Progress in the Development of
Automated Theorem Proving for
Higher-Order Logic*

Geoff Sutcliffe!, Christoph Benzmiiller?,
Chad E. Brown?, and Frank Theiss?**

1 University of Miami, USA***
2 International University, Germany
3 Saarland University, Germany

Abstract. The Thousands of Problems for Theorem Provers (TPTP)
problem library is the basis of a well established infrastructure supporting
research, development, and deployment of first-order Automated Theo-
rem Proving (ATP) systems. Recently, the TPTP has been extended to
include problems in higher-order logic, with corresponding infrastructure
and resources. This paper describes the practical progress that has been
made towards the goal of TPTP support for higher-order ATP systems.

1 Motivation and History

There is a well established infrastructure that supports research, development,
and deployment of first-order Automated Theorem Proving (ATP) systems,
stemming from the Thousands of Problems for Theorem Provers (TPTP) prob-
lem library [38]. This infrastructure includes the problem library itself, the TPTP
language [36], the SZS ontologies [35], the Thousands of Solutions from Theorem
Provers (TSTP) solution library, various tools associated with the libraries [34],
and the CADE ATP System Competition (CASC) [37]. This infrastructure has
been central to the progress that has been made in the development of high
performance first-order ATP systems.

Until recently there has been no corresponding support in higher-order logic.
In 2008, work commenced on extending the TPTP to include problems in higher-
order logic, and developing the corresponding infrastructure and resources. These
efforts aim to have an analogous impact on the development of higher-order ATP
systems. The key steps have been:

* This research has received funding from the European Community’s Seventh
Framework Programme FP7/2007-2013, under grant agreement PIIF-GA-2008-
219982.

** Supported by the German Federal Ministry of Education and Research (BMBF)
in the framework of the Verisoft XT project under grant 01 IS 07 008.

*** Most of the work was done while hosted as a guest of the Automation of Logic
group in the Max Planck Institut fiir Informatik.

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 116 20009.
© Springer-Verlag Berlin Heidelberg 2009

Progress in the Development of Automated Theorem 117

Development of the Typed Higher-order Form (THF) part of the TPTP
language, compatible with the existing first-order forms (FOF and CNF).
— Collecting THF problems, for the TPTP.

— Building TPTP infrastructure for THF problems.

— Finding and implementing ATP systems for higher-order logic.

— Collecting ATP systems’ solutions to the THF problems, for the TSTP.

— Planning for a THF division of CASC.

These topics are described in this paper.

2 The Higher-Order TPTP

The development of the higher-order part of the TPTP involved three of the
steps identified in the introduction: development of the Typed Higher-order Form
(THF) part of the TPTP language, collecting THF problems for the TPTP, and
building TPTP infrastructure for THF problems. These steps are described in
this section.

2.1 The Typed Higher-Order Form (THF) Language

The TPTP language is a human-readable, easily machine-parsable, flexible and
extensible language, suitable for writing both ATP problems and solutions. A
particular feature of the TPTP language, which has been maintained in the THF
part, is Prolog compatibility. As a result the development of reasoning software
(for TPTP data) in Prolog has a low entry barrier [36]. The top level building
blocks of the TPTP language are include directives and annotated formulae. In-
clude directives are used mainly in problem files to include the contents of axiom
files. Annotated formulae have the form:
language(name, role, formula, source, useful info) .

The languages supported are first-order form (fof), clause normal form (cnf),
and now typed higher-order form (thf). The role gives the user semantics of
the formula, e.g., axiom, lemma, type, definition, conjecture, and hence de-
fines its use in an ATP system. The logical formula uses a consistent and easily
understood notation, and uses only standard ASCII characters.

The THF language for logical formulae is a syntactically conservative
extension of the existing first-order TPTP language, adding constructs for
higher-order logic. Maintaining a consistent style between the first-order and
higher-order languages allows easy adoption of the new higher-order language,
through reuse or adaptation of existing infrastructure for processing TPTP for-
mat data, e.g., parsers, pretty-printing tools, system testing harnesses, and out-
put processors. The THF language has been divided into three layers: THFO,
THF, and THFX. The THFO core language is based on Church’s simple type
theory, and provides the commonly used and accepted aspects of a higher-order
logic language [I3]. The full THF language drops the differentiation between
terms and types, thus providing a significantly richer type system, and adds the
ability to reason about types. It additionally offers more term constructs, more

118 G. Sutcliffe et al.

type constructs, and more connectives. The extended THFX language adds con-
structs that are “syntactic sugar”, but are usefully expressive. Initially the TPTP
will contain higher-order problems in only THFO, to allow users to adopt the lan-
guage without being swamped by the richness of the full THF language. The full
THF language definition is available from the TPTP web site, www.tptp.org.

Figures [and Bl show an example of a TPTP problem file in THFO.
The thf annotated formulae in Figure [illustrate common constructs in the
THFO language. The constructs that are not part of the first-order TPTP lan-
guage are:

— The typing of constants and quantified variables. THF requires that all sym-
bols be typed. Constants are globally typed in an annotated formula with
role type, and variables are locally typed in their quantification (thus re-
quiring all variables to be quantified).

— $tType for the collection of all types.

— $i and $o for the types of individuals and propositions. $i is non-empty,

and may be finite or infinite.

> for (right associative) function types.

~ as the lambda binder.

@ for (left associative) application.

Additional THF constructs, not shown in the example, are:

— The use of connectives as terms (THF0), e.g.,
(& @ $false) = (~ [P:$0] : $false)
11 and 77 for the IT (forall) and X' (exists) operators (THF0), e.g.,
(crr))& (1 () = (F [X:$i] - ((p@X) & (q@X)))
1> and ?* for IT (dependent product) and X' (sum) types (THF), e.g.,
cons: !> [N:mat] : ($i > (list @ N) > (list @ (succ @ N)))
[1 for tuples (THF), e.g.,
make triple = = [X:$i,Y:$i:,Z:$i] : [X,Y,Z]
* and + for simple product and sum (disjoint union) types (THF), e.g.,
roots: quadratic > (($real * $real) + $real + undef)
— := as a connective for global definitions, and as a binder and separator for
local definitions (ala letrec) (THFX), e.g.,
apply twice:= "~ [F:$0 > $0,X:%0] : (F @ (F @ X))
defines apply twice with global scope, and
:= [NN:= (apply twice @ “)] : (NN = (apply twice @ NN))
has NN defined with local (the formula) scope.
— —=> as the sequent connective (THFX), e.g., [p,q,r] --> [s,t]

The choice of semantics for THF problems is of interest, as, unlike the first-
order case, there are different options [6I7]. For THFO the default is Henkin
semantics with extensionality (without choice or description). The default se-
mantics of the higher THF layers have not been fixed yet, since this choice will
be dependent on which systems adopt the higher-order TPTP.

www.tptp.org

Progress in the Development of Automated Theorem

Y]
%----Include simple maths definitions and axioms
include (’ Axioms/LCL00870.ax’).
Y3
thf (a,type, (

a: $tType)).

thf (p,type, (
p: Ca>8$i> %) > 8$i>$o)).

thf (g, type, (
g: a>$i> %o).

thf (e, type, (
e: (a>%$i>%$0) >a>%i> $o)).

thf (r,type, (
r: $1 > $1i > $o)).

thf (mall_aio,type, (
mall_aio: ((a> $i > $0) > $i > $o0o) > $i > $0)).

thf (mall_a,type, (
mall_a: (a> $i > $o) > $i > $o)).

thf (mall_aio,definition,
(mall_aio
= (" [P: Ca>$i>$o) > $i> $o,W: $i] :
! [X: a > $i> $o] :
(PQXQ@W)).

thf (mall_a,definition,

(mall_a
= (" [P: a>$i> $o,W: $i] :
! [X: al :

(P@XeW))).

thf (positiveness,axiom,
(mvalid
Q@ (mall_aio
@~ [X: a>$i> $o] :
(mimpl @ (mnot @ (p @ X))

e (p
@ "~ [Z: a] :
(mnot @ (X@Z)))))N.
thf (g,definition,
g
= (" [2: a] :

(mall_aio
Q" [X: a> $i > $o] :
(mimpl @ (p@X)@ (XQ@Z))))).

thf (e,definition,
e
= (" [X: a>$i> $0,Z: al
(mall_aio
@~ [Y: a>$i> $o] :
(mimpl @ (Y@ Z)
@ (mbox @ r

@ (mall_a
e " [w: a] :
(mimpl @ (X@W)@(CY@W)))D))))) .
thf (thm,conjecture,
(mvalid
@ (mall_a
@ ~ [Z: a] :

(mimpll@(gQZ)@(ngQZ))))).

Fig. 1. LCL634"1 formulae

119

120 G. Sutcliffe et al.

% File : LCL63471 : TPTP v3.7.0. Released v3.6.0.

% Domain : Logical Calculi

% Problem : Goedel’s ontological argument on the existence of God

% Version : [Ben08] axioms : Especial.

% English

% Refs : [Fit00] Fitting (2000), Higher-Order Modal Logic - A Sketch

% : [Ben08] Benzmueller (2008), Email to G. Sutcliffe

% Source : [Ben08]

% Names : Fitting-HOLML-Ex-God-alternative-b [Ben08]

% Status : Theorem

% Rating : 1.00 v3.7.0

% Syntax : Number of formulae : 48 (3 unit; 27 type; 19 defn)

% Number of atoms : 323 (19 equality; 60 variable)

% Maximal formula depth : 13 (5 average)

% Number of connectives : 71 (3 ~s 1 |; 2 &; 64 Q)
% (0<=>; 1 => 0 <= 0<™)
% (o ~I; 0 ~&; o !y 0 7?7)
% Number of type conns : 118 (118 >; 0 *; 0 +)

% Number of symbols : 28 (27 ;0 =)

% Number of variables : 51 (2 sgn; 6 [4 7; 41 ~)
% (51 B 0 :=; 0 !> 0 7%)

% Comments :

Fig. 2. LCL634"1 header

The first section of each TPTP problem file is a header that contains infor-
mation for the user. Figure [2] shows the header for the annotated formulae of
Figure [[I This information is not for use by ATP systems. It is divided into
four parts. The first part identifies and describes the problem, the second part
provides information about occurrences of the problem in the literature and else-
where, the third part gives the problem’s status as an SZS ontology value [35]
and a table of syntactic measurements made on the problem, and the last part
contains general comments about the problem. The status value is for the default
semantics — Henkin semantics with extensionality. If the status is known to be
different for other semantics, e.g., without functional/Boolean extensionality, or
with addition of choice or description, this is provided on subsequent lines, with
the modified semantics noted.

2.2 Collecting THF Problems, for the TPTP

The THF problems collected in the second half of 2008 and first quarter of 2009
were part of TPTP v3.7.0, which was released on 8th March 2009. This was a
beta release of the THF part of the TPTP, and contained higher-order problems
in only the THFO language. There were 1275 THF problem versions, stemming
from 852 abstract problems, in nine domains:

— ALG - 50 problems. These are problems concerning higher-order abstract
syntax, encoded in higher-order logic [19].

Progress in the Development of Automated Theorem 121

— GRA - 93 problems. These are problems about Ramsey numbers, some of
which are open in the mathematics community.

— LCL - 56 problems. These are of modal logic problems that have been encoded
in higher-order logic.

— NUM - 221 problems. These are mostly theorems from Jutting’s AUTOMATH
formalization [40] of the well known Landau book [24]. These are also some
Church numeral problems.

— PUZ - 5 problems. These are “knights and knaves” problems.

— SET and SEU - 749 problems. Many of these are ”standard” problems in
set theory that have TPTP versions in first-order logic. This allows for an
evaluation of the relative benefits of the different encodings with respect to
ATP systems for the logics [I4]. There is also a significant group of problems
in dependently typed set theory [17], and a group of interesting problems
about binary relations.

— SWV - 37 problems. The two main groups of problems are (i) security problems
in access control logic, initially encoded in modal logic, and subsequently
encoded in higher-order logic [9], and (ii) problems about security in an
authorization logic that can be converted via modal logic to higher-order
logic [20].

— SYN - 59 problems. These are simple problems designed to test properties of
higher-order ATP systems [6].

1038 of the problems (81%) contain equality. 1172 of the problems (92%) are
known or believed to be theorems, 28 (2%) are known or believed to be non-
theorems, and the remaining 75 problems (6%) have unknown status. Table [
provides some further detailed statistics about the problems.

Table 1. Statistics for THF problems

Min Max Avg Median

Number of formulae 1 749 118 16
% of unit formulae 0% 60% 24% 27%
Number of atoms 2 7624 1176 219
% of equality atoms 0% 33% 5% 6%
in problems with equality 1% 33% 7% ™%
% of variable atoms 0% 82% 33% 33%
Avg atoms per formula 1.8 998.0 50.0 8.0
Number of symbols 1 390 66 12
Number of variables 0 1189 182 31
- 0 175 22 5

! 0 1067 150 11

? 0 45 10 2
Number of connectives 0 4591 677 73
Number of type connectives 0 354 62 28
Maximal formula depth 2 351 67 14
Average formula depth 2 350 16 6

122 G. Sutcliffe et al.

2.3 TPTP Infrastructure for THF Problems

The first-order TPTP provides a range of resources to support use of the problem
library [34]. Many of these resources are immediately applicable to the higher-
order setting, while some have required changes for the new features of the THF
language.

From a TPTP user perspective, the TPTP2X utility distributed with the
TPTP will initially be most useful for manipulating THF problems. TPTP2X
has been extended to read, manipulate, and output (pretty print) data in the
full THF language. Additionally, format modules for outputting problems in the
Tps [E], Twelf [28], OmDoc [23], Isabelle [27], and S-expression formats have
been implemented. The TPTP4X tool has also been extended to read, manipu-
late, and output data in the THFO language, and will be extended to the full
THF language.

The SystemOnTPTP utility for running ATP systems and tools on TPTP
problems and solutions has been updated to deal with THF data, including use
of the new higher-order formats output by TPTP2X. The online interface to Sys-
temOnTPTP (www.tptp.org/cgi-bin/SystemOnTPTP) has also been updated
to deal with THF data, and includes ATP systems and tools for THF data.

Internally, an important resource is the Twelf-based type checking of THF
problems, implemented by exporting a problem in T'welf format, and submitting
the result to the Twelf tool - see [I3] for details.

The BNF based parsers for the TPTP [I] naturally parse the full THF
language, and the lex/yacc files used to build these parsers are freely
available.

3 Collecting Solutions to THF Problems, for the TSTP

The Thousands of Solutions from Theorem Provers (TSTP) solution library, the
“flip side” of the TPTP, is a corpus of contemporary ATP systems’ solutions to
the TPTP problems. A major use of the TSTP is for ATP system developers
to examine solutions to problems, and thus understand how they can be solved.
The TSTP is built using a harness that calls the SystemOnTPTP utility, and
thus leverages many aspects of the TPTP infrastructure for THF data.

Four higher-order ATP systems, LEO-II 0.99a, TPs 3.0, and two automated
versions of Isabelle 2008 (one - IsabelleP - trying to prove theorems, the other -
IsabelleM - trying to find (counter-)models), have been run over the 1275 THF
problems in TPTP v3.7.0, and their results added to the TSTP. The systems
are described in Section @ Table 2] tabulates the numbers of problems solved.
The “Any”, “All”, and “None” rows are with respect to to the three theorem
provers. All the runs were done on 2.80GHz computers with 1GB memory and
running the Linux operating system, with a 600s CPU limit.

The results show that the GRA Ramsey number problems are very
difficult - this was expected. For the remaining domains the problems pose inter-
esting challenges for the ATP systems, and the differences between the systems
lead to different problems being solved, including some that are solved uniquely
by each of the systems.

www.tptp.org/cgi-bin/SystemOnTPTP

Progress in the Development of Automated Theorem 123

Table 2. Results for THF problems

ALG GRA LCL NUM PUZ SE? SWV SYN Total Unique
Problems 50 93 61221 5749 37 59 1275

LEO-II 0.99a 34 0 48181 3401 19 42 725 127
IsabelleP 2008 0 0 0197 5361 1 30 594 74
Tps 3.0 10 0 40150 3285 9 35 532 6
Any 32 0 50203 5490 20 52 843 207
All 0 0 0134 2214 0 22 372

None 18 93 12 18 0259 17 15 432
IsabelleM 2008 0 O 1 0 O O O 8 9

4 Higher-Order ATP for the TPTP

Research and development of computer-supported reasoning for higher-order
logic has been in progress for as long as that for first-order logic. It is clear that
the computational issues in the higher-order setting are significantly harder than
those in first-order. Problems such as the undecidability of higher-order unifica-
tion, the handling of equality and extensionality reasoning, and the instantiation
of set variables, have hampered the development of effective higher-order auto-
mated reasoning. Thus, while there are many interactive proof assistants based
on some form of higher-order logic [43], there are few automated systems for
higher-order logic. This section describes the three (fully automatic) higher-order
ATP systems that we know of.

4.1 LEO-II

LEO-II [I2] is a resolution based higher-order ATP system. It is the successor of
LEO [8], which was implemented in LISP and hardwired to the OMEGA proof
assistant [32]. LEO-II is implemented in Objective Caml, and is freely available
from http://www.ags.uni-sb.de/~leo/| under a BSD-like licence.

LEO-IT is designed to cooperate with specialist systems for fragments of
higher-order logic. The idea is to combine the strengths of the different systems:
LEO-II predominantly addresses higher-order aspects in its reasoning process,
with the aim of quickly removing higher-order clauses from the search space,
and turning them into first-order clauses that can be refuted with a first-order
ATP system. Currently, LEO-II is capable of cooperating with the first-order
ATP systems E [31], SPASS [42], and Vampire [30].

In addition to a fully automatic mode, LEO-II provides an interactive mode
[11]. This mode supports debugging and inspection of the search space, and also
the tutoring of resolution based higher-order theorem proving to students. The
interactive mode and the automatic mode can be interleaved.

LEO-II directly parses THF0 input. THFO is the only input syntax supported by
LEO-II. The THF problem collection has been a valuable testbed in this respect,
providing examples that exposed intricacies of the LEO-II parser. Some prob-
lems revealed differing precedences for logical connectives in THF0 and LEO-II.

http://www.ags.uni-sb.de/~leo/

124 G. Sutcliffe et al.

Instead of generating parsing errors these examples led to different semantic
interpretations. An example is the tautologous axiom ! [X:$0]: (" (X) | X).
Due to mistaken operator precedences, LEO-II used to (mis)read this axiom as

P [X:$ol: ("X | X)).

Communication between LEO-II and the cooperating first-order ATP system uses
TPTP standards. LEO-IT’s clause set generally consists of higher-order clauses
that are processed with LEO-II’s calculus rules. Some of the clauses in LEO-IT’s
search space additionally attain a special status: they are first-order clauses mod-
ulo the application of an appropriate transformation function. The default trans-
formation is Hurd’s fully typed translation [22]. LEO-II’s extensional higher-
order resolution approach enhances standard resolution proof search with specific
extensionality rules that generate more and more essentially first-order clauses
from higher-order ones. LEO-II is often too weak to find a refutation amongst
the steadily growing set of essentially first-order clauses on its own. Therefore,
LEO-II launches the cooperating first-order ATP system every n iterations of
its (standard) resolution proof search loop (currently n = 10). The subproblem
passed to the first-order ATP system is written in the TPTP language. If the
first-order ATP system finds a refutation and communicates its success to LEO-
IT in the standard SZS format: SZS status Unsatisfiable. LEO-II analyzes
this answer and recognizes the reference to unsatisfiablity in the SZS ontology.
LEO-II stops the proof search and reports that the problem is a theorem, in the
standard SZS format: SZS status Theorem.

Debugging of LEO-II benefits from the examples in the TPTP library. Several
bugs in LEO-II, beyond the parsing bugs described above, have been detected
through use of the TPTP library. These include problems in the translation
from higher-order to first-order form, and accidentally omitted type checks in
the higher-order unification algorithm. The library has thus provided an excellent
basis for finding and curing various “Kinderkrankheiten” that a new ATP system
inevitably experiences.

Future work includes further exploitation of TPTP infrastructure. An important
step will be the integration of TPTP format proofs output by the cooperating
first-order ATP system into LEO-II’s higher-order resolution proofs. The goal is
to produce a single, coherent proof in the TPTP language.

4.2 Tprs

TPs [4] is a higher-order theorem proving system that has been developed under
the supervision of Peter B. Andrews since the 1980s. Theorems can be proven
in TPs either interactively or automatically. Some of the key ingredients of the
automated search procedures of TPS are mating search [2] (which is similar
to Bibel’s connection method [I5]), Miller’s expansion trees [25], and Huet’s
higher-order pre-unification [21]. In essence, the goal of each search procedure is
to find an appropriate set of connections (i.e., a complete mating), and to find
appropriate instantiations for certain variables [3].

Progress in the Development of Automated Theorem 125

In TpPs there are flags that can be set to affect the behavior of automated
search. A collection of flag settings is called a mode. The mode determines
which particular search procedure will be used, as well as how the exploration
of the search space should be ordered. Over 500 modes are available in the
Tps library. The two modes considered in this paper are MS98-FO-MODE and
BASIC-MS04-2-MODE.

The mode MS98-FO-MODE uses a search procedure MS98-1, implemented by
Matthew Bishop [16]. The procedure precomputes components (compatible sets
of connections) and then attempts to combine the components to construct a
complete mating. This approach enables TPS to solve a number of problems
that were too hard for earlier search procedures. MS98-1 and all earlier search
procedures are based on Miller’s expansion trees. Consequently, the procedures
attempt to find proofs that do not use extensionality, i.e., these search procedures
can prove theorems of only elementary type theory [IJ.

The mode BASIC-MS04-2-MODE uses a search procedure MS04-2, implemented
by Chad Brown [18]. Unlike MS98-1, MS04-2 can find proofs of theorems requir-
ing extensionality. MS04-2 is the only TPS search procedure that is complete
relative to Henkin semantics [I8]. The procedure is based on extensional ex-
pansion DAGs, a generalization of Miller’s expansion trees. The trees become
DAGs because connections can generate new nodes that are children of the two
connected nodes. For theorems that do not require extensionality, this extra
complication can expand the search space unnecessarily. Also, MS04-2 relies on
backtracking in a way MS98-1 does not.

As the two TPS modes have quite different capabilities, and it is expected that
any proofs found by either mode will be found quickly, running the two modes
in competition parallel is a simple way of obtaining greater coverage. A simple
perl script has ben used to do this, running two copies of TPs in parallel as
separate UNIX processes, one for each of the modes. As soon as either process
finds a proof, the script terminates the other. It was this competition parallel
version of TPS that produced the 532 proofs noted in Table 2l Analysis of the
system’s outputs shows that the parallelism is effective, with the two modes each
solving about half of the problems (first). This indicates that the TPTP has a
good balance of problems with respect to these two TPS modes. A new strategy
scheduling version of TPS is currently being developed, which will run many
more modes, but in sequence to avoid memory contention.

4.3 IsabelleP and IsabelleM

Isabelle [27] is a well known proof assistant for higher-order logic. It is normally
used interactively through the Proof General interface [5]. In this mode it is
possible to apply various automated tactics that attempt to solve the current
goal without further user interaction. Examples of these tactics are blast, auto,
and metis. It is (a little known fact that it is) also possible to run Isabelle from
the command line, passing in a theory file with a 1lemma to solve. Finally, Isabelle
theory files can include ML code to be executed when the file is processed. These
three features have been combined to implement a fully automatic Isabelle, using

126 G. Sutcliffe et al.

the nine tactics simp, blast, auto, metis, fast, fastsimp, best, force, and
meson. The TPTP2X Isabelle format module outputs a THF problem in Isabelle
HOL syntax, augmented with ML code that (i) runs the nine tactics in sequence,
each with a CPU time limit, until one succeeds or all fail, and (ii) reports the
result and proof (if found) using the SZS standards. A perl script is used to
insert the CPU time limit (equally divided over the nine tactics) into TPTP2X’s
Isabelle format output, and then run the command line isabelle-process on
the resulting theory file. The complete system is named IsabelleP in Table [2

While it was probably never intended to use Isabelle as a fully automatic
system, this simple automation provides useful capability. It solves 74 problems
that neither LEO-II nor TPS can solve. The strategy scheduling is effective,
with eight of the modes contributing solutions. Over 400 of the 594 solutions are
found by one of the first two tactics used - simp or blast, and more than another
100 by one of the next three tactics - auto, metis, or fast. Further research
and development of this automated Isabelle will inevitably lead to improved
performance.

The ability of Isabelle to find (counter-)models using the refute command
has also been integrated into an automatic system, called IsabelleM in Table 21
This provides the TPTP with capability to confirm the satisfiability of axiom
sets, and the countersatisfiability of non-theorems. It has been useful for exposing
errors in some THF problem encodings. It is planned to extend IsabelleM to also
use the (the newly developed) nitpick command for model finding.

5 Cunning Plans for the Future

CASC: The CADE ATP System Competition (CASC) [37] is held annually at
each CADE (or IJCAR, of which CADE is a constituent) conference. CASC eval-
uates the performance of sound, fully automatic, ATP systems — it is the world
championship for such systems. CASC has been a catalyst for impressive im-
provements in ATP, stimulating both theoretical and implementation advances
[26]. The addition of a THF division to CASC is planned as a natural way to
provide the same stimulation for the development of higher-order ATP systems.
The first THF division of CASC will be part of CASC-22 at CADE-22. While
the primary purpose of CASC is a public evaluation of the relative capabilities
of ATP systems, it is important that the THF division should strongly focus
on the other aims of CASC: to stimulate ATP research in general, to stimulate
ATP research towards autonomous systems, to motivate implementation of ro-
bust ATP systems, to provide an inspiring environment for personal interaction
between ATP researchers, and to expose ATP systems within and beyond the
ATP community.

THF and THFX: Currently the TPTP contains problems in only the core
THFO fragment of the THF language. As ATP developers and users adopt the
language, it is anticipated that demand for the richer features of the full THF
language and the extended THFX language will quickly emerge. In prepara-
tion for this demand the THF and THFX languages have already been defined,

Progress in the Development of Automated Theorem 127

problems in these languages are being collected, and TPTP infrastructure for
processing these problems is being developed. Thus the higher-order TPTP ex-
pects to be able to meet the expectations of the community, hence encouraging
uptake of the THF language and use of the TPTP problems as a common basis
for system evaluation.

6 Conclusion

This paper has described the significant practical progress that has been made
towards developing the TPTP and associated infrastructure for automated rea-
soning in higher-order logic. An alpha-release of the TPTP (v3.6.0) with higher-
order problems was made on 25th December 2008 (a Christmas present), a beta-
release (v3.7.0) was made on 8th March 2009, and the first full release (v4.0.0)
will be made in August 2009.

The core work of collecting THF problems is proceeding. Significant new con-
tributions have come from the export of the TPs problem library [4] to THFO,
and from a higher-order encoding [I0] of problems from the Intuitionistic Logic
Theorem Proving (ILTP) library [29]. TPTP v4.0.0 will have over 2500 THF
problems.

Current work on the TPTP infrastructure is extending the Java parser for the
TPTP language to read the THF language. This in turn will allow use of Java
based tools, e.g., IDV [39], for manipulating THF data. The semantic derivation
verifier GDV [33] is being updated to verify proofs that include formulae in the
THF language.

A key goal of this work is to stimulate the development of ATP systems for
higher-order logic - there are many potential applications for such systems. ATP
systems that output proofs are particularly important, allowing proof verifica-
tion. In the long term we hope to see burgeoning research and development of
ATP for higher-order logic, with a richness similar to first-order ATP, with many
ATP systems, common usage in applications, meta-systems, etc.

Acknowledgments. Thanks to Florian Rabe for help with the Twelf and OmDoc
TPTP2X output formats, and to Lucas Dixon and Stefan Berghofer for help with
the Isabelle format. Thanks to Florian Rabe for implementing the Twelf-based
type checking. Thanks to Makarius Wenzel and Stefan Berghofer for writing the
IsabelleP code. Thanks to Jasmin Blanchette for explaining how to implement
IsabelleM. Thanks to Andrei Tchaltsev and Alexandre Riazanov for developing
the first-order parts of the Java parser for the TPTP language.

References

1. Andrews, P.B.: Resolution in Type Theory. Journal of Symbolic Logic 36(3), 414—
432 (1971)

2. Andrews, P.B.: Theorem Proving via General Matings. Journal of the ACM 28(2),
193-214 (1981)

128

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

G. Sutcliffe et al.

Andrews, P.B.: On Connections and Higher-Order Logic. Journal of Automated
Reasoning 5(3), 257-291 (1989)

Andrews, P.B., Brown, C.E.: TPS: A Hybrid Automatic-Interactive System for
Developing Proofs. Journal of Applied Logic 4(4), 367-395 (2006)

. Aspinall, D.: Proof General: A Generic Tool for Proof Development. In: Graf,

S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 38-42. Springer,
Heidelberg (2000)

. Benzmiiller, C.,; Brown, C.E.: A Structured Set of Higher-Order Problems. In:

Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS (LNAT), vol. 3603, pp. 66-81.
Springer, Heidelberg (2005)

. Benzmiiller, C., Brown, C.E., Kohlhase, M.: Higher-order Semantics and Exten-

sionality. Journal of Symbolic Logic 69(4), 1027-1088 (2004)

. Benzmiiller, C., Kohlhase, M.: LEO - A Higher-Order Theorem Prover. In: Kirch-

ner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 139-143.
Springer, Heidelberg (1998)

. Benzmiiller, C., Paulson, L.: Exploring Properties of Normal Multimodal Logics

in Simple Type Theory with LEO-II. In: Benzmiiller, C., Brown, C.E., Siekmann,
J., Statman, R. (eds.) Reasoning in Simple Type Theory: Festschrift in Honour of
Peter B. Andrews on his 70th Birthday. Studies in Logic, Mathematical Logic and
Foundations, vol. 17. College Publications (2009)

Benzmiiller, C., Paulson, L.: Exploring Properties of Propositional Normal Mul-
timodal Logics and Propositional Intuitionistic Logics in Simple Type Theory.
Journal of Symbolic Logic (submitted)

Benzmiiller, C., Paulson, L., Theiss, F., Fietzke, A.: Progress Report on LEO-II -
An Automatic Theorem Prover for Higher-Order Logic. In: Schneider, K., Brandt,
J. (eds.) Proceedings of the 20th International Conference on Theorem Proving in
Higher Order Logics, pp. 3348 (2007)

Benzmiiller, C., Paulson, L., Theiss, F., Fietzke, A.: LEO-II - A Cooperative Au-
tomatic Theorem Prover for Higher-Order Logic. In: Baumgartner, P., Armando,
A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162-170. Springer,
Heidelberg (2008)

Benzmiiller, C., Rabe, F., Sutcliffe, G.: THF0 - The Core TPTP Language for
Classical Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491-506. Springer, Heidelberg (2008)
Benzmiiller, C., Sorge, V., Jamnik, M., Kerber, M.: Combined Reasoning by Au-
tomated Cooperation. Journal of Applied Logic 6(3) (2008) (to appear)

Bibel, W.: On Matrices with Connections. Journal of the ACM 28(4), 633-645
(1981)

Bishop, M.: A Breadth-First Strategy for Mating Search. In: Ganzinger, H. (ed.)
CADE 1999. LNCS (LNAI), vol. 1632, pp. 359-373. Springer, Heidelberg (1999)
Brown, C.E.: Dependently Typed Set Theory. Technical Report SWP-2006-03,
Saarland University (2006)

Brown, C.E.: Automated Reasoning in Higher-Order Logic: Set Comprehension
and Extensionality in Church’s Type Theory. Studies in Logic: Logic and Cognitive
Systems, vol. 10. College Publications (2007)

Brown, C.E.: M-Set Models. In: Benzmiiller, C., Brown, C.E., Siekmann, J., Stat-
man, R. (eds.) Reasoning in Simple Type Theory: Festschrift in Honour of Peter
B. Andrews on his 70th Birthday. Studies in Logic, Mathematical Logic and Foun-
dations, vol. 17. College Publications (2009)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Progress in the Development of Automated Theorem 129

Garg, D.: Principal-Centric Reasoning in Constructive Authorization Logic. Tech-
nical Report CMU-CS-09-120, School of Computer Science, Carnegie Mellon Uni-
versity (2009)

Huet, G.: A Unification Algorithm for Typed Lambda-Calculus. Theoretical Com-
puter Science 1(1), 27-57 (1975)

Hurd, J.: First-Order Proof Tactics in Higher-Order Logic Theorem Provers. In:
Archer, M., Di Vito, B., Munoz, C. (eds.) Proceedings of the 1lst International
Workshop on Design and Application of Strategies/Tactics in Higher Order Logics.
NASA Technical Reports, number NASA /CP-2003-212448, pp. 56-68 (2003)
Kohlhase, M.: OMDoc - An Open Markup Format for Mathematical Documents
[version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

Landau, E.: Grundlagen der Analysis. Akademische Verlagsgesellschaft M.B.H.
(1930)

Miller, D.: A Compact Representation of Proofs. Studia Logica 46(4), 347-370
(1987)

Nieuwenhuis, R.: The Impact of CASC in the Development of Automated Deduc-
tion Systems. AI Communications 15(2-3), 77-78 (2002)

Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

Pfenning, F., Schiirmann, C.: System Description: Twelf - A Meta-Logical Frame-
work for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI),
vol. 1632, pp. 202-206. Springer, Heidelberg (1999)

Raths, T., Otten, J., Kreitz, C.: The ILTP Problem Library for Intuitionistic Logic
- Release v1.1. Journal of Automated Reasoning 38(1-2), 261-271 (2007)
Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Com-
munications 15(2-3), 91-110 (2002)

Schulz, S.: E: A Brainiac Theorem Prover. AT Communications 15(2-3), 111-126
(2002)

Siekman, J., Benzmiiller, C., Autexier, S.: Computer Supported Mathematics with
OMEGA. Journal of Applied Logic 4(4), 533-559 (2006)

Sutcliffe, G.: Semantic Derivation Verification. International Journal on Artificial
Intelligence Tools 15(6), 1053-1070 (2006)

Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M., Voronkov, A.
(eds.) CSR 2007. LNCS, vol. 4649, pp. 7-23. Springer, Heidelberg (2007)
Sutcliffe, G.: The SZS Ontologies for Automated Reasoning Software. In: Sutcliffe,
G., Rudnicki, P., Schmidt, R., Konev, B., Schulz, S. (eds.) Proceedings of the
LPAR Workshops: Knowledge Exchange: Automated Provers and Proof Assistants,
and The 7Tth International Workshop on the Implementation of Logics. CEUR
Workshop Proceedings, vol. 418, pp. 38-49 (2008)

Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP Language
for Writing Derivations and Finite Interpretations. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 67-81. Springer, Heidelberg
(2006)

Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35-48
(2006)

Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning 21(2), 177-203 (1998)

Trac, S., Puzis, Y., Sutcliffe, G.: An Interactive Derivation Viewer. In: Autexier,
S., Benzmiiller, C. (eds.) Proceedings of the 7th Workshop on User Interfaces for
Theorem Provers, 3rd International Joint Conference on Automated Reasoning.
Electronic Notes in Theoretical Computer Science, vol. 174, pp. 109-123 (2006)

130 G. Sutcliffe et al.

40. van Benthem Jutting, L.S.: Checking Landau’s “Grundlagen” in the AUTOMATH
System. PhD thesis, Eindhoven University, Eindhoven, The Netherlands (1979)

41. Van Gelder, A., Sutcliffe, G.: Extending the TPTP Language to Higher-Order Logic
with Automated Parser Generation. In: Furbach, U., Shankar, N. (eds.) IJCAR
2006. LNCS (LNAT), vol. 4130, pp. 156-161. Springer, Heidelberg (2006)

42. Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., Topic, D.: SPASS Version
3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514-520.
Springer, Heidelberg (2007)

43. Wiedijk, F.: The Seventeen Provers of the World. LNCS, vol. 3600. Springer, Hei-
delberg (2006)

	Progress in the Development of Automated Theorem Proving for Higher-Order Logic
	Motivation and History
	The Higher-Order TPTP
	The Typed Higher-Order Form (THF) Language
	Collecting THF Problems, for the TPTP
	TPTP Infrastructure for THF Problems

	Collecting Solutions to THF Problems, for the TSTP
	Higher-Order ATP for the TPTP
	LEO-II
	Tps
	IsabelleP and IsabelleM

	Cunning Plans for the Future
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

