronger tool so the time requirements are much bigger (after all the model is
nondeterministic).

In the future we want to test the applicability on the Czech nomenclature of
the organic chemistry which is very complicated and has some context rules [4].
Next it would be interesting to add tests of some features of the input language
which could make the analysis faster.
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Abstract. Statecharts, which have been introduced by D. Harel in 1987,
provide compact and expressive visual formalisms for reactive systems.
They have been widely used as a modeling tool and adopted by Unified
Modeling Language (UML) as an important technique to model the dy-
namic behaviour of objects. One of the fundamental questions concerning
statecharts is what the computation power of statecharts is. Until now,
most descriptions consider that the computing power of statecharts is
the same as that of Finite State Machines or Finite Automata, though
no accurate arguments or proofs have been provided.

In this paper, we show for the first time that the computation power
of statecharts is far beyond that of finite automata. We compare state-
charts with Interaction Machines introduced by P. Wegner more than ten
years ago. We show that the Interaction Machines are the most accurate
theoretical models for statecharts.

Keywords: statecharts, finite automata, interaction machines.

1 Introduction

Although statecharts have been introduced for more than twenty years [3] and
used in many application areas, there has not been a thorough and careful study
of them in comparison to other theoretical models. Until now, most descriptions
in literature consider that the computation power of statecharts is the same as
that of finite state machines (FSMs) or finite automata (FAs) although no accu-
rate arguments or proofs have been provided. Since statecharts have been used
in many application areas during the last twenty years, we consider that it is
important to study accurately what statecharts can do, i.e., what the computa-
tion power of statecharts really is. There are at least the following two questions
here: (1) Is the computation power of statecharts the same as that of FAs? (2) If
the answer to the first question is negative, then what theoretical computation
model would correspond to statecharts more accurately?

In this paper, we consider those fundamental questions concerning statecharts.
After a comprehensive and comparative study of statecharts, we find that state-
charts cannot be described by FAs in general. Thus, we make it clear for the first
time that the statecharts of more than twenty years old are not variations of FAs.
� Work supported by the Natural Sciences and Engineering Research Council of
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Instead of FAs, we consider that the Interaction Machines (IMs), introduced
more than ten years ago by P. Wegner [5], are much more accurate theoretical
models for statecharts. We will study the linkage between the statecharts and
the interaction-based models.

2 Preliminaries

Although there have been various definitions of statecharts, the primary elements
of statecharts are states, transitions, events, actions, conditions and variables.
Note that variables are not explicitly described as elements of statecharts in a
number of definitions [1,2,4]. However variables are actually an indispensable part
of statecharts that constrains reactive behaviors. An example can be found in [3],
where the original statecharts were introduced. The “wristwatch” is able to mem-
orize an arbitrary alarm setting “T1” and the watch will activate its alarm only
when (the current time) “T hits T1”. The behavior of the alarm clock is depended
on the setting history “T1”, which is modeled by a variable rather than several
states. Although variables may imply infinite storage theoretically and this fact
seems to imply that statecharts are not FAs automatically, we have to show that
the unboundedness of variable values has been indeed used in the statechart model
and that some statecharts do behave beyond the boundaries of FAs.

Formally, we define that a statechart S is a 9-tuple (Q, E, A, C, V, δ, η, s, T ),
where Q is the nonempty finite set of states; E is the nonempty finite set of events;
C is the finite set of conditions; A is the finite set of actions; V is the finite set of
variables; δ : Q×E ×C∗ → Q is the transition function; η : δ → A∗ is the action
function; s is the initial state; and T ⊆ Q is the set of terminating states. Note
that the variables of V are used in the actions of A and conditions of C.

Interaction Machines (IMs) were introduced more than ten years ago by P.
Wegner [5], which are considered to be a further development of the Turing
machine (TM) model. P. Wegner claims that TMs cannot model behaviors of
interactive systems, such as operating systems and object-oriented systems. The
computation of a TM is history-independent since it shuts out the world during
its computation and stops after generating an output [5]. He introduced the IMs
by extending TMs with dynamic streams to record interaction histories with
the environment [6]. In [8] the Interactive Turing Machines (ITMs) are formally
defined based on Wegner’s IM model.

3 Statecharts Are Not Finite Automata

Clearly, many statecharts can be modeled by FAs. However, those facts do not
imply that the computation power of statecharts is limited to that of FAs. In
this section, we will show that there are statecharts that cannot be described by
any FAs.

We look at a statechart M for an ATM model. The ATM can collect and dis-
pense money to the identified clients and also maintain their information. The
client can enter more than one request in each session before choosing “Exit”.
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Fig. 1. A Statechart of an Automatic Teller Machine (ATM) model

However, withdrawing more money than the client’s balance will never be ac-
cepted. The statechart M for the ATM model is shown in Figure 1.

Let M be (Q, E, A, C, V, δ, η, s, T ). The event set E of M consists of Insert
card, Take card, Enter PIN, Withdraw, Deposit, Enter amount, Exit, which are
abbreviated to E = {i, t, p, w, d, a, e}. The state set Q of M consists of Idle, En-
tering PIN, Waiting for operation, Entering withdraw amount, Entering deposit
amount, Exiting service, Checking amount, where the Idle state is the default
starting state s as well as the terminating state, i.e., s = Idle and T = {Idle}.
In order to simplify the consideration, we assume that all “withdraw” and “de-
posit” requests process the same amount of money ($20), and the subsequent
“Enter amount” events are omitted. A larger amount of withdrawal or deposit
is represented by the multiple copies of withdraw or deposit.

We consider the language of M in the following for simplicity. For each client,
we consider the sequence of all events that the client has been involved from
the very first session instead of only the current session. For example, the se-
quence of events of a client’s first session is “ipddet” and that of the second
session is “ipwet”. Then we consider the word “ipddet” for the first and the
word “ipddetipwet” for the second. Let LM be the language of all such words
that are acceptable by M . Each word in LM may or may not be applied by a
client. We can easily prove the following:

Theorem 1. LM is not a regular language.

4 Statecharts and Interactive Turing Machines

In this section, we will discuss how the essential elements of statecharts and
ITMs correspond to each other.

Let S = (QS , ES , AS , CS , VS , δS , ηS , sS , TS) be a statechart. Without loss of
generality, we assume that S is a one-level statechart and interacts with only
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one source. We show that we can construct an equivalent multi-tape SITM as
follows

M = (IM , OM , QM , ΓM , γM , ωM , sM , #, $, B, TM ).

The state set QS is represented by the state set QM of M . The set of events ES

is the set of inputs IM of M . The set of actions AS is divided into two categories:
internal and external. The set of external action symbols correspond to the set
of outputs, OM , of M . The internal action symbols correspond to M ’s work tape
symbols Γ . The performances of these two sets of actions of S correspond to the
writing of M on the interaction tape and the work tapes, respectively. Note that an
action in one transition of S may correspond to several steps of writing of M . New
intermediate states may have to be introduced. The variables of VS correspond
to work tapes of M . The conditions in their original form are boolean-valued
functions that can decide whether state transitions can take place. CS is also di-
vided into external and internal conditions. External conditions can be considered
as events or combinations with events. The combinations with events can be con-
sidered as enlarged sets of events. They are all corresponding to the inputs of M .
The internal conditions correspond to the values carried by M ’s work-tapes. The
transitions in S are specified by source and target states, events, conditions and
actions. Each transition in δS corresponds to one or more transitions in γM for the
event and the conditions and also one or more transitions in ωM for the actions.
M may require more steps of transition because of the computation for conditions
and actions. The initial state sS and the set of terminating states TS are just
corresponding to sM and TM , respectively. Then, for any statechart, there is an
equivalent ITM by the above descriptions.

The above descriptions give also the basic idea on how an SITM can be
simulated by a statechart.

By the above arguments, we can conclude that the computation power of
statecharts is the same as that of Interactive Turing machines.
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