
An Optimal On-the-Fly Tableau-Based Decision

Procedure for PDL-Satisfiability

Rajeev Goré1 and Florian Widmann2

1 Logic and Computation Group, The Australian National University
Canberra, ACT 0200, Australia

Rajeev.Gore@anu.edu.au
2 Logic and Computation Group and NICTA� The Australian National University

Canberra, ACT 0200, Australia
Florian.Widmann@anu.edu.au

Abstract. We give an optimal (exptime), sound and complete tableau-
based algorithm for deciding satisfiability for propositional dynamic
logic. Our main contribution is a sound method to track unfulfilled even-
tualities “on the fly” which allows us to detect “bad loops” sooner rather
than in multiple subsequent passes. We achieve this by propagating and
updating the “status” of nodes throughout the underlying graph as soon
as is possible. We give sufficient details to enable an easy implementa-
tion by others. Preliminary experimental results from our unoptimised
OCaml implementation indicate that our algorithm is feasible.

1 Introduction

Propositional dynamic logic (PDL) is an important logic for reasoning about
programs [1]. Its formulae consist of traditional Boolean formulae plus “action
modalities” built from a finite set of atomic programs using sequential compo-
sition (;), non-deterministic choice (∪), repetition (∗), and test (?). The satis-
fiability problem for PDL is exptime-complete [2]. Unlike exptime-complete
description logics with algorithms exhibiting good average-case behaviour, no
decision procedures for PDL-satisfiability are satisfactory from both a theoreti-
cal (soundness, completeness, optimality) and practical (average case behaviour)
viewpoint, as we briefly explain next.

Fischer and Ladner’s method [1] for PDL is impractical because it first con-
structs the set of all consistent subsets of the set of all subformulae of the given
formula, which always requires exponential time. Pratt’s optimal method [2] for
PDL initially builds a “pseudo-model” (graph) and then checks whether the
graph is a real model by making multiple passes that prune inconsistent nodes,
and prune nodes containing “eventualities” which cannot be fulfilled by the cur-
rent graph. Since an eventuality is detected as unfulfilled only in the pruning
phase, it can do needless work, as we show shortly. LoTREC, which is primar-
ily an educational tool, implements such a multi-pass method for PDL, but it
� NICTA is funded by the Australian Government’s Department of Communications,

Information Technology and the Arts and the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence program.

R.A. Schmidt (Ed.): CADE 2009, LNAI 5663, pp. 437–452, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

438 R. Goré and F. Widmann

is suboptimal (2exptime) because it treats disjunctions naively. Baader’s [3]
tableau-based decision procedure for essentially PDL without “test” is subopti-
mal (2exptime) and we cannot see how to extend it to “test”. DLP implements
this method restricted to test-free formulae where ∗ applies only to atomic pro-
grams (http://ect.bell-labs.com/who/pfps/dlp/). De Giacomo and Mas-
sacci [4] give a 2exptime algorithm for deciding converse PDL-satisfiability,
discuss ways to obtain optimality, but do not give an actual exptime algorithm.
The prover pdl-tableau (http://www.cs.man.ac.uk/~schmidt/pdl-tableau/)
implements a variation of this method restricted to formulae without nested star.

Theorem provers based on optimal automata-based methods [5] are still in
their infancy because good optimisations are not known [6]. Optimal game-
theoretic methods for fix-point logics are known [7], but the proof of decidability
relies heavily on non-determinism since the main goal is to prove a complexity
bound. Brünnler and Lange [8] give “focused” cut-free sequent calculi based
on these games, give proofs for PLTL and CTL in detail, and state without
giving details that their calculi extend to PDL. The obvious decision procedures
obtainable from their completeness proofs are suboptimal (2exptime) since their
underlying structure is a tree. We know of no resolution methods for PDL.

Here, we give an optimal, sound and complete tableau-based decision proce-
dure for PDL-satisfiability. Our main contribution is a sound method to track
unfulfilled eventualities “on the fly” which allows us to detect “bad loops” sooner
rather than in multiple subsequent passes. Essentially, we interleave the graph-
building and graph-pruning phases of Pratt’s method by propagating and up-
dating the “status” of nodes throughout the underlying graph as soon as is
possible, significantly extending a similar method for description logic ALC [9].
The additional technicalities are non-trivial. We present pseudo code rather
than traditional tableau rules because the “on the fly” nature of our algorithm
gives it a non-local flavour. Thus a set of traditional local tableau “completion
rules” would be cluttered by side-conditions to enforce the non-local aspects or
would require a complicated strategy of rule applications. Preliminary experi-
mental results from our unoptimised OCaml implementation (http://rsise.
anu.edu.au/~rpg/PDLGraphProver/) indicate that our algorithm is feasible.
Further work is to add the extensive array of optimisations which have proved
successful for practical tableau-based methods for description logics.

To see how Pratt’s method can do needless work, consider a formula 〈a〉ϕ∧〈b〉ψ
where ϕ is explored first, ϕ is unsatisfiable because of some unfulfillable even-
tuality, and ψ is a huge formula. Pratt’s method can only recognise unfulfillable
eventualities in the pruning phase. Thus it must expand ψ even though it is
unnecessary. By detecting unfulfilled eventualities “on the fly”, our algorithm
can recognise that ϕ is unsatisfiable before exploring ψ.

2 Syntax and Semantics

Definition 1. Let AFml and APrg be two disjoint and countably infinite sets
of propositional variables and atomic programs, respectively. The set Fml of all

http://ect.bell-labs.com/who/pfps/dlp/
http://www.cs.man.ac.uk/~schmidt/pdl-tableau/
http://rsise.anu.edu.au/~rpg/PDLGraphProver/
http://rsise.anu.edu.au/~rpg/PDLGraphProver/

An Optimal On-the-Fly Tableau-Based Decision Procedure 439

formulae and the set Prg of all programs are defined mutually inductively as
follows where a ∈ APrg and p ∈ AFml:

Prg γ ::= a | γ; γ | γ ∪ γ | γ∗ | ϕ?
Fml ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈γ〉ϕ | [γ]ϕ .

A 〈ap〉-formula is any formula 〈γ〉ϕ where γ ∈ APrg is an atomic program.

Implication (→) and equivalence (↔) are not part of the core language but can
be defined as usual. The size of a formula or a program is defined inductively by
adding the sizes of its direct subformulae and subprograms and adding one. In
the rest of the paper, let p ∈ AFml and a ∈ APrg.

Definition 2. A transition frame is a pair (W,R) where W is a non-empty
set of worlds and R : APrg → W × W is a function mapping each atomic
program a ∈ APrg to a binary relation Ra over W . A model (W,R, V) is a
transition frame (W,R) and a valuation function V : AFml → 2W mapping each
propositional variable p ∈ AFml to a set V (p) of worlds.

Definition 3. Let M = (W,R, V) be a model. The functions τM : Fml → 2W

and ρM : Prg → 2W×W are defined inductively as follows:
τM (p) := V (p) τM (¬ϕ) := W \ τM (ϕ)
τM (ϕ ∧ ψ) := τM (ϕ) ∩ τM (ψ) τM (ϕ ∨ ψ) := τM (ϕ) ∪ τM (ψ)
τM (〈γ〉ϕ) := {w | ∃v ∈W. (w, v) ∈ ρM (γ) & v ∈ τM (ϕ)}
τM ([γ]ϕ) := {w | ∀v ∈W. (w, v) ∈ ρM (γ) ⇒ v ∈ τM (ϕ)}
ρM (a) := Ra

ρM (γ ∪ δ) := ρM (γ) ∪ ρM (δ) ρM (ϕ?) := {(w,w) | w ∈ τM (ϕ)}
ρM (γ; δ) := {(w, v) | ∃u ∈W. (w, u) ∈ ρM (γ) & (u, v) ∈ ρM (δ)}
ρM (γ∗) :=

{
(w, v) | ∃k ∈ IN0.∃w0, . . . , wk ∈ W.

(
w0 = w & wk = v &

∀i ∈ {0, . . . , k − 1}. (wi, wi+1) ∈ ρM (γ)
)}

.
For w ∈W and ϕ ∈ Fml, we write M,w � ϕ iff w ∈ τM (ϕ).

Definition 4. A formula ϕ ∈ Fml is satisfiable iff there exists a model M =
(W,R, V) and a world w ∈ W such that M,w � ϕ. A formula ϕ ∈ Fml is valid
iff ¬ϕ is unsatisfiable.

Definition 5. A formula ϕ ∈ Fml is in negation normal form if the symbol ¬
appears only immediately before propositional variables. For every ϕ ∈ Fml,
we can obtain a formula nnf(ϕ) in negation normal form by pushing negations
inward as far as possible such that ϕ↔ nnf ϕ is valid. We define ∼ϕ := nnf(¬ϕ).

We categorise formulae as α- or β-formulae as shown in Table 1.

Proposition 6. In the notation of Table 1, the formulae of the form α↔ α1∧α2

and β ↔ β1 ∨ β2 are valid.

Definition 7. For a given ϕ ∈ Fml the (infinite) set pre(ϕ) is defined as below.
Using it, we define the set Ev of all eventualities as:

pre(ϕ) := {ψ ∈ Fml | ∃k ∈ IN0. ∃γ1, . . . , γk ∈ Prg. ψ = 〈γ1〉 . . . 〈γk〉ϕ}
Ev :=

⋃

ϕ∈Δ

pre(ϕ) where Δ := {〈γ∗〉ψ | γ ∈ Prg & ψ ∈ Fml} .

440 R. Goré and F. Widmann

Table 1. Smullyan’s α- and β-notation to classify formulae

α ϕ ∧ ψ [γ ∪ δ]ϕ [γ∗]ϕ 〈ψ?〉ϕ 〈γ; δ〉ϕ [γ; δ]ϕ

α1 ϕ [γ]ϕ ϕ ϕ 〈γ〉〈δ〉ϕ [γ][δ]ϕ

α2 ψ [δ]ϕ [γ][γ∗]ϕ ψ

β ϕ ∨ ψ 〈γ ∪ δ〉ϕ 〈γ∗〉ϕ [ψ?]ϕ

β1 ϕ 〈γ〉ϕ ϕ ϕ

β2 ψ 〈δ〉ϕ 〈γ〉〈γ∗〉ϕ ∼ψ

Definition 8. Let X and Y be sets. We define X? := X�{⊥} where ⊥ indicates
the undefined value. If f : X → Y is a function and x ∈ X and y ∈ Y then
the function f [x �→ y] : X → Y is defined as f [x �→ y](x′) := y if x′ = x and
f [x �→ y](x′) := f(x′) if x′ �= x.

3 An Overview and Our Algorithm

Our algorithm starts at a root containing a given formula φ and builds an and-or
tree in a depth-first and left to right manner to try to build a model for φ. The
rules are based on the semantics of PDL and either add formulae to the current
world, or create a new world in the underlying model and add the appropriate
formulae to it. For a node x, the attribute Γx carries this set of formulae.

The strategy for rule applications is the usual one where we “saturate” a node
using the α/β-rules until they are no longer applicable, giving a “state” node s,
and then, for each 〈a〉ξ in s, we create an a-successor node containing {ξ} ∪Δ,
where Δ = {ψ | [a]ψ ∈ s}. These successors are saturated to produce new states
using the α/β-rules, and we create the successors of these new states, and so on.

Our strategy can produce infinite branches as the same node can be created
repeatedly on the same branch. We therefore “block” a node from being created
if this node exists already on any previous branch. For example, in Fig. 1, if the
node y′ already exists in the tree, say as node y, then we create a “backward”
edge from x to y (as shown) and do not create y′. If y′ does not duplicate an
existing node then we create y′ and add a “forward” edge from x to y′. Thus
our tableau is a tree of forward edges, with backward edges that either point
upwards from a node to a “forward-ancestor”, or point leftwards from one branch
to another. Cycles can arise only via backward edges to a forward-ancestor.

Our tableau must “fulfil” every formula of the form 〈δ〉ϕ in a node but only
eventualities, as defined in Def. 7, cause problems. If 〈δ〉ϕ is not an eventuality,
the α/β-rules reduce the size of the principal formula, ensuring fulfilment. If 〈δ〉ϕ
is an eventuality, the main problem is the β-rule for formulae of the form 〈γ∗〉ϕ.
Its left child reduces 〈γ∗〉ϕ to a strict subformula ϕ, but the right child “reduces”
it to 〈γ〉〈γ∗〉ϕ. If the left child is always inconsistent, this rule can “procrastinate”
an eventuality 〈γ∗〉ϕ indefinitely and never find a world which makes ϕ true. This
non-local property must be checked globally by tracking eventualities.

Consider Fig. 1, and suppose the current node x contains an eventuality ex. We
distinguish three cases. The first is that some path from x fulfils ex in the existing
tree. Else, the second case is that some path from x always procrastinates the
fulfilment of ex and hits a forward-ancestor of x on the current branch: e.g. the
path x, y, v, u, w, z. The forward-ancestor z contains some “reduction” ez of ex.

An Optimal On-the-Fly Tableau-Based Decision Procedure 441

rt

done

����������������

���
�
�

todo

��
z

f

��

f

����
��

��
��

todo

��·
f

��

f

����
��

��
��

f

��

todo

��
u

f

��

f

����
��

��
��

y

f

��

x

f

��

b
��

todo

		
w

b

· v

b

����������
y′

Fig. 1. Tree constructed by our algorithm using forward (f) and backward edges (b)

The path from the root to the current node x contains the only currently existing
nodes which may need further expansion, and may allow z to fulfil ez at a later
stage, and hence fulfil ex. We call the pair (z, ez) a “potential rescuer” of ex

in Γx. The only remaining case is that ex ∈ Γx is unfulfilled, has no potential
rescuers, and hence can never become fulfilled later, so x can be “closed”. The
machinery to distinguish these three cases and compute, if needed, all currently
existing potential rescuers of every eventuality in Γx is described next.

A tableau node x also contains a status stsx. The value of stsx is the constant
closed if the node x is closed. Otherwise, the node is “open” and stsx contains a
function prs which maps each eventuality ex ∈ Γx to ⊥ or to a set of pairs (v, e)
where v is a forward-ancestor of x and e is an eventuality. The status of a node is
determined from those of its children once they have all been processed. A closed
child’s status is propagated as usual, but the propagation of the function prs from
open children is more complicated. We give details later, but the intuition is that
we must preserve the following invariant for each eventuality ex ∈ Γx:

if ex is fulfilled in the tree to the left of the path from the root to the
node x then prsx(ex) := ⊥, else prsx(ex) is exactly the set of all potential
rescuers of ex in the current tableau.

An eventuality ex ∈ Γx whose prsx(ex) becomes the empty set can never become
fulfilled later, so stsx := closed, thus covering the three cases as desired.

Whenever a node n gets a status closed, we interrupt the depth-first and left-
to-right traversal and invoke a separate procedure which explicitly propagates
this status transitively throughout the and-or graph rooted at n. For example,
if z gets closed then so will its backward-parent w, which may also close u and so
on. This update may break the invariant for some eventuality e in this subgraph
by interrupting the path from e to a node that fulfils e or to a potential rescuer
of e. We must therefore ensure that the update procedure re-establishes the
invariant in these cases by changing the appropriate prs entries. At the end of

442 R. Goré and F. Widmann

the update procedure, we resume the usual depth-first and left-to-right traversal
of the tree by returning the status of n to its forward-parent. This “on-the-fly”
nature guarantees that unfulfilled eventualities are detected as early as possible.

When our algorithm terminates, formula φ is satisfiable iff the root is open.

3.1 The Algorithm

Our algorithm builds a directed graph G consisting of nodes and three types
of directed edges: forward-, backward-, and update-edges. We first explain the
structure of G in more detail.

Definition 9. Let G = (V,E) be a graph where V is a set of nodes and E
is a set of directed edges. Each node x ∈ V has three attributes: Γx ⊆ Fml,
annx : Ev → Fml?, and stsx ∈ S? where S := {closed} ∪ {open(prs) | prs :
Ev → (P(V × Ev))?}. Each directed edge e ∈ E is either a forward- or a
backward- or an update-edge. If e is a forward- or backward-edge then it is labelled
with a label le ∈ Fml?.

When we say that x is a forward-ancestor of y we mean that x is an ancestor
of y when only the forward-edges of G are considered. Similarly for other graph
concepts like child and parent, and other edge types.

As indicated in Def. 9, some attributes of x may be undefined initially. Once
an attribute becomes defined in x, however, it will never become undefined again.

The attributes Γx and annx of a node x ∈ G are initialised at the creation
of x and are not changed afterwards. Together, they uniquely identify x, so
no two nodes in G have the same values for both attributes. The finite set Γx

contains the formulae which are assigned to x. The attribute annx annotates each
eventuality ϕ ∈ Γx, as long as it is not a 〈ap〉-formula. The value annx(ϕ) = ⊥
indicates that ϕ is not expanded in x, and annx(ϕ) = ϕ′ indicates that ϕ has
already been “reduced” to ϕ′ ∈ Γx. These annotations identify the fulfilling path
for eventualities. Note that annx is defined only for some eventualities in (the
finite set) Γx. Hence we can test whether annx and anny (for y ∈ V) are equal.

The attribute stsx describes the status of x. It is initially undefined but be-
comes defined during the algorithm. Unlike all other attributes, its value may be
modified several times, but once it becomes closed, it will never change. The
value closed indicates that the node is not “annotated satisfiable”, an exten-
sion of satisfiability taking annotations into account. If no formula in a set is
annotated, “annotated satisfiable” and satisfiable coincide. A value open(prsx)
indicates that hope still exists that x is “annotated satisfiable”. The function prsx

contains information about each eventuality ϕ ∈ Γx as explained in the overview.
That is, prsx(ϕ) is either ⊥ or is the finite set of all potential rescuers for ϕ.
If (y, ψ) ∈ prsx(ϕ) then y is a forward-ancestor of x and ψ ∈ Γy. Like annx, the
function prsx is defined only for some eventualities in (the finite set) Γx.

As the algorithm proceeds, we might have to update stsx. For example, if
the status of a node y ∈ G is changed to closed, an eventuality ϕ ∈ Γx may
no longer be fulfilled in G. Moreover, if (y, ψ) ∈ prsx(ϕ) then (y, ψ) must be
removed from prsx(ϕ) since it now cannot help to fulfil ϕ and is therefore no

An Optimal On-the-Fly Tableau-Based Decision Procedure 443

longer a potential rescuer of ϕ. If prsx(ϕ) becomes empty, we know that ϕ cannot
be fulfilled in G ever. Hence x is unsatisfiable and its status is set to closed.

We insert forward- and backward-edges between two nodes x and y as ex-
plained in the overview. Note that y might be a forward- and backward-child
of x. In this case, the algorithm takes y as a forward-child of x. To track eventu-
alities, we label a forward- or backward-edge between a state and its child by the
〈ap〉-formula 〈a〉χ which creates this child. An update-edge from x to y indicates
that a status change of x might affect the status of y.

Definition 10. Let x, y ∈ G be nodes and ϕ ∈ Fml. We call x closed iff it
has stsx = closed and open iff it has stsx = open(prs) for some prs : Ev →
(P(V × Ev))?. In the latter case, we define prsx := prs.

Note that a node is either open, closed, or has an undefined status. Thus “not
closed” is not really equal to “open” as we pretended in the overview.

Definition 11. Let ann⊥ : Ev → Fml? and prs⊥ : Ev → (P(V × Ev))? be the
functions which are undefined everywhere. For a node x ∈ V and a label l ∈
Fml?, let getChild(x, l) be the node y ∈ V (if existent and unique) such that
there exists a forward- or backward-edge e ∈ E from x to y with le = l. For a
function prs : Ev → (P(V × Ev))?, a node x ∈ V , and an eventuality ϕ ∈ Ev,
we define the set reach(prs, x, ϕ) of eventualities as follows:

reach(prs, x, ϕ) :=
{
ψ ∈ Ev | ∃k ∈ IN0. ∃ϕ0, . . . , ϕk ∈ Ev.

(
ψ = ϕk &

(x, ϕ0) ∈ prs(ϕ) & ∀i ∈ {0, . . . , k − 1}. (x, ϕi+1) ∈ prs(ϕi)
)}

.

The function defer : V × Ev → Fml? is defined as follows:

defer(x, ϕ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ if ∃k ∈ IN0. ∃ϕ0, . . . , ϕk ∈ Fml.
(
ϕ0 = ϕ & ϕk = ψ &

∀i ∈ {0, . . . , k − 1}. (ϕi ∈ Ev & annx(ϕi) = ϕi+1

)
&

(
ϕk /∈ Ev or annx(ϕk) = ⊥))

⊥ otherwise.

The function getChild(x, l) retrieves a particular forward- or backward-child of x.
It is easy to see that we will only use it in the algorithm if it is well-defined.

Intuitively, the function reach(prs, x, ϕ) computes all eventualities which can
be “reached” from ϕ inside x according to prs. If a potential rescuer (x, ψ) is
contained in prs(ϕ), the potential rescuers of ψ are somehow relevant for ϕ at x.
Therefore ψ itself is relevant for ϕ at x. The function reach(prs, x, ϕ) computes
exactly the transitive closure of this relevance relation.

Intuitively, the function defer(x, ϕ) follows the “annx-chain”. That is, it com-
putes ϕ1 := annx(ϕ), ϕ2 := annx(ϕ1), and so on. There are two possible
outcomes. The first outcome is that we eventually encounter a ϕk which is ei-
ther not an eventuality or has annx(ϕk) = ⊥. Consequently, we cannot follow
the “annx-chain” any more. In this case we stop and return defer(x, ϕ) := ϕk.

444 R. Goré and F. Widmann

Procedure is-sat(φ) for testing whether a formula is satisfiable
Input: a formula φ ∈ Fml in negation normal form
Output: true iff φ is satisfiable

G := a new empty graph
r := build-graph({φ}, ann⊥,⊥,⊥)
return stsr �= closed

The second outcome is that we can follow the “annx-chain” indefinitely. Then,
as Γx is finite, there must exist a cycle ϕ0, . . . , ϕn, ϕ0 of eventualities such
that annx(ϕi) = ϕi+1 for all 0 ≤ i < n, and annx(ϕn) = ϕ0. In this case we say
that x (or Γx) contains an “at a world” cycle and return defer(x, ϕ) := ⊥.

Next we comment on all procedures given in pseudocode.

Procedure is-sat(φ) is invoked to determine whether a formula φ ∈ Fml in
negation normal form is satisfiable. It initialises the global variable G as the
empty graph and invokes build-graph with the singleton set {φ} and no anno-
tations. This is the only invocation of build-graph that is not initiated while
processing a node in G, so its final two arguments are ⊥. It returns “satisfiable”
iff the resulting node r ∈ G, with Γr = {φ}, is not closed in the final graph.

Procedure build-graph(Γ, ann, p, l) builds the graphG in a tree-like fashion as
explained in the overview and calls the procedures which compute the status of
the nodes. Remember that G is a global variable. The arguments of build-graph
are a set Γ , an annotation ann, the parent node p which invoked it, and a label l.
Note that p is undefined for the very first invocation. If there already exists a
node x in G with Γ and ann, we insert a backward-edge labelled with l from p
to x (if p is defined) and return x. Otherwise we create the desired node x ∈ G,
insert a forward-edge labelled with l from p to x (if p is defined), and process x
as described next. Each node has at most one forward-edge pointing to it.

If Γx contains an “at a world” cycle or a contradiction, we close x. For the
other cases, we assume implicitly that Γx does not contain either of these.

If Γ contains an α-formula α whose decompositions are not in Γ , or which
is an unannotated eventuality, we call x an α-node. We create a new set Γ ′ by
adding all decompositions of α to Γ . If α is an eventuality, we also create a new
annotation extending ann by mapping α to α1. Then we invoke build-graph
recursively and determine and set the status of x. Note that Γ ′ is strictly bigger
than Γ or α is an eventuality which is annotated in ann′ but not in ann.

If x is not an α-node and Γ contains a β-formula β such that neither of its
immediate subformulae is in Γ , or such that β is an unannotated eventuality, we
call x a β-node. For each decomposition βi we do the following. We create a new
set Γi by adding βi to Γ . If β is an eventuality, we also create a new annotation
which extends ann by mapping β to βi. Note that Γi is strictly bigger than Γ
or β is an eventuality which is annotated in ann′ but not in ann. We then invoke
build-graph recursively. In the end we determine and set the status of x.

If x is neither an α-node nor a β-node, it must be fully saturated and we call
it a state. For each 〈ap〉-formula 〈ai〉ϕi we create a new set Γi which contains ϕi

An Optimal On-the-Fly Tableau-Based Decision Procedure 445

Procedure build-graph(Γ, ann, p, l) for building the graph
Input: a set Γ ⊆ Fml, a function ann : Ev → Fml?, a node p ∈ V ?, and a

label l ∈ Fml?

Output: a node x ∈ V

if ∃x ∈ V. Γx = Γ & annx = ann then (∗ annotated set already exists in G ∗)
if p �= ⊥ then insert a backward-edge from p to x labelled with l in G

return x
else (∗ annotated set not in G yet ∗)

create new node x with Γx := Γ , annx := ann, and stsx := ⊥
insert x in G

if p �= ⊥ then insert a forward-edge from p to x labelled with l in G

if ∃ϕ ∈ Fml.(ϕ ∈ Ev & defer(x,ϕ) = ⊥) or {ϕ,∼ϕ} ⊆ Γ then
stsx := closed

else if ∃α ∈ Γ. {α1, . . . , αk} �⊆ Γ or (α ∈ Ev & ann(α) = ⊥) then
Γ ′ := Γ ∪ {α1, . . . , αk}
ann′ := if α ∈ Ev then ann[α �→ α1] else ann
build-graph(Γ ′ , ann′, x,⊥)
stsx := det-sts-β(x)

else if ∃β ∈ Γ. {β1, β2} ∩ Γ = ∅ or (β ∈ Ev & ann(β) = ⊥) then
for i ←− 1 to 2 do

Γi := Γ ∪ {βi}
anni := if β ∈ Ev then ann[β �→ βi] else ann
build-graph(Γi , anni, x,⊥)

stsx := det-sts-β(x)
else (∗ x is a state ∗)

let 〈a1〉ϕ1, . . . , 〈ak〉ϕk be all of the 〈ap〉-formulae in Γ

for i ←− 1 to k do
Γi := {ϕi} ∪ {ψ | [ai]ψ ∈ Γ}
build-graph(Γi , ann⊥, x, 〈ai〉ϕi)

stsx := det-sts-state(x)

if stsx = closed then
let y1, . . . , yk be all the nodes that are backward- or update-parents of x

for i ←− 1 to k do update(yi)

return x

and all ψ such that [ai]ψ ∈ Γ . We then invoke build-graph recursively. As none
of the eventualities in Γi is expanded, there are no annotations. In order to relate
the resulting node y to 〈ai〉ϕi, we label the edge from x to y with 〈ai〉ϕi. We
call y the successor of 〈ai〉ϕi. In the end we determine and set the status of x.

If x is closed, we update all nodes that depend on the status of x; except p,
whose status is undefined and which will use the result later. Finally we return x.
Note that if build-graph creates x via the main “else” then stsx must be either
open or closed but not ⊥. In particular, this applies to node r in is-sat.

Procedure det-sts-β(x) computes the status of an α- or a β-node x ∈ G.
For this task, an α-node can be seen as a β-node with exactly one child. If all
children of x are closed then x must also be closed. Otherwise we compute the set
of potential rescuers for each eventuality ϕ in Γx as follows. For each open child y′i

446 R. Goré and F. Widmann

Procedure det-sts-β(x) for determining the status of an α- or a β-node
Input: an α- or a β-node x ∈ V

Output: the new status of x

let y1, . . . , yk ∈ G be all the nodes that are forward- or backward-children of x

if ∀i ∈ {1, . . . , k}. stsyi = closed then return closed

else (∗ at least one child is not closed ∗)
let y′

1, . . . , y
′
l (1 ≤ l ≤ k) be all the children of x that are not closed

prs := prs⊥

foreach ϕ ∈ Γx ∩ Ev do
for i ←− 1 to l do

Λϕ,i := if y′
i is a forward-child of x then prsy′

i
(ϕ)

else det-prs-child(x, y′
i, ϕ)

Λϕ := if ∃i ∈ {1, . . . , l}. Λϕ,i = ⊥ then ⊥ else
Sl

i=1 Λϕ,i

prs := prs[ϕ �→ Λϕ]

return filter(x, prs)

of x we determine the potential rescuers of ϕ which result from following y′i. We
do this by distinguishing whether y′i is a forward- or backward-child of x. If y′i is
a forward-child of x then prsy′

i
(ϕ) is just passed on. If y′i is a backward-child of x

then we invoke det-prs-child. If the set of potential rescuers corresponding
to some y′i is ⊥ then ϕ can currently be fulfilled via y′i and prsx(ϕ) is set to
undefined. Otherwise ϕ cannot be fulfilled in G, but each child returned a set of
potential rescuers, and the set of potential rescuers for ϕ is their union. Finally,
we treat potential rescuers of the form (x, χ) for some χ ∈ Ev by calling filter.

Procedure det-sts-state(x) computes the status of a state x ∈ V . We obtain
the successors for all 〈ap〉-formulae in Γx. If any successor is closed then x is
closed. Else we compute the potential rescuers for each eventuality in Γx as
follows. For each 〈ap〉-formula 〈ai〉ϕi which is an eventuality, we obtain its set
of potential rescuers by distinguishing whether its successor yi is a forward- or
backward-child of x. If yi is a forward-child of x then prsyi

(ϕi) is passed on
to 〈ai〉ϕi. If y is a backward-child of x, we invoke det-prs-child. For every
other eventuality ϕ, we determine ϕ′ := defer(x, ϕ). Note that ϕ′ is defined
because the state x cannot contain an “at a world” cycle by definition. If ϕ′ is
not an eventuality then ϕ is fulfilled in x and prs(ϕ) remains undefined. If ϕ′ is an
eventuality, it must be a 〈ap〉-formula as x is a state, so we set prs(ϕ) := prs(ϕ′).
Finally, we deal with potential rescuers in prs of the form (x, χ) for some χ ∈ Ev.

Procedure det-prs-child(x, y, ϕ) determines whether an eventuality ψ ∈ Γx,
which is not passed as an argument, can be fulfilled via y such that ϕ is part
of the corresponding fulfilling path; or else which potential rescuers ψ can reach
via y and ϕ. We assume that y and ϕ can “play a part” in fulfilling ψ. First,
if there is no edge from x to y in G, we insert an update-edge from x to y
in G because a status change of y might affect the status of x. If y is closed, it
cannot help to fulfil ψ as indicated by the empty set. If x = y or y is a forward-
ancestor of x then (y, ϕ) itself is a potential rescuer of x. Else, if ϕ can be

An Optimal On-the-Fly Tableau-Based Decision Procedure 447

Procedure det-sts-state(x) for determining the status of a state
Input: a state x ∈ V

Output: the new status of x

let 〈a1〉ϕ1, . . . , 〈ak〉ϕk be all of the 〈ap〉-formulae in Γx

for i ←− 1 to k do yi := getChild(x, 〈ai〉ϕi)
if ∃i ∈ {1, . . . , k}. stsyi = closed then return closed

else (∗ all children (if any) are not closed ∗)
prs := prs⊥

for i ←− 1 to k do
if ϕi ∈ Ev then

Λi := if yi is a forward-child of x then prsyi
(ϕi)

else det-prs-child(x, yi, ϕi)
prs := prs[〈ai〉ϕi �→ Λi]

foreach ϕ ∈ Γx ∩ Ev such that ϕ is not a 〈ap〉-formula do
ϕ′ := defer(x, ϕ)
if ϕ′ ∈ Ev then prs := prs[ϕ �→ prs(ϕ′)]

return filter(x, prs)

fulfilled, i.e. prsy(ϕ) = ⊥, then ψ can be fulfilled too, so we return ⊥. Otherwise
we invoke the procedure recursively on all potential rescuers in prsy(ϕ). If at
least one of these invocations returns ⊥ then ψ can be fulfilled via y and ϕ and
the corresponding rescuer in prsy(ϕ). If all invocations return a set of potential
rescuers, the set of potential rescuers for ψ is their union.

Each invocation of det-prs-child can be uniquely assigned to the invocation
of det-sts-β or det-sts-state which (possibly indirectly) invoked it. To meet
our complexity bound, we require that under the same invocation of det-sts-β
or det-sts-state, the procedure det-prs-child is only executed at most once
for each argument triple. Instead of executing it a second time with the same
arguments, it uses the cached result of the first invocation. The second invocation
would return the same result and would not modify the graph.

Procedure filter(x, prs) deals with the potential rescuers for each eventuality
of a node x which are of the form (x, ψ) for some ψ ∈ Ev. The second argument of
filter is a provisional prs for x. If an eventuality ϕ ∈ Γx is currently fulfillable
in G there is nothing to be done, so let (x, ψ) ∈ prs(ϕ). If ψ = ϕ then (x, ϕ)
cannot be a potential rescuer for ϕ in x and should not appear in prs(ϕ). But
what about potential rescuers of the form (x, ψ) with ψ �= ϕ? Since we want the
nodes in the potential rescuers to be strict forward-ancestors of x, we cannot
keep (x, ψ) in prs(ϕ); but we cannot just ignore them either.

Intuitively (x, ψ) ∈ prs(ϕ) means that ϕ ∈ Γx can “reach” ψ ∈ Γx by following
a loop in G which starts at x and returns to x itself. Thus if ψ can be fulfilled
in G, so can ϕ; and all potential rescuers of ψ are also potential rescuers of ϕ. The
function reach(prs, x, ϕ) computes all eventualities in x which are “reachable”
from ϕ in the sense above, where transitivity is taken into account. That is, it
detects all self-loops from x to itself which are relevant for fulfilling ϕ. We add ϕ
as it is not in reach(prs, x, ϕ). If any of these eventualities is fulfilled in G then ϕ

448 R. Goré and F. Widmann

Procedure det-prs-child(x, y, ϕ) for passing a prs-entry of a backward-
child to a parent

Input: two nodes x, y ∈ V such that x = y or y is a forward-ancestor of x or
the status of y is defined already; and a formula ϕ ∈ Γy ∩ Ev

Output: undefined or a set of node-formula pairs
Remark: if det-prs-child(x, y,ϕ) has already been invoked before with

exactly the same arguments and under the same invocation of
det-sts-β or det-sts-state, the procedure is not executed a second
time but returns the cached result of the first invocation. We do not
model this behaviour explicitly in the pseudocode.

if there is no edge (of any type) from x to y in G then
insert an update-edge from x to y in G

if stsy = closed then return ∅
else if y is a forward-ancestor of x or y = x then return {(y, ϕ)}
else (∗ y is open because stsy �= closed and its status is defined already ∗)

if prsy(ϕ) = ⊥ then return ⊥

else (∗ prsy(ϕ) is defined ∗)
let (z1, ϕ1), . . . , (zk, ϕk) be all of the pairs in prsy(ϕ)
for i ←− 1 to k do Λi := det-prs-child(x, zi, ϕi)
if ∃j ∈ {1, . . . , k}. Λj = ⊥ then return ⊥ else return

Sk

i=1 Λi

Procedure filter(x,prs) for handling self-loops in G

Input: a node x ∈ V and a function prs : Ev → (P(V × Ev))?

Output: the new status of x

prs′ := prs⊥

foreach ϕ ∈ Γx ∩ Ev such that prs(ϕ) �= ⊥ do
Δ := {ϕ} ∪ reach(prs, x, ϕ)
if not ∃χ ∈ Δ. prs(χ) = ⊥ then

Λ :=
S

χ∈Δ

˘
(z, ψ) ∈ prs(χ) | z �= x

¯

prs′ := prs′[ϕ �→ Λ]

if ∃ϕ ∈ Γx ∩ Ev. prs′(ϕ) = ∅ then return closed else return open(prs′)

Procedure update(x) for propagating the status of nodes
Input: a node x ∈ V that has a defined status

if stsx �= closed then
sts := if x is an α- or a β-node then det-sts-β(x) else det-sts-state(x)
if stsx �= sts then

stsx := sts
let y1, . . . , yk be all the nodes that are forward-, backward- or
update-parents of x

for i ←− 1 to k do update(yi)

An Optimal On-the-Fly Tableau-Based Decision Procedure 449

can be fulfilled and is consequently undefined in the resulting prs′. Otherwise we
take all their potential rescuers which contain proper forward-ancestors of x.

If an eventuality ϕ ∈ Γx has the empty set of potential rescuers, x is closed.

Procedure update(x) propagates status changes through G. It recomputes the
status of a node x ∈ V . If the new status differs from its old one, it updates stsx

and invokes update recursively on all nodes whose status may be affected by
this change. A node that is not closed is either an α/β-node or a state.

Theorem 12 (Soundness, Completeness and Termination). Let φ ∈ Fml
be a formula in negation normal form of size n. The procedure is-sat(φ) ter-
minates, runs in exptime in n, and φ is satisfiable iff is-sat(φ) returns true.

4 A Fully Worked Example

Consider the valid formula 〈(a∗; b∗)∗〉p → 〈(a ∪ b)∗〉p. The full tableau for its
negation does not fit on one page, but its core subgraph is the tableau for the
unsatisfiable formula φ := 〈b〉〈b∗〉〈(a∗; b∗)∗〉p∧[(a∪b)∗]¬p. We therefore consider
the tableau for φ. To save space, we use the definitions in Table 2.

Figure 2 (almost) shows the corresponding graphG just before setting the sta-
tus of node (2). To save space, we (recursively) perform multiple α-expansions
inside nodes. Thus, there are no α-nodes in G. For example, the root node
contains φ, as well as its decompositions 〈b〉〈b∗〉ϕ1 and [(a ∪ b)∗]¬p, the decom-
positions of [(a∪ b)∗]¬p, and so on. Incidentally, Δ, and in particular {¬p}, is a
subset of the Γ -components of all nodes, reflecting the semantics of [(a∪ b)∗]¬p.

The function P13 maps ϕ3 and 〈a〉〈a∗〉〈b∗〉ϕ1 to {(8, ϕ3)} and is undefined
elsewhere. All other Pi in Fig. 2 map each eventuality in their correspond-
ing set to {(2, 〈b∗〉ϕ1)} and are undefined elsewhere. The nodes are labelled
in creation order. The annotation ann is given using “�” in Γ . For example,
in node (3), we have Γ3 = { ϕ4, 〈(a∗; b∗)∗〉p } ∪Δ, and ann3 maps the eventu-
ality ϕ4 to 〈(a∗; b∗)∗〉p and is undefined elsewhere. The bottom line of a node
contains its status. Solid arrows represent forward-edges and dashed arrows rep-
resent backward-edges. There are no update-edges in this example. The label of
a forward- and backward-edge is only given if it is a formula and not ⊥.

Nodes (1), (2), (3), and (4) are created first, and (4) is closed because it
contains p and ¬p. Then (5) and (6) are created, but (6) is closed as it contains
an “at a world” cycle. Next, nodes (7) to (11) are created. Like (4), node (11) is
closed because of a contradiction. When trying to create the second child of (10),
we find that the requested node is already contained inG as (6). Hence we insert a
backward-edge from (10) to (6). Since both children of (10) are closed, node (10)

Table 2. Some definitions used in the example

ϕ1 := 〈(a∗; b∗)∗〉p ϕ2 := 〈a∗; b∗〉ϕ1

ϕ3 := 〈a∗〉〈b∗〉ϕ1 ϕ4 := 〈b∗〉ϕ1

Δ :=
{

[(a ∪ b)∗]¬p, p, [a ∪ b][(a ∪ b)∗]¬p, [a][(a ∪ b)∗]¬p, [b][(a ∪ b)∗]¬p }

450 R. Goré and F. Widmann

(1) state
{ φ, 〈b〉〈b∗〉ϕ1 } ∪Δ

⊥
〈b〉〈b∗〉ϕ1 ��

(2) β-node
{ 〈b∗〉ϕ1 } ∪Δ

⊥

�����������������

��

(3) β-node
{ ϕ4 � 〈(a∗; b∗)∗〉p } ∪Δ

open(P3)

��												

��

(14) state
{ ϕ4 � 〈b〉〈b∗〉ϕ1 } ∪Δ

open(P14)

〈b〉〈b∗〉ϕ1

���
�
�

(4) contradiction
{ ϕ4 � ϕ1 � p } ∪Δ

closed

(5) β-node
{ ϕ4 � ϕ1 � ϕ2 � 〈a∗〉〈b∗〉ϕ1 }

∪ Δ
open(P5)

��

��

(6) “at a world” cycle
{ ϕ4 � ϕ1 � ϕ2 � ϕ3 � ϕ4 }

∪ Δ
closed

(7) state
{ ϕ4 � ϕ1 � ϕ2 � ϕ3 �

〈a〉〈a∗〉〈b∗〉ϕ1 } ∪Δ
open(P7)

〈a〉〈a∗〉〈b∗〉ϕ1

��������������

(8) β-node
{ 〈a∗〉〈b∗〉ϕ1 } ∪Δ

open(P8)

��

�� (13) state
{ ϕ3 � 〈a〉〈a∗〉〈b∗〉ϕ1 } ∪Δ

open(P13)
〈a〉〈a∗〉〈b∗〉ϕ1��� � � � � �

(9) β-node
{ ϕ3 � 〈b∗〉ϕ1 } ∪Δ

open(P9)

��

��
(12) state
{ ϕ3 � ϕ4 � 〈b〉〈b∗〉ϕ1 } ∪Δ

open(P12)

��

��

〈b〉〈b∗〉ϕ1

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��� � � �

(10) β-node
{ ϕ3 � ϕ4 � 〈(a∗; b∗)∗〉p } ∪Δ

closed

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
(11) contradiction
{ ϕ3 � ϕ4 � ϕ1 � p } ∪Δ

closed

Fig. 2. An example: The graph G just before setting the status of node (2)

An Optimal On-the-Fly Tableau-Based Decision Procedure 451

itself is closed too via det-sts-β(10). Next, we create (12), which is a state. Its
requested child is already in G as (2), so we insert a backward-edge from (12)
to (2). The status of (2) is ⊥, in particular it is not closed, and (2) is a forward-
ancestor of (12). So we set the status of (12) to open(P12) via det-sts-state(12)
and det-prs-child(12, 2, 〈b∗〉ϕ1). Remember that P12 maps all eventualities
in Γ12 to {(2, 〈b∗〉ϕ1)}. The status is then propagated to (9).

Node (13) is conceptually similar to (12). When determining the status of (8)
via det-sts-β(8), node (8) “inherits” two potential rescuers for each eventual-
ity: (2, 〈b∗〉ϕ1) from (9) and (8, ϕ3) from (13). But (8, ϕ3) is removed by filter
since a node cannot be part of a potential rescuer of itself. The status is then
propagated to (7), (5), and (3). Node (14) is conceptually similar to (12). As
stated before, this is the moment at which G is shown in Fig. 2. When determin-
ing the status of (2) via det-sts-β(2), node (2) “inherits” only the potential
rescuer (2, 〈b∗〉ϕ1) from its children. Since (2, 〈b∗〉ϕ1) is removed by filter, the
eventuality 〈b∗〉ϕ1 has no potential rescuers. Hence we know that 〈b∗〉ϕ1 cannot
be fulfilled in G now or in the future, so (2) is closed via filter.

The subsequent invocation of update(2) closes all non-closed nodes in the
subgraph rooted at (2). Finally, the root (1) is closed via det-sts-state(1).

5 Implementation Issues and Experiments

For clarity, the description of our algorithm omits some immediate optimi-
sations. For example, once a state has a closed forward- or backward-child,
creating and exploring its remaining children is moot: see 〈a〉ϕ ∧ 〈b〉ψ in the in-
troduction. Our implementation in OCaml (http://rsise.anu.edu.au/~rpg/
PDLGraphProver/) includes this optimisation, but does not include most opti-
misations which have proved crucial in taming description logics [10].

As explained in the introduction, all existing implementations for PDL by
other authors are either educational tools (LoTREC), or do not handle the full
language (DLP, pdl-tableaux). Therefore, we compared our graph-based method
with our tree-based method [11] on randomly generated formulae. Their imple-
mentations share many basic data structures and the same (limited) optimisa-
tions. Thus they should differ mostly in their tree versus graph aspects.

Each randomly generated formula of size n contained at most n/20 proposi-
tional variables and n/20 atomic programs. The formulae were created by ran-
domly choosing a connective with equal probability and recursively creating the
subformulae or subprograms. If a connective had two subformulae/subprograms,
their sizes were chosen randomly so that the final formula had the desired size.

We randomly generated ten million formulae for each size 40, 50, . . . , 90 and
ran both provers on them. For each formula, we set a timeout of 10 seconds. If
a solver timed out, we took its running time for this formula to be the timeout,
that is 10 seconds. The results are given in Table 3. The lack of timeouts shows
that the graph method is clearly more stable. Ignoring stability, there is not much
difference in the running times for satisfiable formulae. But the graph method
is clearly superior for unsatisfiable formulae.

http://rsise.anu.edu.au/~rpg/PDLGraphProver/
http://rsise.anu.edu.au/~rpg/PDLGraphProver/

452 R. Goré and F. Widmann

Table 3. Average running time per 10,000 formulae (and number of timeouts if greater
than 0) for ten million randomly generated formulae of each size, shown separately for
satisfiable and unsatisfiable formulae

formulae size 40 50 60 70 80 90

satisfiable (%) 91.3% 91.1% 93.6% 93.5% 94.9% 94.9%

Graph (sat) 0.6s 0.8s 1.0s 1.2s 1.4s 1.6s

Tree (sat) 0.7s (2) 1.2s (23) 1.4s (22) 2.1s (62) 2.2s (46) 3.7s (151)

Graph (unsat) 0.6s 0.8s 1.0s 1.3s 1.6s 1.9s

Tree (unsat) 1.0s 5.7s (27) 7.9s (28) 22.8s (94) 29.6s (102) 52.8s (190)

On individual handcrafted examples, we sometimes observed that the tree-
based method was faster, even when it generated more nodes. We believe this is
because tracking eventualities in graphs requires more bookkeeping and updating
than in trees, and sometimes this bookkeeping is in vain when branches do not
share nodes. Another reason might be that the tree-based method requires less
space since it can discard previous branches.

References

1. Fisher, M., Ladner, R.: Propositional dynamic logic of regular programs. Journal
of Computer and System Sciences 18(2), 194–211 (1979)

2. Pratt, V.R.: A near-optimal method for reasoning about action. Journal of Com-
puter and System Sciences 20(2), 231–254 (1980)

3. Baader, F.: Augmenting concept languages by transitive closure of roles: An alter-
native to terminological cycles. In: Proc. IJCAI 1991, pp. 446–451 (1991)

4. De Giacomo, G., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for Converse-PDL. Inf. and Comp. 162, 117–137 (2000)

5. Vardi, M., Wolper, P.: Automata theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences 32(2), 183–221 (1986)

6. Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal
logic K. Journal of Applied Non-Classical Logics 16(1-2), 169–208 (2006)

7. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of temporal
logic. In: Proc. LICS 2001, pp. 357–365. IEEE Computer Society, Los Alamitos
(2001)

8. Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. Journal of
Logic and Algebraic Programming 76(2), 216–225 (2008)

9. Goré, R., Nguyen, L.A.: EXPTIME tableaux for ALC using sound global caching.
In: Proc. of the International Workshop on Description Logics (DL 2007) (2007)

10. Horrocks, I., Patel-Schneider, P.F.: Optimizing description logic subsumption.
Journal of Logic and Computation 9(3), 267–293 (1999)

11. Abate, P., Goré, R., Widmann, F.: An on-the-fly tableau-based decision procedure
for PDL-satisfiability. Electr. Notes Theor. Comput. Sci. 231, 191–209 (2009)

	An Optimal On-the-Fly Tableau-Based Decision Procedure for PDL-Satisfiability
	Introduction
	Syntax and Semantics
	An Overview and Our Algorithm
	The Algorithm

	A Fully Worked Example
	Implementation Issues and Experiments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

